

OOP with Microsoft Visual Basic .NET and Microsoft Visual C# Step
by Step

by Robin A. Reynolds-Haertle ISBN: 0735615683

Microsoft Press © 2002 (393 pages)

This intuitive, self-paced learning title is designed to help you master the
basics of object-oriented programming with Visual Basic.NET or Visual C#.

Table of Contents

OOP with Microsoft Visual Basic .NET and Microsoft Visual C# .NET Step by
Step

 Introduction

 Chapter 1 - Writing Your First Object-Oriented Program

 Chapter 2 - Creating Class Instances with Constructors

 Chapter 3 - Creating Fields and Properties

 Chapter 4 - Working with Methods

 Chapter 5 - Using Inheritance to Create Specialized Classes

 Chapter 6 - Designing Base Classes as Abstract Classes

 Chapter 7 - Responding to Changes with Events and Exceptions

 Chapter 8 - Putting It All Together with Components

 Chapter 9 - Providing Services Using Interfaces

 Chapter 10 - Using Classes Interchangeably Through Polymorphism

 Chapter 11 - Using Shared and Static Members

 Chapter 12 - Overloading Operators with Visual C#

 Chapter 13 - Saving Instance Data

 Chapter 14 - Reducing Complexity by Design

 Appendix - Additional Resources

 Index

 Height Gage

 List of Sidebars

OOP with Microsoft Visual Basic .NET and
Microsoft Visual C# .NET Step by Step
PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2002 by Robin A. Reynolds-Haertle

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data
Reynolds-Haertle, Robin A., 1959-
OOP with Microsoft Visual Basic .NET and Microsoft Visual C# Step by Step / Robin A.
Reynolds-Haertle.
p. cm.
Includes bibliographical references and index.

ISBN 0-7356-1568-3
1. Object-oriented programming (Computer science). 2. Microsoft Visual BASIC. 3. C#
(Computer program language) I. Title.
QA76.64 .R495 2001 005.2’768—dc21 2001052122

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 7 6 5 4 3 2

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.
Microsoft Press books are available through booksellers and distributors worldwide. For
further information about international editions, contact your local Microsoft Corporation
office or contact Microsoft Press International directly at fax (425) 936-7329. Visit our
Web site at www.microsoft.com/mspress. Send comments to: mspinput@microsoft.com.
IntelliSense, Microsoft, Microsoft Press, Visual Basic, Visual C#, Visual Studio, and
Windows are either registered trademarks or trademarks of Microsoft Corporation in the
United States and/or other countries. Other product and company names mentioned
herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses,
logos, people, places, and events depicted herein are fictitious. No association with any
real company, organization, product, domain name, e-mail address, logo, person, place,
or event is intended or should be inferred.
Acquisitions Editor: Danielle Bird
Project Editor: Kathleen Atkins
Technical Editor: Jack Beaudry

Body Part No. X08-42192
MICROSOFT LICENSE AGREEMENT
Book Companion CD
IMPORTANT—READ CAREFULLY: This Microsoft End-User License Agreement
(“EULA”) is a legal agreement between you (either an individual or an entity) and
Microsoft Corporation for the Microsoft product identified above, which includes
computer software and may include associated media, printed materials, and “online” or
electronic documentation (“SOFTWARE PRODUCT”). Any component included within
the SOFTWARE PRODUCT that is accompanied by a separate End-User License
Agreement shall be governed by such agreement and not the terms set forth below. By
installing, copying, or otherwise using the SOFTWARE PRODUCT, you agree to be
bound by the terms of this EULA. If you do not agree to the terms of this EULA, you are
not authorized to install, copy, or otherwise use the SOFTWARE PRODUCT; you may,
however, return the SOFTWARE PRODUCT, along with all printed materials and other
items that form a part of the Microsoft product that includes the SOFTWARE PRODUCT,
to the place you obtained them for a full refund.

Software PRODUCT LICENSE

The SOFTWARE PRODUCT is protected by United States copyright laws and
international copyright treaties, as well as other intellectual property laws and treaties.
The SOFTWARE PRODUCT is licensed, not sold.
1. GRANT OF LICENSE. This EULA grants you the following rights:
a. Software Product. You may install and use one copy of the SOFTWARE PRODUCT
on a single computer. The primary user of the computer on which the SOFTWARE
PRODUCT is installed may make a second copy for his or her exclusive use on a
portable computer.
b. Storage/Network Use. You may also store or install a copy of the SOFTWARE
PRODUCT on a storage device, such as a network server, used only to install or run the
SOFTWARE PRODUCT on your other computers over an internal network; however,
you must acquire and dedicate a license for each separate computer on which the

SOFTWARE PRODUCT is installed or run from the storage device. A license for the
SOFTWARE PRODUCT may not be shared or used concurrently on different computers.
c. License Pak. If you have acquired this EULA in a Microsoft License Pak, you may
make the number of additional copies of the computer software portion of the
SOFTWARE PRODUCT authorized on the printed copy of this EULA, and you may use
each copy in the manner specified above. You are also entitled to make a corresponding
number of secondary copies for portable computer use as specified above.
d. Sample Code. Solely with respect to portions, if any, of the SOFTWARE PRODUCT
that are identified within the SOFTWARE PRODUCT as sample code (the “SAMPLE
CODE”):
i. Use and Modification. Microsoft grants you the right to use and modify the source
code version of the SAMPLE CODE, provided you comply with subsection (d)(iii) below.
You may not distribute the SAMPLE CODE, or any modified version of the SAMPLE
CODE, in source code form.
ii. Redistributable Files. Provided you comply with subsection (d)(iii) below, Microsoft
grants you a nonexclusive, royalty-free right to reproduce and distribute the object code
version of the SAMPLE CODE and of any modified SAMPLE CODE, other than
SAMPLE CODE, or any modified version thereof, designated as not redistributable in the
Readme file that forms a part of the SOFTWARE PRODUCT (the “Non-Redistributable
Sample Code”). All SAMPLE CODE other than the Non-Redistributable Sample Code is
collectively referred to as the “REDISTRIBUTABLES.”
iii. Redistribution Requirements. If you redistribute the REDISTRIBUTABLES, you
agree to: (i) distribute the REDISTRIBUTABLES in object code form only in conjunction
with and as a part of your software application product; (ii) not use Microsoft’s name,
logo, or trademarks to market your software application product; (iii) include a valid
copyright notice on your software application product; (iv) indemnify, hold harmless, and
defend Microsoft from and against any claims or lawsuits, including attorney’s fees, that
arise or result from the use or distribution of your software application product; and
(v) not permit further distribution of the REDISTR IBUTABLES by your end user. Contact
Microsoft for the applicable royalties due and other licensing terms for all other uses
and/or distribution of the REDISTRIBUTABLES.
2. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS.
• Limitations on Reverse Engineering, Decompilation, and Disassembly. You may
not reverse engineer, decompile, or disassemble the SOFTWARE PRODUCT, except
and only to the extent that such activity is expressly permitted by applicable law
notwithstanding this limitation.
• Separation of Components. The SOFTWARE PRODUCT is licensed as a single
product. Its component parts may not be separated for use on more than one computer.
• Rental. You may not rent, lease, or lend the SOFTWARE PRODUCT.
• Support Services. Microsoft may, but is not obligated to, provide you with support
services related to the SOFTWARE PRODUCT (“Support Services”). Use of Support
Services is governed by the Microsoft policies and programs described in the user
manual, in “online” documentation, and/or in other Microsoft-provided materials. Any
supplemental software code provided to you as part of the Support Services shall be
considered part of the SOFTWARE PRODUCT and subject to the terms and conditions
of this EULA. With respect to technical information you provide to Microsoft as part of the
Support Services, Microsoft may use such information for its business purposes,
including for product support and development. Microsoft will not utilize such technical
information in a form that personally identifies you.
• Software Transfer. You may permanently transfer all of your rights under this EULA,
provided you retain no copies, you transfer all of the SOFTWARE PRODUCT (including
all component parts, the media and printed materials, any upgrades, this EULA, and, if
applicable, the Certificate of Authenticity), and the recipient agrees to the terms of this
EULA.
• Termination. Without prejudice to any other rights, Microsoft may terminate this EULA
if you fail to comply with the terms and conditions of this EULA. In such event, you must
destroy all copies of the SOFTWARE PRODUCT and all of its component parts.
3. COPYRIGHT. All title and copyrights in and to the SOFTWARE PRODUCT (including
but not limited to any images, photographs, animations, video, audio, music, text,
SAMPLE CODE, REDISTRIBUTABLES, and “applets” incorporated into the

SOFTWARE PRODUCT) and any copies of the SOFTWARE PRODUCT are owned by
Microsoft or its suppliers. The SOFTWARE PRODUCT is protected by copyright laws
and international treaty provisions. Therefore, you must treat the SOFTWARE
PRODUCT like any other copyrighted material except that you may install the
SOFTWARE PRODUCT on a single computer provided you keep the original solely for
backup or archival purposes. You may not copy the printed materials accompanying the
SOFTWARE PRODUCT.
4. U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE PRODUCT and
documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure
by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs (c)(1) and (2) of the Commercial Computer Software—Restricted Rights
at 48 CFR 52.227-19, as applicable. Manufacturer is Microsoft Corporation/One
Microsoft Way/Redmond, WA 98052-6399.
5. EXPORT RESTRICTIONS. You agree that you will not export or re-export the
SOFTWARE PRODUCT, any part thereof, or any process or service that is the direct
product of the SOFTWARE PRODUCT (the foregoing collectively referred to as the
“Restricted Components”), to any country, person, entity, or end user subject to U.S.
export restrictions. You specifically agree not to export or re-export any of the Restricted
Components (i) to any country to which the U.S. has embargoed or restricted the export
of goods or services, which currently include, but are not necessarily limited to, Cuba,
Iran, Iraq, Libya, North Korea, Sudan, and Syria, or to any national of any such country,
wherever located, who intends to transmit or transport the Restricted Components back
to such country; (ii) to any end user who you know or have reason to know will utilize the
Restricted Components in the design, development, or production of nuclear, chemical,
or biological weapons; or (iii) to any end user who has been prohibited from participating
in U.S. export transactions by any federal agency of the U.S. government. You warrant
and represent that neither the BXA nor any other U.S. federal agency has suspended,
revoked, or denied your export privileges.
DISCLAIMER OF WARRANTY
NO WARRANTIES OR CONDITIONS. MICROSOFT EXPRESSLY DISCLAIMS ANY
WARRANTY OR CONDITION FOR THE SOFTWARE PRODUCT. THE SOFTWARE
PRODUCT AND ANY RELATED DOCUMENTATION are PROVIDED “AS IS” WITHOUT
WARRANTY OR CONDITION OF ANY KIND, EITHE R EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF USE OR
PERFORMANCE OF THE SOFTWARE PRODUCT REMAINS WITH YOU.
LIMITATION OF LIABILITY. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, IN NO EVENT SHALL MICROSOFT OR ITS SUPPLIERS BE
LIABLE FOR ANY SPECIAL, INCIDENTAL, INDIRECT, OR CONSEQUENTIAL
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR
LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS
INFORMATION, OR ANY OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF
OR INABILITY TO USE THE SOFTWARE PRODUCT OR THE PROVISION OF OR
FAILURE TO PROVIDE SUPPORT SERVICES, EVEN IF MICROSOFT HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN ANY CASE, MICROSOFT’S
ENTIRE LIABILITY UNDER ANY PROVISION OF THIS EULA SHALL BE LIMITED TO
THE GREATER OF THE AMOUNT ACTUALLY PAID BY YOU FOR THE SOFTWARE
PRODUCT OR US$5.00; PROVIDED, HOWEVER, IF YOU HAVE ENTERED INTO A
MICROSOFT SUPPORT SERVICES AGREEMENT, MICROSOFT’S ENTIRE LIABILITY
REGARDING SUPPORT SERVICES SHALL BE GOVERNED BY THE TERMS OF
THAT AGREEMENT. BECAUSE SOME STATES AND JURISDICTIONS DO NOT
ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY, THE ABOVE LIMITATION
MAY NOT APPLY TO YOU.
MISCELLANEOUS

This EULA is governed by the laws of the State of Washington USA, except and only to
the extent that applicable law mandates governing law of a different jurisdiction.

Should you have any questions concerning this EULA, or if you desire to contact
Microsoft for any reason, please contact the Microsoft subsidiary serving your country, or
write: Microsoft Sales Information Center/One Microsoft Way/Redmond, WA 98052-
6399.

PN 097-0002296
For Bruce
You’re still the one.
About the Author
Robin A. Reynolds-Haertle

Robin’s interest in computing began when she taught herself to program in C to fulfill a
programming language requirement for her master’s degree in biomathematics at the
University of Washington. Fascinated by the subject, Robin attended as many computer
science classes as her schedule would permit, and took a position as a programmer with
the University of Washington after graduation. Robin spent several years in the
biotechnology industry, writing data applications in various database management
systems, C, and Microsoft Visual Basic. Not content to just read computer science and
software engineering books, she then pursued and completed a master’s degree in
software engineering at Seattle University. During these years, Robin presented training
sessions on software engineering topics to her peers. After so many years in the
classroom, Robin wanted to try teaching, and jumped at the opportunity to teach object-
oriented programming with Visual Basic for the University of Washington Outreach
program. Here she discovered she loved writing instructional materials and sample
projects for her students. This led Robin to her current position as a programmer/writer at
Microsoft, writing conceptual documentation for Visual Basic and Microsoft Visual C#.

When not at the computer, Robin is trying to make peace with her abandoned husband
and sons. After she completes this book, they look forward to Mom’s attention to Cub
Scouts, Boy Scouts, hiking, and watching BattleBots. After catching up with the family,
Robin hopes to sew a few quilts.
Acknowledgments

First I’d like to thank the team at Microsoft Press that turned my writing into a book.
Without Jack Beaudry, the technical editor, I never would have gotten any sleep. His
meticulous reviews saved me time and saved readers from much frustration. Kathleen
Atkins, the project editor, kept everything running smoothly and improved my text
considerably. Credit is also due to Danielle Bird, acquisitons editor; Rebecca McKay
(Becka), manuscript editor; Cheryl Penner and Rebecca Wendling (Becky), copy editors;
Gina Cassill, compositor; and Michael Kloepfer, electronic artist.

I also want to thank my colleagues at Microsoft who listened sympathetically to my
complaints about deadlines and beta software. Editors Roger Haight and Meredith
Waring made me a better writer. Mike Pope reminded me to put the reader ahead of
being clever. Megan Shult and Ann Morris, my managers, were supportive even when
writing consumed all my after-hours energy. Much of what I learned about .NET came
from the material written by my team members Jina Chan, Seth Grossman, Steve Hoag,
Steve Stein, and Matt Stoecker. And thank you to Diana Rain, my office mate.

I’d also like to thank Ruth McBride, my longtime manager, and my instructors at Seattle
University. I appreciate their patience with my often experimental approaches to their
assignments over the years.

I also have to mention the friends that still call to check on me, even though I haven’t
called them in months. Jennifer Wirt, Lisa Wiken, Molly Potteiger, and Julie Brinkley have
been true friends.

This book would never have been written without the support of my husband, Bruce. He
completely ran my life for the seven months I was writing this book. I worked and wrote;
he did everything else. My friends are still laughing about how he RSVPs for me. Lastly, I
thank my sons for just being there and for being proud of me.

Introduction
Microsoft Visual Basic developers have long clamored for complete objectoriented
language support. Microsoft Visual Basic .NET supports all the features of an object-
oriented language. In addition, the entire Microsoft .NET Framework, which includes the
development support for Microsoft Windows applications, Web applications, Web
services, graphics, and data access, is designed according to object-oriented principles.
Developers who have a firm grasp of object-oriented principles will be the strongest .NET
developers.

Also new to developers is C#, a C-based language that gives developers a language
choice for developing with the .NET Framework. Some C, Java, and C++ development
will move to C# to take advantage of .NET’s features. Visual Basic programmers looking
to learn a C language might also move to C#. Visual Basic .NET and C# both support
object-oriented development with the .NET Framework. No matter what language you
choose for development, being able to read code in either language will double your
access to Microsoft Visual Studio documentation, .NET books, magazine articles, and
other developer resources.

System Requirements

You’ll need the following hardware and software to complete the exercises in this book:
§ Microsoft Visual Studio .NET Professional edition. The Visual Studio .NET

software isn’t included with this book. You must purchase it separately and
install it before you can complete the exercises in this book.

§ A computer capable of running Microsoft Visual Studio .NET. The following
hardware configuration is recommended by the Microsoft Visual Studio .NET
Web site, at http://msdn.microsoft.com/vstudio/nextgen/

Computer/Processor

PC with a Pentium II–class processor, 450 megahertz (MHz); Pentium
III–class processor, 600 MHz recommended

Operating System

Microsoft Windows 2000, Server or Professional

Microsoft Windows XP Home or Professional

Microsoft Windows NT 4.0 Server

Memory

Windows 2000 Professional, 96 megabytes (MB) of RAM; 128 MB
recommended

Windows 2000 Server, 192 MB of RAM; 256 MB recommended

Windows XP Professional, 128 MB of RAM; 160 Recommended

Hard Disk

500 MB on System Drive and 3.0 gigabyte (GB) on installation drive

Drive

CD-ROM drive

Display

VGA or higher–resolution monitor

Computer/Processor

Input Device

Microsoft Mouse or compatible pointing device

Finding Your Best Starting Point

This book is designed to teach you the fundamentals of object-oriented programming.
You can use this book if you have a basic knowledge of Visual Basic 6, Visual Basic
.NET, Visual C#, or another Windows programming language. The exercises in this book
assume you can already perform the following tasks:
§ Create a new Windows Application project, build it, and run it.
§ Add Windows Forms controls to a Windows Form.
§ Create a method to respond to the Click event of a Button control.
§ Create a simple method (called a Sub or Function in Visual Basic .NET).
§ Declare and use variables.

For an introduction to Visual Basic .NET, read Microsoft Visual Basic .NET Step by Step
by Michael Halvorson (Microsoft Press, 2002). For an introduction to Visual C# , read
Microsoft Visual C# .NET Step by Step by John Sharp and Jon Jagger (Microsoft Press,
2002).

Use the following table to find your best starting point in this book.

If you are Follow these steps

New

To object-
oriented
programming

Install the practice files as described in the
following section, “Installing and Using the Practice Files”

 Work through the chapters sequentially for a
complete introduction to object-oriented
programming. Chapters 1 through 7, 9, and 11
concentrate on the mechanics of object-
oriented programming, while the other
chapters cover the concepts in
more depth.

Migrating

From Visual
Basic 6

Install the practice files as described in
“Installing and Using the Practice Files”
on the next page.

 Work through the chapters sequentially
for a complete introduction to object-
oriented programming with Visual Basic
.NET. Chapters 1 through 7, 9, and 11
concentrate on the mechanics of object-
oriented programming, while the other
chapters cover the concepts in more depth.

Switching

From another
object-
oriented
programming

Install the practice files as described in
“Installingand Using the Practice Files.”

If you are Follow these steps

New

language.

 Complete Chapter 1 to learn the basic
syntax of properties and methods.

 Read the Quick Reference sections at
the end of the chapters for information
about specific class constructs.

Referencing

The book
after working
through the
exercises

Use the index or the Table of Contents
to find information about particular
subjects.

 Read the Quick Reference at the end of
each chapter to find a brief review of the
syntax and techniques presented in the
chapter.

Installing and Using the Practice Files

The companion CD inside the back cover of this book contains the practice files that
you’ll use as you perform the exercises in the book. For example, when you’re learning
to create class events, you’ll use a bitmap file named Train.bmp. By using the practice
files, you won’t waste time creating objects that aren’t relevant to the exercise. Instead,
you can concentrate on learning object-oriented programming with Visual Basic .NET
and Visual C# .NET. The files and the step-by-step instructions in the lessons also let
you learn by doing, which is an easy and effective way to acquire and remember new
skills.

Important Before you break the seal on the OOP with Microsoft Visual
Basic .NET and Microsoft Visual C# Step by Step companion
CD package, be sure that this book matches your version of
the software. This book is designed for use with Microsoft
Visual Studio .NET Professional Edition for the Windows
operating systems. To find out what software you’re running,
you can check the product package or you can start the
software, and then click About Microsoft Development
Environment in the Help menu at the top of the screen.

Install the practice files

Follow these steps to install the practice files on your computer’s hard disk so that you
can use them with the exercises in this book.

1. Remove the companion CD from the package inside the back cover of
this book and insert the CD in your CD-ROM drive.

2. Double-click the My Computer icon on the Desktop.

Tip On some computers, the startup program might run automatically when
you close the CD-ROM drive. In this case, skip steps 2 through 5 and
follow the instructions on the screen.

3. Double-click the icon for your CD-ROM drive.
4. Double-click StartCD.exe
5. Click Install Sample Code.

The setup program window appears with the recommended options
preselected for you. For best results in using the practice files with this book,
accept these preselected settings.

6. When the files have been installed, remove the CD from your CD-
ROM drive and replace it in the package inside the back cover of the
book.

A folder called OOPVBCS has been created on your hard disk, and the
practice files have been placed in that folder.

Using the Practice Files

Each lesson in this book explains when and how to use any practice files for that lesson.
The practice files contain the complete source listings for all the applications created in
this book, as well as any resources, such as bitmaps and databases, that you’ll need to
complete the exercises. For those of you who like to know all the details, here’s a list of
the Visual Basic and Visual C# projects on the practice disk:
Project Description

Chapter 1

ReadBooks This simple program demonstrates the basics of
creating, instantiating, and using a class.

Chapter 2

ReadMoreBooks This program expands on the ReadBooks
program and adds constructors.

Chapter 3

CodeAnalysis
CodeAnalysis2

These two applications demonstrate different
approaches to using class properties, and the
interaction of class properties and the DataGrid
control.

Chapter 4

DeckOfCards This application explores class methods by
using dynamic creation of Windows Forms
controls and drag-and-drop operations.

Chapter 5

TheBank This simple application demonstrates the
basics of class inheritance.

ARoundButton This small project shows how easy it is to derive
from a Windows Forms control and redefine its
drawing.

Chapter 6

ABetterBank This adaptation of Chapter 5’s TheBank
application uses an abstract class as a base class.

ABetterLibrary This improvement on Chapter 1’s ReadBooks
application uses a strongly typed collection.

Variations This application contains code snippets
demonstrating variations on inheritance.

Chapter 7

TrainGame This application introduces delegates, events,
and user-drawn controls in the context of a simple
game.

ThrowSystemException This small program throws a system exception
and recovers by using exception handling.

PersonList This application creates and throws a custom
application exception.

Project Description

Chapter 8

GamesLibrary
Memory

The GamesLibrary project creates a component
library containing objects used to develop the
simple Memory card game

Chapter 9

MoveIt This application covers the basics of creating
and implementing an interface.

Points The Points project contains objects that
implement the IComparable, IFormattable,
and IEnumerable interfaces.

Chapter 10

PatternMaker Moving beyond the basics of inheritance, the
PatternMaker program makes extensive use of
inheritance and polymorphism.

Chapter 11

BetterCard This improvement on the Card class from
Chapter 4 uses static methods to
eliminate the project’s dependency on file locations.

SortablePoint The SortablePoint application from Chapter 10 is
made more flexible through static properties.

Singleton Static fields are used to implement the Singleton
design pattern.

Chapter 12

VectorAlgebra The mathematical concept of vectors is used to
demonstrate the definition and use of operator
overloading in Visual C#.

Chapter 13

Serialize The Serialize application demonstrates the use
of binary and XML serialization of data.

DataSetExercise This very simple ADO.NET application reads
data from an Access database.

Chapter 14

PatternMaker This example uses the PatternMaker exercise
from Chapter 10 to demonstrate the way to
make design changes after the i
nitial development of an application.

Uninstall the practice files

If you are using the Windows XP Professional operating system, follow these steps to
remove the practice files from your computer. If you are using a different version of
Windows, refer to your Windows Help documentation for removing programs.

1. Click Start, and then click Control Panel.
2. In Control Panel, click Add Or Remove Programs.
3. In the Add Or Remove Programs window, click OOP Visual Basic And

C# .NET Code in the Currently Installed Programs list.
4. Click Change/Remove. The Confirm File Deletion dialog appears.
5. Click Yes to delete the practice files.
6. Click Close to close the Add Or Remove Programs window.
7. Close Control Panel.

Conventions and Features in this Book

This book uses conventions designed to make the information more readable and easier
to follow. The book also includes features that contribute to a deeper understanding of
the material.

Conventions
§ Each exercise is a series of tasks. Each task is presented as a series of

numbered steps. If a task has only one step, the step is indicated by a
round bullet.

§ Notes labeled “tip” provide more information for completing a step
successfully.

§ Notes labeled “important” alert you to information you need to check
before continuing.

§ The book uses typographic styles to help organize the information
presented. The following table describes the styles used.

Style Used for Example

Code Code that you type in ‘ Visual
Basic
Public Class
Book
End Class

 // Visual C#
public class
Book {
}

Italics Method argument or parameter aBook

 Event Procedure showPage_Click

 Field m_shelf

 Fully Qualified Name SomeBook.Text

 Keyword Public, public, If,
if

 Method GetPage

 Property value listOfBooks

Roman Boolean values True, true,
False, false

 Class name Book, Library,
Train

 Control type ListBox,
TextBox

 Data type String, string,
Integer, int

 Event Click

 Form Form1

 Namespace ReadBooks
 Parameter type String, string,

Integer, int

 Property Name

Other Features

Shaded sidebars throughout the book provide more in-depth information about the
exercise. The sidebars might contain debugging tips, design tips, or topics you might
want to explore further.
Each chapter ends with a Quick Reference section. The Quick Reference provides a
brief review of the syntax and techniques presented in the chapter.

Corrections, Comments, and Help

Every effort has been made to ensure the accuracy of this book and the contents of the
practice files on the companion CD. Microsoft Press provides corrections and additional
content for its books through the World Wide Web at
http://www.microsoft.com/mspress/support/

If you have problems, comments, or ideas regarding this book or the companion CD,
please send them to Microsoft Press.

Send e-mail to
mspinput@microsoft.com

Or send postal mail to

Microsoft Press
Attn: Step by Step Series Editor
One Microsoft Way
Redmond, WA 98052-6399
Please note that support for the Visual Studio .NET software product itself is not offered
through the preceding address. For help using Visual Studio .NET, visit
http://support.microsoft.com.

Visit the Microsoft Press World Wide Web Site

You are also invited to visit the Microsoft Press World Wide Web site at
http://www.microsoft.com/mspress/

You’ll find descriptions for the complete line of Microsoft Press books, information about
ordering titles, notice of special features and events, additional content for Microsoft
Press books, and much more.

You can also find out the latest in Visual Studio .NET software developments and news
from Microsoft Corporation at
http://msdn.microsoft.com/vstudio/nextgen/

Check it out!

Chapter 1: Writing Your First Object-Oriented
Program

Overview
ESTIMATED
TIME

2 hr. 30 min.

In this chapter, you’ll learn how to

§ Decide which classes to implement in your program.
§ Create a class with fields, properties, and methods.
§ Use a class in an application.
§ Use Microsoft Visual Studio .NET tools to create a class definition.

Classes are the building blocks of object-oriented programs. Object-oriented program
design is driven by the objects in the problem you need to solve. If your goal is to
automate class registration, you might create classes for the instructor, student, and
class schedule objects. Objects also have properties that describe them and their
behavior. These are implemented as properties and methods of a class. Just as an
instructor has a name, so does the Instructor class have a Name property. To assign a
student to a class, you’d need to find an open section in the schedule. So your
ClassSchedule class might implement a FindOpenSection method. The method would
likely check the variable, called a field, in the class in which you’ve stored information
about sections.

In this chapter, you’ll learn how to identify the objects in your problem domain and their
properties and behaviors (methods). Using this analysis, you’ll design and implement the
classes using property and method programming constructs. You’ll then declare and
initialize the variables of the classes you’ve coded. Finally, you’ll implement the solution
to your problem by calling the properties and methods of the class variables.

Reading Books: Your First Object-Oriented Program
Your task in this chapter is to implement a program that displays large text files in page-
size pieces. Typically, your task begins with a specification, perhaps complete, perhaps
not. The specification for Chapter 1 follows:

You have downloaded on your computer the text of several books. You want to be able
to select a book and read one particular page at a time. You also want to be able to set
the length of a page. You’ve already decided which user interface you want to use; it’s
shown here:

As you look at the user interface, you can see that you need to add some controls to a
Windows form: a ListBox, a RichTextBox, two NumericUpDown controls, and some
labels. How will you store the texts of the books? How will you fill the list? How will you
retrieve the correct page of the book that you want to read? You can use object-oriented
programming to answer these questions.

Designing the Classe s

Before you can implement your classes, you must decide which classes you need. First
you look for the objects in the problem. Having found the objects, you then look for
properties, which are characteristics or qualities that belong to the object, and methods,
which are behaviors of the object.

You can choose from many ways to design the classes in an application. The approach
presented here begins with a textual analysis of the problem. The nouns are selected as
candidates for classes, while verbs become candidates for the methods. In the course of
the analysis, you’ll eliminate many of the nouns as candidates, and you might discover
classes that aren’t among the nouns in the specification. After you determine the objects,
properties, and methods that belong to your classes, you can then write the class
specification that you’ll use in the implementation.

Find the classes
1. Read the problem statement, and find all the nouns.

You have downloaded on your computer the text of several books. You
want to be able to select a book and read one particular page at a time. You
also want to be able to set the length of a page .

2. Eliminate candidates. Reasons to eliminate a candidate include
§ The class based on the noun would have only properties

or only methods.
§ The class based on the noun wouldn’t be relevant to the

problem.
§ The class based on the noun wouldn’t represent one

object.
You can eliminate the irrelevant candidates: computer and time. Length (of a
page) is merely an integer value and wouldn’t generate enough behavior to
qualify as a class. The same is true of text in this example—the only thing to
be done with it is to display a piece of it, a page. By the same reasoning, page
is also not a class. That leaves book and books. Books is just the plural of
book , so you are left only with book as a potential class. But you aren’t
finished yet.

3. Search for missing candidates. Consider this specification, “The dealer
deals four cards to each player.” There’s no mention of a deck of
cards, although deck is a likely class in that problem.

Remember eliminating books? Another class does, in fact, represent the
properties and behavior of a group of books. You can call this class Library.
The library concept is different from the book concept. A book has a title and
text and can be read. A library contains many books, which can be checked
out and returned.

Left with the Book and Library classes, you can now search for properties and methods.

Find the methods and properties
1. Read the problem statement, and find all the verbs. You can leave out

the helping verbs, such as is, was, and have. As in the case of the
nouns, textual analysis of verbs is just the starting point for finding the
methods.

You have downloaded on your computer the text of several books. You want
to be able to select a book and read one particular page at a time. You also
want to be able to set the length of a page.

2. Consider each verb. Is it a method, or does it indicate a method? Is it
relevant to the problem?

Downloaded and want are clearly irrelevant to the problem. Select is an
operation of the Library class. In a real library, this action would correspond to
finding a book on the shelf and checking it out. So the Library has a CheckOut
method. There’s also a hidden property here because a book needs a title.
Read is an operation of the Book class. This method allows you to read one
particular page, so it can be named GetPage. The verb set indicates that a
property needs to be changed, and that property is the length of a page,
PageLength.

3. The same nouns that you eliminated as classes might in fact be
properties of those classes.

Text, length (of a page), and page were eliminated as classes. A book does
need text, so Text becomes a property of Book. You discovered that
PageLength is a property in considering the verb set. Page represents one
section of the text and represents the result of the GetPage operation, so it
isn’t a property.

4. Look for missing properties and methods.
If you’re going to check books out of the library, you need a way to add books
to the library and return the checked-out books. A CheckIn method will handle
this.

Testing the Class Design

Reread the problem, and determine whether your classes, with their properties and
methods, provide the functionality necessary to solve the problem.
You have downloaded on your computer the text of several books.

Do you have a way of storing and organizing several books? Yes, you can create one
Book for each book and one Library to store them all.
You want to be able to select a book and read one particular page at a time.
Can you select one book and read one page? Yes, books can be selected by their titles,
and the GetPage method retrieves one page.
You also want to be able to set the length of a page.

Can you set the length of a page? Yes, the Book class has a PageLength property.

The results are shown in the following table. The methods are shown as they might be
declared in Visual Basic.

Class Properties Methods

Book Integer
PageLengt
h

GetPage (pageNumber As
Integer) As String

Class Properties Methods

 String Text

 String Title

Library CheckIn (aBook As Book)
CheckOut (title As
String) As Book

Creating the Book Class

The following exercise covers the basics of class implementation using the Book class
as an example. To implement the Library class, you’ll use some of the development tools
provided by the Microsoft Visual Studio .NET integrated development environment (IDE).

Create the book class
1. In the IDE, click the File menu, point to New, and then click Project.

The New Project dialog box opens.
2. Select Visual Basic Projects or Visual C# Projects in the Project Types

tree, click Windows Application in the Templates list.
3. Enter ReadBooks in the Name box, and click OK.
4. Display the Solution Explorer by selecting Solution Explorer on the

View menu. Click the ReadBooks project in the Solution Explorer.

12. On the Project menu, click Add Class. The Add New Item dialog box

appears, as shown here:
13. Enter either Book.vb or Book.cs in the Name box, depending on the

language you are using. Note that the class name begins with a capital
letter and is singular.

14. Click Open. The IDE adds a file to your project. The file includes the
basic definition of a class, as shown in the following two screen shots.

The Visual Basic class contains the minimum for a class declaration. Here’s the syntax
for declaring a class in Visual Basic:

Class ClassName

End Class

In this case, the class is named Book. The IDE adds the Public modifier that’s shown to
indicate that the class can be used throughout the project.

The Visual C# class contains the class declaration as well as a constructor. Here’s the
syntax for declaring a class in C#:

class ClassName {}
A constructor contains code to initialize the fields of a class and perform other class
initialization fun‘ctions. In C#, it has the same name as the class. A constructor isn’t
required. I’ll talk more about constructors in Chapter 2, “Creating Class Instances with
Constructors.”

Add the Text and PageLength fields
A field is a variable declared in a class block. Fields can be any .NET data type, such as
Integer or Boolean; .NET class, such as TextBox or ListBox; or any class that you have
created.

1. Locate the beginning of the class definition.
In Visual Basic, the class definition begins immediately after the line that
shows the class name. In Visual C#, the class definition begins after the
opening curly brace of the class.

2. Add the following code inside the class to create Text and PageLength
fields.

3. ‘ Visual Basic
Public Text As String = ""
Public PageLength As Integer = 10

// Visual C#
public string Text = "";p
public int PageLength = 10;

Tip By convention, the initial letters of names of public members (fields,
properties, methods, and events) of a class are capitalized
(Textfield) or are intercapitalized (PageLength field).

According to the code, you have specified initial values for the fields: the empty string for
Text and 10 for PageLength. A basic tenet of object-oriented programming is that an
object should maintain a consistent state. That means that the state of the object (the
values of its fields) should represent a usable state. If you didn’t initialize the fields,
values would default to “” for the Text field and 0 for the PageLength field. If those were
acceptable values for a book, you could leave them uninitialized. But because compilers
and their default values change, you can prevent maintenance problems by initializing
the fields.
Your client code (the code that uses a Book object) is able to read and write to any field
declared with the public keyword (Public in Visual Basic and public in Visual C#).

Providing direct access to the class data is a violation of the object-oriented principle of
information hiding, which stipulates that the client has no knowledge of the underlying
data structure of an object. In the next section, you’ll learn how to allow the client code to
get and set the Title of the Book without giving away details about the implementation.

Add the Title property
A property is a programming construct that allows your code to get and set a value.
Typically, the code in the property constructor will get and set the value of a private field
in the class. In client code, a public field and a property are used in the same way—for
example, SomeBook.Text and SomeBook.Title.

1. Add the following code to the Book class after the Text and
PageLength declarations.

2. Private m_title As String ‘ Visual Basic
private string m_title; // Visual C#

This code creates a private field in the Book class. Client code doesn’t have
access to this property.

Tip Private fields of a class are declared using the m_ prefix to identify them
as member data. Private field names aren’t capitalized.

3. Add the following code to the Book class, after the m_title declaration.

4. ‘ Visual Basic

5. Public Property Title() As String

6. Get

7. Return m_title

8. End Get

9. Set(ByVal value As String)

10. m_title = value

11. End SetEnd Property

12. // Visual C#

13. public string Title {

14. get {

15. return m_title;

16. }

17. set {

18. m_title = value;

19. }}
These syntax blocks define class properties. The Title property appears in the
IntelliSense drop-down list just like any other property, such as the familiar TextBox.Text
or Form.Backcolor. The property block allows you to control access to the property. You
can add validation code to the Set block to ensure that only reasonable values are
assigned to the underlying m_title field.

Note Please notice an important difference between fields and
properties. A place is reserved in memory for fields. They contain
the actual data of the class. Properties provide access to the data
but are not data themselves.

In this book, I use the word set to mean changing a property. I use the word get to mean
retrieving the value of a property. The Get and Set blocks of a property can be called
getters and setters, or accessors.
The property block is more flexible than you’ve seen here. Properties can be public or
private, read/write, read-only, or write-only. In Visual Basic, the property statements can
even take a parameter. By the way, I cover properties in detail in Chapter 2, but I need to
talk about them at least a little bit in this chapter.

A Little Bit About Properties

We can use the word properties, in a general object-oriented sense, to mean the
descriptive information about an object. We can also use properties to mean the
particular syntactic construct provided by Visual Basic and C#. The particular meaning
of the word can be determined by context. Use properties to validate class data and
hide class implementation. You have to make a strong case for using public fields in a
class. The addition of a property to a class to control access to the underlying data
requires minimal effort. The benefit of this practice is that you can easily add validation
or change the implementation if you need to without affecting clients already using your
objects.

Add the GetPage method
§ Add the GetPage method to the class definition after the field

declarations.

‘ Visual Basic

Public Function GetPage(ByVal pageNumber As Integer) As String

 Dim start As Integer = (pageNumber -1) * PageLength

 If (start < Text.Length) And (start >= 0) Then

 If (start + PageLength) < Text.Length Then

 Return Text.Substring(start, PageLength)

 Else

 Return Text.Substring(start, Text.Length - start)

 End If

 Else

 Return ""

 End IfEnd Function

// Visual C#

public string GetPage(int pageNumber) {

 int start = (pageNumber - 1) * PageLength;

 if ((start < Text.Length) && (start >= 0)) {

 if ((start + PageLength) < Text.Length) {

 return Text.Substring(start, PageLength);

 }

 else {

 return Text.Substring(start, Text.Length - start);

 }

 }

 else {

 return "";

 }}

In Chapter 3, “Fields and Properties,” you’ll see how we can replace the GetPage
method with a construct known as an indexer in Visual C# or with a default Item method
in Visual Basic.

The complete class definitions for our project are shown here:

‘ Visual Basic

Public Class Book

 Public Text As String = ""

 Public PageLength As Integer = 10

 Private m_title As String

 Public Property Title() As String

 Get

 Return m_title

 End Get

 Set(ByVal Value As String)

 m_title = Value

 End Set

 End Property

 Public Function GetPage(ByVal pageNumber As Integer) As String

 Dim start As Integer = (pageNumber - 1) * PageLength

 If (start < Text.Length) And (start >= 0) Then

 If (start + PageLength) < Text.Length Then

 Return Text.Substring(start, PageLength)

 Else

 Return Text.Substring(start, Text.Length - start)

 End If

 Else

 Return ""

 End If

 End FunctionEnd Class

// Visual C#using System;namespace ReadBooks{

 /// <summary>

 /// Summary description for Book.

 /// </summary>

 public class Book {

 public string Text = "";

 public int PageLength = 10;

 private string m_title;

 public Book() {

 //

 // TODO: Add constructor logic here

 //

 }

 public string Title

 {

 get {

 return m_title;

 }

 set {

 m_title = value;

 }

 }

 public string GetPage(int pageNumber) {

 int start = (pageNumber - 1) * PageLength;

 if ((start < Text.Length) && (start >= 0)) {

 if ((start + PageLength) < Text.Length) {

 return Text.Substring(start, PageLength);

 } else {

 return Text.Substring(start,

 Text.Length - start);

 }

 }

 else {

 return "";

 }

 }

 }}

Fields, properties, methods, and constructors can appear in any order in a class
definition. Good organization benefits future readers of your code. Here’s a common
organization and, in fact, the one I used in this book:

§ Field declarations
§ Constructors
§ Properties
§ Methods

Using the Book Class in an Application
You’ve just finished implementing the Book class. The class definition is just a template
for an object. To put data in the fields and properties, you have to create an instance of
the class in memory; this action is known as instantiation. When you create an instance,
a section of memory is set aside to hold the fields of the object. If you create another
instance of the class, another section of memory is set aside for its fields.
You aren’t going to implement the full solution yet. First you need to write some code to
test your class. You’ll create two instances of the Book class in the ReadBooks project,
and you’ll display the fourth page of each book. (These will be very short books.) You’ll
create a cookbook and a book of fairy tales, so you’ll need to create two separate
instances of the Book class. Instead of creating a fancy interface, you’ll write just enough
code to see whether your class is working as you expected.

Test Drivers

A short program to test a class is called a driver. It’s a good idea to exercise your class
a bit with a driver before adding the class to a larger program. Use the driver to test
your class without the interference of other code in the program.

Create an instance of Book
1. In the Solution Explorer, double-click Form1 to open it in the Windows

form designer. If Form1 is opened in the code editor, select View,
Designer.

2. Drag a button from the Toolbox onto Form1. If the Toolbox isn’t visible,
select View, Toolbox.

3. Right -click the button, and click Properties on the shortcut menu. In
the Properties window, set the Name property of the button to
showPage and set the Text property to Show Page.

The button on the Windows form is created from the Button class. Name and
Text are properties of the Button class. So we can talk about getting and
setting these properties. Form1 is a class as well, and the button you just
created is a field of the Form1 class.

4. Double-click the button to create the Click event method.
5. Add the following code in boldface to the Click event to create a book

of fairy tales.

6. ‘ Visual Basic

7. Private Sub showPage_Click(ByVal sender As System.Object, _

8. ByVal e As System.EventArgs) Handles showPage.Click
9. Dim fairyTales As Book
10. fairyTales = New Book()
11. End Sub
12. // Visual C#
13. private void showPage_Click(object sender, System.EventArgs e)

 {
14. Book fairyTales;
15. fairyTales = new Book();

}
16. Add the following code to set the Text, PageLength, and Title

properties immediately after the code you entered in step 5:

17. ‘ Visual Basic

18. fairyTales.Text = "Once upon a time there was a bear."

19. fairyTales.PageLength = 8fairyTales.Title = "Fairy Tales"

20. // Visual C#

21. fairyTales.Text = "Once upon a time there was a bear.";

22. fairyTales.PageLength = 8;

fairyTales.Title = "Fairy Tales";
When the instance of Book is created, its fields contain the values specified in
the class definition. The Text field is an empty string, the page length is 10,
and the title is blank. Notice that it makes no difference in the client code
whether you use a field or a property.

23. Add the following code after the fairyTales code to create another
instance of the Book class. (This instance will be a recipe book.)

24. ‘ Visual Basic

25. Dim cookies As Book = New Book()

26. cookies.Text = "Chocolate chip cookies are the most delicious co
okies."

27. cookies.PageLength = 8

28. cookies.Title = "Cookie Recipes"

29. // Visual C#

30. Book cookies = new Book();

31. cookies.Text = "Chocolate chip cookies are the most delicious co
okies.";

32. cookies.PageLength = 8;

cookies.Title = "Cookie Recipes";

In this case, you used a different syntax for declaring and initializing a variable of the
Book class. Visual Basic and Visual C# allow declaration and initialization in the same
statement. Declaring and initializing in the same statement has the following advantages:

§ Programmers are less likely to forget to initialize the variable.
§ When a class defines a constructor with parameters, the fields can be

initialized at the same time. (You’ll create constructors with parameters in
Chapter 3.)

Use an instance of the Book class
1. Add the following code after the cookies code to display some of the

text of the two books. In later chapters, you’ll learn other ways to
return the text of a particular page in the book.
2. ‘ Visual Basic
3. Dim page As Integer = 3
4. Dim report As String
5. report = "Page " & page.ToString() & ControlChars.CrLf _
6. & fairyTales.Title & ": " & fairyTales.GetPage(page) _
7. & ControlChars.CrLf _
8. & "Cookies: " & cookies.GetPage(page)
9. MessageBox.Show(report)
10. report = "Titles: " + fairyTales.Title & " and " & cookies.Title
11. MessageBox.Show(report)
12. // Visual C#
13. int page = 3;
14. string report;
15. report = "Page " + page.ToString() + "\n"
16. + fairyTales.Title + ": " + fairyTales.GetPage(page) + "\n"
17. + cookies.Title + ": " + cookies.GetPage(page);
18. MessageBox.Show(report);
19. report = "Titles: " + fairyTales.Title + " and " + cookies.Title;

MessageBox.Show(report);
This bit of code demonstrates that there are two separate instances of the
Book class. We can refer to these instances using the variables fairyTales
and cookies . The object-oriented concept that permits each instance to be
referred to separately is known as identity. You’ll see in later chapters that the
identity principle doesn’t mean that you have to create a variable for each
instance. Creating so many variables is unwieldy if you need hundreds of
instances of a class. Identity does mean that you can refer to each instance
separately when you need to.
Notice that when you created an instance of Book, the fields of fairyTales
were changed and the GetPage method was called. Later on we retrieved the
value of the Title property. The value of Title was unchanged after the
GetPage method was called. The fact that the value was unchanged
demonstrates the concept of object state, the idea that the fields retain their
values between method calls. Compare the way the GetPage method works

with a method that has variable declarations. After the GetPage method ends,
the variables go out of scope and their values are lost to the application.

20. Press F5 to run the code. Click the Show Page button. The results are
shown here:

Click OK, and the book titles are displayed in a message box as shown here:

Click OK, and then close the application.
You’ve now created a class, Book, and two instances of it. Your code sent a message to
the Book class through the GetPage method to ask for the third page of the text. In the
next sections, you’ll implement another class, Library. This time, however, you’ll let some
of the IDE tools do some of the syntactic work for you.

Using the Class View

The IDE provides a Class View that displays a tree view of the class structure of the
project, namespaces, and classes. The Class View can share the same window as the
Solution Explorer. On the View menu, click Class View to open the Class View. The
expanded Class View is shown below for Visual Basic and Visual C#, respectively.

The highest-level node represents the project, ReadBooks. The next level of nodes
represents the namespaces in the project. A project can contain several namespaces; in
this case, there’s only one. The project namespace contains two classes: the class that
we created, Book, and the class for the Windows form, Form1. The Book class contains
two public fields, PageLength and Text, represented by blue blocks, and one private
field, m_title, represented by a blue block with a lock. The class contains one property,
Title, represented by a graphical hand holding a letter. The class contains a method,
GetPage, with one integer parameter that returns a string. The method is represented by
a purple block.
In the case of Visual C#, the tree indicates the base classes and interfaces (which I’ll
cover in Chapters 5 and 9). If we were to expand the Bases And Interfaces node, we’d
find that Book has Object as its base class. All classes in Visual Basic and Visual C#
implicitly have Object as a base class. Base classes are covered in Chapter 5, “Using
Inheritance to Create Specialized Classes.”

Creating the Library Class
By means of the Class View, C# provides additional tools for creating class definitions.
We’ll use these tools to create the Library class. This class will have two methods:
CheckIn, which adds an instance of Book to the Library class, and CheckOut, which
removes a particular book from the Library class and returns a reference to that book.

The following wizards are available only in Visual C#. The code for Visual Basic is shown
at the end of the section so that it can be added to the Visual Basic project.

Create the Library class
1. In the Class View, right-click the Visual C# project ReadBooks, point to

Add, and then click Add Class on the shortcut menu.
2. The C# Class Wizard appears as shown here:

3. Enter Library in the Class Name box, select ReadBooks in the

Namespace list and public in the Access list, click the None Class
Modifiers option, and then click Finish.

4. The fields and tabs of the wizard are described in the following table.

Field or tab Description

Class Name The name of
the new
class. In this
case,
Library.

Namespace The
namespace
controls the
packaging
of the types
in the
assembly
and the
qualified
names used
to
refer to the
class.

File Name By default,
this is the
name of the
class.

Access This
controls the
ability to
create
references
in other
parts of the
application
and in other
applications.

Class Modifiers The abstract
and sealed
classes

Field or tab Description

control use
of the
class in
inheritance
relationships
. These will
be
discussed in
Chapter 6,
“Designing
Base
Classes
and Abstract
Classes.”

Comment Use this
field to add
a comment
to the class.

Base Class tab Allows you
to choose a
base class
for your
class.
Classes
from your
project, from
the .NET
Framework,
and other
assemblies
are
available in
drop-down
lists.

Inheritance tab Allows you
to pick the
interfaces
you want to
implement
in your
class.

Add a field to the Library class

To store the collection of books, you’ll add an instance of the SortedList class to your
project. The SortedList class is a data structure class provided by the .NET Framework.
It can store data in the same way that you might use an array. The SortedList class has
two additional features: you can look up a particular piece of data based on a string key,
and you can add or remove data as you like.

1. Add the following statement to the top of the Library.cs file.
using System.Collections;

Adding this statement allows you to use the SortedCollection class without
having to use the fully qualified name, System.Collections.SortedList.

2. In the Class View, right-click the Library class and point to Add.

The IDE provides wizards for adding fields, properties, methods, and
indexers, as shown here:

7. Click Add Field.
8. The C# Add Field Wizard appears, as you see here:

9. Click private in the Field Access list, enter SortedList in the Field Type

box, and enter m_shelf in the Field Name box. Leave None for the
Field Modifiers option. I’ll talk about the Static modifier in Chapter 11,
“Creating Static Members,” and I’ll cover the Const modifier in Chapter
7, “Responding to Changes with Events and Exceptions.”

10. Click Finish.
11. Modify the declaration of m_shelf in the Library class to instantiate it.

SortedList is a class, so it must be instantiated just as you instantiated
the Book class.

private SortedList m_shelf = new SortedList();

Add the methods to the Library class
At the beginning of this chapter, you designed the Library class with a CheckIn method.
In the last section, “Add a field to the Library class,” you created a SortedList class for
the instances of Book. The Library’s CheckIn method calls the SortedList’s Add method
to store the instances of Book.

Add the CheckIn method to the Library class
1. In the Class View, right-click the Library class, point to Add, and click

Add Method. The C# Add Method Wizard appears as shown here:

13. Enter CheckIn in the Method Name box.

You want the method to be public, and you don’t want to return any value
from the method. The method will have one parameter, newBook .

14. Enter Book in the Parameter Type box, enter newBook in the
Parameter Name box, and click Add to add newBook to the Parameter
List.

You can see the Method signature being created as you specify the
information in the wizard’s fields.

15. Click Finish to add the method to the Library class.
16. Modify the resulting method block to add the book to m_shelf, using

the book’s title as the key value. We’ll use the same value to retrieve
the book from the shelf in the CheckOut method.

17. public void CheckIn(Book newBook) {

18. m_shelf.Add(newBook.Title, newBook);

}

Add the CheckOut method to the Library class
1. Run the Add Method Wizard by right-clicking Library in the Class View,

pointing to Add, and clicking Add Method.
2. Enter Book in the Return Type box; enter CheckOut in the Method

Name box, create one string type parameter named title, and click
Finish.

3. Modify the code as shown in the following snippet so that the book is
removed from SortedList and returned from the method.

4. public Book CheckOut(string title) {

5. Book theBook;

6. theBook = (Book)m_shelf[title];

7. m_shelf.Remove(title);

8. return theBook;

}
The (Book) notation in the second statement of the CheckOut method is
known as a cast. The .NET Framework collection classes are extremely
powerful because they’ll hold any instance of any class that has the Object
class as its base class. Because all classes you’ll use in Visual Basic or
Visual C# have Object as a base class, you can add an instance of any class
you create to SortedList. The flipside of this is that anything you take out of
SortedList is considered to be an Object. The cast (Book) lets the compiler
know that you’re taking out a Book instance so that you can use the Book
properties and methods.

9. You’ve completed the code for the Library class. The complete listing
for the class, in both Visual Basic and Visual C#, is shown here:

// Visual C#

using System;

using System.Collections;

namespace ReadBooks {

 /// <summary>

 ///

 /// </summary>

 public class Library {

 private SortedList m_shelf = new SortedList();

 public Library() {

 }

 public void CheckIn(Book newBook) {

 m_shelf.Add(newBook.Title, newBook);

 }

 public Book CheckOut(string title) {

 Book theBook;

 theBook = (Book)m_shelf[title];

 m_shelf.Remove(title);

 return theBook;

 }

 }

}

‘ Visual Basic

Imports System.Collections

Public Class Library

 Private m_shelf as New SortedList()

 Public Sub CheckIn(ByVal newBook As Book)

 m_shelf.Add(newBook.Title, newBook)

 End Sub

 Public Function CheckOut(ByVal title As String) As Book

 Dim theBook as Book

 theBook = CType(m_shelf(title), Book)

 m_shelf.Remove(title)

 Return theBook

 End Function

End Class

Creating the ReadBooks Program

Now it’s time to create, code, and test the complete application shown in the problem
statement.

Create the user interface
1. Delete the Show Page button from Form1.
2. Drag a ListBox control onto Form1. Set the Name property to

listOfBooks.
3. Drag a NumericUpDown control onto Form1. Set the Name property to

pageLength and the Minimum property to 1.
4. Drag another NumericUpDown control onto Form1. Set the Name

property to pageToDisplay and the Minimum property to 1.
5. Drag a RichTextBox control onto Form1. Set the Name property to

page, the Multiline property to True, and the Text property to blank.
6. Drag a Label control onto Form1 so that it’s above the RichTextBox

control. Set the Name property to titleLabel and the Text property to
blank.

7. Add three more Label controls onto Form1. Use them to label the
ListBox control and the two NumericUpDown controls. Reposition and
resize the controls as shown in the complete user interface here:

Add code to the application
1. In the Solution Explorer, right-click Form1 and click View Code on the

shortcut menu.
Form1 is a class, just as Book and Library are classes. All of the controls
added to the form are fields of the form. If you expand the section labeled
Windows Form Designer Generated Code, you can find the control
declarations.

2. Add a Library field to the Form1 class. Add this declaration before the
generated code section.

3. Private m_library As Library ‘ Visual Basic

private Library m_library; // Visual C#
4. If you’re using Visual Basic, in the code editor, select Form1 (Base

Class Events) from the Class Name list box, and then select Load
from the Method Name list box. If you’re using Visual C#, in the form
designer, double-click on the form. Add the following code to the Load
event method:

5. ‘ Visual Basic

6. Private Sub Form1_Load(ByVal sender As Object, _

7. ByVal e As System.EventArgs) Handles MyBase.Load

8. m_library = New Library()

9. Dim cookies As New Book()

10. cookies.Text =

11. _"Chocolate chip cookies are the most delicious cookies."

12. cookies.PageLength = 8

13. cookies.Title = "Cookies"

14. Dim fairyTales As New Book()

15. fairyTales.Text = "Once upon a time there was a bear."

16. fairyTales.PageLength = 8

17. fairyTales.Title = "Fairy Tales"

18. m_library.CheckIn(cookies)

19. m_library.CheckIn(fairyTales)

20. listOfBooks.Items.Add(cookies.Title)

21. listOfBooks.Items.Add(fairyTales.Title)End Sub

22. // Visual C#

23. private void Form1_Load(object sender, System.EventArgs e) {

24. m_library = new Library();

25. Book cookies = new Book();

26. cookies.Text =

27. "Chocolate chip cookies are the most delicious cookies.";

28. cookies.PageLength = 8;

29. cookies.Title = "Cookies";

30. Book fairyTales = new Book();

31. fairyTales.Text = "Once upon a time there was a bear.";

32. fairyTales.PageLength = 8; fairyTales.Title = "Fairy Tales";

33. m_library.CheckIn(cookies);

34. m_library.CheckIn(fairyTales);

35. listOfBooks.Items.Add(cookies.Title);

36. listOfBooks.Items.Add(fairyTales.Title);

 }
The Load event of Form1 is inherited from the System.Windows.Forms.Form
Load event. New classes are created from existing classes using inheritance.
I’ll talk about inheritance in Chapter 5.

37. If you’re using Visual Basic, in the code editor, select listOfBooks from
the Class Name list box of the code editor. Select
SelectedIndexChanged from the Method Name list box. If you’re using
Visual C#, in the form designer, double-click the listOfBooks ListBox
control. The SelectedIndexChanged method is created in the code
editor.

38. Add the following code to the list box’s SelectedIndexChanged event
method:

39. ‘ Visual Basic

40. Private Sub listOfBooks_SelectedIndexChanged(ByVal sender _

41. As System.Object, ByVal e As System.EventArgs) _

42. Handles listOfBooks.SelectedIndexChanged

43. Dim title As String = listOfBooks.SelectedItem.ToString()

44. Dim theBook As Book = m_library.CheckOut(title)

45. theBook.PageLength = pageLength.Value

46. titleLabel.Text = theBook.Title

47. page.Text = theBook.GetPage(pageToDisplay.Value)

48. m_library.CheckIn(theBook)

49. End Sub

50. // Visual C#

51. private void listOfBooks_SelectedIndexChanged(

52. object sender, System.EventArgs e) {

53. string title = listOfBooks.SelectedItem.ToString();

54. Book theBook = m_library.CheckOut(title);

55. theBook.PageLength = (int)pageLength.Value;

56. titleLabel.Text = theBook.Title;

57. page.Text = theBook.GetPage((int)pageToDisplay.Value);

58. m_library.CheckIn(theBook);

}
59. This code removes the book from the library (because it’s not in the

library anymore) and displays the first page of the (very short) book in
the rich text box. For this example, we simply check the book back into
the library so we can continue testing.

60. Run the program and select one of the books.
61. One page of the book is displayed in the text box, as shown here:

Quick Reference

To Do this

Add a class to a project On the Project menu, click Add Class.

 Or

 In Visual C#, right-click the project name in the
Class View, point to Add, then click Add Class
on
the shortcut menu.

 The Visual Basic syntax is
Class SomeClassName
End Class

 The Visual C# syntax is
class SomeClassName {
}

Add a field to a class Declare a variable in the class block.
 Or

 In Visual C#, right-click the class name in the
Class View, point to Add, and then click Add
Field on the shortcut menu.

Add a method to a class Type the method into the class block.

To Do this

 Or
 In Visual C#, right-click the class name in the

Class View, point to Add, and then click Add
Method on the shortcut menu.

Add a property Type the property block in the class block.

 Or
 In Visual C#, right-click the class name in the

Class View, then click Add, and then click Add
Field on the shortcut menu.

 The Visual Basic syntax for an Integer property
is
Public Property Title() As String
 Get
 ‘ Return a field value here
 End Get
 Set(ByVal Value As String)
 ‘ Set a field value here
 End Set
End Property

 The Visual C# syntax for an int property is
public string Title {
 get {
 // return a field value here
 }
 set {
 // set a field value here
 }
}

Create an instance of
a class

Initialize the variable using the new keyword

 In Visual Basic
Dim aBook as New Book()

 In Visual C#
Book aBook = new Book();

Set a class property Instantiate the class, and then set the property.

 In Visual Basic
Dim aBook As New Book()
aBook.Title = "Recipes"

 In Visual C#
Book aBook = new Book();
aBook.Title = "Recipes";

Call a method of a class Instantiate the class, and then call the method.

 In Visual Basic
Dim aBook As New Book()
Dim onePage As String
onePage = aBook.GetPage(4)

 In Visual C#
Book aBook = new Book();
string onePage = aBook.GetPage(4)

Chapter 2: Creating Class Instances with
Constructors

Overview
ESTIMATED
TIME

1.5 hrs.

In this chapter, you’ll learn how to

§ Create a class constructor.
§ Create multiple constructors for one class.
§ Initialize a class instance using a constructor.
§ Implement the ToString method for a class.
§ Instantiate an array of class instances.
§ Use an array of class instances as the data source of a ListBox control.

In the previous chapter, you created a Book class that included Text and Title properties.
Creating a new instance of the class required three lines of code, one to declare and
instantiate the class, one to set the Text property, and one to set the Title property. In
this chapter, you’ll create a class constructor that allows you to execute all three steps at
once: declaration, instantiation, and initialization of the fields.

Constructors
A constructor is block of code that executes when you use the new keyword (New or
new) to create an instance of a class. Constructors have the following powers:
§ A constructor can take parameters that allow you to initialize the fields when

the object is created.
§ A constructor can determine the validity of the parameters passed to it when

the class is created.
§ A class can have multiple constructors, each taking a different set of

parameters.
§ A constructor can call another constructor to do some of its work.

The syntax for defining constructors varies slightly between Visual Basic and Visual C#.
In Visual Basic, a constructor without parameters is declared this way:

Public Sub New()

End Sub

In Visual C#, the same constructor is declared using the class name:

public Book() {

}
In both cases shown, the constructor is declared with the public keyword (Public or
public). You must have a public constructor to use the new keyword to create a class
instance.
You can also declare a constructor using the private keyword (Private or private). If you
define only one constructor in your class, and it’s private, the client code won’t be able to
create any class instances. If you define no constructors in your class, the compiler
generates the public, parameterless, empty constructors shown in the preceding code
snippets, so you should ensure that the fields of the class are properly initialized where
they are declared.

Reading Books: Another Implementation
In the previous chapter, you set the Text and Title properties after you initialized the
class. In this chapter, you’ll create two different constructors for initializing the class
fields. The first, a default constructor, creates an instance exactly the way one was
created in Chapter 1. The second constructor initializes the Title and Text properties.
Also, instead of creating a Library class, you’ll store the books in a simple array. You’ll
use the array as the data source of the ListBox control.

Creating Constructors in the Book Class
This exercise builds on the exercise in Chapter 1. You create a new project but bring in
the form and Book class you created in Chapter 1. You then modify the Book class by
adding two constructors and a ToString method.

Create the project

To create this project, follow this procedure:

Create a new Microsoft Windows application project, naming it ReadMoreBooks.
1. In the Solution Explorer, right-click Form1, and click Delete on the

shortcut menu. Click OK to confirm the deletion.
2. In the Solution Explorer, right-click ReadMoreBooks, point to Add, and

then click Add Existing Item on the shortcut menu.
3. In the Add Existing Item dialog box, navigate to the Form1.vb or

Form1.cs file from Chapter 1, click it, and click Open. A new copy of
Form1 is added to the ReadMoreBooks project.

4. In the Solution Explorer, right-click ReadMoreBooks, point to Add, and
then click Add Existing Item on the shortcut menu.

5. In the Add Existing Item dialog box, navigate to the Book file from
Chapter 1, click it, and then click Open. A new copy of the Book class
is added to the ReadMoreBooks project.

Convert the text from a field to a property
By creating a constructor, you will be able to determine whether the Text field or Title
field of your Book class is blank. To further extend the validity of the text, convert it to a
property. (You won’t see many public fields in the remainder of this book.)

1. In the Solution Explorer, double-click Book.vb or Book.cs, depending
on the language you’re using, to open the file in the code editor.

2. Modify the Text field so that it’s a private field. Remember that by
convention private fields have the m_ prefix.

Private m_text As String = "" ‘ Visual Basic
private string m_text = ""; // Visual C#
3. Add a Text property definition to the class.

4. ‘ Visual Basic

5. Public Property Text() As String

6. Get

7. Return m_text

8. End Get

9. Set(ByVal Value As String)

10. m_text = Value

11. End SetEnd Property

12. // Visual C#public string Text {

13. get { return m_text; }

14. set { m_text = value; }

15. }

Formatting C# Code

C# uses the semicolon to delimit statements, which gives you more control over
formatting your code than Visual Basic offers. In the case of the preceding C# code, a
more compact format for a property definition is shown. Never sacrifice readability for
compactness.

Add a constructor without parameters
1. If you’re using Visual C#, you should rename the namespace for

Book.cs and Form1.cs to ReadMoreBooks. This step will keep all your
class declarations in the same project namespace. It will make
declaring class variables easier. Change the namespace declaration
at the top of the file so that it looks like this:

2. // Visual C# only
3. // Change in Book.cs and Form1.cs

namespace ReadMoreBooks
4. If needed, in Visual Basic, click Book (ReadMoreBooks) in the Class

Name list. In Visual C#, click ReadMoreBooks.Book in the Class
Name list.

5. In the Method Name drop-down list, click New if you’re using Visual
Basic. Click Book if you’re using Visual C#. The following code is
added to the Book class:

6. Public Sub New() ‘ Visual Basic

7. End Sub

8. public Book() // Visual C#

9. {

10. //

11. // TODO: Add constructor logic here

12. //

}

Your next task is to create a constructor that has parameters. You can create multiple
constructors in one class, as long as they can be distinguished by their parameter lists.

Create a constructor with parameters

When creating constructors with parameters, remember that any code in a constructor is
executed after the field initializations. You can therefore override any initializations of the
fields.

1. Add the following code after the field declarations to declare a
constructor with two parameters: title and text. Don’t modify the exising
constructor created in the preceding section. You’re creating a second
constructor.

2. ‘ Visual Basic
3. Public Sub New(ByVal title As String, ByVal text As String)
4. End Sub
5. // Visual C#
6. public Book(string title, string text) {

}
7. Add the following code to your new constructor to ensure that neither

the title nor the text is blank. If either is blank, raise an exception. An
exception stops execution of the program and prevents the class from
being instantiated.

8. ‘ Visual Basic

9. If (title <> "") And (text <> "") And _

10. (Not IsNothing(title)) And (Not IsNothing(text)) Then

11. m_title = title

12. m_text = text

13. Else

14. Throw New Exception("Title or text is an empty string.")
End If

15.
// Visual C#
if ((title != "") && (text != "") && (title != null) && (text != null)) {

16. m_title = title;

17. m_text = text;}else {

18. throw new System.Exception("Title or text is an empty string.");

}
If you deleted the parameterless constructor that you created in the section “Add a
constructor without parameters,” the client code would be forced to use this new
constructor, which means that no instances could be created unless the text and title
were known.

Add a ToString method
In Chapter 1, you used the Title field as the string to display the list box in the
ReadBooks project. In this chapter, since you’re using an array to store the Book
instances, you can take advantage of the fact that you can use an array as a data source
for a list box. If you have defined a ToString method for the class of objects you want to
display, the list box uses the ToString method to display each of the objects in the array.

§ Add this method to the Book class:
§ ‘ Visual Basic
§ Public Overrides Function ToString() As String
§ Return m_title
§ End Function
§ // Visual C#
§ public override string ToString() {
§ return m_title;

}
In the .NET Framework, it’s nearly impossible to miss seeing that all classes derive from
the System.Object class. The override keyword (Overrides in Visual Basic, override in
Visual C#) in the method declaration indicates that the ToString method in the Book
class should be used instead of the ToString method defined in the System.Object class.
The method defined in System.Object would simply print the name of the class,
ReadMoreBooks.Book .

The changes in the Book class are complete.

Handling Data Validation Errors in a Constructor
You can choose from several ways to handle the situation in which either the title or text
parameter is an empty string:

§ You could throw an exception, as is done in this chapter. In this case, no
new instance of the Book class is created. Program execution stops on

the line of code containing the new keyword. You can use a try block (Try
or try) to respond to and possibly recover from the error condition.

§ You could replace the field with an empty string. If you supplied a
constructor to enforce nonempty strings in the text and title fields, you
wouldn’t use this tactic. If you supplied a constructor as a convenience
for setting properties in the initialization step, replacing the field with an
empty string would be a reasonable decision.

If you choose to replace the field with an empty string, be sure to make developers
aware that any instance of Book could contain an empty string for the title or text.

Using the Constructors

Now you’ll replace the multiple lines of code with one call to the constructor. You will also
replace the Library class with an array and exploit the data binding properties of the
.NET Framework by using the array as a data source.

Delete the code to be replaced
1. In the Solution Explorer, right-click Form1 and click View Code on the

shortcut menu to open it in the code editor.
2. Delete the showPage_Click method.
3. Delete the declaration of the Library field from the Form1 class. You’ll

replace it with an array of Book instances.

4. ‘ Delete this line in the Visual Basic project.

5. Private m_library As Library

6. // Delete this line in the Visual C# project.

private Library m_library;
7. Delete the code from the Form1_Load event.
8. Delete the code from the listOfBooks_SelectedIndexChanged method.

You’re left with the interface.
Now add code to re-create the behavior of Chapter 1.

Create an instance of Book using the constructor
You must add code to the Form1_Load method so that the form can create the array of
Book instances and bind the array to the ListBox control.

1. Create an instance of the fairy tales Book class using the constructor
that has two parameters. Add this code to the Form1_Load method:
2. ‘ Visual Basic
3. Dim fairyTales As Book = _
4. New Book("Fairy Tales", "Once upon a time there was a bear."

)
5. // Visual C#
6. Book fairyTales = new

 Book("Fairy Tales", "Once upon a time there was a bear.");
Notice that when you type new or New, depending on the language you’re
using, IntelliSense indicates that you have two constructors defined, as shown
in the next graphic. When you have more than one constructor, the
constructor are said to be overloaded.

20. Create an instance of the Book class for the Cookies book using the

constructor that has two parameters:
21. ‘ Visual Basic
22. Dim cookies As Book = New Book("Cookies", _
23. "Chocolate chip cookies are the most delicious cookies.")
24. // Visual C#

25. Book cookies = new Book("Cookies",
 "Chocolate chip cookies are the most delicious cookies.");

Create an array of Book instances
1. Add the following code after the Book declarations to create an array:

2. ‘ Visual Basic
3. Dim m_library() As Book = New Book() {fairyTales, cookies}
4. // Visual C#

Book[] m_library = new Book[] {fairyTales, cookies};
5. Add the following code after the array declaration to use the array as

the data source for the ListBox control:

6. listOfBooks.DataSource = m_library
 ‘ Visual Basic

listOfBooks.DataSource = m_library;
 // Visual C#

The complete method is shown in the following code:

‘ Visual Basic

Private Sub Form1_Load(ByVal sender As Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

 Dim fairyTales As Book = _

 New Book("Fairy Tales", "Once upon a time there was a bear.")

 Dim cookies As Book = New Book("Cookies", _

 "Chocolate chip cookies are the most delicious cookies.")

 Dim m_library() As Book = New Book() {fairyTales, cookies}

 listOfBooks.DataSource = m_library

End Sub

// Visual C#

private void Form1_Load(object sender, System.EventArgs e) {

 Book fairyTales = new

 Book("Fairy Tales", "Once upon a time there was a bear.");

 Book cookies = new Book("Cookies",

 "Chocolate chip cookies are the most delicious cookies.");

 Book[] m_library = new Book[] {fairyTales, cookies};

 listOfBooks.DataSource = m_library;

}

Respond to selections in the ListBox control

What you see in the ListBox control when you run the application is the title of each
book. Because the data source of the ListBox is an array of Book instances, each item in
the list represents one instance of the Book class. Now add code to retrieve that instance
and display the selected page.

1. Add the following code to the SelectedIndexChanged event handler of
the ListBox control, which is named listOfBooks:

2. ‘ Visual Basic
3. Dim theBook As Book = CType(listOfBooks.SelectedItem, Book)
4. // Visual C#

Book theBook = (Book)(listOfBooks.SelectedItem);
As you saw in Chapter 1, the objects in the ListBox control are treated like
System.Object instances. The CType method doesn’t change the instance at

all, it just changes the runtime’s view of it. The C# syntax is slightly different
but has the same effect. Instead of being treated like a System.Object, the
book instance will now be treated like a Book.

5. Below the CType statement, add the following code to display one
page of the text:

6. ‘ Visual Basic

7. titleLabel.Text = theBook.Title

8. theBook.PageLength = Decimal.ToInt32(pageLength.Value)

9. page.Text = theBook.GetPage(Decimal.ToInt32(pageToDisplay.V
alue))

10. // Visual C#

11. titleLabel.Text = theBook.Title;

12. theBook.PageLength = Decimal.ToInt32(pageLength.Value);

page.Text = theBook.GetPage(Decimal.ToInt32(pageToDisplay.Value));
Because pageLength.Value is a string property of the pageLength control,
you can’t directly assign it’s value to theBook.PageLength, an integer
property. The method Decimal.ToInt32 converts pageLength.Value, a string,
to an integer.

13. Run and test the program. It has the same behavior as the application
in Chapter 1.

These two exercises demonstrate some of the options you have as you design objects
and applications. In Chapter 1, you designed the classes Book and Library to model the
problem. In this chapter, you designed only a Book class, and then relied on the
capabilities of .NET Windows controls to implement the behavior of the Library. The
ListBox control, together with the array, provided the Library behavior.

Declaring and Initializing Arrays
You can choose from several ways to declare and initialize an array of class instances.
The syntax you used in the previous section was (in Visual Basic) the following:

Dim m_library() As Book = New Book() {fairyTales, cookies}

Here’s another way to declare the same array:

Dim books() As Book = _

 {New Book("Title1", "Text1"), New Book("Title2", "Text2")}

And another:

Dim m_library() As Book = {fairyTales, cookies}

And yet another way:

Dim books(2) As Book

books(0) = New Book("Title1", "Text1")

books(1) = New Book("Title2", "Text2")

books(2) = New Book("Title3", "Text3")

Reference and Value Types
To understand what is going on in these last three code snippets, you need to
understand the concepts of reference types and value types in Visual Basic and Visual
C#. Any variable you declare in the chapters in this book will be either a reference type
or a value type.

Visual Basic, C#, and Types

In Visual Basic, all variables are either reference type or value type. C# has a third
type, the pointer type. You can use a pointer type variable, similar to a C++ pointer,
only in an unsafe code block. This book doesn’t cover unsafe coding.

A reference type variable is created any time you declare a variable as
§ A class (for example, Book)
§ An interface (Interfaces will be discussed in Chapter 9.)
§ An array (for example, Dim numbers() as Integer)
§ A string
§ An object (for example, Dim x As Object)
§ A delegate (Delegates will be discussed in Chapter 7.)

A value type variable is created any time you declare a variable as
§ An integral type (for example, Integer or int)
§ A floating type (for example, Double or double)
§ A Boolean (for example, Boolean or bool)
§ An enumeration (for example, System)
§ A structure (for example, DateTime)

When you declare either a value type or a reference type variable, the location in
memory is allocated to the variable. In the case of the value type, that location contains
the value of the variable. In the case of a reference type, the memory allocated contains
the location of an instance of the class in memory. Thus, reference declarations allocate
only enough memory to point to an instance of a Book.

Dim aBook as Book; ‘ Visual Basic

Book aBook; // Visual C#
When an instance of a class is created through the new operator (New in Visual Basic
and new in C#), memory is allocated for the fields declared in the class. These
expressions cause the allocation of memory for the Text, PageLength, and Title fields for
the Book class. The new operator returns the address of the location of the fields in
memory.

New Book("theTitle", "theText") ‘ Visual Basic

new Book("theTitle", "theText") // Visual C#
These statements, then, create the instance of the Book class and set the aBook
variable to the location of the new instance.

aBook = New Book("theTitle", "theText") ‘ Visual Basic

aBook = new Book("theTitle", "theText") // Visual C#
So, in the first set of statements, what is the value of aBook before it’s set as in the last
set of statements? By definition, the value of a reference type before it’s initialized is
Nothing in Visual Basic or null in C#. The following code snippet reports True:

‘ Visual Basic

Dim aBook as Book

MessageBox.Show((aBook Is Nothing).ToString())

// Visual C#

Book aBook;MessageBox.Show((aBook == null).ToString());
Visual Basic provides a keyword, Is, for testing the value of reference types. C# uses the
equality operator ==. Visual Basic also provides the IsNothing method to test the value of
the reference. It returns the Boolean value True if the reference is Nothing. This code
snippet is equivalent to the preceding one:

Dim aBook As Book

MessageBox.Show(IsNothing(aBook).ToString())
If you try to use the properties or methods of a reference when it’s Nothing, an error
occurs because there’s no instance data to operate on. You will come to recognize this
error as System.NullReferenceException. To make a program more robust, you should
test whether the reference is null or Nothing. You should be especially careful to make
this test if the reference has been passed to the method as a parameter. In this case,
your code has less control over the state of the variable before it’s passed to the method.
The concept of reference types also affects copying, equality testing, and garbage
collection. Copying is discussed in Chapter 10, equality testing in Chapter 12, and
Chapter 8 discusses garbage collection.

Understanding Array Declarations
The first three examples in the section “Declaring and Initializing Arrays” use variations
of the syntax

Dim m_library() As Book = {fairyTales, cookies}
In this case, the braces, {}, are defined so that they produce an array of values. You can
replace fairyTales with New Book (“Fairy Tales”, “Once upon a time”) because the New
expression returns a reference to a class instance.

This example is slightly different from the rest:

Dim books(2) As Bookbooks(0) = New Book("Title1", "Text1")

books(1) = New Book("Title2", "Text2")

books(2) = New Book("Title3", "Text3")
The first statement doesn’t create any instances of the Book class. It merely creates an
array of references to Book instances. In the second through fourth lines, the instances
of Book are created and assigned to the references.

Quick Reference

To Do this

Create a constructor without parameters In the code editor, select the class
name in the
Class Name drop-down list, and
select
New (for Visual Basic) or the class
name
(for Visual C#) in the Method
Name drop-
down list.

 Or
 Add this code for Visual Basic:

Public Sub New()
End Sub

 Add this code for C#:
public Book() {
}

Create a constructor with parameters Create a constructor without
parameters. Add
parameters exactly as you would
for a class method.

Create an array of instance references Add this code for Visual Basic:
Dim books() As Book

To Do this

 Add this code for C#:
Book[] books;

Create and initialize an array of
instances

Add this code for Visual Basic:
Dim books() As Book = _
{ New Book(), New Book()}

 Add this code for C#:
Book[] books =
{ new Book(), new Book()};

Test a reference for Nothing or null Add this code for Visual Basic:
Dim aBook As Book
If IsNothing(aBook) Then
‘ Add code here for a
‘ null reference
End If

 Add this code for C#:
Book aBook;
if (aBook == null) {
// Add code here for a
// null reference
}

Chapter 3: Creating Fields and Properties

Overview
ESTIMATED
TIME

2 hr. 30 min.

In this chapter, you’ll learn how to

§ Create a read-only property.
§ Create a property that takes a parameter.
§ Create documentation comments for Visual C# properties.
§ Use an array of class instances as a data source in a DataGrid control.
§ Create an indexer property in Visual C#.
§ Create a default property in Visual Basic.
§ Create and use an ArrayList object.

As I’ve mentioned, properties tell you about the objects to which they belong. When you
move a Button control around on a form, the Location property tells you where that
button is. After you load a bitmap into a PictureBox control, the Size property tells you
how large the image is. You can see an interplay between the properties and behaviors
of an object. Moving a button (a behavior) changes the location (a property). Loading a
bitmap (a behavior) into a control changes the size (a property) of the control. You’ll see
this pattern repeatedly in object-oriented design.
In the preceding chapters, you created a class with two fields (PageLength and Text)
and a property (Title). You saw how fields are used to implement properties. In this
chapter, you’ll extend your use of properties, using fields as private class members to
implement the properties. You’ll create a read-only property. Using Visual Basic, you’ll

create a property that takes a parameter, which will make it behave, in some ways, like a
function. You’ll create and initialize an array of class instances and then use that array as
a data source in a data grid. Visual Studio .NET will even recognize the properties in the
class defintion and convert those to column headings. You’ll then redesign your
application to take advantage of Visual Basic’s default property or Visual C# indexer to
implement a class that represents a group of objects.

Design Considerations for Properties

When designing and implementing properties, the following considerations apply:
§ Properties can be read-write, read-only, or write-only. A read-write property

can be retrieved and set by client code. A read-only property can only be
retrieved and a write-only property can only be set. Write-only properties
are rare. Developers tend to use write-only properties to send data to
hardware devices so that the value sent to the device can’t be retrieved
later.

§ Use a read-only property when the property is completely determined by other
properties. For example, in a Rectangle class, the Length and Width
properties can be read-write, but the Area property would be read-only.

§ Reading the value of a property should have no side effects; no other instance
data should change simply because it retrieved a property value. For
example, a developer wouldn’t expect the Width property of a Rectangle
object to change just because the Area property was retrieved.

§ Design properties so that they can be changed independently and in any
order. If properties are dependent, use a method to set them. For example,
if you need to set the LastName property of a Person object before you set
the FirstName property, use a SetFirstAndLast function instead of two
properties.

§ A getter (the read part of a property definition) and setter (the write part of a
property definition) of a property are conceptually simple methods that
return or set values. The Length property of a rectangle object could be
replaced easily with GetLength and SetLength methods. The advantage of
using a property is the syntax. Rectangle.Length = 15 is obviously more
elegant than Rectangle.SetLength(15).

Code Analysis: A Host of Properties

In this chapter, you’ll implement a program to analyze your code so that you can
convince your manager that you’re getting work done and, at the same time, using
object-oriented designs.

A project is made of several source files (files with code). For each source file, you will
§ Count the lines of code, skipping blank lines and comments.
§ Count the number of classes defined.
§ Maintain a list of the names of the classes defined. (Source files can contain

more than one class definition.)

The user interface will consist of
§ A Button control with Text property set to Browse, which allows a user to

select a source file.
§ A DataGrid control, with each row representing one source file. The columns

should be lines of code, filename, number of classes, and the file path.
§ A Button control with the Text property set to Display. When this button is

clicked, the list of classes from the selected source file in the DataGrid
control is displayed.

The C# version reads C# source files. The Visual Basic version reads Visual Basic
source files. The completed application is shown in the following screen shot.

Designing the SourceFile Class

The class implemented in this chapter has been designed with these .NET capabilities in
mind:

§ The DataGrid control can use an array as a data source.
§ If the type of the array is a class, the DataGrid control uses the public

properties of the class as the columns.

To take advantage of these properties, you need to create a SourceFile class with
LinesOfCode, FileName, ClassCount, and FullPath properties. The data source for the
DataGrid control will then be an array of SourceFile instances.

Because a SourceFile instance can make sense only if it’s based on an existing file, you
need to create a constructor that takes one string parameter, the filename.

The LinesOfCode, FileName, ClassCount, and FullPath properties are all dependent on
the name of the source file. It isn’t reasonable for the client to be able to change these
properties. So you’ll make these properties read-only.

That leaves only the list of class names for you to make. Again, this should be a read-
only list. Conveniently, Visual Basic allows you to define a property that takes a
parameter. You use this capability to return one class name, based on an index. C#
doesn’t have a parameterized property, so you must implement a method to return a
class name. Later in this chapter, you’ll see how C# provides an indexer construct to
serve the same purpose.

The SourceFile class provides the following public members:
§ Filename A read-only string property that returns just the name of the

source file.
§ FullPath A read-only string property that returns the full path of the

source file.
§ LinesOfCode A read-only integer property that returns the number lines

in the source file that aren’t blank and aren’t comments.
§ ClassCount A read-only integer property that returns the number of

classes defined in the source file.
§ Classes A read-only string property that returns the name of one class

defined in the source file. This property is implemented in Visual Basic
only.

§ GetClass This method returns a string and takes one integer parameter.
It returns the name of one class defined in the source file. This is
implemented in C# only.

§ Constructor The class defines only one constructor that takes one
string parameter, the full path of the source file. You won’t be defining a
parameterless constructor, so a SourceFile instance can’t be created
unless the full path is known.

Important

In general, you don’t want your design to depend on the user interface. Rather, you
want your class design to reflect the problem you are trying to solve. Then add the
properties and methods you need to support the user interface. In Chapter 9,
“Providing Services Using Interfaces,” you’ll learn how to use an interface to provide a
view on your class design that exposes only those parts of the model that the user
interface needs. An interface is similar to a class and defines a set of properties and
methods that a class must implement.

Create the user interface
1. Create a new project, and name it CodeAnalysis.
2. Set the Text property of Form1 to Code Analysis.
3. Drag a DataGrid control onto Form1, and set the Name property to

listOfFiles .
4. Drag a Button control onto Form1. Set its Name property to browse

and its Text property to Browse.
5. Drag a Button control onto Form1. Set its Name property to display

and its Text property to Display.
6. Drag an OpenFileDialog control onto Form1. It will be displayed in the

component tray. Set its Name property to openSourceFile.

The complete form is shown in the following screen shot. Now create the
SourceFile class so that you can add code to Form1.

Creating the SourceFile Class
The SourceFile class represents one file in a project. This class contains the
LinesOfCode, FileName, ClassCount, and FullPath properties, the parameterized
Classes property (in Visual Basic) or GetClass method (in Visual C#), and the
constructor. A SourceFile class is instantiated in the application for each source file
analyzed.

Create the read-only properties
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. Type SourceFile.vb or SourceFile.cs in the Name box, depending on

the language you’re using, and click Open.
3. Add the following fields to the class definition:

4. ‘ Visual Basic

5. Private m_fullPath As String

6. Private m_linesOfCode As Integer

7. Private m_classNames() As StringPrivate m_class

8. Count As Integer

9. // Visual C#

10. private string m_fullPath;

11. private int m_linesOfCode;

12. private string[] m_classNames;

private int m_classCount;
The m_fullPath field contains the full path of the source file.

13. Add the FullPath property by inserting the code below into your class:

14. ‘ Visual Basic

15. Public ReadOnly Property FullPath() As String

16. Get

17. Return m_fullPath

18. End GetEnd Property

19. // Visual C#

20. /// <summary>

21. /// Returns the full path of the source file.

22. /// </summary>public string FullPath {

23. get { return m_fullPath; }

24. }

To create a read-only property in Visual Basic, you add the ReadOnly
modifier and define only a Get block. To create a read-only property in C#,
you define only a Get block. No modifier is added. Note that statement
completion in Visual Basic creates the Get and Set blocks as needed,
depending on the presence or absence of the ReadOnly modifier.

C# Property Wizard

In Visual C#, the C# Property Wizard can create most of the property block for
you. To use the wizard, right-click the class name in Class View, and click
Add from the shortcut menu. Then click Add Property, and complete the steps
in the wizard. For an example, see Chapter 1.

The special comment in Visual C#, /// <summary>, is used to add descriptive
information when the property signature is displayed in IntelliSense.

XML Documentation Support in Visual C#

The <summary> tag is one of several documentation tags supported by the
C# language and the .NET Framework. Tags can be used to document other
code elements, such as parameters, exceptions, and return values. To create

an XML documentation file from your C# source file, right-click the project in
Solution Explorer, and click Properties on the shortcut menu. In the Project
Property Pages dialog box, expand Configuration Properties in the list, and
then click Build. Enter a filename for the XML Documentation File property,
and click OK. You might get compiler warnings if you enter a documentation
filename and don’t document all the code elements.

11. Add the FileName property:
12. ‘ Visual Basic
13. Public ReadOnly Property FileName() As String
14. Get
15. Dim lastSlash As Integer
16. lastSlash = m_fullPath.LastIndexOf("\")
17. Return m_fullPath.Substring(lastSlash + 1)
18. End Get
19. End Property
20. // Visual C#
21. /// <summary>
22. /// Returns the filename, without the path of the source file.
23. /// </summary>public string FileName {
24. get {
25. int lastSlash = m_fullPath.LastIndexOf("\\");
26. return m_fullPath.Substring(lastSlash + 1);
27. }

}
The FileName property returns only the filename of the full path. It searches
for the last backslash in the filename and returns the rest of the string.

28. Add the ClassCount property:

29. ‘ Visual Basic

30. Public ReadOnly Property ClassCount() As Integer

31. Get

32. Return m_classCount

33. End Get

34. End Property

35. // Visual C#

36. /// <summary>

37. /// The total number of classes defined in the source file.

38. /// </summary>public int ClassCount {

39. get { return m_classCount; }

}
40. Add the LinesOfCode property:

41. ‘ Visual Basic

42. Public ReadOnly Property LinesOfCode() As Integer

43. Get

44. Return m_linesOfCode

45. End Get

46. End Property

47. // Visual C#

48. /// <summary>

49. /// Lines of code in the source file, excluding blank and comment li
nes.

50. /// </summary>public int LinesOfCode {

51. get { return m_linesOfCode; }

52. }
Your next step depends on the language you’re using. If you’re using Visual Basic, you
can create the Classes property, which takes an integer parameter to select one of the
class names. If you’re using Visual C#, you need to create the GetClass method.

Create the Classes property (Visual Basic only)
§ Add the Classes property:
§ ‘ Visual Basic
§ Public ReadOnly Property Classes(ByVal index As Integer) As Str

ing
§ Get
§ If index < m_classCount Then
§ Return m_classNames(index)
§ Else
§ Throw New System.IndexOutOfRangeException(_
§ "There are only " & m_classCount & " classes defined."

)
§ End If
§ End Get

End Property
The syntax for this property is the same as for any other property, with the addition of the
index parameter.
If you wanted this property to be read-write, you would remove the ReadOnly modifier
and add a Set block as shown in the next code snippet. Notice that the Set block has two
local variables, index and value, instead of just one, index.

‘ Visual Basic

‘ Remove the ReadOnly property modifier, and add this Set block.

Set(ByVal Value As String)

 If index < m_classCount Then

 m_classNames(index) = Value

 Else

 Throw New System.IndexOutOfRangeException(_

 "There are only " & m_classCount & " classes defined.")

 End If

End Set

Create the GetClass method (Visual C# only)
§ Add the GetClass method:
§ // Visual C#
§ /// <summary>
§ /// Returns one of the names of the classes defined in the
§ /// source file, based on an index.
§ /// </summary>/// <param name="index">A zero-

based index</param>
§ /// <returns>A class name</returns>public string GetClass(int ind

ex) {
§ if (index < m_classCount) {
§ return m_classNames[index];
§ }
§ else {

§ throw new System.IndexOutOfRangeException("There are o
nly "

§ + m_classCount + " classes defined.");
§ }

}

This code also shows more of the documentation tags available for C# code.

With the properties and methods complete, you can now move on to creating the
constructor.

Create the constructor

Most of the work of the SourceFile class is accomplished here. The class constructor
sets the data fields.

1. In the Class Name drop-down list, click SourceFile if it isn’t already
selected.

2. In the Method Name drop-down list, click New if you’re working with a
Visual Basic project, or click SourceFile if you’re working with a Visual
C# project. This action adds a parameterless constructor to the class.
(For Visual C#, the constructor was created when you added the class
through the Add New Item dialog box.)

3. Add a string parameter, fullPath, to the constructor as shown.

4. ‘ Visual Basic

5. Public Sub New(ByVal fullPath As String)

6. End Sub

7. // Visual C#

8. public SourceFile(string fullPath)

9. {

10. //

11. // TODO: Add constructor logic here

12. //

}
13. Add code for the constructor, as shown here:

14. ‘ Visual Basic

15. Public Sub New(ByVal fullPath As String)

16. m_classCount = 0

17. m_linesOfCode = 0

18. m_fullPath = fullPath

19. m_classNames = New String(10) {}

20. Try

21. Dim reader As New System.IO.StreamReader(m_fullPath)

22. Dim nameStart As Integer

23. Dim oneline As String

24. oneline = reader.ReadLine()

25. While (Not (oneline Is Nothing))

26. oneline = oneline.Trim()

27. ‘ Don’t count blank lines and comment lines.

28. If ((oneline <> "") And (Not oneline.StartsWith("‘"))) Then

29. m_linesOfCode += 1

30. End If

31. If (oneline.StartsWith("Public Class")) Then

32. nameStart = oneline.IndexOf("Class") + 6

33. Dim names() As String

34. Dim separators() As Char = {ControlChars.Tab, " "c}

35. names = oneline.Substring(_

36. nameStart).Trim().Split(separators)

37. Dim className As String = names(0).Trim()

38. m_classNames(m_classCount) = className

39. m_classCount += 1

40. End If

41. oneline = reader.ReadLine()

42. End While

43. reader.Close()

44. Catch ex As System.Exception

45. Throw New System.Exception(_

46. "Problems parsing source file: " + ex.Message)

47. End Try

48. End Sub

49. // Visual C#

50. public SourceFile(string fullPath){

51. m_linesOfCode = 0;

52. m_classNames = new string[10];

53. m_classCount = 0;

54. m_fullPath = fullPath;

55. try {

56. System.IO.StreamReader reader = new

57. System.IO.StreamReader(m_fullPath);

58. int nameStart;

59. string oneline;

60. while ((oneline = reader.ReadLine()) != null) {

61. oneline = oneline.Trim();

62. // Don’t count blank or comment lines.

63. if ((oneline != "") && (!oneline.StartsWith("\\"))) {

64. m_linesOfCode++; }
 if (oneline.StartsWith("public class")) {

65. nameStart = oneline.IndexOf("class") + 6;

66. char[] separators = { ‘ ‘, ‘\t’, ‘{‘};

67. string[] names =

68. oneline.Substring(nameStart).Trim().Split(separators
);

69. string className = names[0].Trim();

70. m_classNames[m_classCount++] = className;

71. }

72. }

73. reader.Close();

74. } catch (System.Exception ex) {

75. throw new System.Exception("Problems parsing source file:
"

76. + ex.Message);

77. }

 }
The first thing the constructor does is initialize all the instance data. The syntax for the
array initialization creates an array of references that are all Nothing or null.
The While loop reads one line from the file, using a StreamReader object. The
StreamReader.ReadLine method returns Nothing or null at the end of the file. In C#, the
assignment statement, oneline = reader.ReadLine(), returns the value of oneline, which
can be tested directly in the while statement. In Visual Basic, the similar syntax would be
interpreted as an equality test of oneline and reader.ReadLine(). So the test for null in
the While statement isn’t possible in Visual Basic.
Each line is tested to determine whether it starts with Public Class or public class,
depending on language. This process is a simple way to find class declarations, but it’s
not exhaustive because other modifiers might precede the class keyword. To find the
class name, the code looks for the next word after the word class, using the Split
method. The line

names = oneline.Substring(nameStart).Trim().Split(separators)

is an example of chaining method calls. Each method returns a string, so you can then
call a string method on the result. How many methods you chain in one statement
depends on the readability of the code.

With the properties, methods, and constructors defined, the SourceFile class is
complete. You can now add the client code to Form1.

Adding Code to the User Interface
The Form1_Load event is used to initialize the controls on the form. The Browse button
allows the user to select one file for analysis. The Display button displays the classes
contained in a selected source file.

Program the Form1_Load method
1. Add an array for the SourceFile instances as a field of the Form1

class.
2. ‘ Visual Basic
3. Private Const MaxFiles As Integer = 10
4. Private m_sourceFiles(MaxFiles) As SourceFile
5. Private m_files As Integer = 0
6. // Visual C#
7. private const int MaxFiles = 10;
8. private SourceFile[] m_sourceFiles = new SourceFile[MaxFiles];

private int m_files = 0;
This particular syntax for declaring an array creates an array of 10 references
to SourceFile instances and sets each instance to Nothing or null, depending
on the language.

9. In the form designer, double-click Form1 and then add this code to the
Form1_Load event to set the data source of the DataGrid.

10. ‘ Visual Basic

11. Private Sub Form1_Load(ByVal sender As Object, _

12. ByVal e As System.EventArgs) Handles MyBase.Load

13. listOfFiles.DataSource = m_sourceFiles

14. End Sub

15.
// Visual C#

16. private void Form1_Load(object sender, System.EventArgs e) {

17. listOfFiles.DataSource = m_sourceFiles;

}

When the application starts, 10 blank rows will be displayed in the DataGrid. Now you’ll
add code to the Click event method for the Browse button to replace those rows with
data.

Program the Browse button

The Browse button prompts the user to specify a source file and adds a row to the
DataGrid control with the results of the file analysis.

1. In the form designer, double-click the Browse button to create the
browse_Click method.

2. Add the following code to the browse_Click method:

3. ‘ Visual Basic

4. Private Sub browse_Click(ByVal sender As System.Object, _

5. ByVal e As System.EventArgs) Handles browse.Click

6. Try

7. openSourceFile.Filter = "Visual Basic files (*.vb)|*.vb"

8. Dim result As System.Windows.Forms.DialogResult

9. result = openSourceFile.ShowDialog()

10. If (result = DialogResult.OK) Then

11. Dim aFile As New SourceFile(openSourceFile.FileName)

12. m_sourceFiles(m_files) = aFile

13. m_files += 1

14. If (m_files = m_sourceFiles.Length) Then

15. m_files = m_sourceFiles.Length - 1 End If

16. End If

17. listOfFiles.Refresh()

18. Catch ex As System.Exception

19. MessageBox.Show(ex.Message)

20. End Try

21. End Sub

22.
// Visual C#

23. private void browse_Click(object sender, System.EventArgs e) {

24. try {

25. openSourceFile.Filter = "Visual C# files (*.cs)|*.cs";

26. System.Windows.Forms.DialogResult result;

27. result = openSourceFile.ShowDialog();

28. if (result == System.Windows.Forms.DialogResult.OK) {

29. SourceFile aFile = new SourceFile(openSourceFile.FileNa
me);

30. m_sourceFiles[m_files++] = aFile;

31. if (m_files == m_sourceFiles.Length) {

32. m_files = m_sourceFiles.Length - 1;

33. }

34. }

35. listOfFiles.Refresh();

36. }

37. catch (System.Exception ex) {

38. MessageBox.Show(ex.Message);

39. }

40. }
The browse_Click method sets the Filter property of the OpenFileDialog control, which
can also be done in the Properties window of the form designer. The Filter property limits
the selection of files to only the appropriate source files. Because the array is used as a
fixed-length array (arrays in C# can’t be resized during execution), a test keeps the
m_files field within the range of the length of the array. To understand the use of the
indexes in the method, remember that arrays are zero-based.

With some analyzed files listed in the DataGrid control, the user can then select a row to
retrieve the classes defined in a particular source file. To implement that functionality,
add code to the Click event method of the Display button.

Program the Display button

The Display button uses the Classes property of the SourceFile class to display the list of
classes defined in the source file.

1. In the form designer, double-click the Display button to create the
display_Click method.

2. Add the following code to the display_Click method:

3. Private Sub display_Click(ByVal sender As System.Object, _

4. ByVal e As System.EventArgs) Handles display.Click

5. Dim row As Integer = listOfFiles.CurrentCell.RowNumber

6. If row < m_files Then

7. Dim theFile As SourceFile = m_sourceFiles(row)

8. Dim message As String = ""

9. Dim index As Integer

10. For index = 0 To theFile.ClassCount - 1

11. message &= theFile.Classes(index) & ControlChars.CrLf

12. Next

13. MessageBox.Show(message, "Classes in " & theFile.FileNa
me)

14. Else

15. MessageBox.Show("Please select a row with data.")

16. End If

17. End Sub

18.

19. // Visual C#

20. private void display_Click(object sender, System.EventArgs e) {

21. int row = listOfFiles.CurrentCell.RowNumber;

22. if (row < m_files) {

23. SourceFile theFile = m_sourceFiles[row];

24. string message = "";

25. for (int index = 0; index < theFile.ClassCount; index++) {

26. message += theFile.GetClass(index) + "\n";

27. }

28. MessageBox.Show(message, "Classes in " + theFile.FileNa
me);

29. }

30. else {

31. MessageBox.Show("Please select a row with data.");

32. }

33. }
There’s a one-to-one correspondence between the rows in the DataGrid control and the
elements in the m_sourceFiles array. You can therefore use the value of
listOfFile.CurrentCell.RowNumber to retrieve the selected file from the array. Because
the DataGrid control displays all 10 elements of the array, even if the element is Nothing
or null, you need to add a test to determine whether the user has picked an unused row.

IntelliSense displays the property documentation created for the properties in the class,
as shown in the following screen shot.

The application is complete and ready for testing.

Test the program
1. Test the program by analyzing the source files from Chapters 1 and 2.
2. You can test the program further by adding more than one class

definition to a source file. Remember that the application detects only
classes that are declared Public Class (in Visual Basic) or public class
(in C#).

3. Make testing easier by turning on the line numbering in the code
editor. On the Tools menu, click Options. Expand the Text Editor folder
in the list, and expand the language you’re using. Click General in the
language folder, select the Line Numbers check box, and click OK to
close the dialog box. Remember to subtract blank lines and comments
from the total.

Code Analysis: Using Indexers and Default Properties

In your first implementation of CodeAnalysis, the objects were based on each source file.
Suppose you wanted to list the classes in the DataGrid control, rather than listing the
files. Or perhaps you wanted to accumulate the classes and lines of code over an
application rather than by file. In this case, you can take advantage of Visual Basic’s
default property syntax and C# indexer syntax to create a class that represents a
collection of objects. You’ll create a class, Classes, that represents all the classes in all
the files you parse. Instead of instancing an array of SourceFile objects, you’ll need only

to create one instance of Classes. The default indexer or property will return one
instance of AClass, a class that represents one class in a source file.

Creating the AClass Class

The AClass class represents one class found in a source file. The Classes class will
contain many instances of AClass.

Create the project, and add AClass
1. Create a new project, and name it CodeAnalysis2.
2. On the Project menu, click Add Class. The Add New Item dialog box

appears.
3. In the Name box, type AClass.vb or AClass.cs, depending on the

language you are using, and then click Open.

Next add properties for the name of the class and the name of the source file
to which the class belongs. Because the only way you can get AClass
instances is from parsing a source file, these properties are read-only.

Add the Name and FileName properties
1. Add the following field and property declaration for the Name property:

2. ‘ Visual Basic
3. Private m_name As String
4. Public ReadOnly Property Name() As String
5. Get
6. Return m_name
7. End Get
8. End Property
9.
10. // Visual C#
11. string m_name;
12. public string Name {
13. get { return m_name; }

}
14. Add the following field and property declaration for the FileName

property.

15. ‘ Visual Basic

16. Private m_filename As String

17. Public ReadOnly Property FileName() As String

18. Get

19. Return m_filename

20. End Get

21. End Property

22.

23. // Visual C#

24. string m_filename;

25. public string FileName {

26. get { return m_filename; }

27. }

Create the constructor
1. If you’re using Visual C#, delete the default parameterless constructor.

The client code is able to create an instance of AClass only if the class
name and source file are known.

2. Add the following constructor:

3. ‘ Visual Basic

4. Public Sub New(ByVal name As String, ByVal filename As String)

5. m_name = name

6. m_filename = filename

7. End Sub

8.

9. // Visual C#

10. public AClass(string name, string filename) {

11. m_name = name;

12. m_filename = filename;

}

Now that you have a class to represent one class in a source file, you can implement a
class that organizes a group of AClass instances.

Create the Classes class
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. In the Name box, type Classes.vb or Classes.cs, depending on the

language you are using, and then click Open.
Instead of a constructor that creates one instance of a SourceFile class for
each source file, you’ll create a ReadFromFile method that adds instances of
AClass to an ArrayList object.

Add fields to track the lines of code and store the classes
1. Create a field to track the total lines of code. This field represents the

number of lines of code read across all source files.
2. ‘ Visual Basic
3. Private m_linesOfCode As Integer = 0
4.
5. // Visual C#

private int m_linesOfCode = 0;
6. Create a field to hold the AClass instances.

7. ‘ Visual Basic

8. Private m_classNames As New System.Collections.ArrayList()

9.

10. // Visual C#

11. private System.Collections.ArrayList m_classNames =

 new System.Collections.ArrayList();

An ArrayList is a data structure class available from the .NET Framework that allows you
to create an array that grows dynamically. You can add new objects to the collection
without having to resize the ArrayList structure, which you wouldn’t be able to do in C#
with an array. You’ll still be able to retrieve objects from the ArrayList class using an
index.

Add the ReadFromFile method
§ Add the following code for the ReadFromFile method. The code differs

slightly from the previous implementation in the constructor. Instead of
adding one more string to an array for the class names, you’re adding
one more AClass object to an ArrayList object.
§ ‘ Visual Basic
§ Public Sub ReadFromFile(ByVal fullPath As String)
§ Try

§ Dim reader As New System.IO.StreamReader(fullPath)
§ Dim nameStart As Integer
§ Dim oneline As String
§ oneline = reader.ReadLine()
§ While (Not (oneline Is Nothing))
§ oneline = oneline.Trim()
§ If ((oneline <> "") And (Not oneline.StartsWith("‘"))) Then
§ m_linesOfCode += 1
§ End If
§ If (oneline.StartsWith("Public Class")) Then
§ nameStart = oneline.IndexOf("Class") + 6
§ Dim names() As String
§ Dim separators() As Char = {ControlChars.Tab, " "c}
§ names = oneline.Substring(_
§ nameStart).Trim().Split(separators)
§ Dim className As String = names(0).Trim()
§ m_classNames.Add(New AClass(className, fullPath))
§ End If
§ oneline = reader.ReadLine()
§ End While
§ reader.Close()
§ Catch ex As System.Exception
§ Throw New System.Exception(_
§ "Problems parsing source file: " + ex.Message)
§ End Try
§ End Sub
§
§ // Visual C#
§ public void ReadFromFile(string fullPath) {
§ try {
§ System.IO.StreamReader reader = new
§ System.IO.StreamReader(fullPath);
§ int nameStart;
§ string oneline;
§ while ((oneline = reader.ReadLine()) != null) {
§ oneline = oneline.Trim();
§ // Don’t count blank or comment lines.
§ if ((oneline != "") && (!oneline.StartsWith("\\"))) {
§ m_linesOfCode++;
§ }
§
§ if (oneline.StartsWith("public class")) {
§ nameStart = oneline.IndexOf("class") + 6;
§ char[] separators = { ‘ ‘, ‘\t’, ‘{‘};
§ string[] names =
§ oneline.Substring(nameStart).Trim().Split(separators)

;
§ string className = names[0].Trim();
§ m_classNames.Add(new AClass(className,fullPath));
§ }
§ }
§ reader.Close();
§ }
§ catch (System.Exception ex) {
§ throw new System.Exception(
§ "Problems parsing source file: " + ex.Message);
§ }

}

Add the Indexer or Default property
1. If you’re using Visual Basic, add the following default ReadOnly

property:
2. ‘ Visual Basic
3. Default Public ReadOnly Property Classes(ByVal index As Intege

r) As AClass
4. Get
5. If (index >= 0) And (index < m_classNames.Count) Then
6. Return CType(m_classNames(index), AClass)
7. Else
8. Throw New System.IndexOutOfRangeException(_
9. "Index must be between 0 and " & _
10. m_classNames.Count.ToString() & ".")
11. End If
12. End Get
13. ‘Set(ByVal Value As AClass)
14. ‘ If (index >= 0) And (index < m_classNames.Count) Then
15. ‘ m_classNames(index) = Value
16. ‘ Else
17. ‘ Throw New System.IndexOutOfRangeException(_
18. ‘ "Index must be between 0 and " & _
19. ‘ m_classNames.Count.ToString() & ".")
20. ‘ End If
21. ‘End Set

End Property
To create a default property in Visual Basic, add the Default keyword to the
property declaration. Default properties in Visual Basic must have at least one
parameter. You can have more than one parameter, and those parameters
can be of any type. Only one property in a class can have the Default
keyword.
When a property is a default property, you use it by following the instance
name with the index in parentheses. You don’t need to include the property
name. Note that your code is responsible for checking that the index value
from the client code is valid.
This property is read-only. The setter method is shown in comments as an
example of implementing a property setter.

22. If you’re using Visual C#, add the following indexer:

23. // Visual C#

24. public AClass this[int indexer] {

25. get {

26. if ((indexer >= 0) && (indexer < m_classNames.Count))

27. return (AClass)m_classNames[indexer];

28. else

29. throw new System.Exception("Index must be between 0 a
nd "

30. + m_classNames.Count.ToString() + ".");

31. }

32. //set {

33. // m_classNames[indexer] = value;

34. //}

}
The C# indexer doesn’t have a name. Instead, you specify it by using the this
keyword. If you’re using Visual Basic, you can access the default property
with or without the property name, but there’s no property name for a C#

indexer. You can access the indexed value only by indexing the instance
name.

The C# indexer requires no special keyword for a read-only indexer. You
obtain the meaning in context. The setter method is shown in comments in
the code listing to demonstrate how a setter would be implemented. As in the
Visual Basic example, your code is responsible for checking the validity of the
indexer value.

Add the LinesOfCode and Count properties
1. Add this code for the LinesOfCode property:

2. ‘ Visual Basic
3. Public ReadOnly Property LinesOfCode() As Integer
4. Get
5. Return m_linesOfCode
6. End Get
7. End Property
8.
9.
10. // Visual C#
11. public int LinesOfCode {
12. get { return m_linesOfCode; }

}
13. Add this code for the Count property. When you implemented the

SourceFile class, you named this property ClassCount. In this case, a
reader already knows you are working with a group of classes. The
word Class would be redundant: Classes.ClassCount . So, you use
Count: Classes.Count.

14. ‘ Visual Basic

15. Public ReadOnly Property Count() As Integer

16. Get

17. Return m_classNames.Count

18. End Get

19. End Property

20.

21. ‘ Visual Basic

22. public int Count {

23. get { return m_classNames.Count; }

}

The classes are complete.

Creating the User Interface

You’ll need to add some controls to the form for testing the classes.

Place the controls on the form
1. Drag a DataGrid control onto Form1 and set the Name property to

listOfFiles .
2. Drag a Button control onto Form1. Set its Name property to browse

and its Text property to Browse. You’ll use this button to browse for a
source file that you want to analyze.

3. Drag a Label control onto Form1. Set its Name property to
linesOfCode and its Text property to Lines of code. You’ll use this
label to display the cumulative lines of code in all the files you analyze.

4. Drag an OpenFileDialog control onto Form1. It will be displayed in the
component tray. Set its Name property to openSourceFile. Here’s the
complete user interface:

Write the DisplayClasses method
1. In the Solution Explorer window, right-click Form1 and click View Code

on the shortcut menu.
2. Add this declaration of one instance of the Classes class:

3. ‘ Visual Basic

4. Private m_classes As New Classes()

5.

6. // Visual C#

private Classes m_classes = new Classes();
You need only one instance of the Classes class because it contains multiple
instance of the AClass class. Also note that no instances of AClass are
created by the code in the form. The instances of AClass are created only by
means of the ReadFromFile method of Classes.

7. Add the following method to the Form1 class. Note that this is a private
method of the Form1 class. You can call this method only by code
within the Form1 class. It’s a helper function for displaying the classes.

8. ‘ Visual Basic

9. Private Sub DisplayClasses()

10. Dim classes(m_classes.Count) As AClass

11. Dim i As Integer

12. For i = 0 To m_classes.Count - 1

13. ‘ Using the default property

14. classes(i) = m_classes(i)

15. Next

16. listOfFiles.DataSource = classes

17. linesOfCode.Text = _

18. "Lines of code: " & m_classes.LinesOfCode.ToString()

19. End Sub

20.

21. // Visual C#

22. private void DisplayClasses() {

23. AClass[] classes = new AClass[m_classes.Count];

24. for (int i = 0; i < m_classes.Count; i++) {

25. // Using the indexer

26. classes[i] = m_classes[i];

27. }

28. this.listOfFiles.DataSource = classes;

29. linesOfCode.Text =

30. "Lines of code: " + m_classes.LinesOfCode.ToString();

}
In this example, the AClass instances of m_Classes are placed in an array
that’s used as the data source for the DataGrid control. As in the first
implementation, the public properties of AClass are used as the column
headings.
Note the use of the default property and indexer. You don’t need to use the
name of the property. Simply typing in the indexing character, (in Visual
Basic or [in Visual C#, prompts IntelliSense to display the default property or
indexer signature.

Tip When you’re using an indexer, it needs to make sense. In the .NET
Framework, you typically find indexers on properties whose names are
plurals, such as the Rows property of a table, which is a collection of
Row objects. It wouldn’t make sense to use an indexer on a Dog class
that returned a Leg object!

Program the Browse button
1. In the form designer, double-click the Browse button to create the

Click event method in the code editor. Add the following code to the
Click event method.
2. ‘ Visual Basic
3. Private Sub browse_Click(ByVal sender As System.Object, _
4. ByVal e As System.EventArgs) Handles browse.Click
5.
6. End Sub
7.
8. // Visual C#
9. private void browse_Click(object sender, System.EventArgs e) {
10. }

11. Add this code to the Click event method to prompt the user for a file
and parse it into the m_classes object.

12. ‘ Visual Basic

13. Try

14. openSourceFile.Filter = "Visual Basic files (*.vb)|*.vb"

15. Dim result As System.Windows.Forms.DialogResult

16. ‘ If user selected a file, create a SourceFile from it.

17. result = openSourceFile.ShowDialog()

18. If (result = DialogResult.OK) Then

19. m_classes.ReadFromFile(openSourceFile.FileName)

20. End If

21. DisplayClasses()

22. Catch ex As System.Exception

23. MessageBox.Show(ex.Message)

24. End Try

25.

26. // Visual C#

27. try {

28. openSourceFile.Filter = "Visual C# files (*.cs)|*.cs";

29. System.Windows.Forms.DialogResult result;

30. result = openSourceFile.ShowDialog();

31. if (result == System.Windows.Forms.DialogResult.OK) {

32. m_classes.ReadFromFile(openSourceFile.FileName);

33. }

34. DisplayClasses();

35. }

36. catch (System.Exception ex) {

37. MessageBox.Show(ex.Message);

}

Test the program
1. Press F5 to run the program.
2. Click Browse, and in the Open dialog box navigate to the source files

for the project. Select a source file, and click Open.
3. Add some empty classes to the source file to further test the

application. An example is shown here.

Quick Reference

To Do this

Create a
read-write
property

In Visual Basic, the syntax is
Public Property Name() As String
 Get
 ‘ Return a value here.
 End Get
 Set(ByVal Value As String)
 ‘ Set a value here.
 End Set
End Property

 In C#, the syntax is
public string Name {
 get {
 // Return a value here.
 set {
 // Set a value here.
 }
}
 }

 Or

 Use the C# Property Wizard.

To Do this

Create a
read-only
property

In Visual Basic, the syntax is
Public ReadOnly Property Name() As String
 Get
 ‘ Return a value here.
 End GetEnd Property
In C#, the syntax is
public string Name {
 get {
 // Return a value here.
 }
}

 Or

 Use the C# Property Wizard.

Create a
write-only
property

In Visual Basic, the syntax is
Public WriteOnly Property Name() As String
 Set(ByVal Value As String)
 ‘ Set a value here.
 End Set
End Property

 In C#, the syntax is
public string Name {
 set {
 // Set a value here.
 }}

 Or

 Use the C# Property Wizard.

Create a
property that
takes a
is parameter
(Visual
Basic only)

In Visual Basic, the syntax
Public Property Classes(ByVal index As Integer)
 Get
 ‘ Return a value, based on index
 End Get
 Set(ByVal Value)
 ‘ Set a value, based on index
 End Set
End Property

Create
documentati
on
comments
for Visual C#
properties

Add this comment immediately before the property declaration:
/// <summary>
/// Returns the full path of the source file.
/// </summary>public string FullPath {
 get { return m_fullPath; }
}

Use an array
of class
instances
DataSource
property of
the DataGrid
control

Create an array of class instances, and then set the
as a data source in a DataGrid to the array.
In Visual Basic
Private m_sourceFiles(MaxFiles) _
 As SourceFile
listOfFiles.DataSource = m_sourceFiles

 In Visual C#
private SourceFile[] m_sourceFiles =
 new SourceFile[MaxFiles];
listOfFiles.DataSource = m_sourceFiles;

Create a The syntax is

To Do this

C#
indexer

public AClass this[int indexer] {
 get {
 // Return a value here.
 }
 set {
 // Set a value here.
 }
}

Create a
Visual Basic
default
property

The syntax is
Default Public ReadOnly Property Classes_
 (ByVal index As Integer) As AClass
 Get
 ‘ Return a value here.
 End Get
 Set(ByVal Value As AClass)
 ‘ Set a value here.
 End Set
End Property

Chapter 4: Working with Methods

Overview
ESTIMATED
TIME

3 hr.

In this chapter, you’ll learn how to

§ Create a private method.
§ Create an overloaded method.
§ Add a control to a form at run time.
§ Use the Randomize and ArrayList classes.
§ Perform drag-and-drop operations.

In previous chapters, the classes you created were heavy on properties, and most of the
work of the class was done in the constructor to initialize the properties. In this chapter,
you’ll explore a range of behaviors that objects can display. You’ll create a class that has
a private method, which is used by the class but not available to client code. You’ll create
an overloaded method, which is a method that can take more than one set of arguments.
Finally, in testing the classes you develop, you’ll add a control to a form at run time,
rather than in the form designer.

A Deck of Cards

In this chapter, you’ll build three classes to represent the actions of manipulating a deck
of playing cards, and you’ll build an application to test these classes. This deck of cards
has no particular application but will provide properties and methods that any of several
card games might use. Because you don’t have a specific application to target, you’ll

implement a set of methods extensive enough to be useful. At the same time, you must
be careful not to add methods that aren’t really part of the abstraction of the class.

The first class, Card, represents one playing card. This class has only two properties,
Suit (Hearts, Clubs, Spades, or Diamonds) and Value (Ace, King, Queen, and so on).
This class also has a constructor.

The second class is Hand, representing the cards held by one player in a game. You’ll
want to be able to deal cards to a hand, find and remove pairs of cards in a hand, add
cards to a hand, or remove cards from a hand.

The third class, Deck, represents a deck of cards. The methods and properties of this
class mimic the ways that you use a deck of cards in a game. You might want to start
with the standard 52-card deck or with a deck limited to certain suits or values. For most
card games, you will shuffle the deck. You might want to remove one card or add an
extra card. In most games, you’ll also want to deal the cards to players. The classes are
shown in the following table.

Class Properties Methods

Card Suit Constructor
 Value

Hand Count Constructor

 Indexer

 Add
 FindAndRemovePairs
 Contains

 Remove

Deck Count Constructor

 Shuffle
 Deal
 Draw

Considerations in Designing Reusable Classes

When you design reusable classes, certain concepts are important to keep in mind.
Some of these are object-oriented concepts, while some are general programming
concepts.

Containment You won’t know what kind of object is hosting the class. Your Deck
class could be a field in a Game class, a Microsoft Windows Form class, or a custom
control. Therefore, you want to be careful not to make any assumptions about the
context of the Deck class. Although you’ll develop the Deck class in the context of a
Windows application, the Deck class won’t contain any references to a form.

You might want to add behavior that’s dependent on the client code. For example, you
might want to add code that draws the card. You could add a method that takes an
argument to specify a form to draw on. However, you could also add a method that
takes a .NET Framework Graphics object. This would allow you to write code to draw
the card on any object that can create a Graphics object, and your object would be
usable across a wider client base.

Abstraction Be clear about your abstraction; a class should do one thing well. It’s
tempting to add a lot of support functions when you’re designing a reusable class. Yet

every method, property, and event that you add to the interface limits your choices in
implementation, making it more difficult for the class to do one job well. A clear
abstraction is easier for developers to use correctly because the properties and
methods make sense and the behavior is predictable.
Interface Provide a complete interface but don’t go overboard. Implement the
interface well enough so that the next developer can extend it. For example, the Hand
class you implement in this chapter has a method to remove pairs. You could also add
a method to remove runs of cards—for example, the Jack, Queen, and King of Hearts.
However, you could instead create a new class, based on the Hand class. Because the
Hand class exposes all the cards through an indexer and provides a Remove method,
you can implement the method to remove the run of cards in the new extended class.
Client code Well-designed classes streamline the client code. Much of the looping
and decision structures are contained in the class methods rather than in the client
code. The method calls are marked by an absence of arguments because the class
encapsulates the information needed to execute the method.

In this chapter, you’ll create a Deck class that has a parameterless constructor to create
the standard 52-card deck. The Deck class will have a deal method that takes an array
of Hand instances to which to deal the cards. Dealing cards to two hands is
straightforward and even reads like a problem: get a deck, shuffle it, find a couple of
players, and deal the cards to the players.

‘ Visual Basic

Dim aDeck As New Deck()

aDeck.Shuffle()

hand1 = New Hand()

hand2 = New Hand()

aDeck.Deal(New Hand() {hand1, hand2})

// Visual C#

Deck aDeck = new Deck();

aDeck.Shuffle();

hand1 = new Hand();

hand2 = new Hand();

aDeck.Deal(new Hand[] {hand1, hand2});

Creating the Card Class

The first class to implement is the Card class, because the Hand and Deck classes can’t
exist without the Card class. You’ll run into fewer compilation errors by implementing the
Card class first.

Create the class
1. Create a new project and name it DeckOfCards .
2. On the Project menu, click Add Class. The Add New Item dialog box

appears.
3. Name the file Card.vb or Card.cs, depending on the language you’re

using.

The suit and value of the card will be based on enumerations.

Create the enumerations
1. Add the following code for the Suit enumeration. If you’re using Visual

Basic, add the code to Card.vb before the Card class block. This
enumeration is declared outside the Card class. If you’re using Visual
C#, add this code before the Card class block and within the
DeckOfCards namespace block. If you define the Suit enumeration
within the Card class, the Suit property will collide with the Suit
enumeration.

2. ‘ Visual Basic
3. Public Enum Suit
4. Hearts
5. Diamonds
6. Clubs
7. Spades
8. End Enum
9.
10. // Visual C#
11. public enum Suit {
12. Hearts,
13. Diamonds,
14. Spades,
15. Clubs,

}
16. Add the following code after the Suit enumeration for the FaceValue

enumeration:

17. ‘ Visual Basic

18. Public Enum FaceValue

19. Ace

20. One

21. Two

22. Three

23. Four

24. Five

25. Six

26. Seven

27. Eight

28. Nine

29. Ten

30. Jack

31. Queen

32. King

33. End Enum

34.

35. // Visual C#

36. public enum FaceValue {

37. Ace, Two, Three, Four, Five, Six, Seven,

38. Eight, Nine, Ten, Jack, Queen, King

}

Create the fields and properties
1. Add the following code for the Suit property:

2. ‘ Visual Basic
3. Private m_suit As Suit
4. Public Property Suit() As Suit
5. Get
6. Return m_suit
7. End Get
8. Set(ByVal Value As Suit)
9. m_suit = Value
10. End Set
11. End Property
12.
13. // Visual C#
14. private Suit m_suit;
15. public Suit Suit {
16. get { return m_suit; }
17. set { m_suit = value; }

}
18. Add the following code for the FaceValue property:

19. ‘ Visual Basic

20. Private m_faceValue As FaceValue

21. Public Property FaceValue() As FaceValue

22. Get

23. Return m_faceValue

24. End Get

25. Set(ByVal Value As FaceValue)

26. m_faceValue = Value

27. End Set

28. End Property

29.

30. // Visual C#

31. private FaceValue m_faceValue;

32. public FaceValue FaceValue {

33. get { return m_faceValue; }

34. set { m_faceValue = value; }

}

Create the constructor
§ Add the following code for the constructor:
§ ‘ Visual Basic
§ Public Sub New(ByVal newSuit As Suit, ByVal newValue As Face

Value)
§ m_suit = newSuit
§ m_faceValue = newValue
§ End Sub
§
§ // Visual C#
§ public Card(Suit newSuit, FaceValue newValue) {
§ m_suit = newSuit;
§ m_faceValue = newValue;
§ }

That completes the Card class. The Card class itself isn’t terribly interesting, but what
you can do with a group of cards is. You can work with a whole deck, shuffling, sorting,

and dealing. You can also work with a small collection of cards (a hand), adding and
removing cards and finding and removing pairs.

Creating the Hand Class

Because the Deck class uses the Hand class, you’ll create the Hand class next. That
way, you’ll won’t run into compilation errors by using the Hand class before it’s been
defined.

Create the class and constructors
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. Name the file Hand.vb or Hand.cs, depending on the language you’re

using.
3. Add the following constructors for the Hand class. A new hand could

start out without cards or with an array of cards. The cards are
contained in an ArrayList object. (The parameterless constructor for
C# is created with the source file.)

4. ‘ Visual Basic

5. Private m_cards As New System.Collections.ArrayList()

6.

7. Public Sub New()

8. End Sub

9.

10. Public Sub New(ByVal cards() As Card)

11. m_cards.AddRange(cards)

12. End Sub

13.

14. // Visual C#

15. private System.Collections.ArrayList m_cards =

16. new System.Collections.ArrayList();

17. public Hand() {

18. }

19.

20. public Hand(Card[] cards) {

21. m_cards.AddRange(cards);

}

Create the fields and properties
1. Add the following code to return the count of the cards in the hand.

The value must be passed out of the class through a property because
m_cards is a private member of the Hand class.

2. ‘ Visual Basic
3. Public ReadOnly Property Count() As Integer
4. Get
5. Return m_cards.Count
6. End Get
7. End Property
8.
9. // Visual C#
10. public int Count {
11. get { return m_cards.Count; }

}
12. Add the following code to create a default property or indexer for the

class:

13. ‘ Visual Basic

14. Default Public ReadOnly Property Cards(ByVal indexer As Intege
r) As Card

15. Get

16. Return CType(m_cards(indexer), Card)

17. End Get

18. End Property

19.

20. // Visual C#

21. public Card this[int indexer] {

22. get { return (Card)m_cards[indexer]; }

}
This code gives you a way to examine each card in the hand, in case you
wanted to create a user interface, for example. Using an indexer allows you to
iterate through the private collection of cards using an integer index. You have
probably also iterated through collections using the For Each or foreach
control structure. Because the m_cards ArrayList is private in the class, it isn’t
available for iteration in the client code. In Chapter 9, you see how the Hand
class could also support the For Each and foreach control structures.
The value returned by m_cards(indexer) is a System.Object object. You must
cast this object to the Card type to have access to the Suit and FaceValue
properties.

Casting from a Collection Class

ArrayList is another of the collection types provided by the .NET Framework.
These collections are powerful because they can contain any type of object.
The disadvantage of using collections is that they aren’t type-safe; one
collection could be holding several different types of objects. When you cast
the object that you retrieve from the collection, you’re counting on it being of a
particular type. In Chapter 6, you see how you can specialize the ArrayList
class (or other collection class) using inheritance to guarantee that only one
type of object is added and removed from it.

13. Add this method to add cards to the hand:
14. ‘ Visual Basic
15. Public Sub Add(newCard As Card)
16. m_cards.Add(newCard)
17. End Sub
18.
19. // Visual C#
20. public void Add(Card newCard) {
21. m_cards.Add(newCard);

}

Create the overloaded methods Contains and Remove
1. Add this Contains method to determine whether a particular instance

of Card is contained in the Hand:
2. ‘ Visual Basic
3. Public Function Contains(ByVal cardToFind As Card) As Boolean
4. Return m_cards.Contains(cardToFind)

5. End Function
6.
7. // Visual C#
8. public bool Contains(Card cardToFind) {
9. return m_cards.Contains(cardToFind);

}
10. Add this second Contains method to determine whether a card of a

given suit and value exists in the Hand:

11. ‘ Visual Basic

12. Public Function Contains(ByVal suitToFind As Suit, _

13. ByVal valueToFind As FaceValue) As Boolean

14. Dim found As Boolean = False

15. Dim aCard As Card

16. Dim i As Integer

17. For i = 0 To m_cards.Count - 1

18. aCard = CType(m_cards(i), Card)

19. If ((aCard.Suit = suitToFind) And _

20. (aCard.FaceValue = valueToFind)) Then

21. found = True

22. End If

23. Next

24. Return found

25. End Function

26.

27. // Visual C#

28. public bool Contains(Suit suitToFind, FaceValue valueToFind) {

29. bool found = false;

30. Card aCard;

31. for (int i = 0; i < m_cards.Count; i++) {

32. aCard = (Card)m_cards[i];

33. if ((aCard.Suit == suitToFind) &&

34. (aCard.FaceValue == valueToFind)) {

35. found = true;

36. }

37. }

38. return found;

}
These two methods both search the hand for a particular card. In the first
method, the algorithm looks for a particular instance of Card. Thus it has only
one parameter, which is of type Card. The ArrayList.Contains method
determines whether a reference to that instance is contained in the collection.
The second method asks where a card with a particular suit and value is in
the deck. This method answers the question, “Is there a ten of diamonds in
your hand?” You don’t particularly care which instance represents the ten of
diamonds—you just want to know if there is one.
The Contains method is said to be overloaded, which means that you have
two methods with the same name but different parameter lists. The compiler
can determine which method to call by examing the argument list when the

method is called. For the compiler to be able to select the correct overload,
the methods must differ by more than the return type.
Using overloaded methods simplifies the class interface. Instead of
ContainsCard and ContainsSuitValue methods, you need only one method,
Contains.

39. Add these overloaded methods for the Remove method:

40. ‘ Visual Basic

41. Public Sub Remove(ByVal cardToRemove As Card)

42. If (m_cards.Contains(cardToRemove)) Then

43. m_cards.Remove(cardToRemove)

44. End If

45. End Sub

46.

47. Public Sub Remove(ByVal suitToRemove As Suit, _

48. ByVal valueToRemove As FaceValue)

49. Dim aCard As Card

50. Dim i As Integer

51. For i = 0 To m_cards.Count - 1

52. aCard = CType(m_cards(i), Card)

53. If ((aCard.Suit = suitToRemove) And _

54. (aCard.FaceValue = valueToRemove)) Then

55. m_cards.Remove(aCard)

56. Exit For

57. End If

58. Next

59. End Sub

60.

61. // Visual C#

62. public void Remove(Suit suitToFind, FaceValue valueToFind) {

63. Card aCard;

64. for (int i = 0; i < m_cards.Count; i++) {

65. aCard = (Card)m_cards[i];

66. if ((aCard.Suit == suitToFind) &&

67. (aCard.FaceValue == valueToFind)) {

68. m_cards.Remove(aCard);

69. break;

70. }

71. }

72. }

73.

74. public void Remove(Card cardToRemove) {

75. if (m_cards.Contains(cardToRemove)) {

76. m_cards.Remove(cardToRemove);

77. }

}

Add the RemovedPairs method
§ Add this method to eliminate all the pairs in a hand:
§ ‘ Visual Basic
§ Public Sub RemovePairs()
§ Dim findMatch, possibleMatch As Card
§ Dim found As Boolean
§ Dim noMatches As New System.Collections.ArrayList()
§ Dim i As Integer
§
§ While (m_cards.Count > 0)
§ findMatch = CType(m_cards(0), Card)
§ found = False
§ For i = 1 To m_cards.Count - 1
§ possibleMatch = CType(m_cards(i), Card)
§ If (possibleMatch.FaceValue = findMatch.FaceValue) The

n
§ found = True
§ m_cards.Remove(findMatch)
§ m_cards.Remove(possibleMatch)
§ Exit For
§ End If
§ Next
§ If Not found Then
§ noMatches.Add(findMatch)
§ m_cards.Remove(findMatch)
§ End If
§ End While
§ m_cards = noMatches
§ End Sub
§
§ // Visual C#
§ public void RemovePairs() {
§ Card findMatch, possibleMatch = null;
§ bool found;
§ System.Collections.ArrayList noMatches =
§ new System.Collections.ArrayList();
§ while (m_cards.Count > 0) {
§ findMatch = (Card)m_cards[0];
§ found = false;
§ for (int i = 1; i < m_cards.Count; i++) {
§ possibleMatch = (Card)m_cards[i];
§ if (possibleMatch.FaceValue == findMatch.FaceValue) {
§ found = true;
§ m_cards.Remove(findMatch);
§ m_cards.Remove(possibleMatch);
§ break;
§ }
§ }
§ if (! found) {
§ noMatches.Add(findMatch);
§ m_cards.Remove(findMatch);
§ }
§ }
§ m_cards = noMatches;

}
The algorithm for the RemovePairs method can be described this way:

§ Add an ArrayList class for the cards that don’t have a match.
§ Look at each card in the hand.

§ Look in the rest of the hand for a match, based on FaceValue.
§ If you find a match, remove both cards from the hand.
§ If no match is found, remove the card from the hand and put it in the

ArrayList for cards without a match.
§ When all the cards have been examimed, the ArrayList for cards without

a match is the resulting hand.
§ Assign the m_cards field to the ArrayList for cards without a match.

Because m_cards is a reference value, you can simply assign the
reference to the new ArrayList.

Testing the Hand Class
Having completed the Card and Hand classes, you’ve implemented a fair amount of
functionality. Before you go any further, it’s a good idea to try out the new classes before
integrating them with the rest of the program. You’ve probably done this before by
creating a form, maybe adding a button or a label, and writing a short program to test the
class. In Visual Basic and Visual C#, you can build some test code right into the class,
using a Shared Main method in Visual Basic or a static Main method in Visual C#.
Adding some test code to the class has some advantages:

§ It doesn’t intefere with the readability of the rest of your program.
Because the code is in the class, it’s not sitting in your application’s main
form.

§ When you create classes in a Main method in your class definition, you
have access to the private members of the class.

§ It’s always available. When you put an extra button on your user
interface to do some testing, you then have to remove the button. When
something changes and you want to retest, the button is gone and you
have to add it again. With the test code in your class, it’s available to run
again whenever you need it.

§ It’s easy to rerun your test when you make changes to the class. When
you have made these changes, you’ll want to make sure that you didn’t
break something in the process. With a well-planned set of tests, you can
quickly determine whether the old code is still working with the new code.

What should you test?
§ Test each property and method.
§ Test the constructor.
§ Test any behavior that’s based on a boundary. For example, test that

your indexer method fails gracefully if the client code tries to retrieve a
value that doesn’t exist.

§ Test any behavior that’s based on a decision. If you have a method that
does two different things depending on whether the third parameter is
true or false, test the method with true and with false.

§ Test the parameters of your methods. If you’re expecting a string
parameter to have a particular format, make sure your method handles a
well-formed string properly and that it rejects a string that isn’t well
formed.

Add the Main method
§ Add this method to the Hand class:
§ Public Shared Sub Main()
§ Console.WriteLine("Visual Basic Hand Test")
§ Dim queenOfHearts As New Card(Suit.Hearts, FaceValue.Que

en)
§ Dim twoOfClubs As New Card(Suit.Clubs, FaceValue.Two)
§ ‘ Test: Add(Card[])
§ Dim aHand As New Hand(New Card() {queenOfHearts, twoOf

Clubs})
§ ‘ Test: Contains(Card) Expect: True
§ Console.WriteLine(_
§ "Hand contains queenOfHearts: {0}.", _

§ aHand.Contains(queenOfHearts))
§ ‘ Test: Contains(Suit, Value) Expect: True
§ Console.WriteLine("Hand contains Queeen of Hearts: {0}.", _
§ aHand.Contains(Suit.Hearts, FaceValue.Queen))
§ ‘ Test: Contains(Card) Expect: False
§ Console.WriteLine("Hand contains new queenOfHearts: {0}.", _
§ aHand.Contains(New Card(Suit.Hearts, FaceValue.Queen)))
§
§ aHand.Remove(queenOfHearts)
§ ‘ Test: Remove(Card) Expect: False
§ Console.WriteLine("Hand contains Queeen of Hearts: {0}.", _
§ aHand.Contains(Suit.Hearts, FaceValue.Queen))
§
§ Dim pair As New Hand()
§ ‘ Test: Add(Suit, Value)
§ pair.Add(New Card(Suit.Diamonds, FaceValue.Ace))
§ pair.Add(New Card(Suit.Clubs, FaceValue.Ace))
§ ‘ Test: Count Expect: 2 cards
§ Console.WriteLine("Pair has {0} cards.", pair.Count)
§ pair.RemovePairs()
§ ‘ Test: Remove Pairs Expect: 0 cards
§ Console.WriteLine("After RemovePairs, Pair has {0} cards.", pa

ir.Count)
§ End Sub
§
§ // Visual C#
§ public static void Main() {
§ Card queenOfHearts = new Card(Suit.Hearts, FaceValue.Quee

n);
§ Card twoOfClubs = new Card(Suit.Clubs, FaceValue.Two);
§ // Test: Add(Card[])
§ Hand aHand = new Hand(new Card[] { queenOfHearts, twoOfC

lubs });
§ // Test: Contains(Card) Expect: True
§ Console.WriteLine(
§ "Hand contains queenOfHearts: {0}.",
§ aHand.Contains(queenOfHearts));
§ // Test: Contains(Suit, Value) Expect: True
§ Console.WriteLine("Hand contains Queeen of Hearts: {0}.",
§ aHand.Contains(Suit.Hearts, FaceValue.Queen));
§ // Test: Contains(Card) Expect: False
§ Console.WriteLine("Hand contains new queenOfHearts: {0}.",
§ aHand.Contains(new Card(Suit.Hearts,FaceValue.Queen)));
§
§ // Test: Remove(Card) Expect: False
§ aHand.Remove(queenOfHearts);
§ Console.WriteLine("Hand contains Queeen of Hearts: {0}.",
§ aHand.Contains(Suit.Hearts, FaceValue.Queen));
§
§ Hand pair = new Hand();
§ // Test: Add(Suit, Value)
§ pair.Add(new Card(Suit.Diamonds, FaceValue.Ace));
§ pair.Add(new Card(Suit.Clubs, FaceValue.Ace));
§ // Test: Count Expect: 2 cards
§ Console.WriteLine("Pair has {0} cards.", pair.Count);
§ pair.RemovePairs();
§ // Test: Remove Pairs Expect: 0 cards
§ Console.WriteLine("After RemovePairs, Pair has {0} cards.",
§ pair.Count);

}

This method doesn’t do anything complicated, but it does act in these ways:
§ It uses the constructors for Card and Hand.
§ It uses the Suit and FaceValue enumerations.
§ It tests the Add, Contains, Remove, and RemovePairs methods of the

Hand class.
The Main methods here are declared with the Shared or static modifier. These methods
are class members that aren’t associated with any particular instance of the class. Thus
they can be called even before any instance of the class is created. When a program
begins execution, no instances of any class exist. These shared and static methods can
therefore be called as soon as the program starts up. In fact, each C# program is
required to have such a start -up method. Visual Basic has options for starting programs.
The Shared and static keywords will be discussed at length in Chapter 11, “Using
Shared and Static Members.”

The results of the tests are written to the Console object and appear in the Output
window during execution of the program.

Change the project properties
1. In the Solution Explorer, right-click the project name and click

Properties on the shortcut menu. The project’s Property Pages dialog
box appears, as you see here.

18. In the properties tree, expand the Common Properties folder if

necessary and, click General.

19. In the Startup Object list, click Hand and then click OK.
20. Press F5 to run the application. Here are the results:

Creating the Deck Class

The methods of the Deck class correspond closely to the real-world uses of a deck of
cards: shuffle, deal, and draw.

Create the class
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. Name the file Deck.vb or Deck.cs, depending on the language you’re

using.

Create the fields and properties
1. Add the following code for the Count property. The Count property

returns the number of cards in the deck. The cards are stored in an
instance of the ArrayList class. This class accepts objects of any type
and allows access to members by an index value. New members can
be added to the ArrayList class without your having to resize the list.
The value of the Count property is determined by the number of cards
in the deck. Therefore, Count is a read-only property.

2. ‘ Visual Basic
3. Private m_cards As New System.Collections.ArrayList()
4. Public ReadOnly Property Count() As Integer
5. Get
6. Return m_cards.Count
7. End Get
8. End Property
9.
10. // Visual C#
11. private System.Collections.ArrayList m_cards =
12. new System.Collections.ArrayList();
13. public int Count {
14. get { return m_cards.Count; }
15. }

16. Add the following default property or indexer to return a specific card
from the ArrayList, based on an index:

17. ‘ Visual Basic

18. Default Public ReadOnly Property Cards(ByVal indexer As Intege
r) As Card

19. Get

20. If ((indexer >= 0) And (indexer < m_cards.Count)) Then

21. Return CType(m_cards(indexer), Card)

22. Else

23. Throw New ArgumentOutOfRangeException("Index out of
 range.")

24. End If

25. End Get

26. End Property

27.

28. // Visual C#

29. public Card this[int indexer] {

30. get {

31. if ((indexer >= 0) && (indexer < m_cards.Count)) {

32. return((Card)m_cards[indexer]);

33. }

34. else {

35. throw new ArgumentOutOfRangeException("Index out of r
ange.");

36. }

37. }

}

Now that you have a container for your cards, you can implement the constructors. You’ll
implement two constructors: one that creates the standard 52-card deck and one that
creates a custom deck.

Create the constructors
1. Add this private method to create a deck of cards:

2. ‘ Visual Basic
3. Private Sub MakeDeck(ByVal suits() As Suit, ByVal values() As F

aceValue)
4. Dim aSuit, aValue As Integer
5. Dim newValue As FaceValue
6. Dim newSuit As Suit
7. Dim newCard As Card
8.
9. For aSuit = 0 To suits.Length - 1
10. For aValue = 0 To values.Length - 1
11. newSuit = suits(aSuit) ‘ Select a suit.
12. newValue = values(aValue) ‘ Select a value.
13. newCard = New Card(newSuit, newValue) ‘ Create a car

d.
14. m_cards.Add(newcard) ‘ Add the card.
15. ‘ You can replace the four preceding lines with this:
16. ‘ m_cards.Add(New Card(suits(aSuit), values(aValue)))
17. Next
18. Next
19. End Sub
20.
21. // Visual C#
22. private void MakeDeck(Suit[] suits, FaceValue[] values) {
23. for (int aSuit = 0; aSuit < suits.Length; aSuit++) {
24. for (int aValue = 0; aValue < values.Length; aValue++) {
25. m_cards.Add(new Card(suits[aSuit], values[aValue]));
26. }
27. }

}
This method pairs each suit listed in the suits array with each value in the
values array. A card is created for each suit/value pair. The Visual Basic
method is verbose and shows the following steps:

§ Select one of the suits.
§ Select one of the values.
§ Create a card with that suit and value.
§ Add the card to the ArrayList object.

28. Add the following constructor to create a 52-card deck:

29. ‘ Visual Basic

30. Public Sub New()

31. Dim suits() As Suit = {Suit.Clubs, Suit.Diamonds, Suit.Hearts, _

32. Suit.Spades}

33. Dim values() As FaceValue = {FaceValue.Ace, FaceValue.Two
, _

34. FaceValue.Three, FaceValue.Four, FaceValue.Five, _

35. FaceValue.Six, FaceValue.Seven, FaceValue.Eight, _

36. FaceValue.Nine, FaceValue.Ten, FaceValue.Jack, _

37. FaceValue.Queen, FaceValue.King}

38. Me.MakeDeck(suits, values)

39. End Sub

40.

41. // Visual C#

42. public Deck()

43. {

44. Suit[] suits = { Suit.Clubs, Suit.Diamonds, Suit.Hearts,

45. Suit.Spades };

46. FaceValue[] values = { FaceValue.Ace, FaceValue.Two,

47. FaceValue.Three, FaceValue.Four, FaceValue.Five, FaceValu
e.Six,

48. FaceValue.Seven, FaceValue.Eight, FaceValue.Nine, FaceVal
ue.Ten,

49. FaceValue.Jack, FaceValue.Queen, FaceValue.King};

50. this.MakeDeck(suits, values);

51. }
52. Add the following constructor to allow creation of a custom deck. This

method would allow the user to create a deck containing, for example,
only face cards, only hearts and diamonds, or even only aces. This
method is also useful for testing. It’s much easier to test a program
with 12 cards than to test a program with 52 cards.

53. ‘ Visual Basic

54. Public Sub New(ByVal suits() As Suit, ByVal values() As FaceVal
ue)

55. Me.MakeDeck(suits, values)

56. End Sub

57.

58. // Visual C#

59. public Deck(Suit[] suits, FaceValue[] values) {

60. this.MakeDeck(suits, values);

}

Now that you have a way to fill the deck with cards, you can shuffle and deal
the cards.

Create the methods
1. Add the following code for the Shuffle method. This method uses the

.NET Framework System.Random class to shuffle the deck of cards.
The algorithm is described in steps 2 through 7 of this procedure.

2. Create a new empty ArrayList object named newdeck.
3. Generate a random number between 0 and the last index of the

m_cards ArrayList object.
4. Use that number as an index to remove one card from m_cards.

5. Add that card to the new ArrayList object.
6. Continue removing cards at random from m_cards and adding them to

newdeck until m_cards is empty.
7. Assign the m_cards reference to newdeck, which now contains all the

cards in a random order.

8. ‘ Visual Basic

9. Public Sub Shuffle()

10. Dim rGen As New System.Random()

11. Dim newDeck As New System.Collections.ArrayList()

12. While (m_cards.Count > 0)

13. ‘ Choose one card at random to remove.

14. Dim removeIndex As Integer = rGen.Next(0, m_cards.Count
- 1)

15. Dim removeObject As Object = m_cards(removeIndex)

16. m_cards.RemoveAt(removeIndex)

17. ‘ Add the removed card to the new deck.

18. newDeck.Add(removeObject)

19. End While

20.

21. ‘ replace the old deck with the new deck

22. m_cards = newDeck

23. End Sub

24.

25. // Visual C#

26. public void Shuffle() {

27. System.Random rGen = new System.Random();

28. System.Collections.ArrayList newDeck =

29. new System.Collections.ArrayList();

30. while (m_cards.Count > 0) {

31. // Choose one card at random to remove.

32. int toRemove = rGen.Next(0, m_cards.Count - 1);

33. Card remove = (Card)m_cards[toRemove];

34. m_cards.Remove(remove);

35. // Add the removed card to the new deck.

36. newDeck.Add(remove);

37. }

38.

39. // Replace old deck with new deck.

40. m_cards = newDeck;

}
41. Add the following code for the Deal method:

42. ‘ Visual Basic

43. ‘ The deck is empty after dealing the cards.

44. Public Sub Deal(ByVal hands() As Hand)

45. Dim handIndex As Integer = 0

46. While (m_cards.Count > 0)

47. hands(handIndex).Add(CType(m_cards(0), Card))

48. m_cards.RemoveAt(0)

49. handIndex += 1

50. If handIndex = hands.Length Then

51. handIndex = 0

52. End If

53. End While

54. End Sub

55.

56. // Visual C#

57. // The deck is empty after dealing the cards.

58. public void Deal(Hand[] hands) {

59. int handIndex = 0;

60. while (m_cards.Count > 0) {

61. hands[handIndex].Add((Card)m_cards[0]);

62. m_cards.RemoveAt(0);

63. handIndex = (handIndex == hands.Length -
 1) ? 0 : handIndex+1;

64. }

}
65. Add this code for the Draw method. This method removes the top card

from the deck and returns it.

66. ‘ Visual Basic

67. Public Function Draw() As Card

68. Dim topCard As Card = Nothing

69. If m_cards.Count > 0 Then

70. topCard = CType(m_cards(0), Card)

71. m_cards.RemoveAt(0)

72. End If

73. Return topCard

74. End Function

75.

76. // Visual C#

77. public Card Draw() {

78. Card topCard = null;

79. if (m_cards.Count > 0) {

80. topCard = (Card)m_cards[0];

81. m_cards.RemoveAt(0);

82. }

83. return topCard;

}

The classes are complete. Now you can use the Card, Hand, and Deck classes to write
a small application that looks something like a card game.

Writing the Test Application

Static and shared methods are fine for testing classes, but when you use Microsoft
Visual Studio you can create some interesting user interfaces without much work. In this
small application, you’ll create a deck of cards, deal the cards to a couple of hands, and
remove the pairs from the hand. You’ll display the cards as controls that you can drag
from one hand to another. By moving the cards from hand to hand and removing the
pairs, you can eliminate all the cards from both hands. The user interface is shown here:

Create the user interface
1. Open Form1 in the designer.
2. Set the Text property of Form1 to Deck of Cards.
3. Drag two Panel controls onto Form1. Set the Name property of one to

panel1. Set the Name of the other to panel2. The cards will be
displayed as button controls on these panels.

4. Choose a value for the BackColor property for each panel.
5. Set the AutoScroll property of both panels to True. Scroll bars will be

automatically added to the panels if there are buttons that can’t been
seen in the panel.

6. Set the AllowDrop property to True for both panel controls. With the
AllowDrop property set to True, the user will be able to drag buttons
around the form and drop them on the Panel controls.

7. Add a label above each panel. Set the Text property of one label to
Player 1 and the Text property of the other to Player 2. In the code,
you’ll create two instances of Hand, one for each player, and display
the cards in the panel for each player.

8. Add a button to the form. Set the Name property to removePairs and
the Text property to Remove pairs.

9. Add another button to the form. Set the Name property to newGame
and the Text property to New game. Here’s the completed user
interface:

Add icons for the card suits

A directory full of icons is installed with Visual Studio .NET. You can use these icons in
your programs by copying them to your project folder.

1. Locate the directory where Visual Studio is installed. Browse to the
Common7\Graphics\icons\Misc folder and find the four icons for the
card suits. For your convenience, the icons are also included in the
\Chapter04 folder on this book’s companion CD.

2. Copy the four icons to your project folder.
3. Right -click on Form1, and click View Code on the shortcut menu.
4. Add these fields to the Form1 class. The m_icons field will hold a key-

indexed collection of Image instances. The hand fields will hold cards
for the two players. The Button field will be used in the drag-and-drop
operations.

5. ‘ Visual Basic

6. Private m_icons As New System.Collections.SortedList()

7. Private m_hand1 As New Hand()

8. Private m_hand2 As New Hand()

9. Private m_pickedUp As Button

10.

11. // Visual C#

12. private System.Collections.SortedList m_icons = new

13. System.Collections.SortedList();

14. private Hand m_hand1 = new Hand();

15. private Hand m_hand2 = new Hand();

private Button m_pickedUp;
16. Return to the designer and double-click on the form to create the

Form1_Load event method in the code editor. Add the following code
to load the icon files into the SortedList object. By using the SortedList
object, you can retrieve the proper image using the Suit value of a
Card object. You need to replace the folder shown in the code with the
folder for your project.

17. ‘ Visual Basic

18. Private Sub Form1_Load(ByVal sender As System.Object, _

19. ByVal e As System.EventArgs) Handles MyBase.Load
20. m_icons.Add(Suit.Clubs, Image.FromFile("projectPath\Clubs.i

co"))
21. m_icons.Add(Suit.Diamonds, Image.FromFile("projectPath\Di

amonds.ico"))

22. m_icons.Add(Suit.Hearts, Image.FromFile("projectPath\Heart
s.ico"))

23. m_icons.Add(Suit.Spades, Image.FromFile("projectPath\Spad
es.ico"))

24. End Sub
25.
26. // Visual C#
27. private void Form1_Load(object sender, System.EventArgs e) {
28. m_icons.Add(Suit.Clubs, Image.FromFile(@"projectPath\Club

s.ico"));
29. m_icons.Add(Suit.Diamonds, Image.FromFile(@"projectPath\

Diamonds.ico"));
30. m_icons.Add(Suit.Hearts, Image.FromFile(@"projectPath\Hea

rts.ico"));
31. m_icons.Add(Suit.Spades, Image.FromFile(@"projectPath\Sp

ades.ico"));
}
32. Also add a call to the SetUp method, which you will create in the next

section. The SetUp method creates a deck, deals the cards to the
players, and displays the cards. Add this line of code after the four
m_icons.Add calls:

33. ‘ Visual Basic

34. SetUp()

35.

36. // Visual C#

SetUp();

Create a new deck and deal to the hands
1. Double-click on the New Game button to create the Click event

method. Add a call to the SetUp method, which you will create in the
next step.
2. ‘ Visual Basic
3. Private Sub newGame_Click(ByVal sender As System.Object, _
4. ByVal e As System.EventArgs) Handles newGame.Click
5. SetUp()
6. End Sub
7.
8. // Visual C#
9. private void newGame_Click(object sender, System.EventArgs e)

 {
10. SetUp();

}
11. Add this code for the SetUp method to the Form1 class to create a

deck, shuffle it, deal the cards to two hands, and then display the
hands on the form. Next you’ll write the ShowHand method to display
the cards.

12. ‘ Visual Basic

13. Private Sub SetUp()

14. Dim suits() As Suit = New Suit() {Suit.Diamonds, Suit.Clubs}

15. Dim values() As FaceValue = New FaceValue() {FaceValue.Ki
ng, _

16. FaceValue.Queen, FaceValue.Jack, FaceValue.Ten}

17. Dim aDeck As New Deck(suits, values)

18. aDeck.Shuffle()

19. m_hand1 = New Hand()

20. m_hand2 = New Hand()

21. aDeck.Deal(New Hand() {m_hand1, m_hand2})

22. ShowHand(panel1, m_hand1)

23. ShowHand(panel2, m_hand2)

24. End Sub

25.

26. // Visual C#

27. private void SetUp() {

28. Deck aDeck = new Deck(

29. new Suit[] { Suit.Diamonds, Suit.Clubs },

30. new FaceValue[] { FaceValue.King, FaceValue.Queen,

31. FaceValue.Jack, FaceValue.Ten });

32. aDeck.Shuffle();

33. m_hand1 = new Hand();

34. m_hand2 = new Hand();

35. aDeck.Deal(new Hand[] { m_hand1, m_hand2 });

36. ShowHand(panel1, m_hand1);

37. ShowHand(panel2, m_hand2);

}
This method uses the Deck constructor that takes two parameters. This call
creates only eight cards, which will make it easy for you to tell if the program
is working correctly. The cards in the deck are dealt to the two hands, and the
ShowHand method is called to display the cards in the panel.

Display the cards on the form
§ Add this code to display the cards in the hand on the form:
§ ‘ Visual Basic
§ Private Sub ShowHand(ByVal aPanel As Panel, ByVal aHand As

Hand)
§ aPanel.Controls.Clear()
§ Dim aCard As Card
§ Dim aButton As Button
§ Dim i As Integer
§ For i = 0 To aHand.Count - 1
§ aCard = aHand(i)
§
§ ‘ Make the button and add it to the form.
§ aButton = New Button()
§ aPanel.Controls.Add(aButton)
§
§ With aButton
§ ‘ Modify the appearance of the button.
§ .Image = CType(m_icons(aCard.Suit), Image)
§ .Text = aCard.FaceValue.ToString()
§ .TextAlign = ContentAlignment.BottomCenter
§ .ImageAlign = ContentAlignment.TopCenter
§ .FlatStyle = FlatStyle.Flat
§ .Height = 40
§ ‘ Locate the button on the panel.
§ .Top = 45 * i
§ ‘ Save the associated card.
§ .Tag = aCard
§ End With

§
§ ‘ Add a MouseDown event to the new button.
§ AddHandler aButton.MouseDown, AddressOf ButtonMouse

Down
§ Next
§ End Sub
§
§ // Visual C#
§ private void ShowHand(Panel aPanel, Hand aHand) {
§ aPanel.Controls.Clear();
§ Card aCard;
§ Button aButton;
§ for (int i = 0; i < aHand.Count; i++) {
§ aCard = aHand[i];
§
§ // Make the button and add it to the form.
§ aButton = new Button();
§ aPanel.Controls.Add(aButton);
§
§ //Modify the appearance.
§ aButton.Image = (Image)m_icons[aCard.Suit];
§ aButton.Text = aCard.FaceValue.ToString();
§ aButton.TextAlign = ContentAlignment.BottomCenter;
§ aButton.ImageAlign = ContentAlignment.TopCenter;
§ aButton.FlatStyle = FlatStyle.Flat;
§ aButton.Height = 40;
§
§ // Locate the button on the panel.
§ aButton.Top = 45 * i;
§ // Save the associated card.
§ aButton.Tag = aCard;
§ // Add a MouseDown event to the new button.
§ aButton.MouseDown += new
§ System.Windows.Forms.MouseEventHandler(ButtonMous

eDown);
§ }

}

These 30 lines of code do a lot of work, and an explanation is in order for this method:
1. If there are any controls on the panel, delete them.
2. Using the count and indexer properties of the Hand class, look at each

Card instance.
3. Create a new Button object, and add it to the Controls collection of the

panel. Any controls added to the panel’s Controls collection will be
displayed on the panel.

4. Set the Image property of the button from the m_icons SortedList
object.

5. Set the Text property of the button to the FaceValue of the Card.
Enumerated values have an implicitly defined ToString method that
returns the symbolic name of the enumeration value. For example,
FaceValue.King.ToString() returns “King”.

6. Make the button tall enough to hold both the image and the text.
Display the image at the top of the button (TopCenter) and the value at
the bottom of the button (BottomCenter).

7. Because the buttons are 40 pixels high, display them 45 pixels apart.
When there are enough buttons on the panel so that the value of the
Top property of one button is larger than the size of the panel, scroll
bars will appear.

8. Set the FlatStyle property of the button so that the button is displayed
as a flat rectangle instead of a 3-dimensional button.

9. Use the Tag property to associate each button with its Card instance.
In Chapter 8, you’ll see a more object-oriented way to handle this
association by creating a specialized control through inheritance.

10. Associate a method with the MouseDown event of the button.
Because the button doesn’t exist in the form designer, you can’t just
click it to create the MouseDown event method. No matter how many
cards are created, one method will respond to all the MouseDown
events. You’ll use the MouseDown event to start the drag-drop
functionality.

Add the MouseDown event method to start the drag

A minimum of three steps is required to implement drag-and-drop behaviors:
1. When the user selects a control to move, usually by a mouse click or

MouseDown event, call the control’s DoDragDrop method to start the
drag. In this case, the user will be dragging the buttons that represent
cards.

2. When the user drags the control over another control, the DragEnter
event is raised. In this event, you set the Effect property of the
DragEventArgs object to allow dragging. In this case, the user will drag
the button controls over the Panel controls.

3. When the user releases the mouse button, the DragDrop event is
raised. In this event, perform the result of the drag. In this case, the
button will be moved to a different panel.

In the ShowHand method, the MouseDown event of each button was assigned to the
ButtonMouseDown method. Now add this method, as shown here:

‘ Visual Basic

Private Sub ButtonMouseDown(ByVal sender As Object, _

ByVal e As System.Windows.Forms.MouseEventArgs)

 m_pickedUp = CType(sender, Button)

 m_pickedUp.DoDragDrop(sender, DragDropEffects.Move)

End Sub

// Visual C#

private void ButtonMouseDown(object sender,

System.Windows.Forms.MouseEventArgs e) {

 m_pickedUp = (Button)sender;

 ((Button)sender).DoDragDrop(sender,DragDropEffects.Move);

}

Enable dragging with the DragOver event
§ Add code to the DragOver events of both panel controls to allow the

button being dragged, m_pickedUp, to be dropped on the panels:
§ ‘ Visual Basic
§ Private Sub panel1_DragEnter(ByVal sender As Object, ByVal e

_
§ As System.Windows.Forms.DragEventArgs) Handles panel1.Dra

gEnter
§ e.Effect = DragDropEffects.Move
§ End Sub
§
§ Private Sub panel2_DragEnter(ByVal sender As Object, ByVal e

_
§ As System.Windows.Forms.DragEventArgs) Handles panel2.Dra

gEnter

§ e.Effect = DragDropEffects.Move
§ End Sub
§
§ // Visual C#
§ private void panel1_DragEnter(object sender,
§ System.Windows.Forms.DragEventArgs e) {
§ e.Effect = DragDropEffects.Move;
§ }
§
§ private void panel2_DragEnter(object sender,
§ System.Windows.Forms.DragEventArgs e) {
§ e.Effect = DragDropEffects.Move;

}

Enable dropping using the DragDrop event
§ Add code to the DragDrop events of the Panel controls to move the

dragged control to the new panel. Before moving the button, the code
checks that the button is being moved to a different panel.
§ ‘ Visual Basic
§ Private Sub panel1_DragDrop(ByVal sender As Object, ByVal e _
§ As System.Windows.Forms.DragEventArgs) Handles panel1.Dra

gDrop
§ Dim theCard As Card = CType(m_pickedUp.Tag, Card)
§ If (Not m_hand1.Contains(theCard)) Then
§ m_hand1.Add(theCard)
§ m_hand2.Remove(theCard)
§ End If
§ ShowHand(panel1, m_hand1)
§ ShowHand(panel2, m_hand2)
§ m_pickedUp = Nothing
§ End Sub
§
§ Private Sub panel2_DragDrop(ByVal sender As Object, ByVal e _
§ As System.Windows.Forms.DragEventArgs) Handles panel2.Dra

gDrop
§ Dim theCard As Card = CType(m_pickedUp.Tag, Card)
§ If (Not m_hand2.Contains(theCard)) Then
§ m_hand2.Add(theCard)
§ m_hand1.Remove(theCard)
§ End If
§ ShowHand(panel1, m_hand1)
§ ShowHand(panel2, m_hand2)
§ m_pickedUp = Nothing
§ End Sub
§
§ // Visual C#
§ private void panel1_DragDrop(object sender,
§ System.Windows.Forms.DragEventArgs e) {
§ Card theCard = (Card)m_pickedUp.Tag;
§ if (!m_hand1.Contains(theCard)) {
§ m_hand1.Add(theCard);
§ m_hand2.Remove(theCard);
§ }
§ ShowHand(panel2, m_hand2);
§ ShowHand(panel1, m_hand1);
§ m_pickedUp = null;
§ }
§
§ private void panel2_DragDrop(object sender,
§ System.Windows.Forms.DragEventArgs e) {

§ Card theCard = (Card) m_pickedUp. Tag;
§ if (!m_hand2.Contains(theCard)) {
§ m_hand2.Add(theCard);
§ m_hand1.Remove(theCard);
§ }
§ ShowHand(panel2, m_hand2);
§ ShowHand(panel1, m_hand1);
§ m_pickedUp = null;

}

All that remains now is to program the Remove Pairs button to remove the pairs from the
hands and from the form.

Match the cards
§ Add code to the Click event of the Remove Pairs button. This code

simply calls the RemovePairs method for each Hand object and
redisplays the Hand objects.
§ ‘ Visual Basic
§ Private Sub removePairs_Click(ByVal sender As System.Object,

ByVal e _
§ As System.EventArgs) Handles removePairs.Click
§ m_hand1.RemovePairs()
§ m_hand2.RemovePairs()
§ ShowHand(panel2, m_hand2)
§ ShowHand(panel1, m_hand1)
§ End Sub
§
§ // Visual C#
§ private void removePairs_Click(object sender, System.EventArgs

e) {
§ m_hand1.RemovePairs();
§ m_hand2.RemovePairs();
§ ShowHand(panel2, m_hand2);
§ ShowHand(panel1, m_hand1);

}

Run the application
1. In the Solution Explorer window, right-click the project name and click

Properties in the shortcut menu.
2. In the properties tree, expand the Common Properties folder if

necessary and select General.
3. In the Startup Object list, click Form1, and click OK.
4. Press F5 to run the application. The following screen shot shows the

results after the pairs have been matched. You can clear all the cards
by dragging them all to one panel and clicking the Remove Pairs
button.

Quick Reference

To Do this

Create a
public
method

Add the Public or public modifier to a class method.

 In Visual Basic
Public Sub SomeMethod()
End Sub

 In Visual C#
public void SomeMethod() {}

Create a
private
method

Add the Private or private modifier to a class method.

 In Visual Basic
Private Sub SomeMethod()
End Sub

 In Visual C#
Private void SomeMethod() {}

Create an
overloade
d method

Create methods with the same name but
with different parameter lists. The methods
must differ by more than return type.

 In Visual Basic
Public Function Add(I as Integer) As Integer
End Function
Public Function Add(I as Integer, J as Integer) As Integer
End Function

 In Visual C#
public int Add(int i) { }
public int Add(int i, int j) {}

Create a
Main
method as
a
startup
object

First create a Main method:

 In Visual Basic
Public Shared Sub Main()End Sub

 In Visual C#public static void Main() {}

 Open the project’s Property Pages dialog box, and in the
Startup Object list on the General page, click the class that
contains the Main method.

Create a
control at
run time

Declare a new instance of the control and add it to the form’s
Controls collection:

 In Visual Basic
Dim aButton As New Button()
Me.Controls.Add(aButton)

 In Visual C#
Button aButton = new Button();
this.Controls.Add(aButton);

Implement Respond to the MouseDown or Click event of the control to
be dragged, and call the DoDragDrop method.

To Do this

drag and
drop

 Set the AllowDrop property to True for the control that will
be dropped on to. Respond to the DragEnter and DragDrop
events for this control.

Chapter 5: Using Inheritance to Create
Specialized Classes

Overview
ESTIMATED
TIME

2 hr.30 min.

In this chapter, you’ll learn how to

§ Inherit from a class you develop.
§ Use the Me and this keywords.
§ Use the MyBase and base keywords.
§ Create class fields using the Protected and protected keywords.
§ Create Overridable and virtual methods.
§ Create Overrides and override methods and properties .
§ Create a Windows Forms control using inheritance.

In the previous chapters, you created a new class for each object in your solution.
Starting with an empty class, you added fields, properties, constructors, and methods to
implement a fully functional class. Using inheritance, you can create a new class by
adding to or otherwise modifying an existing class. In this chapter, you’ll create that first
class, BankAccount, and then use inheritance to creat e two specialized classes,
SavingsAccount and CheckingAccount. Inheritance isn’t limited to classes you create;
you can inherit from many of the classes in the Microsoft .NET Framework.

Inheritance: An Overview
In previous chapters, you created classes that contained instances of other classes.
These designs model a has -a relationship between an object and its properties. A Deck
has-a Card; a Form has-a Button; a SourceFile has-a Class. The has-a relationship is
central to object-oriented design. It allows you to build an application by combining
already existing objects. The term used for the has-a relationship is composition.
Inheritance is the programming method used to implement the is-a relationship of object-
oriented design. A Button is-a Control; a Dog is-a Mammal; a SavingsAccount is-a
BankAccount. If you’ve already written the code to model an account’s owner, balance,
withdrawal and deposit transactions, you’d like to be able to use that code again. You
can do that using inheritance; it allows you to create new classes from existing classes.
You create new classes from the base class. You create the derived class by adding to
or specializing the base class. You could also say that the derived class inherits from or
derives from the base class. Another common terminology uses superclass for the base
class and subclass for the derived class. This book uses the base and derived terms

because these terms more closely match the keywords used in Visual Basic and C# to
implement inheritance.
Polymorphism describes the behavior of classes that derive from a common base class.
A savings account isn’t the only type of bank account. There are also checking accounts,
money market accounts, and mutual fund accounts. So Checking, Savings,
MoneyMarket, and MutualFund all derive from BankAccount. Polymorphic behavior
allows a developer to use a BankAccount variable to refer to any of the derived classes
of BankAccount. Polymorphism allows each derived class to handle identical method
names with different behavior. For example, both Savings and Checking provide a
Withdraw method through inheritance, but the Checking class’s Withdraw method
deducts a small service charge along with each withdrawal.

This chapter concentrates on the mechanics of inheritance. Even with rudimentary
techniques, you can develop sophisticated results by inheriting from .NET Framework
classes. Later chapters develop other aspects of inheritance, such as base class design,
polymorphism, and component development.

BankAccount: A Simple Example

The simple bank account provides the basis for this exercise in inheritance. You will
implement a BankAccount class as a base class with the following members:

Member Description

Owner A string
property that
identifies the
owner of the
account.

ID A read-only
string
property that
identifies the
account.

Balance A read-only
decimal
property.
The value of
this property
depends on
the deposits
and
withdrawals
made to the
account.

Deposit This method
takes one
parameter:
the amount
to deposit. It
returns the
balance
after the
deposit.

Withdraw This method
takes one

Member Description

parameter:
the amount
to withdraw.
It returns the
balance
after the
withdrawal.

Constructor The
constructor
takes one
parameter:
the account
owner’s
name (a
string), to
use for the
ID property.

Create the base class, BankAccount
1. Create a new project and name it TheBank.
2. On the Project menu, click Add Class. The Add New Item dialog box

appears.
3. Name the file BankAccount.vb or BankAccount.cs, depending on the

language you’re using.

Add the properties and constructor

The account ID is based on the owner’s name. In the limited world of this exercise, each
person can have only one account, and all names are unique. So the ID is the same as
the owner’s name.

1. Add this code for the read-only ID property:
2. ‘ Visual Basic
3. Private m_owner As String
4. Public ReadOnly Property ID() As String
5. Get
6. Return m_owner
7. End Get
8. End Property
9.
10. // Visual C#
11. private string m_owner;
12. public string ID {
13. get {
14. return m_owner;
15. }
16. }

The next property, Balance, will also be read-only. In the real world, you can’t
just tell the bank you have a certain amount of money. To change your
balance, you have to make a deposit or a withdrawal. So it will be with this
example: the Balance is read-only and can be changed only by means of the
Deposit and Withdraw methods.
The balance is stored in a decimal field. The decimal data type
(System.Decimal) is used to store numbers with a particular precision. Thus
2.37 is stored as 2.37, not something extremely close to 2.37, as might
happen in using a System.Double variable. The advantage of using the
System.Decimal data type is that rounding doesn’t occur, so the
System.Decimal type is appropriate for representing currency.

17. Add this code for the read-only Balance property:

18. ‘ Visual Basic

19. Private m_balance As Decimal

20. Public ReadOnly Property Balance() As Decimal

21. Get

22. Return m_balance

23. End Get

24. End Property

25.

26. // Visual C#

27. private decimal m_balance;

28. public decimal Balance {

29. get {

30. return m_balance;

31. }

}
32. Add the following code to the BankAccount class to create a

constructor. All accounts need to have an owner, so the only
constructor provided has one string parameter for the owner’s name.
In Visual C#, replace the default constructor with the one below.

33. ‘ Visual Basic

34. Public Sub New(ByVal owner As String)

35. m_owner = owner

36. m_balance = 0D

37. End Sub

38.

39. // Visual C#

40. public BankAccount(string owner) {

41. m_owner = owner;

42. m_balance = 0M;

43. }

Add the methods
1. Add the following code to the BankAccount class for the Deposit

method. This method adds the indicated amount to the balance and
returns the new balance.

2. ‘ Visual Basic
3. Public Function Deposit(ByVal amount As Decimal) As Decimal
4. m_balance += amount
5. Return m_balance
6. End Function
7.
8. // Visual C#
9. public decimal Deposit(decimal amount) {
10. m_balance += amount;
11. return m_balance;

}

12. Add the following code to the BankAccount class for the Withdraw
method. This method subtracts the indicated amount from the balance
and returns the new balance.

13. ‘ Visual Basic

14. Public Function Withdraw(ByVal amount As Decimal) As Decimal

15. m_balance -= amount

16. Return m_balance

17. End Function

18.

19. // Visual C#

20. public decimal Withdraw(decimal amount) {

21. // since an assignment returns the assigned value,

22. // only need one line

23. return (m_balance -= amount);

}

Test the BankAccount interface

The base class, BankAccount, is now complete. Before moving on to the first derived
class, SavingsAccount, take a look at the public interface of the BankAccount class.

1. Open Form1 in the designer.
2. Double-click on the form to create the Form1_Load method in the

code editor.
3. Add the following code to the method, and note the members

displayed in IntelliSense, shown in the subsequent graphic.

4. ‘ Visual Basic

5. Private Sub Form1_Load(ByVal sender As System.Object, _

6. ByVal e As System.EventArgs) Handles MyBase.Load

7. Dim account As BankAccount = New BankAccount("Robin")

8. account.Deposit(25D)

9. MessageBox.Show(String.Format("{0:C}", account.Balance))

10. End Sub

11.

12. // Visual C#

13. private void Form1_Load(object sender, System.EventArgs e) {

14. BankAccount account = new BankAccount("Robin");

15. account.Deposit(25M);

16. MessageBox.Show(String.Format("{0:C}", account.Balance));

}

String.Format

The String.Format method gives you a way to create strings based on
variable values without using long string concatenation statements. The
String.Format method has several overloads. In each case, the first
parameter is a format statement, which is a string that’s interspersed with
formatting specifications. For example, {0:C} specifies that a value should be
converted to a string using a currency format. The rest of the parameters of
the method are used to replace the formatting specifications. Thus the
following statements are equivalent and produce You have $1.23 in the bank.

String.Format("You have {0:C} in the bank.", balance)

"You have " + balance.ToString("C") + " in the bank."

The class members contain the public properties and methods of the
BankAccount class: Balance, ID, Deposit, and Withdraw. The members list
also contains those members inherited from the Object class: GetType,
Equals (C# only), GetHashCode (C# only), and ToString (C# only). In the next
section, you’ll create a derived class from BankAccount, and it will contain the
public interface of Object and BankAccount.

12. Press F5 to run the application. The result is shown in the following
screen. You have created the completely functional base class,
BankAccount.

Creating the SavingsAccount Derived Class

The first derived class you create will be the SavingsAccount class. In this example
SavingsAccount is identical to BankAccount except in the following respects:

§ A savings account offers interest. The SavingsAccount class will have an
additional property, Interest.

§ A savings account can accrue interest over time. The SavingsAccount
class will have an additional method, AddInterest.

§ One person can have both a savings account and a checking account,
an expansion of your banking world. To distinguish between the two
accounts, the ID property will indicate the type of account.

Create the SavingsAccount class
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. Name the file SavingsAccount.vb or SavingsAccount.cs, depending on

the language you’re using.
3. Modify the class declaration to indicate that BankAccount is the base

class as shown here:

4. ‘ Visual Basic

5. Public Class SavingsAccount

6. Inherits BankAccount

7. End Class

8.

9. // Visual C#

10. public class SavingsAccount : TheBank.BankAccount {

11. public SavingsAccount() {

12. }

13. }

If you’re using Visual Basic, the following message appears in the Task List:

“Cannot implicitly create a constructor for ‘Class SavingsAccount’ because its base class
‘BankAccount’ doesn’t declare a public constructor that has no parameters. Either define
a constructor on ‘Class SavingsAccount’ or a parameterless constructor on base ‘Class
BankAccount’.”

If you’re using Visual C#, the following message appears in the Task List:

No overload for method ‘BankAccount’ takes ‘0’ arguments

As you create and modify base classes and derived classes, various messages appear
in the Task List. These messages help you correctly implement the classes. Although
inheritance lets you reuse much of the code in the base class, you will, of course, want to
modify and add to the derived class. Getting the behavior you want in the derived
classes requires a certain syntactical handshaking between the base class and derived
classes. The messages that you receive as you work indicate that this handshaking isn’t
yet correctly implemented.

The C# Class Wizard

The C# Class Wizard allows you to specify a base class when you create a new class.
In the wizard, click the Base Class tab and click a class in the Base Class list. If the
class you want to derive from isn’t part of your project, first find the namespace that
contains the class in the Namespace list.

Leaving the constructor work aside for a moment, modify the ID property so that you
form the ID by adding -S to the end of the owner’s name. This process has three steps:

§ By default, the class inherits the behavior of the base class. To override
this behavior, you redefine the property in the derived class and add the
override modifier to the property declaration.

§ In the base class, you modify the property declaration by adding the
virtual keyword to it.

§ Because the m_owner field in BankAccount is defined as a private field,
it isn’t accessible in the SavingsAccount code. And because the
m_owner field is the basis for the ID, the third step is to redefine the
scope of the m_owner field in the base class.

The interaction between the virtual base class property and the overridden derived class
property becomes apparent when the classes are used polymorphically.

Examine the development environment

Take a moment to examine the changes in the development environment now that you
have declared a base class for SavingsAccount.

1. Expand the Class View window. The base class and its members are
now included as you see in the following screens. Notice the
m_balance and m_owner fields have a small lock on the icon,
indicating that they’re private fields. A public field wouldn’t have a lock.

17. If you’re using Visual Basic, open the source file for the

SavingsAccount class in the code editor. Click the Class Name list.
Two new entries appear, (Overrides) and (Base Class Events). Click
(Overrides) in the list and then examine the entries in the Method
Name list. It’s empty. As you add overridable properties and methods
to the BankAccount class, they appear in the Method Name list.

Override the ID property
1. Open the BankAccount class in the code editor and modify the

declaration of the m_owner field so that it’s protected:
2. ‘ Visual Basic
3. Protected m_owner As String
4.
5. // Visual C#

protected string m_owner;
Protected fields are available to derived classes. They’re treated as private in
client code. Private fields aren’t available to derived classes or client code.
Not all class fields need to be protected. If you examine the class in the Class
View, the icon on the m_owner field has a key on it, indicating that the field is
protected.
Modify the ID property by adding the Overridable or virtual keyword, as you
see here:

‘ Visual Basic
Public Overridable ReadOnly Property ID() As String
 Get
 Return m_owner
 End Get
End Property

// Visual C#
virtual public string ID {
 get {
 return m_owner;
 }
}
6. Open the SavingsAccount source file in the code editor.
7. If you’re using Visual Basic, click (Overrides) in the Class List, and

then click ID in the Method Name list. The following empty property
definition is added to the class:

8. ‘ Visual Basic

9. Public Overrides ReadOnly Property ID() As String

10. Get

11.

12. End Get

13. End Property

If you’re using Visual C#, expand the Bases And Interfaces node of the
SavingsAccount class in the Class View. Expand the BankAccount node and
right-click the ID property. On the shortcut menu, point to Add and then click
Override. The following empty property definition is added to the class:

// Visual C#

public override string ID {

 get {

 return null;

 }

}
14. Modify the property to return the ID. As you type in the code, notice

the IntelliSense list as you type Me. or this. (including the period in
either case). The list is shown in the screen that follows.

15. ‘ Visual Basic

16. Public Overrides ReadOnly Property ID() As String

17. Get

18. Return Me.m_owner & "-S"

19. End Get

20. End Property

21.

22. // Visual C#

23. override public string ID {

24. get {

25. return this.m_owner + "-S";

26. }

}

This code introduces the keywords Me and this. The Me and this keywords refer to the
class instance. In this case using Me or this is not required. You could simply type
m_owner. You use a keyword in situations in which you might have variable name
collisions. Perhaps you have the same field declared in the class and in the method.
This keyword indicates which variable to use.
You also use the Me and this keywords if you need to pass a reference to the instance
to another method. For example, suppose you had a method that took a Form as a
parameter:

‘ Visual Basic

Public Sub MakeFormBlue(aForm As Form)

// Visual C#

public void MakeFormBlue(Form aForm)

You would make this call from within a form’s code, like this:

‘ Visual Basic

MakeFormBlue(Me)

// Visual C#

MakeFormBlue(this);

Adding the Constructor

Constructors aren’t inherited, so you must add them to the derived class. Also, whenever
a constructor is defined, it includes an implicit call to the parameterless constructor that
belongs to the base class. In the BankAccount class, you created only one public
constructor, and that constructor had one parameter for the owner’s name. Because that
parameterless constructor doesn’t exist in the base class, you need to make an explicit
call to the constructor that does exist.

Add this constructor for the SavingsAccount class. If you’re using Visual C#, you need to
delete the constructor without parameters.

‘ Visual Basic

Public Sub New(ByVal owner As String)

 MyBase.New(owner)

End Sub

// Visual C#

public SavingsAccount(string owner) : base(owner) {

}

The error message about the constructor is now resolved.
This code introduces the MyBase and base keywords. MyBase and base refer to the
base class of a class. In the case of the constructor, there’s no sense in rewriting the
code that you wrote in the base class, BankAccount. A call to the base class is sufficient.
C# provides a syntax for calling base class members of the same name, : base(). Unlike
the Me keyword, MyBase doesn’t refer to any instance, so it can’t be passed to methods
that require an instance reference.

Add the Interest property and the AddInterest method
1. Add this code for the Interest property:

2. ‘ Visual Basic
3. Private m_interest As Decimal = 0.01D
4. Public Property Interest() As Decimal
5. Get
6. Return m_interest
7. End Get
8. Set(ByVal Value As Decimal)
9. m_interest = Value
10. End Set
11. End Property
12.
13. // Visual C#
14. private decimal m_interest = 0.01M;
15. public decimal Interest {
16. get {
17. return m_interest;
18. }
19. set {
20. m_interest = value;
21. }

}
22. Add this code for the AddInterest method:

23. ‘ Visual Basic

24. Public Function AddInterest() As Decimal

25. Me.Deposit(m_interest * Me.Balance)

26. Return Me.Balance

27. End Function

28.

29. // Visual C#

30. public decimal AddInterest() {

31. this.Deposit(m_interest * this.Balance);

32. return this.Balance;

33. }

The m_balance field is private to the base class, BankAccount, and the
Balance property is read-only. Therefore the only way to add money to the
account is, by design, through the Deposit method.

You have completed the implementation of the SavingsAccount class. You
can now write some test code.

Test the SavingsAccount class
1. Open Form1 in the code editor.
2. Delete the code that you added to test the BankAccount class, so that

the Form1_Load method is empty.
3. Add this code to test the SavingsAccount class:

4. ‘ Visual Basic

5. Private Sub Form1_Load(ByVal sender As System.Object, _

6. ByVal e As System.EventArgs) Handles MyBase.Load

7. Dim savings As SavingsAccount = New SavingsAccount("Your
Name")

8. savings.Deposit(150D)

9. savings.Withdraw(50D)

10. savings.Interest = 0.05D

11. savings.AddInterest()

12. MessageBox.Show(_

13. String.Format("{0}: {1:C}", savings.ID, savings.Balance))

14. End Sub

15.

16. // Visual C#

17. private void Form1_Load(object sender, System.EventArgs e) {

18. SavingsAccount savings = new SavingsAccount("Your Name");

19. savings.Deposit(150M);

20. savings.Withdraw(50M);

21. savings.Interest = 0.05M;

22. savings.AddInterest();

23. MessageBox.Show(

24. String.Format("{0}: {1:C}", savings.ID, savings.Balance));

}
As you type in the code, notice the members of the class listed by
IntelliSense. The list includes the members of the BankAccount class, plus
the members of the SavingsAccount class, shown in the following screen. In
C#, the members of the System.Object class also appear on the list.

27. Press F5 to run the application. The result is shown here:

Creating the Derived Class CheckingAccount

The second derived class you create is the CheckingAccount class. CheckingAccount is
identical to BankAccount except that every withdrawal from CheckingAccount incurs a
$0.25 check charge. As in the SavingsAccount example, the ID property indicates the
type of account.

Create the CheckingAccount class
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. Name the file CheckingAccount.vb or CheckingAccount.cs, depending

on the language you’re using.
3. Modify the class declaration to indicate that BankAccount is the base

class as you see here:

4. ‘ Visual Basic

5. Public Class CheckingAccount

6. Inherits BankAccount

7. End Class

8.

9. // Visual C#

10. public class CheckingAccount : TheBank.BankAccount {

11. public CheckingAccount() {

12. }

13. }

Add the constructor
§ Add this code for the CheckingAccount constructor. If you’re using Visual

C#, you need to delete the constructor without parameters.
§ ‘ Visual Basic
§ Public Sub New(ByVal owner As String)
§ MyBase.New(owner)
§ End Sub
§

§ // Visual C#
§ public CheckingAccount(string owner) : base(owner) {

}

Override the Withdraw method
Overriding a method is similar to overriding a property. You add the Overridable keyword
in Visual Basic or the virtual keyword in C# to the base class and redefine the method in
the derived class by using the override keyword.

1. Open the source file for BankAccount in the code editor.
2. Modify the declaration of the Withdraw method to include the

overridable keyword.

3. ‘ Visual Basic

4. Public Overridable Function Withdraw(ByVal amount As Decimal)
As Decimal

5.

6. // Visual C#

virtual public decimal Withdraw(decimal amount)
7. Open the source file for CheckingAccount in the code editor.
8. Add this code for the Withdraw method:

9. ‘ Visual Basic

10. Public Overrides Function Withdraw(ByVal amount As Decimal)
As Decimal

11. MyBase.Withdraw(amount)

12. MyBase.Withdraw(0.25D)

13. Return Me.Balance

14. End Function

15.

16. // Visual C#

17. override public decimal Withdraw(decimal amount) {

18. base.Withdraw(amount);

19. base.Withdraw(0.25M);

20. return this.Balance;

}
In this method, the MyBase or base keyword is required. Without the
keyword, the CheckingAccount version of the Withdraw method would be
called, which would in turn call the same Withdraw method, over and over
again, until a stack overflow error occurred. You would have induced this error
because each call to the Withdraw method takes up a little more memory from
the stack, which is the memory available for the program. When the stack
overflows, an error occurs.

Override the ID property
§ Add this code to override the ID property:
§ ‘ Visual Basic
§ Public Overrides ReadOnly Property ID() As String
§ Get
§ Return Me.m_owner & "-C"
§ End Get
§ End Property
§
§ // Visual C#
§ override public string ID {
§ get {

§ return this.m_owner + "-C";
§ }

}

Test the CheckingAccount class
1. Open Form1 in the code editor.
2. Delete the code that you added to test the SavingsAccount class, so

that the Form1_Load method is empty.
3. Add the following code to test the CheckingAccount class:

4. ‘ Visual Basic

5. Private Sub Form1_Load(ByVal sender As System.Object, _

6. ByVal e As System.EventArgs) Handles MyBase.Load

7. Dim checking As CheckingAccount = New
CheckingAccount("Your Name")

8. checking.Deposit(50D)

9. checking.Withdraw(5D)

10. MessageBox.Show(_

11. String.Format("{0}: {1: C}", checking.ID, checking.Balance))

12. End Sub

13.

14. // Visual C#

15. private void Form1_Load(object sender, System.EventArgs e) {

16. CheckingAccount checking = new CheckingAccount("Your
Name");

17. checking.Deposit(50M);

18. checking.Withdraw(5M);

19. MessageBox.Show(

20. String.Format("{0}: {1:C}", checking.ID, checking.Balance));

}
21. Press F5 to run the application. The result is shown here:

Using the Derived Classes Polymorphically
In the preceding sections, you demonstrated that inheritance allows you to reuse code
from a base class. You defined a Deposit method in the base class, BankAccount. You
used that method from an instance of SavingsAccount, even though you wrote no code
for the Deposit method in the SavingsAccount class.

Not only does inheritance let you reuse code, but it also allows you to use classes
polymorphically. This means that you can refer to an instance of the derived class as
though it were an instance of the base class, as shown here:

‘ Visual Basic

Dim account as BankAccount

account = New CheckingAccount("Your Name")

account.Deposit(25D)

account.Withdraw(5D)

‘ Balance is 20.

// Visual C#

BankAccount account;

account = new CheckingAccount("Your Name");

account.Deposit(25M);

account.Withdraw(5M);

// Balance is 19.75.
Polymorphism also provides that when this code is executed, the runtime determines the
actual type of the instance, BankAccount, SavingsAccount, or CheckingAccount. It then
calls the Withdraw method defined for the actual type. There are ways to override this
behavior, but in the code you’ve written the Withdraw method of the CheckingAccount
object would be called in the preceding example.
In the next section, you’ll see how you can use classes polymorphically.

Create the user interface
1. Open Form1 in the designer.
2. Set the Text property of Form1 to The Bank .
3. Drag a Label onto Form1 and set its Text property to Account.
4. Drag a ComboBox control onto Form1 next to the Label and set its

Name property to account. Delete the Text property, so that it’s blank.
5. Drag another Label onto Form1 and set its Text property to

Transaction.
6. Drag a ComboBox control onto Form1 and set its Name property to

action. Delete the text in the Text property’s box so that it’s blank.
7. In the Properties window, click the ellipsis button (…) next to the Items

property of the action ComboBox. Use the String Collection Editor
dialog box to enter two strings, Deposit and Withdraw.

8. Drag another Label onto Form1 and set its Text property to Amount.
9. Drag a TextBox onto Form1 and set its Name property to amount.

Delete the Text property, so that it is blank.
10. Drag a Button onto Form1. Set its Name property to submit and its

Text property to Submit. Here’s the complete user interface:

Create the accounts
1. Double-click Form1 to display the Form1_Load method in the code

editor.
2. Delete the test code for the CheckingAccount class.
3. Add these fields to Form1:

4. ‘ Visual Basic

5. Private checking As New CheckingAccount("Your Name")

6. Private savings As New SavingsAccount("Your Name")

7.

8. // Visual C#

9. private CheckingAccount checking = new CheckingAccount("Your
Name");

10. private SavingsAccount savings = new SavingsAccount("Your
Name");

11. Add this code to the Form1_Load method to initialize the accounts:

‘ Visual Basic

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

 Me.account.Items.Add(checking)

 Me.account.Items.Add(savings)

 Me.account.SelectedIndex = 0

 Me.action.SelectedIndex = 0

 Me.amount.Text = "100"

End Sub

// Visual C#

private void Form1_Load(object sender, System.EventArgs e) {

 this.account.Items.Add(checking);

 this.account.Items.Add(savings);

 this.account.SelectedIndex = 0;

 this.action.SelectedIndex = 0;

 this.amount.Text = "100";

}
In the designer, you used the String Collection Editor dialog box to add strings to the
ComboBox control. You can add any item to the ComboBox using the Items.Add
method. At run time, the name of the class will be displayed in the ComboBox control, as
shown in the following screen. If you have defined a ToString method for the class, the
ToString method would be called and displayed in the ComboBox. For example, if you
had defined a ToString method in the SavingsAccount object that returned the ID
property, the ComboBox would display Your Name-S instead of
TheBank.SavingsAccount.

Submit the transaction
1. In the designer, double-click the Submit button to create the Click

event method in the code editor.
2. Add this code to the code editor to submit the transaction and report

the new account balance:

3. ‘ Visual Basic

4. Private Sub submit_Click(ByVal sender As System.Object, _

5. ByVal e As System.EventArgs) Handles submit.Click

6. Dim selectedAccount As BankAccount

7. Dim item As Object = Me.account.SelectedItem

8. selectedAccount = CType(item, BankAccount)

9. Select Case action.Text

10. Case "Deposit"

11. selectedAccount.Deposit(Decimal.Parse(amount.Text))

12. Case "Withdraw"

13. selectedAccount.Withdraw(Decimal.Parse(amount.Text))

14. End Select

15. MessageBox.Show(String.Format("{0}: {1:C}", _

16. selectedAccount.ID, selectedAccount.Balance))

17. End Sub

18.

19. // Visual C#

20. private void submit_Click(object sender, System.EventArgs e) {

21. BankAccount selectedAccount;

22. object item = this.account.SelectedItem;

23. selectedAccount = (BankAccount)item;

24. switch (action.Text) {

25. case "Deposit" :

26. selectedAccount.Deposit(decimal.Parse(amount.Text));

27. break;

28. case "Withdraw" :

29. selectedAccount.Withdraw(decimal.Parse(amount.Text));

30. break;

31. }

32. MessageBox.Show(String.Format("{0}: {1:C}",

33. selectedAccount.ID, selectedAccount.Balance));

}
As with the SortedList and ArrayList classes, you can add any type of object
to the ComboBox, but the ComboBox treats them all as being of type
System.Object. (Remember that all classes implicitly derive from
System.Object.) That means that what is returned from
ComboBox.SelectedItem can be directly assigned only to a System.Object
reference.
Because your code has control over the Account combo box, you have
restricted the items of the combo box to be of type CheckingAccount or
SavingsAccount. Therefore you can cast the System.Object item in the
submit_Click method to a BankAccount object. Once you have a
BankAccount object, you can call any of its properties and methods.
When you cast an object from one type to another, no changes occur in the
instance itself. The only thing that changes is the view of the object. The
preceding code doesn’t convert account.SelectedItem from a System.Object
into a SavingsAccount object. The cast only directs the compiler to treat the
instance as a SavingsAccount instead of a System.Object. There is, after all,
only one instance of SavingsAccount. It’s just that the account combo box is
storing a System.Object reference to it, and the Form is storing a
SavingsAccount reference to it.
When you have a base class reference to an instance, you can access only
the properties and methods defined on the base class. In this example, you

couldn’t call the AddInterest method using the selectedAccount variable.
You’ll see how to do that in the next section.

34. Press F5 to run the application. Make some deposits and withdrawals
with the accounts, and you’ll see the common and specialized
behaviors of the CheckingAccount and SavingsAccount classes.

Find the type of the object
1. Open Form1 in the designer.
2. Add another button to Form1. Set its Name property to addInterest, its

Text property to Add interest, and its Visible property to False.
3. Double-click the button to create the Click event method in the code

editor.
4. In the form designer, double-click the account ComboBox control to

create the account_SelectedIndexChanged method in the code editor.
5. Add the following code to the account_SelectedIndexChanged method

to display the Add Interest button if the selected account is the savings
account.

6. ‘ Visual Basic

7. Private Sub account_SelectedIndexChanged(ByVal sender As _

8. System.Object, ByVal e As System.EventArgs) _

9. Handles account.SelectedIndexChanged

10. If TypeOf (account.SelectedItem) Is SavingsAccount Then

11. addInterest.Visible = True

12. Else

13. addInterest.Visible = False

14. End If

15. End Sub

16.

17. // Visual C#

18. private void account_SelectedIndexChanged(object sender,

19. System.EventArgs e) {

20. if (account.SelectedItem is SavingsAccount) {

21. addInterest.Visible = true;

22. }

23. else {

24. addInterest.Visible = false;

25. }

26. }
27. Add the following code to the Click event method of the Add Interest

button to call the AddInterest method of SavingsAccount.

28. ‘ Visual Basic

29. Private Sub addInterest_Click(ByVal sender As System.Object, _

30. ByVal e As System.EventArgs) Handles addInterest.Click

31. If TypeOf (account.SelectedItem) Is SavingsAccount Then

32. Dim theSavings As SavingsAccount = _

33. CType(account.SelectedItem, SavingsAccount)

34. theSavings.AddInterest()

35. MessageBox.Show(String.Format("{0}: {1:C}", _

36. theSavings.ID, theSavings.Balance))

37. End If

38. End Sub

39.

40. // Visual C#

41. private void addInterest_Click(object sender, System.EventArgs
e) {

42. SavingsAccount theSavings = account.SelectedItem as
SavingsAccount;

43. if (theSavings != null) {

44. theSavings.AddInterest();

45. MessageBox.Show(String.Format("{0}: {1:C}",
theSavings.ID,

46. theSavings.Balance));

47. }

}
This method checks the type of the selected item before casting it to a
SavingsAccount object. C# has a keyword, as, that tests and casts the
reference in one step. The as keyword is an operator that returns null if the
object cannot be cast as the selected type.

48. Press F5 to run the application. The results are shown here:

Inherit from a Control: The RoundButton Class
You can use inheritance to create new classes from .NET Framework classes, as well as
from classes you have written yourself. In this next section, you will create a new class
by deriving from a class that you didn’t develop.
You create a round button control by using System.Windows.Forms.Button as the base
class. This task requires only that you override the OnPaint method of the Button class.

Creating the RoundButton Class

To create a derived class from a .NET class, you declare the class and indicate the base
class, just as you did with the bank account classes.

Create the project
1. Create a new Windows Control Library project and name it

ARoundButton.
2. Open Form1 in the code editor.

Add the RoundButton class
§ If you’re using Visual Basic, add the class declaration at the end of the

source file. If you’re using Visual C#, add the class declaration at the end
of the file, but before the closing brace of the RoundButton namespace.
§ ‘ Visual Basic
§ Public Class RoundButton
§ Inherits Button

§
§ End Class
§
§ // Visual C#
§ public class RoundButton : Button {

}

Overriding the OnPaint Method
By overriding the OnPaint method, you direct the runtime to draw a round button, instead
of the usual rectangular button.

Create the OnPaint method
1. If you’re using Visual Basic, click RoundButton (Overrides) in the

Class List, and then click OnPaint in the Method Name list. The
following empty method definition is added to the class. You can also
simply type this method into the editor.

2. ‘ Visual Basic
3. Protected Overrides Sub OnPaint(ByVal pevent As _
4. System.Windows.Forms.PaintEventArgs)
5.
6. End Sub

If you’re using Visual C#, in the Class View expand the Bases And Interfaces
nodes of the RoundButton class button until you find the ButtonBase class.
Expand the ButtonBase node, right-click the OnPaint method, point to Add
and click Override on the shortcut menu. The following empty method
definition is added to the class. You can also simply type this method into the
editor.

// Visual C#
protected override void OnPaint(
System.Windows.Forms.PaintEventArgs pevent) {
}

The OnPaint method is called each time the control is drawn on the form. The
base class draws the familiar rectangle. By overriding the OnPaint method,
you can determine the appearance of the button.

7. Add the following code to draw the round button. Not only will the
button be round when it’s painted on the form, but the clickable area of
the button will be round as well.

8. ‘ Visual Basic

9. Protected Overrides Sub OnPaint(ByVal pevent As _

10. System.Windows.Forms.PaintEventArgs)

11. Me.Size = New Size(50, 50)

12. Dim aCircle As System.Drawing.Drawing2D.GraphicsPath = _

13. New System.Drawing.Drawing2D.GraphicsPath()

14. aCircle.AddEllipse(New System.Drawing.RectangleF(0, 0, 50,
50))

15. Me.Region = New Region(aCircle)

16. End Sub

17.

18. // Visual C#

19. protected override void OnPaint(

20. System.Windows.Forms.PaintEventArgs pevent) {

21. this.Size = new Size(50,50);

22. System.Drawing.Drawing2D.GraphicsPath aCircle =

23. new System.Drawing.Drawing2D.GraphicsPath();

24. aCircle.AddEllipse(new System.Drawing.RectangleF(0, 0, 50,
50));

25. this.Region = new Region(aCircle);

}

To make a control assume a particular shape, in this case round, you must
define its Region property so that it achieves that shape. You can create a
shape using the GraphicsPath object. The GraphicsPath object allows you to
create a shape by drawing. In this example, you create a drawing by adding a
circle to GraphicsPath. The size of the button is constrained to 50 by 50 pixels
so that the full circle is visible.

Using the Class
The RoundButton class has been defined in the source file and doesn’t appear in the
Toolbox for dragging on the form. To add a RoundButton instance to Form1, you can use
the same methods you used to create buttons in Chapter 4.

Add a RoundButton control to the form
1. Add the following code to the Form1 class to respond to the Click

event of the RoundButton object.
2. ‘ Visual Basic
3. Private Sub roundButton_Click(ByVal sender As System.Object,

_
4. ByVal e As System.EventArgs)
5. MessageBox.Show("Hello")
6. End Sub
7.
8. // Visual C#
9. private void roundButton_Click(object sender, System.EventArgs

e) {
10. MessageBox.Show("Hello");

}
11. In the form designer, double-click Form1 to add the Form1_Load

method to the code editor.
12. Add the following code to create a RoundButton object and add it to

the form.

13. ‘ Visual Basic

14. Private Sub Form1_Load(ByVal sender As System.Object, _

15. ByVal e As System.EventArgs) Handles MyBase.Load

16. Dim rb As New RoundButton()

17. Me.Controls.Add(rb)

18. AddHandler rb.Click, AddressOf roundButton_Click

19. End Sub

20.

21. // Visual C#

22. private void Form1_Load(object sender, System.EventArgs e) {

23. RoundButton rb = new RoundButton();

24. rb.Click += new
System.EventHandler(this.roundButton_Click);

25. this.Controls.Add(rb);

26. }

Run the application
§ Press F5 to run the application. Here are the results:

Design Considerations

Inheritance is a powerful tool in object-oriented programming and is used extensively in
the .NET Framework. The following points will help you write classes that work better
together and are less error-prone.

The is-a relationship Remember that inheritance models the is-a relationship between
objects. The derived classes should represent objects that truly are special cases of
the base object. If you find yourself trying to eliminate properties or methods of the
base class, then you don’t have an is-a relationship. For example, if you’re creating a
class that derives from the Button class but you’re trying to eliminate the Click event,
the new class isn’t really a Button. It might be something like a button, but it isn’t a
button.
Polymorphism If you aren’t going to use the classes polymorphically, consider
whether you need to use inheritance at all. It might be that your class only needs to
contain an instance of the class rather than serve as a base class.
Type-checking In general, type-checking (using the type of operator) is a clue that you
are using inheritance incorrectly. Analyze your code to determine whether the objects
truly represent an is-a relationship. Determine whether you’re defining the proper
properties and methods so that type-checking is unnecessary.
Select or switch statements If your code is full of select or switch statements,
consider whether using inheritance would simplify the code. Consider the following
code snippet where you have defined a Shape class with a type property that will be
set to Rectangle or Circle. To draw the Shape object, you might write some code like
this:

If aShape.Type = "Rectangle" then

 DrawARectangle()

Else

 DrawACircle()

End If

Using inheritance, you might create a Shape class with a Draw method as the base
class. Then you would create Rectangle and Circle classes as derived classes, and
override the Draw method in each class. Then you would replace the preceding code
with the following:

‘ aShape is a reference to the Shape class, but is

‘ currently referring to either a Rectangle or Circle

aShape.Draw()

Single inheritance Visual Basic and Visual C# provide single inheritance only. That
means you can specify only one base class. Sometimes the choice is obvious, such as
BankAccount as a base class for SavingsAccount. But if you want to be able to drag a
SavingsAccount onto your form as you would a Timer control or a TextBox, you might
want to derive from one of the control or component classes. Because derived classes
also inherit from their base classes, you could use the control as the base class for
BankAccount, and then derive SavingsAccount from BankAccount. Another way to get
the behavior of multiple inheritance using single inheritance is with interfaces, as you’ll
see in Chapter 9.

Quick Reference

To Do this

Declare a base class Create any class.
‘ Visual Basic
Public BaseClass
End Class

 // Visual C#
public BaseClass {
}

Declare a derived
class

In Visual Basic, use the Inherits keyword.
‘ Visual Basic
Public SomeClass
Inherits BaseClass
End Class

 In C#, use the : character.
public BaseClass : BaseClass {
}

 Or

 Use the Add Class Wizard and select the
base class.

Declare a protected
field

Add the protected keyword.
‘ Visual BasicPublic
BaseClass
Protected aField As Integer
End Class

 // Visual C#
public BaseClass {
protected int aField;}

Call the base class
constructor

Use the MyBase or base keyword.
‘ Visual Basic
Public Sub New()
MyBase.New()
End Sub

To Do this

 // Visual C#
public DerivedClass() : base() {
}

Override a property In the base class, add the overridable property to the
property declaration.‘ Visual Basic
Public Overridable ReadOnly_
Property ID() As String
Get
Return m_owner
End Get
End Property

 // Visual C#
virtual public string ID {
get {
return m_owner;
}
}

 In the derived class, add the override keyword to the
property declaration.
‘ Visual Basic
Public Overrides ReadOnly_
Property ID() As String
Get
Return Me.m_owner & "-S"
End Get
End Property

 // Visual C#
override public string ID {
get {
return this.m_owner + "-S";
}
}

 Or

 In Visual Basic, click the property to override
in the Method Name list in the code editor.

 In Visual C#, right-click the base class property
in the Class View, and then point to
Add and click Override on the shortcut menu.

Override a method In the base class, add the Overridable or virtual
keyword to the method declaration.
‘ Visual Basic
Public Overridable_
Function Withdraw(ByVal amount As
Decimal)_
As Decimal
End Function

 // Visual C#
virtual public decimal
Withdraw(decimal amount) {
}

 In the derived class, add the Overrides or override
keyword to the method declaration.
Public Overrides_
Function Withdraw(ByVal amount As
Decimal)_

To Do this

As Decimal
End Function

 // Visual C#
override public decimal
Withdraw(decimal amount) {
}

 Or

 In Visual Basic, click the method to override
in the Method Name list in the code editor.

 In Visual C#, right-click the base class method in
the Class View, and then point to Add
and click Override on the shortcut menu.

Refer to the class
instance from within
the class

Use the Me or this keyword.
‘ Visual Basic
Public Overrides ReadOnly_
Property ID() As String
Get
Return Me.m_owner & "-S"
End Get
End Property

 // Visual C#
override public string ID {
get {
return this.m_owner + "-S";
}
}

Chapter 6: Designing Base Classes as
Abstract Classes

Overview
ESTIMATED
TIME

2 hr.

In this chapter, you’ll learn how to

§ Create an abstract base class using the MustInherit or abstract
keyword.

§ Create a derived class from an abstract class.
§ Derive from a .NET abstract class to create a typed collection class.
§ Seal a class using the NotInheritable or sealed keyword.
§ Hide a base class member using the Shadows or new keyword.

In Chapter 5, “Using Inheritance to Create Specialized Classes,” you created a base
class and derived two classes from it. You created methods and properties in the base
class, which you specialized in the derived classes. That chapter showed you the basics
of inheritance and polymorphism.You can, however, exercise much more control than

you saw in Chapter 5. In this chapter, you’ll create an abstract class, one from which you
must inherit. In the definition of the abstract class, you’ll determine the members that the
derived class must implement. You’ll see that the Microsoft .NET Framework provides
several abstract classes, designed solely as base classes for developers to use to create
typed collection classes. You’ll also learn how to create members of a base class and a
derived class that have the same name, yet don’t behave polymorphically.

Abstract Classes
In Chapter 5, you created the fully functional base class, BankAccount. You then created
two derived classes, SavingsAccount and CheckingAccount. If you think about a real
bank (remembering that classes should model the real world), you might wonder whether
you could ever open a generic bank account. Most likely, a bank would offer you a
selection of kinds of accounts, and you would choose one. The bank manager would be
completely unable to create a generic bank account. So it should be for your
BankAccount class. The BankAccount class should define the common behavior of a
generic bank account, even though you would never create one. You still want to handle
accounts polymorphically, perhaps to send out advertisements. So you will still use
inheritance to create the account classes.
Another reason not to create a base class that you can instantiate is that you might then
be tempted to add functionality to the base class that isn’t appropriate for the derived
classes. Making this mistake is all the more likely if your design started with one class
and then you derived a new class from it. Suppose your bank started by offering only
savings accounts; for that purpose, you created a SavingsAccount class. When your
bank became successful, you wanted to add a checking account and decided to derive it
from SavingsAccount. Because your checking account service was going to pay interest,
just like a savings account, the only thing you needed to add was the service charge for
processing checks. Then when the incidence of new savings accounts dropped, you
decided to offer a new toaster for each new savings account opened. So you added a
GiveToaster method to the SavingsAccount class. Through inheritance, you must now
offer all the new checking account customers a new toaster! The solution to this problem
is to create a base class for SavingsAccount and CheckingAccount. Then add the new
toaster behavior only in the SavingsAccount class.

Visual Basic and Visual C# both offer a mechanism for enforcing the concept that you
create only instances of the derived class. You set this limitation by creating abstract
base classes. Abstract classes can’t be instantiated, although you can create derived
classes from them. You can completely implement an abstract class, or you can simply
define what the derived class must implement. You can declare references to the
abstract class, but you can’t make instances of them. As a result, you don’t lose any of
the polymorphic behavior of the derived classes.

The BankAccount Class Revisited
In Chapter 5, the BankAccount class was fully functional, which could lead to errors in
the program if you ever instantiated the class because its behavior would be neither that
of a SavingsAccount class nor a CheckingAccount class. In this chapter, you’ll create the
BankAccount class as an abstract class. You might recall that the BankAccount classes
had an ID property whose format depended on the account type. Because the ID
property depends on the type of account, there’s no reason to implement this method in
the base class, and furthermore, you don’t want to implement it in the base class. If you
did, the implementation wouldn’t be correct for either type of account. Using an abstract
property forces you to implement this method. In this chapter, you’ll also add the abstract
PrintStatement method to the base class. The SavingsAccount statement will include the
deposits, withdrawals, and interest paid. The CheckingAccount statement will include
deposits, withdrawals, and the number of checks written. If this method were
implemented in the base class, it would be valid for neither of the derived classes.
You might be thinking at this point, “I can implement the PrintStatement method in the
base class. I’ll just check the type of the instance and then print the correct statement.”

This solution would work as long as you know all the derived classes of the base class,
but doing this would limit the reusability of the base class. In general, base classes
shouldn’t contain code that depends on the derived classes.

Describing the Design Using the Unified Modeling Language

The Unified Modeling Language (UML) is a graphical tool for describing object-oriented
designs. Development tools such as UML allow developers to discuss designs using a
common vocabulary. Such tools also decrease ambiguity in a specification. In previous
chapters, the class designs have been specified by tables listing the properties and
methods. In this and subsequent chapters, I’ll use a UML class diagram to specify
designs. The basic unit of the class diagram is the box, which represents the class:

The class element has two sections below the name, one to specify the properties and
one to specify the methods:

The preceding diagram describes the abstract base class you’ll implement,
BankAccount. The italic title shows that BankAccount is an abstract class. The UML lists
the properties and their default values, and it specifies public properties by preceding
them with a plus sign. The lower section of the class element lists the public methods
defined in the class. The UML also indicates the parameters for the methods and their
return values. In UML, the in word indicates that the parameter is passed by value in
Visual Basic.

The UML also shows the derived classes with the inheritance relationship denoted by an
arrow pointing toward the base class, usually placed above the derived class. The
derived classes are assumed to inherit everything from the base class, so only the
additions are shown in the derived class. Here’s the complet e UML class diagram for this
chapter:

Note that the UML class diagram doesn’t specify any of the behavior of the interface. For
example, the class diagram doesn’t explain the interaction of the Deposit method and the
Balance property. It doesn’t explain how the ID property should be implemented in the
SavingsAccount and CheckingAccount classes.

You can create UML diagrams yourself using anything from drawing tools to high-end
professional development tools. Some tools can generate code from your diagrams or
generate diagrams from your code. Even a simple, quickly drawn diagram can convey
the basic structure of your object-oriented program.

Creating the Abstract Class

The first class you’ll create is the BankAccount class. This class implements some
methods and leaves others as abstract. Declaring just one member as abstract makes
your entire class abstract.

Create the class
1. Create a new project and name it ABetterBank.
2. On the Project menu, click Add Class. The Add New Item dialog box

appears.
3. Name the file BankAccount.vb or BankAccount.cs, depending on the

language you’re using.
4. Add the MustInherit or abstract keyword to the class declaration, as

you see here:

5. ‘ Visual Basic

6. Public MustInherit Class BankAccount

7.

8. // Visual C#

public abstract class BankAccount

Add the nonabstract members
1. Add the following code for the Balance property:

2. ‘ Visual Basic
3. Private m_balance As Decimal = 0D
4. Public ReadOnly Property Balance() As Decimal
5. Get
6. Return m_balance
7. End Get

8. End Property
9.
10. // Visual C#
11. private decimal m_balance;
12. public decimal Balance {
13. get { return m_balance; }
14. }

15. Add the following code for the TotalDeposits property. The
TotalDeposits property is the total of all the deposits for the lifetime of
the instance.

16. ‘ Visual Basic

17. Private m_totalDeposits As Decimal = 0D

18. Public ReadOnly Property TotalDeposits() As Decimal

19. Get

20. Return m_totalDeposits

21. End Get

22. End Property

23.

24. // Visual C#

25. private decimal m_totalDeposits;

26. public decimal TotalDeposits {

27. get { return m_totalDeposits; }

}
28. Add the following code for the TotalWithdrawals property. The

TotalWithdrawals property is the total of all the withdrawals for the
lifetime of the instance.

29. ‘ Visual Basic

30. Private m_totalWithdrawals As Decimal = 0D

31. Public ReadOnly Property TotalWithdrawals() As Decimal

32. Get

33. Return m_totalWithdrawals

34. End Get

35. End Property

36.

37. // Visual C#

38. private decimal m_totalWithdrawals;

39. public decimal TotalWithdrawals {

40. get { return m_totalWithdrawals; }

}
41. Add the following code for the Withdraw and Deposit methods:

42. ‘ Visual Basic

43. Public Function Deposit(ByVal amount As Decimal) As Decimal

44. m_balance += amount

45. m_totalDeposits += amount

46. Return (m_balance)

47. End Function

48.

49. Public Overridable Function Withdraw(ByVal amount As Decimal)
 As Decimal

50. m_balance -= amount

51. m_totalWithdrawals += amount

52. Return m_balance

53. End Function

54.

55. // Visual C#

56. public decimal Deposit(decimal amount) {

57. m_totalDeposits += amount;

58. return (m_balance += amount);

59. }

60.

61. public virtual decimal Withdraw(decimal amount) {

62. m_totalWithdrawals += amount;

63. return (m_balance -= amount);

}
§ Note that the Deposit and Withdraw methods maintain the

m_totalDeposits and m_totalWithdrawals fields. The TotalDeposits and
TotalWithdrawals properties are read-only. When it’s overriding the
Withdraw method,
the derived class code doesn’t have access to m_totalWithdrawals and
m_totalDeposits fields because they’re private fields of the BankAccount
class.

Add the abstract members
1. Add this declaration for the abstract ID property:

2. ‘ Visual Basic
3. Public MustOverride ReadOnly Property ID() As String
4.
5. // Visual C#

public abstract string ID { get; }
The declaration isn’t followed by an implementation. Because the derived
class must implement this property, an implementation would be
unnecessary. The addition of the abstract keyword, MustOverride or abstract,
requires that the property be defined in every derived class.
If you declare one of the members of a class using the abstract keyword, you
must also declare the class as abstract. An item remains in the Task List until
you do this. However, if you declare a class as abstract, you aren’t required to
declare any of the members as abstract.
A few rules apply if you have multiple levels of inheritance. Suppose, for
example, that you use CheckingAccount as a base class for the
GoldChecking and SilverChecking classes. If you implement ID in
CheckingAccount, you aren’t required to implement it again in the
GoldChecking and SilverChecking accounts. GoldChecking and
SilverChecking can inherit the implementation from CheckingAccount.

6. Add this declaration for the abstract PrintStatement method:

7. ‘ Visual Basic

8. Public MustOverride Function PrintStatement() As String

9.

10. // Visual C#

public abstract string PrintStatement();

Again, the declaration isn’t followed by an implementation, and all the
derived classes are required to implement the method.

The abstract BankAccount class is complete. You can’t create an instance of
BankAccount, although you can create a reference variable to BankAccount. Now create
the derived class SavingsAccount.

Writing the SavingsAccount Class

Here’s what you do to implement the SavingsAccount class:
§ Add a constructor.
§ Add the Interest property.
§ Add the AddInterest method.
§ Define the PrintStatement method.
§ Define the ID property.

Create the class
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. Name the file SavingsAccount.vb or SavingsAccount.cs, depending on

the language you’re using.
3. Add the boldface text to the class declaration to indicate that

SavingsAccount inherits from the BankAccount class:

4. ‘ Visual Basic

5. Public Class SavingsAccount
6. Inherits BankAccount
7. End Class
8.
9. // Visual C#
10. public class SavingsAccount : BankAccount {
11. :
12. }

Define the constructor
§ Add this code for the constructor. Now that the ID property is defined

only in the derived classes, the m_owner field is moved to the
SavingsAccount class. If you’re using C#, replace the parameterless
constructor with this constructor:
§ ‘ Visual Basic
§ Private m_owner As String
§ Public Sub New(ByVal owner As String)
§ m_owner = owner
§ End Sub
§
§ // Visual C#
§ private string m_owner;
§ public SavingsAccount(string owner) {
§ m_owner = owner;

}

Add the Interest property and the AddInterest method
1. Add this code for the Interest property:

2. ‘ Visual Basic
3. Private m_interest As Decimal = 0.01D
4. Public Property Interest() As Decimal
5. Get
6. Return m_interest
7. End Get

8. Set(ByVal Value As Decimal)
9. m_interest = Value
10. End Set
11. End Property
12.
13. // Visual C#
14. private decimal m_interest = 0.01M;
15. public decimal Interest {
16. get { return m_interest; }
17. set { m_interest = value; }

}
18. Add this code for the AddInterest method:

19. ‘ Visual Basic

20. Private m_totalInterest As Decimal = 0D

21. Public Function AddInterest() As Decimal

22. Dim interest As Decimal = m_interest * Me.Balance

23. m_totalInterest += interest

24. Me.Deposit(interest)

25. Return Me.Balance

26. End Function

27.

28. // Visual C#

29. private decimal m_totalInterest = 0M;

30. public decimal AddInterest() {

31. decimal interest = m_interest * this.Balance;

32. m_totalInterest += interest;

33. this.Deposit(interest);

34. return this.Balance;

}

Define the inherited abstract members
1. Add this code to define the PrintStatement method. Even though the

PrintStatement method was only declared and not implemented in the
BankAccount class, you still use the Overrides or override keyword
when implementing the method.
2. ‘ Visual Basic
3. Public Overrides Function PrintStatement() As String
4. Dim statement As String = String.Format("{1}{0}" & _
5. "Opening balance: $0.00{0}Deposits: {2:C}{0}" & _
6. "Withdrawals: {3:C}{0}Interest: {4:C}{0}" & _
7. "Ending balance: {5:C}{0}", _
8. New Object() {ControlChars.CrLf, Me.ID, _
9. Me.TotalDeposits - m_totalInterest, _
10. Me.TotalWithdrawals, Me.m_totalInterest, Me.Balance})
11. Return statement
12. End Function
13.
14. // Visual C#
15. public override string PrintStatement() {
16. string statement = String.Format("{0}\n" +
17. "Opening balance: $0.00\nDeposits: {1:C}\nWithdrawals: {2:

C}\n" +
18. "Interest: {3:C}\nEnding balance: {4:C}\n",

19. new object[] { this.ID, this.TotalDeposits - m_totalInterest,
20. this.TotalWithdrawals, this.m_totalInterest, this.Balance});
21. return statement;

}
You can choose from many ways to build strings in .NET. This method, using
one of the overloads of String.Format , shows just one. In Visual C#, you can
indicate a new line by means of the \n escape character. That escape
character isn’t recognized in Visual Basic, but you can simply replace the \n
character with the formatting expression {0} and match it with
ControlChars.CrLf in the argument list.
The total deposits to the savings account, maintained in the base class,
include the interest payments. The program deducts the interest payments
from the total deposits before reporting the deposits. The program reports the
interest payments separately.

22. Add this code to define the ID property:

23. ‘ Visual Basic

24. Public Overrides ReadOnly Property ID() As String

25. Get

26. Return m_owner & "-S"

27. End Get

28. End Property

29.

30. // Visual C#

31. public override string ID {

32. get { return m_owner + "-S"; }

}

Writing the CheckingAccount Class

Here’s what you do to implement the CheckingAccount class:
§ Override the Withdraw method.
§ Define the PrintStatement method.
§ Define the ID property.

Create the class
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. Name the file CheckingAccount.vb or CheckingAccount.cs, depending

on the language you’re using.
3. Add the boldface text to the class declaration to indicate that

BankAccount is the derived class:

4. ‘ Visual Basic

5. Public Class CheckingAccount
6. Inherits BankAccount
7. End Class
8.
9. // Visual C#
10. public class CheckingAccount : BankAccount {
11. §
12. }

Define the constructor
§ Add this code for the constructor. Now that the ID property is defined

only in the derived classes, the m_owner field is moved to the

CheckingAccount class. If you’re using C#, replace the parameterless
constructor with this constructor.
§ ‘ Visual Basic
§ Private m_owner As String
§ Public Sub New(ByVal owner As String)
§ m_owner = owner
§ End Sub
§
§ // Visual C#
§ private string m_owner;
§ public CheckingAccount(string owner) {
§ m_owner = owner;

}

Define the overridden Withdraw method
§ Add this code to override the Withdraw method:
§ ‘ Visual Basic
§ Dim m_checks As Integer = 0
§ Public Overrides Function Withdraw(ByVal amount As Decimal) A

s Decimal
§ m_checks += 1
§ Return MyBase.Withdraw(amount + 0.25D)
§ End Function
§
§ // Visual C#
§ private int m_checks = 0;
§ public override decimal Withdraw(decimal amount) {
§ m_checks++;
§ return (base.Withdraw(amount + 0.25M));

}

Define the inherited abstract members
1. Add this code to define the PrintStatement method:

2. ‘ Visual Basic
3. Public Overrides Function PrintStatement() As String
4. Dim statement As String = String.Format("{1}{0}" & _
5. "Opening balance: $0.00{0}Deposits: {2:C}{0}" & _
6. "Withdrawals: {3:C}{0}Checks written: {4}{0}" & _
7. "Checking charges: {5:C}{0}Ending balance: {6:C}{0}", _
8. New Object() { ControlChars.CrLf, Me.ID, _
9. Me.TotalDeposits, Me.TotalWithdrawals -

 (m_checks * 0.25D), _
10. Me.m_checks, Me.m_checks * 0.25D, Me.Balance})
11.
12. Return statement
13. End Function
14.
15. // Visual C#
16. public override string PrintStatement() {
17. string statement = String.Format(
18. "{0}\nOpening balance: $0.00\nDeposits: {1:C}\n" +
19. "Withdrawals: {2:C}\nChecks written: {3}\n" +
20. "Checking charges: {4:C}\nEnding balance: {5:C}\n",
21. new object[] { this.ID, this.TotalDeposits,
22. this.TotalWithdrawals - (m_checks * 0.25M),
23. this.m_checks, this.m_checks * 0.25D, this.Balance});
24.
25. return statement;

}

The withdrawals from the checking account are lumped with the check
amounts, so the service charges are deducted from the withdrawals and
reported separately.

26. Add this code to define the ID property:

27. ‘ Visual Basic

28. Public Overrides ReadOnly Property ID() As String

29. Get

30. Return m_owner & "-C"

31. End Get

32. End Property

33.

34. // Visual C#

35. public override string ID {

36. get { return m_owner + "-C"; }

}
The base and derived classes are complete. The public interface of the
classes hasn’t changed, except for the addition of the PrintStatement method.
You can therefore use the same form you used to test the classes in Chapter
5.

Testing the Classes
Even though you changed the implementation of the BankAccount classes, you can still
use the same user interface from Chapter 5.

Create the user interface
1. In the Solution Explorer, right-click Form1 and click Delete on the

shortcut menu. Click OK to confirm the deletion of Form1.
2. On the Project menu, click Add Existing Item.
3. In the Add Existing Item dialog box, navigate to the form you created

for the project TheBank in Chapter 5 and click Open. A copy of the
form is added to the ABetterBank project folder.

4. If you’re using C#, you want to rename the namespace in which the
form is contained. Right -click the form in the Solution Explorer, and
click View Code on the shortcut menu. Modify the namespace
declaration near the top of the fi le this way:

namespace ABetterBank
5. Open the form in the form designer by double-clicking Form1.vb or

Form1.cs in the Solution Explorer.
6. Drag a Button onto Form1. Set its Name property to printStatement

and its Text property to Print. Here’s the complete user interface:

Add the code for the Print button
1. In the designer, double-click the Print button to create the Click event

method and edit it in the code editor.
2. Add this code to print the statement for the selected account:

3. ‘ Visual Basic

4. Private Sub printStatement_Click(ByVal sender As System.Objec
t, _

5. ByVal e As System.EventArgs) Handles printStatement.Click

6. Dim selectedAccount As BankAccount

7. Dim item As Object = Me.account.SelectedItem

8. selectedAccount = CType(item, BankAccount)

9. MessageBox.Show(selectedAccount.PrintStatement())

10. End Sub

11.

12. // Visual C#

13. private void printStatement_Click(object sender, System.EventAr
gs e) {

14. BankAccount selectedAccount;

15. object item = account.SelectedItem;

16. selectedAccount = (BankAccount)item;

17. MessageBox.Show(selectedAccount.PrintStatement());

}
18. Press F5 to run the application. Here are some of the results:

A Typed Collection Class
In Chapter 4, “Working with Methods,” you created a Deck class to organize a group of
Card instances. In the Deck class, you used the ArrayList class to hold the references to
the Card instances. The ArrayList class is extremely flexible because you can add any
type of object to it. The disadvantage of using the ArrayList class is that should you
accidentally add an object that isn’t of the Card class, you might encounter an error when
you retrieved the object from the ArrayList class and tried to use it as a Card instance. In
no less than three places, this code appears:

‘ Visual Basic

CType(m_cards(0), Card)

// Visual C#

(Card)m_cards[0]

A reasonable way to prevent errors in casting is to create a class that accepts only Card
instances and returns only Card instances.
A similar situation exists in Chapter 1, “Writing Your First Object-Oriented Program,” with
the Library class. In that case, you used the SortedList class. When you use the
SortedList class, the compiler allows any call to the Add method as long as there are two
arguments. For example, the following code is syntactically correct but would be
complete nonsense in our Library application:

‘ Visual Basic

Dim m_shelf As New SortedList()

‘ Complete nonsense!

m_shelf.Add(14, New System.Windows.Forms.Button())

// Visual C#

SortedList m_shelf = new SortedList();

// Complete nonsense!

m_shelf.Add(14, new System.Windows.Forms.Button());

‘ Visual Basic

theBook = CType(m_shelf(title), Book)

// Visual C#

theBook = (Book)m_shelf[title];

The .NET Framework provides abstract collection classes that you can use as base
classes for typed collection classes. A typed collection class allows only one type of
object to be added and removed. This means that you can find errors at compile time
rather than at run time.

Redesigning the Library Class
The documentation for the System.Collections.DictionaryBase class reads, “Provides the
abstract (MustInherit in Visual Basic) base class for a strongly typed collection of
associated keys and values.” Here’s the UML class diagram for the public interface of
DictionaryBase, with members from the System.Object class removed:

What’s noticeably absent from the public interface are any methods that add or return
items from the collection. The class contains a protected instance member, Dictionary,
that will contain the Book instances we want to add to the collection.

Here’s the code from the original Library class:

‘ Visual Basic

Imports System.Collections

Public Class Library

 Private m_shelf As New SortedList()

 Public Sub CheckIn(ByVal newBook As Book)

 m_shelf.Add(newBook.Title, newBook)

 End Sub

 Public Function CheckOut(ByVal title As String) As Book

 Dim theBook As Book

 theBook = CType(m_shelf(title), Book)

 m_shelf.Remove(title)

 Return theBook

 End Function

End Class

// Visual C#

using System.Collections;

public class Library {

 private SortedList m_shelf = new SortedList();

 public Library() {

 }

 public void CheckIn(Book newBook) {

 m_shelf.Add(newBook.Title, newBook);

 }

 public Book CheckOut(string title) {

 Book theBook;

 theBook = (Book)m_shelf[title];

 m_shelf.Remove(title);

 return theBook;

 }

}
The calls to be replaced are shown in boldface type. Using a typed default property or
indexer would eliminate the cast that’s needed in the original code. Of course, the cast
will be forced down into the typed collection that you create, but then you have to write
the cast only once. The Remove and Add methods will be improved because they’ll
accept only a string as the key and a Book instance as the object. The design of the new
BookCollection class is shown in the following UML class diagram. The C# indexer is
shown as an Item property.

Creating the Class
To create the typed collection class, BookCollection, you’ll create a class that inherits
from the abstract DictionaryBase class. To make the class functional, you’ll add the Add
and Remove methods, and define an Item property or indexer.

Create the project
§ Create a new project, and name it ABetterLibrary.

Re-create the Book class
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. Name the file Book.vb or Book.cs, depending on the language you’re

using.
3. Add this code to the Book class for a simplified Book class:

4. ‘ Visual Basic

5. Public Class Book

6. Private m_text As String

7. Private m_title As String

8.

9. Public ReadOnly Property Title() As String

10. Get

11. Return m_title

12. End Get

13. End Property

14.

15. Public ReadOnly Property Text() As String

16. Get

17. Return m_text

18. End Get

19. End Property

20.

21. Public Sub New(ByVal title As String, ByVal text As String)

22. m_title = title

23. m_text = text

24. End Sub

25. End Class

26.

27. // Visual C#

28. public class Book {

29. private string m_text;

30. private string m_title;

31.

32. public string Title {

33. get {

34. return m_title;

35. }

36. }

37.

38. public string Text {

39. get {

40. return m_text;

41. }

42. }

43.

44. public Book(string title, string text) {

45. m_title = title;

46. m_text = text;

47. }

}

Create the BookCollection class
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. Name the file BookCollection.vb or BookCollection.cs, depending on

the language you’re using.

Add the Add method
1. Modify the class declaration to indicate the base class. Note that there

are no items in the Task List because DictionaryBase has no abstract
members.
2. ‘ Visual Basic
3. Public Class BookCollection
4. Inherits System.Collections.DictionaryBase
5. End Class
6.
7. // Visual C#
8. public class BookCollection : System.Collections.DictionaryBase {
9. }

10. Add this code for the Add method:

11. ‘ Visual Basic

12. Public Sub Add(aBook as Book)

13. Me.Dictionary.Add(aBook.Title, aBook)

14. End Sub

15.

16. // Visual C#

17. public void Add(Book book) {

18. this.Dictionary.Add(book.Title, book);

}

Now no one will be able to add anything other than an instance of Book to the
collection class. Also, the book is always filed under its title.

Add the Remove method
§ Add this code for the Remove method:
§ ‘ Visual Basic
§ Public Sub Remove(title As String)
§ Me.Dictionary.Remove(title)
§ End Sub

§
§ // Visual C#
§ public void Remove(string title) {
§ this.Dictionary.Remove(title);

}

Add the Item property or indexer
§ Add this code for the default Item property or indexer:
§ ‘ Visual Basic
§ Default Public ReadOnly Property Item (title As String) As Book
§ Get
§ If Me.Dictionary.Contains(title) Then
§ Return CType(Me.Dictionary(title), Book)
§ Else
§ Return Nothing
§ End If
§ End Get
§ End Property
§
§ // Visual C#
§ public Book this[string title] {
§ get {
§ if (this.Dictionary.Contains(title)) {
§ return (Book)(this.Dictionary[title]);
§ }
§ else {
§ return null;
§ }
§ }

}

Re-create the Library class
1. On the Project menu, click Add Class. The Add New Item dialog box

appears.
2. Name the file Library.vb or Library.cs, depending on the language

you’re using.
3. Add this code to use your BookCollection class rather than the

SortedList class. The modified lines are shown in boldface type.

4. ‘ Visual Basic

5. Public Class Library
6. Private m_shelf As New BookCollection()
7.
8. Public Sub CheckIn(ByVal newBook As Book)
9. m_shelf.Add(newBook)
10. End Sub
11.
12. Public Function CheckOut(ByVal title As String) As Book
13. Dim theBook As Book = m_shelf(title)
14. m_shelf.Remove(title)
15. Return theBook
16. End Function
17. End Class
18.
19. // Visual C#
20. public class Library {
21. private BookCollection m_shelf = new BookCollection();
22.
23. public Library() {
24. }

25.
26. public void CheckIn(Book newBook) {
27. m_shelf.Add(newBook);
28. }
29.
30. public Book CheckOut(string title) {
31. Book theBook = m_shelf[title];
32. m_shelf.Remove(title);
33. return theBook;
34. }
35. }

Testing the Class
1. Add this code to the Library class to test the classes you have created:

2. ‘ Visual Basic
3. Public Shared Sub Main()
4. Dim aLibrary As New Library()
5. aLibrary.CheckIn(New Book("First Book", _
6. "Here is the text of the first book."))
7. aLibrary.CheckIn(New Book("Second Book", _
8. "Here is the text of the second book."))
9. Dim firstBook As Book = aLibrary.CheckOut("First Book")
10. Console.WriteLine("The text of ‘{0}’ is ‘{1}’.", _
11. firstBook.Title, firstBook.Text)
12. aLibrary.CheckIn(firstBook)
13. End Sub
14.
15. // Visual C#
16. public static void Main() {
17. Library aLibrary = new Library();
18. aLibrary.CheckIn(new Book("First Book",
19. "Here is the text of the first book."));
20. aLibrary.CheckIn(new Book("Second Book",
21. "Here is the text of the second book."));
22. Book firstBook = aLibrary.CheckOut("First Book");
23. Console.WriteLine("The text of ‘{0}’ is ‘{1}’.",
24. firstBook.Title, firstBook.Text);
25. aLibrary.CheckIn(firstBook);

}
26. In the Solution Explorer, right-click the project name, and click

Properties on the shortcut menu. The project’s Property Pages dialog
box appears.

27. In the tree on the left, expand the Common Properties folder and click
General.

28. In the Startup Object list, click ABetterLibrary .Library. Click OK.
29. Press F5 to run the application. Here are the results:

Variations on Inheritance

There are two other variations on inheritance that deserve mention. Sealing classes
allows you to prevent inheritance. You can also prevent base members from behaving
polymorphically.

Sealing classes Sometimes you might not want developers to use a class as a base
class. You can prevent inheritance by using the NotInheritable or sealed keyword, as
you see here:

‘ Visual Basic

NotInheritable Class NotABaseClass

End Class

// Visual C#

sealed class NotABaseClass {

}

The following code produces an error at compile time:

‘ Visual Basic

Class CantCreateThisClass

 Inherits NotABaseClass

End Class

// Visual C#

class CantCreateThisClass : NotABaseClass {

}

Hiding base class members In this chapter and Chapter 5, you used the override
keyword (Overrides or override) for members in the derived class that were marked as
virtual (MustInherit or virtual) in the base class. Following this practice caused the
derived member to be called even if the call was made through a base reference.
Visual Basic and C# also provide keywords, Shadows and new, to indicate that even
though a method in the derived class has the same name as a virtual method in the
base class, the derived class method isn’t meant to be the override of the base class’s
virtual method. The effect is that a base reference calls the base method and a derived
reference calls the derived method. In the case of Visual Basic, the Shadows keyword
is applied to all methods of the same name in the base class. In C#, the new keyword
applies only to members with the same signature (name plus parameters). Here’s an
example:

‘ Visual Basic

Class BaseClass

 Public Sub BaseMethod()

 Console.WriteLine("BaseMethod in base class.")

 End Sub

End Class

Class DerivedClass

 Inherits BaseClass

 Public Shadows Sub BaseMethod()

 Console.WriteLine("BaseMethod in derived class.")

 End Sub

 Public Shared Sub Main()

 Dim derived As New DerivedClass()

 derived.BaseMethod()

 Dim baseclass As BaseClass = derived

 baseclass.BaseMethod()

 End Sub

End Class

// Visual C#

public class BaseClass {

 public void BaseMethod() {

 Console.WriteLine("BaseMethod in base class.");

 }

}

public class DerivedClass : BaseClass {

 new public void BaseMethod() {

 Console.WriteLine("BaseMethod in derived class.");

 }

 public static void Main() {

 DerivedClass derived = new DerivedClass();

 derived.BaseMethod();

 BaseClass baseclass = derived;

 baseclass.BaseMethod();

 }

}

The output from Main is

BaseMethod in derived class.

BaseMethod in base class.

Use Shadows and new with caution. Developers expect derived classes to act in
predictable ways, which generally means that they expect derived classes to act
polymorphically.

Quick Reference

To Do this

Create an abstract class In Visual Basic,
add the MustInherit
keyword to the
class
declaration:
Public
MustInherit
Class
BankAccount

 In Visual C#, add
the abstract
keyword to the
class declaration:
public
abstract class
BankAccount

Create an abstract
method or property

In Visual Basic,
add the
MustOverride
keyword to the
declaration:
Public
MustOverride
Function
PrintStatement
() As String

 In Visual C#, add
the abstract

To Do this

keyword to the
declaration:
public
abstract
string
PrintStatement
();

Derive from an abstract
class
Implement an abstract
member

Declare the
abstract class as a
base class and
implement all the
abstract class
members.

 Declare the
member with the
override keyword
and implement the
member:‘ Visual
BasicPublic
Overrides
Function
PrintStatement
() As
StringEnd
Function

 // Visual C#
public
override
string
PrintStatement
() {
}

Prevent a class from
becoming a base class

Declare the class
with the
NotInheritable or
sealed keyword:
‘ Visual Basic
NotInheritable
Class
NotABaseClass
End Class

 // Visual C#
sealed class
NotABaseClass
{
}

Declare a member in the
derived class that doesn’t
behave polymorphically

Declare the
member with the
Shadows or new
keyword:
‘ Visual Basic
Public Shadows
Sub
BaseMethod()
End Sub

 // Visual C#

To Do this

new public
void
BaseMethod() {
}

Chapter 7: Responding to Changes with
Events and Exceptions

Overview
ESTIMATED
TIME

3 hr.

In this chapter, you’ll learn how to

§ Add a custom control to the Toolbox.
§ Declare an event for your control class.
§ Respond to events from your class using event handlers.
§ Create a delegate.
§ Add and remove event handlers.
§ Derive an EventArgs class.
§ Derive a custom exception class from the ApplicationException class.
§ Throw your custom exception.

The Microsoft Windows user interface is event driven. The control flow of the program is
primarily based on events of the Windows Form control. In this chapter, you’ll create a
control that appears in the Toolbox. You can drag this control onto a form just as you
would any of the built-in Windows controls. The control will have events that you can
choose to respond to or ignore in your code. You’ll use exceptions to indicate that
something has gone wrong during execution. Exceptions can’t be ignored. Using
exception handling, your code can try to repair the problem or it can exit the program.

Fire on the Tracks! An Event-Driven Application

Your task in this chapter is to create a quick diversion for a young relative:

A train runs along a track across the screen. At regular intervals but random locations,
the track catches fire. The old fire goes out when the new fire appears so that there’s
always one fire on the track at any point in time. You can adjust the speed of the train
using a slider control. The object of the game is to get the train to the end of the track
without running into a fire.

A cursory textual analysis of the problem leads to the following class design. In this case,
the screen object is represented by the Windows Form class, which contains a track,
train, and fire objects. The train moves along the track at a speed set by a slider control,
and the fire appears at different points on the track at a set frequency.

The classes are shown in the following UML diagram, which introduces a new UML
element, the solid diamond. The solid diamond indicates a relationship called
“composition” in object-oriented terminology. Composition is a relationship where some
objects are “parts of” another object. It carries the sense that the one object can’t exist
without the others. All the objects are created and destroyed as a unit.

This analysis captures only what’s static in the problem, such as the location of the train
on the track at a point in time or the distance the train has traveled. It doesn’t describe
how or when the train moves or when the fire will appear and where. It doesn’t describe
how the form knows that the train should move or the fire should appear. For that
information, you need events, signals from one object to another that something has
happened. Here are the events that you need:
§ A CaughtOnFire event for the Track class. This event, generated by the track,

will be received by the form so that the code in the form can move the fire
on the track. The Frequency property will be moved to the Track class to
indicate how often the track should raise a CaughtOnFire event.

§ A DistanceChanged event for the Train class. This event will be generated
periodically to let the form know where the train is on the track. The location
of the train depends on the speed of the train and how long it has been
running.

Using the CaughtOnFire and DistanceChanged events, the form code can coordinate the
behavior of the track, the train, and the fire. In UML, events are modeled as signals,
which are similar to classes. In the illustration below, a dashed arrow labeled <<send>>
indicates that a particular class, Track, generates a particular event, CaughtOnFire. The
event can carry information in parameters. In this case, the CaughtOnFire event carries
information about the location of the fire. The UML also provides a syntax for indicating
which classes receive the events. The Form class receives both the CaughtOnFire and
DistanceChanged events.

Your last design decision is how to implement the user interface, given the object model.
You know that you want a track, a train, and a fire to appear as visual elements on the
form. The properties of these visual elements are closely tied to the classes. In fact, you
can implement the classes as derived classes of the generic Windows control, the
UserControl class, which means that the visual display and behavior of an object are all
contained in one class. Additionally, the control can be added to the Toolbox, and then
dragged onto the form in the form designer. Here’s the complete design:

Implementing the Track Class

The first class you’ll implement is the Track class. This class derives from the
UserControl class, and you draw the track yourself, both the rails and the ties. After you
implement the Track class, you can implement the Train class that runs on it.

Create the class
1. Create a new Windows Application project and name it TrainGame.
2. On the Project menu, click Add User Control. The Add New Item

dialog box appears.
3. Name the file Track.vb or Track.cs, depending on the language you’re

using.
Your new user control is empty. You’ll define the shape and color of your
control by overriding the OnPaint method.

Add the properties
1. Right -click the new control and click View Code on the shortcut menu.
2. Add the following code to the Track class for the FireFrequency

property. This property determines how often, in seconds, the location
of the fire changes.

3. ‘ Visual Basic

4. Private m_fireFrequency As Integer = 1

5. Public Property FireFrequency() As Integer

6. Get

7. Return m_fireFrequency

8. End Get

9. Set(ByVal Value As Integer)

10. If Value >= 1 Then

11. m_fireFrequency = Value

12. End If

13. End Set

14. End Property

15.

16. // Visual C#

17. private int m_fireFrequency = 1;

18. public int FireFrequency {

19. get { return m_fireFrequency; }

20. set {

21. if (value >= 1) {

22. m_fireFrequency = value;

23. }

24. }

}
25. You don’t need to add any code for the Length property of the track.

Because the Track class inherits from the UserControl class, it already
has a Size property, with Height and Width. You’ll see more about how
this works out in the section about painting the Track control.

Draw the track

The train travels along the track, as you see in the illustration that follows. Your code
needs to draw the rails and railroad ties. You might want to shorten or extend the track,
so the code should be able to draw tracks of different lengths. You could also
accommodate different heights of the track, but the code you write draws a track with a
fixed height. Drawing the track is a two-step process:

§ Draw the outline of the track using the GraphicsPath class.
§ Fill in the outline using the Graphics class.

You draw the outline of the track as a series of pieces of track. You create the outline
as two horizontal bars and one vertical bar. When you fit the pieces end-to-end and fill
them in, you have the track:

1. Add constants to the Track class to control the size of the track and

the spacing of the bars. The preceding diagram shows the relevant
measurements in pixels.
2. ‘ Visual Basic
3. Private Const TrackHeight As Integer = 15 ‘ Must be divisible

 by 5

4. Private Const BarWidth As Integer = TrackHeight \ 5 ‘Equal to rai
l width

5. Private Const BarSpacing As Integer = BarWidth * 2
6.
7. // Visual C#
8. private const int TrackHeight = 15; // Must be divisible by 5
9. private const int BarWidth = TrackHeight / 5; // Equal to rail width

private const int BarSpacing = BarWidth * 2;
This code introduces the Const and const keywords. The constant modifier
indicates that the value of the variable can’t be modified. Constant values can
be of any type, but the compiler must be able to evaluate the expression to
the right of the equal sign. Because the compiler doesn’t allocate memory for
class instances, the expression can’t contain a New or new statement. The
result is that constant reference values will be Nothing or null, or a string.
You use the constant field in this case so that you can change the size and
proportions of your track by changing these values. All the drawing
commands will use these fields, instead of integer literals, such as “15”. Using
the constant modifier will let the compiler help you by preventing you from
accidently changing these values in your code.

10. On the View menu, click Designer to view the control in the form
designer. Double-click the control to create the Load event method in
the code editor. Add this code to fix the Height property of the Track
control to 15 pixels.

11. ‘ Visual Basic

12. Me.Height = 15

13.

14. // Visual C#

this.Height = 15;
15. Override the OnSizeChanged method to set the Height property of the

Track control to 15 pixels and to constrain the width of the control to a
multiple of the value assigned to BarSpacing. The height of the control
corresponds to the width of the track and the width corresponds to the
length of the track. You can type in the code that follows or use the
shortcuts provided by Visual Studio. In Visual Basic, click Overrides for
the Track class in the Class Name list and OnSizeChanged in the
Method Name list. In Visual C#, use the Class View to browse to the
Control base class, right-click OnSizeChanged, point to Add, and then
click Override. The inheritance tree for the Track class is an amazing
eight levels deep. To find the OnSizeChanged method, keep opening
the Bases and Interfaces nodes until you reach the Control base class.
There you will find the OnSizeChanged method. The code added to
this method, which depends on integer division, is shown here:

16. ‘ Visual Basic

17. Protected Overrides Sub OnSizeChanged(ByVal e As System.Ev
entArgs)

18. Me.Height = TrackHeight

19. ‘ Width must be divisible by BarSpacing

20. Dim nBars As Integer = Me.Width \ BarSpacing

21. Me.Width = nBars * BarSpacing

22. End Sub

23.

24. // Visual C#

25. protected override void OnSizeChanged(System.EventArgs e) {

26. this.Height = TrackHeight;

27. // width must be divisible by BarSpacing

28. int nBars = this.Width / BarSpacing;

29. this.Width = nBars * BarSpacing;

}
30. Override the OnPaint method. The code in the OnPaint event method

is called each time the control is called to paint itself. Add the following
code to the OnPaint method to draw the track outline and then fill it in
with the color brown.

31. ‘ Visual Basic

32. Protected Overrides Sub OnPaint(ByVal e As _

33. System.Windows.Forms.PaintEventArgs)

34. MyBase.OnPaint(e)

35. Dim gp As New System.Drawing.Drawing2D.GraphicsPath()

36. gp.FillMode = Drawing.Drawing2D.FillMode.Winding

37. Dim height As Integer = TrackHeight \ 5

38. Dim nBars As Integer = Me.Width \ BarSpacing

39. Dim bar As Integer

40. For bar = 0 To nBars - 1

41. gp.AddRectangle(New System.Drawing.Rectangle(_

42. bar * BarSpacing, height, BarSpacing, height))

43. gp.AddRectangle(New System.Drawing.Rectangle(_

44. bar * BarSpacing, height * 3, BarSpacing, height))

45. gp.AddRectangle(New System.Drawing.Rectangle(_

46. bar * BarSpacing, 0, BarWidth, TrackHeight))

47. Next

48. e.Graphics.FillPath(System.Drawing.Brushes.SaddleBrown, gp
)

49. End Sub

50.

51. // Visual C#

52. protected override void OnPaint(System.Windows.Forms.PaintEv
entArgs e) {

53. base.OnPaint(e);

54. System.Drawing.Drawing2D.GraphicsPath gp =

55. new System.Drawing.Drawing2D.GraphicsPath();

56. gp.FillMode = System.Drawing.Drawing2D.FillMode.Winding;

57. int height = TrackHeight / 5;

58. int nBars = this.Width / BarSpacing;

59. for (int bar = 0; bar < nBars; bar++) {

60. gp.AddRectangle(new System.Drawing.Rectangle(bar * Bar
Spacing,

61. height, BarSpacing, height));

62. gp.AddRectangle(new System.Drawing.Rectangle(bar * Bar
Spacing,

63. height * 3, BarSpacing, height));

64. gp.AddRectangle(new System.Drawing.Rectangle(bar * Bar
Spacing,

65. 0, BarWidth, TrackHeight));

66. }

67. e.Graphics.FillPath(System.Drawing.Brushes.SaddleBrown,gp)
;

}

Test the OnPaint method
1. Press Ctrl+Shift+B to build the project.
2. Open Form1 in the form designer.
3. Drag a Track control from the Windows Forms area of the Toolbox

onto Form1. Resize the Track control. You can make it longer, but you
can’t change the track height.

Debugging the OnPaint Method

If the track doesn’t draw itself as you expect, here are some hints for debugging.

§ Instead of e.Graphics.FillPath, use e.Graphics.DrawPath. This draws

only the outline of the shapes.
§ Experiment with the GraphicsPath.FillMode property. This property

controls how overlapping shapes are drawn.
§ Enlarge the control to make sure you aren’t drawing beyond the edge of

the control. Remember, the GraphicsPath origin is relative to the control,
not the form. Drawing a shape at location (0,0) places the shape at the
upper left corner of the control.

§ First write the code with hard-coded values, such as 12, and then replace
them with calculated values, such as 2 * BarSpacing.

Now you’re ready to add the CaughtOnFire event.

Creating the CaughtOnFire Event

To raise an event in Visual Basic or Visual C#, you must the declare the event as a field
of the class. The declaration contains the name and signature (the parameters and their
types) of the event. In .NET, event signatures follow these conventions:

§ The first parameter is of type System.Object and is the object that raised
the event.

§ The second parameter is an instance of a class that derives from the
EventArgs class. This class carries information about the event that
might be useful to the client code. Even though the first parameter is the
object that raised the event, the client code might be dependent on
information in the EventArgs class. So this extra information carried by
the second parameter should be carefully thought out.

§ The name of the parameter that derives from the EventArgs class ends
in EventArgs.

Create the CaughtOnFireEventArgs class

This class contains information about the location of the fire on the track.

1. Add the CaughtOnFireEventArgs class declaration at the end of the
Track class definition. In Visual C#, this would be after the closing
brace of the Track class, but before the closing brace of the
namespace. This class is derived from System.EventArgs.

2. ‘ Visual Basic
3. Public Class CaughtOnFireEventArgs
4. Inherits System.EventArgs
5. End Class
6.
7. // Visual C#
8. public class CaughtOnFireEventArgs : System.EventArgs {

}
9. Add a Location property that indicates how far along the track, in

pixels, the new fire is located.

10. ‘ Visual Basic

11. Private m_location As Integer = 0

12. Public ReadOnly Property Location() As Integer

13. Get

14. Return m_location

15. End Get

16. End Property

17.

18. // Visual C#

19. private int m_location = 0;

20. public int Location {

21. get {

22. return m_location;

23. }

}
24. Add the constructor. Because the CaughtOnFireEventArgs class is

instantiated only when a fire exists, the constructor requires the
location parameter.

25. ‘ Visual Basic

26. Public Sub New(ByVal location As Integer)

27. m_location = location

28. End Sub

29.

30. // Visual C#

31. public CaughtOnFireEventArgs(int location) {

32. m_location = location;

33. }

Declare the event
1. In Visual Basic, you simply need to declare the event and its

parameters. Add this code to the Track class:
2. ‘ Visual Basic
3. Public Event CaughtOnFire(ByVal sender As Object, _

 ByVal e As CaughtOnFireEventArgs)
The event handler, the method that the client code calls when the event is
raised, must have the same signature.

4. In Visual C#, you need to take these two steps to declare an event:
§ Declare a delegate. A delegate declares and gives a

name to a method signature. By convention, the name
of the delegate ends in EventHandler.

§ Declare an event whose type is that of the delegate
declared in the preceding step.

Add this code to the Track class:

// Visual C#

public delegate void CaughtOnFireEventHandler(object sender,

 CaughtOnFireEventArgs e);

public event CaughtOnFireEventHandler CaughtOnFire;
5. To make the CaughtOnFire event the default event for the class, add

the DefaultEvent attribute code shown in boldface to the Track class.

‘ Visual Basic

<System.ComponentModel.DefaultEvent("CaughtOnFire")> Public Class Track

 Inherits System.Windows.Forms.UserControl

 :

End Class

// Visual C#

[System.ComponentModel.DefaultEvent("CaughtOnFire")]

public class Track : System.Windows.Forms.UserControl {

 :

}
§ When you double-click the Track control on the form after you have

added this attribute, the CaughtOnFire event method is created in the
code editor.

Attributes

Attributes allow you to add information to the elements of your code, and you can use
them to affect how the code executes at run time and design time. The attribute
information is stored in the compiled assembly as part of the metadata. The metadata
isn’t the code itself, but information about the code. This metadata can be queried at
run time or design time in a process called reflection. In this case, the Visual Studio
development environment uses the DefaultEvent attribute to determine which event
handler to add to the code when you double-click the Track control in the form
designer.

Your Track control now has a CaughtOnFire event. You’ll be able to respond to this
event in the form, but first your class has to raise the event in the right circumstances.

Raise the event

The only property you have defined in the Track class is the FireFrequency property.
This property indicates how often, in seconds, the track should catch on fire. Each time a
fire starts, the CaughtOnFire event should be raised. You’ll use a Timer control to signal
the Track class that it needs to start a fire.

1. In the Solution Explorer, double-click the Track file to open the control
in the form designer.

2. In the Windows Forms area of the Toolbox, double-click the Timer
control. The IDE adds a Timer control to the component tray at the
bottom of the form designer window and won’t be visible at run time.

3. Set the Enabled property of the Timer to True.
4. Add code shown in boldface to the Set method of the Track’s

FireFrequency property to set the timer interval. The FireFrequency
property indicates how often, in seconds, the Track code should start a
fire. The timer interval is expressed in milliseconds. If you want a fire
to appear every three seconds, you would set the FireFrequency
property to 3, and this code would set the interval of the timer to 3000
milliseconds.

5. ‘ Visual Basic

6. Private m_fireFrequency As Integer = 1

7. Public Property FireFrequency() As Integer

8. Get

9. Return m_fireFrequency

10. End Get

11. Set(ByVal Value As Integer)

12. If Value > 1 Then

13. m_fireFrequency = Value
14. Timer1.Interval = m_fireFrequency * 1000 ‘ New code
15. End If
16. End Set
17. End Property
18.
19. // Visual C#
20. public int FireFrequency {
21. get { return m_fireFrequency; }
22. set {
23. if (value >= 1) {
24. m_fireFrequency = value;
25. timer1.Interval = m_fireFrequency * 1000; // New code
26. }
27. }

}
28. View the Track control in the form designer, and double-click the Timer

control to create the Tick event method in the Track class.
29. Add code to select a random location on the track and raise the

CaughtOnFire event.

30. ‘ Visual Basic

31. Private Sub Timer1_Tick(ByVal sender As Object, _

32. ByVal e As System.EventArgs) Handles Timer1.Tick

33. Dim randomNumber As New System.Random()

34. RaiseEvent CaughtOnFire(Me, _

35. New CaughtOnFireEventArgs(randomNumber.Next(0, Me.W
idth)))

36. End Sub

37.

38. // Visual C#

39. private void timer1_Tick(object sender, System.EventArgs e) {

40. if (CaughtOnFire != null) {

41. System.Random randomNumber = new System.Random();

42. CaughtOnFire(this, new CaughtOnFireEventArgs(

43. randomNumber.Next(0,this.Width)));

44. }

}
Visual Basic provides a keyword, RaiseEvent, to raise the event. To raise the
event, you must supply the sender parameter, in this case Me, and an
instance of CaughtOnFireEventArgs. The client code (the code that contains
an instance of the Track class), must then create an event handler to respond
to the event, just as the Track class has a method to respond to the Tick
event of the Timer.
C# uses a different model for raising events. The public delegate
CaughtOnFire represents a list of methods that should be called when the
event is raised. When the CaughtOnFire method is called, each method
added to the delegate is called. How this works will become more clear when
you see the code that responds to the event in the form.
The call, randomNumber.Next, returns a random number between 0 and the
width of the control, thus guaranteeing that the fire is actually on the track.

45. Press Ctrl+Shift+B to compile your project.

Put the fire on the track

The project design includes a class for the fire. On close inspection, you see that the Fire
class adds nothing to the basic user control class, which has a location. A PictureBox
control would be sufficient for displaying the fire on the track.

1. In the Solution Explorer, double-click Form1 to open it in the form
designer.

2. From the Windows Forms area in the Toolbox, drag a PictureBox
control onto the form.

3. Set the Name property of the PictureBox control to fire, and the
SizeMode property to AutoSize.

4. Click the ellipsis (…) next to the Image property to select an image for
the fire. You can use Fire.ico in the \Chapter07 folder on the
companion CD.

5. Position the PictureBox control so that it’s sitting on the track. Your
form looks like this:

32. Select the Track control and set the FireFrequency property to 3.
33. Double-click the Track control to create the CaughtOnFire event

method in the code editor.
34. Add code to move the fire to the location specified by the

CaughtOnFireEventArgs parameter.

35. ‘ Visual Basic

36. Private Sub Track1_CaughtOnFire(ByVal sender As System.Obje
ct, ByVal e _

37. As TrainGame.CaughtOnFireEventArgs) Handles Track1.Caught
OnFire

38. fire.Location = New System.Drawing.Point(Track1.Left + e.Loc
ation, _

39. Track1.Top - fire.Height)

40. End Sub

41.

42. // Visual C#

43. private void track1_CaughtOnFire(object sender,

44. TrainGame.CaughtOnFireEventArgs e) {

45. fire.Location = new System.Drawing.Point(track1.Left

46. + e.Location, track1.Top - fire.Height);

}
47. Press F5 to run the application, and watch the fire jump along the

track. You can set the FireFrequency property in the Properties
window for the Track control to have fires appear less often.

You now have a working track and fire. All you need to add is a train. The
next section doesn’t use any new syntax but does demonstrate coordinating
events from two objects: the train and the track.

Implementing the Train Class

Like the Track class, the Train class inherits from the UserControl class. The Train class
takes advantage of the Image property to display a train image. An event,
DistanceChanged, is triggered when the distance changes. You update the distance
periodically by using a Timer control.

Create the class
1. On the Project menu, click Add User Control. The Add New Item

dialog box appears.
2. Name the file Train.vb or Train.cs, depending on the language you’re

using.

Add the properties
1. In the Solution Explorer, right-click Train and click View Code on the

shortcut menu.
2. Add the following code for the Speed property. The speed is in pixels

per second.

3. ‘ Visual Basic

4. Private m_speed As Integer = 0

5. Public Property Speed() As Integer

6. Get

7. Return m_speed

8. End Get

9. Set(ByVal Value As Integer)

10. If Value >= 0 Then

11. m_speed = Value

12. End If

13. End Set

14. End Property

15.

16. ‘ Visual C#

17. private int m_speed = 0;

18. public int Speed {

19. get {

20. return m_speed;

21. }

22. set {

23. if (value >= 0) {

24. m_speed = value;

25. }

26. }

}
27. Add the following code for the Distance property. Distance is in pixels

traveled. Because the distance is determined by the speed and time
traveled, this property is read-only. Recall that the Timer.Tick event
handler calculates the value for the m_distance field.

28. ‘ Visual Basic

29. Private m_distance As Integer = 0

30. Public ReadOnly Property Distance() As Integer

31. Get

32. Return m_distance

33. End Get

34. End Property

35.

36. // Visual C#

37. private int m_distance = 0;

38. public int Distance {

39. get {

40. return m_distance;

41. }

}

Add the methods
No methods are specified in the design, but it would be convenient to move the train
back to the start location at the end of a game so that you can play multiple games. Add
the following code to define a ReStart method to move the train back to the start of the
track:

‘ Visual Basic

Public Sub ReStart()

 m_distance = 0

End Sub

// Visual C#

public void ReStart() {

 m_distance = 0;

}

Add the DistanceChanged event
The program calculates the distance traveled by the train each tenth of a second, by
using a Timer.Tick event.

1. In the Solution Explorer, right-click Train and click View Designer on
the shortcut menu.

2. In the Windows Forms area of the Toolbox, double-click the Timer
control to add a Timer control.

3. Set the Interval property of the Timer to 100, and the Enabled property
to True.

4. Double-click the timer to create the Tick event handler for the Train
class.

5. Add the following code to create the DistanceChangedEventArgs
class. The DistanceChangedEventArgs class contains a property for
the current location of the train. Add the code for this class after the
Train class code in the same source file. In Visual C#, this class
should be within the TrainGame namespace.

6. ‘ Visual Basic

7. Public Class DistanceChangedEventArgs

8. Inherits System.EventArgs

9.

10. Private m_distance As Integer

11. Public ReadOnly Property Distance() As Integer

12. Get

13. Return m_distance

14. End Get

15. End Property

16.

17. Public Sub New(ByVal distance As Integer)

18. m_distance = distance

19. End Sub

20. End Class

21.

22. // Visual C#

23. public class DistanceChangedEventArgs : System.EventArgs {

24. private int m_distance;

25. public int Distance {

26. get { return m_distance; }

27. }

28.

29. public DistanceChangedEventArgs(int distance) {

30. m_distance = distance;

31. }

}
32. Declare the event, and in C#, also declare the delegate. Add this code

to the Train class:

33. ‘ Visual Basic

34. Public Event DistanceChanged(ByVal sender As Object, _

35. ByVal e As DistanceChangedEventArgs)

36.

37. // Visual C#

38. public delegate void DistanceChangedEventHandler(object send
er,

39. DistanceChangedEventArgs e);

public event DistanceChangedEventHandler DistanceChanged;
40. Add code to the timer’s Tick event method to calculate the new

location, if it has changed, and raise an event for the client code. The
event is raised only if the location has changed, thus the test for
m_speed > 0. Remember that when you’re raising the event in C#, you
must first test that any methods are “listening.”

41. ‘ Visual Basic

42. Private Sub Timer1_Tick(ByVal sender As System.Object, _

43. ByVal e As System.EventArgs) Handles Timer1.Tick

44. If m_speed > 0 Then

45. m_distance += Convert.ToInt32(Convert.ToInt32(m_speed)
_

46. * (Convert.ToDouble(Timer1.Interval) / 1000F))

47. RaiseEvent DistanceChanged(Me, _

48. New DistanceChangedEventArgs(m_distance))

49. End If

50. End Sub

51.

52. // Visual C#

53. private void timer1_Tick(object sender, System.EventArgs e) {

54. if (m_speed > 0) {

55. m_distance += (int)((double)m_speed *

56. ((double)timer1.Interval / 1000F));

57. if (DistanceChanged != null) {

58. DistanceChanged(this,new DistanceChangedEventArgs(
m_distance));

59. }

60. }

}
61. Add this attribute code to make the DistanceChanged event the

default event for the class:

62. ‘ Visual Basic
63. <System.ComponentModel.DefaultEvent("DistanceChanged"

)> Public Class Train
64. Inherits System.Windows.Forms.UserControl
65. §
66. End Class
67.
68. // Visual C#
69. [System.ComponentModel.DefaultEvent("DistanceChanged")

]
70. public class Train : System.Windows.Forms.UserControl
71. {
72. :

}

The train class is complete. You can find the Train control in the Windows Forms tab of
the Toolbox.

§ Press Ctrl+Shift+B to build the project.

Implementing the User Interface

Your form already contains the track and the fire. You need just a few more controls and
a little code to complete the project.

Add the controls
1. View Form1 in the form designer, and from the Windows Forms area

of the Toolbox, drag a TrackBar control onto the form.
2. Set the following properties of the TrackBar control:

Property Value

Name throttle

Minimum 0

Maximum 50

Orientation Vertical

SmallChange 5

LargeChange 10

TickFrequency 10

51. Drag a Train control onto the form and place it on the track.
52. Click the ellipsis button (…) next to the BackgroundImage property

and select an image for the train. A train image is provided in the
\Chapter07 folder on the companion CD.

53. Modify the Size property of the control to fit the train image. For the
image on the companion CD, use 32, 32.

54. Drag a Button control onto the form. Set its Text property to New game
and its Name property to reset.

Program the events
1. Double-click the Train control to create the DistanceChanged event

handler for the form.
2. Add the following code to move the train down the track as the location

changes. If the train gets to the end of the track, stop it by setting the
speed to 0.

3. ‘ Visual Basic

4. Private Sub Train1_DistanceChanged(ByVal sender As System.
Object, ByVal _

5. e As TrainGame.DistanceChangedEventArgs) Handles Train1.Di
stanceChanged

6. Train1.Left = Track1.Left + e.Distance

7. If Train1.Right >= Track1.Right Then

8. Train1.Speed = 0

9. throttle.Value = 0

10. End If

11. End Sub

12.

13. // Visual C#

14. private void train1_DistanceChanged(object sender,

15. TrainGame.DistanceChangedEventArgs e) {

16. train1.Left = track1.Left + e.Distance;

17. if (train1.Right >= track1.Right) {

18.

19. train1.Speed = 0;

20.

21. throttle.Value = 0;

22. }

}
23. In Visual Basic, click Throttle in the Class Name list and the

ValueChanged event in the Method Name list. In Visual C#, view
Form1 in the form designer and select the TrackBar control. In the
Properties window, click the Events button, and double-click the
ValueChanged event.

24. Add the following code to change the speed of the train so that it
moves down the track:

25. ‘ Visual Basic

26. Private Sub throttle_ValueChanged(ByVal sender As Object, ByV
al e _

27. As System.EventArgs) Handles throttle.ValueChanged

28. If Train1.Right < Track1.Right Then

29. Train1.Speed = throttle.Value

30. Else

31. throttle.Value = 0

32. End If

33. End Sub

34.

35. // Visual C#

36. private void throttle_ValueChanged(object sender, System.Event
Args e) {

37. if (train1.Right < track1.Right) {

38. train1.Speed = throttle.Value;

39. }

40. else {

41. throttle.Value = 0;

42. }

}
43. Double-click the New Game button to create the Click event handler

for Form1. Add the following code to move the train back to the start of
the track:

44. ‘ Visual Basic

45. Private Sub reset_Click(ByVal sender As System.Object, ByVal e
 _

46. As System.EventArgs) Handles reset.Click

47. Train1.ReStart()

48. throttle.Value = 0

49. ‘ explicitly set speed, although trackbar_ValueChanged will do i
t

50. Train1.Speed = 0

51. Train1.Left = Track1.Left

52. End Sub

53.

54. // Visual C#

55. private void reset_Click(object sender, System.EventArgs e) {

56. train1.ReStart();

57. throttle.Value = 0;

58. // explicitly set speed, although trackbar_ValueChanged will do
it

59. train1.Speed = 0;

60. train1.Left = track1.Left;

61. }

Test the program
1. Press F5 to run the application. Use the TrackBar control to adjust the

speed of the train so that you don’t run over the fire. You can adjust
how often the fire moves to increase your chances of getting the train
to the end of the track without incident. Here’s the program:

61. Using the CaughtOnFire and DistanceChanged events, you can add

other functionality to the program. You could change the train bitmap
for the occasions that the train catches on fire, for example, or you
could give the user a reward if he or she reaches the end of the track
without running into a fire.

Setting Up Event Methods Without Using the Designer

In the TrainGame example, you created a user control with events. When you dragged
the Train control onto the form, the events were available in the Method Name list for
Visual Basic projects and in the Properties window for Visual C# projects. You don’t have
to use the designer to connect your event methods to your class instances; you can do it
simply by using code statements. Setting up event methods in code allows you to
§ Create control instances at run time and respond to their events
§ Change the event handler for a particular event at run time

In Visual Basic, you can choose from two ways to set up event methods. One way uses
the Handles keyword. The other way uses the AddHandler statement. To use the
Handles keyword, you must declare the instance with the WithEvents keyword as a field
of a class. The catch is that you can’t use the New keyword in the declaration, so the
class must be instantiated elsewhere in the class, most likely in the constructor. Once
you declare the class using the WithEvents keyword, the events become available for
the instance in the Method Name list of the code editor, which is the method used by the

form designer. If you were to create a new Windows Application project, add one Button
control, and double-click the control, you’d find the following code in the form, after
expanding the section labeled Windows Form Designer Generated Code in the code
editor.

‘ Visual Basic

‘ Only code relevant to the button is shown.

Public Class Form1

 Inherits System.Windows.Forms.Form

 Public Sub New()

 MyBase.New()

 ‘Call to InitializeComponent standard for a Windows Form

 InitializeComponent()

 End Sub

 ‘ Button is declared using WithEvents.

 Friend WithEvents Button1 As System.Windows.Forms.Button

 ‘ Button is instantiated in this method.

 Private Sub InitializeComponent()

 Me.Button1 = New System.Windows.Forms.Button()

 End Sub

 ‘ Handles keyword used to associate method with event.

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 End Sub

End Class
If you wanted to add controls at run time, you wouldn’t be able to declare them as fields
of the class. In this case, you can use the AddHandler statement to associate a method
with an event, as shown in the following code. The following Button1_Click method adds
a new button to the form and assigns the newButton_Click method as the event handler
for the button’s Click event.

Private Sub Button1_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles Button1.Click

 Dim newButton As New Button()

 Me.Controls.Add(newButton)

 AddHandler newButton.Click, AddressOf newButton_Click

End Sub

Private Sub newButton_Click(ByVal sender As System.Object, _

ByVal e As System.EventArgs)

 MessageBox.Show("You clicked the new button!")

End Sub
You can’t add an event handler by name; you must use its run-time address. The
AddressOf keyword returns this address. If, at a later time in the application, you want

the Click event of the new Button to execute a different method, you can use the
RemoveHandler statement.

RemoveHandler newButton.Click, AddressOf newButton_Click

Visual C# gives you only one way to connect events to methods. C# uses the operators
+= and −= to add and remove event handlers to and from an event. If you were to create
a new Windows Application project, add one Button control, and double-click the control,
you’d find the following code in the form, after expanding the section labeled Windows
Form Designer Generated Code in the code editor. Because events are declared as
delegate fields in the class, you need to create an instance of the delegate of the same
type as the event, as you can see here:

// Visual C#

// Only code relevant to the button is shown.

public class Form1 : System.Windows.Forms.Form {

 private System.Windows.Forms.Button button1;

 public Form1() {

 // Call to InitializeComponent standard for a Windows Form.

 InitializeComponent();

 }

 // Button is instantiated in this method.

 private void InitializeComponent() {

 this.button1 = new System.Windows.Forms.Button();

 // += operator used to associate method with event.

 this.button1.Click += new

 System.EventHandler(this.button1_Click);

 }

 private void button1_Click(object sender, System.EventArgs e) {

 }

}

More on Delegates

When you created the delegate for the CaughtOnFire event in the Track class, you
were actually creating an extension of the System.Delegate class. The only operations
defined for the delegate outside the Track class (in the form code) are the += and −=
operators, which add and remove event handlers. The event handlers are added as
instances of the delegate class you defined, which is why you’ll see the following
syntax to add the event handler in the generated code of the form:

this.train1.DistanceChanged += new TrainGame.Train.

 DistanceChangedEventHandler(this.train1_DistanceChanged);

You can create controls at run time and use the += and −= operators to add and remove
handlers at run time. The following button1_Click method adds a new button to the form.

private void button1_Click(object sender, System.EventArgs e) {

 Button newButton = new Button();

 this.Controls.Add(newButton);

 newButton.Click += new EventHandler(this.newButton_Click);

}

private void newButton_Click(object sender, System.EventArgs e) {

 MessageBox.Show("You clicked the new button!");

}

Exceptions—When Things Go Wrong
In the last section, you programmed events for things that you expect to happen to your
object. Trains are expected to change location as they drive along, but sometimes things
happen that aren’t expected. In .NET programming, these exceptional situations are
handled using exceptions , a programming construct for handling error conditions. A
program is said to “throw an exception” when errors occur. You can write code to “catch”
the exception, so that execution of your program doesn’t stop completely. Additionally,
you can create custom exceptions for your application to provide specific information to
your program and your user about what has gone wrong.

Generate an exception

This small application demonstrates an exception being thrown.
1. Create a new Windows application and name it

ThrowSystemException.
2. Add a Button control to the form.
3. Double-click the Button control to create the Click event handler, and

add the following code, which attempts to access the tenth integer in
an array of five integers.

4. ‘ Visual Basic

5. Private Sub Button1_Click(ByVal sender As System.Object, _

6. ByVal e As System.EventArgs) Handles Button1.Click

7. Dim numbers() As Integer = {1, 2, 3, 4, 5}

8. MessageBox.Show(numbers(9))

9. End Sub

10.

11. // Visual C#

12. private void button1_Click(object sender, System.EventArgs e) {

13. int[] numbers = { 1, 2, 3, 4, 5};

14. MessageBox.Show(numbers[9].ToString());

}
15. Press F5 to run the application and click the Button control. The

following message box is displayed. Click Break, and then click Stop
Debugging from the Debug menu to stop the program.

System.IndexOutOfRangeException is thrown because the index, 9, is out of
range of the array, which is 0 through 4.

You can prevent error messages from popping up like this by trapping the
exceptions using exception handling.

5. Modify the code for the Click event as you see here:
6. ‘ Visual Basic
7. Private Sub Button1_Click(ByVal sender As System.Object, _
8. ByVal e As System.EventArgs) Handles Button1.Click
9. Dim numbers() As Integer = {1, 2, 3, 4, 5}
10. Try
11. MessageBox.Show(numbers(9))
12. Catch ex As Exception
13. MessageBox.Show("Something went wrong: " & ex.Messag

e)
14. End Try
15. End Sub
16.
17. // Visual C#
18. private void button1_Click(object sender, System.EventArgs e) {
19. int[] numbers = { 1, 2, 3, 4, 5};
20. try {
21. MessageBox.Show(numbers[9].ToString());
22. }
23. catch (Exception ex) {
24. MessageBox.Show("Something went wrong: " + ex.Message

);
25. }

}
26. Press F5 to run the program. In this case, no system error message

appears on the screen, and you don’t have the opportunity to choose
whether to quit or continue. When you catch an exception this way, the
code you write is responsible for that decision.

Writing Your Own Exception Class
You can generate exceptions using the throw keyword (Throw in Visual Basic, throw in
Visual C#). The .NET convention is to throw objects that derive from the
System.Exception class. More specifically, applications should throw objects that derive
from System.ApplicationException, which itself derives from System.Exception.
The following small application shows how you can derive an exception class, throw the
exception under the right conditions, and catch the exception using a try block. This
application uses a Person class with FirstName and LastName properties. The class
provides one constructor that expects the name in “First Last” format. Should the
constructor parameter not follow that format, the constructor will throw a
NameFormatIncorrectException.

Create the project
1. Create a new Windows Application and name it PersonList.
2. Drag a ListBox control onto the form. Set the Name property to

personList and the Sorted property to True.
3. Drag a TextBox control onto the form. Set the Name property to

personsName and the Text property to (blank).

4. Drag a Button control onto the form. Set the Name property to
addPerson and the Text property to Add.

Create the exception class
1. Right -click Form1 and click View Code on the shortcut menu.
2. Add the following code after the Form1 class to declare the exception

class.

3. ‘ Visual Basic

4. Public Class NameFormatIncorrectException

5. Inherits System.ApplicationException

6. End Class

7.

8. // Visual C#

9. public class NameFormatIncorrectException : System.Application
Exception {

}

The ApplicationException class has two properties of interest. The first is the
Message property, which contains a string that describes the error that has
occurred. The second is the Inner property. If you’re throwing an exception
because you caught an exception, you can pass on that exception in the Inner
property.

10. Add this code for the overloaded constructors:

11. ‘ Visual Basic

12. Public Sub New()

13. MyBase.New()

14. End Sub

15.

16. Public Sub New(ByVal message As String)

17. MyBase.New(Message)

18. End Sub

19.

20. Public Sub New(ByVal message As String,_

21. ByVal innerException As Exception)

22. MyBase.New(message, InnerException)

23. End Sub

24.

25. // Visual C#

26. public NameFormatIncorrectException() : base() {

27. }

28.

29. public NameFormatIncorrectException(string message) : base(m
essage) {

30. }

31.

32. public NameFormatIncorrectException(string message,

33. Exception innerException) :

34. base(message, innerException) {

35. }

The exception classes in .NET have three constructors, all of which can call a matching
base constructor. One is parameterless, and its message is blank. The second takes one
exception, the message text. The third sets both the message text and the inner
exception.

The exception class is complete.

Create the Person class
1. Add the following code to declare the Person class after the

NameFormatIncorrectException class and add the FirstName and
LastName properties.

2. ‘ Visual Basic
3. Public Class Person
4. Private m_first As String
5. Private m_last As String
6.
7. Public Property FirstName() As String
8. Get
9. Return m_first
10. End Get
11. Set(ByVal Value As String)
12. m_first = Value
13. End Set
14. End Property
15.
16. Public Property LastName() As String
17. Get
18. Return m_last
19. End Get
20. Set(ByVal Value As String)
21. m_last = Value
22. End Set
23. End Property
24. End Class
25.
26. // Visual C#
27. public class Person {
28. private string m_first;
29. private string m_last;
30.
31. public string FirstName {
32. get { return m_first; }
33. set { m_first = value; }
34. }
35.
36. public string LastName {
37. get { return m_last; }
38. set { m_last = value; }
39. }
40. }

41. Add the following code for the overridden ToString method. This
property is used to display the Person class instance in the ListBox
control.

42. ‘ Visual Basic

43. Public Overrides Function ToString() As String

44. Return m_last & ", " & m_first

45. End Function

46.

47. // Visual C#

48. public override string ToString() {

49. return m_last + ", " + m_first;

}
50. Add the constructor that takes a name in “First Last” format and

parses it into the FirstName and LastName properties:

51. ‘ Visual Basic

52. Public Sub New(ByVal firstlast As String)

53. Try

54. Dim splitCharacters As String = " "

55. Dim names() As String = _

56. firstlast.Split(splitCharacters.ToCharArray())

57. m_first = names(0)

58. m_last = names(1)

59. Catch ex As Exception

60. Throw New NameFormatIncorrectException(_

61. "Cannot find the first name and last name in the string: " _

62. & firstlast, ex)

63. End Try

64. End Sub

65.

66. // Visual C#

67. public Person(string firstlast) {

68. try {

69. string splitCharacters = " ";

70. string[] names = firstlast.Split(splitCharacters.ToCharArray())
;

71. m_first = names[0];

72. m_last = names[1];

73. }

74. catch (Exception ex) {

75. throw new NameFormatIncorrectException("Cannot find the
first " +

76. "name and last name in the string: " + firstlast, ex);

77. }

}

Add the code for the user interface
1. Open the form in the designer and double-click the Add button to

create the Click event.
2. Add the following code to add a new person to the list. You can have

multiple catch blocks in a try block so that you can capture specific
types of exceptions.

3. ‘ Visual Basic

4. Private Sub addPerson_Click(ByVal sender As System.Object, _

5. ByVal e As System.EventArgs) Handles addPerson.Click

6. Try

7. personList.Items.Add(New Person(personsName.Text))

8. Catch nameException As NameFormatIncorrectException

9. If Not IsNothing(nameException.InnerException) Then

10. MessageBox.Show(nameException.Message & ControlC
hars.CrLf _

11. & nameException.InnerException.Message)

12. Else

13. MessageBox.Show(nameException.Message)

14. End If

15. Catch ex As Exception

16. MessageBox.Show(ex.Message)

17. End Try

18. personsName.Text = ""

19. End Sub

20.

21. // Visual C#

22. private void addPerson_Click(object sender, System.EventArgs e
) {

23. try {

24. personList.Items.Add(new Person(personsName.Text));

25. }

26. catch (NameFormatIncorrectException nameException) {

27. if (nameException.InnerException != null) {

28. MessageBox.Show(nameException.Message + "\n" +

29. nameException.InnerException.Message);

30. }

31. else {

32. MessageBox.Show(nameException.Message);

33. }

34. }

35. catch (Exception ex) {

36. MessageBox.Show(ex.Message);

37. }

38. personsName.Text = "";

}

Test the application
§ Press F5 to run the application. Entering a string like Bob Smith in the

TextBox correctly adds Smith, Bob to the ListBox. Entering a string like
Bob results in a thrown exception.

Quick Reference

To Do this

Declare
an event
for
your
control
class

In Visual Basic, declare the event name and its signature.
Public Event CaughtOnFire(ByVal sender As Object, _
 ByVal e As CaughtOnFireEventArgs)

 In Visual C#, declare the delegate type of the event, and then
declare the delegate of that type.
public delegate void CaughtOnFireEventHandler(object sender,
 CaughtOnFireEventArgs e);
public event CaughtOnFireEventHandler CaughtOnFire;

Add an
event
handler
using the
designer
and code
editor

Visual Basic
Declare a class field of the object using the WithEvents keyword.

In the Class Name list click the class. In the Method Name list click the
event. The event handler is added to the code.

 Visual C#
In the form designer, select the control. In the Properties window, click
the Events button. Double-click the event, and the event handler is
added to the code.

Add and
remove
event
handlers
at run
time

In Visual Basic, use the AddHandler and RemoveHandler statements.
AddHandler newButton.Click, AddressOf newButton_Click
RemoveHandler newButton.Click, AddressOf newButton_Click

 In Visual C#, use the += and −= operators
.newButton.Click += new EventHandler(this.newButton_Click);
newButton.Click −= new EventHandler(this.newButton_Click);

Derive an
EventArg
s
class

Create a class that inherits from System.EventArgs , and add the
properties to pass information about the event.
‘ Visual Basic
Public Class CaughtOnFireEventArgs
 Inherits System.EventArgs
End Class

 // Visual C#
public class CaughtOnFireEventArgs : System.EventArgs {
}

Derive a
custom
exception
class
from
the
Applicati
on-
Exceptio
n class

Custom exceptions should derive from the System.Application class, and
provide the three constructors.
‘ Visual Basic
Public Class NewException
 Inherits System.ApplicationException
 Public Sub New()
 MyBase.New()
 End Sub

 Public Sub New(ByVal message As String)
 MyBase.New(Message)

To Do this

 End Sub

 Public Sub New(ByVal message As String,_
 ByVal innerException As Exception)
 MyBase.New(message, InnerException)
 End Sub
End Class

 // Visual C#
public class NewException: System.ApplicationException {
 public NewException () : base() {
}
 public NewException (string message) : base(message) {
}

 public NewException (string message,
 Exception innerException) :
 base(message, innerException) {
}
}

Throw
your
custom
exception

When the code determines that the error condition occurs, throw a new
instance of the exception, using one of the three constructors.
‘ Visual Basic
Throw New NewException("Error text")

 // Visual C#
throw new NewException("Error Message");

Catch
your
custom
exception

Add a catch statement to the try block for the custom exception.
‘ Visual Basic
Try
 ‘ Normal executionCatch ne As NewException
 ‘ Respond to NewExceptionCatch ex As Exception
 ‘ Respond to all other exceptionsEnd Try

 // Visual C#
try {
 // Normal execution
}
catch (NewException ne) {
 // Respond to NewException
}
catch (Exception ex) {
 // Respond to all other exceptions
}

Chapter 8: Putting It All Together with
Components

Overview
ESTIMATED
TIME

3 hr. 30 min.

In this chapter, you’ll learn how to

§ Turn a class into a component.
§ Create a class library.

§ Select and use a namespace for your control library.
§ Add design-time support for your control and component classes,

including Toolbox icons, Properties window categories, and description
strings.

In the previous chapters, you learned about the basic constructs of object-oriented
programs in the .NET Framework, including fields, properties, methods, constructors,
events, and inheritance. You now have a solid basis for designing your object-oriented
projects. It ’s time to use that knowledge to think about how a developer would use the
classes you’ve created in the Visual Studio .NET development environment. You want to
create objects that are easy to use and, when appropriate, can be used by simply
dragging them from the Toolbox onto a form. When a developer selects your custom
control or component in the form designer, you’d like the control’s properties to display
help text in the Properties window, and you want the control to have its own icon in the
Toolbox. In this chapter, you’ll write a complete application that uses classes, events,
exceptions, and inheritance. You’ll design these classes with other developers in mind—
the developers who will use your classes.

The Memory Game
Your task in this chapter is to design and implement a memory card game. You have a
design directive to utilize the visual design support of the Visual Studio .NET
environment. When you develop with components and controls, you can move some of
the developer’s work from coding to the design-time environment. Consider the ListBox
control. If you drag a ListBox control onto a form and click the ellipsis button (…) next to
the Items property, the ListBox collection editor appears, allowing you to add items to the
list box. You can also add items to the list box by using the ListBox.Items.Add method,
but many users prefer the more visual method offered by the collection editor.

The Memory game will present the player with a grid of cards placed face down. The
player can select two cards at a time by clicking them. When clicked, the cards will turn
face up. If the two cards have matching face values, they are removed from the game. If
the cards do not match, they turn face down again. When all the cards have been
removed, a message box appears, congratulating the player and reporting the number of
times cards were turned over in the course of the game. The game is shown here:

In Chapter 4, “Working with Methods,” you created three classes for card games: Card,
Hand, and Deck. You instantiated the Hand and Deck classes in code, and then used
those classes to manipulate a set of Card instances, which you also instantiated in code.
To create the Deck you wanted, you used a constructor that used arrays of Suit and
FaceValue enumeration values for the cards in the deck. This time around, you again
want to create a Deck, but you want to do so by dragging a Deck component from the
Toolbox to the form and then setting the suits and face values by using the Properties
window. In addition to instantiating the Deck in a constructor, the form class contained a
lot of code for manipulating the Card instances. In a more object-oriented program, that
manipulation might be better handled in a class that represents a game.

Designing the Game

You’ll use two projects to build the Memory game. The first is a control library,
GamesLibrary, which contains the controls and components needed to implement the
Memory game. The second project is the game project, which uses the controls in the
library to implement the game. The following UML diagram describes the game:

This diagram divides the primary classes of the design into three categories. The user
interface class is the familiar System.Windows.Forms class. This class contains the
visual elements that the game player can interact with. The games classes should be
familiar to you from the exercises in Chapter 4.

The classes with design support provide functionality that you can take advantage of at
design time. For example, the Memory class, which represents the Memory game,
derives from the UserControl class. Thus you can add the Memory control to the Toolbox
and create an instance by just dragging one onto the form. From that point, you can set
the properties of the Memory control in the Properties window.

The Component class is similar to the UserControl class in that you can add the
component to the Toolbox and drag an instance onto a form. One difference is that the
component instance is added to the component tray, rather than being a visual element
of the form. Another difference is that in the Windows Forms Designer generated code,
the component instance is added to the form’s components container, rather than to the
form’s Controls collection.

Showing Composition and Aggregation in UML

The solid diamond in the UML diagram indicates a relationship called composition in
object-oriented terminology. Composition means that one object can’t exist without
another object. As an example, a car without an engine isn’t really a car. If the engine
stops working, the car stops working—or you at least need to get a new engine to get
the car running.
This diagram introduces a new UML element, the open diamond. The open diamond
indicates a relationship called aggregation. Aggregation implies that one object can use
another object, but can be created without it: a car can have a driver, but even without
a driver it’s still a car.

You might not necessarily agree with the assignment of open and closed diamonds in
the diagram. Designers often disagree about the distinctions between composition and
aggregation.

The Games Class Library

The first project is a class library that contains the Card, Deck, and Game classes. You’ll
add this library as a reference to the project that runs the Memory game.

Create the GamesLibrary project
1. On the File menu, point to New, and then click Project.

2. In the Projects Types tree, click Visual Basic Projects or Visual C#
Projects.

3. In the Templates list, click Windows Control Library.
4. In the Name box, type GamesLibrary and then click OK.

Changing the Namespace
In the .NET Framework, classes are contained in namespaces. A namespace defines a
scope for a class. The projects in this book so far have had one namespace, which is
identical to the project name, but this can be changed. In the .NET Framework,
namespaces are named in a particular way, by convention: Company.Technology. In this
library, your company LotsOfFun has created several games classes. Thus your classes
will be contained in the namespace LotsOfFun.Games .

Change the namespace
1. In the Solution Explorer, right-click the GamesLibrary project and click

Properties on the shortcut menu. The GamesLibrary Property Pages
dialog box appears.

Notice that the setting for Output Type is Class library. The output of this
project will be a .dll file. You can use objects defined in a class library file, but
you cannot execute a .dll file.

2. Click General under Common Properties in the list. In the Root
Namespace box for Visual Basic or the Default Namespace box for
Visual C#, type LotsOfFun.Games , and click OK. Subsequent classes
added to the project will be added to this namespace.

3. If you are using Visual C#, right-click UserControl1.cs in the Solution
Explorer, and then click View Code on the shortcut menu. Locate the
namespace declaration near the top of the file and replace
GamesLibrary with LotsOfFun.Games .

Creating the Card Control
The Card control inherits from the UserControl class. In Chapter 4, you used the Button
control as the basis for the user interface of the Card. Then you used the Tag property to
save the Card class associated with the Button control. That wasn’t the best object-
oriented solution, because you had to cast the Tag property to use the Card instance. In
this project, you could create the Card control by inheriting from Button, adding Suit and
FaceValue properties, and then controlling the Text and Image properties. You’ll get a
better result by inheriting from the UserControl class because the Button control has
several properties you don’t want the user to have access to, such as Text and Image.
You want to control those properties so that they reflect the Suit and FaceValue
properties at all times.
In addition to the Suit and FaceValue properties you implemented for Card in Chapter 4,
you’ll add the FaceUp property to the Card class. This value determines whether the
Card control is displayed face up (suit and value showing) or face down (back of the card
showing). Other additions to the class are used for design-time support of the Card
control. These additions include help strings for the properties, a Property window
category for the properties, and a Toolbox icon. Finally, you will use the control’s Paint
event to dynamically update the control’s appearance when the Suit and FaceValue are
set in the designer.

Add the Card control to the project
1. Right -click UserControl1 in the Solution Explorer, and then click

Rename on the shortcut menu. Rename the file Card.vb or Card.cs,
depending on the language you’re using.

2. Right -click Card in the Solution Explorer, and then click View Code on
the shortcut menu.

3. Rename the class Card. If you’re using Visual C#, locate the
constructor and change its name to Card, too.

4. Right -click Card in the Solution Explorer, and then click View Designer
on the shortcut menu.

5. Right -click the control in the designer and click Properties on the
shortcut menu.

6. In the Properties window, expand Size and set the Width to 60 and the
Height to 75.

Define the Toolbox icon for the Card control
1. Create a 16-by-16-pixel bitmap for your project, name it Card.bmp,

and save it in the project directory. An icon is available on the
companion CD in the \Chapter08 folder. The file must be named
Card.bmp, so that Visual Studio will use it as the Toolbox icon for the
Card class.

2. In the Solution Explorer, right-click the GamesLibrary project, point to
Add, and then click Add Existing Item on the shortcut menu.

3. In the Add Existing Item dialog box, click Image Files in the Files Of
Type list.

4. Select Card.bmp and click Open.
5. In the Solution Explorer, right-click the Card.bmp file and click

Properties on the shortcut menu.
6. In the Properties window, set the Build Action property of the bitmap

file to Embedded Resource. When the project is built, the bitmap will
be added to the assembly file, which is the file created when you
compile the program. The bitmap’s name, Card, will cause it to be
used as the Toolbox icon of the Card control.

Add the Suit and FaceValue enumerations
1. Add the Suit enumeration to the LotsOfFun.Games namespace. In the

Solution Explorer, right-click Card and click View Code on the shortcut
menu to see the class code in the code editor. In Visual Basic, add this
code just above the Card class. In Visual C#, this code goes inside the
namespace block, but outside the Card class.

2. ‘ Visual Basic
3. Public Enum Suit
4. Hearts
5. Diamonds
6. Clubs
7. Spades
8. End Enum
9.
10. // Visual C#
11. public enum Suit {
12. Clubs, Spades, Diamonds, Hearts
13. };

14. Add the FaceValue enumeration after the Suit enumeration.

15. ‘ Visual Basic

16. Public Enum FaceValue

17. Ace

18. Two

19. Three

20. Four

21. Five

22. Six

23. Seven

24. Eight

25. Nine

26. Ten

27. Jack

28. Queen

29. King

30. End Enum

31.

32. // Visual C#

33. public enum FaceValue {

34. Ace, Two, Three, Four, Five, Six, Seven, Eight, Nine, Ten,

35. Jack, Queen, King

};

Add the Suit, FaceValue, and FaceUp properties
The Suit, FaceValue, and FaceUp properties all use attributes to customize their
appearance in the Properties window. These attributes come from the
System.ComponentModel namespace. An Imports or using statement for the
namespace allows you to use the attributes without the qualified name.

1. If you’re using Visual Basic, right-click the GamesLibrary project in the
Solution Explorer, and click Properties on the shortcut menu. Click
Imports under Common Properties and type System.ComponentModel
into the Namespace box. Click Add Import, and then click OK. If you’re
using Visual C#, the corresponding using statement is added to each
source file.

2. // Visual C#
using System.ComponentModel;
3. Add the following code for the FaceValue property to the Card class:

4. ‘ Visual Basic

5. Private m_faceValue As FaceValue = FaceValue.Ace

6. <Category("Game"), Description("Face value of the card.")> _

7. Public Property FaceValue() As FaceValue

8. Get

9. Return m_facevalue

10. End Get

11. Set(ByVal Value As FaceValue)

12. m_facevalue = Value

13. Me.Refresh()

14. End Set

15. End Property

16.

17. // Visual C#

18. private FaceValue m_faceValue = FaceValue.Ace;

19. [Category("Game")]

20. [Description("Face value of the card.")]

21. public FaceValue FaceValue {

22. get { return m_faceValue; }

23. set {

24. m_faceValue = value;

25. this.Refresh();

26. }

}
This is the same code you wrote in Chapter 4, with additions to support the
fact that the Card is also a UserControl. The call to Refresh uses the Paint
event to redraw the card whenever the Suit changes. You’ll write the Paint
event handler in the next section. The property also has two attributes,
Category and Description. Visual Studio .NET uses these attributes when the
properties are displayed in the Properties window.

27. Add the following code for the Suit property:

28. ‘ Visual Basic

29. Private m_suit As Suit = Suit.Hearts

30. <Category("Game"), Description("Suit (Hearts, Spades, Diamond
s, Clubs)")> _

31. Public Property Suit() As Suit

32. Get

33. Return m_suit

34. End Get

35. Set(ByVal Value As Suit)

36. m_suit = Value

37. Me.Refresh()

38. End Set

39. End Property

40.

41. // Visual C#

42. private Suit m_suit = Suit.Hearts;

43. [Category("Game")]

44. [Description("Suit (Hearts, Spades, Diamonds, Clubs)")]

45. public Suit Suit {

46. get { return m_suit; }

47. set {

48. m_suit = value;

49. this.Refresh();

50. }

}
51. Add the following code for the FaceUp property:

52. ‘ Visual Basic

53. Private m_faceUp As Boolean = True

54. <Category("Game"), Description("Is the card face up?")> _

55. Public Property FaceUp() As Boolean

56. Get

57. Return m_faceUp

58. End Get

59. Set(ByVal Value As Boolean)

60. m_faceUp = Value

61. Me.Refresh()

62. End Set

63. End Property

64.

65. // Visual C#

66. private bool m_faceUp = true;

67. [Category("Game")]

68. [Description("Is the card face up?")]

69. public bool FaceUp {

70. get { return m_faceUp; }

71. set {

72. m_faceUp = value;

73. this.Refresh();

74. }

}

Add the constructors and the Paint method
1. The Chapter08 folder on the companion CD has four icons for the four

possible suits in a deck. Copy the icons to the GamesLibrary project
folder.

2. Add the following code shown in boldface to the parameterless
constructor and a field to the class to hold the suit images. If you’re
using Visual Basic, you’ll have to expand the Windows Forms
Designer Generated Code region to find the parameterless
constructor. The constructor loads the images for the suits into an
ArrayList. This loads a set of images for each Card instance. Don’t
delete the call to InitializeComponent in the constructor. This call is
necessary to initialize the control. You’ll need to replace PATH in the
code with the path to the folder where you have stored the icons on
your system.

3. ‘ Visual Basic
4. Dim m_images As New SortedList()
5. Public Sub New()
6. MyBase.New()
7. ‘ This call is required by the Windows.Forms Form Designer.
8. InitializeComponent()
9.
10. m_images.Add(Suit.Clubs, New Icon("PATH\clubs.ico"))
11. m_images.Add(Suit.Diamonds, New Icon("PATH\diamonds

.ico"))
12. m_images.Add(Suit.Hearts, New Icon("PATH\hearts.ico"))
13. m_images.Add(Suit.Spades, New Icon("PATH\spades.ico")

)
14. End Sub
15.
16. // Visual C#
17. SortedList m_images = new SortedList();
18. public Card()
19. {
20. // This call is required by the Windows.Forms Form Designer.
21. InitializeComponent();
22.
23. m_images.Add(Suit.Clubs, new Icon("PATH\\clubs.ico"));
24. m_images.Add(Suit.Diamonds, new Icon("PATH\\diamond

s.ico"));

25. m_images.Add(Suit.Hearts, new Icon("PATH\\hearts.ico"));
26. m_images.Add(Suit.Spades, new Icon("PATH\\spades.ico"

));
}
27. Add the constructor that takes a Suit and a FaceValue as parameters.

Note that this constructor calls the base constructor to set up the
image fields.

28. ‘ Visual Basic

29. Public Sub New(ByVal newSuit As Suit, ByVal newValue As Face
Value)

30. Me.New()

31. m_suit = newsuit

32. m_faceValue = newvalue

33. End Sub

34.

35. // Visual C#

36. public Card(Suit suit, FaceValue faceValue) : this() {

37. m_suit = suit;

38. m_faceValue = faceValue;

}
39. If you’re using Visual Basic, click Base Class Events in the Class

Name list of the code editor. Then click Paint in the Method Name list
to create the declaration for the Paint event handler.

If you’re using Visual C#, double-click Card.cs in the Solution Explorer to
open the control in the designer. In the designer, right-click the control and
then click Properties on the shortcut menu. Click the Events toolbar button in
the Properties window, and then double-click the Paint event. A Paint event
handler is added to the Card class.

40. Add code to the Paint event handler to draw the card either face down
or face up.

41. ‘ Visual Basic

42. Private Sub Card_Paint(ByVal sender As Object, ByVal e As _

43. System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

44. Dim g As Graphics = Me.CreateGraphics()

45. g.DrawRectangle(System.Drawing.Pens.Black, 0, 0, _

46. Me.ClientRectangle.Width - 1, Me.ClientRectangle.Height -
 1)

47. If Me.FaceUp Then

48. Me.BackColor = Color.White

49. g.DrawString(Me.m_faceValue.ToString(), New _

50. System.Drawing.Font("Arial", 10, _

51. System.Drawing.FontStyle.Bold), _

52. System.Drawing.Brushes.Black, 3, 3)

53. g.DrawIcon(CType(Me.m_images(m_suit), Icon), 14, 40)

54. Else

55. Me.BackColor = Color.Blue

56. End If

57. End Sub

58.

59. // Visual C#

60. private void Card_Paint(object sender,

61. System.Windows.Forms.PaintEventArgs e)

62. {

63. Graphics g = this.CreateGraphics();

64. g.DrawRectangle(System.Drawing.Pens.Black,0,0,

65. this.ClientRectangle.Width-1, this.ClientRectangle.Height-1);

66. if (this.m_faceUp) {

67. this.BackColor = Color.White;

68. g.DrawString(this.m_faceValue.ToString(),

69. new System.Drawing.Font("Arial",10,System.Drawing.FontSt
yle.Bold),

70. System.Drawing.Brushes.Black,3,3);

71. g.DrawIcon((Icon)(this.m_images[m_suit]),14,40);

72. }

73. else {

74. this.BackColor = Color.Blue;

75. }

}

Write the SizeChanged event handler

You can respond to the SizeChanged event to prevent the user from changing the size
of the control. You’ll want to do this, because drawing code you wrote in the Paint event
handler depends on the control maintaining a constant size.

1. If you’re using Visual Basic, click Base Class Events in the Class
Name list, and then click SizeChanged in the Method Name list in the
code editor. This creates the declaration for the SizeChanged event
handler.

If you’re using Visual C#, right-click Card.cs in the Solution Explorer, and then
click View Designer on the shortcut menu. In the designer, right-click the
control and click Properties on the shortcut menu. Click the Events toolbar
button in the Properties window. In the Properties window, double-click the
SizeChanged property. This creates the declaration for the SizeChanged
event handler.

2. Add the following code to prevent the user from changing the size of
the control. The constant size of the control is exposed as a public
member, because the Memory control will use it to lay out the cards.
(In Chapter 11, “Using Shared and Static Members,” you’ll learn how
to do this without exposing fields.)

3. ‘ Visual Basic

4. Public Const FixedWidth As Integer = 60

5. Public Const FixedHeight As Integer = 75

6. Private Sub Card_SizeChanged(ByVal sender As Object, _

7. ByVal e As System.EventArgs) Handles MyBase.SizeChanged

8. Me.Size = New Size(FixedWidth, FixedHeight)

9. End Sub

10.

11. // Visual C#

12. public const int FixedWidth = 60;

13. public const int FixedHeight = 75;

14. private void Card_SizeChanged(object sender, System.EventArg
s e)

15. {

16. this.Size = new Size(FixedWidth, FixedHeight);

}
17. On the Build menu, click Build.

The Card class is now complete and you can test it.

Creating the Memory Game Project

The Card class is contained in a class library, which means it provides classes you can
use in other projects. You can’t run a class library assembly, so you will use a Windows
Application project for instantiating the display of a Card control.

Add a new project to the solution

By adding a new project to the solution, you can work on the class library and use the
objects it contains at the same time.

1. On the File menu, point to Add Project, and then click New Project.
2. In the Projects Types tree, click Visual Basic Projects or Visual C#

Projects. In the Templates list, click Windows Application.
3. In the Name box, type Memory and then click OK.

Add a reference to the Games library

Even though the two projects are in the same solution, you can’t use the controls defined
in the Games library until you’ve added a reference to the library in the Memory project.

1. Right -click the Memory project in the Solution Explorer and click Add
Reference on the shortcut menu. The Add Reference dialog box
appears.

2. On the .NET tab, click the Browse button. The Select Component
dialog box appears. Browse to the obj\debug folder of the
GamesLibrary project.

3. Select GamesLibrary.dll and click Open.
4. In the Add Reference dialog box, click OK to add the reference to the

Memory project.

Add the Card control to the Toolbox

When you add the Card control to the Toolbox, you can simply add a Card control by
dragging it onto a form. Follow these steps to add the control to the Toolbox:

1. Double-click Form1 of the Memory project in the Solution Explorer.
2. Right -click the Toolbox and click Add Tab on the shortcut menu. A

new tab appears at the bottom of the Toolbox.
3. Type Games for the name of the new tab and press Enter.
4. Click the new Games tab.
5. Right -click in the Games tab and click Customize Toolbox on the

shortcut menu.
6. Click the .NET Framework Components tab.
7. Click the Browse button and browse to the GamesLibrary.dll file, as

you did in the previous section.
8. Select the check box for the Card component in the LotsOfFun.Games

namespace.

9. Click OK. The Card control icon is added to the Toolbox, as shown
here.

50. Drag a card onto the form. Experiment with changing the suit and

value of the card. Here’s the Jack of Diamonds:

51. The Properties window follows. Note that property descriptions are

displayed at the bottom of the Properties window, and that the Card
properties are shown together in the Game category of the Properties
window. Also note that the Text property isn’t in the Properties
window.

Creating the Deck Component

You’ll implement the Deck as a component, which means that you’ll be able to add a
Deck component icon to the Toolbox. When you drag the Deck component to the form,
an instance will be placed in the component tray, similar to the Timer control. By making
the Deck a component, you can use the graphical tools of the Visual Studio .NET design
environment to set the properties of the component.
This implementation of Deck behaves differently than the version you wrote in Chapter 4.
In that version, the parameterless constructor created a 52-card deck, and a second
constructor allowed you to specify the suits and face values that would appear in the
deck. In this implementation, the parameterless constructor again creates a 52-card
deck, but there is no constructor that takes parameters. Instead, the Deck class will
support a Suits property and a FaceValues property. The user can therefore use a
collection editor—similar to the collection editor for the ListBox control—to choose the
values at design time. When the user changes either the Suit value or the FaceValue
property, the Card instances are created to match the new values.

Add the Deck component to the project
1. Right -click the GamesLibrary project in the Solution Explorer, point to

Add, and then click Add Component on the shortcut menu. The Add
New Item dialog box appears.

2. Name the new component Deck.vb or Deck.cs , depending on the
language you’re using.

3. Right -click in the designer and click View Code on the shortcut menu.

Examine the code for the Deck. You’ll see the important elements of a
component:

§ The key feature of a component is that it can be hosted
(or sited) in a container for design-time support. Thus,
you’ll find this constructor:
§ ‘ Visual Basic
§ Public Sub New(Container As System.Component

Model.IContainer)
§ MyClass.New()
§

§ ‘Required for Windows.Forms Class Compositio
n Designer support

§ Container.Add(me)
§ End Sub
§
§ // Visual C#
§ public Deck(System.ComponentModel.IContainer

container) {
§ /// <summary>
§ /// Required for Windows.Forms Class Composi

tion Designer support
§ /// </summary>
§ container.Add(this);
§ InitializeComponent();
§ //
§ // TODO: Add any constructor code after Initializ

eComponent call
§ //

}
§ The second feature, also seen in the UserControl, is that

the component contains a component field, so that the
component can host other components:

§ ‘ Visual Basic

§ Private components As System.ComponentModel.
Container

§

§ // Visual C#

private System.ComponentModel.Container components = nul
l;

Define the Toolbox icon for the Deck component

To define the icon for the Deck component, add a bitmap named Deck.bmp to the
project.

1. Create a 16-by-16-pixel bitmap for your project, name it Deck.bmp,
and save it in the project directory. An icon is available on the
companion CD in the \Chapter08 folder. The file must be named
Deck.bmp.

2. In the Solution Explorer, right-click the GamesLibrary project, point to
Add, and then click Add Existing Item in the shortcut menu.

3. In the Add Existing Item dialog box, change Files Of Type to Image
Files.

4. Select Deck.bmp and click Open.
5. In the Solution Explorer, right-click the Deck.bmp file and click

Properties on the shortcut menu.
6. In the Properties window, set the Build Action property of the bitmap

file to Embedded Resource. This will cause the bitmap to be added to
the
assembly file.

Add the Suits and FaceValues properties
In Chapter 4, you passed the suits and face values for the deck as parameters to the
constructor. In this case, you want to allow the user to define the suits and face values
after dropping the Deck component onto the form, so that the values won’t be defined
when the control is created.

1. Add the following code for the Suits property. The Suits property is an
array of Suit enumeration values. At design-time, the development
environment will be able to examine the type of the array and provide
a collection editor for entering the values. You will define the
MakeDeck method in the next section. Whenever the suits in the deck
are changed, a new set of cards is created.
2. ‘ Visual Basic
3. Dim m_suits() As Suit = {Suit.Clubs, Suit.Diamonds, Suit.Hearts,

_
4. Suit.Spades}
5. <Category("Game"), Description("The suits in the deck.")> _
6. Public Property Suits() As Suit()
7. Get
8. Return m_suits
9. End Get
10. Set(ByVal Value As Suit())
11. m_suits = Value
12. Me.MakeDeck()
13. End Set
14. End Property
15.
16. // Visual C#
17. private Suit[] m_suits = {Suit.Clubs, Suit.Diamonds, Suit.Hearts,
18. Suit.Spades};
19. [Category("Game")]
20. [Description("The suits in the deck.")]
21. public Suit[] Suits {
22. get { return m_suits; }
23. set {
24. m_suits = value;
25. this.MakeDeck();
26. }
27. }

28. Add the following code for the FaceValues property. Like the code you
added for the Suits property, this code is an array of enumeration
values.

29. ‘ Visual Basic

30. Dim m_faceValues() As FaceValue = {FaceValue.Ace, FaceValu
e.Two, _

31. FaceValue.Three, FaceValue.Four, FaceValue.Five, FaceValu
e.Six, _

32. FaceValue.Seven, FaceValue.Eight, FaceValue.Nine, FaceVal
ue.Ten, _

33. FaceValue.Jack, FaceValue.Queen, FaceValue.King}

34. <Category("Game"), Description("The face values in the deck.")>
_

35. Public Property FaceValues() As FaceValue()

36. Get

37. Return m_faceValues

38. End Get

39. Set(ByVal Value As FaceValue())

40. m_faceValues = Value

41. Me.MakeDeck()

42. End Set

43. End Property

44.

45. // Visual C#

46. private FaceValue[] m_faceValues = {FaceValue.Ace, FaceValue.
Two,

47. FaceValue.Three, FaceValue.Four, FaceValue.Five, FaceValu
e.Six,

48. FaceValue.Seven, FaceValue.Eight, FaceValue.Nine, FaceVal
ue.Ten,

49. FaceValue.Jack, FaceValue.Queen, FaceValue.King};

50. [Category("Game")]

51. [Description("The face values in the deck.")]

52. public FaceValue[] FaceValues {

53. get { return m_faceValues; }

54. set {

55. m_faceValues = value;

56. this.MakeDeck();

57. }

}

Add and modify the constructors
§ Add the following call to the two existing constructors. Add this code as

the last line of code in each constructor. If you’re using Visual Basic,
expand the code region labeled Component Designer Generated Code
to find the two constructors.
§ ‘ Visual Basic
§ MakeDeck()
§
§ // Visual C#
§ MakeDeck();

Add the MakeDeck and Shuffle methods
The MakeDeck private method creates the cards using the Suits and FaceValues
properties. It’s called whenever either the Suits or FaceValues property is changed.

1. Add the following code for the MakeDeck method. This is the same
method you used in the Chapter 4 exercise, except that it uses the
m_suits and m_faceValues fields instead of taking two parameters.
Because the deck might have cards from a previous call to MakeDeck ,
those cards are removed.
2. ‘ Visual Basic
3. Dim m_cards As New System.Collections.ArrayList()
4. Private Sub MakeDeck()
5. ‘ Dispose of the existing cards.
6. Dim count As Integer
7. For count = 0 To m_cards.Count - 1
8. CType(m_cards(count), Card).Dispose()
9. Next
10. m_cards.Clear()
11.
12. ‘ Add the new cards.
13. Dim asuit, avalue As Integer
14. For asuit = 0 To suits.Length - 1
15. For avalue = 0 To m_faceValues.Length - 1

16. m_cards.Add(New Card(m_suits(asuit), m_faceValues(av
alue)))

17. Next
18. Next
19. End Sub
20.
21. // Visual C#
22. System.Collections.ArrayList m_cards = new System.Collections.

ArrayList();
23. private void MakeDeck() {
24. // Dispose of the existing cards.
25. for (int count = 0; count < m_cards.Count; count++) {
26. ((Card)m_cards[count]).Dispose();
27. }
28. m_cards.Clear();
29.
30. // Add the new cards.
31. for (int asuit = 0; asuit < m_suits.Length; asuit++) {
32. for (int avalue = 0; avalue < m_faceValues.Length; avalue++

) {
33. m_cards.Add(new Card(m_suits[asuit], m_faceValues[ava

lue]));
34. }
35. }
36. }

The Dispose Method
The .NET runtime supports automatic garbage collection. When you create an instance
of a class, a certain amount of memory is reserved for and used by the instance. At
some later time in the program, you might not need that instance anymore, and you’ll
want to release the memory for use by other instances in your program or other
programs. The .NET runtime tracks the use of objects in your program. When the
runtime determines that you have no reference variables that point to a class instance,
that memory is released. One of the limitations of this garbage collection is that you
can’t force memory to be released. You might want to release class instances, though,
if they’re using resources that are limited, such as the number of open files. You’ll find
that some objects in the .NET Framework provide a Dispose method that releases any
of these resources. When you use a class that supports the Dispose method, you
should call that method on any reference that you know you’re going to release. Be
aware that once you call Dispose on an instance, that instance becomes invalid.

64. Add the following code for the Shuffle method. This code is unchanged

from the code in Chapter 4.
65. ‘ Visual Basic
66. Public Sub Shuffle()
67. Dim rgen As New System.Random()
68. Dim newdeck As New System.Collections.ArrayList()
69. While (m_cards.Count > 0)
70. ‘ Choose one card at random.
71. Dim removeindex As Integer = rgen.Next(0, m_cards.Count

- 1)
72. Dim removeobject As Object = m_cards(removeindex)
73. m_cards.RemoveAt(removeindex)
74. ‘ Add the removed card to the new collection.
75. newdeck.Add(removeobject)

76. End While
77.
78. ‘ Replace the old deck with the new deck.
79. m_cards = newdeck
80. End Sub
81.
82. // Visual C#
83. public void Shuffle() {
84. System.Random rgen = new System.Random();
85. System.Collections.ArrayList newdeck =
86. new System.Collections.ArrayList();
87. while (m_cards.Count > 0) {
88. // Remove one from m_cards.
89. int toremove = rgen.Next(0, m_cards.Count - 1);
90. Card remove = (Card)m_cards[toremove];
91. m_cards.Remove(remove);
92. // Add it to the new deck.
93. newdeck.Add(remove);
94. }
95.
96. // Replace old deck with new deck.
97. m_cards = newdeck;

}

Add the Count and indexer properties
You can now implement the Count and indexer properties, which use the ArrayList field.
Again, this code is unchanged from Chapter 4, except for additions to support the
Properties window.

1. Add the following code for the Count property:
2. ‘ Visual Basic
3. <Category("Game"), Description(" Number of cards in the deck.")>

 _
4. Public ReadOnly Property Count() As Integer
5. Get
6. Return m_cards.Count
7. End Get
8. End Property
9.
10. // Visual C#
11. [Category("Game")]
12. [Description("Number of cards in the deck.")]
13. public int Count {
14. get { return m_cards.Count; }

}
15. Add the following code for the default property in Visual Basic and the

indexer property in Visual C#:

16. ‘ Visual Basic

17. Default Public ReadOnly Property Cards(ByVal indexer As Intege
r) As Card

18. Get

19. If ((indexer >= 0) And (indexer < m_cards.Count)) Then

20. Return CType(m_cards(indexer), Card)

21. Else

22. Throw New ArgumentOutOfRangeException("Index out of
 range.")

23. End If

24. End Get

25. End Property

26.

27. // Visual C#

28. public Card this[int indexer] {

29. get {

30. if ((indexer >= 0) && (indexer < m_cards.Count)) {

31. return((Card)m_cards[indexer]);

32. }

33. else {

34. throw new ArgumentOutOfRangeException("Index out of r
ange.");

35. }

36. }

}
37. On the Build menu, click Build Solution.
38. Refresh the GamesLibrary reference in the Memory project. Expand

References under Memory in the Solution Explorer, right-click
GamesLibrary and click Remove on the shortcut menu.

39. Right -click References and click Add Reference on the shortcut menu.
Click Browse on the .NET tab, select the GamesLibrary.dll in the
GamesLibrary\obj\
debug folder and click Open. Click OK to close the Add Reference
dialog box.

Testing the Control

You can now add a Deck component to the Memory game. As with the Card control,
you’ll first add the component to the Toolbox. Then all you have to do is drag it onto the
form.

Add the Deck component to the Toolbox
1. Double-click Form1 in the Solution Explorer to open it in the form

designer.
2. Right -click the Games tab of the Toolbox and click Customize Toolbox

on the shortcut menu. The Customize Toolbox dialog box appears.
3. Click the .NET Framework Components tab and then click Browse.
4. Browse to and select the GamesLibrary.dll file, found in the obj\debug

folder of the project folder. Click Open.
5. Select the Deck component in the list and click OK. The Deck

component is added to the Games tab of the Toolbox.

Add a Deck component to the form
1. Drag a Deck component onto the form. An instance named Deck1 or

deck1 (depending on the language you’re using) is added to the
component tray of Form1.

Right -click the Deck1 control in the component tray and click Properties on
the shortcut menu. Notice, in the Properties window, the Suits property of the
Deck component. The ellipsis indicates that you can set the Suits array using
a designer.

2. Explore the designer support by clicking the ellipsis button next to the
Suits property. The Suit Collection Editor appears, as shown here:

77. Click Add to add a Suit value to the list.
78. Use the Value drop-down list in the Properties pane to select the Suit,

as shown here:

79. After you add and delete Suit items and FaceValue items from the

component, notice that the read-only Count property changes to reflect
the number of Card instances in the Deck component.

Creating the Memory Control
The Memory control will use the Card control and the Deck component to implement the
simple Memory game. The entire Memory game is encapsulated in the Memory control.
When you assign a Deck instance to the game and call the Play method, the game is
ready to run.

Add the Memory control to the project
1. Right -click the GamesLibrary project in the Solution Explorer, point to

Add, and then click Add User Control on the shortcut menu. The Add
New Item dialog box appears.

2. Name the new component Memory.vb or Memory.cs, depending on
the language you’re using.

Define the Toolbox icon for the Memory control

To define the icon for the Memory control, add a bitmap named Memory.bmp to the
project.

1. Create a 16-by-16-pixel bitmap for your project, name it Memory.bmp,
and save it in the project directory. An icon is available on the
companion CD in the Chapter08 folder. The file must be named
Memory.bmp.

2. In the Solution Explorer, right-click the GamesLibrary project, click
Add, and then click Add Existing Item in the shortcut menu.

3. In the Add Existing Item dialog box, change the Files Of Type to Image
files.

4. Select the Memory.bmp file and click Open.

5. In the Solution Explorer, right-click the Memory.bmp file and click
Properties on the shortcut menu.

6. In the Properties window, set the Build Action property of the bitmap
file to Embedded Resource.

Add the Rows, Columns, and Deck properties
1. Edit the Memory class code by right-clicking in the designer and

clicking View Code on the shortcut menu.
2. Add the following code to the Memory class for the Rows property.

When the number of rows or columns changes, the control needs to
be redrawn. The call to Refresh will redraw the control. The initial
value is 2, which is more reasonable than the usual 0.

3. ‘ Visual Basic

4. Private m_rows As Integer = 2

5. <Category("Game"), Description("Number of rows in the grid.")> _

6. Public Property Rows() As Integer

7. Get

8. Return m_rows

9. End Get

10. Set(ByVal Value As Integer)

11. If Value > 0 Then

12. m_rows = Value

13. Me.Refresh()

14. End If

15. End Set

16. End Property

17.

18. // Visual C#

19. private int m_rows = 2;

20. [Category("Game")]

21. [Description("Number of rows in the grid.")]

22. public int Rows {

23. get { return m_rows; }

24. set {

25. if (value > 0) {

26. m_rows = value;

27. this.Refresh();

28. }

29. }

}
30. Add the following code for the Columns property:

31. ‘ Visual Basic

32. Private m_columns As Integer = 2

33. <Category("Game"), Description("Number of columns in the grid."
)> _

34. Public Property Columns() As Integer

35. Get

36. Return m_columns

37. End Get

38. Set(ByVal Value As Integer)

39. If Value > 0 Then

40. m_columns = Value

41. Me.Refresh()

42. End If

43. End Set

44. End Property

45.

46. // Visual C#

47. private int m_columns = 2;

48. [Category("Game")]

49. [Description("Number of columns in the grid.")]

50. public int Columns {

51. get { return m_columns; }

52. set {

53. if (value > 0) {

54. m_columns = value;

55. this.Refresh();

56. }

57. }

}
58. Add the following code for the Deck property:

59. ‘ Visual Basic

60. Private m_deck As Deck

61. <Category("Game"), _

62. Description("The deck used to fill the grid with cards.")> _

63. Public Property Deck() As Deck

64. Get

65. Return m_deck

66. End Get

67. Set(ByVal Value As Deck)

68. m_deck = Value

69. End Set

70. End Property

71.

72. // Visual C#

73. private Deck m_deck;

74. [Category("Game")]

75. [Description("The deck used to fill the grid with cards.")]

76. public Deck Deck {

77. get { return m_deck; }

78. set { m_deck = value; }

}

Override the OnPaint method to draw the Memory control
§ Add the following code to override the OnPaint method. The OnPaint

method draws outlines for where the cards will be when the game is
played. This gives the developer a visual guide to what the game will
look like at run time. The Card is a fixed size, and the public constants
FixedHeight and FixedWidth are used to draw the card outlines.
§ ‘ Visual Basic
§ Private Const m_spacing As Integer = 10
§ Protected Overrides Sub OnPaint(ByVal e As _
§ System.Windows.Forms.PaintEventArgs)
§ Dim height As Integer = LotsOfFun.Games.Card.FixedHeight
§ Dim width As Integer = LotsOfFun.Games.Card.FixedWidth
§ Me.Width = (width + m_spacing) * m_columns + m_spacing
§ Me.Height = (height + m_spacing) * m_rows + m_spacing
§
§ ‘ Just draw the outline of the cards; the actual Card
§ ‘ instances are added when Play is called.
§ Dim g As Graphics = Me.CreateGraphics()
§ Dim row, column As Integer
§ For row = 0 To m_rows - 1
§ For column = 0 To m_columns - 1
§ g.DrawRectangle(System.Drawing.Pens.Gray, _
§ column * (width + m_spacing) + m_spacing, _
§ row * (height + m_spacing) + m_spacing, width, height)
§ Next
§ Next
§ End Sub
§
§ // Visual C#
§ private const int m_spacing = 10;
§ protected override void OnPaint(System.Windows.Forms.PaintEv

entArgs e) {
§ int height = LotsOfFun.Games.Card.FixedHeight;
§ int width = LotsOfFun.Games.Card.FixedWidth;
§ this.Width = (width + m_spacing) * m_columns + m_spacing;
§ this.Height = (height + m_spacing) * m_rows + m_spacing;
§ //this.Refresh();
§
§ // Just draw the outline of the cards; the actual Card
§ // instances are added when Play is called.
§ Graphics g = this.CreateGraphics();
§ for (int row = 0; row < m_rows; row++) {
§ for (int column = 0; column < m_columns; column++) {
§ g.DrawRectangle(System.Drawing.Pens.Gray,
§ column * (width + m_spacing) + m_spacing,
§ row * (height + m_spacing) + m_spacing, width, height);
§ }
§ }
§ }

The OnPaint Method and the Paint Event
You have two choices for painting your control: You can override the OnPaint method
or you can add an event handler for the control’s Paint event. If you override the

OnPaint method, you prevent the OnPaint method of the base class from executing. If
you use the Paint event, the base OnPaint method is called and the Paint event
handler is called. Using the Paint event carries a possible performance penalty, since it
involves this additional event call. The choice is yours.

Implement the playing features of the game

The basic design of the game is implemented this way:
1. Shuffle the cards in the deck and display them on the Game control.

Their locations will match the design-time drawing of the control. Note
that Card instances are added to the Memory control, not to the form
that is hosting the Memory control. The Form class has no access to
the Card instances through the Memory control.

2. Use the Click event of the Card control to change the FaceUp property
of the card.

3. After each card is clicked, determine whether a pair has been clicked.
If so, remove the pair from the Memory control. If the cards don’t
match, turn them face down.

4. Continue allowing the user to click the cards until all the cards have
been removed from the Memory control. When the last pair is
removed, raise a GameOver event that reports the number of Card
clicks needed to win the game.

Support the GameOver event
1. Add the following code to the Memory class for the Clicks property that

maintains a count of the times a card was clicked in the game:
2. ‘ Visual Basic
3. Private m_clicks As Integer = 0
4.
5. // Visual C#
6. private int m_clicks = 0;

7. Add the EventArgs class after the Memory class. This class is used to
return the number of clicks needed to win the game. In Visual C#, this
class goes in the LotsOfFun.Games namespace.

8. ‘ Visual Basic

9. Public Class GameOverEventArgs

10. Inherits System.EventArgs

11.

12. Private m_clicks As Integer

13. Public Sub New(ByVal clicks As Integer)

14. m_clicks = clicks

15. End Sub

16.

17. Public ReadOnly Property Clicks() As Integer

18. Get

19. Return m_clicks

20. End Get

21. End Property

22. End Class

23.

24. // Visual C#

25. public class GameOverEventArgs : System.EventArgs {

26. private int m_clicks;

27.

28. public GameOverEventArgs(int clicks) {

29. m_clicks = clicks;

30. }

31.

32. public int Clicks {

33. get { return m_clicks; }

34. }

}
35. Add the event declaration to the Memory class. In the case of Visual

C#, the event declaration includes the delegate declaration.

36. ‘ Visual Basic

37. Public Event GameOver(sender As Object, e as GameOverEvent
Args)

38.

39. // Visual C#

40. public delegate void

41. GameOverHandler(object sender, GameOverEventArgs e);

public event GameOverHandler GameOver;
42. Add the DefaultEvent attribute, shown in boldface, to the class

declaration:

43. ‘ Visual Basic
44. <DefaultEvent("GameOver")> _
45. Public Class Memory
46. Inherits System.Windows.Forms.UserControl
47.
48. // Visual C#
49. [DefaultEvent("GameOver")]

public class Memory : System.Windows.Forms.UserControl

Implement the game play
In the client code, the developer adds a Memory control to the form and sets the Rows,
Columns, and Deck properties. At run time, the Play method is called to populate the
control with Card instances.

One of the challenges in implementing the game play is tracking the Card instances. The
instances are initially created and contained in the Deck component, and they are never
removed from the Deck component. To display the Cards during game play, add them to
the Controls collection of the Memory control. When the player selects a pair, those
cards are removed from the collection of the Memory control. Since you control (through
your code) the controls in the Controls collection, you’ll know the game is over when the
Controls collection has no controls in it.

1. Add the following code for the DeckGridIncompatibilityException class,
after the GameOverEventArgs class. This exception is thrown if the
number of cards in the deck doesn’t match the number of slots in the
Memory game layout.
2. ‘ Visual Basic
3. Public Class DeckGridIncompatibilityException

4. Inherits System.ApplicationException
5.
6. Public Sub New()
7. MyBase.New()
8. End Sub
9.
10. Public Sub New(ByVal message As String)
11. MyBase.New(Message)
12. End Sub
13.
14. Public Sub New(ByVal message As String, _
15. ByVal innerException As Exception)
16. MyBase.New(message, InnerException)
17. End Sub
18. End Class
19.
20. // Visual C#
21. public class DeckGridIncompatibilityException
22. : System.ApplicationException {
23.
24. public DeckGridIncompatibilityException() : base() {
25. }
26.
27. public DeckGridIncompatibilityException(string message)
28. : base(message) {
29. }
30.
31. public DeckGridIncompatibilityException(string message,
32. Exception innerException) : base(message, innerException)

{
33. }

}
34. Add the following CardOver method to the Memory class for the Click

event handler for the Card instances. This method will be called each
time a player clicks a Card control during a game. Since the Card
instances are added at run time, you can’t just double-click them in the
designer to create the event handler in the code editor. You use the
AddHandler method in Visual Basic—or the += operator in Visual C#—
to assign the event handler to the Card’s click event.

35. ‘ Visual Basic

36. Private Sub CardOver(ByVal sender As Object, ByVal e As Syste
m.EventArgs)

37. Dim theCard As Card = CType(sender, Card)

38. theCard.FaceUp = Not theCard.FaceUp

39. theCard.Refresh()

40. m_clicks += 1

41. CheckForPair()

42. If (Me.Controls.Count = 0) Then

43. RaiseEvent GameOver(Me, New GameOverEventArgs(m_cl
icks))

44. End If

45. End Sub

46.

47. // Visual C#

48. private void CardOver(object sender, System.EventArgs e) {

49. Card card = (Card)sender;

50. card.FaceUp = !card.FaceUp;

51. card.Refresh();

52. m_clicks++;

53. CheckForPair();

54. if ((this.Controls.Count == 0) && (GameOver != null)) {

55. GameOver(this, new GameOverEventArgs(m_clicks));

56. }

}
57. Add the following code for the Play method. It calls a private method to

check for and remove pairs from the game.

58. ‘ Visual Basic

59. Public Sub Play()

60. ‘ Reset controls and clicks before starting the next game.

61. Dim aControl As Control

62. For Each aControl In Me.Controls

63. RemoveHandler aControl.Click, AddressOf Me.CardOver

64. Next

65. Me.Controls.Clear()

66.

67. ‘ If m_deck is null, the grid is empty, and there is

68. ‘ no game play.

69. If Not IsNothing(m_deck) Then

70. ‘ The deck should have the right number of cards

71. ‘ before the game can begin.

72. If (m_deck.Count <> (m_rows * m_columns)) Then

73. Throw New DeckGridIncompatibilityException(String.Form
at(_

74. "Cards: {0} Cells: {1}", m_deck.Count, m_rows * m_colu
mns))

75. End If

76.

77. ‘ Add the cards from the deck to the game.

78. m_clicks = 0

79. m_deck.Shuffle()

80. Dim cardCounter As Integer = 0

81. Dim row, column As Integer

82. For row = 0 To m_rows - 1

83. For column = 0 To m_columns - 1

84. Dim aCard As Card = CType(m_deck(cardCounter), Ca
rd)

85. aCard.FaceUp = False

86. AddHandler aCard.Click, AddressOf Me.CardOver

87. Me.Controls.Add(aCard)

88. aCard.Left = column * (Card.FixedWidth + m_spacing)
_

89. + m_spacing

90. aCard.Top = row * (Card.FixedHeight + m_spacing) _

91. + m_spacing

92. cardCounter += 1

93. Next

94. Next

95. End If

96. End Sub

97.

98. // Visual C#

99. public void Play() {

100. // Reset controls and clicks before starting the next game.

101. foreach (Control control in this.Controls) {

102. control.Click -= new System.EventHandler(this.CardOver);

103. }

104. this.Controls.Clear();

105.

106. // If m_deck is null, the grid is empty, and there is

107. // no game play.

108. if (m_deck != null) {

109. // The deck should have the right number of cards

110. // before the game can begin.

111. if (m_deck.Count != (m_rows * m_columns)) {

112. throw new DeckGridIncompatibilityException(String.Form
at(

113. "Cards: {0} Cells: {1}", m_deck.Count, m_rows * m_colum
ns));

114. }

115.

116. // Add the cards from the deck to the game.

117. m_clicks = 0;

118. m_deck.Shuffle();

119. int cardCounter = 0;

120. for (int row = 0; row < m_rows; row++) {

121. for (int column = 0; column < m_columns; column++) {

122. Card card = m_deck[cardCounter];

123. card.FaceUp = false;

124. card.Click += new System.EventHandler(this.CardOver
);

125. this.Controls.Add(card);

126. card.Left = column * (Card.FixedWidth + m_spacing)

127. + m_spacing;

128. card.Top = row * (Card.FixedHeight + m_spacing)

129. + m_spacing;

130. cardCounter++;

131. }

132. }

133. }

}
134. Add the following code for the CheckForPair method. This method

first counts the number of cards that are face up. If two cards are face
up and the face values don’t match, the cards are turned face down. If
the cards match, they’re removed from the Controls collection of the
Memory control, and thus aren’t displayed. Remember that Card
instances are still contained in the Deck instance. For that reason, the
Dispose method isn’t called. The CardOver event handler is removed.
It will be added again if another game is played. If this event handler
wasn’t removed and the game was restarted, the Card control would
have the CardOver method attached twice and the CardOver method
would be called twice for each click. The call to Sleep allows the player
to have a look at the cards before they’re turned over or removed.

135. ‘ Visual Basic

136. Private Sub CheckForPair()

137. System.Threading.Thread.Sleep(500)

138. Dim nFaceUp As Integer = 0

139. Dim cards(1) As Card

140. Dim count As Integer

141. For count = 0 To Me.Controls.Count - 1

142. Dim aCard As Card = CType(Me.Controls(count), Card)

143. If aCard.FaceUp Then

144. cards(nFaceUp) = aCard

145. nFaceUp += 1

146. End If

147. Next

148.

149. If nFaceUp = 2 Then

150. If (cards(0).FaceValue = cards(1).FaceValue) Then

151. Me.Controls.Remove(cards(0))

152. Me.Controls.Remove(cards(1))

153. RemoveHandler cards(0).Click, AddressOf Me.CardOver

154. RemoveHandler cards(1).Click, AddressOf Me.CardOver

155. Me.Refresh()

156. Else

157. cards(0).FaceUp = False

158. cards(1).FaceUp = False

159. End If

160. End If

161. End Sub

162.

163. // Visual C#

164. private void CheckForPair() {

165. System.Threading.Thread.Sleep(500);

166. int nfaceup = 0;

167. Card[] cards = new Card[2];

168. for (int i = 0; i < this.Controls.Count; i++) {

169. Card card = (Card)this.Controls[i];

170. if (card.FaceUp) {

171. cards[nfaceup] = card;

172. nfaceup++;

173. }

174. }

175.

176. if (nfaceup == 2) {

177. if (cards[0].FaceValue == cards[1].FaceValue) {

178. this.Controls.Remove(cards[0]);

179. this.Controls.Remove(cards[1]);

180. cards[0].Click -
= new System.EventHandler(this.CardOver);

181. cards[1].Click -
= new System.EventHandler(this.CardOver);

182. this.Refresh();

183. }

184. else {

185. cards[0].FaceUp = false;

186. cards[1].FaceUp = false;

187. }

188. }

189. }

Build the solution
1. On the Build menu, click Rebuild Solution.
2. Refresh the GamesLibrary reference in the Memory project. Expand

References under Memory in the Solution Explorer, right-click
GamesLibrary and click Remove on the shortcut menu.

3. Right -click References and click Add Reference on the shortcut menu.
Click Browse on the .NET tab, select the GamesLibrary.dll in the
GamesLibrary\obj\
debug folder and click Open. Click OK to close the Add Reference
dialog box.

The LotsOfFun.Games library is now complete. You can now finish the
programming for the Memory game.

The Memory Game Application

To program the game, you’ll add a Deck component and a Memory control to the user
interface form. You’ll use the designer to set the properties of the Deck component and
the Memory control and add a little code to start the game running.

Add the LotsOfFun.Games controls to the Toolbox
1. Open Form1 from the Memory project, and delete any controls that

you added for testing.
2. Right -click the Games tab of the Toolbox and click Customize Toolbox

on the shortcut menu. The Customize Toolbox dialog box appears.
3. On the .NET Framework Components tab, click Browse and navigate

to and select the GamesLibrary.dll in the obj\debug folder. Click Open
to add the controls and component in the library to the .NET
Framework Components tab.

4. Click Assembly By Name to sort the list and then select the check
boxes for the latest version of the Card, Deck, and Memory
components. Clear the check boxes for any older versions of the
components and controls you find in the list, and then click OK.

Create the user interface
1. Drag a Deck and a Memory component to the form.
2. Right -click the Deck component, Deck1, and click Properties on the

shortcut menu. Deck1 is created with 52 cards.
3. Click the ellipsis button next to the FaceValues property to display the

FaceValue Collection Editor.
4. Remove members until only the Ace, Jack, Queen, and King remain

and then click OK. With four suits and four face values, a deck of 16
cards will be generated at run time.

5. Select the Memory control.
6. Set the Rows property to 4.
7. Set the Columns property to 4.
8. Set the Deck property to Deck1.
9. Resize Form1 and move the Memory control until it appears as shown

here:

Program the game play
1. In the designer, double-click the form to create the Load event

handler. Use this event to start the game, as shown in this code:
2. ‘ Visual Basic
3. Private Sub Form1_Load(ByVal sender As System.Object, _
4. ByVal e As System.EventArgs) Handles MyBase.Load
5. Me.Memory1.Play()
6. End Sub
7.
8. // Visual C#

9. private void Form1_Load(object sender, System.EventArgs e) {
10. this.memory1.Play();

}
11. In the designer, double-click the Memory control to create the

GameOver event handler. Add the following code to tell the user how
many clicks it took to win the game, and to ask if the user would like to
play again.

12. ‘ Visual Basic

13. Private Sub Memory1_GameOver(ByVal sender As System.Obje
ct, ByVal e _

14. As LotsOfFun.Games.GameOverEventArgs) Handles Memory1.
GameOver

15. Dim result As DialogResult

16. result = MessageBox.Show("You win in " & e.Clicks & _

17. " turns." & ControlChars.CrLf & "Play again?", _

18. "Game over", MessageBoxButtons.YesNo)

19. If (result = DialogResult.Yes) Then

20. Me.Memory1.Play()

21. End If

22. End Sub

23.

24. // Visual C#

25. private void memory1_GameOver(object sender,

26. LotsOfFun.Games.GameOverEventArgs e) {

27. DialogResult result;

28. result = MessageBox.Show("You win in " + e.Clicks +

29. " turns.\nPlay again?", "Game over", MessageBoxButtons.Y
esNo);

30. if (result == DialogResult.Yes) {

31. this.memory1.Play();

32. }

}
33. In the Solution Explorer, right-click the Memory project and click Set

As Startup Project on the shortcut menu.
34. Press F5 to run the program and play the game, shown here:

Quick Reference
To Do this

Create a
component

Right -click the GamesLibrary project in the
Solution Explorer, point to Add, and
then click Add Component on the short-
cut menu. The Add New Item dialog box
appears.

Assign a Toolbox
bitmap to a
component or
control

Add a 16-by-16-pixel bitmap to the pro-
ject that has the same name as the control.
Set the Build Action property of the bit-
map to EmbeddedResource.

Assign a Properties
window
category to a
property

Add the Category attribute to the property
declaration. In Visual Basic, this must be
on the same line.
‘ Visual Basic
<Category("Game")>

 // Visual C#
[Category("Game")]

Assign a Properties
window
description to a
property

Add the Description attribute to the
property declaration. In Visual Basic, this
must be on the same line.
‘ Visual Basic
<Description("Face value")>

 // Visual C#
[Description("Face value")]

Create a class Select the Class Library template when

To Do this

library creating a new project.

Add a control or
component to
the Toolbox

Right -click the Toolbox and click

 Customize Toolbox in the shortcut menu.

 Click the .NET Framework
Components tab.

 Click Browse, navigate to and select the
class library, and then click Open.

 On the .NET Framework
Components tab, select the items
you want to add to the Toolbox and
click OK.

Chapter 9: Providing Services Using
Interfaces

Overview
ESTIMATED
TIME

2 hr. 45 min.

In this chapter, you’ll learn how to

§ Create an interface.
§ Implement an interface that you created.
§ Implement the IComparable interface.
§ Implement the IEnumerable and IEnumerator interfaces.
§ Implement the IFormattable interface.
§ Use an inner class.

In Chapters 5 and 6, you used inheritance to make new classes out of existing classes.
When classes are related by inheritance, you can refer to a derived instance through a
base reference value. This polymorphic behavior isn’t limited to derived classes. Visual
Basic .NET and Visual C# provide another construct, the interface, that also behaves
polymorphically. In the Microsoft .NET Framework, interfaces are commonly used to
provide services for a class. The interface can support something your object can do, but
that service doesn’t fall into the is-a relationship found in inheritance.

An IMoveable Interface

An interface is like an abstract class with all abstract members. The interface serves as a
contract that defines what methods, properties, and events a class must implement. In
this chapter, you’ll create an interface, implement it in a class, and use the class
polymorphically through an interface reference.

Your first task is to create an IMoveable interface and implement it in a Pawn class. This
interface might be useful if you were moving objects around as part of a game. The
classes in the the project can be so different that they aren’t related by inheritance, but
they do share the ability to be moved around. The IMoveable interface provides a
standard interface for relocating objects. This interface is described in the following UML
diagram:

This diagram introduces a new UML element for an interface. Technically, the property,
as the construct that contains a get and a set method, isn’t supported by UML. In earlier
exercises, I’ve used the upper section of the class diagram, called the attributes section,
to specify the properties. The attributes section contains the data members of a case,
which often have a one-to-one correspondence with the properties. Other languages
don’t have the property construct and thus list the private data members in the attributes
section, while the get and set methods are shown in the methods section. The property
construct fits nicely with the attributes section in a class element, but this
correspondence breaks down in the case of an interface element because the interface
element, as defined by the UML, doesn’t have an attribute section. Because interfaces
carry no implementation, they don’t have instance data, only methods. So to fit the
property concept into the UML interface, the getters and setters are shown as Get and
Set methods. The IMoveable interface contains two properties, X and Y, and a Move
method that takes two parameters for direction (up, down, left, right) and distance.

The following diagram is a shorthand style of representing interfaces in UML. This style
is used more commonly than the extended version shown previously.

Define the IMoveable interface
This short example is a console application rather than a Windows application. The
output of the program appears in the command prompt window. The interface defines
the location of the object as X and Y properties and includes a Move method for moving
the object around.

1. On the File menu, point to New, and then click Project.
2. Click Visual Basic or Visual C# in the Project Types tree.
3. In the Templates list, click Console Application.
4. Name the application MoveIt, and click OK.
5. On the Project menu, click Add New Item.
6. In the Add New Item dialog box, click Code File in the Templates list,

name the new file IMoveable.vb or IMoveable.cs, and click Open.

7. Add the following code to declare the IMoveable interface. If you’re
using Visual C#, add a namespace declaration so that the IMoveable
interface is in the same namespace as the other classes in the project.

8. ‘ Visual Basic

9. Public Interface IMoveable

10. End Interface

11.

12. // Visual C#

13. namespace MoveIt {

14. public interface IMoveable {

15. }

}
16. Add an enumeration to indicate which direction the object is to move.

Add this enumeration immediately before the interface. Although
Visual Basic allows the definition of nonpublic enumerations inside the
interface, Visual C# does not.

17. ‘ Visual Basic

18. Public Enum Direction

19. Up

20. Down

21. Left

22. Right

23. End Enum

24.

25. // Visual C#

26. public enum Direction { Up, Down, Left, Right };
27. Add the two property declarations to the interface definition. The public

keyword isn’t allowed in interface definitions. The purpose of the
interface is to define what methods, properties, and events a class will
support. Private members don’t make sense in this context. The Visual
Basic definition allows the Readonly and Writeonly modifiers of
properties. In the case of Visual C#, you need to show which of the
accessors need to be implemented.

28. ‘ Visual Basic

29. Property X() As Integer

30. Property Y() As Integer

31.

32. // Visual C#

33. int X {

34. get;

35. set;

36. }

37.

38. int Y {

39. get;

40. set;

}
41. Add the Move declaration to the interface:

42. ‘ Visual Basic

43. Sub Move(ByVal aDirection As Direction, ByVal howFar As Integ
er)

44.

45. // Visual C#

void Move(Direction direction, int howFar);

The interface is complete. To make it usable, you need to implement the interface in a
class.

Implement the IMoveable interface in the Pawn class
In the Pawn class, you implement the X and Y properties and the Move method.

1. On the Project menu, click Add Class. Name the new class Pawn.
2. Modify the class to indicate that it will implement the IMoveable

interface.

3. ‘ Visual Basic

4. Public Class Pawn

5. Implements IMoveable

6. End Class

7.

8. // Visual C#

9. public class Pawn : IMoveable {

10. }
Visual C# uses the same syntax for declaring base classes and interfaces.
Visual Basic uses the Implements keyword to indicate the interfaces of a
class. Notice that after you type the Implements keyword, IntelliSense
displays a list of interfaces. The icon next to the interface name is similar to
the UML symbol.

13. If you’re using Visual Basic, click IMoveable in the Class Name list. In

the Method Name list, click Move. The declaration for the Move
method is added to the class. Repeat this procedure for the X and Y
properties of IMoveable.

If you’re using Visual C#, in the Class View, expand the Pawn class and
Bases And Interfaces. Right-click the IMoveable interface in the Class View,
point to Add, and then click Implement Interface on the shortcut menu. The
declarations for all the members are added to the class. In addition, the code
is enclosed in region statements that make that section of code collapsible.

14. Add a field for the X property, and implement the X property:

15. ‘ Visual Basic

16. Private m_x As Integer = 0

17. Public Property X() As Integer Implements MoveIt.IMoveable.X

18. Get

19. Return m_x

20. End Get

21. Set(ByVal Value As Integer)

22. m_x = Value

23. End Set

24. End Property

25.

26. // Visual C#

27. private int m_x;

28. public int X {

29. get { return m_x; }

30. set { m_x = value; }

}
Notice that Visual Basic uses the Implements keyword again to specify which
interface member is being implemented. The Implements keyword is followed
by the qualified name of the method. The fully qualified name takes the form
Namespace.ClassName.MemberName. Unless you have added a
namespace declaration or changed the default project properties, the
namespace is the same as the project name. The Visual C# compiler makes
the determination without the special keyword by using the signature.
You don’t use the Overrides or override keyword when you’re implementing
the interface member. The code isn’t overriding a base class member. The
interface is strictly a contract about what will be found in the class interface.

31. Add a field for the Y property, and implement the Y property. For
Visual Basic, you add the keyword Implements and the qualified name
of the member implemented. In Visual C#, the compiler matches the
class method to the interface method.

32. ‘ Visual Basic

33. Private m_y As Integer = 0

34. Public Property Y() As Integer Implements MoveIt.IMoveable.Y

35. Get

36. Return m_y

37. End Get

38. Set(ByVal Value As Integer)

39. m_y = Value

40. End Set

41. End Property

42.

43. // Visual C#

44. private int m_y;

45. public int Y {

46. get { return m_y; }

47. set { m_y = value; }

}
48. Add code for the Move method:

49. ‘ Visual Basic

50. Public Sub Move(ByVal aDirection As MoveIt.Direction, ByVal ho
wFar _

51. As Integer) Implements MoveIt.IMoveable.Move

52. Select Case aDirection

53. Case Direction.Up

54. m_y += howFar

55. Case Direction.Down

56. m_y -= howFar

57. Case Direction.Left

58. m_x -= howFar

59. Case Direction.Right

60. m_x += howFar

61. End Select

62. End Sub

63.

64. // Visual C#

65. public void Move(Direction direction, int howFar) {

66. switch (direction) {

67. case Direction.Up :

68. m_y += howFar;

69. break;

70. case Direction.Down :

71. m_y -= howFar;

72. break;

73. case Direction.Left :

74. m_x -= howFar;

75. break;

76. case Direction.Right :

77. m_x += howFar;

78. break;

79. }

}
80. Add one method to the Pawn class that’s not part of the IMoveable

interface:

81. ‘ Visual Basic

82. Private m_captured As Boolean = False

83. Public Property Captured() As Boolean

84. Get

85. Return m_captured

86. End Get

87. Set(ByVal Value As Boolean)

88. m_captured = Value

89. End Set

90. End Property

91.

92. // Visual C#

93. private bool m_captured = false;

94. public bool Captured {

95. get { return m_captured; }

96. set { m_captured = value; }

}

That completes the implementation of the IMoveable interface in the Pawn class.

Test the IMoveable interface

When you created the project as a console application, Visual Studio .NET created a
start-up method. Now you add code to that method to test the Pawn class.

1. If you’re using Visual Basic, double-click Module1.vb in the Solution
Explorer to open the file in the code editor.

If you’re using Visual C#, double-click Class1.cs in the Solution Explorer to
open the file in the code editor.

2. Add code to the Main method. Note that mover is declared as
IMoveable yet instantiated as Pawn. You can’t instantiate an interface;
it does not have implementation.

3. ‘ Visual Basic

4. Sub Main()

5. Dim mover As IMoveable = New Pawn()

6. mover.X = 10

7. mover.Y = 10

8. Console.WriteLine("X:{0} Y:{1}", mover.X, mover.Y)

9. Console.WriteLine("Moving up 5 spaces.")

10. mover.Move(Direction.Up, 5)

11. Console.WriteLine("X:{0} Y:{1}", mover.X, mover.Y)

12.

13. Dim aPawn As Pawn = CType(mover, Pawn)

14. Console.WriteLine("Is the pawn captured? {0}", aPawn.Capture
d)

15. End Sub

16.

17. // Visual C#

18. static void Main(string[] args)

19. IMoveable mover = new Pawn();

20. mover.X = 10;

21. mover.Y = 10;

22. Console.WriteLine("X:{0} Y:{1}", mover.X, mover.Y);

23. Console.WriteLine("Moving up 5 spaces.");

24. mover.Move(Direction.Up, 5);

25. Console.WriteLine("X:{0} Y:{1}", mover.X, mover.Y);

26.

27. Pawn pawn = (Pawn)mover;

28. Console.WriteLine("Is the pawn captured? {0}", pawn.Captured
);

29. }
Using a reference to an interface is similar to using a reference to a base
class. The reference variable mover has access only to the members of
IMoveable, though you can set it to refer to an instance of Pawn. To access
the Pawn members of the mover reference, you must cast the reference to
Pawn. In a larger application, the mover reference could be pointing to some
other game piece, such as a King or a Queen. As you type the code, look
closely at the IntelliSense lists to see these differences.

30. Press Ctrl+F5 to run the program. If you press F5, the output flashes
briefly. Running the program with Ctrl+F5 gives you a chance to
examime the output. Here’s the output:

.NET Framework Interfaces

The .NET Framework defines several interfaces from which you can choose to
implement your classes. These interfaces usually buy you some extra functionality for
your object. Most of the interfaces contain only a few members, and many contain only
one. Others are more complex. For the complex interfaces, you’re often able to inherit
from a .NET Framework class that implements the interface. Some of the interfaces are
described in the following table:
Interface Benefits

IComparable Defines sorting
of class
instances. It’s
useful if you
want
to use the
class as a key
value in
SortedList or
support
the Sort
method of the
ArrayList.

IEnumerable and
IEnumerator

These two
classes work
together to
support using
For
Each or
foreach with
your class.

IFormattable Allows you to
define custom
formatting

strings for your
class.

IList Allows your
class to serve
as a data
source for
controls
such as
ListBox and
DataGrid. The
base
implementation
is List.

ICloneable Allows you to
define exactly
how your
object is
copied.

IComponent Provides your
class with
design-time
support as a
component.
The base
implementation
is Component.

IDataErrorInfo Allows you to
attach data
error
information to
a class.
Supporting this
interface
allows you to
use the
Windows
Forms
DataError
control.

In the next few sections, you’ll create a simple class that represents a point. You’ll use
this class as a basis for implementing the IComparable, IEnumerable, IEnumerator, and
IFormattable interfaces. These interfaces make your class more user friendly for other
developers.

Implementing the IComparable Interface
The IComparable interface allows you to define an order for class instances. If your class
represents an object that carries a meaningful interpretation of more or less, first or last,
or larger or smaller, it’s reasonable to define the IComparable interface for your class.
IComparable has one member, the CompareTo method. In this example, you implement
a class that represents a point and compare points based on distance from the origin.

Create the SortablePoint class
1. Create a new Windows application project, and name it Points.
2. Add a new class to the project, and name the class SortablePoint.
3. Add the X and Y properties to the SortablePoint class:

4. ‘ Visual Basic

5. Private m_x As Integer = 0

6. Public Property X() As Integer

7. Get

8. Return m_x

9. End Get

10. Set(ByVal Value As Integer)

11. m_x = Value

12. End Set

13. End Property

14.

15. Private m_y As Integer = 0

16. Public Property Y() As Integer

17. Get

18. Return m_y

19. End Get

20. Set(ByVal Value As Integer)

21. m_y = Value

22. End Set

23. End Property

24.

25. // Visual C#

26. private int m_x = 0;

27. public int X {

28. get { return m_x; }

29. set { m_x = value; }

30. }

31.

32. private int m_y = 0;

33. public int Y {

34. get { return m_y; }

35. set { m_y = value; }

}
36. Add the constructors. If you’re using Visual C#, you don’t need to add

the parameterless constructor.

37. ‘ Visual Basic

38. Public Sub New()

39. End Sub

40.

41. Public Sub New(ByVal x As Integer, ByVal y As Integer)

42. m_x = x

43. m_y = y

44. End Sub

45.

46. // Visual C#

47. public SortablePoint() {

48. }

49.

50. public SortablePoint(int x, int y) {

51. m_x = x;

52. m_y = y;

}

Add the IComparable interface
1. Add the IComparable interface to the class declaration:

2. ‘ Visual Basic
3. Public Class SortablePoint
4. Implements IComparable
5. ‘ Code for the class is here.
6. :
7. End Class
8.
9. // Visual C#
10. public class SortablePoint : IComparable {
11. // Code for the class is here.
12. :

}
13. If you’re using Visual Basic, click IComparable in the Class Name list.

In the Method Name list, click CompareTo. The declaration for the
CompareTo method is added to the class.

If you’re using Visual C#, in the Class View, expand the SortablePoint class
and Bases And Interfaces. Right-click the IComparable interface in the Class
View, point to Add, and then click Implement Interface. The declaration for the
CompareTo method is added to the class.

‘ Visual Basic

Public Function CompareTo(ByVal obj As Object) As Integer _

 Implements System.IComparable.CompareTo

End Function

// Visual C#

#region Implementation of IComparable

public int CompareTo(object obj) {

 return 0;

}

#endregion
The CompareTo method compares the one class instance, Me or this, to
another instance of the class, obj. If the two instances are equal, according to
the class’s definition of sorting, CompareTo returns 0. If the Me or this
instance is larger (comes second), CompareTo returns a positive integer. If
the Me or this instance is smaller (comes first), CompareTo returns a negative
integer.

14. Add code to the CompareTo function and create a helper function,
SquaredDistance. Points are compared two at a time, so it doesn’t
matter what value is returned by the CompareTo method, as long as a
positive number is returned if the Me or this point is farther away than
the other point. The SquaredDistance method returns the squared
distance of the point from the origin. If the CompareTo method used

the actual distance to compare distances, the code would have to
work with System.Double values. Working with System.Double values
has three disadvantages. First, it negatively affects performance.
Second, because of the way doubles are stored, it’s more work to test
for equivalence. Third, the code has to convert the difference back into
an integer, the return type of CompareTo.

15. ‘ Visual Basic

16. Public Function CompareTo(ByVal obj As Object) As Integer _

17. Implements System.IComparable.CompareTo

18. Return Me.SquaredDistance() - _

19. CType(obj, SortablePoint).SquaredDistance()

20. End Function

21.

22. Private Function SquaredDistance() As Integer

23. Return (m_x * m_x) + (m_y * m_y)

24. End Function

25.

26. // Visual C#

27. #region Implementation of IComparable

28. public int CompareTo(object obj) {

29. return this.SquaredDistance() -

30. ((SortablePoint)obj).SquaredDistance();

31. }

32.

33. private int SquaredDistance() {

34. return (m_x * m_x) + (m_y * m_y);

35. }

#endregion

Test the interface

The straightforward way to test the IComparable interface would be to create a list of
points, sort them, and then print out the sorted points to check that they’re in order.
Instead of doing that, this procedure generates a group of randomly placed points. You
draw the points on the form and let the color density vary according to the sort order.

1. Open Form1 in the designer, and drag a Button control onto the form.
Set the Text property to Draw.

2. Double-click the Draw button to create the Click event handler.
3. Add this code to generate points, sort them, and display them on the

form. The ArrayList’s Sort method uses the IComparable.CompareTo
method to sort the SortablePoint instances. The intensity of the color
depends on the point’s position among the sorted points. The higher
the value, the less intense the color.

4. ‘ Visual Basic

5. Private Sub Button1_Click(ByVal sender As System.Object, _

6. ByVal e As System.EventArgs) Handles Button1.Click

7. Dim points As New ArrayList()

8. Dim rgen As New System.Random()

9. Dim pt As SortablePoint

10. Dim count As Integer

11. Dim graph As Graphics = Me.CreateGraphics

12. Dim aColor As Color

13. For count = 0 To 249

14. points.Add(New SortablePoint(rgen.Next(200), rgen.Next(20
0)))

15. Next

16.

17. points.Sort()

18.

19. For count = 0 To 249

20. pt = CType(points(count), SortablePoint)

21. aColor = System.Drawing.Color.FromArgb(25, 25, count)

22. Dim brush As New System.Drawing.SolidBrush(aColor)

23. graph.FillEllipse(brush, pt.X, pt.Y, 10, 10)

24. brush.Dispose()

25. Next

26. End Sub

27.

28. // Visual C#

29. private void button1_Click(object sender, System.EventArgs e) {

30. ArrayList points = new ArrayList();

31. System.Random rgen = new System.Random();

32. SortablePoint pt;

33. Graphics graph = this.CreateGraphics();

34.

35. for (int count = 0; count < 250; count++) {

36. points.Add(new SortablePoint(rgen.Next(200), rgen.Next(20
0)));

37. }

38.

39. points.Sort();

40.

41. for (int count = 0; count < 250; count++) {

42. pt = (SortablePoint)(points[count]);

43. Color color = System.Drawing.Color.FromArgb(25, 25, count
);

44. System.Drawing.SolidBrush brush =

45. new System.Drawing.SolidBrush(color);

46. graph.FillEllipse(brush, pt.X, pt.Y, 10,10);

47. brush.Dispose();

48. }

}

49. Press F5 to run the program. Each time you click the Draw button, 250
more points are added to the form. Because the points aren’t drawn in
the Paint event, the points won’t stay on the form if you minimize and
then maximize it. To get a clear indication that the points are being
sorted, comment out the call to Sort, and then run the program.

Implementing the IEnumerable and IEnumerator Interfaces
In the preceding example, you generated the points, added them to an ArrayList object,
sorted them, and then drew them on the form. In this next example, you create a class,
SortedPointList, that holds a group of points. Instead of using a for loop to access the
members of the ArrayList class and then casting each item to the SortablePoint type,
you’ll be able to use a For Each (or foreach in Visual C#) block that returns only a
SortablePoint object.
The IEnumerable interface has one member, the GetEnumerator method. The
GetEnumerator method returns an instance of a class that implements the IEnumerator
interface. The IEnumerator interface has three members, the Reset and MoveNext
methods and the Current property. The three members work together to enumerate the
members of the SortedPointList class, points, as you see here:

‘ Visual Basic

Dim enumerator As IEnumerator = points.GetEnumerator()

dim pt As SortablePoint

While enumerator.MoveNext

 pt = CType(enumerator.Current, SortablePoint)

 ‘ Use the SortablePoint instance here.

End While

// Visual C#

IEnumerator enumerator = points.GetEnumerator();

SortablePoint pt;

while (enumerator.MoveNext()) {

 pt = (SortablePoint)enumerator.Current;

 // Use the SortablePoint instance here.

}

Create the SortedPointList class
1. Add a new class to the project, and name it SortedPointList.
2. Modify the class to add the IEnumerable interface:

3. ‘ Visual Basic

4. Public Class SortedPointList

5. Implements IEnumerable

6. End Class

7.

8. // Visual C#

9. public class SortedPointList : IEnumerable {

10. }
11. If you’re using Visual Basic, add the parameterless constructor:

12. ‘ Visual Basic

13. Public Sub New()

End Sub
14. If you’re using Visual C#, add a using statement for the

System.Collections namespace:

15. // Visual C#

using System.Collections;
16. Add an instance of ArrayList and a method named AddRandomPoints,

which adds a number of randomly generated points to the ArrayList
class. This code is nearly identical to the Click event handler code for
the Draw button in the previous section.

17. ‘ Visual Basic

18. Private m_points As New ArrayList()

19. Public Sub AddRandomPoints(ByVal howMany As Integer, _

20. ByVal maximum As Integer)

21. m_points.Clear()

22. Dim rgen As New System.Random()

23. Dim count As Integer

24. For count = 0 To howMany - 1

25. m_points.Add(_

26. New SortablePoint(rgen.Next(maximum), rgen.Next(maxi
mum)))

27. Next

28. m_points.Sort()

29. End Sub

30.

31. // Visual C#

32. private ArrayList m_points = new ArrayList();

33. public void AddRandomPoints(int howMany, int maximum) {

34. m_points.Clear();

35. System.Random rgen = new System.Random();

36. for (int count = 0; count < howMany; count++) {

37. m_points.Add(new SortablePoint(rgen.Next(maximum),

38. rgen.Next(maximum)));

39. }

40. m_points.Sort();

}

Add the IEnumerator inner class
1. Declare a new class inside the PointList class, named

PointEnumerator, that implements the IEnumerator interface.
2. ‘ Visual Basic
3. Private Class PointEnumerator
4. Implements IEnumerator
5. End Class
6.
7. // Visual C#
8. private class PointEnumerator : IEnumerator {

}
The PointEnumerator class is called an inner class because it’s defined within
another class. An instance of this class is created and returned by the
GetEnumerator method. The user of the PointEnumerator instance needs to
know only that the class implements the IEnumerator interface. So the only
class that needs to know about the PointEnumerator class is the
SortedPointList class.

9. If you’re using Visual Basic, click IEnumerator in the Class Name list.
In the Method Name list, click Reset. The declaration for the Reset
method is added to the class. Repeat this procedure for the MoveNext
method and the Current property in the IEnumerator interface.

If you’re using Visual C#, in Class View, expand the SortedPointList class, the
PointEnumerator class, and Bases And Interfaces. Right-click the
IEnumerator interface, point to Add, and then click Implement Interface on the
shortcut menu. The declarations for the IEnumerator methods are added to
the class as you see here:

‘ Visual Basic

Private Class PointEnumerator

 Implements IEnumerator

 Public ReadOnly Property Current() As Object _

 Implements System.Collections.IEnumerator.Current

 Get

 End Get

 End Property

 Public Function MoveNext() As Boolean _

 Implements System.Collections.IEnumerator.MoveNext

 End Function

 Public Sub Reset() Implements System.Collections.IEnumerator.Reset

 End Sub

End Class

// Visual C#

#region Implementation of IEnumerator

public void Reset() {

}

public bool MoveNext() {

 return true;

}

public object Current {

 get {

 return null;

 }

}

#endregion
10. Add these fields to the class PointEnumerator. The first member refers

to the m_points collection of the SortedPointsList instance. The
m_position is the current position in the enumeration. The
m_initialCount is the count of points in m_points when the enumerator
is instantiated. By convention in the .NET Framework, the
enumerator’s MoveNext and Current members should fail if the
collection being enumerated changes during enumeration. In this
example, you’ll use the initial count of points to test whether the
ArrayList class has changed.

11. ‘ Visual Basic

12. Dim m_points As ArrayList

13. Dim m_position As Integer = -1

14. Dim m_initialCount As Integer

15.

16. // Visual C#

17. ArrayList m_points;

18. int m_position = -1;

int m_initialCount;
19. Add the constructor to the class to initialize the points list:

20. ‘ Visual Basic

21. Public Sub New(ByVal points As ArrayList)

22. m_points = points

23. m_initialCount = points.Count

24. End Sub

25.

26. // Visual C#

27. public PointEnumerator(ArrayList points) {

28. m_points = points;

29. m_initialCount = points.Count;

30. }
31. Add this code for the Reset method. You implement the enumerator by

adding 1 to m_position with each call to MoveNext. The Current
property returns the item in the ArrayList m_points at the m_position
index. Because the first value in the enumeration is found by calling

the MoveNext method, the Reset method needs to hold the value of
the index right before the first element in the ArrayList. The first
element in ArrayList is at index 0, so the Reset method sets
m_position to −1.

32. ‘ Visual Basic

33. Public Sub Reset() Implements System.Collections.IEnumerator.
Reset

34. m_position = -1

35. End Sub

36.

37. // Visual C#

38. public void Reset() {

39. m_position = -1;

}
40. Add the following code for the MoveNext method. The first test

determines whether SortablePoint instances have been added or
deleted from the m_points ArrayList. If not, m_position is incremented.
Otherwise, the code throws an exception, InvalidOperationException.

41. ‘ Visual Basic

42. Public Function MoveNext() As Boolean _

43. Implements System.Collections.IEnumerator.MoveNext

44. If (m_initialCount = m_points.Count) Then

45. m_position += 1

46. If (m_position >= m_points.Count) Then

47. Return False

48. Else

49. Return True

50. End If

51. Else

52. Throw New InvalidOperationException(_

53. "Collection has changed during enumeration.")

54. End If

55. End Function

56.

57. // Visual C#

58. public bool MoveNext() {

59. if (m_initialCount == m_points.Count) {

60. m_position++;

61. if (m_position >= m_points.Count) {

62. return false;

63. }

64. else {

65. return true;

66. }

67. }

68. else {

69. throw new InvalidOperationException(

70. "Collection has changed during enumeration.");

71. }

72. return true;

}
73. Add this code for the Current property:

74. ‘ Visual Basic

75. Public ReadOnly Property Current() As Object _

76. Implements System.Collections.IEnumerator.Current

77. Get

78. If (m_initialCount <> m_points.Count) Then

79. Throw New InvalidOperationException(_

80. "Collection has changed during enumeration.")

81. ElseIf (m_position >= m_points.Count) Then

82. Throw New InvalidOperationException(_

83. "Enumeration value is invalid.")

84. Else

85. Return m_points(m_position)

86. End If

87. End Get

88. End Property

89.

90. // Visual C#

91. public object Current {

92. get {

93. if (m_initialCount != m_points.Count) {

94. throw new InvalidOperationException(

95. "Collection has changed during enumeration.");

96. }

97. else if (m_position >= m_points.Count) {

98. throw new InvalidOperationException(

99. "Enumeration value is invalid.");

100. }

101. else {

102. return m_points[m_position];

103. }

104. }

}
Now that you’ve defined the enumerator for the class, you can implement the
GetEnumerator method in the SortedPointList class.

Add the IEnumerable interface
1. If you’re using Visual Basic, click IEnumerable in the Class Name list.

In

the Method Name list, click GetEnumerator. The declaration for the
GetEnumerator method is added to the class.

If you’re using Visual C#, in the Class View, expand the SortedPointList class
and Bases And Interfaces. Right-click the IEnumerable interface in the Class
View, point to Add, and then click Implement Interface on the shortcut menu.
The declaration for the GetEnumerator method is added to the class.

2. Add this code for the GetEnumerator method:

3. ‘ Visual Basic

4. Public Function GetEnumerator() As System.Collections.IEnumer
ator _

5. Implements System.Collections.IEnumerable.GetEnumerator

6. Return New PointEnumerator(m_points)

7. End Function

8.

9. // Visual C#

10. #region Implementation of IEnumerable

11. public System.Collections.IEnumerator GetEnumerator() {

12. return new PointEnumerator(m_points);

13. }

#endregion

Test the interfaces
1. Modify the button click code in the Form1 class so that it uses the For

Each or foreach control structure.
2. ‘ Visual Basic
3. Private Sub Button1_Click(ByVal sender As System.Object, _
4. ByVal e As System.EventArgs) Handles Button1.Click
5. Dim points As New SortedPointList()
6. points.AddRandomPoints(250, 200)
7. Dim graph As Graphics = Me.CreateGraphics
8. Dim count As Integer = 1
9. Dim aColor As Color
10. Dim pt As SortablePoint
11.
12. For Each pt In points
13. aColor = System.Drawing.Color.FromArgb(25, 25, count)
14. count += 1
15. Dim brush As New System.Drawing.SolidBrush(aColor)
16. graph.FillEllipse(brush, pt.X, pt.Y, 10, 10)
17. brush.Dispose()
18. Next
19. end sub
20.
21. // Visual C#
22. private void button1_Click(object sender, System.EventArgs e) {
23. SortedPointList points = new SortedPointList();
24. points.AddRandomPoints(250, 200);
25. Graphics graph = this.CreateGraphics();
26.
27. int count = 1;
28. foreach(SortablePoint pt in points) {
29. Color color = System.Drawing.Color.FromArgb(25,25,count+

+);
30. System.Drawing.SolidBrush brush =
31. new System.Drawing.SolidBrush(color);

32. graph.FillEllipse(brush, pt.X, pt.Y, 10,10);
33. brush.Dispose();
34. }

}
35. Press F5 to run the program. The results are similar to those of the

first example.

Implementing the IFormattable interface
In Chapter 5, you used the following formatting expression to display a System.Decimal
value as a currency value:

‘ Visual Basic

MessageBox.Show(String.Format("{0:C}", account.Balance))

// Visual C#

MessageBox.Show(String.Format("{0:C}", account.Balance));
The System.Decimal data type has defined the format string C so that it returns a string
representing currency. You can also define custom formatting schemes for the classes
you create. In the next task, you’ll add two custom formatting options to the
SortablePoint class. The first, a long option indicated by L, prints the point as (x, y). The
second, a short option indicated by S, prints the point as x:y. You’ll define three
overloads of the ToString method to provide consistent formatting behavior for the
SortablePoint class. The three overloads are described in the following table.

Overload Behavior

ToString() ‘ Visual Basic
Dim p As New SortablePoint(1,2)
Dim s As String = p.ToString()

 // Visual C#
Point p = new SortablePoint(1,2);
string s = p.ToString();

 Value of s:
(1, 2)

ToString(format As String) ‘ Visual Basic
Dim p As New SortablePoint(1,2)
Dim plong As String = p.ToString("L")
Dim pshort As String = p.ToString("S")

ToString(string format); // Visual C#
Point p = new SortablePoint(1,2);
string plong = p.ToString("L");
string pshort = p.ToString("S");

 Value of plong:
(1, 2)

 Value of pshort:
1:2

ToString(format As String, _
formatprovider As _
 IFormatProvider)

‘ Visual Basic
 Dim p As New SortablePoint(1,2)
Dim s As String =_
 String.Format("{0:L}", p)

ToString(string format,
IFormatProvider
formatProvider);

// Visual C#
Point p = new SortablePoint(1,2);
string s = string.Format("{0:L}", p);

 Value of s:
(1, 2)

The first overload overrides the ToString method found in the System.Object class.
System.Object is the base class for every Visual Basic and Visual C# class. The second
overload is a ToString method defined just for the class. It’s neither an override of a base
implementation nor an implementation of an interface method. The last overload is the
implementation of the IFormattable.ToString method, the only member of the
IFormattable interface. This is the version of ToString that’s called if a formatting
expression is evaluated. You could also implement an IFormatProvider class to provide
additional formatting options for base types. In this example, if this code doesn’t
recognize the format string, you pass the IFormatProvider interface along to another call
to the ToString method.

Add the IFormattable interface
1. Add the IFormattable interface to the list of interfaces for the

SortablePoint class:
2. ‘ Visual Basic
3. Public Class SortablePoint
4. Implements IComparable, IFormattable
5. :
6. End Class
7.
8. // Visual C#
9. public class SortablePoint : IComparable, IFormattable {
10. :

}
11. Add this code to implement the IFormattable.ToString method.

Because the System.Object class implements a parameterless
ToString method, this ToString method is an overload. If the
SortablePoint class doesn’t recognize the formatting string, the
individual methods create a string by passing the formatProvider to the
ToString methods of the individual fields.

12. ‘ Visual Basic

13. Public Function ToString(ByVal format As String, _

14. ByVal formatProvider As System.IFormatProvider) As String _

15. Implements System.IFormattable.ToString

16. Dim result As String

17. Select Case format.ToUpper()

18. Case "L"

19. result = String.Format("({0}, {1})", m_x, m_y)

20. Case "S"

21. result = String.Format("{0},{1}", m_x, m_y)

22. Case Else

23. result = (m_x.ToString(format, formatProvider) & " " _

24. & m_y.ToString(format, formatProvider))

25. End Select

26. Return result

27. End Function

28.

29. // Visual C#

30. #region Implementation of IFormattable

31. public string ToString(string format, System.IFormatProvider

32. formatProvider) {

33. string result;

34. switch (format.ToUpper()) {

35. case "L" :

36. result = string.Format("({0}, {1})", X, Y);

37. break;

38. case "S" :

39. result = string.Format("{0}:{1}", X, Y);

40. break;

41. default :

42. result = X.ToString(formatProvider) + " "

43. + Y.ToString(formatProvider);

44. break;

45. }

46. return result;

47. }

#endregion

Overload the ToString method
§ Add two more overloads of ToString so that the SortablePoint class is

formatted consistently in all the ToString methods. Each overload calls
the ToString method implemented for the IFormattable interface. The
default ToString method for the SortablePoint class returns the long
version.
§ ‘ Visual Basic
§ Public Overrides Function ToString() As String
§ Return Me.ToString("L")
§ End Function
§
§ Public Function ToString(ByVal format As String) As String
§ Return Me.ToString(format, Nothing)
§ End Function
§
§ // Visual C#
§ public override string ToString() {
§ return this.ToString("L");
§ }
§
§ public string ToString(string format) {
§ return this.ToString(format, null);

}

Test the IFormattable interface
1. Replace the code in the Click event handler for the Draw button with

this code, which creates a few points and then draws them labeled
with their coordinates:
2. ‘ Visual Basic
3. Private Sub Button1_Click(ByVal sender As System.Object, _
4. ByVal e As System.EventArgs) Handles Button1.Click
5. Dim points As New SortedPointList()
6. points.AddRandomPoints(5, 200)
7. Dim graph As Graphics = Me.CreateGraphics
8. Dim pt As SortablePoint
9.
10. For Each pt In points

11. graph.FillEllipse(System.Drawing.Brushes.Black, pt.X, pt.Y,
10, 10)

12. Dim ptlocation As String = String.Format("{0:L}", pt)
13. graph.DrawString(ptlocation, New Font("Arial", 8), _
14. System.Drawing.Brushes.Black, pt.X + 11, pt.Y)
15. Next
16. End Sub
17.
18. // Visual C#
19. private void button1_Click(object sender, System.EventArgs e) {
20. SortedPointList points = new SortedPointList();
21. points.AddRandomPoints(5, 200);
22. Graphics graph = this.CreateGraphics();
23.
24. foreach (SortablePoint pt in points) {
25. graph.FillEllipse(System.Drawing.Brushes.Black, pt.X, pt.Y,
26. 10, 10);
27. string ptlocation = String.Format("{0:L}", pt);
28. graph.DrawString(ptlocation, new Font("Arial", 8),
29. System.Drawing.Brushes.Black, pt.X + 11, pt.Y);
30. }
31. }

32. Press F5 to run the program. Here’s an example of the output:

Two Other Uses of Interfaces

In programming with the .NET Framework, you’ll implement interfaces primarily to
provide services from your class. You might, in addition, use an interface for a project in
the following two situations.
Multiple inheritance Classes created in Visual Basic and Visual C# can have only one
base class, but they can implement multiple interfaces. Because interfaces behave
polymorphically, like base classes, you can use interfaces to simulate multiple
inheritance. Suppose you were creating a Backyard class and wanted it to derive from
both Lawn and Garden, but Lawn and Garden didn’t share a common base class other
than System.Object. You could choose to implement an ILawn interface and then
implement the ILawn interface in a Lawn class. You then create Garden as a base class.
When you create the Backyard class, it inherits from Garden and implements ILawn as
you see here:

‘ Visual Basic

Public Class Backyard

 Inherits Garden

 Implements ILawn

End Class

// Visual C#

public class Backyard : Garden, ILawn {

}
It would appear that you haven’t gained much from this code because you have to
reimplement all the members of ILawn. Fortunately, you can use containment and
delegation to reuse some of your work. In the Backyard class, you can create a private
instance of the Lawn class. This is containment. You then implement the ILawn methods
by calling the corresponding method of the private Lawn instance. This is called
delegation. You’re delegating the work of the ILawn interface to the contained Lawn
member. Suppose the ILawn class has a Grow method and a Height property. Your code
might look something like this:

‘ Visual Basic

Public Class Backyard

 Inherits Garden

 Implements ILawn

 Private m_lawn As New Lawn()

 Public Sub Grow() Implements ILawn.Grow

 m_lawn.Grow()

 End Sub

 Public Property Height() As Integer Implements ILawn.Height

 Get

 Return m_lawn.Height

 End Get

 Set(ByVal Value As Integer)

 m_lawn.Height = Value

 End Set

 End Property

End Class

// Visual C#

public class Backyard : Garden, ILawn {

 private Lawn m_lawn = new Lawn();

 #region Implementation of ILawn

 public void Grow() {

 m_lawn.Grow();

 }

 public int Height {

 get { return m_lawn.Height; }

 set { m_lawn.Height = value; }

 }

 #endregion

}
Data views In Chapter 3 you created an array of SourceFile classes that you were able
to use as a data source in a DataGrid control. In general, you want the data model to fit
the data well, and then you want to provide methods to support a user interface. You
may also want to limit the amount of control the user interface has over the model. For
example, you might not want to allow updates. You can prevent updates by
implementing an interface on your class. When you create a reference to the data model
for the user interface, you provide only a reference to the interface. You could, of course,
provide a reference to the full model, but using an interface can let the compiler do some
of the work, alerting you when you’re attempting to update data.

Quick Reference

To Do this

Declare an
interface

‘ Visual Basic
Public Interface InterfaceName
End Interface

 // Visual C#
public interface InterfaceName {
}

Declare an
interface property

‘ Visual Basic
Property PropertyName() As Integer

 // Visual C#
int PropertyName {
 get;
 set;
}

Declare an
interface method

‘ Visual Basic
Sub Move(ByVal aDirection As Direction,
_ByVal howFar As Integer)

 // Visual C#
void Move(Direction direction, int howFar);

Declare a class
that
implements an
interface

‘ Visual Basic
Public Class ClassName
 Implements InterfaceName
End Class

 // Visual C#
public class Pawn : InterfaceName {
}

Support For Each
or foreach
for a class

Implement the IEnumerable interface.

Support sorting
on a class

Implement the IComparable interface.

Provide custom
string
formatting for a
class

Implement the IFormattable interface.

Chapter 10: Using Classes Interchangeably
Through Polymorphism

Overview
ESTIMATED
TIME

3 hr. 30 min.

In this chapter, you’ll learn how to

§ Use derived classes polymorphically.
§ Override a base class event (Visual C#).
§ Raise an event from the base class (Visual Basic).
§ Create a class that derives from the UserControl class.

In the first several chapters, you used classes as abstractions of objects in the real
world, creating classes to represent books, playing cards, and trains. In Chapter 8, you
saw how to use inheritance of the Component class to make client code easier to write.
In this chapter, you’ll see how to use object-oriented design, and polymorphism in
particular, to solve a programming task. Polymorphism allows you to refer to an instance
of a derived class through a base reference variable, but when you call a method or use
a property, the method or property called is the one defined in the derived class. Thus,
derived classes can respond in different ways to the same method call. In this chapter’s
example, the class is designed to represent an object that solves both the real world
problem and the programming problem. You’ll see how polymorphism simplifies the
programming task and makes the design more easily extensible.

Pattern Maker

Your task in this chapter is to create an application that allows a user to create a set of
patterns. The user can draw the patterns by using straight lines or by importing a bitmap
file created in another application, such as Paint. The following graphic shows the user
interface.

The user selects a pattern by clicking one of the patterns in the Templates panel. When
clicked, the pattern is displayed in an editor that allows the user to modify the pattern.
The particular type of editor depends on the template type. This application has two
types of pattern templates. In the first type, the user modifies the pattern by drawing lines
in a square. In the second type, the user selects an existing bitmap file that contains a
drawing of a pattern. Both editor types contain a Save button. When the user clicks
Save, the modified pattern is saved in the Patterns panel.

Pattern Maker Design

The Pattern Maker application presents two common programming tasks that can be
accomplished by using polymorphism. The first challenge is to display the correct editor
based on the pattern selected. The second is to create new instances of the patterns.

Designing the Pattern and Editor Classes

The Pattern Maker application supports two different pattern types: a drawn pattern and
a bitmap pattern. If you can design the two pattern types to have the same base class,
you can write one set of code to work with both types. Additionally, you can add more
pattern types without rewriting your code. This polymorphic solution has the following
advantages:

§ You can easily add a new pattern type. You’ll write one block of code
that deals only with base class references. At run time, you supply the
derived class instances. To extend the application, you implement
additional derived classes.

§ The code is less repetitive. If you didn’t use polymorphism in this
application, you’d have a block of code that created a new drawn pattern
and displayed an editor for it. You’d have an almost identical block of
code that did the same thing with the bitmap pattern. Polymorphism
allows you to write and debug the code that creates and displays a
pattern only once. The differences in how the patterns are created and
displayed are handled in the derived class code.

§ There are fewer class names in the application. In the Pattern Maker
application, you’ll have a Pattern base class and DrawnPattern and
BitmapPattern derived classes. You’ll be able to limit references to
DrawnPattern and BitmapPattern to one method of the client code. The
rest of the client code will use only references to Pattern instances. This
reduces the number of classes you have to keep track of while you’re
working, thus simplifying the programming task.

What we want to design is a base class—Pattern—that contains the functionality for both
a drawn pattern and a bitmap pattern. Ideally, you could extend the Pattern class at a
later date with other pattern types, without having to rewrite the Pattern class or the
existing derived classes.

The Pattern class you’ll implement is able to
§ Supply its own editor—through a GetEditor method—that returns a

customized UserControl. To edit the pattern, all the client code needs
to do is ask the Pattern instance for an instance of its editor. Because the
editor is derived from UserControl, it merely needs to be added to the
Controls collection of a form to be displayed at run time. The editor in this
application is also represented by a base class, the PatternEditor class.

§ Make copies of itself, by way of a Clone method. The user clicks a
particular pattern in the Templates panel, and the Pattern instance in the
panel simply makes a copy of itself. The client code doesn’t need to
know the derived type of the class. It just needs to ask for a copy, and
then ask the copy for its editor.

The PatternEditor class you’ll implement will
§ Derive from the UserControl class. This means you’ll be able to

develop the editor as a unit, and then display it on the form at run time by
simply adding an instance to the form’s Controls collection.

§ Implement a Saved event. The user interface responds to the Saved
event by moving the edited pattern to the Patterns pane and removing
the editor from the form. Removing the editor is as simple as removing
the editor, a UserControl, from the form’s Controls collection.

The following graphic shows the relevant UML for the base classes Pattern and
PatternEditor:

Each pattern type is implemented by deriving from both a Pattern and a PatternEditor
class. The UML for the relationship between the base classes and the drawn pattern
classes is shown here:

It’s important to understand that Pattern and PatternEditor will never be instantiated.
Only the derived classes DrawnPattern, DrawnPatternEditor, BitmapPattern (not shown
in the preceding diagram), and BitmapPatternEditor are instantiated. Also remember that
DrawnPattern creates only DrawnPatternEditor instances and BitmapPattern creates
only BitmapPatternEditor instances.

Using these classes, the basic control flow in the form code looks something like this:
1. At startup, the application loads a few template patterns into the

Templates panel. The Pattern class implements a Draw method to
facilitate this. This startup code doesn’t use polymorphism because
the derived classes must be instantiated specifically.

2. The user clicks one of the templates, which is an instance of either the
DrawnPattern or the BitmapPattern class. The event handler for the
Click event doesn’t determine the derived type of the clicked pattern,
but simply accesses the instance through a Pattern reference.

3. A copy of the instance is created by calling the Clone method. This call
behaves polymorphically.

4. A new PatternEditor instance is created by calling the GetEditor
method of the selected instance. Again this call behaves
polymorphically.

5. The PatternEditor instance, which derives from UserControl, is added
to the form’s Controls collection and displayed on the form.

6. The user changes the pattern by using the PatternEditor.
7. The user clicks the Save button, which is part of the PatternEditor

control. The Click event handler for the Save button saves the
changes to the pattern and raises the Saved event to the form.

8. In response to the Saved event, the Pattern instance is added to the
Patterns panel and the PatternEditor—a UserControl—is removed
from the form’s control collection and disposed of.

The Base Classes

The two base classes in this project are the Pattern and PatternEditor classes. These
classes have very few members—just the functions needed to create, draw, edit, and
save the Pattern instances. These members create the class interface that will be used
throughout the client code. The behavior of the calls will be defined in the derived
classes. At run time, the client code uses mostly references to the base class, but the
behavior will depend on the derived class instantiated.

Create the Pattern class

The Pattern class has only three members and is an abstract class, meaning that it can’t
be instantiated but instead a new class must derive from it. This leaves the entire
implementation to the derived classes, which is appropriate considering how varied the
derived classes might be.

1. Create a new Windows Application project. Name it PatternMaker.

2. Add a new class to the project. Name it Pattern.
3. Modify the class declaration to include the following abstract keyword

shown in boldface:

4. ‘ Visual Basic
5. Public MustInherit Class Pattern
6. End Class
7.
8. // Visual C#
9. public abstract class Pattern {

}
10. Add the following abstract members to the class:

11. ‘ Visual Basic

12. Public MustOverride Sub Draw(ByVal sender As Object, _

13. ByVal e As System.Windows.Forms.PaintEventArgs)

14. Public MustOverride Function GetEditor() As PatternEditor

15. Public MustOverride Function Clone() As Pattern

16.

17. // Visual C#

18. public abstract void Draw(object sender,

19. System.Windows.Forms.PaintEventArgs e);

20. public abstract PatternEditor GetEditor();

public abstract Pattern Clone();
The Draw method has the same signat ure as the Paint method for Windows
Forms controls. By using the same signature as the Paint method, you can
add this method as an event handler to the Paint method of any control. You’ll
take advantage of this when you create the user interface portion of the
project.

Notice that all the properties and methods of the Pattern class refer only to the Pattern
and PatternEditor classes. In the derived classes, the GetEditor method returns an
instance of either the DrawnPatternEditor or BitmapPatternEditor class. The return type
of GetEditor is PatternEditor, which allows the derived classes to return any type that
derives from PatternEditor. The new instance can be added to the Controls collection of
the form because the PatternEditor class derives from UserControl. The Clone method
returns a copy of the Pattern instance. In the derived classes, the instance returned will
be of either the DrawnPattern or BitmapPattern class.

Create the PatternEditor class
PatternEditor is a class—derived from the UserControl class—that implements a Saved
event. As I said in Chapter 6, you might typically design base classes as abstract
classes. In this case, the class isn’t declared as an abstract class because you want to
design the derived classes in the Windows Forms Designer. To do this, a class must
inherit from a concrete (nonabstract) class.

1. Add a UserControl to the project. Name it PatternEditor.
2. If you’re using C#, add the SavedEventHandler delegate to the

PatternEditor.cs file in the PatternMaker namespace:

3. // Visual C#

public delegate void SavedEventHandler(object sender, EventArgs e);
4. Add the declaration for the Saved event to the PatternEditor class. If

you’re using Visual C#, the event is virtual and will be overridden in the
derived classes. Events aren’t inheritable in Visual Basic.

5. ‘ Visual Basic

6. Public Event Saved(sender As Object, e As EventArgs)

7.

8. // Visual C#

public virtual event SavedEventHandler Saved;
9. If you’re using Visual Basic, add the following method to the

PatternEditor class to raise the Saved event. Events in the base class
can’t be raised in the derived class. This method, which will be
accessible from the derived classes, raises the Saved event. Also note
that it wouldn’t work to just implement a Saved event in each derived
class. For the event to behave polymorphically, it must be declared in
the base class.

10. ‘ Visual Basic

11. Public Sub RaiseSaved(ByVal sender As Object, ByVal e As Eve
ntArgs)

12. RaiseEvent Saved(sender, e)

End Sub

The Derived Classes

For each pattern type, you implement a pair of classes that derive from Pattern and
PatternEditor. The classes derived from PatternEditor will implement only the Saved
event. The classes derived from Pattern will implement the abstract members and add
members for creating new instances. Any public members that you add to a derived
class can be accessed only by using a reference of the derived class type. Because we
want to use the classes polymorphically, through a base reference, it doesn’t make
sense to add public members to the class. But because we ultimately have to create
instances of the Pattern-derived classes, each class derived from PatternEditor needs a
custom constructor that accepts an instance of the Pattern-derived class and a member
to store that instance.

Create the DrawnPattern class

The underlying structure of the drawn pattern is an ordered collection of points in a 60-
by-60-pixel grid. The user creates the pattern by drawing a line from one point to the next
in connect-the-dots fashion. The following illustration from a test version shows the list of
points and the resulting pattern.

1. Add a new class to the project. Name it DrawnPattern.
2. Add an Imports or using statement at the beginning of the

DrawnPattern source file to include the System.Drawing namespace.
The points will be stored as an array of System.Drawing.Point . Adding
the Imports or using statement allows you to use the unqualified name,
Point, in the code.

3. ‘ Visual Basic

4. Imports System.Drawing

5.

6. // Visual C#

using System.Drawing;
7. Modify the class declaration to indicate that the class derives from the

Pattern class.

8. ‘ Visual Basic

9. Public Class DrawnPattern

10. Inherits Pattern

11. End Class

12.

13. // Visual C#

14. public class DrawnPattern : Pattern {

}
15. Add the following array and the property to store the points:

16. ‘ Visual Basic

17. Private m_points() As Point = New Point() {}

18. Public Property Points() As Point()

19. Get

20. Return m_points

21. End Get

22. Set(ByVal Value As Point())

23. m_points = Value

24. End Set

25. End Property

26.

27. // Visual C#

28. private Point[] m_points = new Point[0];

29. public Point[] Points {

30. get { return m_points; }

31. set { m_points = value; }

}
32. Define the Draw method. The client code can assign this method as

the event handler to any control that raises a Paint event.

33. ‘ Visual Basic

34. Public Overrides Sub Draw(ByVal sender As Object, _

35. ByVal e As System.Windows.Forms.PaintEventArgs)

36. e.Graphics.DrawRectangle(Pens.Black, 0, 0, 60, 60)

37. Dim point As Integer

38. For point = 0 To m_points.Length - 2

39. Dim ptOne As Point = m_points(point)

40. Dim ptTwo As Point = m_points(point + 1)

41. e.Graphics.DrawLine(System.Drawing.Pens.Black, ptOne, pt
Two)

42. Next

43. End Sub

44.

45. // Visual C#

46. public override void Draw(object sender,

47. System.Windows.Forms.PaintEventArgs e) {

48. e.Graphics.DrawRectangle(Pens.Black, 0, 0, 60, 60);

49. for(int point = 0; point < m_points.Length - 1; point++) {

50. Point ptOne = m_points[point];

51. Point ptTwo = m_points[point+1];

52. e.Graphics.DrawLine(System.Drawing.Pens.Black, ptOne, pt
Two);

53. }

}
54. Define the GetEditor method. You might get a compile error at this

point because you haven’t yet implemented the DrawnPatternEditor
class. (You’ll do that in the next section.)

55. ‘ Visual Basic

56. Public Overrides Function GetEditor() As PatternEditor

57. Return New DrawnPatternEditor(Me)

58. End Function

59.

60. // Visual C#

61. public override PatternEditor GetEditor() {

62. return new DrawnPatternEditor(this);

}
63. Define the Clone method. This method allocates new memory for all

the objects contained in the new instance, and copies the value from
the Me or this instance to the new instance.

64. ‘ Visual Basic

65. Public Overrides Function Clone() As Pattern

66. Dim newPattern As New DrawnPattern

67. newPattern.m_points = CType(m_points.Clone(), Point())

68. return newPattern

69. End Function

70.

71. // Visual C#

72. public override Pattern Clone() {

73. DrawnPattern newPattern = new DrawnPattern();

74. newPattern.m_points = (Point[])m_points.Clone();

75. return newPattern;

}

That completes the DrawnPattern class.

Create the DrawnPatternEditor class

DrawnPatternEditor is a user control with a Saved event added. The purpose of the
control is to give the user a graphical interface for drawing lines in a 60-by-60-pixel

square. When the user clicks Save, those points are saved back to the DrawnPattern
instance, and the Saved event is raised.

1. Add a UserControl to the project. Name it DrawnPatternEditor.
By creating the class first from the UserControl class, you allow Visual Studio
to generate all the override code needed to design a UserControl. In the last
step, you’ll change the class declaration to indicate the base class is the
PatternEditor class.

2. Open the DrawnPatternEditor class in the form designer and set the
Size property in the Properties window to 175, 150. The control needs
to fit into the space reserved on the main form, which will have a size
of 200, 175.

3. Add the following controls and set their properties as shown in the
table.

Control Property Value

PictureBox Name pictureBox1

 Size 62, 62

 Location 8, 16

Label Name label1

 Location 8, 88

 Text (blank)

Button Name save

 Location 8, 120

 Text Save

4. Your control should look like this:

5.
11. Open the DrawnPatternEditor class in the code editor and add a field

for the points that define the drawing. DrawnPatternEditor maintains a
separate array of points that are copied back to the DrawnPattern
instance when the user clicks the Save button.

12. ‘ Visual Basic
13. Private m_Points() As Point = New Point() {}
14.
15. // Visual C#

private Point[] m_points = new Point[0];
16. Add the following field to refer to the DrawnPattern instance being

edited. DrawnPatternEditor holds this reference so that it can copy the
new set of points back after the user clicks Save.

17. ‘ Visual Basic

18. Private m_pattern As DrawnPattern

19.

20. // Visual C#

21. private DrawnPattern m_pattern;

22. Add the following constructor to take one parameter—the
DrawnPattern object. The constructor will copy the points from the
DrawnPattern object to the DrawnPatternEditor object, save the
reference to the DrawnPattern object, and assign a drawing method
for the PictureBox control.

23. ‘ Visual Basic

24. Public Sub New(ByVal pattern As DrawnPattern)

25. MyBase.New()

26. InitializeComponent()

27.

28. ReDim Me.m_Points(pattern.Points.Length - 1)

29. pattern.Points.CopyTo(Me.m_Points, 0)

30. AddHandler Me.pictureBox1.Paint, AddressOf Me.Draw

31. m_pattern = pattern

32. End Sub

33.

34. // Visual C#

35. public DrawnPatternEditor(DrawnPattern pattern)

36. {

37. InitializeComponent();

38.

39. this.m_points = new Point[pattern.Points.Length];

40. pattern.Points.CopyTo(this.m_points, 0);

41. this.pictureBox1.Paint += new PaintEventHandler(this.Draw);

42. m_pattern = pattern;

}
43. Add the Draw method for the PictureBox control.

44. ‘ Visual Basic

45. Public Sub Draw(ByVal sender As Object, _

46. ByVal e As System.Windows.Forms.PaintEventArgs)

47. e.Graphics.DrawRectangle(New Pen(Brushes.Black, 1), 0, 0, 6
0, 60)

48. Dim point As Integer

49. For point = 0 To m_Points.Length - 2

50. Dim one As Point = m_Points(point)

51. Dim two As Point = m_Points(point + 1)

52. e.Graphics.DrawLine(Pens.Black, one, two)

53. Next

54. End Sub

55.

56. // Visual C#

57. public void Draw(object sender, System.Windows.Forms.PaintEv
entArgs e) {

58. e.Graphics.DrawRectangle(new Pen(Brushes.Black,1),0,0, 60,
60);

59. for(int point = 0; point < m_points.Length - 1; point++) {

60. Point one = m_points[point];

61. Point two = m_points[point + 1];

62. e.Graphics.DrawLine(Pens.Black, one, two);

63. }

64. }
65. Create the event handler for the picture box’s MouseMove event and

add the following code to display the current mouse coordinates in the
label control. In Visual C#, create the event handler by double-clicking
the event in the PictureBox’s Properties window.

66. ‘ Visual Basic

67. Private Sub pictureBox1_MouseMove(ByVal sender As Object, _

68. ByVal e As System.Windows.Forms.MouseEventArgs) _

69. Handles pictureBox1.MouseMove

70. Me.label1.Text = String.Format("({0}, {1})", e.X, e.Y)

71. End Sub

72.

73. // Visual C#

74. private void pictureBox1_MouseMove(object sender,

75. System.Windows.Forms.MouseEventArgs e) {

76. this.label1.Text = string.Format("({0}, {1})", e.X, e.Y);

}
77. Create the event handler for the picture box’s MouseDown event and

add the following code to add a new point to the pattern and redraw
the picture box. In Visual C#, create the event handler by double-
clicking the event in the PictureBox’s Properties window.

78. ‘ Visual Basic

79. Private Sub pictureBox1_MouseDown(ByVal sender As Object, _

80. ByVal e As System.Windows.Forms.MouseEventArgs) _

81. Handles pictureBox1.MouseDown

82. ReDim Preserve m_Points(m_Points.Length)

83. m_Points(m_Points.Length - 1) = New Point(e.X, e.Y)

84. Me.Refresh()

85. End Sub

86.

87. // Visual C#

88. private void pictureBox1_MouseDown(object sender,

89. System.Windows.Forms.MouseEventArgs e) {

90. Point[] newPoints = new Point[m_points.Length + 1];

91. m_points.CopyTo(newPoints,0);

92. newPoints[newPoints.Length-1] = new Point(e.X, e.Y);

93. m_points = newPoints;

94. this.Refresh();

}
95. If you’re using Visual C#, add the event declaration to the

DrawnPatternEditor class. Events can’t be overridden in Visual Basic.

96. // Visual C#

97. public override event SavedEventHandler Saved;
98. Double-click Save to create the Click event handler and add the

following code to save the points back to the DrawnPattern instance
and raise the Saved event. The RaiseSaved method won’t appear in
IntelliSense because the base class at this point is UserControl, not
PatternEditor.

99. ‘ Visual Basic

100. Private Sub save_Click(ByVal sender As System.Object, _

101. ByVal e As System.EventArgs) Handles save.Click

102. m_pattern.Points = m_Points

103. MyBase.RaiseSaved(Me, New System.EventArgs())

104. End Sub

105.

106. // Visual C#

107. private void save_Click(object sender, System.EventArgs e) {

108. m_pattern.Points = m_points;

109. if (this.Saved != null) {

110. this.Saved(this, new System.EventArgs());

111. }

}
112. Modify the class declaration to indicate that the class derives from the

PatternEditor class instead of the UserControl class.

113. ‘ Visual Basic

114. Public Class DrawnPatternEditor

115. Inherits PatternEditor

116. :

117. End Class

118.

119. // Visual C#

120. public class DrawnPatternEditor : PatternEditor {

121. :

}

Create the BitmapPattern class
To create the BitmapPattern class, you’ll again implement a pair of classes that derive
from the Pattern and PatternEditor classes. The BitmapPattern class maintains the name
of the bitmap file for the pattern. BitmapPatternEditor maintains a reference to the
BitmapPattern instance and a copy of the bitmap filename. After the user selects a new
bitmap file and clicks the Save button, the new filename is saved to the BitmapPattern
instance.

1. Add a new class to the project. Name it BitmapPattern.
2. Modify the class declaration to indicate that the class derives from the

Pattern class.

3. ‘ Visual Basic

4. Public Class BitmapPattern

5. Inherits Pattern

6. End Class

7.

8. // Visual C#

9. public class BitmapPattern : Pattern {

}
10. Add the following field and property to store the filename of the bitmap:

11. ‘ Visual Basic

12. Private m_bitmapFile As String = ""

13. Public Property BitmapFile() As String

14. Get

15. Return m_bitmapFile

16. End Get

17. Set(ByVal Value As String)

18. m_bitmapFile = Value

19. End Set

20. End Property

21.

22. // Visual C#

23. private string m_bitmapFile = "";

24. public string BitmapFile {

25. get { return m_bitmapFile; }

26. set { m_bitmapFile = value; }

}
27. Define the Draw method. Just as with the DrawnPattern class, the

user interface code will use this method to display the pattern.

28. ‘ Visual Basic

29. Public Overrides Sub Draw(sender As Object, _

30. e As System.Windows.Forms.PaintEventArgs)

31. e.Graphics.DrawImage(new _

32. System.Drawing.Bitmap(m_bitmapFile), 0, 0)

33. End Sub

34.

35. // Visual C#

36. public override void Draw(object sender,

37. System.Windows.Forms.PaintEventArgs e) {

38. e.Graphics.DrawImage(new

39. System.Drawing.Bitmap(m_bitmapFile), 0, 0);

}
40. Define the GetEditor method. You might get a compile error at this

point because you have not yet implemented the BitmapPatternEditor
class.

41. ‘ Visual Basic

42. Public Overrides Function GetEditor() As PatternEditor

43. Return New BitmapPatternEditor(Me)

44. End Function

45.

46. // Visual C#

47. public override PatternEditor GetEditor() {

48. return new BitmapPatternEditor(this);

}
49. Define the Clone method.

50. ‘ Visual Basic

51. Public Overrides Function Clone() As Pattern

52. Dim newPattern As New BitmapPattern()

53. newPattern.BitmapFile = Me.BitmapFile

54. Return newPattern

55. End Function

56.

57. // Visual C#

58. public override Pattern Clone() {

59. BitmapPattern newPattern = new BitmapPattern();

60. newPattern.BitmapFile = this.BitmapFile;

61. return newPattern;

}

Create the BitmapPatternEditor class

The BitmapPatternEditor class needs only Browse and Save buttons and a picture box to
display the selected bitmap file.

1. Add a new UserControl class to the project. Name it
BitmapPatternEditor.

2. Open BitmapPatternEditor in the designer and set the Size property to
175, 150 in the Properties window.

3. Add the following controls and set their properties as shown in the
table.

Control Property Value

PictureBox Name pictureBox1

 Size 61, 61

 Location 8, 8

Button Name browse

 Location 8, 88

 Text Browse…

Button Name save

 Location 96, 88

 Text Save

OpenFileDialog Name openFileDialog1

4. The following graphic shows the completed user control:

5.
29. Open the BitmapPatternEditor class in the code editor and add a field

for the bitmap file. The BitmapPatternEditor class maintains a separate
reference to the filename that’s copied back to the BitmapPattern
instance when the user clicks Save.

30. ‘ Visual Basic
31. Private m_bitmapFile As String
32.
33. // Visual C#

private string m_bitmapFile;
34. Add a field to refer to the BitmapPattern instance being edited.

BitmapPatternEditor maintains this reference so that it can copy the
bitmap filename back to BitmapPattern after the user clicks Save.

35. ‘ Visual Basic

36. Private m_pattern As BitmapPattern

37.

38. // Visual C#

private BitmapPattern m_pattern = null;
39. Add the following constructor, which takes one parameter, a

BitmapPattern instance. The constructor will copy the bitmap filename
from BitmapPattern to BitmapPatternEditor, save the reference to
DrawnPattern, and assign a drawing method for the PictureBox
control.

40. ‘ Visual Basic

41. Public Sub New(ByVal pattern As BitmapPattern)

42. MyBase.New()

43. InitializeComponent()

44.

45. m_pattern = pattern

46. m_bitmapFile = pattern.BitmapFile

47. AddHandler Me.pictureBox1.Paint, AddressOf Me.Draw

48. End Sub

49.

50. // Visual C#

51. public BitmapPatternEditor(BitmapPattern pattern) {

52. InitializeComponent();

53.

54. m_pattern = pattern;

55. m_bitmapFile = pattern.BitmapFile;

56. this.pictureBox1.Paint += new PaintEventHandler(this.Draw);

}
57. Add the Draw method.

58. ‘ Visual Basic

59. Public Sub Draw(sender As Object, e As System.Windows.Forms
.PaintEventArgs)

60. e.Graphics.DrawImage(New Bitmap(m_bitmapFile), 0, 0)

61. End Sub

62.

63. // Visual C#

64. public void Draw(object sender,

65. System.Windows.Forms.PaintEventArgs e) {

66. e.Graphics.DrawImage(new

67. System.Drawing.Bitmap(m_bitmapFile), 0, 0);

}
68. Create the event handler for the Browse button’s Click event, and then

add this code to display the open file dialog box.

69. ‘ Visual Basic

70. Private Sub browse_Click(ByVal sender As System.Object, _

71. ByVal e As System.EventArgs) Handles browse.Click

72. Me.openFileDialog1.ShowDialog()

73. If (Me.openFileDialog1.FileName.Length <> 0) Then

74. m_bitmapFile = Me.openFileDialog1.FileName

75. Me.pictureBox1.Refresh()

76. End If

77. End Sub

78.

79. // Visual C#

80. private void browse_Click(object sender, System.EventArgs e) {

81. this.openFileDialog1.ShowDialog();

82. if (this.openFileDialog1.FileName.Length != 0) {

83. m_bitmapFile = this.openFileDialog1.FileName;

84. this.pictureBox1.Refresh();

85. }

}
86. If you’re using C#, add the following event declaration to the

BitmapPatternEditor class:

87. // Visual C#

88. public override event SavedEventHandler Saved;
89. Create the Click event handler for the Save button and add this code

to save the filename back to the BitmapPattern instance and raise the
Saved event.

90. ‘ Visual Basic

91. Private Sub save_Click(ByVal sender As System.Object, _

92. ByVal e As System.Eve ntArgs) Handles save.Click

93. m_pattern.BitmapFile = m_bitmapFile

94. MyBase.RaiseSaved(Me, New System.EventArgs())

95. End Sub

96.

97. // Visual C#

98. private void save_Click(object sender, System.EventArgs e) {

99. m_pattern.BitmapFile = m_bitmapFile;

100. if (Saved != null) {

101. Saved(this, new System.EventArgs());

102. }

}
103. Modify the class declaration to indicate that the class derives from the

PatternEditor class instead of the UserControl class.

104. ‘ Visual Basic

105. Public Class BitmapPatternEditor

106. Inherits PatternEditor

107. End Class

108.

109. // Visual C#

110. public class BitmapPatternEditor : PatternEditor {

}

The User Interface

As you have seen, the implementations of the drawn pattern and the bitmap pattern are
very different. The user interface code, however, is fairly simple, and doesn’t reveal the
differences between the two types of patterns.

Create the user interface elements

The user interface contains panels for the template and edited patterns and an area for
editing the patterns.

1. Open Form1 in the designer.
2. In the Properties window, change the Size property of Form1 to 344,

392 and the Text property to Pattern Maker.
3. Add the following controls and set their properties as shown in the

table.

Control Property Value

Label Text Templates

 Location 16, 24

Label Text Editor

 Location 120, 24

Label Text Patterns

 Location 16, 232

Panel Name templates

 Location 16, 48

 Size 90, 168

Control Property Value

 BorderStyle Fixed3D

 AutoScroll True

Panel Name patterns

 Location 16, 256

 Size 304, 90

 BorderStyle Fixed3D

 AutoScroll True

GroupBox Name editor

 Text (blank)

 Location 120, 40

 Size 200, 175

4. The following graphic shows the user interface:

5.
6. The Pattern class provides the Draw method needed to display each

pattern, but the Pattern class does not contain any type of element
that can be displayed on a form, such as a PictureBox, Button, or
Panel control. The display of the pattern is left up to the user interface
portion of the program.

4. Add the following small class, PatternButton, after the end of the
Form1 class. This customized UserControl is used to display the
patterns in the Templates and Patterns panels.

5. ‘ Visual Basic
6. Public Class PatternButton
7. Inherits UserControl
8.
9. Private m_pattern As Pattern

10. Public Sub New(ByVal newPattern As Pattern)
11. Me.Size = New Size(61, 61)
12. m_pattern = newPattern
13. AddHandler Me.Paint, AddressOf newPattern.Draw
14. End Sub
15.
16. Public Property Pattern() As Pattern
17. Get
18. Return m_pattern
19. End Get
20. Set(ByVal Value As Pattern)
21. m_pattern = Value
22. End Set
23. End Property
24. End Class
25.
26. // Visual C#
27. public class PatternButton : UserControl {
28. private Pattern m_pattern;
29.
30. public PatternButton(Pattern newPattern) {
31. this.Size = new Size(61, 61);
32. m_pattern = newPattern;
33. this.Paint += new PaintEventHandler(newPattern.Draw);
34. }
35.
36. public Pattern Pattern {
37. get { return m_pattern; }
38. set { m_pattern = value; }
39. }
40. }

Notice that you use the Draw method of the pattern as the Paint method of the control. In
addition, you add the Pattern instance as a property of the control. That’s a large
improvement over what you did with the Card class in Chapter 4: when you used the Tag
property of the Button control, you had to cast the Tag property if you wanted to use the
Card instance associated with the button.

Create the template instances

The template patterns are instances of either the DrawnPattern class or the
BitmapPattern class displayed in the PatternButton user control. The PatternButton
instances are added to the Templates panel.

1. Double-click the form in the designer to create the Form_Load event
handler in the code editor.

2. Add the following code to the Form1_Load event handler method to
add template Pattern instances to the Templates panel. This is the
only part of the user interface code that needs to know the actual
types of the pattern classes. There’s no reason to add more than one
instance of BitmapPattern to the Templates panel. Adding multiple
instances of DrawnPattern is an advantage because it can save the
user from having to re-create common base drawings. If you extend
the application to add more pattern types, this is the code you need to
modify. The rest of the application will deal with the DrawnPattern and
BitmapPattern instances using base class Pattern references. Replace
ProjectFolder, shown in boldface, with your project path. The file
bearpaw.bmp is located in the \Chapter10 folder on the companion
CD.

3. ‘ Visual Basic

4. Private Sub Form1_Load(ByVal sender As System.Object, _

5. ByVal e As System.EventArgs) Handles MyBase.Load

6. Dim drawn1 As New DrawnPattern()

7. drawn1.Points = New Point() {New Point(0, 30), New Point(60,
30), _

8. New Point(60, 0), New Point(30, 0), New Point(30, 60)}

9.

10. Dim drawn2 As New DrawnPattern()

11. drawn2.Points = New Point() {New Point(30, 0), New Point(60,
30), _

12. New Point(30, 60), New Point(0, 30), New Point(30, 0), _

13. New Point(0, 0)}

14.

15. Dim bitmap1 As New BitmapPattern()
16. bitmap1.BitmapFile = "ProjectFolder\bearpaw.bmp"
17.
18. Dim patterns() As Pattern = {drawn1, bitmap1, drawn2}
19. Dim pt As Integer
20. For pt = 0 To patterns.Length - 1
21. Dim button As New PatternButton(patterns(pt))
22. button.Top = 70 * pt
23. button.Left = 5
24. AddHandler button.Click, AddressOf Me.TemplateClick
25. Me.templates.Controls.Add(button)
26. Next
27. End Sub
28.
29. // Visual C#
30. private void Form1_Load(object sender, System.EventArgs e) {
31. DrawnPattern drawn1 = new DrawnPattern();
32. drawn1.Points = new Point[] { new Point(0,30), new Point(60,3

0),
33. new Point(60,0), new Point(30,0), new Point(30,60) };
34.
35. DrawnPattern drawn2 = new DrawnPattern();
36. drawn2.Points = new Point[] { new Point(30,0), new Point(60,3

0),
37. new Point(30,60), new Point(0, 30), new Point(30,0),
38. new Point(0,0)};
39.
40. BitmapPattern bitmap1 = new BitmapPattern();
41. bitmap1.BitmapFile = "ProjectFolder\bearpaw.bmp";
42.
43. Pattern[] patterns = new Pattern[] { drawn1, bitmap1, drawn2 };
44. for (int pt = 0; pt < patterns.Length; pt++) {
45. PatternButton button = new PatternButton(patterns[pt]);
46. button.Top = 70 * pt;
47. button.Left = 5;
48. button.Click += new EventHandler(this.TemplateClick);
49. this.templates.Controls.Add(button);
50. }

}

Edit and save the new patterns
As you enter the code in this section, notice that all manipulation of the DrawnPattern
and BitmapPattern instances is accomplished through Pattern reference variables. In the
introduction to the chapter, I said that using polymorphism reduces the number of class

names that the developer has to work with, thereby simplifying the programming task. If
you were to add other pattern types to the application, none of this code would change,
and you wouldn’t have to learn about more classes and work the details of each new
class into the application.

1. Add the following code to the Form1 class for the TemplateClick
method, and then add a field to refer to the new Pattern instance.
Notice that it doesn’t matter which template was clicked or whether the
type of that instance is DrawnPattern or BitmapPattern. Because
PatternEditor derives from UserControl, it doesn’t matter whether the
instance returns an instance of DrawnPatternEditor or
BitmapPatternEditor. From the PatternEditor’s inheritance path, it’s
also a UserControl and can be added to the Controls collection of the
Editor group box.
2. ‘ Visual Basic
3. Private m_newPattern As Pattern = Nothing
4. Private Sub TemplateClick(ByVal sender As Object, ByVal e As E

ventArgs)
5. Dim button As PatternButton = CType(sender, PatternButton)
6. m_newPattern = button.Pattern.Clone()
7. Dim designer As PatternEditor = m_newPattern.GetEditor()
8. designer.Location = New Point(10, 10)
9. Me.editor.Controls.Add(designer)
10. AddHandler designer.Saved, AddressOf Me.PatternSaved
11. End Sub
12.
13. // Visual C#
14. private Pattern m_newPattern = null;
15. private void Templat eClick(object sender, EventArgs e) {
16. PatternButton button = (PatternButton) sender;
17. m_newPattern = button.Pattern.Clone();
18. PatternEditor designer = m_newPattern.GetEditor();
19. designer.Location = new Point(10,10);
20. this.editor.Controls.Add(designer);
21. designer.Saved += new SavedEventHandler(this.PatternSaved

);
}
22. Add the following code for the PatternSaved method. This adds the

pattern to the Patterns panel. Once the pattern is saved, the
PatternEditor control has no purpose. Dispose of it so that it doesn’t
hold on to any limited system resources. Because you control the
code, you know that the sender parameter in the PatternSaved event
is an instance of PatternEditor. Its sender parameter can therefore be
cast to Control.

23. ‘ Visual Basic

24. Private Sub PatternSaved(ByVal sender As Object, ByVal e As E
ventArgs)

25. Me.Controls.Remove(CType(sender, Control))

26. CType(sender, Control).Dispose()

27. Dim pb As PatternButton = New PatternButton(m_newPattern)

28. pb.Left = Me.patterns.Controls.Count * 70

29. pb.Top = 5

30. pb.Enabled = False

31. Me.patterns.Controls.Add(pb)

32. End Sub

33.

34. // Visual C#

35. private void PatternSaved(object sender, EventArgs e) {

36. this.Controls.Remove((Control)sender);

37. ((Control)sender).Dispose();

38. PatternButton pb = new PatternButton(m_newPattern);

39. pb.Left = this.patterns.Controls.Count * 70;

40. pb.Top = 5;

41. pb.Enabled = false;

42. this.patterns.Controls.Add(pb);

}

That’s all you need for the user interface code: one small class and three event handlers.
Much of the work was pushed into the Pattern and PatternEditor classes and thus
doesn’t clutter up the user interface code.

Test the application
§ Press F5 to run the application. The following graphic shows the results

after adding new patterns:

The obvious next addition to this application is support for saving the instances between
invocations of the program. Saving the data of class instances will be covered in Chapter
13, “Saving Instance Data.”

Quick Reference

To Do this

Create
an
abstrac

Add the MustInherit or abstract keyword to the classdeclaration.
‘ Visual Basic
Public MustInherit Class Pattern
End Class

To Do this

t base
class

 // Visual C#
public abstract class Pattern {
}

Create
a
derived
class

Indicate the base class in the class declaration.
‘ Visual Basic
Public Class DrawnPattern
 Inherits Pattern
End Class

 // Visual C#
public class DrawnPattern : Pattern {
}

Assign
an
instanc
e of a
derived
class
to a
referen
ce
variabl
e of
the
base
class

Use an assignment statement. No casting is necessary.
‘ Visual Basic
Dim aPattern As Pattern = New DrawnPattern()

 // Visual C#
Pattern aPattern = new DrawnPattern();

Assign
a base
referen
ce to
the
base
class
to a
referen
ce
variabl
e of
the
derived
class

This is valid if the base reference refers to a derived
instance. Use casting.
‘ Visual Basic
Private Sub PatternSaved(ByVal sender As Object, _
ByVal e As EventArgs)
 Dim aControl As Control = CType(sender, _
 Control)
End Sub

 // Visual C#
private void PatternSaved(object sender,
 EventArgs e) {
 Control aControl = (Control)sender;
}

Chapter 11: Using Shared and Static Members

Overview
ESTIMATED
TIME

2 hr.

In this chapter, you’ll learn how to

§ Create and use shared and static fields and properties.
§ Create and use shared and static constructors.
§ Create and use shared and static methods.
§ Embed a bitmap resource in the assembly and retrieve it at run time.
§ Implement the Singleton pattern.

In the preceding chapters, each class has defined a set of data fields and each instance
maintains the state of its own data members. That is, each instance manipulates only its
own data members. In some cases, however, you might want all the classes to have
access to one piece of data. This chapter will demonstrate how to create shared and
static data that can be shared by all the instances of a class. You’ll also work with shared
and static methods, which are also members of a class but don’t require you to create an
instance of a class before they can be called. You’ll also see several examples of how
the .NET Framework uses shared and static members.

Shared and Static Members
Each time an instance of a class is created, a section of memory is set aside to hold the
fields for that new instance. This is commonly called the instance data, and the projects
you’ve created so far have all used instance data. Another type of data, called shared
data in Microsoft Visual Basic or static data in Microsoft Visual C#, is allocated for a
class as a whole. In the case of this type of data, however, only one place in memory is
reserved for the data, no matter how many instances of the class exist. Every instance of
the class has access to this one copy of the data.
Properties, constructors, methods, and events can also be shared across class
instances. These shared members, which don’t require an instance of the class, provide
services related to the class. An example is the .NET Framework’s Integer.Parse
method, which takes a string argument and returns an Integer value. It makes sense that
the Integer class would know how to parse a string into an Integer, but obviously the
Integer value doesn’t exist until the string is parsed. It also wouldn’t make sense to
create an Integer value just so that you can call the Parse method to create a second
instance of the Integer class. Static members are also used to manipulate the shared
and static data of a class. For example, just as you’ve create properties to expose fields,
you’ll create shared properties to expose shared fields. Shared and static properties,
constructors, and methods have a limitation in common: they can use only the shared or
static fields of a class. These members have no access to any of the instance data.
Offsetting this limitation is the ability to call these methods even if you haven’t created an
instance of the class.

Note Don’t confuse shared fields in Visual Basic with static function
variables in Visual Basic. (C# doesn’t support static function
variables.) You declare shared fields with the keyword Shared;
you declare static function variables with the keyword Static. A
static function variable retains its value between calls. If a class
has a method with a static variable, a copy of that variable is
created for every instance of the class. Thus static function
variables are instance data.

A More Interesting Point
In Chapter 9, “P roviding Services with Interfaces,” you created a SortablePoint class that
provided a sorting mechanism based on the distance from the origin. With the addition of
a shared or static field and property, you can easily sort the points based on the distance
from any point.

Creating the SortablePoint Class
The SortablePoint class will start with X and Y properties, a constructor, and an
overridden ToString method as instance members, similar to the implementation in
Chapter 9. You’ll then add a shared or static member Center and modify the CompareTo
function to use Center instead of the origin. Finally, you’ll implement a shared or static
Parse method that’s able to read the same string format that the ToString method
creates.

Create the class
1. Create a new Windows application project. Name it SortablePoint.
2. Add a new class to the project. Name it SortablePoint.
3. Modify the class to indicate that it will implement the IComparable

interface.

4. ‘ Visual Basic

5. Public Class SortablePoint

6. Implements IComparable

7. End Class

8.

9. // Visual C#

10. public class SortablePoint : IComparable {

}
11. Add the X and Y properties and fields. For this example, they’ll be

read-only.

12. ‘ Visual Basic

13. Private m_x As Integer = 0

14. Public Readonly Property X() As Integer

15. Get

16. Return m_x

17. End Get

18. End Property

19.

20. Private m_y As Integer = 0

21. Public Readonly Property Y() As Integer

22. Get

23. Return m_y

24. End Get

25. End Property

26.

27. // Visual C#

28. private int m_x = 0;

29. public int X {

30. get { return m_x; }

31. }

32.

33. private int m_y = 0;

34. public int Y {

35. get { return m_y; }

}
36. Add the constructor to the SortablePoint class. In Visual C#, this

replaces the parameterless constructor already in the class.

37. ‘ Visual Basic

38. Public Sub New(ByVal x As Integer, ByVal y As Integer)

39. m_x = x

40. m_y = y

41. End Sub

42.

43. // Visual C#

44. public SortablePoint(int x, int y) {

45. m_x = x;

46. m_y = y;

}
47. Override the ToString method inherited from System.Object by adding

the following code:

48. ‘ Visual Basic

49. Public Overrides Function ToString() As String

50. Return String.Format("({0}, {1})", m_x, m_y)

51. End Function

52.

53. // Visual C#

54. public override string ToString() {

55. return string.Format("({0}, {1})", X, Y);

}

Add the shared or static field and property

Here you’ll implement a shared or static SortablePoint field as the center of the points.
Points will be compared based on their distance from this point, rather than from the
origin. By creating the shared or static property, the client code only has to set one
property to affect the distance calculation for all instances of SortablePoint. The field will
be private to the class, and exposed in the interface as a shared or static property.

1. Add the shared or static field, m_center. You declare a class member
shared or static by adding the Shared keyword in Visual Basic or the
static keyword in Visual C#.
2. ‘ Visual Basic
3. Private Shared m_center As New SortablePoint(0, 0)
4.
5. // Visual C#

private static SortablePoint m_center = new SortablePoint(0, 0);
6. Add the shared or static Center property. Just as in other classes

you’ve created, the property is used to control access to the field. As

with the field declaration, you add the Shared or static keyword. When
you set this property in the user interface, you’ll see that using a
shared or static property is a little different from using an instance
property.

7. ‘ Visual Basic

8. Public Shared Property Center() As SortablePoint

9. Get

10. Return m_center

11. End Get

12. Set(ByVal Value As SortablePoint)

13. m_center = Value

14. End Set

15. End Property

16.

17. // Visual C#

18. public static SortablePoint Center {

19. get { return m_center; }

20. set { m_center = value; }

}
21. Implement the IComparable interface. In this implementation, the

comparison is based on the distance from the SortablePoint instance
m_center.

22. ‘ Visual Basic

23. Public Function CompareTo(ByVal obj As Object) As Integer _

24. Implements System.IComparable.CompareTo

25. Return Me.SquaredDistance() - CType(obj, _

26. SortablePoint).SquaredDistance()

27. End Function

28.

29. Private Function SquaredDistance() As Integer

30. Dim xDistance As Integer = m_center.X - m_x

31. Dim yDistance As Integer = m_center.Y - m_y

32. Return (xDistance * xDistance) + (yDistance * yDistance)

33. End Function

34.

35. // Visual C#

36. public int CompareTo(object obj) {

37. return this.SquaredDistance() –

38. ((SortablePoint)obj).SquaredDistance();

39. }

40.

41. private int SquaredDistance() {

42. int xDistance = m_center.X - m_x;

43. int yDistance = m_center.Y - m_y;

44. return (xDistance * xDistance) + (yDistance * yDistance);

}

Add the shared or static Parse method
If you search the .NET Framework help documents, you’ll see that many classes
implement a shared or static Parse method. This method is the opposite of the ToString
method: Instead of converting a class instance into a string, it converts a string into a
class instance. For the SortablePoint class, you’ll define a sort method that reads a string
such as (1, 2) and returns a SortablePoint instance with X equal to 1 and Y equal to 2.

§ Add this shared or static Parse method. Note that the shared or static
method doesn’t access any of the instance data of a class, although it
does create an instance of the class and manipulate the instance data
through the reference.
§ ‘ Visual Basic
§ Public Shared Function Parse(ByVal pointString As String) As So

rtablePoint
§ Try
§ Dim values() As String = pointString.Split("(,)".ToCharArray)
§ Dim x As Integer = Integer.Parse(values(1))
§ Dim y As Integer = Integer.Parse(values(3))
§ Return New SortablePoint(x, y)
§ Catch
§ Throw New ArgumentException("Unable to parse " & pointSt

ring _
§ & " into a SortablePoint instance.")
§ End Try
§ End Function
§
§ // Visual C#
§ public static SortablePoint Parse(string pointString) {
§ try {
§ string[] values = pointString.Split("(,)".ToCharArray());
§ int x = int.Parse(values[1]);
§ int y = int.Parse(values[3]);
§ return new SortablePoint(x, y);
§ }
§ catch {
§ throw new ArgumentException("Unable to parse " + pointStri

ng
§ + " into a SortablePoint instance.");
§ }
§ }

We haven’t used much exception handling in the book so far, but because this method
isn’t very flexible in its parsing and the function accepts any string, it’s likely that
incorrectly formatted strings will find their way into this function. As a general
programming practice, you want to avoid returning any new instance of SortablePoint in
the case of a failure of this type. The client code needs to respond to the error rather
than continuing to use a SortablePoint that’s not correct. Imagine a spreadsheet
application that returned 0 for any numeric error. The user wouldn’t have the opportunity
to fix the problem and would likely not even be aware that there were any problems. As
you’ll see in the next section, the string for this method will be retrieved from the user
through a TextBox control. Experience shows that the users often type the point in the
wrong format, and adding the exception allows the client code to respond gracefully to
typing errors.

Testing the Sortable Point Class
To test the SortablePoint class, you’ll build an interface similar to the one in Chapter 9. In
this case, you’ll let the user change the center point at run time. The user will enter the
new center as a string in the (x, y) format. The code then uses the Parse method to

create an instance of SortablePoint and to change the Center property of the
SortablePoint class.

Create a user interface
1. Open Form1 in the form designer.
2. Set the Height property of the form to 344.
3. Add controls and set their properties as shown in the following table.

Control Property Value

Button Name addPoints

 Text Add Points

 Location 136, 248

 Size 96, 23

TextBox Name newCenter

 Text (blank)

 Location 16, 280

Button Name setNewCenter

 Text Set New
Center

 Location 136, 280

 Size 96, 23

13. In the form designer, double-click the Set New Center button to create
the Click event handler. Add the following code to set the shared or
static Center property. To call a shared member in Visual Basic, you
use the class name (SortablePoint) or an instance name. To call a
static member in Visual C#, you use the class name (SortablePoint).
14. ‘ Visual Basic
15. Private Sub setNewCenter_Click(ByVal sender As System.Object

, _
16. ByVal e As System.EventArgs) Handles setNewCenter.Click
17. Try
18. Dim center As SortablePoint = SortablePoint.Parse(newCent

er.Text)
19. SortablePoint.Center = center
20. Catch ex As Exception
21. MessageBox.Show(ex.Message & ControlChars.CrLf & _
22. "Setting center to the origin.")
23. SortablePoint.Center = New SortablePoint(0, 0)
24. newCenter.Text = SortablePoint.Center.ToString()
25. End Try
26. Me.Refresh()
27. End Sub
28.
29. // Visual C#
30. private void setNewCenter_Click(object sender, System.EventArg

s e) {
31. try {
32. SortablePoint center = SortablePoint.Parse(newCenter.Text)

;
33. SortablePoint.Center = center;
34. }
35. catch (Exception ex) {
36. MessageBox.Show(ex.Message + "\n" +

37. "Setting center to the origin.");
38. SortablePoint.Center = new SortablePoint(0, 0);
39. newCenter.Text = SortablePoint.Center.ToString();
40. }
41. this.Refresh();

}
Note When you use Visual Basic, call static members by using the class

name. Using an instance variable to call a static member can confuse
other developers. For example, the expression thisPoint.Center could
mislead other developers into thinking that the center can be set
separately for each SortablePoint instance.

42. Double-click the Add Points button to create the event handler and
add this code to draw points on the form. This is the same code you
used in Chapter 9.

43. ‘ Visual Basic

44. Private Sub addPoints_Click(ByVal sender As System.Object, _

45. ByVal e As System.EventArgs) Handles addPoints.Click

46. Dim points As New ArrayList()

47. Dim rgen As New System.Random()

48. Dim pt As SortablePoint

49. Dim count As Integer

50. Dim graph As Graphics = Me.CreateGraphics()

51. Dim aColor As Color

52.

53. For count = 0 To 249

54. points.Add(New SortablePoint(rgen.Next(200), rgen.Next(20
0)))

55. Next

56.

57. points.Sort()

58.

59. For count = 0 To 249

60. pt = CType(points(count), SortablePoint)

61. aColor = System.Drawing.Color.FromArgb(25, 25, count)

62. Dim brush As New System.Drawing.SolidBrush(aColor)

63. graph.FillEllipse(brush, pt.X, pt.Y, 10, 10)

64. brush.Dispose()

65. Next

66. End Sub

67.

68. // Visual C#

69. private void addPoints_Click(object sender, System.EventArgs e)
{

70. ArrayList points = new ArrayList();

71. System.Random rgen = new System.Random();

72. SortablePoint pt;

73. Graphics graph = this.CreateGraphics();

74.

75. for (int count = 0; count < 250; count++) {

76. points.Add(new SortablePoint(rgen.Next(200), rgen.Next(20
0)));

77. }

78.

79. points.Sort();

80.

81. for (int count = 0; count < 250; count++) {

82. pt = (SortablePoint)(points[count]);

83. Color color = System.Drawing.Color.FromArgb(25, 25, count
);

84. System.Drawing.SolidBrush brush =

85. new System.Drawing.SolidBrush(color);

86. graph.FillEllipse(brush, pt.X, pt.Y, 10,10);

87. brush.Dispose();

88. }

89. }

Run the application
§ Press F5 to run the application. An example of the output is shown here.

You’ll want to add some points, enter a new center point, click Set New
Center, and finally add some more points. You’ll see the light to dark
pattern change to reflect the change in the center point. Note that the
application doesn’t limit the center to within the rectangle of dots. You
can also enter a new center that’s not correctly formatted—for example,
(12, abc), so that you can test the exception handling statement.

A More Efficient Card
Shared and static members don’t have to be public. In Chapter 8, “Putting It All Together
with Components,” you created a Card class. Each instance of Card contained an
ArrayList filled with Icon instances. If you had a thousand Card instances, you’d have a
thousand identical instances of the Hearts icon. You can see that each instance doesn’t
need its own copy, because they are all the same. A shared or static ArrayList will allow
the application to maintain only one copy of each icon. A shared or static constructor
provides the means for adding the icons to the ArrayList.

Implementing the Card Class
The Card class in this example will have the same public members as the class you
implemented in Chapter 8. You’ll add a private shared or static SortedList field and a
shared or static constructor. To fill the SortedList you’ll use some of the shared or static
methods of the .NET Framework.

Create the project
You’ll create this project by adding the icon files and Card class source file from Chapter
8 to a basic Windows application project.

1. Create a new Windows application project. Name it BetterCard.
2. From the Project menu, click Add Existing Item. Type *.ico in the

Filename box and locate and add the four icon files—Hearts.ico,
Diamonds.ico, Spades.ico, and Clubs.ico—to the project. (The files
are located in the Chapter08 folder of the companion CD.) In this
exercise, an icon will be associated with a Suit enumeration based on
the symbolic name of the enumeration value. That is, the Hearts.ico
Icon object will be associated with the key Suits.Heart in a SortedList
object. Please note that you’ll also be using a .NET Framework
method that’s case sensitive. Therefore, if your Suit enumeration is
Clubs, your icon file needs to be named Clubs.ico. You can rename
the files before you add them to the project, or you can rename them
now by using Solution Explorer.

3. In Solution Explorer, select the four icon files by holding down the
Control key as you click each file.

4. In the Properties window, set the Build Action property for the icons to
Embedded Resource.

You’ll use classes in the System.Reflection namespace to retrieve the icons
at run time. By using an embedded resource, you don’t have to distribute the
icon files separately and then find the paths to them at run time.

5. From the Project menu, select Add Existing Item. Browse to the
Card.cs or Card.vb source file you created for Chapter 8, and add it to
your project. You can also find this file on the companion CD in the
GamesLibrary folder in either the \Chapter08\VisualBasic or
\Chapter08\VisualCS folder. If you’re using Visual C#, locate the
namespace declaration in Card.cs and change it to BetterCard.

6. Double-click Card.vb or Card.cs in Solution Explorer to load the Card
control into the form designer and the Toolbox.

Add the shared and static members
In this section, you’ll make the SortedList field that holds the icons a shared or static data
member instead of an instance member. You’ll also use a shared or static constructor to
add the icons to the SortedList member. This constructor will make a call to the shared
or static method GetExecutingAssembly of the Assembly class. The Assembly instance
returned by this call represents your application during run time.
The GetManifestResourceStream method of the Assembly class returns an instance of
System.IO.Stream that lets you read the icon, as long as you know the name of the icon
file in the assembly. The name of the file in the assembly takes the form
AssemblyName.IconFileName. You can use the GetName method of the Assembly class
to retrieve the assembly name at run time. Conveniently, the Icon class provides a
constructor that takes a stream as a parameter. Just pass the Stream instance from the
GetManifestResourceStream method to the Icon constructor, and you’re done retrieving

the icon from the assembly. That’s a lot of classes and method calls to match up, so let’s
look at the code to see how it works out. The following code shows the basic process for
retrieving the Hearts.ico icon:

‘ Visual Basic

Dim theAssembly As System.Reflection.Assembly

theAssembly = System.Reflection.Assembly.GetExecutingAssembly()

Dim assemblyName As String = theAssembly.GetName().Name

Dim resourceName As String = assemblyName & ".Hearts.ico"

Dim iconStream As System.IO.Stream = _

 theAssembly.GetManifestResourceStream(resourceName)

Dim theIcon As Icon = new Icon(iconStream)

// Visual C#

System.Reflection.Assembly assembly;

assembly = System.Reflection.Assembly.GetExecutingAssembly();

string assemblyName = assembly.GetName().Name;

string resourceName = assemblyName + ".Hearts.ico";

System.IO.Stream iconStream =

 theAssembly.GetManifestResourceStream(resourceName);

Icon theIcon = new Icon(iconStream);
1. In Solution Explorer, right-click Card.cs or Card.vb and click View

Code on the shortcut menu.
2. Modify the Card class default constructor—the constructor that doesn’t

take arguments—to delete the calls to add icons to the m_icons
SortedList. If you’re using Visual Basic you’ll find the constructor in the
region labeled Windows Form Designer Generated Code. The
constructor after modification is shown here:

3. ‘ Visual Basic

4. Public Sub New()

5. MyBase.New()

6. ‘This call is required by the Windows Form Designer.

7. InitializeComponent()

8. End Sub

9.

10. // Visual C#

11. public Card()

12. {

13. // This call is required by the Windows.Forms Form Designer.

14. InitializeComponent();

}
15. If you’re using Visual Basic, add an Imports statement at the top of the

source file for the System.ComponentModel namespace. The Card
class you defined in Chapter 8 was part of a Class Library project, and
the System.
Component namespace was a project-wide import. The namespace
isn’t imported by default in a Visual Basic Windows application and
must be added. If you’re using Visual C#, the using statement for
System.ComponentModel is already in the Card.cs file.

16. ‘ Visual Basic

Imports System.ComponentModel
17. Modify the declaration of the SortedList field so that it’s a shared or

static data member.

18. ‘ Visual Basic

19. Shared m_images As SortedList = New SortedList()

20.

21. // Visual C#

static SortedList m_images = new SortedList();
22. Add the shared or static constructor to fill the m_icons SortedList with

the embedded icons. Like shared and static methods, the shared or
static constructor can use only shared or static data.

23. ‘ Visual Basic

24. Shared Sub New()

25. Dim theAssembly As System.Reflection.Assembly

26. theAssembly = System.Reflection.Assembly.GetExecutingAss
embly()

27. Dim assemblyName As String = theAssembly.GetName().Nam
e

28.

29. Dim iconStream As System.IO.Stream

30. Dim resourceName As String

31. Dim theIcon As Icon

32. Dim theSuit As Object

33. Dim aSuit As Integer

34. Dim suitNames() As String =

35. System.Enum.GetNames(System.Type.GetType("BetterCar
d.Suit"))

36. For aSuit = 0 To suitNames.Length - 1

37. resourceName = assemblyName & "." & suitNames(aSuit) &
 ".ico"

38. iconStream = theAssembly.GetManifestResourceStream(res
ourceName)

39. theIcon = new Icon(iconStream)

40. theSuit = System.Enum.Parse(_

41. System.Type.GetType("BetterCard.Suit"), suitNames(aSui
t))

42. m_images.Add(theSuit, theIcon)

43. Next

44. End Sub

45.

46. // Visual C#

47. static Card() {

48. System.Reflection.Assembly assembly;

49. assembly = System.Reflection.Assembly.GetExecutingAssemb
ly();

50. string assemblyName = assembly.GetName().Name;

51.

52. System.IO.Stream iconStream;

53. string resourceName;

54. Icon theIcon;

55. object theSuit;

56. string[] suitNames = Enum.GetNames(typeof(Suit));

57. for (int aSuit = 0; aSuit < suitNames.Length; aSuit++) {

58. resourceName = assemblyName + "." + suitNames[aSuit] +
".ico";

59. iconStream = assembly.GetManifestResourceStream(resour
ceName);

60. theIcon = new Icon(iconStream);

61. theSuit = Enum.Parse(typeof(Suit),suitNames[aSuit],true);

62. m_images.Add(theSuit, theIcon);

63. }

}
This constructor uses a generalized version of the code snippet shown on
page 304 to collect the four icons. The constructor uses the shared or static
GetNames and Parse methods of the System.Enum class. The Enum class
provides several methods for manipulating enumerations. The GetName
method returns an array of strings with the names of the enumeration
members. You use this array to create the names of the icon files in the
assembly. (Remember that you carefully named the icon files to match the
enumeration names.) You then use the Enum.Parse method to return a Suit
enumeration value to use as the key into the SortedList.

The shared or static constructor is called only once during an application’s
lifetime—some time after the application starts, but before the first instance of
the class is created. Client code can’t call the static constructor, meaning that
the developer can’t control when the constructor is called.

64. In the Paint event handler, Card_Paint, remove the Me or this scoping
operator from the m_images reference. The m_images field is no
longer instance data, and using the this operator isn’t allowed,
because the static m_images field isn’t associated with a particular
instance of Card. Visual Basic allows the reference to Me.m_images,
but it’s good practice and less confusing to someone readying the
code to remove the Me. The code to remove is shown in bold.

65. ‘ Visual Basic
66. g.DrawIcon(CType(Me.m_images(m_suit), Icon), 14, 40)
67.
68. // Visual C#

g.DrawIcon((Icon)(this.m_images[m_suit]), 14, 40);
69. From the Build menu, select Build Solution.

Test the Card class

In testing the Card class, you’ll create a form that has one card and two ListBox controls.
At run time, the ListBox controls will contain Suit and FaceValue enumeration values. As
you select a new value, the Card will reflect the new value. You’ll use a shared or static
member of the Enum class to retrieve the values of the Suit and FaceValue
enumerations.

1. Open Form1 in the form designer.
2. Add controls and set their properties as shown in the following table.

You’ll find the Card control in the Toolbox. Arrange the controls

however you like. The suitList control will contain a list of the Suit
enumeration values and the faceValueList will contain a list of the
FaceValue enumerations.

Control Property Value

Card Name card1

 FaceUp True

ListBox Name suitList

ListBox Name faceValueList

16. Double-click on the form to create the Load event handler. Add the
following code to fill the ListBox controls:
17. ‘ Visual Basic
18. Private Sub Form1_Load(ByVal sender As System.Object, _
19. ByVal e As System.EventArgs) Handles MyBase.Load
20. suitList.DataSource = _
21. System.Enum.GetValues(System.Type.GetType("BetterCar

d.Suit"))
22. faceValueList.DataSource = _
23. System.Enum.GetValues(FaceValue.Queen.GetType())
24. End Sub
25.
26. // Visual C#
27. private void Form1_Load(object sender, System.EventArgs e) {
28. suitList.DataSource = Enum.GetValues(typeof(Suit));
29. faceValueList.DataSource = Enum.GetValues(typeof(FaceValu

e));
}

The Enum.GetValues method takes a Type parameter representing the
enumeration and returns the values of the enumeration in an Array instance.
Each member of the Array instance is an enumeration value. The Type class
is a .NET Framework class that represents classes defined in an application.
Before you can call the Enum.GetValues method, you need to get a Type
instance representing the enumeration. The typeof operator of Visual C#
returns the Type instance representing a defined type. To retrieve the Type
instance in Visual Basic, you can use the GetType method on a particular
enumeration value, or the shared Type.GetType method. An example of each
is used in the code.

30. In the form designer, double-click the suitList list box to create the
SelectedIndexChanged event handler. The SelectedItem property of
the ListBox control returns a System.Object instance that must be cast
back to Suit to be used as the Suit property of the card1 object.

31. ‘ Visual Basic

32. Private Sub suitList_SelectedIndexChanged(ByVal sender As Sy
stem.Object, _

33. ByVal e As System.EventArgs) Handles suitList.SelectedIndexCh
anged

34. Me.card1.Suit = CType(Me.suitList.SelectedItem, Suit)

35. End Sub

36.

37. // Visual C#

38. private void suitList_SelectedIndexChanged(object sender,

39. System.EventArgs e) {

40. this.card1.Suit = (Suit) this.suitList.SelectedItem;

}
41. In the form designer, double-click the faceValueList list box to create

the SelectedIndexChanged event handler.

42. ‘ Visual Basic

43. Private Sub faceValueList_SelectedIndexChanged(_

44. ByVal sender As System.Object, ByVal e As System.EventArgs)
_

45. Handles faceValueList.SelectedIndexChanged

46. Me.card1.FaceValue = _

47. CType(Me.faceValueList.SelectedItem, FaceValue)

48. End Sub

49.

50. // Visual C#

51. private void faceValueList_SelectedIndexChanged(object sender,

52. System.EventArgs e) {

53. this.card1.FaceValue = (FaceValue) this.faceValueList.Selecte
dItem;

}
54. Press F5 to run the program. Example output is shown below. As you

select different Suit and FaceValues values in the ListBox controls, the
appearance of the card changes.

The Singleton Pattern
One of the most well-known uses of shared and static members is to implement the
Singleton design pattern. A design pattern is a solution to a common problem. The
description of a pattern generally includes the pattern name, a description of the
problem, a description of the solution, and an analysis of the consequences of using the
pattern. The classic reference on design patterns is Design Patterns by Erich Gamma,
Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995). I’ll talk about
design patterns again in Chapter 14, “Reducing Complexity by Design.”

Your application might have a constraint that only one instance of the class can be
created. This is a common limitation when the class is an abstraction of a hardware or
operating system component, such as a file manager or a print spooler. In this case, you
want to implement the Singleton pattern, a well-known object-oriented design pattern.

Implement the Singleton pattern

The implementation of the Singleton pattern has these characteristics:
§ The constructor is private so that no client code can create an

instance. This allows the class to create and control access to the one
instance.

§ The single instance is available only through the shared or static method.

The essential implementation of the Singleton pattern is short and simple and is shown
in the following steps.

1. Create a new Windows application. Name it Singleton.
2. From the Project menu, select Add New Item, and then select Code

File from the list of templates. Name the new code file Singleton.
3. Add the following code to the code file to define the basic Singleton

class. This implementation uses lazy initialization, meaning the
instance isn’t created until the first time it’s retrieved.

4. ‘ Visual Basic

5. Class Singleton

6. Shared m_instance As Singleton

7. Public Shared Function GetInstance() As Singleton

8. If (m_instance Is Nothing) Then

9. m_instance = New Singleton()

10. End If

11. Return m_instance

12. End Function

13.

14. Private Sub New()

15. End Sub

16. End Class

17.

18. // Visual C#

19. namespace Singleton {

20. class Singleton {

21. static Singleton m_instance;

22. public static Singleton GetInstance() {

23. if (m_instance == null) {

24. m_instance = new Singleton();

25. }

26. return m_instance;

27. }

28. private Singleton() {}

29. }

30. }
31. Add two member functions and a field to the class to store and return

a collection of strings. You’ll use these methods to demonstrate that
only one instance of the Singleton class is created. Note that m_list is
instance data, not shared or static data.

32. ‘ Visual Basic

33. Dim m_list As System.Collections.ArrayList = _

34. New System.Collections.ArrayList()

35. Public Sub AddString(ByVal newString As String)

36. m_list.Add(newString)

37. End Sub

38.

39. Public Function GetStrings() As String()

40. Return CType(m_list.ToArray(System.Type.GetType("System.
String")), _

41. String())

42. End Function

43.

44. // Visual C#

45. System.Collections.ArrayList m_list =

46. new System.Collections.ArrayList();

47. public void AddString(string newString) {

48. m_list.Add(newString);

49. }

50.

51. public string[] GetStrings() {

52. return (string[])m_list.ToArray(typeof(string));

}

Test the Singleton class
To demonstrate that there is only one instance of the Singleton class, you’ll use the array
returned by the GetStrings method as the data source to two ListBox controls. When you
add strings to one of the references, you’ll see the change propagated to both ListBox
controls.

1. Open Form1 in the form designer and add controls and set their
properties as shown in the following table. Arrange the controls as you
like.

Control Property Value

ListBox Name listOne

ListBox Name listTwo
TextBox Name newString

 Text (blank)

Button Name addString
 Text Add

String

6. Double-click Form1 to create the form’s Load event. Add code to
create the Singleton instance. Also add two fields for the Singleton
references.

7. ‘ Visual Basic
8. Dim singletonOne As Singleton
9. Dim singletonTwo As Singleton
10.
11. Private Sub Form1_Load(ByVal sender As System.Object, _
12. ByVal e As System.EventArgs) Handles MyBase.Load
13. ‘ The following line won’t compile because there’s no
14. ‘ public constructor.

15. ‘ singletonOne = New Singleton()
16. singletonOne = Singleton.GetInstance()
17. singletonTwo = Singleton.GetInstance()
18. End Sub
19.
20. // Visual C#
21. Singleton singletonOne;
22. Singleton singletonTwo;
23.
24. private void Form1_Load(object sender, System.EventArgs e) {
25. // The following line won’t compile because there’s no
26. // public constructor.
27. // Singleton aSingleton = new Singleton();
28. singletonOne = Singleton.GetInstance();
29. singletonTwo = Singleton.GetInstance();

}
30. Create a Click event handler for the Add String button and add this

code to demonstrate that both Singleton references, singletonOne and
singletonTwo, refer to the same instance of Singleton.

31. ‘ Visual Basic

32. Private Sub addString_Click(ByVal sender As System.Object, _

33. ByVal e As System.EventArgs) Handles addString.Click

34. singletonOne.AddString(newString.Text)

35.

36. listOne.DataSource = Nothing

37. listOne.Items.Clear()

38. listOne.DataSource = singletonOne.GetStrings()

39.

40. listTwo.DataSource = Nothing

41. listTwo.Items.Clear()

42. listTwo.DataSource = singletonTwo.GetStrings()

43. End Sub

44.

45. // Visual C#

46. private void addString_Click(object sender, System.EventArgs e)
{

47. singletonOne.AddString(newString.Text);

48.

49. listOne.DataSource = null;

50. listOne.Items.Clear();

51. listOne.DataSource = singletonOne.GetStrings();

52.

53. listTwo.DataSource = null;

54. listTwo.Items.Clear();

55. listTwo.DataSource = singletonTwo.GetStrings();

}

You could also add a test to the button that simply tests whether the
references are the same:

‘ Visual Basic

If (singletonOne Is singletonTwo) And (Not IsNothing(singletonOne)) Then

 MessageBox.Show("They are the same.")

End If

// Visual C#

if ((singletonOne == singletonTwo) && (singletonOne != null)) {

 MessageBox.Show("They are the same.");

}
56. Press F5 to run the program. Add several strings and note that both

list boxes have the same list of items, even though the code is only
adding strings to the singletonOne reference. Example output is
shown here:

Design Considerations

Shared and static members solve many programming tasks, but like any programming
construct, they need to be used wisely. What follows are some tips and warnings about
using shared and static members.
§ Too many static members Since static members often track information

about groups of instances, you might be tempted to add members that
represent a group abstraction to the class. Rather than provide static
properties TotalCars and AverageWeight for the Car class, you’re better off
creating a ParkingLot class to maintain the data. In general, don’t
complicate the design with unnecessary classes, but do make sure that
each class represents one abstraction.

§ When static properties become global data Using global data is, in
general, a poor programming practice. When you make data global, you
lose control of it. Global data can be passed to any method and then
changed in unexpected ways. Public static data is available to any method
in which the class is in scope. Used without planning, static data can easily
become global data. Look closely at your design if you have a significant
amount of public static data.

§ Multithreaded applications If you’re working with a multithreaded
application, you have to take synchronization into account. Suppose you
have a class with a shared or static array of integers. You might have two
instances of the class, on different threads, modifying the array. One
instance might be able to complete only part of its modifications before the
second instance starts modifying the data, leading to unexpected results.
For information on synchronizing access to static variables, see the lock
keyword in Visual C# and the SyncLock keyword in Visual Basic. The .NET

Framework documentation provides threading information on many
classes.

Quick Reference

To Do this

Create a shared or
static field

Add the Shared or static keyword to the declaration.
‘ Visual Basic
Shared m_number As Integer

 // Visual C#
static int m_number;

Create a shared or
static property

Add the Shared or static keyword to the declaration.
‘ Visual Basic
Public Shared Property Number() As Integer
 Get
 Return m_number
 End Get
 Set(ByVal Value As Integer)
 m_center = Value
 End Set
End Property

 // Visual C#
public static int Number {
 get { return m_number; }
 set { m_number = value; }
}

Create a shared or
static method

Add the Shared or static keyword to the declaration.
‘ Visual Basic
Public Shared Sub SomeMethod()
End Sub

 // Visual C#
public static void SomeMethod() {
}

Create a shared or
static constructor

Add the Shared or static keyword to the declaration.
‘ Visual Basic
Shared Sub New()
End Sub

 // Visual C#
static Card() {
}

Call a shared or
static member

In Visual Basic, use the class name or an instance
name.

 In Visual C#, use the class name.

 ‘ Visual Basic
SomeClass.Number = 5
SomeClass.SomeMethod()

 // Visual C#
SomeClass.Number = 5;
SomeClass.SomeMethod();

Chapter 12: Overloading Operators with
Visual C#

Overview
ESTIMATED
TIME

1 hr. 30 min.

In this chapter, you’ll learn how to

§ Overload the arithmetic +, −, and * operators.
§ Overload the == and != relational operators.
§ Use delegates to control program behavior at run time.

In Chapter 4, you saw how overloading methods allowed you to implement several
different but related behaviors under one method name. In Chapter 5, you saw how the
same method name could implement different but related behaviors in derived classes.
With operator overloading, you’ll see how a C# operator can behave differently
depending on the context in which it appears. For example, if you use the + operator with
two integer operands, as in 1 + 1, the result is another integer, 2. In this chapter, you’ll
overload the + operator to add two vectors, so that the sum of two vectors, vector A +
vector B, returns a third vector, vector C.
Visual Basic .NET doesn’t support operator overloading. Depending on the problem
you’re solving, operator overloading might be a deciding factor in whether you implement
the application in Visual Basic or Visual C#. Even if you aren’t using Visual C#, you might
want to read through the implementation of the user interface to see how delegates are
used. The method works equally well in Visual Basic, as you’ll see in Chapter 13,
“Saving Instance Data.”

A Short Lesson on Vectors
In this chapter, you’ll use the vector as the basis for an exercise in overloading
operators. A vector is a line segment with direction and magnitude. You can specify both
the direction and magnitude of the vector by specifying a coordinate pair (x, y). Using this
notation, the three vectors in the following diagram are (2, 4), (3, 0), and (−4, −4).

Addition, subtraction, multiplication, and equality are defined on vectors, making the
vector a good candidate for operator overloading. Vector addition is defined by placing
two vectors end to end, with the first vector placed at the origin. The sum is the vector
from the origin to the end of the second vector. The x value of the vector sum is the sum
of the x components of the two vectors. Similarly, the y value is the sum of the y
components of the two vectors. The sum of (1, 3) and (3, 1) is (4, 4), and is shown in the
following diagram.

You can also multiply a vector by a scalar. A vector is multiplied by a scalar (a nonvector
value) by multiplying both the x and y components by the scalar. For example, 2 * (1, 3)
= (2, 6). Note that you can also multiply a vector times a vector, but you won’t go that far
in this chapter. Vectors can also be subtracted. To subtract a vector B from a vector A
multiply vector B by −1 and add it to vector A. The difference (1, 3) − (3, 1) = (−2, 2) is
shown in the following diagram.

Vector Algebra Application
Your task in this chapter is to create an application that will add, subtract, and multiply
vectors. The user can vary the x and y components of Vectors A and B independently.
Vector B can be multiplied by a scalar. Finally, the user can choose whether to add or
subtract the two vectors. The following graphic shows the application you’ll develop:

Operator overloading allows you to specify the behavior of an operator in the context of a
class you’ve defined. Not all operators can be overloaded. The operators that can be
overloaded are shown in the following table, divided among unary and binary operators.
Unary operators, such as ++ and −−, take only one operand—for example, i++. Binary
operators, such as * and ==, take two operands—for example, a * b.

Operator Type Operators
That Can
Be
Overload
ed

Unary + − ! ~ ++
−− true
false

Binary + − * / % &
| ^ << >>
== != > <
>= <=

Probably the most glaring omissions from the table are the assignment operators,
including =, +=, −=, and *=, which can’t be overloaded. At run time, the assignment
operator is replaced by its expanded form, so that a += 2 is evaluated as a = a + 2. By
not allowing the assignment operators to be overloaded, the language designers have
guaranteed consistency in the meaning of operator pairs such as + and +=.
In this exercise, you’ll overload the ==, !=, +, −, and * operators. You’ll also see functions
from the base System.Object class that by convention are overloaded when some
operators are overloaded.

Implementing the Vector Class
The Vector class consists of two properties, X and Y, several overloaded operators, ==,
!=, +, −, and *, and a few general purpose methods: ToString, Parse, and GetHashCode.
The Vector class won’t contain any methods for drawing Vectors—that will be left to the
user interface component of the application.

Create the project and class

The Vector Algebra project consists of just a form and the Vector class.
1. Create a new Visual C# Windows application project. Name it

VectorAlgebra.
2. Add a new class named Vector to the project.
3. Add the following fields and properties for X and Y.

4. private int m_x;

5. public int X {

6. get { return m_x; }

7. set { m_x = value; }

8. }

9.

10. private int m_y;

11. public int Y {

12. get { return m_y; }

13. set { m_y = value; }

}
14. Modify the constructor as shown here:

15. public Vector(int x, int y) {

16. m_x = x;

17. m_y = y;

}

Overload == and !=
The == operator, if not overloaded, returns a Boolean value that indicates whether two
references point to the same instance of a class. With a class such as Vector, you might
not care if two references point to the same instance. What you’re interested in is
whether two vectors have the same direction and magnitude. In other words, do the two
references have the same x and y components? Overloading the == operator allows you
to change the meaning of equality for the Vector class.
There are rules and conventions for overloading the == operator. When you overload the
== operator, you must also overload the != operator. By convention, if you overload the
== operator, you should also (but are not required to) override the Equals and
GetHashCode methods. Also, by convention, the == operator shouldn’t throw an
exception, but should instead return false.

1. Add the following code to overload the == operator.
2. public static bool operator ==(Vector aVector, Vector bVector) {
3. return (aVector.X == bVector.X) && (aVector.Y == bVector.Y);

}
The syntax for overloading an operator is to declare a public static method
with the return types and parameter types you want to define. For binary
operators, you must specify two parameters. As you’ll see with the * operator,
the parameters do not need to be the same type, though they usually are.
The == operator is a comparison operator and thus returns a Boolean value.
When the operator is used, the call will look something like vectorA ==
vectorB.

4. Add the following code to overload the != operator. Note that inequality
is defined as the opposite of equality. You don’t have to define
inequality separately.

5. public static bool operator !=(Vector aVector, Vector bVector) {

6. return !(aVector == bVector);

}

Override Equals and GetHashCode
Both the Equals method and the == operator of the System.Object class (the base class
of Vector) return true if two references point to the same instance. When you overloaded
the == and != operators, you defined == to mean that the two vectors had the same
direction and magnitude. By overloading the Equals method, you give the Equals method
the same meaning as the == operator.
The GetHashCode method is called if the Vector class is used as the key for a key-value
pair in a hash table. A hash table is a data structure, implemented in the HashTable
class, for storing key-value pairs. The GetHashCode method must return the same value
for an instance every time it’s called on the instance. Because of this rule, the
GetHashCode method usually returns a calculation based on fields that don’t change.
The method doesn’t have to return a unique value for every instance; two instances can
return the same hash code.

1. Add the following code to override the Equals method. The Equals
method is defined by calling the == operator. Because the Equals
method takes an object as a parameter, you must also test that the
object is the correct type, and you must cast the object to Vector
before you can use the == operator.

2. public override bool Equals(object o) {
3. return (o is Vector) && (this == (Vector)o);

}
4. Add the following code to override the GetHashCode method.

5. public override int GetHashCode() {

6. return this.X;

}

Overload the unary − operator
§ Add the following code to overload the unary − operator. You’ll use the

unary − operator in the next section to define subtraction of vectors.
§ public static Vector operator -(Vector vector) {
§ return new Vector(-vector.X, -vector.Y);

}

Overload the binary + and − operators
The addition or subtraction of two vectors produces a third, new vector. Consider a
statement such as vectorSum = vectorA + vectorB. You can see that you wouldn’t expect
vectorA or vectorB to be changed by adding them together. You need a third, new Vector
instance to assign to vectorSum.

1. Add the following code to overload the + operator.
2. public static Vector operator +(Vector aVector, Vector bVector) {
3. return new Vector(aVector.X + bVector.X, aVector.Y + bVector.

Y);
}
4. Add the following code to overload the – binary operator. Notice that

you can define subtraction by using addition and the unary – operator.
By reusing the operators this way, the operators behave consistently.

5. public static Vector operator -(Vector aVector, Vector bVector) {

6. return aVector + (-bVector);

7. }

Overload the * operator for scalar multiplication

The operators you’ve defined so far have used only Vector operands. You can also
define operators that take different types of operands by changing the parameters to the
overload method.

§ Add the following code to define the * operator. When you use the *
operator, you’ll use it in an expression such as 2 * vectorA. If you want to
reverse the operators, as in vectorA * 2, you have to define a second
operator overload for * with the parameters reversed so that the integer
parameter is second.
§ public static Vector operator *(int scalar, Vector vector) {
§ return new Vector(scalar * vector.X, scalar * vector.Y);

}

Define the ToString and Parse methods
§ Add the following code to define the ToString and Parse methods. These

methods are similar to the ones you defined for the SortablePoint class in
Chapter 9.
§ public static Vector Parse(string vectorString) {
§ try {

§ string[] values = vectorString.Split("(,)".ToCharArray());
§ int x = int.Parse(values[1]);
§ int y = int.Parse(values[3]);
§ return new Vector(x, y);
§ }
§ catch {
§ throw new ArgumentException("Unable to parse ‘" + vectorS

tring
§ + "‘ into a Vector instance.");
§ }
§ }
§
§ public override string ToString() {
§ return string.Format("({0}, {1})", m_x, m_y);

}

Implementing the Vector Algebra Application

The user interface will allow the user to specify two vectors and the operation to perform
on them—addition, subtraction, or equality. The second vector is multiplied by a scalar
specified by the user.

The following interface shows the sum of the vectors (3, 3) and (−5, 3).

Add the user interface elements
1. To allow the user to specify the A vector, add controls and set their

properties as shown in the following table. Use the preceding graphic
as a guide.

Control Property Value

Label Text X
Label Text Y

Label Text Vector A
 ForeColor Red

NumericUpDown Name XVectorA

NumericUpDown Name YVectorA
12. Add a ListBox that will be used to specify the operation to perform with

the vectors. Set the Name property to functions.
13. Add controls to specify the B vector, including the scalar multiplier.

Control Property Value

Label Text Vector B

 ForeColor Blue

NumericUpDown Name XVectorB

NumericUpDown Name YVectorB

Control Property Value

Label Text *

NumericUpDown Name scalar

 Minimum −3

 Maximum 3

 Value 1

 Increment 1

 DecimalPlaces 0

14. Add controls to display the results of the vector calculation.

Control Property Value

Label Text Result
 ForeColor Green

TextBox Name result

 ForeColor Green
 Text (blank)

15. Select the four NumericUpDown controls for the vector components by
drawing a box around them with the mouse. With all four selected, set
the properties as shown in the following table. If you accidentally
select the NumericUpDown for the scalar, too, the default behavior of
your application will be to multiply the B vector by zero, and you won’t
see any interesting results.

Property Value

Minimum −5
Maximum 5
Value 0

Increment 1
DecimalPlaces 0

Add the drawing methods
Now add the methods for drawing vectors on the form. The graph will represent the x
and y axes from −10 to 10. The graph will be drawn on the form between pixels 20 and
170. Therefore, each unit of the vector graph is 15 pixels on the form. The entire graph is
offset 20 pixels from the top and left of the form.

1. Create the event handler for the form’s Paint method by clicking the
Events toolbar button in the Properties pane for the form and double-
click Paint. Add the following code to draw the axes of the graph:

2. private void Form1_Paint(object sender,
3. System.Windows.Forms.PaintEventArgs e) {
4. e.Graphics.DrawLine(Pens.Black, 20, 170, 320, 170);
5. e.Graphics.DrawLine(Pens.Black, 170, 20, 170, 320);

}
6. Add the following function to the form class.

This function translates a location relative to the graph (−10 to 10) to a
location on the form (20 to 170).

private Point VectorToPoint(Vector vector) {

 return new Point(vector.X*15 + 170, -vector.Y*15 + 170);

}
7. Add the following overloaded methods to draw a vector on the form.

The first overload draws the vector from the origin. The second overload
draws the vector from the end of another vector and is used to draw the
vectors in addition.

private void DrawVector(Vector vector, Color color) {

 Point origin = VectorToPoint(new Vector(0, 0));

 Point end = VectorToPoint(vector);

 this.CreateGraphics().DrawLine(

 new Pen(new SolidBrush(color), 2), origin, end);

}

private void DrawVector(Vector aVector, Vector bVector, Color color) {

 Point origin = VectorToPoint(bVector);

 Point end = VectorToPoint(aVector + bVector);

 this.CreateGraphics().DrawLine(

 new Pen(new SolidBrush(color), 2), origin, end);

}

Add the logic

In this exercise, you’ll use delegates to call the addition and subtraction operators.
1. Add the following delegate declaration and SortedList to the form

class. In the third step, you’ll create methods for addition, subtraction,
and equality that comply with the signature of the VectorMath
delegate.

2. private delegate void VectorMath(Vector a, Vector b);
3. System.Collections.SortedList m_maths =

 new System.Collections.SortedList();
4. Add private properties to convert the values of the NumericUpDown

controls into Vector instances.

5. private Vector VectorA {

6. get {

7. return new Vector((int)this.XVectorA.Value,

8. (int)this.YVectorA.Value);

9. }

10. }

11.

12. private Vector VectorB {

13. get {

14. return new Vector((int)this.XVectorB.Value,

15. (int)this.YVectorB.Value);

16. }

17. }
18. Add the following functions to add and subtract the vectors or test for

equality. In these methods, you’re using the overloaded +, –, and ==
operators.

19. private void AddVectors(Vector a, Vector b) {

20. DrawVector(a, Color.Red);

21. DrawVector(b, a, Color.Blue);

22. Vector sum = a + b;

23. DrawVector(sum, Color.Green);

24. this.result.Text = sum.ToString();

25. }

26.

27. private void SubtractVectors(Vector a, Vector b) {

28. DrawVector(a, Color.Red);

29. DrawVector(-b, a, Color.Blue);

30. Vector difference = a - b;

31. DrawVector(difference, Color.Green);

32. this.result.Text = difference.ToString();

33. }

34.

35. private void AreEqual(Vector a, Vector b) {

36. bool equal = (a == b);

37. this.result.Text = equal.ToString();

}
38. Create the event handler for the form’s Load event and add this code

to add delegates to m_maths and items to the function’s ListBox
control. A delegate is a type, and as such, you can create an instance
of it. You can then add that instance to any collection, such as the
SortedList instance used here. In the next section, you’ll use the
instances to call the AddVectors and SubtractVectors methods.
(Create the Load event handler by double-clicking the form in the form
designer.)

39. private void Form1_Load(object sender, System.EventArgs e) {

40. m_maths.Add("Add", new VectorMath(AddVectors));

41. m_maths.Add("Subtract", new VectorMath(SubtractVectors));

42. m_maths.Add("Are equal", new VectorMath(AreEqual));

43. functions.DataSource = m_maths.Keys;

}

Add the user interface event methods
The vectors on the graph will change as the user changes the values in the
NumericUpDown controls and the ListBox control. Each of these controls uses the same
System.EventHandler delegate for the value-changing event. That means that the event
handler signatures for NumericUpDown.ValueChanged and
ListBox.SelectedIndexChanged are the same. You can take advantage of this similarity
to assign one method as the event handler for all the change events.

1. Add the following method to the form class to respond to changes in
the form controls.
2. private void VectorChanged(object sender, System.EventArgs e)

{
3. this.Refresh();
4. VectorMath theMath = (VectorMath)m_maths[functions.Text];
5. theMath(this.VectorA, (int)scalar.Value * this.VectorB);

}
The strings “Add”, “Subtract”, and “Are equal” were used as keys for the
VectorMath delegate instances you added to the m_maths SortedList
instance. When the delegates are retrieved from the SortedList, they are
returned as System.Object types and must be cast to the VectorMath type.

Once the delegates are cast, you can call the method with the Vector values.
Using delegates allows you to call the appropriate method without having to
create a switch statement and test on the string “Add”, “Subtract”, or “Are
equal”. This means that you could add other calculations easily.

6. Open the form in the form designer and click the Event toolbar button
in the Properties window.

7. Select the XVectorA control.
8. Click the Event toolbar button in the Properties window. (It has a

lightning bolt on it.) The Properties window now displays the events of
the XVectorA control.

9. Locate and click the ValueChanged event in the list.
10. If you click the ValueChanged drop-down arrow, a list of all the

methods defined in the class that have signatures that match the event
will appear. In this case, the VectorChanged method is in the list. Click
it.

11. Repeat steps 3 through 6 for the other NumericUpDown controls.
12. Select the VectorChanged method as the event handler for the

SelectedIndexChanged event of the functions ListBox control.

Test the application

Use the NumericUpDown controls to test the operators. Here are some interesting tests:
§ Add a vector to itself. You get a new vector twice the length in the same

direction.
§ Subtract a vector from itself. The result is the (0, 0) vector.
§ Compare A − B to A + (−1 * B). The results are the same.

Quick Reference

To Do this

Overload a unary operator Create a static method to indicate the
parameter
and the return type.
public static Vector operator
-(Vector vector) {
return new Vector(-vector.X, -
vector.Y);
}

Overload a binary operator Create a static method to indicate the
parameter
and the return type. public static
bool operator ==(Vector
aVector,
Vector bVector) {
return (aVector.X ==
bVector.X) &&
(aVector.Y == bVector.Y);
}

Assign one method to events
of multiple controls

Create a method in the class with the
correct signature. private void
ButtonClick(object sender,
System.EventArgs e)
{
}

 Use the designer to assign the method to
the control’s event,
or, use the += statement to assign the

To Do this

event to multiple
controls.
button1.Click += new
System.EventHandler(ButtonClic
k);
button2.Click += new
System.EventHandler(ButtonClic
k);

Call a method by storing and
retrieving a delegate
Create the method to match
the delegate

Create the delegate.
private delegate void
VectorMath(Vector a, Vector
b);
private void AreEqual(Vector
a, Vector b) {
bool equal = (a == b);
this.result.Text =
equal.ToString();
}

Add the delegate to a data
structure
Retrieve, cast, and call the
delegate

m_maths.Add("Are equal", new
VectorMath(AreEqual));

 VectorMath theMath =
(VectorMath)m_maths["Are
equal"];
theMath(this.VectorA,
(int)scalar.Value *
this.VectorB);

Chapter 13: Saving Instance Data

Overview
ESTIMATED
TIME

3 hr. 30 min.

In this chapter, you’ll learn how to

§ Store and retrieve instance data by using XML serialization.
§ Store and retrieve instance data by using binary serialization.
§ Use a typed DataSet to retrieve data from a database.

Almost too conveniently, the class instances you’ve created so far have been
instantiated either in code or through some user input. In this chapter, you’ll take a look
at some of the classes provided by the .NET Framework for storing instance data. This
will be a brief overview, because a single chapter can’t even begin to explain the options
available. Instead, this chapter will provide a short introduction to two common
mechanisms—serialization and the ADO.NET DataSet class. We’ll look at these
mechanisms and the object-oriented concepts that they support and demonstrate.

Serialization
Serialization is the process of laying down the instance data one field after the other,
often—but not always—in a file. If you’re serializing several instances, the data for each
instance is laid down in order. For example, if you’re serializing the X and Y properties of
two Point instances, A and B, the serialized file contains the values of A.X, A.Y, B.X, and
B.Y, in that order.
Deserialization is the process of reading that data back into a class instance. The actual
bytes written and read are defined by an industry standard, by an application standard,
or by you. Two well-known industry standards are bitmap files and Extensible Markup
Language (XML) files. The sequence of bytes in a Microsoft Word file is an example of
an application standard. You might define your own serialization format, perhaps by
listing two numbers in a line of a text file to represent one (x, y) point.

You use serialization for more than just saving instance data from one running of an
application to the next. You’ll also use serialization when you need to move data from
one application to another. For example, you use serialization to move data from an
application to the Clipboard.

The .NET Framework provides several classes for serialization tasks. In the first exercise
in this chapter, you’ll use the BinaryFormatter and the XMLSerializer classes. Each class
has its advantages and limitations, as the test application will demonstrate.

The user interface of the application you’ll create is shown in the following graphic:

The user creates a list of triangles by defining each vertex of the triangle as a point (x, y).
The user can then save the list of triangles in binary form or in XML form. Once the list is
saved, the user can retrieve the data at a later time to restore the list of triangles. The
design includes three classes: XYPoint, Triangle, and TriangleCollection. The Triangle
class contains three XYPoint instances, and the TriangleCollection contains zero or more
Triangle instances. The nesting of these classes lets you examine how serialization
works and investigate the rules and conventions that apply to implementing serialization
with the .NET Framework.

Implementing Binary Serialization

Binary serialization preserves the state of a class instance as a stream of bytes. This
stream of bytes can be saved to a file, stored in memory, or moved across a network. By
default, the byte stream contains the entire state of the object, including all the public and
private fields of the instance. You can control which data is saved and restored by

implementing the ISerializable interface. You might want to do this if there is information
in the class that you don’t want to make publicly available. The serialized data isn’t
readable as plain text, but it’s not encrypted, either.

Create the data classes

The data model of this application includes the three classes: XYPoint, Triangle, and
TriangleCollection. The user interface contains methods to create, delete, save, and load
the instances created.

1. Create a new Windows application. Name it Serialize.
2. Add a new class named XYPoint to the project.
3. Add the integer X and Y properties to the class:

4. ‘ Visual Basic

5. Private m_x As Integer

6. Private m_y As Integer

7. Public Property X() As Integer

8. Get

9. Return m_x

10. End Get

11. Set(ByVal Value As Integer)

12. m_x = value

13. End Set

14. End Property

15.

16. Public Property Y() As Integer

17. Get

18. Return m_y

19. End Get

20. Set(ByVal Value As Integer)

21. m_y = value

22. End Set

23. End Property

24.

25. // Visual C#

26. private int m_x, m_y;

27. public int Y {

28. get { return m_y; }

29. set { m_y = value; }

30. }

31.

32. public int X {

33. get { return m_x; }

34. set { m_x = value; }

35. }
36. Add constructors and override the ToString method. The ToString

method is used to display the XYPoint instances at run time.

37. ‘ Visual Basic

38. Public Sub New()

39. End Sub

40.

41. Public Sub New(ByVal x As Integer, ByVal y As Integer)

42. m_x = x

43. m_y = y

44. End Sub

45.

46. Public Overrides Function ToString() As String

47. Return String.Format("({0}, {1})", Me.X, Me.Y)

48. End Function

49.

50. // Visual C#

51. public XYPoint() {

52. }

53.

54. public XYPoint(int x, int y) {

55. m_x = x;

56. m_y = y;

57. }

58.

59. public override string ToString(){

60. return string.Format("({0}, {1})", this.X, this.Y);

}
61. Add a class named Triangle to the project.
62. Add the Points property for the three vertices of the triangle:

63. ‘ Visual Basic

64. Private m_points() As XYPoint = _

65. {New XYPoint(), New XYPoint(), New XYPoint()}

66.

67. Public Property Points() As XYPoint()

68. Get

69. Return m_points

70. End Get

71. Set(ByVal Value As XYPoint())

72. If (Value.Length = 3) Then

73. m_points = Value

74. End If

75. End Set

76. End Property

77.

78. // Visual C#

79. private XYPoint[] m_points = new XYPoint[3];

80. public XYPoint[] Points {

81. get {

82. return m_points;

83. }

84. set {

85. if (value.Length == 3) {

86. m_points = value;

87. }

88. }

}
89. Add a constructor and override the ToString method:

90. ‘ Visual Basic

91. Public Sub New(ByVal a As XYPoint, ByVal b As XYPoint, ByVal
c As XYPoint)

92. m_points = New XYPoint() {a, b, c}

93. End Sub

94.

95. Public Overrides Function ToString() As String

96. Dim triangleString As String

97. Dim point As Integer

98. For point = 0 To m_points.Length - 1

99. triangleString += m_points(point).ToString() + " "

100. Next

101. Return triangleString

102. End Function

103.

104. // Visual C#

105. public Triangle(XYPoint a, XYPoint b, XYPoint c) {

106. m_points = new XYPoint[] { a, b, c };

107. }

108. public override string ToString() {

109. string triangle = "";

110. for (int point = 0; point < m_points.Length; point++) {

111. triangle += m_points[point].ToString() + " ";

112. }

113. return triangle;

}
114. Add a class named TriangleCollection to the project. This class will be

a strongly typed collection based on the CollectionBase class.
115. Modify the class declaration to indicate the base class:

116. ‘ Visual Basic

117. public class TriangleCollection

118. Inherits System.Collections.CollectionBase

119. end class

120.

121. // Visual C#

122. public class TriangleCollection : System.Collections.CollectionBa
se {

}
123. Add the Add and Remove methods:

124. ‘ Visual Basic

125. Public Sub Add(ByVal tri As Triangle)

126. Me.InnerList.Add(tri)

127. End Sub

128.

129. Public Sub Remove(ByVal tri As Triangle)

130. Me.InnerList.Remove(tri)

131. End Sub

132.

133. // Visual C#

134. public void Add(Triangle tri) {

135. this.InnerList.Add(tri);

136. }

137.

138. public void Remove(Triangle tri) {

139. this.InnerList.Remove(tri);

}
140. Override the ToString method, and then add a ToArray method to

facilitate displaying the triangles in a ListBox control:

141. ‘ Visual Basic

142. Public Overrides Function ToString() As String

143. Dim triangles As String

144. Dim tri As Triangle

145. For Each tri In Me.InnerList

146. triangles += tri.ToString() & ControlChars.CrLf

147. Next

148. Return triangles

149. End Function

150.

151. Public Function ToArray() As Object()

152. Dim triangles(Me.Count - 1) As Object

153. Dim tri As Integer

154. For tri = 0 To Me.Count - 1

155. triangles(tri) = innerlist(tri)

156. Next

157. Return triangles

158. End Function

159.

160. // Visual C#

161. public override string ToString() {

162. string triangles = "";

163. foreach(Triangle tri in this.InnerList) {

164. triangles += tri.ToString() + "\n";

165. }

166. return triangles;

167. }

168.

169. public object[] ToArray() {

170. object[] triangles = new object[this.Count];

171. this.InnerList.CopyTo(triangles, 0);

172. return triangles;

}

Next you’ll add a user interface to create, save, and load the instance data.

Create the user interface
1. Open Form1 in the form designer and add the controls listed in the

following table, setting the properties as shown. Size and arrange the
controls as shown in the illustration on page 332.

Control Property Value

CheckedListBox Name selectedPoints
Label Text Select three

points
ListBox Name triangleList
Label Text Triangles

Button Name addTriangle
 Text Add

Button Name removeTriangle

 Text Remove
Button Name clearAll

 Text Clear All

Button Name saveBinary
 Text Save Binary

Button Name loadBinary

 Text Load Binary
Button Name saveXML

 Text Save XML

Button Name loadXML
 Text Load XML

13. Double-click the form to create the Load event handler. Add the
following code to fill the CheckedListBox control with points:

14. ‘ Visual Basic
15. Private Sub Form1_Load(ByVal sender As System.Object, _
16. ByVal e As System.EventArgs) Handles MyBase.Load
17. Dim x As Integer
18. Dim y As Integer
19. For x = 0 To 6

20. For y = 0 To 6
21. Me.selectedPoints.Items.Add(New XYPoint(x, y))
22. Next
23. Next
24. End Sub
25.
26. // Visual C#
27. private void Form1_Load(object sender, System.EventArgs e) {
28. for (int x = 0; x < 6; x++) {
29. for (int y = 0; y < 6; y++) {
30. this.selectedPoints.Items.Add(new XYPoint(x, y));
31. }
32. }

}
33. Create the Click event handler for the Add button by double-clicking

the button in the form. Add a field for the TriangleCollection to the
Form1 class and add code to the event handler to add a new Triangle
instance to the m_triangles TriangleCollection object. The
CheckedItemCollection property of CheckedListBox is a collection of
all the items that have been checked. These objects are returned as
System.Object instances, so you must cast them back to XYPoint to
instantiate a new Triangle object with them.

34. ‘ Visual Basic

35. Private m_triangles As New TriangleCollection()

36. Private Sub addTriangle_Click(ByVal sender As System.Object, _

37. ByVal e As System.EventArgs) Handles addTriangle.Click

38. Dim checkedPoints As CheckedListBox.CheckedItemCollectio
n = _

39. Me.selectedPoints.CheckedItems

40. If checkedPoints.Count = 3 Then

41. m_triangles.Add(New Triangle(_

42. CType(checkedPoints(0), XYPoint), _

43. CType(checkedPoints(1), XYPoint), _

44. CType(checkedPoints(2), XYPoint)))

45. triangleList.Items.Clear()

46. triangleList.Items.AddRange(m_triangles.ToArray())

47. Dim item As Integer

48. For Each item In selectedPoints.CheckedIndices

49. selectedPoints.SetItemChecked(item, False)

50. Next

51. Else

52. MessageBox.Show("You must select exactly three points.")

53. End If

54. End Sub

55.

56. // Visual C#

57. private TriangleCollection m_triangles = new TriangleCollection();

58. private void addTriangle_Click(object sender, System.EventArgs
e) {

59. CheckedListBox.CheckedItemCollection checkedPoints =

60. this.selectedPoints.CheckedItems;

61. if (checkedPoints.Count == 3) {

62. m_triangles.Add(new Triangle((XYPoint)checkedPoints[0],

63. (XYPoint)checkedPoints[1], (XYPoint)checkedPoints[2]));

64. this.triangleList.Items.Clear();

65. this.triangleList.Items.AddRange(m_triangles.ToArray());

66. foreach (int item in selectedPoints.CheckedIndices) {

67. selectedPoints.SetItemChecked(item, false);

68. }

69. }

70. else {

71. MessageBox.Show("You must select exactly three points.");

72. }

}
73. Create the Click event handler for the Remove button. Add the

following code to remove the selected triangle from m_triangles. As
with the CheckedItemCollection property of the CheckedListBox, the
SelectedItem property of the ListBox returns a System.Object
reference. You need to cast this to a Triangle before you can call the
Remove method of the TriangleCollection instance, m_triangles.

74. ‘ Visual Basic

75. Private Sub removeTriangle_Click(ByVal sender As System.Obje
ct, _

76. ByVal e As System.EventArgs) Handles removeTriangle.Click

77. If triangleList.SelectedIndex <> -1 Then

78. m_triangles.Remove(CType(triangleList.SelectedItem, Trian
gle))

79. triangleList.Items.Clear()

80. triangleList.Items.AddRange(m_triangles.ToArray())

81. End If

82. End Sub

83.

84. // Visual C#

85. private void removeTriangle_Click(object sender, System.EventAr
gs e) {

86. if (triangleList.SelectedIndex != -1) {

87. m_triangles.Remove((Triangle)triangleList.SelectedItem);

88. triangleList.Items.Clear();

89. triangleList.Items.AddRange(m_triangles.ToArray());

90. }

91. }
92. Create the Click event handler for the Clear All button. Add the

following code to remove all the Triangle instances from m_triangles.

93. ‘ Visual Basic

94. Private Sub clearAll_Click(ByVal sender As System.Object, _

95. ByVal e As System.EventArgs) Handles clearAll.Click

96. m_triangles.Clear()

97. triangleList.Items.Clear()

98. End Sub

99.

100. // Visual C#

101. private void clearAll_Click(object sender, System.EventArgs e) {

102. m_triangles.Clear();

103. triangleList.Items.Clear();

}

With all the classes defined and methods for creating and deleting instances
of them, you can now define the serialization and deserialization methods.
This will require additions to both the user interface and to the classes
themselves.

Define the serialization
In this exercise, you’ll serialize the TriangleCollection instance, m_triangles, which in turn
contains Triangle instances, which in turn contain XYPoint instances. This dependence
of classes is known as the object graph of a class. The .NET runtime is able to traverse
the object graph during serialization and serialize all the contained instances. Your job is
to ensure that all the classes are defined correctly to support serialization.

To use binary serialization, you need to add the Serializable attribute to each class you
want to serialize. Additionally, if you want to define which fields are serialized and how
they are serialized, you can implement the ISerializable interface. The object graph of
TriangleCollection contains the Triangle and XYPoint classes. Triangle and
TriangleCollection will use the default serialization provided by adding the Serializable
attribute. The XYPoint class will define its own serialization by implementing the .NET
Framework ISerializable interface and adding the Serializable attribute.

1. Add the Serializable attribute and the ISerializable interface to the
XYPoint class declaration:
2. ‘ Visual Basic
3. <Serializable()> Public Class XYPoint
4. Implements System.Runtime.Serialization.ISerializable
5. :
6. End Class
7.
8. // Visual C#
9. [Serializable()]
10. public class XYPoint : System.Runtime.Serialization.ISerializable

{
11. :

}
12. Add code to define the GetObjectData method, the ISerializable

interface’s only member. This first parameter, info, of type
SerializationInfo, is a collection of name/value pairs that is passed to
the serialization process. Only the information you add to the
SerializationInfo instance is serialized. In this way, you can control
what is serialized, and in what form it’s serialized. In this case, you will
add the values of m_x and m_y to the collection:

13. ‘ Visual Basic

14. Public Sub GetObjectData(ByVal info As _

15. System.Runtime.Serialization.SerializationInfo, _

16. ByVal context As System.Runtime.Serialization.StreamingContex
t) _

17. Implements System.Runtime.Serialization.ISerializable.GetObject
Data

18. info.AddValue("X", m_x)

19. info.AddValue("Y", m_y)

20. End Sub

21.

22. // Visual C#

23. public void GetObjectData(System.Runtime.Serialization.Serializa
tionInfo

24. info, System.Runtime.Serialization.StreamingContext context) {

25. info.AddValue("X", m_x);

26. info.AddValue("Y", m_y);

}
27. Provide a constructor that takes the SerializationInfo and

StreamingContext parameters. This method is required for
serialization but isn’t enforced by the interface definition, because
interfaces can’t define constructors. This constructor is called when
the object is deserialized and is necessary when you’re implementing
the ISerializable interface. The constructor needs to read the data
back in exactly as that data was written out.

28. ‘ Visual Basic

29. Public Sub New(ByVal info As _

30. System.Runtime.Serialization.SerializationInfo, _

31. ByVal context As System.Runtime.Serialization.StreamingContex
t)

32. m_x = info.GetInt32("X")

33. m_y = info.GetInt32("Y")

34. End Sub

35.

36. // Visual C#

37. public XYPoint(System.Runtime.Serialization.SerializationInfo inf
o,

38. System.Runtime.Serialization.StreamingContext context) {

39. m_x = info.GetInt32("X");

40. m_y = info.GetInt32("Y");

41. }
42. Add the Serialization attribute to the Triangle and TriangleCollection

classes. No other changes are needed if you want to use the default
serialization.

43. ‘ Visual Basic

44. <Serializable()> Public Class Triangle

45. :

46. End Class

47.

48. <Serializable()> Public Class TriangleCollection

49. :

50. End Class

51.

52. // Visual C#

53. [Serializable()]

54. public class Triangle {

55. :

56. }

57. [Serializable()]

58. public class TriangleCollection : System.Collections.CollectionBa
se {

59. :

}

Serialize and deserialize the data
With the serialization defined for the classes, you have only to create BinaryFormatter
and FileStream instances to serialize the m_triangles instance data to a file on disk.

1. Add an Imports or using statement to the Form1 source file. This will
let you use the unqualified name of the BinaryFormatter class.

2. ‘ Visual Basic
3. Imports System.Runtime.Serialization.Formatters.Binary
4.
5. // Visual C#

using System.Runtime.Serialization.Formatters.Binary;
6. Create a field in the Form1 class to hold the name of the file. The data

file will reside in the bin or bin\debug folder of the project folder.

7. ‘ Visual Basic

8. Private m_binaryFile as string = _

9. Application.StartupPath + "\triangles.dat"

10.

11. // Visual C#

private string m_binaryFile = Application.StartupPath + "\\triangles.dat";
12. Create the Click event handler for the Save Binary Button and add

code to to serialize the m_triangles field. The steps in serialization are
simple: just create a stream (in this case a file stream) and a
BinaryFormatter object. The Serialize method takes as parameters the
serialization stream and the object you’re going to serialize.

13. ‘ Visual Basic

14. Private Sub saveBinary_Click(ByVal sender As System.Object, _

15. ByVal e As System.EventArgs) Handles saveBinary.Click

16. Dim stream As _

17. New System.IO.FileStream(m_binaryFile, System.IO.FileMo
de.Create)

18. Dim binary As New BinaryFormatter()

19. binary.Serialize(stream, m_triangles)

20. stream.close()

21. End Sub

22.

23. // Visual C#

24. private void saveBinary_Click(object sender, System.EventArgs e
) {

25. System.IO.Stream stream = new System.IO.FileStream(m_bin
aryFile,

26. System.IO.FileMode.Create);

27. BinaryFormatter binary = new BinaryFormatter();

28. binary.Serialize(stream, m_triangles);

29. stream.Close();

}
30. Create the Click event handler for the Load Binary Button and add

code to deserialize the m_triangles field. After loading the data, fill the
triangleList ListBox control with the new data.

31. ‘ Visual Basic

32. Private Sub loadBinary_Click(ByVal sender As System.Object, _

33. ByVal e As System.EventArgs) Handles loadBinary.Click

34. Dim stream As New System.IO.FileStream(m_binaryFile, _

35. System.IO.FileMode.Open)

36. Dim binary As New BinaryFormatter()

37. m_triangles = CType(binary.Deserialize(stream), TriangleColle
ction)

38. stream.Close()

39. triangleList.Items.Clear()

40. triangleList.Items.AddRange(m_triangles.ToArray())

41. End Sub

42.

43. // Visual C#

44. private void loadBinary_Click(object sender, System.EventArgs e)
 {

45. System.IO.Stream stream = new System.IO.FileStream(m_bin
aryFile,

46. System.IO.FileMode.Open);

47. BinaryFormatter binary = new BinaryFormatter();

48. m_triangles = (TriangleCollection) binary.Des erialize(stream);

49. stream.Close();

50. triangleList.Items.Clear();

51. triangleList.Items.AddRange(m_triangles.ToArray());

}
You used the BinaryFormatter class to both serialize, in step 3, and now
deserialize the m_triangles field. The Deserialize method takes a stream
instance and returns a System.Object instance. You cast that object back to
the type you serialized to the stream.

Run and test the application

You can now run and test the application. Note that you’ll need to add and save some
data before you attempt to load the data because the data file won’t exist until you create
it. Try the following steps:

1. Start the application. The Triangles list box is empty.
2. Select three points and click the Add button. You have one Triangle

instance in the ListBox.
3. Add another Triangle instance.
4. Click the Save Binary button. You’ve saved two Triangle instances to

the file.
5. Click the Clear All button. This deletes all the Triangle instances in

memory.
6. Click the Load Binary button. The two instances you saved appear in

the list box.

A portion of the binary data file is shown in Notepad in the following graphic.
Little is readable here; the stream is designed to be compact.

If you scroll through the file, you’ll find mention of the three classes and the x and y
values. In the next section, you’ll see another serialization with readable output.

Implementing XML Serialization

XML is a text markup language similar to HTML, except that XML allows the developer to
define the tags. While HTML contains a predefined set of tags, such as Title and Style,
developers can create whatever tags they need to define their data, such as XYPoint,
Triangle, and TriangleCollection. XML serialization differs from binary serialization in
several ways:

§ Only the public fields and properties are serialized. If the instance data
can’t be reached from public fields or properties, it won’t be initialized
when the object is deserialized.

§ XML serialization requires a public constructor with no parameters. The
instance is recreated by constructing the instance and setting the public
data fields and properties. There are special conventions for
implementing collection classes such as the TriangleCollection so that
the data can be serialized and deserialized.

§ The output of the serialization is readable, plain text.

Serialize and deserialize the data

To support XML serialization, you’ll add the public members needed to instantiate an
instance, and set its properties.

1. Add parameterless constructors to the Triangle, and TriangleCollection
Visual Basic classes. The XYPoint class already has one. The Visual
C# classes already have parameterless constructors.

2. ‘ Visual Basic
3. ‘ Add to the Triangle and TriangleCollection classes
4. Public Sub New()

End Sub
5. To serialize a class that implements ICollection, as the

TriangleCollection class does through its base class CollectionBase,
you must implement the following members:

§ An Add method that takes one parameter. That
parameter must be the same type as the object
returned by the Current property of the GetEnumerator
method. An acceptable Add method was created when
you defined the TriangleCollection class.

§ A Count property that returns an integer. The base class,
CollectionBase, provides the Count property.

§ An indexed Item method in Visual Basic or an indexer in
Visual C#. The return value of this method must have
the same type as the parameter of the Add method.

Taken together, these members allow the serialization process to access all
the collection objects through the Item method or the indexer and to
deserialize the object through the Add method.

Add the Item property or indexer to the TriangleCollection class as
shown here:

‘ Visual Basic

Default Public Property Item(ByVal index As Integer) As Triangle

 Get

 Return CType(Me.InnerList.Item(index), Triangle)

 End Get

 Set(ByVal Value As Triangle)

 Me.InnerList.Item(index) = Value

 End Set

End Property

// Visual C#

public Triangle this[int index] {

 get {

 return (Triangle)(this.List[index]);

 }

 set {

 this.List[index] = value;

 }

}

That completes the changes you need to make to the classes.
6. In the Form1 class source file, add an Imports or using statement for

the XML.Serialization namespace:

7. ‘ Visual Basic

8. Imports System.Xml.Serialization

9.

10. // Visual C#

using System.Xml.Serialization;
11. In the Form1 class, define the string for the XML filename.

12. ‘ Visual Basic

13. Private m_xmlFile As String = Application.StartupPath & "\triangle
s.xml"

14.

15. // Visual C#

private string m_xmlFile = Application.StartupPath + "\\triangles.xml";
16. Create the Click event handler for the Save XML Button and add code

to serialize m_triangles. The methods for XML serialization and

deserialization are similar to the binary methods. The XMLSerializer
needs to know the type of instance being serialized.

17. ‘ Visual Basic

18. Private Sub saveXML_Click(ByVal sender As System.Object, _

19. ByVal e As System.EventArgs) Handles saveXML.Click

20. Dim writer As New System.IO.StreamWriter(m_xmlFile)

21. Dim xmlSerial As New XmlSerializer(m_triangles.GetType())

22. xmlSerial.Serialize(writer, m_triangles)

23. writer.Close()

24. End Sub

25.

26. // Visual C#

27. private void saveXML_Click(object sender, System.EventArgs e)
{

28. System.IO.TextWriter writer = new System.IO.StreamWriter(m
_xmlFile);

29. XmlSerializer xmlSerial =

30. new XmlSerializer(typeof(TriangleCollection));

31. xmlSerial.Serialize(writer, m_triangles);

32. writer.Close();

33. }
34. Create the Click event handler for the Load XML Button and add code

to deserialize m_triangles.

35. ‘ Visual Basic

36. Private Sub loadXML_Click(ByVal sender As System.Object, _

37. ByVal e As System.EventArgs) Handles loadXML.Click

38. Dim reader As New System.IO.StreamReader(m_xmlfile)

39. Dim xmlSerial As New XmlSerializer(System.Type.GetType(_

40. "Serialize.TriangleCollection"))

41. m_triangles = CType(xmlserial.Deserialize(reader), TriangleCol
lection)

42. reader.close()

43. triangleList.Items.Clear()

44. triangleList.Items.AddRange(m_triangles.ToArray())

45. End Sub

46.

47. // Visual C#

48. private void loadXML_Click(object sender, System.EventArgs e) {

49. System.IO.TextReader reader = new System.IO.StreamReade
r(m_xmlFile);

50. XmlSerializer xmlSerial =

51. new XmlSerializer(typeof(TriangleCollection));

52. m_triangles = (TriangleCollection) xmlSerial.Deserialize(reader
);

53. reader.Close();

54. triangleList.Items.Clear();

55. triangleList.Items.AddRange(m_triangles.ToArray());

}
56. Run and test the program.

Load and save the data

Now you can load and save the data in the XML format as well as the binary format. Try
these steps:

1. Start the application.
2. Click the Load Binary button to load the data you saved the last time

you ran the application.
3. Click the Save XML button. Now the binary file and the XML file

contain the same data.
4. Click the Clear All button.
5. Click the Load XML button. You see the same data you retrieved from

the binary file in the first step.

A portion of the XML data file is shown in Notepad in the graphic at the top of
the next page. XML uses opening and closing tags to define data elements.
Even if you have no knowledge of XML, it’s fairly obvious what’s being stored
in this file.

DataSets
ADO.NET is the .NET Framework’s model for data access. Data is stored in DataSet
objects that are disconnected from the database. Other data access objects in the model
move the data between the database and the datasets. XML support is built into the
model, as DataSet objects can easily be serialized into and deserialized from XML. No
doubt bookstores will soon have shelves of thick books about ADO.NET. In this section,
you’ll see a small selection of the many options available in ADO.NET. For more
comprehensive coverage, try Microsoft ADO.NET Step by Step (Microsoft Press, 2002).

In this second exercise, you’ll fill a DataGrid control with data stored in a DataSet
instance. In the first portion of the exercise, you’ll define the structure of the DataSet at
run time, creating what’s known as an untyped DataSet. In the second portion, you’ll let
the Microsoft Visual Studio development environment create the DataSet structure at
design time, using what’s known as a typed DataSet. The user interface is shown in the
following graphic.

The objects you’ll create in this application include the following:
§ DataSet The DataSet object is a container object that holds DataTable

objects and information about the relationships between DataTable objects.
DataSets can be either untyped or typed. The typed DataSet is created by
inheriting from the DataSet class, which is untyped, and adding strongly
typed access properties to the class.

§ DataTable The DataTable holds the data of interest, organized in rows and
columns. Through Item methods and indexers, you can access the data in
a table almost as though it were a two-dimensional matrix.

§ DataAdapter and DataConnection These two objects provide the process
for moving data between a DataSet and a database or other data source.

Implementing an Untyped DataSet

In this first section of the application, you’ll create and fill a DataSet in code at run time.
Created this way, the DataSet is untyped.

Create the user interface
1. Create a new Windows application project. Name it DataSetExercise.
2. Add the controls in the following table to the form and set their

properties as shown. Arrange the controls as shown in the previous
graphic.

Control Property Value

DataGrid Name xyPoints

Button Name loadUntyped

 Text Load
Untyped

 Width 88

Button Name loadTyped

 Text Load Typed

 Width 88

Button Name display

 Text Display

Create the DataSet
1. Create the Load event handler for the form. Add the following code to

create the DataSet:
2. ‘ Visual Basic
3. Private m_pointsSet As New DataSet()
4. Private Sub Form1_Load(ByVal sender As System.Object, _
5. ByVal e As System.EventArgs) Handles MyBase.Load
6. Dim pointsTable As New DataTable("XYPoints")
7. m_pointsSet.Tables.Add(pointsTable)

8. Dim xColumn As New DataColumn("X", System.Type.GetType
("System.Int32"))

9. Dim yColumn As New DataColumn("Y", System.Type.GetType
("System.Int32"))

10. pointsTable.Columns.Add(xColumn)
11. pointsTable.Columns.Add(yColumn)
12. Dim x As Integer
13. Dim y As Integer
14. For x = 0 To 5
15. For y = 0 To 5
16. Dim newRow As DataRow = pointsTable.NewRow()
17. newRow("X") = x
18. newRow("Y") = y
19. pointsTable.Rows.Add(newRow)
20. Next
21. Next
22. End Sub
23.
24. // Visual C#
25. private DataSet m_pointsSet = new DataSet();
26. private void Form1_Load(object sender, System.EventArgs e) {
27. DataTable pointsTable = new DataTable("XYPoints");
28. m_pointsSet.Tables.Add(pointsTable);
29. DataColumn xColumn = new DataColumn("X", typeof(int));
30. DataColumn yColumn = new DataColumn("Y", typeof(int));
31. pointsTable.Columns.Add(xColumn);
32. pointsTable.Columns.Add(yColumn);
33. for(int x = 0; x < 6; x++) {
34. for (int y = 0; y < 6; y++) {
35. DataRow newRow = pointsTable.NewRow();
36. newRow["X"] = x;
37. newRow["Y"] = y;
38. pointsTable.Rows.Add(newRow);
39. }
40. }

}
You create the DataSet by using the following objects:

§ DataSet The DataSet contains the DataTable objects.
§ DataTable You define the DataTable by adding

DataColumn objects and Row objects. The
DataColumn object defines the data contained in the
table, and the Row object contains the data. In this
example, the DataSet contains only one table,
XYPoints.

§ DataColumn You instantiate the DataColumn with a
name and a data type. The name of the column is
used later in the application to retrieve the data from a
row. In this example, the DataTable includes two
integer columns named X and Y. You can use the
column name to find a particular piece of data in a
DataRow.

§ DataRow The DataRow object contains the data. With
an untyped DataSet, you are on your own to make
sure the data you add matches the types defined in the
columns. In this example the data is added to the row
by using the default Item method or indexer, using the
column name as the index.

41. Create the Click event handler for the Load Untyped button and add
the following code:

42. ‘ Visual Basic

43. Private Sub loadUntyped_Click(ByVal sender As System.Object,
_

44. ByVal e As System.EventArgs) Handles loadUntyped.Click

45. xyPoints.DataSource = m_pointsSet

46. xyPoints.DataMember = "XYPoints"

47. End Sub

48.

49. // Visual C#

50. private void loadUntyped_Click(object sender, System.EventArgs
e) {

51. this.xyPoints.DataSource = m_pointsSet;

52. this.xyPoints.DataMember = "XYPoints";

}

The DataSet object implements all the requirements to be used as a data
source in the DataGrid. Because a DataSet can contain more than one
DataTable, you also select the table to display in the grid by using the
DataMember property.

53. Run the application and note the contents of the grid. The grid is
editable, and changes you make to the data in the grid are persisted
back to the DataSet.

Implementing a Typed DataSet

In this section of the exercise, you’ll fill the grid with the data from a typed DataSet.
Although you can create a typed DataSet by using the designer tools in Visual Studio, in
this example you’ll use some of the Visual Studio wizards to create a DataSet that
matches a table in a Microsoft Access database.

Create the typed DataSet class

If your needs are simple, wizards can accomplish most of the work of filling a DataSet
from a database. In this exercise, you need only to add two lines of code to the wizards’
work to display a database table in a DataGrid.

1. Open Form1 in the form designer.
2. From the Data area of the Toolbox, drag the OleDbDataAdapter

component onto the form. The Data Adapter Configuration Wizard
appears.

3. Click Next, and then click the New Connection button. The Data Link
Properties dialog appears.

4. On the Provider tab, click the Microsoft Jet provider. Click Next.
5. On the Connection Tab, browse to the database. The companion CD

contains an Access database named SomeData.mdb in the
\Chapter13 folder. Use admin as the user name and click OK. In the
wizard, click Next.

6. Click Next to use SQL statements to define the dataset.
7. Type select * from points in the box. Click Next, and then click Finish.

An OleDbConnection and OleDbDataAdapter are added to the
component tray.

8. Click Generate Dataset on the Data menu. The Generate Dataset
dialog box appears. Click OK to accept the defaults. A DataSet
instance named dataSet11 is added to the component tray. A new file
named DataSet1.xsd is added to the project.

Fill and display the DataSet

The data adapter component you created has data commands associated with it that can
fill the DataSet with data from the database. Thus, filling the database is a method of the
data adapter object, not a method of the DataSet object.

1. Double-click the Load Typed button to create the Click event handler.
Add the following code to load the data from the database into the
DataGrid control:
2. ‘ Visual Basic
3. Private Sub loadTyped_Click(ByVal sender As System.Object, _
4. ByVal e As System.EventArgs) Handles loadTyped.Click
5. OleDbDataAdapter1.Fill(DataSet11)
6. xyPoints.DataSource = dataSet11.Points
7. End Sub
8.
9. // Visual C#
10. private void loadTyped_Click(object sender, System.EventArgs e)

 {
11. oleDbDataAdapter1.Fill(dataSet11);
12. xyPoints.DataSource = dataSet11.Points;
13. }

14. Create the Click event for the Display button and add the following
code to display the contents of the current row. Because the DataGrid
can contain two different types of data, you will first use the
DataMember property to determine which DataSet is displayed in the
DataGrid. The data from the selected row is displayed in a message
box.

15. ‘ Visual Basic

16. Private Sub display_Click(ByVal sender As System.Object, _

17. ByVal e As System.EventArgs) Handles display.Click

18. Dim row As Int16 = xyPoints.CurrentCell.RowNumber

19. Dim point As String

20. Dim x, y As Integer

21.

22. If (xyPoints.DataMember = "XYPoints") Then

23. x = CType(m_pointsSet.Tables("XYPoints").Rows(row)("X"),
_

24. Integer)

25. y = CType(m_pointsSet.Tables("XYPoints").Rows(row)("Y"),
_

26. Integer)

27. Else

28. x = DataSet11.Points(row).X

29. y = DataSet11.Points(row).Y

30. End If

31. point = String.Format("({0}, {1})", x, y)

32. MessageBox.Show(point)

33. End Sub

34.

35. // Visual C#

36. private void display_Click(object sender, System.EventArgs e) {

37. int row = this.xyPoints.CurrentCell.RowNumber;

38. string point;

39. int x, y;

40. if (xyPoints.DataMember == "XYPoints") {

41. x = (int) m_pointsSet.Tables["XYPoints"].Rows[row]["X"];

42. y = (int) m_pointsSet.Tables["XYPoints"].Rows[row]["Y"];

43. }

44. else {

45. x = dataSet11.Points[row].X;

46. y = dataSet11.Points[row].Y;

47. }

48. point = string.Format("({0}, {1})", x, y);

49. MessageBox.Show(point);

50. }
There are some interesting differences between the two DataSets. Although
you can easily access the data in the untyped DataSet, you need to use the
names of the columns and the table. You could also use the integer index of
the column, but that would be even more cryptic. In the typed DataSet, the
table and column names are properties of the DataSet class. Another
difference is in the types returned from the DataRow. In the untyped DataSet,
a System.Object instance is returned from any column of the DataRow. To
use the System.Object instance, you must cast it to the correct type. In the
typed DataSet, the property is defined to be of the correct type. Clearly, the
typed DataSet is designed to simplify your programming task and prevent
type-casting errors.

51. Run the application.

You can now switch between the untyped DataSet created in code and the
typed DataSet from the Access database. You haven’t added the code
necessary to propagate changes in the DataGrid back to the database. Any
changes you make in the grid won’t be stored between the times you run the
application. Additionally, you are filling the DataSet from the database each
time the Load Typed button is clicked, so any changes you make are lost if
you click the Load Untyped button.

Examine the typed DataSet

When you generated the DataSet from the data adapter, a file named DataSet1.xsd was
added to the project. This file, which defines the DataSet1 class, can be displayed in a
designer to give you a graphical description of the DataSet.

1. In Solution Explorer, double-click the file DataSet.xsd. The graphical
representation of the DataSet appears as shown in the following
graphic. You can click the XML tab to view the XML used to generate
the diagram.

18. The XML definition is used to create a class that derives from the

DataSet class. To view that class source file, click the Show All Files
button in Solution Explorer. Expand the DataSet1.xsd node to find the
DataSet1.vb or DataSet1.cs file. Double-click this file to display it in
the code editor.

19. Locate the class declaration for the DataSet1 class. It derives from the
DataSet class. Therefore, you could have used the typed DataSet just
as you used the untyped DataS et.

20. ‘ Visual Basic

21. Public Class DataSet1

22. Inherits DataSet

23. :

24. End Class

25.

26. // Visual C#

27. public class DataSet1 : System.Data.DataSet {

28. :

29. }
30. The Points property of DataSet1 is equivalent to Tables[“Points”] in the

untyped DataSet. The Points property is of type PointsDataTable,
which is a class that inherits from DataTable. If you look in the source
file, you’ll find the pieces of code that wrap the table into a typed
property.

31. ‘ Visual Basic

32. Private tablePoints As PointsDataTable
33. Public ReadOnly Property Points As PointsDataTable
34. Get
35. Return Me.tablePoints
36. End Get
37. End Property
38.
39. Public Class PointsDataTable
40. Inherits DataTable
41.
42. Friend Sub New()
43. MyBase.New("Points")
44. Me.InitClass
45. End Sub
46. End Class
47.
48. // Visual C#
49. private PointsDataTable tablePoints;
50. public PointsDataTable Points {

51. get {
52. return this.tablePoints;
53. }
54. }
55.
56. public class PointsDataTable : DataTable, System.Collection

s.IEnumerable {
57. internal PointsDataTable() : base("Points") {
58. this.InitClass();
59. }

You’ll find the same sort of wrapping of the untyped columns to create typed
columns, by using a typed row class. The following code demonstrates how
the PointDataTable creates a column just as the untyped DataSet does, but
the PointsRow class does the casting to prevent the developer from entering
the wrong type for the X column.

‘ Visual Basic
Public Class PointsRow
 Inherits DataRow

 Public Property X As Integer
 Get
 Try
 Return CType(Me(Me.tablePoints.XColumn),Integer)
 Catch e As InvalidCastException
 Throw New StrongTypingException(_
 "Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tablePoints.XColumn) = value
 End Set
 End Property
End Class

// Visual C#
public class PointsRow : DataRow {
 public int X {
 get {
 try {
 return ((int)(this[this.tablePoints.XColumn]));
 }
 catch (InvalidCastException e) {
 throw new StrongTypingException(
 "Cannot get value because it is DBNull.", e);
 }
 }
 set {
 this[this.tablePoints.XColumn] = value;
 }
}

You can see similar constructs throughout the DataSet1 class source file.
Creating a typed DataSet makes the compiler do some of the work of the
developer by checking data types at compile time, to prevent exceptions
being thrown at run time.

Quick Reference

To Do this

Support
binary
serialization
of a class

Add the Serializable attribute to the declaration of the class.
‘ Visual Basic
<Serializable()> Public Class XYPoint
end class

 // Visual C#
[Serializable()]
public class XYPoint {
}

Implement
binary
serialization

Create a BinaryFormatter instance and a Stream
instance and call the Serialize and Deserialize
methods.

Define
custom
binary
serialization

Implement the ISerializable interface.
<Serializable()> Public Class XYPoint
 Implements System.Runtime.Serialization.ISerializable
End Class

 // Visual C#
[Serializable()]
public class XYPoint :
 System.Runtime.Serialization.ISerializable {
}

Support
XML
serialization

Add the public properties and fields needed to
recreate the class.

Implement
XML
serialization

Create a XMLSerializer instance and a Stream instance
and call the Serialize and Deserialize methods.

Create a
DataSet at
runtime

Create a DataSet instance. Add DataColumn instances
and DataRow instances.

Create a
DataSet
from a
database

Use the OleDbDataConnection, OleDbDataAdapter, and
OleDbDataCommand objects. Visual Studio provides several
wizards for configuring these items.

Chapter 14: Reducing Complexity by Design

Overview
ESTIMATED
TIME

1 hr. 30 min.

In this chapter, you’ll learn how to

§ Apply some of the .NET Design Guidelines.
§ Perform a “Pull Up Field” refactoring.
§ Recognize the Observer design pattern.

The chapters you’ve read so far have concentrated on the mechanics of object-oriented
programming. You’ve learned about properties, methods, inheritance, interfaces, events,
constructors, and exceptions. You’ve learned about the common uses of these elements,
the general recommendations for using these constructs, and some conventions for
developing with the .NET Framework. But your programs get larger and more complex,
knowing the mechanics isn’t enough. You need a good design to reduce the complexity
of your task. You’ve seen how encapsulating the methods and data into a class can
reduce the complexity visible to client code. Design doesn’t stop at the class level,
though. There are lots of object-oriented design methodologies in the literature. In this
chapter you’ll look at two methodologies: design patterns and refactoring. You’ll also look
at the .NET Design Guidelines, which can reduce the complexity of your designs by
encouraging the use of consistency and predictability. Use this chapter as a jumping-off
point for further studies in object-oriented design.

The .NET Design Guidelines
An easy way to reduce complexity in your application is by following the guidelines for
.NET development. When you follow the guidelines, your code behaves in a predictable
and familiar way, thereby reducing the amount of effort required by a developer, even
yourself, to read and maintain the code. If you’re creating a class library for others to
use, following the guidelines becomes even more important, even though these
developers don’t have access to the code. Other developers depend on your library
meeting the guidelines, and deviations from the guidelines can make your library
frustrating to work with, if not altogether broken. You can find the .NET Framework
Design Guidelines online by going to http://msdn.microsoft.com and searching for .NET
Framework Design Guidelines.

The guidelines listed in the following sections are not exhaustive; you can find the
complete guidelines online. The information listed here is particularly relevant to the
classes created in this book.

Naming Objects

Consistent naming can go a long way in making your code more readable and therefore
easier to maintain. Name choices provide clues about the scope of an object and the
object’s role in the application. The .NET Framework itself provides an excellent
resource for examples of member names.

Pascal Casing and camel Casing
In .NET applications, you’ll find two styles of capitalization: Pascal Casing and camel
Casing. When you use Pascal Casing, you capitalize each word in an identifier (the
name of something), just as both Pascal and Casing are capitalized. Examples include
FirstName and LastName. Using camel Casing, you capitalize every word except the
first word of the identifier. Examples include firstName and lastName. The capitalized
letter in the middle of the identifier might remind you of a camel’s hump.

Private fields, function parameters, and variables declared inside functions use camel
Casing. Everything else uses Pascal Casing. An easy way to determine the casing is to
remember that any identifier (class, property, method, interface name) visible outside the
class has its first letter capitalized. Look closely at IntelliSense when you use the code
editor. Almost without exception, everything uses Pascal Casing.

The following short class demonstrates the rules of casing. The field, parameter, and
variable names—name, volume, time, and speed—are camel-Cased. The other
identifiers—Dog, Name, Bark, and RunAway—are Pascal-Cased. (Note that the

parameter, Value, passed to the Set of the Name property is Camel Cased in Visual
Basic. The Set code is generated by Visual Studio. You can rename this parameter to
follow the guideline.)

‘ Visual Basic

Public Class Dog

 Dim dogName As String

 Public Property Name() As String

 Get

 Return dogName

 End Get

 Set(ByVal Value As String)

 dogName = Value

 End Set

 End Property

 Public Sub Bark(ByVal volume As Integer)

 ‘ Add code to make dog bark here.

 End Sub

 Public Function RunAway(ByVal time As Integer) As Integer

 Dim speed As Integer = 25

 Return speed * time

 End Function

End Class

// Visual C#

public class Dog {

 string dogName;

 public string Name {

 get { return dogName; }

 set { dogName = value; }

 }

 public void Bark(int volume) {

 // Add code to make dog bark here.

 }

 public int RunAway(int time) {

 int speed = 25;

 return speed * time;

 }

}

Case Insensitive Identifiers
Not all languages are case sensitive. Microsoft Visual Basic is a notable example. Visual
Basic doesn’t distinguish between Dog.RunAway and Dog.runaway, for example.
Therefore, to ensure that your library is usable across different languages, your
identifiers must be case insensitive. This rule applies to several objects, as shown in the
following table. In the Correct Identifiers column, the two items don’t depend on
capitalization to distinguish them. In the Incorrect Identifiers column, the two items are
indistinguishable in Visual Basic because they differ only by case.

Element Correct Identifiers Incorrect
Identifiers

 The two items don’t
depend on
capitalization
to distinguish them.

The two items
depend
on capitalization to
distinguish them.

Namespace RuffRuff.Kennel RuffRuff.Kennel

 RuffRuff.Reservation RuffRuff.kennel

Properties Dog.LastName Dog.Name

 Dog.FirstName Dog.name

Methods Dog.Bark Dog.Bark

 Dog.Whisper Dog.bark

Method
parameters

Visual Basic
Sub Bark(ByVal
sound
As String, ByVal
length
As Integer)

Visual Basic (Note:
This
won’t compile.)
Sub Bark(ByVal
Sound As
String, ByVal sound
As Integer)

 Visual C#
void Bark(string
sound,
int length)

Visual C#
void Bark(string
Sound,
int sound)

Types RuffRuff.Kennel.Run RuffRuff.Kennel.Run

 RuffRuff.Kennel.Suite RuffRuff.Kennel.run

No Hungarian Prefixes
Prefixes, known as Hungarian prefixes, that indicate field types have been standard in
Windows programming environments for years. Visual Basic documentation even
included lists of standard prefixes for controls: btn for the CommandButton control, txt for
the TextBox, and so on. There were also systems for indicating whether a variable was a
string, integer, Boolean, or double. The .NET Framework guidelines call for the
elimination of these prefixes. In the Microsoft Visual Studio .NET environment, the type
information about a field or variable is readily available by moving the mouse over the
field name in the code editor. In addition, the type prefixes limit the developer’s ability to
change the type of the variable when necessary. Or worse yet, the developer changes
the type of the variable, doesn’t rename the variable, and creates misleading code.
Also eliminated are prefixes indicating the scope of fields. It’s been common to see m_
for member fields, s_ for shared or static fields, and g_ for global variables. You must be
wondering why the m_ prefix is used throughout this book. My experience with teaching
object-oriented programming is that the concept of instance data versus method
variables is one of the major shifts in thinking in the move from structural programming
(method-based) to object-oriented programming (class-based). The m_ prefix is useful in
emphasizing this difference. Another deciding factor in using the m_ prefix is that the

fields in the examples have been nearly always private. Therefore, the m_ prefix is not
exposed in any of the public interfaces of the classes created.

Designing Class Members

The following guidelines apply to the behavior and implementation of the members of a
class. The guidelines include conventions about naming and behavior, as well as
performance tips.

Class Guidelines
§ Use Pascal Casing because class names have public scope. Examples

include Button, ListBox, and ArrayList.
§ Use complete words, avoiding abbreviations. For example, ButtonGrid is

longer but more readable than BtnGrd.
§ Use nouns, in general. Classes generally represent objects, and objects

usually have noun names.
§ Do not use the prefix C or underscores. Though this usage is common in

previous versions of Visual Basic and in other languages, it has been
dropped in the .NET Framework. You won’t find any .NET Framework
classes with C prefixes.

Interface Guidelines
§ Append the prefix I to the interface name.
§ Interface names tend to be descriptive and adjective -based, because

they are often used to add abilities to a class. Examples of adjective -
based names include IComparable and IFormattable.

§ Consider providing a class that is a default implementation of an
interface. Developers can use this default implementation through
inheritance or composition. Name the class by dropping the I prefix. For
example, the default implementation of IComponent is Component.

Method Guidelines
§ Use Pascal Casing.
§ Method names are typically verbs. Methods implement the behavior of

an object. Methods do something. Examples include Read, Write, Start,
and Stop.

§ When overloading methods, be consistent in the order and naming of
parameters. The following example shows three overloads of Dog.Bark .
The new parameters are added at the end of the parameter list so that
the order of parameters is the same in all the methods.

§ ‘ Visual Basic

§ Public Class Dog

§ Public Sub Bark(ByVal volume As Integer)

§ ‘ Add code to make dog bark here.

§ End Sub

§

§ Public Sub Bark(ByVal volume As Integer, ByVal howLong As I
nteger)

§ ‘ Add code to make dog bark here.

§ End Sub

§

§ Public Sub Bark(ByVal volume As Integer, _

§ ByVal howLong As Integer, ByVal addExtraHowl As Boolean)

§ ‘ Add code to make dog bark here.

§ End Sub

§ End Class

§

§ // Visual C#

§ public class Dog {

§ public void Bark(int volume) {

§ // Add code to make dog bark here.

§ }

§

§ public void Bark(int volume, int howLong) {

§ // Add code to make dog bark here.

§ }

§

§ public void Bark(int volume, int howLong, bool addExtraHowl) {

§ // Add code to make dog bark here.

§ }

§ }

Property Guidelines
§ Use Pascal Casing.
§ Property names are typically nouns. Examples include Text,

SelectedIndex, and Width.
§ Avoid using a property name that is also a type name. If you’re

determined to use a property name that is a type name, the property
should be of the type of the same name. In the following example, if you
use the second declaration, the System.Drawing.Color class is hidden.
Any reference to Color would return the Color property, which is an
integer. If you’re also determined to use a type name as a property name
and use a different type for the property, you can still use the
System.Drawing.Color class by using the fully qualified name.

§ ‘ Visual Basic

§ Public Class BookCover

§ Private coverColor As Color

§

§ Public ReadOnly Property Color() As Color

§ Get

§ Return coverColor

§ End Get

§ End Property

§

§ ‘ Not recommended. This declaration hides the

§ ‘ System.Drawing.Color class.

§ ‘ Private coverColor As Integer

§ ‘ Public ReadOnly Property Color() As Integer

§ ‘ Get

§ ‘ Return coverColor

§ ‘ End Get

§ ‘ End Property

§ End Class

§

§ // Visual C#

§ public class BookCover {

§ private Color coverColor;

§ public Color Color {

§ get { return coverColor; }

§ }

§

§ // Not recommended. This declaration hides the

§ // System.Drawing.Color class.

§ // private int coverColor;

§ // public int Color {

§ // get { return coverColor; }

§ // }

§ }
§ Preserve the value of a property if an attempt to set the property throws

an exception. The class is responsible for maintaining a usable state and
this leaves the instance in a consistent usable state.

§ Provide a PropertyChanged event if it would be useful for the
client of your class. Examples in the .NET Framework include
Control.TextChanged and Control.VisibleChanged.

§ Allow the client code to set the properties in any order. If Dog.LastName
must be set before Dog.FirstName, create a method for changing the
properties that has parameters for LastName and FirstName. Within the
method, set LastName first. This way, the developer doesn’t have to
remember obscure property dependencies.

§ Performing the get should not have an observable side effect. If
retrieving the value has a side effect, using a method is preferable.

§ Avoid using properties that return arrays. These properties are potentially
inefficient, because of multiple accesses to the underlying field array and
the likelihood that the array will be copied before returning it. Use a
method to return the array instead of a property.

Event Guidelines
§ Use Pascal Casing.
§ Event names are typically verbs. Examples include Click, Load, and

Paint.
§ Event delegates have two parameters, sender of type System.Object and

e of System.EventArgs or a class derived from System.EventArgs . An
example from the .NET Framework is the MouseEventHandler delegate,
shown below.

§ ‘ Visual Basic

§ Public Delegate Sub MouseEventHandler(ByVal sender As Objec
t, _

§ ByVal e As MouseEventArgs)

§

§ // Visual C#

public delegate void MouseEventHandler(object sender, MouseEventArgs e);
§ Events should be Subs in Visual Basic and void methods in C#.
§ Use past and present verb forms for events that carry the concept of time

relative to the event. In contrast to previous versions, do not use the
Before and After prefixes for event naming. Examples include
Form.Closed and Form.Closing.

§ The event delegate name ends in EventHandler. Examples include
MouseEventHandler and System.EventHandler.

§ The name of the class that derives from System.EventArgs ends in
EventArgs. This is the type of the second parameter to the event handler
method. Examples include MouseEventArgs, DragEventArgs, and
ScrollEventArgs.

§ Program defensively because control returns to the method that raised
the event after the event handler is executed, and the client code might
change the object in the event handler method. The following code
highlights the location of code that would execute after the event handler
call. Consider wrapping the event call in a Try or try structure.

§ ‘ Visual Basic

§ Public Class DogBone

§ Public Event Eaten As System.EventHandler

§ Private weight As Integer

§

§ Public Sub Eat(ByVal howMuch As Integer)

§ weight -= howMuch

§ If (weight <= 0) Then

§ RaiseEvent Eaten(Me, New System.EventArgs())

§ ‘ State of the instance could be changed in the event

§ ‘ handler in the client code.

§ End If

§ End Sub

§ End Class

§

§ // Visual C#

§ public class DogBone {

§ public event System.EventHandler Eaten;

§ private int weight;

§

§ public void Eat(int howMuch) {

§ weight -= howMuch;

§ if (weight <= 0) {

§ if (Eaten != null) {

§ this.Eaten(this, new System.EventArgs());

§ // State of the instance could be changed in the event

§ // handler in the client code.

§ }

§ }

§ }

}

Refactoring
Each chapter in this book has presented a problem statement, followed by a design and
an implementation. That’s neat and tidy, but not necessarily how things work during
development and maintenance. Often when you implement something more than a trivial
application, you’ll look at it at the end and decide the code is messy. Perhaps you’ve had
to add method parameters with obscure effects to handle special cases. Maybe your

classes are loaded with state fields that keep track of things you didn’t plan for when you
designed the application. Or maybe your classes are carrying references to each other
and you’re losing track of the communication lines between classes. Even if you’re
content with the completed application, sooner or later you’ll need to make modifications.
After a few modifications, your design starts to break down. Finally, you decide that you
can’t make one more change without rewriting the code. That process of rewriting the
code is called refactoring.

During the design phase of each exercise, you factor the classes out of the problem
specification. You decide what the base classes were and which classes derive from
them. You decide which methods to include in the base class and override in the derived
classes, and which methods appear only in the derived classes.
When you refactor, you can change your mind regarding all these choices. You can add
derived classes, move fields between base classes and derived classes, and implement
other reorganizations. Refactoring: Improving the Design of Existing Code by Martin
Fowler et al (Addison-Wesley, 1999) is a thorough catalog of the techniques you can
employ in refactoring your code.
This section describes how you might apply the “Pull Up Field” refactoring to the Pattern
Maker application from Chapter 10. Before applying the “Pull Up Field” refactoring, two
derived classes contain the same field. The goal is to move the common field into the
base class. As you recall from Chapter 10, the base class PatternEditor contains an
event, Saved, shown here:

‘ Visual Basic

Public Event Saved(ByVal sender As Object, ByVal e As EventArgs)

// Visual C#

public virtual event SavedEventHandler Saved;

The Saved event was raised by a Save button added to both derived classes,
DrawnPatternEditor and BitmapPatternEditor. Remember that user controls are classes,
and the controls they contain are simply fields of the user control class. The Save Button
fields in the base classes can be pulled up into the base class as the Save button. The
two editor controls are shown here as they appear at design time. Each has a Save
Button control.

The controls work just fine, but it would be easier for the user if the Save button was
placed in the same place in both controls? You can enforce that placement by moving
the Button control into the base class. This simplifies development as well, because you
don’t have to create the Button control twice.

Implementing the “Pull Up Field” Refactoring

In this exercise, you’ll move the Save button into the base class, PatternEditor.

Pull the Save button up into the PatternEditor class
1. Open the PatternMaker project from Chapter 10.
2. Double-click PatternEditor.vb or PatternEditor.cs in the Solution

Explorer to open the control in the designer.
3. Set the Size property to 175, 150, to match the derived controls.
4. Drag a Button control onto the control. Set the Location to 88, 112, the

Text property to Save, and the Name property to save.

The new base control, PatternEditor, is shown here:

Now that the Save button is in the base class, you don’t have a way to raise
the Saved event even though you still need to have the derived class handle
saving the pattern information back to the Pattern instance. Solve this
problem by adding an overridable method, SavePattern, to the base class.

5. Double-click the Save button to create the Click event handler and call
the SavePattern method. You’ll define the SavePattern method in the
next step.

6. ‘ Visual Basic
7. Private Sub save_Click(ByVal sender As System.Object, _
8. ByVal e As System.EventArgs) Handles save.Click
9. SavePattern()
10. RaiseEvent Saved(Me, New System.EventArgs())
11. End Sub
12.
13. // Visual C#
14. private void save_Click(object sender, System.EventArgs e) {
15. SavePattern();
16. if (Saved != null) {
17. Saved(this, new System.EventArgs());
18. }

}
19. Add the SavePattern method to the PatternEditor class.

20. ‘ Visual Basic

21. Public Overridable Sub SavePattern()

22. End Sub

23.

24. // Visual C#

25. public virtual void SavePattern() {

}
The SavePattern method is overridden in the derived classes to save the
pattern data.

26. If you’re using Visual Basic, delete the RaiseSaved event method in
PatternEditor.vb. Don’t delete the Saved event. You still need to raise
the event to the user interface.

Now that the Saved button is in the base class, you no longer need it in the
derived classes.

Move the Save button out of the BitmapPatternEditor class
To finish the refactoring, you need to delete the Save buttons and override the
SavePattern method.

1. Right -click on BitmapPatternEditor.vb or BitmapPatternEditor.cs in the
Solution Explorer and click View Code on the shortcut menu.

2. Add the SavePattern method to the BitmapPatternEditor class, and
move the code from the save_Click method into the SavePattern
method. If you’re using Visual Basic, you no longer need to call the
RaiseSaved method. If you’re using Visual C#, you no longer need to
raise the Saved event. The event is raised in the base class when the
Save button is clicked.

3. ‘ Visual Basic

4. Public Overrides Sub SavePattern()

5. m_pattern.BitmapFile = m_bitmapFile

6. End Sub

7.

8. // Visual C#

9. public override void SavePattern() {

10. m_pattern.BitmapFile = m_bitmapFile;

}
11. Delete the save_Click method in the BitmapPatternEditor class.
12. If you’re using Visual C#, delete the overridden Saved event.

13. // Visual C#

14. // Delete this override

public override event SavedEventHandler Saved;
15. Double-click BitmapPatternEditor.vb or BitmapPatternEditor.cs in the

Solution Explorer to open the control in the designer.
16. Delete the Save button from the control.
17. Set the location of the Browse button to 8, 112. When the application

is compiled in the next section, the control appears as shown below
with the inherited button marked with a special icon.

Move the Save button out of the DrawnPatternEditor class

The changes are similar to those you made for the BitmapPatternEditor class. The steps
are outlined here.

1. Right -click DrawnPatternEditor.vb or DrawnPatternEditor.cs in the
Solution Explorer and click View Code on the shortcut menu.

2. Add the SavePattern method to the DrawnPatternEditor class, and
move the code from the save_Click method into the SavePattern
method. If you’re using Visual Basic, you no longer need to call the
RaiseSaved method.

3. ‘ Visual Basic

4. Public Overrides Sub SavePattern()

5. m_pattern.Points = m_Points

6. End Sub

7.

8. // Visual C#

9. public override void SavePattern() {

10. m_pattern.Points = m_points;

}
11. Delete the save_Click method in the DrawnPatternEditor class.
12. Double-click DrawnPatternEditor.vb or DrawnPatternE ditor.cs in the

Solution Explorer to open the control in the designer.
13. Delete the Save button from the control. Click Build Solution on the

Build menu. The inherited Save button appears on the control.

20. Press F5 to run the application. You can create new bitmap patterns

and drawn patterns. The functionality is identical to the first version
you created, but the Save button doesn’t move around.

Refactoring a project might involve several changes such as the one you just saw. You’ll
want to take a controlled approach to refactoring, unless you’re willing to take your
application out of production and redo all your testing from scratch. With a more
controlled approach, you can test your application, make a change, and then retest the
application to ensure you haven’t introduced bugs into the system.

Design Patterns
A design pattern describes a common problem found in an object-oriented system and
provides a solution to that problem. The classic text Design Patterns (Addison-Wesley,
1995), by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, catalogs 23
of the most common and important patterns.

A complete design pattern description includes the following elements:
§ Pattern name Each pattern has a one- or two-word name that captures the

abstraction of the pattern.
§ Problem This describes the problem to be solved and defines when the

pattern is applicable.

§ Solution The solution describes the classes, their responsibilities, and the
collaborations among them. The solution is described in an abstract way
that can be applied in many contexts.

§ Consequences Every design is a balance of advantages and disadvantages.
For example, a solution might be fast, but consume a large amount of
memory. Or the design might be optimized for a particular set of data, but
unable to handle changes to the data structure.

While pattern descriptions often give concrete examples of known uses in software, the
problem statement is unlikely to be an exact description of the problem you’re trying to
solve. After reading and using some patterns, you’ll become familiar with the patterns
and you’ll recognize how your problem falls into the same pattern.

Observer
The exercises in this book and the .NET Framework objects you’ve used have employed
several patterns. By having some insight into the design, you’ll better understand how to
use the object and make predictions about how well the objects are going to work in your
applications. In Chapter 11, you implemented the Singleton pattern. Now take a look at
another pattern, the Observer.

§ Problem The Observer pattern is concerned with how objects in an
application behave. If you were writing a kennel reservation system, you
might have three forms in your application: one to take reservations, one
to present a diagram showing empty and full kennels, and one to list the
number of reservations each night. As reservations are made and
canceled, the forms with kennels and reservation totals must change
also. How do you keep the forms synchronized, making sure that the two
other forms are notified each time there is a change in the reservations?
Can you do this so that you can add more dependent forms without
rewriting the reservation form?

§ Solution The solution is to identify the subject and the observers in the
system. In this example, the reservation form is the subject. The other
forms are considered observers; they watch for changes in the subject.
The subject class maintains a list of the observers through two methods
it provides, Attach and Detach. For its part, the observer class provides
an Update method that is called by the subject whenever the subject
changes. When the subject changes, the Notify method calls the Update
method for each observer in its list of observers. The subject also
provides a GetState method that allows the observer to extract the
information needed from the subject. The design is shown in the
following UML diagram:

This pattern is also known as publish-subscribe. The subject publishes notifications
when it changes. The observers subscribe to receive notifications.

Event-Handling and the Observer Pattern
The event-handling protocol of Visual Basic .NET and Visual C# displays the hallmarks
of the Observer pattern. Consider the Button class as the subject. The Button publishes

a Click event. Observers, usually forms, subscribe to the Click event of the Button. The
Attach method is implemented as AddHandler in Visual Basic and += in C#. The Detach
method is implemented as RemoveHandler in Visual Basic and −= in C#. The Update
method is implemented as a method in the form class, something like
Button1_Click(object sender, System.EventArgs e). When the Click event is raised, each
method assigned through AddHandler or += is called. Information about the Button is
found in the sender argument of the event handler. Note that we don’t actually know or
care how event handling is implemented in the .NET Framework. Still, the Observer
pattern provides an understanding of event handling that can make it easier to use and
explain event-handling behavior.

Quick Reference

To Do this

Name a public
member
of a class or
interface
Name a private
field of a
class or a method
parameter

Use Pascal Casing.
Example: Client.LastName
Use camel Casing.
Example:

 ‘ Visual Basic
Private coverColor As Color

 Public Sub Bark(ByVal volume As Integer, _
 ByVal howLong As Integer)
 :
End Sub

 // Visual C#
private Color coverColor;
public void Bark(int volume, int howLong){
 :
}

Apply the “Pull Up
Field”
refactoring

Move a field that exists in all the derived classes into the
base
class. Remove the field from the derived classes.

Appendix: Additional Resources
The following sources provide more information about object-oriented development.

Books
§ Booch, Grady, Ivar Jacobson, and James Rumbaugh. The Unified Modeling

Language User Guide. Boston: Addison-Wesley. 1998.
This book, by the original designers of the Unified Modeling Language, covers
every detail of UML diagrams.
§ Fowler, Martin. Refactoring: Improving the Design of Existing Code. Boston:

Addison-Wesley. 1999.

This book provides practical, concrete techniques for improving existing code
and for writing new code.
§ Fowler, Martin with Kendall Scott. UML Distilled Second Edition: A Brief Guide

to the Standard Object Modeling Language. Boston: Addison-Wesley.
1999.

This short, readable book covers the basics of the Unified Modeling Language.
There is enough information in this book to cover most basic designs.
§ Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns. Boston: Addison-Wesley. 1995.

This classic book of object-oriented designs is a great read that you can come
back to again and again. It’s also a rich source for programming practice.
§ Meyer, Bertrand. Object-Oriented Software Construction, Second Edition.

Upper Saddle River: Prentice Hall PTR. 2000.

This book is an update of a classic and definitive work on object-oriented
software construction.
§ Riel, Arthur J. Object-Oriented Design Heuristics. Boston: Addison-Wesley.

1996.

This book provides practical advice for designing object-oriented applications.
§ Weisfeld, Matt, and Bill McCarty. The Object-Oriented Thought Process.

Indianapolis: Sams Publishing. 2000.

This short, readable book covers the basic of object-oriented design, including
class design, interfaces, inheritance, and composition.

Organizations
§ Association for Computing Machinery

The ACM is a professional and educational organization that includes special
interest groups for programming languages (SIGPLAN) and software
engineering (SIGSOFT). For more information, see www.acm.org.
The ACM sponsors the annual OOPSLA conference, which is designed for both
developers and researchers. OOPSLA stands for object-oriented programming,
systems, languages, and applications. For more information, see
http://oopsla.acm.org/.
§ IEEE Computer Society

The Computer Society of the Institute of Electrical and Electronics Engineers
(IEEE) supports conferences, publications, committees, and technical standards
groups related to computer technology. For more information, see
www.computer.org.

Height Gage
The height gage—the experienced craftsman’s friend—is a rugged and reliable tool that
gives precise and dependable measurements over long ranges. It’s used in tool rooms
and inspection departments in layout, jig, and fixture work to measure or mark off vertical
distances accurately and to locate center distances in accuracies of up to a thousandth
of an inch.

At Microsoft Press, we use tools to illustrate our books for software developers and IT
professionals. Tools are an elegant symbol of human inventiveness and a powerful
metaphor for how people can extend their capabilities, precision, and reach. From basic
calipers and pliers to digital micrometers and lasers, our stylized illustrations of tools give
each book a visual identity and each book series a personality. With tools and
knowledge, there are no limits to creativity and innovation. Our tag line says it all: The
tools you need to put technology to work.

List of Sidebars

Chapter 1: Writing Your First Object-Oriented Program
In this chapter, you’ll learn how to
A Little Bit About Properties
Test Drivers

Chapter 2: Creating Class Instances with Constructors
In this chapter, you’ll learn how to
Formatting C# Code
Visual Basic, C#, and Types

Chapter 3: Creating Fields and Properties
In this chapter, you’ll learn how to
Important
C# Property Wizard
XML Documentation Support in Visual C#

Chapter 4: Working with Methods
In this chapter, you’ll learn how to
Considerations in Designing Reusable Classes
Casting from a Collection Class

Chapter 5: Using Inheritance to Create Specialized Classes
In this chapter, you’ll learn how to
String.Format
The C# Class Wizard
Design Considerations

Chapter 6: Designing Base Classes as Abstract Classes
In this chapter, you’ll learn how to
Variations on Inheritance

Chapter 7: Responding to Changes with Events and
Exceptions

In this chapter, you’ll learn how to
Debugging the OnPaint Method
Attributes
More on Delegates

Chapter 8: Putting It All Together with Components
In this chapter, you’ll learn how to
Showing Composition and Aggregation in UML
The Dispose Method
The OnPaint Method and the Paint Event

Chapter 9: Providing Services Using Interfaces
In this chapter, you’ll learn how to

Chapter 10: Using Classes Interchangeably Through
Polymorphism

In this chapter, you’ll learn how to
Chapter 11: Using Shared and Static Members

In this chapter, you’ll learn how to
Chapter 12: Overloading Operators with Visual C#

In this chapter, you’ll learn how to
Chapter 13: Saving Instance Data

In this chapter, you’ll learn how to
Chapter 14: Reducing Complexity by Design

In this chapter, you’ll learn how to

