

Apple Technical Publications
© Apple Computer, Inc. 1997

QuickDraw 3D Technical Reference

3D Graphics Programming
With QuickDraw 3D 1.5.4

Including

3D Metafile Reference

 and

Renderer Acceleration Virtual Engine

Apple Computer, Inc.
© 1997 Apple Computer, Inc.
All rights reserved.
No part of this publication may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc., except to make a
backup copy of any documentation
provided on CD-ROM.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple-labeled or Apple-licensed
computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
typographical errors.
Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
HyperCard, LaserWriter, Macintosh,
Macintosh Quadra, MPW, and
PowerBook are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
QuickDraw, QuickDraw 3D, and
QuickTime are trademarks of Apple
Computer, Inc.
Adobe Illustrator and PostScript are
trademarks of Adobe Systems
Incorporated, which may be registered
in certain jurisdictions.
America Online is a registered service
mark of America Online, Inc.
CompuServe is a registered service
mark of CompuServe, Inc.
FrameMaker is a registered trademark
of Frame Technology Corporation.
Helvetica and Palatino are registered
trademarks of Linotype Company.
Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International Typeface
Corporation.
Optrotech is a trademark of Orbotech
Corporation.
Silicon Graphics is a registered
trademark and OpenGL is a trademark
of Silicon Graphics, Inc.
UNIX is a registered trademark of
Novell, Inc. in the United States and
other countries, licensed exclusively
through X/Open Company, Ltd.
X Window System is a trademark of the
Massachusetts Institute of Technology.

Simultaneously published in the United
States and Canada.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

3

Contents

Figures, Tables, and Listings 27

Preface

About This Document

35

Companion Documents 37
Format of a Typical Chapter 37
Conventions Used in This Document 38

Special Fonts 38
Types of Notes 38

Development Environment 39
For More Information 39

Chapter 1

Introduction to QuickDraw 3D

41

About QuickDraw 3D 41
Modeling and Rendering 42
Interacting 43
Extending QuickDraw 3D 44
Naming Conventions 47

Constants 47
Data Types 48
Functions 49

Retained and Immediate Modes 50
Using QuickDraw 3D 52

Compiling Your Application 53
Initializing and Terminating QuickDraw 3D 54
Creating a Model 56
Configuring a Window 59
Creating Lights 62
Creating a Draw Context 65
Creating a Camera 66
Creating a View 67
Rendering a Model 69

4

QuickDraw 3D Reference 71
Constants 71

Gestalt Selectors and Response Values 71
Boolean Values 72
Status Values 72
Coordinate Axes 73

QuickDraw 3D Routines 73
Initializing and Terminating QuickDraw 3D 73
Getting Version Information 75
Managing Sets 76
Managing Shapes 81
Managing Strings 83

QuickDraw 3D Errors, Warnings, and Notices 87

Chapter 2

3D Viewer

91

About the 3D Viewer 92
Controller Strips 94
Badges 95
Drag and Drop 97

Using the 3D Viewer 99
Checking for the 3D Viewer 99
Checking the Version of the 3D Viewer 100
Creating a Viewer 101
Attaching Data to a Viewer 102
Handling Viewer Events 103

3D Viewer Reference 104
Constants 104

Gestalt Selector and Response Values 104
Viewer Flags 105
Viewer State Flags 108
Camera View Commands 108

3D Viewer Routines 110
Creating and Destroying Viewers 110
Attaching Data to a Viewer 112
Drawing a Viewer and its Contents 114
Managing Viewer Information and State 118

5

Updating Viewer Data 142
Handling Viewer Events 145
Managing Cursors 150
Handling Edit Commands 153

Windows-Specific API 157
Window and Clipboard Definitions 157
WM_NOTIFY Data Structures 157
WM_NOTIFY Definitions 158
Functions 158

Application-Defined Routine 160

Chapter 3

QuickDraw 3D Objects

163

About QuickDraw 3D Objects 163
The QuickDraw 3D Class Hierarchy 164

QuickDraw 3D Objects 166
QuickDraw 3D Object Subclasses 167
Shared Object Subclasses 168
Set Object Subclasses 169
Shape Object Subclasses 170
Group Object Subclasses 171
Shader Object Subclasses 171

Reference Counts 171
Using QuickDraw 3D Objects 175

Determining the Type of a QuickDraw 3D Object 175
Defining an Object Metahandler 176
How Your Metahandler is Called 177
Defining Custom Elements 177

QuickDraw 3D Objects Reference 178
QuickDraw 3D Objects Routines 178

Managing Objects 178
Determining Object Types 181
Analyzing the Object Hierarchy 184
Managing Shared Objects 189
Extending Shapes and Sets 193

Creating Custom Object Subclasses 194
Custom Class Metahandlers 196

6

Object Types and Names 198
Data Structures Associated With a Class 201
Registering a Custom Class 202
Registering a Shared Library 207
Creating a Hierarchy 211
Object Methods 213

Multilevel Methods 213
Class Routines 214

Instantiating an Object 215
Accessing Types in a Class 216
Version Checking 218
Class Method Retrieval 219
Accessing Private Data 221

Class Methods 223
Class Registration and Unregistration 224
Class Version 228
Object Creation and Deletion 229
Shared Objects 232
I/O Methods 233

Object Errors, Warnings, and Notices 234

Chapter 4

Geometric Objects

237

About Geometric Objects 237
Attributes of Geometric Objects 239
Polyhedral Primitives 240

Meshes 240
Trigrids 244
Polyhedra 245
Trimeshes 246
Comparison of the Polyhedral Primitives 247

NURB Curves and Patches 248
Surface Parameterizations 252

Using Geometric Objects 257
Creating and Deleting Geometric Objects 257
Using Polyhedrons 258

Creating a Polyhedron 259

7

Using Trimeshes 267
Using Meshes 269

Creating a Mesh 270
Traversing a Mesh 272

Using Trigrids 274
Geometric Objects Reference 275

Constants 275
Geometric Object Types 275
Pixel Types 277
Endian Types 279
General Polygon Shape Hints 279
End Caps Masks 280
Polyhedron Edge Masks 281

Data Structures 282
Points 283
Rational Points 284
Polar and Spherical Points 284
Vectors 286
Quaternions 287
Rays 288
Parametric Points 288
Tangents 289
Vertices 289
Matrices 290
Bitmaps and Pixel Maps 291
Areas and Plane Equations 294
Point Objects 295
Lines 295
Polylines 296
Triangles 297
Simple Polygons 298
General Polygons 299
Boxes 301
Trigrids 304
Meshes 305
Trimeshes 307
Polyhedra 311
Ellipses 314

8

NURB Curves 315
NURB Patches 317
Ellipsoids 320
Cylinders 322
Disks 323
Cones 325
Tori 326
Markers 329

Geometric Objects Routines 331
Managing Geometric Objects 331
Creating and Editing Points 334
Creating and Editing Lines 337
Creating and Editing Polylines 342
Creating and Editing Triangles 349
Creating and Editing Simple Polygons 354
Creating and Editing General Polygons 360
Creating and Editing Boxes 367
Creating and Editing Trigrids 375
Creating and Editing Meshes 382
Traversing Mesh Components, Vertices, Faces, and Edges 410
Creating and Editing Trimeshes 430
Creating and Editing Polyhedra 432
Creating and Editing Ellipses 440
Creating and Editing NURB Curves 446
Creating and Editing NURB Patches 451
Creating and Editing Ellipsoids 458
Creating and Editing Cylinders 465
Creating and Editing Disks 476
Creating and Editing Cones 482
Creating and Editing Tori 491
Creating and Editing Bitmap Markers 499
Creating and Editing Pixmap Markers 505
Managing Bitmaps 512

Geometry Errors, Warnings, and Notices 513

9

Chapter 5

Attribute Objects

515

About Attribute Objects 515
Types of Attributes and Attribute Sets 516
Attribute Inheritance 518

Using Attribute Objects 520
Creating and Configuring Attribute Sets 520
Iterating Through an Attribute Set 521
Defining Custom Attribute Types 522

Attribute Objects Reference 526
Constants 526

Attribute Types 527
Attribute Objects Routines 529

Drawing Attributes 529
Creating and Managing Attribute Sets 530
Registering Custom Attributes 535

Adding Application-Defined Attribute and Element Types 537
Copy Methods 538
Deletion Method 541
Getting the Size of an Attribute or Element 542
Inheritance Control and Copying 543

Attribute Errors 544

Chapter 6

Style Objects

545

About Style Objects 545
Backfacing Styles 546
Interpolation Styles 547
Fill Styles 548
Highlight Styles 548
Subdivision Styles 549
Orientation Styles 550
Shadow-Receiving Styles 551
Picking ID Styles 552
Picking Parts Styles 552
Anti-Alias Style 553

Using Style Objects 554
Style Objects Reference 555

10

Data Structures 555
Subdivision Style Data Structure 555

Style Objects Routines 556
Managing Styles 556
Managing Backfacing Styles 558
Managing Interpolation Styles 561
Managing Fill Styles 563
Managing Highlight Styles 566
Managing Subdivision Styles 568
Managing Orientation Styles 571
Managing Shadow-Receiving Styles 574
Managing Picking ID Styles 576
Managing Picking Parts Styles 579
Managing the Anti-Alias Style 581

Chapter 7

Transform Objects

585

About Transform Objects 585
Spaces 587
Types of Transforms 593

Matrix Transforms 594
Translate Transforms 594
Scale Transforms 595
Rotate Transforms 596
Rotate-About-Point Transforms 597
Rotate-About-Axis Transforms 597
Quaternion Transforms 598
The Reset Transform 598

Transform Objects Reference 599
Data Structures 599

Rotate Transform Data Structure 599
Rotate-About-Point Transform Data Structure 600
Rotate-About-Axis Data Structure 600

Transform Objects Routines 601
Managing Transforms 601
Creating and Manipulating Matrix Transforms 603
Creating and Manipulating Rotate Transforms 605

11

Creating and Manipulating Rotate-About-Point Transforms 610
Creating and Manipulating Rotate-About-Axis Transforms 615
Creating and Manipulating Scale Transforms 621
Creating and Manipulating Translate Transforms 624
Creating and Manipulating Quaternion Transforms 626
Creating and Submitting the Reset Transform 629

Transform Errors, Warnings, and Notices 630

Chapter 8

Light Objects

631

About Light Objects 631
Ambient Light 632
Directional Lights 633
Point Lights 633
Spot Lights 634

Using Light Objects 636
Creating a Light 636
Manipulating Lights 637

Light Objects Reference 637
Constants 637

Light Attenuation Values 638
Light Fall-Off Values 638

Data Structures 639
Light Data Structure 639
Directional Light Data Structure 640
Point Light Data Structure 640
Spot Light Data Structure 641

Light Objects Routines 642
Managing Lights 642
Managing Ambient Light 647
Managing Directional Lights 649
Managing Point Lights 653
Managing Spot Lights 658

Light Notices 667

12

Chapter 9

Camera Objects

669

About Camera Objects 669
Camera Placements 670
Camera Ranges 672
View Planes and View Ports 673
Orthographic Cameras 677
View Plane Cameras 679
Aspect Ratio Cameras 681

Using Camera Objects 683
Camera Objects Reference 683

Data Structures 683
Camera Placement Structure 683
Camera Range Structure 684
Camera View Port Structure 684
Camera Data Structure 685
Orthographic Camera Data Structure 686
View Plane Camera Data Structure 686
Aspect Ratio Camera Data Structure 687

Camera Objects Routines 688
Managing Cameras 688
Managing Orthographic Cameras 694
Managing View Plane Cameras 700
Managing Aspect Ratio Cameras 707

Camera Errors 711

Chapter 10

Group Objects

713

About Group Objects 713
Group Types 714
Group Positions 715
Group State Flags 716

Using Group Objects 717
Creating Groups 718
Accessing Objects by Position 718

Group Objects Reference 721
Constants 721

Group State Flags 722

13

Group Objects Routines 723
Creating Groups 723
Managing Groups 726
Managing Display Groups 734
Getting Group Positions 737
Getting Object Positions 743

Extending Group Objects 747
Group Errors 762

Chapter 11

Renderer Objects

763

About Renderer Objects 763
Types of Renderers 764
Renderer Features 766
Constructive Solid Geometry 766
Transparency 769

Using Renderer Objects 770
Renderer Objects Reference 771

Constants 771
Vendor IDs 771
Engine IDs 771
CSG Object IDs 772
CSG Equations 773

Data Structures 773
Dialog Anchor 774

Renderer Object Routines 774
Creating and Managing Renderers 774
Synchronizing and Flushing Renderers 776
Managing Interactive Renderers 776
Managing Renderer Features 780
Managing RAVE Features 784
Using Renderer Attribute Set Tools 787
Using Renderer View Tools 791

Application-Defined Routines 792
Renderer Methods 792

Submit Method 794
Configuration Methods 796

14

Update Methods 801
Drawing State Methods 807
Push and Pop Methods 813
Renderer Cull Method 816

Draw Region Interface 817
Obtaining a DrawRegion 817
Draw Region Validation 819
Draw Region Services 821
Starting and Ending Draw Regions 821
Draw Region Descriptor 825

Device Pixel Types 826
Color Descriptor 826
Clipping Information 826

Draw Region Location and Dimensions 829
Renderer-Private Data in Draw Regions 834

Renderer Errors 836

Chapter 12

Draw Context Objects

837

About Draw Context Objects 837
Macintosh Draw Contexts 839
Pixmap Draw Contexts 840
Windows Draw Contexts 841

Using Draw Context Objects 841
Creating and Configuring a Draw Context 841
Using Double Buffering 842

Draw Context Objects Reference 843
Data Structures 843

Draw Context Data Structure 843
Macintosh Draw Context Structure 845
Pixmap Draw Context Structure 846
Windows 32 Draw Context Structure 846
Direct Draw Surface Draw Context Structure 847

Draw Context Objects Routines 848
Managing Draw Contexts 848
Managing Macintosh Draw Contexts 857
Managing Pixmap Draw Contexts 863

15

Managing Windows 32 Draw Contexts 864
Managing Direct Draw Surface Draw Contexts 866

Draw Context Errors, Warnings, and Notices 869

Chapter 13

View Objects

871

About View Objects 872
Using View Objects 872

Creating and Configuring a View 873
Rendering an Image 873

View Objects Reference 875
View Objects Routines 876

Creating and Configuring Views 876
Rendering in a View 882
Picking in a View 886
Writing in a View 888
Bounding in a View 889
Setting Idle Methods 895
Writing Custom Data 896
Pushing and Popping the Graphics State 897
Getting a View’s Transforms 899
Managing a View’s Style States 901
Managing a View’s Attribute Set 907

Application-Defined Routines 909
View Errors, Warnings, and Notices 913

Chapter 14

Shader Objects

915

About Shader Objects 915
Surface-Based Shaders 916
Illumination Models 916

Lambert Illumination 917
Phong Illumination 918
Null Illumination 921

Textures 922
Using Shader Objects 922

16

Using Illumination Shaders 923
Using Texture Shaders 923
Creating Storage Pixmaps 926
Handling

uv

 Values Outside the Valid Range 927
Shader Objects Reference 928

Constants 928
Boundary-Handling Methods 928

Shader Objects Routines 929
Managing Shaders 929
Managing Shader Characteristics 930
Managing Surface Shaders 934
Managing Texture Shaders 935
Managing Illumination Shaders 937
Managing Textures 939
Managing Pixmap Textures 941
Managing Mipmap Textures 942

Chapter 15

Pick Objects

947

About Pick Objects 947
Types of Pick Objects 948
Hit Identification 949
Hit Sorting 951
Hit Information 953

Using Pick Objects 955
Handling Object Picking 956
Handling Mesh Part Picking 958
Picking in Immediate Mode 960

Pick Objects Reference 961
Constants 961

Hit List Sorting Values 962
Hit Information Masks 962
Pick Parts Masks 964

Data Structures 964
Pick Data Structure 965
Window-Point Pick Data Structure 965
Window-Rectangle Pick Data Structure 966

17

Hit Path Structure 966
Hit Detail Data 967

Pick Objects Routines 968
Managing Pick Objects 968
Managing Shape Parts and Mesh Parts 976
Picking With Window Points 980
Picking With Window Rectangles 983

Picking Warnings 985

Chapter 16

Storage Objects

987

About Storage Objects 987
Using Storage Objects 989

Creating a Storage Object 990
Getting and Setting Storage Object Information 991

Storage Objects Reference 992
Storage Objects Routines 992

Managing Storage Objects 992
Creating and Accessing Memory Storage Objects 996
Creating and Accessing Handle Storage Objects 1002
Creating and Accessing Macintosh Storage Objects 1005
Creating and Accessing FSSpec Storage Objects 1008
Creating and Accessing UNIX Storage Objects 1010
Creating and Accessing UNIX Path Name Storage Objects 1013
Creating and Accessing Windows Storage Objects 1015

Storage Object Errors 1018

Chapter 17

File Objects

1019

About File Objects 1019
File I/O 1020
File Types 1021
View Hints 1022

Using File Objects 1024
Creating a File Object 1024
Reading Data from a File Object 1025

18

Writing Data to a File Object 1028
Metafile External References 1028

File Objects Reference 1029
Constants 1029

File Mode Flags 1029
Data Structures 1030

Primitive Types 1030
Version and Mode 1032
Group Reading States 1032
Unknown Object Data Structures 1032

File Objects Routines 1033
Creating File Objects 1033
Attaching File Objects to Storage Objects 1034
Accessing File Objects 1035
Accessing Objects Directly 1040
Setting Idle Methods 1043
Reading and Writing File Subobjects 1043
Reading and Writing File Data 1045
Managing Unknown Objects 1068
Managing View Hints Objects 1074

Custom File Object Routines 1086
Marking and Getting External References 1087
Group Reading Modes 1088
Writing to Custom File Objects 1090
Edit Tracking 1094

Application-Defined Routines 1095
File System Errors, Warnings, and Notices 1097

Chapter 18

Pointing Device Manager

1099

About the Pointing Device Manager 1099
Controllers 1100
Controller States 1103
Trackers 1103

Using the QuickDraw 3D Pointing Device Manager 1104
Controlling a Camera Position With a Pointing Device 1104

QuickDraw 3D Pointing Device Manager Reference 1107

19

Data Structures 1107
Controller Data Structure 1108

QuickDraw 3D Pointing Device Manager Routines 1108
Creating and Managing Controllers 1109
Managing Controller States 1126
Creating and Managing Trackers 1128

Application-Defined Routines 1140
Cursor Tracker Routines 1144

Pointing Device Errors 1144

Chapter 19

Error Manager

1145

About the Error Manager 1145
Using the Error Manager 1146
Error Manager Reference 1147

Error Manager Routines 1147
Registering Error, Warning, and Notice Callback Routines 1147
Determining Whether an Error Is Fatal 1149
Getting Errors, Warnings, and Notices Directly 1150
Getting Operating System Errors 1152
Error-Reporting For Extensions 1152

Application-Defined Routines 1154

Chapter 20

Mathematical Utilities

1159

About the Mathematical Utilities 1159
QuickDraw 3D Mathematical Utilities Reference 1160

Data Structures 1160
Bounding Boxes 1161
Bounding Spheres 1161

QuickDraw 3D Mathematical Utilities 1162
Setting Points and Vectors 1162
Converting Dimensions of Points and Vectors 1167
Subtracting Points 1171
Calculating Distances Between Points 1173
Determining Point Relative Ratios 1178

20

Adding and Subtracting Points and Vectors 1181
Scaling Vectors 1185
Determining the Lengths of Vectors 1187
Normalizing Vectors 1188
Adding and Subtracting Vectors 1189
Determining Vector Cross Products 1191
Determining Vector Dot Products 1193
Transforming Points and Vectors 1194
Negating Vectors 1201
Converting Points from Cartesian to Polar or Spherical Form 1202
Determining Point Affine Combinations 1205
Managing Matrices 1208
Setting Up Transformation Matrices 1214
Utility Functions 1223
Managing Quaternions 1223
Managing Bounding Boxes 1235
Managing Bounding Spheres 1240

Chapter 21

Color Utilities

1247

About the Color Utilities 1247
Using the QuickDraw 3D Color Utilities 1248
QuickDraw 3D Color Utilities Reference 1249

Data Structures 1250
Color Structures 1250

QuickDraw 3D Color Utilities 1251

Chapter 22

3D Metafile 1.5 Reference

1259

Introduction 1259
Basic Data Types 1261

Unsigned Integer Data Types 1262
Signed Integer Data Types 1262
Floating-Point Integer Data Types 1262
Strings 1263
Raw Data 1263

21

Symbolic Constants 1264
Defined 3D Data Types 1264

Two-Dimensional Points 1265
Three-Dimensional Points 1265
Three-Dimensional Rational Points 1266
Four-Dimensional Rational Points 1266
Color Data Types 1267
Two-Dimensional Vectors 1267
Three-Dimensional Vectors 1268
Parameterizations 1268
Tangents 1269
Matrices 1269

Abstract Data Types 1270
Object Type 1270
Size 1270
File Pointers 1272

Metafile Object Specifications 1276
Special Metafile Objects 1276

3D Metafile Header 1276
Tables of Contents 1279
Reference Objects 1285
External Reference Objects 1286
Types 1290
Containers 1292

Examples of Metafile Structures 1295
String Objects 1305

C Strings 1305
Unicode Objects 1306

Geometric Objects 1307
Points 1307
Lines 1309
Polylines 1311
Triangles 1313
Simple Polygons 1315
General Polygons 1317
General Polygon Hints 1322
Boxes 1323
Trigrids 1327

22

Polyhedra 1331
Meshes 1338
Mesh Corners 1343
Mesh Edges 1345
Trimeshes 1348
Attribute Arrays 1350
Ellipses 1357
NURB Curves 1359
2D NURB Curves 1362
Trim Loops 1363
NURB Patches 1365
Ellipsoids 1368
Caps 1372
Cylinders 1374
Disks 1378
Cones 1381
Tori 1385
Markers 1390

Attributes 1393
Diffuse Color 1393
Specular Color 1394
Specular Control 1396
Transparency Color 1397
Surface UV 1398
Shading UV 1400
Surface Tangents 1401
Normals 1403
Ambient Coefficients 1404
Highlight State 1405

Attribute Sets 1407
Attribute Sets 1407
Top Cap Attribute Sets 1409
Bottom Cap Attribute Sets 1411
Face Cap Attribute Sets 1412

Attribute Set Lists 1414
Geometry Attribute Set Lists 1414
Face Attribute Set Lists 1416
Vertex Attribute Set Lists 1420

23

Styles 1423
Back-facing Styles 1423
Interpolation Styles 1424
Fill Styles 1426
Highlight Styles 1428
Subdivision Styles 1430
Orientation Styles 1433
Receive Shadows Styles 1434
Pick ID Styles 1436
Pick Parts Styles 1437

Transforms 1438
Translate Transforms 1438
Scale Transforms 1439
Matrix Transforms 1440
Rotate Transforms 1442
Rotate-About-Point Transforms 1443
Rotate-About-Axis Transforms 1444
Quaternion Transforms 1446
Shader Transforms 1447
Shader UV Transforms 1448

Lights 1450
Attenuation and Fall-Off Values 1450
Light Data 1452
Ambient Light 1454
Directional Lights 1455
Point Lights 1457
Spot Lights 1459

Cameras 1461
Camera Placement 1461
Camera Range 1463
Camera Viewport 1465
Orthographic Cameras 1467
View Plane Cameras 1469
View Angle Aspect Cameras 1471

Groups 1473
Display Groups 1473
Ordered Display Groups 1475
Light Groups 1476

24

I/O Proxy Display Groups 1477
Info Groups 1479
Groups (Generic) 1480
Begin Group Objects 1481
End Group Objects 1482
Display Group States 1483

Renderers 1485
Wireframe Renderers 1485
Interactive Renderers 1487
Generic Renderers 1488

Shaders 1489
Shader Data Objects 1489
Texture Shaders 1491
Pixmap Texture Objects 1492

View Objects 1495
View Hints 1495
Image Masks 1497
Image Dimensions Objects 1500
Image Clear Color Objects 1501

Unknown Objects 1502
Unknown Text 1502
Unknown Binary 1504

Chapter 23

QuickDraw 3D RAVE

1507

About QuickDraw 3D RAVE 1508
Drawing Engines 1510
Draw Contexts 1512

Using QuickDraw 3D RAVE 1513
Specifying a Virtual Device 1514
Finding a Drawing Engine 1516
Creating and Configuring a Draw Context 1517
Drawing in a Draw Context 1519
Using a Draw Context as a Cache 1520
Using a Texture Map Alpha Channel 1521
Rendering With Antialiasing 1523

Writing a Drawing Engine 1524

25

Writing Public Draw Context Methods 1525
Writing Private Draw Context Methods 1526
Handling Gestalt Selectors 1528
Registering a Drawing Engine 1529
Supporting OpenGL Hardware 1531

Transparency 1531
Texture Mapping 1533

QuickDraw 3D RAVE Reference 1535
Constants 1535

Version Values 1535
Pixel Types 1536
Color Lookup Table Types 1538
Device Types 1538
Clip Types 1539
Tags for State Variables 1539
Z Sorting Function Selectors 1548
Antialiasing Selectors 1549
Blending Operations 1550
Z Perspective Selectors 1551
Texture Filter Selectors 1552
Texture Operations 1553
CSG IDs 1554
Buffer Compositing Modes 1555
Texture Wrapping Values 1556
Source Blending Values 1556
Destination Blending Values 1557
Buffer Drawing Operations 1557
Vertex Modes 1558
Gestalt Selectors 1559
Gestalt Optional Features Response Masks 1561
Gestalt Fast Features Response Masks 1563
Vendor and Engine IDs 1565
Triangle Flags Masks 1566
Texture Flags Masks 1566
Bitmap Flags Masks 1567
Draw Context Flags Masks 1567
Drawing Engine Method Selectors 1568
Public Draw Context Method Selectors 1569

26

Notice Method Selectors 1571
Data Structures 1572

Memory Device Structure 1572
Rectangle Structure 1573
Macintosh Device and Clip Structures 1574
Windows Device and Clip Structures 1574
Generic Device and Clip Structures 1575
Device Structure 1575
Clip Data Structure 1576
Image Structure 1576
Vertex Structures 1577
Draw Context Structure 1581
Indexed Triangle Structure 1584

QuickDraw 3D RAVE Routines 1584
Creating and Deleting Draw Contexts 1584
Creating and Deleting Color Lookup Tables 1586
Manipulating Textures and Bitmaps 1588
Managing Drawing Engines 1594
Manipulating Draw Contexts 1598
Registering a Custom Drawing Engine 1616

Application-Defined Routines 1618
Public Draw Context Methods 1618
Private Draw Context Methods 1639
Color Lookup Table Methods 1642
Texture and Bitmap Methods 1644
Method Reporting Methods 1650
Notice Methods 1651

Summary of QuickDraw 3D RAVE 1654

Bibliography

1677

Glossary

1679

Index

1711

27

Figures, Tables, and Listings

Chapter 1

Introduction to QuickDraw 3D

41

Figure 1-1

A simple three-dimensional picture 42

Figure 1-2

A model rendered by the wireframe renderer 44

Figure 1-3

A model rendered by the interactive renderer 45

Figure 1-4

The parts of QuickDraw 3D 46

Figure 1-5

A right-handed Cartesian coordinate system 57

Listing 1-1

Determining whether QuickDraw 3D is available 54

Listing 1-2

Initializing a connection with QuickDraw 3D 55

Listing 1-3

Terminating QuickDraw 3D 56

Listing 1-4

Creating a model 58

Listing 1-5

Creating a new window and attaching a window information
structure 60

Listing 1-6

Creating a group of lights 63

Listing 1-7

Creating a Macintosh draw context 65

Listing 1-8

Creating a camera 66

Listing 1-9

Creating a view 67

Listing 1-10

A basic rendering loop 69

Listing 1-11

Rendering a model 70

Chapter 2

3D Viewer

91

Figure 2-1

An instance of the 3D Viewer displaying three-dimensional
data 93

Figure 2-2

The controller strip of the 3D Viewer 94

Figure 2-3

A 3D model with a badge 96

Figure 2-4

A viewer object displaying the drag and drop border 98

Listing 2-1

Determining whether the 3D Viewer is available 99

Listing 2-2

Determining the version of the 3D Viewer 101

Listing 2-3

Creating a viewer object 101

28

Chapter 3

QuickDraw 3D Objects

163

Figure 3-1

The top levels of the QuickDraw 3D class hierarchy 165

Figure 3-2

Incrementing and decrementing reference counts 173

Figure 3-3

Sample object hierarchy 212

Figure 3-4

Object creation using multilevel methods 214

Listing 3-1

Example of hierarchy analysis 184

Listing 3-2 QuickDraw 3D object types 199
Listing 3-3 Library registering and unregistering 208
Listing 3-4 Sample of registering and unregistering classes 224

Chapter 4 Geometric Objects 237

Figure 4-1 A mesh 241
Figure 4-2 A mesh face with a hole 241
Figure 4-3 A NURB curve 249
Figure 4-4 The standard uv parameterization for a pixmap 253
Figure 4-5 The standard surface parameterization of a box 254
Figure 4-6 A texture mapped onto a box 255
Figure 4-7 The standard surface parameterization for an ellipsoid. 256
Figure 4-8 Cross-section of a polyhedron 260
Figure 4-9 Applying textures that span several faces 261
Figure 4-10 Wireframe polyhedron 262
Figure 4-11 Filling out a polyhedron’s edge data structure 263
Figure 4-12 A planar point described with polar coordinates 285
Figure 4-13 A spatial point described with spherical coordinates 286
Figure 4-14 A ray 288
Figure 4-15 A line 295
Figure 4-16 A polyline 296
Figure 4-17 A triangle 298
Figure 4-18 A simple polygon 299
Figure 4-19 A general polygon 300
Figure 4-20 A box 302
Figure 4-21 The standard surface parameterization of a box 303
Figure 4-22 A trigrid 304
Figure 4-23 A polyhedron 311
Figure 4-24 An ellipse 314
Figure 4-25 A NURB curve 316
Figure 4-26 A NURB patch 317
Figure 4-27 An ellipsoid 320

29

Figure 4-28 A cylinder 322
Figure 4-29 A disk 324
Figure 4-30 A cone 325
Figure 4-31 A torus 327
Figure 4-32 The standard surface parameterization of a torus 327
Figure 4-33 A marker 329

Table 4-1 Characteristics of polyhedral primitives 247

Listing 4-1 Creating a retained box 257
Listing 4-2 Creating an immediate box 258
Listing 4-3 Creating a four-faced polyhedron 264
Listing 4-4 Using an edge list to specify the edges of a polyhedron 266
Listing 4-5 Creating a simple mesh 271
Listing 4-6 Iterating through all faces in a mesh 273
Listing 4-7 Attaching corners to all vertices in all faces of a mesh 274

Chapter 5 Attribute Objects 515

Table 5-1 Natural sets of attributes for objects in a hierarchy 518

Listing 5-1 Creating and configuring a vertex attribute set 520
Listing 5-2 Counting the attributes in an attribute set 522
Listing 5-3 Reporting custom attribute methods 524
Listing 5-4 Disposing of a custom attribute’s data 524
Listing 5-5 Copying a custom attribute’s data 525
Listing 5-6 Initializing QuickDraw 3D and registering a custom attribute

type 526

Chapter 6 Style Objects 545

Figure 6-1 The front side of a polygon 551

Chapter 7 Transform Objects 585

Figure 7-1 A simple model illustrating the order in which transforms are
applied 587

Figure 7-2 A right-handed Cartesian coordinate system 588
Figure 7-3 A camera coordinate system 591

30

Figure 7-4 A window coordinate system 592
Figure 7-5 View state transformations 593
Figure 7-6 A translate transform 595
Figure 7-7 A scale transform 595
Figure 7-8 A rotate transform 596
Figure 7-9 A rotate-about-point transform 597
Figure 7-10 A rotate-about-axis transform 598

Chapter 8 Light Objects 631

Figure 8-1 A spot light 634
Figure 8-2 Fall-off algorithms 635

Listing 8-1 Creating a new point light 636

Chapter 9 Camera Objects 669

Figure 9-1 A camera’s placement 671
Figure 9-2 The hither and yon planes 672
Figure 9-3 A parallel projection of an object 674
Figure 9-4 A perspective projection of an object 675
Figure 9-5 The default camera view port 677
Figure 9-6 Isometric and elevation projections 678
Figure 9-7 An orthographic camera 679
Figure 9-8 A view plane camera 680
Figure 9-9 An aspect ratio camera 681
Figure 9-10 The relation between aspect ratio cameras and view plane

cameras 682

Chapter 10 Group Objects 713

Listing 10-1 Creating a group 718
Listing 10-2 Accessing all the lights in a light group 719
Listing 10-3 Accessing all the lights in an ordered display group 720
Listing 10-4 Accessing all the lights in an ordered display group using

Q3Group_GetNextPosition 721

31

Chapter 11 Renderer Objects 763

Figure 11-1 An image drawn by the wireframe renderer 765
Figure 11-2 An image drawn by the interactive renderer 765
Figure 11-3 A constructed CSG object 767

Table 11-1 Calculating CSG equations 768

Chapter 12 Draw Context Objects 837

Figure 12-1 Using a two-dimensional graphics library in a Macintosh draw
context 840

Chapter 13 View Objects 871

Listing 13-1 Rendering a model 874
Listing 13-2 Creating and rendering a retained object 874
Listing 13-3 Creating and rendering an immediate object 875

Chapter 14 Shader Objects 915

Figure 14-1 Effects of the Lambert illumination shader 917
Figure 14-2 Effects of the Phong illumination shader 918
Figure 14-3 Phong illumination with various specular exponents and

coefficients 920
Figure 14-4 Effects of the null illumination shader 921

Listing 14-1 Applying an illumination shader 923
Listing 14-2 Applying a texture shader in a submitting loop 923
Listing 14-3 Applying a texture shader in a group 924
Listing 14-4 Applying a texture shader as an attribute 924

Chapter 15 Pick Objects 947

Figure 15-1 Determining a vertex sorting distance 952
Figure 15-2 Determining an edge sorting distance 952
Figure 15-3 Determining a face sorting distance 953

32

Table 15-1 Hit-tests for window-space pick objects 950
Table 15-2 Pick geometries and information types supported by view

objects 955
Table 15-3 Pick detail return data 967

Listing 15-1 Picking objects 956
Listing 15-2 Picking mesh parts 959
Listing 15-3 Picking in immediate mode 960

Chapter 16 Storage Objects 987

Listing 16-1 Creating a Macintosh storage object 990
Listing 16-2 Creating a UNIX storage object 990
Listing 16-3 Creating a memory storage object 990

Chapter 17 File Objects 1019

Figure 17-1 Types of file objects 1023

Listing 17-1 Creating a new file object 1024
Listing 17-2 Reading metafile objects 1026
Listing 17-3 Writing 3D data to a file object 1028

Chapter 18 Pointing Device Manager 1099

Figure 18-1 A sample configuration of input devices, controllers, and
trackers 1101

Listing 18-1 Searching for a particular 3D pointing device 1105
Listing 18-2 Activating and deactivating a pointing device 1106
Listing 18-3 Receiving notification of changes in a pointing device 1106
Listing 18-4 Polling for data from a pointing device 1107

Chapter 21 Color Utilities 1247

Figure 21-1 RGB color space 1248

Listing 21-1 Specifying the color white 1249
Listing 21-2 Adding two colors 1249

33

Chapter 22 3D Metafile 1.5 Reference 1259

Figure 22-1 Four instantiations of a box 1295
Figure 22-2 Types of metafiles 1304
Figure 22-3 A line 1309
Figure 22-4 A polyline 1311
Figure 22-5 A triangle 1313
Figure 22-6 A simple polygon 1315
Figure 22-7 A general polygon 1318
Figure 22-8 A box 1324
Figure 22-9 The default surface parameterization of a box 1325
Figure 22-10 A trigrid 1328
Figure 22-11 A mesh 1339
Figure 22-12 An ellipse 1357
Figure 22-13 A NURB curve 1359
Figure 22-14 A NURB patch 1365
Figure 22-15 An ellipsoid 1369
Figure 22-16 A cylinder 1374
Figure 22-17 A disk 1378
Figure 22-18 A cone 1381
Figure 22-19 A torus 1385
Figure 22-20 The defalt surface parameterization of a torus 1388
Figure 22-21 A marker 1390

Listing 22-1 A stream metafile 1297
Listing 22-2 A normal metafile 1299
Listing 22-3 A database metafile 1301

Chapter 23 QuickDraw 3D RAVE 1507

Figure 23-1 The position of QuickDraw 3D RAVE 1509

Listing 23-1 Initializing a memory device 1515
Listing 23-2 Initializing a graphics device 1515
Listing 23-3 Finding a drawing engine with fast texture mapping 1517
Listing 23-4 Creating a draw context 1518
Listing 23-5 Setting a draw context state variable 1519
Listing 23-6 Creating and using a draw context cache 1520
Listing 23-7 A TQADrawPoint method 1526
Listing 23-8 A TQADrawPrivateNew method 1527
Listing 23-9 A TQADrawPrivateDelete method 1528

34

Listing 23-10 A TQAEngineGestalt method 1528
Listing 23-11 A TQAEngineGetMethod method 1530

35

P R E F A C E

About This Document

This Document, 3D Graphics Programming With QuickDraw 3D 1.5, describes
QuickDraw 3D 1.5, a graphics library that you can use to define
three-dimensional (3D) models, apply colors and other attributes to parts of the
models, and create images of those models. You can use these capabilities to
develop a wide range of applications, including interactive three-dimensional
modeling, simulation and animation, data visualization, computer-aided
drafting and design, games, and many other uses.

QuickDraw 3D 1.5 provides these basic services:

■ A large number of predefined geometric object types. You can create multiple
instances of any type of object and assign them individual characteristics.

■ Support for standard lighting types and illumination algorithms.

■ Support for standard methods of projecting a model onto a viewing plane.

■ Ability to perform both immediate and retained mode rendering, and
support for multiple rendering styles.

■ Built-in support for reading and writing data stored in a standard 3D data
file format (the QuickDraw 3D 1.5 Object Metafile).

■ Support for any available 3D pointing devices, including devices that
provide multiple degrees of freedom.

■ Support for multiple operating and window systems. QuickDraw 3D 1.5 is
extremely portable and operates independently of the native window
system. It provides consistent capabilities and performance across all
supported platforms.

■ Fast interactive rendering.

This document describes the application programming interfaces that you can
use to develop applications and other software using QuickDraw 3D 1.5.
Although QuickDraw 3D 1.5 provides a large set of basic 3D objects and
operations, it is also designed for easy extensibility, so that you can add custom
capabilities (for instance, custom object types, attributes, renderers, and shading
algorithms) to those provided by QuickDraw 3D 1.5.

36

P R E F A C E

To use this document, you should be generally familiar with computer graphics
and with 3D modeling and rendering techniques. This document explains some
of the fundamental 3D concepts, but it is not intended to be either an
introduction to or a technical reference for 3D graphics in general. Rather, it
explains how QuickDraw 3D 1.5 implements the standard techniques for 3D
modeling, rendering, and interaction. You can consult the Bibliography near the
end of this document for a list of some books that might help you acquire a
basic knowledge of those techniques.

Note
The book 3D Computer Graphics, second edition, by Alan
Watt is particularly helpful for beginners. ◆

You should also be familiar with the techniques that underlie object-oriented
programming. QuickDraw 3D 1.5 is object oriented in the sense that many of its
capabilities are accessed by creating and manipulating QuickDraw 3D 1.5
objects. In addition, QuickDraw 3D 1.5 classes (of which QuickDraw 3D 1.5
objects are instances) are arranged in a hierarchy, which provides for method
inheritance and method overriding.

Note
Currently, only C language programming interfaces are
available. ◆

You should begin this Document by reading the chapter “Introduction to
QuickDraw 3D.” That chapter describes the basic capabilities provided by
QuickDraw 3D 1.5 and the QuickDraw 3D 1.5 application programming
interfaces that you use to create and manipulate objects in that hierarchy. It also
provides source code samples illustrating how to use QuickDraw 3D 1.5 to
define, configure, and render simple 3D models.

If you just want to be able to display an existing 3D model in a window and
don’t need to use the powerful capabilities of QuickDraw 3D 1.5, you can use
the 3D Viewer supplied with QuickDraw 3D 1.5. The 3D Viewer allows you to
display 3D data with minimal programming effort. It is therefore analogous to
the movie controller provided with QuickTime. Read the chapter “3D Viewer”
for complete information.

Once you are familiar with the basic uses of QuickDraw 3D 1.5, you can read
the remaining chapters in this document for more information on any particular
topic. For example, for complete information on the types of lights provided by
QuickDraw 3D 1.5, see the chapter “Light Objects.”

37

P R E F A C E

Companion Documents 0

Two other Apple documents contain information that extends and amplifies the
content of this document:

■ 3D Metafile 1.5 Reference describes the 3D Metafile, a file format designed to
permit the storage and interchange of 3D data.

■ QuickDraw 3D 1.5 1.5 Renderer Acceleration Virtual Engine describes RAVE, the
part of the QuickDraw 3D 1.5 Macintosh system software that controls 3D
drawing engines, also known as 3D drivers.

These documents are available in online form on the QuickDraw 3D 1.5 SDK.

Format of a Typical Chapter 0

Almost all chapters in this document follow a standard structure. For example,
the chapter “Attribute Objects” contains these sections:

■ “About Attribute Objects.” This section provides an overview of the features
QuickDraw 3D 1.5 provides for managing attribute objects.

■ “Using Attribute Objects.” This section describes the tasks you can
accomplish using attribute objects.

■ “Attribute Objects Reference.” This section provides a complete reference for
QuickDraw 3D 1.5 attribute objects by describing the constants, data
structures, and routines you can use to manage attribute objects. Each
routine description also follows a standard format, which presents the
routine declaration followed by a description of every parameter of the
routine.

■ “Attribute Errors.” This section lists error messages (as well as warnings and
notices) that attribute routines may return.

Note
At the end of this document are a bibliography, a glossary,
an index of API elements, and a general index. ◆

38

P R E F A C E

Conventions Used in This Document 0

This document uses special conventions to present certain types of information.
Words that require special treatment appear in specific fonts or font styles.
Certain information, such as parameter blocks, appears in special formats so
that you can scan it quickly.

Special Fonts 0

All code listings, reserved words, and the names of actual data structures,
constants, fields, parameters, and routines are shown in Letter Gothic (this is
Letter Gothic).

Words that appear in boldface are key terms or concepts and are defined in the
glossary.

Types of Notes 0

There are several types of notes used in this document.

Note
A note like this contains information that is interesting but
possibly not essential to an understanding of the main text.
(An example appears on page 42.) ◆

IMPORTANT

A note like this contains information that is essential for an
understanding of the main text. (An example appears on
page 53.) ▲

▲ W AR N I N G

Warnings like this indicate potential problems that you
should be aware of as you design your application. Failure
to heed these warnings could result in system crashes or
loss of data. (An example appears on page 991.) ▲

39

P R E F A C E

Development Environment 0

The system software routines described in this document are available using C
interfaces. How you access these routines depends on the development
environment you are using. When showing QuickDraw 3D 1.5 routines, this
document uses the C interfaces available with the Macintosh Programmer’s
Workshop (MPW).

All code listings in this document are shown in C. They show ways of using
various routines and illustrate techniques for accomplishing particular tasks.
All code listings have been compiled and, in most cases, tested. However,
Apple Computer, Inc., does not intend for you to use these code samples in
your application.

For More Information 0

For information about Apple technology and developer support programs,
connect to one of the following online sites:

devworld.apple.com for information about Apple Developer Programs

quicktime.apple.com for information about Apple QuickTime technologies

www.apple.com. for general information about Apple Computer, Inc.

devworld.apple.com/techinfo/techdocs/index.html for Apple Technical
Documentation

40

P R E F A C E

About QuickDraw 3D 41

C H A P T E R 1

Introduction to QuickDraw 3D 1Figure 1-0
Listing 1-0
Table 1-0

This chapter provides an introduction to QuickDraw 3D, a graphics library that
you can use to manage virtually all aspects of 3D graphics, including modeling,
rendering, and data storage. For example, you can use QuickDraw 3D to define
three-dimensional models, apply colors or other attributes to parts of the
models, and create images of those models. QuickDraw 3D provides a large set
of capabilities for creating and interacting with models of 3D objects. In
addition, QuickDraw 3D is easily extensible in many ways, so you can, if
necessary, add capabilities that are not provided by QuickDraw 3D.

This chapter begins by describing the basic capabilities provided by
QuickDraw 3D. Then it describes the application programming interfaces that
you use to create and manipulate QuickDraw 3D objects. The section “Using
QuickDraw 3D,” beginning on page 52 provides source code examples
illustrating how to use QuickDraw 3D to define, configure, and render simple
three-dimensional objects. The section “QuickDraw 3D Reference,” beginning
on page 71, describes the QuickDraw 3D routines you need to use to initialize
and terminate QuickDraw 3D, as well as some basic routines for managing sets,
shapes, and strings.

About QuickDraw 3D 1

QuickDraw 3D is a graphics library developed by Apple Computer that you
can use to create, configure, and render three-dimensional objects. It is
specifically designed to be useful to a wide range of software developers, from
those with very little knowledge of 3D modeling concepts and rendering
techniques to those with very extensive experience with those concepts and
techniques.

At the most basic level, you can use the file format and file-access routines
provided by QuickDraw 3D to read and display 3D graphics created by another

C H A P T E R 1

Introduction to QuickDraw 3D

42 About QuickDraw 3D

application. For example, a word-processing application might want to import
a picture created by a 3D modeling or image-capturing application.
QuickDraw 3D supports the 3D Viewer, which you can use to display 3D data
and objects in a window and allow users limited interaction with that data,
without having to learn any of the core QuickDraw 3D application
programming interfaces.

Note
See the chapter “3D Viewer” for complete information
about the 3D viewer, as well as complete source code
samples illustrating how to create and manage a viewer
object. ◆

You can also use QuickDraw 3D for more sophisticated applications, such as
interactive 3D modeling and rendering, animation, data visualization, or any of
thousands of other ways of interpreting and displaying data in three (or more)
dimensions. Figure 1-1 illustrates the kinds of images you can produce using
QuickDraw 3D. It shows a texture, a wireframe model, and the result of
applying the texture to that model.

Figure 1-1 A simple three-dimensional picture

Modeling and Rendering 1

To create images such as that shown in Figure 1-1, you typically engage in at
least two distinguishable main tasks: modeling and rendering. Modeling is the

Texture Wire-frame Rendered image

C H A P T E R 1

Introduction to QuickDraw 3D

About QuickDraw 3D 43

process of creating a representation of real or abstract objects, and rendering is
the process of creating an image (on the screen or some other medium) of a
model. QuickDraw 3D subdivides each of these tasks into a number of
subtasks.

In QuickDraw 3D, modeling involves

■ creating, configuring, and positioning basic geometric objects and groups of
geometric objects. QuickDraw 3D defines many basic types of geometric
objects and a large number of ways to transform such objects.

■ assigning sets of attributes (such as diffuse and specular colors) to objects and
parts of objects.

■ applying textures to surfaces of objects.

■ configuring a model’s lights and shading. QuickDraw 3D supplies four types
of lights (ambient light, directional lights, spot lights, and point lights) and
several types of shaders.

In QuickDraw 3D, rendering involves

■ specifying a camera position and type. A camera type is defined by a method
of projecting the model onto a flat surface, called the view plane.
QuickDraw 3D provides two types of cameras that use perspective projection
(the aspect ratio and view plane cameras) and one type of camera that uses
parallel projection (the orthographic camera).

■ specifying a renderer or method of rendering. QuickDraw 3D provides a
wireframe and an interactive renderer. Renderers support different styles of
rendering (for example, points, edges, or filled shapes).

■ creating a view (a collection of a group of lights, a camera, and a renderer and
its styles) and rendering the model using the view to create an image.

Interacting 1

Often, modeling and rendering are not easily separable, particularly in
applications that support interactive 3D modeling. When, for example, the user
selects a sphere and drags it using the mouse or other pointing device, the
application needs to change the model (reposition the sphere) and render a new
image. (Indeed, the application may generate a series of new images to show
the sphere changing location as the user drags it.) QuickDraw 3D supports a
third main task, interacting with a model (that is, selecting and manipulating
objects in the model).

C H A P T E R 1

Introduction to QuickDraw 3D

44 About QuickDraw 3D

In QuickDraw 3D, interacting involves

■ determining what kinds of pointing devices are available on a particular
computer and possibly configuring one or more of those devices to control
items in a 3D model (such as a camera or a light).

■ identifying the objects in a model that are close to the cursor when the user
clicks or drags in the model’s image. This is called picking.

QuickDraw 3D supplies an extensive set of routines that you can use to perform
these tasks. For complete details, see the chapters “Pointing Device Manager”
and “Pick Objects.”

Extending QuickDraw 3D 1

QuickDraw 3D is designed to be easily extensible, so that you can, if necessary,
add capabilities that are not part of the basic QuickDraw 3D feature set. For
instance, you’ve already seen that QuickDraw 3D supplies two types of
renderers, the wireframe and interactive renderers. The wireframe renderer
creates line renderings of models, as illustrated in Figure 1-2.

Figure 1-2 A model rendered by the wireframe renderer

The interactive renderer uses a more complex rendering algorithm that allows
illumination and shading effects to be produced. Figure 1-3 shows the same
teapot model rendered by the interactive renderer.

C H A P T E R 1

Introduction to QuickDraw 3D

About QuickDraw 3D 45

Figure 1-3 A model rendered by the interactive renderer

It’s possible that some applications require even more complex rendering
algorithms to render images adequately from a 3D model. For example, you
might want to define a ray tracing renderer to support additional lighting
effects such as reflection and refraction. In those cases, the application can
define and register a custom renderer with QuickDraw 3D and then use that
renderer in exactly the same way it would use any standard QuickDraw 3D
renderer.

QuickDraw 3D is extensible in several ways:

■ You can define custom object types to augment the standard QuickDraw 3D
object types.

■ You can define custom attributes and assign them to shapes or sets.

■ You can define custom shaders to create special shading effects or to handle
any custom attributes you’ve defined. (The shaders that QuickDraw 3D
supplies can handle all the predefined attribute types.)

■ You can define custom renderers to support other rendering algorithms.

In addition, QuickDraw 3D is designed to be portable to other software
platforms and to support a variety of hardware accelerators:

■ QuickDraw 3D is cross-platform. It is available for the PowerPC version of the
Mac OS and for the Microsoft Win32 API (running on either Windows 95 or
on the Intel processor version of Windows NT 3.51 and later). This portability

C H A P T E R 1

Introduction to QuickDraw 3D

46 About QuickDraw 3D

to other window systems is accomplished by isolating all window
system-specific information into a layer called a draw context, which is
associated with a view. QuickDraw 3D automatically handles
system-dependent issues such as byte ordering.

■ QuickDraw 3D renderers can take advantage of hardware accelerators, if
available.

Finally, QuickDraw 3D defines a platform-independent metafile (that is, a file
format) for storing and interchanging 3D data. This metafile is intended to
provide a standard format according to which applications can read and write
3D data, even applications that use 3D graphics systems other than
QuickDraw 3D. QuickDraw 3D itself includes routines that you can use to read
and write data in the metafile format. Apple Computer, Inc. also supplies a
parser that you can use to read and write metafile data on operating systems
that do not support QuickDraw 3D.

Note
For further information about the metafile format, see
3D Metafile 1.5 Reference. This document is available online
in the QuickDraw 3D 1.5 SDK. ◆

Figure 1-4 shows the functional components of QuickDraw 3D.

Figure 1-4 The parts of QuickDraw 3D

Customizable in 1.0

Application

I/O

Geometries

Widgets
Camera Attributes ShadersPicking Lights

Accelerators

Customizable in future versions

Hardware/OS

Renderers

C H A P T E R 1

Introduction to QuickDraw 3D

About QuickDraw 3D 47

Naming Conventions 1

The QuickDraw 3D application programming interfaces are designed, as much
as possible, to mirror the QuickDraw 3D class hierarchy described in the
chapter “QuickDraw 3D Objects.” They are also designed to exhibit as much
uniformity as can reasonably be achieved by names describing a large and
heterogeneous collection of objects instantiating classes in that hierarchy.
Ideally, once you are acquainted with the various conventions governing the
programming interfaces and the class hierarchy, you should be able to make
correct guesses about the names of constants, data structures, and routines. In
very many cases, the names of constants and routines are largely
self-documenting, thanks to a strict adherence to the naming conventions. This
section describes those conventions and provides some examples.

Constants 1

All constants defined in the QuickDraw 3D application programming interfaces
have the prefix kQ3. Very simple constants consist solely of the kQ3 prefix and a
specific value indicator. Here are some examples:

typedef enum TQ3Boolean {
kQ3False,
kQ3True

} TQ3Boolean;

typedef enum TQ3Switch {
kQ3Off,
kQ3On

} TQ3Switch;

typedef enum TQ3Status {
kQ3Failure,
kQ3Success

} TQ3Status;

Most other enumerated constants consist of the standard kQ3 prefix, followed by
a type, followed by a specific value. Here are some examples:

C H A P T E R 1

Introduction to QuickDraw 3D

48 About QuickDraw 3D

typedef enum TQ3Axis {
kQ3AxisX,
kQ3AxisY,
kQ3AxisZ

} TQ3Axis;

Other constants are defined using the C preprocessor #define mechanism. Here
are some examples:

#define kQ3ObjectTypeElement Q3_OBJECT_TYPE('e','l','m','n')
#define kQ3ObjectTypePick Q3_OBJECT_TYPE('p','i','c','k')
#define kQ3ObjectTypeShared Q3_OBJECT_TYPE('s','h','r','d')
#define kQ3ObjectTypeView Q3_OBJECT_TYPE('v','i','e','w')
#define kQ3ObjectTypeInvalid 0

In general, these kinds of constants specify types of objects in the
QuickDraw 3D class hierarchy or methods defining the behaviors of those
types. These constants use the macros Q3_OBJECT_TYPE or Q3_METHOD_TYPE. See
the header file QD3D.h for definitions of these macros.

Data Types 1

All data structures and data types defined in the QuickDraw 3D application
programming interfaces have the prefix TQ3. Like constant names, data type
names never contain the underscore character (_). When emphasis is required,
subwords of a data type name are capitalized and usually proceed from general
to specific.

There are four distinguishable classes in data type names.

■ Opaque objects, whose definitions are private, begin with the prefix TQ3 and
end with the suffix Object. Between the prefix and the suffix are one or more
words indicating the type of the opaque object. Here are some examples:

TQ3GeometryObject
TQ3ViewObject
TQ3CameraObject
TQ3StyleObject
TQ3DrawContextObject

■ Data structures used in defining characteristics of opaque objects begin with
the prefix TQ3 and end with the suffix Data. Between the prefix and the suffix

C H A P T E R 1

Introduction to QuickDraw 3D

About QuickDraw 3D 49

are one or more words indicating the type of the object. Here are some
examples:

TQ3TriangleData
TQ3BoxData
TQ3OrthographicCameraData

■ Data structures that contain data not specifically used to define
characteristics of an opaque object begin with the prefix TQ3. Following the
prefix are one or more words indicating the type of the data the structure
contains. Here are some examples:

TQ3Point3D
TQ3Vector2D
TQ3ColorRGB
TQ3ColorARGB

■ Attributes are opaque objects, but they are named differently to distinguish
them from other opaque objects. Attributes are of type TQ3Attribute.

IMPORTANT

All floating-point numbers used in the QuickDraw 3D
application programming interfaces are single precision. ▲

Functions 1

All functions defined in the QuickDraw 3D application programming interfaces
have the prefix Q3. The class of an identifier immediately follows its type prefix.
Then the method occurs, separated from the class by an underscore. A method is
almost always expressed as a verb-noun sequence. Here are some examples:

Q3Polygon_GetVertexPosition
Q3NURBCurve_SetControlPoint
Q3Light_SetBrightness
Q3SpotLight_GetFallOff
Q3View_GetLocalToWorldInverseTransposeMatrixState
Q3Triangle_New

Some functions are so simple that they have no distinguishable class and
method. Here are some examples:

C H A P T E R 1

Introduction to QuickDraw 3D

50 About QuickDraw 3D

Q3Initialize
Q3IsInitialized
Q3Exit

As much as possible, function parameters are ordered consistently throughout
the application programming interfaces. In virtually all cases, the first
parameter is a data type that corresponds to the object being operated on. When
there are two or more additional parameters, they are placed in their natural or
intuitive ordering.

Most QuickDraw 3D functions return a status code, which is of type TQ3Status.
A status code is either kQ3Success or kQ3Failure, indicating that the function has
succeeded or failed. When a function fails, you can call a further function to get
a specific error code. Alternatively, you can install an error-reporting callback
routine to handle failures. See the chapter “Error Manager” for complete details
on handling errors.

Functions that create opaque objects usually return a function result whose type
is a reference to the type of the newly created object (for instance,
TQ3CameraObject for a new camera object). An object reference is an opaque
pointer to the object. When these kinds of routines fail, they return the value
NULL.

Retained and Immediate Modes 1

A graphics system operates in retained mode if it retains a copy of all the data
describing a model. In other words, a retained mode graphics system requires
you to completely specify a model by passing model data to the system using
predefined data structures. The graphics system organizes the data internally,
usually in a hierarchical database. Once an object is added to that database, you
can change the object only by calling specific editing routines provided by the
graphics system.

By contrast, a graphics system operates in immediate mode if the application
itself maintains the data that describe a model. For example, original
QuickDraw is a two-dimensional graphics system that operates in immediate
mode. You draw objects on the screen, using QuickDraw, by calling routines
that completely specify the objects to be drawn. QuickDraw does not maintain
any information about a picture internally; it simply takes the data provided by
the application and immediately draws the appropriate objects.

C H A P T E R 1

Introduction to QuickDraw 3D

About QuickDraw 3D 51

Note
OpenGL™ is an example of a 3D graphics system that
operates in immediate mode. QuickDraw GX is an example
of a 2D graphics system that operates in retained mode. ◆

QuickDraw 3D supports both immediate and retained modes of specifying and
drawing models. The principal advantage of immediate mode imaging is that
the model data is immediately available to you and is not duplicated by the
graphics system. The data is stored in whatever form you like, and you can
change that data at any time. The main disadvantage of immediate mode
imaging is that you need to maintain the sometimes quite lengthy object data,
and you need to perform geometric operations on that data yourself. In
addition, it can be difficult to accelerate immediate mode rendering, because
you generally need to specify the entire model to draw a single frame, whether
or not the entire model has changed since the previous frame. This can involve
passing large amounts of data to the graphics system.

Retained mode imaging typically supports higher levels of abstraction than
immediate mode imaging and is more amenable to hardware acceleration and
caching. In addition, the hierarchical arrangement of the model data allows the
graphics system to perform very quick updates whenever the data is altered. To
avoid duplicating data between your application and the graphics system’s
database, your application should match the data types of the graphics system
and use the extensive editing functions to change a model’s data.

Another important advantage of retained mode imaging is that it’s very easy to
read and write retained objects.

To create a point, for example, in retained mode, you fill in a data structure of
type TQ3PointData and pass it to the Q3Point_New function. This function copies
the data in that structure and returns an object of type TQ3GeometryObject,
which you use for all subsequent operations on the point. For example, to draw
the point in retained mode, you pass that geometric object returned by
Q3Point_New to the Q3Geometry_Submit function inside a rendering loop. To
change the data associated with the point, you call point-editing functions, such
as Q3Point_GetPosition and Q3Point_SetPosition. Finally, when you have
finished using the point, you must call Q3Object_Dispose to have QuickDraw 3D
delete the point from its internal database.

It’s much simpler to draw a point in immediate mode. You do not need to call
any QuickDraw 3D routine to create a point in immediate mode; instead, you
merely have to maintain the point data yourself, typically in a structure of type
TQ3PointData. To draw a point in immediate mode, you call the Q3Point_Submit

C H A P T E R 1

Introduction to QuickDraw 3D

52 Using QuickDraw 3D

function, passing it a pointer to that structure. When you’re using immediate
mode, however, you need to know exactly what types of objects you’re drawing
and hard code the appropriate routines in your source code.

Note
Immediate mode rendering does not require any memory
permanently allocated to QuickDraw 3D, but it might
require QuickDraw 3D to perform temporary allocations
while rendering is occurring. ◆

In general, if most of a model remains unchanged from frame to frame, you
should use retained mode imaging to create and draw the model. If, however,
many parts of the model do change from frame to frame, you should probably
use immediate mode imaging, creating and rendering a model on a
shape-by-shape basis. You can, of course, use a combination of retained and
immediate mode imaging: you can create retained objects for the parts of a
model that remain static and draw quickly changing objects in immediate
mode.

Using QuickDraw 3D 1

This section describes the most basic ways of using QuickDraw 3D. In
particular, it provides source code examples that show how you can

■ determine whether QuickDraw 3D is available

■ initialize a connection to QuickDraw 3D and later close that connection

■ create and configure geometric objects in a three-dimensional model

■ specify a group of lights to illuminate those objects

■ create a camera to specify a point of view and a method of projecting the
three-dimensional model to create a two-dimensional image of the model

■ render (that is, draw) the model

For complete details on any of these topics, you should read the corresponding
chapter later in this book. For example, see the chapter “Light Objects” for
complete information about the types of lights provided by QuickDraw 3D.

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 53

IMPORTANT

The code samples shown in this section provide only very
rudimentary error handling. You should read the chapter
“Error Manager” to learn how to write and register an
application-defined error-handling routine, or how to
determine explicitly which errors have occurred during the
execution of QuickDraw 3D routines. ▲

QuickDraw 3D currently is supported for the PowerPC version of the Mac OS
and for the Win32 API. It exists as a shared library, in two forms:

■ An optimized version of the QuickDraw 3D shared library is available for
end users of those applications and other products.

■ A debugging version is available for use by developers while writing their
applications or other software products. The debugging version provides
more extensive information than the optimized version. For instance, the
debugging version of QuickDraw 3D issues errors, warnings, and notices at
the appropriate times; the optimized version issues only errors and
warnings.

Compiling Your Application 1

In order for your application’s code to work correctly with the code contained
in the QuickDraw 3D shared library, you need to ensure that you use the same
compiler settings that were used to compile the QuickDraw 3D shared library.
Otherwise, it’s possible for QuickDraw 3D to misinterpret information you pass
to it. For example, all the enumerated constants defined by QuickDraw 3D are
of the int data type, where an int value is 4 bytes. If your application passes a
value of some other size or type for one of those constants, it’s likely that
QuickDraw 3D will not correctly interpret that value. Accordingly, if the default
setting of your compiler does not make enumerated constants to be of type int,
you must override that default setting, typically by including pragma directives
in your source code or by using an appropriate compiler option.

There are currently three important compiler settings:

■ Enumerated constants are of the int data type.

■ Elements of type char or short that are contained in an array that is
contained in a structure may be aligned on non-longword boundaries.

■ Fields in a structure that contain pointers or data of type long, float, or
double are aligned on longword boundaries.

C H A P T E R 1

Introduction to QuickDraw 3D

54 Using QuickDraw 3D

The interface file QD3D.h contains compiler pragmas for several popular C
compilers. For example, QD3D.h contains this line for the PPCC compiler,
specifying field alignment on longword boundaries for pointers or data of type
long, float, or double:

#pragma options align=power

Some compilers might not provide pragmas for the three important compiler
settings listed above. For example, the PPCC compiler does not currently
provide a pragma for setting the size of enumerated constants. PPCC does
however support the -enums compiler option, which you can use to set the size
of a enumerated constants.

IMPORTANT

Consult the documentation for your compiler to determine
how to specify the size of enumerated constants and to
configure structure field alignment so as to conform to the
settings of QuickDraw 3D. ▲

Initializing and Terminating QuickDraw 3D 1

Before calling any QuickDraw 3D routines, you need to verify that the
QuickDraw 3D software is available in the current operating environment. Then
you need to create and initialize a connection to the QuickDraw 3D software.

On the Mac OS, you can verify that QuickDraw 3D is available by calling the
MyEnvironmentHasQuickDraw3D function defined in Listing 1-1.

Listing 1-1 Determining whether QuickDraw 3D is available

Boolean MyEnvironmentHasQuickDraw3D (void)
{

return (long) Q3Initialize != kUnresolvedSymbolAddress;
}

The MyEnvironmentHasQuickDraw3D function checks to see whether the address of
the Q3Initialize function has been resolved. If it hasn’t been resolved (that is, if
the Code Fragment Manager couldn’t find the QuickDraw 3D shared library
when launching your application), MyEnvironmentHasQuickDraw3D returns the

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 55

value FALSE to its caller. Otherwise, if the address of the Q3Initialize function
was successfully resolved, MyEnvironmentHasQuickDraw3D returns TRUE.

Note
For the function MyEnvironmentHasQuickDraw3D to work
properly, you must establish soft links (also called weak
links) between your application and the QuickDraw 3D
shared library. For information on soft links, see the book
Inside Macintosh: PowerPC System Software. For specific
information on establishing soft links, see the
documentation for your software development system. ◆

On the Mac OS, you can verify that QuickDraw 3D is available in the current
operating environment by calling the Gestalt function with the gestaltQD3D
selector. Gestalt returns a long word whose value indicates the availability of
QuickDraw 3D. Currently these values are defined:

enum {
gestaltQD3DNotPresent = 0,
gestaltQD3DAvailable = 1

}

You should ensure that the value gestaltQD3DAvailable is returned before
calling any QuickDraw 3D routines.

Note
For more information on the Gestalt function, see Inside
Macintosh: Operating System Utilities. ◆

You create and initialize a connection to the QuickDraw 3D software by calling
the Q3Initialize function, as illustrated in Listing 1-2.

Listing 1-2 Initializing a connection with QuickDraw 3D

OSErr MyInitialize (void)
{

TQ3Status myStatus;

myStatus = Q3Initialize(); /*initialize QuickDraw 3D*/

C H A P T E R 1

Introduction to QuickDraw 3D

56 Using QuickDraw 3D

if (myStatus == kQ3Failure)
DebugStr("\pQ3Initialize returned failure.");

return (noErr);
}

Once you’ve successfully called Q3Initialize, you can safely call other
QuickDraw 3D routines. If Q3Initialize returns unsuccessfully (as indicated by
the kQ3Failure result code), you shouldn’t call any QuickDraw 3D routines
other than the error-reporting routines (such as Q3Error_Get or
Q3Error_IsFatalError) or the Q3IsInitialized function. See the chapter “Error
Manager” for details on QuickDraw 3D’s error-handling capabilities.

When you have finished using QuickDraw 3D, you should call Q3Exit to close
your connection with QuickDraw 3D. In most cases, you’ll do this when
terminating your application. Listing 1-3 illustrates how to call Q3Exit.

Listing 1-3 Terminating QuickDraw 3D

void MyFinishUp (void)
{

TQ3Status myStatus;

myStatus = Q3Exit(); /*unload QuickDraw 3D*/
if (myStatus == kQ3Failure)

DebugStr("\pQ3Exit returned failure.");
}

Creating a Model 1

As explained in “Modeling and Rendering” (page 42), creating an image of a
three-dimensional model involves several steps. You must first create a model
and then specify key information about the scene (such as the lighting and
camera angle). This section shows how to create a simple model containing
three-dimensional objects.

Objects in QuickDraw 3D are defined using a Cartesian coordinate system that
is right-handed (that is, if the thumb of the right hand points in the direction of
the positive x axis and the index finger points in the direction of the positive y
axis, then the middle finger, when made perpendicular to the other two fingers,

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 57

points in the direction of the positive z axis). Figure 1-5 shows a right-handed
coordinate system.

Note
For a more complete description of the coordinate spaces
used by QuickDraw 3D, see the chapter “Transform
Objects” later in this book. ◆

Figure 1-5 A right-handed Cartesian coordinate system

The model created by the MyNewModel function defined in Listing 1-4 consists of
a number of boxes that spell out the words “Hello World.” The words are
written in block letters, with each letter composed of a number of individual
boxes. MyNewModel uses the inelegant but straightforward method of defining the
34 boxes by creating four arrays of 34 elements each. As described in the
chapter “Geometric Objects”, a box is defined by four pieces of information, an
origin and three vectors that specify its sides:

typedef struct TQ3BoxData {
TQ3Point3D origin;
TQ3Vector3D orientation;
TQ3Vector3D majorAxis;

y axis

x axis

z axis

Origin

C H A P T E R 1

Introduction to QuickDraw 3D

58 Using QuickDraw 3D

TQ3Vector3D minorAxis;
TQ3AttributeSet *faceAttributeSet;
TQ3AttributeSet boxAttributeSet;

} TQ3BoxData;

First, MyNewModel creates a new and empty ordered display group to contain all
the boxes. Then the function loops through the data arrays, creating boxes and
adding them to the group.

Listing 1-4 Creating a model

TQ3GroupObject MyNewModel (void)
{

TQ3GroupObject myModel;
TQ3GeometryObject myBox;
TQ3BoxData myBoxData;
TQ3GroupPosition myGroupPosition;

/*Data for boxes comprising Hello and World block letters.*/
long i;
float xorigin[34] = {

-12.0, -9.0, -11.0, -7.0, -6.0, -6.0, -6.0, -2.0, -1.0,
3.0, 4.0, 8.0, 9.0, 9.0, 11.0, -13.0, -12.0, -11.0, -9.0,
-7.0, -6.0, -6.0, -4.0, -2.0, -1.0, -1.0, 1.0, 1.0, 3.0,
4.0, 8.0, 9.0, 9.0, 11.0};

float yorigin[34] = {
0.0, 0.0, 3.0, 0.0, 6.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
6.0, 0.0, 0.0, -8.0, -8.0, -7.0, -8.0, -8.0, -8.0, -2.0,
-8.0, -8.0, -2.0, -5.0, -4.0, -8.0, -8.0, -8.0, -8.0, -8.0,
-2.0, -7.0};

float height[34] = {
7.0, 7.0, 1.0, 7.0, 1.0, 1.0, 1.0, 7.0, 1.0, 7.0, 1.0, 7.0,
1.0, 1.0, 7.0, 7.0, 1.0, 3.0, 7.0, 7.0, 1.0, 1.0, 7.0, 7.0,
1.0, 1.0, 2.0, 3.0, 7.0, 1.0, 7.0, 1.0, 1.0, 5.0};

float width[34] = {
1.0, 1.0, 2.0, 1.0, 3.0, 2.0, 3.0, 1.0, 3.0, 1.0, 3.0, 1.0,
2.0, 2.0, 1.0, 1.0, 3.0, 1.0, 1.0, 1.0, 2.0, 2.0, 1.0, 1.0,
2.0, 2.0, 1.0, 1.0, 1.0, 3.0, 1.0, 2.0, 2.0, 1.0};

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 59

/*Create an ordered display group for the complete model.*/
myModel = Q3OrderedDisplayGroup_New();
if (myModel == NULL)

goto bail;

/*Add all the boxes to the model.*/
myBoxData.faceAttributeSet = NULL;
myBoxData.boxAttributeSet = NULL;
for (i=0; i<34; i++) {

Q3Point3D_Set(&myBoxData.origin, xorigin[i], yorigin[i], 1.0);
Q3Vector3D_Set(&myBoxData.orientation, 0, height[i], 0);
Q3Vector3D_Set(&myBoxData.minorAxis, width[i], 0, 0);
Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 2);
myBox = Q3Box_New(&myBoxData);
myGroupPosition = Q3Group_AddObject(myModel, myBox);
/*now that myBox has been added to group, dispose of our reference*/
Q3Object_Dispose(myBox);
if (myGroupPosition == NULL)

goto bail;
}

return (myModel); /*return the completed model*/

bail:
/*If any of the above failed, then return an empty model.*/
return (NULL);

}

Note
The MyNewModel function can leak memory. Your application
should use a different error-recovery strategy than is used
in Listing 1-4. ◆

If successful, MyNewModel returns the group object containing the 34 boxes to its
caller.

Configuring a Window 1

Usually, you’ll want to display the two-dimensional image of a
three-dimensional model in a window. To do this, it’s useful to define a custom
window information structure that holds all the information about the

C H A P T E R 1

Introduction to QuickDraw 3D

60 Using QuickDraw 3D

QuickDraw 3D objects that are associated with the window. In the simplest
cases, this information includes the model itself, the view, the illumination
shading to be applied, and the desired styles of rendering the model. You might
define a window information structure like this:

struct WindowInfo {
TQ3ViewObject view;
TQ3GroupObject model;
TQ3ShaderObject illumination;
TQ3StyleObject interpolation;
TQ3StyleObject backfacing;
TQ3StyleObject fillstyle;

};
typedef struct WindowInfo WindowInfo, *WindowInfoPtr, **WindowInfoHandle;

A standard way to attach an application-defined data structure (such as the
WindowInfo structure) to a window is to set a handle to that structure as the
window’s reference constant. This technique is used in Listing 1-5.

Note
For a more complete description of using a window’s
reference constant to maintain window-specific
information, see the discussion of document records in
Inside Macintosh: Overview. ◆

Listing 1-5 Creating a new window and attaching a window information structure

void MyNewWindow (void)
{

WindowPtr myWindow;
Rect myBounds = {42, 4, 442, 604};
WindowInfoHandle myWinfo;

/*Create new window.*/
myWindow = NewCWindow(0L, &myBounds, "\pWindow!", 1, documentProc,

(WindowPtr) -1, true, 0L);
if (myWindow == NULL)

goto bail;
SetPort(myWindow);

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 61

/*Create storage for the new window and attach it to window.*/
myWinfo = (WindowInfoHandle) NewHandle(sizeof(WindowInfo));
if (myWinfo == NULL)

goto bail;
SetWRefCon(myWindow, (long) myWinfo);
HLock((Handle) myWinfo);

/*Create a new view.*/
(**myWinfo).view = MyNewView(myWindow);
if ((**myWinfo).view == NULL)

goto bail;

/*Create model to display.*/
(**myWinfo).model = MyNewModel(); /*see Listing 1-4 (page 58)*/
if ((**myWinfo).model == NULL)

goto bail;

/*Configure an illumination shader.*/
(**myWinfo).illumination = Q3PhongIllumination_New();
if ((**myWinfo).illumination == NULL)

goto bail;

/*Configure the rendering styles.*/
(**myWinfo).interpolation =

Q3InterpolationStyle_New(kQ3InterpolationStyleNone);
if ((**myWinfo).interpolation == NULL)

goto bail;
(**myWinfo).backfacing =

Q3BackfacingStyle_New(kQ3BackfacingStyleRemoveBackfacing);
if ((**myWinfo).backfacing == NULL)

goto bail;
(**myWinfo).fillstyle = Q3FillStyle_New(kQ3FillStyleFilled);
if ((**myWinfo).fillstyle == NULL)

goto bail;
HUnlock((Handle) myWinfo);

return;

C H A P T E R 1

Introduction to QuickDraw 3D

62 Using QuickDraw 3D

bail:
/*If failed for any reason, then close the window.*/
if (myWinfo != NULL)

DisposeHandle((Handle) myWinfo);
if (myWindow != NULL)

DisposeWindow(myWindow);
}

The MyNewWindow function creates a new window and a new window
information structure, attaches the structure to the window, and then fills out
several fields of that structure. In particular, MyNewWindow creates a new
illumination shader that implements a Phong illumination model. You need an
illumination shader for a view’s lights to have any effect. (See the chapter
“Shader Objects” for complete information on the available illumination
shaders.) Then MyNewWindow disables interpolation between vertices of faces,
removes unseen backfaces of objects in the model, and sets the renderer to
render filled faces on those objects. These settings are actually passed to the
renderer by submitting the styles during rendering. See “Rendering a Model,”
beginning on page 69 for details.

Note
The MyNewWindow function can leak memory. Your
application should use a different error-recovery strategy
than is used in Listing 1-5. ◆

Creating Lights 1

When you use any renderer more powerful than the wireframe renderer, you’ll
want to create and configure a set of lights to provide illumination for the object
in the model. As you’ve seen, QuickDraw 3D provides a number of types of
lights, each of which can emit light of various colors and intensities. The
function MyNewLights defined in Listing 1-6 creates a group of lights. It creates
an ambient light, a point light, and a directional light. See the chapter “Light
Objects” for more details on creating lights.

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 63

Listing 1-6 Creating a group of lights

TQ3GroupObject MyNewLights (void)
{

TQ3GroupPosition myGroupPosition;
TQ3GroupObject myLightList;
TQ3LightData myLightData;
TQ3PointLightData myPointLightData;
TQ3DirectionalLightData myDirLightData;
TQ3LightObject myAmbientLight, myPointLight, myFillLight;
TQ3Point3D pointLocation = { -10.0, 0.0, 10.0 };
TQ3Vector3D fillDirection = { 10.0, 0.0, 10.0 };
TQ3ColorRGB WhiteLight = { 1.0, 1.0, 1.0 };

/*Set up light data for ambient light.*/
myLightData.isOn = kQ3True;
myLightData.brightness = .2;
myLightData.color = WhiteLight;

/*Create ambient light.*/
myAmbientLight = Q3AmbientLight_New(&myLightData);
if (myAmbientLight == NULL)

goto bail;

/*Create a point light.*/
myLightData.brightness = 1.0;
myPointLightData.lightData = myLightData;
myPointLightData.castsShadows = kQ3False;
myPointLightData.attenuation = kQ3AttenuationTypeLinear;
myPointLightData.location = pointLocation;
myPointLight = Q3PointLight_New(&myPointLightData);
if (myPointLight == NULL)

goto bail;

/*Create a directional light for fill.*/
myLightData.brightness = .2;
myDirLightData.lightData = myLightData;
myDirLightData.castsShadows = kQ3False;
myDirLightData.direction = fillDirection;
myFillLight = Q3DirectionalLight_New(&myDirLightData);

C H A P T E R 1

Introduction to QuickDraw 3D

64 Using QuickDraw 3D

if (myFillLight == NULL)
goto bail;

/*Create light group and add each of the lights to the group.*/
myLightList = Q3LightGroup_New();
if (myLightList == NULL)

goto bail;
myGroupPosition = Q3Group_AddObject(myLightList, myAmbientLight);
Q3Object_Dispose(myAmbientLight); /*balance the reference count*/
if (myGroupPosition == 0)

goto bail;
myGroupPosition = Q3Group_AddObject(myLightList, myPointLight);
Q3Object_Dispose(myPointLight); /*balance the reference count*/
if (myGroupPosition == 0)

goto bail;
myGroupPosition = Q3Group_AddObject(myLightList, myFillLight);
Q3Object_Dispose(myFillLight); /*balance the reference count*/
if (myGroupPosition == 0)

goto bail;

return (myLightList);

bail:
/*If any of the above failed, then return nothing!*/
return (NULL);

}

The MyNewLights function is straightforward. It fills out the fields of the relevant
data structures (TQ3LightData, TQ3PointLightData, and
TQ3DirectionalLightData) and calls the appropriate functions to create new
light objects using the information in those structures. If successful, it adds
those light objects to a group of lights. The group of lights will be added to a
view, as shown in the following section.

Note
The MyNewLights function can leak memory. ◆

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 65

Creating a Draw Context 1

A draw context contains information that is specific to a particular type of
window system, such as the extent of the pane to draw into and the method of
clearing the window. You need to create a draw context and add it to a view in
order to render a model. Listing 1-7 illustrates how to create a draw context for
drawing into Macintosh windows.

Listing 1-7 Creating a Macintosh draw context

TQ3DrawContextObject MyNewDrawContext (WindowPtr theWindow)
{

TQ3DrawContextObject myDrawContext;
TQ3DrawContextData myDrawContextData;
TQ3MacDrawContextData myMacDrawContextData;
TQ3ColorARGB myClearColor;

/*Set the background color.*/
Q3ColorARGB_Set(&myClearColor, 1.0, 0.6, 0.9, 0.9);

/*Fill in draw context data.*/
myDrawContextData.clearImageMethod = kQ3ClearMethodWithColor;
myDrawContextData.clearImageColor = myClearColor;
myDrawContextData.paneState = kQ3False;
myDrawContextData.maskState = kQ3False;
myDrawContextData.doubleBufferState = kQ3True;

/*Fill in Macintosh-specific draw context data.*/
myMacDrawContextData.drawContextData = myDrawContextData;
myMacDrawContextData.window = (CWindowPtr) theWindow;
myMacDrawContextData.library = kQ3Mac2DLibraryNone;
myMacDrawContextData.viewPort = NULL;
myMacDrawContextData.grafPort = NULL;

/*Create draw context.*/
myDrawContext = Q3MacDrawContext_New(&myMacDrawContextData);

return (myDrawContext);
}

C H A P T E R 1

Introduction to QuickDraw 3D

66 Using QuickDraw 3D

Essentially, MyNewDrawContext just fills in the fields of a TQ3MacDrawContextData
structure and calls Q3MacDrawContext_New to create a new Macintosh draw
context.

Creating a Camera 1

The remaining step before you can create a view is to create a camera object. A
camera object specifies a point of view and a method of projecting the
three-dimensional model into two dimensions. Listing 1-8 illustrates how to
create a camera. See the chapter “Camera Objects” for complete details on the
routines called in MyNewCamera.

Listing 1-8 Creating a camera

TQ3CameraObject MyNewCamera (void)
{

TQ3CameraObject myCamera;
TQ3CameraData myCameraData;
TQ3ViewAngleAspectCameraData myViewAngleCameraData;
TQ3Point3D cameraFrom = { 0.0, 0.0, 15.0 };
TQ3Point3D cameraTo = { 0.0, 0.0, 0.0 };
TQ3Vector3D cameraUp = { 0.0, 1.0, 0.0 };

/*Fill in camera data.*/
myCameraData.placement.cameraLocation = cameraFrom;
myCameraData.placement.pointOfInterest = cameraTo;
myCameraData.placement.upVector = cameraUp;
myCameraData.range.hither = .1;
myCameraData.range.yon = 15.0;
myCameraData.viewPort.origin.x = -1.0;
myCameraData.viewPort.origin.y = 1.0;
myCameraData.viewPort.width = 2.0;
myCameraData.viewPort.height = 2.0;

myViewAngleCameraData.cameraData = myCameraData;
myViewAngleCameraData.fov = Q3Math_DegreesToRadians(100.0);
myViewAngleCameraData.aspectRatioXToY = 1;

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 67

myCamera = Q3ViewAngleAspectCamera_New(&myViewAngleCameraData);

/*Return a camera.*/
return (myCamera);

}

Like before, the MyNewCamera function simply fills out the fields of the
appropriate data structures and calls the Q3ViewAngleAspectCamera_New function
to create a new camera object.

IMPORTANT

All angles in QuickDraw 3D are specified in radians. You
can use the Q3Math_DegreesToRadians macro to convert
degrees to radians. This is illustrated in Listing 1-8, which
sets the fov field to 100 degrees. ▲

Creating a View 1

A view is a collection of a model, a group of lights, a camera, a renderer, and a
draw context. Now that you’ve defined functions that create all the requisite
parts of a view (except the renderer), you can create a view, as illustrated in
Listing 1-9. To do this, you create a new empty view object and then explicitly
add the parts to it.

IMPORTANT

To create an image in a window, a view must contain at
least a camera, a renderer, and a draw context. ▲

Listing 1-9 Creating a view

TQ3ViewObject MyNewView (WindowPtr theWindow)
{

TQ3Status myStatus;
TQ3ViewObject myView;
TQ3DrawContextObject myDrawContext;
TQ3RendererObject myRenderer;
TQ3CameraObject myCamera;
TQ3GroupObject myLights;

C H A P T E R 1

Introduction to QuickDraw 3D

68 Using QuickDraw 3D

myView = Q3View_New();
if (myView == NULL)

goto bail;

/*Create and set draw context.*/
myDrawContext = MyNewDrawContext(theWindow);
if (myDrawContext == NULL)

goto bail;
myStatus = Q3View_SetDrawContext(myView, myDrawContext);
Q3Object_Dispose(myDrawContext);
if (myStatus == kQ3Failure)

goto bail;

/*Create and set renderer.*/
myRenderer = Q3Renderer_NewFromType(kQ3RendererTypeInteractive);
if (myRenderer == NULL)

goto bail;
myStatus = Q3View_SetRenderer(myView, myRenderer);
Q3Object_Dispose(myRenderer);
if (myStatus == kQ3Failure)

goto bail;

/*Create and set camera.*/
myCamera = MyNewCamera();
if (myCamera == NULL)

goto bail;
myStatus = Q3View_SetCamera(myView, myCamera);
Q3Object_Dispose(myCamera);
if (myStatus == kQ3Failure)

goto bail;

/*Create and set lights.*/
myLights = MyNewLights();
if (myLights == NULL)

goto bail;
myStatus = Q3View_SetLightGroup(myView, myLights);
Q3Object_Dispose(myLights);
if (myStatus == kQ3Failure)

goto bail;

return (myView);

C H A P T E R 1

Introduction to QuickDraw 3D

Using QuickDraw 3D 69

bail:
/*If any of the above failed, then don't return a view.*/
return (NULL);

}

Rendering a Model 1

To render a model using a view, you call QuickDraw 3D functions that submit
the various shape objects (for instance, geometric objects, groups of geometric
objects, and styles) that you want to appear in the view. Because a model might
be too complex to process in a single pass (and for other reasons as well), you
should call the rendering routines in a rendering loop. A rendering loop begins
with a call to the Q3View_StartRendering function and should end when a call to
the Q3View_EndRendering function returns some value other than
kQ3ViewStatusRetraverse. Within the body of the rendering loop, you should
submit the shapes you want rendered. Listing 1-10 shows the general structure
of a rendering loop.

Listing 1-10 A basic rendering loop

Q3View_StartRendering(myView);
do {

/*Submit your shape objects here.*/
Q3DisplayGroup_Submit(myGroup, myView);

} while (Q3View_EndRendering(myView) == kQ3ViewStatusRetraverse);

The Q3View_EndRendering function returns a view status value that indicates
whether the renderer has finished processing the model. The available view
status values are defined by these constants:

typedef enum {
kQ3ViewStatusDone,
kQ3ViewStatusRetraverse,
kQ3ViewStatusError,
kQ3ViewStatusCancelled

} TQ3ViewStatus;

Listing 1-11 illustrates how to render the model defined in Listing 1-4 (page 58),
using the view created and configured in Listing 1-9 (page 67). The MyDraw

C H A P T E R 1

Introduction to QuickDraw 3D

70 Using QuickDraw 3D

function defined in Listing 1-11 retrieves the window information structure
attached to a window and uses the information in it to render the model.

Listing 1-11 Rendering a model

void MyDraw (WindowPtr theWindow)
{

WindowInfoHandle myWinfo;
TQ3Status myStat;
TQ3DrawContextObject myDrawContext;
TQ3ViewStatus myViewStatus;

if (theWindow == NULL)
return;

myWinfo = (WindowInfoHandle) GetWRefCon(theWindow);
HLock((Handle) myWinfo);

/*Start rendering.*/
myStat = Q3View_StartRendering((**myWinfo).view);
if (myStat == kQ3Failure)

goto bail;

do {
myStat = Q3Shader_Submit((**myWinfo).illumination, (**myWinfo).view);
if (myStat == kQ3Failure)

goto bail;
myStat = Q3Style_Submit((**myWinfo).interpolation, (**myWinfo).view);
if (myStat == kQ3Failure)

goto bail;
myStat = Q3Style_Submit((**myWinfo).backfacing, (**myWinfo).view);
if (myStat == kQ3Failure)

goto bail;
myStat = Q3Style_Submit((**myWinfo).fillstyle, (**myWinfo).view);
if (myStat == kQ3Failure)

goto bail;
myStat = Q3DisplayGroup_Submit((**myWinfo).model, (**myWinfo).view);
if (myStat == kQ3Failure)

goto bail;

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 71

myViewStatus = Q3View_EndRendering((**myWinfo).view);
} while (myViewStatus == kQ3ViewStatusRetraverse);

HUnlock((Handle) myWinfo);
return;

bail:
HUnlock((Handle) myWinfo);
SysBeep(50);

}

The rendering loop allows your application to work with any current and
future renderers that require multiple passes through a model’s data in order to
provide features such as transparency and constructive solid geometry.

For complete information about rendering loops and other kinds of submitting
loops, see the chapter “View Objects” in this book.

QuickDraw 3D Reference 1

This section describes the basic constants and routines provided by
QuickDraw 3D. See the section “QuickDraw 3D Errors, Warnings, and Notices,”
beginning on page 87 for a list of error, warning, and notice messages defined
by QuickDraw 3D.

Constants 1

This section describes the basic constants provided by QuickDraw 3D.

Gestalt Selectors and Response Values 1

You can pass the gestaltQD3D selector to the Gestalt function to determine
information about the availability of QuickDraw 3D.

enum {
gestaltQD3D = 'qd3d'

}

C H A P T E R 1

Introduction to QuickDraw 3D

72 QuickDraw 3D Reference

Gestalt returns information to you by returning a long word in the response
parameter. Currently, the returned values are defined by constants:

enum {
gestaltQD3DNotPresent = 0,
gestaltQD3DAvailable = 1

}

Constant descriptions

gestaltQD3DNotPresent
QuickDraw 3D is not available.

gestaltQD3DAvailable
QuickDraw 3D is available.

You can pass the gestaltQD3DVersion selector to the Gestalt function to
determine the installed version of QuickDraw 3D.

enum {
gestaltQD3DVersion = 'q3v '

}

Gestalt returns version information in the response parameter.

Boolean Values 1

QuickDraw 3D defines Boolean values.

typedef enum TQ3Boolean {
kQ3False,
kQ3True

} TQ3Boolean;

Constant descriptions

kQ3False False.
kQ3True True.

Status Values 1

Most QuickDraw 3D routines return a status code, which is of type TQ3Status.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 73

typedef enum TQ3Status {
kQ3Failure,
kQ3Success

} TQ3Status;

Constant descriptions

kQ3Failure The routine failed.
kQ3Success The routine succeeded.

Coordinate Axes 1

QuickDraw 3D provides constants for the three coordinate axes in a Cartesian
coordinate system.

typedef enum TQ3Axis {
kQ3AxisX,
kQ3AxisY,
kQ3AxisZ

} TQ3Axis;

Constant descriptions

kQ3AxisX The x axis.
kQ3AxisY The y axis.
kQ3AxisZ The z axis.

QuickDraw 3D Routines 1

This section describes the routines you must call to initialize and terminate
QuickDraw 3D. It also describes the routines you can use to create and
manipulate sets, shapes, and strings.

Initializing and Terminating QuickDraw 3D 1

To use the services of QuickDraw 3D, you need to call Q3Initialize before
calling any other QuickDraw 3D functions. When you are finished using
QuickDraw 3D services, you should call Q3Exit.

C H A P T E R 1

Introduction to QuickDraw 3D

74 QuickDraw 3D Reference

Q3Initialize 1

You should call the Q3Initialize function to initialize a connection to
QuickDraw 3D.

TQ3Status Q3Initialize (void);

DESCRIPTION

The Q3Initialize function initializes a connection between your application
and the QuickDraw 3D graphics library. QuickDraw 3D allocates whatever
internal storage it needs to manage subsequent calls to QuickDraw 3D routines,
and it initializes any subcomponents it needs to call. If Q3Initialize returns
kQ3Failure, you should not call any QuickDraw 3D routines other than the
Q3IsInitialized function or the error-reporting routines provided by the Error
Manager. Calling Q3Initialize more than once results in a warning being
posted but is otherwise acceptable.

SPECIAL CONSIDERATIONS

You must call Q3Initialize to create a connection to the QuickDraw 3D
software before calling any other QuickDraw 3D routines.

ERRORS

kQ3ErrorAlreadyInitialized
kQ3ErrorNotInitialized
kQ3ErrorOutOfMemory

Q3Exit 1

You should call the Q3Exit function to close your application’s connection to
QuickDraw 3D.

TQ3Status Q3Exit (void);

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 75

DESCRIPTION

The Q3Exit function closes your application’s connection to QuickDraw 3D and
deallocates any memory used by that connection. You should call Q3Exit when
your application is finished using QuickDraw 3D routines. After calling Q3Exit,
you should not call any QuickDraw 3D routines other than Q3Initialize,
Q3IsInitialized, or the error-reporting routines provided by the Error Manager.
Calling Q3Exit more than once results in a warning being posted but is
otherwise acceptable.

ERRORS

kQ3ErrorMemoryLeak

Q3IsInitialized 1

You can use the Q3IsInitialized function to determine whether your
application has successfully initialized a connection to QuickDraw 3D.

TQ3Boolean Q3IsInitialized (void);

DESCRIPTION

The Q3IsInitialized function returns a Boolean value that indicates whether
your application has successfully initialized a connection to the QuickDraw 3D
shared library (kQ3True) or not (kQ3False).

Getting Version Information 1

QuickDraw 3D provides a routine that you can use to get the installed version
of QuickDraw 3D.

Q3GetVersion 1

You can use the Q3GetVersion function to get the version of the installed
QuickDraw 3D software.

C H A P T E R 1

Introduction to QuickDraw 3D

76 QuickDraw 3D Reference

TQ3Status Q3GetVersion (
unsigned long *majorRevision,
unsigned long *minorRevision);

majorRevision On exit, a major revision number.

minorRevision On exit, a minor revision number.

DESCRIPTION

The Q3GetVersion function returns, in the majorRevision and minorRevision
parameters, the major and minor revision numbers of the QuickDraw 3D
software currently installed. See the description of the 'vers' resource in the
book Inside Macintosh: Macintosh Toolbox Essentials for information about major
and minor revision numbers.

ERRORS

kQ3ErrorNotInitialized

Managing Sets 1

A set object (or, more briefly, a set) is a collection of zero or more elements, each
of which has both an element type and some associated element data.
QuickDraw 3D provides routines that you can use to create a new set, get the
type of a set, add elements to a set, get the data associated with an element in a
set, loop through all the elements in a set, and perform other operations on sets.

In general, you’ll use the routines described in this section to handle sets
containing elements with custom element types. You should use other
QuickDraw 3D routines to handle sets that consist solely of elements with
predefined element types. For example, to create a set of vertex attributes, you
can use the Q3VertexAttributeSet_New function (to create a new empty set of
vertex attributes) and the Q3AttributeSet_Add function (to add elements to that
set). See the chapter “Attribute Objects” for information on managing attribute
sets. See the section “Defining Custom Elements” (page 177) for information on
handling custom element types.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 77

Q3Set_New 1

You can use the Q3Set_New function to create a new set.

TQ3SetObject Q3Set_New (void);

DESCRIPTION

The Q3Set_New function returns, as its function result, a new set object. The set is
initially empty. If Q3Set_New cannot create a new set object, it returns NULL.

Q3Set_GetType 1

You can use the Q3Set_GetType function to get the type of a set.

TQ3ObjectType Q3Set_GetType (TQ3SetObject set);

set A set object.

DESCRIPTION

The Q3Set_GetType function returns, as its function result, the type of the set
specified by the set parameter. The type of set currently supported by
QuickDraw 3D is defined by the constant:

kQ3SetTypeAttribute

If the type of the set cannot be determined or is invalid, Q3Set_GetType returns
the value kQ3ObjectTypeInvalid.

Q3Set_Add 1

You can use the Q3Set_Add function to add an element to a set.

C H A P T E R 1

Introduction to QuickDraw 3D

78 QuickDraw 3D Reference

TQ3Status Q3Set_Add (
TQ3SetObject set,
TQ3ElementType type,
const void *data);

set A set object.

type An element type.

data A pointer to the element’s data.

DESCRIPTION

The Q3Set_Add function adds the element specified by the type and data
parameters to the set specified by the set parameter. The set must already exist
when you call Q3Set_Add. Note that the element data is copied into the set.
Accordingly, you can reuse the data parameter once you have called Q3Set_Add.

If the specified element type is a custom element type, Q3Set_Add uses the
custom type’s kQ3MethodTypeElementCopyAdd or
kQ3MethodTypeElementCopyReplace custom methods. See the chapter
“QuickDraw 3D Objects” for complete information on custom element types.

Q3Set_Get 1

You can use the Q3Set_Get function to get the data associated with an element in
a set.

TQ3Status Q3Set_Get (TQ3SetObject set, TQ3ElementType type, void *data);

set A set object.

type An element type.

data On entry, a pointer to a structure large enough to hold the data
associated with elements of the specified type. On exit, a pointer
to the data of the element having the specified type.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 79

DESCRIPTION

The Q3Set_Get function returns, in the data parameter, the data currently
associated with the element whose type is specified by the type parameter in
the set specified by the set parameter. If no element of that type is in the set,
Q3Set_Get returns kQ3Failure.

If you pass the value NULL in the data parameter, no data is copied back to your
application. (Passing NULL might be useful simply to determine whether a set
contains a specific type of element.)

If the specified element type is a custom element type, Q3Set_Get uses the
custom type’s kQ3MethodTypeElementCopyGet custom method. See the chapter
“QuickDraw 3D Objects” for complete information on custom element types.

Q3Set_Contains 1

You can use the Q3Set_Contains function to determine whether a set contains an
element of a particular type.

TQ3Boolean Q3Set_Contains (TQ3SetObject set, TQ3ElementType type);

set A set object.

type An element type.

DESCRIPTION

The Q3Set_Contains function returns, as its function result, a Boolean value that
indicates whether the set specified by the set parameter contains (kQ3True) or
does not contain (kQ3False) an element of the type specified by the type
parameter.

Q3Set_GetNextElementType 1

You can use the Q3Set_GetNextElementType function to iterate through the
elements in a set.

C H A P T E R 1

Introduction to QuickDraw 3D

80 QuickDraw 3D Reference

TQ3Status Q3Set_GetNextElementType (
TQ3SetObject set,
TQ3ElementType *type);

set A set object.

type On entry, an element type, or kQ3ElementTypeNone to get the first
element type in the specified set. On exit, the element type that
immediately follows the specified element type in the set, or
kQ3ElementTypeNone if there are no more element types.

DESCRIPTION

The Q3Set_GetNextElementType function returns, in the type parameter, the type
of the element that immediately follows the element having the type specified
by the type parameter in the set specified by the set parameter. To get the type
of the first element in the set, pass kQ3ElementTypeNone in the type parameter.
Q3Set_GetNextElementType returns kQ3ElementTypeNone when it has reached the
end of the list of elements.

Q3Set_Empty 1

You can use the Q3Set_Empty function to empty a set of all the elements it
contains.

TQ3Status Q3Set_Empty (TQ3SetObject target);

target A set object.

DESCRIPTION

The Q3Set_Empty function removes all the elements currently in the set specified
by the target parameter.

If the specified element type is a custom element type, Q3Set_Empty uses the
custom type’s kQ3MethodTypeElementDelete custom method. See the chapter
“QuickDraw 3D Objects” for complete information on custom element types.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 81

Q3Set_Clear 1

You can use the Q3Set_Clear function to remove an element of a certain type
from a set.

TQ3Status Q3Set_Clear (TQ3SetObject set, TQ3ElementType type);

set A set object.

type An element type.

DESCRIPTION

The Q3Set_Clear function removes the element whose type is specified by the
type parameter from the set specified by the set parameter.

If the specified element type is a custom element type, Q3Set_Clear uses the
custom type’s kQ3MethodTypeElementDelete custom method. See the chapter
“QuickDraw 3D Objects” for complete information on custom element types.

Managing Shapes 1

QuickDraw 3D provides routines that you can use to manage shape objects (or
shapes). A shape object is any object that affects how and where a renderer
renders an object in a view.

QuickDraw 3D provides six shape management routines that are identical in
implementation to set routines discussed earlier:

Other shape management routines are described below.

Shape routine Set routine See page
Q3Shape_GetElement Q3Set_Get 78
Q3Shape_AddElement Q3Set_Add 77
Q3Shape_ContainsElement Q3Set_Contains 79
Q3Shape_GetNextElementType Q3Set_GetNextElementType 79
Q3Shape_EmptyElements Q3Set_Empty 80
Q3Shape_ClearElement Q3Set_Clear 81

C H A P T E R 1

Introduction to QuickDraw 3D

82 QuickDraw 3D Reference

Q3Shape_GetType 1

You can use the Q3Shape_GetType function to get the type of a shape.

TQ3ObjectType Q3Shape_GetType (TQ3ShapeObject shape);

shape A shape object.

DESCRIPTION

The Q3Shape_GetType function returns, as its function result, the type of the
shape specified by the shape parameter. The types of shapes currently
supported by QuickDraw 3D are defined by these constants:

kQ3ShapeTypeCamera
kQ3ShapeTypeGeometry
kQ3ShapeTypeGroup
kQ3ShapeTypeLight
kQ3ShapeTypeShader
kQ3ShapeTypeStyle
kQ3ShapeTypeTransform
kQ3ShapeTypeUnknown

If the type of the shape cannot be determined or is invalid, Q3Shape_GetType
returns the value kQ3ObjectTypeInvalid.

Q3Shape_GetSet 1

You can use the Q3Shape_GetSet function to get the set currently associated with
a shape.

TQ3Status Q3Shape_GetSet (TQ3ShapeObject shape, TQ3SetObject *set);

shape A shape object.

set On exit, the set currently associated with the specified shape.

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 83

DESCRIPTION

The Q3Shape_GetSet function returns, in the set parameter, the set of elements
currently associated with the shape object specified by the shape parameter.

Q3Shape_SetSet 1

You can use the Q3Shape_SetSet function to set the set associated with a shape.

TQ3Status Q3Shape_SetSet (TQ3ShapeObject shape, TQ3SetObject set);

shape A shape object.

set The desired set to be associated with the specified shape.

DESCRIPTION

The Q3Shape_SetSet function sets the set of elements to be associated with the
shape object specified by the shape parameter to the set specified by the set
parameter.

Managing Strings 1

QuickDraw 3D provides routines that you can use to manage string objects (or
strings).

Q3String_GetType 1

You can use the Q3String_GetType function to get the type of a string.

TQ3ObjectType Q3String_GetType (TQ3StringObject stringObj);

stringObj A string object.

C H A P T E R 1

Introduction to QuickDraw 3D

84 QuickDraw 3D Reference

DESCRIPTION

The Q3String_GetType function returns, as its function result, the type of the
string specified by the stringObj parameter. The type of string currently
supported by QuickDraw 3D is defined by a constant:

kQ3StringTypeCString

If the type of the string cannot be determined or is invalid, Q3String_GetType
returns the value kQ3ObjectTypeInvalid.

Q3CString_New 1

You can use the Q3CString_New function to create a new C string.

TQ3StringObject Q3CString_New (const char *string);

string A pointer to a null-terminated C string.

DESCRIPTION

The Q3CString_New function returns, as its function result, a new string object of
type kQ3StringTypeCString using the sequence of characters pointed to by the
string parameter. That sequence of characters should be a standard C string
(that is, an array of characters terminated by the null character). The characters
are copied into the new string object’s private data, so you can dispose of the
array pointed to by the string parameter if Q3CString_New returns successfully.
If Q3CString_New cannot allocate memory for the string, it returns the value NULL.

Q3CString_GetLength 1

You can use the Q3CString_GetLength function to get the length of a C string
object.

TQ3Status Q3CString_GetLength (
TQ3StringObject stringObj,
unsigned long *length);

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Reference 85

stringObj A C string object.

length On exit, the length of the specified C string object.

DESCRIPTION

The Q3CString_GetLength function returns, in the length parameter, the number
of characters in the data associated with the C string object specified by the
stringObj parameter. The length returned does not include the null character
that terminates a C string. You should use Q3CString_GetLength to get the length
of only string objects of type kQ3StringTypeCString.

Q3CString_GetString 1

You can use the Q3CString_GetString function to get the character data of a C
string object.

TQ3Status Q3CString_GetString (
TQ3StringObject stringObj,
char **string);

stringObj A C string object.

string On entry, the value NULL. On exit, a pointer to a copy of the
character data associated with the specified C string object.

DESCRIPTION

The Q3CString_GetString function returns, through the string parameter, a
pointer to a copy of the character data associated with the C string object
specified by the stringObj parameter. The value of the string parameter must
be NULL when you call Q3CString_GetString, because it allocates memory and
overwrites the string parameter. For instance, the following sequence of calls
will cause a memory leak:

myStatus = Q3CString_GetString(myStringObj, &myString);
myStatus = Q3CString_GetString(myStringObj, &myString);

C H A P T E R 1

Introduction to QuickDraw 3D

86 QuickDraw 3D Reference

After the second call to Q3CString_GetString, the memory allocated by the first
call to Q3CString_GetString is leaked; you cannot deallocate that memory
because you’ve lost its address. You must make certain to call
Q3CString_EmptyData to release the memory allocated by Q3CString_GetString
when you are finished using the string data, and always before calling
Q3CString_GetString with the same string pointer. Here is an example:

myStatus = Q3CString_GetString(myStringObj, &myString);
myStatus = Q3CString_EmptyData(&myString);
myStatus = Q3CString_GetString(myStringObj, &myString);

If the value of the string parameter is not NULL, Q3CString_GetString generates a
warning.

You should use Q3CString_GetString only with string objects of type
kQ3StringTypeCString.

ERRORS AND WARNINGS

kQ3WarningPossibleMemoryLeak

Q3CString_SetString 1

You can use the Q3CString_SetString function to set the character data of a C
string object.

TQ3Status Q3CString_SetString (
TQ3StringObject stringObj,
const char *string);

stringObj A C string object.

string On entry, a pointer a C string specifying the character data to be
associated with the specified C string object.

DESCRIPTION

The Q3CString_SetString function sets the character data associated with the C
string object specified by the stringObj parameter to the sequence of characters

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Errors, Warnings, and Notices 87

pointed to by the string parameter. That sequence of characters should be a
standard C string (that is, an array of characters terminated by the null
character). The characters are copied into the specified string object’s private
data, so you can dispose of the array pointed to by the string parameter if
Q3CString_SetString returns successfully.

You should use Q3CString_SetString only with string objects of type
kQ3StringTypeCString.

Q3CString_EmptyData 1

You can use the Q3CString_EmptyData function to dispose of the memory
allocated by a previous call to Q3CString_GetString.

TQ3Status Q3CString_EmptyData (char **string);

string On entry, a pointer to a copy of the character data returned by a
previous call to Q3CString_GetString. On exit, the value NULL.

DESCRIPTION

The Q3CString_EmptyData function deallocates the memory pointed to by the
string parameter. The value of the string parameter must have been returned
by a previous call to the Q3CString_GetString function. If successful,
Q3CString_EmptyData sets the value of the string parameter to NULL. Thus, you
can alternate calls to Q3CString_GetString and Q3CString_EmptyData without
explicitly setting the character pointer to NULL.

You should use Q3CString_EmptyData only with string objects of type
kQ3StringTypeCString.

QuickDraw 3D Errors, Warnings, and Notices 1

The following is a list of general QuickDraw 3D errors, warnings, and notices.
More specific errors are listed at the end of each chapter.

C H A P T E R 1

Introduction to QuickDraw 3D

88 QuickDraw 3D Errors, Warnings, and Notices

No problem

kQ3ErrorNone
kQ3WarningNone
kQ3NoticeNone

Fatal errors

kQ3ErrorInternalError
kQ3ErrorNoRecovery
kQ3ErrorLastFatalError

System errors and warnings

kQ3ErrorNotInitialized
kQ3ErrorAlreadyInitialized
kQ3ErrorUnimplemented
kQ3ErrorRegistrationFailed
kQ3WarningInternalException
kQ3NoticeSystemAlreadyInitialized

OS errors

kQ3ErrorUnixError
kQ3ErrorMacintoshError
kQ3ErrorX11Error
kQ3ErrorWin32Error

Memory errors and warnings

kQ3ErrorMemoryLeak
kQ3ErrorOutOfMemory
kQ3WarningLowMemory
kQ3WarningPossibleMemoryLeak

Parameter errors, warnings, and notices

kQ3ErrorNULLParameter
kQ3ErrorParameterOutOfRange
kQ3ErrorInvalidParameter
kQ3ErrorInvalidData

C H A P T E R 1

Introduction to QuickDraw 3D

QuickDraw 3D Errors, Warnings, and Notices 89

kQ3ErrorAcceleratorAlreadySet
kQ3ErrorVector3DNotUnitLength
kQ3ErrorVector3DZeroLength
kQ3ErrorBadStringType
kQ3WarningParameterOutOfRange
kQ3NoticeDataAlreadyEmpty
kQ3NoticeParameterOutOfRange

Extension errors and warnings

kQ3ErrorNoExtensionsFolder
kQ3ErrorExtensionError
kQ3ErrorPrivateExtensionError
kQ3WarningExtensionNotLoading

Submit loop errors
(If you get one of these loop errors, check the previous error posted. If it is
kQ3ErrorOutOfMemory, you may be able to recover by freeing up some memory
and trying again.)

kQ3ErrorPickingLoopFailed
kQ3ErrorRenderingLoopFailed
kQ3ErrorWritingLoopFailed
kQ3ErrorBoundingLoopFailed

C H A P T E R 1

Introduction to QuickDraw 3D

90 QuickDraw 3D Errors, Warnings, and Notices

91

C H A P T E R 2

3D Viewer 2Figure 2-0
Listing 2-0
Table 2-0

This chapter describes the 3D Viewer, which provides a high-level interface for
displaying 3D objects and other data in a window and allowing users limited
interaction with those objects. You can use the functions described here to
present 3D data (stored either in a file or in memory) to users quickly and easily.
The 3D Viewer provides controls with which the user can manipulate several
aspects of the displayed data, such as the point of view.

The 3D Viewer allows you to display 3D data from metafiles (or memory) with
minimal programming effort. It is analogous to the movie controller provided
with QuickTime, which lets you display and control movies with little custom
programming. You must specify at least one geometric object to the 3D Viewer,
but it can supply default objects for other parts of the 3D environment such as
the camera, lights, and renderer.

To use this chapter, you should already be familiar with the basic capabilities of
QuickDraw 3D, as described in the first sections of the chapter “Introduction to
QuickDraw 3D” elsewhere in this document.

IMPORTANT

If your application needs more advanced rendering or
interaction capabilities, or if you want to allow users to
create and manipulate objects dynamically, you can use the
lower-level QuickDraw 3D application programming
interfaces instead of, or in addition to, the higher-level
3D Viewer programming interfaces. ▲

The 3D Viewer supports the same platforms as the QuickDraw 3D library. Two
versions of the 3D Viewer library are available: one to support the PowerPC
version of the Mac OS and another to support the Win32 API (running on either
Windows 95 or the Intel processor version of Windows NT 3.51 and later). The
two different versions of the viewer have similar programming interfaces and
can be used similarly.

C H A P T E R 2

3D Viewer

92 About the 3D Viewer

Note, however, that the two different versions of the 3D Viewer are intimately
tied to the target platform through dependencies on each platform’s base
graphics libraries, their window management systems, and their event
handling architectures. As a result, the programming interfaces are not
identical; some functions and constants are unique to one platform or the other,
and many of the functions take different parameters. Because of these necessary
differences, the two libraries have different symbolic namespaces. The Mac OS
version of the 3D Viewer uses function names beginning with Q3Viewer (for
example, Q3ViewerNew), as in QuickDraw 3D version 1.0. The Win32 version of
the 3D Viewer uses names beginning with Q3WinViewer (for example:
Q3WinViewerNew).

This chapter has different sections discussing using the 3D Viewer on Mac OS
and on Win32. The following Mac OS and Win32 reference sections describe the
Mac OS and Win32 viewer routines respectively.

About the 3D Viewer 2

The 3D Viewer (or, more briefly, the Viewer) is a shared library that provides a
very simple method for displaying 3D models, together with a set of controls
that permit limited interaction with those models. Figure 2-1 shows an instance
of the 3D Viewer displaying a sample three-dimensional model.

C H A P T E R 2

3D Viewer

About the 3D Viewer 93

Figure 2-1 An instance of the 3D Viewer displaying three-dimensional data

An instance of the 3D Viewer is a viewer object. Every viewer object is typically
associated with exactly one window, within which the viewer object must be
entirely contained. The viewer object can occupy the entire content region of the
window, or it can occupy some smaller portion of the window. Your application
can create more than one viewer object; indeed, it can create more than one
viewer object associated with a single window.

When a viewer object is first created and displayed to the user, it consists of a
picture area that contains the displayed image and either a controller strip or a
badge. The controller strip is a rectangular area at the bottom of the viewer
object that contains one or more controls. (See the following section for a
complete explanation of these controls.) A badge is a visual element that is
displayed in the picture area when the controller strip is not visible. The user
can click on the badge to make the controller strip appear.

The part of the window that contains the picture area and the controller strip (if
present) is the viewer pane (or viewer frame). In Figure 2-1, the viewer pane
entirely fills the window’s content region. Alternatively, you can place the
viewer pane in part of the window; you would do this to embed a 3D picture in
a document window.

It’s important to understand that the 3D Viewer is built on top of
QuickDraw 3D, but you don’t need to call any QuickDraw 3D functions to use
the 3D Viewer. The 3D Viewer is a shared library that is separate from the

C H A P T E R 2

3D Viewer

94 About the 3D Viewer

QuickDraw 3D shared library. You can call Q3ViewerNew (and any other
3D Viewer functions) without having called Q3Initialize to initialize
QuickDraw 3D. The models displayed by the Viewer must be structured
according to the QuickDraw 3D Object Metafile specification, but the metafile
data can be stored either in a file or in memory.

Controller Strips 2

The 3D Viewer provides control elements for manipulating the location and
orientation of the user’s point of view (that is, of the view’s camera). Figure 2-2
shows a controller strip provided by the 3D Viewer.

Figure 2-2 The controller strip of the 3D Viewer

These controls are, from left to right:

■ The camera viewpoint control. This control allows the user to view the
model from a different camera viewpoint. Holding down the camera
viewpoint control causes a pop-up menu to appear, listing the available
predefined direction cameras as well as any perspective (that is, aspect ratio)
cameras stored in the view hints of the 3DMF data. If any such cameras in
the data have name attributes associated with them, the names are displayed
in the menu. Otherwise the cameras are listed as “Camera #1,” “Camera #2,”
and so forth. (The predefined direction cameras are calculated based on the
front and top custom attributes if present in the 3DMF view hints. Otherwise,
the predefined camera directions are calculated from the model’s coordinate
space.) You control whether this pop-up menu is displayed using the
kQ3ViewerButtonCamera viewer flag.

Note
Only cameras of type kQ3CameraTypeViewAngleAspect are
displayed in the camera viewpoint control’s pop-up
menu. ◆

■ The distance button. This control allows the user to move closer to or farther
away from the model. Clicking the distance button and then dragging the

C H A P T E R 2

3D Viewer

About the 3D Viewer 95

cursor downward in the picture area causes the displayed object to move
closer. Dragging the cursor upward in the picture area causes the displayed
object to move farther away. The up and down arrow keys cause the object to
move farther or closer, respectively. You control whether this button is
displayed using the kQ3ViewerButtonTruck flag.

■ The rotate button. This control allows the user to rotate an object. Clicking
the rotate button and then dragging the cursor in the picture area causes the
displayed object to rotate in the direction in which the cursor is dragged. The
left and right arrow keys cause the object to rotate left and right. The up and
down arrow keys cause the object to rotate up and down, respectively. You
control whether this button is displayed using the kQ3ViewerButtonOrbit flag.

■ The zoom button. This control allows the user to alter the field of view of the
current camera, thereby zooming in or out on the object in the model. The up
and down arrow keys cause the object to zoom out and in. This button is not
displayed by default. You control whether this button is displayed using the
kQ3ViewerButtonZoom flag

■ The move button. This control allows the user to move an object. Clicking
the move button and then dragging on the object in the picture area causes
the object to be moved to a new location. The up, down, left, and right arrow
keys cause the object to move up, down, left, or right, respectively. You
control whether this button is displayed using the kQ3ViewerButtonDolly flag.

■ The reset button. This pushbutton resets the camera viewpoint to its initial
setting. You control whether this button is displayed using the
kQ3ViewerButtonReset flag.

Your application controls which of these buttons are displayed in a viewer
object’s controller strip at the time you create the viewer object, or by
appropriately setting a viewer’s flags. See Listing 2-3 (page 101) for an example
of setting a viewer’s flags.

Badges 2

The 3D Viewer allows your application to distinguish 3D data from static
graphics in documents by the use of a badge. Figure 2-3 shows a viewer pane
with a badge.

C H A P T E R 2

3D Viewer

96 About the 3D Viewer

Figure 2-3 A 3D model with a badge

The badge lets the user know that the image represents a 3D model rather than
a static image. A badge appears when the viewer object is first displayed and
the kQ3ViewerShowBadge flag is set in the object’s viewer flags. When the user
clicks the badge, the badge disappears and the standard controller strip
appears.

Note
The badge control in unidirectional: it switches only from
badge mode to controller strip mode. There is currently no
user interface control to switch the viewer back to badge
mode. If you want to switch from controller strip mode to
badge mode (for instance, when a viewer object is
deselected in a compound document), you must reset the
viewer’s flags and clear the controller strip. ◆

Your application can control whether the 3D Viewer displays a badge in a
viewer pane by appropriately setting a viewer’s flags. See “Viewer Flags”
(page 105) for more information. Typically you won’t want a viewer pane to
support user interaction when the badge is displayed. To disable interaction,
you must set the viewer to drag mode using the kQ3ViewerDragMode flag.

C H A P T E R 2

3D Viewer

About the 3D Viewer 97

Drag and Drop 2

The 3D Viewer supports the Drag and Drop Manager to allow you to transfer
3DMF data between applications, the Clipboard, and the Scrapbook. The user
typically initiates dragging from the viewer by dragging a special drag border
that surrounds the perimeter of content area of the viewer (see Figure 2-4). The
user can also always initiate a drag by holding down the Option key and
dragging anywhere in the viewer content area.

Your application can also set the viewer to a special mode in which the only
interaction supported is drag and drop. This mode must be explicitly set with
the kQ3ViewerDragMode flag.

Note
When drag mode is set via kQ3ViewerDragMode, there is no
visual indication that the viewer is in this mode (except
that the cursor behaves appropriately), and none of the
controls except the badge in the viewer are active.
Therefore, it is only appropriate for an application to use
the drag mode briefly or when the controller strip is not
displayed (for example when the badge is displayed). ◆

C H A P T E R 2

3D Viewer

98 About the 3D Viewer

Figure 2-4 A viewer object displaying the drag and drop border

The drag and drop functionality of the viewer is fully configurable through a
set of flags using the Q3ViewerSetFlags function. Drag and drop can be disabled
with the kQ3ViewerDraggingOff flag. Dragging out of and into the viewer can be
independently disabled via the kQ3ViewerDraggingOutOff and
kQ3ViewerDraggingInOff flags respectively. You can turn off the display of the
drag border by clearing the kQ3ViewerDrawDragBorder flag.

C H A P T E R 2

3D Viewer

Using the 3D Viewer 99

Note
The version 1.1 release of the 3D Viewer for Win32
supports only dropping files onto the viewer window via
the WM_DROPFILES mechanism. A Win32 application wanting
to support full drag and drop with the 3D Viewer needs to
use the OLE data transfer interfaces. ◆

Using the 3D Viewer 2

This section provides examples of how to use the 3D Viewer to display 3D data
in a window.

Checking for the 3D Viewer 2

Before calling any 3D Viewer routines, you need to verify that the 3D Viewer
software is available in the current operating environment. On the Macintosh
Operating System, you can verify that the 3D Viewer is available by calling the
MyEnvironmentHas3DViewer function defined in Listing 2-1.

Listing 2-1 Determining whether the 3D Viewer is available

long MyEnvironmentHas3DViewer (void)
{

if (Q3ViewerNew != NULL)
return TRUE

else
return FALSE;

}

The MyEnvironmentHas3DViewer function checks whether the address of the
Q3ViewerNew function has been resolved. If it hasn’t been resolved (that is, if the
Code Fragment Manager couldn’t find the 3D Viewer shared library when
launching your application), MyEnvironmentHas3DViewer returns the value FALSE
to its caller. Otherwise, if the address of the Q3ViewerNew function was
successfully resolved, MyEnvironmentHas3DViewer returns TRUE.

C H A P T E R 2

3D Viewer

100 Using the 3D Viewer

Note
For the function MyEnvironmentHas3DViewer to work
properly, you must establish soft links (also called weak
links) between your application and the 3D Viewer shared
library. For information on soft links, see the book Inside
Macintosh: PowerPC System Software. For specific
information on establishing soft links, see the
documentation for your software development system. ◆

On the Macintosh Operating System, you can also verify that the 3D Viewer is
available in the current operating environment by calling the Gestalt function
with the gestaltQuickDraw3DViewer selector. Gestalt returns a long word whose
value indicates the availability of the 3D Viewer. Currently these values are
defined:

enum {
gestaltQD3DViewer = 'q3vc',
gestaltQD3DViewerNotPresent = 0,
gestaltQD3DViewerAvailable = 1

}

You should ensure that the value gestaltQD3DViewerAvailable is returned before
calling any 3D Viewer routines.

Note
For more information on the Gestalt function, see Inside
Macintosh: Operating System Utilities. ◆

Checking the Version of the 3D Viewer 2

Some of the features described in this chapter are available only in versions 1.1
and later of the 3D Viewer. As a result, you might need to check the version of
the 3D Viewer available in the current operating environment. Version 1.1
provides the Q3ViewerGetVersion function, which you can call to determine the
version of the 3D Viewer. Because this function is not available in version 1.0,
however, you must first determine that it is available before you can call it.
Listing 2-2 defines a function, MyGet3DViewerVersion, that you can use to
determine which version of the 3D Viewer is installed on a computer.

C H A P T E R 2

3D Viewer

Using the 3D Viewer 101

Listing 2-2 Determining the version of the 3D Viewer

void MyGet3DViewerVersion (unsigned long *major, unsigned long *minor)
{

unsigned long version;

/*Version 1.0 did not have a get version call.*/
if ((Boolean)Q3ViewerGetVersion == kUnresolvedSymbolAddress) {

*major = 1;
*minor = 0;

} else {
version = Q3ViewerGetVersion();
*major = version >> 16;
*minor = version & 0xFFFF;

}
return;

}

MyGet3DViewerVersion first checks to see whether the Q3ViewerGetVersion
function is available. If it isn’t, then version 1.0 must be running. Otherwise,
MyGet3DViewerVersion calls Q3ViewerGetVersion to get the current version
number.

Creating a Viewer 2

You can create a viewer object by calling the Q3ViewerNew function. You pass
Q3ViewerNew a pointer to the window in which you want the viewer to appear,
the rectangle that is to contain the viewer pane, and a selector indicating which
viewer features to enable. Q3ViewerNew returns a reference to a viewer object.
Listing 2-3 illustrates one way to call Q3ViewerNew. The function MyCreateViewer
defined in Listing 2-3 creates a viewer pane that occupies the entire content
region of the window whose address is passed to it as a parameter.

Listing 2-3 Creating a viewer object

TQ3ViewerObject MyCreateViewer (WindowPtr myWindow)
{

TQ3ViewerObject myViewer;
Rect myRect;

C H A P T E R 2

3D Viewer

102 Using the 3D Viewer

/*Get rectangle enclosing the window’s content region.*/
myRect = myWindow->portRect;
if (EmptyRect(&myRect)) /*make sure we got a nonempty rect*/

goto bail;

/*Create a new viewer object in entire content region.*/
myViewer = Q3ViewerNew((CGrafPtr)myWindow, &myRect, kQ3ViewerDefault);
if (myViewer == NULL)

goto bail;

return(myViewer); /*return new viewer object*/

bail:
/*If any of the above failed, return an empty viewer object.*/
return(NULL);

}

The third parameter to the call to Q3ViewerNew is a set of viewer flags that
specify information about the appearance and behavior of the new viewer
object. In Listing 2-3, the viewer flag parameter is set to the value
kQ3ViewerDefault, indicating that the default values of the viewer flags are to be
used. See “Viewer Flags,” beginning on page 105 for a complete description of
the available viewer flags.

Attaching Data to a Viewer 2

You specify the 3D model to be displayed in a viewer pane’s picture area by
calling either the Q3ViewerUseFile or Q3ViewerUseData function. Q3ViewerUseFile
takes a reference to an existing viewer object and a file reference number of an
open metafile, as follows:

myErr = Q3ViewerUseFile(myViewer, myFsRefNum);

You use the Q3ViewerUseData function to specify a 3D model whose data is
already in memory (either on the Clipboard or elsewhere in RAM).
Q3ViewerUseData takes a reference to an existing viewer object, a pointer to the
metafile data in RAM, and the number of bytes occupied by that data. Here’s an
example of calling Q3ViewerUseData:

myErr = Q3ViewerUseData(myViewer, myDataPtr, myDataSize);

C H A P T E R 2

3D Viewer

Using the 3D Viewer 103

IMPORTANT

The data in the buffer whose address and size you pass to
Q3ViewerUseData must be in the QuickDraw 3D Object
Metafile format. ▲

Once you attach the metafile data to a visible viewer object, the user is able to
see the 3D model in the viewer pane. If, however, the viewer pane was invisible
when it was created, you need to call the Q3ViewerDraw function to make it
visible.

The 3D Viewer treats the model data as a single group. You can get a reference
to the model data currently displayed in the viewer’s picture area by calling the
Q3ViewerGetGroup function. You can change that model data by calling the
Q3ViewerUseGroup function.

You can also retrieve the view object associated with a viewer object by calling
the Q3ViewerGetView function. You can then modify some of the view settings,
such as the lights or the camera. If you wish, you can also restore the view
settings to their original values by calling the Q3ViewerRestoreView function.

In versions 1.1 and later, your application can also set the viewer to display one
of several predefined points of view by calling the Q3ViewerSetCameraByView and
Q3ViewerSetCameraByNumber functions.

Handling Viewer Events 2

The final thing you need to do to support the 3D Viewer is to modify your main
event loop so that events in the viewer controller strip and in the viewer pane
can be handled. You need to add a line like this to your event loop:

isViewerEvent = Q3ViewerEvent(myViewer, myEvent);

The Q3ViewerEvent function determines whether the event specified by the
myEvent event record affects the specified viewer object. If so, Q3ViewerEvent
handles the event and returns TRUE as it function result. Otherwise,
Q3ViewerEvent returns FALSE.

Your application should also call the Q3AdjustCursor function during idle-time
processing to ensure that the 3D Viewer has an opportunity to update the
cursor. If your application calls SetCursor to change the cursor while the
3D Viewer is active, it needs to call the Q3ViewerCursorChanged function
immediately after it calls SetCursor, to inform the 3D Viewer that the cursor has
changed shape.

C H A P T E R 2

3D Viewer

104 3D Viewer Reference

IMPORTANT

The functions Q3AdjustCursor and Q3ViewerCursorChanged
are available only in versions 1.1 and later of the
3D Viewer. ▲

3D Viewer Reference 2

This section describes the constants and routines that you can use to create and
manage instances of the 3D Viewer.

Constants 2

This section describes the constants you might need to use when creating and
managing a viewer object.

Gestalt Selector and Response Values 2

You can pass the gestaltQuickDraw3DViewer selector to the Gestalt function to
determine information about the availability of the 3D Viewer.

enum {
gestaltQD3DViewer = 'q3vc'

}

Constant descriptions

gestaltQD3DViewer Return information about the 3D Viewer.
Gestalt returns information to you by returning a long word in the response
parameter. Currently, the returned values are defined by constants:

enum {
gestaltQD3DViewerNotPresent = 0,
gestaltQD3DViewerAvailable = 1

}

C H A P T E R 2

3D Viewer

3D Viewer Reference 105

Constant descriptions

gestaltQD3DViewerNotPresent
The 3D Viewer is not available.

gestaltQD3DViewerAvailable
The 3D Viewer is available.

Viewer Flags 2

When you create a new viewer object (by calling Q3ViewerNew), you need to
specify a set of viewer flags that control various aspects of the new viewer
object.

IMPORTANT

All flags with values greater than or equal to
kQ3ViewerButtonReset were introduced in version 1.1 of the
3D Viewer. In addition, the value of the flag
kQ3ViewerDefault is different in version 1.0 than in all later
versions. ▲

enum {
kQ3ViewerShowBadge = 1<<0,
kQ3ViewerActive = 1<<1,
kQ3ViewerControllerVisible = 1<<2,
kQ3ViewerDrawFrame = 1<<3,
kQ3ViewerDraggingOff = 1<<4,
kQ3ViewerButtonCamera = 1<<5,
kQ3ViewerButtonTruck = 1<<6,
kQ3ViewerButtonOrbit = 1<<7,
kQ3ViewerButtonZoom = 1<<8,
kQ3ViewerButtonDolly = 1<<9,
kQ3ViewerButtonReset = 1<<10,
kQ3ViewerOutputTextMode = 1<<11,
kQ3ViewerDragMode = 1<<12,
kQ3ViewerDrawGrowBox = 1<<13,
kQ3ViewerDrawDragBorder = 1<<14,
kQ3ViewerDraggingInOff = 1<<15,
kQ3ViewerDraggingOutOff = 1<<16,
kQ3ViewerDefault = 1<<31

};

C H A P T E R 2

3D Viewer

106 3D Viewer Reference

Constant descriptions

kQ3ViewerShowBadge If this flag is set, a badge is displayed in the viewer pane
whenever the controller strip is not visible. See “Badges”
(page 95) for complete details on when the badge appears
and disappears. If this flag is clear, no badge is displayed.
By default, this flag is clear.

kQ3ViewerActive If this flag is set, the viewer object is active. If this flag is
clear, the viewer object is inactive and the controller strip, if
displayed, is dimmed. By default, this flag is set.

kQ3ViewerControllerVisible
If this flag is set, the controller strip is visible. If this flag is
clear, the controller strip is not visible. If the
kQ3ViewerShowBadge flag is set, the controller strip should be
made invisible by clearing this flag. By default, this flag is
set.

kQ3ViewerDrawFrame
If this flag is set, a one-pixel frame is drawn within the
viewer pane. If this flag is clear, no frame is drawn within
the viewer pane. By default, this flag is clear.

kQ3ViewerDraggingOff
If this flag is set, drag and drop is turned off in the viewer
pane (that is, both dragging out of the viewer pane and
dragging into the viewer pane are disabled). You can also
independently set the states for dragging out and dragging
in, by using the kQ3ViewerDraggingOutOff and
kQ3ViewerDraggingInOff flags. By default, this flag is clear.

kQ3ViewerButtonCamera
If this flag is set, the camera viewpoint control in the
controller strip is displayed. By default, this flag is set.

kQ3ViewerButtonTruck
If this flag is set, the distance button in the controller strip
is displayed. By default, this flag is set.

kQ3ViewerButtonOrbit
If this flag is set, the rotate button in the controller strip is
displayed. By default, this flag is set.

kQ3ViewerButtonZoom
If this flag is set, the zoom button in the controller strip is
displayed. By default, this flag is clear.

C H A P T E R 2

3D Viewer

3D Viewer Reference 107

kQ3ViewerButtonDolly
If this flag is set, the move button in the controller strip is
displayed. By default, this flag is set.

kQ3ViewerButtonReset
If this flag is set, the reset button in the controller strip is
displayed. By default, this flag is set.

kQ3ViewerOutputTextMode
If this flag is set, the Q3ViewerWriteFile function writes
3DMF files in text format (not in binary format). By default,
this flag is clear.

kQ3ViewerDragMode If this flag is set, the viewer object is in drag and drop
mode, where the viewer responds only to drag and drop
interaction. By default, this flag is clear.

kQ3ViewerDrawGrowBox
If this flag is set, the 3D Viewer draws a grow box in the
lower-right corner of the viewer pane. By default, this flag
is clear.

kQ3ViewerDrawDragBorder
If this flag is set, the 3D Viewer draws a drag border
around the perimeter of the viewer pane. When the user
clicks on the border and drags, a drag operation is initiated.
By default, this flag is set.

kQ3ViewerDraggingInOff
If this flag is set, dragging into the viewer pane is disabled.
By default, this flag is clear.

kQ3ViewerDraggingOutOff
If this flag is set, dragging out of the viewer pane is
disabled. By default, this flag is clear.

kQ3ViewerDefault The default configuration for a viewer object.

Note
Applications that were compiled using version 1.0 of the
3D Viewer and that specify the kQ3ViewerDefault value
when creating a view object (or resetting a viewer’s flags)
will be configured using the default flags defined for
version 1.0, regardless of the version of the 3D Viewer
installed. You must recompile your application using the
interface file and shared library for version 1.1 or later the
3D Viewer to receive the new default behavior. ◆

C H A P T E R 2

3D Viewer

108 3D Viewer Reference

Viewer State Flags 2

The Q3ViewerGetState function returns a long integer that encodes information
about the current state of a viewer object. Bits of the returned long integer are
addressed using these viewer state flags:

IMPORTANT

All flags with values greater than or equal to
kQ3ViewerHasUndo were introduced in version 1.1 of the
3D Viewer. ▲

enum {
kQ3ViewerEmpty = 0,
kQ3ViewerHasModel = 1<<0,
kQ3ViewerHasUndo = 1<<1

};

Constant descriptions

kQ3ViewerEmpty If this flag is set, there is no image currently displayed by
the specified viewer object.

kQ3ViewerHasModel If this flag is set, there is an image currently displayed by
the specified viewer object.

kQ3ViewerHasUndo If this flag is set, the viewer’s camera viewpoint has been
modified and can be undone. You can use this information
to determine whether to enable the Undo menu item in the
Edit menu. See the description of the
Q3ViewerGetUndoString function page 133.

Camera View Commands 2

The viewType parameter to the Q3SetCameraView function page 124 is a camera
view command that specifies how to change the current camera view. These
commands set the viewer to a predefined camera view.

IMPORTANT

Q3SetCameraView and the associated camera view
commands were introduced in version 1.1 of the
3D Viewer. ▲

C H A P T E R 2

3D Viewer

3D Viewer Reference 109

typedef enum TQ3ViewerCameraView {
kQ3ViewerCameraRestore,
kQ3ViewerCameraFit,
kQ3ViewerCameraFront,
kQ3ViewerCameraBack,
kQ3ViewerCameraLeft,
kQ3ViewerCameraRight,
kQ3ViewerCameraTop,
kQ3ViewerCameraBottom

} TQ3ViewerCameraView;

Constant descriptions

kQ3ViewerCameraRestore
Set the camera view to its original position. Calling
Q3SetCameraView with this camera view command is the
same as calling the Q3ViewerRestoreView function.

kQ3ViewerCameraFit
Set the camera view so that the 3D model fits entirely
within the content area of the viewer.

kQ3ViewerCameraFront
Set the camera view to look at the front of the model.

kQ3ViewerCameraBack
Set the camera view to look at the back of the model.

kQ3ViewerCameraLeft
Set the camera view to look at the left side of the model.

kQ3ViewerCameraRight
Set the camera view to look at the right side of the model.

kQ3ViewerCameraTop
Set the camera view to look at the top of the model.

kQ3ViewerCameraBottom
Set the camera view to look at the bottom of the model.

Note
The six final camera view commands set the camera to
predefined positions based on the front and top attributes
in the model only if they are present in the model’s data.
Otherwise, the camera positions are calculated from the
model’s coordinate space. ◆

C H A P T E R 2

3D Viewer

110 3D Viewer Reference

3D Viewer Routines 2

This section describes the routines provided by the 3D Viewer. You can use
these routines to

■ create a new viewer object

■ dispose of a viewer object

■ attach a file or block of data to a viewer object

■ handle editing operations associated with a viewer object

You don’t need to use all of these routines in order to use the 3D Viewer. For a
description of which routines are required, see “Using the 3D Viewer,”
beginning on page 99.

Note
Most Macintosh 3D Viewer routines have equivalent
routines for the Windows environment. A few significant
programming differences are noted in the routine
descriptions below. ◆

Creating and Destroying Viewers 2

This section describes the routines you can use to create and destroy viewer
objects. See “Creating a Viewer” (page 101) for complete source code examples
that illustrate how to use these routines.

Q3ViewerNew 2

You can use the Q3ViewerNew function to create a new viewer object.

MAC OS VERSION

TQ3ViewerObject Q3ViewerNew (
CGrafPtr port,
Rect *rect,
unsigned long flags);

C H A P T E R 2

3D Viewer

3D Viewer Reference 111

WINDOWS VERSION

TQ3ViewerObject Q3WinViewerNew (
HWND window,
const RECT *rect,
unsigned long flags);

PARAMETERS

port A pointer to a color graphics port that specifies the window
with which the new viewer is to be associated, or a pointer to an
offscreen graphics world. You can also pass the value NULL in
this parameter to create an empty viewer; you can associate a
port with the empty viewer by calling the Q3ViewerSetPort
function.

window A window handle.

rect The desired viewer pane for the new viewer object. This
rectangle is specified in window coordinates, where the origin
(0, 0) is the upper-left corner of the window and values increase
to the right and down the window.

flags A set of viewer flags.

return value A viewer object.

DESCRIPTION

The Q3ViewerNew function returns, as its function result, a reference to a new
viewer object that is to be drawn in the window specified by the port
parameter, in the location specified by the rect parameter. The flags parameter
specifies the desired set of viewer flags. See “Viewer Flags” (page 105) for
information on the flags you can specify when calling Q3ViewerNew.

The Q3ViewerNew function calls the QuickDraw 3D function Q3Initialize if your
application has not already called it.

The object returned by Q3ViewerNew, of type TQ3ViewerObject, is not a general
QuickDraw 3D object. Accordingly, you cannot call QuickDraw 3D object
management functions, such as Q3Object_Dispose or Q3Object_Duplicate, on it.
The type TQ3ViewerObject is used as a parameter type in other viewer routines,
to refer to a viewer object.

C H A P T E R 2

3D Viewer

112 3D Viewer Reference

Q3ViewerDispose 2

You can use the Q3ViewerDispose function to dispose of a viewer object.

MAC OS VERSION

OSErr Q3ViewerDispose (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3Status Q3WinViewerDispose (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerDispose function disposes of the viewer object specified by the
theViewer parameter.

Attaching Data to a Viewer 2

This section describes the routines you can use to attach data to viewer objects.

Q3ViewerUseFile 2

You can use the Q3ViewerUseFile function to set the file containing the 3D model
to be displayed in a viewer object.

C H A P T E R 2

3D Viewer

3D Viewer Reference 113

MAC OS VERSION

OSErr Q3ViewerUseFile (
TQ3ViewerObject theViewer,
long refNum);

WINDOWS VERSION

TQ3Status Q3WinViewerUseFile (
TQ3ViewerObject viewer,
HANDLE fileHandle);

PARAMETERS

theViewer A viewer object.

refNum The file reference number of an open file.

fileHandle A handle to an open file.

DESCRIPTION

The Q3ViewerUseFile function sets the 3D data file to be displayed in the viewer
object specified by the theViewer parameter to the open file having the file
reference number specified by the refnum parameter.

Q3ViewerUseData 2

You can use the Q3ViewerUseData function to set the memory-based data
displayed in a viewer object.

MAC OS VERSION

OSErr Q3ViewerUseData (
TQ3ViewerObject theViewer,
void *data,
long size);

C H A P T E R 2

3D Viewer

114 3D Viewer Reference

WINDOWS VERSION

TQ3Status Q3WinViewerUseData (
TQ3ViewerObject viewer,
void *data,
unsigned long size);

PARAMETERS

theViewer A viewer object.

data A pointer to the beginning of a block of data in memory.

size The size, in bytes, of the specified block of data.

DESCRIPTION

The Q3ViewerUseData function sets the 3D data to be displayed in the viewer
object specified by the theViewer parameter to the data block beginning at the
address specified by the data parameter and having the size specified by the
size parameter.

Drawing a Viewer and its Contents 2

This section describes the routines you can use to draw a viewer object and its
contents.

Q3ViewerDraw 2

You can use the Q3ViewerDraw function to draw a viewer object.

MAC OS VERSION

OSErr Q3ViewerDraw (TQ3ViewerObject theViewer);

C H A P T E R 2

3D Viewer

3D Viewer Reference 115

WINDOWS VERSION

TQ3Status Q3WinViewerDraw (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerDraw function draws the viewer object specified by the theViewer
parameter. You need to call this function only if the viewer flags or other visible
features of a viewer have changed. For example, to change a viewer’s pane, you
need to call Q3ViewerSetBounds followed by Q3ViewerDraw. Similarly, if the viewer
flags of a new viewer object have the kQ3ViewerActive flag clear, then to make
the viewer object active you need to set that flag by calling Q3ViewerSetFlags
and then draw the viewer object by calling Q3ViewerDraw.

Q3ViewerDrawContent 2

You can use the Q3ViewerDrawContent function to draw the content region of a
viewer object.

MAC OS VERSION

OSErr Q3ViewerDrawContent (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3Status Q3WinViewerDrawContent (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

C H A P T E R 2

3D Viewer

116 3D Viewer Reference

DESCRIPTION

The Q3ViewerDrawContent function forces the 3D Viewer to rerender and redraw
the 3D data displayed in the content region of the viewer object specified by the
theViewer parameter. You should call Q3ViewerDrawContent only if you have
directly modified the model associated with that viewer object using
QuickDraw 3D functions. Q3ViewerDrawContent redraws only the content region
of the viewer object and is preferable to calling Q3ViewerDraw, which also
redraws the controller strip and other user interface elements.

SPECIAL CONSIDERATIONS

The Q3ViewerDrawContent function is available only in versions 1.1 and later of
the 3D Viewer.

Q3ViewerDrawControlStrip 2

You can use the Q3ViewerDrawControlStrip function to draw the controller strip
and other user interface elements of a viewer object.

MAC OS VERSION

OSErr Q3ViewerDrawControlStrip (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3Status Q3WinViewerDrawControlStrip (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerDrawControlStrip function forces the 3D Viewer to redraw the
controller strip and other user interface elements of the viewer object specified
by the theViewer parameter. (The user interface elements of a viewer object are

C H A P T E R 2

3D Viewer

3D Viewer Reference 117

its controller strip, its badge, and its drag border.) You might use
Q3ViewerDrawControlStrip when you want to update the controller strip but do
not want to rerender and redraw the model in the content region of the viewer
object.

SPECIAL CONSIDERATIONS

The Q3ViewerDrawControlStrip function is available only in versions 1.1 and
later of the 3D Viewer.

Q3ViewerSetDrawingCallbackMethod 2

You can use the Q3ViewerSetDrawingCallbackMethod function to set a drawing
completion callback routine for a viewer object. This function has no equivalent
in the Windows environment.

OSErr Q3ViewerSetDrawingCallbackMethod (
TQ3ViewerObject theViewer,
TQ3ViewerDrawingCallbackMethod callbackMethod,
const void *data);

theViewer A viewer object.

callbackMethod
A pointer to the drawing completion callback routine for the
specified viewer object. See TQ3ViewerDrawingCallbackMethod on
page 161 for a description of this routine.

data A pointer to an application-defined block of data. This pointer is
passed to the callback routine when it is called.

DESCRIPTION

The Q3ViewerSetDrawingCallbackMethod function registers the function pointed
to by the callbackMethod parameter as a drawing completion callback routine
for the viewer object specified by the theViewer parameter. This callback routine
is called each time the 3D Viewer completes a drawing operation requested by a
call to Q3ViewerDraw, Q3ViewerDrawContent, or Q3ViewerDrawControlStrip.

C H A P T E R 2

3D Viewer

118 3D Viewer Reference

You can use a callback routine to perform any operations that should follow a
completed drawing operation. For instance, if a viewer is associated with an
offscreen graphics world, you can use the drawing completion callback routine
to copy the rendered image to its final destination.

SPECIAL CONSIDERATIONS

The Q3ViewerSetDrawingCallbackMethod function is available only in versions 1.1
and later of the 3D Viewer.

Managing Viewer Information and State 2

The 3D Viewer provides a number of functions that you can use to get and set
information about a viewer object and to manage its states.

Q3ViewerGetVersion 2

You can use the Q3ViewerGetVersion function to get the version of the
3D Viewer.

MAC OS VERSION

OSErr Q3ViewerGetVersion (
unsigned long *majorRevision,
unsigned long *minorRevision);

WINDOWS VERSION

TQ3Status Q3WinViewerGetVersion(
unsigned long *majorRevision,
unsigned long *minorRevision);

C H A P T E R 2

3D Viewer

3D Viewer Reference 119

PARAMETERS

majorRevision On entry, a pointer to an unsigned long integer. On exit, that
long integer is set to the major revision number of the
3D Viewer.

minorRevision On entry, a pointer to an unsigned long integer. On exit, that
long integer is set to the minor revision number of the
3D Viewer.

DESCRIPTION

The Q3ViewerGetVersion function returns, in the long integers pointed to by the
majorRevision and minorRevision parameters, the major and minor revision
numbers of the 3D Viewer installed in the current operating environment.

SPECIAL CONSIDERATIONS

The Q3ViewerGetVersion function is available only in versions 1.1 and later of
the 3D Viewer.

Q3ViewerGetReleaseVersion 2

You can use the Q3ViewerGetReleaseVersion function to get the release version
number of the 3D Viewer.

MAC OS VERSION

OSErr Q3ViewerGetReleaseVersion (unsigned long *releaseRevision);

WINDOWS VERSION

TQ3Status Q3WinViewerGetReleaseVersion (unsigned long *releaseRevision);

C H A P T E R 2

3D Viewer

120 3D Viewer Reference

PARAMETERS

releaseRevision
On entry, a pointer to an unsigned long integer. On exit, that
long integer is set to the release revision number of the
3D Viewer in 'vers' format.

DESCRIPTION

The Q3ViewerGetReleaseVersion function returns, in the long integer pointed to
by the releaseRevision parameter, the release version number of the 3D Viewer
installed in the current operating environment.

Note
For release 1.5.1 the release version number is
0x01518000. ◆

Q3ViewerGetView 2

You can use the Q3ViewerGetView function to get the view object associated with
a viewer object.

MAC OS VERSION

TQ3ViewObject Q3ViewerGetView (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3ViewObject Q3WinViewerGetView (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

C H A P T E R 2

3D Viewer

3D Viewer Reference 121

DESCRIPTION

The Q3ViewerGetView function returns, as its function result, the view object
currently associated with the viewer specified by the theViewer parameter.

Q3ViewerRestoreView 2

You can use the Q3ViewerRestoreView function to restore the camera associated
with a viewer object.

MAC OS VERSION

OSErr Q3ViewerRestoreView (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3Status Q3WinViewerRestoreView (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerRestoreView function restores the camera settings of the viewer
specified by the theViewer parameter to the original camera specified in the
associated view hints object. If there is no view hints object associated with the
specified viewer, Q3ViewerRestoreView creates a new default camera.

Note
Q3ViewerRestoreView performs the same operations as the
reset button in the controller strip. ◆

C H A P T E R 2

3D Viewer

122 3D Viewer Reference

Q3ViewerGetCameraCount 2

You can use the Q3ViewerGetCameraCount function to determine how many
camera objects are currently associated with a viewer object.

MAC OS VERSION

OSErr Q3ViewerGetCameraCount (
TQ3ViewerObject theViewer,
unsigned long *cnt);

WINDOWS VERSION

TQ3Status Q3WinViewerGetCameraCount (
TQ3ViewerObject viewer,
unsigned long *count);

PARAMETERS

theViewer A viewer object.

cnt On entry, a pointer to an unsigned long integer. On exit, that
long integer is set to the number of camera objects associated
with the specified viewer object.

DESCRIPTION

The Q3ViewerGetCameraCount function returns, in the unsigned long integer
pointed to by the cnt parameter, the number of camera objects associated with
the viewer object specified by the theViewer parameter. If there is no view hints
object associated with that viewer object, then there are no camera associated
with that viewer object and Q3ViewerGetCameraCount returns 0.

IMPORTANT

Q3ViewerGetCameraCount counts only cameras of type
kQ3CameraViewAngleAspect. ▲

C H A P T E R 2

3D Viewer

3D Viewer Reference 123

SPECIAL CONSIDERATIONS

The Q3ViewerGetCameraCount function is available only in versions 1.1 and later
of the 3D Viewer.

Q3ViewerSetCameraByNumber 2

You can use the Q3ViewerSetCameraByNumber function to set a viewer’s camera to
a camera specified by its index in the list of the viewer’s cameras.

MAC OS VERSION

OSErr Q3ViewerSetCameraByNumber (
TQ3ViewerObject theViewer,
unsigned long cameraNo);

WINDOWS VERSION

TQ3Status Q3WinViewerSetCameraNumber (
TQ3ViewerObject viewer,
unsigned long cameraNo);

PARAMETERS

theViewer A viewer object.

cameraNo The index of a camera in the list of cameras associated with the
specified viewer object. This list is 1-based (that is, the first
camera has the index 1). The value of this parameter must be
less than or equal to the number returned by the
Q3ViewerGetCameraCount function.

DESCRIPTION

The Q3ViewerSetCameraByNumber function sets the camera of the viewer object
specified by the theViewer parameter to the camera whose index in the list of
the viewer’s cameras is cameraNo.

C H A P T E R 2

3D Viewer

124 3D Viewer Reference

Note
Q3ViewerSetCameraByNumber performs the same operations
as the camera viewpoint pop-up menu in the controller
strip. ◆

SPECIAL CONSIDERATIONS

The Q3ViewerSetCameraByNumber function is available only in versions 1.1 and
later of the 3D Viewer.

Q3ViewerSetCameraByView 2

You can use the Q3ViewerSetCameraByView function to set a camera to a
predefined camera view.

MAC OS VERSION

OSErr Q3ViewerSetCameraByView (
TQ3ViewerObject theViewer,
TQ3ViewerCameraView viewType);

WINDOWS VERSION

TQ3Status Q3WinViewerSetCameraView (
TQ3ViewerObject viewer,
TQ3ViewerCameraView viewType);

PARAMETERS

theViewer A viewer object.

viewType A camera view command. See “Camera View Commands”
(page 108) for a description of the available camera view
commands.

C H A P T E R 2

3D Viewer

3D Viewer Reference 125

DESCRIPTION

The Q3ViewerSetCameraByView function sets the camera of the viewer object
specified by the theViewer parameter to the camera viewpoint specified by the
viewType parameter. For instance, if the value of the viewType parameter is
kQ3ViewerCameraTop, then Q3ViewerSetCameraByView sets the camera to a
viewpoint that is directly above the model in the viewer object.

SPECIAL CONSIDERATIONS

The Q3ViewerSetCameraByView function is available only in versions 1.1 and later
of the 3D Viewer.

Q3ViewerGetFlags 2

You can use the Q3ViewerGetFlags function to get the current viewer flags for a
viewer object.

MAC OS VERSION

unsigned long Q3ViewerGetFlags (TQ3ViewerObject theViewer);

WINDOWS VERSION

unsigned long Q3WinViewerGetFlags (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetFlags function returns, as its function result, the current set of
viewer flags for the viewer specified by the theViewer parameter.

C H A P T E R 2

3D Viewer

126 3D Viewer Reference

Q3ViewerSetFlags 2

You can use the Q3ViewerSetFlags function to set the viewer flags for a viewer
object.

MAC OS VERSION

OSErr Q3ViewerSetFlags (
TQ3ViewerObject theViewer,
unsigned long flags);

WINDOWS VERSION

TQ3Status Q3WinViewerSetFlags (
TQ3ViewerObject viewer,
unsigned long flags);

PARAMETERS

theViewer A viewer object.

flags A set of viewer flags. See “Viewer Flags” (page 105) for a
description of the constants you can use to set or clear
individual viewer flags.

DESCRIPTION

The Q3ViewerSetFlags function sets the viewer flags associated with the viewer
object specified by the theViewer parameter to the values passed in the flags
parameter.

IMPORTANT

Any changes to a viewer’s flags will not be visible until you
call Q3ViewerDraw with the specified viewer object. ▲

C H A P T E R 2

3D Viewer

3D Viewer Reference 127

Q3ViewerGetBounds 2

You can use the Q3ViewerGetBounds function to get the rectangle that bounds a
viewer’s pane.

MAC OS VERSION

OSErr Q3ViewerGetBounds (
TQ3ViewerObject theViewer,
Rect *bounds);

WINDOWS VERSION

TQ3Status Q3WinViewerGetBounds (
TQ3ViewerObject viewer,
RECT *bounds);

PARAMETERS

theViewer A viewer object.

bounds On exit, the rectangle that bounds the pane currently associated
with the specified viewer object.

DESCRIPTION

The Q3ViewerGetBounds function returns, through the bounds parameter, the
rectangle that currently bounds the pane associated with the viewer object
specified by the bounds parameter.

Q3ViewerSetBounds 2

You can use the Q3ViewerSetBounds function to set the rectangle that bounds a
viewer’s pane.

C H A P T E R 2

3D Viewer

128 3D Viewer Reference

MAC OS VERSION

OSErr Q3ViewerSetBounds (
TQ3ViewerObject theViewer,
Rect *bounds);

WINDOWS VERSION

TQ3Status Q3WinViewerSetBounds (
TQ3ViewerObject viewer,
RECT *bounds);

PARAMETERS

theViewer A viewer object.

bounds The desired viewer pane for the specified viewer object. This
rectangle is specified in window coordinates, where the origin
(0, 0) is the upper-left corner of the window and values increase
to the right and down the window.

DESCRIPTION

The Q3ViewerSetBounds function sets the bounds of the viewer pane of the
viewer object specified by the theViewer parameter to the rectangle specified by
the bounds parameter.

IMPORTANT

Any changes to a viewer’s bounds will not be visible until
you call Q3ViewerDraw with the specified viewer object. ▲

Q3ViewerGetMininumDimension 2

You can use the Q3ViewerGetMininumDimension function to get the sides of the
smallest rectangle that can contain the controller strip of a viewer object.

C H A P T E R 2

3D Viewer

3D Viewer Reference 129

MAC OS VERSION

OSErr Q3ViewerGetMininumDimension (
TQ3ViewerObject theViewer,
unsigned long *width,
unsigned long *height);

WINDOWS VERSION

TQ3Status Q3WinViewerGetMinimumDimension (
TQ3ViewerObject viewer,
unsigned long *width,
unsigned long *height);

PARAMETERS

theViewer A viewer object.

width On exit, the width of the minimum viewer pane required to
contain the entire contents of the controller strip.

height On exit, the height of the minimum viewer pane required to
contain the entire contents of the controller strip.

DESCRIPTION

The Q3ViewerGetMininumDimension function returns, in the width and height
parameters, the width and height of the minimum viewer pane required to
contain the entire contents of the controller strip associated with the viewer
object specified by the theViewer parameter. If your application allows the
viewer pane to be resized, you should ensure that it is not sized smaller than
the dimensions returned by Q3ViewerGetMininumDimension; otherwise, some of
the buttons in the controller strip will be clipped.

SPECIAL CONSIDERATIONS

The Q3ViewerGetMininumDimension function is available only in versions 1.1 and
later of the 3D Viewer.

C H A P T E R 2

3D Viewer

130 3D Viewer Reference

Q3ViewerGetPort 2

You can use the Q3ViewerGetPort function to get the Macintosh graphics port
associated with a viewer object. This function has no equivalent in the Windows
environment.

CGrafPtr Q3ViewerGetPort (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetPort function returns, as its function result, a pointer to the port
currently associated with the viewer object specified by the theViewer
parameter. The returned pointer may be a a pointer to a color graphics port, a
pointer to an offscreen graphics world, or the value NULL, indicating that no port
is currently associated with the viewer object.

Q3ViewerSetPort 2

You can use the Q3ViewerSetPort function to set the graphics port associated
with a viewer object. This function has no equivalent in the Windows
environment.

OSErr Q3ViewerSetPort (TQ3ViewerObject theViewer, CGrafPtr port);

theViewer A viewer object.

port A pointer to a color graphics port that specifies the window
with which the specified viewer is to be associated, or a pointer
to an offscreen graphics world. You can also pass the value NULL
in this parameter to indicate that port is to be associated with
the viewer object.

C H A P T E R 2

3D Viewer

3D Viewer Reference 131

DESCRIPTION

The Q3ViewerSetPort function sets the graphics port associated with the viewer
object specified by the theViewer parameter to the port specified by the port
parameter.

Q3ViewerGetGroup 2

You can use the Q3ViewerGetGroup function to get the group of objects currently
associated with a viewer.

MAC OS VERSION

TQ3GroupObject Q3ViewerGetGroup (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3GroupObject Q3WinViewerGetGroup (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetGroup function returns, as its function result, a reference to the
group containing the objects currently associated with the viewer specified by
the theViewer parameter. The reference count of that group is incremented. You
should therefore dispose of the group when you have finished using it.

Q3ViewerUseGroup 2

You can use the Q3ViewerUseGroup function to set the group of objects associated
with a viewer.

C H A P T E R 2

3D Viewer

132 3D Viewer Reference

MAC OS VERSION

OSErr Q3ViewerUseGroup (
TQ3ViewerObject theViewer,
TQ3GroupObject group);

WINDOWS VERSION

TQ3Status Q3WinViewerUseGroup (
TQ3ViewerObject viewer,
TQ3GroupObject group);

PARAMETERS

theViewer A viewer object.

group A group.

DESCRIPTION

The Q3ViewerUseGroup function sets the group of objects associated with the
viewer specified by the theViewer parameter to the group specified by the group
parameter.

Q3ViewerGetState 2

You can use the Q3ViewerGetState function to get the current state of a viewer
object.

MAC OS VERSION

unsigned long Q3ViewerGetState (TQ3ViewerObject theViewer);

WINDOWS VERSION

unsigned long Q3WinViewerGetState (TQ3ViewerObject viewer);

C H A P T E R 2

3D Viewer

3D Viewer Reference 133

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetState function returns a long integer that encodes information
about the current state of the viewer object specified by the theViewer
parameter. Bits of the returned long integer are addressed using these constants,
which define the viewer state flags:

enum {
kQ3ViewerEmpty = 0,
kQ3ViewerHasModel = 1<<0,
kQ3ViewerHasUndo = 1<<1

};

If Q3ViewerGetState returns the value kQ3ViewerEmpty, there is no image
currently displayed by the specified viewer object. If Q3ViewerGetState returns
the value kQ3ViewerHasModel, there is an image currently displayed by the
specified viewer object. If Q3ViewerGetState returns the value kQ3ViewerHasUndo,
the user has modified the camera state using the interactive controls. You can
use this information to determine whether Edit menu commands such as Undo,
Cut, Clear, and Copy should be enabled or disabled.

SEE ALSO

Use the Q3ViewerGetUndoString function to get a string that describes the most
recent user operation that can be undone.

Q3ViewerGetUndoString 2

You can use the Q3ViewerGetUndoString function to get a string that describes
the most recent user operation that can be undone.

C H A P T E R 2

3D Viewer

134 3D Viewer Reference

MAC OS VERSION

Boolean Q3ViewerGetUndoString (
TQ3ViewerObject theViewer,
char *string,
unsigned long *cnt);

WINDOWS VERSION

TQ3Boolean Q3WinViewerGetUndoString (
TQ3ViewerObject viewer,
char *string,
unsigned long stringSize,
unsigned long *actualSize);

PARAMETERS

theViewer A viewer object.

string On entry, a pointer to a buffer. On exit, the buffer is filled with a
localized string that describes the most recent user operation in
the specified viewer that can be undone. Note that this string
does not contain the substring “Undo.”

cnt On entry, a pointer to an unsigned long integer that specifies the
size, in bytes, of the buffer pointed to by the string parameter.
On exit, that long integer is set to the number of bytes actually
copied into that buffer.

stringSize On entry, an unsigned long integer that specifies the size, in
bytes, of the buffer pointed to by the string parameter.

actualSize On exit, a pointer to a long integer that is set to the number of
bytes actually copied into the buffer.

DESCRIPTION

The Q3ViewerGetUndoString function returns, through the string parameter, a
localized string that describes the most recent user action in the viewer
specified by the theViewer parameter that can be undone.

C H A P T E R 2

3D Viewer

3D Viewer Reference 135

Q3ViewerGetUndoString also returns, as its function result, a Boolean value that
indicates whether you can call the Q3ViewerUndo function to perform the undo
operation (TRUE) or not (FALSE).

Typically, you’ll use the string returned by Q3ViewerGetUndoString to generate
the text for the Undo menu item in the Edit menu. Note, however, that the
string returned through the string parameter does not contain the substring
“Undo.” You should get the appropriate substring (perhaps from a resource)
and conjoin it with the string returned by Q3ViewerGetUndoString to construct
the menu item text.

SPECIAL CONSIDERATIONS

The Q3ViewerGetUndoString function is available only in versions 1.1 and later of
the 3D Viewer.

SEE ALSO

Use the Q3ViewerUndo function to undo a user operation.

Q3ViewerGetPict 2

You can use the Q3ViewerGetPict function to get a Macintosh 'pict'
representation of the image currently displayed by a viewer object. This
function has no equivalent in the Windows environment.

PicHandle Q3ViewerGetPict (TQ3ViewerObject theViewer);

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetPict function returns, as its function result, a handle to a
Macintosh 'pict' structure that contains a representation of the image currently
displayed by the viewer object specified by the theViewer parameter. You
should call DisposeHandle to dispose of the memory occupied by the pict when
you’re done using it.

C H A P T E R 2

3D Viewer

136 3D Viewer Reference

Q3ViewerGetButtonRect 2

You can use the Q3ViewerGetButtonRect function to get the rectangle that
encloses a viewer button.

MAC OS VERSION

OSErr Q3ViewerGetButtonRect (
TQ3ViewerObject theViewer,
unsigned long button,
Rect *rect);

WINDOWS VERSION

TQ3Status Q3WinViewerGetButtonRect (
TQ3ViewerObject viewer,
unsigned long button,
RECT *rectangle);

PARAMETERS

theViewer A viewer object.

button A button.

rect On exit, the rectangle that enclosed the specified button in the
specified viewer.

DESCRIPTION

The Q3ViewerGetButtonRect function returns, in the rect parameter, the
rectangle that encloses the button specified by the button parameter in the
viewer object specified by the theViewer parameter. You can use these constants
to specify the button whose rectangle you want returned:

kQ3ViewerButtonCamera
kQ3ViewerButtonTruck
kQ3ViewerButtonOrbit

C H A P T E R 2

3D Viewer

3D Viewer Reference 137

kQ3ViewerButtonZoom
kQ3ViewerButtonDolly
kQ3ViewerButtonReset

Q3ViewerGetCurrentButton 2

You can use the Q3ViewerGetCurrentButton function to get the active button of a
viewer.

MAC OS VERSION

unsigned long Q3ViewerGetCurrentButton (TQ3ViewerObject theViewer);

WINDOWS VERSION

unsigned long Q3WinViewerGetCurrentButton (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerGetCurrentButton function returns, as its function result, the active
button of the viewer object specified by the theViewer parameter.
Q3ViewerGetCurrentButton returns one of these constants:

kQ3ViewerButtonTruck
kQ3ViewerButtonOrbit
kQ3ViewerButtonZoom
kQ3ViewerButtonDolly

C H A P T E R 2

3D Viewer

138 3D Viewer Reference

Q3ViewerSetCurrentButton 2

You can use the Q3ViewerSetCurrentButton function to set the active button of a
viewer pane.

MAC OS VERSION

OSErr Q3ViewerSetCurrentButton (
TQ3ViewerObject theViewer,
unsigned long button);

WINDOWS VERSION

TQ3Status Q3WinViewerSetCurrentButton (
TQ3ViewerObject viewer,
unsigned long button);

PARAMETERS

theViewer A viewer object.

button A button.

DESCRIPTION

The Q3ViewerSetCurrentButton function sets the active button of the viewer
object specified by the theViewer parameter to the button specified by the button
parameter. You can use these constants to specify a button:

kQ3ViewerButtonTruck
kQ3ViewerButtonOrbit
kQ3ViewerButtonZoom
kQ3ViewerButtonDolly

C H A P T E R 2

3D Viewer

3D Viewer Reference 139

Q3ViewerGetDimension 2

You can use the Q3ViewerGetDimension function to get the current dimensions of
the model space in a viewer’s view hints object.

MAC OS VERSION

OSErr Q3ViewerGetDimension (
TQ3ViewerObject theViewer,
unsigned long *width,
unsigned long *height);

WINDOWS VERSION

TQ3Status Q3WinViewerGetDimension (
TQ3ViewerObject viewer,
unsigned long *width,
unsigned long *height);

PARAMETERS

theViewer A viewer object.

width On exit, the width of the pane of the specified viewer.

height On exit, the height of the pane of the specified viewer.

DESCRIPTION

The Q3ViewerGetDimension function returns, in the width and height parameters,
the current width and height of the model space in the view hints object
associated with the viewer object specified by the theViewer parameter. If there
is no such view hints object, Q3ViewerGetDimension returns the width and height
of the viewer pane.

C H A P T E R 2

3D Viewer

140 3D Viewer Reference

Q3ViewerSetDimension 2

You can use the Q3ViewerSetDimension function to set the current dimensions of
the model space in a viewer’s view hints object.

MAC OS VERSION

OSErr Q3ViewerSetDimension (
TQ3ViewerObject theViewer,
unsigned long width,
unsigned long height);

WINDOWS VERSION

TQ3Status Q3WinViewerSetDimension (
TQ3ViewerObject viewer,
unsigned long width,
unsigned long height);

PARAMETERS

theViewer A viewer object.

width The desired width of the pane of the specified viewer.

height The desired height of the pane of the specified viewer.

DESCRIPTION

The Q3ViewerSetDimension function sets the width and height of the model
space in the view hints object associated with the viewer object specified by the
theViewer parameter to the values specified by the width and height parameters.

C H A P T E R 2

3D Viewer

3D Viewer Reference 141

Q3ViewerGetBackgroundColor 2

You can use the Q3ViewerGetBackgroundColor function to get the background
color of a viewer.

MAC OS VERSION

OSErr Q3ViewerGetBackgroundColor (
TQ3ViewerObject theViewer,
TQ3ColorARGB *color);

WINDOWS VERSION

TQ3Status Q3WinViewerGetBackgroundColor (
TQ3ViewerObject viewer,
TQ3ColorARGB *color);

PARAMETERS

theViewer A viewer object.

color On exit, the current background color.

DESCRIPTION

The Q3ViewerGetBackgroundColor function returns, in the color parameter, the
background color of the viewer specified by the theViewer parameter.

Q3ViewerSetBackgroundColor 2

You can use the Q3ViewerSetBackgroundColor function to set the background
color of a viewer.

C H A P T E R 2

3D Viewer

142 3D Viewer Reference

MAC OS VERSION

OSErr Q3ViewerSetBackgroundColor (
TQ3ViewerObject theViewer,
TQ3ColorARGB *color);

WINDOWS VERSION

TQ3Status Q3WinViewerSetBackgroundColor (
TQ3ViewerObject viewer,
TQ3ColorARGB *color);

PARAMETERS

theViewer A viewer object.

color The desired background color.

DESCRIPTION

The Q3ViewerSetBackgroundColor function sets the background color of the
viewer specified by the theViewer parameter to the color specified by the color
parameter.

Updating Viewer Data 2

The 3D Viewer provides routines that you can use to update the file or memory
copy of the 3D data displayed in a viewer.

Q3ViewerWriteFile 2

You can use the Q3ViewerWriteFile function to update the file data being
displayed in a viewer.

C H A P T E R 2

3D Viewer

3D Viewer Reference 143

MAC OS VERSION

OSErr Q3ViewerWriteFile (
TQ3ViewerObject theViewer,
long refNum);

WINDOWS VERSION

TQ3Status Q3WinViewerWriteFile (
TQ3ViewerObject viewer,
HANDLE fileHandle);

PARAMETERS

theViewer A viewer object.

refnum The file reference number of an open file.

fileHandle A handle to an open file.

DESCRIPTION

The Q3ViewerWriteFile function writes the 3D data currently associated with
the viewer object specified by the theViewer parameter in 3DMF format to the
file specified by the refnum parameter. If the kQ3ViewerOutputTextMode flag has
been set, the 3DMF data is written out in text mode; otherwise, it is written out
in binary mode.

Note
If the camera viewpoint has been modified, a new camera
is added to the 3D metafile data’s view hints. ◆

Q3ViewerWriteData 2

You can use the Q3ViewerWriteData function to update the memory data being
displayed in a viewer.

C H A P T E R 2

3D Viewer

144 3D Viewer Reference

MAC OS VERSION

unsigned long Q3ViewerWriteData (
TQ3ViewerObject theViewer,
void **data);

WINDOWS VERSION

TQ3Status Q3WinViewerWriteData (
TQ3ViewerObject viewer,
void *data,
unsigned long dataSize,
unsigned long *actualDataSize);

PARAMETERS

theViewer A viewer object.

data On exit, a pointer to the beginning of a block of 3DMF data that
describes the model currently displayed in the specified viewer
object. This block of memory is allocated by the 3D Viewer and
is automatically disposed of when your application destroys its
last viewer object.

dataSize On entry, an unsigned long integer that specifies the size, in
bytes, of the buffer pointed to by the data parameter.

actualDataSize
On exit, a pointer to a long integer that is set to the number of
bytes actually copied into the buffer.

DESCRIPTION

The Q3ViewerWriteData function allocates a block of memory large enough to
hold a 3DMF description of the model currently displayed in the viewer object
specified by the theViewer parameter, writes that description into the block of
memory, and returns the address of that block of memory in the data parameter.
The Mac OS version of Q3ViewerWriteData returns, as its function result, the size
(in bytes) of that block of memory.

If the kQ3ViewerOutputTextMode flag has been set, the 3DMF data is written out
in text mode; otherwise, it is written out in binary mode.

C H A P T E R 2

3D Viewer

3D Viewer Reference 145

Note
If the camera viewpoint has been modified, a new camera
is added to the 3DMF data’s view hints. ◆

SPECIAL CONSIDERATIONS

The block of memory that contains the 3D data is allocated by the 3D Viewer
and must not be disposed of by your application. You should copy the 3D data
into your own storage if you will need to access it after all viewer objects
created by your application have been destroyed.

Handling Viewer Events 2

Viewer objects support several routines for handling events that occur in a
viewer pane. The 3D Viewer provides two different event handling models:
closed-loop event handling and open-loop event handling. You should decide
which model best fits your needs and use it exclusively.

Q3ViewerEvent 2

You can use the Q3ViewerEvent function to give the 3D Viewer an opportunity to
handle Macintosh events involving a viewer object. This function has no
equivalent in the Windows environment.

Boolean Q3ViewerEvent (
TQ3ViewerObject theViewer,
EventRecord *evt);

theViewer A viewer object.

evt An event record.

DESCRIPTION

The Q3ViewerEvent function returns, as its function result, a Boolean value that
indicates whether the event specified by the evt parameter relates to the viewer
object specified by the theViewer parameter and was successfully handled (TRUE)
or whether that event either does not relate to that viewer object or could not be

C H A P T E R 2

3D Viewer

146 3D Viewer Reference

handled by the 3D Viewer (FALSE). The evt parameter is a pointer to an event
record, which you usually obtain by calling the Event Manager function
WaitNextEvent.

Q3ViewerEvent can handle most of the events relating to a viewer object. For
example, it handles all user events relating to the controller strip displayed with
a viewer object. For information on how to handle editing commands in a
viewer pane, see “Handling Edit Commands,” beginning on page 153.

SPECIAL CONSIDERATIONS

You should call Q3ViewerEvent in your main event loop to give the 3D Viewer an
opportunity to handle events in a window that relate to a viewer object.

The Q3ViewerEvent function implements a closed-loop event handling model
and should therefore not be used in conjunction with functions that implement
an open-loop event handling model (namely, Q3ViewerMouseDown,
Q3ViewerMouseUp, Q3ViewerContinueTracking, and Q3ViewerHandleKeyEvent).

Q3ViewerMouseDown 2

You can use the Q3ViewerMouseDown function to notify the 3D Viewer that a
mouse-down event has occurred.

MAC OS VERSION

Boolean Q3ViewerMouseDown (
TQ3ViewerObject theViewer,
long x,
long y);

WINDOWS VERSION

BOOL Q3WinViewerMouseDown (
TQ3ViewerObject viewer,
long x,
long y);

C H A P T E R 2

3D Viewer

3D Viewer Reference 147

PARAMETERS

theViewer A viewer object.

x The horizontal position, in global coordinates, of the mouse at
the time the mouse-down event occurred.

y The vertical position, in global coordinates, of the mouse at the
time the mouse-down event occurred.

DESCRIPTION

The Q3ViewerMouseDown function informs the 3D Viewer that a mouse-down
event has occurred at the screen location specified by the x and y parameters in
the pane associated with the viewer specified by the theViewer parameter.
Q3ViewerMouseDown returns a Boolean value indicating whether the 3D Viewer
handled the event (TRUE) or not (FALSE).

SPECIAL CONSIDERATIONS

The Q3ViewerMouseDown function is available only in versions 1.1 and later of the
3D Viewer.

The Q3ViewerMouseDown function implements an open-loop event handling
model and should therefore not be used in conjunction with Q3ViewerEvent,
which implements a closed-loop event handling model.

Q3ViewerMouseUp 2

You can use the Q3ViewerMouseUp function to notify the 3D Viewer that a
mouse-up event has occurred.

MAC OS VERSION

Boolean Q3ViewerMouseUp (
TQ3ViewerObject theViewer,
long x,
long y);

C H A P T E R 2

3D Viewer

148 3D Viewer Reference

WINDOWS VERSION

BOOL Q3WinViewerMouseUp (
TQ3ViewerObject viewer,
long x,
long y);

PARAMETERS

theViewer A viewer object.

x The horizontal position, in global coordinates, of the mouse at
the time the mouse-up event occurred.

y The vertical position, in global coordinates, of the mouse at the
time the mouse-up event occurred.

DESCRIPTION

The Q3ViewerMouseUp function informs the 3D Viewer that a mouse-up event has
occurred at the screen location specified by the x and y parameters in the pane
associated with the viewer specified by the theViewer parameter.
Q3ViewerMouseUp returns a Boolean value indicating whether the 3D Viewer
handled the event (TRUE) or not (FALSE).

SPECIAL CONSIDERATIONS

The Q3ViewerMouseUp function is available only in versions 1.1 and later of the
3D Viewer.

The Q3ViewerMouseUp function implements an open-loop event handling model
and should therefore not be used in conjunction with Q3ViewerEvent, which
implements a closed-loop event handling model.

Q3ViewerContinueTracking 2

You can use the Q3ViewerContinueTracking function to notify the 3D Viewer that
an event has occurred and the mouse is still down.

C H A P T E R 2

3D Viewer

3D Viewer Reference 149

MAC OS VERSION

Boolean Q3ViewerContinueTracking (
TQ3ViewerObject theViewer,
long x,
long y);

WINDOWS VERSION

BOOL Q3WinViewerContinueTracking (
TQ3ViewerObject viewer,
long x,
long y);

PARAMETERS

theViewer A viewer object.

x The horizontal position, in global coordinates, of the mouse at
the current time.

y The vertical position, in global coordinates, of the mouse at the
current time.

DESCRIPTION

The Q3ViewerContinueTracking function informs the 3D Viewer that an event
has occurred at the screen location specified by the x and y parameters in the
pane associated with the viewer specified by the theViewer parameter.
Q3ViewerContinueTracking returns a Boolean value indicating whether the
3D Viewer handled the event (TRUE) or not (FALSE).

SPECIAL CONSIDERATIONS

The Q3ViewerContinueTracking function is available only in versions 1.1 and
later of the 3D Viewer.

The Q3ViewerContinueTracking function implements an open-loop event
handling model and should therefore not be used in conjunction with
Q3ViewerEvent, which implements a closed-loop event handling model.

C H A P T E R 2

3D Viewer

150 3D Viewer Reference

Q3ViewerHandleKeyEvent 2

You can use the Q3ViewerHandleKeyEvent function to give the 3D Viewer an
opportunity to handle Macintosh keyboard events involving a viewer object.
This function has no equivalent in the Windows environment.

Boolean Q3ViewerHandleKeyEvent (
TQ3ViewerObject theViewer,
EventRecord *evt);

theViewer A viewer object.

evt An event record.

DESCRIPTION

The Q3ViewerHandleKeyEvent function returns, as its function result, a Boolean
value that indicates whether the keyboard event specified by the evt parameter
relates to the viewer object specified by the theViewer parameter and was
successfully handled (TRUE) or whether that event either does not relate to that
viewer object or could not be handled by the 3D Viewer (FALSE). The evt
parameter is a pointer to an event record, which you usually obtain by calling
the Event Manager function WaitNextEvent. This event should be a key-up,
key-down, or auto-key event.

SPECIAL CONSIDERATIONS

The Q3ViewerHandleKeyEvent function is available only in versions 1.1 and later
of the 3D Viewer.

The Q3ViewerHandleKeyEvent function implements an open-loop event handling
model and should therefore not be used in conjunction with Q3ViewerEvent,
which implements a closed-loop event handling model.

Managing Cursors 2

The 3D Viewer provides routines that you can use to ensure that the cursor is
properly synchronized with the state of a viewer object.

C H A P T E R 2

3D Viewer

3D Viewer Reference 151

Q3ViewerAdjustCursor 2

You can use the Q3ViewerAdjustCursor function to allow the 3D Viewer to adjust
the cursor when it is inside a viewer object.

MAC OS VERSION

Boolean Q3ViewerAdjustCursor (
TQ3ViewerObject theViewer,
Point *pt);

WINDOWS VERSION

TQ3Boolean Q3WinViewerAdjustCursor (
TQ3ViewerObject viewer,
long x,
long y);

PARAMETERS

theViewer A viewer object.

pt The location of the cursor, in the local coordinates of the
window that contains the specified viewer object.

x The horizontal position of the cursor, in the local coordinates of
the window that contains the specified viewer object.

y The vertical position of the cursor, in the local coordinates of the
window that contains the specified viewer object..

DESCRIPTION

The Q3ViewerAdjustCursor function adjusts the cursor to whatever shape is
appropriate when the cursor is located at the point specified by the pt
parameter inside the viewer object specified by the theViewer parameter. You
should call Q3ViewerAdjustCursor in response to a mouse-moved event or
during your application’s idle-time processing. Q3ViewerAdjustCursor returns a

C H A P T E R 2

3D Viewer

152 3D Viewer Reference

Boolean value that indicates whether the shape of the cursor was changed
(TRUE) or not (FALSE).

Q3ViewerCursorChanged 2

You can use the Q3ViewerCursorChanged function to notify the 3D Viewer that
you have changed the cursor.

MAC OS VERSION

OSErr Q3ViewerCursorChanged (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3Status Q3WinViewerCursorChanged (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerCursorChanged function notifies the 3D Viewer that you have
changed the cursor while the viewer object specified by the theViewer
parameter is active. You should call Q3ViewerCursorChanged whenever you
change the cursor by calling the SetCursor routine.

SPECIAL CONSIDERATIONS

The Q3ViewerCursorChanged function is available only in versions 1.1 and later of
the 3D Viewer.

C H A P T E R 2

3D Viewer

3D Viewer Reference 153

Handling Edit Commands 2

The 3D Viewer provides routines that you can use to handle editing commands
that apply to a viewer object.

Q3ViewerCut 2

You can use the Q3ViewerCut function to handle the Cut editing command when
applied to data selected in a viewer object.

MAC OS VERSION

OSErr Q3ViewerCut (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3Status Q3WinViewerCut (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerCut function cuts the data currently selected in the viewer object
specified by the theViewer parameter. The cut data is placed on the Clipboard.
You should call Q3ViewerCut when the user chooses the Cut command in your
application’s Edit menu (or types the appropriate keyboard equivalent) and the
selected data is inside a viewer pane.

Q3ViewerCopy 2

You can use the Q3ViewerCopy function to handle the Copy editing command
when applied to data selected in a viewer object.

C H A P T E R 2

3D Viewer

154 3D Viewer Reference

MAC OS VERSION

OSErr Q3ViewerCopy (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3Status Q3WinViewerCopy (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerCopy function copies the data currently selected in the viewer
object specified by the theViewer parameter. The data is copied onto the
Clipboard. You should call Q3ViewerCopy when the user chooses the Copy
command in your application’s Edit menu (or types the appropriate keyboard
equivalent) and the selected data is inside a viewer pane.

Q3ViewerPaste 2

You can use the Q3ViewerPaste function to handle the Paste editing command
when applied to data previously cut or copied from a viewer object.

MAC OS VERSION

OSErr Q3ViewerPaste (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3Status Q3WinViewerPaste (TQ3ViewerObject viewer);

C H A P T E R 2

3D Viewer

3D Viewer Reference 155

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerPaste function pastes 3D data from the Clipboard into the viewer
object specified by the theViewer parameter. You should call Q3ViewerPaste
when the user chooses the Paste command in your application’s Edit menu (or
types the appropriate keyboard equivalent) and the data on the Clipboard was
placed there by a previous call to Q3ViewerCut or Q3ViewerCopy.

SEE ALSO

To determine whether the data on the Clipboard is 3D data or not, you can use
the Q3ViewerGetState function (page 132).

Q3ViewerClear 2

You can use the Q3ViewerClear function to handle the Clear editing command
when applied to data selected in a viewer object.

MAC OS VERSION

OSErr Q3ViewerClear (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3Status Q3WinViewerClear (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

C H A P T E R 2

3D Viewer

156 3D Viewer Reference

DESCRIPTION

The Q3ViewerClear function clears the data currently selected in the viewer
object specified by the theViewer parameter. No data is copied onto the
Clipboard. You should call Q3ViewerClear when the user chooses the Clear
command in your application’s Edit menu (or types the appropriate keyboard
equivalent) and the selected data is inside a viewer pane.

Q3ViewerUndo 2

You can use the Q3ViewerUndo function to handle the Undo command when
applied to the most recent editing change to a viewer object.

MAC OS VERSION

OSErr Q3ViewerUndo (TQ3ViewerObject theViewer);

WINDOWS VERSION

TQ3Status Q3WinViewerUndo (TQ3ViewerObject viewer);

PARAMETER

theViewer A viewer object.

DESCRIPTION

The Q3ViewerUndo function undoes the most recent editing operation on the
viewer object specified by the theViewer parameter. You should call
Q3ViewerUndo when the user chooses the Undo command in your application’s
Edit menu (or types the appropriate keyboard equivalent).

SPECIAL CONSIDERATIONS

The Q3ViewerUndo function is available only in versions 1.1 and later of the
3D Viewer.

C H A P T E R 2

3D Viewer

3D Viewer Reference 157

SEE ALSO

Use Q3ViewerGetUndoString page 133 to determine what string to display as part
of the Undo item in the Edit menu. Use Q3ViewerGetState (page 132) to
determine if the Undo command is currently available.

Windows-Specific API 2

This section describes 3D Viewer data structures, definitions, and routines that
are used only in the Win32 Windows environment.

Window and Clipboard Definitions 2

The following defines the Win32 Windows class name, which may be passed as
a parameter to CreateWindow or CreateWindowEx:

#define kQ3ViewerClassName "QD3DViewerWindow"

The following defines the Win32 clipboard type:

#define kQ3ViewerClipboardFormat "QuickDraw 3D Metafile"

WM_NOTIFY Data Structures 2

typedef struct TQ3ViewerDropFiles {
NMHDR nmhdr;

 HANDLE hDrop;
} TQ3ViewerDropFiles;

typedef struct TQ3ViewerSetView {
NMHDR nmhdr;
TQ3ViewerCameraView view;

} TQ3ViewerSetView;

typedef struct TQ3ViewerSetViewNumber {
NMHDR nmhdr;
unsigned long number;

} TQ3ViewerSetViewNumber;

C H A P T E R 2

3D Viewer

158 3D Viewer Reference

typedef struct TQ3ViewerButtonSet {
NMHDR nmhdr;
unsigned long button;

} TQ3ViewerButtonSet;

WM_NOTIFY Definitions 2

#define Q3VNM_DROPFILES 0x5000
#define Q3VNM_CANUNDO 0x5001
#define Q3VNM_DRAWCOMPLETE 0x5002
#define Q3VNM_SETVIEW 0x5003
#define Q3VNM_SETVIEWNUMBER 0x5004
#define Q3VNM_BUTTONSET 0x5005
#define Q3VNM_BADGEHIT 0x5006

Functions 2

The functions described in this section are used only in the Win32 Windows
environment.

Q3WinViewerGetWindow 2

You can use the Q3WinViewerGetWindow function to obtain the window for a
Windows viewer.

HWND Q3WinViewerGetWindow (TQ3ViewerObject viewer);

viewer A viewer object.

DESCRIPTION

The Q3WinViewerGetWindow function returns a handle to the window for viewer.

C H A P T E R 2

3D Viewer

3D Viewer Reference 159

Q3WinViewerSetWindow 2

You can use the Q3WinViewerSetWindow function to set the window for a
Windows viewer.

TQ3Status Q3WinViewerSetWindow (
TQ3ViewerObject viewer,
HWND window);

viewer A viewer object.

window A window.

DESCRIPTION

The Q3WinViewerSetWindow function sets the window for the viewer object viewer
to window.

Q3WinViewerGetViewer 2

You can use the Q3WinViewerGetViewer function to get the viewer for a given
window.

TQ3ViewerObject Q3WinViewerGetViewer (HWND theWindow);

theWindow A window handle.

DESCRIPTION

The Q3WinViewerGetViewer function returns the viewer for the window
designated by theWindow.

C H A P T E R 2

3D Viewer

160 3D Viewer Reference

Q3WinViewerGetBitmap 2

You can use the Q3WinViewerGetBitmap function to obtain a bitmap of the
contents of a Windows viewer’s window.

HBITMAP Q3WinViewerGetBitmap (TQ3ViewerObject viewer);

viewer A viewer object.

DESCRIPTION

The Q3WinViewerGetBitmap function returns a bitmap of the contents of the
window for viewer. The caller should dispose of the bitmap.

Q3WinViewerGetControlStrip 2

You can use the Q3WinViewerGetControlStrip function to obtain the control strip
window for a given viewer.

HWND Q3WinViewerGetControlStrip (TQ3ViewerObject viewer);

viewer A viewer object.

DESCRIPTION

The Q3WinViewerGetControlStrip function returns a handle to the control strip
window for the viewer designated by viewer.

Application-Defined Routine 2

This section describes a routine your application might need to define when
using the 3D Viewer.

C H A P T E R 2

3D Viewer

3D Viewer Reference 161

TQ3ViewerDrawingCallbackMethod 2

You can define a drawing completion callback routine to perform any necessary
post-drawing operations.

MAC OS VERSION

typedef OSErr (*TQ3ViewerDrawingCallbackMethod) (
TQ3ViewerObject theViewer,
const void *data);

WINDOWS VERSION

typedef TQ3Status (*TQ3ViewerDrawingCallbackMethod) (
TQ3ViewerObject theViewer,
const void *data);

PARAMETERS

theViewer A viewer object

data A pointer to an application-defined block of data. Your
application passes this pointer to the
Q3ViewerSetDrawingCallbackMethod function when installing the
drawing completion callback routine.

DESCRIPTION

Your drawing completion callback routine is called each time the 3D Viewer
completes a drawing operation requested by a call to Q3ViewerDraw,
Q3ViewerDrawContent, or Q3ViewerDrawControlStrip for the viewer object
specified by the theViewer parameter.

You install a drawing completion callback routine by calling the
Q3ViewerSetDrawingCallbackMethod function.

C H A P T E R 2

3D Viewer

162 3D Viewer Reference

About QuickDraw 3D Objects 163

C H A P T E R 3

QuickDraw 3D Objects 3Figure 3-0
Listing 3-0
Table 3-0

This chapter describes QuickDraw 3D objects, which occupy the root level of
the QuickDraw 3D class hierarchy. It also describes shared objects and the basic
functions you can use to manage QuickDraw 3D objects and shared objects and
to define custom objects.

You should read this chapter for a basic understanding of the QuickDraw 3D
class hierarchy. You should also read this chapter if you want to learn how to
define custom objects, such as custom attributes.

This chapter begins by describing the QuickDraw 3D class hierarchy. The
section “Using QuickDraw 3D Objects,” beginning on page 175 provides source
code examples illustrating how to determine the type of an object and how to
define an object metahandler. The section “QuickDraw 3D Objects Reference,”
beginning on page 178 describes the most basic routines associated with the
QuickDraw 3D class hierarchy. These routines allow you to manage objects and
shared objects. The section “Creating Custom Object Subclasses,” beginning on
page 194 tells you how you can extend the QuickDraw 3D object hierarchy by
creating your own classes and objects.

About QuickDraw 3D Objects 3

QuickDraw 3D is object oriented in the sense that many of QuickDraw 3D’s
capabilities (introduced in the previous sections) are accessed by creating and
manipulating QuickDraw 3D objects. A QuickDraw 3D object is an instance of
a QuickDraw 3D class, which defines a data structure and a behavior for
objects in the class. The behavior of a QuickDraw 3D object is determined by
the set of methods associated with the object’s class. In other words, a
QuickDraw 3D object is a set of data defining the specific characteristics of the
object and a set of methods defining the behaviors of the object.

C H A P T E R 3

QuickDraw 3D Objects

164 About QuickDraw 3D Objects

Note
Currently, only C language interfaces are available for
creating and manipulating QuickDraw 3D objects. ◆

In keeping with QuickDraw 3D’s object orientation, QuickDraw 3D objects are
opaque (or private): the structure of the object’s data and the implementation of
the object’s methods are not publicly defined. QuickDraw 3D provides routines
that you can use to modify some of an object’s private data or to have an object
act upon itself using a class method.

The QuickDraw 3D Class Hierarchy 3

All QuickDraw 3D classes are arranged in the QuickDraw 3D class hierarchy, a
hierarchical structure that provides for inheritance and overriding of class data
and methods. Figure 3-1 illustrates the top levels of the QuickDraw 3D class
hierarchy.

Note
Figure 3-1 does not show the entire QuickDraw 3D class
hierarchy. ◆

C H A P T E R 3

QuickDraw 3D Objects

About QuickDraw 3D Objects 165

Figure 3-1 The top levels of the QuickDraw 3D class hierarchy

Any particular class in the QuickDraw 3D class hierarchy can be a parent class,
a child class, or both. A parent class is a class that is immediately above some
other class in the class hierarchy. A child class is a class that has a parent.
A child class that has no children is a leaf class.

A child class can either inherit or override the data and methods of its parent
class. By default, a child class inherits data and methods from its parent (that is,
the data and methods of the parent also apply to the child). Occasionally, the
child class overrides the data or methods of its parent (that is, it defines data or
methods to replace those of the parent class).

Object

Shared object

View object

Controller state object

Draw context object

File object

Geometry parts object

Reference object

Renderer object

Set object

Shape object

Storage object

String object

Texture object

Tracker object

Attribute

Window-point pick objects

Window-rectangle pick objects

Element object

Pick object

Attribute set

Geometry object

Group object

Camera object

Light object

Style object

Transform object

Shader object

Unknown object

C H A P T E R 3

QuickDraw 3D Objects

166 About QuickDraw 3D Objects

The following sections briefly describe the classes and subclasses of the
QuickDraw 3D class hierarchy. You can find complete information on these
classes in the remainder of this book.

QuickDraw 3D Objects 3

At the very top of the QuickDraw 3D class hierarchy is the common root of all
QuickDraw 3D objects, the class TQ3Object.

typedef struct TQ3ObjectPrivate *TQ3Object;

The TQ3Object class provides methods for all its members, including dispose,
duplicate, draw, and file I/O methods. For example, you dispose of any
QuickDraw 3D object by calling the function Q3Object_Dispose. Similarly, you
can duplicate any QuickDraw 3D object by calling Q3Object_Duplicate. It’s
important to understand that the methods defined at the root level of the
QuickDraw 3D class hierarchy may be applied to any object in the class
hierarchy, regardless of how far removed from the root level it may be. For
instance, if the variable mySpotLight contains a reference to a spot light, then the
code Q3Object_Dispose(mySpotLight) disposes of that light.

Note
Actually, using Q3Object_Dispose to dispose of a spot light
simply reduces the light’s reference count by 1. (This is
because a light is a type of shared object.) The light is not
disposed of until its reference count falls to 0. See
“Reference Counts” (page 171) for complete details on
reference counts. ◆

The methods defined for all QuickDraw 3D objects begin with the prefix
Q3Object. Here are the root level methods defined for all objects:

Q3Object_Dispose
Q3Object_Duplicate
Q3Object_Submit
Q3Object_IsDrawable
Q3Object_GetType
Q3Object_GetLeafType
Q3Object_IsType

C H A P T E R 3

QuickDraw 3D Objects

About QuickDraw 3D Objects 167

You’ll use the Q3Object_GetType, Q3Object_GetLeafType, and Q3Object_IsType
functions to determine the type or leaf type of an object. See “Determining the
Type of a QuickDraw 3D Object” (page 175) for further information about object
types and leaf types.

You’ll use the Q3Object_Submit function to submit a QuickDraw 3D object for
various operations. To submit an object is to make an object eligible for
rendering, picking, writing, or bounding box or sphere calculation. Submission
is always done in a loop, known as a submitting loop. For example, you submit
an object for rendering by calling the Q3Object_Submit function inside of a
submitting loop. See “Rendering a Model” (page 69) for complete information
on submitting loops.

QuickDraw 3D Object Subclasses 3

There are four subclasses of the TQ3Object class: shared objects, element objects,
view objects, and pick objects.

typedef TQ3Object TQ3ElementObject;
typedef TQ3Object TQ3PickObject;
typedef TQ3Object TQ3SharedObject;
typedef TQ3Object TQ3ViewObject;

An element object (or, more briefly, an element) is any QuickDraw 3D object
that can be part of a set. Elements are not shared and hence have no reference
count; they are always removed from memory whenever they are disposed of.
Element objects are stored in sets (objects of type TQ3SetObject), which
generally store such information as colors, positions, or application-defined
data.

A pick object (or, more briefly, a pick) is a QuickDraw 3D object that is used to
specify and return information related to picking (that is, selecting objects in a
model that are close to a specified geometric object). In general, you’ll use pick
objects to retrieve data about objects selected by the user in a view.

A shared object is a QuickDraw 3D object that may be referenced by many
objects or the application at the same time. For example, a particular renderer
can be associated with several views. Similarly, a single pixmap can be used as a
texture for several different objects in a model. The TQ3SharedObject class
overrides the dispose method of the TQ3Object class by using a reference count
to keep track of the number of times an object is being shared. When a shared
object is referred to by some other object (for example, when a renderer is

C H A P T E R 3

QuickDraw 3D Objects

168 About QuickDraw 3D Objects

associated with a view), the reference count is incremented, and whenever a
shared object is disposed of, the reference count is decremented. A shared object
is not removed from memory until its reference count falls to 0.

Note
For more information on reference counts, see “Reference
Counts” (page 171). ◆

A view object (or more briefly, a view) is a type of QuickDraw 3D object used
to collect state information that controls the appearance and position of objects
at the time of rendering. A view binds together geometric objects in a model
and other drawable QuickDraw 3D objects to produce a coherent image. A view
is essentially a collection of a single camera, a (possibly empty) group of lights,
a draw context, a renderer, styles, and attributes.

Shared Object Subclasses 3

There are many subclasses of the TQ3SharedObject class.

typedef TQ3SharedObject TQ3AttachmentObject;
typedef TQ3SharedObject TQ3ControllerStateObject;
typedef TQ3SharedObject TQ3DrawContextObject;
typedef TQ3SharedObject TQ3FileObject;
typedef TQ3SharedObject TQ3RendererObject;
typedef TQ3SharedObject TQ3SetObject;
typedef TQ3SharedObject TQ3ShapeObject;
typedef TQ3SharedObject TQ3ShapePartObject;
typedef TQ3SharedObject TQ3StorageObject;
typedef TQ3SharedObject TQ3StringObject;
typedef TQ3SharedObject TQ3TextureObject;
typedef TQ3SharedObject TQ3TrackerObject;
typedef TQ3SharedObject TQ3ViewHintsObject;

Attachment objects and texture objects are used in the QuickDraw 3D shading
architecture to provide shading in a model. See the chapter “Shader Objects” for
information about these types of objects.

Controller state objects and tracker objects are used to support user interaction
with the objects in a model. See the chapter “Pointing Device Manager” for
complete information about these types of objects.

C H A P T E R 3

QuickDraw 3D Objects

About QuickDraw 3D Objects 169

A draw context object (or more briefly, a draw context) is a QuickDraw 3D
object that maintains information specific to a particular window system or
drawing destination.

A file object (or, more briefly, a file) is used to access disk- or memory-based
data stored in a container. A file object serves as the interface between the
metafile and the storage object.

A renderer object (or, more briefly, a renderer) is used to render a model—that
is, to create an image from a view and a model. A renderer controls various
aspects of the model and the resulting image, such as the parts of objects that
are drawn (for example, only the edges or filled faces).

A set object (or, more briefly, a set) is a collection of zero or more elements, each
of which has both an element type and some associated element data. Sets may
contain only one element of a given element type.

A shape object (or, more briefly, a shape) is a type of QuickDraw 3D object that
affects what or how a renderer renders an object in a view. For example, a light
is a shape object because it affects the illumination of the objects in a model. See
“Shape Object Subclasses” (page 170) for a description of the available shapes.

A shape part object (or, more briefly, a shape part) is a distinguishable part of a
shape. For example, a mesh (which is a geometric object and hence a shape
object) can be distinguished into faces, edges, and vertices. When a user selects
some part of a mesh, you can call shape part routines to determine what part of
the mesh was selected. See the chapter “Pick Objects” for more information
about shape parts and mesh parts.

A storage object represents any piece of storage in a computer (for example, a
file on disk, an area of memory, or some data on the Clipboard).

A string object (or, more briefly, a string) is a QuickDraw 3D object that
contains a sequence of characters. Strings can be referenced multiple times to
maintain common descriptive information.

A view hints object (or, more briefly, a view hint) is a QuickDraw 3D object in
a metafile that gives hints about how to render a scene. You can use that
information to configure a view object, or you can choose to ignore it.

Set Object Subclasses 3

There is one subclass of the TQ3SetObject class, the attribute set.

typedef TQ3SetObject TQ3AttributeSet;

C H A P T E R 3

QuickDraw 3D Objects

170 About QuickDraw 3D Objects

Shape Object Subclasses 3

There are numerous subclasses of the TQ3ShapeObject class.

typedef TQ3ShapeObject TQ3CameraObject;
typedef TQ3ShapeObject TQ3GeometryObject;
typedef TQ3ShapeObject TQ3GroupObject;
typedef TQ3ShapeObject TQ3LightObject;
typedef TQ3ShapeObject TQ3ReferenceObject;
typedef TQ3ShapeObject TQ3ShaderObject;
typedef TQ3ShapeObject TQ3StyleObject;
typedef TQ3ShapeObject TQ3TransformObject;
typedef TQ3ShapeObject TQ3UnknownObject;

A camera object (or, more briefly, a camera) is used to define a point of view, a
range of visible objects, and a method of projection for generating a
two-dimensional image of those objects from a three-dimensional model.

A geometric object is a type of QuickDraw 3D object that describes a particular
kind of drawable shape, such as a triangle or a mesh. QuickDraw 3D defines
many types of primitive geometric objects. See the chapter “Geometric Objects”
for a complete description of the primitive geometric objects.

A group object (or, more briefly, a group) is a type of QuickDraw 3D object that
you can use to collect objects together into lists or hierarchical models.

A light object (or, more briefly, a light) is a type of QuickDraw 3D object that
you can use to provide illumination to the surfaces in a scene.

A reference object contains a reference to an object in a file object. Currently,
however, there are no functions provided by QuickDraw 3D that you can use to
create or manipulate reference objects.

Shader objects are used in the QuickDraw 3D shading architecture to provide
shading in a model. See the chapter “Shader Objects” for information about
these types of objects.

A style object (or more briefly, a style) is a type of QuickDraw 3D object that
determines some of the basic characteristics of the renderer used to render the
curves and surfaces in a scene.

A transform object (or, more briefly, a transform) is an object that you can use
to modify or transform the appearance or behavior of a QuickDraw 3D object.
You can use transforms to alter the coordinate system containing geometric
shapes, thereby permitting objects to be repositioned and reoriented in space.

C H A P T E R 3

QuickDraw 3D Objects

About QuickDraw 3D Objects 171

An unknown object is created when QuickDraw 3D encounters data it doesn’t
recognize while reading objects from a metafile. (This might happen, for
instance, if you application reads a metafile created by another application that
has defined a custom attribute or object type.) You cannot create an unknown
object explicitly, but QuickDraw 3D provides routines that you can use to look
at the contents of an unknown object.

Group Object Subclasses 3

There is only one subclass of the TQ3GroupObject class: the display group object.

typedef TQ3GroupObject TQ3DisplayGroupObject;

A display group is a group of objects that are drawable.

Shader Object Subclasses 3

There are several subclasses of the TQ3ShaderObject class.

typedef TQ3ShapeObject TQ3SurfaceShaderObject;
typedef TQ3ShapeObject TQ3IlluminationShaderObject;

Surface shader objects and illumination shader objects are used in the
QuickDraw 3D shading architecture to provide shading in a model. See the
chapter “Shader Objects” for information about these types of objects.

Reference Counts 3

As mentioned in “QuickDraw 3D Object Subclasses” (page 167), a shared object
is a QuickDraw 3D object that can be shared by two or more other
QuickDraw 3D objects. QuickDraw 3D maintains an internal reference count for
each shared object to keep track of the number of times an object is being
shared. Certain operations on the object increase the reference count, and other
operations decrease it. For example, when you first create a spot light
(by calling Q3SpotLight_New), its reference count is set to 1. If you later share that
light (for example, by adding it to a group object), the reference count of the
light is increased to indicate the additional link to the light. Figure 3-2 illustrates
a series of operations involving a spot light and a group.

In step 1, an application creates a new spot light by calling Q3SpotLight_New. As
indicated above, the reference count of the new spot light is set to 1. Then, in

C H A P T E R 3

QuickDraw 3D Objects

172 About QuickDraw 3D Objects

step 2, the application creates a new light group. A light group is a shared object
and hence also has a reference count, which is set to 1 upon its creation. In step
3, the application adds the spot light to the light group by calling
Q3Group_AddObject. The reference count of the spot light is therefore increased to
2, because both the application and the light group possess references to the
spot light. Note that the reference count of the group remains at 1.

In general, when you create a light and add it to a group, you can dispose of
your application’s reference to the light by calling Q3Object_Dispose. When this
is done, in step 4, the reference count of the light is decremented to 1. The only
remaining reference to the light is maintained by the group, not by the
application. Finally, when you have finished using the light, you can dispose of
the group object by calling Q3Object_Dispose once again (step 5). When that
happens, the objects in the group are disposed of and the group itself is
disposed of. The reference counts of both the light and the group fall to 0, in
which case they are both removed from memory.

If the application had not explicitly disposed of the spot light (as happened in
step 4), the reference count of the light would have remained at 2 until the
group was disposed of (step 5), at which time it would have decreased to 1. The
application could then call Q3Object_Dispose to decrease the reference count to
0, thereby disposing of the light object. In effect, _New and _Dispose calls define
the scope of an object inside your application. You cannot operate on the object
until you’ve created it using a _New call, and you cannot in general operate on
an object after you’ve disposed of it by calling Q3Object_Dispose.

C H A P T E R 3

QuickDraw 3D Objects

About QuickDraw 3D Objects 173

Figure 3-2 Incrementing and decrementing reference counts

Application Application

ApplicationApplication

Application

1)	 Create a new light

Q3SpotLight_New

2)	 Create a new group

Group
referenceCount = 1

Group
referenceCount = 1

3)	 Add spot light to group

Group
referenceCount = 1

Q3Object_Dispose

Group
referenceCount = 0

Spot light
referenceCount = 0
Q3Object_Dispose

Spot light
referenceCount = 1

Spot light
referenceCount = 1

Q3Object_Dispose

Spot light
referenceCount = 1

Q3LightGroup_New

5)	 Once done with the group, dispose of it

4)	 Dispose of application’s reference to the light

Spot light
referenceCount = 2
Q3Group_AddObject

C H A P T E R 3

QuickDraw 3D Objects

174 About QuickDraw 3D Objects

Certain operations increase the reference counts of shared objects, including

■ creating a new shared object (the reference count is set to 1)

■ getting a reference to a shared object

■ adding a shared object to a group

■ setting the shared object located at a certain position in a group

Naturally, the inverse operations decrease the reference counts of shared
objects, including

■ disposing of a shared object

■ removing a shared object from a group

■ disposing of a group that contains a shared object

■ replacing a shared object in any object (for example, a group or a view) with
another shared object

For example, the following code gets and disposes of the camera object
associated with a view:

TQ3ViewObject view;
TQ3CameraObject camera;

Q3View_GetCamera(view, &camera);
Q3Object_Dispose(camera);
camera = NULL;

The following code shows how a reference count is increased when obtaining
an object at a given position in a group. Note that the transform which
Q3Group_GetPositionObject returned from the group must be disposed of:

TQ3GroupObject group;
TQ3GroupPosition position;
TQ3TransformObject transform;
TQ3Matrix4x4 matrix;

Q3Group_GetPositionObject(group, position, &transform);
Q3Transform_GetMatrix(transform, &matrix);
Q3Object_Dispose(transform);
transform = NULL;

C H A P T E R 3

QuickDraw 3D Objects

Using QuickDraw 3D Objects 175

If you do not directly or indirectly balance every operation that increments an
object’s reference count with an operation that decrements the reference count,
you risk creating memory leaks. See the Listing 1-6 (page 63) for examples of
how to balance an object’s reference count.

You need to directly dispose only of an object reference that your application
receives when it creates a QuickDraw 3D object. Any other reference to the
object must be indirectly disposed of. For example, suppose that you create a
translate transform object and then add it to a group twice, as follows:

myTransform = Q3TranslateTransform_New(&myVector3D);
Q3Group_AddObject(myGroup, myTransform);
Q3Group_AddObject(myGroup, myTransform);

In this example, the reference count is incremented each time you call
Q3Group_AddObject. However, you should dispose of the transform object only
once, because the transform’s reference count is decremented twice when you
dispose of the group.

Using QuickDraw 3D Objects 3

This section describes the most basic ways of using QuickDraw 3D objects. In
particular, it tells you how you can

■ determine the type of a QuickDraw 3D object

■ define a simple object metahandler to support a custom object type

Determining the Type of a QuickDraw 3D Object 3

Every class in the QuickDraw 3D class hierarchy has a unique type identifier
associated with it. For example, the triangle class has the type identifier
kQ3GeometryTypeTriangle. For objects you create, of course, you’ll generally
know the type of the object. In some instances, however, you might need to
determine an object’s type, so that you know what methods apply to the object.
For example, when you read an object from a file, you don’t usually know what
kind of object you’ve read.

The QuickDraw 3D class hierarchy supports _GetType methods at all levels of
the hierarchy. At the root level, the function Q3Object_GetType returns a constant

C H A P T E R 3

QuickDraw 3D Objects

176 Using QuickDraw 3D Objects

of the form kQ3ObjectTypeSubClass, where SubClass is replaced by the
appropriate subclass identifier.

For example, suppose you’ve read an object (which happens to be a triangle)
from a file and you want to determine what kind of object it is. You can call the
Q3Object_GetType function, which returns the value kQ3ObjectTypeShared. To
determine what kind of shared object it is, you can call the Q3Shared_GetType
function, which in this case returns the value kQ3SharedTypeShape. To determine
what kind of shape object it is, you can call the Q3Shape_GetType function, which
in this case returns the value kQ3ShapeTypeGeometry. Finally, you can determine
what kind of geometric object it is by calling Q3Geometry_GetType; in this case,
Q3Geometry_GetType returns the value kQ3GeometryTypeTriangle.

Instead of descending the class hierarchy in this way, you can also determine
the leaf type of an object by calling the Q3Object_GetLeafType function. (An
object’s leaf type is the identifier of a leaf class.) In this example, calling
Q3Object_GetLeafType returns the constant kQ3GeometryTypeTriangle .

You can also use the Q3Object_IsType function to determine if an object is of a
particular type.

Defining an Object Metahandler 3

QuickDraw 3D allows you to define object types in addition to those it provides
itself. For example, you can add a custom type of attribute so that you can
attach custom data to objects or parts of objects in a model. Similarly, you can
add custom types of geometric objects if those supplied by QuickDraw 3D are
not sufficient for your needs.

Custom objects use the following type definition:

typedef struct TQ3ObjectClassPrivate *TQ3ObjectClass;

To define a custom object type, you first define the structure of the data
associated with your custom object type. Then you must write an object
metahandler to define a set of object-handling methods. QuickDraw 3D calls
those methods at certain times to handle operations on your custom object. For
example, when someone calls Q3Object_Submit to draw an object of your custom
type, QuickDraw 3D must call your object’s drawing method.

C H A P T E R 3

QuickDraw 3D Objects

Using QuickDraw 3D Objects 177

How Your Metahandler is Called 3

When you pass a metahandler to QuickDraw 3D, it is called multiple times to
build method tables and is then thrown away. You are guaranteed that your
metahandler will never be called again after the call that was passed to it
returns.

Your metahandler should contain a switch on the method type passed to it and
should return the corresponding method as a TQ3XFunctionPointer:

typedef void (QD3D_CALLBACK *TQ3XFunctionPointer)(void);

typedef unsigned long TQ3XMethodType;

typedef TQ3XFunctionPointer (QD3D_CALLBACK *TQ3XMetaHandler)
(TQ3XMethodType methodType);

For a description of the QD3D_CALLBACK macro, see the QD3D.h header file.

IMPORTANT

A metahandler must always return a value. If it is passed a
method type that it does not understand, it must return a
value of NULL. ▲

Defining Custom Elements 3

You can define custom element types if you’d like to support types of attributes
other than those provided by QuickDraw 3D. You define custom attributes as
custom elements because attributes are almost always contained in an attribute
set, of type TQ3AttributeSet. More generally, you can define custom element
types that can be included in a set of type TQ3SetObject.

See “Creating Custom Object Subclasses,” beginning on page 194 for complete
details of the methods you need to define to support a custom element type.

C H A P T E R 3

QuickDraw 3D Objects

178 QuickDraw 3D Objects Reference

QuickDraw 3D Objects Reference 3

This section describes the routines provided by QuickDraw 3D for managing
objects and shared objects. This section also describes the methods your
application can define to allow QuickDraw 3D to work with custom objects.

QuickDraw 3D Objects Routines 3

This section describes the routines you can use with QuickDraw 3D objects in
general and with shared objects.

Managing Objects 3

QuickDraw 3D provides several routines that you can use to operate on any
QuickDraw 3D object. The top level of the QuickDraw 3D class hierarchy
(TQ3Object) supports dispose, duplicate, draw, and file I/O methods.

Q3Object_Submit 3

You can use the Q3Object_Submit function to submit a QuickDraw 3D object for
drawing, picking, bounding, or writing.

TQ3Status Q3Object_Submit (TQ3Object object, TQ3ViewObject view);

object A QuickDraw 3D object.

view A view.

DESCRIPTION

The Q3Object_Submit function submits the QuickDraw 3D object specified by
the object parameter for drawing, picking, bounding, or writing in the view
specified by the view parameter.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 179

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorOutOfMemory
kQ3ErrorBeginWriteNotCalled
kQ3ErrorNoWriteMethods
kQ3ErrorEndOfFile

Q3Object_Dispose 3

You can use the Q3Object_Dispose function to dispose of a QuickDraw 3D
object.

TQ3Status Q3Object_Dispose (TQ3Object object);

object A QuickDraw 3D object.

DESCRIPTION

The Q3Object_Dispose function disposes of the QuickDraw 3D object specified
by the object parameter. If the specified object is not a shared object,
QuickDraw 3D disposes of any memory occupied by that object. If the specified
object is a shared object, QuickDraw 3D reduces by 1 the reference count
associated with that object. When the reference count is reduced to 0,
Q3Object_Dispose disposes of the memory occupied by the object.

In general, you need to call Q3Object_Dispose for any objects returned by a Get
call (for example, Q3View_GetDrawContext). Failure to call Q3Object_Dispose on
such objects will result in a memory leak.

ERROR

kQ3ErrorInvalidObjectParameter

C H A P T E R 3

QuickDraw 3D Objects

180 QuickDraw 3D Objects Reference

Q3Object_Duplicate 3

You can use the Q3Object_Duplicate function to duplicate a QuickDraw 3D
object.

TQ3Object Q3Object_Duplicate (TQ3Object object);

object A QuickDraw 3D object.

DESCRIPTION

The Q3Object_Duplicate function returns, as its function result, a QuickDraw 3D
object that is an exact duplicate of the QuickDraw 3D object specified by the
object parameter. If the new object is a shared object, its reference count is set to
1.

IMPORTANT

The Q3Object_Duplicate function cannot duplicate
DrawContext or View objects. These object classes contain
resources created by the application that belong to the
window system. Because the QuickDraw 3D library cannot
duplicate windows or colormaps, it cannot duplicate
objects containing them. ▲

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorOutOfMemory

Q3Object_IsDrawable 3

You can use the Q3Object_IsDrawable function to determine whether a
QuickDraw 3D object is drawable.

TQ3Boolean Q3Object_IsDrawable (TQ3Object object);

object A QuickDraw 3D object.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 181

DESCRIPTION

The Q3Object_IsDrawable function returns, as its function result, a Boolean value
that indicates whether the QuickDraw 3D object specified by the object
parameter is drawable (kQ3True) or not (kQ3False).

ERROR

kQ3ErrorInvalidObjectParameter

Q3Object_IsWritable 3

You can use the Q3Object_IsWritable function to determine whether a
QuickDraw 3D object is writable.

TQ3Boolean Q3Object_IsWritable (TQ3Object object);

object A QuickDraw 3D object.

DESCRIPTION

The Q3Object_IsWritable function returns, as its function result, a Boolean value
that indicates whether the QuickDraw 3D object specified by the object
parameter can be written to a file object (kQ3True) or not (kQ3False).

ERROR

kQ3ErrorInvalidObjectParameter

Determining Object Types 3

QuickDraw 3D provides routines that you can use to determine the type and
name of a QuickDraw 3D object. Object types are declared as follows:

typedef long TQ3ObjectType;

C H A P T E R 3

QuickDraw 3D Objects

182 QuickDraw 3D Objects Reference

Q3Object_GetType 3

You can use the Q3Object_GetType function to get the type of a core
QuickDraw 3D object.

TQ3ObjectType Q3Object_GetType (TQ3Object object);

object A QuickDraw 3D object.

DESCRIPTION

The Q3Object_GetType function returns, as its function result, the type identifier
of the QuickDraw 3D object specified by the object parameter. If successful,
Q3Object_GetType returns one of these constants:

kQ3ObjectTypeElement
kQ3ObjectTypePick
kQ3ObjectTypeShared
kQ3ObjectTypeView

If the type cannot be determined or is invalid, Q3Object_GetType returns the
value kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorNULLParameter
kQ3ErrorInvalidObjectParameter

Q3Object_GetLeafType 3

You can use the Q3Object_GetLeafType function to get the leaf type of a
QuickDraw 3D object.

TQ3ObjectType Q3Object_GetLeafType (TQ3Object object);

object A QuickDraw 3D object.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 183

DESCRIPTION

The Q3Object_GetLeafType function returns, as its function result, the leaf type
identifier of the QuickDraw 3D object specified in the object parameter. You
should call this function only when the specified object is a leaf object (for
example, when you’ve read the object in from a file). If the leaf type cannot be
determined or is invalid, Q3Object_GetLeafType returns the value
kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorNULLParameter
kQ3ErrorInvalidObjectParameter

Q3Object_IsType 3

You can use the Q3Object_IsType function to determine whether a
QuickDraw 3D object is of a specific type.

TQ3Boolean Q3Object_IsType (
TQ3Object object,
TQ3ObjectType type);

object A QuickDraw 3D object.

type A type identifier.

DESCRIPTION

The Q3Object_IsType function returns a Boolean value that indicates whether
the QuickDraw 3D object specified by the object parameter is of the type
specified by the type parameter (kQ3True) or is of some other type (kQ3False).
You can pass any valid QuickDraw 3D type identifier in the type parameter (not
just those that are returned by the Q3Object_GetType function). For example, you
can use Q3Object_IsType like this:

if (Q3Object_IsType(
object,
kQ3ShapeType_Geometry) {

...

C H A P T E R 3

QuickDraw 3D Objects

184 QuickDraw 3D Objects Reference

} else if (Q3Object_IsType(
object,
kQ3SharedType_File)) {

...

ERRORS

kQ3ErrorNULLParameter
kQ3ErrorInvalidObjectParameter

Analyzing the Object Hierarchy 3

QuickDraw 3D provides routines to help you analyze its object hierarchy.

An example of using object hierarchy analysis functions is given in Listing 3-1.
This example recursively prints all the subclasses for a particular class to
stdout, assuming that an ANSI C support library is available. If you wanted to
print out the entire class hierarchy for QuickDraw 3D, you could use this
routine in the way shown at the end of the example.

Listing 3-1 Example of hierarchy analysis

void PrintClassAndRecurse(
TQ3ObjectType objectClassType,
int depth)

{
TQ3SubClassData subClassData;
TQ3ObjectClassNameString objectClassString;
unsigned long index;

depth++;
if (objectClassType != kQ3ObjectTypeInvalid) {

Q3ObjectHierarchy_GetStringFromType(objectClassType,
objectClassString);

for (index = 0; index < depth; index++) {
printf(" ");

}

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 185

printf("%s\n", objectClassString);

Q3ObjectHierarchy_GetSubClassData(objectClassType, &subClassData);

for (index = 0; index < subClassData.numClasses; index++) {
/* recurse on each subclass type */
PrintClassAndRecurse(subClassData.classTypes[index], depth);

}

Q3ObjectHierarchy_EmptySubClassData(&subClassData);
}
depth--;

}

/*
* The class "Object" is in fact a virtual base class -- it is not
* possible to instantiate this class. At the root of the hierarchy
* are four classes: View, Pick, Element, and Shared. So we can go from
* each of these classes, instead of going from "Object".
*/

printf("Root Object (virtual metaclass)\n");
PrintClassAndRecurse(kQ3ObjectTypeView, 0);
PrintClassAndRecurse(kQ3ObjectTypeElement, 0);
PrintClassAndRecurse(kQ3ObjectTypePick, 0);
PrintClassAndRecurse(kQ3ObjectTypeShared, 0);

Q3ObjectHierarchy_GetTypeFromString 3

You can use the Q3ObjectHierarchy_GetTypeFromString function to obtain the
class type for a given class name.

typedef char TQ3ObjectClassNameString[kQ3StringMaximumLength];

kQ3StringMaximumLength = 1024

TQ3Status Q3ObjectHierarchy_GetTypeFromString(
TQ3ObjectClassNameString objectClassString,
TQ3ObjectType *objectClassType);

C H A P T E R 3

QuickDraw 3D Objects

186 QuickDraw 3D Objects Reference

objectClassString
A class name as a C string.

objectClassType
On return, the class type.

DESCRIPTION

The Q3ObjectHierarchy_GetTypeFromString function returns, in the
objectClassType parameter, the class type associated with the name in the
objectClassString parameter. If objectClassString is invalid, the routine will
return kQ3Failure.

Q3ObjectHierarchy_GetStringFromType 3

You can use the Q3ObjectHierarchy_GetStringFromType function to obtain the
class name for a given class type.

TQ3Status Q3ObjectHierarchy_GetStringFromType(
TQ3ObjectType objectClassType,
TQ3ObjectClassNameString objectClassString);

objectClassType
A class type.

objectClassString
On return, a class name as a C string.

DESCRIPTION

The Q3ObjectHierarchy_GetStringFromType function returns, in the
objectClassString parameter, the class name associated with the type in the
objectClassType parameter. If objectClassType is invalid, the routine will return
kQ3Failure.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 187

Q3ObjectHierarchy_IsTypeRegistered 3

You can use the Q3ObjectHierarchy_IsTypeRegistered function to determine if a
class type is registered.

TQ3Boolean Q3ObjectHierarchy_IsTypeRegistered(
TQ3ObjectType objectClassType);

objectClassType
A class type.

DESCRIPTION

The Q3ObjectHierarchy_IsTypeRegistered function returns TRUE if the class type
specified by objectClassType is registered and FALSE otherwise.

Q3ObjectHierarchy_IsNameRegistered 3

You can use the Q3ObjectHierarchy_IsNameRegistered function to determine if a
class name is registered.

TQ3Boolean Q3ObjectHierarchy_IsNameRegistered(
const char *objectClassName);

objectClassName
A class name as a C string.

DESCRIPTION

The Q3ObjectHierarchy_IsNameRegistered function returns TRUE if the class name
specified by objectClassName is registered and FALSE otherwise.

C H A P T E R 3

QuickDraw 3D Objects

188 QuickDraw 3D Objects Reference

Q3ObjectHierarchy_GetSubClassData 3

You can use the Q3ObjectHierarchy_GetSubClassData function to obtain the
number and class types of all the subclasses immediately below a class in the
QuickDraw 3D class hierarchy.

typedef struct TQ3SubClassData {
unsigned long numClasses; /* the # of subclass types found */
TQ3ObjectType *classTypes; /* an array of class types */

} TQ3SubClassData;

TQ3Status Q3ObjectHierarchy_GetSubClassData(
TQ3ObjectType objectClassType,
TQ3SubClassData *subClassData);

objectClassType
An object class type.

subClassData Pointer to a TQ3SubClassData struct containing the number and
class types of the subclasses below objectClassType.

DESCRIPTION

The Q3ObjectHierarchy_GetSubClassData function returns, in the subClassData
parameter, the number and class types of all the subclasses immediately below
the class designated by objectClassType.

This call must be followed by a call to Q3ObjectHierarchy_EmptySubClassData to
avoid memory leaks.

Q3ObjectHierarchy_EmptySubClassData 3

You must use the Q3ObjectHierarchy_EmptySubClassData function to free
memory allocated by Q3ObjectHierarchy_GetSubClassData.

TQ3Status Q3ObjectHierarchy_EmptySubClassData(
TQ3SubClassData *subClassData);

subClassData Pointer to a TQ3SubClassData struct.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 189

DESCRIPTION

The Q3ObjectHierarchy_EmptySubClassData function frees memory allocated for
subClassData by a previous call to Q3ObjectHierarchy_GetSubClassData.

Managing Shared Objects 3

QuickDraw 3D provides routines that you can use to get a reference to a shared
object or to get the type of a shared object.

Q3Shared_GetReference 3

You can use the Q3Shared_GetReference function to get a reference to a shared
object.

TQ3SharedObject Q3Shared_GetReference (TQ3SharedObject sharedObject);

sharedObject A shared object.

DESCRIPTION

The Q3Shared_GetReference function returns, as its function result, a reference to
the shared object specified by the sharedObject parameter. You can use this
function to prevent QuickDraw 3D from deleting an object twice.

ERRORS

kQ3ErrorNULLParameter
kQ3ErrorInvalidObjectParameter

Q3Shared_IsReferenced 3

You can use the Q3Shared_IsReferenced function to determine whether a shared
object has more than one reference to it.

TQ3Boolean Q3Shared_IsReferenced (TQ3SharedObject sharedObject);

C H A P T E R 3

QuickDraw 3D Objects

190 QuickDraw 3D Objects Reference

sharedObject A shared object.

DESCRIPTION

The Q3Shared_IsReferenced function returns, as its function result, a Boolean
value that indicates whether the shared object specified by the sharedObject
parameter has more than one reference to it (kQ3True) or has only one reference
to it (kQ3False).

The Q3Shared_IsReferenced function is intended for use by an application or
other code that needs to determine whether it has the only existing reference to
a shared object.

SPECIAL CONSIDERATIONS

You should never call Q3Shared_IsReferenced as follows:

while (Q3Shared_IsReferenced(mySharedObject)) {
Q3Object_Dispose(mySharedObject);

}

This code will cause your application to crash.

ERRORS

kQ3ErrorNULLParameter
kQ3ErrorInvalidObjectParameter

Q3Shared_GetType 3

You can use the Q3Shared_GetType function to get the type of a shared object.

TQ3ObjectType Q3Shared_GetType (TQ3SharedObject sharedObject);

sharedObject A shared object.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 191

DESCRIPTION

The Q3Shared_GetType function returns, as its function result, the type identifier
of the shared object specified by the sharedObject parameter. If successful,
Q3Shared_GetType returns one of these constants:

kQ3SharedTypeAttachment
kQ3SharedTypeControllerState
kQ3SharedTypeDrawContext
kQ3SharedTypeFile
kQ3SharedTypeReference
kQ3SharedTypeRenderer
kQ3SharedTypeSet
kQ3SharedTypeShape
kQ3SharedTypeShapePart
kQ3SharedTypeStorage
kQ3SharedTypeString
kQ3SharedTypeTexture
kQ3SharedTypeTracker
kQ3SharedTypeViewHints

If the type cannot be determined or is invalid, Q3Shared_GetType returns the
value kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorNULLParameter
kQ3ErrorInvalidObjectParameter

Q3Shared_GetEditIndex 3

You can use the Q3Shared_GetEditIndex function to get the edit index for a
shared object.

unsigned long Q3Shared_GetEditIndex (TQ3SharedObject sharedObject);

sharedObject A shared object.

C H A P T E R 3

QuickDraw 3D Objects

192 QuickDraw 3D Objects Reference

DESCRIPTION

The Q3Shared_GetEditIndex function returns, as its function result, the current
edit index of the shared object specified by the sharedObject parameter. An edit
index is a unique number associated with a shared object that changes each
time the object is edited. You can use the edit index to determine whether an
object you are caching has changed since the object was cached, using code such
as the following:

struct -> editIndex = Q3Shared_GetEditIndex(foo);
struct -> object = Q3Shared_GetReference(foo);

Later you can determine if the object has been edited:

if (struct->editIndex !=
Q3Shared_GetEditIndex(struct->object)) {

/* Has been edited -- update or re-create caches. */
} else {

/* Not edited */
}

SEE ALSO

Use the Q3Shared_Edited function to manually change an object’s edit index.

ERRORS

kQ3ErrorNULLParameter
kQ3ErrorInvalidObjectParameter
kQ3ErrorInvalidObjectType

Q3Shared_Edited 3

You can use the Q3Shared_Edited function to change a shared object’s edit index.

TQ3Status Q3Shared_Edited (TQ3SharedObject sharedObject);

sharedObject A shared object.

C H A P T E R 3

QuickDraw 3D Objects

QuickDraw 3D Objects Reference 193

DESCRIPTION

The Q3Shared_Edited function changes the edit index of the shared object
specified by the sharedObject parameter. This function is designed for use by
shared plug-in objects; those objects should call Q3Shared_Edited whenever their
private data changes.

ERRORS

kQ3ErrorNULLParameter
kQ3ErrorInvalidObjectParameter

Extending Shapes and Sets 3

The QuickDraw 3D shape and set routines are discussed in “Managing
Shapes,” beginning on page 81.

The Q3Shape_GetSet and Q3ShapeSetSet calls are implemented via the element
type kQ3ElementTypeSet:

typedef long TQ3ElementType;

#define kQ3ElementTypeNone 0
#define kQ3ElementTypeUnknown 32
#define kQ3ElementTypeSet 33
#define kQ3ElementTypeName 34
#define kQ3ElementTypeURL 35

The expression Q3Shape_GetSet(s,&o) is eqivalent to

Q3Shape_GetElement(s, kQ3ElementTypeSet, &o)

The expression Q3Shape_SetSet(s,o) is eqivalent to

Q3Shape_SetElement(s, kQ3ElementTypeSet, &o)

It is important to note that a Q3Shape_...Element... call does not create a set on a
shape and then add the element to it. The data is attached directly to the shape.
Therefore, it is possible for an element to exist on a shape without a set existing
on it as well.

 In your application, if you attach an element to a shape in this way:

C H A P T E R 3

QuickDraw 3D Objects

194 Creating Custom Object Subclasses

set = Q3Set_New();
Q3Set_AddElement(set, ElemType, &data);
Q3Shape_SetSet(shape, set);

You should retrieve it in the same manner:

Q3Shape_GetSet(shape, &set);
if (Q3Set_Contains(set, ElemType) == kQ3True) {

Q3Set_Get(set, ElemType, &data);
}

 Similarly, if you attach data to a shape with the call

Q3Shape_AddElement(shape, ElemType, &data);

 You should retrieve it in the same manner:

if (Q3Shape_ContainsElement(
set, ElemType) == kQ3True) {
Q3Shape_GetElement(set, ElemType, &data);

}

When attempting to find a particular element on a shape, you should first check
with Q3Shape_GetNextElementType or Q3Shape_GetElement. Then you should call

Q3Shape_GetSet(s, &set) or

Q3Shape_GetElement(s, kQ3ElementTypeSet, &set)).

Finally, you should call Q3Shape_GetElement(set, ...).

In terms of implementation, Q3Shape_SetSet and Q3Shape_GetSet should be used
only for sets of information that are shared among multiple shapes.
Q3Shape_AddElement, Q3Shape_GetElement, and similar calls should be used only
for elements that are unique to a particular shape.

Creating Custom Object Subclasses 3

In QuickDraw 3D 1.5 and later releases, the object system is extensible. This lets
you increase functionality in certain supported areas by adding plug-in

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 195

subclasses to QuickDraw 3D’s native classes. The three types of plug-ins
currently supported are:

■ elements and attributes

■ groups

■ renderers

Element and attribute plug-ins let you share custom elements and attributes
easily between applications. For example, you may wish to tag a geometry with
a string, using a 'name' attribute. Previously, you would publish the format of
the attribute or element, but this meant that each application had to
reimplement the code, leading to incompatibility between different versions of
custom attributes. With plug-ins, one set of elements and attributes can be
shared.

Plug-in groups add powerful new capabilities. There may be times when an
application needs to configure a group in a way that is not currently support by
QuickDraw 3D. For example, you may wish to store references to light objects
along with the geometric objects used to denote those lights, as in an interior
design package where you may want to keep a light object together with a
geometric model representing an angle-poised lamp. As the user manipulates
the position of the lamp, the application wants to have easy access to the
associated QuickDraw 3D light objects. For this purpose you can create a
custom group that adds the lights. Another kind of plug-in group would be a
level-of-detail group that changes the geometry of an object as the object
changes its distance from the camera.

Plug-in renderers are interesting for developers because it is likely that there
will be an end-user market for them as standalone products. Renderers require
complex software design, but a quantity of technical literature is available to
shorten your learning curve. Plug-in renderers are discussed in Chapter 11,
“Renderer Objects.”

You can create and use a subclass of any group, renderer, element, or attribute
object class in the QuickDraw 3D hierarchy. The methods and routines
described in this section let you integrate your own objects of these types with
the rest of QuickDraw 3D as fully-featured objects.

C H A P T E R 3

QuickDraw 3D Objects

196 Creating Custom Object Subclasses

Custom Class Metahandlers 3

Any plug-in class that you define must have a metahandler. The metahandler is
the method that the system uses to associate user-supplied routines with the
required methods that a class needs to implement.

When you give a metahandler to QuickDraw 3D, it is called multiple times to
build method tables and then is thrown away. You are guaranteed that your
metahandler will never be called again after a call that was passed a
metahandler returns.

Your metahandler should contain a switch on the methodType passed to it and
should return the corresponding method as a TQ3XFunctionPointer. All return
values from the metahandler are cast to this type.

typedef void (*TQ3FunctionPointer)(void);

IMPORTANT

A metahandler must always return a value. If it is passed a
methodType that it does not understand, it must return
NULL. ▲

Generally a metahandler is implemented as one case statement. Certain types of
classes, such as renderers, may have multiple levels of metahandlers.

TQ3MetaHandler 3

You must define an object metahandler to specify methods for custom object
types or custom element types.

typedef unsigned long TQ3XMethodType;

typedef TQ3FunctionPointer (*TQ3MetaHandler) (
TQ3MethodType methodType);

methodType A method type.

DESCRIPTION

Your TQ3MetaHandler function should return a function pointer (a value of type
TQ3FunctionPointer) to the custom method whose type is specified by the

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 197

methodType parameter. If you do not define a method of the specified type, your
metahandler should return the value NULL.

In general, your metahandler should contain a switch statement that branches
on the methodType parameter. QuickDraw 3D calls your metahandler repeatedly
to build a method table when you first pass it to a QuickDraw 3D routine. Once
QuickDraw 3D has finished building the method table, your metahandler is
never called again.

When any one of your custom methods is called, you can be certain that your
metahandler will not be called again.

EXAMPLE

This example of a metahandler is edited from the NameAttribute sample on the
QuickDraw 3D SDK. It is essentially a big switch statement that maps a method
type selector onto a function call for each implementation method. The default
return value is NULL, so if the metahandler is called with a method type that is
not recognised it returns NULL. All of the values are cast to type
TQ3XFunctionPointer, even when they are not function pointers. For example,
the return value for kQ3XMethodTypeObjectClassVersion is a long that has the
version of the plug-in packed into it.

TQ3XFunctionPointer NameAttribute_MetaHandler(
TQ3XMethodType methodType)

{
switch (methodType) {

case kQ3XMethodTypeObjectClassVersion:
return (TQ3XFunctionPointer)Q3_OBJECT_CLASS_VERSION(

majorVersion, minorVersion);
case kQ3XMethodTypeObjectTraverse:

return (TQ3XFunctionPointer) NameAttribute_Traverse;
case kQ3XMethodTypeObjectReadData:

return (TQ3XFunctionPointer) NameAttribute_ReadData;
case kQ3XMethodTypeElementCopyAdd:
case kQ3XMethodTypeElementCopyGet:
case kQ3XMethodTypeElementCopyDuplicate:

return (TQ3XFunctionPointer) NameAttribute_CopyAdd;
case kQ3XMethodTypeElementCopyReplace:

return (TQ3XFunctionPointer) NameAttribute_CopyReplace;
case kQ3XMethodTypeElementDelete:

return (TQ3XFunctionPointer) NameAttribute_Delete;

C H A P T E R 3

QuickDraw 3D Objects

198 Creating Custom Object Subclasses

default:
return (TQ3XFunctionPointer) NULL;

}
}

Object Types and Names 3

QuickDraw 3D adheres to various typing and naming schemes for its object
system:

■ For each unique TQX3ObjectClass, there is a unique TQ3ObjectType and a
unique object name embodied in a C string. No two object classes can have
the same type or the same name.

■ Elements and attributes have additional naming conventions, used in calls
that take parameters of type TQ3ElementType or TQ3AttributeType. The
TQ3ElementType and TQ3AttributeType values are used solely to access
attributes and elements from applications. An element class or attribute class
also has a TQ3ObjectType and object name, used when reading and writing
QuickDraw 3D metafiles.

■ For internal element and attribute types, the TQ3ElementType and its
corresponding TQ3ObjectType are generally different. For example, the
attribute kQ3AttributeTypeDiffuseColor has an element type of 5, an object
type of 'kdif', and an object name of DiffuseColor.

■ For external element and attribute types, the TQ3ElementType is currently
identical to the TQ3ObjectType.

Thus, each unique TQX3ObjectClass of type kQ3ObjectTypeElement has a unique
TQ3ElementType. However, each name space is unique only within itself; for
example, there can be a TQ3ObjectType and TQ3ElementType that are identical for
a particular object. You can even name an object identically to the object type, if
you wish. For example, you could register an element class with TQ3ObjectType
'foob', object name foob, and element type 'foob'.

The public object types in the unextended QuickDraw 3D hierarchy are shown
in Listing 3-2.

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 199

Listing 3-2 QuickDraw 3D object types

kQ3ObjectTypeInvalid 0
kQ3ObjectTypeView
kQ3ObjectTypeElement

kQ3ElementTypeAttribute
kQ3ObjectTypePick

kQ3PickTypeWindowPoint
kQ3PickTypeWindowRect

kQ3ObjectTypeShared
kQ3SharedTypeRenderer

kQ3RendererTypeWireFrame
kQ3RendererTypeGeneric
kQ3RendererTypeInteractive

kQ3SharedTypeShape
kQ3ShapeTypeGeometry

kQ3GeometryTypeBox
kQ3GeometryTypeGeneralPolygon
kQ3GeometryTypeLine
kQ3GeometryTypeMarker
kQ3GeometryTypePixmapMarker
kQ3GeometryTypeMesh
kQ3GeometryTypeNURBCurve
kQ3GeometryTypeNURBPatch
kQ3GeometryTypePoint
kQ3GeometryTypePolygon
kQ3GeometryTypePolyLine
kQ3GeometryTypeTriangle
kQ3GeometryTypeTriGrid
kQ3GeometryTypeCone
kQ3GeometryTypeCylinder
kQ3GeometryTypeDisk
kQ3GeometryTypeEllipse
kQ3GeometryTypeEllipsoid
kQ3GeometryTypePolyhedron
kQ3GeometryTypeTorus
kQ3GeometryTypeTriMesh

kQ3ShapeTypeShader
kQ3ShaderTypeSurface

kQ3SurfaceShaderTypeTexture
kQ3ShaderTypeIllumination

C H A P T E R 3

QuickDraw 3D Objects

200 Creating Custom Object Subclasses

kQ3IlluminationTypePhong
kQ3IlluminationTypeLambert
kQ3IlluminationTypeNULL

kQ3ShapeTypeStyle
kQ3StyleTypeBackfacing
kQ3StyleTypeInterpolation
kQ3StyleTypeFill
kQ3StyleTypePickID
kQ3StyleTypeReceiveShadows
kQ3StyleTypeHighlight
kQ3StyleTypeSubdivision
kQ3StyleTypeOrientation
kQ3StyleTypePickParts
kQ3StyleTypeZCompare
kQ3StyleTypeAntiAlias

kQ3ShapeTypeTransform
kQ3TransformTypeMatrix
kQ3TransformTypeScale
kQ3TransformTypeTranslate
kQ3TransformTypeRotate
kQ3TransformTypeRotateAboutPoint
kQ3TransformTypeRotateAboutAxis
kQ3TransformTypeQuaternion
kQ3TransformTypeReset

kQ3ShapeTypeLight
kQ3LightTypeAmbient
kQ3LightTypeDirectional
kQ3LightTypePoint
kQ3LightTypeSpot

kQ3ShapeTypeCamera
kQ3CameraTypeOrthographic
kQ3CameraTypeViewPlane
kQ3CameraTypeViewAngleAspect

kQ3ShapeTypeGroup
kQ3GroupTypeDisplay

kQ3DisplayGroupTypeOrdered
kQ3DisplayGroupTypeIOProxy

kQ3GroupTypeLight
kQ3GroupTypeInfo

kQ3ShapeTypeUnknown

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 201

kQ3UnknownTypeText
kQ3UnknownTypeBinary

kQ3ShapeTypeReference
kQ3SharedTypeSet

kQ3SetTypeAttribute
kQ3SharedTypeDrawContext

kQ3DrawContextTypePixmap
kQ3DrawContextTypeMacintosh
kQ3DrawContextTypeWin32DC
kQ3DrawContextTypeDDSurface

kQ3SharedTypeTexture
kQ3TextureTypePixmap
kQ3TextureTypeMipmap

kQ3SharedTypeFile
kQ3SharedTypeStorage

kQ3StorageTypeMemory
kQ3MemoryStorageTypeHandle

kQ3StorageTypeUnix
kQ3UnixStorageTypePath

kQ3StorageTypeMacintosh
kQ3MacintoshStorageTypeFSSpec

kQ3SharedTypeString
kQ3StringTypeCString

kQ3SharedTypeShapePart

kQ3ShapePartTypeMeshPart
kQ3MeshPartTypeMeshFacePart
kQ3MeshPartTypeMeshEdgePart
kQ3MeshPartTypeMeshVertexPart

kQ3SharedTypeControllerState
kQ3SharedTypeTracker
kQ3SharedTypeViewHints

kQ3ObjectTypeEndGroup

Data Structures Associated With a Class 3

An object class usually has several public data structures that the object system
makes available to other code. A class may also have private class data that it
maintains to track methods and other internal information. This private data, of

C H A P T E R 3

QuickDraw 3D Objects

202 Creating Custom Object Subclasses

methodsSize bytes, is passed to the Q3ObjectHierarchy_RegisterClass call. It
generally contains or references the public data in some way.

A class’s public data structure is passed in external _New and _Submit calls. The
data is passed around the system for rendering, I/O, and other functions. The
data structure, which is not specified in the Q3ObjectHierarchy_RegisterClass
call, should be published so other applications may use the object.

Registering a Custom Class 3

This section describes the routines that QuickDraw 3D provides to register and
unregister custom object classes.

When a plug-in custom type is registered, its type parameter is allocated
dynamically. Types are registered with Q3XObjectHierarchy_RegisterClass or
Q3XElementClass_Register, or with the Q3XAttributeClass_Register routine as
described in “Adding Application-Defined Attribute and Element Types,”
beginning on page 537. In the case of Q3XObjectHierarchy_RegisterClass, the
second parameter is the address of an object type—TQ3ObjectType,
TQ3ElementType or TQ3AttributeType, depending on the call used for
registration.

IMPORTANT

When your custom class uses a shared library, you should
coordinate class registration with library registration. For
more information, including sample code, see “Registering
a Shared Library,” beginning on page 207. ▲

Q3XObjectHierarchy_RegisterClass 3

You can use the Q3XObjectHierarchy_RegisterClass routine to register a class in
the QuickDraw 3D hierarchy.

 TQ3XObjectClass Q3XObjectHierarchy_RegisterClass(
TQ3ObjectType parentType,
TQ3ObjectType *objectType,
char *objectName,
TQ3MetaHandler metaHandler,

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 203

TQ3MetaHandler virtualMetaHandler,
unsigned long methodsSize,
unsigned long instanceSize);

parentType The object type for which you want to create a subclass. The
parent class must be currently registered with QuickDraw 3D.
Pass in kQ3ObjectTypeInvalid (value 0) to create a subclass of the
class TQ3Object.

objectType On return, the object type of your subclass. This value is used as
the binary type in a QuickDraw 3D metafiles. It is also returned
in _GetType and Q3Object_GetLeafType calls and may be used in
the Q3Object_IsType call.

objectName The object name of your subclass. This C string must be unique
among all registered classes in QuickDraw 3D, including parent
classes. This value is used as the ASCII type in QuickDraw 3D
metafiles.

metaHandler A metahandler used to retrieve object methods and nonvirtual
methods. This metahandler will be called repeatedly with a
selector of type TQ3MethodType to retrieve methods for this object
class. With some classes, this value will be NULL.

virtualMetaHandler
A metahandler used to retrieve virtual methods for your object
and any of its subclasses. If you are registering a leaf class only,
pass NULL. Classes that register as a subclass of this class will use
the methods supplied here unless overridden by the subclass
metahandlers. Methods that take a pointer to an object’s private
data should not be returned in this metahandler, as the methods
only apply to the data in this class.

methodsSize Indicates the size of any private class data in the class. If you are
registering a leaf class only, pass 0. If you have private class
data, a method of type kQ3MethodTypeObjectClassRegister must
be registered to initialize the private data structure. A pointer to
the structure is returned by Q3ObjectClass_GetClassPrivate or
Q3Object_GetClassPrivate. If methodsSize is 0, these calls always
return NULL.

instanceSize The size of private instance data for your object. If this class has
no instance data, this value may be 0. This would happen only if
the class is used just abstractly to be subclassed or exists solely

C H A P T E R 3

QuickDraw 3D Objects

204 Creating Custom Object Subclasses

as a type. If a nonzero value is passed in, a method of type
kQ3MethodTypeObjectNew must be registered to initialize the data.
A pointer to the structure is returned by Q3Object_GetPrivate. If
dataSize is 0, Q3Object_GetPrivate always returns NULL.

DESCRIPTION

The Q3XObjectHierarchy_RegisterClass routine registers the custom class
detailed by its parameters. The object type is assigned at run time and returned
to you in the objectType parameter. Often it is a good idea to store this type
locally in a static variable, since it is used by many object system routines.

The Q3XObjectHierarchy_RegisterClass routine returns NULL if the class could
not be registered.

SPECIAL CONSIDERATIONS

You should generally call Q3XObjectHierarchy_RegisterClass only in a function
that has been registered by the Q3XSharedLibrary_Register call. Register the
existence of this routine instead of calling it directly from a shared library
registration routine.

EXAMPLE

The following is an example of a registration function, taken from the plug-in
renderer sample in the QuickDraw 3D SDK. In this example the return value of
the Q3XObjectHierarchy_RegisterClass function is stored in the global variable
SRgRendererClass. To make this variable readily available to other code, it is
declared static to the file in which the routine is implemented.

TQ3Status SR_Register(
void)

{
/* Create/register the class */
SRgRendererClass =

Q3XObjectHierarchy_RegisterClass(
kQ3SharedTypeRenderer,
&SRgClassType,
"SampleRenderer",
SR_MetaHandler,

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 205

NULL,
0,
sizeof(TSRPrivate));

/* Make sure it worked */
if (SRgRendererClass == NULL) {

return (kQ3Failure);
}

return (kQ3Success);
}

Q3XObjectHierarchy_UnregisterClass 3

You can use the Q3XObjectHierarchy_UnregisterClass function to remove a
custom object class registered with Q3XObjectHierarchy_RegisterClass.

TQ3Status Q3XObjectHierarchy_UnregisterClass (
TQX3ObjectClass objectClass);

objectClass An object class.

DESCRIPTION

The Q3XObjectHierarchy_UnregisterClass function unregisters the custom object
class specified by the objectClass parameter.

You should dispose of all instances of the custom object class you want to
unregister before calling Q3XObjectHierarchy_UnregisterClass. If this is not
done, Q3XObjectHierarchy_UnregisterClass returns kQ3Failure and the class
remains registered.

You can also call Q3XObjectHierarchy_UnregisterClass to unregister a custom
attribute type previously registered by the function Q3AttributeClass_Register.

SPECIAL CONSIDERATIONS

The best way to unload the class is by unloading the shared library, using the
Q3XSharedLibrary_Unregister routine.

C H A P T E R 3

QuickDraw 3D Objects

206 Creating Custom Object Subclasses

Q3ElementClass_Register 3

You can use the Q3ElementClass_Register function to register an
application-defined element class.

TQ3ObjectClass Q3ElementClass_Register (
TQ3ElementType elementType,
const char *name,
unsigned long sizeOfElement,
TQ3MetaHandler metaHandler);

elementType An element type.

name A pointer to a null-terminated string containing the name of the
element’s creator and the name of the type of element being
registered.

sizeOfElement
The size of the data associated with the specified custom
element type.

metaHandler A pointer to an application-defined metahandler that
QuickDraw 3D calls to handle the new custom element type.

DESCRIPTION

The Q3ElementClass_Register function returns, as its function result, an object
class reference for a new custom element type having a type specified by the
elementType parameter and a name specified by the name parameter. The
metaHandler parameter is a pointer to the metahandler for your custom element
type. See “Defining an Object Metahandler,” beginning on page 176 for
information on writing a metahandler. If Q3ElementClass_Register cannot create
a new element type, it returns the value NULL.

The name parameter should be a pointer to null-terminated C string that
contains your (or your company’s) name and the name of the type of element
you are defining. Use the colon character (:) to delimit fields within this string.
The string should not contain any spaces or punctuation other than the colon
character, and it cannot end with a colon. Here are some examples of valid
creator names:

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 207

“MyCompany:SurfDraw:Wavelength”
“MyCompany:SurfWorks:VRModule:WaterTemperature”

The sizeOfElement parameter specifies the fixed size of the data associated with
your custom element type. If you wish to associate dynamically sized data with
your element type, put a pointer to a dynamically sized block of data into the
set and have your handler’s copy method duplicate the data. (In this case, you
would set the sizeOfElement parameter to sizeof(Ptr).) You also need to have
your handler’s dispose method deallocate any dynamically sized blocks.

Q3ElementType_GetElementSize 3

You can use the Q3ElementType_GetElementSize function to get the size of an
application-defined element type.

TQ3Status Q3ElementType_GetElementSize (
TQ3ElementType elementType,
unsigned long *sizeOfElement);

elementType An element type.

sizeOfElement
On exit, the number of bytes occupied by an element of the
specified element object class.

DESCRIPTION

The Q3ElementType_GetElementSize function returns, in the sizeOfElement
parameter, the number of bytes occupied by an element of the type specified by
the elementType parameter.

Registering a Shared Library 3

QuickDraw 3D provides routines to register and unregister a shared library.

These routines let you provide an entry point for Windows dynamic link
libraries or an initialization function for Mac OS shared libraries. Some libraries
need to be loaded in a specific order; the registration mechanism lets
QuickDraw 3D load libraries in the order that it needs to, and not be bound by

C H A P T E R 3

QuickDraw 3D Objects

208 Creating Custom Object Subclasses

the order of shared libraries on disk (for example, in the Mac OS Extensions
folder).

The Q3XSharedLibrary_Register routine notifies QuickDraw 3D that there is a
library to be loaded and provides the entry point to the registration function.
To use this function you need to fill out a TQ3XSharedLibraryInfo block, which
provides information that the system will need to load the library.

Usually the Q3XSharedLibrary_Register function will be called from the shared
library entry point. See the documentation for your development system, or the
examples on the QuickDraw 3D SDK, for information about how to set this up.
The Q3XSharedLibrary_Unregister function is used to unregister the library. It is
usually called from the shared library termination routine. Windows
programming is slightly different because a single DLLMain function is called
with a selector for registration and unregistration.

The code in Listing 3-3 illustrates register and unregister functions for both
Windows and Mac OS. It is taken from the sample renderer example on the
QuickDraw 3D SDK. In the windows version there is a switch statement for
registration and unloading, whereas in the Mac OS version these processes are
handled by two distinct functions.

Listing 3-3 Library registering and unregistering

/* Mac OS registration & termination */

OSErr SR_Initialize(
const CFragInitBlock *initBlock)

{
TQ3XSharedLibraryInfo sharedLibraryInfo;
OSErr err = noErr;

sharedLibraryInfo.registerFunction = SR_Register;
sharedLibraryInfo.sharedLibrary

= (unsigned long)initBlock->connectionID;

Q3XSharedLibrary_Register(&sharedLibraryInfo);

SRgSharedLibrary = (unsigned long)initBlock->connectionID;

err = SR_CreateAliasHandle(initBlock);

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 209

return (err);
}

TQ3Status SR_Exit(
void)

{
if (SRgSharedLibrary != NULL) {

Q3XSharedLibrary_Unregister(SRgSharedLibrary);
SRgSharedLibrary = NULL;

}

SR_FreeAliasHandle();

return (kQ3Success);
}

/* Win32 extension entry point*/

HINSTANCE hinstMyDLL = NULL;

BOOL WINAPI DllMain(
HINSTANCE hinstDLL,
DWORD fdwReason,
LPVOID lpvReserved)

{
TQ3XSharedLibraryInfo sharedLibraryInfo;

if (fdwReason == DLL_PROCESS_ATTACH) {
hinstMyDLL = hinstDLL;

sharedLibraryInfo.registerFunction = SR_Register;
sharedLibraryInfo.sharedLibrary = (unsigned long)hinstDLL;
if (Q3XSharedLibrary_Register(&sharedLibraryInfo) == kQ3Success)

{
return TRUE;

} else {
return FALSE;

}
}

C H A P T E R 3

QuickDraw 3D Objects

210 Creating Custom Object Subclasses

if (fdwReason == DLL_PROCESS_DETACH) {
Q3XSharedLibrary_Unregister((unsigned long)hinstDLL);

}

return (TRUE);
}

Q3XSharedLibrary_Register 3

You can use the Q3XSharedLibrary_Register function to notify QuickDraw 3D
that there is a library to be loaded and provide the entry point to the library’s
registration function.

typedef struct TQ3XSharedLibraryInfo {
TQ3XSharedLibraryRegister registerFunction;
unsigned long sharedLibrary;

} TQ3XSharedLibraryInfo;

TQ3Status Q3XSharedLibrary_Register(
TQ3XSharedLibraryInfo *sharedLibraryInfo);

sharedLibraryInfo
Pointer to a struct of type TQ3XSharedLibraryInfo.

sharedLibrary
Entry point to the shared library.

DESCRIPTION

The Q3XSharedLibrary_Register function registers a shared library with
QuickDraw 3D.

Q3XSharedLibrary_Unregister 3

You can use the Q3XSharedLibrary_Unregister function to unregister a
QuickDraw 3D shared library.

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 211

TQ3Status Q3XSharedLibrary_Unregister(
unsigned long sharedLibrary);

sharedLibrary
Entry point to the shared library.

DESCRIPTION

The Q3XSharedLibrary_Unregister function unregisters a QuickDraw 3D shared
library whose entry point is designated by sharedLibrary.

Creating a Hierarchy 3

Because you can make any class a subclass, you can create a hierarchy of
classes. QuickDraw 3D represents the hierarchy as an acyclic graph with
bidirectional links. This allows any child class to access its parent’s class, and
any parent class to track and access its child classes.

For example, the following three calls add the hierarchy shown in Figure 3-3 to
the existing QuickDraw 3D hierarchy:

gFooGroupClass =
Q3XObjectHierarchy_RegisterClass(

kQ3ShapeTypeGroup,
kGroupTypeFoo,
...);

gBarGroupClass =
Q3XObjectHierarchy_RegisterClass(

kGroupTypeFoo,
kGroupTypeBar,
...);

gBazGroupClass =
Q3XObjectHierarchy_RegisterClass(

kGroupTypeFoo,
kGroupTypeBaz,
...);

C H A P T E R 3

QuickDraw 3D Objects

212 Creating Custom Object Subclasses

Figure 3-3 Sample object hierarchy

The depth of an object in a hierarchy is sometimes referred to as its level. In
Figure 3-3, there are a total of 6 levels in the bar object class A single object class
may contain several private data structures, one for each level in that particular
class. Access to class data is restricted in that only the owner of the
TQX3ObjectClass may access the class private data. A particular class may
expose calls for another class to access the class data, or it may call the class
methods. This is also true for each instance of each class.

Thus, in the example of Figure 3-3 the bar class contains private class data and
private instance data for Object, Shared, Shape, Group, fooGroup, and bar. The bar
class may access only the class methods and instance data at its level, and so on.
Each class exposes calls such as the following to access the class or the instance
data at its level:

Q3Group_CountObjectsOfType (exposes a method)
Q3Shape_AddElement (exposes a method)
Q3Shared_Edited (exposes a method and alters the instance)
Q3Object_GetType (exposes class data)

Object

View

Shared

Renderer

Shape

Geometry

..

..

..

...

Group
fooGroup

bar

baz

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 213

Object Methods 3

Every object in QuickDraw 3D contains object methods, which generally deal
with name space information, allocation and deallocation, I/O processes, and
submit routines. The TQ3MethodType type is declared as follows:

typedef unsigned long TQ3MethodType;

The public methods are the following:

kQ3MethodTypeObjectClassVersion
kQ3MethodTypeObjectClassRegister
kQ3MethodTypeObjectClassReplace
kQ3MethodTypeObjectClassUnregister
kQ3MethodTypeObjectNew
kQ3MethodTypeObjectDelete
kQ3MethodTypeObjectCopy
kQ3MethodTypeObjectTraverseData

Multilevel Methods 3

A method which applies to every level in a hierarchy is called a multilevel
method. Generally, only object methods are multilevel, though other aspects of
QuickDraw 3D may use multilevel methods, if desired.

Many object methods apply to the private class structure or the private instance
structure of a particular class. When an object class or object instance is created,
a data structure for each level is allocated and initialized by each class. Creation
occurs from root to leaf. If a failure occurs midway through creation, only those
levels which were initialized are deleted.

The multi-level methods used in QuickDraw 3D are

kQ3MethodTypeObjectClassRegister
kQ3MethodTypeObjectClassReplace
kQ3MethodTypeObjectClassUnregister
kQ3MethodTypeObjectNew
kQ3MethodTypeObjectDelete
kQ3MethodTypeObjectDuplicate
kQ3MethodTypeObjectTraverseData

C H A P T E R 3

QuickDraw 3D Objects

214 Creating Custom Object Subclasses

IMPORTANT

These methods should never be returned in a virtual
metahandler, because they always apply to a single level in
a particular object class. ▲

Figure 3-4 illustrates how the multilevel methods _New and _Delete can be used
to create the bar object hierarchy.

Figure 3-4 Object creation using multilevel methods

Class Routines 3

This section describes the QuickDraw 3D routines you can use with object
classes.

Object

Shape

Shared

Group

FooGroup

bar

new delete

new delete

new delete

new delete

new delete

new

TQ3Object

fail

su
cc

es
s

su
cc

es
s

su
cc

es
s

su
cc

es
s

su
cc

es
s

su
cc

es
s

failu
re

failu
re

failu
re

failu
re

failu
re

failu
re

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 215

Instantiating an Object 3

To instantiate an object of a class, the QuickDraw 3D object system calls
Q3XObjectHierarchy_NewObject.

Q3XObjectHierarchy_NewObject 3

The Q3XObjectHierarchy_NewObject routine instantiates an object in a class.

TQ3XObject Q3XObjectHierarchy_NewObject(
TQX3ObjectClass objectClass,
void *parameters);

objectClass An object class.

parameters Pointer to parameters to be passed.

DESCRIPTION

The Q3XObjectHierarchy_NewObject routine begins the QuickDraw 3D object
creation mechanism. The parameters pointed to by parameters are passed into
the TQ3ObjectNewMethod method at each level.

EXAMPLE

To initialize multiple levels of data, organize the data structure into multiple
levels as illustrated below:

typedef struct TFooGroupData {
float dummy1;

} TFooGroupData;

typedef struct TBarGroupData {
TFooGroupData fooData;
float dummy2;

} TBarGroupData;

This way, the new method for the fooGroup class receives a TFooGroupData
parameter and subclassses receive initialization parameters.

C H A P T E R 3

QuickDraw 3D Objects

216 Creating Custom Object Subclasses

Accessing Types in a Class 3

QuickDraw 3D provides routines for accessing various object types. The types
are defined as follows:

typedef struct TQ3ObjectClassPrivate *TQ3XObjectClass;

Q3XObjectClass_GetType 3

You can use the Q3XObjectClass_GetType function to get the type, given a
reference to a class. This is most useful in the instance where you register an
element or attribute and need to get the type. When you register an element,
QuickDraw 3D will take the type you pass in and modify it, to avoid name
conflicts. Many object system calls require an object type; this function lets you
get the type from the class reference that you ordinarily store when you register
a class.

TQ3Status Q3XObjectClass_GetType(
TQ3XObjectClass objectClass,
TQ3ObjectType *type);

objectClass A class.

type On return, an object type.

DESCRIPTION

The Q3XObjectClass_GetType function returns, in the type parameter, the type of
the class referenced by objectClass.

Q3XObjectClass_GetLeafType 3

The Q3XObjectClass_GetLeafType function lets you determine the leaf type of a
class.

TQ3ObjectType Q3XObjectClass_GetLeafType(
TQX3ObjectClass objectClass);

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 217

objectClass An object class.

DESCRIPTION

The Q3XObjectClass_GetLeafType function returns the leaf type of a class. If an
error occurs, it returns kQ3ObjectTypeInvalid and posts an error.

Q3XObjectClass_GetSubClassType 3

The Q3XObjectClass_GetSubClassType function lets you determine the subclass
type of one object class relative to another object class.

TQ3ObjectType Q3XObjectClass_GetSubClassType(
TQX3ObjectClass objectClass,
TQX3ObjectClass targetObjectClass);

objectClass First object class.

targetObjectClass
Second object class.

DESCRIPTION

The Q3XObjectClass_GetSubClassType function is used for _GetType calls in a
particular class. For example, Q3Geometry_GetType would be implemented

TQ3ObjectType Q3Geometry_GetType (TQ3GeometryObject object)
{
return Q3XObject_GetSubClassType (gGeometryClass, object);
}

where gGeometryClass is the geometry object class, and object is a subclass of
the geometry class. The type returned is the subclass type of the geometry.

If an error occurs, the Q3XObjectClass_GetSubClassType function returns
kQ3ObjectTypeInvalid and posts an error.

C H A P T E R 3

QuickDraw 3D Objects

218 Creating Custom Object Subclasses

Q3XObject_GetClass 3

You can use the Q3XObject_GetClass function to get the class of an object.

TQ3XObjectClass Q3XObject_GetClass(
TQ3Object object);

object An object.

DESCRIPTION

The Q3XObject_GetClass function returns the class of the object designated by
object.

Q3XObject_GetSubClassType 3

The Q3XObject_GetSubClassType function lets you determine the subclass type of
an object relative to an object class.

TQ3ObjectType Q3XObject_GetSubClassType(
TQ3XObjectClass objectClass,
TQ3XObject targetObject);

objectClass An object class.

targetObject An object.

DESCRIPTION

Use of Q3XObject_GetSubClassType resembles Q3XObjectClass_GetSubClassType
(page 217), except it is used for an object relative to an object class instead of for
two object classes.

Version Checking 3

The Q3XObjectHierarchy_GetClassVersion function lets you check the version
number of a custom class.

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 219

Q3XObjectHierarchy_GetClassVersion 3

You can use the Q3XObjectHierarchy_GetClassVersion function to get the version
number of a class type.

TQ3Status Q3XObjectHierarchy_GetClassVersion(
TQ3ObjectType objectClassType,
TQ3XObjectClassVersion *version);

objectClassType
A class type.

version On return, a version number.

DESCRIPTION

The Q3XObjectHierarchy_GetClassVersion function returns, in the version
parameter, the version number of the class type designated by objectClassType.

QuickDraw 3D includes two utility macros that let you obtain the version
numbers of a class.

#define Q3_OBJECT_CLASS_GET_MAJOR_VERSION(version)
(unsigned long) ((version) >> 16)

#define Q3_OBJECT_CLASS_GET_MINOR_VERSION(version)
(unsigned long) ((version) & 0x0000FFFF)

These are convenience macros that unpack a version, accessing its major and
minor version numbers.

SEE ALSO

“Q3XMethodTypeObjectClassVersion” (page 228)

Class Method Retrieval 3

A class should retrieve the methods passed in via the metahandler during the
registration process, using the Q3ObjectHierarchy_GetMethod object system call.

C H A P T E R 3

QuickDraw 3D Objects

220 Creating Custom Object Subclasses

Q3XObjectHierarchy_GetMethod 3

Repeated calls to the Q3XObjectHierarchy_GetMethod function return all the
methods for a class hierarchy.

TQ3FunctionPointer Q3XObjectHierarchy_GetMethod(
TQX3ObjectClass objectClass,
TQ3MethodType methodType);

objectClass An object class.

methodType A method type.

DESCRIPTION

The Q3XObjectHierarchy_GetMethod routine searches for methods, starting from
the leaf class and continuing with the parent classes, for a non-NULL method
type from a class. If the leaf class returns NULL for the method, its virtual
metahandler is called to retrieve a method. This continues with the parent
class’s virtual metahandler and on up the hierarchy. When no method is found,
Q3XObjectHierarchy_GetMethod returns NULL.

Q3XObjectClass_GetMethod 3

You can use the Q3XObjectClass_GetMethod function to get the methods for a
class.

TQ3XFunctionPointer Q3XObjectClass_GetMethod(
TQ3XObjectClass objectClass,
TQ3XMethodType methodType);

objectClass A class.

methodType On return, a method type.

DESCRIPTION

The Q3XObjectClass_GetMethod function returns, in the methodType parameter, a
method type for the class objectClass. The Q3XObjectClass_GetMethod function

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 221

searches for non-NULL methods starting from the leaf class and continuing with
the parent classes. If the leaf class returns NULL for the method, its virtual
metahandler is called to retrieve a method. This continues with the parent
class’s virtual metahandler, and on up the hierarchy. If no method is found,
Q3XObjectClass_GetMethod returns NULL.

Accessing Private Data 3

You may access private data at any time in a class or object with the routines
described in this section.

Q3XObjectClass_GetPrivate 3

You can use the Q3XObjectClass_GetPrivate routine to get the private instance
data of an object.

void *Q3XObjectClass_GetPrivate(
TQ3XObjectClass objectClass,
TQ3Object targetObject);

objectClass A class.

targetObject An object

return value The class’s private data block.

DESCRIPTION

The Q3XObjectClass_GetPrivate routine returns a pointer to a block of
instanceSize bytes (where instanceSize is from the objectClass class’s previous
Q3XObjectHierarchy_RegisterClass call) that contains the private instance data
of targetObject. Q3XObjectClass_GetPrivate returns NULL if instanceSize was 0.

The Q3XObjectClass_GetPrivate routine may return NULL if an invalid object or
object of the wrong type is passed in, if instanceSize or classSize is 0 in the
previous Q3ObjectHierarchy_Register call, or if an invalid target is passed in.

C H A P T E R 3

QuickDraw 3D Objects

222 Creating Custom Object Subclasses

EXAMPLE

TQ3Status Q3FooGroup_SetDummy(
TQ3GroupObject group,
float dummy)

{
TFooGroupPrivate *gPriv;

gPriv = Q3XObjectClass_GetPrivate(
gFooGroupClass,
group);

if (gPriv == NULL)
return kQ3Failure;

gPriv->dummy = dummy;
return Q3Shared_Edited(group);

}

Q3XObject_GetClassPrivate 3

You can use the Q3XObject_GetClassPrivate routine to get private class data
from an object.

void *Q3XObject_GetClassPrivate(
TQ3XObjectClass objectClass,
TQ3Object targetObject);

objectClass A class.

targetObject An object

return value The class’s private data block.

DESCRIPTION

The Q3XObject_GetClassPrivate routine returns a pointer to a block of
instanceSize bytes (where instanceSize is from the objectClass class’s previous
Q3XObjectHierarchy_RegisterClass call) that contains the private class data of
targetObject. If instanceSize was 0, Q3XObject_GetClassPrivate returns NULL.

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 223

The Q3XObject_GetClassPrivate routine may return NULL if an invalid object or
object of the wrong type is passed in, if instanceSize or classSize is 0 in the
previous Q3ObjectHierarchy_Register call, or if an invalid target is passed in.

Q3XObjectClass_GetClassPrivate 3

You can use the Q3XObjectClass_GetClassPrivate routine to get private class
data from a class.

void *Q3XObjectClass_GetClassPrivate(
TQ3XObjectClass objectClass,
TQ3XObjectClass targetObjectClass);

objectClass A class.

targetObjectClass
A class.

return value The target class’s private data block.

DESCRIPTION

The Q3XObjectClass_GetClassPrivate routine returns a pointer to a block of
instanceSize bytes (where instanceSize is from the objectClass class’s previous
Q3XObjectHierarchy_RegisterClass call) that contains the private data of
targetObject. If instanceSize was 0, Q3XObjectClass_GetClassPrivate returns
NULL.

The Q3XObjectClass_GetClassPrivate routine may return NULL if an invalid
object or object of the wrong type is passed in, if instanceSize or classSize is 0
in the previous Q3ObjectHierarchy_Register call, or if an invalid target is passed
in.

Class Methods 3

This section describes the methods that custom QuickDraw 3D objects should
contain.

C H A P T E R 3

QuickDraw 3D Objects

224 Creating Custom Object Subclasses

Class Registration and Unregistration 3

Custom objects should provide methods for registering, unregistering, and
replacing classes.

Listing 3-4 provides an example of how these methods are called. It is based on
the example discussed in “Creating a Hierarchy” (page 211).

Listing 3-4 Sample of registering and unregistering classes

#define kMethodTypeFooGroupDoSomething \
Q3_METHOD_TYPE(0xFE, ‘f’,’g’,’r’)

typedef TQ3Status (*TFooGroupDoSomethingMethod)(
TQ3ObjectClass objectClass,
TQ3Object object,
float *dummyArg);

typedef struct TFooGroupClass {
TFooGroupDoSomethingMethod doSomething;

} TFooGroupClass;

typedef struct TFooGroupData {
float dummy1;

} TFooGroupData;

gFooGroupClass =
Q3XObjectHierarchy_RegisterClass(

kQ3ShapeTypeGroup,
kGroupTypeFoo,
“SomeCompany:FooGroup”,
FooGroupClass_MetaHandler,
FooGroupClass_VirtualMetaHandler,
sizeof(TFooGroupClass),
sizeof(TFooGroupData));

The registration method for the foregoing would look like this:

static TQ3Status FooGroupClass_Register(
TQ3ObjectClass objectClass,
TFooGroupClass *gClass)

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 225

{
gClass->doSomething =

Q3XObjectHierarchy_GetMethod(
objectClass,
kMethodTypeFooGroupDoSomething);

if ((Q3XObjectClass_GetLeafType(objectClass) !=
kGroupTypeFoo) &&
(gClass->doSomething == NULL)) {

return kQ3Failure;
}

return kQ3Success;
}

When the parent class FooGroup is registered in this example, there is no need
for the kMethodTypeGroupFoo method. In subclasses, however, this method is
required. This type of strategy may be used to impose restrictions on subclasses
only, especially when the parent class is never intended to be instantiated.

There is also no need for an ObjectClassUnregister method because the
ObjectClassRegister method does not allocate any data.

TQ3XObjectClassRegisterMethod 3

The TQ3XObjectClassRegisterMethod function, which is returned by the
kQ3XMethodTypeObjectClassRegister method, registers a class.

#define kQ3XMethodTypeObjectClassRegister Q3_METHOD_TYPE('r','g','s','t')

typedef TQ3Status (*TQ3XObjectClassRegisterMethod)(
TQ3XObjectClass objectClass,
void *classPrivate);

objectClass An object class.

classPrivate A pointer to the class’s private data.

C H A P T E R 3

QuickDraw 3D Objects

226 Creating Custom Object Subclasses

DESCRIPTION

The TQ3XObjectClassRegisterMethod method registers the class designated by
objectClass, with private data pointed to by classPrivate. The size of the
private data is equivalent to the methodsSize parameter used in the earlier
Q3XObjectHierarchy_RegisterClass call; if methodsSize was 0, classPrivate is
NULL.

ObjectClassRegister is called from Q3ObjectHierarchy_RegisterClass upon
initial registration of an object class. It is also called when any subclass of an
object class is registered. Registration occurs from root to leaf, as shown in
Figure 3-4. The ObjectClassRegister method is called for the private class data
on the way down the hierarchy, and the ObjectClassUnregister method is called
on the way up in case of a failure.

ObjectClassRegister should initialize the data in classPrivate and collect any
needed methods from the metahandler, using Q3ObjectHierarchy_GetMethod. A
class may have no private class data (that is, its methodsSize may be 0), yet may
still have an ObjectClassRegister method. In this case, classPrivate will be
NULL (since there is no data), and a particular class could instead keep track of
subclass states in global variables.

TQ3XObjectClassUnregisterMethod 3

The TQ3XObjectClassUnregisterMethod function, which is returned by the
kQ3XMethodTypeObjectClassUnregister method, unregisters a class.

#define kQ3XMethodTypeObjectClassUnregister
Q3_METHOD_TYPE('u','n','r','g')

typedef void (*TQ3XObjectClassUnregisterMethod)(
TQ3XObjectClass objectClass,
void *classPrivate);

objectClass An object class.

classPrivate A pointer to the class’s private data.

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 227

DESCRIPTION

The TQ3XObjectClassUnregisterMethod method unregisters the class designated
by objectClass, which has private data pointed to by classPrivate. The size of
the private data is equivalent to the methodsSize parameter used in the earlier
Q3XObjectHierarchy_RegisterClass call; if methodsSize was 0, classPrivate is
NULL.

The ObjectClassUnregister method should undo any operations performed in
the ObjectClassRegister method, including removing the class from global
tables and deallocating any memory used to store the class private data. If the
ObjectClassRegister method performed no allocations, ObjectClassUnregister
may be NULL.

TQ3XObjectClassReplaceMethod 3

The TQ3XObjectClassReplaceMethod function, which is returned by the
kQ3XMethodTypeObjectClassReplace method, replaces one class with another. It is
used only when a new version of an object class is registered, eliminating the
old version.

#define kQ3XMethodTypeObjectClassReplace Q3_METHOD_TYPE('r','g','r','p')

typedef void (*TQ3XObjectClassReplaceMethod)(
TQ3XObjectClass oldObjectClass,
void *oldClassPrivate,
TQ3XObjectClass newObjectClass,
void *newClassPrivate);

oldObjectClass
The old object class to be replaced.

oldClassPrivate
A pointer to the old class’s private data.

newObjectClass
A new object class.

newClassPrivate
A pointer to the new class’s private data.

C H A P T E R 3

QuickDraw 3D Objects

228 Creating Custom Object Subclasses

DESCRIPTION

The TQ3XObjectClassReplaceMethod method replaces the class designated by
oldObjectClass, which has private data pointed to by oldClassPrivate, with the
class designated by newObjectClass, which has private data pointed to by
newClassPrivate. The sizes of the private data areas are equivalent to the
methodsSize parameters used in the earlier Q3XObjectHierarchy_RegisterClass
calls; if a methodsSize value was 0, its equivalent classPrivate value is NULL.

TQ3XObjectClassReplaceMethod is required only by classes that maintain or track
their subclasses in a table. When object classes of the same type collide, use the
replace method instead of calling Unregister(oldClass, oldClassPrivate)
followed by Register(newClass, newClassPrivate), which may cause an
unexpected failure.

The replace method should register the new class and then unregister the old
class, without failure. If a class’s TQ3XObjectClassRegisterMethod method never
fails, the replace method is not needed.

SEE ALSO

“Q3XMethodTypeObjectClassVersion” (page 228).

Class Version 3

The kQ3XMethodTypeObjectClassVersion method lets you publish the version
number of a custom class.

Q3XMethodTypeObjectClassVersion 3

The kQ3XMethodTypeObjectClassVersion method returns the version of a class as
a TQ3XObjectClassVersion type. This information may be used to determine
when to invoke the TQ3XObjectClassReplaceMethod method.

#define kQ3XMethodTypeObjectClassVersion Q3_METHOD_TYPE('v','r','s','n')

typedef unsigned long TQ3XObjectClassVersion;

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 229

TQ3XObjectClassVersion
Version of a class.

DESCRIPTION

QuickDraw 3D includes a utility macro that lets you provide the version
number of a class. If there are two identical implementations of a class, the
system will only load the latter, as determined by the version number.

#define Q3_OBJECT_CLASS_VERSION(major, minor)
(unsigned long) (((major) << 16) | (minor))

▲ W AR N I N G

If you do not provide a version number the version is
automatically set to 0.0. ▲

SEE ALSO

“Q3XObjectHierarchy_GetClassVersion” (page 219)

Object Creation and Deletion 3

Object creation and deletion is similar to object registration, except that the data
being operated on is the instance data. The TQ3XObjectNewMethod method should
initialize all data in the private data structure and allocate any memory needed
to copy the data in. The TQ3XObjectDeleteMethod method should deallocate any
data in the private data structure of the object.

TQ3XObjectNewMethod 3

The TQ3XObjectNewMethod function, returned by the kQ3XMethodTypeObjectNew
method, initializes data in the object’s private data structure and allocates the
required memory.

#define kQ3XMethodTypeObjectNew Q3_METHOD_TYPE('n','e','w','o')

C H A P T E R 3

QuickDraw 3D Objects

230 Creating Custom Object Subclasses

typedef TQ3Status (*TQ3XObjectNewMethod)(
TQ3Object object,
void *privateData,
void *parameters);

object An object.

privateData Pointer to the object’s private data.

parameters Pointer to parameters to be passed.

DESCRIPTION

The TQ3XObjectNewMethod method should initialize all data in the private data
structure (possibly with parameters) and allocate any memory needed to copy
the data in. If instanceSize in the previous Q3ObjectHierarchy_RegisterClass
call was nonzero, a TQ3ObjectNewMethod is required. If instanceSize was 0, the
TQ3XObjectNewMethod method is never called.

TQ3XObjectDeleteMethod 3

The TQ3XObjectDeleteMethod function, which is returned by the
kQ3XMethodTypeObjectDelete method, deallocates data in the object’s private
data structure.

#define kQ3XMethodTypeObjectDelete Q3_METHOD_TYPE('d','l','t','e')

typedef void (*TQ3XObjectDeleteMethod)(
TQ3Object object,
void *privateData);

object An object.

privateData Pointer to the object’s private data.

DESCRIPTION

The TQ3XObjectDeleteMethod method deallocates any data in the private data
structure of the object. If instanceSize in the Q3ObjectHierarchy_RegisterClass
call was nonzero, a TQ3XObjectDeleteMethod is required. If instanceSize was 0,
the TQ3XObjectDeleteMethod method is never called.

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 231

TQ3XObjectDuplicateMethod 3

The TQ3XObjectDuplicateMethod function, which is returned by the
kQ3XMethodTypeObjectDuplicate method, duplicates an object and copies its
private instance data.

#define kQ3XMethodTypeObjectDuplicate Q3_METHOD_TYPE('d','u','p','l')

typedef TQ3Status (*TQ3XObjectDuplicateMethod)(
TQ3Object fromObject,
const void *fromPrivateData,
TQ3Object toObject,
const void *toPrivateData);

fromObject Object to be copied.

fromPrivateData
Pointer to private data of object to be copied.

toObject Object to be copied into.

toPrivateData
Pointer to private data of object to be copied into.

DESCRIPTION

The TQ3XObjectDuplicateMethod method should copy the private instance data
from fromPrivateData to toPrivateData and return kQ3Success if sucessful.
Otherwise, it should deallocate anything it has allocated, clean up its parent
classes, and return kQ3Failure. TQ3XObjectDuplicateMethod is called in the same
way as TQ3XObjectNewMethod and TQ3XObjectDeleteMethod.

EXAMPLE

TQ3Status Q3FooGroup_Duplicate(
TQ3GroupObject src,
TFooGroupPrivate *srcPriv,
TQ3GroupObject dst,
TFooGroupPrivate *dstPriv)

C H A P T E R 3

QuickDraw 3D Objects

232 Creating Custom Object Subclasses

{
*dstPriv = *srcPriv;
return kQ3Success;

}

TQ3XObjectUnregisterMethod 3

The TQ3XObjectUnregisterMethod function, which is returned by the
kQ3MethodTypeObjectUnregister method, removes a custom object class.

#define kQ3MethodTypeObjectUnregister Q3_METHOD_TYPE('u','n','r','g')

typedef TQ3Status (*TQ3XObjectUnregisterMethod)
(TQ3XObjectClass objectClass);

objectClass An object class.

DESCRIPTION

The TQ3XObjectUnregisterMethod function unregisters the custom object class
specified by the objectClass parameter.

Shared Objects 3

A custom class uses the TQ3XSharedLibraryRegister type for library sharing.

TQ3XSharedLibraryRegister 3

The TQ3XSharedLibraryRegister type defines the shared library registration
function for a custom class.

typedef struct TQ3XSharedLibraryInfo {
TQ3XSharedLibraryRegister registerFunction;
unsigned long sharedLibrary;

} TQ3XSharedLibraryInfo;

C H A P T E R 3

QuickDraw 3D Objects

Creating Custom Object Subclasses 233

typedef TQ3Status (*TQ3XSharedLibraryRegister) (void);

DESCRIPTION

See “Registering a Shared Library,” beginning on page 207.

I/O Methods 3

A custom object may include these methods for file access:

#define kQ3XMethodTypeObjectTraverse Q3_METHOD_TYPE('t','r','v','s')
#define kQ3XMethodTypeObjectTraverseData Q3_METHOD_TYPE('t','r','v','d')
#define kQ3XMethodTypeObjectWrite Q3_METHOD_TYPE('w','r','i','t')
#define kQ3XMethodTypeObjectReadData Q3_METHOD_TYPE('r','d','d','t')
#define kQ3XMethodTypeObjectRead Q3_METHOD_TYPE('r','e','a','d')
#define kQ3XMethodTypeObjectAttach Q3_METHOD_TYPE('a','t','t','c')

The operation of some of these methods is discussed in the chapter “File
Objects” under the headings shown:

■ Q3XMethodTypeObjectTraverse and Q3XMethodTypeObjectTraverseData:
“Writing to Custom File Objects” (page 1090)

■ Q3XMethodTypeObjectWrite: “Writing to Custom File Objects” (page 1090)

■ Q3XMethodTypeObjectReadData: “Reading and Writing File Data” (page 1045)

■ Q3XMethodTypeObjectRead: “Reading and Writing File Data” (page 1045)

The Q3XMethodTypeObjectAttach method is described below.

TQ3XObjectAttachMethod 3

The TQ3XObjectAttachMethod function, which is returned by the
kQ3XMethodTypeObjectAttach method, attaches a child object to a parent object
for traversal and other I/O operations.

#define kQ3XMethodTypeObjectAttach Q3_METHOD_TYPE('a','t','t','c')

C H A P T E R 3

QuickDraw 3D Objects

234 Object Errors, Warnings, and Notices

typedef TQ3Status (*TQ3XObjectAttachMethod)(
TQ3Object childObject,
TQ3Object parentObject);

childObject An object that is to be attached as a child.

parentObject An object that is to be attached as a parent.

DESCRIPTION

The TQ3XObjectAttachMethod method attaches childObject to parentObject as
child to parent.

Object Errors, Warnings, and Notices 3

The following is a list of errors, warnings, and notices that object routines can
return. A list of general QuickDraw 3D errors is given in “QuickDraw 3D
Errors, Warnings, and Notices” (page 87).

kQ3ErrorInvalidObject
kQ3ErrorInvalidObjectClass
kQ3ErrorInvalidObjectType
kQ3ErrorInvalidObjectName
kQ3ErrorObjectClassInUse
kQ3ErrorAccessRestricted
kQ3ErrorMetaHandlerRequired
kQ3ErrorNeedRequiredMethods
kQ3ErrorNoSubClassType
kQ3ErrorUnknownElementType
kQ3ErrorNotSupported
kQ3ErrorTypeAlreadyExistsAndHasSubclasses
kQ3ErrorTypeAlreadyExistsAndOtherClassesDependOnIt
kQ3ErrorTypeAlreadyExistsAndHasObjectInstances
kQ3WarningNoObjectSupportForDuplicateMethod
kQ3WarningNoObjectSupportForDrawMethod
kQ3WarningNoObjectSupportForWriteMethod
kQ3WarningNoObjectSupportForReadMethod
kQ3WarningUnknownElementType
kQ3WarningTypeAndMethodAlreadyDefined

C H A P T E R 3

QuickDraw 3D Objects

Object Errors, Warnings, and Notices 235

kQ3WarningTypeIsOutOfRange
kQ3WarningTypeHasNotBeenRegistered
kQ3WarningTypeAlreadyRegistered
kQ3WarningTypeSameVersionAlreadyRegistered
kQ3WarningTypeNewerVersionAlreadyRegistered
kQ3WarningInvalidObjectInGroupMetafile
kQ3NoticeObjectAlreadySet
kQ3NoticeMethodNotSupported

C H A P T E R 3

QuickDraw 3D Objects

236 Object Errors, Warnings, and Notices

About Geometric Objects 237

C H A P T E R 4

Geometric Objects 4Figure 4-0
Listing 4-0
Table 4-0

This chapter describes the QuickDraw 3D geometric objects and the functions
you can use to manipulate them. Geometric objects form the basis of any
three-dimensional model, so you need to know how to define (and perhaps also
create and dispose of) geometric objects to render any image. QuickDraw 3D
provides a rich set of geometric primitive objects, which you can group, copy,
illuminate, texture, or otherwise modify as desired.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects.” earlier in this
book.

This chapter begins by describing the QuickDraw 3D geometric primitives.
Then it shows how to create and manipulate instances of those primitives. The
section “Geometric Objects Reference,” beginning on page 275 provides a
complete description of the geometric primitives and the routines you can use
to create and manipulate them.

This chapter also provides definitions of the fundamental mathematical objects
(points, vectors, matrices, quaternions, and so forth) that are used in defining
QuickDraw 3D geometric objects. For routines that you can use to manipulate
those basic mathematical objects, see the chapter “Mathematical Utilities.” For
routines that you can use to group geometric primitive objects into groups or
collections, see the chapter “Group Objects” later in this book.

About Geometric Objects 4

A geometric object (or a geometry) is an instance of the TQ3GeometryObject
class. The TQ3GeometryObject class is a subclass of the TQ3ShapeObject, which is
itself a subclass of the TQ3SharedObject class. As a result, a geometric object is

C H A P T E R 4

Geometric Objects

238 About Geometric Objects

associated with a reference count, which is incremented or decremented
whenever you create or dispose of an instance of that type of object.

Currently, QuickDraw 3D provides many types of primitive geometric objects.
A geometric object has one of these types:

kQ3GeometryTypeBox
kQ3GeometryTypeCone
kQ3GeometryTypeCylinder
kQ3GeometryTypeDisk
kQ3GeometryTypeEllipse
kQ3GeometryTypeEllipsoid
kQ3GeometryTypeGeneralPolygon
kQ3GeometryTypeLine
kQ3GeometryTypeMarker
kQ3GeometryTypeMesh
kQ3GeometryTypeNURBCurve
kQ3GeometryTypeNURBPatch
kQ3GeometryTypePixmapMarker
kQ3GeometryTypePoint
kQ3GeometryTypePolygon
kQ3GeometryTypePolyhedron
kQ3GeometryTypePolyLine
kQ3GeometryTypeTorus
kQ3GeometryTypeTriangle
kQ3GeometryTypeTriGrid
kQ3GeometryTypeTriMesh

These objects are described in detail later in this chapter, beginning on page 282.
In most cases, the definitions of these objects are simple and obvious. For
instance, a triangle is just a closed plane figure defined by three points, or
vertices, in space. A simple polygon (object type kQ3GeometryTypePolygon) is a
closed plane figure defined by a list of vertices. Only six of these types of
geometric primitives—meshes, trimeshes, trigrids, polyhedra, NURB curves,
and NURB patches—need special discussion. See “Polyhedral Primitives,”
beginning on page 240 for a description of meshes, trimeshes, trigrids, and
polyhedra. See “NURB Curves and Patches,” beginning on page 248 for a
description of NURB curves and patches.

C H A P T E R 4

Geometric Objects

About Geometric Objects 239

Note
You can determine a geometric object’s type by calling the
Q3Geometry_GetType function, described on page 331. ◆

QuickDraw 3D geometric objects are opaque. This means that you can edit the
data associated with an object only by calling accessor functions provided by
QuickDraw 3D. For instance, once you’ve created a triangle, you can alter its
shape or position only indirectly, for example by calling the functions
Q3Triangle_GetVertexPosition and Q3Triangle_SetVertexPosition.

Attributes of Geometric Objects 4

Every QuickDraw 3D geometric object can contain one or more optional sets of
attributes, which define characteristics of all or part of the object, such as its
color or other material properties. For example, QuickDraw 3D defines the data
associated with a triangle like this:

typedef struct TQ3TriangleData {
TQ3Vertex3D vertices[3];
TQ3AttributeSet triangleAttributeSet;

} TQ3TriangleData;

As you can see, the triangle data consists of three vertices that define the
triangle’s position, together with a set of attributes that specify characteristics of
the planar area enclosed by the lines connecting those vertices. A set of
attributes is simply a collection of attributes, each of which consists of an
attribute type and its associated data. Some common attribute types are diffuse
color, specular color, surface normal vector, transparency, and so forth. You can,
if you wish, define your own custom types of attributes and include them in
attribute sets like any other kind of attribute. See the chapter “Attribute
Objects” for complete information on the types of attributes defined by
QuickDraw 3D and on defining custom attribute types.

You can associate a set of attributes with most parts of a geometric object. For
example, you can associate a set of attributes with the face of a triangle or with
one or more of the triangle’s vertices. Similarly, a box can have an attribute set
for the entire box as well as an attributes set for each of the six faces of the box.
In this way, you can assign different colors to each of the box faces. Accordingly,
QuickDraw 3D defines the data associated with a box like this:

C H A P T E R 4

Geometric Objects

240 About Geometric Objects

typedef struct TQ3BoxData {
TQ3Point3D origin;
TQ3Vector3D orientation;
TQ3Vector3D majorAxis;
TQ3Vector3D minorAxis;
TQ3AttributeSet *faceAttributeSet;
TQ3AttributeSet boxAttributeSet;

} TQ3BoxData;

The boxAttributeSet field is a set of attributes that apply to the entire box, and
the faceAttributeSet field is a pointer to an array of attribute sets that apply to
the six faces of the box.

Trimeshes do not use attribute sets. See “Trimeshes” (page 246) for information
on specifying attributes for a trimesh and its parts.

Polyhedral Primitives 4

QuickDraw 3D provides four basic polyhedral primitives, three-dimensional
surfaces composed of polygonal faces that share edges and vertices with other
faces. These are the mesh, the trimesh, the trigrid, and the polyhedron.
Although you can use each of these primitives to represent the same sorts of
shapes, there are important differences in their memory use, ease of definition,
flexibility, and other features. This section describes the four polyhedral
primitives individually. Then it compares their strengths and weaknesses (in
“Comparison of the Polyhedral Primitives,” beginning on page 247). See “Using
Geometric Objects,” beginning on page 257 for code samples that show how to
construct several different polyhedral primitives.

Meshes 4

A mesh is a collection of vertices, faces, and edges that represents a topological
polyhedron (that is, a solid figure composed of polygonal faces). The polyhedra
represented by QuickDraw 3D meshes do not need to be closed, so that the
meshes may have boundaries. Figure 4-1 illustrates a mesh.

C H A P T E R 4

Geometric Objects

About Geometric Objects 241

Figure 4-1 A mesh

A mesh face is a polygonal figure that forms part of the surface of the mesh.
QuickDraw 3D does not require mesh faces to be planar, but you can obtain
unexpected results when rendering nonplanar mesh faces with a filled style.
In addition, a mesh face can contain holes, as shown in Figure 4-2.

Figure 4-2 A mesh face with a hole

Mesh edge

Mesh face Mesh vertex

Mesh corner

C H A P T E R 4

Geometric Objects

242 About Geometric Objects

A mesh face is defined by a list of mesh vertices. The ordering of the vertices is
unimportant; you can list the vertices of a mesh face in either clockwise or
counterclockwise order. QuickDraw 3D internally attempts to maintain a
consistent ordering of the vertices of all the faces of a mesh.

Because of their potential complexity, QuickDraw 3D treats meshes differently
than it treats all other basic geometric objects. Usually, you create a basic
geometric object by filling in a public data structure that completely specifies
that object (for example, a structure of type TQ3TriangleData) and then by
passing that structure to the appropriate object-creating routine (for example,
Q3Triangle_New). To create a mesh, however, you first create a new empty mesh
(by calling Q3Mesh_New), and then you explicitly add vertices and faces to the
mesh (by calling Q3Mesh_VertexNew and Q3Mesh_FaceNew).

Note
Although you can manipulate an edge in a mesh (for
instance, assign an attribute set to it), you cannot explicitly
add an edge to a mesh. Mesh edges are implicitly created
or destroyed when the faces containing them are created or
destroyed. ◆

Because you can dynamically add or remove faces and vertices in a mesh, a
mesh is always a retained object (that is, QuickDraw 3D maintains the mesh
data internally) and never an immediate object. As a result, QuickDraw 3D does
not supply routines to submit or write meshes in immediate mode.
QuickDraw 3D builds an internal data structure that records the topology of a
mesh (that is, the edge connections between all the faces and vertices in the
mesh). For large models, this might require a large amount of memory. If your
application does not need to use the topological information maintained by
QuickDraw 3D (which you access by calling mesh iterator functions), you
might want to use a trigrid or polyhedron (or a number of triangles, or a
number of simple or general polygons) to represent a large number of
interconnected polygons.

Note
See “Traversing Mesh Components, Vertices, Faces, and
Edges,” beginning on page 410, for information on the
mesh iterator functions. ◆

As you’ve seen, a face of a mesh can contain one or more holes. A hole is
defined by a contour, which is just a list of vertices. You create a contour in a
mesh face by creating a face that contains the vertices in the contour (by calling

C H A P T E R 4

Geometric Objects

About Geometric Objects 243

Q3Mesh_FaceNew) and then by converting the face into a contour (by calling
Q3Mesh_FaceToContour). For optimal results, the face that contains the contour
(called the container face) and the contour itself should be coplanar. In
addition, the contour should lie entirely within the container face.

Note
See “Creating a Mesh,” beginning on page 270 for sample
code that creates a mesh. ◆

The geometric structure of a mesh is completely defined by its faces, vertices,
edges, and contours. For purposes of shading and picking, QuickDraw 3D
defines several other parts of a mesh: corners, mesh parts, and components.
A mesh corner (or a corner) is specified by a mesh face together with one of its
vertices. (A face with five vertices therefore has five corners.) You can associate
a set of attributes with each corner. The attributes in a corner override any
existing attributes of the associated vertex. For example, you can use corners to
achieve special shading effects, such as hard edges when applying a smooth
shading to a mesh. When a face is being shaded smoothly, the normals used to
determine the amount of shading are the normals of the face’s vertices. Because
a vertex and its normal may be associated with several faces, the light intensity
computed by a shading algorithm is the same for all points around that vertex.
As a result, the edges between appear smooth. To get a hard edge, you can
assign different normals to the corners on opposite sides of the edge.

A mesh part object (or, more briefly, a mesh part) is a single distinguishable
part of a mesh. You can use mesh parts to handle user picking in a mesh. When,
for example, the user clicks on a mesh, you can interpret the click as a click on
the entire mesh, on a face of a mesh, on an edge of the mesh, or on a vertex of
the mesh. QuickDraw 3D signals your application that the user clicked on a
mesh part by putting a reference to that mesh part in the shapePart field of a hit
data structure. (Mesh parts are currently the only types of shape part objects.)
You can then call QuickDraw 3D routines to get the mesh face, edge, or vertex
that corresponds to the selected mesh part. See the chapter “Pick Objects” for
complete details about mesh parts.

A mesh component (or a component) is a collection of connected vertices. (Two
vertices are considered to be connected if an unbroken path of edges exists
linking one vertex to the other.) For each mesh, QuickDraw 3D maintains
information about the components in the mesh and updates that information
whenever a face or vertex is added to or removed from a mesh. You can use
QuickDraw 3D routines to iterate through the components in a mesh, and you

C H A P T E R 4

Geometric Objects

244 About Geometric Objects

can call Q3MeshPart_GetComponent to get the component in a mesh that was
selected during picking. Mesh components cannot have attributes.

Mesh components are transient; that is, they are created and destroyed
dynamically as the topology of the mesh changes. Whenever you change the
topology (for example, by adding or deleting a vertex or face), QuickDraw 3D
needs to update its internal list of mesh components. You can turn off this
updating by calling the Q3Mesh_DelayUpdates function, and you can resume this
updating by calling the Q3Mesh_ResumeUpdates function. For performance
reasons, it’s useful to delay updates while adding or deleting a large number of
vertices or faces.

Note, however, that you cannot rely on some mesh functions to return accurate
results if you call them while mesh updating is delayed. For instance, the
Q3Mesh_GetNumComponents function is not guaranteed to return accurate results if
mesh updating is delayed.

Note also that a vertex, edge, or face might be shifted from one component to
another during a change in the topology of the mesh. To be safe, you should
bracket all changes to the mesh topology by calls to Q3Mesh_DelayUpdates and
Q3Mesh_ResumeUpdates, and you should not assume that mesh component
functions will return reliable results until after you’ve called
Q3Mesh_ResumeUpdates.

Note
You can duplicate a mesh by calling Q3Object_Duplicate.
The duplicate mesh, however, might not preserve the
ordering of components, faces, or vertices of the original
mesh. ◆

Trigrids 4

A trigrid is a rectangular grid composed of triangular facets. A trigrid, like most
other QuickDraw 3D primitives, is defined using a public data structure, the
TQ3TriGridData data type:

typedef struct TQ3TriGridData {
unsigned long numRows;
unsigned long numColumns;
TQ3Vertex3D *vertices;
TQ3AttributeSet *facetAttributeSet;
TQ3AttributeSet triGridAttributeSet;

} TQ3TriGridData;

C H A P T E R 4

Geometric Objects

About Geometric Objects 245

Once it’s defined, a trigrid has a fixed topology defined by the number of rows
and columns. You can alter the position of any individual vertex, but you
cannot add vertices to (or remove vertices from) a trigrid. In addition, a trigrid
can model only rectangular objects, not arbitrary three-dimensional surfaces.
Nevertheless, trigrids use memory extremely efficiently and are therefore good
choices for modeling rectangular objects.

Polyhedra 4

A polyhedron is a polyhedral primitive, all of whose faces are triangular. (As
you’ll see below, however, it’s possible to render non-triangular faces by
selecting which edges of each triangular face are drawn.) The faces of a
polyhedron are defined indirectly, using indices into an array of vertices. This
indirection makes it easy for faces to share vertices and attribute sets, which
thereby reduces both the memory required to define the polyhedron and the
time required to render the polyhedron.

IMPORTANT

The polyhedron is the preferred polyhedral primitive for
general-purpose modeling of three-dimensional surfaces.
Unlike a trigrid, a polyhedron can represent any surface,
not just rectangular ones. In addition, you can use both
immediate and retained modes with polyhedra. ▲

To define a polyhedron, you first need to create an array of three-dimensional
points (of type TQ3Point3D). Then you need to define an array of triangles, each
of which specifies three of the points in the point array and some additional
information about which edges of the triangle to draw and what attributes, if
any, the triangle has.

You specify a point in the array of points using a vertex specified by its index
into the array of three-dimensional points.

An individual triangular face of a polyhedron is defined by the
TQ3PolyhedronTriangleData data type.

typedef struct TQ3PolyhedronTriangleData {
unsigned long vertexIndices[3];
TQ3PolyhedronEdge edgeFlag;
TQ3AttributeSet triangleAttributeSet;

} TQ3PolyhedronTriangleData;

C H A P T E R 4

Geometric Objects

246 About Geometric Objects

The edgeFlag field specifies which edges of the triangle are to be drawn; see
below for more details.

Finally, once you’ve created the array of points in the array and defined one or
more triangular faces for the polyhedron, you can define a polyhedron using
the TQ3PolyhedronData data type:

typedef struct TQ3PolyhedronData {
unsigned long numPoints;
TQ3Vertex3D *vertices;
unsigned long numEdges;
TQ3PolyhedronEdgeData *edges;
unsigned long numTriangles;
TQ3PolyhedronTriangleData *triangles;
TQ3AttributeSet polyhedronAttributeSet;

} TQ3PolyhedronData;

This structure specifies the number of points in the polyhedron, the points
array, the number of triangles in the polyhedron, and the triangles array. These
fields contain the minimum data you need to define a polyhedron.

The polyhedron data structure also contains information about the edges in the
polyhedron. You can specify edge information either using the edgeFlag field of
each individual triangle, or you can do so using the numEdges and edges fields of
the polyhedron data structure. See “Polyhedra” (page 311) for more information
on specifying polyhedron edges.

Trimeshes 4

Trimeshes are similar to polyhedra in that they are defined indirectly, using
indices into an array of points. In addition, a trimesh has an optional edge array
that defines the edges that are to be drawn. However, trimeshes handle
attributes quite differently from all other QuickDraw 3D geometric primitives.
You do not store attributes for a trimesh (or for any part of a trimesh) in a set of
type TQ3AttributeSet. Instead, you must use a structure of type
TQ3TriMeshAttributeData, which stores attribute data contiguously in a single
block of memory.

More importantly, attributes associated with a trimesh must conform to this
restriction: if any single vertex (or edge, or face) has an attribute of a specific
non-custom type, then every vertex (or edge, or face) in the trimesh must also

C H A P T E R 4

Geometric Objects

About Geometric Objects 247

have an attribute of that type. (There are, therefore, no shared attributes.) This
restriction can deleteriously affect the memory requirements of a large trimesh.

The trimesh is not suitable for general-purpose use representing polyhedral
models. The restrictions on attribute storage can result in very large memory
requirements, even though only a few faces might need attributes assigned to
them. In addition, there are no functions provided by QuickDraw 3D that allow
you to change the geometric or topological configuration of a trimesh object.
Trimeshes are designed for immediate mode rendering, and are most suitable
for surfaces in which all the component triangles have the same types of
attributes.

Comparison of the Polyhedral Primitives 4

You can use the four polyhedral primitives—the polyhedron, trimesh, mesh,
and trigrid—to create similar shapes. However, these primitives offer important
differences in their generality, flexibility, style of programming, performance,
and compliance with the overall design goal of treating retained and immediate
mode programming as equivalent. Table 4-1 provides an overview of their
chracteristics, which are discussed in greater detail in “Using Geometric
Objects,” beginning on page 257.

Table 4-1 Characteristics of polyhedral primitives

Characteristic Polyhedron Trimesh Mesh Trigrid

Memory usage Very good Fair to very
good

Poor Very good

File space usage Very good Fair to very
good

Very good Very good

Rendering speed Good to
very good

Good to very
good

Fair to good Good to very
good

Geometric object
editing

Very good Impossible
(no API calls)

Very good Very good

Topological object
editing

Poor Impossible
(no API calls)

Very good Impossible
(fixed topology)

Geometric data
structure editing

Very good Very good Impossible (no
data structure)

Very good

C H A P T E R 4

Geometric Objects

248 About Geometric Objects

NURB Curves and Patches 4

QuickDraw 3D supports curves and surfaces that can be defined using
nonuniform rational B-splines (NURBs), a class of equations defined by
nonuniform parametric ratios of B-spline polynomials. A three-dimensional
curve represented by a NURB equation is a NURB curve, and a
three-dimensional surface represented by a NURB equation is a NURB patch.
Figure 4-3 shows a sample NURB curve.

Topological data
structure editing

Fair Fair Impossible (no
data structure)

Impossible
(fixed topology)

I/O speed Good to
very good

Fair to very
good

Fair Good to very
good

Flexibility and
generality

Good Poor Very good Poor (fixed
topology)

Suitability for
general model
representation
and distribution

Very good Fair Fair Poor

Table 4-1 Characteristics of polyhedral primitives (continued)

Characteristic Polyhedron Trimesh Mesh Trigrid

C H A P T E R 4

Geometric Objects

About Geometric Objects 249

Figure 4-3 A NURB curve

NURBs can be used to define very complex curves and surfaces, as well as some
common geometric objects (for instance, the conic sections). NURB curves and
patches are especially useful in 3D imaging because they are invariant under
scale, rotate, translation, and perspective transformations of their control points.

A parametric curve is any curve whose points are represented by one or more
functions of a single parameter (usually denoted by the letter t or u). The
Cartesian coordinates (x, y) of a two-dimensional parametric curve can be
represented generally by these two equations:

The Cartesian coordinates (x, y, z) of a three-dimensional parametric curve can
be represented generally by these three equations:

x x u()=

y y u()=

x x u()=

y y u()=

z z u()=

C H A P T E R 4

Geometric Objects

250 About Geometric Objects

For compactness, the two- or three-dimensional point is usually represented as
a vector. A two-dimensional point has this vector:

For example, a circle can be defined parametrically by a pair of equations:

Alternatively, a circle can be defined parametrically by this vector equation:

A B-spline polynomial is a parametric equation of this form:

where

In these equations, the xi are elements of an array of real numbers, known as the
knot vector, where each element is greater than or equal to the previous (that is,
they are nondecreasing). The Bi are, algebraically, the coefficients of the
polynomial representing the curve. Geometrically, they are the (x, y) positions
(in a two-dimensional curve) of control points, which (together with the knot
vector) define the shape of the particular curve of which they are a part. The
control points and the knots define the curve’s shape in this way: a position of a
point on the curve at some parametric value u is a weighted combination of the

P u() x u() y u()[]=

x r ucos=

y r usin=

P u() r ucos r usin[]=

P u() BiNi k, u()
i 1=

n 1+

∑=

Ni 1, u()
1 if xi u xi 1+<≤

0 otherwise

=

Ni k, u()
u xi–()Ni k 1–, u()

xi k 1–+ xi–

xi k+ u–()Ni 1+ k 1–, u()

xi k+ xi 1+–
---+=

C H A P T E R 4

Geometric Objects

About Geometric Objects 251

positions of a subset of all the control points; the “weighting” is determined by
the relative values of the knot vector.

Finally, a NURB curve is a curve defined by ratios of B-spline polynomials,
where the values assigned to the parameter can be nonuniform. A NURB patch
is a surface defined by ratios of B-spline surfaces, which are three-dimensional
analogs of B-spline curves. A B-spline surface is a surface defined by a
parametric equation of this form:

where

and

In these equations, the factors Bi,j are, algebraically, the coefficients of the
polynomial representing the surface. Geometrically, they are the (x, y, z)
coordinates of the control points that define the surface. The factors wi,j are the

Q u v,()

wi j, Bi j,
j 1=

m 1+

∑
i 1=

n 1+

∑ Ni k, u()M j l, v()

wi j,
j 1=

m 1+

∑
i 1=

n 1+

∑ Ni k, u()M j l, v()

--=

Ni 1, u()
1 if xi u xi 1+<≤

0 otherwise

=

Ni k, u()
u xi–()Ni k 1–, u()

xi k 1–+ xi–

xi k+ u–()Ni 1+ k 1–, u()

xi k+ xi 1+–
---+=

M j 1, v()
1 if y j v yj 1+<≤

0 otherwise

=

M j k, v()
v yj–()M j l 1–, v()

yj l 1–+ yj–

yj l+ v–()M j 1 l 1–,+ v()

yj l+ yj 1+–
--+=

C H A P T E R 4

Geometric Objects

252 About Geometric Objects

weights of those control points. The factors xi and yj are elements of arrays of
real numbers, again called knot vectors. These vectors must be non-decreasing.

Surface Parameterizations 4

For some modeling operations—in particular, applying a texture to the surface
of an object—QuickDraw 3D needs to perform a mapping between the texture
and the surface. This mapping is usually specified using a pair of uv parametric
spaces, one defined over the texture and one defined over the surface of the
object. A uv parametric space is also called a parameterization. A uv parametric
space applied to the surface of an object is a surface parameterization.

A texture is typically specified as a pixmap, that is, as a rectangular array of
pixels. In that case, the texture has a simple uv parameterization (shown in
Figure 4-4) that allows QuickDraw 3D to select pixels in the pixmap by varying
u and v in the range 0 to 1. Figure 4-4 (page 253) shows the pixmap, with its
origin in the upper-left corner; it also shows the standard pixmap
parameterization, which maps the unit box from 0.0 to 1.0 along the u and v
axes.

C H A P T E R 4

Geometric Objects

About Geometric Objects 253

Figure 4-4 The standard uv parameterization for a pixmap

In addition to this texture parameterization, QuickDraw 3D uses another
parameterization that picks out points on the surface of the object. For texture
mapping, the most useful standard surface parameterization is any
parameterization that results in the entire texture being mapped to the entire
surface exactly once. QuickDraw 3D defines a standard surface
parameterization for most of the primitive QuickDraw 3D geometric objects.
In some cases, an object’s standard surface parameterization is obtained from
the object’s natural surface parameterization (that is, a parameterization that
defines the surface). For example, a NURB patch is naturally parameterized by
its u and v knot vectors. (However, note that a texture will be mapped only into

(0.0,0.0) (1.0,0.0)

(0.0,1.0)

v

u

(0,0)

Height

Width

Integer pixel origin

Resulting u,v parameterization

Floating point u,v coordinates

C H A P T E R 4

Geometric Objects

254 About Geometric Objects

the subregion of the patch that corresponds to the 1 by 1 subregion of domain
space. You must take this into account when assigning values larger than 1 to a
patch’s knot vectors.)

In other cases, however, there is no natural surface parameterization for an
object, and QuickDraw 3D must define an arbitrary standard surface
parameterization for it. For example, for a box, which has no natural surface
parameterization, QuickDraw 3D uses the standard surface parameterization
shown in Figure 4-5.

Figure 4-5 The standard surface parameterization of a box

Figure 4-6 shows the result of mapping the texture shown in Figure 4-4 onto the
front face of a box.

Orientation

origin
majorAxis

(0,1)

(0,0)

(1,1)

(1,0)

Top

(0,1)

(0,0)

(1,1)

(1,0)

Left

(0,1)

(0,0)

(1,1)

(1,0)

Front

(0,1)

(0,0)

(1,1)

(1,0)

Right

(0,1)

(0,0)

(1,1)

(1,0)

Back

(1,0)

(1,1)

(0,0)

(0,1)

Bottom

C H A P T E R 4

Geometric Objects

About Geometric Objects 255

Figure 4-6 A texture mapped onto a box

Similarly, an ellipsoid has the standard surface parameterization shown in
Figure 4-7 (page 256).

In this case, the v parameter varies from 0 to 1 as it sweeps from the end of the
orientation vector to the top of the ellipsoid, and the u parameter varies from 0
to 1 as it sweeps around in the plane defined by the major radius and minor
radius. In the coordinate system defined by the orientation, the major axis, and
the minor axis, the standard surface parameterization is given by these
equations, where u and v are both defined on the interval [0, 1):

xmajor 2πu()cos 2πv()sin⋅=

xminor 2πu()sin 2πv()sin⋅=

xorient πv()cos=

C H A P T E R 4

Geometric Objects

256 About Geometric Objects

Figure 4-7 The standard surface parameterization for an ellipsoid.

Some objects have neither a natural surface parameterization nor a standard
surface parameterization supplied by QuickDraw 3D. For example, the faces of
a mesh have neither type of parameterization. To apply a texture to such an
object, you need to define your own custom surface parameterization. You do
this by adding attributes of type kQ3AttributeTypeSurfaceUV to the vertices of
the object. See Listing 4-5 (page 271) for details.

It’s possible to modify the mapping used in applying a texture to a surface, by
changing the surface’s uv shading transform. (For example, you can rotate the
texture any desired amount by installing the appropriate transformation
matrix.) See the chapter “Shader Objects” for information on setting the uv
transform used by a surface shader.

Note
To override an object’s standard surface parameterization,
or to define a custom surface parameterization for an object
that has no standard surface parameterization, you need to
manipulate the surface uv attributes of the object. See the
chapter “Attribute Objects” for details. ◆

The standard surface parameterizations of the QuickDraw 3D geometric objects
are given in the section “Geometric Objects Reference.”

origin

minorRadiusmajorRadius

v

u

orientation

C H A P T E R 4

Geometric Objects

Using Geometric Objects 257

Using Geometric Objects 4

QuickDraw 3D provides routines that you can use to create and edit geometric
objects, get and set attributes for those objects, and perform other geometric
operations. This section illustrates how to create and delete some geometric
objects and how to traverse the parts of a mesh.

Creating and Deleting Geometric Objects 4

As you saw briefly in the chapter “Introduction to QuickDraw 3D,”
QuickDraw 3D supports both immediate and retained modes of defining and
rendering a model. Which mode you employ in any particular instance
depends on the needs of your application. As suggested earlier, if much of the
model remains unchanged from frame to frame, you should use retained mode
imaging to create and draw the model. If, however, many parts of the model do
change from frame to frame, you should use immediate mode imaging, creating
and rendering a model on a shape-by-shape basis.

Listing 4-1 illustrates how to create a retained box.

Listing 4-1 Creating a retained box

TQ3GeometryObject myBox;
TQ3BoxData myBoxData;

Q3Point3D_Set(&myBoxData.origin, 1.0, 1.0, 1.0);
Q3Vector3D_Set(&myBoxData.orientation, 0, 2.0, 0);
Q3Vector3D_Set(&myBoxData.minorAxis, 2.0, 0, 0);
Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 2.0);
myBox = Q3Box_New(&myBoxData);

Once the code in Listing 4-1 has been executed, the variable myBox contains a
reference to the new box. You can then reuse or dispose of the myBoxData
structure, because all subsequent operations on the retained box are performed
using myBox. For example, to submit the box for drawing, picking, bounding, or

C H A P T E R 4

Geometric Objects

258 Using Geometric Objects

writing, you can execute the following line of code inside a rendering, picking,
bounding, or writing loop:

myStatus = Q3Object_Submit(myBox, myView);

To dispose of the retained box, you can call the Q3Object_Dispose function, as
follows:

myStatus = Q3Object_Dispose(myBox);

Listing 4-2 illustrates how to create an immediate box.

Listing 4-2 Creating an immediate box

TQ3BoxData myBoxData;

Q3Point3D_Set(&myBoxData.origin, 1.0, 1.0, 1.0);
Q3Vector3D_Set(&myBoxData.orientation, 0, 2.0, 0);
Q3Vector3D_Set(&myBoxData.minorAxis, 2.0, 0, 0);
Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 2.0);

As you can see, you do not have to call any QuickDraw 3D routine to create an
immediate box; instead, you simply define the box data in a structure of type
TQ3BoxData. To draw an immediate box, you call the Q3Box_Submit function
(inside a rendering loop), as follows:

myStatus = Q3Box_Submit(myBox, myView);

Because you didn’t create any retained entity, you do not need to dispose of the
immediate box.

Using Polyhedrons 4

The polyhedron is the primitive of choice for most programming situations, as
well as for the creation and distribution of editable model files. Thus if your
application requires the creation, conversion, or distribution of polyhedral
models, you should produce them in polyhedron format instead of mesh or
trimesh. User applications such as modelers and animation tools should also
generally manipulate polyhedrons. Plug-in renderers are required to support

C H A P T E R 4

Geometric Objects

Using Geometric Objects 259

certain basic primitives (triangles, points, lines, and markers) and are strongly
urged to support the polyhedron as well.

The polyhedron format gives you these features:

■ It can easily represent many different polyhedral models in a space-efficient
fashion.

■ It’s capable of fast rendering.

■ It’s highly consistent with the rest of the QuickDraw 3D API.

■ Attributes can be attached in whatever combination is appropriate for the
model.

Polyhedrons make geometric editing operations, which change the positions of
existing vertices, easy and convenient. In immediate mode, you can simply alter
a point’s position in the array in the polyhedron data structure and render the
shape again. In retained mode, several function calls let you change vertex
locations, as well as providing the usual assortment of Get and Set calls for
attributes, faces, face attributes, and so on.

You can use topological editing operations to change the relationships between
vertices, faces, edges, and the whole polyhedron. However, the addition or
deletion of vertices, faces, or edges may require reallocation of one or more of
the polyhedron’s arrays. Because the polyhedron has a public data structure,
these operations are possible in both immediate mode and retained mode. If
adding and deleting vertices, faces, or edges aren’t the primary operations
required for using the polyhedron, array reallocation will not be a problem; if
they are, you should use the mesh primitive instead.

The polyhedron uses memory and disk space efficiently because shared
locations and attributes are stored only once and only those parts that logically
require attributes get them. This produces good I/O speed, although, as with all
geometric primitives, the addition of textures can increase I/O time
significantly. The polyhedron also features superior rendering speed because its
vertices are shared.

Creating a Polyhedron 4

The normal way to make a polyhedron is to create an array of points and a list
of triangular faces that organize the points. Each face consists of a list of indices
into the list of vertices, forming a polygon with one level of array-based
indirection. If there is more than one face, the vertices can be shared by reusing
the same array indices in each face. This allows the graphics system to run

C H A P T E R 4

Geometric Objects

260 Using Geometric Objects

faster because the same point doesn’t have to be transformed or shaded more
than once, and it saves storage space. In addition, because two or more faces
share only one real vertex, this format makes it easier to do interactive editing
programming.

Polyhedrons—objects of type kQ3GeometryTypePolyhedron—implement this
process in a way that is consistent with the other QuickDraw 3D primitives. Its
basic component is the vertex of type TQ3Vertex3D, an {x, y, z} location with an
attribute set. The vertices of adjacent triangular faces are shared simply by
using the same vertex indices. Also, sets of attributes may be shared like other
objects in QuickDraw 3D:

vertex->attributeSet = Q3Shared_GetReference(otherVertex->attributeSet);

Vertices can contain the same locations, but need not share attributes. This can
be useful, for example, when creating a polyhedron that is generally smooth but
has some edges or corners where you want a discontinuity. For example,
consider the cross section of a polyhedron shown in Figure 4-8, which has
vertices sharing locations but not attributes.

In Figure 4-8, each location is shared, and vertices at positions A, B, D, and E
share normals, while the vertices at position C share the location but not the
normal. So when smooth-shaded, the object has an edge or corner at position C
but appears smooth elsewhere.

Figure 4-8 Cross-section of a polyhedron

Because values in an attribute set apply to all vertices or faces sharing that
attribute set, operations on it will affect all these elements. For example, you can
associate a single texture with a group of faces by simply giving each face a

C H A P T E R 4

Geometric Objects

Using Geometric Objects 261

shared reference to the texture-containing attribute set. For a single texture to
span a number of faces, you need to make sure their shared vertices share
texture coordinates. You can do this by making shared vertices of faces that are
spanned by a single texture use the same attribute set, as shown in Figure 4-9.

Figure 4-9 Applying textures that span several faces

Besides an attribute set for the face, the three vertices defining a face of a
polyhedron are in an array of size 3. The polyhedron also uses an enumerated
type that defines which edges are drawn and which not:

typedef enum TQ3PolyhedronEdgeMasks {
kQ3PolyhedronEdgeNone = 0,
kQ3PolyhedronEdge01 = 1 << 0,
kQ3PolyhedronEdge12 = 1 << 1,
kQ3PolyhedronEdge20 = 1 << 2,
kQ3PolyhedronEdgeAll = kQ3PolyhedronEdge01 |

 kQ3PolyhedronEdge12 |
 kQ3PolyhedronEdge20

} TQ3PolyhedronEdgeMasks;

typedef unsigned long TQ3PolyhedronEdge;

C H A P T E R 4

Geometric Objects

262 Using Geometric Objects

By OR-combining these flags you can select which edges of a particular triangle
you want drawn. For example, if you’re using a wireframe renderer to draw an
object like the one shown in Figure 4-10, you wouldn’t have to show the
“internal” edges, just the edges that represent the true border of the face. For
face 0 in Figure 4-10, you could specify that you want to display only the edges
between vertices 0 and 1 and vertices 2 and 0, leaving undrawn the edge
between vertices 1 and 2. You’d do this by specifying (kQ3PolyhedronEdge01 |
kQ3PolyhedronEdge20) as the edge mask.

Figure 4-10 Wireframe polyhedron

All the information discussed so far is collected in this data structure:

typedef struct TQ3PolyhedronTriangleData {
unsigned long vertexIndices[3];
TQ3PolyhedronEdge edgeFlag;
TQ3AttributeSet triangleAttributeSet;

} TQ3PolyhedronTriangleData;

An alternative to using a mask to specify the edges is to create a list of edges for
the entire polyhedron. If the renderer draws the edges (or lines, in the case of a
wireframe renderer) from an edge list, the renderer can transform the points
just once each and draw each edge just once, resulting in much faster rendering.
The renderer ignores the edge flags in the face data structure if an array of these
edges is present:

C H A P T E R 4

Geometric Objects

Using Geometric Objects 263

typedef struct TQ3PolyhedronEdgeData {
unsigned long vertexIndices[2];
unsigned long triangleIndices[2];
TQ3AttributeSet edgeAttributeSet;

} TQ3PolyhedronEdgeData;

As shown in Figure 4-11, the vertexIndices field specifies indices into the vertex
array, one for the vertex at each end of each edge.

Figure 4-11 Filling out a polyhedron’s edge data structure

The triangleIndices field shown in Figure 4-11 specifies indices into the array
of faces. You need to provide the indices to the faces that share an edge because
performing correct backface removal requires that the edge be drawn only if at
least one of the faces that it’s part of is facing forward.

The edgeAttributeSet field allows the application to specify the color and other
attributes of edges independently. If no attribute is set for an edge, the attributes
are inherited from the geometric object, or from the view’s state if that’s not
present. Every edge must have two points, but edges may have one or two faces
adjacent to them; those with just one are on a boundary of the object. To
represent a boundary in an array-based representation, you use the identifier
kQ3ArrayIndexNULL as a face index for the side of an edge that has no face
attached to it.

C H A P T E R 4

Geometric Objects

264 Using Geometric Objects

Note
When going from the vertex at index 0 to the vertex at
index 1 in Figure 4-11, the 0th face is to the left. If possible,
fill out your data structures to conform to this practice.
Other code may want to traverse the edge list and be
assured of knowing exactly which face is on which side of
each edge. ◆

The following is the entire polyhedron data structure:

typedef struct TQ3PolyhedronData {
unsigned long numVertices;
TQ3Vertex3D *vertices;
unsigned long numEdges;
TQ3PolyhedronEdgeData *edges;
unsigned long numTriangles;
TQ3PolyhedronTriangleData *triangles;
TQ3AttributeSet polyhedronAttributeSet;

} TQ3PolyhedronData;

Listing 4-3 shows the code that creates the four-faced polyhedron shown in
Figure 4-10.

Listing 4-3 Creating a four-faced polyhedron

TQ3ColorRGB color;
TQ3PolyhedronData polyhedronData;
TQ3GeometryObject polyhedron;
TQ3Vector3D normal;

static TQ3Vertex3Dvertices[7] = {
{ { -1.0, 1.0, 0.0 }, NULL },
{ { -1.0, -1.0, 0.0 }, NULL },
{ { 0.0, 1.0, 1.0 }, NULL },
{ { 0.0, -1.0, 1.0 }, NULL },
{ { 2.0, 1.0, 1.0 }, NULL },
{ { 2.0, -1.0, 0.0 }, NULL },
{ { 0.0, -1.0, 1.0 }, NULL }

};

C H A P T E R 4

Geometric Objects

Using Geometric Objects 265

TQ3PolyhedronTriangleData triangles[4] = {
{ /* Face 0 */

{ 0, 1, 2 }, /* vertexIndices */
kQ3PolyhedronEdge01 | kQ3PolyhedronEdge20, /* edgeFlag */
NULL /* triangleAttributeSet */

},
{ /* Face 1 */

{ 1, 3, 2 },
kQ3PolyhedronEdge01 | kQ3PolyhedronEdge12,
NULL

},
{ /* Face 2 */

{ 2, 3, 4 },
kQ3PolyhedronEdgeAll,
NULL

},
{../* Face 3 */

{ 6, 5, 4 },
kQ3PolyhedronEdgeAll,
NULL

}
};

/* Set up vertices, edges, and triangular faces. */
polyhedronData.numVertices = 7;
polyhedronData.vertices = vertices;
polyhedronData.numEdges = 0;
polyhedronData.edges = NULL;
polyhedronData.numTriangles = 4;
polyhedronData.triangles = triangles;

/* Inherit the attribute set from the current state. */
polyhedronData.polyhedronAttributeSet = NULL;

/* Put a normal on the first vertex. */
Q3Vector3D_Set(&normal, -1, 0, 1);
Q3Vector3D_Normalize(&normal, &normal);
vertices[0].attributeSet = Q3AttributeSet_New();
Q3AttributeSet_Add(vertices[0].attributeSet, kQ3AttributeTypeNormal,

&normal);

C H A P T E R 4

Geometric Objects

266 Using Geometric Objects

/* Same normal on the second. */
vertices[1].attributeSet =

Q3Shared_GetReference(vertices[0].attributeSet);

/* Different normal on the third. */
Q3Vector3D_Set(&normal, -0.5, 0.0, 1.0);
Q3Vector3D_Normalize(&normal, &normal);
vertices[2].attributeSet = Q3AttributeSet_New();
Q3AttributeSet_Add(vertices[2].attributeSet, kQ3AttributeTypeNormal,

&normal);

/* Same normal on the fourth. */
vertices[3].attributeSet =

Q3Shared_GetReference(vertices[2].attributeSet);

/* Put a color on the third triangle. */
triangles[3].triangleAttributeSet = Q3AttributeSet_New();
Q3ColorRGB_Set(&polyhedronColor, 0, 0, 1);
Q3AttributeSet_Add(triangles[3].triangleAttributeSet,

kQ3AttributeTypeDiffuseColor, &polyhedronColor);

/* Create the polyhedron object. */
polyhedron = Q3Polyhedron_New(&polyhedronData);

... /* Dispose of attributes created and referenced. */

Listing 4-4 shows code that specifies the edges of the polyhedron shown in
Figure 4-10, but using the optional edge list. It is added to the code in
Listing 4-3. When using an edge list, you would set the edge flags in the triangle
data of Listing 4-3 to a legitimate value, such as kQ3EdgeFlagAll, that will be
ignored.

Listing 4-4 Using an edge list to specify the edges of a polyhedron

polyhedronData.numEdges = 8;
polyhedronData.edges = malloc(8 * sizeof(TQ3PolyhedronEdgeData));

C H A P T E R 4

Geometric Objects

Using Geometric Objects 267

polyhedronData.edges[0].vertexIndices[0] = 0;
polyhedronData.edges[0].vertexIndices[1] = 1;
polyhedronData.edges[0].triangleIndices[0] = 0;
polyhedronData.edges[0].triangleIndices[1] = kQ3ArrayIndexNULL;
polyhedronData.edges[0].edgeAttributeSet = NULL;

polyhedronData.edges[1].vertexIndices[0] = 2;
polyhedronData.edges[1].vertexIndices[1] = 0;
polyhedronData.edges[1].triangleIndices[0] = 0;
polyhedronData.edges[1].triangleIndices[1] = kQ3ArrayIndexNULL;
polyhedronData.edges[1].edgeAttributeSet = NULL;

polyhedronData.edges[2].vertexIndices[0] = 1;
polyhedronData.edges[2].vertexIndices[1] = 3;
polyhedronData.edges[2].triangleIndices[0] = 1;
polyhedronData.edges[2].triangleIndices[1] = kQ3ArrayIndexNULL;
polyhedronData.edges[2].edgeAttributeSet = NULL;

polyhedronData.edges[3].vertexIndices[0] = 3;
polyhedronData.edges[3].vertexIndices[1] = 2;
polyhedronData.edges[3].triangleIndices[0] = 1;
polyhedronData.edges[3].triangleIndices[1] = 2;
polyhedronData.edges[3].edgeAttributeSet = NULL;

... /* Specify the rest of the edges. */

Using Trimeshes 4

Like the polyhedron, the trimesh uses a list of points and a list of triangular
faces that contain indices into the list of points. It also has an optional edge list.
However, it differs from the polyhedron in other ways. The trimesh primitive
has several unique characteristics that significantly affect its applicability:

■ All trimesh data values are stored in explicit arrays—vertex locations, vertex
attributes, triangle attributes, and edge attributes.

■ Trimeshes generally do not keep attributes in objects of type
TQ3AttributeSet; instead, their attributes are kept as arrays of explicit data
structures. However, the trimesh does maintain a TQ3AttributeSet object for
its whole geometry, like other primitives.

C H A P T E R 4

Geometric Objects

268 Using Geometric Objects

■ With the exception of custom attributes, every vertex, face, or edge of a
trimesh must have exactly the same types of attributes. For example, you
must put a color on every face of a trimesh if you want to put a color on just
one face; similarly for vertices and edges. For some types of models, such as
those in existing applications ported to QuickDraw 3D that already use
uniform attributes, this may not be a problem. In such cases, the trimesh may
be the natural choice, as well as being faster and more compact.

The uniform-attributes requirement just mentioned, and the use of arrays of
explicit data for attributes, can make the trimesh format preferable to the
polyhedron in some models and applications. However, these features make it
hard to use trimeshes to represent arbitrary, nonuniform polyhedra. Many solid
shapes have regions that are smoothly curved and regions that are flat or
faceted, as well as sharp edges, corners, and creases. The vertices in the curved
regions need normals that approximate the surface normal at that vertex, but
vertices at corners or along edges or in flat regions need none. With the
polyhedron, mesh, and trigrid formats, you must allocate storage for normals
only for those vertices that actually require a normal. With the trimesh format,
you must allocate vertex normals on all vertices, causing heavy memory usage.

This same problem applies to face attributes. Solid shapes often have regions
that differ in color, transparency, or surface texture. For example, a soccer ball
has black and white faces and a wine bottle may have a label on the front, a
different label on the back, and another around the neck. The other polyhedral
primitives would, in the case of the soccer ball, simply create two attribute sets
(one for each color) and attach a reference to the appropriate attribute set to
each face, thus sharing the color information. The trimesh format is forced to
create an array of colors, using a lot of memory to represent the same data over
and over. If you wanted to highlight one face of a soccer ball, you couldn’t just
attach a highlight switch attribute to that face, set to “on”—you’d need to attach
it to the rest as well, set to “off.” In the case of the wine bottle, you would want
to attach label textures to the appropriate faces on the bottle by attaching
texture parameters to the vertices of those faces. With a trimesh, this powerful
approach is not possible.

When using the trimesh for large polyhedral models, these problems can result
in heavy space usage, both on disk and in memory. Consider a 10,000-face
model whose faces are either red or green. The other polyhedral primitives
would use references to just two color attribute sets while the trimesh would
need 10,000 * 12 = 120,000 bytes. If the red faces were to be transparent, a
trimesh would use another 120,000 bytes. Highlighting just one face would
require 40,000 bytes more, and the same sort of data explosion would happen

C H A P T E R 4

Geometric Objects

Using Geometric Objects 269

with vertex attributes as well. These problems don’t occur with the other
polyhedral primitives.

In spite of these features that limit the suitability of the trimesh for
general-purpose polyhedral representation, the uniform-attributes requirement
makes it ideal for models in which each vertex or face naturally has the same
type of attributes as the other vertices (or faces), but with different values. For
example, if your application uses Coons patches, it could subdivide the patch
into a trimesh with normals on each vertex. Games often are written with
objects such as walls, or even some stylized characters, that typically have just
one texture and either no vertex attributes or normals on every vertex.
Multimedia, some demo programs, and other “display-only” applications in
which the user is unable to modify objects may find the trimesh useful, at least
for shapes that don’t evoke the memory usage problems described above.

Geometric editing operations in immediate mode for the trimesh are similar to
those for the polyhedron: you simply alter a point’s position in the array in the
trimesh data structure and render the shape again. There are no retained-mode
API calls for editing parts of a trimesh. Topological editing in immediate mode
is also similar to that for the polyhedron. Because there are no suitable API calls,
however, it is impossible to edit a trimesh object topologically in retained mode.

The uniform-attributes requirement for trimeshes causes generally good I/O
performance. However, poor I/O speeds may result from the repeated transfer
of multiple copies of the same data (for example, the same color on every face).
Rendering speed for the trimesh is usually good.

Using Meshes 4

Like the polyhedron and trimesh, the mesh is designed for representing
polyhedra. However, it is intended for the interactive topological creation and
editing of polyhedra, so its architecture and API were designed to support both
iterative construction and topological modification.

Iterative construction means that you can easily construct a mesh by building it
face-by-face, instead of filling in a data structure and constructing it from the
data structure all at once.

Topological modification means that you can easily add and delete vertices,
faces, edges, and other components in a mesh. A mesh has no explicit public
data structure; unlike the other geometric primitives, it also has no
immediate-mode capability.

C H A P T E R 4

Geometric Objects

270 Using Geometric Objects

Meshes are not intended for representing large-scale polyhedral models with
many vertices and faces. If employed this way, the mesh format causes poor
I/O behavior, heavy memory usage, and suboptimal rendering speed. Hence
modeling, animation, and design applications should use the polyhedron
format for most model creation and storage.

On the other hand, in some applications the mesh format is superior to other
geometric primitives. For example, it would be ideal in an application that used
a 3D sampling peripheral, such as a Polhemus device, to digitize physical
objects. You could use the mesh to construct the digitized model face-by-face, to
merge or split faces, to add or delete vertices, and so forth. Doing these tasks
with an array-based data structure would be awkward to program and force the
program to make repeated array reallocations.

The faces of meshes, unlike those of the polyhedron and trimesh, may have
more than three vertices, may be concave (though not self-intersecting), and
may contain holes by defining faces with more than one list of vertices.

The mesh API supports a rich variety of geometric and topological editing
operations, but only for retained mode; it has no immediate-mode public data
structure. If your application needs immediate mode, you should use the
polyhedron format.

In general, the rendering speed of meshes is relatively slow. They must be either
traversed for rendering or decomposed into other primitives that yield faster
rendering. Traversing usually results in the slow retransformation and
reshading of shared vertices, while decomposition may require heavy memory
usage as well as complex and slow bookkeeping code.

To summarize, you should use the mesh primitive for interactive construction
and topological editing. Its rich set of geometric and topological editing calls,
the ability to make nontriangular faces directly, the ability to make concave
faces and faces with holes, and the consistent use of attribute sets make the
mesh primitive ideal for many purposes. In addition, the 3D metafile
representation of a mesh is quite space efficient. Because the mesh lacks an
immediate mode, however, it requires a large amount of memory and may be
inefficient for other uses.

Creating a Mesh 4

As explained in “Meshes,” beginning on page 240, you create a mesh by calling
Q3Mesh_New to create a new empty mesh and then by calling Q3Mesh_VertexNew
and Q3Mesh_FaceNew to explicitly add vertices and faces to the mesh. Listing 4-5

C H A P T E R 4

Geometric Objects

Using Geometric Objects 271

illustrates how to create a simple mesh using these functions. It also shows how
to attach a custom surface parameterization to a mesh face, so that a texture can
be mapped onto the face.

Listing 4-5 Creating a simple mesh

TQ3GroupObject MyBuildMesh (void)
{

TQ3ColorRGB myMeshColor;
TQ3GroupObject myModel;
static TQ3Vertex3D vertices[9] = {

{ { –0.5, 0.5, 0.0 }, NULL },
{ { –0.5, –0.5, 0.0 }, NULL },
{ { 0.0, –0.5, 0.3 }, NULL },
{ { 0.5, –0.5, 0.0 }, NULL },
{ { 0.5, 0.5, 0.0 }, NULL },
{ { 0.0, 0.5, 0.3 }, NULL },
{ { –0.4, 0.2, 0.0 }, NULL },
{ { 0.0, 0.0, 0.0 }, NULL },
{ { –0.4, –0.2, 0.0 }, NULL }};

static TQ3Param2D verticesUV[9] = {
{0.0, 1.0}, {0.0, 0.0}, {0.5, 0.0}, {1.0, 0.0},
{1.0, 1.0}, {0.5, 1.0}, {0.1, 0.8}, {0.5, 0.5},
{0.1, 0.4}};

TQ3MeshVertex myMeshVertices[9];
TQ3GeometryObject myMesh;
TQ3MeshFace myMeshFace;
TQ3AttributeSet myFaceAttrs;
unsigned long i;

myMesh = Q3Mesh_New(); /*create new empty mesh*/

Q3Mesh_DelayUpdates(myMesh); /*turn off mesh updating*/

/*Add vertices and surface parameterization to mesh.*/
for (i = 0; i < 9; i++) {

TQ3AttributeSet myVertAttrs;

C H A P T E R 4

Geometric Objects

272 Using Geometric Objects

myMeshVertices[i] = Q3Mesh_VertexNew(myMesh, &vertices[i]);
myVertAttrs = Q3AttributeSet_New();
Q3AttributeSet_Add(myVertAttrs, kQ3AttributeTypeSurfaceUV, &verticesUV[i]);
Q3Mesh_SetVertexAttributeSet(myMesh, myMeshVertices[i], myVertAttrs);
Q3Object_Dispose(myVertAttrs);

}

myFaceAttrs = Q3AttributeSet_New();
myMeshColor.r = 0.3;
myMeshColor.g = 0.9;
myMeshColor.b = 0.5;
Q3AttributeSet_Add(myFaceAttrs, kQ3AttributeTypeDiffuseColor, &myMeshColor);

myMeshFace = Q3Mesh_FaceNew(myMesh, 6, myMeshVertices, myFaceAttrs);

Q3Mesh_FaceToContour(myMesh, myMeshFace,
Q3Mesh_FaceNew(myMesh, 3, &myMeshVertices[6], NULL));

Q3Mesh_ResumeUpdates(myMesh);

myModel = Q3OrderedDisplayGroup_New();
Q3Group_AddObject(myModel, myMesh);
Q3Object_Dispose(myFaceAttrs);
Q3Object_Dispose(myMesh);
return (myModel);

}

The new mesh created by MyBuildMesh is a retained object. Note that you need
to call Q3Mesh_New before you call Q3Mesh_VertexNew and Q3Mesh_FaceNew. Also,
the call to Q3Mesh_FaceToContour destroys any attributes associated with the
mesh face that is turned into a contour.

Traversing a Mesh 4

QuickDraw 3D supplies functions that you can use to traverse a mesh by
iterating through various parts of the it. For example, you can operate on each
face of a mesh by calling the Q3Mesh_FirstMeshFace function to get the first face
in the mesh and then Q3Mesh_NextMeshFace to get each successive face. When
you call Q3Mesh_FirstMeshFace, you specify a mesh and a mesh iterator
structure, which QuickDraw 3D fills in with information about its current
position while traversing the mesh. You must pass that same mesh iterator

C H A P T E R 4

Geometric Objects

Using Geometric Objects 273

structure to Q3Mesh_NextMeshFace when you get successive faces in the mesh.
Listing 4-6 illustrates how to use these routines to operate on all faces in a mesh.

Listing 4-6 Iterating through all faces in a mesh

TQ3Status MySetMeshFacesDiffuseColor (TQ3GeometryObject myMesh,
 TQ3ColorRGB color)

{
TQ3MeshFace myFace;
TQ3MeshIterator myIter;
TQ3Status myErr;
TQ3AttributeSet mySet;

for (myFace = Q3Mesh_FirstMeshFace(myMesh, &myIter);
 myFace;
 myFace = Q3Mesh_NextMeshFace(&myIter)) {

/*Get the current attribute set of the current face.*/
myErr = Q3Mesh_GetFaceAttributeSet(myMesh, myFace, &mySet);
if (myErr == kQ3Failure) return (kQ3Failure);

/*Add the color attribute to the face attribute set.*/
myErr = Q3AttributeSet_Add((TQ3AttributeSet)mySet,

kQ3AttributeTypeDiffuseColor, &color);
if (myErr == kQ3Failure) return (kQ3Failure);

/*Set the attribute set of the current face.*/
myErr = Q3Mesh_SetFaceAttributeSet(myMesh, myFace, mySet);
if (myErr == kQ3Failure) return (kQ3Failure);

}
return (kQ3Success);

}

QuickDraw 3D also supplies a number of C language macros that you can use
to simplify your source code when traversing a mesh. For example, you can use
the following Q3ForEachMeshFace macro:

C H A P T E R 4

Geometric Objects

274 Using Geometric Objects

#define Q3ForEachMeshFace(m,f,i)
for ((f) = Q3Mesh_FirstMeshFace((m),(i));

(f);
(f) = Q3Mesh_NextMeshFace((i)))

Listing 4-7 shows how to use two of these macros to attach a corner to each
vertex or each face of a mesh.

Listing 4-7 Attaching corners to all vertices in all faces of a mesh

TQ3Status MyAddCornersToMesh (TQ3GeometryObject myMesh,
 TQ3AttributeSet mySet)

{
TQ3MeshFace myFace;
TQ3MeshVertex myVertex;
TQ3MeshIterator myIter1;
TQ3MeshIterator myIter2;
TQ3Status myErr;

Q3ForEachMeshFace(myMesh, myFace, &myIter1) {
Q3ForEachFaceVertex(myFace, myVertex, &myIter2) {

myErr = Q3Mesh_SetCornerAttributeSet
(myMesh, myFace, myVertex, mySet);

if (myErr == kQ3Failure) return (kQ3Failure);
}

}
return (kQ3Success);

}

Using Trigrids 4

The trigrid format has a fixed topology, defined by the numbers of its rows and
columns. As a result, memory and file space is very efficiently used and I/O
and rendering speeds are fast. However, the trigrid’s fixed topology and the fact
that shared locations must share attributes restrict its generality and flexibility.

The trigrid format is good for representing objects that are topologically
rectangular—for example, surfaces of revolution, swept surfaces, and terrain
models. It is also useful as an output primitive for applications that need to

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 275

decompose their own parametric or implicit surfaces. In such applications the
trigrid can be an especially good choice because it’s more space efficient than
the other polyhedral primitives.

Geometric Objects Reference 4

This section describes the constants and data structures provided by
QuickDraw 3D that you can use to define the QuickDraw 3D geometric objects.
It also describes the routines you can use to create and manipulate those objects.

Constants 4

This section describes the constants that pertain to QuickDraw 3D geometric
objects.

Geometric Object Types 4

Every QuickDraw 3D geometric object has an object type, which you can
determine by calling the Q3Geometry_GetType function. Q3Geometry_GetType
returns one of the following constants, or kQ3ObjectTypeInvalid if the type of an
object cannot be determined or is invalid.

#define kQ3GeometryTypeBox Q3_OBJECT_TYPE('b','o','x',' ')
#define kQ3GeometryTypeCone Q3_OBJECT_TYPE('c','o','n','e')
#define kQ3GeometryTypeCylinder Q3_OBJECT_TYPE('c','y','l','n')
#define kQ3GeometryTypeDisk Q3_OBJECT_TYPE('d','i','s','k')
#define kQ3GeometryTypeEllipse Q3_OBJECT_TYPE('e','l','p','s')
#define kQ3GeometryTypeEllipsoid Q3_OBJECT_TYPE('e','l','p','d')
#define kQ3GeometryTypeGeneralPolygon Q3_OBJECT_TYPE('g','p','g','n')
#define kQ3GeometryTypeLine Q3_OBJECT_TYPE('l','i','n','e')
#define kQ3GeometryTypeMarker Q3_OBJECT_TYPE('m','r','k','r')
#define kQ3GeometryTypeMesh Q3_OBJECT_TYPE('m','e','s','h')
#define kQ3GeometryTypeNURBCurve Q3_OBJECT_TYPE('n','r','b','c')
#define kQ3GeometryTypeNURBPatch Q3_OBJECT_TYPE('n','r','b','p')
#define kQ3GeometryTypePixmapMarker Q3_OBJECT_TYPE('m','r','k','p')
#define kQ3GeometryTypePoint Q3_OBJECT_TYPE('p','n','t',' ')
#define kQ3GeometryTypePolygon Q3_OBJECT_TYPE('p','l','y','g')

C H A P T E R 4

Geometric Objects

276 Geometric Objects Reference

#define kQ3GeometryTypePolyhedron Q3_OBJECT_TYPE('p','l','h','d')
#define kQ3GeometryTypePolyLine Q3_OBJECT_TYPE('p','l','y','l')
#define kQ3GeometryTypeTorus Q3_OBJECT_TYPE('t','o','r','s')
#define kQ3GeometryTypeTriangle Q3_OBJECT_TYPE('t','r','n','g')
#define kQ3GeometryTypeTriGrid Q3_OBJECT_TYPE('t','r','i','g')
#define kQ3GeometryTypeTriMesh Q3_OBJECT_TYPE('t','m','s','h')

Constant descriptions

kQ3GeometryTypeBox A box. See “Boxes” (page 301) for information about boxes.
kQ3GeometryTypeCone

A cone. See “Cones” (page 325) for information about
cones.

kQ3GeometryTypeCylinder
A cylinder. See “Cylinders” (page 322) for information
about cylinders.

kQ3GeometryTypeDisk
A disk. See “Disks” (page 323) for information about disks.

kQ3GeometryTypeEllipse
An ellipse. See “Ellipses” (page 314) for information about
ellipses.

kQ3GeometryTypeEllipsoid
An ellipsoid. See “Ellipsoids” (page 320) for information
about ellipsoids.

kQ3GeometryTypeGeneralPolygon
A general polygon. See “General Polygons” (page 299) for
information about general polygons.

kQ3GeometryTypeLine
A line. See “Lines” (page 295) for information about lines.

kQ3GeometryTypeMarker
A bitmap marker. See “Markers” (page 329) for information
about bitmap markers.

kQ3GeometryTypeMesh
A mesh. See “Meshes” (page 305) for information about
meshes.

kQ3GeometryTypeNURBCurve
A NURB curve. See “NURB Curves” (page 315) for
information about NURB curves.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 277

kQ3GeometryTypeNURBPatch
A NURB patch. See “NURB Patches” (page 317) for
information about NURB patches.

kQ3GeometryTypePixmapMarker
A pixmap marker. See “Markers” (page 329) for
information about pixmap markers.

kQ3GeometryTypePoint
A point. See “Point Objects” (page 295) for information
about point.

kQ3GeometryTypePolygon
A simple polygon. See “Simple Polygons” (page 298) for
information about simple polygons.

kQ3GeometryTypePolyhedron
A polyhedron. See “Polyhedra” (page 311) for information
about polyhedra.

kQ3GeometryTypePolyLine
A polyline. See “Polylines” (page 296) for information
about polylines.

kQ3GeometryTypeTorus
A torus. See “Tori” (page 326) for information about tori.

kQ3GeometryTypeTriangle
A triangle. See “Triangles” (page 297) for information about
triangles.

kQ3GeometryTypeTriGrid
A trigrid. See “Trigrids” (page 304) for information about
trigrids.

kQ3GeometryTypeTriMesh
A trimesh. See “Trimeshes” (page 307) for information
about trimeshes.

Pixel Types 4

The pixelType field of a pixmap or a storage pixmap specifies the type of pixel
in the pixmap. You can use these constants to specify a pixel type:

typedef enum TQ3PixelType {
kQ3PixelTypeRGB32 = 0,
kQ3PixelTypeARGB32 = 1,

C H A P T E R 4

Geometric Objects

278 Geometric Objects Reference

kQ3PixelTypeRGB16 = 2,
kQ3PixelTypeARGB16 = 3.
kQ3PixelTypeRGB16_565 = 4,
kQ3PixelTypeRGB24 = 5

} TQ3PixelType;

Constant descriptions

kQ3PixelTypeRGB32 A pixel occupies 32 bits of memory, with the red
component in bits 23 through 16, the green component in
bits 15 through 8, and the blue component in bits 7 through
0. There is no per-pixel alpha channel value. As a result, the
pixmap (perhaps defining a texture) is treated as opaque.
(You can, however, apply transparency to the pixmap using
the alpha channel values of a triangle vertex, for instance.)

kQ3PixelTypeARGB32 A pixel occupies 32 bits of memory, with the red
component in bits 23 through 16, the green component in
bits 15 through 8, and the blue component in bits 7 through
0. In addition, the pixel’s alpha channel value is in bits 31
through 24. When the alpha value is 255, the pixmap is
opaque; when the alpha value is 0, the pixmap is
completely transparent.

kQ3PixelTypeRGB16 A pixel occupies 16 bits of memory, with the red
component in bits 14 through 10, the green component in
bits 9 through 5, and the blue component in bits 4 through
0. There is no per-pixel alpha channel value. As a result, the
pixmap (perhaps defining a texture) is treated as opaque.
(You can, however, apply transparency to the pixmap using
the alpha channel values of a triangle vertex, for instance.)

kQ3PixelTypeARGB16 A pixel occupies 16 bits of memory, with the red
component in bits 14 through 10, the green component in
bits 9 through 5, and the blue component in bits 4 through
0. In addition, the pixel’s alpha channel value is in bit 15.
When the alpha value is 1, the pixmap is opaque; when the
alpha value is 0, the pixmap is completely transparent.

kQ3PixelTypeRGB16_565
A pixel occupies 16 bits of memory, with the red
component in bits 15 through 11, the green component in
bits 10 through 5, and the blue component in bits 4 through
0. There is no per-pixel alpha channel value. This pixel type
is currently defined only for Windows 32 devices.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 279

kQ3PixelTypeRGB24 A pixel occupies 24 bits of memory, with the red
component in bits 23 through 16, the green component in
bits 15 through 8, and the blue component in bits 7 through
0. There is no per-pixel alpha channel value. This pixel type
is currently defined only for Windows 32 devices.

Endian Types 4

The bitOrder field of a bitmap, a pixmap, or a storage pixmap indicates the
order in which the bits in a byte are addressed. This field must contain one of
these constants:

typedef enum TQ3Endian {
kQ3EndianBig,
kQ3EndianLittle

} TQ3Endian;

Constant descriptions

kQ3EndianBig The bits are addressed in a big-endian manner (that is, each
field is addressed by referring to its most significant bit).

kQ3EndianLittle The bits are addressed in a little-endian manner (that is,
each field is addressed by referring to its least significant
bit).

General Polygon Shape Hints 4

A general polygon has a shape hint associated with it that specifies the shape of
the general polygon. A general polygon’s shape hint may be used by a renderer
to optimize drawing the polygon.

typedef enum TQ3GeneralPolygonShapeHint {
kQ3GeneralPolygonShapeHintComplex,
kQ3GeneralPolygonShapeHintConcave,
kQ3GeneralPolygonShapeHintConvex

} TQ3GeneralPolygonShapeHint;

Constant descriptions

kQ3GeneralPolygonShapeHintComplex
The general polygon consists of more than one contour, is

C H A P T E R 4

Geometric Objects

280 Geometric Objects Reference

self-intersecting, or is not known to be either concave or
convex.

kQ3GeneralPolygonShapeHintConcave
The general polygon has exactly one contour, which is
concave.

kQ3GeneralPolygonShapeHintConvex
The general polygon has exactly one contour, which is
convex.

End Caps Masks 4

Some geometric objects (for example, cones and cylinders) have boundaries that
delimit the object and that are distinct from the surface of the object itself. These
boundaries are the object’s end caps, of type TQ3EndCap.

Note
The term end caps is potentially confusing, because it
applies also to the interior portions of partial solids (that is,
a solid object whose uMin field is greater than 0.0 or whose
uMax field is less than 1.0). ◆

When defining these geometric objects, you specify the kind of end caps by
setting the caps field to some combination of these constants:

typedef enum TQ3EndCapMasks {
kQ3EndCapNone = 0,
kQ3EndCapMaskTop = 1 << 0,
kQ3EndCapMaskBottom = 1 << 1,
kQ3EndCapMaskInterior = 1 << 2

} TQ3EndCapMasks;

Constant descriptions

kQ3EndCapNone The specified geometric object has no end caps.
kQ3EndCapMaskTop The specified geometric object has an end cap at the top.
kQ3EndCapMaskBottom

The specified geometric object has an end cap at the
bottom.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 281

kQ3EndCapMaskInterior
The specified geometric object has an end cap at the
interior.

IMPORTANT

Some of these constants are not applicable to some
geometric objects. For instance, the mask kQ3EndCapMaskTop,
if set in the caps field of a cone, is ignored. ▲

Polyhedron Edge Masks 4

The edgeFlag field of the polyhedron triangle data structure contains a value
that indicates which edges of a polyhedral triangle are to be rendered. You
specify a value for that field using a combination of these edge masks:

typedef enum TQ3PolyhedronEdgeMasks {
kQ3PolyhedronEdgeNone = 0,
kQ3PolyhedronEdge01 = 1 << 0,
kQ3PolyhedronEdge12 = 1 << 1,
kQ3PolyhedronEdge20 = 1 << 2,
kQ3PolyhedronEdgeAll = kQ3PolyhedronEdge01 |

 kQ3PolyhedronEdge12 |
 kQ3PolyhedronEdge20

} TQ3PolyhedronEdgeMasks;

Constant descriptions

kQ3PolyhedronEdgeNone
Render none of the edges of the triangle.

kQ3PolyhedronEdge01
Render the edge between the first and second vertices (that
is, between vertices[0] and vertices[1]).

kQ3PolyhedronEdge12
Render the edge between the second and third vertices
(that is, between vertices[1] and vertices[2]).

kQ3PolyhedronEdge20
Render the edge between the third and first vertices (that
is, between vertices[2] and vertices[0]).

kQ3PolyhedronEdgeAll
Render all of the edges of the triangle.

C H A P T E R 4

Geometric Objects

282 Geometric Objects Reference

Data Structures 4

This section describes the data structures that define the QuickDraw 3D
geometric objects. QuickDraw 3D defines the following primitive objects:

■ points

■ lines

■ polylines

■ triangles

■ simple and general polygons

■ boxes

■ trigrids

■ meshes

■ trimeshes

■ polyhedra

■ ellipses

■ NURB curves

■ NURB patches

■ ellipsoids

■ cylinders

■ disks

■ cones

■ tori

■ markers

Each of these QuickDraw 3D geometric objects has a set of attributes associated
with it. The set of attributes specifies information about the appearance of the
objects (for example, its color and transparency). You can edit an object’s
attributes by calling the functions Q3Geometry_GetAttributeSet and
Q3Geometry_SetAttributeSet.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 283

Note
Don’t confuse a QuickDraw 3D geometric object (which
contains attribute information) with some corresponding
standard geometric object (which doesn’t contain attribute
information). For example, the TQ3Point3D data type defines
the standard three-dimensional Cartesian point. The
associated QuickDraw 3D geometric object is defined by
the TQ3PointData data type. For simplicity, the
QuickDraw 3D types are usually referred to by their usual
geometric names. When it is necessary to distinguish
QuickDraw 3D types from standard mathematical types,
the QuickDraw 3D type will be referred to as an object. For
example, the TQ3Point3D data type defines a point and the
TQ3PointData data type defines a point object. ◆

Points 4

QuickDraw 3D defines two- and three-dimensional points in the usual way, as
pairs and triples of floating-point numbers. You’ll use the TQ3Point3D data type
throughout the QuickDraw 3D application programming interfaces. You’ll use
the TQ3Point2D data type for defining two-dimensional points.

typedef struct TQ3Point2D {
float x;
float y;

} TQ3Point2D;

typedef struct TQ3Point3D {
float x;
float y;
float z;

} TQ3Point3D;

Field descriptions
x The x coordinate (abscissa) of a point.
y The y coordinate (ordinate) of a point.
z The z coordinate of a point.

C H A P T E R 4

Geometric Objects

284 Geometric Objects Reference

Rational Points 4

QuickDraw 3D defines three- and four-dimensional rational points as pairs and
triples of floating-point numbers, together with a floating-point weight. You’ll
use the TQ3RationalPoint4D data type for defining control points of rational
surfaces and solids. The TQ3RationalPoint4D data type represents homogeneous
points in four-dimensional space. To get the equivalent three-dimensional point,
divide the point’s x, y, and z components by the w component. You’ll use the
TQ3RationalPoint3D data type to define control points of NURB trim curves.

typedef struct TQ3RationalPoint3D {
float x;
float y;
float w;

} TQ3RationalPoint3D;

typedef struct TQ3RationalPoint4D {
float x;
float y;
float z;
float w;

} TQ3RationalPoint4D;

Field descriptions
x The x coordinate (abscissa) of a rational point.
y The y coordinate (ordinate) of a rational point.
z The z coordinate of a rational point.
w The weight of a rational point.

Polar and Spherical Points 4

QuickDraw 3D defines polar and spherical points in the usual way. A polar
point is a point in a plane described using polar coordinates. As illustrated in
Figure 4-12, a polar point is uniquely determined by a distance r along a ray
(the radius vector) that forms a given angle θ with a polar axis. Polar points are
defined by the TQ3PolarPoint data type.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 285

Note
Given a fixed polar origin and polar axis, a polar point can
be described by infinitely many polar coordinates. For
example, the polar point (5, π) is the same as the polar
point (5, 3π). ◆

Figure 4-12 A planar point described with polar coordinates

typedef struct TQ3PolarPoint {
float r;
float theta;

} TQ3PolarPoint;

Field descriptions
r The distance along the radius vector from the polar origin

to the polar point.
theta The angle, in radians, between the polar axis and the radius

vector.
A spherical point is a point in space described using spherical coordinates. As
illustrated in Figure 4-13, a spherical point is uniquely determined by a distance
ρ along a ray (the radius vector) that forms a given angle θ with the x axis and
another given angle φ with the z axis. Spherical points are defined by the
TQ3SphericalPoint data type.

Pole

r Radius vector

Polar axis

C H A P T E R 4

Geometric Objects

286 Geometric Objects Reference

Figure 4-13 A spatial point described with spherical coordinates

typedef struct TQ3SphericalPoint {
float rho;
float theta;
float phi;

} TQ3SphericalPoint;

Field descriptions
rho The distance along the radius vector from the polar origin

to the spherical point.
theta The angle, in radians, between the x axis and the projection

of the radius vector onto the xy plane.
phi The angle, in radians, between the z axis and the radius

vector.

Vectors 4

QuickDraw 3D defines two- and three-dimensional vectors in the usual way, as
pairs and triples of floating-point numbers. Vectors are defined by data types
distinct from those that define points primarily for conceptual clarity and for
enforcing the correct usage of vectors in mathematical routines. Vectors are
defined by the TQ3Vector2D and TQ3Vector3D data types.

z

x

yPole

Radius
vector

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 287

typedef struct TQ3Vector2D {
float x;
float y;

} TQ3Vector2D;

typedef struct TQ3Vector3D {
float x;
float y;
float z;

} TQ3Vector3D;

Field descriptions
x The x scalar component of a vector.
y The y scalar component of a vector.
z The z scalar component of a vector.

Quaternions 4

QuickDraw 3D defines quaternions as quadruples of floating-point numbers. A
quaternion is defined by the TQ3Quaternion data type.

Note
For a description of quaternions and their use in computer
graphics, see the article by Hart, Francis, and Kaufman
listed in the bibliography. ◆

typedef struct TQ3Quaternion {
float w;
float x;
float y;
float z;

} TQ3Quaternion;

Field descriptions
w The w component of a quaternion.
x The x component of a quaternion.
y The y component of a quaternion.
z The z component of a quaternion.

C H A P T E R 4

Geometric Objects

288 Geometric Objects Reference

Rays 4

QuickDraw 3D defines a ray as a point of origin and a direction. A ray is
defined by the TQ3Ray3D data type. Figure 4-14 shows a ray.

Figure 4-14 A ray

typedef struct TQ3Ray3D {
TQ3Point3D origin;
TQ3Vector3D direction;

} TQ3Ray3D;

Field descriptions
origin The origin of the ray.
direction The direction of the ray.

Parametric Points 4

QuickDraw 3D defines the TQ3Param2D and TQ3Param3D data structures to
represent two- and three-dimensional parametric points.

typedef struct TQ3Param2D {
float u;
float v;

} TQ3Param2D;

typedef struct TQ3Param3D {
float u;
float v;
float w;

} TQ3Param3D;

origin

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 289

Field descriptions
u The u component of a parametric point.
v The v component of a parametric point.
w The w component of a parametric point.

Note
The u, v, and w components are sometimes represented by
the letters s, t, and u, respectively. This book always uses u,
v, and w. ◆

Tangents 4

QuickDraw 3D defines the TQ3Tangent2D and TQ3Tangent3D data structures to
represent two- and three-dimensional parametric surface tangents. A surface
tangent indicates the directions of changing u, v, and w parameters on a surface.

typedef struct TQ3Tangent2D {
TQ3Vector3D uTangent;
TQ3Vector3D vTangent;

} TQ3Tangent2D;

typedef struct TQ3Tangent3D {
TQ3Vector3D uTangent;
TQ3Vector3D vTangent;
TQ3Vector3D wTangent;

} TQ3Tangent3D;

Field descriptions
uTangent The tangent in the u direction.
vTangent The tangent in the v direction.
wTangent The tangent in the w direction.

Vertices 4

A vertex is a dimensionless position in three-dimensional space at which two or
more lines (for instance, edges) intersect, with an optional set of vertex
attributes. Vertices are defined by the TQ3Vertex3D data type.

C H A P T E R 4

Geometric Objects

290 Geometric Objects Reference

typedef struct TQ3Vertex3D {
TQ3Point3D point;
TQ3AttributeSet attributeSet;

} TQ3Vertex3D;

Field descriptions
point A three-dimensional point.
attributeSet A set of attributes for the vertex. The value in this field is

NULL if no vertex attributes are defined.

Matrices 4

QuickDraw 3D defines 3-by-3 and 4-by-4 matrices as structures containing
two-dimensional arrays of floating-point numbers as the single field in the
structure. This convention allows for easy structure copying and for passing
matrix parameters either by value or by reference. In a C language
two-dimensional array, the second index varies fastest; accordingly, you can
think of the first index as representing the matrix row and the second index as
representing the matrix column. For example, consider the 3-by-3 matrix A
defined like this:

Here, A[0][0] is the matrix element a, and A[2][1] is the matrix element h.

Matrices are defined by the TQ3Matrix3x3 and TQ3Matrix4x4 data types.

Note
Remember that arrays in C are indexed starting with 0. ◆

typedef struct TQ3Matrix3x3 {
float value[3][3];

} TQ3Matrix3x3;

typedef struct TQ3Matrix4x4 {
float value[4][4];

} TQ3Matrix4x4;

A
a b c

d e f

g h i

=

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 291

Field descriptions
value An array of floating-point values that define the matrix.

Bitmaps and Pixel Maps 4

QuickDraw 3D defines bitmaps and pixmaps to specify the images used to
define markers, textures, and other objects. A bitmap is a two-dimensional
array of values, each of which represents the state of one pixel. A bitmap is
defined by the TQ3Bitmap data type.

typedef struct TQ3Bitmap {
unsigned char *image;
unsigned long width;
unsigned long height;
unsigned long rowBytes;
TQ3Endian bitOrder;

} TQ3Bitmap;

Field descriptions
image The address of a two-dimensional block of memory that

contains the bitmap image. The size, in bytes, of this block
must be exactly the product of the values in the height and
rowBytes fields.

width The width, in bits, of the bitmap.
height The height of the bitmap.
rowBytes The distance, in bytes, from the beginning of one row of the

image data to the beginning of the next row of the image
data. Each new row in the image begins at an unsigned
character that follows (but not necessarily immediately
follows) the last unsigned character of the previous row.
The minimum value of this field is the size of the image (as
returned, for example, by the Q3Bitmap_GetImageSize
function) divided by the value of the height field.

bitOrder The order in which the bits in a byte are addressed. See
“Endian Types” (page 279) for a description of the available
bit orders.

A pixel map (or, more briefly, a pixmap) is a two-dimensional array of values,
each of which represents the color of one pixel. A pixmap is defined by the
TQ3Pixmap data type.

C H A P T E R 4

Geometric Objects

292 Geometric Objects Reference

typedef struct TQ3Pixmap {
void *image;
unsigned long width;
unsigned long height;
unsigned long rowBytes;
unsigned long pixelSize;
TQ3PixelType pixelType;
TQ3Endian bitOrder;
TQ3Endian byteOrder;

} TQ3Pixmap;

Field descriptions
image The address of a two-dimensional block of memory that

contains the pixmap image. The size, in bytes, of this block
must be exactly the product of the values in the height and
rowBytes fields.

width The width, in pixels, of the pixmap.
height The height, in pixels, of the pixmap.
rowBytes The distance, in bytes, from the beginning of one row of the

image data to the beginning of the next row of the image
data. The minimum value of this field depends on the
values of the width and pixelSize fields. You can use the
following C language macro to determine a value for this
field:

#define Pixmap_GetRowBytes(width, pixelSize) \
((pixelSize) < 8) \
? (((width) / (8 / (pixelSize))) + \
((width) % (8 / (pixelSize)) > 0)) \
: (width * ((pixelSize) / 8))

pixelSize The size, in bits, of a pixel.
pixelType The type of a pixel. See “Pixel Types” (page 277) for a

description of the available pixel types. This field must
match the size specified in the pixelSize field.

bitOrder The order in which the bits in a byte are addressed. See
“Endian Types” (page 279) for a description of the available
bit orders.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 293

byteOrder The order in which the bytes in a word are addressed. See
“Endian Types” (page 279) for a description of the available
byte orders.

A storage pixel map (or, more briefly, a storage pixmap) is a pixmap whose
data is contained in a storage object. A storage pixmap is defined by the
TQ3StoragePixmap data type.

typedef struct TQ3StoragePixmap {
TQ3StorageObject image;
unsigned long width;
unsigned long height;
unsigned long rowBytes;
unsigned long pixelSize;
TQ3PixelType pixelType;
TQ3Endian bitOrder;
TQ3Endian byteOrder;

} TQ3StoragePixmap;

Field descriptions
image A storage object that contains the pixmap image. The size,

in bytes, of this file must be exactly the product of the
values in the height and rowBytes fields.

width The width, in pixels, of the pixmap.
height The height, in pixels, of the pixmap.
rowBytes The distance, in bytes, from the beginning of one row of the

image data to the beginning of the next row of the image
data. The minimum value of this field depends on the
values of the width and pixelSize fields. You can use the
following C language macro to determine a value for this
field:

#define Pixmap_GetRowBytes(width, pixelSize) \
((pixelSize) < 8) \
? (((width) / (8 / (pixelSize))) + \
((width) % (8 / (pixelSize)) > 0)) \
: (width * ((pixelSize) / 8))

pixelSize The size, in bits, of a pixel.

C H A P T E R 4

Geometric Objects

294 Geometric Objects Reference

pixelType The type of a pixel. See “Pixel Types” (page 277) for a
description of the available pixel types. This field must
match the size specified in the pixelSize field.

bitOrder The order in which the bits in a byte are addressed. See
“Endian Types” (page 279) for a description of the available
bit orders.

byteOrder The order in which the bytes in a word are addressed. See
“Endian Types” (page 279) for a description of the available
byte orders.

Areas and Plane Equations 4

A two-dimensional area is defined by the TQ3Area data type.

typedef struct TQ3Area {
TQ3Point2D min;
TQ3Point2D max;

} TQ3Area;

Field descriptions
min A two-dimensional point.
max A two-dimensional point.
A plane equation is defined by the TQ3PlaneEquation data type.

typedef struct TQ3PlaneEquation {
TQ3Vector3D normal;
float constant;

} TQ3PlaneEquation;

Field descriptions
normal The vector that is normal (perpendicular) to the plane.
constant The plane constant. A plane constant is the value d in the

plane equation ax+by+cz+d = 0. The coefficients a, b, and c
are the x, y, and z components of the normal vector.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 295

Point Objects 4

A point object is simply a dimensionless position in three-dimensional space,
with an optional set of attributes. A point object is defined by the TQ3PointData
data type. See “Creating and Editing Points,” beginning on page 334 for a
description of the routines you can use to create and edit point objects.

typedef struct TQ3PointData {
TQ3Point3D point;
TQ3AttributeSet pointAttributeSet;

} TQ3PointData;

Field descriptions
point A three-dimensional point.
pointAttributeSet

A set of attributes for the point. The value in this field is
NULL if no point attributes are defined.

Lines 4

A line is a straight segment in three-dimensional space defined by its two
endpoints, with an optional set of attributes. (In addition, each vertex can have
a set of attributes.) A line is defined by the TQ3LineData data type. See “Creating
and Editing Lines,” beginning on page 337 for a description of the routines you
can use to create and edit lines. Figure 4-15 shows a line.

Figure 4-15 A line

typedef struct TQ3LineData {
TQ3Vertex3D vertices[2];
TQ3AttributeSet lineAttributeSet;

} TQ3LineData;

vertices[1].point

vertices[0].point

C H A P T E R 4

Geometric Objects

296 Geometric Objects Reference

Field descriptions
vertices An array of two vertices.
lineAttributeSet

A set of attributes for the line. The value in this field is NULL
if no line attributes are defined.

Polylines 4

A polyline is a collection of n lines defined by the n+1 points that define the
endpoints of each line segment. The entire polyline can have a set of attributes,
and each line segment in the polyline also can have a set of attributes. (In
addition, each vertex can have a set of attributes.) A polyline is defined by the
TQ3PolyLineData data type. See “Creating and Editing Polylines,” beginning on
page 342 for a description of the routines you can use to create and edit
polylines. Figure 4-16 shows a polyline.

IMPORTANT

A polyline is not closed. The last point should not be
connected to the first. ▲

Figure 4-16 A polyline

typedef struct TQ3PolyLineData {
unsigned long numVertices;
TQ3Vertex3D *vertices;

vertices[1].point

vertices[2].point

vertices[3].point

vertices[4].point
vertices[0].point

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 297

TQ3AttributeSet *segmentAttributeSet;
TQ3AttributeSet polyLineAttributeSet;

} TQ3PolyLineData;

Field descriptions
numVertices The number of vertices in the polyline. The value of this

field must be at least 2.
vertices A pointer to an array of vertices which define the polyline.
segmentAttributeSet

A pointer to an array of segment attribute sets. If no
segments in the polyline are to have attributes, this field
should contain the value NULL. If any of the segments have
attributes, this field should contain a pointer to an array
(containing numVertices – 1 elements) of attributes sets; the
array element for segments with no attributes should be set
to NULL.

polyLineAttributeSet
A set of attributes for the polyline. The value in this field is
NULL if no polyline attributes are defined.

Triangles 4

A triangle is a closed plane figure defined by the three edges that connect three
vertices. The entire triangle can have a set of attributes, and any or all of the
three vertices can also have a set of attributes. A triangle is defined by the
TQ3TriangleData data type. See “Creating and Editing Triangles,” beginning on
page 349 for a description of the routines you can use to create and edit
triangles. Figure 4-17 shows a triangle.

C H A P T E R 4

Geometric Objects

298 Geometric Objects Reference

Figure 4-17 A triangle

typedef struct TQ3TriangleData {
TQ3Vertex3D vertices[3];
TQ3AttributeSet triangleAttributeSet;

} TQ3TriangleData;

Field descriptions
vertices The three vertices that define the three sides of the triangle.
triangleAttributeSet

A set of attributes for the triangle. The value in this field is
NULL if no triangle attributes are defined.

Simple Polygons 4

A simple polygon is a closed plane figure defined by a list of vertices. (In other
words, a simple polygon is a polygon defined by a single contour.) The edges of
a simple polygon should not intersect themselves or you will get unpredictable
results when operating on the polygon. In addition, a simple polygon must be
convex.

The entire simple polygon can have a set of attributes, and any or all of the
vertices defining the polygon can have a set of attributes.

A simple polygon is defined by the TQ3PolygonData data type. See “Creating and
Editing Simple Polygons,” beginning on page 354 for a description of the

vertices[0].point vertices[1].point

vertices[2].point

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 299

routines you can use to create and edit simple polygons. Figure 4-18 shows a
simple polygon.

Figure 4-18 A simple polygon

typedef struct TQ3PolygonData {
unsigned long numVertices;
TQ3Vertex3D *vertices;
TQ3AttributeSet polygonAttributeSet;

} TQ3PolygonData;

Field descriptions
numVertices The number of vertices in the simple polygon. The value of

this field must be at least 3.
vertices A pointer to an array of vertices that define the simple

polygon.
polygonAttributeSet

A set of attributes for the simple polygon. The value in this
field is NULL if no polygon attributes are defined.

General Polygons 4

A general polygon is a closed plane figure defined by one or more lists of
vertices. (In other words, a general polygon is a polygon defined by one or
more contours.) Each contour may be concave or convex, and contours may be

vertices[0].point

vertices[4].point

vertices[2].point

vertices[1].point

vertices[3].point

C H A P T E R 4

Geometric Objects

300 Geometric Objects Reference

nested. In addition, a general polygon’s contours may overlap or be disjoint. All
contours, however, must be coplanar. A general polygon can have holes in it; if
it does, the even-odd rule is used to determine which parts are inside the
polygon. Figure 4-19 shows a general polygon.

Figure 4-19 A general polygon

The entire general polygon can have a set of attributes, and any or all of the
vertices of any contour can have a set of attributes.

The orientation of a general polygon is determined by the order of the first three
noncolinear and noncoincident vertices in the first contour of the general
polygon and by the current orientation style of the model containing the
polygon. See the chapter “Style Objects” for more information on orientation
styles.

A general polygon is defined by the TQ3GeneralPolygonData data type. See
“Creating and Editing General Polygons,” beginning on page 360 for a
description of the routines you can use to create and edit general polygons.

contour[0].vertices[2]

contour[0].vertices[3]

contour[0].vertices[4]

contour[0].vertices[5]

contour[1].vertices[2]

contour[1].vertices[1]

contour[0].vertices[6]

contour[0].vertices[7]

contour[0].vertices[0]

contour[0].vertices[1]

contour[1].vertices[0]

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 301

typedef struct TQ3GeneralPolygonData {
unsigned long numContours;
TQ3GeneralPolygonContourData *contours;
TQ3GeneralPolygonShapeHint shapeHint;
TQ3AttributeSet generalPolygonAttributeSet;

} TQ3GeneralPolygonData;

Field descriptions
numContours The number of contours in the general polygon. The value

of this field must be at least 1.
contours A pointer to an array of contours that define the general

polygon.
shapeHint A constant that specifies the shape of the general polygon.

A general polygon’s shape hint may be used by a renderer
to optimize drawing the polygon. See “General Polygon
Shape Hints” (page 279) for information about general
polygon shape hints.

generalPolygonAttributeSet
A set of attributes for the general polygon. The value in this
field is NULL if no general polygon attributes are defined.

The elements of the array of contours pointed to by the contours field are of
type TQ3GeneralPolygonContourData, defined as follows:

typedef struct TQ3GeneralPolygonContourData {
unsigned long numVertices;
TQ3Vertex3D *vertices;

} TQ3GeneralPolygonContourData;

Field descriptions
numVertices The number of vertices in the contour. The value of this

field must be at least 3.
vertices A pointer to an array of vertices that define the contour.

Boxes 4

A box is a three-dimensional object defined by an origin (that is, a corner of the
box) and three vectors that define the edges of the box that meet in that corner.
A box defined by three mutually orthogonal vectors is a regular rectangular
prism. A box defined by nonorthogonal vectors is a general parallelepiped.

C H A P T E R 4

Geometric Objects

302 Geometric Objects Reference

The entire box can have a set of attributes. In addition, you may specify an
array of attributes to be applied to each face of the box. (In this way, for
example, you can give each face of the box a different color.)

A box is defined by the TQ3BoxData data type. See “Creating and Editing Boxes,”
beginning on page 367 for a description of the routines you can use to create
and edit boxes. Figure 4-20 shows a box.

Figure 4-20 A box

Figure 4-21 (page 303) shows the standard surface parameterization of a box.

orientation

origin

ma
jo
rA
xi
s

minorAxis

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 303

Figure 4-21 The standard surface parameterization of a box

typedef struct TQ3BoxData {
TQ3Point3D origin;
TQ3Vector3D orientation;
TQ3Vector3D majorAxis;
TQ3Vector3D minorAxis;
TQ3AttributeSet *faceAttributeSet;
TQ3AttributeSet boxAttributeSet;

} TQ3BoxData;

Field descriptions
origin The origin of the box.
orientation The orientation of the box.
majorAxis The major axis of the box.

Orientation

origin
majorAxis

(0,1)

(0,0)

(1,1)

(1,0)

Top

(0,1)

(0,0)

(1,1)

(1,0)

Left

(0,1)

(0,0)

(1,1)

(1,0)

Front

(0,1)

(0,0)

(1,1)

(1,0)

Right

(0,1)

(0,0)

(1,1)

(1,0)

Back

(1,0)

(1,1)

(0,0)

(0,1)

Bottom

C H A P T E R 4

Geometric Objects

304 Geometric Objects Reference

minorAxis The minor axis of the box.
faceAttributeSet A pointer to a six-element array of face attributes. The

attributes apply to the faces of the box specified in the
following order: left, right, front, back, top, bottom.

boxAttributeSet A set of attributes for the box. The value in this field is NULL
if no box attributes are defined.

Trigrids 4

A trigrid is a rectangular grid composed of triangular facets. The triangulation
should be serpentine (that is, quadrilaterals are divided into triangles in an
alternating fashion) to reduce shading artifacts when using Gouraud or Phong
shading. Figure 4-22 shows a trigrid.

Figure 4-22 A trigrid

The entire trigrid can have a set of attributes. You may specify an array of
attributes that apply to each facet of the trigrid. In this way, for example, you
can give each facet of the trigrid a different color. In addition, any or all of the
vertices can have a set of attributes.

vertices[9]
vertices[10]

vertices[11]

vertices[7]

vertices[3]
vertices[2]

vertices[6]

vertices[0]

vertices[1]

vertices[4]

vertices[8]

6

7 8

0

1 2 3 4

10

119

5

vertices[5]

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 305

A trigrid is defined by the TQ3TriGridData data type. See “Creating and Editing
Trigrids,” beginning on page 375 for a description of the routines you can use to
create and edit trigrids.

typedef struct TQ3TriGridData {
unsigned long numRows;
unsigned long numColumns;
TQ3Vertex3D *vertices;
TQ3AttributeSet *facetAttributeSet;
TQ3AttributeSet triGridAttributeSet;

} TQ3TriGridData;

Field descriptions
numRows The number of rows of vertices.
numColumns The number of columns of vertices.
vertices A pointer to an array of vertices. The first vertex in the

array is the lower-left corner of the trigrid. The vertices are
listed in a rectangular order, first in the direction of
increasing column and then in the direction of increasing
row. The number of vertices is the product of the values in
the numRows and numColumns fields.

facetAttributeSet A pointer to an array of facet attribute sets. If this value is
not NULL, the array should contain
2 × ((numRows – 1) × (numColumns – 1)) elements.

triGridAttributeSet
A set of attributes for the trigrid. The value in this field is
NULL if no trigrid attributes are defined.

Meshes 4

A mesh is a collection of vertices and faces that represent a topological
polyhedron. The polyhedron does not need to be closed (that is, a mesh may
have a boundary). The structure of a mesh is maintained privately by
QuickDraw 3D, using the following structure types:

typedef struct TQ3MeshComponentPrivate *TQ3MeshComponent;
typedef struct TQ3MeshContourPrivate *TQ3MeshContour;
typedef struct TQ3MeshEdgeRepPrivate *TQ3MeshEdge;
typedef struct TQ3MeshVertexPrivate *TQ3MeshFace;

C H A P T E R 4

Geometric Objects

306 Geometric Objects Reference

You create a new mesh by calling Q3Mesh_New. When first created, a mesh is
empty—it contains no vertices, faces, or edges. These must be added by calling
Q3Mesh_VertexNew and Q3Mesh_FaceNew.

Once a mesh has been created and populated with vertices and faces, you can
access the data associated with it by using the following routines:

TQ3Status Q3Mesh_GetNumVertices
TQ3Status Q3Mesh_GetNumFaces
TQ3Status Q3Mesh_GetNumEdges
TQ3Status Q3Mesh_GetNumComponents
TQ3Status Q3Mesh_GetNumCorners
TQ3Status Q3Mesh_GetOrientable

Q3Mesh_GetOrientable returns the Boolean variable orientable, which is true
only if the faces of a mesh can be consistently oriented. A tessellated Möbius
strip and the surface of a Klein bottle are two classic examples of nonorientable
meshes.

A mesh’s attribute set can be accessed and set by the routines

TQ3Status Q3Geometry_GetAttributeSet
TQ3Status Q3Geometry_SetAttributeSet

In addition, each mesh vertex, face, edge, and corner of a mesh can have a set of
attributes attached to it.

The routines you can use to create and alter meshes are described in “Creating
and Editing Meshes,” beginning on page 382.

IMPORTANT

QuickDraw 3D supports meshes primarily for interactive
rendering of polygonal models, not for representing large
polygonal databases. A mesh is always a retained object,
never an immediate object. As a result, QuickDraw 3D does
not supply routines to draw or write meshes. ▲

There is only one public data structure defined for meshes, the mesh iterator
structure. You use the mesh iterator structure when you call any one of a large
number of mesh iterators. The mesh iterator structure is defined by the
TQ3MeshIterator data type.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 307

typedef struct TQ3MeshIterator {
void *var1;
void *var2;
void *var3;
struct {

void *field1;
char field2[4];

} var4;
} TQ3MeshIterator;

Field descriptions
var1 Reserved for use by Apple Computer, Inc.
var2 Reserved for use by Apple Computer, Inc.
var3 Reserved for use by Apple Computer, Inc.
var4 Reserved for use by Apple Computer, Inc.
field1 Reserved for use by Apple Computer, Inc.
field2 Reserved for use by Apple Computer, Inc.

Trimeshes 4

A trimesh is a collection of vertices, edges, and faces in which all faces are
triangular. In other words, a trimesh is simply a mesh composed entirely of
triangles. A trimesh is like a polyhedron in that its faces are defined indirectly,
using indices into an array of vertices. Similarly, the edges of a trimesh are
defined by an optional array of edge vertices.

The main difference between trimeshes and all other QuickDraw 3D primitives
(including polyhedra) is that attributes for trimesh vertices, edges, and faces are
not stored as objects of type TQ3AttributeSet; rather, those attributes are stored
in arrays of explicit attribute data structures. Moreover, if any single vertex (or
edge, or face) has an attribute of a specific non-custom type, then every vertex
(or edge, or face) in the trimesh must also have an attribute of that type. This
restriction can deleteriously affect the memory requirements of a large trimesh.

Note
See “Comparison of the Polyhedral Primitives” (page 247)
for more information on the advantages and disadvantages
of using trimeshes to model a polyhedral surface. ◆

C H A P T E R 4

Geometric Objects

308 Geometric Objects Reference

A trimesh triangle data structure specifies information about a triangular face of
a trimesh. A trimesh triangle data structure is defined by the
TQ3TriMeshTriangleData data type.

typedef struct TQ3TriMeshTriangleData {
unsigned long pointIndices[3];

} TQ3TriMeshTriangleData;

Field descriptions
pointIndices Three indices into an array of three-dimensional points.

(The array is specified by the points field of the
TQ3TriMeshData data structure.) These three points define
the vertices of the face.

A trimesh edge data structure specifies information about an edge of a trimesh;
it is defined by the TQ3TriMeshEdgeData data structure.

typedef struct TQ3TriMeshEdgeData {
unsigned long pointIndices[2];
unsigned long triangleIndices[2];

} TQ3TriMeshEdgeData;

Field descriptions
pointIndices Two indices into an array of three-dimensional points. (The

array is specified by the points field of the TQ3TriMeshData
data structure.) These two points define the endpoints of
the edge.

triangleIndices Two indices into an array of trimesh triangle data
structures, which contain information about the faces in the
trimesh. (The array is specified by the triangles field of the
TQ3TriMeshData data structure.) These two triangles define
the two faces that contain the edge. When an edge abuts
only one face (that is, when the edge is on a boundary of
the trimesh), you can use the constant kQ3ArrayIndexNULL as
the face index for the side of the edge that has no face
attached to it.

Attributes for the parts of a trimesh are defined by a trimesh attributes data
structure, of type TQ3TriMeshAttributeData.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 309

typedef struct TQ3TriMeshAttributeData {
TQ3AttributeType attributeType;
void *data;
char *attributeUseArray

} TQ3TriMeshAttributeData;

Field descriptions
attributeType The type of the attribute.
data A pointer to the attribute data.
attributeUseArray A pointer to an array of 0’s and 1’s that defines which

vertices (or edges, or faces) have custom attributes.
When the attributeType field is set to a pre-defined (that is, non-custom)
attribute type, the attributeUseArray field must contain NULL. When the
attributeType field is set to a custom attribute type, it should contain a pointer
to an array containing only the values 0 and 1. If an element in
attributeUseArray has the value 1, then the corresponding vertex (or edge, or
face) has a custom attribute; otherwise, if an element in this array has the value
0, the corresponding vertex (or edge, or face) doesn’t have a custom attribute.

Finally, a trimesh is defined by the TQ3TriMeshData data type.

typedef struct TQ3TriMeshData {
TQ3AttributeSet triMeshAttributeSet;
unsigned long numTriangles;
TQ3TriMeshTriangleData *triangles;
unsigned long numTriangleAttributeTypes;
TQ3TriMeshAttributeData *triangleAttributeTypes;
unsigned long numEdges;
TQ3TriMeshEdgeData *edges;
unsigned long numEdgeAttributeTypes;
TQ3TriMeshAttributeData *edgeAttributeTypes;
unsigned long numPoints;
TQ3Point3D *points;
unsigned long numVertexAttributeTypes;
TQ3TriMeshAttributeData *vertexAttributeTypes;
TQ3BoundingBox bBox;

} TQ3TriMeshData;

Field descriptions
triMeshAttributeSet

A pointer to a trimesh attributes data structure that

C H A P T E R 4

Geometric Objects

310 Geometric Objects Reference

contains information about the attributes of the entire
trimesh. If the trimesh has no attributes, this field should be
set to NULL.

numTriangles The number of triangles (that is, faces) in the trimesh.
triangles A pointer to an array of trimesh triangle data structures,

which contain information about the faces in the trimesh.
numTriangleAttributeTypes

The number of types of attributes that are associated with
each triangle in the trimesh.

triangleAttributeTypes
A pointer to a trimesh attributes data structure that
contains information about the face attributes of the
trimesh. If no attributes are to be assigned to individual
faces of the trimesh, this field should be set to NULL.

numEdges The number of edges in the trimesh. Set this field to 0 if you
do not want to specify any edges.

edges A pointer to an array of trimesh edge data structures,
which contain information about the edges in the trimesh.
Set this field to NULL if you do not want to specify any
edges.

numEdgeAttributeTypes
The number of types of attributes that are associated with
each edge in the trimesh.

edgeAttributeTypes A pointer to a trimesh attributes data structure that
contains information about the edge attributes of the
trimesh. If no attributes are to be assigned to individual
edges of the trimesh, this field should be set to NULL.

numPoints The number of points in the trimesh.
points A pointer to the array of points in the trimesh.
numVertexAttributeTypes

The number of types of attributes that are associated with
each vertex in the trimesh.

vertexAttributeTypes
A pointer to a trimesh attributes data structure that
contains information about the vertex attributes of the
trimesh. If no attributes are to be assigned to individual
vertices of the trimesh, this field should be set to NULL.

bBox The bounding box of the trimesh.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 311

IMPORTANT

You can accelerate trimesh rendering by specifying the
trimesh as a strip or fan. A strip is a trimesh whose
triangles are ordered sequentially (that is, each triangle has
one edge in common with the previous neighboring
triangle, a second edge in common with the next
neighboring triangle, and the remaining edge in common
with no other triangle). A fan is a strip in which all the
triangles share a common vertex. ▲

Polyhedra 4

A polyhedron is a polyhedral primitive, all of whose faces are triangular. The
faces of a polyhedron are defined indirectly, using indices into an array of
vertices. This indirection makes it easy for faces to share vertices and attribute
sets, thereby reducing the memory required to define the polyhedron and
reducing the time required to render the polyhedron. Figure 4-23 shows a
polyhedron.

Figure 4-23 A polyhedron

C H A P T E R 4

Geometric Objects

312 Geometric Objects Reference

Note
It’s possible to render non-triangular faces by controlling
which edges are drawn. For example, you can make a
quadrilateral face by defining two triangular faces with a
common edge that is not rendered. ◆

You define an individual face of a polyhedron in part by specifying three
indexed vertices. An indexed vertex is a three-dimensional vertex specified by
its index into an array of three-dimensional points, together with an attribute
set. An indexed vertex is defined using the TQ3IndexedVertex3D data type.

typedef struct TQ3IndexedVertex3D {
unsigned long pointIndex;
TQ3AttributeSet attributeSet;

} TQ3IndexedVertex3D;

Field descriptions
pointIndex An index into an array of three-dimensional points. (The

array is specified by the points field of the
TQ3PolyhedronData data structure.)

attributeSet A set of attributes for the vertex. The value in this field is
NULL if no vertex attributes are defined.

A polyhedron edge data structure specifies information about an edge of a
polyhedron. A polyhedron edge data structure is defined by the
TQ3PolyhedronEdgeData data structure.

typedef struct TQ3PolyhedronEdgeData {
unsigned long pointIndices[2];
unsigned long triangleIndices[2];
TQ3AttributeSet edgeAttributeSet;

} TQ3PolyhedronEdgeData;

Field descriptions
pointIndices Two indices into an array of three-dimensional points. (The

array is specified by the points field of the
TQ3PolyhedronData data structure.) These two points define
the endpoints of the edge.

triangleIndices Two indices into an array of polyhedron triangle data
structures, which contain information about the faces in the
polyhedron. (The array is specified by the triangles field of

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 313

the TQ3PolyhedronData data structure.) These two triangles
define the two faces that contain the edge. When an edge
abuts only one face (that is, when the edge is on a
boundary of the polyhedron), you can use the constant
kQ3ArrayIndexNULL as the face index for the side of the edge
that has no face attached to it.

edgeAttributeSet A set of attributes for the edge. The value in this field is
NULL if no edge attributes are defined.

A polyhedron triangle data structure specifies information about a triangular
face of a polyhedron. A polyhedron triangle data structure is defined by the
TQ3PolyhedronTriangleData data type.

typedef struct TQ3PolyhedronTriangleData {
TQ3IndexedVertex3D vertices[3];
TQ3PolyhedronEdge edgeFlag;
TQ3AttributeSet triangleAttributeSet;

} TQ3PolyhedronTriangleData;

Field descriptions
vertices An array specifying the three indexed vertices that define

the triangle.
edgeFlag A triangle edge flag. The bits in this field indicate which

edges of a polyhedral triangle are to be rendered. See
“Polyhedron Edge Masks” (page 281) for a list of the
available edge flags. Note that a renderer ignores edge flags
if an explicit list of polyhedron edges is available.

triangleAttributeSet
A set of attributes for the triangle. The value in this field is
NULL if no triangle attributes are defined.

Finally, a polyhedron is defined by the TQ3PolyhedronData data type.

typedef struct TQ3PolyhedronData {
unsigned long numPoints;
TQ3Point3D *points;
unsigned long numEdges;
TQ3PolyhedronEdgeData *edges;
unsigned long numTriangles;
TQ3PolyhedronTriangleData *triangles;
TQ3AttributeSet polyhedronAttributeSet;

} TQ3PolyhedronData;

C H A P T E R 4

Geometric Objects

314 Geometric Objects Reference

Field descriptions
numPoints The number of points in the polyhedron.
points A pointer to the array of points in the polyhedron.
numEdges The number of edges in the polyhedron. Set this field to 0 if

you do not want to specify any edges.
edges A pointer to an array of polyhedron edge data structures,

which contain information about the edges in the
polyhedron. Set this field to NULL if you do not want to
specify any edges.

numTriangles The number of triangles (that is, faces) in the polyhedron.
triangles A pointer to an array of polyhedron triangle data

structures, which contain information about the faces in the
polyhedron.

polyhedronAttributeSet
A set of attributes for the entire polyhedron. The value in
this field is NULL if no polyhedron attributes are defined.

Ellipses 4

An ellipse is a two-dimensional curve defined by an origin (that is, the center of
the ellipse) and two vectors that define the major and minor radii of the ellipse.
The origin and the two points at the end of the major and minor radii define the
plane in which the ellipse lies. An ellipse is defined by the TQ3EllipseData data
type. See “Creating and Editing Ellipses,” beginning on page 440 for a
description of the routines you can use to create and edit ellipses. Figure 4-24
shows an ellipse.

Figure 4-24 An ellipse

minorRadius

majorRadius

origin

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 315

typedef struct TQ3EllipseData {
TQ3Point3D origin;
TQ3Vector3D majorRadius;
TQ3Vector3D minorRadius;
float uMin, uMax;
TQ3AttributeSet ellipseAttributeSet;

} TQ3EllipseData;

Field descriptions
origin The origin (that is, the center) of the ellipse.
majorRadius The major radius of the ellipse.
minorRadius The minor radius of the ellipse.
uMin The minimum value in the u parametric direction of the

ellipse. This value should be greater than or equal to 0.0
and less than or equal to 1.0.

uMax The maximum value in the u parametric direction of the
ellipse. This value should be greater than or equal to 0.0
and less than or equal to 1.0.

ellipseAttributeSet
A set of attributes for the ellipse. The value in this field is
NULL if no ellipse attributes are defined.

NURB Curves 4

A nonuniform rational B-spline (NURB) curve is a three-dimensional projection
of a four-dimensional curve, with an optional set of attributes. A NURB curve is
defined by the TQ3NURBCurveData data type. See “Creating and Editing NURB
Curves,” beginning on page 446 for a description of the routines you can use to
create and edit NURB curves. Figure 4-25 shows a NURB curve.

typedef struct TQ3NURBCurveData {
unsigned long order;
unsigned long numPoints;
TQ3RationalPoint4D *controlPoints;
float *knots;
TQ3AttributeSet curveAttributeSet;

} TQ3NURBCurveData;

C H A P T E R 4

Geometric Objects

316 Geometric Objects Reference

Figure 4-25 A NURB curve

Field descriptions
order The order of the NURB curve. For NURB curves defined by

ratios of cubic B-spline polynomials, the order is 4. In
general, the order of a NURB curve defined by polynomial
equations of degree n is n+1. The value in this field must be
greater than 1.

numPoints The number of control points that define the NURB curve.
The value in this field must be greater than or equal to the
order of the NURB curve.

controlPoints A pointer to an array of rational four-dimensional control
points that define the NURB curve.

knots A pointer to an array of knots that define the NURB curve.
The number of knots in a NURB curve is the sum of the
values in the order and numPoints fields. The values in this
array must be nondecreasing (but successive values may be
equal, up to a multiplicity equivalent to the order of the
curve).

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 317

curveAttributeSet
A set of attributes for the NURB curve. The value in this
field is NULL if no NURB curve attributes are defined.

NURB Patches 4

A NURB patch is a surface defined by ratios of B-spline surfaces, which are
three-dimensional analogs of B-spline curves. A NURB patch is defined by the
TQ3NURBPatchData data type. See “Creating and Editing NURB Patches,”
beginning on page 451 for a description of the routines you can use to create
and edit NURB patches. Figure 4-26 shows a NURB patch.

Figure 4-26 A NURB patch

controlPoints[10]

controlPoints[11]

controlPoints[9]

controlPoints[4]

controlPoints[0]

controlPoints[1]

controlPoints[2]

controlPoints[6]

controlPoints[5]

controlPoints[3]

controlPoints[7]

v
u

controlPoints[8]

C H A P T E R 4

Geometric Objects

318 Geometric Objects Reference

typedef struct TQ3NURBPatchData {
unsigned long uOrder;
unsigned long vOrder;
unsigned long numRows;
unsigned long numColumns;
TQ3RationalPoint4D *controlPoints;
float *uKnots;
float *vKnots;
unsigned long numTrimLoops;
TQ3NURBPatchTrimLoopData *trimLoops;
TQ3AttributeSet patchAttributeSet;

} TQ3NURBPatchData;

Field descriptions
uOrder The order of the NURB patch in the u parametric direction.

For NURB patches defined by ratios of B-spline
polynomials that are cubic in u, the order is 4. In general,
the order of a NURB patch defined by polynomial
equations in which u is of degree n is n+1. The value in this
field must be greater than 1.

vOrder The order of the NURB patch in the v parametric direction.
For NURB patches defined by ratios of B-spline
polynomials that are cubic in v, the order is 4. In general,
the order of a NURB patch defined by polynomial
equations in which v is of degree n is n+1. The value in this
field must be greater than 1.

numRows The number of control points in the u parametric direction.
The value of this field must be greater than 1.

numColumns The number of control points in the v parametric direction.
The value of this field must be greater than 1.

controlPoints A pointer to an array of rational four-dimensional control
points that define the NURB patch. The first control point
in the array is the lower-left corner of the NURB patch. The
control points are listed in a rectangular order, first in the
direction of increasing u and then in the direction of
increasing v. The number of elements in this array is the
product of the values in the numRows and numColumns fields.

uKnots A pointer to an array of knots in the u parametric direction
that define the NURB patch. The number of u knots in a
NURB patch is the sum of the values in the uOrder and

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 319

numColumns fields. The values in this array must be
nondecreasing (but successive values may be equal).

vKnots A pointer to an array of knots in the v parametric direction
that define the NURB patch. The number of v knots in a
NURB patch is the sum of the values in the vOrder and
numRows fields. The values in this array must be
nondecreasing (but successive values may be equal).

numTrimLoops The number of trim loops in the array pointed to by the
trimLoops field. Currently this field should contain 0.

trimLoops A pointer to an array of trim loop data structures that
define the loops used to trim a NURB patch. See below for
the structure of the trim loop data structure. Currently this
field should contain the value NULL.

patchAttributeSet
A set of attributes for the NURB patch. The value in this
field is NULL if no NURB patch attributes are defined.

A trim loop data structure is defined by the TQ3NURBPatchTrimLoopData data
type.

typedef struct TQ3NURBPatchTrimLoopData {
unsigned long numTrimCurves;
TQ3NURBPatchTrimCurveData *trimCurves;

} TQ3NURBPatchTrimLoopData;

Field descriptions
numTrimCurves The number of trim curves in the array pointed to by the

trimCurves field.
trimCurves A pointer to an array of trim curve data structures that

define the curves used to trim a NURB patch. See below for
the structure of the trim curve data structure.

A trim curve data structure is defined by the TQ3NURBPatchTrimCurveData data
type.

typedef struct TQ3NURBPatchTrimCurveData {
unsigned long order;
unsigned long numPoints;
TQ3RationalPoint3D *controlPoints;
float *knots;

} TQ3NURBPatchTrimCurveData;

C H A P T E R 4

Geometric Objects

320 Geometric Objects Reference

Field descriptions
order The order of the NURB trim curve. In general, the order of

a NURB trim curve defined by polynomial equations of
degree n is n+1. The value in this field must be more than 1.

numPoints The number of control points that define the NURB trim
curve. The value in this field must be greater than 2.

controlPoints A pointer to an array of three-dimensional rational control
points that define the NURB trim curve.

knots A pointer to an array of knots that define the NURB trim
curve. The number of knots in a NURB trim curve is the
sum of the values in the order and numPoints fields. The
values in this array must be nondecreasing (but successive
values may be equal).

Ellipsoids 4

An ellipsoid is a three-dimensional surface defined by an origin (that is, the
center of the ellipsoid) and three mutually perpendicular vectors that define the
orientation and the major and minor radii of the ellipsoid. An ellipsoid is
defined by the TQ3EllipsoidData data type. See “Creating and Editing
Ellipsoids,” beginning on page 458 for a description of the routines you can use
to create and edit ellipsoids. Figure 4-27 shows an ellipsoid.

Figure 4-27 An ellipsoid

origin

minorRadiusmajorRadius

v

u

orientation

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 321

typedef struct TQ3EllipsoidData {
TQ3Point3D origin;
TQ3Vector3D orientation;
TQ3Vector3D majorRadius;
TQ3Vector3D minorRadius;
float uMin, uMax, vMin, vMax;
TQ3EndCap caps;
TQ3AttributeSet interiorAttributeSet;
TQ3AttributeSet ellipsoidAttributeSet;

} TQ3EllipsoidData;

Field descriptions
origin The origin (that is, the center) of the ellipsoid.
orientation The orientation of the ellipsoid.
majorRadius The major radius of the ellipsoid.
minorRadius The minor radius of the ellipsoid.
uMin The minimum value in the u parametric direction of the

ellipsoid. This value should be greater than or equal to 0.0
and less than or equal to 1.0.

uMax The maximum value in the u parametric direction of the
ellipsoid. This value should be greater than or equal to 0.0
and less than or equal to 1.0.

vMin The minimum value in the v parametric direction of the
ellipsoid. This value should be greater than or equal to 0.0
and less than or equal to 1.0.

vMax The maximum value in the v parametric direction of the
ellipsoid. This value should be greater than or equal to 0.0
and less than or equal to 1.0.

caps The style of caps to be used on the ellipsoid ends. See “End
Caps Masks” (page 280) for a description of the masks you
can use to specify a value for this field.

interiorAttributeSet
A set of ellipsoid interior attributes.

ellipsoidAttributeSet
A set of attributes for the ellipsoid. The value in this field is
NULL if no ellipsoid attributes are defined.

C H A P T E R 4

Geometric Objects

322 Geometric Objects Reference

Cylinders 4

A cylinder is a three-dimensional object defined by an origin (that is, the center
of the base) and three mutually perpendicular vectors that define the
orientation and the major and minor radii of the cylinder. A cylinder is defined
by the TQ3CylinderData data type. See “Creating and Editing Cylinders,”
beginning on page 465 for a description of the routines you can use to create
and edit cylinders. Figure 4-28 shows a cylinder.

Figure 4-28 A cylinder

typedef struct TQ3CylinderData {
TQ3Point3D origin;
TQ3Vector3D orientation;
TQ3Vector3D majorRadius;
TQ3Vector3D minorRadius;
float uMin, uMax, vMin, vMax;
TQ3EndCap caps;
TQ3AttributeSet interiorAttributeSet;
TQ3AttributeSet topAttributeSet;
TQ3AttributeSet faceAttributeSet;
TQ3AttributeSet bottomAttributeSet;
TQ3AttributeSet cylinderAttributeSet;

} TQ3CylinderData;

origin

v

u
majorRadius minorRadius

orientation

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 323

Field descriptions
origin The origin (that is, the center of the base) of the cylinder.
orientation The orientation of the cylinder.
majorRadius The major radius of the cylinder.
minorRadius The minor radius of the cylinder.
uMin The minimum value in the u parametric direction of the

cylinder. This value should be greater than or equal to 0.0
and less than or equal to 1.0.

uMax The maximum value in the u parametric direction of the
cylinder. This value should be greater than or equal to 0.0
and less than or equal to 1.0.

vMin The minimum value in the v parametric direction of the
cylinder. This value should be greater than or equal to 0.0
and less than or equal to 1.0.

vMax The maximum value in the v parametric direction of the
cylinder. This value should be greater than or equal to 0.0
and less than or equal to 1.0.

caps The style of caps to be used on the cylinder ends. See “End
Caps Masks” (page 280) for a description of the masks you
can use to specify a value for this field.

interiorAttributeSet
A set of cylinder interior attributes.

topAttributeSet A set of cylinder top attributes.
faceAttributeSet A set of cylinder face attributes.
bottomAttributeSet A set of cylinder bottom attributes.
cylinderAttributeSet

A set of attributes for the cylinder. The value in this field is
NULL if no cylinder attributes are defined.

Disks 4

A disk is a two-dimensional surface defined by an origin (that is, the center of
the disk) and two vectors that define the major and minor radii of the disk. A
disk is defined by the TQ3DiskData data type. See “Creating and Editing Disks,”
beginning on page 476 for a description of the routines you can use to create
and edit disks. Figure 4-29 shows a disk.

C H A P T E R 4

Geometric Objects

324 Geometric Objects Reference

Figure 4-29 A disk

typedef struct TQ3DiskData {
TQ3Point3D origin;
TQ3Vector3D majorRadius;
TQ3Vector3D minorRadius;
float uMin, uMax, vMin, vMax;
TQ3AttributeSet diskAttributeSet;

} TQ3DiskData;

Field descriptions
origin The origin (that is, the center) of the disk.
majorRadius The major radius of the disk.
minorRadius The minor radius of the disk.
uMin The minimum value in the u parametric direction of the

disk. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

uMax The maximum value in the u parametric direction of the
disk. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

vMin The minimum value in the v parametric direction of the
disk. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

vMax The maximum value in the v parametric direction of the
disk. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

diskAttributeSet A set of attributes for the disk. The value in this field is NULL
if no disk attributes are defined.

v u

majorRadius
minorRadius

origin

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 325

Cones 4

A cone is a three-dimensional object defined by an origin (that is, the center of
the base) and three vectors that define the orientation and the major and minor
radii of the cone. A cone is defined by the TQ3ConeData data type. See “Creating
and Editing Cones,” beginning on page 482 for a description of the routines you
can use to create and edit cones. Figure 4-30 shows a cone.

Figure 4-30 A cone

typedef struct TQ3ConeData {
TQ3Point3D origin;
TQ3Vector3D orientation;
TQ3Vector3D majorRadius;
TQ3Vector3D minorRadius;
float uMin, uMax, vMin, vMax;
TQ3EndCap caps;
TQ3AttributeSet interiorAttributeSet;
TQ3AttributeSet faceAttributeSet;
TQ3AttributeSet bottomAttributeSet;
TQ3AttributeSet coneAttributeSet;

} TQ3ConeData;

minorRadius
majorRadius

orientation

origin

v

u

C H A P T E R 4

Geometric Objects

326 Geometric Objects Reference

Field descriptions
origin The origin (that is, the center of the base) of the cone.
orientation The orientation of the cone. This vector also specifies the

height of the cone.
majorRadius The major radius of the cone.
minorRadius The minor radius of the cone.
uMin The minimum value in the u parametric direction of the

cone. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

uMax The maximum value in the u parametric direction of the
cone. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

vMin The minimum value in the v parametric direction of the
cone. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

vMax The maximum value in the v parametric direction of the
cone. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

caps The style of cap to be used on the cone base. See “End Caps
Masks” (page 280) for a description of the masks you can
use to specify a value for this field. For a cone, the value
kQ3EndCapMaskTop is ignored.

interiorAttributeSet
A set of cone interior attributes.

faceAttributeSet A set of cone face attributes.
bottomAttributeSet A set of cone bottom attributes.
coneAttributeSet A set of attributes for the cone. The value in this field is

NULL if no cone attributes are defined.

Tori 4

A torus is a three-dimensional object formed by the rotation of an ellipse about
an axis in the plane of the ellipse that does not cut the ellipse. The major radius
is the distance of the center of the ellipse from that axis. A torus is defined by
the TQ3TorusData data type. See “Creating and Editing Tori,” beginning on
page 491 for a description of the routines you can use to create and edit tori.
Figure 4-31 shows a torus.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 327

Figure 4-31 A torus

Figure 4-32 shows the standard surface parameterization of a torus.

Figure 4-32 The standard surface parameterization of a torus

minorRadius

majorRadiusr origin

orientation

Cross section

Top view

v=1

v=0

u=0

u=1

v=1

v=0

Orientation

minorRadius

majorRadius

C H A P T E R 4

Geometric Objects

328 Geometric Objects Reference

typedef struct TQ3TorusData {
TQ3Point3D origin;
TQ3Vector3D orientation;
TQ3Vector3D majorRadius;
TQ3Vector3D minorRadius;
float ratio;
float uMin, uMax, vMin, vMax;
TQ3EndCap caps;
TQ3AttributeSet interiorAttributeSet;
TQ3AttributeSet torusAttributeSet;

} TQ3TorusData;

Field descriptions
origin The center of the torus. This is the closest point on the axis

of rotation to the rotated ellipse.
orientation The orientation of the torus. This field specifies the axis of

rotation and the half-thickness of the torus. The orientation
must be orthogonal to both the major and minor radii.

majorRadius The major radius of the torus.
minorRadius The minor radius of the torus.
ratio The ratio of the major radius of the rotated ellipse to the

length of the orientation vector. In Figure 4-31, this is r/
length(orientation).

uMin The minimum value in the u parametric direction of the
torus. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

uMax The maximum value in the u parametric direction of the
torus. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

vMin The minimum value in the v parametric direction of the
torus. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

vMax The maximum value in the v parametric direction of the
torus. This value should be greater than or equal to 0.0 and
less than or equal to 1.0.

caps The style of cap to be used on the torus. See “End Caps
Masks” (page 280) for a description of the masks you can
use to specify a value for this field.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 329

interiorAttributeSet
A set of torus interior attributes.

torusAttributeSet A set of attributes for the torus. The value in this field is
NULL if no torus attributes are defined.

Markers 4

A marker is a two-dimensional object typically used to indicate the position of
an object (or part of an object) in a window. QuickDraw 3D provides two types
of markers, bitmap markers and pixmap markers. A bitmap marker is defined
by the TQ3MarkerData data type, which contains a bitmap and a location,
together with an optional set of attributes. A pixmap marker is defined by the
TQ3PixmapMarkerData data type, which contains a pixmap and a location,
together with an optional set of attributes.

The bitmap or pixmap specifies the image that is to be drawn on top of a
rendered scene at the specified location. The marker is drawn perpendicular to
the viewing vector, aligned with the window, with its origin located at the
specified location. A marker is always drawn with the same size, no matter
which rotations, scalings, or other transformations might be active. Figure 4-33
shows a bitmap marker.

Figure 4-33 A marker

typedef struct TQ3MarkerData {
TQ3Point3D location;
long xOffset;
long yOffset;
TQ3Bitmap bitmap;
TQ3AttributeSet markerAttributeSet;

} TQ3MarkerData;

C H A P T E R 4

Geometric Objects

330 Geometric Objects Reference

Field descriptions
location The origin of the marker.
xOffset The number of pixels, in the horizontal direction, by which

to offset the upper-left corner of the marker from the origin
specified in the location field.

yOffset The number of pixels, in the vertical direction, by which to
offset the upper-left corner of the marker from the origin
specified in the location field.

bitmap A bitmap. Each bit of this bitmap corresponds to a pixel in
the rendered image.

markerAttributeSet A set of attributes for the marker. You can use these
attributes to specify the color, transparency, or other
attributes of the bits in bitmap that are set to 1. The value in
this field is NULL if no marker attributes are defined.

typedef struct TQ3PixmapMarkerData {
TQ3Point3D position;
long xOffset;
long yOffset;
TQ3StoragePixmap pixmap;
TQ3AttributeSet pixmapMarkerAttributeSet;

} TQ3PixmapMarkerData;

Field descriptions
position The origin of the marker.
xOffset The number of pixels, in the horizontal direction, by which

to offset the upper-left corner of the marker from the origin
specified in the location field.

yOffset The number of pixels, in the vertical direction, by which to
offset the upper-left corner of the marker from the origin
specified in the location field.

pixmap A storage pixmap. Each bit of this pixmap corresponds to a
pixel in the rendered image.

pixmapMarkerAttributeSet
A set of attributes for the marker. The value in this field is
NULL if no marker attributes are defined.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 331

Geometric Objects Routines 4

This section describes the QuickDraw 3D routines that you can use to create
and edit the geometric primitive objects.

Managing Geometric Objects 4

QuickDraw 3D provides a number of general routines for manipulating its
primitive geometric objects.

Q3Geometry_GetType 4

You can use the Q3Geometry_GetType function to get the type of a geometric
object.

TQ3ObjectType Q3Geometry_GetType (TQ3GeometryObject geometry);

geometry A geometric object.

DESCRIPTION

The Q3Geometry_GetType function returns, as its function result, the type of the
geometric object specified by the geometry parameter. The types of geometric
objects currently supported by QuickDraw 3D are defined by these constants:

kQ3GeometryTypeBox
kQ3GeometryTypeCone
kQ3GeometryTypeCylinder
kQ3GeometryTypeDisk
kQ3GeometryTypeEllipse
kQ3GeometryTypeEllipsoid
kQ3GeometryTypeGeneralPolygon
kQ3GeometryTypeLine
kQ3GeometryTypeMarker
kQ3GeometryTypeMesh
kQ3GeometryTypeNURBCurve
kQ3GeometryTypeNURBPatch
kQ3GeometryTypePixmapMarker

C H A P T E R 4

Geometric Objects

332 Geometric Objects Reference

kQ3GeometryTypePoint
kQ3GeometryTypePolygon
kQ3GeometryTypePolyhedron
kQ3GeometryTypePolyLine
kQ3GeometryTypeTorus
kQ3GeometryTypeTriangle
kQ3GeometryTypeTriGrid
kQ3GeometryTypeTriMesh

If the specified geometric object is invalid or is not one of these types,
Q3Geometry_GetType returns the value kQ3ObjectTypeInvalid.

Q3Geometry_GetAttributeSet 4

You can use the Q3Geometry_GetAttributeSet function to get the attribute set
associated with an entire geometric object.

TQ3Status Q3Geometry_GetAttributeSet (
TQ3GeometryObject geometry,
TQ3AttributeSet *attributeSet);

geometry A geometric object.

attributeSet On exit, the set of attributes of the specified geometric object.

DESCRIPTION

The Q3Geometry_GetAttributeSet function returns, in the attributeSet
parameter, the set of attributes currently associated with the geometric object
specified by the geometry parameter. The reference count of the set is
incremented.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 333

Q3Geometry_SetAttributeSet 4

You can use the Q3Geometry_SetAttributeSet function to set the attribute set
associated with a geometric object.

TQ3Status Q3Geometry_SetAttributeSet (
TQ3GeometryObject geometry,
TQ3AttributeSet attributeSet);

geometry A geometric object.

attributeSet A set of attributes.

DESCRIPTION

The Q3Geometry_SetAttributeSet function sets the attribute set of the geometric
object specified by the geometry parameter to the set specified by the
attributeSet parameter.

Q3Geometry_Submit 4

You can use the Q3Geometry_Submit function to submit a retained geometric
object for drawing, picking, bounding, or writing.

TQ3Status Q3Geometry_Submit (
TQ3GeometryObject geometry,
TQ3ViewObject view);

geometry A geometric object.

view A view.

DESCRIPTION

The Q3Geometry_Submit function submits the geometric object specified by the
geometry parameter for drawing, picking, bounding, or writing according to the
view characteristics specified in the view parameter. The geometric object must
have been created by a call that creates a retained object (for example,
Q3Point_New).

C H A P T E R 4

Geometric Objects

334 Geometric Objects Reference

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Creating and Editing Points 4

QuickDraw 3D provides routines that you can use to create and manipulate
points. See “Point Objects” (page 295) for the definition of the point object.

Q3Point_New 4

You can use the Q3Point_New function to create a new point.

TQ3GeometryObject Q3Point_New (const TQ3PointData *pointData);

pointData A pointer to a TQ3PointData structure.

DESCRIPTION

The Q3Point_New function returns, as its function result, a new point object
having the location and attributes passed in the fields of the TQ3PointData
structure pointed to by the pointData parameter. If a new point object could not
be created, Q3Point_New returns the value NULL.

Q3Point_Submit 4

You can use the Q3Point_Submit function to submit an immediate point for
drawing, picking, bounding, or writing.

TQ3Status Q3Point_Submit (
const TQ3PointData *pointData,
TQ3ViewObject view);

pointData A pointer to a TQ3PointData structure.

view A view.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 335

DESCRIPTION

The Q3Point_Submit function submits for drawing, picking, bounding, or
writing the immediate point whose location and attribute set are passed in the
fields of the TQ3PointData structure pointed to by the pointData parameter. The
point is drawn, picked, bounded, or written according to the view
characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Point_GetData 4

You can use the Q3Point_GetData function to get the data that defines a point
object and its attributes.

TQ3Status Q3Point_GetData (
TQ3GeometryObject point,
TQ3PointData *pointData);

point A point.

pointData On exit, a pointer to a TQ3PointData structure that contains
information about the point specified by the point parameter.

DESCRIPTION

The Q3Point_GetData function returns, through the pointData parameter,
information about the position and attribute set of the point specified by the
point parameter. QuickDraw 3D allocates memory for the TQ3PointData
structure internally; you must call Q3Point_EmptyData to dispose of that memory.

C H A P T E R 4

Geometric Objects

336 Geometric Objects Reference

Q3Point_SetData 4

You can use the Q3Point_SetData function to set the data that defines a point
object and its attributes.

TQ3Status Q3Point_SetData (
TQ3GeometryObject point,
const TQ3PointData *pointData);

point A point.

pointData A pointer to a TQ3PointData structure.

DESCRIPTION

The Q3Point_SetData function sets the data associated with the point specified
by the point parameter to the data specified by the pointData parameter.

Q3Point_EmptyData 4

You can use the Q3Point_EmptyData function to release the memory occupied by
the data structure returned by a previous call to Q3Point_GetData.

TQ3Status Q3Point_EmptyData (TQ3PointData *pointData);

pointData A pointer to a TQ3PointData structure.

DESCRIPTION

The Q3Point_EmptyData function releases the memory occupied by the
TQ3PointData structure pointed to by the pointData parameter; that memory was
allocated by a previous call to Q3Point_GetData.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 337

Q3Point_GetPosition 4

You can use the Q3Point_GetPosition function to get the position of a point.

TQ3Status Q3Point_GetPosition (
TQ3GeometryObject point,
TQ3Point3D *position);

point A point.

position On exit, the position of the specified point.

DESCRIPTION

The Q3Point_GetPosition function returns, in the position parameter, the
position of the point specified by the point parameter.

Q3Point_SetPosition 4

You can use the Q3Point_SetPosition function to set the position of a point.

TQ3Status Q3Point_SetPosition (
TQ3GeometryObject point,
const TQ3Point3D *position);

point A point.

position The desired position of the specified point.

DESCRIPTION

The Q3Point_SetPosition function sets the position of the point specified by the
point parameter to that specified in the position parameter.

Creating and Editing Lines 4

QuickDraw 3D provides routines that you can use to create and manipulate
lines. See “Lines” (page 295) for the definition of a line.

C H A P T E R 4

Geometric Objects

338 Geometric Objects Reference

Q3Line_New 4

You can use the Q3Line_New function to create a new line.

TQ3GeometryObject Q3Line_New (const TQ3LineData *lineData);

lineData A pointer to a TQ3LineData structure.

DESCRIPTION

The Q3Line_New function returns, as its function result, a new line having the
endpoints and attributes specified by the lineData parameter. If a new line
could not be created, Q3Line_New returns the value NULL.

Q3Line_Submit 4

You can use the Q3Line_Submit function to submit an immediate line for
drawing, picking, bounding, or writing.

TQ3Status Q3Line_Submit (
const TQ3LineData *lineData,
TQ3ViewObject view);

lineData A pointer to a TQ3LineData structure.

view A view.

DESCRIPTION

The Q3Line_Submit function submits for drawing, picking, bounding, or writing
the immediate line whose location and attribute set are specified by the
lineData parameter. The line is drawn, picked, bounded, or written according to
the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 339

Q3Line_GetData 4

You can use the Q3Line_GetData function to get the data that defines a line and
its attributes.

TQ3Status Q3Line_GetData (
TQ3GeometryObject line,
TQ3LineData *lineData);

line A line.

lineData On exit, a pointer to a TQ3LineData structure that contains
information about the line specified by the line parameter.

DESCRIPTION

The Q3Line_GetData function returns, through the lineData parameter,
information about the line specified by the line parameter. QuickDraw 3D
allocates memory for the TQ3LineData structure internally; you must call
Q3Line_EmptyData to dispose of that memory.

Q3Line_SetData 4

You can use the Q3Line_SetData function to set the data that defines a line and
its attributes.

TQ3Status Q3Line_SetData (
TQ3GeometryObject line,
const TQ3LineData *lineData);

line A line.

lineData A pointer to a TQ3LineData structure.

DESCRIPTION

The Q3Line_SetData function sets the data associated with the line specified by
the line parameter to the data specified by the lineData parameter.

C H A P T E R 4

Geometric Objects

340 Geometric Objects Reference

Q3Line_GetVertexPosition 4

You can use the Q3Line_GetVertexPosition function to get the position of a
vertex of a line.

TQ3Status Q3Line_GetVertexPosition (
TQ3GeometryObject line,
unsigned long index,
TQ3Point3D *position);

line A line.

index An index into the vertices array of the specified line. This
parameter should have the value 0 or 1.

position On exit, the position of the specified vertex.

DESCRIPTION

The Q3Line_GetVertexPosition function returns, in the position parameter, the
position of the vertex having the index specified by the index parameter in the
vertices array of the line specified by the line parameter.

Q3Line_SetVertexPosition 4

You can use the Q3Line_SetVertexPosition function to set the position of a
vertex of a line.

TQ3Status Q3Line_SetVertexPosition (
TQ3GeometryObject line,
unsigned long index,
const TQ3Point3D *position);

line A line.

index An index into the vertices array of the specified line. This
parameter should have the value 0 or 1.

position The desired position of the specified vertex.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 341

DESCRIPTION

The Q3Line_SetVertexPosition function sets the position of the vertex having
the index specified by the index parameter in the vertices array of the line
specified by the line parameter to that specified in the position parameter.

Q3Line_GetVertexAttributeSet 4

You can use the Q3Line_GetVertexAttributeSet function to get the attribute set
of a vertex of a line.

TQ3Status Q3Line_GetVertexAttributeSet (
TQ3GeometryObject line,
unsigned long index,
TQ3AttributeSet *attributeSet);

line A line.

index An index into the vertices array of the specified line. This
parameter should have the value 0 or 1.

attributeSet
On exit, a pointer to a vertex attribute set for the specified
vertex.

DESCRIPTION

The Q3Line_GetVertexAttributeSet function returns, in the attributeSet
parameter, the set of attributes for the vertex having the index specified by the
index parameter in the vertices array of the line specified by the line
parameter. The reference count of the set is incremented.

Q3Line_SetVertexAttributeSet 4

You can use the Q3Line_SetVertexAttributeSet function to set the attribute set
of a vertex of a line.

C H A P T E R 4

Geometric Objects

342 Geometric Objects Reference

TQ3Status Q3Line_SetVertexAttributeSet (
TQ3GeometryObject line,
unsigned long index,
TQ3AttributeSet attributeSet);

line A line.

index An index into the vertices array of the specified line. This
parameter should have the value 0 or 1.

attributeSet
The desired set of attributes for the specified vertex.

DESCRIPTION

The Q3Line_SetVertexAttributeSet function sets the attribute set of a vertex to
the set specified in the attributeSet parameter. The vertex is identified by the
specified index into the vertices array of the line specified by the line
parameter.

Q3Line_EmptyData 4

You can use the Q3Line_EmptyData function to release the memory occupied by
the data structure returned by a previous call to Q3Line_GetData.

TQ3Status Q3Line_EmptyData (TQ3LineData *lineData);

lineData A pointer to a TQ3LineData structure.

DESCRIPTION

The Q3Line_EmptyData function releases the memory occupied by the
TQ3LineData structure pointed to by the lineData parameter; that memory was
allocated by a previous call to Q3Line_GetData.

Creating and Editing Polylines 4

QuickDraw 3D provides routines that you can use to create and manipulate
polylines. See “Polylines” (page 296) for the definition of a polyline.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 343

Q3PolyLine_New 4

You can use the Q3PolyLine_New function to create a new polyline.

TQ3GeometryObject Q3PolyLine_New (
const TQ3PolyLineData *polyLineData);

polyLineData
A pointer to a TQ3PolyLineData structure.

DESCRIPTION

The Q3PolyLine_New function returns, as its function result, a new polyline
having the vertices and attributes specified by the polyLineData parameter. If a
new polyline could not be created, Q3PolyLine_New returns the value NULL.

Q3PolyLine_Submit 4

You can use the Q3PolyLine_Submit function to submit an immediate polyline
for drawing, picking, bounding, or writing.

TQ3Status Q3PolyLine_Submit (
const TQ3PolyLineData *polyLineData,
TQ3ViewObject view);

polyLineData
A pointer to a TQ3PolyLineData structure.

view A view.

DESCRIPTION

The Q3PolyLine_Submit function submits for drawing, picking, bounding, or
writing the immediate polyline whose shape and attribute sets are specified by
the polyLineData parameter. The polyline is drawn, picked, bounded, or written
according to the view characteristics specified in the view parameter.

C H A P T E R 4

Geometric Objects

344 Geometric Objects Reference

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3PolyLine_GetData 4

You can use the Q3PolyLine_GetData function to get the data that defines a
polyline and its attributes.

TQ3Status Q3PolyLine_GetData (
TQ3GeometryObject polyLine,
TQ3PolyLineData *polyLineData);

polyLine A polyline.

polyLineData On exit, a pointer to a TQ3PolyLineData structure that contains
information about the polyline specified by the polyLine
parameter.

DESCRIPTION

The Q3PolyLine_GetData function returns, through the polyLineData parameter,
information about the polyline specified by the polyLine parameter.
QuickDraw 3D allocates memory for the TQ3PolyLineData structure internally;
you must call Q3PolyLine_EmptyData to dispose of that memory.

Q3PolyLine_SetData 4

You can use the Q3PolyLine_SetData function to set the data that defines a
polyline and its attributes.

TQ3Status Q3PolyLine_SetData (
TQ3GeometryObject polyLine,
const TQ3PolyLineData *polyLineData);

polyLine A polyline.

polyLineData A pointer to a TQ3PolyLineData structure.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 345

DESCRIPTION

The Q3PolyLine_SetData function sets the data associated with the polyline
specified by the polyLine parameter to the data specified by the polyLineData
parameter.

Q3PolyLine_EmptyData 4

You can use the Q3PolyLine_EmptyData function to release the memory occupied
by the data structure returned by a previous call to Q3PolyLine_GetData.

TQ3Status Q3PolyLine_EmptyData (TQ3PolyLineData *polyLineData);

polyLineData A pointer to a TQ3PolyLineData structure.

DESCRIPTION

The Q3PolyLine_EmptyData function releases the memory occupied by the
TQ3PolyLineData structure pointed to by the polyLineData parameter; that
memory was allocated by a previous call to Q3PolyLine_GetData.

Q3PolyLine_GetVertexPosition 4

You can use the Q3PolyLine_GetVertexPosition function to get the position of a
vertex of a polyline.

TQ3Status Q3PolyLine_GetVertexPosition (
TQ3GeometryObject polyLine,
unsigned long index,
TQ3Point3D *position);

polyLine A polyline.

index An index into the vertices array of the specified polyline. This
index should be greater than or equal to 0 and less than the
number of vertices in the array.

position On exit, the position of the specified vertex.

C H A P T E R 4

Geometric Objects

346 Geometric Objects Reference

DESCRIPTION

The Q3PolyLine_GetVertexPosition function returns, in the position parameter,
the position of the vertex having the index specified by the index parameter in
the vertices array of the polyline specified by the polyLine parameter.

Q3PolyLine_SetVertexPosition 4

You can use the Q3PolyLine_SetVertexPosition function to set the position of a
vertex of a polyline.

TQ3Status Q3PolyLine_SetVertexPosition (
TQ3GeometryObject polyLine,
unsigned long index,
const TQ3Point3D *position);

polyLine A polyline.

index An index into the vertices array of the specified polyline.

position The desired position of the specified vertex.

DESCRIPTION

The Q3PolyLine_SetVertexPosition function sets the position of a vertex to that
specified in the position parameter. The vertex has the index specified by the
index parameter into the vertices array of the polyline specified by the
polyLine parameter.

Q3PolyLine_GetVertexAttributeSet 4

You can use the Q3PolyLine_GetVertexAttributeSet function to get the attribute
set of a vertex of a polyline.

TQ3Status Q3PolyLine_GetVertexAttributeSet (
TQ3GeometryObject polyLine,
unsigned long index,
TQ3AttributeSet *attributeSet);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 347

polyLine A polyline.

index An index into the vertices array of the specified polyline.

attributeSet
On exit, a pointer to a vertex attribute set for the specified
vertex.

DESCRIPTION

The Q3PolyLine_GetVertexAttributeSet function returns, in the attributeSet
parameter, the set of attributes for the vertex having the index specified by the
index parameter in the vertices array of the polyline specified by the polyLine
parameter. The reference count of the set is incremented.

Q3PolyLine_SetVertexAttributeSet 4

You can use the Q3PolyLine_SetVertexAttributeSet function to set the attribute
set of a vertex of a polyline.

TQ3Status Q3PolyLine_SetVertexAttributeSet (
TQ3GeometryObject polyLine,
unsigned long index,
TQ3AttributeSet attributeSet);

polyLine A polyline.

index An index into the vertices array of the specified polyline.

attributeSet
The desired set of attributes for the specified vertex.

DESCRIPTION

The Q3PolyLine_SetVertexAttributeSet function sets the attribute set of the
vertex having the index specified by the index parameter in the vertices array
of the polyline specified by the polyLine parameter to the set specified in the
attributeSet parameter.

C H A P T E R 4

Geometric Objects

348 Geometric Objects Reference

Q3PolyLine_GetSegmentAttributeSet 4

You can use the Q3PolyLine_GetSegmentAttributeSet function to get the attribute
set of a segment of a polyline.

TQ3Status Q3PolyLine_GetSegmentAttributeSet (
TQ3GeometryObject polyLine,
unsigned long index,
TQ3AttributeSet *attributeSet);

polyLine A polyline.

index An index into the vertices array of the specified polyline.

attributeSet
On exit, a pointer to an attribute set for the specified segment.

DESCRIPTION

The Q3PolyLine_GetSegmentAttributeSet function returns, in the attributeSet
parameter, the set of attributes for a segment of a polyline. The segment is
defined by the two vertices having indices index and index+1 in the vertices
array of the polyline specified by the polyLine parameter. The reference count of
the set is incremented.

Q3PolyLine_SetSegmentAttributeSet 4

You can use the Q3PolyLine_SetSegmentAttributeSet function to set the attribute
set of a segment of a polyline.

TQ3Status Q3PolyLine_SetSegmentAttributeSet (
TQ3GeometryObject polyLine,
unsigned long index,
TQ3AttributeSet attributeSet);

polyLine A polyline.

index An index into the vertices array of the specified polyline.

attributeSet The desired set of attributes for the specified segment.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 349

DESCRIPTION

The Q3PolyLine_SetSegmentAttributeSet function sets the attribute set of a
segment of a polyline to the set specified in the attributeSet parameter. The
segment is defined by the two vertices having indices index and index+1 in the
vertices array of the polyline specified by the polyLine parameter.

Creating and Editing Triangles 4

QuickDraw 3D provides routines that you can use to create and manipulate
triangles. See “Triangles” (page 297) for the definition of a triangle.

Q3Triangle_New 4

You can use the Q3Triangle_New function to create a new triangle.

TQ3GeometryObject Q3Triangle_New (
const TQ3TriangleData *triangleData);

triangleData A pointer to a TQ3TriangleData structure.

DESCRIPTION

The Q3Triangle_New function returns, as its function result, a new triangle
having the vertices and attributes specified by the triangleData parameter. If a
new triangle could not be created, Q3Triangle_New returns the value NULL.

Q3Triangle_Submit 4

You can use the Q3Triangle_Submit function to submit an immediate triangle for
drawing, picking, bounding, or writing.

TQ3Status Q3Triangle_Submit (
const TQ3TriangleData *triangleData,
TQ3ViewObject view);

C H A P T E R 4

Geometric Objects

350 Geometric Objects Reference

triangleData A pointer to a TQ3TriangleData structure.

view A view.

DESCRIPTION

The Q3Triangle_Submit function submits for drawing, picking, bounding, or
writing the immediate triangle whose shape and attribute set are specified by
the triangleData parameter. The triangle is drawn, picked, bounded, or written
according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Triangle_GetData 4

You can use the Q3Triangle_GetData function to get the data that defines a
triangle and its attributes.

TQ3Status Q3Triangle_GetData (
TQ3GeometryObject triangle,
TQ3TriangleData *triangleData);

triangle A triangle.

triangleData On exit, a pointer to a TQ3TriangleData structure that contains
information about the triangle specified by the triangle
parameter.

DESCRIPTION

The Q3Triangle_GetData function returns, through the triangleData parameter,
information about the triangle specified by the triangle parameter.
QuickDraw 3D allocates memory for the TQ3TriangleData structure internally;
you must call Q3Triangle_EmptyData to dispose of that memory.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 351

Q3Triangle_SetData 4

You can use the Q3Triangle_SetData function to set the data that defines a
triangle and its attributes.

TQ3Status Q3Triangle_SetData (
TQ3GeometryObject triangle,
const TQ3TriangleData *triangleData);

triangle A triangle.

triangleData A pointer to a TQ3TriangleData structure.

DESCRIPTION

The Q3Triangle_SetData function sets the data associated with the triangle
specified by the triangle parameter to the data specified by the triangleData
parameter.

Q3Triangle_EmptyData 4

You can use the Q3Triangle_EmptyData function to release the memory occupied
by the data structure returned by a previous call to Q3Triangle_GetData.

TQ3Status Q3Triangle_EmptyData (TQ3TriangleData *triangleData);

triangleData A pointer to a TQ3TriangleData structure.

DESCRIPTION

The Q3Triangle_EmptyData function releases the memory occupied by the
TQ3TriangleData structure pointed to by the triangleData parameter; that
memory was allocated by a previous call to Q3Triangle_GetData.

C H A P T E R 4

Geometric Objects

352 Geometric Objects Reference

Q3Triangle_GetVertexPosition 4

You can use the Q3Triangle_GetVertexPosition function to get the position of a
vertex of a triangle.

TQ3Status Q3Triangle_GetVertexPosition (
TQ3GeometryObject triangle,
unsigned long index,
TQ3Point3D *point);

triangle A triangle.

index An index into the vertices array of the specified triangle. This
parameter should have the value 0, 1, or 2.

point On exit, the position of the specified vertex.

DESCRIPTION

The Q3Triangle_GetVertexPosition function returns, in the point parameter, the
position of the vertex having the index specified by the index parameter in the
vertices array of the triangle specified by the triangle parameter.

Q3Triangle_SetVertexPosition 4

You can use the Q3Triangle_SetVertexPosition function to set the position of a
vertex of a triangle.

TQ3Status Q3Triangle_SetVertexPosition (
TQ3GeometryObject triangle,
unsigned long index,
const TQ3Point3D *point);

triangle A triangle.

index An index into the vertices array of the specified triangle. This
parameter should have the value 0, 1, or 2.

point The desired position of the specified vertex.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 353

DESCRIPTION

The Q3Triangle_SetVertexPosition function sets the position of the vertex
having the index specified by the index parameter in the vertices array of the
triangle specified by the triangle parameter to that specified in the point
parameter.

Q3Triangle_GetVertexAttributeSet 4

You can use the Q3Triangle_GetVertexAttributeSet function to get the attribute
set of a vertex of a triangle.

TQ3Status Q3Triangle_GetVertexAttributeSet (
TQ3GeometryObject triangle,
unsigned long index,
TQ3AttributeSet *attributeSet);

triangle A triangle.

index An index into the vertices array of the specified triangle. This
parameter should have the value 0, 1, or 2.

attributeSet
On exit, a pointer to a vertex attribute set for the specified
vertex.

DESCRIPTION

The Q3Triangle_GetVertexAttributeSet function returns, in the attributeSet
parameter, the set of attributes for the vertex having the index specified by the
index parameter in the vertices array of the triangle specified by the triangle
parameter. The reference count of the set is incremented.

Q3Triangle_SetVertexAttributeSet 4

You can use the Q3Triangle_SetVertexAttributeSet function to set the attribute
set of a vertex of a triangle.

C H A P T E R 4

Geometric Objects

354 Geometric Objects Reference

TQ3Status Q3Triangle_SetVertexAttributeSet (
TQ3GeometryObject triangle,
unsigned long index,
TQ3AttributeSet attributeSet);

triangle A triangle.

index An index into the vertices array of the specified triangle. This
parameter should have the value 0, 1, or 2.

attributeSet
The desired set of attributes for the specified vertex.

DESCRIPTION

The Q3Triangle_SetVertexAttributeSet function sets the attribute set of the
vertex having the index specified by the index parameter in the vertices array
of the triangle specified by the triangle parameter to the set specified in the
attributeSet parameter.

Creating and Editing Simple Polygons 4

QuickDraw 3D provides routines that you can use to create and manipulate
simple polygons. See “Simple Polygons” (page 298) for the definition of a
simple polygon.

Q3Polygon_New 4

You can use the Q3Polygon_New function to create a new simple polygon.

TQ3GeometryObject Q3Polygon_New (
const TQ3PolygonData *polygonData);

polygonData A pointer to a TQ3PolygonData structure.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 355

DESCRIPTION

The Q3Polygon_New function returns, as its function result, a new simple polygon
having the vertices and attributes specified by the polygonData parameter. If a
new simple polygon could not be created, Q3Polygon_New returns the value NULL.

Q3Polygon_Submit 4

You can use the Q3Polygon_Submit function to submit an immediate simple
polygon for drawing, picking, bounding, or writing.

TQ3Status Q3Polygon_Submit (
const TQ3PolygonData *polygonData,
TQ3ViewObject view);

polygonData A pointer to a TQ3PolygonData structure.

view A view.

DESCRIPTION

The Q3Polygon_Submit function submits for drawing, picking, bounding, or
writing the immediate simple polygon whose shape and attribute set are
specified by the polygonData parameter. The simple polygon is drawn, picked,
bounded, or written according to the view characteristics specified in the view
parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

C H A P T E R 4

Geometric Objects

356 Geometric Objects Reference

Q3Polygon_GetData 4

You can use the Q3Polygon_GetData function to get the data that defines a simple
polygon and its attributes.

TQ3Status Q3Polygon_GetData (
TQ3GeometryObject polygon,
TQ3PolygonData *polygonData);

polygon A simple polygon.

polygonData On exit, a pointer to a TQ3PolygonData structure that contains
information about the simple polygon specified by the polygon
parameter.

DESCRIPTION

The Q3Polygon_GetData function returns, through the polygonData parameter,
information about the simple polygon specified by the polygon parameter.
QuickDraw 3D allocates memory for the TQ3PolygonData structure internally;
you must call Q3Polygon_EmptyData to dispose of that memory.

Q3Polygon_SetData 4

You can use the Q3Polygon_SetData function to set the data that defines a simple
polygon and its attributes.

TQ3Status Q3Polygon_SetData (
TQ3GeometryObject polygon,
const TQ3PolygonData *polygonData);

polygon A simple polygon.

polygonData A pointer to a TQ3PolygonData structure.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 357

DESCRIPTION

The Q3Polygon_SetData function sets the data associated with the simple
polygon specified by the polygon parameter to the data specified by the
polygonData parameter.

Q3Polygon_EmptyData 4

You can use the Q3Polygon_EmptyData function to release the memory occupied
by the data structure returned by a previous call to Q3Polygon_GetData.

TQ3Status Q3Polygon_EmptyData (TQ3PolygonData *polygonData);

polygonData A pointer to a TQ3PolygonData structure.

DESCRIPTION

The Q3Polygon_EmptyData function releases the memory occupied by the
TQ3PolygonData structure pointed to by the polygonData parameter; that memory
was allocated by a previous call to Q3Polygon_GetData.

Q3Polygon_GetVertexPosition 4

You can use the Q3Polygon_GetVertexPosition function to get the position of a
vertex of a simple polygon.

TQ3Status Q3Polygon_GetVertexPosition (
TQ3GeometryObject polygon,
unsigned long index,
TQ3Point3D *point);

polygon A simple polygon.

index An index into the vertices array of the specified simple
polygon.

point On exit, the position of the specified vertex.

C H A P T E R 4

Geometric Objects

358 Geometric Objects Reference

DESCRIPTION

The Q3Polygon_GetVertexPosition function returns, in the point parameter, the
position of the vertex having the index specified by the index parameter in the
vertices array of the simple polygon specified by the polygon parameter.

Q3Polygon_SetVertexPosition 4

You can use the Q3Polygon_SetVertexPosition function to set the position of a
vertex of a simple polygon.

TQ3Status Q3Polygon_SetVertexPosition (
TQ3GeometryObject polygon,
unsigned long index,
const TQ3Point3D *point);

polygon A simple polygon.

index An index into the vertices array of the specified simple
polygon.

point The desired position of the specified vertex.

DESCRIPTION

The Q3Polygon_SetVertexPosition function sets the position of the vertex having
the index specified by the index parameter in the vertices array of the simple
polygon specified by the polygon parameter to that specified in the point
parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 359

Q3Polygon_GetVertexAttributeSet 4

You can use the Q3Polygon_GetVertexAttributeSet function to get the attribute
set of a vertex of a simple polygon.

TQ3Status Q3Polygon_GetVertexAttributeSet (
TQ3GeometryObject polygon,
unsigned long index,
TQ3AttributeSet *attributeSet);

polygon A simple polygon.

index An index into the vertices array of the specified simple
polygon.

attributeSet
On exit, a pointer to a vertex attribute set for the specified
vertex.

DESCRIPTION

The Q3Polygon_GetVertexAttributeSet function returns, in the attributeSet
parameter, the set of attributes for the vertex having the index specified by the
index parameter in the vertices array of the simple polygon specified by the
polygon parameter. The reference count of the set is incremented.

Q3Polygon_SetVertexAttributeSet 4

You can use the Q3Polygon_SetVertexAttributeSet function to set the attribute
set of a vertex of a simple polygon.

TQ3Status Q3Polygon_SetVertexAttributeSet (
TQ3GeometryObject polygon,
unsigned long index,
TQ3AttributeSet attributeSet);

polygon A simple polygon.

index An index into the vertices array of the specified simple
polygon.

C H A P T E R 4

Geometric Objects

360 Geometric Objects Reference

attributeSet
The desired set of attributes for the specified vertex.

DESCRIPTION

The Q3Polygon_SetVertexAttributeSet function sets the attribute set of the
vertex having the index specified by the index parameter in the vertices array
of the simple polygon specified by the polygon parameter to the set specified in
the attributeSet parameter.

Creating and Editing General Polygons 4

QuickDraw 3D provides routines that you can use to create and manipulate
general polygons. See “General Polygons” (page 299) for the definition of a
general polygon.

Q3GeneralPolygon_New 4

You can use the Q3GeneralPolygon_New function to create a new general polygon.

TQ3GeometryObject Q3GeneralPolygon_New (
const TQ3GeneralPolygonData *generalPolygonData);

generalPolygonData
A pointer to a TQ3GeneralPolygonData structure.

DESCRIPTION

The Q3GeneralPolygon_New function returns, as its function result, a new general
polygon having the contours and attributes specified by the generalPolygonData
parameter. If a new general polygon could not be created, Q3GeneralPolygon_New
returns the value NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 361

Q3GeneralPolygon_Submit 4

You can use the Q3GeneralPolygon_Submit function to submit an immediate
general polygon for drawing, picking, bounding, or writing.

TQ3Status Q3GeneralPolygon_Submit (
const TQ3GeneralPolygonData *generalPolygonData,
TQ3ViewObject view);

generalPolygonData
A pointer to a TQ3GeneralPolygonData structure.

view A view.

DESCRIPTION

The Q3GeneralPolygon_Submit function submits for drawing, picking, bounding,
or writing the immediate general polygon whose shape and attribute set are
specified by the generalPolygonData parameter. The general polygon is drawn,
picked, bounded, or written according to the view characteristics specified in
the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3GeneralPolygon_GetData 4

You can use the Q3GeneralPolygon_GetData function to get the data that defines a
general polygon and its attributes.

TQ3Status Q3GeneralPolygon_GetData (
TQ3GeometryObject generalPolygon,
TQ3GeneralPolygonData *generalPolygonData);

generalPolygon
A general polygon.

C H A P T E R 4

Geometric Objects

362 Geometric Objects Reference

generalPolygonData
On exit, a pointer to a TQ3GeneralPolygonData structure that
contains information about the general polygon specified by the
generalPolygon parameter.

DESCRIPTION

The Q3GeneralPolygon_GetData function returns, through the
generalPolygonData parameter, information about the general polygon specified
by the generalPolygon parameter. QuickDraw 3D allocates memory for the
TQ3GeneralPolygonData structure internally; you must call
Q3GeneralPolygon_EmptyData to dispose of that memory.

Q3GeneralPolygon_SetData 4

You can use the Q3GeneralPolygon_SetData function to set the data that defines a
general polygon and its attributes.

TQ3Status Q3GeneralPolygon_SetData (
TQ3GeometryObject generalPolygon,
const TQ3GeneralPolygonData *generalPolygonData);

generalPolygon
A general polygon.

generalPolygonData
A pointer to a TQ3GeneralPolygonData structure.

DESCRIPTION

The Q3GeneralPolygon_SetData function sets the data associated with the general
polygon specified by the generalPolygon parameter to the data specified by the
generalPolygonData parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 363

Q3GeneralPolygon_EmptyData 4

You can use the Q3GeneralPolygon_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3GeneralPolygon_GetData.

TQ3Status Q3GeneralPolygon_EmptyData (
TQ3GeneralPolygonData *generalPolygonData);

generalPolygonData
A pointer to a TQ3GeneralPolygonData structure.

DESCRIPTION

The Q3GeneralPolygon_EmptyData function releases the memory occupied by the
TQ3GeneralPolygonData structure pointed to by the generalPolygonData
parameter; that memory was allocated by a previous call to
Q3GeneralPolygon_GetData.

Q3GeneralPolygon_GetVertexPosition 4

You can use the Q3GeneralPolygon_GetVertexPosition function to get the
position of a vertex of a general polygon.

TQ3Status Q3GeneralPolygon_GetVertexPosition (
TQ3GeometryObject generalPolygon,
unsigned long contourIndex,
unsigned long pointIndex,
TQ3Point3D *position);

generalPolygon
A general polygon.

contourIndex
An index into the contours array of the specified general
polygon. This index should be greater than or equal to 0 and less
than the number of contours in the contours array.

C H A P T E R 4

Geometric Objects

364 Geometric Objects Reference

pointIndex An index into the vertices array of the specified contour. This
index should be greater than or equal to 0 and less than the
number of points in the vertices array.

position On exit, the position of the specified vertex.

DESCRIPTION

The Q3GeneralPolygon_GetVertexPosition function returns, in the position
parameter, the position of a vertex in the general polygon specified by the
generalPolygon parameter. The vertex has the index specified by the pointIndex
parameter in the vertices array of the contour specified by the contourIndex
parameter.

Q3GeneralPolygon_SetVertexPosition 4

You can use the Q3GeneralPolygon_SetVertexPosition function to set the
position of a vertex of a general polygon.

TQ3Status Q3GeneralPolygon_SetVertexPosition (
TQ3GeometryObject generalPolygon,
unsigned long contourIndex,
unsigned long pointIndex,
const TQ3Point3D *position);

generalPolygon
A general polygon.

contourIndex An index into the contours array of the specified general
polygon.

pointIndex An index into the vertices array of the specified contour.

position The desired position of the specified vertex.

DESCRIPTION

The Q3GeneralPolygon_SetVertexPosition function sets the position of a vertex
in the general polygon specified by the generalPolygon parameter. The vertex
has the index specified by the pointIndex parameter in the vertices array of the

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 365

contour specified by the contourIndex parameter to the position specified in the
position parameter.

Q3GeneralPolygon_GetVertexAttributeSet 4

You can use the Q3GeneralPolygon_GetVertexAttributeSet function to get the
attribute set of a vertex of a general polygon.

TQ3Status Q3GeneralPolygon_GetVertexAttributeSet (
TQ3GeometryObject generalPolygon,
unsigned long contourIndex,
unsigned long pointIndex,
TQ3AttributeSet *attributeSet);

generalPolygon
A general polygon.

contourIndex An index into the contours array of the specified general
polygon.

pointIndex An index into the vertices array of the specified contour.

attributeSet On exit, a pointer to a vertex attribute set for the specified
vertex.

DESCRIPTION

The Q3GeneralPolygon_GetVertexAttributeSet function returns, in the
attributeSet parameter, the set of attributes for the vertex having the index
specified by the pointIndex parameter in the vertices array of the contour
specified by the contourIndex parameter of the general polygon specified by the
generalPolygon parameter. The reference count of the set is incremented.

C H A P T E R 4

Geometric Objects

366 Geometric Objects Reference

Q3GeneralPolygon_SetVertexAttributeSet 4

You can use the Q3GeneralPolygon_SetVertexAttributeSet function to set the
attribute set of a vertex of a general polygon.

TQ3Status Q3GeneralPolygon_SetVertexAttributeSet (
TQ3GeometryObject generalPolygon,
unsigned long contourIndex,
unsigned long pointIndex,
TQ3AttributeSet attributeSet);

generalPolygon
A general polygon.

contourIndex
An index into the contours array of the specified general
polygon.

pointIndex An index into the vertices array of the specified contour.

attributeSet
The desired set of attributes for the specified vertex.

DESCRIPTION

The Q3GeneralPolygon_SetVertexAttributeSet function sets the attribute set of
the vertex having the index specified by the pointIndex parameter in the
vertices array of the contour specified by the contourIndex parameter in the
general polygon specified by the generalPolygon parameter to the set specified
in the attributeSet parameter.

Q3GeneralPolygon_GetShapeHint 4

You can use the Q3GeneralPolygon_GetShapeHint function to get the shape hint of
a general polygon.

TQ3Status Q3GeneralPolygon_GetShapeHint (
TQ3GeometryObject generalPolygon,
TQ3GeneralPolygonShapeHint *shapeHint);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 367

generalPolygon
A general polygon.

shapeHint On exit, the shape hint of the specified general polygon.

DESCRIPTION

The Q3GeneralPolygon_GetShapeHint function returns, in the shapeHint
parameter, the shape hint of the general polygon specified by the
generalPolygon parameter. See “General Polygons” (page 299) for a description
of the available shape hints.

Q3GeneralPolygon_SetShapeHint 4

You can use the Q3GeneralPolygon_SetShapeHint function to set the shape hint of
a general polygon.

TQ3Status Q3GeneralPolygon_SetShapeHint (
TQ3GeometryObject generalPolygon,
TQ3GeneralPolygonShapeHint shapeHint);

generalPolygon
A general polygon.

shapeHint The desired shape hint of the specified general polygon.

DESCRIPTION

The Q3GeneralPolygon_SetShapeHint function sets the shape hint of the general
polygon specified by the generalPolygon parameter to the hint specified in the
shapeHint parameter. See “General Polygons” (page 299) for a description of the
available shape hints.

Creating and Editing Boxes 4

QuickDraw 3D provides routines that you can use to create and manipulate
boxes. See “Boxes” (page 301) for the definition of a box.

C H A P T E R 4

Geometric Objects

368 Geometric Objects Reference

Q3Box_New 4

You can use the Q3Box_New function to create a new box.

TQ3GeometryObject Q3Box_New (const TQ3BoxData *boxData);

boxData A pointer to a TQ3BoxData structure.

DESCRIPTION

The Q3Box_New function returns, as its function result, a new box having the
sides and attributes specified by the boxData parameter. If a new box could not
be created, Q3Box_New returns the value NULL.

Q3Box_Submit 4

You can use the Q3Box_Submit function to submit an immediate box for drawing,
picking, bounding, or writing.

TQ3Status Q3Box_Submit (
const TQ3BoxData *boxData,
TQ3ViewObject view);

boxData A pointer to a TQ3BoxData structure.

view A view.

DESCRIPTION

The Q3Box_Submit function submits for drawing, picking, bounding, or writing
the immediate box whose shape and attribute set are specified by the boxData
parameter. The box is drawn, picked, bounded, or written according to the view
characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 369

Q3Box_GetData 4

You can use the Q3Box_GetData function to get the data that defines a box and its
attributes.

TQ3Status Q3Box_GetData (
TQ3GeometryObject box,
TQ3BoxData *boxData);

box A box.

boxData On exit, a pointer to a TQ3BoxData structure that contains
information about the box specified by the box parameter.

DESCRIPTION

The Q3Box_GetData function returns, through the boxData parameter, information
about the box specified by the box parameter. QuickDraw 3D allocates memory
for the TQ3BoxData structure internally; you must call Q3Box_EmptyData to dispose
of that memory.

Q3Box_SetData 4

You can use the Q3Box_SetData function to set the data that defines a box and its
attributes.

TQ3Status Q3Box_SetData (
TQ3GeometryObject box,
const TQ3BoxData *boxData);

box A box.

boxData A pointer to a TQ3BoxData structure.

DESCRIPTION

The Q3Box_SetData function sets the data associated with the box specified by
the box parameter to the data specified by the boxData parameter.

C H A P T E R 4

Geometric Objects

370 Geometric Objects Reference

Q3Box_EmptyData 4

You can use the Q3Box_EmptyData function to release the memory occupied by
the data structure returned by a previous call to Q3Box_GetData.

TQ3Status Q3Box_EmptyData (TQ3BoxData *boxData);

boxData A pointer to a TQ3BoxData structure.

DESCRIPTION

The Q3Box_EmptyData function releases the memory occupied by the TQ3BoxData
structure pointed to by the boxData parameter; that memory was allocated by a
previous call to Q3Box_GetData.

Q3Box_GetOrigin 4

You can use the Q3Box_GetOrigin function to get the origin of a box.

TQ3Status Q3Box_GetOrigin (
TQ3GeometryObject box,
TQ3Point3D *origin);

box A box.

origin On exit, the origin of the specified box.

DESCRIPTION

The Q3Box_GetOrigin function returns, in the origin parameter, the origin of the
box specified by the box parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 371

Q3Box_SetOrigin 4

You can use the Q3Box_SetOrigin function to set the origin of a box.

TQ3Status Q3Box_SetOrigin (
TQ3GeometryObject box,
const TQ3Point3D *origin);

box A box.

origin The desired origin of the specified box.

DESCRIPTION

The Q3Box_SetOrigin function sets the origin of the box specified by the box
parameter to that specified in the origin parameter.

Q3Box_GetOrientation 4

You can use the Q3Box_GetOrientation function to get the orientation of a box.

TQ3Status Q3Box_GetOrientation (
TQ3GeometryObject box,
TQ3Vector3D *orientation);

box A box.

orientation On exit, the orientation of the specified box.

DESCRIPTION

The Q3Box_GetOrientation function returns, in the orientation parameter, the
orientation of the box specified by the box parameter.

C H A P T E R 4

Geometric Objects

372 Geometric Objects Reference

Q3Box_SetOrientation 4

You can use the Q3Box_SetOrientation function to set the orientation of a box.

TQ3Status Q3Box_SetOrientation (
TQ3GeometryObject box,
const TQ3Vector3D *orientation);

box A box.

orientation The desired orientation of the specified box.

DESCRIPTION

The Q3Box_SetOrientation function sets the orientation of the box specified by
the box parameter to that specified in the orientation parameter.

Q3Box_GetMajorAxis 4

You can use the Q3Box_GetMajorAxis function to get the major axis of a box.

TQ3Status Q3Box_GetMajorAxis (
TQ3GeometryObject box,
TQ3Vector3D *majorAxis);

box A box.

majorAxis On exit, the major axis of the specified box.

DESCRIPTION

The Q3Box_GetMajorAxis function returns, in the majorAxis parameter, the major
axis of the box specified by the box parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 373

Q3Box_SetMajorAxis 4

You can use the Q3Box_SetMajorAxis function to set the major axis of a box.

TQ3Status Q3Box_SetMajorAxis (
TQ3GeometryObject box,
const TQ3Vector3D *majorAxis);

box A box.

majorAxis The desired major axis of the specified box.

DESCRIPTION

The Q3Box_SetMajorAxis function sets the major axis of the box specified by the
box parameter to that specified in the majorAxis parameter.

Q3Box_GetMinorAxis 4

You can use the Q3Box_GetMinorAxis function to get the minor axis of a box.

TQ3Status Q3Box_GetMinorAxis (
TQ3GeometryObject box,
TQ3Vector3D *minorAxis);

box A box.

minorAxis On exit, the minor axis of the specified box.

DESCRIPTION

The Q3Box_GetMinorAxis function returns, in the minorAxis parameter, the minor
axis of the box specified by the box parameter.

C H A P T E R 4

Geometric Objects

374 Geometric Objects Reference

Q3Box_SetMinorAxis 4

You can use the Q3Box_SetMinorAxis function to set the minor axis of a box.

TQ3Status Q3Box_SetMinorAxis (
TQ3GeometryObject box,
const TQ3Vector3D *minorAxis);

box A box.

minorAxis The desired minor axis of the specified box.

DESCRIPTION

The Q3Box_SetMinorAxis function sets the minor axis of the box specified by the
box parameter to that specified in the minorAxis parameter.

Q3Box_GetFaceAttributeSet 4

You can use the Q3Box_GetFaceAttributeSet function to get the attribute set of a
face of a box.

TQ3Status Q3Box_GetFaceAttributeSet (
TQ3GeometryObject box,
unsigned long faceIndex,
TQ3AttributeSet *faceAttributeSet);

box A box.

faceIndex An index into the array of faces for the specified box.

faceAttributeSet
On exit, a pointer to an attribute set for the specified face.

DESCRIPTION

The Q3Box_GetFaceAttributeSet function returns, in the faceAttributeSet
parameter, the set of attributes for the face having the index faceIndex of the

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 375

box specified by the box parameter. The reference count of the set is
incremented.

Q3Box_SetFaceAttributeSet 4

You can use the Q3Box_SetFaceAttributeSet function to set the attribute set of a
face of a box.

TQ3Status Q3Box_SetFaceAttributeSet (
TQ3GeometryObject box,
unsigned long faceIndex,
TQ3AttributeSet faceAttributeSet);

box A box.

faceIndex An index into the array of faces for the specified box.

faceAttributeSet
The desired set of attributes for the specified face.

DESCRIPTION

The Q3Box_SetFacetAttributeSet function sets the attribute set of the face
having index faceIndex of the box specified by the box parameter to the set
specified by the faceAttributeSet parameter.

Creating and Editing Trigrids 4

QuickDraw 3D provides routines that you can use to create and manipulate
trigrids. See “Trigrids” (page 304) for the definition of a trigrid.

Q3TriGrid_New 4

You can use the Q3TriGrid_New function to create a new trigrid.

TQ3GeometryObject Q3TriGrid_New (
const TQ3TriGridData *triGridData);

C H A P T E R 4

Geometric Objects

376 Geometric Objects Reference

triGridData A pointer to a TQ3TriGridData structure.

DESCRIPTION

The Q3TriGrid_New function returns, as its function result, a new trigrid having
the vertices and attributes specified by the triGridData parameter. If a new
trigrid could not be created, Q3TriGrid_New returns the value NULL.

Q3TriGrid_Submit 4

You can use the Q3TriGrid_Submit function to submit an immediate trigrid for
drawing, picking, bounding, or writing.

TQ3Status Q3TriGrid_Submit (
const TQ3TriGridData *triGridData,
TQ3ViewObject view);

triGridData A pointer to a TQ3TriGridData structure.

view A view.

DESCRIPTION

The Q3TriGrid_Submit function submits for drawing, picking, bounding, or
writing the immediate trigrid whose shape and attribute set are specified by the
triGridData parameter. The trigrid is drawn, picked, bounded, or written
according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3TriGrid_GetData 4

You can use the Q3TriGrid_GetData function to get the data that defines a trigrid
and its attributes.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 377

TQ3Status Q3TriGrid_GetData (
TQ3GeometryObject trigrid,
TQ3TriGridData *triGridData);

trigrid A trigrid.

triGridData On exit, a pointer to a TQ3TriGridData structure that contains
information about the trigrid specified by the trigrid
parameter.

DESCRIPTION

The Q3TriGrid_GetData function returns, through the triGridData parameter,
information about the trigrid specified by the trigrid parameter.
QuickDraw 3D allocates memory for the TQ3TriGridData structure internally;
you must call Q3TriGrid_EmptyData to dispose of that memory.

Q3TriGrid_SetData 4

You can use the Q3TriGrid_SetData function to set the data that defines a trigrid
and its attributes.

TQ3Status Q3TriGrid_SetData (
TQ3GeometryObject trigrid,
const TQ3TriGridData *triGridData);

trigrid A trigrid.

triGridData A pointer to a TQ3TriGridData structure.

DESCRIPTION

The Q3TriGrid_SetData function sets the data associated with the trigrid
specified by the trigrid parameter to the data specified by the triGridData
parameter.

C H A P T E R 4

Geometric Objects

378 Geometric Objects Reference

Q3TriGrid_EmptyData 4

You can use the Q3TriGrid_EmptyData function to release the memory occupied
by the data structure returned by a previous call to Q3TriGrid_GetData.

TQ3Status Q3TriGrid_EmptyData (TQ3TriGridData *triGridData);

triGridData A pointer to a TQ3TriGridData structure.

DESCRIPTION

The Q3TriGrid_EmptyData function releases the memory occupied by the
TQ3TriGridData structure pointed to by the triGridData parameter; that memory
was allocated by a previous call to Q3TriGrid_GetData.

Q3TriGrid_GetVertexPosition 4

You can use the Q3TriGrid_GetVertexPosition function to get the position of a
vertex of a trigrid.

TQ3Status Q3TriGrid_GetVertexPosition (
TQ3GeometryObject triGrid,
unsigned long rowIndex,
unsigned long columnIndex,
TQ3Point3D *position);

triGrid A trigrid.

rowIndex A row index into the vertices array of the specified trigrid.

columnIndex A column index into the vertices array of the specified trigrid.

position On exit, the position of the specified vertex.

DESCRIPTION

The Q3TriGrid_GetVertexPosition function returns, in the position parameter,
the position of the vertex having row and column indices rowIndex and

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 379

columnIndex in the vertices array of the trigrid specified by the triGrid
parameter.

Q3TriGrid_SetVertexPosition 4

You can use the Q3TriGrid_SetVertexPosition function to set the position of a
vertex of a trigrid.

TQ3Status Q3TriGrid_SetVertexPosition (
TQ3GeometryObject triGrid,
unsigned long rowIndex,
unsigned long columnIndex,
const TQ3Point3D *position);

triGrid A trigrid.

rowIndex A row index into the vertices array of the specified trigrid.

columnIndex A column index into the vertices array of the specified trigrid.

position The desired position of the specified vertex.

DESCRIPTION

The Q3TriGrid_SetVertexPosition function sets the position of the vertex having
row and column indices rowIndex and columnIndex in the vertices array of the
trigrid specified by the triGrid parameter to that specified in the position
parameter.

Q3TriGrid_GetVertexAttributeSet 4

You can use the Q3TriGrid_GetVertexAttributeSet function to get the attribute
set of a vertex of a trigrid.

C H A P T E R 4

Geometric Objects

380 Geometric Objects Reference

TQ3Status Q3TriGrid_GetVertexAttributeSet (
TQ3GeometryObject triGrid,
unsigned long rowIndex,
unsigned long columnIndex,
TQ3AttributeSet *attributeSet);

triGrid A trigrid.

rowIndex A row index into the vertices array of the specified trigrid.

columnIndex A column index into the vertices array of the specified trigrid.

attributeSet On exit, a pointer to a vertex attribute set for the specified
vertex.

DESCRIPTION

The Q3TriGrid_GetVertexAttributeSet function returns, in the attributeSet
parameter, the set of attributes for the vertex having row and column indices
rowIndex and columnIndex in the vertices array of the trigrid specified by the
triGrid parameter. The reference count of the set is incremented.

Q3TriGrid_SetVertexAttributeSet 4

You can use the Q3TriGrid_SetVertexAttributeSet function to set the attribute
set of a vertex of a trigrid.

TQ3Status Q3TriGrid_SetVertexAttributeSet (
TQ3GeometryObject triGrid,
unsigned long rowIndex,
unsigned long columnIndex,
TQ3AttributeSet attributeSet);

triGrid A trigrid.

rowIndex A row index into the vertices array of the specified trigrid.

columnIndex A column index into the vertices array of the specified trigrid.

attributeSet The desired set of attributes for the specified vertex.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 381

DESCRIPTION

The Q3TriGrid_SetVertexAttributeSet function sets the attribute set of the
vertex having row and column indices rowIndex and columnIndex in the
vertices array of the trigrid specified by the triGrid parameter to the set
specified in the attributeSet parameter.

Q3TriGrid_GetFacetAttributeSet 4

You can use the Q3TriGrid_GetFacetAttributeSet function to get the attribute
set of a facet of a trigrid.

TQ3Status Q3TriGrid_GetFacetAttributeSet (
TQ3GeometryObject triGrid,
unsigned long faceIndex,
TQ3AttributeSet *facetAttributeSet);

triGrid A trigrid.

faceIndex An index into the array of facets for the specified trigrid.

facetAttributeSet
On exit, a pointer to an attribute set for the specified facet.

DESCRIPTION

The Q3TriGrid_GetFacetAttributeSet function returns, in the facetAttributeSet
parameter, the set of attributes for the facet having the index faceIndex of the
trigrid specified by the triGrid parameter. The reference count of the set is
incremented.

Q3TriGrid_SetFacetAttributeSet 4

You can use the Q3TriGrid_SetFacetAttributeSet function to set the attribute set
of a facet of a trigrid.

C H A P T E R 4

Geometric Objects

382 Geometric Objects Reference

TQ3Status Q3TriGrid_SetFacetAttributeSet (
TQ3GeometryObject triGrid,
unsigned long faceIndex,
TQ3AttributeSet facetAttributeSet);

triGrid A trigrid.

faceIndex An index into the array of facets for the specified trigrid.

facetAttributeSet
The desired set of attributes for the specified facet.

DESCRIPTION

The Q3TriGrid_SetFacetAttributeSet function sets the attribute set of the facet
having index faceIndex of the trigrid specified by the triGrid parameter to the
set specified by the facetAttributeSet parameter.

Creating and Editing Meshes 4

QuickDraw 3D provides routines that you can use to create and manipulate
meshes. See “Meshes” (page 305) for the definition of a mesh and its associated
types.

Q3Mesh_New 4

You can use the Q3Mesh_New function to create a new mesh.

TQ3GeometryObject Q3Mesh_New (void);

DESCRIPTION

The Q3Mesh_New function returns, as its function result, a new mesh. The new
mesh is empty; you need to call other QuickDraw 3D routines to add vertices
and faces to the mesh. If a new mesh could not be created, Q3Mesh_New returns
the value NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 383

Q3Mesh_VertexNew 4

You can use the Q3Mesh_VertexNew function to add a vertex to a mesh.

TQ3MeshVertex Q3Mesh_VertexNew (
TQ3GeometryObject mesh,
const TQ3Vertex3D *vertex);

mesh A mesh.

vertex A three-dimensional vertex.

DESCRIPTION

The Q3Mesh_VertexNew function adds the vertex specified by the vertex
parameter to the mesh specified by the mesh parameter. The mesh must already
exist before you call Q3Mesh_VertexNew. The new mesh vertex is returned as the
function result, of type TQ3MeshVertex.

Q3Mesh_VertexDelete 4

You can use the Q3Mesh_VertexDelete function to delete a vertex from a mesh.

TQ3Status Q3Mesh_VertexDelete (
TQ3GeometryObject mesh,
TQ3MeshVertex vertex);

mesh A mesh.

vertex A mesh vertex.

DESCRIPTION

The Q3Mesh_VertexDelete function deletes the mesh vertex specified by the
vertex parameter from the mesh specified by the mesh parameter. All mesh faces
that contain the vertex are also deleted.

C H A P T E R 4

Geometric Objects

384 Geometric Objects Reference

Q3Mesh_FaceNew 4

You can use the Q3Mesh_FaceNew function to add a face to a mesh.

TQ3MeshFace Q3Mesh_FaceNew (
TQ3GeometryObject mesh,
unsigned long numVertices,
const TQ3MeshVertex *vertices,
TQ3AttributeSet attributeSet);

mesh A mesh.

numVertices The number of mesh vertices in the vertices array.

vertices A pointer to an array of mesh vertices defining the new mesh
face. These vertices can be ordered either clockwise or
counterclockwise.

attributeSet The desired set of attributes for the new mesh face. Set this
parameter to NULL if you do no want any attributes for the new
face.

DESCRIPTION

The Q3Mesh_FaceNew function adds the face specified by the vertices parameter
to the mesh specified by the mesh parameter. The mesh must already exist before
you call Q3Mesh_FaceNew. The new mesh face is returned as the function result.

Q3Mesh_FaceDelete 4

You can use the Q3Mesh_FaceDelete function to delete a face from a mesh.

TQ3Status Q3Mesh_FaceDelete (
TQ3GeometryObject mesh,
TQ3MeshFace face);

mesh A mesh.

face A mesh face.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 385

DESCRIPTION

The Q3Mesh_FaceDelete function deletes the mesh face specified by the face
parameter from the mesh specified by the mesh parameter. The vertices of the
face are not deleted.

Q3Mesh_DelayUpdates 4

You can use the Q3Mesh_DelayUpdates function to prevent QuickDraw 3D from
updating its internal list of mesh components.

TQ3Status Q3Mesh_DelayUpdates (TQ3GeometryObject mesh);

mesh A mesh.

DESCRIPTION

The Q3Mesh_DelayUpdates function prevents QuickDraw 3D from updating its
internal list of components and maintaining correct face orientation (that is,
vertex ordering) for the mesh specified by the mesh parameter. Updating the list
of components can consume significant amounts of time, and it might be useful
temporarily to prevent component list updating. You should later call
Q3Mesh_ResumeUpdates to resume component list updating. Generally, if you are
creating or deleting a number of vertices or faces from a mesh, it is better to
bracket the entire set of changes with calls to Q3Mesh_DelayUpdates and
Q3Mesh_ResumeUpdates.

Q3Mesh_ResumeUpdates 4

You can use the Q3Mesh_ResumeUpdates function to have QuickDraw 3D resume
updating its internal list of mesh components.

TQ3Status Q3Mesh_ResumeUpdates (TQ3GeometryObject mesh);

mesh A mesh.

C H A P T E R 4

Geometric Objects

386 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_ResumeUpdates function instructs QuickDraw 3D to resume
updating its internal list of components and maintaining correct face orientation
for the mesh specified by the mesh parameter.

Q3Mesh_FaceToContour 4

You can use the Q3Mesh_FaceToContour function to convert a face of a mesh into
a contour. The contour is then attached to another mesh face as a hole.

TQ3MeshContour Q3Mesh_FaceToContour (
TQ3GeometryObject mesh,
TQ3MeshFace containerFace,
TQ3MeshFace face);

mesh A mesh.

containerFace
The mesh face that is to contain the new contour.

face The mesh face that is to be converted into a contour. On exit, this
face is no longer a valid object.

DESCRIPTION

The Q3Mesh_FaceToContour function returns, as its function result, a new contour
created from the mesh face specified by the mesh and face parameters. The new
contour is contained in the mesh face specified by the mesh and containerFace
parameters. If a new contour could not be created, Q3Mesh_FaceToContour
returns the value NULL.

IMPORTANT

Q3Mesh_FaceToContour destroys any attributes associated
with the face specified by the face parameter. ▲

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 387

Q3Mesh_ContourToFace 4

You can use the Q3Mesh_ContourToFace function to convert a mesh contour into a
mesh face.

TQ3MeshFace Q3Mesh_ContourToFace (
TQ3GeometryObject mesh,
TQ3MeshContour contour);

mesh A mesh.

contour A mesh contour. On exit, this contour is no longer a valid object.

DESCRIPTION

The Q3Mesh_ContourToFace function returns, as its function result, a mesh face
that is the result of removing the mesh contour specified by the mesh and
contour parameters from its containing face. (You can call the
Q3Mesh_GetContourFace function to determine the face that contains a mesh
contour; see page 407.) If a new face could not be created, Q3Mesh_ContourToFace
returns the value NULL.

Q3Mesh_GetNumComponents 4

You can use the Q3Mesh_GetNumComponents function to determine the number of
connected components of a mesh.

TQ3Status Q3Mesh_GetNumComponents (
TQ3GeometryObject mesh,
unsigned long *numComponents);

mesh A mesh.

numComponents
On exit, the number of connected components in the specified
mesh.

C H A P T E R 4

Geometric Objects

388 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_GetNumComponents function returns, in the numComponents parameter,
the number of connected components in the mesh specified by the mesh
parameter. A connected component is a list of vertices, each of which is
connected to all the others by some sequence of mesh edges. For example, a
mesh that contains two cubes has two components.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetNumComponents function might not accurately report the number
of connected components in a mesh if called while mesh updating is delayed
(that is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_GetNumEdges 4

You can use the Q3Mesh_GetNumEdges function to determine the number of edges
of a mesh.

TQ3Status Q3Mesh_GetNumEdges (
TQ3GeometryObject mesh,
unsigned long *numEdges);

mesh A mesh.

numEdges On exit, the number of edges in the specified mesh.

DESCRIPTION

The Q3Mesh_GetNumEdges function returns, in the numEdges parameter, the
number of edges in the mesh specified by the mesh parameter.

Q3Mesh_GetNumVertices 4

You can use the Q3Mesh_GetNumVertices function to determine the number of
vertices of a mesh.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 389

TQ3Status Q3Mesh_GetNumVertices (
TQ3GeometryObject mesh,
unsigned long *numVertices);

mesh A mesh.

numVertices On exit, the number of vertices in the specified mesh.

DESCRIPTION

The Q3Mesh_GetNumVertices function returns, in the numVertices parameter, the
number of vertices in the mesh specified by the mesh parameter.

Q3Mesh_GetNumFaces 4

You can use the Q3Mesh_GetNumFaces function to determine the number of faces
of a mesh.

TQ3Status Q3Mesh_GetNumFaces (
TQ3GeometryObject mesh,
unsigned long *numFaces);

mesh A mesh.

numFaces On exit, the number of faces in the specified mesh.

DESCRIPTION

The Q3Mesh_GetNumFaces function returns, in the numFaces parameter, the
number of faces in the mesh specified by the mesh parameter.

Q3Mesh_GetNumCorners 4

You can use the Q3Mesh_GetNumCorners function to determine the number of
corners of a mesh that have attribute sets.

C H A P T E R 4

Geometric Objects

390 Geometric Objects Reference

TQ3Status Q3Mesh_GetNumCorners (
TQ3GeometryObject mesh,
unsigned long *numCorners);

mesh A mesh.

numCorners On exit, the number of corners in the specified mesh that have
attribute sets.

DESCRIPTION

The Q3Mesh_GetNumCorners function returns, in the numCorners parameter, the
number of corners in the mesh specified by the mesh parameter that have
attribute sets attached to them.

Q3Mesh_GetOrientable 4

You can use the Q3Mesh_GetOrientable function to determine whether the faces
of a mesh can be consistently oriented.

TQ3Status Q3Mesh_GetOrientable (
TQ3GeometryObject mesh,
TQ3Boolean *orientable);

mesh A mesh.

orientable On exit, a Boolean value that indicates whether the faces of the
specified mesh can be consistently oriented.

DESCRIPTION

The Q3Mesh_GetOrientable function returns, in the orientable parameter, the
value kQ3True if the faces of the mesh specified by the mesh parameter can be
consistently oriented; Q3Mesh_GetOrientable returns kQ3False otherwise. For
example, the faces of a tessellated Möbius strip or a Klein bottle cannot be
consistently oriented.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 391

SPECIAL CONSIDERATIONS

The Q3Mesh_GetOrientable function might not accurately report the orientation
state of a mesh if called while mesh updating is delayed (that is, after a call to
Q3Mesh_DelayUpdates but before the matching call to Q3Mesh_ResumeUpdates).

Q3Mesh_GetComponentNumVertices 4

You can use the Q3Mesh_GetComponentNumVertices function to determine the
number of vertices in a component of a mesh.

TQ3Status Q3Mesh_GetComponentNumVertices (
TQ3GeometryObject mesh,
TQ3MeshComponent component,
unsigned long *numVertices);

mesh A mesh.

component A mesh component.

numVertices On exit, the number of vertices in the specified mesh
component.

DESCRIPTION

The Q3Mesh_GetComponentNumVertices function returns, in the numVertices
parameter, the number of vertices in the mesh component specified by the mesh
and component parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetComponentNumVertices function might not accurately report the
number of vertices in a mesh component if called while mesh updating is
delayed (that is, after a call to Q3Mesh_DelayUpdates but before the matching call
to Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

392 Geometric Objects Reference

Q3Mesh_GetComponentNumEdges 4

You can use the Q3Mesh_GetComponentNumEdges function to determine the number
of edges in a component of a mesh.

TQ3Status Q3Mesh_GetComponentNumEdges (
TQ3GeometryObject mesh,
TQ3MeshComponent component,
unsigned long *numEdges);

mesh A mesh.

component A mesh component.

numEdges On exit, the number of edges in the specified mesh component.

DESCRIPTION

The Q3Mesh_GetComponentNumEdges function returns, in the numEdges parameter,
the number of edges in the mesh component specified by the mesh and
component parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetComponentNumEdges function might not accurately report the
number of edges in a mesh component if called while mesh updating is delayed
(that is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_GetComponentBoundingBox 4

You can use the Q3Mesh_GetComponentBoundingBox function to determine the
bounding box of a component of a mesh.

TQ3Status Q3Mesh_GetComponentBoundingBox (
TQ3GeometryObject mesh,
TQ3MeshComponent component,
TQ3BoundingBox *boundingBox);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 393

mesh A mesh.

component A mesh component.

boundingBox On exit, the bounding box of the specified mesh component.

DESCRIPTION

The Q3Mesh_GetComponentBoundingBox function returns, in the boundingBox
parameter, the bounding box of the mesh component specified by the mesh and
component parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetComponentBoundingBox function might not accurately report the
bounding box of a mesh component if called while mesh updating is delayed
(that is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_GetComponentOrientable 4

You can use the Q3Mesh_GetComponentOrientable function to determine whether
the faces of a component of a mesh can be consistently oriented.

TQ3Status Q3Mesh_GetComponentOrientable (
TQ3GeometryObject mesh,
TQ3MeshComponent component,
TQ3Boolean *orientable);

mesh A mesh.

component A mesh component.

orientable On exit, a Boolean value that indicates whether the faces of the
specified mesh component can be consistently oriented.

DESCRIPTION

The Q3Mesh_GetComponentOrientable function returns, in the orientable
parameter, the value kQ3True if the faces of the mesh component specified by

C H A P T E R 4

Geometric Objects

394 Geometric Objects Reference

the mesh and component parameters can be consistently oriented;
Q3Mesh_GetComponentOrientable returns kQ3False otherwise.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetComponentOrientable function might not accurately report the
orientation state of a mesh component if called while mesh updating is delayed
(that is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_GetVertexCoordinates 4

You can use the Q3Mesh_GetVertexCoordinates function to get the coordinates of
a vertex of a mesh.

TQ3Status Q3Mesh_GetVertexCoordinates (
TQ3GeometryObject mesh,
TQ3MeshVertex vertex,
TQ3Point3D *coordinates);

mesh A mesh.

vertex A mesh vertex.

coordinates On exit, the coordinates of the specified mesh vertex.

DESCRIPTION

The Q3Mesh_GetVertexCoordinates function returns, in the coordinates
parameter, the coordinates of the mesh vertex specified by the mesh and vertex
parameters.

Q3Mesh_SetVertexCoordinates 4

You can use the Q3Mesh_SetVertexCoordinates function to set the coordinates of
a vertex of a mesh.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 395

TQ3Status Q3Mesh_SetVertexCoordinates (
TQ3GeometryObject mesh,
TQ3MeshVertex vertex,
const TQ3Point3D *coordinates);

mesh A mesh.

vertex A mesh vertex.

coordinates The desired coordinates of the specified mesh vertex.

DESCRIPTION

The Q3Mesh_SetVertexCoordinates function sets the coordinates of the mesh
vertex specified by the mesh and vertex parameters to those specified in the
coordinates parameter.

Q3Mesh_GetVertexIndex 4

You can use the Q3Mesh_GetVertexIndex function to get the index of a mesh
vertex.

TQ3Status Q3Mesh_GetVertexIndex (
TQ3GeometryObject mesh,
TQ3MeshVertex vertex,
unsigned long *index);

mesh A mesh.

vertex A mesh vertex.

index On exit, the index of the specified mesh vertex.

DESCRIPTION

The Q3Mesh_GetVertexIndex function returns, in the index parameter, the index
of the mesh vertex specified by the mesh and vertex parameters. A vertex index
is a unique integer (between 0 and the total number of vertices in the mesh
minus 1) associated with a vertex.

C H A P T E R 4

Geometric Objects

396 Geometric Objects Reference

▲ W AR N I N G

Vertex indices are volatile and can be changed by functions
that alter the topology of a mesh (such as functions that
add or delete faces or vertices), and by writing, picking,
rendering, or duplicating a mesh, or by calling
Q3Mesh_DelayUpdates. As a result, you should rely on an
index returned by Q3Mesh_GetVertexIndex only until you
perform one of these operations. ▲

Q3Mesh_GetVertexOnBoundary 4

You can use the Q3Mesh_GetVertexOnBoundary function to determine whether a
vertex lies on the boundary of a mesh.

TQ3Status Q3Mesh_GetVertexOnBoundary (
TQ3GeometryObject mesh,
TQ3MeshVertex vertex,
TQ3Boolean *onBoundary);

mesh A mesh.

vertex A mesh vertex.

onBoundary On exit, a Boolean value that indicates whether the specified
mesh vertex lies on the boundary of the mesh.

DESCRIPTION

The Q3Mesh_GetVertexOnBoundary function returns, in the onBoundary parameter,
the value kQ3True if the mesh vertex specified by the mesh and vertex
parameters lies on the boundary of the mesh. Q3Mesh_GetVertexOnBoundary
returns kQ3False otherwise.

Q3Mesh_GetVertexComponent 4

You can use the Q3Mesh_GetVertexComponent function to get the component of a
mesh to which a vertex belongs.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 397

TQ3Status Q3Mesh_GetVertexComponent (
TQ3GeometryObject mesh,
TQ3MeshVertex vertex,
TQ3MeshComponent *component);

mesh A mesh.

vertex A mesh vertex.

component On exit, the mesh component that contains the specified mesh
vertex.

DESCRIPTION

The Q3Mesh_GetVertexComponent function returns, in the component parameter,
the mesh component that contains the mesh vertex specified by the mesh and
vertex parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetVertexComponent function might not accurately report the mesh
component that contains a mesh vertex if called while mesh updating is
delayed (that is, after a call to Q3Mesh_DelayUpdates but before the matching call
to Q3Mesh_ResumeUpdates).

Q3Mesh_GetVertexAttributeSet 4

You can use the Q3Mesh_GetVertexAttributeSet function to get the attribute set
of a vertex of a mesh.

TQ3Status Q3Mesh_GetVertexAttributeSet (
TQ3GeometryObject mesh,
TQ3MeshVertex vertex,
TQ3AttributeSet *attributeSet);

mesh A mesh.

vertex A mesh vertex.

attributeSet On exit, a pointer to the set of attributes for the mesh vertex.

C H A P T E R 4

Geometric Objects

398 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_GetVertexAttributeSet function returns, in the attributeSet
parameter, the set of attributes currently associated with the mesh vertex
specified by the mesh and vertex parameters. The reference count of the set is
incremented.

Q3Mesh_SetVertexAttributeSet 4

You can use the Q3Mesh_SetVertexAttributeSet function to set the attribute set
of a vertex of a mesh.

TQ3Status Q3Mesh_SetVertexAttributeSet (
TQ3GeometryObject mesh,
TQ3MeshVertex vertex,
TQ3AttributeSet attributeSet);

mesh A mesh.

vertex A mesh vertex.

attributeSet
The desired set of attributes for the specified mesh vertex.

DESCRIPTION

The Q3Mesh_SetVertexAttributeSet function sets the attribute set of the mesh
vertex specified by the mesh and vertex parameters to the set of attributes
specified by the attributeSet parameter.

Q3Mesh_GetFaceNumVertices 4

You can use the Q3Mesh_GetFaceNumVertices function to determine the number
of vertices in a face of a mesh.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 399

TQ3Status Q3Mesh_GetFaceNumVertices (
TQ3GeometryObject mesh,
TQ3MeshFace face,
unsigned long *numVertices);

mesh A mesh.

face A mesh face.

numVertices On exit, the number of vertices in the specified mesh face.

DESCRIPTION

The Q3Mesh_GetFaceNumVertices function returns, in the numVertices parameter,
the number of vertices in the mesh face specified by the mesh and face
parameters.

Q3Mesh_GetFacePlaneEquation 4

You can use the Q3Mesh_GetFacePlaneEquation function to determine the plane
equation of a face of a mesh.

TQ3Status Q3Mesh_GetFacePlaneEquation (
TQ3GeometryObject mesh,
TQ3MeshFace face,
TQ3PlaneEquation *planeEquation);

mesh A mesh.

face A mesh face.

planeEquation
On exit, the plane equation of the plane spanned by the vertices
of the specified mesh face.

DESCRIPTION

The Q3Mesh_GetFacePlaneEquation function returns, in the planeEquation
parameter, the plane equation of the plane spanned by the vertices of the mesh
face specified by the mesh and face parameters. If the vertices of the mesh face

C H A P T E R 4

Geometric Objects

400 Geometric Objects Reference

do not all lie in one plane, the information returned in the planeEquation
parameter is only an approximation.

Q3Mesh_GetFaceNumContours 4

You can use the Q3Mesh_GetFaceNumContours function to determine the number
of contours in a face of a mesh.

TQ3Status Q3Mesh_GetFaceNumContours (
TQ3GeometryObject mesh,
TQ3MeshFace face,
unsigned long *numContours);

mesh A mesh.

face A mesh face.

numContours
On exit, the number of contours in the specified mesh face.

DESCRIPTION

The Q3Mesh_GetFaceNumContours function returns, in the numContours parameter,
the number of contours in the mesh face specified by the mesh and face
parameters. A mesh face always contains at least one contour, which defines the
face itself. Any additional contours in the face define holes in the face.

Q3Mesh_GetFaceIndex 4

You can use the Q3Mesh_GetFaceIndex function to get the index of a mesh face.

TQ3Status Q3Mesh_GetFaceIndex (
TQ3GeometryObject mesh,
TQ3MeshFace face,
unsigned long *index);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 401

mesh A mesh.

face A mesh face.

index On exit, the index of the specified mesh face.

DESCRIPTION

The Q3Mesh_GetFaceIndex function returns, in the index parameter, the index of
the mesh face specified by the mesh and face parameters. A face index is a
unique integer (between 0 and the total number of faces in the mesh minus 1)
associated with a face.

▲ W AR N I N G

Face indices are volatile and can be changed by functions
that alter the topology of a mesh (such as functions that
add or delete faces or vertices), and by writing, picking,
rendering, or duplicating a mesh, or by calling
Q3Mesh_DelayUpdates. As a result, you should rely on an
index returned by Q3Mesh_GetFaceIndex only until you
perform one of these operations. ▲

Q3Mesh_GetFaceComponent 4

You can use the Q3Mesh_GetFaceComponent function to get the component of a
mesh to which a face belongs.

TQ3Status Q3Mesh_GetFaceComponent (
TQ3GeometryObject mesh,
TQ3MeshFace face,
TQ3MeshComponent *component);

mesh A mesh.

face A mesh face.

component On exit, the mesh component that contains the specified mesh
face.

C H A P T E R 4

Geometric Objects

402 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_GetFaceComponent function returns, in the component parameter, the
mesh component that contains the mesh face specified by the mesh and face
parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetFaceComponent function might not accurately report the mesh
component that contains a mesh face if called while mesh updating is delayed
(that is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_GetFaceAttributeSet 4

You can use the Q3Mesh_GetFaceAttributeSet function to get the attribute set of a
face of a mesh.

TQ3Status Q3Mesh_GetFaceAttributeSet (
TQ3GeometryObject mesh,
TQ3MeshFace face,
TQ3AttributeSet *attributeSet);

mesh A mesh.

face A mesh face.

attributeSet
On exit, a pointer to the set of attributes for the specified mesh
face.

DESCRIPTION

The Q3Mesh_GetFaceAttributeSet function returns, in the attributeSet
parameter, the set of attributes currently associated with the mesh face specified
by the mesh and face parameters. The reference count of the set is incremented.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 403

Q3Mesh_SetFaceAttributeSet 4

You can use the Q3Mesh_SetFaceAttributeSet function to set the attribute set of a
face of a mesh.

TQ3Status Q3Mesh_SetFaceAttributeSet (
TQ3GeometryObject mesh,
TQ3MeshFace face,
TQ3AttributeSet attributeSet);

mesh A mesh.

face A mesh face.

attributeSet
The desired set of attributes for the specified mesh face.

DESCRIPTION

The Q3Mesh_SetFaceAttributeSet function sets the attribute set of the mesh face
specified by the mesh and face parameters to the set of attributes specified by
the attributeSet parameter.

Q3Mesh_GetEdgeVertices 4

You can use the Q3Mesh_GetEdgeVertices function to get the vertices of a mesh
edge.

TQ3Status Q3Mesh_GetEdgeVertices (
TQ3GeometryObject mesh,
TQ3MeshEdge edge,
TQ3MeshVertex *vertex1,
TQ3MeshVertex *vertex2);

mesh A mesh.

edge A mesh edge.

vertex1 On exit, the first vertex of the specified mesh edge.

vertex2 On exit, the second vertex of the specified mesh edge.

C H A P T E R 4

Geometric Objects

404 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_GetEdgeVertices function returns, in the vertex1 and vertex2
parameters, the two vertices of the mesh edge specified by the mesh and edge
parameters.

Q3Mesh_GetEdgeFaces 4

You can use the Q3Mesh_GetEdgeFaces function to get the faces that share a mesh
edge.

TQ3Status Q3Mesh_GetEdgeFaces (
TQ3GeometryObject mesh,
TQ3MeshEdge edge,
TQ3MeshFace *face1,
TQ3MeshFace *face2);

mesh A mesh.

edge A mesh edge.

face1 On exit, the first mesh face that shares the specified mesh edge.

face2 On exit, the second mesh face that shares the specified mesh
edge.

DESCRIPTION

The Q3Mesh_GetEdgeFaces function returns, in the face1 and face2 parameters,
the two mesh faces that shares the mesh edge specified by the mesh and edge
parameters. If the edge lies on the boundary of the mesh, either face1 or face2 is
NULL.

Q3Mesh_GetEdgeOnBoundary 4

You can use the Q3Mesh_GetEdgeOnBoundary function to determine whether a
mesh edge lies on the boundary of the mesh.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 405

TQ3Status Q3Mesh_GetEdgeOnBoundary (
TQ3GeometryObject mesh,
TQ3MeshEdge edge,
TQ3Boolean *onBoundary);

mesh A mesh.

edge A mesh edge.

onBoundary On exit, a Boolean value that indicates whether the specified
mesh edge lies on the boundary of the mesh.

DESCRIPTION

The Q3Mesh_GetEdgeOnBoundary function returns, in the onBoundary parameter,
the value kQ3True if the mesh edge specified by the mesh and edge parameters
lies on the boundary of the mesh. Q3Mesh_GetEdgeOnBoundary returns kQ3False
otherwise.

Q3Mesh_GetEdgeComponent 4

You can use the Q3Mesh_GetEdgeComponent function to get the component of a
mesh to which an edge belongs.

TQ3Status Q3Mesh_GetEdgeComponent (
TQ3GeometryObject mesh,
TQ3MeshEdge edge,
TQ3MeshComponent *component);

mesh A mesh.

edge A mesh edge.

component On exit, the mesh component that contains the specified mesh
edge.

C H A P T E R 4

Geometric Objects

406 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_GetEdgeComponent function returns, in the component parameter, the
mesh component that contains the mesh edge specified by the mesh and edge
parameters.

SPECIAL CONSIDERATIONS

The Q3Mesh_GetEdgeComponent function might not accurately report the mesh
component that contains a mesh edge if called while mesh updating is delayed
(that is, after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_GetEdgeAttributeSet 4

You can use the Q3Mesh_GetEdgeAttributeSet function to get the attribute set of
an edge of a mesh.

TQ3Status Q3Mesh_GetEdgeAttributeSet (
TQ3GeometryObject mesh,
TQ3MeshEdge edge,
TQ3AttributeSet *attributeSet);

mesh A mesh.

edge A mesh edge.

attributeSet
On exit, a pointer to the set of attributes for the specified mesh
edge.

DESCRIPTION

The Q3Mesh_GetEdgeAttributeSet function returns, in the attributeSet
parameter, the set of attributes currently associated with the mesh edge
specified by the mesh and edge parameters. The reference count of the set is
incremented.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 407

Q3Mesh_SetEdgeAttributeSet 4

You can use the Q3Mesh_SetEdgeAttributeSet function to set the attribute set of
an edge of a mesh.

TQ3Status Q3Mesh_SetEdgeAttributeSet (
TQ3GeometryObject mesh,
TQ3MeshEdge edge,
TQ3AttributeSet attributeSet);

mesh A mesh.

edge A mesh edge.

attributeSet The desired set of attributes for the specified mesh edge.

DESCRIPTION

The Q3Mesh_SetEdgeAttributeSet function sets the attribute set of the mesh edge
specified by the mesh and edge parameters to the set of attributes specified by
the attributeSet parameter.

Q3Mesh_GetContourFace 4

You can use the Q3Mesh_GetContourFace function to get the mesh face that
contains a mesh contour.

TQ3Status Q3Mesh_GetContourFace (
TQ3GeometryObject mesh,
TQ3MeshContour contour,
TQ3MeshFace *face);

mesh A mesh.

contour A mesh contour.

face On exit, the mesh face that contains the specified contour.

C H A P T E R 4

Geometric Objects

408 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_GetContourFace function returns, in the face parameter, the mesh
face that contains the mesh contour specified by the mesh and contour
parameters.

Q3Mesh_GetContourNumVertices 4

You can use the Q3Mesh_GetContourNumVertices function to get the number of
vertices that define a contour.

TQ3Status Q3Mesh_GetContourNumVertices (
TQ3GeometryObject mesh,
TQ3MeshContour contour,
unsigned long *numVertices);

mesh A mesh.

contour A mesh contour.

numVertices
On exit, the number of vertices in the specified mesh contour.

DESCRIPTION

The Q3Mesh_GetContourNumVertices function returns, in the numVertices
parameter, the number of vertices that compose the mesh contour specified by
the mesh and contour parameters.

Q3Mesh_GetCornerAttributeSet 4

You can use the Q3Mesh_GetCornerAttributeSet function to get the attribute set
of a mesh corner.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 409

TQ3Status Q3Mesh_GetCornerAttributeSet (
TQ3GeometryObject mesh,
TQ3MeshVertex vertex,
TQ3MeshFace face,
TQ3AttributeSet *attributeSet);

mesh A mesh.

vertex A mesh vertex.

face A mesh face. This face must contain the specified vertex in one
of its contours.

attributeSet
On exit, the set of attributes for the corner defined by the
specified mesh vertex and face.

DESCRIPTION

The Q3Mesh_GetCornerAttributeSet function returns, in the attributeSet
parameter, the set of attributes of the corner defined by the vertex and face
parameters in the mesh specified by the mesh parameter. The corner attributes
override any attributes associated with the vertex alone. The reference count of
the set is incremented.

Q3Mesh_SetCornerAttributeSet 4

You can use the Q3Mesh_SetCornerAttributeSet function to set the attribute set
of a mesh corner.

TQ3Status Q3Mesh_SetCornerAttributeSet (
TQ3GeometryObject mesh,
TQ3MeshVertex vertex,
TQ3MeshFace face,
TQ3AttributeSet attributeSet);

mesh A mesh.

vertex A mesh vertex.

C H A P T E R 4

Geometric Objects

410 Geometric Objects Reference

face A mesh face. This face must contain the specified vertex in one
of its contours.

attributeSet
The desired set of attributes for the corner defined by the
specified mesh vertex and face.

DESCRIPTION

The Q3Mesh_SetCornerAttributeSet function sets the attribute set of the corner
defined by the vertex and face parameters in the mesh specified by the mesh
parameter to the set of attributes specified by the attributeSet parameter. The
corner attributes override any attributes associated with the vertex alone.

Traversing Mesh Components, Vertices, Faces, and Edges 4

QuickDraw 3D provides a large number of functions that you can use to iterate
through the components, vertices, faces, or edges of a mesh. For example, you
can call the Q3Mesh_FirstMeshComponent function to get the first component in a
mesh; then you can call the Q3Mesh_NextMeshComponent function to get any
subsequent mesh components.

For even simpler mesh traversal, QuickDraw 3D defines a large number of
macros modeled on the standard C language for statement. For example, the
Q3ForEachMeshComponent macro uses the Q3Mesh_FirstMeshComponent function
and the Q3Mesh_NextMeshComponent function to iterate through all the
components of a mesh.

IMPORTANT

Adding or deleting vertices or faces within the scope of
these iterators might produce unpredictable results. ▲

#define Q3ForEachMeshComponent(m,c,i) \
for ((c) = Q3Mesh_FirstMeshComponent((m),(i)); \

(c); \
(c) = Q3Mesh_NextMeshComponent((i)))

#define Q3ForEachComponentVertex(c,v,i) \
for ((v) = Q3Mesh_FirstComponentVertex((c),(i)); \

(v); \
(v) = Q3Mesh_NextComponentVertex((i)))

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 411

#define Q3ForEachComponentEdge(c,e,i) \
for ((e) = Q3Mesh_FirstComponentEdge((c),(i)); \

(e); \
(e) = Q3Mesh_NextComponentEdge((i)))

#define Q3ForEachMeshVertex(m,v,i) \
for ((v) = Q3Mesh_FirstMeshVertex((m),(i)); \

(v); \
(v) = Q3Mesh_NextMeshVertex((i)))

#define Q3ForEachMeshFace(m,f,i) \
for ((f) = Q3Mesh_FirstMeshFace((m),(i)); \

(f); \
(f) = Q3Mesh_NextMeshFace((i)))

#define Q3ForEachMeshEdge(m,e,i) \
for ((e) = Q3Mesh_FirstMeshEdge((m),(i)); \

(e); \
(e) = Q3Mesh_NextMeshEdge((i)))

#define Q3ForEachVertexEdge(v,e,i) \
for ((e) = Q3Mesh_FirstVertexEdge((v),(i)); \

(e); \
(e) = Q3Mesh_NextVertexEdge((i)))

#define Q3ForEachVertexVertex(v,n,i) \
for ((n) = Q3Mesh_FirstVertexVertex((v),(i)); \

(n); \
(n) = Q3Mesh_NextVertexVertex((i)))

#define Q3ForEachVertexFace(v,f,i) \
for ((f) = Q3Mesh_FirstVertexFace((v),(i)); \

(f); \
(f) = Q3Mesh_NextVertexFace((i)))

#define Q3ForEachFaceEdge(f,e,i) \
for ((e) = Q3Mesh_FirstFaceEdge((f),(i)); \

(e); \
(e) = Q3Mesh_NextFaceEdge((i)))

C H A P T E R 4

Geometric Objects

412 Geometric Objects Reference

#define Q3ForEachFaceVertex(f,v,i) \
for ((v) = Q3Mesh_FirstFaceVertex((f),(i)); \

(v); \
(v) = Q3Mesh_NextFaceVertex((i)))

#define Q3ForEachFaceFace(f,n,i) \
for ((n) = Q3Mesh_FirstFaceFace((f),(i)); \

(n); \
(n) = Q3Mesh_NextFaceFace((i)))

#define Q3ForEachFaceContour(f,h,i) \
for ((h) = Q3Mesh_FirstFaceContour((f),(i)); \

(h); \
(h) = Q3Mesh_NextFaceContour((i)))

#define Q3ForEachContourEdge(h,e,i) \
for ((e) = Q3Mesh_FirstContourEdge((h),(i)); \

(e); \
(e) = Q3Mesh_NextContourEdge((i)))

#define Q3ForEachContourVertex(h,v,i) \
for ((v) = Q3Mesh_FirstContourVertex((h),(i)); \

(v); \
(v) = Q3Mesh_NextContourVertex((i)))

#define Q3ForEachContourFace(h,f,i) \
for ((f) = Q3Mesh_FirstContourFace((h),(i)); \

(f); \
(f) = Q3Mesh_NextContourFace((i)))

Q3Mesh_FirstMeshComponent 4

You can use the Q3Mesh_FirstMeshComponent function to get the first component
of a mesh.

TQ3MeshComponent Q3Mesh_FirstMeshComponent (
TQ3GeometryObject mesh,
TQ3MeshIterator *iterator);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 413

mesh A mesh.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstMeshComponent function returns, as its function result, the first
mesh component in the mesh specified by the mesh parameter. The iterator
parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstMeshComponent fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextMeshComponent function.

SPECIAL CONSIDERATIONS

The Q3Mesh_FirstMeshComponent function might not accurately report the first
mesh component in a mesh if called while mesh updating is delayed (that is,
after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_NextMeshComponent 4

You can use the Q3Mesh_NextMeshComponent function to get the next component
in a mesh.

TQ3MeshComponent Q3Mesh_NextMeshComponent (
TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextMeshComponent function returns, as its function result, the next
mesh component in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstMeshComponent or
Q3Mesh_NextMeshComponent. If there are no more mesh components, this function
returns NULL.

C H A P T E R 4

Geometric Objects

414 Geometric Objects Reference

SPECIAL CONSIDERATIONS

The Q3Mesh_NextMeshComponent function might not accurately report the next
mesh component in a mesh if called while mesh updating is delayed (that is,
after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_FirstComponentVertex 4

You can use the Q3Mesh_FirstComponentVertex function to get the first vertex in a
mesh component.

TQ3MeshVertex Q3Mesh_FirstComponentVertex (
TQ3MeshComponent component,
TQ3MeshIterator *iterator);

component A mesh component.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstComponentVertex function returns, as its function result, the
first vertex in the mesh component specified by the component parameter. The
iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstComponentVertex fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextComponentVertex function.

SPECIAL CONSIDERATIONS

The Q3Mesh_FirstComponentVertex function might not accurately report the first
vertex in a mesh component if called while mesh updating is delayed (that is,
after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 415

Q3Mesh_NextComponentVertex 4

You can use the Q3Mesh_NextComponentVertex function to get the next vertex in a
mesh component.

TQ3MeshVertex Q3Mesh_NextComponentVertex (
TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextComponentVertex function returns, as its function result, the next
vertex in the iteration specified by the iterator parameter, which must have
been filled in by a previous call to Q3Mesh_FirstComponentVertex or
Q3Mesh_NextComponentVertex. If there are no more vertices, this function returns
NULL.

SPECIAL CONSIDERATIONS

The Q3Mesh_NextComponentVertex function might not accurately report the next
vertex in a mesh component if called while mesh updating is delayed (that is,
after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_FirstComponentEdge 4

You can use the Q3Mesh_FirstComponentEdge function to get the first edge in a
mesh component.

TQ3MeshEdge Q3Mesh_FirstComponentEdge (
TQ3MeshComponent component,
TQ3MeshIterator *iterator);

component A mesh component.

iterator A pointer to a mesh iterator structure.

C H A P T E R 4

Geometric Objects

416 Geometric Objects Reference

DESCRIPTION

The Q3Mesh_FirstComponentEdge function returns, as its function result, the first
edge in the mesh component specified by the component parameter. The
iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstComponentEdge fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextComponentEdge function.

SPECIAL CONSIDERATIONS

The Q3Mesh_FirstComponentEdge function might not accurately report the first
edge in a mesh component if called while mesh updating is delayed (that is,
after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

Q3Mesh_NextComponentEdge 4

You can use the Q3Mesh_NextComponentEdge function to get the next edge in a
mesh component.

TQ3MeshEdge Q3Mesh_NextComponentEdge (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextComponentEdge function returns, as its function result, the next
edge in the iteration specified by the iterator parameter, which must have been
filled in by a previous call to Q3Mesh_FirstComponentEdge or
Q3Mesh_NextComponentEdge. If there are no more edges, this function returns
NULL.

SPECIAL CONSIDERATIONS

The Q3Mesh_NextComponentEdge function might not accurately report the next
edge in a mesh component if called while mesh updating is delayed (that is,
after a call to Q3Mesh_DelayUpdates but before the matching call to
Q3Mesh_ResumeUpdates).

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 417

Q3Mesh_FirstMeshVertex 4

You can use the Q3Mesh_FirstMeshVertex function to get the first vertex in a
mesh.

TQ3MeshVertex Q3Mesh_FirstMeshVertex (
TQ3GeometryObject mesh,
TQ3MeshIterator *iterator);

mesh A mesh.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstMeshVertex function returns, as its function result, the first
vertex in the mesh specified by the mesh parameter. The iterator parameter is a
pointer to a mesh iterator structure that Q3Mesh_FirstMeshVertex fills in before
returning. You should pass the address of that structure to the
Q3Mesh_NextMeshVertex function.

Q3Mesh_NextMeshVertex 4

You can use the Q3Mesh_NextMeshVertex function to get the next vertex in a
mesh.

TQ3MeshVertex Q3Mesh_NextMeshVertex (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextMeshVertex function returns, as its function result, the next
vertex in the iteration specified by the iterator parameter, which must have
been filled in by a previous call to Q3Mesh_FirstMeshVertex or
Q3Mesh_NextMeshVertex. If there are no more vertices, this function returns NULL.

C H A P T E R 4

Geometric Objects

418 Geometric Objects Reference

Q3Mesh_FirstMeshFace 4

You can use the Q3Mesh_FirstMeshFace function to get the first face in a mesh.

TQ3MeshFace Q3Mesh_FirstMeshFace (
TQ3GeometryObject mesh,
TQ3MeshIterator *iterator);

mesh A mesh.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstMeshFace function returns, as its function result, the first face in
the mesh specified by the mesh parameter. The iterator parameter is a pointer
to a mesh iterator structure that Q3Mesh_FirstMeshFace fills in before returning.
You should pass the address of that structure to the Q3Mesh_NextMeshFace
function.

Q3Mesh_NextMeshFace 4

You can use the Q3Mesh_NextMeshFace function to get the next face in a mesh.

TQ3MeshFace Q3Mesh_NextMeshFace (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextMeshFace function returns, as its function result, the next face in
the iteration specified by the iterator parameter, which must have been filled
in by a previous call to Q3Mesh_FirstMeshFace or Q3Mesh_NextMeshFace. If there
are no more faces, this function returns NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 419

Q3Mesh_FirstMeshEdge 4

You can use the Q3Mesh_FirstMeshEdge function to get the first edge in a mesh.

TQ3MeshEdge Q3Mesh_FirstMeshEdge (
TQ3GeometryObject mesh,
TQ3MeshIterator *iterator);

mesh A mesh.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstMeshEdge function returns, as its function result, the first edge
in the mesh specified by the mesh parameter. The iterator parameter is a
pointer to a mesh iterator structure that Q3Mesh_FirstMeshEdge fills in before
returning. You should pass the address of that structure to the
Q3Mesh_NextMeshEdge function.

Q3Mesh_NextMeshEdge 4

You can use the Q3Mesh_NextMeshEdge function to get the next edge in a mesh.

TQ3MeshEdge Q3Mesh_NextMeshEdge (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextMeshEdge function returns, as its function result, the next edge in
the iteration specified by the iterator parameter, which must have been filled
in by a previous call to Q3Mesh_FirstMeshEdge or Q3Mesh_NextMeshEdge. If there
are no more edges, this function returns NULL.

C H A P T E R 4

Geometric Objects

420 Geometric Objects Reference

Q3Mesh_FirstVertexEdge 4

You can use the Q3Mesh_FirstVertexEdge function to get the first edge around a
vertex.

TQ3MeshEdge Q3Mesh_FirstVertexEdge (
TQ3MeshVertex vertex,
TQ3MeshIterator *iterator);

vertex A mesh vertex.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstVertexEdge function returns, as its function result, the first
edge around the vertex specified by the vertex parameter, in a counterclockwise
ordering. The iterator parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstVertexEdge fills in before returning. You should pass the address of
that structure to the Q3Mesh_NextVertexEdge function.

Q3Mesh_NextVertexEdge 4

You can use the Q3Mesh_NextVertexEdge function to get the next edge around a
vertex, in a counterclockwise order.

TQ3MeshEdge Q3Mesh_NextVertexEdge (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextVertexEdge function returns, as its function result, the next edge
counterclockwise in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstVertexEdge or
Q3Mesh_NextVertexEdge. If there are no more edges, this function returns NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 421

Q3Mesh_FirstVertexVertex 4

You can use the Q3Mesh_FirstVertexVertex function to get the first vertex
connected to a vertex by an edge.

TQ3MeshVertex Q3Mesh_FirstVertexVertex (
TQ3MeshVertex vertex,
TQ3MeshIterator *iterator);

vertex A mesh vertex.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstVertexVertex function returns, as its function result, the first
vertex neighboring the vertex specified by the vertex parameter. The iterator
parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstVertexVertex fills in before returning. You should pass the address
of that structure to the Q3Mesh_NextVertexVertex function.

Q3Mesh_NextVertexVertex 4

You can use the Q3Mesh_NextVertexVertex function to get the next vertex
connected to a vertex by an edge, in a counterclockwise order.

TQ3MeshVertex Q3Mesh_NextVertexVertex (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextVertexVertex function returns, as its function result, the next
vertex counterclockwise in the iteration specified by the iterator parameter,
which must have been filled in by a previous call to Q3Mesh_FirstVertexVertex
or Q3Mesh_NextVertexVertex. If there are no more vertices, this function returns
NULL.

C H A P T E R 4

Geometric Objects

422 Geometric Objects Reference

Q3Mesh_FirstVertexFace 4

You can use the Q3Mesh_FirstVertexFace function to get the first face around a
vertex.

TQ3MeshFace Q3Mesh_FirstVertexFace (
TQ3MeshVertex vertex,
TQ3MeshIterator *iterator);

vertex A mesh vertex.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstVertexFace function returns, as its function result, the first face
around the vertex specified by the vertex parameter. The iterator parameter is
a pointer to a mesh iterator structure that Q3Mesh_FirstVertexFace fills in before
returning. You should pass the address of that structure to the
Q3Mesh_NextVertexVertex function.

Q3Mesh_NextVertexFace 4

You can use the Q3Mesh_NextVertexFace function to get the next face around a
vertex, in a counterclockwise order.

TQ3MeshFace Q3Mesh_NextVertexFace (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextVertexFace function returns, as its function result, the next face
counterclockwise in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstVertexFace or
Q3Mesh_NextVertexFace. If there are no more faces, this function returns NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 423

Q3Mesh_FirstFaceEdge 4

You can use the Q3Mesh_FirstFaceEdge function to get the first edge of a mesh
face.

TQ3MeshEdge Q3Mesh_FirstFaceEdge (
TQ3MeshFace face,
TQ3MeshIterator *iterator);

face A mesh face.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstFaceEdge function returns, as its function result, the first edge
of the face specified by the face parameter. The iterator parameter is a pointer
to a mesh iterator structure that Q3Mesh_FirstFaceEdge fills in before returning.
You should pass the address of that structure to the Q3Mesh_NextFaceEdge
function.

Q3Mesh_NextFaceEdge 4

You can use the Q3Mesh_NextFaceEdge function to get the next edge of a mesh
face, in a counterclockwise order.

TQ3MeshEdge Q3Mesh_NextFaceEdge (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextFaceEdge function returns, as its function result, the next edge
counterclockwise in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstFaceEdge or
Q3Mesh_NextFaceEdge. If there are no more edges, this function returns NULL. This
function iterates over all the contours in the face.

C H A P T E R 4

Geometric Objects

424 Geometric Objects Reference

Q3Mesh_FirstFaceVertex 4

You can use the Q3Mesh_FirstFaceVertex function to get the first vertex of a
mesh face.

TQ3MeshVertex Q3Mesh_FirstFaceVertex (
TQ3MeshFace face,
TQ3MeshIterator *iterator);

face A mesh face.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstFaceVertex function returns, as its function result, the first
vertex of the face specified by the face parameter. The iterator parameter is a
pointer to a mesh iterator structure that Q3Mesh_FirstFaceVertex fills in before
returning. You should pass the address of that structure to the
Q3Mesh_NextFaceVertex function.

Q3Mesh_NextFaceVertex 4

You can use the Q3Mesh_NextFaceVertex function to get the next vertex of a mesh
face, in a counterclockwise order.

TQ3MeshVertex Q3Mesh_NextFaceVertex (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextFaceVertex function returns, as its function result, the next
vertex counterclockwise in the iteration specified by the iterator parameter,
which must have been filled in by a previous call to Q3Mesh_FirstFaceVertex or
Q3Mesh_NextFaceVertex. If there are no more vertices, this function returns NULL.
This function iterates over all the contours in the face.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 425

Q3Mesh_FirstFaceFace 4

You can use the Q3Mesh_FirstFaceFace function to get the first face surrounding
a mesh face.

TQ3MeshFace Q3Mesh_FirstFaceFace (
TQ3MeshFace face,
TQ3MeshIterator *iterator);

face A mesh face.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstFaceFace function returns, as its function result, the first face
surrounding the face specified by the face parameter. The iterator parameter is
a pointer to a mesh iterator structure that Q3Mesh_FirstFaceFace fills in before
returning. You should pass the address of that structure to the
Q3Mesh_NextFaceFace function.

Q3Mesh_NextFaceFace 4

You can use the Q3Mesh_NextFaceFace function to get the next face surrounding a
mesh face, in a counterclockwise order.

TQ3MeshFace Q3Mesh_NextFaceFace (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextFaceFace function returns, as its function result, the next face
counterclockwise in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstFaceFace or
Q3Mesh_NextFaceFace. If there are no more faces, this function returns NULL.

C H A P T E R 4

Geometric Objects

426 Geometric Objects Reference

Q3Mesh_FirstFaceContour 4

You can use the Q3Mesh_FirstFaceContour function to get the first contour of a
mesh face.

TQ3MeshContour Q3Mesh_FirstFaceContour (
TQ3MeshFace face,
TQ3MeshIterator *iterator);

face A mesh face.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstFaceContour function returns, as its function result, the first
contour of the face specified by the face parameter. The iterator parameter is a
pointer to a mesh iterator structure that Q3Mesh_FirstFaceContour fills in before
returning. You should pass the address of that structure to the
Q3Mesh_NextFaceContour function.

Q3Mesh_NextFaceContour 4

You can use the Q3Mesh_NextFaceContour function to get the next contour of a
mesh face.

TQ3MeshContour Q3Mesh_NextFaceContour (
TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextFaceContour function returns, as its function result, the next
contour in the iteration specified by the iterator parameter, which must have
been filled in by a previous call to Q3Mesh_FirstFaceContour or
Q3Mesh_NextFaceContour. If there are no more contours, this function returns
NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 427

Q3Mesh_FirstContourEdge 4

You can use the Q3Mesh_FirstContourEdge function to get the first edge of a mesh
contour.

TQ3MeshEdge Q3Mesh_FirstContourEdge (
TQ3MeshContour contour,
TQ3MeshIterator *iterator);

contour A mesh contour.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstContourEdge function returns, as its function result, the first
edge of the mesh contour specified by the contour parameter. The iterator
parameter is a pointer to a mesh iterator structure that Q3Mesh_FirstContourEdge
fills in before returning. You should pass the address of that structure to the
Q3Mesh_NextContourEdge function.

Q3Mesh_NextContourEdge 4

You can use the Q3Mesh_NextContourEdge function to get the next edge of a mesh
contour, in a counterclockwise order.

TQ3MeshEdge Q3Mesh_NextContourEdge (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextContourEdge function returns, as its function result, the next
edge counterclockwise in the iteration specified by the iterator parameter,
which must have been filled in by a previous call to Q3Mesh_FirstContourEdge or
Q3Mesh_NextContourEdge. If there are no more edges, this function returns NULL.

C H A P T E R 4

Geometric Objects

428 Geometric Objects Reference

Q3Mesh_FirstContourVertex 4

You can use the Q3Mesh_FirstContourVertex function to get the first vertex of a
mesh contour.

TQ3MeshVertex Q3Mesh_FirstContourVertex (
TQ3MeshContour contour,
TQ3MeshIterator *iterator);

contour A mesh contour.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstContourVertex function returns, as its function result, the first
vertex of the mesh contour specified by the contour parameter. The iterator
parameter is a pointer to a mesh iterator structure that
Q3Mesh_FirstContourVertex fills in before returning. You should pass the
address of that structure to the Q3Mesh_NextContourVertex function.

Q3Mesh_NextContourVertex 4

You can use the Q3Mesh_NextContourVertex function to get the next vertex of a
mesh contour, in a counterclockwise order.

TQ3MeshVertex Q3Mesh_NextContourVertex (
TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextContourVertex function returns, as its function result, the next
vertex in the iteration specified by the iterator parameter, which must have
been filled in by a previous call to Q3Mesh_FirstContourVertex or
Q3Mesh_NextContourVertex. If there are no more vertices, this function returns
NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 429

Q3Mesh_FirstContourFace 4

You can use the Q3Mesh_FirstContourFace function to get the first face
surrounding a mesh contour.

TQ3MeshFace Q3Mesh_FirstContourFace (
TQ3MeshContour contour,
TQ3MeshIterator *iterator);

contour A mesh contour.

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_FirstContourFace function returns, as its function result, the first
face of the mesh contour specified by the contour parameter. The iterator
parameter is a pointer to a mesh iterator structure that Q3Mesh_FirstContourFace
fills in before returning. You should pass the address of that structure to the
Q3Mesh_NextContourFace function.

Q3Mesh_NextContourFace 4

You can use the Q3Mesh_NextContourFace function to get the next face
surrounding a mesh contour, in a counterclockwise order.

TQ3MeshFace Q3Mesh_NextContourFace (TQ3MeshIterator *iterator);

iterator A pointer to a mesh iterator structure.

DESCRIPTION

The Q3Mesh_NextContourFace function returns, as its function result, the next face
counterclockwise in the iteration specified by the iterator parameter, which
must have been filled in by a previous call to Q3Mesh_FirstContourFace or
Q3Mesh_NextContourFace. If there are no more faces, this function returns NULL.

C H A P T E R 4

Geometric Objects

430 Geometric Objects Reference

Creating and Editing Trimeshes 4

QuickDraw 3D provides routines that you can use to create and manipulate
trimeshes. See “Trimeshes” (page 307) for the definition of a trimesh.

Q3TriMesh_New 4

You can use the Q3TriMesh_New function to create a new trimesh.

TQ3GeometryObject Q3TriMesh_New (const TQ3TriMeshData *triMeshData);

triMeshData A pointer to a TQ3TriMeshData structure.

DESCRIPTION

The Q3TriMesh_New function returns, as its function result, a new trimesh having
the shape and attributes specified by the triMeshData parameter. If a new
trimesh could not be created, Q3TriMesh_New returns the value NULL.

Q3TriMesh_Submit 4

You can use the Q3TriMesh_Submit function to submit an immediate trimesh for
drawing, picking, bounding, or writing.

TQ3Status Q3TriMesh_Submit (
const TQ3TriMeshData *triMeshData,
TQ3ViewObject view);

triMeshData A pointer to a TQ3TriMeshData structure.

view A view.

DESCRIPTION

The Q3TriMesh_Submit function submits for drawing, picking, bounding, or
writing the immediate trimesh whose shape and attribute set are specified by

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 431

the triMeshData parameter. The trimesh is drawn, picked, bounded, or written
according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3TriMesh_GetData 4

You can use the Q3TriMesh_GetData function to get the data that defines a
trimesh and its attributes.

TQ3Status Q3TriMesh_GetData (
TQ3GeometryObject triMesh,
TQ3TriMeshData *triMeshData);

triMesh A trimesh.

triMeshData On exit, a pointer to a TQ3TriMeshData structure that contains
information about the trimesh specified by the triMesh
parameter.

DESCRIPTION

The Q3TriMesh_GetData function returns, through the triMeshData parameter,
information about the trimesh specified by the triMesh parameter.
QuickDraw 3D allocates memory for the TQ3TriMeshData structure internally;
you must call Q3TriMesh_EmptyData to dispose of that memory.

Q3TriMesh_SetData 4

You can use the Q3TriMesh_SetData function to set the data that defines a
trimesh and its attributes.

C H A P T E R 4

Geometric Objects

432 Geometric Objects Reference

TQ3Status Q3TriMesh_SetData (
TQ3GeometryObject triMesh,
const TQ3TriMeshData *triMeshData);

triMesh A trimesh.

triMeshData A pointer to a TQ3TriMeshData structure.

DESCRIPTION

The Q3TriMesh_SetData function sets the data associated with the trimesh
specified by the triMesh parameter to the data specified by the triMeshData
parameter.

Q3TriMesh_EmptyData 4

You can use the Q3TriMesh_EmptyData function to release the memory occupied
by the data structure returned by a previous call to Q3TriMesh_GetData.

TQ3Status Q3TriMesh_EmptyData (TQ3TriMeshData *triMeshData);

triMeshData A pointer to a TQ3TriMeshData structure.

DESCRIPTION

The Q3TriMesh_EmptyData function releases the memory occupied by the
TQ3TriMeshData structure pointed to by the triMeshData parameter; that memory
was allocated by a previous call to Q3TriMesh_GetData.

Creating and Editing Polyhedra 4

QuickDraw 3D provides routines that you can use to create and manipulate
polyhedra. See “Polyhedra” (page 311) for the definition of a polyhedron.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 433

Q3Polyhedron_New 4

You can use the Q3Polyhedron_New function to create a new polyhedron.

TQ3GeometryObject Q3Polyhedron_New (
const TQ3PolyhedronData *polyhedronData);

polyhedronData
A pointer to a TQ3PolyhedronData structure.

DESCRIPTION

The Q3Polyhedron_New function returns, as its function result, a new polyhedron
having the shape and attributes specified by the polyhedronData parameter. If a
new polyhedron could not be created, Q3Polyhedron_New returns the value NULL.

Q3Polyhedron_Submit 4

You can use the Q3Polyhedron_Submit function to submit an immediate
polyhedron for drawing, picking, bounding, or writing.

TQ3Status Q3Polyhedron_Submit (
const TQ3PolyhedronData *polyhedronData,
TQ3ViewObject view);

polyhedronData
A pointer to a TQ3PolyhedronData structure.

view A view.

DESCRIPTION

The Q3Polyhedron_Submit function submits for drawing, picking, bounding, or
writing the immediate polyhedron whose shape and attribute set are specified
by the polyhedronData parameter. The polyhedron is drawn, picked, bounded,
or written according to the view characteristics specified in the view parameter.

C H A P T E R 4

Geometric Objects

434 Geometric Objects Reference

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Polyhedron_GetData 4

You can use the Q3Polyhedron_GetData function to get the data that defines a
polyhedron and its attributes.

TQ3Status Q3Polyhedron_GetData (
TQ3GeometryObject polyhedron,
TQ3PolyhedronData *polyhedronData);

polyhedron A polyhedron.

polyhedronData
On exit, a pointer to a TQ3PolyhedronData structure that contains
information about the polyhedron specified by the polyhedron
parameter.

DESCRIPTION

The Q3Polyhedron_GetData function returns, through the polyhedronData
parameter, information about the polyhedron specified by the polyhedron
parameter. QuickDraw 3D allocates memory for the TQ3PolyhedronData
structure internally; you must call Q3Polyhedron_EmptyData to dispose of that
memory.

Q3Polyhedron_SetData 4

You can use the Q3Polyhedron_SetData function to set the data that defines a
polyhedron and its attributes.

TQ3Status Q3Polyhedron_SetData (
TQ3GeometryObject polyhedron,
const TQ3PolyhedronData *polyhedronData);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 435

polyhedron A polyhedron.

polyhedronData
A pointer to a TQ3PolyhedronData structure.

DESCRIPTION

The Q3Polyhedron_SetData function sets the data associated with the polyhedron
specified by the polyhedron parameter to the data specified by the
polyhedronData parameter.

Q3Polyhedron_EmptyData 4

You can use the Q3Polyhedron_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3Polyhedron_GetData.

TQ3Status Q3Polyhedron_EmptyData (TQ3PolyhedronData *polyhedronData);

polyhedronData
A pointer to a TQ3PolyhedronData structure.

DESCRIPTION

The Q3Polyhedron_EmptyData function releases the memory occupied by the
TQ3PolyhedronData structure pointed to by the polyhedronData parameter; that
memory was allocated by a previous call to Q3Polyhedron_GetData.

Q3Polyhedron_GetVertexPosition 4

You can use the Q3Polyhedron_GetVertexPosition function to get the position of
a vertex of a polyhedron.

C H A P T E R 4

Geometric Objects

436 Geometric Objects Reference

TQ3Status Q3Polyhedron_GetVertexPosition (
TQ3GeometryObject polyhedron,
unsigned long index,
TQ3Point3D *point);

polyhedron A polyhedron.

index An index into an array of three-dimensional points.

point A pointer to the array of points in the polyhedron.

DESCRIPTION

The Q3Polyhedron_GetVertexPosition function returns, in the point parameter,
the position of the vertex having the index specified by the index parameter in
the vertices array of the polyhedron specified by the polyhedron parameter.

Q3Polyhedron_SetVertexPosition 4

You can use the Q3Polyhedron_SetVertexPosition function to set the position of
a vertex of a polyhedron.

TQ3Status Q3Polyhedron_SetVertexPosition (
TQ3GeometryObject polyhedron,
unsigned long index,
const TQ3Point3D *point);

polyhedron A polyhedron.

index An index into an array of three-dimensional points.

point A pointer to the array of points in the polyhedron.

DESCRIPTION

The Q3Polyhedron_SetVertexPosition function sets the position of the vertex
having the index specified by the index parameter in the vertices array of the
polyhedron specified by the polyhedron parameter to that specified in the point
parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 437

Q3Polyhedron_GetVertexAttributeSet 4

You can use the Q3Polyhedron_GetVertexAttributeSet function to get the
attribute set of a vertex of a polyhedron.

TQ3Status Q3Polyhedron_GetVertexAttributeSet (
TQ3GeometryObject polyhedron,
unsigned long index,
TQ3AttributeSet *attributeSet);

polyhedron A polyhedron.

index An index into an array of three-dimensional points.

attributeSet On exit, a pointer to a vertex attribute set.

DESCRIPTION

The Q3Polyhedron_GetVertexAttributeSet function returns, in the attributeSet
parameter, the set of attributes for the vertex having the index specified by the
index parameter in the vertices array of the polyhedron specified by the
polyhedron parameter. The reference count of the set is incremented.

Q3Polyhedron_SetVertexAttributeSet 4

You can use the Q3Polyhedron_SetVertexAttributeSet function to set the
attribute set of a vertex of a polyhedron.

TQ3Status Q3Polyhedron_SetVertexAttributeSet (
TQ3GeometryObject polyhedron,
unsigned long index,
TQ3AttributeSet attributeSet);

polyhedron A polyhedron.

index An index into an array of three-dimensional points.

attributeSet On exit, a pointer to a vertex attribute set.

C H A P T E R 4

Geometric Objects

438 Geometric Objects Reference

DESCRIPTION

The Q3Polyhedron_SetVertexAttributeSet function sets the attribute set of the
vertex having the index specified by the index parameter in the vertices array
of the polyhedron specified by the polyhedron parameter to the set specified in
the attributeSet parameter.

Q3Polyhedron_GetTriangleData 4

You can use the Q3Polyhedron_GetTriangleData function to get the data for a face
in a polyhedron.

TQ3Status Q3Polyhedron_GetTriangleData (
TQ3GeometryObject polyhedron,
unsigned long triangleIndex,
TQ3PolyhedronTriangleData *triangleData);

polyhedron A polyhedron.

triangleIndex A triangle index. The value in this parameter should be greater
than or equal to 0 and less than the total number of triangles
(that is, faces) in the specified polyhedron.

triangleData On entry, a pointer to a polyhedron triangle data structure. On
exit, the data in that structure is set to the specified triangle in
the specified polyhedron.

DESCRIPTION

The Q3Polyhedron_GetTriangleData function returns, in the triangleData
parameter, the data for the triangle specified by the triangleIndex parameter in
the polyhedron specified by the polyhedron parameter.

Q3Polyhedron_SetTriangleData 4

You can use the Q3Polyhedron_SetTriangleData function to set the data for a face
in a polyhedron.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 439

TQ3Status Q3Polyhedron_SetTriangleData (
TQ3GeometryObject polyhedron,
unsigned long triangleIndex,
const TQ3PolyhedronTriangleData *triangleData);

polyhedron A polyhedron.

triangleIndex A triangle index. The value in this parameter should be greater
than or equal to 0 and less than the total number of triangles
(that is, faces) in the specified polyhedron.

triangleData A pointer to a polyhedron triangle data structure.

DESCRIPTION

The Q3Polyhedron_SetTriangleData function sets the data for the triangle
specified by the triangleIndex parameter in the polyhedron specified by the
polyhedron parameter to the data specified by the triangleData parameter.

Q3Polyhedron_GetEdgeData 4

You can use the Q3Polyhedron_GetEdgeData function to get the data that describe
an edge in a polyhedron.

TQ3Status Q3Polyhedron_GetEdgeData (
TQ3GeometryObject polyhedron,
unsigned long edgeIndex,
TQ3PolyhedronEdgeData *edgeData);

polyhedron A polyhedron.

edgeIndex An edge index. The value in this parameter should be greater
than or equal to 0 and less than the total number of edges in the
specified polyhedron.

edgeData On entry, a pointer to a polyhedron edge data structure. On exit,
the data in that structure is set to the specified edge in the
specified polyhedron.

C H A P T E R 4

Geometric Objects

440 Geometric Objects Reference

DESCRIPTION

The Q3Polyhedron_GetEdgeData function returns, in the edgeData parameter, the
data for the edge specified by the edgeIndex parameter in the polyhedron
specified by the polyhedron parameter.

Q3Polyhedron_SetEdgeData 4

You can use the Q3Polyhedron_SetEdgeData function to set the data that describe
an edge in a polyhedron.

TQ3Status Q3Polyhedron_SetEdgeData (
TQ3GeometryObject polyhedron,
unsigned long edgeIndex,
const TQ3PolyhedronEdgeData *edgeData);

polyhedron A polyhedron.

edgeIndex An edge index. The value in this parameter should be greater
than or equal to 0 and less than the total number of edges in the
specified polyhedron.

edgeData A pointer to a polyhedron edge data structure.

DESCRIPTION

The Q3Polyhedron_SetEdgeData function sets the data for the edge specified by
the edgeIndex parameter in the polyhedron specified by the polyhedron
parameter to the data specified by the edgeData parameter.

Creating and Editing Ellipses 4

QuickDraw 3D provides routines that you can use to create and manipulate
ellipses. See “Ellipses” (page 314) for the definition of an ellipse.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 441

Q3Ellipse_New 4

You can use the Q3Ellipse_New function to create a new ellipse.

TQ3GeometryObject Q3Ellipse_New (
const TQ3EllipseData *ellipseData);

ellipseData A pointer to a TQ3EllipseData structure.

DESCRIPTION

The Q3Ellipse_New function returns, as its function result, a new ellipse having
the shape and attributes specified by the ellipseData parameter. If a new ellipse
could not be created, Q3Ellipse_New returns the value NULL.

Q3Ellipse_Submit 4

You can use the Q3Ellipse_Submit function to submit an immediate ellipse for
drawing, picking, bounding, or writing.

TQ3Status Q3Ellipse_Submit (
const TQ3EllipseData *ellipseData,
TQ3ViewObject view);

ellipseData A pointer to a TQ3EllipseData structure.

view A view.

DESCRIPTION

The Q3Ellipse_Submit function submits for drawing, picking, bounding, or
writing the immediate ellipse whose shape and attribute set are specified by the
ellipseData parameter. The ellipse is drawn, picked, bounded, or written
according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

C H A P T E R 4

Geometric Objects

442 Geometric Objects Reference

Q3Ellipse_GetData 4

You can use the Q3Ellipse_GetData function to get the data that defines an
ellipse and its attributes.

TQ3Status Q3Ellipse_GetData (
TQ3GeometryObject ellipse,
TQ3EllipseData *ellipseData);

ellipse An ellipse.

ellipseData On exit, a pointer to a TQ3EllipseData structure that contains
information about the ellipse specified by the ellipse
parameter.

DESCRIPTION

The Q3Ellipse_GetData function returns, through the ellipseData parameter,
information about the ellipse specified by the ellipse parameter.
QuickDraw 3D allocates memory for the TQ3EllipseData structure internally;
you must call Q3Ellipse_EmptyData to dispose of that memory.

Q3Ellipse_SetData 4

You can use the Q3Ellipse_SetData function to set the data that defines an
ellipse and its attributes.

TQ3Status Q3Ellipse_SetData (
TQ3GeometryObject ellipse,
const TQ3EllipseData *ellipseData);

ellipse An ellipse.

ellipseData A pointer to a TQ3EllipseData structure.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 443

DESCRIPTION

The Q3Ellipse_SetData function sets the data associated with the ellipse
specified by the ellipse parameter to the data specified by the ellipseData
parameter.

Q3Ellipse_EmptyData 4

You can use the Q3Ellipse_EmptyData function to release the memory occupied
by the data structure returned by a previous call to Q3Ellipse_GetData.

TQ3Status Q3Ellipse_EmptyData (TQ3EllipseData *ellipseData);

ellipseData A pointer to a TQ3EllipseData structure.

DESCRIPTION

The Q3Ellipse_EmptyData function releases the memory occupied by the
TQ3EllipseData structure pointed to by the ellipseData parameter; that memory
was allocated by a previous call to Q3Ellipse_GetData.

Q3Ellipse_GetOrigin 4

You can use the Q3Ellipse_GetOrigin function to get the origin of an ellipse.

TQ3Status Q3Ellipse_GetOrigin (
TQ3GeometryObject ellipse,
TQ3Point3D *origin);

ellipse An ellipse.

origin On exit, the origin of the specified ellipse.

DESCRIPTION

The Q3Ellipse_GetOrigin function returns, in the origin parameter, the origin of
the ellipse specified by the ellipse parameter.

C H A P T E R 4

Geometric Objects

444 Geometric Objects Reference

Q3Ellipse_SetOrigin 4

You can use the Q3Ellipse_SetOrigin function to set the origin of an ellipse.

TQ3Status Q3Ellipse_SetOrigin (
TQ3GeometryObject ellipse,
const TQ3Point3D *origin);

ellipse An ellipse.

origin The desired origin of the specified ellipse.

DESCRIPTION

The Q3Ellipse_SetOrigin function sets the origin of the ellipse specified by the
ellipse parameter to that specified in the origin parameter

Q3Ellipse_GetMajorRadius 4

You can use the Q3Ellipse_GetMajorRadius function to get the major radius of an
ellipse.

TQ3Status Q3Ellipse_GetMajorRadius (
TQ3GeometryObject ellipse,
TQ3Vector3D *majorRadius);

ellipse An ellipse.

majorRadius On exit, the major radius of the specified ellipse.

DESCRIPTION

The Q3Ellipse_GetMajorRadius function returns, in the majorRadius parameter,
the major radius of the ellipse specified by the ellipse parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 445

Q3Ellipse_SetMajorRadius 4

You can use the Q3Ellipse_SetMajorRadius function to set the major radius of an
ellipse.

TQ3Status Q3Ellipse_SetMajorRadius (
TQ3GeometryObject ellipse,
const TQ3Vector3D *majorRadius);

ellipse An ellipse.

majorRadius The desired major radius of the specified ellipse.

DESCRIPTION

The Q3Ellipse_SetMajorRadius function sets the major radius of the ellipse
specified by the ellipse parameter to that specified in the majorRadius
parameter.

Q3Ellipse_GetMinorRadius 4

You can use the Q3Ellipse_GetMinorRadius function to get the minor radius of
an ellipse.

TQ3Status Q3Ellipse_GetMinorRadius (
TQ3GeometryObject ellipse,
TQ3Vector3D *minorRadius);

ellipse An ellipse.

minorRadius On exit, the minor radius of the specified ellipse.

DESCRIPTION

The Q3Ellipse_GetMinorRadius function returns, in the minorRadius parameter,
the minor radius of the ellipse specified by the ellipse parameter.

C H A P T E R 4

Geometric Objects

446 Geometric Objects Reference

Q3Ellipse_SetMinorRadius 4

You can use the Q3Ellipse_SetMinorRadius function to set the minor radius of an
ellipse.

TQ3Status Q3Ellipse_SetMinorRadius (
TQ3GeometryObject ellipse,
const TQ3Vector3D *minorRadius);

ellipse An ellipse.

minorRadius The desired minor radius of the specified ellipse.

DESCRIPTION

The Q3Ellipse_SetMinorRadius function sets the minor radius of the ellipse
specified by the ellipse parameter to that specified in the minorRadius
parameter.

Creating and Editing NURB Curves 4

QuickDraw 3D provides routines that you can use to create and manipulate
NURB curves. See “NURB Curves” (page 315) for the definition of a NURB
curve.

Q3NURBCurve_New 4

You can use the Q3NURBCurve_New function to create a new NURB curve.

TQ3GeometryObject Q3NURBCurve_New (const TQ3NURBCurveData *curveData);

curveData A pointer to a TQ3NURBCurveData structure.

DESCRIPTION

The Q3NURBCurve_New function returns, as its function result, a new NURB curve
having the shape and attributes specified by the curveData parameter. If a new
NURB curve could not be created, Q3NURBCurve_New returns the value NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 447

Q3NURBCurve_Submit 4

You can use the Q3NURBCurve_Submit function to submit an immediate NURB
curve for drawing, picking, bounding, or writing.

TQ3Status Q3NURBCurve_Submit (
const TQ3NURBCurveData *curveData,
TQ3ViewObject view);

curveData A pointer to a TQ3NURBCurveData structure.

view A view.

DESCRIPTION

The Q3NURBCurve_Submit function submits for drawing, picking, bounding, or
writing the immediate NURB curve whose shape and attribute set are specified
by the curveData parameter. The NURB curve is drawn, picked, bounded, or
written according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3NURBCurve_GetData 4

You can use the Q3NURBCurve_GetData function to get the data that defines a
NURB curve and its attributes.

TQ3Status Q3NURBCurve_GetData (
TQ3GeometryObject curve,
TQ3NURBCurveData *nurbCurveData);

curve A NURB curve.

nurbCurveData
On exit, a pointer to a TQ3NURBCurveData structure that contains
information about the NURB curve specified by the curve
parameter.

C H A P T E R 4

Geometric Objects

448 Geometric Objects Reference

DESCRIPTION

The Q3NURBCurve_GetData function returns, through the nurbCurveData
parameter, information about the NURB curve specified by the curve parameter.
QuickDraw 3D allocates memory for the TQ3NURBCurveData structure internally;
you must call Q3NURBCurve_EmptyData to dispose of that memory.

Q3NURBCurve_SetData 4

You can use the Q3NURBCurve_SetData function to set the data that defines a
NURB curve and its attributes.

TQ3Status Q3NURBCurve_SetData (
TQ3GeometryObject curve,
const TQ3NURBCurveData *nurbCurveData);

curve A NURB curve.

nurbCurveData
A pointer to a TQ3NURBCurveData structure.

DESCRIPTION

The Q3NURBCurve_SetData function sets the data associated with the NURB curve
specified by the curve parameter to the data specified by the nurbCurveData
parameter.

Q3NURBCurve_EmptyData 4

You can use the Q3NURBCurve_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3NURBCurve_GetData.

TQ3Status Q3NURBCurve_EmptyData (TQ3NURBCurveData *nurbCurveData);

nurbCurveData
A pointer to a TQ3NURBCurveData structure.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 449

DESCRIPTION

The Q3NURBCurve_EmptyData function releases the memory occupied by the
TQ3NURBCurveData structure pointed to by the nurbCurveData parameter; that
memory was allocated by a previous call to Q3NURBCurve_GetData.

Q3NURBCurve_GetControlPoint 4

You can use the Q3NURBCurve_GetControlPoint function to get a
four-dimensional control point for a NURB curve.

TQ3Status Q3NURBCurve_GetControlPoint (
TQ3GeometryObject curve,
unsigned long pointIndex,
TQ3RationalPoint4D *point4D);

curve A NURB curve.

pointIndex An index into the controlPoints array of control points for the
specified NURB curve.

point4D On exit, the control point having the specified index in the
controlPoints array of control points for the specified NURB
curve.

DESCRIPTION

The Q3NURBCurve_GetControlPoint function returns, in the point4D parameter,
the four-dimensional control point of the NURB curve specified by the curve
parameter having the index in the array of control points specified by the
pointIndex parameter.

Q3NURBCurve_SetControlPoint 4

You can use the Q3NURBCurve_SetControlPoint function to set a four-dimensional
control point for a NURB curve.

C H A P T E R 4

Geometric Objects

450 Geometric Objects Reference

TQ3Status Q3NURBCurve_SetControlPoint (
TQ3GeometryObject curve,
unsigned long pointIndex,
const TQ3RationalPoint4D *point4D);

curve A NURB curve.

pointIndex An index into the controlPoints array of control points for the
specified NURB curve.

point4D The desired four-dimensional control point.

DESCRIPTION

The Q3NURBCurve_SetControlPoint function sets the four-dimensional control
point of the NURB curve specified by the curve parameter having the index in
the array of control points specified by the pointIndex parameter to the point
specified by the point4D parameter.

Q3NURBCurve_GetKnot 4

You can use the Q3NURBCurve_GetKnot function to get a knot of a NURB curve.

TQ3Status Q3NURBCurve_GetKnot (
TQ3GeometryObject curve,
unsigned long knotIndex,
float *knotValue);

curve A NURB curve.

knotIndex An index into the knots array for the specified NURB curve.

knotValue On exit, the value of the specified knot of the specified NURB
curve.

DESCRIPTION

The Q3NURBCurve_GetKnot function returns, in the knotValue parameter, the value
of the knot having the index specified by the knotIndex parameter in the knots
array of the NURB curve specified by the curve parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 451

Q3NURBCurve_SetKnot 4

You can use the Q3NURBCurve_SetKnot function to set a knot of a NURB curve.

TQ3Status Q3NURBCurve_SetKnot (
TQ3GeometryObject curve,
unsigned long knotIndex,
float knotValue);

curve A NURB curve.

knotIndex An index into the knots array of knots for the specified NURB
curve.

knotValue The desired value of the specified knot of the specified NURB
curve.

DESCRIPTION

The Q3NURBCurve_SetKnot function sets the value of the knot having the index
specified by the knotIndex parameter in the knots array of the NURB curve
specified by the curve parameter to the value specified in the knotValue
parameter.

Creating and Editing NURB Patches 4

QuickDraw 3D provides routines that you can use to create and manipulate
NURB patches. See “NURB Patches” (page 317) for the definition of a NURB
patch.

Q3NURBPatch_New 4

You can use the Q3NURBPatch_New function to create a new NURB patch.

TQ3GeometryObject Q3NURBPatch_New (
const TQ3NURBPatchData *nurbPatchData);

C H A P T E R 4

Geometric Objects

452 Geometric Objects Reference

nurbPatchData
A pointer to a TQ3NURBPatchData structure.

DESCRIPTION

The Q3NURBPatch_New function returns, as its function result, a new NURB patch
having the shape and attributes specified by the nurbPatchData parameter. If a
new NURB patch could not be created, Q3NURBPatch_New returns the value NULL.

Q3NURBPatch_Submit 4

You can use the Q3NURBPatch_Submit function to submit an immediate NURB
patch for drawing, picking, bounding, or writing.

TQ3Status Q3NURBPatch_Submit (
const TQ3NURBPatchData *nurbPatchData,
TQ3ViewObject view);

nurbPatchData
A pointer to a TQ3NURBPatchData structure.

view A view.

DESCRIPTION

The Q3NURBPatch_Submit function submits for drawing, picking, bounding, or
writing the immediate NURB patch whose shape and attribute set are specified
by the nurbPatchData parameter. The NURB patch is drawn, picked, bounded,
or written according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 453

Q3NURBPatch_GetData 4

You can use the Q3NURBPatch_GetData function to get the data that defines a
NURB patch and its attributes.

TQ3Status Q3NURBPatch_GetData (
TQ3GeometryObject nurbPatch,
TQ3NURBPatchData *nurbPatchData);

nurbPatch A NURB patch.

nurbPatchData
On exit, a pointer to a TQ3NURBPatchData structure that contains
information about the NURB patch specified by the nurbPatch
parameter.

DESCRIPTION

The Q3NURBPatch_GetData function returns, through the nurbPatchData
parameter, information about the NURB patch specified by the nurbPatch
parameter. QuickDraw 3D allocates memory for the TQ3NURBPatchData structure
internally; you must call Q3NURBPatch_EmptyData to dispose of that memory.

Q3NURBPatch_SetData 4

You can use the Q3NURBPatch_SetData function to set the data that defines a
NURB patch and its attributes.

TQ3Status Q3NURBPatch_SetData (
TQ3GeometryObject nurbPatch,
const TQ3NURBPatchData *nurbPatchData);

nurbPatch A NURB patch.

nurbPatchData
A pointer to a TQ3NURBPatchData structure.

C H A P T E R 4

Geometric Objects

454 Geometric Objects Reference

DESCRIPTION

The Q3NURBPatch_SetData function sets the data associated with the NURB patch
specified by the nurbPatch parameter to the data specified by the nurbPatchData
parameter.

Q3NURBPatch_EmptyData 4

You can use the Q3NURBPatch_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3NURBPatch_GetData.

TQ3Status Q3NURBPatch_EmptyData (
TQ3NURBPatchData *nurbPatchData);

nurbPatchData
A pointer to a TQ3NURBPatchData structure.

DESCRIPTION

The Q3NURBPatch_EmptyData function releases the memory occupied by the
TQ3NURBPatchData structure pointed to by the nurbPatchData parameter; that
memory was allocated by a previous call to Q3NURBPatch_GetData.

Q3NURBPatch_GetControlPoint 4

You can use the Q3NURBPatch_GetControlPoint function to get a control point for
a NURB patch.

TQ3Status Q3NURBPatch_GetControlPoint (
TQ3GeometryObject nurbPatch,
unsigned long rowIndex,
unsigned long columnIndex,
TQ3RationalPoint4D *point4D);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 455

nurbPatch A NURB patch.

rowIndex A row index into the array of control points for the specified
NURB patch.

columnIndex A column index into the array of control points for the specified
NURB patch.

point4D On exit, the control point having the specified row and column
indices in the controlPoints array of control points for the
specified NURB patch.

DESCRIPTION

The Q3NURBPatch_GetControlPoint function returns, in the point4D parameter,
the four-dimensional control point of the NURB patch specified by the
nurbPatch parameter having the row and column indices rowIndex and
columnIndex in the controlPoints array of control points.

Q3NURBPatch_SetControlPoint 4

You can use the Q3NURBPatch_SetControlPoint function to set a control point for
a NURB patch.

TQ3Status Q3NURBPatch_SetControlPoint (
TQ3GeometryObject nurbPatch,
unsigned long rowIndex,
unsigned long columnIndex,
const TQ3RationalPoint4D *point4D);

nurbPatch A NURB patch.

rowIndex A row index into the array of control points for the specified
NURB patch.

columnIndex A column index into the array of control points for the specified
NURB patch.

point4D The desired four-dimensional control point.

C H A P T E R 4

Geometric Objects

456 Geometric Objects Reference

DESCRIPTION

The Q3NURBPatch_SetControlPoint function sets the four-dimensional control
point having the row and column indices rowIndex and columnIndex in the
controlPoints array of control points of the NURB patch specified by the
nurbPatch parameter to the point specified by the point4D parameter.

Q3NURBPatch_GetUKnot 4

You can use the Q3NURBPatch_GetUKnot function to get the value of a knot in the
u parametric direction.

TQ3Status Q3NURBPatch_GetUKnot (
TQ3GeometryObject nurbPatch,
unsigned long knotIndex,
float *knotValue);

nurbPatch A NURB patch.

knotIndex An index into the uKnots field of the specified NURB patch.

knotValue On exit, the value of the specified knot.

DESCRIPTION

The Q3NURBPatch_GetUKnot function returns, in the knotValue parameter, the knot
value of the NURB patch specified by the nurbPatch parameter having the knot
index specified by the knotIndex parameter in the uKnots array of u knots.

Q3NURBPatch_SetUKnot 4

You can use the Q3NURBPatch_SetUKnot function to set the value of a knot in the u
parametric direction.

TQ3Status Q3NURBPatch_SetUKnot (
TQ3GeometryObject nurbPatch,
unsigned long knotIndex,
float knotValue);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 457

nurbPatch A NURB patch.

knotIndex An index into the uKnots field of the specified NURB patch.

knotValue The desired value of the specified knot.

DESCRIPTION

The Q3NURBPatch_SetUKnot function sets the knot value of the NURB patch
specified by the nurbPatch parameter having the knot index specified by the
knotIndex parameter in the uKnots array of u knots to the value specified by the
knotValue parameter.

Q3NURBPatch_GetVKnot 4

You can use the Q3NURBPatch_GetVKnot function to get the value of a knot in the
v parametric direction.

TQ3Status Q3NURBPatch_GetVKnot (
TQ3GeometryObject nurbPatch,
unsigned long knotIndex,
float *knotValue);

nurbPatch A NURB patch.

knotIndex An index into the vKnots field of the specified NURB patch.

knotValue On exit, the value of the specified knot.

DESCRIPTION

The Q3NURBPatch_GetVKnot function returns, in the knotValue parameter, the knot
value of the NURB patch specified by the nurbPatch parameter having the knot
index specified by the knotIndex parameter in the vKnots array of v knots.

C H A P T E R 4

Geometric Objects

458 Geometric Objects Reference

Q3NURBPatch_SetVKnot 4

You can use the Q3NURBPatch_SetVKnot function to set the value of a knot in the v
parametric direction.

TQ3Status Q3NURBPatch_SetVKnot (
TQ3GeometryObject nurbPatch,
unsigned long knotIndex,
float knotValue);

nurbPatch A NURB patch.

knotIndex An index into the vKnots field of the specified NURB patch.

knotValue The desired value of the specified knot.

DESCRIPTION

The Q3NURBPatch_SetVKnot function sets the knot value of the NURB patch
specified by the nurbPatch parameter having the knot index specified by the
knotIndex parameter in the vKnots array of v knots to the value specified by the
knotValue parameter.

Creating and Editing Ellipsoids 4

QuickDraw 3D provides routines that you can use to create and manipulate
ellipsoids. See “Ellipsoids” (page 320) for the definition of an ellipsoid.

Q3Ellipsoid_New 4

You can use the Q3Ellipsoid_New function to create a new ellipsoid.

TQ3GeometryObject Q3Ellipsoid_New (
const TQ3EllipsoidData *ellipsoidData);

ellipsoidData
A pointer to a TQ3EllipsoidData structure.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 459

DESCRIPTION

The Q3Ellipsoid_New function returns, as its function result, a new ellipsoid
having the shape and attributes specified by the ellipsoidData parameter. If a
new ellipsoid could not be created, Q3Ellipsoid_New returns the value NULL.

Q3Ellipsoid_Submit 4

You can use the Q3Ellipsoid_Submit function to submit an immediate ellipsoid
for drawing, picking, bounding, or writing.

TQ3Status Q3Ellipsoid_Submit (
const TQ3EllipsoidData *ellipsoidData,
TQ3ViewObject view);

ellipsoidData
A pointer to a TQ3EllipsoidData structure.

view A view.

DESCRIPTION

The Q3Ellipsoid_Submit function submits for drawing, picking, bounding, or
writing the immediate ellipsoid whose shape and attribute set are specified by
the ellipsoidData parameter. The ellipsoid is drawn, picked, bounded, or
written according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Ellipsoid_GetData 4

You can use the Q3Ellipsoid_GetData function to get the data that defines an
ellipsoid and its attributes.

C H A P T E R 4

Geometric Objects

460 Geometric Objects Reference

TQ3Status Q3Ellipsoid_GetData (
TQ3GeometryObject ellipsoid,
TQ3EllipsoidData *ellipsoidData);

ellipsoid An ellipsoid.

ellipsoidData
On exit, a pointer to a TQ3EllipsoidData structure that contains
information about the ellipsoid specified by the ellipsoid
parameter.

DESCRIPTION

The Q3Ellipsoid_GetData function returns, through the ellipsoidData
parameter, information about the ellipsoid specified by the ellipsoid
parameter. QuickDraw 3D allocates memory for the TQ3EllipsoidData structure
internally; you must call Q3Ellipsoid_EmptyData to dispose of that memory.

Q3Ellipsoid_SetData 4

You can use the Q3Ellipsoid_SetData function to set the data that defines an
ellipsoid and its attributes.

TQ3Status Q3Ellipsoid_SetData (
TQ3GeometryObject ellipsoid,
const TQ3EllipsoidData *ellipsoidData);

ellipsoid An ellipsoid.

ellipsoidData
A pointer to a TQ3EllipsoidData structure.

DESCRIPTION

The Q3Ellipsoid_SetData function sets the data associated with the ellipsoid
specified by the ellipsoid parameter to the data specified by the ellipsoidData
parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 461

Q3Ellipsoid_EmptyData 4

You can use the Q3Ellipsoid_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3Ellipsoid_GetData.

TQ3Status Q3Ellipsoid_EmptyData (TQ3EllipsoidData *ellipsoidData);

ellipsoidData
A pointer to a TQ3EllipsoidData structure.

DESCRIPTION

The Q3Ellipsoid_EmptyData function releases the memory occupied by the
TQ3EllipsoidData structure pointed to by the ellipsoidData parameter; that
memory was allocated by a previous call to Q3Ellipsoid_GetData.

Q3Ellipsoid_GetOrigin 4

You can use the Q3Ellipsoid_GetOrigin function to get the origin of an ellipsoid.

TQ3Status Q3Ellipsoid_GetOrigin (
TQ3GeometryObject ellipsoid,
TQ3Point3D *origin);

ellipsoid An ellipsoid.

origin On exit, the origin of the specified ellipsoid.

DESCRIPTION

The Q3Ellipsoid_GetOrigin function returns, in the origin parameter, the origin
of the ellipsoid specified by the ellipsoid parameter.

C H A P T E R 4

Geometric Objects

462 Geometric Objects Reference

Q3Ellipsoid_SetOrigin 4

You can use the Q3Ellipsoid_SetOrigin function to set the origin of an ellipsoid.

TQ3Status Q3Ellipsoid_SetOrigin (
TQ3GeometryObject ellipsoid,
const TQ3Point3D *origin);

ellipsoid An ellipsoid.

origin The desired origin of the specified ellipsoid.

DESCRIPTION

The Q3Ellipsoid_SetOrigin function sets the origin of the ellipsoid specified by
the ellipsoid parameter to that specified in the origin parameter.

Q3Ellipsoid_GetOrientation 4

You can use the Q3Ellipsoid_GetOrientation function to get the orientation of
an ellipsoid.

TQ3Status Q3Ellipsoid_GetOrientation (
TQ3GeometryObject ellipsoid,
TQ3Vector3D *orientation);

ellipsoid An ellipsoid.

orientation On exit, the orientation of the specified ellipsoid.

DESCRIPTION

The Q3Ellipsoid_GetOrientation function returns, in the orientation parameter,
the orientation of the ellipsoid specified by the ellipsoid parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 463

Q3Ellipsoid_SetOrientation 4

You can use the Q3Ellipsoid_SetOrientation function to set the orientation of an
ellipsoid.

TQ3Status Q3Ellipsoid_SetOrientation (
TQ3GeometryObject ellipsoid,
const TQ3Vector3D *orientation);

ellipsoid An ellipsoid.

orientation The desired orientation of the specified ellipsoid.

DESCRIPTION

The Q3Ellipsoid_SetOrientation function sets the orientation of the ellipsoid
specified by the ellipsoid parameter to that specified in the orientation
parameter.

Q3Ellipsoid_GetMajorRadius 4

You can use the Q3Ellipsoid_GetMajorRadius function to get the major radius of
an ellipsoid.

TQ3Status Q3Ellipsoid_GetMajorRadius (
TQ3GeometryObject ellipsoid,
TQ3Vector3D *majorRadius);

ellipsoid An ellipsoid.

majorRadius On exit, the major radius of the specified ellipsoid.

DESCRIPTION

The Q3Ellipsoid_GetMajorRadius function returns, in the majorRadius parameter,
the major radius of the ellipsoid specified by the ellipsoid parameter.

C H A P T E R 4

Geometric Objects

464 Geometric Objects Reference

Q3Ellipsoid_SetMajorRadius 4

You can use the Q3Ellipsoid_SetMajorRadius function to set the major radius of
an ellipsoid.

TQ3Status Q3Ellipsoid_SetMajorRadius (
TQ3GeometryObject ellipsoid,
const TQ3Vector3D *majorRadius);

ellipsoid An ellipsoid.

majorRadius The desired major radius of the specified ellipsoid.

DESCRIPTION

The Q3Ellipsoid_SetMajorRadius function sets the major radius of the ellipsoid
specified by the ellipsoid parameter to that specified in the majorRadius
parameter.

Q3Ellipsoid_GetMinorRadius 4

You can use the Q3Ellipsoid_GetMinorRadius function to get the minor radius of
an ellipsoid.

TQ3Status Q3Ellipsoid_GetMinorRadius (
TQ3GeometryObject ellipsoid,
TQ3Vector3D *minorRadius);

ellipsoid An ellipsoid.

minorRadius On exit, the minor radius of the specified ellipsoid.

DESCRIPTION

The Q3Ellipsoid_GetMinorRadius function returns, in the minorRadius parameter,
the minor radius of the ellipsoid specified by the ellipsoid parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 465

Q3Ellipsoid_SetMinorRadius 4

You can use the Q3Ellipsoid_SetMinorRadius function to set the minor radius of
an ellipsoid.

TQ3Status Q3Ellipsoid_SetMinorRadius (
TQ3GeometryObject ellipsoid,
const TQ3Vector3D *minorRadius);

ellipsoid An ellipsoid.

minorRadius The desired minor radius of the specified ellipsoid.

DESCRIPTION

The Q3Ellipsoid_SetMinorRadius function sets the minor radius of the ellipsoid
specified by the ellipsoid parameter to that specified in the minorRadius
parameter.

Creating and Editing Cylinders 4

QuickDraw 3D provides routines that you can use to create and manipulate
cylinders. See “Cylinders” (page 322) for the definition of a cylinder.

Q3Cylinder_New 4

You can use the Q3Cylinder_New function to create a new cylinder.

TQ3GeometryObject Q3Cylinder_New (const TQ3CylinderData *cylinderData);

cylinderData A pointer to a TQ3CylinderData structure.

DESCRIPTION

The Q3Cylinder_New function returns, as its function result, a new cylinder
having the shape attributes specified by the cylinderData parameter. If a new
cylinder could not be created, Q3Cylinder_New returns the value NULL.

C H A P T E R 4

Geometric Objects

466 Geometric Objects Reference

Q3Cylinder_Submit 4

You can use the Q3Cylinder_Submit function to submit an immediate cylinder
for drawing, picking, bounding, or writing.

TQ3Status Q3Cylinder_Submit (
const TQ3CylinderData *cylinderData,
TQ3ViewObject view);

cylinderData A pointer to a TQ3CylinderData structure.

view A view.

DESCRIPTION

The Q3Cylinder_Submit function submits for drawing, picking, bounding, or
writing the immediate cylinder whose shape and attribute set are specified by
the cylinderData parameter. The cylinder is drawn, picked, bounded, or written
according to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Cylinder_GetData 4

You can use the Q3Cylinder_GetData function to get the data that defines a
cylinder and its attributes.

TQ3Status Q3Cylinder_GetData (
TQ3GeometryObject cylinder,
TQ3CylinderData *cylinderData);

cylinder A cylinder.

cylinderData
On exit, a pointer to a TQ3CylinderData structure that contains
information about the cylinder specified by the cylinder
parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 467

DESCRIPTION

The Q3Cylinder_GetData function returns, through the cylinderData parameter,
information about the cylinder specified by the cylinder parameter.
QuickDraw 3D allocates memory for the TQ3CylinderData structure internally;
you must call Q3Cylinder_EmptyData to dispose of that memory.

Q3Cylinder_SetData 4

You can use the Q3Cylinder_SetData function to set the data that defines a
cylinder and its attributes.

TQ3Status Q3Cylinder_SetData (
TQ3GeometryObject cylinder,
const TQ3CylinderData *cylinderData);

cylinder A cylinder.

cylinderData
A pointer to a TQ3CylinderData structure.

DESCRIPTION

The Q3Cylinder_SetData function sets the data associated with the cylinder
specified by the cylinder parameter to the data specified by the cylinderData
parameter.

Q3Cylinder_EmptyData 4

You can use the Q3Cylinder_EmptyData function to release the memory occupied
by the data structure returned by a previous call to Q3Cylinder_GetData.

TQ3Status Q3Cylinder_EmptyData (TQ3CylinderData *cylinderData);

cylinderData
A pointer to a TQ3CylinderData structure.

C H A P T E R 4

Geometric Objects

468 Geometric Objects Reference

DESCRIPTION

The Q3Cylinder_EmptyData function releases the memory occupied by the
TQ3CylinderData structure pointed to by the cylinderData parameter; that
memory was allocated by a previous call to Q3Cylinder_GetData.

Q3Cylinder_GetOrigin 4

You can use the Q3Cylinder_GetOrigin function to get the origin of a cylinder.

TQ3Status Q3Cylinder_GetOrigin (
TQ3GeometryObject cylinder,
TQ3Point3D *origin);

cylinder A cylinder.

origin On exit, the origin of the specified cylinder.

DESCRIPTION

The Q3Cylinder_GetOrigin function returns, in the origin parameter, the origin
of the cylinder specified by the cylinder parameter.

Q3Cylinder_SetOrigin 4

You can use the Q3Cylinder_SetOrigin function to set the origin of a cylinder.

TQ3Status Q3Cylinder_SetOrigin (
TQ3GeometryObject cylinder,
const TQ3Point3D *origin);

cylinder A cylinder.

origin The desired origin of the specified cylinder.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 469

DESCRIPTION

The Q3Cylinder_SetOrigin function sets the origin of the cylinder specified by
the cylinder parameter to that specified in the origin parameter.

Q3Cylinder_GetOrientation 4

You can use the Q3Cylinder_GetOrientation function to get the orientation of a
cylinder.

TQ3Status Q3Cylinder_GetOrientation (
TQ3GeometryObject cylinder,
TQ3Vector3D *orientation);

cylinder A cylinder.

orientation On exit, the orientation of the specified cylinder.

DESCRIPTION

The Q3Cylinder_GetOrientation function returns, in the orientation parameter,
the orientation of the cylinder specified by the cylinder parameter.

Q3Cylinder_SetOrientation 4

You can use the Q3Cylinder_SetOrientation function to set the orientation of a
cylinder.

TQ3Status Q3Cylinder_SetOrientation (
TQ3GeometryObject cylinder,
const TQ3Vector3D *orientation);

cylinder A cylinder.

orientation The desired orientation of the specified cylinder.

C H A P T E R 4

Geometric Objects

470 Geometric Objects Reference

DESCRIPTION

The Q3Cylinder_SetOrientation function sets the orientation of the cylinder
specified by the cylinder parameter to that specified in the orientation
parameter.

Q3Cylinder_GetMajorRadius 4

You can use the Q3Cylinder_GetMajorRadius function to get the major radius of a
cylinder.

TQ3Status Q3Cylinder_GetMajorRadius (
TQ3GeometryObject cylinder,
TQ3Vector3D *majorRadius);

cylinder A cylinder.

majorRadius On exit, the major radius of the specified cylinder.

DESCRIPTION

The Q3Cylinder_GetMajorRadius function returns, in the majorRadius parameter,
the major radius of the cylinder specified by the cylinder parameter.

Q3Cylinder_SetMajorRadius 4

You can use the Q3Cylinder_SetMajorRadius function to set the major radius of a
cylinder.

TQ3Status Q3Cylinder_SetMajorRadius (
TQ3GeometryObject cylinder,
const TQ3Vector3D *majorRadius);

cylinder A cylinder.

majorRadius The desired major radius of the specified cylinder.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 471

DESCRIPTION

The Q3Cylinder_SetMajorRadius function sets the major radius of the cylinder
specified by the cylinder parameter to that specified in the majorRadius
parameter.

Q3Cylinder_GetMinorRadius 4

You can use the Q3Cylinder_GetMinorRadius function to get the minor radius of a
cylinder.

TQ3Status Q3Cylinder_GetMinorRadius (
TQ3GeometryObject cylinder,
TQ3Vector3D *minorRadius);

cylinder A cylinder.

minorRadius On exit, the minor radius of the specified cylinder.

DESCRIPTION

The Q3Cylinder_GetMinorRadius function returns, in the minorRadius parameter,
the minor radius of the cylinder specified by the cylinder parameter.

Q3Cylinder_SetMinorRadius 4

You can use the Q3Cylinder_SetMinorRadius function to set the minor radius of a
cylinder.

TQ3Status Q3Cylinder_SetMinorRadius (
TQ3GeometryObject cylinder,
const TQ3Vector3D *minorRadius);

cylinder A cylinder.

minorRadius The desired minor radius of the specified cylinder.

C H A P T E R 4

Geometric Objects

472 Geometric Objects Reference

DESCRIPTION

The Q3Cylinder_SetMinorRadius function sets the minor radius of the cylinder
specified by the cylinder parameter to that specified in the minorRadius
parameter.

Q3Cylinder_GetCaps 4

You can use the Q3Cylinder_GetCaps function to get the style of caps of a
cylinder.

TQ3Status Q3Cylinder_GetCaps (
TQ3GeometryObject cylinder,
TQ3EndCap *caps);

cylinder A cylinder.

caps On exit, the caps style of the specified cylinder.

DESCRIPTION

The Q3Cylinder_GetCaps function returns, in the caps parameter, the style of
caps of the cylinder specified by the cylinder parameter.

Q3Cylinder_SetCaps 4

You can use the Q3Cylinder_SetCaps function to set the style of caps of a
cylinder.

TQ3Status Q3Cylinder_SetCaps (
TQ3GeometryObject cylinder,
TQ3EndCap caps);

cylinder A cylinder.

caps The desired style of end caps of the specified cylinder.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 473

DESCRIPTION

The Q3Cylinder_SetCaps function sets the style of end caps of the cylinder
specified by the cylinder parameter to that specified in the caps parameter.

Q3Cylinder_GetTopAttributeSet 4

You can use the Q3Cylinder_GetTopAttributeSet function to get the top attribute
set of a cylinder.

TQ3Status Q3Cylinder_GetTopAttributeSet (
TQ3GeometryObject cylinder,
TQ3AttributeSet *topAttributeSet);

cylinder A cylinder.

topAttributeSet
On exit, the attribute set of the top of the specified cylinder.

DESCRIPTION

The Q3Cylinder_GetTopAttributeSet function returns, in the topAttributeSet
parameter, the attribute set of the top of the cylinder specified by the cylinder
parameter. The reference count of the set is incremented.

Q3Cylinder_SetTopAttributeSet 4

You can use the Q3Cylinder_SetTopAttributeSet function to set the top attribute
set of a cylinder.

TQ3Status Q3Cylinder_SetTopAttributeSet (
TQ3GeometryObject cylinder,
TQ3AttributeSet topAttributeSet);

cylinder A cylinder.

topAttributeSet
The desired attribute set of the top of the specified cylinder.

C H A P T E R 4

Geometric Objects

474 Geometric Objects Reference

DESCRIPTION

The Q3Cylinder_SetTopAttributeSet function sets the attribute set of the top of
the cylinder specified by the cylinder parameter to that specified in the
topAttributeSet parameter.

Q3Cylinder_GetFaceAttributeSet 4

You can use the Q3Cylinder_GetFaceAttributeSet function to get the face
attribute set of a cylinder.

TQ3Status Q3Cylinder_GetFaceAttributeSet (
TQ3GeometryObject cylinder,
TQ3AttributeSet *faceAttributeSet);

cylinder A cylinder.

faceAttributeSet
On exit, the attribute set of the face of the specified cylinder.

DESCRIPTION

The Q3Cylinder_GetFaceAttributeSet function returns, in the faceAttributeSet
parameter, the attribute set of the face of the cylinder specified by the cylinder
parameter. The reference count of the set is incremented.

Q3Cylinder_SetFaceAttributeSet 4

You can use the Q3Cylinder_SetFaceAttributeSet function to set the face
attribute set of a cylinder.

TQ3Status Q3Cylinder_SetFaceAttributeSet (
TQ3GeometryObject cylinder,
TQ3AttributeSet faceAttributeSet);

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 475

cylinder A cylinder.

faceAttributeSet
The desired attribute set of the face of the specified cylinder.

DESCRIPTION

The Q3Cylinder_SetFaceAttributeSet function sets the attribute set of the face of
the cylinder specified by the cylinder parameter to that specified in the
faceAttributeSet parameter.

Q3Cylinder_GetBottomAttributeSet 4

You can use the Q3Cylinder_GetBottomAttributeSet function to get the bottom
attribute set of a cylinder.

TQ3Status Q3Cylinder_GetBottomAttributeSet (
TQ3GeometryObject cylinder,
TQ3AttributeSet *bottomAttributeSet);

cylinder A cylinder.

bottomAttributeSet
On exit, the attribute set of the bottom of the specified cylinder.

DESCRIPTION

The Q3Cylinder_GetBottomAttributeSet function returns, in the
bottomAttributeSet parameter, the attribute set of the bottom of the cylinder
specified by the cylinder parameter. The reference count of the set is
incremented.

Q3Cylinder_SetBottomAttributeSet 4

You can use the Q3Cylinder_SetBottomAttributeSet function to set the bottom
attribute set of a cylinder.

C H A P T E R 4

Geometric Objects

476 Geometric Objects Reference

TQ3Status Q3Cylinder_SetBottomAttributeSet (
TQ3GeometryObject cylinder,
TQ3AttributeSet bottomAttributeSet);

cylinder A cylinder.

bottomAttributeSet
The desired attribute set of the bottom of the specified cylinder.

DESCRIPTION

The Q3Cylinder_SetBottomAttributeSet function sets the attribute set of the
bottom of the cylinder specified by the cylinder parameter to that specified in
the bottomAttributeSet parameter.

Creating and Editing Disks 4

QuickDraw 3D provides routines that you can use to create and manipulate
disks. See “Disks” (page 323) for the definition of a disk.

Q3Disk_New 4

You can use the Q3Disk_New function to create a new disk.

TQ3GeometryObject Q3Disk_New (const TQ3DiskData *diskData);

diskData A pointer to a TQ3DiskData structure.

DESCRIPTION

The Q3Disk_New function returns, as its function result, a new disk having the
shape and attributes specified by the diskData parameter. If a new disk could
not be created, Q3Disk_New returns the value NULL.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 477

Q3Disk_Submit 4

You can use the Q3Disk_Submit function to submit an immediate disk for
drawing, picking, bounding, or writing.

TQ3Status Q3Disk_Submit (
const TQ3DiskData *diskData,
TQ3ViewObject view);

diskData A pointer to a TQ3DiskData structure.

view A view.

DESCRIPTION

The Q3Disk_Submit function submits for drawing, picking, bounding, or writing
the immediate disk whose shape and attribute set are specified by the diskData
parameter. The disk is drawn, picked, bounded, or written according to the
view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Disk_GetData 4

You can use the Q3Disk_GetData function to get the data that defines a disk and
its attributes.

TQ3Status Q3Disk_GetData (
TQ3GeometryObject disk,
TQ3DiskData *diskData);

disk A disk.

diskData On exit, a pointer to a TQ3DiskData structure that contains
information about the disk specified by the disk parameter.

C H A P T E R 4

Geometric Objects

478 Geometric Objects Reference

DESCRIPTION

The Q3Disk_GetData function returns, through the diskData parameter,
information about the disk specified by the disk parameter. QuickDraw 3D
allocates memory for the TQ3DiskData structure internally; you must call
Q3Disk_EmptyData to dispose of that memory.

Q3Disk_SetData 4

You can use the Q3Disk_SetData function to set the data that defines a disk and
its attributes.

TQ3Status Q3Disk_SetData (
TQ3GeometryObject disk,
const TQ3DiskData *diskData);

disk A disk.

diskData A pointer to a TQ3DiskData structure.

DESCRIPTION

The Q3Disk_SetData function sets the data associated with the disk specified by
the disk parameter to the data specified by the diskData parameter.

Q3Disk_EmptyData 4

You can use the Q3Disk_EmptyData function to release the memory occupied by
the data structure returned by a previous call to Q3Disk_GetData.

TQ3Status Q3Disk_EmptyData (TQ3DiskData *diskData);

diskData A pointer to a TQ3DiskData structure.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 479

DESCRIPTION

The Q3Disk_EmptyData function releases the memory occupied by the
TQ3DiskData structure pointed to by the diskData parameter; that memory was
allocated by a previous call to Q3Disk_GetData.

Q3Disk_GetOrigin 4

You can use the Q3Disk_GetOrigin function to get the origin of a disk.

TQ3Status Q3Disk_GetOrigin (
TQ3GeometryObject disk,
TQ3Point3D *origin);

disk A disk.

origin On exit, the origin of the specified disk.

DESCRIPTION

The Q3Disk_GetOrigin function returns, in the origin parameter, the origin of
the disk specified by the disk parameter.

Q3Disk_SetOrigin 4

You can use the Q3Disk_SetOrigin function to set the origin of a disk.

TQ3Status Q3Disk_SetOrigin (
TQ3GeometryObject disk,
const TQ3Point3D *origin);

disk A disk.

origin The desired origin of the specified disk.

C H A P T E R 4

Geometric Objects

480 Geometric Objects Reference

DESCRIPTION

The Q3Disk_SetOrigin function sets the origin of the disk specified by the disk
parameter to that specified in the origin parameter.

Q3Disk_GetMajorRadius 4

You can use the Q3Disk_GetMajorRadius function to get the major radius of a
disk.

TQ3Status Q3Disk_GetMajorRadius (
TQ3GeometryObject disk,
TQ3Vector3D *majorRadius);

disk A disk.

majorRadius On exit, the major radius of the specified disk.

DESCRIPTION

The Q3Disk_GetMajorRadius function returns, in the majorRadius parameter, the
major radius of the disk specified by the disk parameter.

Q3Disk_SetMajorRadius 4

You can use the Q3Disk_SetMajorRadius function to set the major radius of a
disk.

TQ3Status Q3Disk_SetMajorRadius (
TQ3GeometryObject disk,
const TQ3Vector3D *majorRadius);

disk A disk.

majorRadius The desired major radius of the specified disk.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 481

DESCRIPTION

The Q3Disk_SetMajorRadius function sets the major radius of the disk specified
by the disk parameter to that specified in the majorRadius parameter.

Q3Disk_GetMinorRadius 4

You can use the Q3Disk_GetMinorRadius function to get the minor radius of a
disk.

TQ3Status Q3Disk_GetMinorRadius (
TQ3GeometryObject disk,
TQ3Vector3D *minorRadius);

disk A disk.

minorRadius On exit, the minor radius of the specified disk.

DESCRIPTION

The Q3Disk_GetMinorRadius function returns, in the minorRadius parameter, the
minor radius of the disk specified by the disk parameter.

Q3Disk_SetMinorRadius 4

You can use the Q3Disk_SetMinorRadius function to set the minor radius of a
disk.

TQ3Status Q3Disk_SetMinorRadius (
TQ3GeometryObject disk,
const TQ3Vector3D *minorRadius);

disk A disk.

minorRadius The desired minor radius of the specified disk.

C H A P T E R 4

Geometric Objects

482 Geometric Objects Reference

DESCRIPTION

The Q3Disk_SetMinorRadius function sets the minor radius of the disk specified
by the disk parameter to that specified in the minorRadius parameter.

Creating and Editing Cones 4

QuickDraw 3D provides routines that you can use to create and manipulate
cones. See “Cones” (page 325) for the definition of a cone.

Q3Cone_New 4

You can use the Q3Cone_New function to create a new cone.

TQ3GeometryObject Q3Cone_New (const TQ3ConeData *coneData);

coneData A pointer to a TQ3ConeData structure.

DESCRIPTION

The Q3Cone_New function returns, as its function result, a new cone having the
shape and attributes specified by the coneData parameter. If a new cone could
not be created, Q3Cone_New returns the value NULL.

Q3Cone_Submit 4

You can use the Q3Cone_Submit function to submit an immediate cone for
drawing, picking, bounding, or writing.

TQ3Status Q3Cone_Submit (
const TQ3ConeData *coneData,
TQ3ViewObject view);

coneData A pointer to a TQ3ConeData structure.

view A view.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 483

DESCRIPTION

The Q3Cone_Submit function submits for drawing, picking, bounding, or writing
the immediate cone whose shape and attribute set are specified by the coneData
parameter. The cone is drawn, picked, bounded, or written according to the
view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Cone_GetData 4

You can use the Q3Cone_GetData function to get the data that defines a cone and
its attributes.

TQ3Status Q3Cone_GetData (TQ3GeometryObject cone, TQ3ConeData *coneData);

cone A cone.

coneData On exit, a pointer to a TQ3ConeData structure that contains
information about the cone specified by the cone parameter.

DESCRIPTION

The Q3Cone_GetData function returns, through the coneData parameter,
information about the cone specified by the cone parameter. QuickDraw 3D
allocates memory for the TQ3ConeData structure internally; you must call
Q3Cone_EmptyData to dispose of that memory.

Q3Cone_SetData 4

You can use the Q3Cone_SetData function to set the data that defines a cone and
its attributes.

C H A P T E R 4

Geometric Objects

484 Geometric Objects Reference

TQ3Status Q3Cone_SetData (
TQ3GeometryObject cone,
const TQ3ConeData *coneData);

cone A cone.

coneData A pointer to a TQ3ConeData structure.

DESCRIPTION

The Q3Cone_SetData function sets the data associated with the cone specified by
the cone parameter to the data specified by the coneData parameter.

Q3Cone_EmptyData 4

You can use the Q3Cone_EmptyData function to release the memory occupied by
the data structure returned by a previous call to Q3Cone_GetData.

TQ3Status Q3Cone_EmptyData (TQ3ConeData *coneData);

coneData A pointer to a TQ3ConeData structure.

DESCRIPTION

The Q3Cone_EmptyData function releases the memory occupied by the
TQ3ConeData structure pointed to by the coneData parameter; that memory was
allocated by a previous call to Q3Cone_GetData.

Q3Cone_GetOrigin 4

You can use the Q3Cone_GetOrigin function to get the origin of a cone.

TQ3Status Q3Cone_GetOrigin (TQ3GeometryObject cone, TQ3Point3D *origin);

cone A cone.

origin On exit, the origin of the specified cone.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 485

DESCRIPTION

The Q3Cone_GetOrigin function returns, in the origin parameter, the origin of
the cone specified by the cone parameter.

Q3Cone_SetOrigin 4

You can use the Q3Cone_SetOrigin function to set the origin of a cone.

TQ3Status Q3Cone_SetOrigin (
TQ3GeometryObject cone,
const TQ3Point3D *origin);

cone A cone.

origin The desired origin of the specified cone.

DESCRIPTION

The Q3Cone_SetOrigin function sets the origin of the cone specified by the cone
parameter to that specified in the origin parameter.

Q3Cone_GetOrientation 4

You can use the Q3Cone_GetOrientation function to get the orientation of a cone.

TQ3Status Q3Cone_GetOrientation (
TQ3GeometryObject cone,
TQ3Vector3D *orientation);

cone A cone.

orientation On exit, the orientation of the specified cone.

DESCRIPTION

The Q3Cone_GetOrientation function returns, in the orientation parameter, the
orientation of the cone specified by the cone parameter.

C H A P T E R 4

Geometric Objects

486 Geometric Objects Reference

Q3Cone_SetOrientation 4

You can use the Q3Cone_SetOrientation function to set the orientation of a cone.

TQ3Status Q3Cone_SetOrientation (
TQ3GeometryObject cone,
const TQ3Vector3D *orientation);

cone A cone.

orientation The desired orientation of the specified cone.

DESCRIPTION

The Q3Cone_SetOrientation function sets the orientation of the cone specified by
the cone parameter to that specified in the orientation parameter.

Q3Cone_GetMajorRadius 4

You can use the Q3Cone_GetMajorRadius function to get the major radius of a
cone.

TQ3Status Q3Cone_GetMajorRadius (
TQ3GeometryObject cone,
TQ3Vector3D *majorRadius);

cone A cone.

majorRadius On exit, the major radius of the specified cone.

DESCRIPTION

The Q3Cone_GetMajorRadius function returns, in the majorRadius parameter, the
major radius of the cone specified by the cone parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 487

Q3Cone_SetMajorRadius 4

You can use the Q3Cone_SetMajorRadius function to set the major radius of a
cone.

TQ3Status Q3Cone_SetMajorRadius (
TQ3GeometryObject cone,
const TQ3Vector3D *majorRadius);

cone A cone.

majorRadius The desired major radius of the specified cone.

DESCRIPTION

The Q3Cone_SetMajorRadius function sets the major radius of the cone specified
by the cone parameter to that specified in the majorRadius parameter.

Q3Cone_GetMinorRadius 4

You can use the Q3Cone_GetMinorRadius function to get the minor radius of a
cone.

TQ3Status Q3Cone_GetMinorRadius (
TQ3GeometryObject cone,
TQ3Vector3D *minorRadius);

cone A cone.

minorRadius On exit, the minor radius of the specified cone.

DESCRIPTION

The Q3Cone_GetMinorRadius function returns, in the minorRadius parameter, the
minor radius of the cone specified by the cone parameter.

C H A P T E R 4

Geometric Objects

488 Geometric Objects Reference

Q3Cone_SetMinorRadius 4

You can use the Q3Cone_SetMinorRadius function to set the minor radius of a
cone.

TQ3Status Q3Cone_SetMinorRadius (
TQ3GeometryObject cone,
const TQ3Vector3D *minorRadius);

cone A cone.

minorRadius The desired minor radius of the specified cone.

DESCRIPTION

The Q3Cone_SetMinorRadius function sets the minor radius of the cone specified
by the cone parameter to that specified in the minorRadius parameter.

Q3Cone_GetCaps 4

You can use the Q3Cone_GetCaps function to get the cap style of a cone.

TQ3Status Q3Cone_GetCaps (TQ3GeometryObject cone, TQ3EndCap *caps);

cone A cone.

caps On exit, the cap style of the specified cone.

DESCRIPTION

The Q3Cone_GetCaps function returns, in the caps parameter, the current cap
style of the cone specified by the cone parameter.

Q3Cone_SetCaps 4

You can use the Q3Cone_SetCaps function to set the cap style of a cone.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 489

TQ3Status Q3Cone_SetCaps (TQ3GeometryObject cone, TQ3EndCap caps);

cone A cone.

caps The desired style of cone cap.

DESCRIPTION

The Q3Cone_SetCaps function sets the cap of the cone specified by the cone
parameter to the style indicated by the caps parameter.

Q3Cone_GetFaceAttributeSet 4

You can use the Q3Cone_GetFaceAttributeSet function to get the face attribute
set of a cone.

TQ3Status Q3Cone_GetFaceAttributeSet (
TQ3GeometryObject cone,
TQ3AttributeSet *faceAttributeSet);

cone A cone.

faceAttributeSet
On exit, the attribute set of the face of the specified cone.

DESCRIPTION

The Q3Cone_GetFaceAttributeSet function returns, in the faceAttributeSet
parameter, the attribute set of the face of the cone specified by the cone
parameter. The reference count of the set is incremented.

Q3Cone_SetFaceAttributeSet 4

You can use the Q3Cone_SetFaceAttributeSet function to set the face attribute set
of a cone.

C H A P T E R 4

Geometric Objects

490 Geometric Objects Reference

TQ3Status Q3Cone_SetFaceAttributeSet (
TQ3GeometryObject cone,
TQ3AttributeSet faceAttributeSet);

cone A cone.

faceAttributeSet
The desired attribute set of the face of the specified cone.

DESCRIPTION

The Q3Cone_SetFaceAttributeSet function sets the attribute set of the face of the
cone specified by the cone parameter to that specified in the faceAttributeSet
parameter.

Q3Cone_GetBottomAttributeSet 4

You can use the Q3Cone_GetBottomAttributeSet function to get the bottom
attribute set of a cone.

TQ3Status Q3Cone_GetBottomAttributeSet (
TQ3GeometryObject cone,
TQ3AttributeSet *bottomAttributeSet);

cone A cone.

bottomAttributeSet
On exit, the attribute set of the bottom of the specified cone.

DESCRIPTION

The Q3Cone_GetBottomAttributeSet function returns, in the bottomAttributeSet
parameter, the attribute set of the bottom of the cone specified by the cone
parameter. The reference count of the set is incremented.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 491

Q3Cone_SetBottomAttributeSet 4

You can use the Q3Cone_SetBottomAttributeSet function to set the bottom
attribute set of a cone.

TQ3Status Q3Cone_SetBottomAttributeSet (
TQ3GeometryObject cone,
TQ3AttributeSet bottomAttributeSet);

cone A cone.

bottomAttributeSet
The desired attribute set of the bottom of the specified cone.

DESCRIPTION

The Q3Cone_SetBottomAttributeSet function sets the attribute set of the bottom
of the cone specified by the cone parameter to that specified in the
bottomAttributeSet parameter.

Creating and Editing Tori 4

QuickDraw 3D provides routines that you can use to create and manipulate
tori. See “Tori” (page 326) for the definition of a torus.

Q3Torus_New 4

You can use the Q3Torus_New function to create a new torus.

TQ3GeometryObject Q3Torus_New (const TQ3TorusData *torusData);

torusData A pointer to a TQ3TorusData structure.

DESCRIPTION

The Q3Torus_New function returns, as its function result, a new torus having the
shape attributes specified by the torusData parameter. If a new torus could not
be created, Q3Torus_New returns the value NULL.

C H A P T E R 4

Geometric Objects

492 Geometric Objects Reference

Q3Torus_Submit 4

You can use the Q3Torus_Submit function to submit an immediate torus for
drawing, picking, bounding, or writing.

TQ3Status Q3Torus_Submit (
const TQ3TorusData *torusData,
TQ3ViewObject view);

torusData A pointer to a TQ3TorusData structure.

view A view.

DESCRIPTION

The Q3Torus_Submit function submits for drawing, picking, bounding, or
writing the immediate torus whose shape and attribute set are specified by the
torusData parameter. The torus is drawn, picked, bounded, or written according
to the view characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Torus_GetData 4

You can use the Q3Torus_GetData function to get the data that defines a torus
and its attributes.

TQ3Status Q3Torus_GetData (
TQ3GeometryObject torus,
TQ3TorusData *torusData);

torus A torus.

torusData On exit, a pointer to a TQ3TorusData structure that contains
information about the torus specified by the torus parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 493

DESCRIPTION

The Q3Torus_GetData function returns, through the torusData parameter,
information about the torus specified by the torus parameter. QuickDraw 3D
allocates memory for the TQ3TorusData structure internally; you must call
Q3Torus_EmptyData to dispose of that memory.

Q3Torus_SetData 4

You can use the Q3Torus_SetData function to set the data that defines a torus and
its attributes.

TQ3Status Q3Torus_SetData (
TQ3GeometryObject torus,
const TQ3TorusData *torusData);

torus A torus.

torusData A pointer to a TQ3TorusData structure.

DESCRIPTION

The Q3Torus_SetData function sets the data associated with the torus specified
by the torus parameter to the data specified by the torusData parameter.

Q3Torus_EmptyData 4

You can use the Q3Torus_EmptyData function to release the memory occupied by
the data structure returned by a previous call to Q3Torus_GetData.

TQ3Status Q3Torus_EmptyData (TQ3TorusData *torusData);

torusData A pointer to a TQ3TorusData structure.

C H A P T E R 4

Geometric Objects

494 Geometric Objects Reference

DESCRIPTION

The Q3Torus_EmptyData function releases the memory occupied by the
TQ3TorusData structure pointed to by the torusData parameter; that memory was
allocated by a previous call to Q3Torus_GetData.

Q3Torus_GetOrigin 4

You can use the Q3Torus_GetOrigin function to get the origin of a torus.

TQ3Status Q3Torus_GetOrigin (
TQ3GeometryObject torus,
TQ3Point3D *origin);

torus A torus.

origin On exit, the origin of the specified torus.

DESCRIPTION

The Q3Torus_GetOrigin function returns, in the origin parameter, the origin of
the torus specified by the torus parameter.

Q3Torus_SetOrigin 4

You can use the Q3Torus_SetOrigin function to set the origin of a torus.

TQ3Status Q3Torus_SetOrigin (
TQ3GeometryObject torus,
const TQ3Point3D *origin);

torus A torus.

origin The desired origin of the specified torus.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 495

DESCRIPTION

The Q3Torus_SetOrigin function sets the origin of the torus specified by the
torus parameter to the point specified in the origin parameter.

Q3Torus_GetOrientation 4

You can use the Q3Torus_GetOrientation function to get the orientation of a
torus.

TQ3Status Q3Torus_GetOrientation (
TQ3GeometryObject torus,
TQ3Vector3D *orientation);

torus A torus.

orientation On exit, the orientation of the specified torus.

DESCRIPTION

The Q3Torus_GetOrientation function returns, in the orientation parameter, the
orientation of the torus specified by the torus parameter.

Q3Torus_SetOrientation 4

You can use the Q3Torus_SetOrientation function to set the orientation of a
torus.

TQ3Status Q3Torus_SetOrientation (
TQ3GeometryObject torus,
const TQ3Vector3D *orientation);

torus A torus.

orientation The desired orientation of the specified torus.

C H A P T E R 4

Geometric Objects

496 Geometric Objects Reference

DESCRIPTION

The Q3Torus_SetOrientation function sets the orientation of the torus specified
by the torus parameter to the vector specified in the orientation parameter.

Q3Torus_GetMajorRadius 4

You can use the Q3Torus_GetMajorRadius function to get the major radius of a
torus.

TQ3Status Q3Torus_GetMajorRadius (
TQ3GeometryObject torus,
TQ3Vector3D *majorRadius);

torus A torus.

majorRadius On exit, the major radius of the specified torus.

DESCRIPTION

The Q3Torus_GetMajorRadius function returns, in the majorRadius parameter, the
major radius of the torus specified by the torus parameter.

Q3Torus_SetMajorRadius 4

You can use the Q3Torus_SetMajorRadius function to set the major radius of a
torus.

TQ3Status Q3Torus_SetMajorRadius (
TQ3GeometryObject torus,
const TQ3Vector3D *majorRadius);

torus A torus.

majorRadius The desired major radius of the specified torus.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 497

DESCRIPTION

The Q3Torus_SetMajorRadius function sets the major radius of the torus specified
by the torus parameter to the vector specified in the majorRadius parameter.

Q3Torus_GetMinorRadius 4

You can use the Q3Torus_GetMinorRadius function to get the minor radius of a
torus.

TQ3Status Q3Torus_GetMinorRadius (
TQ3GeometryObject torus,
TQ3Vector3D *minorRadius);

torus A torus.

minorRadius On exit, the minor radius of the specified torus.

DESCRIPTION

The Q3Torus_GetMinorRadius function returns, in the minorRadius parameter, the
minor radius of the torus specified by the torus parameter.

Q3Torus_SetMinorRadius 4

You can use the Q3Torus_SetMinorRadius function to set the minor radius of a
torus.

TQ3Status Q3Torus_SetMinorRadius (
TQ3GeometryObject torus,
const TQ3Vector3D *minorRadius);

torus A torus.

minorRadius The desired minor radius of the specified torus.

C H A P T E R 4

Geometric Objects

498 Geometric Objects Reference

DESCRIPTION

The Q3Torus_SetMinorRadius function sets the minor radius of the torus
specified by the torus parameter to the vector specified in the minorRadius
parameter.

Q3Torus_GetRatio 4

You can use the Q3Torus_GetRatio function to get the ratio of a torus.

TQ3Status Q3Torus_GetRatio (
TQ3GeometryObject torus,
float *ratio);

torus A torus.

ratio On exit, the ratio of the specified torus.

DESCRIPTION

The Q3Torus_GetRatio function returns, in the ratio parameter, the ratio of the
torus specified by the torus parameter.

Q3Torus_SetRatio 4

You can use the Q3Torus_SetRatio function to set the ratio of a torus.

TQ3Status Q3Torus_SetRatio (
TQ3GeometryObject torus,
float ratio);

torus A torus.

ratio The desired ratio of the specified torus.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 499

DESCRIPTION

The Q3Torus_SetRatio function sets the ratio of the torus specified by the torus
parameter to the value passed in the ratio parameter.

Creating and Editing Bitmap Markers 4

QuickDraw 3D provides routines that you can use to create and manipulate
bitmap markers. See “Markers” (page 329) for the definition of a bitmap marker.

Q3Marker_New 4

You can use the Q3Marker_New function to create a new marker.

TQ3GeometryObject Q3Marker_New (const TQ3MarkerData *markerData);

markerData A pointer to a TQ3MarkerData structure.

DESCRIPTION

The Q3Marker_New function returns, as its function result, a new marker having
the location, shape, offset, and attributes specified by the markerData parameter.
If a new marker could not be created, Q3Marker_New returns the value NULL.

Q3Marker_Submit 4

You can use the Q3Marker_Submit function to submit an immediate marker for
drawing, picking, bounding, or writing.

TQ3Status Q3Marker_Submit (
const TQ3MarkerData *markerData,
TQ3ViewObject view);

markerData A pointer to a TQ3MarkerData structure.

view A view.

C H A P T E R 4

Geometric Objects

500 Geometric Objects Reference

DESCRIPTION

The Q3Marker_Submit function submits for drawing, picking, bounding, or
writing the immediate marker whose location, shape, offset, and attribute set
are specified by the markerData parameter. The marker is drawn, picked,
bounded, or written according to the view characteristics specified in the view
parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3Marker_GetData 4

You can use the Q3Marker_GetData function to get the data associated with a
marker.

TQ3Status Q3Marker_GetData (
TQ3GeometryObject marker,
TQ3MarkerData *markerData);

marker A marker.

markerData On exit, a pointer to a TQ3MarkerData structure.

DESCRIPTION

The Q3Marker_GetData function returns, through the markerData parameter,
information about the marker specified by the marker parameter. QuickDraw 3D
allocates memory for the TQ3MarkerData structure internally; you must call
Q3Marker_EmptyData to dispose of that memory.

Q3Marker_SetData 4

You can use the Q3Marker_SetData function to set the data associated with a
marker.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 501

TQ3Status Q3Marker_SetData (
TQ3GeometryObject marker,
const TQ3MarkerData *markerData);

marker A marker.

markerData A pointer to a TQ3MarkerData structure.

DESCRIPTION

The Q3Marker_SetData function sets the data associated with the marker
specified by the marker parameter to the data specified by the markerData
parameter.

Q3Marker_EmptyData 4

You can use the Q3Marker_EmptyData function to release the memory occupied by
the data structure returned by a previous call to Q3Marker_GetData.

TQ3Status Q3Marker_EmptyData (TQ3MarkerData *markerData);

markerData A pointer to a TQ3MarkerData structure.

DESCRIPTION

The Q3Marker_EmptyData function releases the memory occupied by the
TQ3MarkerData structure pointed to by the markerData parameter; that memory
was allocated by a previous call to Q3Marker_GetData.

Q3Marker_GetPosition 4

You can use the Q3Marker_GetPosition function to get the position of a marker.

TQ3Status Q3Marker_GetPosition (
TQ3GeometryObject marker,
TQ3Point3D *location);

C H A P T E R 4

Geometric Objects

502 Geometric Objects Reference

marker A marker.

location On exit, the location of the specified marker.

DESCRIPTION

The Q3Marker_GetPosition function returns, in the location parameter, the
location of the marker specified by the marker parameter.

Q3Marker_SetPosition 4

You can use the Q3Marker_SetPosition function to set the position of a marker.

TQ3Status Q3Marker_SetPosition (
TQ3GeometryObject marker,
const TQ3Point3D *location);

marker A marker.

location The desired location of the specified marker.

DESCRIPTION

The Q3Marker_SetPosition function sets the position of the marker specified by
the marker parameter to the point specified in the position parameter.

Q3Marker_GetXOffset 4

You can use the Q3Marker_GetXOffset function to get the horizontal offset of a
marker.

TQ3Status Q3Marker_GetXOffset (TQ3GeometryObject marker, long *xOffset);

marker A marker.

xOffset On exit, the horizontal offset of the specified marker.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 503

DESCRIPTION

The Q3Marker_GetXOffset function returns, in the xOffset parameter, the
horizontal offset of the marker specified by the marker parameter.

Q3Marker_SetXOffset 4

You can use the Q3Marker_SetXOffset function to set the horizontal offset of a
marker.

TQ3Status Q3Marker_SetXOffset (TQ3GeometryObject marker, long xOffset);

marker A marker.

xOffset The desired horizontal offset of the specified marker.

DESCRIPTION

The Q3Marker_SetXOffset function sets the horizontal offset of the marker
specified by the marker parameter to the value specified in the xOffset
parameter.

Q3Marker_GetYOffset 4

You can use the Q3Marker_GetYOffset function to get the vertical offset of a
marker.

TQ3Status Q3Marker_GetYOffset (TQ3GeometryObject marker, long *yOffset);

marker A marker.

yOffset On exit, the vertical offset of the specified marker.

DESCRIPTION

The Q3Marker_GetYOffset function returns, in the yOffset parameter, the vertical
offset of the marker specified by the marker parameter.

C H A P T E R 4

Geometric Objects

504 Geometric Objects Reference

Q3Marker_SetYOffset 4

You can use the Q3Marker_SetYOffset function to set the vertical offset of a
marker.

TQ3Status Q3Marker_SetYOffset (TQ3GeometryObject marker, long yOffset);

marker A marker.

yOffset The desired vertical offset of the specified marker.

DESCRIPTION

The Q3Marker_SetYOffset function sets the vertical offset of the marker specified
by the marker parameter to the value specified in the yOffset parameter.

Q3Marker_GetBitmap 4

You can use the Q3Marker_GetBitmap function to get the bitmap of a marker.

TQ3Status Q3Marker_GetBitmap (
TQ3GeometryObject marker,
TQ3Bitmap *bitmap);

marker A marker.

bitmap On exit, the bitmap of the specified marker.

DESCRIPTION

The Q3Marker_GetBitmap function returns, in the bitmap parameter, a copy of the
bitmap of the marker specified by the marker parameter. Q3Marker_GetBitmap
allocates memory internally for the returned bitmap; when you’re done using
the bitmap, you should call the Q3Bitmap_Empty function to dispose of that
memory.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 505

Q3Marker_SetBitmap 4

You can use the Q3Marker_SetBitmap function to set the bitmap of a marker.

TQ3Status Q3Marker_SetBitmap (
TQ3GeometryObject marker,
const TQ3Bitmap *bitmap);

marker A marker.

bitmap The desired bitmap of the specified marker.

DESCRIPTION

The Q3Marker_SetBitmap function sets the bitmap of the marker specified by the
marker parameter to that specified in the bitmap parameter. Q3Marker_SetBitmap
copies the bitmap to internal QuickDraw 3D memory, so you can dispose of the
specified bitmap after calling Q3Marker_SetBitmap.

Creating and Editing Pixmap Markers 4

QuickDraw 3D provides routines that you can use to create and manipulate
pixmap markers. See “Markers” (page 329) for the definition of a pixmap
marker.

Q3PixmapMarker_New 4

You can use the Q3PixmapMarker_New function to create a new pixmap marker.

TQ3GeometryObject Q3PixmapMarker_New (
const TQ3PixmapMarkerData *pixmapMarkerData);

pixmapMarkerData
A pointer to a TQ3PixmapMarkerData structure.

C H A P T E R 4

Geometric Objects

506 Geometric Objects Reference

DESCRIPTION

The Q3PixmapMarker_New function returns, as its function result, a new pixmap
marker having the position, shape, offset, and attributes specified by the
pixmapMarkerData parameter. If a new pixmap marker could not be created,
Q3PixmapMarker_New returns the value NULL.

Q3PixmapMarker_Submit 4

You can use the Q3PixmapMarker_Submit function to submit an immediate
pixmap marker for drawing, picking, bounding, or writing.

TQ3Status Q3PixmapMarker_Submit (
const TQ3PixmapMarkerData *pixmapMarkerData,
TQ3ViewObject view);

pixmapMarkerData
A pointer to a TQ3PixmapMarkerData structure.

view A view.

DESCRIPTION

The Q3PixmapMarker_Submit function submits for drawing, picking, bounding, or
writing the immediate pixmap marker whose position, shape, offset, and
attribute set are specified by the pixmapMarkerData parameter. The pixmap
marker is drawn, picked, bounded, or written according to the view
characteristics specified in the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3PixmapMarker_GetData 4

You can use the Q3PixmapMarker_GetData function to get the data associated with
a pixmap marker.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 507

TQ3Status Q3PixmapMarker_GetData (
TQ3GeometryObject geometry,
TQ3PixmapMarkerData *pixmapMarkerData);

geometry A pixmap marker.

pixmapMarkerData
On exit, a pointer to a TQ3PixmapMarkerData structure.

DESCRIPTION

The Q3PixmapMarker_GetData function returns, through the pixmapMarkerData
parameter, information about the pixmap marker specified by the geometry
parameter. QuickDraw 3D allocates memory for the TQ3PixmapMarkerData
structure internally; you must call Q3PixmapMarker_EmptyData to dispose of that
memory.

Q3PixmapMarker_SetData 4

You can use the Q3PixmapMarker_SetData function to set the data associated with
a pixmap marker.

TQ3Status Q3PixmapMarker_SetData (
TQ3GeometryObject geometry,
const TQ3PixmapMarkerData *pixmapMarkerData);

geometry A pixmap marker.

pixmapMarkerData
A pointer to a TQ3PixmapMarkerData structure.

DESCRIPTION

The Q3PixmapMarker_SetData function sets the data associated with the pixmap
marker specified by the geometry parameter to the data specified by the
pixmapMarkerData parameter.

C H A P T E R 4

Geometric Objects

508 Geometric Objects Reference

Q3PixmapMarker_EmptyData 4

You can use the Q3PixmapMarker_EmptyData function to release the memory
occupied by the data structure returned by a previous call to
Q3PixmapMarker_GetData.

TQ3Status Q3PixmapMarker_EmptyData (
TQ3PixmapMarkerData *pixmapMarkerData);

pixmapMarkerData
A pointer to a TQ3PixmapMarkerData structure.

DESCRIPTION

The Q3PixmapMarker_EmptyData function releases the memory occupied by the
TQ3PixmapMarkerData structure pointed to by the pixmapMarkerData parameter;
that memory was allocated by a previous call to Q3PixmapMarker_GetData.

Q3PixmapMarker_GetPosition 4

You can use the Q3PixmapMarker_GetPosition function to get the position of a
pixmap marker.

TQ3Status Q3PixmapMarker_GetPosition (
TQ3GeometryObject pixmapMarker,
TQ3Point3D *position);

pixmapMarker A pixmap marker.

position On exit, the position of the specified pixmap marker.

DESCRIPTION

The Q3PixmapMarker_GetPosition function returns, in the position parameter,
the location of the pixmap marker specified by the pixmapMarker parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 509

Q3PixmapMarker_SetPosition 4

You can use the Q3PixmapMarker_SetPosition function to set the position of a
pixmap marker.

TQ3Status Q3PixmapMarker_SetPosition (
TQ3GeometryObject pixmapMarker,
const TQ3Point3D *position);

pixmapMarker A pixmap marker.

position The desired position of the specified pixmap marker.

DESCRIPTION

The Q3PixmapMarker_SetPosition function sets the position of the pixmap
marker specified by the pixmapMarker parameter to the point specified in the
position parameter.

Q3PixmapMarker_GetXOffset 4

You can use the Q3PixmapMarker_GetXOffset function to get the horizontal offset
of a pixmap marker.

TQ3Status Q3PixmapMarker_GetXOffset (
TQ3GeometryObject pixmapMarker,
long *xOffset);

pixmapMarker A pixmap marker.

xOffset On exit, the horizontal offset of the specified pixmap marker.

DESCRIPTION

The Q3PixmapMarker_GetXOffset function returns, in the xOffset parameter, the
horizontal offset of the pixmap marker specified by the pixmapMarker parameter.

C H A P T E R 4

Geometric Objects

510 Geometric Objects Reference

Q3PixmapMarker_SetXOffset 4

You can use the Q3PixmapMarker_SetXOffset function to set the horizontal offset
of a pixmap marker.

TQ3Status Q3PixmapMarker_SetXOffset (
TQ3GeometryObject pixmapMarker,
long xOffset);

pixmapMarker A pixmap marker.

xOffset The desired horizontal offset of the specified pixmap marker.

DESCRIPTION

The Q3PixmapMarker_SetXOffset function sets the horizontal offset of the pixmap
marker specified by the pixmapMarker parameter to the value specified in the
xOffset parameter.

Q3PixmapMarker_GetYOffset 4

You can use the Q3PixmapMarker_GetYOffset function to get the vertical offset of
a pixmap marker.

TQ3Status Q3PixmapMarker_GetYOffset (
TQ3GeometryObject pixmapMarker,
long *yOffset);

pixmapMarker A pixmap marker.

yOffset On exit, the vertical offset of the specified pixmap marker.

DESCRIPTION

The Q3PixmapMarker_GetYOffset function returns, in the yOffset parameter, the
vertical offset of the pixmap marker specified by the pixmapMarker parameter.

C H A P T E R 4

Geometric Objects

Geometric Objects Reference 511

Q3PixmapMarker_SetYOffset 4

You can use the Q3PixmapMarker_SetYOffset function to set the vertical offset of
a pixmap marker.

TQ3Status Q3PixmapMarker_SetYOffset (
TQ3GeometryObject pixmapMarker,
long yOffset);

pixmapMarker A pixmap marker.

yOffset The desired vertical offset of the specified pixmap marker.

DESCRIPTION

The Q3PixmapMarker_SetYOffset function sets the vertical offset of the pixmap
marker specified by the pixmapMarker parameter to the value specified in the
yOffset parameter.

Q3PixmapMarker_GetPixmap 4

You can use the Q3PixmapMarker_GetPixmap function to get the pixmap of a
pixmap marker.

TQ3Status Q3PixmapMarker_GetPixmap (
TQ3GeometryObject pixmapMarker,
TQ3StoragePixmap *pixmap);

pixmapMarker A pixmap marker.

pixmap On exit, the pixmap of the specified pixmap marker.

DESCRIPTION

The Q3PixmapMarker_GetPixmap function returns, in the pixmap parameter, a
pointer to the pixmap associated with the pixmap marker specified by the
pixmapMarker parameter.

C H A P T E R 4

Geometric Objects

512 Geometric Objects Reference

Q3PixmapMarker_SetPixmap 4

You can use the Q3PixmapMarker_SetPixmap function to set the pixmap of a
pixmap marker.

TQ3Status Q3PixmapMarker_SetPixmap (
TQ3GeometryObject pixmapMarker,
const TQ3StoragePixmap *pixmap);

pixmapMarker A pixmap marker.

pixmap The desired pixmap of the specified pixmap marker.

DESCRIPTION

The Q3PixmapMarker_SetPixmap function sets the pixmap of the pixmap marker
specified by the pixmapMarker parameter to that specified in the pixmap
parameter. Q3PixmapMarker_SetPixmap copies the pixmap to internal
QuickDraw 3D memory, so you can dispose of the specified pixmap after
calling Q3PixmapMarker_SetPixmap.

Managing Bitmaps 4

QuickDraw 3D provides routines that you can use to dispose of the memory
occupied by a bitmap and to determine the size of the memory occupied by a
bitmap.

Q3Bitmap_Empty 4

You can use the Q3Bitmap_Empty function to release the memory occupied by a
bitmap that was allocated by a previous call to some QuickDraw 3D routine.

TQ3Status Q3Bitmap_Empty (TQ3Bitmap *bitmap);

bitmap A pointer to a bitmap obtained by a previous call to some
QuickDraw 3D routine such as Q3Marker_GetData,
Q3Marker_GetBitmap, Q3DrawContext_GetMask, or
Q3ViewHints_GetMask.

C H A P T E R 4

Geometric Objects

Geometry Errors, Warnings, and Notices 513

DESCRIPTION

The Q3Bitmap_Empty function releases the memory occupied by the bitmap
pointed to by the bitmap parameter; that memory must have been allocated by a
previous call to some QuickDraw 3D routine (for example, Q3Marker_GetBitmap).
You should not call Q3Bitmap_Empty to deallocate bitmaps that you allocated
yourself.

Q3Bitmap_GetImageSize 4

You can use the Q3Bitmap_GetImageSize function to determine how much
memory is occupied by a bitmap of a particular size.

unsigned long Q3Bitmap_GetImageSize (
unsigned long width,
unsigned long height);

width The width, in bits, of a bitmap.

height The height of a bitmap.

DESCRIPTION

The Q3Bitmap_GetImageSize function returns, as its function result, the size, in
bytes, of the smallest block of memory required to hold a bitmap having a
width and height specified by the width and height parameters, respectively.

Geometry Errors, Warnings, and Notices 4

The following is a list of errors, warnings, and notices that geometry routines
can return. A list of general QuickDraw 3D errors is given in “QuickDraw 3D
Errors, Warnings, and Notices” (page 87).

kQ3ErrorDegenerateGeometry
kQ3ErrorGeometryInsufficientNumberOfPoints
kQ3WarningVector3DNotUnitLength
kQ3WarningQuaternionEntriesAreZero

C H A P T E R 4

Geometric Objects

514 Geometry Errors, Warnings, and Notices

kQ3NoticeMeshVertexHasNoComponent
kQ3NoticeMeshInvalidVertexFacePair
kQ3NoticeMeshEdgeVertexDoNotCorrespond
kQ3NoticeMeshEdgeIsNotBoundary

About Attribute Objects 515

C H A P T E R 5

Attribute Objects 5Figure 5-0
Listing 5-0
Table 5-0

This chapter describes attribute objects (or attributes) and attribute sets.
Attributes store information about the characteristics of the materials that make
up the objects in a model. For example, you can attach an attribute to a
geometric object that specifies the object’s color. You can also attach an attribute
to part of an object, for example to a vertex of a mesh. QuickDraw 3D provides
a wide range of predefined attribute types, and you can define custom attribute
types if you wish.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. To attach attribute sets to geometric objects, you should also be familiar
with the routines described in the chapter “Geometric Objects” in this book.

This chapter begins by describing attributes and attribute sets. Then it shows
how to create attribute sets and attach them to parts of a model. The section
“Attribute Objects Reference,” beginning on page 526 provides a complete
description of attributes and attribute sets and of the routines you can use to
create and manipulate them.

About Attribute Objects 5

An attribute object (or, more briefly, an attribute) is a type of QuickDraw 3D
object that determines some of the characteristics of a model, such as the color
of objects or parts of objects in the model, the transparency of objects, and so
forth. In general, attributes define material properties of the surfaces of objects
in a model.

An attribute is defined as an attribute type and some associated data. You apply
an attribute to an object by creating an instance of a specific attribute type,
defining its data, and then attaching it to the object. QuickDraw 3D defines

C H A P T E R 5

Attribute Objects

516 About Attribute Objects

many types of attributes, including diffuse color, specular color, transparency
color, surface normals, and surface tangents.

In general, however, attributes are not applied to objects individually. Instead,
you usually create an attribute set, which is a collection of zero or more
different attribute types and their associated data. For example, to create a
transparent red triangle, you create an attribute set, add both color and
transparency attributes to it, and then attach the attribute set to the triangle. An
attribute set is of type TQ3AttributeSet, a type of TQ3SetObject.

Types of Attributes and Attribute Sets 5

QuickDraw 3D defines a large number of basic attribute types, which represent
information such as surface color, transparency, parameterization, normal,
tangent, and so forth. In addition, if the basic QuickDraw 3D attribute types are
not sufficient for the needs of your application, you can define custom attribute
types. For example, you might want to maintain information about the
temperature over time of each point on the surface of an object. To do so, you
can define a new attribute type and a data structure to hold the relevant
information. You also need to define an attribute metahandler, which contains
methods for handling your custom attribute data. (QuickDraw 3D defines
metahandlers for all the basic attribute types.)

The basic attributes types are defined by constants. See “Attribute Types”
(page 527) for a complete description of these attribute types.

typedef enum TQ3AttributeTypes {
kQ3AttributeTypeNone = 0,
kQ3AttributeTypeSurfaceUV = 1,
kQ3AttributeTypeShadingUV = 2,
kQ3AttributeTypeNormal = 3,
kQ3AttributeTypeAmbientCoefficient = 4,
kQ3AttributeTypeDiffuseColor = 5,
kQ3AttributeTypeSpecularColor = 6,
kQ3AttributeTypeSpecularControl = 7,
kQ3AttributeTypeTransparencyColor = 8,
kQ3AttributeTypeSurfaceTangent = 9,
kQ3AttributeTypeHighlightState = 10,
kQ3AttributeTypeSurfaceShader = 11,
kQ3AttributeTypeNumTypes

} TQ3AttributeTypes;

C H A P T E R 5

Attribute Objects

About Attribute Objects 517

You can attach a set of attributes to a view, to a group of objects, to a single
geometric object, to a face of an object, or to a vertex of an object. In addition,
you can attach edge and corner attributes to meshes. For each of these levels,
QuickDraw 3D defines a set of natural attributes. For example, the surface
normal attribute (which defines the normal vector at a point) makes no sense
when applied to a view or a nonpolygonal geometric object. It does, however,
make sense to include the surface normal attribute in a set of face or vertex
attributes. Accordingly, the surface normal attribute is contained in the natural
sets of attributes for faces and vertices, but not for views, groups, or
nonpolygonal geometric objects. Table 5-1 lists the natural attributes that can be
assigned to objects in the QuickDraw 3D object hierarchy.

C H A P T E R 5

Attribute Objects

518 About Attribute Objects

IMPORTANT

You can, if you wish, include in the attribute set of any kind
of object attributes that are not natural to that object. For
instance, you can put a surface normal attribute into an
attribute set attached to a view. You can then access that
unnatural attribute in precisely the same way you access
any other attribute in the set. The only difference between
natural and unnatural attributes is that unnatural attributes
in an attribute set are not inherited by objects lower down
in the class hierarchy. See “Attribute Inheritance”
(page 518) for details. ▲

Note
Surface normals assigned to faces are ignored by renderers,
as are the surface normals that are computed geometrically
from the points that make up the face. ◆

Attribute Inheritance 5

During the rendering of the objects in a view, attribute sets of objects higher in
the view hierarchy are inherited by objects below them. For example, if the

Table 5-1 Natural sets of attributes for objects in a hierarchy

Object type Natural attributes in the set

View object
Group object
Geometric object
Face

kQ3AttributeTypeAmbientCoefficient
kQ3AttributeTypeDiffuseColor
kQ3AttributeTypeSpecularColor
kQ3AttributeTypeSpecularControl
kQ3AttributeTypeTransparencyColor
kQ3AttributeTypeHighlightState
kQ3AttributeTypeSurfaceShader

Vertex kQ3AttributeTypeSurfaceUV
kQ3AttributeTypeShadingUV
kQ3AttributeTypeNormal
kQ3AttributeTypeAmbientCoefficient
kQ3AttributeTypeDiffuseColor
kQ3AttributeTypeSpecularColor
kQ3AttributeTypeSpecularControl
kQ3AttributeTypeTransparencyColor
kQ3AttributeTypeSurfaceTangent

C H A P T E R 5

Attribute Objects

About Attribute Objects 519

attribute set of a view specifies a particular diffuse color, then all objects in that
view are rendered with that diffuse color, unless some other attribute set
overrides the color specified in the view attributes. That is, if some face of some
object has an attribute set containing a different diffuse color, the face’s diffuse
color overrides the diffuse color that otherwise would have been inherited from
the view attribute set.

Attribute inheritance always occurs in this order:

1. view

2. group

3. geometric object

4. face

5. mesh edge

6. vertex

7. mesh corner

In other words, view attributes are always inherited by all groups of objects in
the model, unless a group contains overriding attributes. Similarly, any
attributes assigned to a geometric object are inherited by all faces of the object,
unless a face contains overriding attributes.

This attribute inheritance applies only to the natural attributes contained in any
attribute set. If, for example, an attribute set of a view contains a surface normal
attribute (which is not a natural attribute for view attribute sets), that attribute is
not inherited by any objects lower down in the hierarchy.

If you define a custom attribute, you can specify whether you want that
attribute to be inherited along the attribute inheritance path by including an
attribute inheritance method in your attribute metahandler. See “Defining
Custom Attribute Types” (page 522) for a sample attribute metahandler that
specifies that the temperature attribute is to be inherited. If you do not supply
an attribute inheritance method, QuickDraw 3D assumes you want no such
inheritance for your custom attribute.

C H A P T E R 5

Attribute Objects

520 Using Attribute Objects

Using Attribute Objects 5

This section describes the basic capabilities that QuickDraw 3D provides to
create and configure attribute sets. It also shows how to read the attributes in an
attribute set and, if necessary, change those attributes. In general, it’s very
simple to create, configure, and modify attribute sets.

This section also shows how to define a custom attribute type. To do so, you
need to provide definitions of the data associated with that attribute type and
an attribute metahandler to define a set of attribute-handling methods. See
“Defining Custom Attribute Types,” beginning on page 522 for complete
details.

Creating and Configuring Attribute Sets 5

You create a new attribute set by calling the Q3AttributeSet_New function. You
configure the attribute set by adding the desired attributes to the set, using the
Q3AttributeSet_Add function. Finally, you attach the configured attribute set to
an object by calling an appropriate QuickDraw 3D routine. For example, to
attach an attribute set to a vertex of a triangle, you call the function
Q3Triangle_SetVertexAttributeSet. Listing 5-1 illustrates how to set the three
vertices of a triangle to a specific diffuse color.

Listing 5-1 Creating and configuring a vertex attribute set

TQ3Status MySetTriangleVerticesDiffuseColor
(TQ3GeometryObject triangle, TQ3ColorRGB color)

{
TQ3AttributeSet myAttrSet; /*attribute set*/
TQ3Status myResult; /*result code*/
unsigned long myIndex; /*vertex index*/

/*Create a new empty attribute set.*/
myAttrSet = Q3AttributeSet_New();
if (myAttrSet == NULL)

return (kQ3Failure);

C H A P T E R 5

Attribute Objects

Using Attribute Objects 521

/*Add the specified color attribute to the attribute set.*/
myResult = Q3AttributeSet_Add

(myAttrSet, kQ3AttributeTypeDiffuseColor, &color);
if (myResult == kQ3Failure)

return (kQ3Failure);

/*Attach the attribute set to each triangle vertex.*/
for (myIndex = 0; myIndex < 3; myIndex++) {

myResult = Q3Triangle_SetVertexAttributeSet
(triangle, myIndex, myAttrSet);

if (myResult == kQ3Failure)
return (kQ3Failure);

}

return (kQ3Success);
}

You can assign any number of different attribute types to a single attribute set.
The function defined in Listing 5-1 assigns only one attribute—a diffuse color—
to the new attribute set.

If you want to change the value of a certain attribute in an attribute set, you can
simply overwrite the data associated with that attribute by calling
Q3AttributeSet_Add once again. You can remove an attribute from an attribute
set by calling Q3AttributeSet_Clear. To remove all attributes from an attribute
set, you can call Q3AttributeSet_Empty.

Iterating Through an Attribute Set 5

QuickDraw 3D provides the Q3AttributeSet_GetNextAttributeType function
that you can use to iterate through the attributes in an attribute set. To get the
first attribute in an attribute set, pass the constant kQ3AttributeTypeNone to
Q3AttributeSet_GetNextAttributeType. You can retrieve any subsequent
attributes by successively calling Q3AttributeSet_GetNextAttributeType, which
returns kQ3AttributeTypeNone when you reach the end of the list of attributes.
Listing 5-2 illustrates how to use Q3AttributeSet_GetNextAttributeType to
determine the number of attributes in an attribute set.

C H A P T E R 5

Attribute Objects

522 Using Attribute Objects

Listing 5-2 Counting the attributes in an attribute set

unsigned long MyCountAttributesInSet (TQ3AttributeSet mySet)
{

unsigned long myCount; /*attribute count*/
TQ3AttributeType myType; /*attribute type*/
TQ3Status myResult; /*result code*/

for (myCount = 0,
 myType = kQ3AttributeTypeNone,
 myResult =

Q3AttributeSet_GetNextAttributeType(mySet, &myType);
 myType != kQ3AttributeTypeNone;
 myResult =

Q3AttributeSet_GetNextAttributeType(mySet, &myType)) {
myCount++;

}

return (myCount);
}

Notice that the Q3AttributeSet_GetNextAttributeType function returns a result
code that indicates whether the call succeeded or failed. In general, the call fails
only if the attribute set is invalid in some way.

Defining Custom Attribute Types 5

QuickDraw 3D allows you to define custom attribute types so that you can
attach to a vertex (or face, or geometric object, or group, or view) types of data
different from those associated with the basic attribute types defined by
QuickDraw 3D. Once you have defined and registered your custom attribute
type, you manipulate attributes of that type exactly as you manipulate the
standard QuickDraw 3D attributes. For example, you add a custom attribute to
an attribute set by calling Q3AttributeSet_Add, and you retrieve the data
associated with a custom attribute by calling Q3AttributeSet_Get.

To define a custom attribute type, you first define the internal structure of the
data associated with your custom attribute type. Then you must write an
attribute metahandler to define a set of attribute-handling methods.
QuickDraw 3D calls those methods at certain times to handle operations on
attribute sets that contain your custom attribute. For example, when you call

C H A P T E R 5

Attribute Objects

Using Attribute Objects 523

Q3Triangle_Write to write a triangle to a file, QuickDraw 3D might need to call
your attribute’s handler to write your custom attribute data to the file.

Suppose that you want to define a custom attribute that contains data about
temperature over time. You might use the MyTemperatureData structure, defined
like this:

typedef struct MyTemperatureData {
unsigned long startTime; /*starting time*/
unsigned long nTemps; /*no. temps in

array*/
float *temperatures; /*array of temps*/

} MyTemperatureData;

Your attribute metahandler is an application-defined function that returns the
addresses of the methods associated with the custom attribute type. A
metahandler can define some or all of the methods indicated by these constants:

kQ3MethodTypeObjectDelete
kQ3MethodTypeObjectReadData
kQ3MethodTypeObjectTraverse
kQ3MethodTypeObjectWrite
kQ3MethodTypeElementCopyAdd
kQ3MethodTypeElementDelete
kQ3MethodTypeElementCopyDuplicate
kQ3MethodTypeElementCopyGet
kQ3MethodTypeElementCopyReplace
kQ3MethodTypeAttributeInterpolate
kQ3MethodTypeAttributeCopyInherit
kQ3MethodTypeAttributeInherit

Listing 5-3 defines a simple attribute metahandler. See “Defining an Object
Metahandler,” beginning on page 176 for a more complete description of
metahandlers.

C H A P T E R 5

Attribute Objects

524 Using Attribute Objects

Listing 5-3 Reporting custom attribute methods

TQ3FunctionPointer MyTemperatureDataMetaHandler (TQ3MethodType methodType)
{

switch (methodType) {
case kQ3MethodTypeElementDelete:

return (TQ3FunctionPointer) MyTemperatureDataDispose;
case kQ3MethodTypeElementCopyReplace:

return (TQ3FunctionPointer) MyTemperatureDataCopyReplace;
case kQ3MethodTypeAttributeCopyInherit:

return (TQ3FunctionPointer) kQ3True;
case kQ3MethodTypeAttributeInherit:

return (TQ3FunctionPointer) kQ3True;
default:

return (NULL);
}

}

The MyTemperatureDataMetaHandler metahandler simply returns the appropriate
function address, or NULL if the metahandler does not implement a particular
method type. All the method types listed above are optional. (In fact, you don’t
need to specify a metahandler at all if you want QuickDraw 3D to use its
default methods to handle your custom attribute type.)

The metahandler in Listing 5-3 installs the MyTemperatureDataDispose function
as the custom attribute’s dispose method, which QuickDraw 3D calls whenever
you clear your custom attribute or replace an existing one. A dispose method is
passed a pointer to the data associated with an attribute. Your dispose method
should deallocate any storage you allocated, as shown in Listing 5-4.

Listing 5-4 Disposing of a custom attribute’s data

TQ3Status MyTemperatureDataDispose (MyTemperatureData *tmpData)
{

if (tData->temperatures != NULL) {
free(tmpData->temperatures);
tData->temperatures = NULL;

}
return kQ3Success;

}

C H A P T E R 5

Attribute Objects

Using Attribute Objects 525

If you do not define a dispose method, QuickDraw 3D automatically disposes
of the block of data allocated when a custom attribute was added to an attribute
set. If the data associated with a custom attribute is always of a fixed size and
does not contain any pointers to other data that needs to be disposed of, you do
not need to define a dispose or copy method.

The metahandler in Listing 5-3 installs the MyTemperatureDataCopyReplace
function as the custom attribute’s copy method. A copy method is passed two
pointers, specifying the source and target addresses of the data to copy.
Listing 5-5 shows a simple copy method.

Listing 5-5 Copying a custom attribute’s data

TQ3Status MyTemperatureDataCopyReplace
(const MyTemperatureData *src, MyTemperatureData *dst)

{
float *temp;

if (dst->nTemps != src->nTemps) {
temp = realloc(dst->temperatures, nTemps * sizeof(float));
if (temp == NULL)

return (kQ3Failure);
}
dst->startTime = src->startTime;
dst->nTemps = src->nTemps;
dst->temperatures = temp;

memcpy(temp, dst->temperatures, dst->nTemps * sizeof(float));

return (kQ3Success);
}

If you do not define a copy method, QuickDraw 3D automatically copies the
block of data using a default memory copy method.

The inherit method simply requests a Boolean value that indicates whether you
want your custom attribute to be inherited down the class hierarchy. You
should return kQ3True if you want your attribute to be inherited or kQ3False if
not.

C H A P T E R 5

Attribute Objects

526 Attribute Objects Reference

Before you can use a custom attribute type, you need to register your attribute
metahandler with QuickDraw 3D by calling the Q3AttributeClass_Register
function. You might execute the MyStartUpQuickDraw3D function defined in
Listing 5-6 at application startup time.

Listing 5-6 Initializing QuickDraw 3D and registering a custom attribute type

TQ3AttributeType gAttributeType_Temperature;

void MyStartUpQuickDraw3D (void)
{

TQ3ObjectClass myAttrib;

if (Q3Initialize() == kQ3Failure) /*initialize QuickDraw 3D*/
MyFailRoutine();

/*register attribute type*/
myAttrib = Q3AttributeClass_Register(

gAttributeTypeTemperature,
“MyCompany:SurfWorks:Temperature”,
sizeof(MyTemperatureData),
MyTemperatureData_MetaHandler);

if (myAttrib == kQ3ObjectTypeInvalid)
MyFailRoutine();

}

Attribute Objects Reference 5

This section describes the constants and routines that you can use to manage an
object’s attributes and attribute sets.

Constants 5

This section describes the constants that you use to define attribute types.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 527

Attribute Types 5

Every attribute has a unique attribute type. QuickDraw 3D defines a large
number of attribute types, and your application can define additional attribute
types. Attribute types are defined by constants. Attribute type values greater
than 0 are reserved for use by QuickDraw 3D. Your custom attribute types must
have attribute type values that are less than 0. Here are the attribute types
currently defined by QuickDraw 3D.

typedef enum TQ3AttributeTypes {
kQ3AttributeTypeNone = 0,
kQ3AttributeTypeSurfaceUV = 1,
kQ3AttributeTypeShadingUV = 2,
kQ3AttributeTypeNormal = 3,
kQ3AttributeTypeAmbientCoefficient = 4,
kQ3AttributeTypeDiffuseColor = 5,
kQ3AttributeTypeSpecularColor = 6,
kQ3AttributeTypeSpecularControl = 7,
kQ3AttributeTypeTransparencyColor = 8,
kQ3AttributeTypeSurfaceTangent = 9,
kQ3AttributeTypeHighlightState = 10,
kQ3AttributeTypeSurfaceShader = 11,
kQ3AttributeTypeNumTypes

} TQ3AttributeTypes;

Constant descriptions

kQ3AttributeTypeNone
The attribute has no type. You can pass this constant to the
Q3AttributeSet_GetNextAttributeType function to get the
first attribute type in an attribute set. When there are no
more attribute types in a set,
Q3AttributeSet_GetNextAttributeType returns
kQ3AttributeTypeNone.

kQ3AttributeTypeSurfaceUV
The attribute is a surface uv parameterization, of type
TQ3Param2D.

kQ3AttributeTypeShadingUV
The attribute is a shading uv parameterization, of type
TQ3Param2D. A shading uv parameterization is an alternative
to the surface uv parameterization that is used for shading.

C H A P T E R 5

Attribute Objects

528 Attribute Objects Reference

See the chapter “Shader Objects” for more information
about shading uv parameterizations.

kQ3AttributeTypeNormal
The attribute is a surface normal, of type TQ3Vector3D.

kQ3AttributeTypeAmbientCoefficient
The attribute is an ambient coefficient, of type float. An
ambient coefficient determines the amount of ambient
light reflected from an object’s surface. An ambient
coefficient should be between 0.0 (no reflection of ambient
light) and 1.0 (complete reflection of ambient light).

kQ3AttributeTypeDiffuseColor
The attribute is a diffuse color, of type TQ3ColorRGB.

kQ3AttributeTypeSpecularColor
The attribute is a specular color, of type TQ3ColorRGB.

kQ3AttributeTypeSpecularControl
The attribute is a specular control, of type float.

kQ3AttributeTypeTransparencyColor
The attribute is a transparency color, of type TQ3ColorRGB. A
transparency color determines the amount of light that can
pass through a surface. The color (0, 0, 0) indicates
complete transparency, and (1, 1, 1) indicates complete
opacity. QuickDraw 3D multiplies an object’s transparency
color by its diffuse color when a transparency color
attribute is attached to the object.

kQ3AttributeTypeSurfaceTangent
The attribute is a surface tangent, of type TQ3Tangent2D.

kQ3AttributeTypeHighlightState
The attribute is a highlight state, of type TQ3Boolean. A
highlight state determines whether a highlight style
overrides the material attributes of an object (kQ3True) or
not (kQ3False).

kQ3AttributeTypeSurfaceShader
The attribute is a surface shader, of type
TQ3SurfaceShaderObject. See the chapter “Shader Objects”
for information on creating surface shaders and adding
them to attribute sets. Note that when you include a
surface shader in an attribute set, the reference count of the
shader is incremented.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 529

kQ3AttributeTypeNumTypes
The number of attribute types currently defined.

Attribute Objects Routines 5

This section describes routines you can use to manage attributes.

Drawing Attributes 5

QuickDraw 3D provides a routine that you can use to draw an attribute.

Q3Attribute_Submit 5

You can use the Q3Attribute_Submit function to submit an attribute in
immediate mode.

TQ3Status Q3Attribute_Submit (
TQ3AttributeType attributeType,
const void *data,
TQ3ViewObject view);

attributeType
An attribute type.

data A pointer to the attribute’s data.

view A view.

DESCRIPTION

The Q3Attribute_Submit function submits the attribute specified by the
attributeType and data parameters into the view specified by the view
parameter.

SPECIAL CONSIDERATIONS

You should call Q3Attribute_Submit only in a submitting loop.

C H A P T E R 5

Attribute Objects

530 Attribute Objects Reference

Creating and Managing Attribute Sets 5

QuickDraw 3D provides a number of routines for creating and managing
attribute sets.

Q3AttributeSet_New 5

You can use the Q3AttributeSet_New function to create an attribute set.

TQ3AttributeSet Q3AttributeSet_New (void);

DESCRIPTION

The Q3AttributeSet_New function returns, as its function result, a new empty
attribute set. If Q3AttributeSet_New fails, it returns NULL.

Q3AttributeSet_Add 5

You can use the Q3AttributeSet_Add function to add an attribute to an attribute
set.

TQ3Status Q3AttributeSet_Add (
TQ3AttributeSet attributeSet,
TQ3AttributeType type,
const void *data);

attributeSet An attribute set.

type An attribute type.

data A pointer to the attribute’s data.

DESCRIPTION

The Q3AttributeSet_Add function adds the attribute specified by the type and
data parameters to the attribute set specified by the attributeSet parameter.
The attribute set must already exist when you call Q3AttributeSet_Add. If that

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 531

attribute set already contains an attribute of the specified type,
Q3AttributeSet_Add replaces that attribute with the one specified by the type
and data parameters. Note that the attribute data is copied into the attribute set.
Accordingly, you can reuse the data parameter once you have called
Q3AttributeSet_Add.

Q3AttributeSet_Contains 5

You can use the Q3AttributeSet_Contains function to determine whether an
attribute set contains an attribute of a specific type.

TQ3Boolean Q3AttributeSet_Contains (
TQ3AttributeSet attributeSet,
TQ3AttributeType attributeType);

attributeSet An attribute set.

attributeType An attribute type.

DESCRIPTION

The Q3AttributeSet_Contains function returns, as its function result, a Boolean
value that indicates whether the attribute set specified by the attributeSet
parameter contains (kQ3True) or does not contain (kQ3False) an attribute of the
type specified by the attributeType parameter.

Q3AttributeSet_Get 5

You can use the Q3AttributeSet_Get function to get the data associated with an
attribute in an attribute set.

TQ3Status Q3AttributeSet_Get (
TQ3AttributeSet attributeSet,
TQ3AttributeType type,
void *data);

attributeSet An attribute set.

C H A P T E R 5

Attribute Objects

532 Attribute Objects Reference

type An attribute type.

data On entry, a pointer to a structure large enough to hold the
attribute data associated with attributes of the specified type. On
exit, a pointer to the attribute data of the attribute having the
specified type.

DESCRIPTION

The Q3AttributeSet_Get function returns, in the data parameter, the data
currently associated with the attribute whose type is specified by the type
parameter in the attribute set specified by the attributeSet parameter. If no
attribute of that type is in the attribute set, Q3AttributeSet_Get returns
kQ3Failure and posts the error kQ3ErrorAttributeNotContained.

If you pass the value NULL in the data parameter, no data is copied back to your
application.

ERRORS

kQ3ErrorAttributeNotContained

Q3AttributeSet_GetNextAttributeType 5

You can use the Q3AttributeSet_GetNextAttributeType function to iterate
through all the attributes in an attribute set.

TQ3Status Q3AttributeSet_GetNextAttributeType (
TQ3AttributeSet source,
TQ3AttributeType *type);

source An attribute set.

type On entry, an attribute type. On exit, the attribute type of the
attribute that immediately follows that attribute in the attribute
set.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 533

DESCRIPTION

The Q3AttributeSet_GetNextAttributeType function returns, in the type
parameter, the attribute type of the attribute that immediately follows the
attribute having the type specified by the type parameter in the attribute set
specified by the source parameter. To get the type of the first attribute in the
attribute set, pass kQ3AttributeTypeNone in the type parameter.
Q3AttributeSet_GetNextAttributeType returns kQ3AttributeTypeNone when it
has reached then end of the list of attributes.

Q3AttributeSet_Empty 5

You can use the Q3AttributeSet_Empty function to empty an attribute set of all
its attributes.

TQ3Status Q3AttributeSet_Empty (TQ3AttributeSet target);

target An attribute set.

DESCRIPTION

The Q3AttributeSet_Empty function removes all the attributes currently in the
attribute set specified by the target parameter.

Q3AttributeSet_Clear 5

You can use the Q3AttributeSet_Clear function to remove an attribute of a
certain type from an attribute set.

TQ3Status Q3AttributeSet_Clear (
TQ3AttributeSet attributeSet,
TQ3AttributeType type);

attributeSet An attribute set.

type An attribute type.

C H A P T E R 5

Attribute Objects

534 Attribute Objects Reference

DESCRIPTION

The Q3AttributeSet_Clear function removes the attribute whose type is
specified by the type parameter from the attribute set specified by the
attributeSet parameter.

Q3AttributeSet_Submit 5

You can use the Q3AttributeSet_Submit function to submit an attribute set in
immediate mode.

TQ3Status Q3AttributeSet_Submit (
TQ3AttributeSet attributeSet,
TQ3ViewObject view);

attributeSet An attribute set.

view A view.

DESCRIPTION

The Q3AttributeSet_Submit function submits the attribute set specified by the
attributeSet parameter into the view specified by the view parameter.

SPECIAL CONSIDERATIONS

You should call Q3AttributeSet_Submit only in a submitting loop.

Q3AttributeSet_Inherit 5

You can use the Q3AttributeSet_Inherit function to configure an attribute set so
that it contains all the attributes of a child set together with all the attributes
inherited from a parent set.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 535

TQ3Status Q3AttributeSet_Inherit (
TQ3AttributeSet parent,
TQ3AttributeSet child,
TQ3AttributeSet result);

parent An attribute set.

child An attribute set.

result On entry, an attribute set. On exit, an attribute set that contains
all the attributes in the specified child set together with all the
attributes inherited from the specified parent set.

DESCRIPTION

The Q3AttributeSet_Inherit function returns, in the result parameter, an
attribute set that merges attributes from the attribute sets specified by the child
and parent parameters. The resulting set contains all the attributes in the child
set together with all those in the parent set having an attribute type that is not
contained in the child attribute set.

If the specified child and parent attribute sets contain any custom attribute
types, Q3AttributeSet_Inherit uses the custom type’s
kQ3MethodTypeAttributeCopyInherit custom method. See the chapter
“QuickDraw 3D Objects” for complete information on custom element types.

Registering Custom Attributes 5

You can add a custom attribute type by calling the Q3AttributeClass_Register
function. If necessary, you can delete an application-defined attribute type by
calling the Q3XObjectHierarchy_UnregisterClass function.

Note
For complete details on adding custom attribute types, see
“Defining Custom Attribute Types,” beginning on
page 522. ◆

C H A P T E R 5

Attribute Objects

536 Attribute Objects Reference

Q3AttributeClass_Register 5

You can use the Q3AttributeClass_Register function to register an
application-defined attribute type.

TQ3ObjectClass Q3AttributeClass_Register (
TQ3AttributeType attributeType,
const char *creatorName,
unsigned long sizeOfElement,
TQ3MetaHandler metaHandler);

attributeType
The type of your custom attribute.

creatorName A pointer to a null-terminated string containing the name of the
attribute’s creator and the name of the type of attribute being
registered.

sizeOfElement
The size of the data associated with the specified custom
attribute type.

metaHandler A pointer to an application-defined metahandler that
QuickDraw 3D calls to handle the new custom attribute type.

DESCRIPTION

The Q3AttributeClass_Register function returns, as its function result, an object
class reference for a new custom attribute type having a type specified by the
attributeType parameter and a name specified by the creatorName parameter.
The metaHandler parameter is a pointer to the metahandler for your custom
attribute type. See the chapter “QuickDraw 3D Objects” for information on
writing a metahandler. If Q3AttributeClass_Register cannot create a new
attribute type, it returns the value NULL.

The creatorName parameter should be a pointer to null-terminated C string that
contains your (or your company’s) name and the name of the type of attribute
you are defining. Use the colon character (:) to delimit fields within this string.
The string should not contain any spaces or punctuation other than the colon
character, and it cannot end with a colon. Here are some examples of valid
creator names:

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 537

“MyCompany:SurfDraw:Wavelength”
“MyCompany:SurfWorks:VRModule:WaterTemperature”

The sizeOfElement parameter specifies the fixed size of the data associated with
your custom attribute type. You can associate dynamically sized data with your
attribute type by putting a pointer to a dynamically sized block of data into the
attribute set and having your handler’s copy method duplicate the data. (In this
case, you would set the sizeOfElement parameter to sizeof(Ptr).) Your
handler’s dispose method must also deallocate any dynamically sized blocks.

Adding Application-Defined Attribute and Element Types 5

You can add new application-defined attribute and element types by using
Q3XAttributeClass_Register and Q3XElementClass_Register. These functions let
an application add a new attribute or element type by registering its methods. A
unique object type of TQ3AttributeType or TQ3ElementType is returned, which
you can use to set and get the custom attribute or element:

typedef TQ3ElementType TQ3AttributeType;

Q3XAttributeClass_Register 5

You can use the Q3XAttributeClass_Register function to add a new attribute
type to QuickDraw 3D.

TQ3XObjectClass Q3XAttributeClass_Register(
TQ3AttributeType *attributeType,
const char *name,
unsigned long sizeOfElement,
TQ3XMetaHandler metaHandler);

attributeType A new attribute type, which is returned to you.

name The new object name, for use in the text metafile.

sizeOfElement The size, in bytes, required for the new object.

metaHandler A metahandler that returns nonvirtual methods. This value may
be NULL for some classes.

C H A P T E R 5

Attribute Objects

538 Attribute Objects Reference

DESCRIPTION

The Q3XAttributeClass_Register function returns, in the attributeType
parameter, a new attribute with name name and size sizeOfElement for the
metahandler specified by metaHandler.

Q3XElementClass_Register 5

You can use the Q3XElementClass_Register function to add a new element type
to QuickDraw 3D.

TQ3XObjectClass Q3XElementClass_Register(
TQ3ElementType *elementType,
const char *name,
unsigned long sizeOfElement,
TQ3XMetaHandler metaHandler);

elementType A new element type, which QuickDraw 3D assigns and returns
to you.

name The new object name, for use in the text metafile.

sizeOfElement The size, in bytes, required for the new object.

metaHandler A metahandler that returns nonvirtual methods. This value may
be NULL for some classes.

DESCRIPTION

The Q3XElementClass_Register function returns, in the elementType parameter, a
new element with name name and size sizeOfElement for the metahandler
specified by metaHandler.

Copy Methods 5

An application-defined attribute or element type may support any of four
copying methods. The reason for defining four different methods is to let you
customize the semantics of your Q3AttributeSet_Add and Q3AttributeSet_Get calls
to allow for various meanings of the data parameter.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 539

TQ3XElementCopyAddMethod 5

The TQ3XElementCopyAddMethod functionality is optional. If included, it supports
adding a new attribute or element type to an attribute set. If it is not included, the
default action is a memory copy of sizeOfElement bytes.

#define kQ3XMethodTypeElementCopyAdd Q3_METHOD_TYPE('e','c','p','a')

typedef TQ3Status (*TQ3XElementCopyAddMethod)(
const void *fromAPIElement,
void *toInternalElement);

fromAPIElement
API element to copy from.

toInternalElement
Internal element to copy to.

DESCRIPTION

The TQ3XElementCopyAddMethod method is called when adding a new attribute type to
an attribute set, using Q3AttributeSet_Add. The application-defined object is passed
whatever pointer was passed in the Q3AttributeSet_Add call as the fromAPIElement
parameter, and in toInternalElement a pointer to an empty, uninitialized block of size
sizeOfElement (obtained from the registration call).

TQ3XElementCopyReplaceMethod 5

The TQ3XElementCopyReplaceMethod functionality is optional. If included, it
supports replacing an existing attribute or element type. If it is not included, the
default action is a memory copy of sizeOfElement bytes.

#define kQ3XMethodTypeElementCopyReplace Q3_METHOD_TYPE('e','c','p','r')

typedef TQ3Status (*TQ3XElementCopyReplaceMethod)(
const void *fromAPIElement,
void *ontoInternalElement);

C H A P T E R 5

Attribute Objects

540 Attribute Objects Reference

fromAPIElement
API element to copy from.

ontoInternalElement
Internal element to replace with copy.

DESCRIPTION

The TQ3XElementCopyReplaceMethod method is called when replacing an existing
attribute type in an attribute set, using Q3AttributeSet_Add.The application-defined
object is passed whatever pointer was passed in the Q3AttributeSet_Add call as the
fromAPIElement parameter, and in ontoInternalElement a pointer to an existing block
of size sizeOfElement (obtained from the registration call) that has previously been
initialized with a CopyAdd call.

TQ3XElementCopyGetMethod 5

The TQ3XElementCopyGetMethod functionality is optional. If included, it supports
fetching an attribute or element from an attribute set. If it is not included, the
default action is a memory copy of sizeOfElement bytes.

#define kQ3XMethodTypeElementCopyGet Q3_METHOD_TYPE('e','c','p','g')

typedef TQ3Status (*TQ3XElementCopyGetMethod)(
const void *fromInternalElement,
void *toAPIElement);

fromInternalElement
Internal element to copy from.

toAPIElement
API element to copy to.

DESCRIPTION

The TQ3XElementCopyGetMethod method is called when obtaining an attribute from an
attribute set by means of Q3AttributeSet_Get. The application-defined object is passed
in fromInternalElement a pointer to an existing block of size sizeOfElement

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 541

(determined by the registration call) that has been initialized with a CopyAdd call. It is
passed in toAPIElement whatever pointer was passed in the Q3AttributeSet_Get call.

TQ3XElementCopyDuplicateMethod 5

The TQ3XElementCopyDuplicateMethod functionality is optional. If included, it
supports internal duplication of attributes or elements. If it is not included, the
default action is a memory copy of sizeOfElement bytes.

#define kQ3XMethodTypeElementCopyDuplicate
Q3_METHOD_TYPE('e','c','p','d')

typedef TQ3Status (*TQ3XElementCopyDuplicateMethod)(
const void *fromInternalElement,
void *toInternalElement);

fromInternalElement
Internal element to copy from.

toInternalElement
Internal element to copy to.

DESCRIPTION

The TQ3XElementCopyDuplicateMethod method is called when Q3Object_Duplicate
is called for an attribute set or element set. It copies data from a valid block of size
sizeOfElement (determined by the registration call) to another block of size
sizeOfElement. The block copied into must be invalid.

Deletion Method 5

An application-defined attribute or element type may support a deletion method.

C H A P T E R 5

Attribute Objects

542 Attribute Objects Reference

TQ3XElementDeleteMethod 5

The TQ3XElementDeleteMethod functionality is optional. If included, it deletes an
attribute or element.

#define kQ3XMethodTypeElementDelete Q3_METHOD_TYPE('e','c','p','l')

typedef TQ3Status (*TQ3XElementDeleteMethod)(
void *internalElement);

internalElement
Internal element to delete.

DESCRIPTION

The TQ3XElementDeleteMethod method deletes the element pointed to by
internalElement.

Getting the Size of an Attribute or Element 5

The Q3XElementType_GetElementSize routine returns the size of an attribute or
element.

Q3XElementType_GetElementSize 5

The Q3XElementType_GetElementSize function returns the size in bytes of an
asttribute or element type.

TQ3Status Q3XElementType_GetElementSize(
TQ3ElementType elementType,
unsigned long *sizeOfElement);

elementType An attribute or element type.

sizeOfElement
The size in bytes of the type.

C H A P T E R 5

Attribute Objects

Attribute Objects Reference 543

DESCRIPTION

The Q3XElementType_GetElementSize function returns, in the sizeOfElement
parameter, the size in bytes of the attribute or element indicated by the
elementType parameter.

Inheritance Control and Copying 5

Custom attributes may be inherited or not, as determined by the metahandler. If
inheritance is supported, then the metahandler should return kQ3True from the
kQ3XMethodTypeAttributeInherit method and kQ3False otherwise.

If inheritance is supported, the inheritance function called internally just copies
the data representing the attribute, using the size parameter specified in the
registration call. If more complex behavior is desired, however, the custom
attribute must be supplied with a TQ3XAttributeCopyInheritMethod method to
be called at inheritance time. This might be the case, for example, if there were a
variable-size array in the data structure.

TQ3XAttributeInheritMethod 5

The TQ3XAttributeInheritMethod functionality reports whether an
application-defined attribute supports inheritance.

#define kQ3XMethodTypeAttributeInherit Q3_METHOD_TYPE('i','n','h','t')

typedef TQ3Boolean TQ3XAttributeInheritMethod;

return value kQ3True or kQ3False.

DESCRIPTION

The TQ3XAttributeInheritMethod method returns kQ3True if inheritance is
supported and kQ3False otherwise.

C H A P T E R 5

Attribute Objects

544 Attribute Errors

TQ3XAttributeCopyInheritMethod 5

The TQ3XAttributeCopyInheritMethod functionality performs inheritance of an
attribute in an application-defined object.

#define kQ3XMethodTypeAttributeCopyInherit
Q3_METHOD_TYPE('a','c','p','i')

typedef TQ3Status (*TQ3XAttributeCopyInheritMethod)(
const void *fromInternalAttribute,
void *toInternalAttribute);

fromInternalAttribute
Internal attribute to be copied from.

toInternalAttribute
Internal attribute to be copied to.

DESCRIPTION

The TQ3XAttributeCopyInheritMethod method provides inheritance from the
attribute designated by fromInternalAttribute to the attribute designated by
toInternalAttribute.

Attribute Errors 5

The following is a list of errors that attribute routines can return. A list of
general QuickDraw 3D errors is given in “QuickDraw 3D Errors, Warnings, and
Notices” (page 87).

kQ3ErrorAttributeNotContained
kQ3ErrorAttributeInvalidType

About Style Objects 545

C H A P T E R 6

Style Objects 6Figure 6-0
Listing 6-0
Table 6-0

This chapter describes style objects (or styles) and the functions you can use to
manipulate them. You use styles to specify some of the basic characteristics of a
renderer. For example, one renderer style determines whether an object is
drawn as a solid filled object or as a set of edges. Another renderer style
determines whether a surface is drawn smoothly or as a set of polygonal facets.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about renderers, see the chapter “Renderer Objects” in
this book. You do not, however, need to know how to create or manipulate
renderers to read this chapter.

This chapter begins by describing style objects and their features. Then it shows
how to specify the current rendering styles of a model. The section “Style
Objects Reference,” beginning on page 555 provides a complete description of
style objects and the routines you can use to create and manipulate them.

About Style Objects 6

A style object (or, more briefly, a style) is a type of QuickDraw 3D object that
determines some of the basic characteristics of the renderer used to draw the
geometric objects in a scene. A style is of type TQ3StyleObject, which is a
subclass of a shape object.

You can apply a style to a model by creating a style object and then submitting
it to the model. QuickDraw 3D provides functions that allow both retained and
immediate style submitting. Alternatively, you can create a style object and then
add it to a group. Then, when the group is submitted for rendering, the style is
applied to all objects in the group (if it’s an ordered display group) or to all
objects in the group following the style (if it’s a display group).

C H A P T E R 6

Style Objects

546 About Style Objects

Note
See the chapter “Group Objects” for complete information
on how styles are applied to the objects in a group. ◆

QuickDraw 3D defines these types of styles that affect the rendering or picking
of a scene:

■ backfacing styles

■ interpolation styles

■ fill styles

■ highlight styles

■ subdivision styles

■ orientation styles

■ shadow-receiving styles

■ picking ID styles

■ picking parts styles

Unlike attributes, which define characteristics of the appearances of individual
surfaces and can be applied to only part of a model, styles define characteristics
of a renderer and are generally (but not always) applied to a model as a whole.

IMPORTANT

Some renderers might not support all types of styles, and
some renderers might not be able to apply a given style to
all geometric objects. For example, not all renderers can
draw shadows; such renderers therefore ignore the
shadow-receiving style. ▲

If you apply a style to an object and then apply a different style of the same type
to that object, the style applied second replaces the style applied first.

Backfacing Styles 6

A model’s backfacing style determines whether or not a renderer draws shapes
(typically polygons) that face away from a view’s camera. QuickDraw 3D
defines constants for the backfacing styles that are currently available.

C H A P T E R 6

Style Objects

About Style Objects 547

typedef enum TQ3BackfacingStyle {
kQ3BackfacingStyleBoth,
kQ3BackfacingStyleRemove,
kQ3BackfacingStyleFlip

} TQ3BackfacingStyle;

The default value, kQ3BackfacingStyleBoth, specifies that the renderer should
draw shapes that face either toward or away from the camera. The backfacing
shapes may be illuminated only dimly or not at all, because their face normals
point away from the camera.

The constant kQ3BackfacingStyleRemove specifies that the renderer should not
draw or otherwise process shapes that face away from the camera. (This process
is called backface culling.) This rendering style is likely to be significantly
faster than the other two backfacing styles (because up to half the shapes are
not rendered) but can cause holes to appear in visible backfacing objects.

Note
An object that faces away from the camera might still be
visible. Accordingly, backface culling is not the same as
hidden surface removal. ◆

The constant kQ3BackfacingStyleFlip specifies that the renderer should draw
shapes that face toward or away from the camera. The face normals of
backfacing shapes are inverted so that they face toward the camera.

Interpolation Styles 6

A model’s interpolation style determines the method of interpolation a
renderer uses when applying lighting or other shading effects to a surface.
QuickDraw 3D defines constants for the interpolation styles that are currently
available.

typedef enum TQ3InterpolationStyle {
kQ3InterpolationStyleNone,
kQ3InterpolationStyleVertex,
kQ3InterpolationStylePixel

} TQ3InterpolationStyle;

The constant kQ3InterpolationStyleNone specifies that no interpolation is to
occur. When a renderer applies an effect (such as illumination) to a surface, it

C H A P T E R 6

Style Objects

548 About Style Objects

calculates a single intensity value for an entire polygon. This style results in a
model’s surfaces having a faceted appearance.

To render surfaces smoothly, you can specify one of two interpolation styles.
The constant kQ3InterpolationStyleVertex specifies that the renderer is to
interpolate values linearly across a polygon, using the values at the vertices.
The constant kQ3InterpolationStylePixel specifies that the renderer is to apply
an effect at every pixel in the image. For example, a renderer will calculate
illumination based on the surface normal of every pixel in the image. This
rendering style is likely to be computation-intensive.

Fill Styles 6

A model’s fill style determines whether an object is drawn as a solid filled
object or is drawn as a set of edges or points. QuickDraw 3D defines constants
for the fill styles that are currently available.

typedef enum TQ3FillStyle {
kQ3FillStyleFilled,
kQ3FillStyleEdges,
kQ3FillStylePoints

} TQ3FillStyle;

The default value, kQ3FillStyleFilled, specifies that the renderer should draw
shapes as solid filled objects. The constant kQ3FillStyleEdges specifies that the
renderer should draw shapes as the sets of lines that define the edges of the
surfaces rather than as filled shapes. The constant kQ3FillStylePoints specifies
that the renderer should draw shapes as the sets of points that define the
vertices of the surfaces. This fill style is used primarily to accelerate the
rendering of very complex shapes.

Highlight Styles 6

A model’s highlight style determines the material attributes of a geometric
object (or a group of geometric objects) that override the normal attributes of
the object (or group of objects). For example, it is often useful during interaction
with the objects in a model to highlight a selected shape by changing its color.
You can define the specific highlight style to be applied to a selected object, thus
avoiding the need to edit the geometric description of the object simply to
change its color or other attributes.

C H A P T E R 6

Style Objects

About Style Objects 549

If a highlight style is defined for a model, any renderers that support
highlighting will use the attributes in that style to override the material
attributes defined for any geometric objects in the model. However, the
highlight style is used for a particular geometric object only if the object’s
highlight state (that is, an attribute of type kQ3AttributeTypeHighlightState
that has data of type TQ3Boolean) is set to kQ3True. For example, suppose that the
attribute set of a box contains an attribute of type
kQ3AttributeTypeHighlightState, which is set to kQ3True. Further, suppose that
the face attribute sets of the box do not contain any attributes of that type. In
this case, the attribute set of the current highlight style is used during
rendering.

Subdivision Styles 6

A model’s subdivision style determines how a renderer decomposes smooth
curves and surfaces into polylines and polygonal meshes for display purposes.
You can control the fineness of the decomposition by changing either the
subdivision style or the parameters associated with a particular style.
QuickDraw 3D defines constants for the subdivision styles that are currently
available.

typedef enum TQ3SubdivisionMethod {
kQ3SubdivisionMethodConstant,
kQ3SubdivisionMethodWorldSpace,
kQ3SubdivisionMethodScreenSpace

} TQ3SubdivisionMethod;

The value kQ3SubdivisionMethodConstant specifies constant subdivision: the
renderer should subdivide a curve into some given number of polyline
segments and a surface into a certain-sized mesh of polygons.

The value kQ3SubdivisionMethodWorldSpace specifies world-space subdivision:
the renderer should subdivide a curve (or surface) into polylines (or polygons)
whose sides have a world-space length that is at most as large as a given value.

The value kQ3SubdivisionMethodScreenSpace specifies screen-space
subdivision: the renderer should subdivide a curve (or surface) into polylines
(or polygons) whose sides have a length that is at most as large as some number
of pixels.

A full specification of a subdivision style requires both a subdivision method
(which is specified by one of the three subdivision style constants) together with

C H A P T E R 6

Style Objects

550 About Style Objects

one or two subdivision method specifiers. For a curve rendered with constant
subdivision, for example, the subdivision method specifier indicates the
number of polylines into which the curve is to be subdivided. A subdivision
method specifier is passed either as a parameter to a routine or as a field in a
subdivision style data structure. See page 555 for complete details on the
meaning of subdivision method specifiers for each of the three subdivision
methods.

Orientation Styles 6

A model’s orientation style determines which side of a planar surface is
considered to be the “front” side. QuickDraw 3D defines constants for the
orientation styles that are currently available.

typedef enum TQ3OrientationStyle {
kQ3OrientationStyleCounterClockwise,
kQ3OrientationStyleClockwise

} TQ3OrientationStyle;

The default value, kQ3OrientationStyleCounterClockwise, specifies that the front
face of a polygonal shape is that face whose vertices are listed in
counterclockwise order. The constant kQ3OrientationStyleClockwise specifies
that the front face of a polygonal shape is that face whose vertices are listed in
clockwise order. Figure 6-1 shows the front of a polygonal face.

C H A P T E R 6

Style Objects

About Style Objects 551

Figure 6-1 The front side of a polygon

The cross product of the vectors formed by the first two edges (that is, by the
segments from A to B and from B to C) points straight out of the page,
indicating that this is the front side of the polygon. The renderer will use this
information for operations such as culling and shading. If you change the
orientation style to clockwise, you must make sure that the polygonal shape
corresponds.

Note
The orientation style affects only explicitly polygonal
geometric primitives, such as triangles, simple and general
polygons, and polyhedral primitives. It does not affect the
appearance of other primitives, such as cyclinders and
NURB patches, and these primitives need not be converted
to polygonal shapes for rendering, picking, bounding, or
similar operations. ◆

Shadow-Receiving Styles 6

A model’s shadow-receiving style determines whether or not objects in a
model receive shadows cast by other objects in the model. The
shadow-receiving style is defined by a Boolean value. If a renderer’s

D
C

B
E

A

C H A P T E R 6

Style Objects

552 About Style Objects

shadow-receiving style is set to kQ3True, objects in the scene receive shadows. If
a renderer’s shadow-receiving style is set to kQ3False, objects in the scene do
not receive shadows.

Picking ID Styles 6

A picking ID style determines the picking ID of an object in a model. A picking
ID is an arbitrary 32-bit integer that you can use to determine which object was
selected by a pick operation. For example, you can assign different picking IDs
to the eight corners of a cube; when the user selects a corner, you can inspect the
corner’s picking ID (by looking at the pickID field of the hit data structure
associated with that corner) to determine which corner was selected.

Note
See the chapter “Pick Objects” for complete information
about picking. ◆

You assign a picking ID to a geometric object by creating a picking ID style
having the desired picking ID and then submitting that style object before
submitting the geometric object. See “Managing Picking ID Styles,” beginning
on page 576 for a description of the functions you can use to create and
manipulate picking ID styles.

IMPORTANT

QuickDraw 3D does not perform any validation to ensure
that the picking IDs you assign to objects in a model are
unique. It is your application’s responsibility to generate
unique picking IDs. ▲

Picking Parts Styles 6

A model’s picking parts style determines the kinds of objects that are eligible
for placement in a hit list during a pick operation. Currently, you can use the
picking parts style to limit your attention to certain parts of a mesh. The picking
parts style is specified by a value defined using one or more pick parts masks,
which are defined by these constants:

typedef enum TQ3PickPartsMasks {
kQ3PickPartsObject = 0,
kQ3PickPartsMaskFace = 1 << 0,

C H A P T E R 6

Style Objects

About Style Objects 553

kQ3PickPartsMaskEdge = 1 << 1,
kQ3PickPartsMaskVertex = 1 << 2

} TQ3PickPartsMasks;

The default picking parts style is kQ3PickPartsObject, which indicates that the
hit list is to contain only whole objects. You can add in the other masks to select
parts of a mesh for picking. For instance, to pick edges and vertices, you would
draw a pick parts style using the value:

kQ3PickPartsMaskEdge | kQ3PickPartsMaskVertex

Note
For a description of mesh parts, see the chapter “Geometric
Objects.” For complete information about picking parts, see
the chapter “Pick Objects.” ◆

Anti-Alias Style 6

Many renderers implement scan-conversion and rasterization algorithms by
displaying pixels at the borders of lines and polygons either completely on or
completely off. This may result in “jaggies,” a staircase-like appearance at edges
that are not perfectly horizontal or vertical. Such artifacts are visually
unpleasant, both in static scenes and in dynamically updated sequences of
frames, where they can produce apparent motion across lines or the edges of
polygons.

Many renderers support anti-aliasing techniques, which reduce or eliminate
this problem. For more complete information about anti-aliasing, consult a book
such as Computer Graphics: Principles and Practice by Foley and Van Dam.

QuickDraw 3D provides an anti-alias style to invoke and control anti-aliasing in
renderers. Because different renderers support a variety of anti-aliasing
algorithms, QuickDraw 3D provides control at an abstract level, with its
interpretation left to the renderer. The control structures for anti-alias style are
the following:

typedef enum TQ3AntiAliasModeMasks {
kQ3AntiAliasModeMaskEdges = 1 << 0,
kQ3AntiAliasModeMaskFilled = 1 << 1

} TQ3AntiAliasModeMasks;

typedef unsigned long TQ3AntiAliasMode;

C H A P T E R 6

Style Objects

554 Using Style Objects

typedef struct TQ3AntiAliasStyleData {
TQ3Switch state;
TQ3AntiAliasMode mode;
float quality;

} TQ3AntiAliasStyleData;

You can use the state field, of type TQ3Switch, to turn anti-aliasing on and off. It
lets you leave the other state variables set to desired values (either in the data
structure or in a style object) and turn anti-aliasing on and off without needing
to reinitialize the rest of the state.

You can use the mode field to control which primitives the anti-aliasing
techniques affect. If the field is set to kQ3AntiAliasModeMaskEdges, then lines,
polylines, and ellipses are anti-aliased, plus all other primitives if you are using
an edge fill style. Filled primitives (triangles, NURB surfaces, polyhedra, etc.)
are anti-aliased if the mode is set to kQ3AntiAliasModeMaskFilled. Both classes of
primitives are anti-aliased if the field is set to kQ3AntiAliasModeMaskEdges |
kQ3AntiAliasModeMaskFilled.

Setting the quality field to a value between 0 and 1 provides general control over the
level of anti-aliasing. The effect of this value depends on the anti-aliasing algorithm and
how the renderer implements it, but in general 0 means a very low level of anti-aliasing
and 1 means a very high level. A quality value of 0 does not necessarily mean that
anti-aliasing is off, but rather that it is at the lowest level implemented by the renderer.

Routines that help you control anti-aliasing are described in “Managing the
Anti-Alias Style,” beginning on page 581.

Using Style Objects 6

You apply styles either by submitting them during rendering or picking or by
including a style object in a group. See Listing 1-11 (page 70) in the chapter
“Introduction to QuickDraw 3D” for examples of submitting styles during
retained mode rendering. See Listing 15-3 (page 960) in the chapter “Pick
Objects” for an example of submitting a style during immediate mode picking.

C H A P T E R 6

Style Objects

Style Objects Reference 555

Style Objects Reference 6

This section describes the data structures and routines you can use to manage
style objects.

Data Structures 6

This section describes the data structures supplied by QuickDraw 3D for
managing style objects.

Subdivision Style Data Structure 6

You use a subdivision style data structure to get or set information about the
type of subdivision of curves and surfaces used by a renderer. A subdivision
style data structure is defined by the TQ3SubdivisionStyleData data type.

typedef struct TQ3SubdivisionStyleData {
TQ3SubdivisionMethod method;
float c1;
float c2;

} TQ3SubdivisionStyleData;

Field descriptions
method The method of curve and surface subdivision used by the

renderer. This field must contain one of these constants:

kQ3SubdivisionMethodConstant
kQ3SubdivisionMethodWorldSpace
kQ3SubdivisionMethodScreenSpace

The constant kQ3SubdivisionMethodConstant indicates that
the renderer subdivides a curve into a number (specified in
the c1 field) of polyline segments and a surface into a mesh
(whose dimensions are specified by the c1 and c2 fields) of
polygons. The constant kQ3SubdivisionMethodWorldSpace
indicates that the renderer subdivides a curve (or surface)

C H A P T E R 6

Style Objects

556 Style Objects Reference

into polylines (or polygons) whose sides have a
world-space length that is at most as large as the value
specified in the c1 field. The constant
kQ3SubdivisionMethodScreenSpace indicates that the
renderer subdivides a curve (or surface) into polylines (or
polygons) whose sides have a length that is at most as large
as the number of pixels specified in the c1 field.

c1 For constant subdivision, the number of polylines into
which a curve should be subdivided, or the number of
vertices in the u parametric direction of the polygonal mesh
into which a surface is subdivided. For world-space
subdivision, the maximum length of a polyline segment (or
polygon side) into which a curve (or surface) is subdivided.
For screen-space subdivision, the maximum number of
pixels in a polyline segment (or polygon side) into which a
curve (or surface) is subdivided; for a NURB curve or
surface, however, c1 specifies the maximum allowable
distance between the curve or surface and the polylines or
polygons into which it is subdivided. The value in this field
should be an integer greater than 0 for constant
subdivision, and greater than 0.0 for world-space or
screen-space subdivision.

c2 For constant subdivision, the number of vertices in the v
parametric direction of the polygonal mesh into which a
surface is subdivided. The value in this field should be an
integer greater than 0. For world-space and screen-space
subdivision, this field is unused.

Style Objects Routines 6

This section describes the routines you can use to manage a renderer’s styles.

Managing Styles 6

QuickDraw 3D provides general routines for operating with style objects.

C H A P T E R 6

Style Objects

Style Objects Reference 557

Q3Style_GetType 6

You can use the Q3Style_GetType function to get the type of a style object.

TQ3ObjectType Q3Style_GetType (TQ3StyleObject style);

style A style object.

DESCRIPTION

The Q3Style_GetType function returns, as it s function result, the type of the style
object specified by the style parameter. The types of style objects currently
supported by QuickDraw 3D are defined by these constants:

kQ3StyleTypeBackfacing
kQ3StyleTypeFill
kQ3StyleTypeHighlight
kQ3StyleTypeInterpolation
kQ3StyleTypeOrientation
kQ3StyleTypePickID
kQ3StyleTypePickParts
kQ3StyleTypeReceiveShadows
kQ3StyleTypeSubdivision

If the specified style object is invalid or is not one of these types,
Q3Style_GetType returns the value kQ3ObjectTypeInvalid.

Q3Style_Submit 6

You can use the Q3Style_Submit function to submit a style in retained mode.

TQ3Status Q3Style_Submit (
TQ3StyleObject style,
TQ3ViewObject view);

style A style object.

view A view.

C H A P T E R 6

Style Objects

558 Style Objects Reference

DESCRIPTION

The Q3Style_Submit function submits the style specified by the style parameter
to the view specified by the view parameter.

SPECIAL CONSIDERATIONS

You should call Q3Style_Submit only in a submitting loop.

Managing Backfacing Styles 6

QuickDraw 3D provides routines that you can use to manage backfacing styles.

Q3BackfacingStyle_New 6

You can use the Q3BackfacingStyle_New function to create a new backfacing style
object.

TQ3StyleObject Q3BackfacingStyle_New (
TQ3BackfacingStyle backfacingStyle);

backfacingStyle
A backfacing style value.

DESCRIPTION

The Q3BackfacingStyle_New function returns, as its function result, a new style
object having the backfacing style specified by the backfacingStyle parameter.
The backfacingStyle parameter should be one of these values:

kQ3BackfacingStyleBoth
kQ3BackfacingStyleRemove
kQ3BackfacingStyleFlip

If a new style object could not be created, Q3BackfacingStyle_New returns the
value NULL.

To change the current backfacing style, you must actually draw the style object.
You can call Q3Style_Submit to draw the style in retained mode or

C H A P T E R 6

Style Objects

Style Objects Reference 559

Q3BackfacingStyle_Submit (described next) to draw the style in immediate
mode.

SEE ALSO

See “Backfacing Styles” (page 546) for a description of the available backfacing
styles.

Q3BackfacingStyle_Submit 6

You can use the Q3BackfacingStyle_Submit function to submit a backfacing style
for drawing in immediate mode.

TQ3Status Q3BackfacingStyle_Submit (
TQ3BackfacingStyle backfacingStyle,
TQ3ViewObject view);

backfacingStyle
A backfacing style value.

view A view.

DESCRIPTION

The Q3BackfacingStyle_Submit function sets the backfacing style of the view
specified by the view parameter to the style specified in the backfacingStyle
parameter.

SPECIAL CONSIDERATIONS

You should call Q3BackfacingStyle_Submit only in a submitting loop.

Q3BackfacingStyle_Get 6

You can use the Q3BackfacingStyle_Get function to get the backfacing style
value of a backfacing style.

C H A P T E R 6

Style Objects

560 Style Objects Reference

TQ3Status Q3BackfacingStyle_Get (
TQ3StyleObject backfacingObject,
TQ3BackfacingStyle *backfacingStyle);

backfacingObject
A backfacing style object.

backfacingStyle
On exit, a pointer to the backfacing style value of the specified
backfacing style object.

DESCRIPTION

The Q3BackfacingStyle_Get function returns, in the backfacingStyle parameter,
a pointer to the current backfacing style value of the backfacing style object
specified by the backfacingObject parameter.

Q3BackfacingStyle_Set 6

You can use the Q3BackfacingStyle_Set function to set the backfacing style
value of a backfacing style.

TQ3Status Q3BackfacingStyle_Set (
TQ3StyleObject backfacingObject,
TQ3BackfacingStyle backfacingStyle);

backfacingObject
A backfacing style object.

backfacingStyle
A backfacing style value.

DESCRIPTION

The Q3BackfacingStyle_Set function sets the backfacing style value of the style
object specified by the backfacingObject parameter to the value specified in the
backfacingStyle parameter.

C H A P T E R 6

Style Objects

Style Objects Reference 561

Managing Interpolation Styles 6

QuickDraw 3D provides routines that you can use to manage interpolation
styles.

Q3InterpolationStyle_New 6

You can use the Q3InterpolationStyle_New function to create a new
interpolation style object.

TQ3StyleObject Q3InterpolationStyle_New (
TQ3InterpolationStyle interpolationStyle);

interpolationStyle
An interpolation style value.

DESCRIPTION

The Q3InterpolationStyle_New function returns, as its function result, a new
style object having the interpolation style specified by the interpolationStyle
parameter. The interpolationStyle parameter should be one of these values:

kQ3InterpolationStyleNone
kQ3InterpolationStyleVertex
kQ3InterpolationStylePixel

If a new style object could not be created, Q3InterpolationStyle_New returns the
value NULL.

To change the current interpolation style, you must actually draw the style
object. You can call Q3Style_Submit to draw the style in retained mode or
Q3InterpolationStyle_Submit (described next) to draw the style in immediate
mode.

SEE ALSO

See “Interpolation Styles” (page 547) for a description of the available
interpolation styles.

C H A P T E R 6

Style Objects

562 Style Objects Reference

Q3InterpolationStyle_Submit 6

You can use the Q3InterpolationStyle_Submit function to submit an
interpolation style in immediate mode.

TQ3Status Q3InterpolationStyle_Submit (
TQ3InterpolationStyle interpolationStyle,
TQ3ViewObject view);

interpolationStyle
An interpolation style value.

view A view.

DESCRIPTION

The Q3InterpolationStyle_Submit function sets the interpolation style of the
view specified by the view parameter to the style specified in the
interpolationStyle parameter.

SPECIAL CONSIDERATIONS

You should call Q3InterpolationStyle_Submit only in a submitting loop.

Q3InterpolationStyle_Get 6

You can use the Q3InterpolationStyle_Get function to get the interpolation style
value of an interpolation style.

TQ3Status Q3InterpolationStyle_Get (
TQ3StyleObject interpolationObject,
TQ3InterpolationStyle *interpolationStyle);

interpolationObject
An interpolation style object.

interpolationStyle
On exit, a pointer to the interpolation style value of the specified
interpolation style object.

C H A P T E R 6

Style Objects

Style Objects Reference 563

DESCRIPTION

The Q3InterpolationStyle_Get function returns, in the interpolationStyle
parameter, a pointer to the current interpolation style value of the interpolation
style object specified by the interpolationObject parameter.

Q3InterpolationStyle_Set 6

You can use the Q3InterpolationStyle_Set function to set the interpolation style
value of an interpolation style.

TQ3Status Q3InterpolationStyle_Set (
TQ3StyleObject interpolationObject,
TQ3InterpolationStyle interpolationStyle);

interpolationObject
An interpolation style object.

interpolationStyle
An interpolation style value.

DESCRIPTION

The Q3InterpolationStyle_Set function sets the interpolation style value of the
style object specified by the interpolationObject parameter to the value
specified in the interpolationStyle parameter.

Managing Fill Styles 6

QuickDraw 3D provides routines that you can use to manage fill styles.

Q3FillStyle_New 6

You can use the Q3FillStyle_New function to create a new fill style object.

TQ3StyleObject Q3FillStyle_New (TQ3FillStyle fillStyle);

C H A P T E R 6

Style Objects

564 Style Objects Reference

fillStyle A fill style value.

DESCRIPTION

The Q3FillStyle_New function returns, as its function result, a new style object
having the fill style specified by the fillStyle parameter. The fillStyle
parameter should be one of these values:

kQ3FillStyleFilled
kQ3FillStyleEdges
kQ3FillStylePoints

If a new style object could not be created, Q3FillStyle_New returns the value
NULL.

To change the current fill style, you must actually draw the style object. You can
call Q3Style_Submit to draw the style in retained mode or Q3FillStyle_Submit
(described next) to draw the style in immediate mode.

SEE ALSO

See “Fill Styles” (page 548) for a description of the available fill styles.

Q3FillStyle_Submit 6

You can use the Q3FillStyle_Submit function to submit a fill style in immediate
mode.

TQ3Status Q3FillStyle_Submit (
TQ3FillStyle fillStyle,
TQ3ViewObject view);

fillStyle A fill style value.

view A view.

C H A P T E R 6

Style Objects

Style Objects Reference 565

DESCRIPTION

The Q3FillStyle_Submit function sets the fill style of the view specified by the
view parameter to the style specified in the fillStyle parameter.

SPECIAL CONSIDERATIONS

You should call Q3FillStyle_Submit only in a submitting loop.

Q3FillStyle_Get 6

You can use the Q3FillStyle_Get function to get the fill style value of a fill style.

TQ3Status Q3FillStyle_Get (
TQ3StyleObject styleObject,
TQ3FillStyle *fillStyle);

styleObject A fill style object.

fillStyle On exit, a pointer to the fill style value of the specified fill style
object.

DESCRIPTION

The Q3FillStyle_Get function returns, in the fillStyle parameter, a pointer to
the current fill style value of the fill style object specified by the styleObject
parameter.

Q3FillStyle_Set 6

You can use the Q3FillStyle_Set function to set the fill style value of a fill style.

TQ3Status Q3FillStyle_Set (
TQ3StyleObject styleObject,
TQ3FillStyle fillStyle);

styleObject A fill style object.

C H A P T E R 6

Style Objects

566 Style Objects Reference

fillStyle A fill style value.

DESCRIPTION

The Q3FillStyle_Set function sets the fill style value of the style object specified
by the styleObject parameter to the value specified in the fillStyle parameter.

Managing Highlight Styles 6

QuickDraw 3D provides routines that you can use to manage highlight styles.

Q3HighlightStyle_New 6

You can use the Q3HighlightStyle_New function to create a new highlight style
object.

TQ3StyleObject Q3HighlightStyle_New (
TQ3AttributeSet highlightAttribute);

highlightAttribute

An attribute set.

DESCRIPTION

The Q3HighlightStyle_New function returns, as its function result, a new style
object having the highlight style specified by the highlightAttribute parameter.
The highlightAttribute parameter should be a reference to an attribute set.

If a new style object could not be created, Q3HighlightStyle_New returns the
value NULL.

To change the current highlight style, you must actually draw the style object.
You can call Q3Style_Submit to draw the style in retained mode or
Q3HighlightStyle_Submit (described next) to draw the style in immediate mode.

SEE ALSO

See “Highlight Styles” (page 548) for a description of highlight styles.

C H A P T E R 6

Style Objects

Style Objects Reference 567

Q3HighlightStyle_Submit 6

You can use the Q3HighlightStyle_Submit function to submit a highlight style in
immediate mode.

TQ3Status Q3HighlightStyle_Submit (
TQ3AttributeSet highlightAttribute,
TQ3ViewObject view);

highlightAttribute
An attribute set.

view A view.

DESCRIPTION

The Q3HighlightStyle_Submit function sets the highlight style of the view
specified by the view parameter to the style specified in the highlightAttribute
parameter.

SPECIAL CONSIDERATIONS

You should call Q3HighlightStyle_Submit only in a submitting loop.

Q3HighlightStyle_Get 6

You can use the Q3HighlightStyle_Get function to get the highlight style value
of a highlight style.

TQ3Status Q3HighlightStyle_Get (
TQ3StyleObject highlight,
TQ3AttributeSet *highlightAttribute);

highlight A highlight style object.

highlightAttribute
On exit, a pointer to the attribute set of the specified highlight
style object.

C H A P T E R 6

Style Objects

568 Style Objects Reference

DESCRIPTION

The Q3HighlightStyle_Get function returns, in the highlightAttribute
parameter, a pointer to the current attribute set of the style object specified by
the highlight parameter.

Q3HighlightStyle_Set 6

You can use the Q3HighlightStyle_Set function to set the highlight style value of
a highlight style.

TQ3Status Q3HighlightStyle_Set (
TQ3StyleObject highlight,
TQ3AttributeSet highlightAttribute);

highlight A highlight style object.

highlightAttribute
An attribute set.

DESCRIPTION

The Q3HighlightStyle_Set function sets the highlight style value of the style
object specified by the highlight parameter to the attribute set specified in the
highlightAttribute parameter.

Managing Subdivision Styles 6

QuickDraw 3D provides routines that you can use to manage subdivision
styles.

Q3SubdivisionStyle_New 6

You can use the Q3SubdivisionStyle_New function to create a new subdivision
style object.

C H A P T E R 6

Style Objects

Style Objects Reference 569

TQ3StyleObject Q3SubdivisionStyle_New (
const TQ3SubdivisionStyleData *data);

data A pointer to a subdivision style data structure.

DESCRIPTION

The Q3SubdivisionStyle_New function returns, as its function result, a new style
object having the subdivision style specified by the data parameter. The method
field of the subdivision style data structure pointed to by the data parameter
should be one of these values:

kQ3SubdivisionMethodConstant
kQ3SubdivisionMethodWorldSpace
kQ3SubdivisionMethodScreenSpace

The meaning of the c1 and c2 fields depends on the value of the method field.
See “Subdivision Style Data Structure” (page 555) for details.

If a new style object could not be created, Q3SubdivisionStyle_New returns the
value NULL.

To change the current subdivision style, you must actually draw the style object.
You can call Q3Style_Submit to draw the style in retained mode or
Q3SubdivisionStyle_Submit to draw the style in immediate mode.

SEE ALSO

See “Subdivision Styles” (page 549) for a description of subdivision styles.

Q3SubdivisionStyle_Submit 6

You can use the Q3SubdivisionStyle_Submit function to submit a subdivision
style in immediate mode.

TQ3Status Q3SubdivisionStyle_Submit (
const TQ3SubdivisionStyleData *data,
TQ3ViewObject view);

C H A P T E R 6

Style Objects

570 Style Objects Reference

data A pointer to a subdivision style data structure.

view A view.

DESCRIPTION

The Q3SubdivisionStyle_Submit function sets the subdivision style of the view
specified by the view parameter to the style specified by the data parameter.

SPECIAL CONSIDERATIONS

You should call Q3SubdivisionStyle_Submit only in a submitting loop.

Q3SubdivisionStyle_GetData 6

You can use the Q3SubdivisionStyle_GetData function to get the subdivision
style method and specifiers of a subdivision style.

TQ3Status Q3SubdivisionStyle_GetData (
TQ3StyleObject subdiv,
TQ3SubdivisionStyleData *data);

subdiv A subdivision style object.

data On exit, a pointer to a subdivision style data structure.

DESCRIPTION

The Q3SubdivisionStyle_GetData function returns, in the data parameter, a
pointer to a subdivision style data structure for the style object specified by the
subdiv parameter.

Q3SubdivisionStyle_SetData 6

You can use the Q3SubdivisionStyle_SetData function to set the subdivision
style method and specifiers of a subdivision style.

C H A P T E R 6

Style Objects

Style Objects Reference 571

TQ3Status Q3SubdivisionStyle_SetData (
TQ3StyleObject subdiv,
const TQ3SubdivisionStyleData *data);

subdiv A subdivision style object.

data A pointer to a subdivision style data structure.

DESCRIPTION

The Q3SubdivisionStyle_SetData function sets the subdivision style values of
the style object specified by the subdiv parameter to the values specified in the
data parameter.

Managing Orientation Styles 6

QuickDraw 3D provides routines that you can use to manage orientation styles.

Q3OrientationStyle_New 6

You can use the Q3OrientationStyle_New function to create a new orientation
style object.

TQ3StyleObject Q3OrientationStyle_New (
TQ3OrientationStyle frontFacingDirection);

frontFacingDirection
An orientation style value.

DESCRIPTION

The Q3OrientationStyle_New function returns, as its function result, a new style
object having the orientation style specified by the frontFacingDirection
parameter. The frontFacingDirection parameter should be one of these values:

kQ3OrientationStyleCounterClockwise
kQ3OrientationStyleClockwise

C H A P T E R 6

Style Objects

572 Style Objects Reference

If a new style object could not be created, Q3OrientationStyle_New returns the
value NULL.

To change the current orientation style, you must actually draw the style object.
You can call Q3Style_Submit to draw the style in retained mode or
Q3OrientationStyle_Submit (described next) to draw the style in immediate
mode.

SEE ALSO

See “Orientation Styles” (page 550) for a description of orientation styles.

Q3OrientationStyle_Submit 6

You can use the Q3OrientationStyle_Submit function to submit a orientation
style in immediate mode.

TQ3Status Q3OrientationStyle_Submit (
TQ3OrientationStyle frontFacingDirection,
TQ3ViewObject view);

frontFacingDirection
An orientation style value.

view A view.

DESCRIPTION

The Q3OrientationStyle_Submit function sets the orientation style of the view
specified by the view parameter to the style specified by the
frontFacingDirection parameter.

SPECIAL CONSIDERATIONS

You should call Q3OrientationStyle_Submit only in a submitting loop.

C H A P T E R 6

Style Objects

Style Objects Reference 573

Q3OrientationStyle_Get 6

You can use the Q3OrientationStyle_Get function to get the orientation style
value of an orientation style.

TQ3Status Q3OrientationStyle_Get (
TQ3StyleObject frontFacingDirectionObject,
TQ3OrientationStyle *frontFacingDirection);

frontFacingDirectionObject
An orientation style object.

frontFacingDirection
On exit, a pointer to the orientation style value of the specified
orientation style object.

DESCRIPTION

The Q3OrientationStyle_Get function returns, in the frontFacingDirection
parameter, a pointer to the current orientation style value of the style object
specified by the frontFacingDirectionObject parameter.

Q3OrientationStyle_Set 6

You can use the Q3OrientationStyle_Set function to set the orientation style
value of a orientation style.

TQ3Status Q3OrientationStyle_Set (
TQ3StyleObject frontFacingDirectionObject,
TQ3OrientationStyle frontFacingDirection);

frontFacingDirectionObject
An orientation style object.

frontFacingDirection
An orientation style value.

C H A P T E R 6

Style Objects

574 Style Objects Reference

DESCRIPTION

The Q3OrientationStyle_Set function sets the orientation style value of the style
object specified by the frontFacingDirectionObject parameter to the value
specified in the frontFacingDirection parameter.

Managing Shadow-Receiving Styles 6

QuickDraw 3D provides routines that you can use to manage shadow-receiving
styles.

Q3ReceiveShadowsStyle_New 6

You can use the Q3ReceiveShadowsStyle_New function to create a new
shadow-receiving style object.

TQ3StyleObject Q3ReceiveShadowsStyle_New (TQ3Boolean receives);

receives A Boolean value that determines whether the new style object
specifies that objects in the scene receive shadows (kQ3True) or
do not receive shadows (kQ3False).

DESCRIPTION

The Q3ReceiveShadowsStyle_New function returns, as its function result, a new
style object having the shadow-receiving style specified by the receives
parameter.

If a new style object could not be created, Q3ReceiveShadowsStyle_New returns
the value NULL.

To change the current shadow-receiving style, you must actually draw the style
object. You can call Q3Style_Submit to draw the style in retained mode or
Q3ReceiveShadowsStyle_Submit (described next) to draw the style in immediate
mode.

C H A P T E R 6

Style Objects

Style Objects Reference 575

SEE ALSO

See “Shadow-Receiving Styles” (page 551) for a description of
shadow-receiving styles.

Q3ReceiveShadowsStyle_Submit 6

You can use the Q3ReceiveShadowsStyle_Submit function to submit a
shadow-receiving style in immediate mode.

TQ3Status Q3ReceiveShadowsStyle_Submit (
TQ3Boolean receives,
TQ3ViewObject view);

receives A Boolean value that determines whether objects in the scene
receive shadows (kQ3True) or do not receive shadows (kQ3False).

view A view.

DESCRIPTION

The Q3ReceiveShadowsStyle_Submit function sets the shadow-receiving style of
the view specified by the view parameter to the style specified by the receives
parameter.

SPECIAL CONSIDERATIONS

You should call Q3ReceiveShadowsStyle_Submit only in a submitting loop.

Q3ReceiveShadowsStyle_Get 6

You can use the Q3ReceiveShadowsStyle_Get function to get the
shadow-receiving style value of a shadow-receiving style.

TQ3Status Q3ReceiveShadowsStyle_Get (
TQ3StyleObject styleObject,
TQ3Boolean *receives);

C H A P T E R 6

Style Objects

576 Style Objects Reference

styleObject A shadow-receiving style object.

receives On exit, a pointer to the shadow-receiving style value of the
specified shadow-receiving style object.

DESCRIPTION

The Q3ReceiveShadowsStyle_Get function returns, in the receives parameter, a
pointer to the current shadow-receiving style value of the style object specified
by the styleObject parameter.

Q3ReceiveShadowsStyle_Set 6

You can use the Q3ReceiveShadowsStyle_Set function to set the
shadow-receiving style value of a shadow-receiving style.

TQ3Status Q3ReceiveShadowsStyle_Set (
TQ3StyleObject styleObject,
TQ3Boolean receives);

styleObject A shadow-receiving style object.

receives A Boolean value that determines whether objects in the scene
receive shadows (kQ3True) or do not receive shadows (kQ3False).

DESCRIPTION

The Q3ReceiveShadowsStyle_Set function sets the shadow-receiving style value
of the style object specified by the styleObject parameter to the value specified
in the receives parameter.

Managing Picking ID Styles 6

QuickDraw 3D provides routines that you can use to manage picking ID styles.

C H A P T E R 6

Style Objects

Style Objects Reference 577

Q3PickIDStyle_New 6

You can use the Q3PickIDStyle_New function to create a new picking ID style
object.

TQ3StyleObject Q3PickIDStyle_New (unsigned long id);

id A picking ID.

DESCRIPTION

The Q3PickIDStyle_New function returns, as its function result, a new style object
having the picking ID specified by the id parameter. If a new style object could
not be created, Q3PickIDStyle_New returns the value NULL.

SEE ALSO

See “Picking ID Styles” (page 552) for a description of picking ID styles.

Q3PickIDStyle_Submit 6

You can use the Q3PickIDStyle_Submit function to submit a picking ID style in
immediate mode.

TQ3Status Q3PickIDStyle_Submit (
unsigned long id,
TQ3ViewObject view);

id A picking ID.

view A view.

DESCRIPTION

The Q3PickIDStyle_Submit function sets the picking ID of the view specified by
the view parameter to the value specified by the id parameter.

C H A P T E R 6

Style Objects

578 Style Objects Reference

SPECIAL CONSIDERATIONS

You should call Q3PickIDStyle_Submit only in a submitting loop.

Q3PickIDStyle_Get 6

You can use the Q3PickIDStyle_Get function to get the picking ID style value of
a picking ID style.

TQ3Status Q3PickIDStyle_Get (
TQ3StyleObject pickIDObject,
unsigned long *id);

pickIDObject A picking ID style object.

id On exit, the picking ID of the specified picking ID style object.

DESCRIPTION

The Q3PickIDStyle_Get function returns, in the id parameter, the current picking
ID of the style object specified by the pickIDObject parameter.

Q3PickIDStyle_Set 6

You can use the Q3PickIDStyle_Set function to set the picking ID of a picking ID
style.

TQ3Status Q3PickIDStyle_Set (
TQ3StyleObject pickIDObject,
unsigned long id);

pickIDObject A picking ID style object.

id A picking ID.

C H A P T E R 6

Style Objects

Style Objects Reference 579

DESCRIPTION

The Q3PickIDStyle_Set function sets the picking ID of the style object specified
by the pickIDObject parameter to the value specified in the id parameter.

Managing Picking Parts Styles 6

QuickDraw 3D provides routines that you can use to manage picking parts
styles.

Q3PickPartsStyle_New 6

You can use the Q3PickPartsStyle_New function to create a new picking parts
style object.

TQ3StyleObject Q3PickPartsStyle_New (TQ3PickParts parts);

parts A picking parts style value.

DESCRIPTION

The Q3PickPartsStyle_New function returns, as its function result, a new style
object having the picking parts style specified by the parts parameter. See
page 552 for a list of masks you can use to construct a picking parts style value.

If a new style object could not be created, Q3PickPartsStyle_New returns the
value NULL.

To change the current picking parts style, you must actually draw the style
object. You can call Q3Style_Submit to draw the style in retained mode or
Q3PickPartsStyle_Submit (described next) to draw the style in immediate mode.

SEE ALSO

See “Picking Parts Styles” (page 552) for a description of picking parts styles.

C H A P T E R 6

Style Objects

580 Style Objects Reference

Q3PickPartsStyle_Submit 6

You can use the Q3PickPartsStyle_Submit function to submit a picking parts
style in immediate mode.

TQ3Status Q3PickPartsStyle_Submit (
TQ3PickParts parts,
TQ3ViewObject view);

parts A picking parts style value.

view A view.

DESCRIPTION

The Q3PickPartsStyle_Submit function sets the picking parts style of the view
specified by the view parameter to the style specified by the parts parameter.

SPECIAL CONSIDERATIONS

You should call Q3PickPartsStyle_Submit only in a submitting loop.

Q3PickPartsStyle_Get 6

You can use the Q3PickPartsStyle_Get function to get the picking parts style
value of a picking parts style.

TQ3Status Q3PickPartsStyle_Get (
TQ3StyleObject pickPartsObject,
TQ3PickParts *parts);

pickPartsObject
A picking parts style object.

parts On entry, a pointer to a variable of type TQ3PickParts. On exit,
the current picking parts style value of the specified style object.

C H A P T E R 6

Style Objects

Style Objects Reference 581

DESCRIPTION

The Q3PickPartsStyle_Get function returns, in the parts parameter, a pointer to
the current picking parts value of the style object specified by the
pickPartsObject parameter. See page 552 for a list of masks used to construct a
picking parts value.

Q3PickPartsStyle_Set 6

You can use the Q3PickPartsStyle_Set function to set the picking parts style
value of a picking parts style.

TQ3Status Q3PickPartsStyle_Set (
TQ3StyleObject pickPartsObject,
TQ3PickParts parts);

pickPartsObject
A picking parts style object.

parts A picking parts style value.

DESCRIPTION

The Q3PickPartsStyle_Set function sets the picking parts style value of the style
object specified by the pickPartsObject parameter to the value specified in the
parts parameter.

Managing the Anti-Alias Style 6

QuickDraw 3D provides routines that you can use to manage the anti-alias
style.

Q3AntiAliasStyle_New 6

You can use the Q3AntiAliasStyle_New function to create a TQ3StyleObject
object. When the object is rendered, it sets the renderer’s anti-aliasing style.

C H A P T E R 6

Style Objects

582 Style Objects Reference

TQ3StyleObject Q3AntiAliasStyle_New (
TQ3AntiAliasStyleData *aaStyleData);

aaStyleData A TQ3AntiAliasStyleData structure.

return value An anti-alias style object.

DESCRIPTION

The Q3AntiAliasStyle_New function returns, in TQ3StyleObject, the anti-alias
style object determined by the structure pointed to by aaStyleData.

Q3AntiAliasStyle_Submit 6

You can use the Q3AntiAliasStyle_Submit function to set the current
anti-aliasing mode state in the view.

TQ3Status Q3AntiAliasStyle_Submit (
const TQ3AntiAliasStyleData *aaStyleData,
TQ3ViewObject view);

aaStyleData A TQ3AntiAliasStyleData structure.

view A view.

DESCRIPTION

The Q3AntiAliasStyle_Submit function sets the current anti-aliasing mode state
determined by aaStyleData in the view designated by view.

SPECIAL CONSIDERATIONS

You can call the Q3AntiAliasStyle_Submit function while rendering a frame,
between the Q3View_StartRendering and Q3View_EndRendering calls. However,
many renderers cannot change the state of anti-aliasing while rendering a
frame, so only the first call to Q3AntiAliasStyle_Submit may have an effect.

C H A P T E R 6

Style Objects

Style Objects Reference 583

Q3AntiAliasStyle_GetData 6

You can use the Q3AntiAliasStyle_GetData function to fetch the
TQ3AntiAliasStyleData structure currently associated with an anti-alias style
object.

TQ3Status Q3AntiAliasStyle_GetData (
TQ3StyleObject styleObject,
TQ3AntiAliasStyleData *aaStyleData);

styleObject An anti-alias style object.

aaStyleData A TQ3AntiAliasStyleData structure.

DESCRIPTION

The Q3AntiAliasStyle_GetData function returns, in the aaStyleData parameter,
the current TQ3AntiAliasStyleData structure for the anti-alias style object
designated by styleObject.

Q3AntiAliasStyle_SetData 6

You can use the Q3AntiAliasStyle_SetData function to determine the
TQ3AntiAliasStyleData structure currently associated with an anti-alias style
object.

TQ3Status Q3AntiAliasStyle_SetData (
TQ3StyleObject styleObject,
const TQ3AntiAliasStyleData *aaStyleData);

styleObject An anti-alias style object.

aaStyleData A TQ3AntiAliasStyleData structure.

DESCRIPTION

The Q3AntiAliasStyle_SetData function sets the TQ3AntiAliasStyleData
structure as the current source of anti-alias style control for the anti-alias style
object designated by styleObject.

C H A P T E R 6

Style Objects

584 Style Objects Reference

About Transform Objects 585

C H A P T E R 7

Transform Objects 7Figure 7-0
Listing 7-0
Table 7-0

This chapter describes transform objects (or transforms) and the functions you
can use to create and manipulate them. You can use transforms to change the
position, size, or orientation of a geometric object. QuickDraw 3D uses
numerous transforms internally, for example, when creating a two-dimensional
image of a three-dimensional model. QuickDraw 3D supports a number of
types of transforms, including translate, scaling, rotation, and arbitrary affine
transforms.

You should read this chapter for general information about the types of
transforms supported by QuickDraw 3D and for specific information about
applying transforms to objects in your models. See the chapter “View Objects”
for routines that you can use to get information about the transforms that
QuickDraw 3D uses internally when rendering a model.

This chapter begins by describing transform objects and their features. It also
describes the various coordinate systems or spaces supported by
QuickDraw 3D. The section “Transform Objects Reference,” beginning on
page 599 provides a complete description of transform objects and the routines
you can use to create and manipulate them.

About Transform Objects 7

A transform object (or, more briefly, a transform) is an object that you can use
to modify or transform the appearance or behavior of drawable QuickDraw 3D
objects. You use transforms to reposition and reorient geometric shapes in
space. Transforms are useful because they do not alter the geometric
representation of objects (that is, the vertices or other values that define a
geometric object); rather, they are applied as matrices at rendering time,
temporarily “moving” an object in space. Thus you can reference a single object

C H A P T E R 7

Transform Objects

586 About Transform Objects

multiple times with different transforms and can place an object in many
different locations within a model.

A transform is of type TQ3TransformObject, which is a type of shape object.
QuickDraw 3D defines these basic types of transforms:

■ matrix transforms

■ translate transforms

■ scale transforms

■ rotate transforms

■ rotate-about-point transforms

■ rotate-about-axis transforms

■ quaternion transforms

No matter how you specify a transform, QuickDraw 3D maintains its data in
that form until you begin to render an image, at which time it converts the data
to a temporary matrix that is applied to the objects it governs. Because
transforms are a type of shape object, you apply a transform by drawing it into
a view or by putting it into a group. If you draw a transform in a view, you can
use either retained or immediate transforms.

When you apply several transforms to a vector, the transform matrices are
premultiplied to the vector. For example, in the multiplication v[A][B]...[M] of
the vector v by the matrices A, B,..., M, matrix A is first applied to the vector,
then B, and so forth. Accordingly, you should specify transforms to be
concatenated in the reverse order that you want to apply them. This scheme is
consistent with the application of matrices in a hierarchy, in which matrices at
the top of a hierarchy are applied last.

For example, consider the very simple model illustrated in Figure 7-1, which
consists of three separate groups. A geometric object is first grouped with a
scale and a translate transform (the translate transform was added to the group
before the scale transform was added); the resulting group is then grouped with
a rotate-about-axis transform, and that group is finally grouped with a second
translate transform.

C H A P T E R 7

Transform Objects

About Transform Objects 587

Figure 7-1 A simple model illustrating the order in which transforms are applied

When this model is rendered, the transforms are applied to the geometric object
in this order: scale, translate (group 1), rotate-about-axis (group 2), translate
(group 3). Your application should add transforms to a group in the reverse
order they are to be rendered. That is, in the example, you would first add the
translate transform to Group 1 and then add the scale transform.

Note
For information about creating groups of QuickDraw 3D
objects, see the chapter “Group Objects.” ◆

Spaces 7

A coordinate system (or space) is any system of assigning planar or spatial
positions to objects. In general, QuickDraw 3D operates with rectilinear or
Cartesian coordinate systems, in which the position of a point in a plane or in
space is determined by projecting the point onto the coordinate axes, which are
mutually perpendicular lines that intersect at a point called the origin. By
convention, the origin is the planar point (0, 0) or the spatial point (0, 0, 0).
Figure 7-2 shows a Cartesian coordinate system that is right-handed (that is, if
the thumb of the right hand points in the direction of the positive x axis and the
index finger points in the direction of the positive y axis, then the middle finger
points in the direction of the positive z axis).

Translate

Group 3

GeometryTranslate
Group 1

ScaleRotate
about axis

Group 2

C H A P T E R 7

Transform Objects

588 About Transform Objects

Figure 7-2 A right-handed Cartesian coordinate system

Note
You can, for certain purposes, specify positions using other
types of coordinate systems, such as the polar coordinate
system (a system of assigning planar positions to objects in
terms of their distances r from the origin along a ray that
forms a given angle θ with a fixed coordinate line) or the
spherical coordinate system (a system of assigning spatial
positions to objects in terms of their distances r from the
origin along a ray that forms a given angle θ with a fixed
coordinate line and another angle φ with another fixed
coordinate line). QuickDraw 3D provides routines you can
use to convert among these three types of coordinate
systems. See the chapter “Mathematical Utilities” for
details. Unless noted differently, this book always uses
Cartesian coordinate systems. ◆

QuickDraw 3D, like virtually all other 3D graphics systems, defines several
distinct coordinate systems and maintains transforms that it uses to convert one
coordinate system into another.

Because it’s often useful to define an object once and then to create multiple
copies of that object for placement at different positions and orientations,
QuickDraw 3D supports a local coordinate system for each object you define.
An object’s local coordinate system is simply the coordinate system in which it

y axis

x axis

z axis

Origin

C H A P T E R 7

Transform Objects

About Transform Objects 589

is specified (that is, that determines the values you specify in the relevant data
structure). Any given object can be defined using any of infinitely many local
coordinate systems. Usually, you’ll pick a local coordinate system whose origin
coincides with some part of the object. For instance, it’s quite natural to define a
box using a local coordinate system whose origin is at the box’s origin, and
whose axes coincide with the box’s axes.

Note
A local coordinate system is sometimes called an object
coordinate system or a modeling coordinate system, and
the space it defines is the object space or modeling
space. ◆

The world coordinate system (or world space) defines the locations of all
geometric objects as they exist at rendering or picking time, with all applicable
transforms acting on them. It’s important to note that world space is relevant
only within a submitting loop, because the transforms that relocate or reorient
an object must be applied to the object to determine its position and orientation
in world coordinates.

Note
The world coordinate system is sometimes called the
global coordinate system or the application coordinate
system, and the space it defines is the global space or
application space. ◆

You can create copies of an object and place them at different locations by
applying different transforms to each copy. A transform changes an object’s
position or orientation in world coordinates, but not its local coordinates. In
other words, if you use the function Q3Box_GetOrigin with two copies of a single
box, the function always returns the same origin for each box, whether or not
transforms have been applied to one or both of the copies.

The relationship between an object’s local coordinate system and the world
coordinate system is specified by that object’s local-to-world transform. For
objects that have no transforms applied to them at rendering time, the
local-to-world transform can be represented by the identity matrix, in which
case the local coordinate system of that object and the world coordinate system
coincide. If one or more transforms is applied to the object at rendering time,
the world space location of the object is determined by taking its local space
position and applying the transforms to it.

C H A P T E R 7

Transform Objects

590 About Transform Objects

A world coordinate system defines the relative positions and sizes of geometric
objects. When an object is rendered in a view, the view’s camera specifies yet
another coordinate system, the camera coordinate system (or camera space).
A camera coordinate system is defined by the camera placement structure
associated with the camera, which is defined like this:

typedef struct TQ3CameraPlacement {
TQ3Point3D cameraLocation;
TQ3Point3D pointOfInterest;
TQ3Vector3D upVector;

} TQ3CameraPlacement;

Note
See the chapter “Camera Objects” for complete information
about the camera placement structure. ◆

The cameraLocation field specifies the origin of the camera coordinate system.
The pointOfInterest field specifies the z axis of the camera coordinate system,
and the upVector field specifies the y axis of the camera coordinate system. The
x axis of the camera coordinate system is determined by the left-hand rule.
Figure 7-3 shows a camera coordinate system and its relation to the world
coordinate system. In this figure, the camera is set to take an isometric view of
the box whose origin is at the origin of the world coordinate system.

C H A P T E R 7

Transform Objects

About Transform Objects 591

Figure 7-3 A camera coordinate system

As you know, a camera specifies a method of projecting a three-dimensional
model onto a two-dimensional plane, called the view plane. The camera, the
view plane, and the hither and yon clipping planes together define the part of
the model that is projected onto that view plane. As you can see in Figure 9-7
(page 679), these objects define a rectangular frustum known as the viewing
box. When perspective camera is used, the camera, the view plane, and the
hither and yon clipping planes define a pyramidal frustum known as the
viewing frustum (see Figure 9-5 (page 677)). Because a camera and its camera
coordinate system determine a unique view frustum, camera space is also called
frustum space.

The final step in creating an image of a model is to map the two-dimensional
image projected onto the view plane into the draw context associated with a
view. In general, the draw context specifies a window on a screen or other
display device that is to contain all or part of the view plane image.
Accordingly, QuickDraw 3D maintains, for each draw context, a window
coordinate system (or window space) that defines the position of objects in the
draw context. Figure 7-4 shows a window coordinate system.

xw

yw

yc

zc

xc

zw

World
coordinate axes

Camera
coordinate axes

Camera

A box

1239om a34098

Todaisudr lkjasdf

C H A P T E R 7

Transform Objects

592 About Transform Objects

Figure 7-4 A window coordinate system

Note
A window coordinate system is sometimes called a screen
coordinate system or a draw context coordinate system,
and the space it defines is the screen space or draw context
space. ◆

In addition to the local-to-world transform (which defines the relationship
between an object’s local coordinate system and the world coordinate system),
QuickDraw 3D also maintains a world-to-frustum transform (which defines
the relationship between the world coordinate system and the frustum
coordinate system) and a frustum-to-window transform (which defines the
relationship between a frustum coordinate system and a window coordinate
system). See Figure 7-5. You can, if necessary, get a matrix representation of
these three transforms. See the chapter “View Objects” for details.

The world-to-frustum transform is actually the product of two transforms
specified by matrices, the view orientation matrix and the view mapping
matrix. The view orientation matrix rotates and translates the view’s camera so
that it is pointing down the negative z axis. The view mapping matrix
transforms the viewing frustum into a standard rectangular solid. This standard
rectangular solid is a box containing x values from –1 to 1, y values from –1 to 1,
and z values from 0 to –1. The far clipping plane is the plane defined by the
equation z = – 1, and the near clipping plane is the plane defined by the
equation z = 0.

xwi

ywi

Origin

C H A P T E R 7

Transform Objects

About Transform Objects 593

With a perspective camera, the view mapping matrix performs most of the
work of projection. The objects transformed by the world-to-frustum transform
are still 3D, but it’s easy to get the 2D projection onto the view plane by simply
dropping the z coordinate of each rendered point.

Figure 7-5 View state transformations

Types of Transforms 7

QuickDraw 3D supports a number of different ways of transforming geometric
objects. Equivalently, these transforms are ways of transforming coordinate
systems containing geometric objects.

3D local
coordinates

Geometry

World
coordinates

View
orientation

matrix

Modeling
transformation

XXX
coordinates

View
mapping

matrix

XXX
coordinates

2D device
(window

coordinates)

+y

– y

– z

– x + x

+ z

C H A P T E R 7

Transform Objects

594 About Transform Objects

Matrix Transforms 7

A matrix transform is any transform specified by an affine, invertible 4-by-4
matrix. QuickDraw 3D does not check that the matrix you specify is affine or
invertible, so it is your responsibility to ensure that the matrix has these
qualities.

A matrix transform is the most general type of transform and can be used to
represent any of the other kinds of transforms. If, however, you just want to
apply a translation to an object, it’s better to use a translate transform instead of
a matrix transform. By using the more specific type of transform object, you
allow renderers and shaders to apply optimizations that might not apply to a
more general transform.

Translate Transforms 7

A translate transform translates an object along the x, y, and z axes by specified
values. You specify the desired translation values using a vector. For example,
to translate an object by 2 units along the positive x axis, by 4 units along the
positive y axis, and by 3 units along the positive z axis, you could define a
vector like this:

TQ3Vector3D myVector;
TQ3TransformObject myTransform;

Q3Vector3D_Set(&myVector, 2.0, 4.0, 3.0);
myTransform = Q3TranslateTransform_New(&myVector);

Figure 7-6 shows a unit cube before and after a translate transform is applied.

C H A P T E R 7

Transform Objects

About Transform Objects 595

Figure 7-6 A translate transform

Scale Transforms 7

A scale transform scales an object along the x, y, and z axes by specified values.
Figure 7-7 shows a unit cube before and after applying a scale transform.

Figure 7-7 A scale transform

y

z

x

3

4

2

y

z

x3

4

21

C H A P T E R 7

Transform Objects

596 About Transform Objects

As with a translate transform, you specify the desired scale transform by using
a vector. For example, to scale an object by a factor of 2 along the positive x axis,
by a factor of 4 along the positive y axis, and by a factor of 3 along the positive z
axis, you could define a vector like this:

TQ3Vector3D myVector;

Q3Vector3D_Set(&myVector, 2.0, 4.0, 3.0);

Rotate Transforms 7

A rotate transform rotates an object about the x, y, or z axis by a specified
number of radians at the origin.

To specify a rotate transform, you fill in the fields of a rotate transform data
structure, which specifies the axis of rotation and the number of radians to
rotate. You can use QuickDraw 3D macros to convert degrees to radians, if you
prefer to work with degrees. (See the chapter “Mathematical Utilities” for
details.) Figure 7-8 shows a unit cube before and after applying a rotate
transform.

Figure 7-8 A rotate transform

y

z

x

C H A P T E R 7

Transform Objects

About Transform Objects 597

Rotate-About-Point Transforms 7

A rotate-about-point transform rotates an object about the x, y, or z axis by a
specified number of radians at an arbitrary point in space. To specify a
rotate-about-point transform, you fill in the fields of a rotate-about-point
transform data structure, which specifies the axis of rotation, the point of
rotation, and the number of radians to rotate. Figure 7-9 shows a unit cube
before and after applying a rotate-about-point transform.

Figure 7-9 A rotate-about-point transform

Rotate-About-Axis Transforms 7

A rotate-about-axis transform rotates an object about an arbitrary axis in space
by a specified number of radians at an arbitrary point in space. To specify a
rotate-about-axis transform, you fill in the fields of a rotate-about-axis
transform data structure, which specifies the axis of rotation, the point of
rotation, and the number of radians to rotate. Figure 7-10 shows a unit cube
before and after applying a rotate-about-axis transform.

y

z

x

C H A P T E R 7

Transform Objects

598 About Transform Objects

Figure 7-10 A rotate-about-axis transform

Quaternion Transforms 7

A quaternion transform rotates and twists an object according to the
mathematical properties of quaternions.

The Reset Transform 7

When transforms are submitted to a view, either directly through an
immediate-mode call such as Q3ScaleTransform_Submit or a retained-mode call
such as Q3Transform_Submit, or indirectly by inclusion in a group, the view’s
current transformation matrix is concatenated with the submitted matrix to
form the new current transformation matrix.

An application can take advantage of this transformation stacking behavior in
hierarchical modelling; the view can maintain a stack of transformations that
the application may push and pop. The application can do this explicitly, using
Q3View_Push and Q3View_Pop, or implicitly by using groups, which push and pop
transformations when they are entered and exited. In a push, the current
transformation is pushed onto a stack, but a copy remains as the current
transfomation. Subsequent transformation submissions concatenate their
matrices with the current transformation.

However, this behavior is not always desirable. Suppose an application
traverses a hierarchy, either in mixed or immediate mode, using sequences of

y

z

x

C H A P T E R 7

Transform Objects

Transform Objects Reference 599

push-transform-polygon-pop actions. If the application wants to draw a shape
untransformed in the middle of such a sequence, (because, for example, the
shape is already drawn in world space coordinates), then the application would
have to get the current transformation, invert it, and submit the inverted
transformation, thereby resolving the current transformation in the view to the
identity matrix. Such a sequence of actions would usually be bracketed by a
push-pop sequence. Because obtaining the current matrix, inverting it, and
submitting the inverted matrix require significant amounts of processing time,
and because inversion cannot be perfectly precise (because of floating-point
approximations), QuickDraw 3D includes a reset transform. It resets the
current transformation to identity (that is, equivalent to the 4x4 identity matrix).

The routines that implement the reset transform are described in “Creating and
Submitting the Reset Transform,” beginning on page 629.

Transform Objects Reference 7

This section describes the QuickDraw 3D data structures and routines that you
can use to manage transforms.

Data Structures 7

QuickDraw 3D defines a number of data structures that you can use to specify
the various kinds of transform objects.

Rotate Transform Data Structure 7

You can use a rotate transform data structure to specify a rotate transform (for
example, when calling the Q3RotateTransform_NewData function). The rotate
transform data structure is defined by the TQ3RotateTransformData data type.

typedef struct TQ3RotateTransformData {
TQ3Axis axis;
float radians;

} TQ3RotateTransformData;

C H A P T E R 7

Transform Objects

600 Transform Objects Reference

Field descriptions
axis The axis of rotation. You can use the constants kQ3AxisX,

kQ3AxisY, and kQ3AxisZ to specify an axis.
radians The number of radians to rotate around the axis of rotation.

Rotate-About-Point Transform Data Structure 7

You can use a rotate-about-point transform data structure to specify a rotate
transform about an axis at an arbitrary point in space (for example, when
calling the Q3RotateAboutPointTransform_NewData function). The
rotate-about-point transform data structure is defined by the
TQ3RotateAboutPointTransformData data type.

typedef struct TQ3RotateAboutPointTransformData {
TQ3Axis axis;
float radians;
TQ3Point3D about;

} TQ3RotateAboutPointTransformData;

Field descriptions
axis The axis of rotation. You can use the constants kQ3AxisX,

kQ3AxisY, and kQ3AxisZ to specify an axis.
radians The number of radians to rotate around the axis of rotation.
about The point at which the rotation is to occur.

Rotate-About-Axis Data Structure 7

You can use an rotate-about-axis transform data structure to specify a rotate
transform about an arbitrary axis in space at an arbitrary point in space. The
rotate-about-axis transform data structure is defined by the
TQ3RotateAboutAxisTransformData data type.

typedef struct TQ3RotateAboutAxisTransformData {
TQ3Point3D origin;
TQ3Vector3D orientation;
float radians;

} TQ3RotateAboutAxisTransformData;

C H A P T E R 7

Transform Objects

Transform Objects Reference 601

Field descriptions
origin The origin of the axis of rotation.
orientation The orientation of the axis of rotation. This vector must be

normalized or the results will be unpredictable.
radians The number of radians to rotate around the axis of rotation.

Transform Objects Routines 7

This section describes the routines you can use to manage transforms.

Managing Transforms 7

QuickDraw 3D provides routines that you can use to manage transforms.

Q3Transform_GetType 7

You can use the Q3Transform_GetType function to get the type of a transform
object.

TQ3ObjectType Q3Transform_GetType (TQ3TransformObject transform);

transform A transform.

DESCRIPTION

The Q3Transform_GetType function returns, as its function result, the type of the
transform object specified by the transform parameter. The types of transform
objects currently supported by QuickDraw 3D are defined by these constants:

kQ3TransformTypeMatrix
kQ3TransformTypeQuaternion
kQ3TransformTypeRotate
kQ3TransformTypeRotateAboutAxis
kQ3TransformTypeRotateAboutPoint
kQ3TransformTypeScale
kQ3TransformTypeTranslate

C H A P T E R 7

Transform Objects

602 Transform Objects Reference

If the specified transform object is invalid or is not one of these types,
Q3Transform_GetType returns the value kQ3ObjectTypeInvalid.

Q3Transform_GetMatrix 7

You can use the Q3Transform_GetMatrix function to get the matrix representation
of a transform.

TQ3Matrix4x4 *Q3Transform_GetMatrix (
TQ3TransformObject transform,
TQ3Matrix4x4 *matrix);

transform A transform.

matrix On exit, a pointer to the matrix that represents the transform
specified in the transform parameter.

DESCRIPTION

The Q3Transform_GetMatrix function returns, in the matrix parameter and as its
function result, the matrix that represents the transform specified by the
transform parameter. The caller is responsible for allocating the memory
pointed to by matrix.

Q3Transform_Submit 7

You can use the Q3Transform_Submit function to submit a transform.

TQ3Status Q3Transform_Submit (
TQ3TransformObject transform,
TQ3ViewObject view);

transform A transform.

view A view.

C H A P T E R 7

Transform Objects

Transform Objects Reference 603

DESCRIPTION

The Q3Transform_Submit function pushes the transform specified by the
transform parameter onto the view transform stack of the specified view.
Q3Transform_Submit returns kQ3Success if the operation succeeds and kQ3Failure
otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Creating and Manipulating Matrix Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
matrix transforms.

Q3MatrixTransform_New 7

You can use the Q3MatrixTransform_New function to create a new matrix
transform.

TQ3TransformObject Q3MatrixTransform_New (
const TQ3Matrix4x4 *matrix);

matrix On entry, a pointer to a 4-by-4 matrix that defines the desired
new transform.

DESCRIPTION

The Q3MatrixTransform_New function returns, as its function result, a reference to
a new transform object of type kQ3TransformTypeMatrix using the data passed in
the matrix parameter. The data you pass in the matrix parameter is copied into
internal QuickDraw 3D data structures. If QuickDraw 3D cannot allocate
memory for those structures, Q3MatrixTransform_New returns the value NULL.

It is your responsibility to ensure that the matrix specified by the matrix
parameter is affine and invertible. QuickDraw 3D does not check for these
qualities.

C H A P T E R 7

Transform Objects

604 Transform Objects Reference

Q3MatrixTransform_Submit 7

You can use the Q3MatrixTransform_Submit function to submit a matrix
transform without creating an object or allocating memory.

TQ3Status Q3MatrixTransform_Submit (
const TQ3Matrix4x4 *matrix,
TQ3ViewObject view);

matrix A pointer to a 4-by-4 matrix.

view A view.

DESCRIPTION

The Q3MatrixTransform_Submit function pushes the matrix transform specified
by the matrix parameter on the view transform stack of the view specified by
the view parameter. The function returns kQ3Success if the operation succeeds
and kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3MatrixTransform_Get 7

You can use the Q3MatrixTransform_Get function to query the private data stored
in a matrix transform.

TQ3Status Q3MatrixTransform_Get (
TQ3TransformObject transform,
TQ3Matrix4x4 *matrix);

transform A transform.

matrix On exit, a pointer to the matrix associated with the transform
specified in the transform parameter.

C H A P T E R 7

Transform Objects

Transform Objects Reference 605

DESCRIPTION

The Q3MatrixTransform_Get function returns, in the matrix parameter,
information about the matrix transform specified by the transform parameter.
You should use Q3MatrixTransform_Get only with transforms of type
kQ3TransformTypeMatrix.

Q3MatrixTransform_Set 7

You can use the Q3MatrixTransform_Set function to set new private data for a
matrix transform.

TQ3Status Q3MatrixTransform_Set (
TQ3TransformObject transform,
const TQ3Matrix4x4 *matrix);

transform A transform.

matrix A pointer to the new matrix to be associated with the transform
specified in the transform parameter.

DESCRIPTION

The Q3MatrixTransform_Set function sets the matrix transform specified by the
transform parameter to the matrix passed in the matrix parameter. You should
use Q3MatrixTransform_Set only with transforms of type
kQ3TransformTypeMatrix.

Creating and Manipulating Rotate Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
rotate transforms. A rotate transform rotates an object about the x, y, or z axis by
a specified number of radians. You can use macros to convert radians to degrees
if you prefer to work with degrees instead of radians. See the chapter
“Mathematical Utilities” for more information.

C H A P T E R 7

Transform Objects

606 Transform Objects Reference

Q3RotateTransform_New 7

You can use the Q3RotateTransform_New function to create a new rotate
transform.

TQ3TransformObject Q3RotateTransform_New (
const TQ3RotateTransformData *data);

data A pointer to a rotate transform data structure.

DESCRIPTION

The Q3RotateTransform_New function returns, as its function result, a reference to
a new transform object of type kQ3TransformTypeRotate using the data passed in
the data parameter. The data you pass is copied into internal QuickDraw 3D
data structures. If QuickDraw 3D cannot allocate memory for those structures,
Q3RotateTransform_New returns the value NULL.

Q3RotateTransform_Submit 7

You can use the Q3RotateTransform_Submit function to submit a rotate transform
without creating an object or allocating memory.

TQ3Status Q3RotateTransform_Submit (
const TQ3RotateTransformData *data,
TQ3ViewObject view);

data A pointer to a rotate transform data structure.

view A view.

DESCRIPTION

The Q3RotateTransform_Submit function pushes the rotate transform specified by
the data parameter onto the view transform stack of the view specified by the
view parameter. The function returns kQ3Success if the operation succeeds and
kQ3Failure otherwise.

C H A P T E R 7

Transform Objects

Transform Objects Reference 607

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3RotateTransform_GetData 7

You can use the Q3RotateTransform_GetData function to query the private data
stored in a rotate transform.

TQ3Status Q3RotateTransform_GetData (
TQ3TransformObject transform,
TQ3RotateTransformData *data);

transform A rotate transform.

data A pointer to a rotate transform data structure.

DESCRIPTION

The Q3RotateTransform_GetData function returns, in the data parameter,
information about the rotate transform specified by the transform parameter.
You should use Q3RotateTransform_GetData only with transforms of type
kQ3TransformTypeRotate.

Q3RotateTransform_SetData 7

You can use the Q3RotateTransform_SetData function to set new private data for
a rotate transform.

TQ3Status Q3RotateTransform_SetData (
TQ3TransformObject transform,
const TQ3RotateTransformData *data);

transform A rotate transform.

data A pointer to a rotate transform data structure.

C H A P T E R 7

Transform Objects

608 Transform Objects Reference

DESCRIPTION

The Q3RotateTransform_SetData function sets the rotate transform specified by
the transform parameter to the data passed in the data parameter. You should
use Q3RotateTransform_SetData only with transforms of type
kQ3TransformTypeRotate.

Q3RotateTransform_GetAxis 7

You can use the Q3RotateTransform_GetAxis function to get the axis of a rotate
transform.

TQ3Status Q3RotateTransform_GetAxis (
TQ3TransformObject transform,
TQ3Axis *axis);

transform A rotate transform.

axis On exit, the axis of the specified rotate transform.

DESCRIPTION

The Q3RotateTransform_GetAxis function returns, in the axis parameter, the
current axis of rotation of the rotate transform specified by the transform
parameter.

Q3RotateTransform_SetAxis 7

You can use the Q3RotateTransform_SetAxis function to set the axis of a rotate
transform.

TQ3Status Q3RotateTransform_SetAxis (
TQ3TransformObject transform,
TQ3Axis axis);

transform A rotate transform.

axis The desired axis of the specified rotate transform.

C H A P T E R 7

Transform Objects

Transform Objects Reference 609

DESCRIPTION

The Q3RotateTransform_SetAxis function sets the axis of rotation for the rotate
transform specified by the transform parameter to the value passed in the axis
parameter.

Q3RotateTransform_GetAngle 7

You can use the Q3RotateTransform_GetAngle function to get the angle of a rotate
transform.

TQ3Status Q3RotateTransform_GetAngle (
TQ3TransformObject transform,
float *radians);

transform A rotate transform.

radians On exit, the angle, in radians, of the specified rotate transform.

DESCRIPTION

The Q3RotateTransform_GetAngle function returns, in the radians parameter, the
current angle of rotation (in radians) of the rotate transform specified by the
transform parameter.

Q3RotateTransform_SetAngle 7

You can use the Q3RotateTransform_SetAngle function to set the angle of a rotate
transform.

TQ3Status Q3RotateTransform_SetAngle (
TQ3TransformObject transform,
float radians);

transform A rotate transform.

radians The desired angle, in radians, of the specified rotate transform.

C H A P T E R 7

Transform Objects

610 Transform Objects Reference

DESCRIPTION

The Q3RotateTransform_SetAngle function sets the angle of rotation for the rotate
transform specified by the transform parameter to the value passed in the
radians parameter.

Creating and Manipulating Rotate-About-Point Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
rotate transforms about a point. A rotate-about-point transform rotates an object
about the x, y, or z axis by a specified number of radians at an arbitrary point in
space. You can use macros to convert radians to degrees if you prefer to work
with degrees instead of radians. See the chapter “Mathematical Utilities” for
more information.

Q3RotateAboutPointTransform_New 7

You can use the Q3RotateAboutPointTransform_New function to create a new
rotate-about-point transform.

TQ3TransformObject Q3RotateAboutPointTransform_New (
const TQ3RotateAboutPointTransformData *data);

data A pointer to a TQ3RotateAboutPointTransformData structure.

DESCRIPTION

The Q3RotateAboutPointTransform_New function returns, as its function result, a
reference to a new transform object of type kQ3TransformTypeRotateAboutPoint
using the data passed in the data parameter. The data you pass is copied into
internal QuickDraw 3D data structures. If QuickDraw 3D cannot allocate
memory for those structures, Q3RotateAboutPointTransform_New returns the
value NULL.

C H A P T E R 7

Transform Objects

Transform Objects Reference 611

Q3RotateAboutPointTransform_Submit 7

You can use the Q3RotateAboutPointTransform_Submit function to submit a
rotate-about-point transform without creating an object or allocating memory.

TQ3Status Q3RotateAboutPointTransform_Submit (
const TQ3RotateAboutPointTransformData *data,
TQ3ViewObject view);

data A pointer to a TQ3RotateAboutPointTransformData structure.

view A view.

DESCRIPTION

The Q3RotateAboutPointTransform_Submit function pushes the
rotate-about-point transform specified by the data parameter onto the view
transform stack of the view specified by the view parameter. The function
returns kQ3Success if the operation succeeds and kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3RotateAboutPointTransform_GetData 7

You can use the Q3RotateAboutPointTransform_GetData function to query the
private data stored in a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_GetData (
TQ3TransformObject transform,
TQ3RotateAboutPointTransformData *data);

transform A transform.

data A pointer to a rotate-about-point data structure.

C H A P T E R 7

Transform Objects

612 Transform Objects Reference

DESCRIPTION

The Q3RotateAboutPointTransform_GetData function returns, in the data
parameter, information about the rotate-about-point transform specified by the
transform parameter. You should use Q3RotateAboutPointTransform_GetData
only with transforms of type kQ3TransformTypeRotateAboutPoint.

Q3RotateAboutPointTransform_SetData 7

You can use the Q3RotateAboutPointTransform_SetData function to set new
private data for a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_SetData (
TQ3TransformObject transform,
const TQ3RotateAboutPointTransformData *data);

transform A transform.

data A pointer to a rotate-about-point data structure.

DESCRIPTION

The Q3RotateAboutPointTransform_SetData function sets the rotate-about-point
transform specified by the transform parameter to the data passed in the data
parameter. You should use Q3RotateAboutPointTransform_SetData only with
transforms of type kQ3TransformTypeRotateAboutPoint.

Q3RotateAboutPointTransform_GetAxis 7

You can use the Q3RotateAboutPointTransform_GetAxis function to get the axis of
a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_GetAxis (
TQ3TransformObject transform,
TQ3Axis *axis);

transform A rotate-about-point transform.

C H A P T E R 7

Transform Objects

Transform Objects Reference 613

axis On exit, the axis of the specified rotate-about-point transform.

DESCRIPTION

The Q3RotateAboutPointTransform_GetAxis function returns, in the axis
parameter, the current axis of rotation of the rotate-about-point transform
specified by the transform parameter.

Q3RotateAboutPointTransform_SetAxis 7

You can use the Q3RotateAboutPointTransform_SetAxis function to set the axis of
a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_SetAxis (
TQ3TransformObject transform,
TQ3Axis axis);

transform A rotate-about-point transform.

axis The desired axis of the specified rotate-about-point transform.

DESCRIPTION

The Q3RotateAboutPointTransform_SetAxis function sets the axis of rotation for
the rotate-about-point transform specified by the transform parameter to the
value passed in the axis parameter.

Q3RotateAboutPointTransform_GetAngle 7

You can use the Q3RotateAboutPointTransform_GetAngle function to get the
angle of a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_GetAngle (
TQ3TransformObject transform,
float *radians);

C H A P T E R 7

Transform Objects

614 Transform Objects Reference

transform A rotate-about-point transform.

radians On exit, the angle, in radians, of the specified rotate-about-point
transform.

DESCRIPTION

The Q3RotateAboutPointTransform_GetAngle function returns, in the radians
parameter, the current angle of rotation (in radians) of the rotate-about-point
transform specified by the transform parameter.

Q3RotateAboutPointTransform_SetAngle 7

You can use the Q3RotateAboutPointTransform_SetAngle function to set the angle
of a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_SetAngle (
TQ3TransformObject transform,
float radians);

transform A rotate-about-point transform.

radians The desired angle, in radians, of the specified rotate-about-point
transform.

DESCRIPTION

The Q3RotateAboutPointTransform_SetAngle function sets the angle of rotation
for the rotate-about-point transform specified by the transform parameter to the
value passed in the radians parameter.

Q3RotateAboutPointTransform_GetAboutPoint 7

You can use the Q3RotateAboutPointTransform_GetAboutPoint function to get the
point of rotation of a rotate-about-point transform.

C H A P T E R 7

Transform Objects

Transform Objects Reference 615

TQ3Status Q3RotateAboutPointTransform_GetAboutPoint (
TQ3TransformObject transform,
TQ3Point3D *about);

transform A rotate-about-point transform.

about On exit, the point of rotation of the specified rotate-about-point
transform.

DESCRIPTION

The Q3RotateAboutPointTransform_GetAboutPoint function returns, in the about
parameter, the current point of rotation of the rotate-about-point transform
specified by the transform parameter.

Q3RotateAboutPointTransform_SetAboutPoint 7

You can use the Q3RotateAboutPointTransform_SetAboutPoint function to set the
point of rotation of a rotate-about-point transform.

TQ3Status Q3RotateAboutPointTransform_SetAboutPoint (
TQ3TransformObject transform,
const TQ3Point3D *about);

transform A rotate-about-point transform.

about The desired point of rotation of the specified rotate-about-point
transform.

DESCRIPTION

The Q3RotateAboutPointTransform_SetAboutPoint function sets the point of
rotation for the rotate-about-point transform specified by the transform
parameter to the value passed in the about parameter.

Creating and Manipulating Rotate-About-Axis Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
rotate-about-axis transforms. An rotate-about-axis transform rotates an object

C H A P T E R 7

Transform Objects

616 Transform Objects Reference

about an arbitrary axis in space by a specified number of radians. You can use
macros to convert radians to degrees if you prefer to work with degrees instead
of radians. See the chapter “Mathematical Utilities” for more information.

Q3RotateAboutAxisTransform_New 7

You can use the Q3RotateAboutAxisTransform_New function to create a new
rotate-about-axis transform.

TQ3TransformObject Q3RotateAboutAxisTransform_New (
const TQ3RotateAboutAxisTransformData *data);

data A pointer to a TQ3RotateAboutAxisTransformData structure.

DESCRIPTION

The Q3RotateAboutAxisTransform_New function returns, as its function result, a
reference to a new transform object of type kQ3TransformTypeRotateAboutAxis
using the data passed in the data parameter. The data you pass is copied into
internal QuickDraw 3D data structures. If QuickDraw 3D cannot allocate
memory for those structures, Q3RotateAboutAxisTransform_New returns the value
NULL.

Q3RotateAboutAxisTransform_Submit 7

You can use the Q3RotateAboutAxisTransform_Submit function to submit a
rotate-about-axis transform without creating an object or allocating memory.

TQ3Status Q3RotateAboutAxisTransform_Submit (
const TQ3RotateAboutAxisTransformData *data,
TQ3ViewObject view);

data A pointer to a TQ3RotateAboutAxisTransformData structure.

view A view.

C H A P T E R 7

Transform Objects

Transform Objects Reference 617

DESCRIPTION

The Q3RotateAboutAxisTransform_Submit function pushes the rotate-about-axis
transform specified by the data parameter onto the view transform stack of the
view specified by the view parameter. The function returns kQ3Success if the
operation succeeds and kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3RotateAboutAxisTransform_GetData 7

You can use the Q3RotateAboutAxisTransform_GetData function to query the
private data stored in a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_GetData (
TQ3TransformObject transform,
TQ3RotateAboutAxisTransformData *data);

transform A rotate-about-axis transform.

data A pointer to a rotate-about-axis data structure.

DESCRIPTION

The Q3RotateAboutAxisTransform_GetData function returns, in the data
parameter, information about the rotate-about-axis transform specified by the
transform parameter. You should use Q3RotateAboutAxisTransform_GetData only
with transforms of type kQ3TransformTypeRotateAboutAxis.

Q3RotateAboutAxisTransform_SetData 7

You can use the Q3RotateAboutAxisTransform_SetData function to set new
private data for a rotate-about-axis transform.

C H A P T E R 7

Transform Objects

618 Transform Objects Reference

TQ3Status Q3RotateAboutAxisTransform_SetData (
TQ3TransformObject transform,
const TQ3RotateAboutAxisTransformData *data);

transform A rotate-about-axis transform.

data A pointer to a rotate-about-axis data structure.

DESCRIPTION

The Q3RotateAboutAxisTransform_SetData function sets the rotate-about-axis
transform specified by the transform parameter to the data passed in the data
parameter. You should use Q3RotateAboutAxisTransform_SetData only with
transforms of type kQ3TransformTypeRotateAboutAxis.

Q3RotateAboutAxisTransform_GetOrigin 7

You can use the Q3RotateAboutAxisTransform_GetOrigin function to get the
origin of the axis of rotation of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_GetOrigin (
TQ3TransformObject transform,
TQ3Point3D *origin);

transform A rotate-about-axis transform.

origin On exit, the origin of the axis of rotation of the specified
rotate-about-axis transform.

DESCRIPTION

The Q3RotateAboutAxisTransform_GetOrigin function returns, in the origin
parameter, the current origin of the axis of rotation of the rotate-about-axis
transform specified by the transform parameter.

C H A P T E R 7

Transform Objects

Transform Objects Reference 619

Q3RotateAboutAxisTransform_SetOrigin 7

You can use the Q3RotateAboutAxisTransform_SetOrigin function to set the
origin of the axis of rotation of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_SetOrigin (
TQ3TransformObject transform,
const TQ3Point3D *origin);

transform A rotate-about-axis transform.

origin The desired origin of the axis of rotation of the specified
rotate-about-axis transform.

DESCRIPTION

The Q3RotateAboutAxisTransform_SetOrigin function sets the origin of the axis
of rotation for the rotate-about-axis transform specified by the transform
parameter to the value passed in the origin parameter.

Q3RotateAboutAxisTransform_GetOrientation 7

You can use the Q3RotateAboutAxisTransform_GetOrientation function to get the
orientation of the axis of rotation of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_GetOrientation (
TQ3TransformObject transform,
TQ3Vector3D *axis);

transform A rotate-about-axis transform.

axis On exit, the orientation of the axis of the specified
rotate-about-axis transform. This vector is normalized.

DESCRIPTION

The Q3RotateAboutAxisTransform_GetOrientation function returns, in the axis
parameter, the current orientation of the axis of rotation of the rotate-about-axis
transform specified by the transform parameter.

C H A P T E R 7

Transform Objects

620 Transform Objects Reference

Q3RotateAboutAxisTransform_SetOrientation 7

You can use the Q3RotateAboutAxisTransform_SetOrientation function to set the
orientation of the axis of rotation of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_SetOrientation (
TQ3TransformObject transform,
const TQ3Vector3D *axis);

transform A rotate-about-axis transform.

axis The desired orientation of the axis of the specified
rotate-about-axis transform. This vector must be normalized.

DESCRIPTION

The Q3RotateAboutAxisTransform_SetOrientation function sets orientation of the
axis of rotation for the rotate-about-axis transform specified by the transform
parameter to the value passed in the axis parameter.

Q3RotateAboutAxisTransform_GetAngle 7

You can use the Q3RotateAboutAxisTransform_GetAngle function to get the angle
of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_GetAngle (
TQ3TransformObject transform,
float *radians);

transform A rotate-about-axis transform.

radians On exit, the angle, in radians, of the specified rotate-about-axis
transform.

DESCRIPTION

The Q3RotateAboutAxisTransform_GetAngle function returns, in the radians
parameter, the current angle of rotation (in radians) of the rotate-about-axis
transform specified by the transform parameter.

C H A P T E R 7

Transform Objects

Transform Objects Reference 621

Q3RotateAboutAxisTransform_SetAngle 7

You can use the Q3RotateAboutAxisTransform_SetAngle function to set the angle
of a rotate-about-axis transform.

TQ3Status Q3RotateAboutAxisTransform_SetAngle (
TQ3TransformObject transform,
float radians);

transform A rotate-about-axis transform.

radians The desired angle, in radians, of the specified rotate-about-axis
transform.

DESCRIPTION

The Q3RotateAboutAxisTransform_SetAngle function sets the angle of rotation for
the rotate-about-axis transform specified by the transform parameter to the
value passed in the radians parameter.

Creating and Manipulating Scale Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
scale transforms. A scale transform scales an object along the x, y, and z axes by
specified values. You are responsible for ensuring that an object is at the correct
location and in the proper orientation for the scaling to have the desired effect.

IMPORTANT

A scale factor can be negative. You should, however,
exercise caution when using negative scale factors. In
addition, when two or three of the scale factors are 0,
nothing is drawn. ▲

Q3ScaleTransform_New 7

You can use the Q3ScaleTransform_New function to create a new scale transform.

C H A P T E R 7

Transform Objects

622 Transform Objects Reference

TQ3TransformObject Q3ScaleTransform_New (
const TQ3Vector3D *scale);

scale A vector whose three fields specify the desired scaling along
each coordinate axis.

DESCRIPTION

The Q3ScaleTransform_New function returns, as its function result, a reference to
a new transform object of type kQ3TransformTypeScale using the data passed in
the scale parameter. The scale transform scales an object by the values in
scale->x, scale->y, and scale->z, respectively. The data you pass in the scale
parameter is copied into internal QuickDraw 3D data structures. If
QuickDraw 3D cannot allocate memory for those structures,
Q3ScaleTransform_New returns the value NULL.

Q3ScaleTransform_Submit 7

You can use the Q3ScaleTransform_Submit function to submit a scale transform
without creating an object or allocating memory.

TQ3Status Q3ScaleTransform_Submit (
TQ3Vector3D *scale,
TQ3ViewObject view);

scale A vector whose three fields specify the desired scaling along
each coordinate axis.

view A view.

DESCRIPTION

The Q3ScaleTransform_Submit function pushes the scale transform specified by
the scale parameter on the view transform stack of the view specified by the
view parameter. The function returns kQ3Success if the operation succeeds and
kQ3Failure otherwise.

C H A P T E R 7

Transform Objects

Transform Objects Reference 623

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3ScaleTransform_Get 7

You can use the Q3ScaleTransform_Get function to query the private data stored
in a scale transform.

TQ3Status Q3ScaleTransform_Get (
TQ3TransformObject transform,
TQ3Vector3D *scale);

transform A transform.

scale A vector whose three fields specify the scaling along each
coordinate axis.

DESCRIPTION

The Q3ScaleTransform_Get function returns, in the scale parameter, information
about the scale transform specified by the transform parameter. You should use
Q3ScaleTransform_Get only with transforms of type kQ3TransformTypeScale.

Q3ScaleTransform_Set 7

You can use the Q3ScaleTransform_Set function to set new private data for a
scale transform.

TQ3Status Q3ScaleTransform_Set (
TQ3TransformObject transform,
const TQ3Vector3D *scale);

transform A transform.

scale A vector whose three fields specify the desired scaling along
each coordinate axis.

C H A P T E R 7

Transform Objects

624 Transform Objects Reference

DESCRIPTION

The Q3ScaleTransform_Set function sets the scale transform specified by the
transform parameter to the data passed in the scale parameter. You should use
Q3ScaleTransform_Set only with transforms of type kQ3TransformTypeScale.

Creating and Manipulating Translate Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
translate transforms. A translate transform translates an object along the x, y,
and z axes by specified values.

Q3TranslateTransform_New 7

You can use the Q3TranslateTransform_New function to create a new translate
transform.

TQ3TransformObject Q3TranslateTransform_New (
const TQ3Vector3D *translate);

translate A vector whose three fields specify the desired translation along
each coordinate axis.

DESCRIPTION

The Q3TranslateTransform_New function returns, as its function result, a
reference to a new transform object of type kQ3TransformTypeTranslate using
the data passed in the translate parameter. The transform translates an object
by the values in translate->x, translate->y, and translate->z, respectively. The
data you pass in the translate parameter is copied into internal QuickDraw 3D
data structures. If QuickDraw 3D cannot allocate memory for those structures,
Q3TranslateTransform_New returns the value NULL.

C H A P T E R 7

Transform Objects

Transform Objects Reference 625

Q3TranslateTransform_Submit 7

You can use the Q3TranslateTransform_Submit function to submit a translate
transform without creating an object or allocating memory.

TQ3Status Q3TranslateTransform_Submit (
const TQ3Vector3D *translate,
TQ3ViewObject view);

translate A vector whose three fields specify the desired translation along
each coordinate axis.

view A view.

DESCRIPTION

The Q3TranslateTransform_Submit function pushes the translate transform
specified by the translate parameter on the view transform stack of the view
specified by the view parameter. The function returns kQ3Success if the
operation succeeds and kQ3Failure otherwise.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3TranslateTransform_Get 7

You can use the Q3TranslateTransform_Get function to query the private data
stored in a translate transform.

TQ3Status Q3TranslateTransform_Get (
TQ3TransformObject transform,
TQ3Vector3D *translate);

transform A transform.

translate On entry, a pointer to a vector. On exit, a pointer to a vector
whose three fields specify the current translation along each
coordinate axis.

C H A P T E R 7

Transform Objects

626 Transform Objects Reference

DESCRIPTION

The Q3TranslateTransform_Get function returns, in the translate parameter,
information about the translate transform specified by the transform parameter.
You should use Q3TranslateTransform_Get only with transforms of type
kQ3TransformTypeTranslate.

Q3TranslateTransform_Set 7

You can use the Q3TranslateTransform_Set function to set new private data for a
translate transform.

TQ3Status Q3TranslateTransform_Set (
TQ3TransformObject transform,
const TQ3Vector3D *translate);

transform A transform.

translate A vector whose three fields specify the desired translation along
each coordinate axis.

DESCRIPTION

The Q3TranslateTransform_Set function sets the translate transform specified by
the transform parameter to the data passed in the translate parameter. You
should use Q3TranslateTransform_Set only with transforms of type
kQ3TransformTypeTranslate.

Creating and Manipulating Quaternion Transforms 7

QuickDraw 3D provides routines that you can use to create and manipulate
quaternion transforms. A quaternion transform rotates and twists an object
according to the mathematical properties of quaternions.

C H A P T E R 7

Transform Objects

Transform Objects Reference 627

Q3QuaternionTransform_New 7

You can use the Q3QuaternionTransform_New function to create a new quaternion
transform.

TQ3TransformObject Q3QuaternionTransform_New (TQ3Quaternion *quaternion);

quaternion A quaternion.

DESCRIPTION

The Q3QuaternionTransform_New function returns, as its function result, a
reference to a new transform object of type kQ3TransformTypeQuaternion using
the data passed in the quaternion parameter. The data you pass in the
quaternion parameter is copied into internal QuickDraw 3D data structures. If
QuickDraw 3D cannot allocate memory for those structures,
Q3QuaternionTransform_New returns the value NULL.

Q3QuaternionTransform_Submit 7

You can use the Q3QuaternionTransform_Submit function to submit a quaternion
transform without creating an object or allocating memory.

TQ3Status Q3QuaternionTransform_Submit (
TQ3Quaternion *quaternion,
TQ3ViewObject view);

quaternion A quaternion.

view A view.

DESCRIPTION

The Q3QuaternionTransform_Submit function pushes the quaternion transform
specified by the quaternion parameter on the view transform stack of the view
specified by the view parameter. The function returns kQ3Success if the
operation succeeds and kQ3Failure otherwise.

C H A P T E R 7

Transform Objects

628 Transform Objects Reference

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Q3QuaternionTransform_Get 7

You can use the Q3QuaternionTransform_Get function to query the private data
stored in a quaternion transform.

TQ3Status Q3QuaternionTransform_Get (
TQ3TransformObject transform,
TQ3Quaternion *quaternion);

transform A transform.

quaternion A quaternion.

DESCRIPTION

The Q3QuaternionTransform_Get function returns, in the quaternion parameter,
information about the quaternion transform specified by the transform
parameter. You should use Q3QuaternionTransform_Get only with transforms of
type kQ3TransformTypeQuaternion.

Q3QuaternionTransform_Set 7

You can use the Q3QuaternionTransform_Set function to set new private data for
a quaternion transform.

TQ3Status Q3QuaternionTransform_Set (
TQ3TransformObject transform,
TQ3Quaternion *quaternion);

transform A transform.

quaternion A quaternion.

C H A P T E R 7

Transform Objects

Transform Objects Reference 629

DESCRIPTION

The Q3QuaternionTransform_Set function sets the quaternion transform specified
by the transform parameter to the data passed in the quaternion parameter. You
should use Q3QuaternionTransform_Set only with transforms of type
kQ3TransformTypeQuaternion.

Creating and Submitting the Reset Transform 7

QuickDraw 3D provides routines that you can use to implement the identity
transformation described in “The Reset Transform,” beginning on page 598.

Q3ResetTransform_New 7

You can use the Q3ResetTransform_New function to create a reset transform
object.

TQ3TransformObject Q3ResetTransform_New (void);

DESCRIPTION

The Q3ResetTransform_New function returns a reset transform object that resets
the current transform object to the identity transformation.

Q3ResetTransform_Submit 7

You can use the Q3ResetTransform_Submit function to rest the transformation of
a view to identity.

TQ3Status Q3ResetTransform_Submit (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3ResetTransform_Submit function resets the current transformation of the
view designated by view to the identity transformation.

C H A P T E R 7

Transform Objects

630 Transform Errors, Warnings, and Notices

Transform Errors, Warnings, and Notices 7

Transform operations may return the following errors, warnings, and notices. A
list of general QuickDraw 3D errors is given in “QuickDraw 3D Errors,
Warnings, and Notices” (page 87).

kQ3ErrorScaleOfZero
kQ3WarningScaleEntriesAllZero
kQ3WarningScaleContainsNegativeEntries
kQ3NoticeScaleContainsZeroEntries

About Light Objects 631

C H A P T E R 8

Light Objects 8Figure 8-0
Listing 8-0
Table 8-0

This chapter describes light objects (or lights) and the functions you can use to
manipulate them. You use lights to provide illumination on the objects in a
model. A group of lights is associated with every view, along with camera
information and other settings that affect the rendering of a model.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about grouping lights into a light group, see the chapter
“Group Objects.” For information about associating a light group with a view,
see the chapter “View Objects.” You do not, however, need to know how to
create light groups or attach them to views to read this chapter.

For the lights associated with a view to have any effect, there must also be an
illumination shader associated with the view. See the chapter “Shader Objects”
for information on creating illumination shaders and attaching them to views.

This chapter begins by describing light objects and their features. Then it shows
how to create and manipulate lights. The section “Light Objects Reference,”
beginning on page 637 provides a complete description of light objects and the
routines you can use to create and manipulate them.

About Light Objects 8

A light object (or, more briefly, a light) is a type of QuickDraw 3D object that
you can use to provide illumination to the surfaces in a scene. A light is of type
TQ3LightObject.

In general, the illumination of a surface in a scene is affected by multiple light
sources. As a result, a view is associated with a light group, which is simply a
group of lights. To illuminate the objects in the scene, you need to create a light

C H A P T E R 8

Light Objects

632 About Light Objects

group and attach it to a view (for example, by calling Q3LightGroup_New and
Q3View_SetLightGroup).

Note
If you do not attach a group of lights to a view, the results
are renderer-specific. ◆

QuickDraw 3D supports multiple light sources and multiple types of lights in a
given scene. QuickDraw 3D defines four types of lights:

■ ambient lights

■ directional lights

■ point lights

■ spot lights

All four types of lights share some basic properties, which are maintained in a
light data structure, defined by the TQ3LightData data structure.

typedef struct TQ3LightData {
TQ3Boolean isOn;
float brightness;
TQ3ColorRGB color;

} TQ3LightData;

These fields specify the brightness (that is, the intensity) and color of the light
and the current state (active or inactive) of the light. You can turn a light on and
off by toggling the isOn field of a light data structure.

As you will see, an ambient light is completely described by a light data
structure. All other types of lights contain additional information, such as the
location and direction of the light source. Those kinds of lights are defined by
data structures that include a light data structure.

Ambient Light 8

Ambient light is an amount of light of a specific color that is added to the
illumination of all surfaces in a scene. QuickDraw 3D supports at most one
active source of ambient light per view, which is therefore called the ambient
light object (or the ambient light). An ambient light has no location and cannot
therefore cast shadows or become attenuated by distance of the light source
from a surface. In effect, ambient light is light that is applied equally

C H A P T E R 8

Light Objects

About Light Objects 633

everywhere in a scene. In the absence of any other light sources, an ambient
light illuminates a scene with a flat, uniform light. An ambient light is defined
by the TQ3LightData data structure.

Directional Lights 8

A directional light is a light source that emits parallel rays of light in a specific
direction. You can think of a directional light as a light source that is infinitely
far away from the surfaces it is illuminating. For example, for scenes on the
surface of the Earth, the sun is effectively a directional light.

Note
Directional lights are therefore sometimes also called
infinite lights. ◆

A directional light has no location. As a result, you specify the direction of the
light as a vector equivalent to the direction of the light. In addition, a directional
light cannot suffer attenuation (that is, a loss of intensity over distance). It can,
however, cast shadows.

Point Lights 8

A point light is a light source that emits rays of light in all directions from a
specific location. The illumination that a point light contributes to a surface
depends on the basic properties of the light source (its intensity and color)
together with the orientation of the surface and its distance from the light
source.

A point light can suffer attenuation, in which case objects closer to the light
source receive more illumination than objects farther away. QuickDraw 3D
allows you to specify one of several attenuation values that determine the
precise amount by which the intensity of a point light decays over distance. For
example, you can use the constant kQ3AttenuationTypeInverseDistance to have
the intensity of a point light be inversely proportional to the distance between
the illuminated surface and the light source. See “Light Attenuation Values”
(page 638) for a complete list of the available attenuation values.

C H A P T E R 8

Light Objects

634 About Light Objects

Spot Lights 8

A spot light is a light source that emits a circular cone of light in a specific
direction from a specific location. Figure 8-1 shows the geometry of a spot light.
Every spot light has a hot angle and an outer angle that together define the
shape of the cone of light and the amount of attenuation, if any, that occurs
from the center of the cone to the outer edge of the cone.

Figure 8-1 A spot light

A spot light’s hot angle is the half-angle (specified in radians) from the center of
the cone of light within which the light remains at constant full intensity. In
Figure 8-1, h is the hot angle. A spot light’s outer angle is the half angle
(specified in radians) from the center of the cone to the edge of the cone. In
Figure 8-1, o is the outer angle.

The attenuation of the light’s intensity from the edge of the hot angle to the
edge of the outer angle is determined by the light’s fall-off value.
QuickDraw 3D allows you to specify no fall-off, a linear fall-off, an exponential
fall-off, and a fall-off that is proportional to the cosine of the angle. The
available fall-off algorithms are illustrated in Figure 8-2.

See “Light Fall-Off Values” (page 638) for a description of the constants you can
use to specify a spot light’s fall-off value.

Hot angle

Outer angle
o

h

C H A P T E R 8

Light Objects

About Light Objects 635

Figure 8-2 Fall-off algorithms

Intensity

Angle

0

None

Intensity

Angle

0

Linear

Intensity

Angle

0 o

Exponential

Intensity

Angle

0 h o

h

oh

oh

Cosine

C H A P T E R 8

Light Objects

636 Using Light Objects

Using Light Objects 8

QuickDraw 3D supplies routines that you can use to create and manipulate
light objects. This section describes how to accomplish these tasks.

Creating a Light 8

You create a light by filling in the fields of the data structure for the type of light
you want to create and then by calling a QuickDraw 3D function to create the
light. For example, to create a point light, you fill in a data structure of type
TQ3PointLightData and then call Q3PointLight_New, as shown in Listing 8-1.

Listing 8-1 Creating a new point light

TQ3LightObject MyNewPointLight (void)
{

TQ3LightData myLightData;
TQ3PointLightData myPointLightData;
TQ3LightObject myPointLight;
TQ3Point3D pointLocation = {-20.0, 0.0, 20.0};
TQ3ColorRGB WhiteLight = { 1.0, 1.0, 1.0 };

/*Set up light data for a point light.*/
myLightData.isOn = kQ3True;
myLightData.brightness = 1.0;
myLightData.color = WhiteLight;
myPointLightData.lightData = myLightData;
myPointLightData.castsShadows = kQ3False;
myPointLightData.attenuation = kQ3AttenuationTypeNone;
myPointLightData.location = pointLocation;

/*Create a point light.*/
myPointLight = Q3PointLight_New(&myPointLightData);
return (myPointLight);

}

C H A P T E R 8

Light Objects

Light Objects Reference 637

As you can see, the MyNewPointLight function defined in Listing 8-1 simply fills
in the myPointLight structure and then calls Q3PointLight_New. MyNewPointLight
returns to its caller either a reference to the new light (if Q3PointLight_New
succeeds) or the value NULL (if Q3PointLight_New fails).

Manipulating Lights 8

For a light to affect a model in a view, you need to insert the light into the light
group associated with the view. You call Q3LightGroup_New to create a new
(empty) light group and Q3Group_AddObject to add lights to that group. Then
you need to call Q3View_SetLightGroup to attach the light group to a view.
Finally, you need to create an illumination shader that specifies the kind of
illumination model you want applied to objects in the model. For example, to
provide Phong illumination on the objects in a model, you can create an
illumination shader by calling Q3PhongIllumination_New. The illumination
shader is not explicitly associated with the view. Instead, you specify the
illumination shader by calling Q3Shader_Submit in your rendering loop. See the
chapter “Shader Objects” for details.

Light Objects Reference 8

This section describes the constants, data structures, and routines you can use to
create and manipulate light objects.

Constants 8

This section describes the constants that you use to define light attenuation and
fall-off values.

Note
Some renderers might not support all the defined
attenuation or fall-off values. ◆

C H A P T E R 8

Light Objects

638 Light Objects Reference

Light Attenuation Values 8

Most types of lights have an attenuation value that determines how quickly, if
at all, the intensity of a light changes as a function of the distance of the
illuminated object from the light source. You can use these constants to specify
an attenuation value:

typedef enum TQ3AttenuationType {
kQ3AttenuationTypeNone,
kQ3AttenuationTypeInverseDistance,
kQ3AttenuationTypeInverseDistanceSquared

} TQ3AttenuationType;

Constant descriptions

kQ3AttenuationTypeNone
The intensity of the light is not affected by the distance
from the illuminated object.

kQ3AttenuationTypeInverseDistance
The intensity of the light is inversely proportional to the
distance from the illuminated object.

kQ3AttenuationTypeInverseDistanceSquared
The intensity of the light is inversely proportional to the
square of the distance from the illuminated object.

Light Fall-Off Values 8

Spot lights have a fall-off value that determines the attenuation of the light from
the edge of the hot angle to the edge of the outer angle. You can use these
constants to specify a fall-off value:

typedef enum TQ3FallOffType {
kQ3FallOffTypeNone,
kQ3FallOffTypeLinear,
kQ3FallOffTypeExponential,
kQ3FallOffTypeCosine

} TQ3FallOffType;

C H A P T E R 8

Light Objects

Light Objects Reference 639

Constant descriptions

kQ3FallOffTypeNone
The intensity of the light is not affected by the distance
from the center of the cone to the edge of the cone.

kQ3FallOffTypeLinear
The intensity of the light at the edge of the cone falls off
linearly from the intensity of the light at the center of the
cone.

kQ3FallOffTypeExponential
The intensity of the light at the edge of the cone falls off
exponentially from the intensity of the light at the center of
the cone.

kQ3FallOffTypeCosine
The intensity of the light at the edge of the cone falls off as
the cosine of the outer angle from the intensity of the light
at the center of the cone.

Data Structures 8

This section describes the data structures supplied by QuickDraw 3D for
managing lights. The data structures used to manage lights are all public.

Note
The locations and directions of lights are always specified
in world coordinates. ◆

Light Data Structure 8

You use a light data structure to get or set basic information about a light source
of any kind. A light data structure is defined by the TQ3LightData data type.

typedef struct TQ3LightData {
TQ3Boolean isOn;
float brightness;
TQ3ColorRGB color;

} TQ3LightData;

C H A P T E R 8

Light Objects

640 Light Objects Reference

Field descriptions
isOn A Boolean value that indicates whether the light source is

active (kQ3True) or inactive (kQ3False).
brightness The brightness or intensity of the light source. The value in

this field is a floating-point number in the range 0.0 to 1.0,
inclusive. Some renderers may allow you to specify
overbright lights (where the value in this field is greater
than 1.0) or lights with negative brightness (where the
value in this field is less than 0.0); the effects produced by
out-of-range brightness values are renderer-specific.

color The color of the light emitted by a light source.

Directional Light Data Structure 8

You use a directional light data structure to get or set information about a
directional light source. A directional light data structure is defined by the
TQ3DirectionalLightData data type.

typedef struct TQ3DirectionalLightData {
TQ3LightData lightData;
TQ3Boolean castsShadows;
TQ3Vector3D direction;

} TQ3DirectionalLightData;

Field descriptions
lightData A light data structure specifying basic information about

the directional light.
castsShadows A Boolean value that indicates whether the directional light

casts shadows (kQ3True) or not (kQ3False).
direction The direction of the directional light. Note that the

direction is defined as a world-space vector away from the
light source. This vector does not need to be normalized,
but its length must be greater than 0.

Point Light Data Structure 8

You use a point light data structure to get or set information about a point light
source. A point light data structure is defined by the TQ3PointLightData data
type.

C H A P T E R 8

Light Objects

Light Objects Reference 641

typedef struct TQ3PointLightData {
TQ3LightData lightData;
TQ3Boolean castsShadows;
TQ3AttenuationType attenuation;
TQ3Point3D location;

} TQ3PointLightData;

Field descriptions
lightData A light data structure specifying basic information about

the point light.
castsShadows A Boolean value that indicates whether the point light casts

shadows (kQ3True) or not (kQ3False).
attenuation The type of attenuation of the point light. See “Light

Attenuation Values” (page 638) for a description of the
constants this field can contain.

location The location of the point light, in world coordinates.

Spot Light Data Structure 8

You use a spot light data structure to get or set information about a spot light
source. A spot light data structure is defined by the TQ3SpotLightData data type.

typedef struct TQ3SpotLightData {
TQ3LightData lightData;
TQ3Boolean castsShadows;
TQ3AttenuationType attenuation;
TQ3Point3D location;
TQ3Vector3D direction;
float hotAngle;
float outerAngle;
TQ3FallOffType fallOff;

} TQ3SpotLightData;

Field descriptions
lightData A light data structure specifying basic information about

the spot light.
castsShadows A Boolean value that indicates whether the spot light casts

shadows (kQ3True) or not (kQ3False).

C H A P T E R 8

Light Objects

642 Light Objects Reference

attenuation The type of attenuation of the spot light. See “Light
Attenuation Values” (page 638) for a description of the
constants that can be used in this field.

location The location of the spot light, in world coordinates.
direction The direction of the spot light. Note that the direction is

defined as a world-space vector away from the light source.
This vector does not need to be normalized, but vectors
returned by QuickDraw 3D in this field might be
normalized.

hotAngle The hot angle of the spot light. The hot angle of a spot light
is the half-angle, measured in radians, from the center of
the cone of light within which the light remains at constant
full intensity. The value in this field is a floating-point
number in the range 0.0 to π/2, inclusive.

outerAngle The outer angle of the spot light. The outer angle of a spot
light is the half angle, measured in radians, from the center
of the cone of light to the edge of the light’s influence. The
value in this field is a floating-point number in the range
0.0 to π/2, inclusive, and should always be greater than or
equal to the value in the hotAngle field.

fallOff The fall-off value for the spot light. See “Light Fall-Off
Values” (page 638) for a description of the constants that
can be used in this field.

Light Objects Routines 8

This section describes routines you can use to manage lights.

Managing Lights 8

QuickDraw 3D provides a number of general routines for managing lights of
any kind.

C H A P T E R 8

Light Objects

Light Objects Reference 643

Q3Light_GetType 8

You can use the Q3Light_GetType function to get the type of a light object.

TQ3ObjectType Q3Light_GetType (TQ3LightObject light);

light A light object.

DESCRIPTION

The Q3Light_GetType function returns, as its function result, the type of the light
object specified by the light parameter. The types of light objects currently
supported by QuickDraw 3D are defined by these constants:

kQ3LightTypeAmbient
kQ3LightTypeDirectional
kQ3LightTypePoint
kQ3LightTypeSpot

If the specified light object is invalid or is not one of these types,
Q3Light_GetType returns the value kQ3ObjectTypeInvalid.

Q3Light_GetState 8

You can use the Q3Light_GetState function to get the current state of a light.

TQ3Status Q3Light_GetState (
TQ3LightObject light,
TQ3Boolean *isOn);

light A light object.

isOn On exit, the current state of the light specified by the light
parameter.

C H A P T E R 8

Light Objects

644 Light Objects Reference

DESCRIPTION

The Q3Light_GetState function returns, in the isOn parameter, a Boolean value
that indicates whether the light specified by the light parameter is active
(kQ3True) or inactive (kQ3False).

Q3Light_SetState 8

You can use the Q3Light_SetState function to set the state of a light.

TQ3Status Q3Light_SetState (
TQ3LightObject light,
TQ3Boolean isOn);

light A light object.

isOn The desired state of the specified light.

DESCRIPTION

The Q3Light_SetState function sets the state of the light specified by the light
parameter to the value specified by the isOn parameter. If isOn is set to kQ3True,
the light is made active; if isOn is set to kQ3False, the light is made inactive.

Q3Light_GetBrightness 8

You can use the Q3Light_GetBrightness function to get the current brightness of
a light.

TQ3Status Q3Light_GetBrightness (
TQ3LightObject light,
float *brightness);

light A light object.

brightness On exit, the current brightness of the specified light.

C H A P T E R 8

Light Objects

Light Objects Reference 645

DESCRIPTION

The Q3Light_GetBrightness function returns, in the brightness parameter, a
value that indicates the current brightness of the light specified by the light
parameter. The value should be between 0.0 and 1.0, inclusive. Some renderers
may allow you to specify overbright lights (where the value in this field is
greater than 1.0) or lights with negative brightness (where the value in this field
is less than 0.0). If you have a light that has non-linear distance attenuation, you
may need brightness values above 1.0 for realistic modeling (imagine the sun).
The effects produced by out-of-range brightness values are renderer-specific.

Q3Light_SetBrightness 8

You can use the Q3Light_SetBrightness function to set the brightness of a light.

TQ3Status Q3Light_SetBrightness (
TQ3LightObject light,
float brightness);

light A light object.

brightness The desired brightness of the specified light.

DESCRIPTION

The Q3Light_SetBrightness function sets the brightness of the light specified by
the light parameter to the value specified by the brightness parameter. The
value should be between 0.0 and 1.0, inclusive. Some renderers may allow you
to specify overbright lights (where the value in this field is greater than 1.0) or
lights with negative brightness (where the value in this field is less than 0.0). If
you have a light that has non-linear distance attenuation, you may need
brightness values above 1.0 for realistic modeling (imagine the sun). The effects
produced by out-of-range brightness values are renderer-specific.

Q3Light_GetColor 8

You can use the Q3Light_GetColor function to get the current color of a light.

C H A P T E R 8

Light Objects

646 Light Objects Reference

TQ3Status Q3Light_GetColor (
TQ3LightObject light,
TQ3ColorRGB *color);

light A light object.

color On exit, a pointer to a TQ3ColorRGB structure specifying the
current color of the specified light.

DESCRIPTION

The Q3Light_GetColor function returns, in the color parameter, the current color
of the light specified by the light parameter.

Q3Light_SetColor 8

You can use the Q3Light_SetColor function to set the color of a light.

TQ3Status Q3Light_SetColor (
TQ3LightObject light,
const TQ3ColorRGB *color);

light A light object.

color A pointer to a TQ3ColorRGB structure specifying the desired color
of the specified light.

DESCRIPTION

The Q3Light_SetColor function sets the color of the light specified by the light
parameter to the value specified by the color parameter.

Q3Light_GetData 8

You can use the Q3Light_GetData function to get the basic data associated with a
light.

C H A P T E R 8

Light Objects

Light Objects Reference 647

TQ3Status Q3Light_GetData (
TQ3LightObject light,
TQ3LightData *lightData);

light A light object.

lightData On exit, a pointer to a light data structure.

DESCRIPTION

The Q3Light_GetData function returns, through the lightData parameter, basic
information about the light specified by the light parameter. See “Light Data
Structure” (page 639) for a description of a light data structure.

Q3Light_SetData 8

You can use the Q3Light_SetData function to set the basic data associated with a
light.

TQ3Status Q3Light_SetData (
TQ3LightObject light,
const TQ3LightData *lightData);

light A light object.

lightData A pointer to a light data structure.

DESCRIPTION

The Q3Light_SetData function sets the data associated with the light specified by
the light parameter to the data specified by the lightData parameter.

Managing Ambient Light 8

QuickDraw 3D provides routines that you can use to create and edit the
ambient light of a view.

C H A P T E R 8

Light Objects

648 Light Objects Reference

Q3AmbientLight_New 8

You can use the Q3AmbientLight_New function to create a new ambient light.

TQ3LightObject Q3AmbientLight_New (
const TQ3LightData *lightData);

lightData A pointer to a light data structure.

DESCRIPTION

The Q3AmbientLight_New function returns, as its function result, a new ambient
light having the characteristics specified by the lightData parameter.

Q3AmbientLight_GetData 8

You can use the Q3AmbientLight_GetData function to get the data that defines an
ambient light.

TQ3Status Q3AmbientLight_GetData (
TQ3LightObject light,
TQ3LightData *lightData);

light An ambient light object.

lightData On exit, a pointer to a light data structure.

DESCRIPTION

The Q3AmbientLight_GetData function returns, through the lightData parameter,
information about the ambient light specified by the light parameter. See
“Light Data Structure” (page 639) for a description of a light data structure.

C H A P T E R 8

Light Objects

Light Objects Reference 649

Q3AmbientLight_SetData 8

You can use the Q3AmbientLight_SetData function to set the data that defines an
ambient light.

TQ3Status Q3AmbientLight_SetData (
TQ3LightObject light,
const TQ3LightData *lightData);

light An ambient light object.

lightData A pointer to a light data structure.

DESCRIPTION

The Q3AmbientLight_SetData function sets the data associated with the ambient
light specified by the light parameter to the data specified by the lightData
parameter.

Managing Directional Lights 8

QuickDraw 3D provides routines that you can use to create and edit directional
lights.

Q3DirectionalLight_New 8

You can use the Q3DirectionalLight_New function to create a new directional
light.

TQ3LightObject Q3DirectionalLight_New (
const TQ3DirectionalLightData
*directionalLightData);

directionalLightData
A pointer to a directional light data structure.

C H A P T E R 8

Light Objects

650 Light Objects Reference

DESCRIPTION

The Q3DirectionalLight_New function returns, as its function result, a new
directional light having the characteristics specified by the
directionalLightData parameter.

Q3DirectionalLight_GetCastShadowsState 8

You can use the Q3DirectionalLight_GetCastShadowsState function to get the
shadow-casting state of a directional light.

TQ3Status Q3DirectionalLight_GetCastShadowsState (
TQ3LightObject light,
TQ3Boolean *castsShadows);

light A directional light object.

castsShadows
On exit, a Boolean value that indicates whether the specified
light casts shadows (kQ3True) or does not cast shadows
(kQ3False).

DESCRIPTION

The Q3DirectionalLight_GetCastShadowsState function returns, in the
castsShadows parameter, a Boolean value that indicates whether the light
specified by the light parameter casts shadows (kQ3True) or does not cast
shadows (kQ3False).

Q3DirectionalLight_SetCastShadowsState 8

You can use the Q3DirectionalLight_SetCastShadowsState function to set the
shadow-casting state of a directional light.

TQ3Status Q3DirectionalLight_SetCastShadowsState (
TQ3LightObject light,
TQ3Boolean castsShadows);

C H A P T E R 8

Light Objects

Light Objects Reference 651

light A directional light object.

castsShadows
A Boolean value that indicates whether the specified light casts
shadows (kQ3True) or does not cast shadows (kQ3False).

DESCRIPTION

The Q3DirectionalLight_SetCastShadowsState function sets the shadow-casting
state of the directional light specified by the light parameter to the Boolean
value specified in the castsShadows parameter.

Q3DirectionalLight_GetDirection 8

You can use the Q3DirectionalLight_GetDirection function to get the direction
of a directional light.

TQ3Status Q3DirectionalLight_GetDirection (
TQ3LightObject light,
TQ3Vector3D *direction);

light A directional light object.

direction On exit, the direction of the specified light.

DESCRIPTION

The Q3DirectionalLight_GetDirection function returns, in the direction
parameter, the current direction of the directional light specified by the light
parameter.

Q3DirectionalLight_SetDirection 8

You can use the Q3DirectionalLight_SetDirection function to set the direction
of a directional light.

C H A P T E R 8

Light Objects

652 Light Objects Reference

TQ3Status Q3DirectionalLight_SetDirection (
TQ3LightObject light,
const TQ3Vector3D *direction);

light A directional light object.

direction The desired direction of the specified light.

DESCRIPTION

The Q3DirectionalLight_SetDirection function sets the direction of the
directional light specified by the light parameter to the value passed in the
direction parameter.

Q3DirectionalLight_GetData 8

You can use the Q3DirectionalLight_GetData function to get the data that
defines a directional light.

TQ3Status Q3DirectionalLight_GetData (
TQ3LightObject light,
TQ3DirectionalLightData *directionalLightData);

light A directional light object.

directionalLightData
On exit, a pointer to a directional light data structure.

DESCRIPTION

The Q3DirectionalLight_GetData function returns, through the
directionalLightData parameter, information about the directional light
specified by the light parameter. See “Directional Light Data Structure”
(page 640) for a description of a directional light data structure.

C H A P T E R 8

Light Objects

Light Objects Reference 653

Q3DirectionalLight_SetData 8

You can use the Q3DirectionalLight_SetData function to set the data that
defines a directional light.

TQ3Status Q3DirectionalLight_SetData (
TQ3LightObject light,
const TQ3DirectionalLightData
*directionalLightData);

light A directional light object.

directionalLightData
A pointer to a directional light data structure.

DESCRIPTION

The Q3DirectionalLight_SetData function sets the data associated with the
directional light specified by the light parameter to the data specified by the
directionalLightData parameter.

Managing Point Lights 8

QuickDraw 3D provides routines that you can use to create and edit point
lights.

Q3PointLight_New 8

You can use the Q3PointLight_New function to create a new point light.

TQ3LightObject Q3PointLight_New (
const TQ3PointLightData *pointLightData);

pointLightData
A pointer to a point light data structure.

C H A P T E R 8

Light Objects

654 Light Objects Reference

DESCRIPTION

The Q3PointLight_New function returns, as its function result, a new point light
having the characteristics specified by the pointLightData parameter.

Q3PointLight_GetCastShadowsState 8

You can use the Q3PointLight_GetCastShadowsState function to get the
shadow-casting state of a point light.

TQ3Status Q3PointLight_GetCastShadowsState (
TQ3LightObject light,
TQ3Boolean *castsShadows);

light A point light object.

castsShadows
On exit, a Boolean value that indicates whether the specified
light casts shadows (kQ3True) or does not cast shadows
(kQ3False).

DESCRIPTION

The Q3PointLight_GetCastShadowsState function returns, in the castsShadows
parameter, a Boolean value that indicates whether the light specified by the
light parameter casts shadows (kQ3True) or does not cast shadows (kQ3False).

Q3PointLight_SetCastShadowsState 8

You can use the Q3PointLight_SetCastShadowsState function to set the
shadow-casting state of a point light.

TQ3Status Q3PointLight_SetCastShadowsState (
TQ3LightObject light,
TQ3Boolean castsShadows);

light A point light object.

C H A P T E R 8

Light Objects

Light Objects Reference 655

castsShadows
A Boolean value that indicates whether the specified light casts
shadows (kQ3True) or does not cast shadows (kQ3False).

DESCRIPTION

The Q3PointLight_SetCastShadowsState function sets the shadow-casting state
of the point light specified by the light parameter to the Boolean value
specified in the castsShadows parameter.

Q3PointLight_GetAttenuation 8

You can use the Q3PointLight_GetAttenuation function to get the attenuation of
a point light.

TQ3Status Q3PointLight_GetAttenuation (
TQ3LightObject light,
TQ3AttenuationType *attenuation);

light A point light object.

attenuation On exit, the type of attenuation of the light. See “Light
Attenuation Values” (page 638) for a description of the constants
that can be returned in this parameter.

DESCRIPTION

The Q3PointLight_GetAttenuation function returns, in the attenuation
parameter, the current attenuation value of the point light specified by the light
parameter.

Q3PointLight_SetAttenuation 8

You can use the Q3PointLight_SetAttenuation function to set the attenuation of
a point light.

C H A P T E R 8

Light Objects

656 Light Objects Reference

TQ3Status Q3PointLight_SetAttenuation (
TQ3LightObject light,
TQ3AttenuationType attenuation);

light A point light object.

attenuation The desired type of attenuation of the light. See “Light
Attenuation Values” (page 638) for a description of the constants
that can be passed in this parameter.

DESCRIPTION

The Q3PointLight_SetAttenuation function sets the attenuation value of the
point light specified by the light parameter to the value passed in the
attenuation parameter.

Q3PointLight_GetLocation 8

You can use the Q3PointLight_GetLocation function to get the location of a point
light.

TQ3Status Q3PointLight_GetLocation (
TQ3LightObject light,
TQ3Point3D *location);

light A point light object.

location On exit, the location of the point light, in world coordinates.

DESCRIPTION

The Q3PointLight_GetLocation function returns, in the location parameter, the
current location of the point light specified by the light parameter.

C H A P T E R 8

Light Objects

Light Objects Reference 657

Q3PointLight_SetLocation 8

You can use the Q3PointLight_SetLocation function to set the location of a point
light.

TQ3Status Q3PointLight_SetLocation (
TQ3LightObject light,
const TQ3Point3D *location);

light A point light object.

location The desired location of the point light, in world coordinates.

DESCRIPTION

The Q3PointLight_SetLocation function sets the location of the point light
specified by the light parameter to the value passed in the location parameter.

Q3PointLight_GetData 8

You can use the Q3PointLight_GetData function to get the data that defines a
point light.

TQ3Status Q3PointLight_GetData (
TQ3LightObject light,
TQ3PointLightData *pointLightData);

light A point light object.

pointLightData
On exit, a pointer to a point light data structure.

DESCRIPTION

The Q3PointLight_GetData function returns, through the pointLightData
parameter, information about the point light specified by the light parameter.
See “Point Light Data Structure” (page 640) for a description of a point light
data structure.

C H A P T E R 8

Light Objects

658 Light Objects Reference

Q3PointLight_SetData 8

You can use the Q3PointLight_SetData function to set the data that defines a
point light.

TQ3Status Q3PointLight_SetData (
TQ3LightObject light,
const TQ3PointLightData *pointLightData);

light A point light object.

pointLightData
A pointer to a point light data structure.

DESCRIPTION

The Q3PointLight_SetData function sets the data associated with the point light
specified by the light parameter to the data specified by the pointLightData
parameter.

Managing Spot Lights 8

QuickDraw 3D provides routines that you can use to create and edit spot lights.

Q3SpotLight_New 8

You can use the Q3SpotLight_New function to create a new spot light.

TQ3LightObject Q3SpotLight_New (
const TQ3SpotLightData *spotLightData);

spotLightData
A pointer to a spot light data structure.

DESCRIPTION

The Q3SpotLight_New function returns, as its function result, a new spot light
having the characteristics specified by the spotLightData parameter.

C H A P T E R 8

Light Objects

Light Objects Reference 659

Q3SpotLight_GetCastShadowsState 8

You can use the Q3SpotLight_GetCastShadowsState function to get the
shadow-casting state of a spot light.

TQ3Status Q3SpotLight_GetCastShadowsState (
TQ3LightObject light,
TQ3Boolean *castsShadows);

light A spot light object.

castsShadows
On exit, a Boolean value that indicates whether the specified
light casts shadows (kQ3True) or does not cast shadows
(kQ3False).

DESCRIPTION

The Q3SpotLight_GetCastShadowsState function returns, in the castsShadows
parameter, a Boolean value that indicates whether the light specified by the
light parameter casts shadows (kQ3True) or does not cast shadows (kQ3False).

Q3SpotLight_SetCastShadowsState 8

You can use the Q3SpotLight_SetCastShadowsState function to set the
shadow-casting state of a spot light.

TQ3Status Q3SpotLight_SetCastShadowsState (
TQ3LightObject light,
TQ3Boolean castsShadows);

light A spot light object.

castsShadows
A Boolean value that indicates whether the specified light casts
shadows (kQ3True) or does not cast shadows (kQ3False).

C H A P T E R 8

Light Objects

660 Light Objects Reference

DESCRIPTION

The Q3SpotLight_SetCastShadowsState function sets the shadow-casting state of
the spot light specified by the light parameter to the Boolean value specified in
the castsShadows parameter.

Q3SpotLight_GetAttenuation 8

You can use the Q3SpotLight_GetAttenuation function to get the attenuation of a
spot light.

TQ3Status Q3SpotLight_GetAttenuation (
TQ3LightObject light,
TQ3AttenuationType *attenuation);

light A spot light object.

attenuation On exit, the type of attenuation of the light. See “Light
Attenuation Values” (page 638) for a description of the constants
that can be returned in this parameter.

DESCRIPTION

The Q3SpotLight_GetAttenuation function returns, in the attenuation parameter,
the current attenuation value of the spot light specified by the light parameter.

Q3SpotLight_SetAttenuation 8

You can use the Q3SpotLight_SetAttenuation function to set the attenuation of a
spot light.

TQ3Status Q3SpotLight_SetAttenuation (
TQ3LightObject light,
TQ3AttenuationType attenuation);

light A spot light object.

C H A P T E R 8

Light Objects

Light Objects Reference 661

attenuation The desired type of attenuation of the light. See “Light
Attenuation Values” (page 638) for a description of the constants
that can be passed in this parameter.

DESCRIPTION

The Q3SpotLight_SetAttenuation function sets the attenuation value of the spot
light specified by the light parameter to the value passed in the attenuation
parameter.

Q3SpotLight_GetLocation 8

You can use the Q3SpotLight_GetLocation function to get the location of a spot
light.

TQ3Status Q3SpotLight_GetLocation (
TQ3LightObject light,
TQ3Point3D *location);

light A spot light object.

location On exit, the location of the spot light, in world coordinates.

DESCRIPTION

The Q3SpotLight_GetLocation function returns, in the location parameter, the
current location of the spot light specified by the light parameter.

Q3SpotLight_SetLocation 8

You can use the Q3SpotLight_SetLocation function to set the location of a spot
light.

TQ3Status Q3SpotLight_SetLocation (
TQ3LightObject light,
const TQ3Point3D *location);

C H A P T E R 8

Light Objects

662 Light Objects Reference

light A spot light object.

location The desired location of the spot light, in world coordinates.

DESCRIPTION

The Q3SpotLight_SetLocation function sets the location of the spot light
specified by the light parameter to the value passed in the location parameter.

Q3SpotLight_GetDirection 8

You can use the Q3SpotLight_GetDirection function to get the direction of a spot
light.

TQ3Status Q3SpotLight_GetDirection (
TQ3LightObject light,
TQ3Vector3D *direction);

light A spot light object.

direction On exit, the direction of the specified light.

DESCRIPTION

The Q3SpotLight_GetDirection

 function returns, in the

direction

 parameter, the
current direction of the spot light specified by the

light

 parameter.

Q3SpotLight_SetDirection 8

You can use the

Q3SpotLight_SetDirection

 function to set the direction of a spot
light.

TQ3Status Q3SpotLight_SetDirection (
TQ3LightObject light,
const TQ3Vector3D *direction);

light

A spot light object.

C H A P T E R 8

Light Objects

Light Objects Reference

663

direction

The desired direction of the specified light.

DESCRIPTION

The

Q3SpotLight_SetDirection

 function sets the direction of the spot light
specified by the

light

 parameter to the value passed in the

direction

parameter.

Q3SpotLight_GetHotAngle 8

You can use the

Q3SpotLight_GetHotAngle

 function to get the hot angle of a spot
light.

TQ3Status Q3SpotLight_GetHotAngle (
TQ3LightObject light,
float *hotAngle);

light

A spot light object.

hotAngle

On exit, the hot angle of the specified light, in radians.

DESCRIPTION

The

Q3SpotLight_GetHotAngle

 function returns, in the

hotAngle

 parameter, the
current hot angle of the spot light specified by the

light

 parameter.

Q3SpotLight_SetHotAngle 8

You can use the

Q3SpotLight_SetHotAngle

 function to set the hot angle of a spot
light.

TQ3Status Q3SpotLight_SetHotAngle (
TQ3LightObject light,
float hotAngle);

light

A spot light object.

C H A P T E R 8

Light Objects

664

Light Objects Reference

hotAngle

The desired hot angle of the specified light, in radians.

DESCRIPTION

The

Q3SpotLight_SetHotAngle

 function sets the hot angle of the spot light
specified by the

light

 parameter to the value passed in the

hotAngle

 parameter.

Q3SpotLight_GetOuterAngle 8

You can use the

Q3SpotLight_GetOuterAngle

 function to get the outer angle of a
spot light.

TQ3Status Q3SpotLight_GetOuterAngle (
TQ3LightObject light,
float *outerAngle);

light

A spot light object.

outerAngle

On exit, the outer angle of the specified light, in radians.

DESCRIPTION

The

Q3SpotLight_GetOuterAngle

 function returns, in the

outerAngle

 parameter,
the current outer angle of the spot light specified by the

light

 parameter.

Q3SpotLight_SetOuterAngle 8

You can use the

Q3SpotLight_SetOuterAngle

 function to set the outer angle of a
spot light.

TQ3Status Q3SpotLight_SetOuterAngle (
TQ3LightObject light,
float outerAngle);

light

A spot light object.

outerAngle

The desired outer angle of the specified light, in radians.

C H A P T E R 8

Light Objects

Light Objects Reference

665

DESCRIPTION

The

Q3SpotLight_SetOuterAngle

 function sets the outer angle of the spot light
specified by the

light

 parameter to the value passed in the

outerAngle

parameter.

Q3SpotLight_GetFallOff 8

You can use the

Q3SpotLight_GetFallOff

 function to get the fall-off value of a
spot light.

TQ3Status Q3SpotLight_GetFallOff (
TQ3LightObject light,
TQ3FallOffType *fallOff);

light

A spot light object.

fallOff

On exit, the fall-off value of the specified spot light. See “Light
Fall-Off Values” (page 638) for a description of the constants that
can be returned in this parameter.

DESCRIPTION

The

Q3SpotLight_GetFallOff

 function returns, in the

fallOff

 parameter, the
current fall-off value of the spot light specified by the

light

 parameter.

Q3SpotLight_SetFallOff 8

You can use the

Q3SpotLight_SetFallOff

 function to set the fall-off value of a
spot light.

TQ3Status Q3SpotLight_SetFallOff (
TQ3LightObject light,
TQ3FallOffType fallOff);

light

A spot light object.

C H A P T E R 8

Light Objects

666

Light Objects Reference

fallOff

The desired fall-off value of the specified spot light. See “Light
Fall-Off Values” (page 638) for a description of the constants that
can be passed in this parameter.

DESCRIPTION

The

Q3SpotLight_SetFallOff

 function sets the fall-off value of the spot light
specified by the

light

 parameter to the value passed in the

fallOff

 parameter.

Q3SpotLight_GetData 8

You can use the

Q3SpotLight_GetData

 function to get the data that defines a spot
light.

TQ3Status Q3SpotLight_GetData (
TQ3LightObject light,
TQ3SpotLightData *spotLightData);

light

A spot light object.

spotLightData

On exit, a pointer to a spot light data structure.

DESCRIPTION

The

Q3SpotLight_GetData

 function returns, through the

spotLightData

parameter, information about the spot light specified by the

light

 parameter.
See “Spot Light Data Structure” (page 641) for a description of a spot light data
structure.

Q3SpotLight_SetData 8

You can use the

Q3SpotLight_SetData

 function to set the data that defines a spot
light.

C H A P T E R 8

Light Objects

Light Notices

667

TQ3Status Q3SpotLight_SetData (
TQ3LightObject light,
const TQ3SpotLightData *spotLightData);

light

A spot light object.

spotLightData

A pointer to a spot light data structure.

DESCRIPTION

The

Q3SpotLight_SetData

 function sets the data associated with the spot light
specified by the

light

 parameter to the data specified by the

spotLightData

parameter.

Light Notices 8

The following notices may be returned by light functions. A list of general
QuickDraw 3D errors is given in “QuickDraw 3D Errors, Warnings, and
Notices” (page 87).

kQ3NoticeInvalidAttenuationTypeUsingInternalDefaults
kQ3NoticeBrightnessGreaterThanOne

C H A P T E R 8

Light Objects

668

Light Notices

About Camera Objects

669

C H A P T E R 9

Camera Objects 9Figure 9-0
Listing 9-0
Table 9-0

This chapter describes camera objects (or cameras) and the functions you can
use to manipulate them. You use cameras to specify the location of the viewer,
the direction of viewing, the portion of the view plane to be rendered, and other
information about a scene. A single camera is associated with a view, along with
a list of lights and other settings that affect the rendering of a model.

You should already be familiar with the QuickDraw 3D class hierarchy,
described in the chapter “QuickDraw 3D Objects.” For information about
associating a camera with a view, see the chapter “View Objects.”

This chapter begins by describing camera objects and their features. Then it
shows how to create and manipulate cameras. The section “Camera Objects
Reference,” beginning on page 683 provides a complete description of camera
objects and the routines you can use to create and manipulate them.

About Camera Objects 9

A camera object (or, more briefly, a camera) is a type of QuickDraw 3D object
that you use to define a point of view, a range of visible objects, and a method
of projection for generating a two-dimensional image of those objects from a
three-dimensional model. A camera is of type TQ3CameraObject, which is a type
of shape object.

QuickDraw 3D defines three types of cameras:

■ orthographic cameras

■ view plane cameras

■ aspect ratio cameras

C H A P T E R 9

Camera Objects

670 About Camera Objects

These types of cameras differ in their methods of projection, as explained more
fully later in this section. All three types of cameras share some basic properties,
which are maintained in a camera data structure, defined by the TQ3CameraData
data structure.

typedef struct TQ3CameraData {
TQ3CameraPlacement placement;
TQ3CameraRange range;
TQ3CameraViewPort viewPort;

} TQ3CameraData;

These fields specify the location and orientation of the camera, the visible range
of interest, and the camera’s view port and projection method. The following
sections explain these concepts in greater detail.

Camera Placements 9

A camera location is the position, in the world coordinate system, of a camera.
A camera placement is a camera location together with an orientation and a
direction. You specify a camera’s orientation by indicating its up vector, the
vector that defines which direction is up. You specify a camera’s direction by
indicating a point of interest, the point at which the camera is aimed. The
vector that is the result of subtracting the camera location from the point of
interest is the viewing direction or camera vector. In general, a camera’s up
vector should be perpendicular to its viewing direction and should be
normalized. You can, however, specify any up vector that isn’t colinear with the
viewing direction. Figure 9-1 shows the placement of a camera.

C H A P T E R 9

Camera Objects

About Camera Objects 671

Figure 9-1 A camera’s placement

Note
Because a camera defines a point of view onto a model, the
camera location is also called the eye point. ◆

In QuickDraw 3D, you specify a camera’s placement by filling in the fields of a
camera placement structure, defined by the TQ3CameraPlacement data type.

typedef struct TQ3CameraPlacement {
TQ3Point3D cameraLocation;
TQ3Point3D pointOfInterest;
TQ3Vector3D upVector;

} TQ3CameraPlacement;

See “Camera Placement Structure” (page 683) for complete information about
the camera placement structure.

Up vector

Viewing direction

Point of
interest

Camera location
1239om a34098

Todaisu
dr lk

jasd
f

C H A P T E R 9

Camera Objects

672 About Camera Objects

Camera Ranges 9

Often, you’re not interested in all the objects in a model that are visible from the
current placement of a camera. Some objects may be too far away from the
camera location to create a useful image when projected onto the
two-dimensional view plane, and some objects may be so close to the camera
that they obscure other important objects. QuickDraw 3D, like most 3D
graphics systems, provides a mechanism for ignoring objects that lie outside
your current range of interest. You do this by defining two clipping planes that
delimit the part of a model that is rendered. The hither plane is a plane
perpendicular to the viewing direction that indicates the clipping range closest
to the camera. Any objects or parts of objects that lie between the camera and
the hither plane do not appear in a rendered image. Similarly, the yon plane is a
plane perpendicular to the viewing direction that indicates the clipping range
farthest from the camera. Any objects or parts of objects that lie beyond the yon
plane do not appear in a rendered image. In short, only objects or parts of
objects that lie between the hither and yon planes appear in a rendered image,
as shown in Figure 9-2.

Figure 9-2 The hither and yon planes

Imageable part
of model

Viewing direction

Hither plane

Yon plane

Point of
interest

Camera location
1239om a34098

Todaisu
dr lk

jasd
f

C H A P T E R 9

Camera Objects

About Camera Objects 673

Note
The hither and yon planes are sometimes called the near
and far planes, respectively. ◆

The extent between the hither and yon planes of a camera is the camera range,
defined by the TQ3CameraRange data structure.

typedef struct TQ3CameraRange {
float hither;
float yon;

} TQ3CameraRange;

The clipping planes are specified by distances along the viewing direction from
the camera location. The distance to the yon plane should always be greater
than the distance to the hither plane, and the distance to the hither plane should
always be greater than 0.0.

View Planes and View Ports 9

As you’ve learned, QuickDraw 3D provides three different types of cameras,
which are distinguished from one another by their method of projection—that
is, by their method of generating a two-dimensional image of the objects in a
three-dimensional model. A projection of an object is the set of points in which
rays emanating from the object (called projectors) intersect a plane (called the
view plane). The projection created when the projectors are all parallel to one
another is called a parallel projection, and the projection created when the
projectors all intersect in a point is called a perspective projection. The point at
which the projectors in a perspective projection intersect one another is the
center of projection.

Note
Currently, QuickDraw 3D provides only normal view
planes, where the view plane is perpendicular to the
viewing direction. ◆

Figure 9-3 illustrates a parallel projection of an object.

C H A P T E R 9

Camera Objects

674 About Camera Objects

Figure 9-3 A parallel projection of an object

Notice that, because the projectors are parallel, the size of the two-dimensional
image corresponds exactly to the size of the three-dimensional object being
projected, no matter where the view plane is located. As a result, you do not
need to specify the location of the view plane when using parallel projections.
See “Orthographic Cameras” (page 677) for details on how to specify a parallel
projection.

Figure 9-4 illustrates a perspective projection of an object.

View plane

Projectors

C H A P T E R 9

Camera Objects

About Camera Objects 675

Figure 9-4 A perspective projection of an object

As you can see, the location of the view plane is very important in a perspective
projection. When the view plane is close to the camera, the projectors are close
together and the image they create is small. Conversely, when the view plane is
farther away from the camera, the projectors are farther apart and the image
they create is larger. Similarly, no matter where the view plane is located, the
size of the projected image of an object is inversely proportional to the distance
of the object from the view plane. Objects farther away from the view plane
appear smaller than objects of the same size closer to the view plane. This effect
is perspective foreshortening.

When using perspective projection, you therefore need to specify the location of
the view plane. QuickDraw 3D provides two types of perspective cameras,
which specify the location of the view plane in different ways. See “View Plane

View plane

Projectors

Center of projection = eye point

Camera

12
39

om
 a

34
09

8
T

od
ai

su
dr

 lk
ja

sd
f

C H A P T E R 9

Camera Objects

676 About Camera Objects

Cameras” (page 679) and “Aspect Ratio Cameras” (page 681) for complete
details on these two types of perspective cameras.

A camera view port is the rectangular portion of the view plane that is to be
mapped into the area specified by the current draw context. A draw context is
usually just a window, so the view port defines the portion of the view plane
that appears in the window. By default, a camera’s view port is the entire
square portion of the view plane bounded by the view volume (either a box, for
parallel projections, or a frustum, for perspective projections). Figure 9-5
(page 677) shows the default camera view port for a perspective camera.

You can select a smaller portion of the view plane by filling in a camera view
port structure, defined by the TQ3CameraViewPort data type.

typedef struct TQ3CameraViewPort {
TQ3Point2D origin;
float width;
float height;

} TQ3CameraViewPort;

For example, to display only the right side of the view plane, you would set the
origin field to the point (0, 1), the width field to the value 1.0, and the height
field to the value 2.0.

Note
The image displayed in a draw context is not necessarily
the image drawn on the view port. The view port image is
scaled to fit into the draw context pane and then clipped
with the draw context mask. See the chapter “Draw
Context Objects” for information about draw context panes
and masks, and for further details on the relationship
between a view port and a draw context. ◆

C H A P T E R 9

Camera Objects

About Camera Objects 677

Figure 9-5 The default camera view port

Orthographic Cameras 9

An orthographic camera is a camera that uses parallel projection to generate a
two-dimensional image of the objects in a three-dimensional model. In
particular, an orthographic camera uses orthographic projection, in which the
view plane is perpendicular to the viewing direction. Parallel projections are in
general less realistic than perspective projections, but they have the advantage
that parallel lines in a model remain parallel in the projection, and distances are
not distorted by perspective foreshortening.

The two most common types of orthographic projection are isometric projection
and elevation projection. An isometric projection is an orthographic projection
in which the viewing direction makes equal angles with each of the three
principal axes of an object. An elevation projection is an orthographic
projection in which the view plane is perpendicular to one of the principal axes

Camera

Hither plane

View plane

Yon plane
1

1

-1

-1
(0,0)

1239om a34098

Todaisu
dr lk

jasd
f

C H A P T E R 9

Camera Objects

678 About Camera Objects

of the object being projected. Figure 9-6 shows isometric and elevation
projections of an object.

Figure 9-6 Isometric and elevation projections

The view volume associated with an orthographic camera is determined by a
box aligned with the viewing direction, as shown in Figure 9-7. To specify the
box, you provide the left side, top side, right side, and bottom side. The values
you use to specify these sides are relative to the camera coordinate system
defined by the camera location and the viewing direction. The box defines the
four horizontal and vertical clipping planes.

See “Orthographic Camera Data Structure” (page 686) for details on the data
you need to provide to define an orthographic camera. See “Managing
Orthographic Cameras,” beginning on page 694 for a description of the routines
you can use to create and manipulate orthographic cameras.

Isometric Top
Side

elevation
Front

elevation

C H A P T E R 9

Camera Objects

About Camera Objects 679

Figure 9-7 An orthographic camera

View Plane Cameras 9

A view plane camera is a type of perspective camera defined in terms of an
arbitrary view plane. In general, you’ll use a view plane camera to create a
perspective image of a specific object in a scene. The view plane camera is the
only type of perspective camera provided by QuickDraw 3D that allows
off-axis viewing (that is, viewing where the center of the projected object on the
view plane is not on the camera vector), which is convenient when scrolling an
image up or down, or left to right.

The view frustum associated with a view plane camera is determined by a view
plane (located at a specified distance from the camera) and the rectangular cross

Camera location
(eye point) Camera vector

Hither plane

Yon plane

View plane

Up vector

Top

Bottom

Right

Left

C H A P T E R 9

Camera Objects

680 About Camera Objects

section of an object, as shown in Figure 9-8. The point at which the camera
vector intersects the view plane defines the origin of the view plane coordinate
system. You specify a rectangular cross section of an object by specifying its
center (in the view plane coordinate system) and the half-width and half-height
of the cross section. In Figure 9-8, the center of the cross section is the point
(cx, cy), and the half-width and half-height are the distances dx and dy,
respectively.

Figure 9-8 A view plane camera

See “View Plane Camera Data Structure” (page 686) for complete details on the
data you need to provide to define a view plane camera. See “Managing View
Plane Cameras,” beginning on page 700 for a description of the routines you
can use to create and manipulate view plane cameras.

(cx,cy)

dy

dx

Camera location
(eye point)

Up vector

Point of interest

View plane

Origin of view plane
coordinate system

Distance to
view plane

1239om a34098

Todaisu
dr lk

jasd
f

C H A P T E R 9

Camera Objects

About Camera Objects 681

Aspect Ratio Cameras 9

An aspect ratio camera is a type of perspective camera defined in terms of a
viewing angle and a horizontal-to-vertical aspect ratio, as shown in Figure 9-9.
With an aspect ratio camera, you don’t specify the distance to the view plane
directly (as you do with a view plane camera).

Figure 9-9 An aspect ratio camera

The orientation of the field of view is determined by the specified aspect ratio. If
the aspect ratio is greater than 1.0, the field of view is vertical. If the aspect ratio
is less than 1.0, the field of view is horizontal. In general, to avoid distortion, the
aspect ratio should be the same as the aspect ratio of the camera’s view port.

You can easily see that as the field of view increases, the view plane must move
closer to camera location for the view port to fit within the field of view, in
which case the image size decreases (because of perspective foreshortening).
Conversely, as the field of view decreases, the view plane must move away
from the camera location, and the image size increases.

Camera location
(eye point)

View
plane

Field of view

Origin of view plane
coordinate system

C H A P T E R 9

Camera Objects

682 About Camera Objects

Note that you can always find a view plane camera that is projectively identical
to any aspect ratio camera. (The converse is not true: it’s not always possible to
find an aspect ratio camera that is projectively identical to an arbitrary view
plane camera.) Consider the aspect ratio camera shown in Figure 9-10. It’s easy
to specify a view plane camera that creates the same image as that aspect ratio
camera. To do this, set the center of the cross section (cx, cy) to be the origin
(0, 0), and set the half-width dx to be the quantity d tan(α/2), where d is the
distance from the camera to the view plane and α is the horizontal field of view.
(The half-angle applies to the smaller of the two view port dimensions.)

Figure 9-10 The relation between aspect ratio cameras and view plane cameras

See “Aspect Ratio Camera Data Structure” (page 687) for more details on the
data you need to provide to define an aspect ratio camera. See “Managing
Aspect Ratio Cameras,” beginning on page 707 for a description of the routines
you can use to create and manipulate aspect ratio cameras.

Camera location
(eye point)

View port

(0,0)

dx

d

dy

C H A P T E R 9

Camera Objects

Using Camera Objects 683

Using Camera Objects 9

You create a camera object by filling in the fields of the appropriate data
structure (for example, a structure of type TQ3ViewAngleAspectCameraData for an
aspect ratio camera) and calling an appropriate constructor function (for
example, Q3ViewAngleAspectCamera_New for an aspect ratio camera). Then, no
matter what kind of camera you’ve created, you need to attach the camera to a
view object, by calling the Q3View_SetCamera function. See Listing 1-8 (page 66)
and Listing 1-9 (page 67) for complete code samples that create a camera and
attach it to a view object.

You can change the characteristics of a view’s camera by calling camera object
editing routines. For example, you can change the aspect ratio of an aspect ratio
camera by calling the Q3ViewAngleAspectCamera_SetAspectRatio function.

Camera Objects Reference 9

This section describes the QuickDraw 3D data structures and routines that you
can use to create and manage camera objects.

Data Structures 9

This section describes the data structures supplied by QuickDraw 3D for
managing cameras. The data structures used to manage cameras are all public.

Camera Placement Structure 9

You use a camera placement structure to get or set information about the
location and orientation of a camera. A camera placement structure is defined
by the TQ3CameraPlacement data type.

C H A P T E R 9

Camera Objects

684 Camera Objects Reference

typedef struct TQ3CameraPlacement {
TQ3Point3D cameraLocation;
TQ3Point3D pointOfInterest;
TQ3Vector3D upVector;

} TQ3CameraPlacement;

Field descriptions
cameraLocation The location of the camera, in world-space coordinates.
pointOfInterest The camera’s point of interest (that is, the point at which

the camera is aimed), in world-space coordinates.
upVector The up-vector of the camera, which specifies the

orientation of the camera. It must be normalized and
perpendicular to the viewing direction. The up-vector of a
camera is mapped to the y axis of the view plane.

Camera Range Structure 9

You use a camera range structure to get or set the hither and yon clipping
planes for a camera. A camera range structure is defined by the TQ3CameraRange
data type.

typedef struct TQ3CameraRange {
float hither;
float yon;

} TQ3CameraRange;

Field descriptions
hither The distance (measured along the camera vector) from the

camera’s location to the near clipping plane. The value in
this field should always be greater than 0.

yon The distance (measured along the camera vector) from the
camera’s location to the far clipping plane. The value in this
field should always be greater than the value in the hither
field.

Camera View Port Structure 9

You use a camera view port structure to get or set information about the view
port of a camera. A camera’s view port defines the rectangular portion of the

C H A P T E R 9

Camera Objects

Camera Objects Reference 685

view plane that is to be mapped into the area specified by the current draw
context. The default settings for a view port describe the entire view plane,
where the origin (–1.0, 1.0) is the upper-left corner and the width and height of
the plane are both 2.0. A camera view port structure is defined by the
TQ3CameraViewPort data type.

typedef struct TQ3CameraViewPort {
TQ3Point2D origin;
float width;
float height;

} TQ3CameraViewPort;

Field descriptions
origin The origin of the view port. The values of the x and y fields

of this point should be between –1.0 and 1.0.
width The width of the view port. The value in this field should

be greater than 0.0 and less than 2.0.
height The height of the view port. The value in this field should

be greater than 0.0 and less than 2.0.

Camera Data Structure 9

You use a camera data structure to get or set basic information about a camera
of any kind. A camera data structure is defined by the TQ3CameraData data type.

typedef struct TQ3CameraData {
TQ3CameraPlacement placement;
TQ3CameraRange range;
TQ3CameraViewPort viewPort;

} TQ3CameraData;

Field descriptions
placement A camera placement structure that specifies the current

placement and orientation of the camera.
range A camera range structure that specifies the current hither

and yon clipping planes for the camera.
viewPort A camera view port structure that specifies the current

view port of the camera.

C H A P T E R 9

Camera Objects

686 Camera Objects Reference

Orthographic Camera Data Structure 9

You use an orthographic camera data structure to get or set information about
an orthographic camera. An orthographic camera data structure is defined by
the TQ3OrthographicCameraData data type.

typedef struct TQ3OrthographicCameraData {
TQ3CameraData cameraData;
float left;
float top;
float right;
float bottom;

} TQ3OrthographicCameraData;

Field descriptions
cameraData A camera data structure specifying basic information about

the orthographic camera.
left The left side of the orthographic camera. The value of this

field (and the following three fields) is relative to the
camera coordinate system.

top The top side of the orthographic camera.
right The right side of the orthographic camera.
bottom The bottom side of the orthographic camera.

View Plane Camera Data Structure 9

You use a view plane camera data structure to get or set information about a
view plane camera. A view plane camera data structure is defined by the
TQ3ViewPlaneCameraData data type.

typedef struct TQ3ViewPlaneCameraData {
TQ3CameraData cameraData;
float viewPlane;
float halfWidthAtViewPlane;
float halfHeightAtViewPlane;
float centerXOnViewPlane;
float centerYOnViewPlane;

} TQ3ViewPlaneCameraData;

C H A P T E R 9

Camera Objects

Camera Objects Reference 687

Field descriptions
cameraData A camera data structure specifying basic information about

the view plane camera.
viewPlane The distance to the view plane from the location of the

camera. The value in this field must be greater than 0.0. The
view plane should be set at the object whose dimensions
and location are specified by the following four fields.

halfWidthAtViewPlane
One half the width of the cross section of an object.

halfHeightAtViewPlane
The value in the halfWidthAtViewPlane field divided by the
aspect ratio of the view port.

centerXOnViewPlane
The x coordinate of the center of the object in the view
plane.

centerYOnViewPlane
The y coordinate of the center of the object in the view
plane.

Aspect Ratio Camera Data Structure 9

You use an aspect ratio camera data structure to get or set information about an
aspect ratio camera. An aspect ratio camera data structure is defined by the
TQ3ViewAngleAspectCameraData data type.

typedef struct TQ3ViewAngleAspectCameraData {
TQ3CameraData cameraData;
float fov;
float aspectRatioXToY;

} TQ3ViewAngleAspectCameraData;

Field descriptions
cameraData A camera data structure specifying basic information about

the aspect ratio camera.
fov The camera’s maximum field of view. This parameter

should contain a positive floating-point value specified in
radians. If the value in the aspectRatioXToY field is greater
than 1.0, the field of view is vertical; if the value in the

C H A P T E R 9

Camera Objects

688 Camera Objects Reference

aspectRatioXToY field is less than 1.0, the field of view is
horizontal.

aspectRatioXToY The camera’s horizontal-to-vertical aspect ratio. To avoid
distortion, this ratio should be the same as the ratio of the
width to the height of the camera’s view port.

Camera Objects Routines 9

This section describes the routines you can use to manage cameras.

Managing Cameras 9

QuickDraw 3D provides a number of general routines for managing cameras of
any kind.

Q3Camera_GetType 9

You can use the Q3Camera_GetType function to get type of a camera.

TQ3ObjectType Q3Camera_GetType (TQ3CameraObject camera);

camera A camera object.

DESCRIPTION

The Q3Camera_GetType function returns, as its function result, the type of the
camera specified by the camera parameter. The types of camera currently
supported by QuickDraw 3D are defined by these constants:

kQ3CameraTypeOrthographic
kQ3CameraTypeViewAngleAspect
kQ3CameraTypeViewPlane

If Q3Camera_GetType cannot determine the type of the specified camera, it
returns kQ3ObjectTypeInvalid.

C H A P T E R 9

Camera Objects

Camera Objects Reference 689

Q3Camera_GetData 9

You can use the Q3Camera_GetData function to get the basic data associated with
a camera.

TQ3Status Q3Camera_GetData (
TQ3CameraObject camera,
TQ3CameraData *cameraData);

camera A camera object.

cameraData On exit, a pointer to a camera data structure.

DESCRIPTION

The Q3Camera_GetData function returns, through the cameraData parameter, basic
information about the camera specified by the camera parameter. See “Camera
Data Structure” (page 685) for a description of a camera data structure.

Q3Camera_SetData 9

You can use the Q3Camera_SetData function to set the basic data associated with
a camera.

TQ3Status Q3Camera_SetData (
TQ3CameraObject camera,
const TQ3CameraData *cameraData);

camera A camera object.

cameraData A pointer to a camera data structure.

DESCRIPTION

The Q3Camera_SetData function sets the data associated with the camera
specified by the camera parameter to the data specified by the cameraData
parameter.

C H A P T E R 9

Camera Objects

690 Camera Objects Reference

Q3Camera_GetPlacement 9

You can use the Q3Camera_GetPlacement function to get the current placement of
a camera.

TQ3Status Q3Camera_GetPlacement (
TQ3CameraObject camera,
TQ3CameraPlacement *placement);

camera A camera object.

placement On exit, a pointer to a camera placement structure.

DESCRIPTION

The Q3Camera_GetPlacement function returns, in the placement parameter, a
pointer to a camera placement structure that describes the current placement of
the camera specified by the camera parameter.

Q3Camera_SetPlacement 9

You can use the Q3Camera_SetPlacement function to set the placement of a
camera.

TQ3Status Q3Camera_SetPlacement (
TQ3CameraObject camera,
const TQ3CameraPlacement *placement);

camera A camera object.

placement A pointer to a camera placement structure.

DESCRIPTION

The Q3Camera_SetPlacement function sets the placement of the camera specified
by the camera parameter to the position specified by the placement parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 691

Q3Camera_GetRange 9

You can use the Q3Camera_GetRange function to get the current range of a
camera.

TQ3Status Q3Camera_GetRange (
TQ3CameraObject camera,
TQ3CameraRange *range);

camera A camera object.

range On exit, a pointer to a camera range structure.

DESCRIPTION

The Q3Camera_GetRange function returns, in the range parameter, a pointer to a
camera range structure that describes the current range of the camera specified
by the camera parameter.

Q3Camera_SetRange 9

You can use the Q3Camera_SetRange function to set the range of a camera.

TQ3Status Q3Camera_SetRange (
TQ3CameraObject camera,
const TQ3CameraRange *range);

camera A camera object.

range A pointer to a camera range structure.

DESCRIPTION

The Q3Camera_SetRange function sets the range of the camera specified by the
camera parameter to the range specified by the range parameter.

C H A P T E R 9

Camera Objects

692 Camera Objects Reference

Q3Camera_GetViewPort 9

You can use the Q3Camera_GetViewPort function to get the current view port of a
camera.

TQ3Status Q3Camera_GetViewPort (
TQ3CameraObject camera,
TQ3CameraViewPort *viewPort);

camera A camera object.

viewPort On exit, a pointer to a camera view port structure.

DESCRIPTION

The Q3Camera_GetViewPort function returns, in the viewPort parameter, a pointer
to a camera view port structure that describes the current view port of the
camera specified by the camera parameter.

Q3Camera_SetViewPort 9

You can use the Q3Camera_SetViewPort function to set the view port of a camera.

TQ3Status Q3Camera_SetViewPort (
TQ3CameraObject camera,
const TQ3CameraViewPort *viewPort);

camera A camera object.

viewPort A pointer to a camera view port structure.

DESCRIPTION

The Q3Camera_SetViewPort function sets the view port of the camera specified by
the camera parameter to the view port specified by the viewPort parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 693

Q3Camera_GetWorldToView 9

You can use the Q3Camera_GetWorldToView function to get the current
world-to-view space transform.

TQ3Status Q3Camera_GetWorldToView (
TQ3CameraObject camera,
TQ3Matrix4x4 *worldToView);

camera A camera object.

worldToView On output, a pointer to a 4-by-4 matrix.

DESCRIPTION

The Q3Camera_GetWorldToView function returns, in the worldToView parameter, a
pointer to a 4-by-4 matrix that describes the current world-to-view space
transform defined by the camera specified by the camera parameter. The
world-to-view space transform is defined only by the placement of the camera;
it establishes the camera location as the origin of the view space, with the view
vector (that is, the vector from the camera’s eye toward the point of interest)
placed along the –z axis and the up vector placed along the y axis.

Q3Camera_GetViewToFrustum 9

You can use the Q3Camera_GetViewToFrustum function to get the current
view-to-frustum transform.

TQ3Status Q3Camera_GetViewToFrustum (
TQ3CameraObject camera,
TQ3Matrix4x4 *viewToFrustum);

camera A camera object.

viewToFrustum
On output, a pointer to a 4-by-4 matrix.

C H A P T E R 9

Camera Objects

694 Camera Objects Reference

DESCRIPTION

The Q3Camera_GetViewToFrustum function returns, in the viewToFrustum
parameter, a pointer to a 4-by-4 matrix that describes the current
view-to-frustum transform defined by the camera specified by the camera
parameter.

Q3Camera_GetWorldToFrustum 9

You can use the Q3Camera_GetWorldToFrustum function to get the current
world-to-frustum transform.

TQ3Status Q3Camera_GetWorldToFrustum (
TQ3CameraObject camera,
TQ3Matrix4x4 *worldToFrustum);

camera A camera object.

worldToFrustum
On output, a pointer to a 4-by-4 matrix.

DESCRIPTION

The Q3Camera_GetWorldToFrustum function returns, in the worldToFrustum
parameter, a pointer to a 4-by-4 matrix that describes the current
world-to-frustum transform defined by the camera specified by the camera
parameter.

Managing Orthographic Cameras 9

QuickDraw 3D provides routines that you can use to create and edit
orthographic cameras.

Q3OrthographicCamera_New 9

You can use the Q3OrthographicCamera_New function to create a new
orthographic camera.

C H A P T E R 9

Camera Objects

Camera Objects Reference 695

TQ3CameraObject Q3OrthographicCamera_New (
const TQ3OrthographicCameraData *orthographicData);

orthographicData
A pointer to an orthographic camera data structure.

DESCRIPTION

The Q3OrthographicCamera_New function returns, as its function result, a new
orthographic camera having the camera characteristics specified by the
orthographicData parameter.

Q3OrthographicCamera_GetData 9

You can use the Q3OrthographicCamera_GetData function to get the data that
defines an orthographic camera.

TQ3Status Q3OrthographicCamera_GetData (
TQ3CameraObject camera,
TQ3OrthographicCameraData *cameraData);

camera An orthographic camera object.

cameraData On exit, a pointer to an orthographic camera data structure.

DESCRIPTION

The Q3OrthographicCamera_GetData function returns, through the cameraData
parameter, information about the orthographic camera specified by the camera
parameter. See “Orthographic Camera Data Structure” (page 686) for the
structure of an orthographic camera data structure.

Q3OrthographicCamera_SetData 9

You can use the Q3OrthographicCamera_SetData function to set the data that
defines an orthographic camera.

C H A P T E R 9

Camera Objects

696 Camera Objects Reference

TQ3Status Q3OrthographicCamera_SetData (
TQ3CameraObject camera,
const TQ3OrthographicCameraData *cameraData);

camera An orthographic camera object.

cameraData A pointer to an orthographic camera data structure.

DESCRIPTION

The Q3OrthographicCamera_SetData function sets the data associated with the
orthographic camera specified by the camera parameter to the data specified by
the cameraData parameter.

Q3OrthographicCamera_GetLeft 9

You can use the Q3OrthographicCamera_GetLeft function to get the left side of an
orthographic camera.

TQ3Status Q3OrthographicCamera_GetLeft (
TQ3CameraObject camera,
float *left);

camera An orthographic camera object.

left On exit, the left side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_GetLeft function returns, in the left parameter, a
value that specifies the left side of the orthographic camera specified by the
camera parameter.

Q3OrthographicCamera_SetLeft 9

You can use the Q3OrthographicCamera_SetLeft function to set the left side of an
orthographic camera.

C H A P T E R 9

Camera Objects

Camera Objects Reference 697

TQ3Status Q3OrthographicCamera_SetLeft (
TQ3CameraObject camera,
float left);

camera An orthographic camera object.

left The desired left side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_SetLeft function sets the left side of the orthographic
camera specified by the camera parameter to the value specified by the left
parameter.

Q3OrthographicCamera_GetTop 9

You can use the Q3OrthographicCamera_GetTop function to get the top side of an
orthographic camera.

TQ3Status Q3OrthographicCamera_GetTop (
TQ3CameraObject camera,
float *top);

camera An orthographic camera object.

top On exit, the top side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_GetTop function returns, in the top parameter, a
value that specifies the top side of the orthographic camera specified by the
camera parameter.

Q3OrthographicCamera_SetTop 9

You can use the Q3OrthographicCamera_SetTop function to set the top side of an
orthographic camera.

C H A P T E R 9

Camera Objects

698 Camera Objects Reference

TQ3Status Q3OrthographicCamera_SetTop (
TQ3CameraObject camera,
float top);

camera An orthographic camera object.

top The desired top side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_SetTop function sets the top side of the orthographic
camera specified by the camera parameter to the value specified by the top
parameter.

Q3OrthographicCamera_GetRight 9

You can use the Q3OrthographicCamera_GetRight function to get the right side of
an orthographic camera.

TQ3Status Q3OrthographicCamera_GetRight (
TQ3CameraObject camera,
float *right);

camera An orthographic camera object.

right On exit, the right side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_GetRight function returns, in the right parameter, a
value that specifies the right side of the orthographic camera specified by the
camera parameter.

Q3OrthographicCamera_SetRight 9

You can use the Q3OrthographicCamera_SetRight function to set the right side of
an orthographic camera.

C H A P T E R 9

Camera Objects

Camera Objects Reference 699

TQ3Status Q3OrthographicCamera_SetRight (
TQ3CameraObject camera,
float right);

camera An orthographic camera object.

right The desired right side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_SetRight function sets the right side of the
orthographic camera specified by the camera parameter to the value specified by
the right parameter.

Q3OrthographicCamera_GetBottom 9

You can use the Q3OrthographicCamera_GetBottom function to get the bottom side
of an orthographic camera.

TQ3Status Q3OrthographicCamera_GetBottom (
TQ3CameraObject camera,
float *bottom);

camera An orthographic camera object.

bottom On exit, the bottom side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_GetBottom function returns, in the bottom parameter,
a value that specifies the bottom side of the orthographic camera specified by
the camera parameter.

Q3OrthographicCamera_SetBottom 9

You can use the Q3OrthographicCamera_SetBottom function to set the bottom side
of an orthographic camera.

C H A P T E R 9

Camera Objects

700 Camera Objects Reference

TQ3Status Q3OrthographicCamera_SetBottom (
TQ3CameraObject camera,
float bottom);

camera An orthographic camera object.

bottom The desired bottom side of the specified orthographic camera.

DESCRIPTION

The Q3OrthographicCamera_SetBottom function sets the bottom side of the
orthographic camera specified by the camera parameter to the value specified by
the bottom parameter.

Managing View Plane Cameras 9

QuickDraw 3D provides routines that you can use to create and edit view plane
cameras.

Q3ViewPlaneCamera_New 9

You can use the Q3ViewPlaneCamera_New function to create a new view plane
camera.

TQ3CameraObject Q3ViewPlaneCamera_New (
const TQ3ViewPlaneCameraData *cameraData);

cameraData A pointer to a view plane camera data structure.

DESCRIPTION

The Q3ViewPlaneCamera_New function returns, as its function result, a new view
plane camera having the camera characteristics specified by the cameraData
parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 701

Q3ViewPlaneCamera_GetData 9

You can use the Q3ViewPlaneCamera_GetData function to get the data that defines
a view plane camera.

TQ3Status Q3ViewPlaneCamera_GetData (
TQ3CameraObject camera,
TQ3ViewPlaneCameraData *cameraData);

camera A view plane camera object.

cameraData On exit, a pointer to a view plane camera data structure.

DESCRIPTION

The Q3ViewPlaneCamera_GetData function returns, through the cameraData
parameter, information about the view plane camera specified by the camera
parameter. See “View Plane Camera Data Structure” (page 686) for the structure
of a view plane camera data structure.

Q3ViewPlaneCamera_SetData 9

You can use the Q3ViewPlaneCamera_SetData function to set the data that defines
a view plane camera.

TQ3Status Q3ViewPlaneCamera_SetData (
TQ3CameraObject camera,
const TQ3ViewPlaneCameraData *cameraData);

camera A view plane camera object.

cameraData A pointer to a view plane camera data structure.

DESCRIPTION

The Q3ViewPlaneCamera_SetData function sets the data associated with the view
plane camera specified by the camera parameter to the data specified by the
cameraData parameter.

C H A P T E R 9

Camera Objects

702 Camera Objects Reference

Q3ViewPlaneCamera_GetViewPlane 9

You can use the Q3ViewPlaneCamera_GetViewPlane function to get the current
distance of the view plane from a view plane camera.

TQ3Status Q3ViewPlaneCamera_GetViewPlane (
TQ3CameraObject camera,
float *viewPlane);

camera A view plane camera object.

viewPlane On exit, the distance of the view plane from the specified
camera.

DESCRIPTION

The Q3ViewPlaneCamera_GetViewPlane function returns, in the viewPlane
parameter, the distance of the view plane from the camera specified by the
camera parameter.

Q3ViewPlaneCamera_SetViewPlane 9

You can use the Q3ViewPlaneCamera_SetViewPlane function to set the distance of
the view plane from a view plane camera.

TQ3Status Q3ViewPlaneCamera_SetViewPlane (
TQ3CameraObject camera,
float viewPlane);

camera A view plane camera object.

viewPlane The desired distance of the view plane from the specified
camera.

DESCRIPTION

The Q3ViewPlaneCamera_SetViewPlane function sets the distance from the camera
specified by the camera parameter to its view plane to the value specified in the
viewPlane parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 703

Q3ViewPlaneCamera_GetHalfWidth 9

You can use the Q3ViewPlaneCamera_GetHalfWidth function to get the half-width
of the object specifying a view plane camera.

TQ3Status Q3ViewPlaneCamera_GetHalfWidth (
TQ3CameraObject camera,
float *halfWidthAtViewPlane);

camera A view plane camera object.

halfWidthAtViewPlane
On exit, the half-width of the cross section of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_GetHalfWidth function returns, in the
halfWidthAtViewPlane parameter, the half-width of the cross section of the
viewed object of the camera specified by the camera parameter.

Q3ViewPlaneCamera_SetHalfWidth 9

You can use the Q3ViewPlaneCamera_SetHalfWidth function to set the half-width
of the object specifying a view plane camera.

TQ3Status Q3ViewPlaneCamera_SetHalfWidth (
TQ3CameraObject camera,
float halfWidthAtViewPlane);

camera A view plane camera object.

halfWidthAtViewPlane
The desired half-width of the cross section of the viewed object
of the specified camera.

C H A P T E R 9

Camera Objects

704 Camera Objects Reference

DESCRIPTION

The Q3ViewPlaneCamera_SetHalfWidth function sets the half-width of the cross
section of the viewed object of the camera specified by the camera parameter to
the value specified in the halfWidthAtViewPlane parameter.

Q3ViewPlaneCamera_GetHalfHeight 9

You can use the Q3ViewPlaneCamera_GetHalfHeight function to get the
half-height of the object specifying a view plane camera.

TQ3Status Q3ViewPlaneCamera_GetHalfHeight (
TQ3CameraObject camera,
float *halfHeightAtViewPlane);

camera A view plane camera object.

halfHeightAtViewPlane
On exit, the half-height of the cross section of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_GetHalfHeight function returns, in the
halfHeightAtViewPlane parameter, the half-height of the cross section of the
viewed object of the camera specified by the camera parameter.

Q3ViewPlaneCamera_SetHalfHeight 9

You can use the Q3ViewPlaneCamera_SetHalfHeight function to set the half-height
of the object specifying a view plane camera.

TQ3Status Q3ViewPlaneCamera_SetHalfHeight (
TQ3CameraObject camera,
float halfHeightAtViewPlane);

C H A P T E R 9

Camera Objects

Camera Objects Reference 705

camera A view plane camera object.

halfHeightAtViewPlane
The desired half-height of the cross section of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_SetHalfHeight function sets the half-height of the cross
section of the viewed object of the camera specified by the camera parameter to
the value specified in the halfHeightAtViewPlane parameter.

Q3ViewPlaneCamera_GetCenterX 9

You can use the Q3ViewPlaneCamera_GetCenterX function to get the horizontal
center of the viewed object.

TQ3Status Q3ViewPlaneCamera_GetCenterX (
TQ3CameraObject camera,
float *centerXOnViewPlane);

camera A view plane camera object.

centerXOnViewPlane
On exit, the x coordinate of the center of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_GetCenterX function returns, in the centerXOnViewPlane
parameter, the x coordinate of the center of the viewed object of the camera
specified by the camera parameter.

Q3ViewPlaneCamera_SetCenterX 9

You can use the Q3ViewPlaneCamera_SetCenterX function to set the horizontal
center of the viewed object.

C H A P T E R 9

Camera Objects

706 Camera Objects Reference

TQ3Status Q3ViewPlaneCamera_SetCenterX (
TQ3CameraObject camera,
float centerXOnViewPlane);

camera A view plane camera object.

centerXOnViewPlane
The desired x coordinate of the center of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_SetCenterX function sets the x coordinate of the center
of the viewed object of the camera specified by the camera parameter to the
value specified in the centerXOnViewPlane parameter.

Q3ViewPlaneCamera_GetCenterY 9

You can use the Q3ViewPlaneCamera_GetCenterY function to get the vertical
center of the viewed object.

TQ3Status Q3ViewPlaneCamera_GetCenterY (
TQ3CameraObject camera,
float *centerYOnViewPlane);

camera A view plane camera object.

centerYOnViewPlane
On exit, the y coordinate of the center of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_GetCenterY function returns, in the centerYOnViewPlane
parameter, the y coordinate of the center of the viewed object of the camera
specified by the camera parameter.

C H A P T E R 9

Camera Objects

Camera Objects Reference 707

Q3ViewPlaneCamera_SetCenterY 9

You can use the Q3ViewPlaneCamera_SetCenterY function to set the vertical center
of the viewed object.

TQ3Status Q3ViewPlaneCamera_SetCenterY (
TQ3CameraObject camera,
float centerYOnViewPlane);

camera A view plane camera object.

centerYOnViewPlane
The desired y coordinate of the center of the viewed object.

DESCRIPTION

The Q3ViewPlaneCamera_SetCenterY function sets the y coordinate of the center
of the viewed object of the camera specified by the camera parameter to the
value specified in the centerYOnViewPlane parameter.

Managing Aspect Ratio Cameras 9

QuickDraw 3D provides routines that you can use to create and edit aspect ratio
cameras.

Q3ViewAngleAspectCamera_New 9

You can use the Q3ViewAngleAspectCamera_New function to create a new aspect
ratio camera.

TQ3CameraObject Q3ViewAngleAspectCamera_New (
const TQ3ViewAngleAspectCameraData *cameraData);

cameraData A pointer to an aspect ratio camera data structure.

C H A P T E R 9

Camera Objects

708 Camera Objects Reference

DESCRIPTION

The Q3ViewAngleAspectCamera_New function returns, as its function result, a new
aspect ratio camera having the camera characteristics specified by the
cameraData parameter.

Q3ViewAngleAspectCamera_GetData 9

You can use the Q3ViewAngleAspectCamera_GetData function to get the data that
defines an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_GetData (
TQ3CameraObject camera,
TQ3ViewAngleAspectCameraData *cameraData);

camera An aspect ratio camera object.

cameraData On exit, a pointer to an aspect ratio camera data structure.

DESCRIPTION

The Q3ViewAngleAspectCamera_GetData function returns, through the cameraData
parameter, information about the aspect ratio camera specified by the camera
parameter. See “Aspect Ratio Camera Data Structure” (page 687) for a
description of an aspect ratio camera data structure.

Q3ViewAngleAspectCamera_SetData 9

You can use the Q3ViewAngleAspectCamera_SetData function to set the data that
defines an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_SetData (
TQ3CameraObject camera,
const TQ3ViewAngleAspectCameraData *cameraData);

camera An aspect ratio camera object.

cameraData A pointer to an aspect ratio camera data structure.

C H A P T E R 9

Camera Objects

Camera Objects Reference 709

DESCRIPTION

The Q3ViewAngleAspectCamera_SetData function sets the data associated with the
aspect ratio camera specified by the camera parameter to the data specified by
the cameraData parameter.

Q3ViewAngleAspectCamera_GetFOV 9

You can use the Q3ViewAngleAspectCamera_GetFOV function to get the maximum
field of view of an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_GetFOV (
TQ3CameraObject camera,
float *fov);

camera An aspect ratio camera object.

fov On exit, the maximum field of view, in radians, of the specified
camera.

DESCRIPTION

The Q3ViewAngleAspectCamera_GetFOV function returns, in the fov parameter, the
maximum field of view of the aspect ratio camera specified by the camera
parameter.

Q3ViewAngleAspectCamera_SetFOV 9

You can use the Q3ViewAngleAspectCamera_SetFOV function to set the maximum
field of view of an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_SetFOV (
TQ3CameraObject camera,
float fov);

camera An aspect ratio camera object.

fov The desired maximum field of view, in radians, of the camera.

C H A P T E R 9

Camera Objects

710 Camera Objects Reference

DESCRIPTION

The Q3ViewAngleAspectCamera_SetFOV function sets the maximum field of view
of the camera specified by the camera parameter to the value specified in the fov
parameter.

Q3ViewAngleAspectCamera_GetAspectRatio 9

You can use the Q3ViewAngleAspectCamera_GetAspectRatio function to get the
aspect ratio of an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_GetAspectRatio (
TQ3CameraObject camera,
float *aspectRatioXToY);

camera An aspect ratio camera object.

aspectRatioXToY
On exit, the horizontal-to-vertical aspect ratio of the specified
camera.

DESCRIPTION

The Q3ViewAngleAspectCamera_GetAspectRatio function returns, in the
aspectRatioXToY parameter, the horizontal-to-vertical aspect ratio of the aspect
ratio camera specified by the camera parameter.

Q3ViewAngleAspectCamera_SetAspectRatio 9

You can use the Q3ViewAngleAspectCamera_SetAspectRatio function to set the
aspect ratio of an aspect ratio camera.

TQ3Status Q3ViewAngleAspectCamera_SetAspectRatio (
TQ3CameraObject camera,
float aspectRatioXToY);

C H A P T E R 9

Camera Objects

Camera Errors 711

camera An aspect ratio camera object.

aspectRatioXToY
The desired horizontal-to-vertical aspect ratio of the specified
camera.

DESCRIPTION

The Q3ViewAngleAspectCamera_SetAspectRatio function sets the
horizontal-to-vertical aspect ratio of the camera specified by the camera
parameter to the value specified in the aspectRatioXToY parameter.

Camera Errors 9

The following error may be returned by camera routines. A list of general
QuickDraw 3D errors is given in “QuickDraw 3D Errors, Warnings, and
Notices” (page 87).

kQ3ErrorInvalidCameraValues

C H A P T E R 9

Camera Objects

712 Camera Errors

About Group Objects 713

C H A P T E R 1 0

Group Objects 10Figure 10-0
Listing 10-0
Table 10-0

This chapter describes group objects and the functions you can use to
manipulate them. You can use groups to collect objects into lists or hierarchical
models, which you can draw or otherwise manipulate with group object
routines.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book.

This chapter begins by describing group objects and their features. Then it
shows how to create and manipulate groups. The section “Group Objects
Reference,” beginning on page 721 provides a complete description of the
group objects and the routines you can use to create and manipulate them.

About Group Objects 10

A group object (or, more briefly, a group) is a type of QuickDraw 3D object that
you can use to collect objects together into lists or hierarchical models. A group
object is an instance of the TQ3GroupObject class. As you’ve seen, the
TQ3GroupObject class is a subclass of the TQ3ShapeObject, which is itself a
subclass of the TQ3SharedObject class. As a result, a group object is associated
with a reference count, which is incremented or decremented whenever you
create or dispose of an instance of that group.

The objects you put into in a group are not copied into the group. Instead,
references to the objects are maintained in the group. Accordingly, you can
include in a group only shared objects (that is, the types of objects that have
reference counts). A group can contain other groups, because groups are shared
objects. QuickDraw 3D provides functions that you can use to add objects to a

C H A P T E R 1 0

Group Objects

714 About Group Objects

group or remove objects from a group. It also provides functions that you can
use to access objects by their position in the group.

Group Types 10

The base class of group object is of type kQ3ShapeTypeGroup, a type of shape
object. You can create a group of that type (by calling the Q3Group_New function)
and you can put any kinds of shared objects into it (for example, by calling the
Q3Group_AddObject function). In addition, QuickDraw 3D provides three
subclasses of groups: light groups, display groups, and information groups.
These subclasses are distinguished from one another by the kinds of objects you
can put into them.

■ A light group is a group that contains one or more lights (and no other types
of QuickDraw 3D objects). You’ll typically create light groups to provide
illumination on the objects in a model. The light group is attached to a view
object by calling the Q3View_SetLightGroup function. See the chapter “View
Objects” for complete details on attaching light groups to views.

■ A display group is a group of objects that are drawable. Drawable objects
include geometric objects, styles, transforms, attributes and attribute sets,
and other display groups. When you draw a display group into a view, each
object in the group is executed (that is, drawn) in the order in which it
appears in the group (which is determined by the order in which the objects
were inserted into the group). You can create a display group, or you can
create one of two subclasses of display groups: ordered display groups and
I/O proxy display groups.

■ An ordered display group is a display group in which the objects in the
group are sorted by their type. Ordered groups are sometimes more useful
than unordered groups because the order of object execution is always the
same. During rendering, QuickDraw 3D executes objects in this order:

1. transforms
2. styles
3. attribute sets
4. shaders
5. geometric objects
6. groups
7. unknown objects

C H A P T E R 1 0

Group Objects

About Group Objects 715

This order of execution ensures that all transforms, styles, attribute sets, and
shaders in a group are applied to the geometric objects, groups, and
unknown objects that form the hierarchy below the ordered display group.

■ An I/O proxy display group (or sometimes proxy display group) is a display
group that contains several representations of a single geometric object. You
can use I/O proxy display groups to encapsulate, in a metafile, two or more
descriptions of an object. This is useful when an application reading the file
is unable to understand some of those descriptions. For example, you might
know that some other applications cannot handle NURB patches but do
handle meshes. As a result, you can create an I/O proxy display group that
contains two descriptions of a surface (one as a NURB patch and one as a
mesh) and write that group into a metafile. Any application reading the
metafile can select from the display group the representation of the surface
that it can work with. You should put objects into the I/O proxy display
group in the order you deem to be preferable. (In other words, the first object
in the group should be the representation you deem most useful, and the last
object should be the one that you deem least useful.) In this way, an
application reading the metafile can simply use the first object in the proxy
display group whose type is not kQ3SharedTypeUnknown.

■ An information group is a group that contains one or more strings (and no
other types of QuickDraw 3D objects). You’ll typically create information
groups to provide human-readable information in a metafile. For example, if
you want to include a copyright notice in a metafile, you can simply create
an information group that contains a string of the appropriate data and then
write that group to the metafile.

Group Positions 10

You access an object within a group (for example, to remove the object from the
group or to replace it with some other object) by referring to the object’s group
position. A group position is a pointer to a private (that is, opaque) data
structure maintained internally by QuickDraw 3D. A group position is defined
by the TQ3GroupPosition data type.

typedef struct TQ3GroupPositionPrivate *TQ3GroupPosition;

You receive a group position for an object when you first insert the object into
the group (for example, by calling Q3Group_AddObject). In general, however, you
don’t need to maintain that information, because you can use QuickDraw 3D

C H A P T E R 1 0

Group Objects

716 About Group Objects

routines to walk through a group. For instance, you can get the group position
of the first object in a group by calling Q3Group_GetFirstPosition. Then you can
retrieve the positions of all subsequent objects in the group by calling
Q3Group_GetNextPosition.

IMPORTANT

An object’s group position is valid only as long as that
object is in the group. When you remove an object from a
group, the corresponding group position becomes invalid.
Similarly, when you remove all objects from a group (for
example, by calling Q3Group_EmptyObjects), the group
positions of those objects become invalid. ▲

See “Accessing Objects by Position,” beginning on page 718 for sample code
that illustrates how to traverse a group using group positions.

Group State Flags 10

Every display group has group state value (built out of a set of group state
flags) that determine how the group is traversed during rendering or picking,
or during the computation of a bounding box or sphere. Here are the currently
defined group state flags:

typedef enum TQ3DisplayGroupStateMasks {
kQ3DisplayGroupStateNone = 0,
kQ3DisplayGroupStateMaskIsDrawn = 1 << 0,
kQ3DisplayGroupStateMaskIsInline = 1 << 1,
kQ3DisplayGroupStateMaskUseBoundingBox = 1 << 2,
kQ3DisplayGroupStateMaskUseBoundingSphere = 1 << 3,
kQ3DisplayGroupStateMaskIsPicked = 1 << 4,
kQ3DisplayGroupStateMaskIsWritten = 1 << 5

} TQ3DisplayGroupStateMasks;

typedef unsigned long TQ3DisplayGroupState;

A group state value contains a flag, called the drawable flag, that determines
whether the group is to be drawn when it is passed to a view for rendering or
picking. By default, the drawable flag of a group state value is set, indicating
that the group is to be drawn to a view. If the drawable flag is clear, the group is
not traversed when it is encountered in a hierarchical model. This allows you to

C H A P T E R 1 0

Group Objects

Using Group Objects 717

place “invisible” objects in a model that assist you in bounding complex
geometric objects, for example.

An ordered display group can be constructed in such a way that the group has a
hierarchical structure. This allows properties (such as attributes, styles, and
transforms) to be inherited by child nodes from their parent nodes in the
hierarchy. Occasionally, however, you might want to override this inheritance
and allow a group contained in a hierarchical model to define its own graphics
state independently of any other objects or groups in the model. To allow this
feature, a group state value contains an inline flag that specifies whether or not
the group should be executed inline. A group is executed inline if it does not
push and pop the graphics state stack before and after it is executed (that is, if it
is simply executed as a bundle of objects). By default, the inline flag of a group
is not set, indicating that the group pushes and pops its graphics state.

For more information on pushing and popping the graphics state, see the
descriptions of the functions Q3Push_Submit and Q3Pop_Submit in the chapter
“View Objects.”

A group state value contains a picking flag that determines whether the group
can be picked. In general, you’ll want all groups in a model to be eligible for
picking. In some cases, however, you can clear the picking flag of a group’s
group state value in order to establish the group as a decoration in the model
that cannot be picked.

Using Group Objects 10

QuickDraw 3D provides functions that you can use to create a group, add
objects to a group, remove objects from a group, and dispose of a group. It also
provides functions that you can use to count the number of objects in a group,
access objects by their position in the group, draw a group, pick objects in a
group, and perform other operations on group objects. This section illustrates
how to use some of these functions. In particular, it shows:

■ how to create groups and add objects to them

■ how to operate on all objects in a group, or on all objects of a particular type
in a group

C H A P T E R 1 0

Group Objects

718 Using Group Objects

Creating Groups 10

You create a new light group, for example, by calling the Q3LightGroup_New
function. If there is sufficient memory to create the group, Q3LightGroup_New
returns to your application a reference to a group object, which you pass to
other group routines. The new group is initially empty, and you add objects to
the group by calling QuickDraw 3D routines (such as Q3Group_AddObject).
When an object is added to a group, its reference count is incremented.
(QuickDraw 3D uses the reference count to ensure that an object is not
prematurely disposed.) If you don’t want to maintain references to all the
objects inside a group, you can use the technique illustrated in Listing 10-1.

Listing 10-1 Creating a group

myGroup = Q3LightGroup_New();
myLight = Q3SpotLight_New(mySpotLightData);
Q3Group_AddObject(myGroup, myLight);
Q3Object_Dispose(myLight);

By calling Q3Object_Dispose, you decrement the light’s reference count once it’s
been added to the light group. When the group itself is later disposed of,
QuickDraw 3D decrements the light’s reference count, which may cause it also
to be disposed of.

Accessing Objects by Position 10

You can iterate through a group by getting the position of its first object and
then getting the positions of any subsequent objects. All groups, regardless of
type, are stored in a single list which you can step through only by calling
QuickDraw 3D routines.

Listing 10-2 shows how to access all the lights in a light group. The
MyTurnOnOrOffAllLights function takes a view parameter and an on/off state
value. It turns all the lights in the view’s light group on or off, as specified by
the state value.

C H A P T E R 1 0

Group Objects

Using Group Objects 719

Listing 10-2 Accessing all the lights in a light group

TQ3Status MyTurnOnOrOffViewLights (TQ3ViewObject myView, TQ3Boolean myState)
{

TQ3GroupObject myGroup; /*the view's light group*/
TQ3GroupPosition myPos; /*a group position*/
TQ3Object myLight; /*a light*/
TQ3Status myResult; /*a result code*/

myResult = Q3View_GetLightGroup(myView, &myGroup);
if (myResult == kQ3Failure)

goto bail;

for (Q3Group_GetFirstPosition(myGroup, &myPos);
 myPos != NULL;
 Q3Group_GetNextPosition(myGroup, &myPos))

{
myResult = Q3Group_GetPositionObject(myGroup, myPos, myLight);
if (myResult == kQ3Failure)

goto bail;
myResult = Q3Light_SetState(myLight, myState);
Q3Object_Dispose(myLight); /*balance reference count of light*/

}

return(kQ3Success);

bail:
return(kQ3Failure);

}

You can use the looping technique illustrated in Listing 10-2 to traverse ordered
display groups as well, as shown in Listing 10-3. The function
MyToggleOrderedGroupLights traverses an ordered display group and toggles
any lights it finds. Notice that MyToggleOrderedGroupLights calls the
Q3Group_GetFirstPositionOfType function to find the position of the first light in
the group.

C H A P T E R 1 0

Group Objects

720 Using Group Objects

Listing 10-3 Accessing all the lights in an ordered display group

TQ3Status MyToggleOrderedGroupLights (TQ3GroupObject myGroup)
{

TQ3GroupPosition myPos; /*a group position*/
TQ3Object myLight; /*a light*/
TQ3Boolean myState; /*a light state*/
TQ3Status myResult; /*a result code*/

for (Q3Group_GetFirstPositionOfType(myGroup, kQ3ShapeTypeLight, &myPos);
 myPos != NULL;
 Q3Group_GetNextPositionOfType(myGroup, kQ3ShapeTypeLight, &myPos))

{
myResult = Q3Group_GetPositionObject(myGroup, myPos, myLight);
if (myResult == kQ3Failure)

goto bail;
myResult = Q3Light_GetState(myLight, &myState);
myState = !myState; /*toggle the light state*/
myResult = Q3Light_SetState(myLight, myState);
Q3Object_Dispose(myLight); /*balance reference count of light*/

}

return(kQ3Success);

bail:
return(kQ3Failure);

}

It’s also possible to find the position of the next object in an ordered display
group by calling the Q3Group_GetNextPosition function.
Q3Group_GetNextPosition is not, however, guaranteed to return a position of an
object that is of the same type as the object immediately before it. If you use
Q3Group_GetNextPosition to iterate through an ordered display group, you must
therefore make sure not to step past the part of the list that contains objects of
the type you’re interested in. Listing 10-4 shows, in outline, how to call
Q3Group_GetNextPosition to iterate safely through an object type in an ordered
display group.

C H A P T E R 1 0

Group Objects

Group Objects Reference 721

Listing 10-4 Accessing all the lights in an ordered display group using
Q3Group_GetNextPosition

TQ3GroupPosition myFirst; /*group position of first light*/
TQ3GroupPosition myLast; /*group position of last light*/
TQ3Object myLight; /*a light*/
TQ3Status myResult; /*a result code*/

Q3Group_GetFirstPositionOfType(myGroup, kQ3ShapeTypeLight, &myFirst);
if (myFirst) {

Q3Group_GetLastPositionOfType(myGroup, kQ3ShapeTypeLight, &myLast);
do
{

myResult = Q3Group_GetPositionObject(myGroup, myFirst, myLight);
if (myResult == kQ3Failure)

goto bail;
myResult = Q3Light_GetState(myLight, &myState);
myState = !myState; /*toggle the light state*/
myResult = Q3Light_SetState(myLight, myState);
Q3Object_Dispose(myLight); /*balance reference count of light*/
Q3Group_GetNextPosition(myGroup, &myFirst);

} while (myFirst != myLast);
}

Group Objects Reference 10

This section describes the QuickDraw 3D constants and routines that you can
use to manage groups.

Constants 10

QuickDraw 3D provides constants that define group state values.

C H A P T E R 1 0

Group Objects

722 Group Objects Reference

Group State Flags 10

QuickDraw 3D defines a set of group state flags for constructing a group state
value. You pass a group state value to the Q3DisplayGroup_SetState function to
set the state of a display group. The state value is a set of flags that determine
how a group is traversed during rendering or picking, or when you want to
compute a bounding box or sphere. Here are the group state flags:

typedef enum TQ3DisplayGroupStateMasks {
kQ3DisplayGroupStateNone = 0,
kQ3DisplayGroupStateMaskIsDrawn = 1 << 0,
kQ3DisplayGroupStateMaskIsInline = 1 << 1,
kQ3DisplayGroupStateMaskUseBoundingBox = 1 << 2,
kQ3DisplayGroupStateMaskUseBoundingSphere = 1 << 3,
kQ3DisplayGroupStateMaskIsPicked = 1 << 4,
kQ3DisplayGroupStateMaskIsWritten = 1 << 5

} TQ3DisplayGroupStateMasks;

Constant descriptions

kQ3DisplayGroupStateNone
No mask.

kQ3DisplayGroupStateMaskIsDrawn
If this flag is set, the group and the objects it contains are
drawn to a view during rendering or picking.

kQ3DisplayGroupStateMaskIsInline
If this flag is set, the group is executed inline (that is,
without pushing the graphics state onto a stack before
group execution and popping it off after execution).

kQ3DisplayGroupStateMaskUseBoundingBox
If this flag is set, the bounding box of a display group is
used for rendering.

kQ3DisplayGroupStateMaskUseBoundingSphere
If this flag is set, the bounding sphere of a display group is
used for rendering.

kQ3DisplayGroupStateMaskIsPicked
If this flag is set, the display group is eligible for inclusion
in the hit list of a pick object.

kQ3DisplayGroupStateMaskIsWritten
If this flag is set, the group and the objects it contains are
written to a file object during writing.

C H A P T E R 1 0

Group Objects

Group Objects Reference 723

IMPORTANT

By default, all group state flags are set except for the
kQ3DisplayGroupStateMaskIsInline flag, which is clear. ▲

Group Objects Routines 10

This section describes routines you can use to create and manage groups and
group positions.

Creating Groups 10

QuickDraw 3D provides a number of routines for creating group objects.

Q3Group_New 10

You can use the Q3Group_New function to create a new group.

TQ3GroupObject Q3Group_New (void);

DESCRIPTION

The Q3Group_New function returns, as its function result, a new group. The new
group is initially empty. If an error occurs, Q3Group_New returns NULL.

ERRORS

kQ3ErrorOutOfMemory

Q3LightGroup_New 10

You can use the Q3LightGroup_New function to create a new light group.

TQ3GroupObject Q3LightGroup_New (void);

C H A P T E R 1 0

Group Objects

724 Group Objects Reference

DESCRIPTION

The Q3LightGroup_New function returns, as its function result, a new light group.
The new group is initially empty. If an error occurs, Q3LightGroup_New returns
NULL.

Note
See the chapter “Light Objects” in this book for information
on creating and manipulating individual lights. ◆

ERRORS

kQ3ErrorOutOfMemory

Q3DisplayGroup_New 10

You can use the Q3DisplayGroup_New function to create a new display group.

TQ3GroupObject Q3DisplayGroup_New (void);

DESCRIPTION

The Q3DisplayGroup_New function returns, as its function result, a new display
group. The new group is initially empty. If an error occurs, Q3DisplayGroup_New
returns NULL.

ERRORS

kQ3ErrorOutOfMemory

Q3InfoGroup_New 10

You can use the Q3InfoGroup_New function to create a new information group.

TQ3GroupObject Q3InfoGroup_New (void);

C H A P T E R 1 0

Group Objects

Group Objects Reference 725

DESCRIPTION

The Q3InfoGroup_New function returns, as its function result, a new information
group. The new group is initially empty. If an error occurs, Q3InfoGroup_New
returns NULL.

ERRORS

kQ3ErrorOutOfMemory

Q3OrderedDisplayGroup_New 10

You can use the Q3OrderedDisplayGroup_New function to create a new ordered
display group.

TQ3GroupObject Q3OrderedDisplayGroup_New (void);

DESCRIPTION

The Q3OrderedDisplayGroup_New function returns, as its function result, a new
ordered display group. The new group is initially empty. If an error occurs,
Q3OrderedDisplayGroup_New returns NULL.

ERRORS

kQ3ErrorOutOfMemory

Q3IOProxyDisplayGroup_New 10

You can use the Q3IOProxyDisplayGroup_New function to create a new I/O proxy
display group.

TQ3GroupObject Q3IOProxyDisplayGroup_New (void);

C H A P T E R 1 0

Group Objects

726 Group Objects Reference

DESCRIPTION

The Q3IOProxyDisplayGroup_New function returns, as its function result, a new I/
O proxy display group. The new group is initially empty. If an error occurs,
Q3IOProxyDisplayGroup_New returns NULL.

ERRORS

kQ3ErrorOutOfMemory

Managing Groups 10

QuickDraw 3D provides a number of general routines for managing group
objects. Unless otherwise indicated, you can use these functions with groups of
any type.

Q3Group_GetType 10

You can use the Q3Group_GetType function to determine the type of a group.

TQ3ObjectType Q3Group_GetType (TQ3GroupObject group);

group A group.

DESCRIPTION

The Q3Group_GetType function returns, as its function result, the type of the
group specified by the group parameter. Q3Group_GetType returns one of these
values:

kQ3GroupTypeDisplay
kQ3GroupTypeInfo
kQ3GroupTypeLight

If Q3Group_GetType cannot determine the type of a group or an error occurs, it
returns kQ3ObjectTypeInvalid.

C H A P T E R 1 0

Group Objects

Group Objects Reference 727

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_CountObjects 10

You can use the Q3Group_CountObjects function to determine how many objects
a group contains.

TQ3Status Q3Group_CountObjects (
TQ3GroupObject group,
unsigned long *nObjects);

group A group.

nObjects On exit, a pointer to the number of objects in the specified
group.

DESCRIPTION

The Q3Group_CountObjects function returns, in the nObjects parameter, the
number of objects contained in the group specified by the group parameter. If
that group contains other groups, each contained group is counted only once.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_CountObjectsOfType 10

You can use the Q3Group_CountObjectsOfType function to determine how many
objects of a particular type a group contains.

C H A P T E R 1 0

Group Objects

728 Group Objects Reference

TQ3Status Q3Group_CountObjectsOfType (
TQ3GroupObject group,
TQ3ObjectType isType,
unsigned long *nObjects);

group A group.

isType An object type.

nObjects On exit, a pointer to the number of objects in the specified group
that have the specified type.

DESCRIPTION

The Q3Group_CountObjectsOfType function returns, in the nObjects parameter,
the number of objects contained in the group specified by the group parameter
that have the object type specified by the isType parameter. The object type can
be either a parent class (for example, kQ3SharedType_Shape) or a leaf class (for
example, EcGeometryType_Box).

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_AddObject 10

You can use the Q3Group_AddObject function to add an object to a group.

TQ3GroupPosition Q3Group_AddObject (
TQ3GroupObject group,
TQ3Object object);

group A group.

object An object.

C H A P T E R 1 0

Group Objects

Group Objects Reference 729

DESCRIPTION

The Q3Group_AddObject function inserts the object specified by the object
parameter into the group specified by the group parameter. If group is a
unordered group, the object is appended to the list of objects in the group. If
group is an ordered group, the object is appended to the part of the list of objects
in the group that are of the same type as object. Q3Group_AddObject returns the
new position of the object in the group. If an error occurs as an object is inserted
into the group, Q3Group_AddObject returns NULL.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorOutOfMemory

Q3Group_AddObjectBefore 10

You can use the Q3Group_AddObjectBefore function to add an object to a group,
positioning it before a certain object already in the group.

TQ3GroupPosition Q3Group_AddObjectBefore (
TQ3GroupObject group,
TQ3GroupPosition position,
TQ3Object object);

group A group.

position A group position.

object An object.

DESCRIPTION

The Q3Group_AddObjectBefore function inserts the object specified by the object
parameter into the group specified by the group parameter, before the group
position specified by the position parameter. Q3Group_AddObjectBefore returns,
as its function result, the new position of the object in the group. If an error
occurs during the insertion of the object into the group,
Q3Group_AddObjectBefore returns NULL.

C H A P T E R 1 0

Group Objects

730 Group Objects Reference

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorOutOfMemory

Q3Group_AddObjectAfter 10

You can use the Q3Group_AddObjectAfter function to add an object to a group,
positioning it after a certain object already in the group.

TQ3GroupPosition Q3Group_AddObjectAfter (
TQ3GroupObject group,
TQ3GroupPosition position,
TQ3Object object);

group A group.

position A group position.

object An object.

DESCRIPTION

The Q3Group_AddObjectAfter function inserts the object specified by the object
parameter into the group specified by the group parameter, after the group
position specified by the position parameter. Q3Group_AddObjectAfter returns,
as its function result, the new position of the object in the group. If an error
occurs during the insertion of the object into the group, Q3Group_AddObjectAfter
returns NULL.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorOutOfMemory

C H A P T E R 1 0

Group Objects

Group Objects Reference 731

Q3Group_GetPositionObject 10

You can use the Q3Group_GetPositionObject function to get the object located at
a certain position in a group.

TQ3Status Q3Group_GetPositionObject (
TQ3GroupObject group,
TQ3GroupPosition position,
TQ3Object *object);

group A group.

position A group position.

object On exit, a reference to a QuickDraw 3D object.

DESCRIPTION

The Q3Group_GetPositionObject function returns, in the object parameter, a
reference to the object having the position specified by the position parameter
in the group specified by the group parameter. The reference count of the
returned object is incremented. If an error occurs when getting the object,
Q3Group_GetPositionObject returns NULL.

ERRORS

kQ3ErrorInvalidObject
kQ3Error_InvalidPositionForGroup
kQ3Error_NULLParameter

Q3Group_SetPositionObject 10

You can use the Q3Group_SetPositionObject function to set the object located at
a certain position in a group.

TQ3Status Q3Group_SetPositionObject (
TQ3GroupObject group,
TQ3GroupPosition position,
TQ3Object object);

C H A P T E R 1 0

Group Objects

732 Group Objects Reference

group A group.

position A group position.

object An object.

DESCRIPTION

The Q3Group_SetPositionObject function sets the object having the position
specified by the position parameter in the group specified by the group
parameter to the object specified by the object parameter. The object previously
occupying that position is disposed of. The reference count of object is
incremented.

Q3GroupPosition_SetObject returns, as its function result, either a pointer to the
object installed in the specified position, or NULL if an error occurs.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidObjectForGroup
kQ3ErrorInvalidObjectForPosition
kQ3ErrorInvalidPositionForGroup

Q3Group_RemovePosition 10

You can use the Q3Group_RemovePosition function to remove an object from a
group.

TQ3Object Q3Group_RemovePosition (
TQ3GroupObject group,
TQ3GroupPosition position);

group A group.

position A group position.

DESCRIPTION

The Q3Group_RemovePosition function removes the object having the group
position specified by the position parameter from the group specified by the

C H A P T E R 1 0

Group Objects

Group Objects Reference 733

group parameter. After you call Q3Group_RemovePosition, the position specified
by the position parameter is invalid. Q3Group_RemovePosition returns, as its
function result, the object removed from the group. If an error occurs when
removing the object from the group, Q3Group_RemovePosition returns NULL.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup

Q3Group_EmptyObjects 10

You can use the Q3Group_EmptyObjects function to remove all objects from a
group.

TQ3Status Q3Group_EmptyObjects (TQ3GroupObject group);

group A group.

DESCRIPTION

The Q3Group_EmptyObjects function disposes of every object contained in the
group specified by the group parameter, thereby effectively emptying the
contents of the group. The group itself is not disposed of.

ERRORS

kQ3ErrorInvalidObject

Q3Group_EmptyObjectsOfType 10

You can use the Q3Group_EmptyObjectsOfType function to remove all objects of a
particular type from a group.

C H A P T E R 1 0

Group Objects

734 Group Objects Reference

TQ3Status Q3Group_EmptyObjectsOfType (
TQ3GroupObject group,
TQ3ObjectType isType);

group A group.

isType An object type.

DESCRIPTION

The Q3Group_EmptyObjectsOfType function disposes of every object contained in
the group specified by the group parameter that has the type specified by the
isType parameter.

ERRORS

kQ3ErrorInvalidObject

Managing Display Groups 10

QuickDraw 3D provides routines that you can use to manage display groups in
general.

Q3DisplayGroup_GetType 10

You can use the Q3DisplayGroup_GetType function to determine the type of a
display group.

TQ3ObjectType Q3DisplayGroup_GetType (TQ3GroupObject group);

group A group.

DESCRIPTION

The Q3DisplayGroup_GetType function returns, as its function result, the type of
the display group specified by the group parameter. Q3DisplayGroup_GetType
returns one of these values:

C H A P T E R 1 0

Group Objects

Group Objects Reference 735

kQ3DisplayGroupTypeIOProxy
kQ3DisplayGroupTypeOrdered

If Q3DisplayGroup_GetType cannot determine the type of a group or an error
occurs, it returns kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorInvalidObject

Q3DisplayGroup_GetState 10

You can use the Q3DisplayGroup_GetState function to get the current state of a
display group.

TQ3Status Q3DisplayGroup_GetState (
TQ3GroupObject group,
TQ3DisplayGroupState *state);

group A display group.

state On exit, a pointer to the current state value for the specified
display group.

DESCRIPTION

The Q3DisplayGroup_GetState function returns, in the state parameter, a pointer
to a state value for the display group specified by the group parameter. The state
value is a set of flags that determine how a display group is traversed during
rendering or picking, or during computation of a bounding box or sphere. See
“Group State Flags” (page 722) for a description of the flags currently defined
for a group state value.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

C H A P T E R 1 0

Group Objects

736 Group Objects Reference

Q3DisplayGroup_SetState 10

You can use the Q3DisplayGroup_SetState function to set the state of a display
group.

TQ3Status Q3DisplayGroup_SetState (
TQ3GroupObject group,
TQ3DisplayGroupState state);

group A display group.

state The desired state value for the specified display group.

DESCRIPTION

The Q3DisplayGroup_SetState function sets the state value of the display group
specified by the group parameter to the value pointed to by the state parameter.
See “Group State Flags” (page 722) for a description of the flags currently
defined for a group state value.

ERRORS

kQ3ErrorInvalidObject

Q3DisplayGroup_Submit 10

You can use the Q3DisplayGroup_Submit function to submit a display group for
drawing, picking, bounding, or writing.

TQ3Status Q3DisplayGroup_Submit (
TQ3GroupObject group,
TQ3ViewObject view);

group A group.

view A view.

C H A P T E R 1 0

Group Objects

Group Objects Reference 737

DESCRIPTION

The Q3DisplayGroup_Submit function submits the display group specified by the
group parameter for drawing, picking, bounding, or writing in the view
specified by the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorOutOfMemory
kQ3ErrorViewNotStarted

Getting Group Positions 10

QuickDraw 3D provides routines that you can use to move forward and
backward through the objects in a group. You do so by finding the currently
occupied group positions in the group and then determining which objects
occupy those positions. This section describes the routines you can use to find
the valid positions in a group.

Q3Group_GetFirstPosition 10

You can use the Q3Group_GetFirstPosition function to get the position of the
first object in a group.

TQ3Status Q3Group_GetFirstPosition (
TQ3GroupObject group,
TQ3GroupPosition *position);

group A group.

position On exit, a group position.

C H A P T E R 1 0

Group Objects

738 Group Objects Reference

DESCRIPTION

The Q3Group_GetFirstPosition function returns, in the position parameter, the
position of the first object in the group specified by the group parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_GetFirstPositionOfType 10

You can use the Q3Group_GetFirstPositionOfType function to get the position of
the first object of a particular type in a group.

TQ3Status Q3Group_GetFirstPositionOfType (
TQ3GroupObject group,
TQ3ObjectType isType,
TQ3GroupPosition *position);

group A group.

isType An object type.

position On exit, a group position.

DESCRIPTION

The Q3Group_GetFirstPositionOfType function returns, in the position
parameter, the position of the first object in the group specified by the group
parameter that has the type specified by the isType parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

C H A P T E R 1 0

Group Objects

Group Objects Reference 739

Q3Group_GetLastPosition 10

You can use the Q3Group_GetLastPosition function to get the position of the last
object in a group.

TQ3Status Q3Group_GetLastPosition (
TQ3GroupObject group,
TQ3GroupPosition *position);

group A group.

position On exit, a group position.

DESCRIPTION

The Q3Group_GetLastPosition function returns, in the position parameter, the
position of the last object in the group specified by the group parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_GetLastPositionOfType 10

You can use the Q3Group_GetLastPositionOfType function to get the position of
the last object of a particular type in a group.

TQ3Status Q3Group_GetLastPositionOfType (
TQ3GroupObject group,
TQ3ObjectType isType,
TQ3GroupPosition *position);

group A group.

isType An object type.

position On exit, a group position.

C H A P T E R 1 0

Group Objects

740 Group Objects Reference

DESCRIPTION

The Q3Group_GetLastPositionOfType function returns, in the position parameter,
the position of the last object in the group specified by the group parameter that
has the type specified by the isType parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_GetNextPosition 10

You can use the Q3Group_GetNextPosition function to get the position of the next
object in a group.

TQ3Status Q3Group_GetNextPosition (
TQ3GroupObject group,
TQ3GroupPosition *position);

group A group.

position On entry, a pointer to a valid group position. On exit, a pointer
to the position in the specified group of the object that
immediately follows the object in that position.

DESCRIPTION

The Q3Group_GetNextPosition function returns, in the position parameter, the
position in the group specified by the group parameter of the object that
immediately follows the object having the position specified on entry in the
position parameter. If the object specified on entry is the last object in the
group, Q3Group_GetNextPosition returns the value NULL in the position
parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

C H A P T E R 1 0

Group Objects

Group Objects Reference 741

Q3Group_GetNextPositionOfType 10

You can use the Q3Group_GetNextPositionOfType function to get the position of
the next object of a particular type in a group.

TQ3Status Q3Group_GetNextPositionOfType (
TQ3GroupObject group,
TQ3ObjectType isType,
TQ3GroupPosition *position);

group A group.

isType An object type.

position On entry, a pointer to a valid group position. On exit, a pointer
to the position in the specified group of the next object that
follows the object in that position and that has the specified
type.

DESCRIPTION

The Q3Group_GetNextPositionOfType function returns, in the position parameter,
the position in the group specified by the group parameter of the next object that
follows the object having the position specified on entry in the position
parameter and that has the type specified by the isType parameter. If the object
specified on entry is the last object of that type in the group,
Q3Group_GetNextPositionOfType returns the value NULL in the position
parameter. Note that the type of the object in the position specified by the
position parameter on entry to Q3Group_GetNextPositionOfType does not have
to be the same as the type specified by the isType parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

C H A P T E R 1 0

Group Objects

742 Group Objects Reference

Q3Group_GetPreviousPosition 10

You can use the Q3Group_GetPreviousPosition function to get the position of the
previous object in a group.

TQ3Status Q3Group_GetPreviousPosition (
TQ3GroupObject group,
TQ3GroupPosition *position);

group A group.

position On entry, a pointer to a valid group position. On exit, a pointer
to the position in the specified group of the object that
immediately precedes the object in that position.

DESCRIPTION

The Q3Group_GetPreviousPosition function returns, in the position parameter,
the position in the group specified by the group parameter of the object that
immediately precedes the object having the position specified on entry in the
position parameter. If the object specified on entry is the first object in the
group, Q3Group_GetPreviousPosition returns the value NULL in the position
parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

Q3Group_GetPreviousPositionOfType 10

You can use the Q3Group_GetPreviousPositionOfType function to get the position
of the previous object of a particular type in a group.

TQ3Status Q3Group_GetPreviousPositionOfType (
TQ3GroupObject group,
TQ3ObjectType isType,
TQ3GroupPosition *position);

C H A P T E R 1 0

Group Objects

Group Objects Reference 743

group A group.

isType An object type.

position On entry, a pointer to a valid group position. On exit, a pointer
to the position in the specified group of the next object that
follows the object in that position and that has the specified
type.

DESCRIPTION

The Q3Group_GetPreviousPositionOfType function returns, in the position
parameter, the position in the group specified by the group parameter of the
previous object that precedes the object having the position specified on entry in
the position parameter and that has the type specified by the isType parameter.
If the object specified on entry is the first object of that type in the group,
Q3Group_GetNextPositionOfType returns the value NULL in the position
parameter. Note that the type of the object in the position specified by the
position parameter on entry to Q3Group_GetPreviousPositionOfType does not
have to be the same as the type specified by the isType parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

Getting Object Positions 10

QuickDraw 3D provides routines that you can use to find instances of objects in
groups.

Q3Group_GetFirstObjectPosition 10

You can use the Q3Group_GetFirstObjectPosition function to get the position of
the first instance of an object in a group.

C H A P T E R 1 0

Group Objects

744 Group Objects Reference

TQ3Status Q3Group_GetFirstObjectPosition (
TQ3GroupObject group,
TQ3Object object,
TQ3GroupPosition *position);

group A group.

object An object.

position On exit, a group position.

DESCRIPTION

The Q3Group_GetFirstObjectPosition function returns, in the position
parameter, the position of the first instance in the group specified by the group
parameter of the object specified by the object parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_GetLastObjectPosition 10

You can use the Q3Group_GetLastObjectPosition function to get the position of
the last instance of an object in a group.

TQ3Status Q3Group_GetLastObjectPosition (
TQ3GroupObject group,
TQ3Object object,
TQ3GroupPosition *position);

group A group.

object An object.

position On exit, a group position.

C H A P T E R 1 0

Group Objects

Group Objects Reference 745

DESCRIPTION

The Q3Group_GetLastObjectPosition function returns, in the position parameter,
the position of the last instance in the group specified by the group parameter of
the object specified by the object parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3Group_GetNextObjectPosition 10

You can use the Q3Group_GetNextObjectPosition function to get the position of
the next instance of an object in a group.

TQ3Status Q3Group_GetNextObjectPosition (
TQ3GroupObject group,
TQ3Object object,
TQ3GroupPosition *position);

group A group.

object An object.

position On entry, a pointer to a valid group position. On exit, a pointer
to the position in the specified group of the next instance of the
specified object.

DESCRIPTION

The Q3Group_GetNextObjectPosition function returns, in the position parameter,
the position of the next instance in the group specified by the group parameter
of the object specified by the object parameter. If the position specified on entry
is the last instance of that object in the group, Q3Group_GetNextObjectPosition
returns the value NULL in the position parameter.

C H A P T E R 1 0

Group Objects

746 Group Objects Reference

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

Q3Group_GetPreviousObjectPosition 10

You can use the Q3Group_GetPreviousObjectPosition function to get the position
of the previous instance of an object in a group.

TQ3Status Q3Group_GetPreviousObjectPosition (
TQ3GroupObject group,
TQ3Object object,
TQ3GroupPosition *position);

group A group.

object An object.

position On entry, a pointer to a valid group position. On exit, a pointer
to the position in the specified group of the previous instance of
the specified object.

DESCRIPTION

The Q3Group_GetPreviousObjectPosition function returns, in the position
parameter, the position of the previous instance in the group specified by the
group parameter of the object specified by the object parameter. If the position
specified on entry is the first instance of that object in the group,
Q3Group_GetPreviousObjectPosition returns the value NULL in the position
parameter.

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorInvalidPositionForGroup
kQ3ErrorNULLParameter

C H A P T E R 1 0

Group Objects

Extending Group Objects 747

Extending Group Objects 10

QuickDraw 3D provides a programming interface by which you can add new
group objects to the class TQ3GroupObject. This section first describes the
Q3XGroup_GetPositionPrivate function, by which you can access the private
data in your group object, and then lists the methods that may be called.

Q3XGroup_GetPositionPrivate 10

You can use the Q3XGroup_GetPositionPrivate function to return the private
data stored in a group object.

void Q3XGroup_GetPositionPrivate (
TQ3GroupObject group,
TQ3GroupPosition position);

group A group object.

position A position in the group object.

DESCRIPTION

The Q3XGroup_GetPositionPrivate function returns the the private data stored at
position position in group object group.

TQ3XGroupAcceptObjectMethod 10

The TQ3XGroupAcceptObjectMethod method reports whether a group will accept a
particular object type.

TQ3Boolean (*TQ3XGroupAcceptObjectMethod) (
TQ3GroupObject group,
TQ3Object object);

C H A P T E R 1 0

Group Objects

748 Extending Group Objects

group A group object.

object A new object to be placed in the group.

DESCRIPTION

The TQ3XGroupAcceptObjectMethod method returns TQ3True if the group object
group will accept an object of type object and TQ3False otherwise.

TQ3XGroupAddObjectMethod 10

The TQ3XGroupAddObjectMethod method adds an object to a group.

TQ3GroupPosition (*TQ3XGroupAddObjectMethod) (
TQ3GroupObject group,
TQ3Object object);

group A group object.

object A new object to be placed in the group.

DESCRIPTION

The TQ3XGroupAddObjectMethod method adds the object object to the group
group. It returns the position of the new object if successful and NULL otherwise.

TQ3XGroupAddObjectBeforeMethod 10

The TQ3XGroupAddObjectBeforeMethod method adds an object before a given
position in a group.

TQ3GroupPosition (*TQ3XGroupAddObjectBeforeMethod) (
TQ3GroupObject group,
TQ3GroupPosition position,
TQ3Object object);

group A group object.

C H A P T E R 1 0

Group Objects

Extending Group Objects 749

position A position in a group object.

object A new object to be placed in the group.

DESCRIPTION

The TQ3XGroupAddObjectBeforeMethod method adds the object object to the
group group before the position position. It returns the position of the new
object if successful and NULL otherwise.

TQ3XGroupAddObjectAfterMethod 10

The TQ3XGroupAddObjectAfterMethod method adds an object after a given
position in a group.

TQ3GroupPosition (*TQ3XGroupAddObjectAfterMethod) (
TQ3GroupObject group,
TQ3GroupPosition position,
TQ3Object object);

group A group object.

position A position in a group object.

object A new object to be placed in the group.

DESCRIPTION

The TQ3XGroupAddObjectAfterMethod method adds the object object to the group
group after the position position. It returns the position of the new object if
successful and NULL otherwise.

TQ3XGroupSetPositionObjectMethod 10

The TQ3XGroupSetPositionObjectMethod method replaces an object in a group.

C H A P T E R 1 0

Group Objects

750 Extending Group Objects

TQ3Status (*TQ3XGroupSetPositionObjectMethod) (
TQ3GroupObject group,
TQ3GroupPosition gPos,
TQ3Object obj);

group A group object.

gPos A position in a group object.

obj A new object to be placed in the group.

DESCRIPTION

The TQ3XGroupSetPositionObjectMethod method replaces the object currently at
position gPos in the group group with the new object obj. It returns kQ3Success if
successful and kQ3Failure if the given group position is not in the group.

TQ3XGroupRemovePositionMethod 10

The TQ3XGroupRemovePositionMethod method replaces an object in a group.

TQ3Object (*TQ3XGroupRemovePositionMethod) (
TQ3GroupObject group,
TQ3GroupPosition position);

group A group object.

position A position in a group object.

DESCRIPTION

The TQ3XGroupRemovePositionMethod method deletes the object currently at
position position in the group group. It returns the deleted object if successful;
otherwise it returns NULL.

C H A P T E R 1 0

Group Objects

Extending Group Objects 751

TQ3XGroupGetFirstPositionOfTypeMethod 10

The TQ3XGroupGetFirstPositionOfTypeMethod method gets the position of the
first object of a specified type in a group.

TQ3Status (*TQ3XGroupGetFirstPositionOfTypeMethod) (
TQ3GroupObject group,
TQ3ObjectType isType,
TQ3GroupPosition *gPos);

group A group object.

isType An object type.

gPos A position in a group object.

DESCRIPTION

The TQ3XGroupGetFirstPositionOfTypeMethod method returns in gPos the
position of the first object of type isType in the group group. It returns
kQ3Success if successful and kQ3Failure if there is no object of type isType in the
group.

TQ3XGroupGetLastPositionOfTypeMethod 10

The TQ3XGroupGetLastPositionOfTypeMethod method gets the position of the last
object of a specified type in a group.

TQ3Status (*TQ3XGroupGetLastPositionOfTypeMethod) (
TQ3GroupObject group,
TQ3ObjectType isType,
TQ3GroupPosition *gPos);

group A group object.

isType An object type.

gPos A position in a group object.

C H A P T E R 1 0

Group Objects

752 Extending Group Objects

DESCRIPTION

The TQ3XGroupGetLastPositionOfTypeMethod method returns in gPos the position
of the last object of type isType in the group group. It returns kQ3Success if
successful and kQ3Failure if there is no object of type isType in the group.

TQ3XGroupGetNextPositionOfTypeMethod 10

The TQ3XGroupGetNextPositionOfTypeMethod method gets the position of the next
object of a specified type in a group.

TQ3Status (*TQ3XGroupGetNextPositionOfTypeMethod) (
TQ3GroupObject group,
TQ3ObjectType isType,
TQ3GroupPosition *gPos);

group A group object.

isType An object type.

gPos A position in a group object.

DESCRIPTION

The TQ3XGroupGetNextPositionOfTypeMethod method returns in gPos the position
of the next object of type isType after gPos in the group group. On exit, gPos
contains NULL if there is no succeeding object of type isType.

TQ3XGroupGetPrevPositionOfTypeMethod 10

The TQ3XGroupGetPrevPositionOfTypeMethod method gets the position of the
previous object of a specified type in a group.

TQ3Status (*TQ3XGroupGetPrevPositionOfTypeMethod) (
TQ3GroupObject group,
TQ3ObjectType isType,
TQ3GroupPosition *gPos);

C H A P T E R 1 0

Group Objects

Extending Group Objects 753

group A group object.

isType An object type.

gPos A position in a group object.

DESCRIPTION

The TQ3XGroupGetPrevPositionOfTypeMethod method returns in gPos the position
of the previous object of type isType before gPos in the group group. On exit,
gPos contains NULL if there is no prior object of type isType.

TQ3XGroupCountObjectsOfTypeMethod 10

The TQ3XGroupCountObjectsOfTypeMethod method returns the number of objects
of a specified type in a group.

TQ3Status (*TQ3XGroupCountObjectsOfTypeMethod) (
TQ3GroupObject group,
TQ3ObjectType isType,
unsigned long *nObjects);

group A group object.

isType An object type.

nObjects The number of objects of the given type in the group.

DESCRIPTION

The TQ3XGroupCountObjectsOfTypeMethod method returns in nObjects the count
of the number of objects of type isType in the group group.

TQ3XGroupEmptyObjectsOfTypeMethod 10

The TQ3XGroupEmptyObjectsOfTypeMethod method disposes of all the objects of a
specified type in a group.

C H A P T E R 1 0

Group Objects

754 Extending Group Objects

TQ3Status (*TQ3XGroupEmptyObjectsOfTypeMethod) (
TQ3GroupObject group,
TQ3ObjectType isType);

group A group object.

isType An object type.

DESCRIPTION

The TQ3XGroupEmptyObjectsOfTypeMethod method disposes of all the objects of
type isType in the group group.

TQ3XGroupGetFirstObjectPositionMethod 10

The TQ3XGroupGetFirstObjectPositionMethod method gets the position of the
first instance of an object in a group.

TQ3Status (*TQ3XGroupGetFirstObjectPositionMethod) (
TQ3GroupObject group,
TQ3Object object,
TQ3GroupPosition *gPos);

group A group object.

object An object.

gPos A position in a group object.

DESCRIPTION

The TQ3XGroupGetFirstObjectPositionMethod method returns in gPos the
position of the first instance of object object in the group group. It returns
kQ3Success if successful and kQ3Failure if there is no instance of object object in
the group.

C H A P T E R 1 0

Group Objects

Extending Group Objects 755

TQ3XGroupGetLastObjectPositionMethod 10

The TQ3XGroupGetLastObjectPositionMethod method gets the position of the last
instance of an object in a group.

TQ3Status (*TQ3XGroupGetLastObjectPositionMethod) (
TQ3GroupObject group,
TQ3Object object,
TQ3GroupPosition *gPos);

group A group object.

object An object.

gPos A position in a group object.

DESCRIPTION

The TQ3XGroupGetLastObjectPositionMethod method returns in gPos the position
of the last instance of object object in the group group. It returns kQ3Success if
successful and kQ3Failure if there is no instance of object object in the group.

TQ3XGroupGetNextObjectPositionMethod 10

The TQ3XGroupGetNextObjectPositionMethod method gets the position of the next
instance of an object in a group.

TQ3Status (*TQ3XGroupGetNextObjectPositionMethod) (
TQ3GroupObject group,
TQ3Object object,
TQ3GroupPosition *gPos);

group A group object.

object An object.

gPos A position in a group object.

C H A P T E R 1 0

Group Objects

756 Extending Group Objects

DESCRIPTION

The TQ3XGroupGetNextObjectPositionMethod method returns in gPos the position
of the next instance of object object after gPos in the group group. On exit, gPos
contains NULL if there is no succeeding instance of object object.

TQ3XGroupGetPrevObjectPositionMethod 10

The TQ3XGroupGetPrevObjectPositionMethod method gets the position of the
previous instance of an object in a group.

TQ3Status (*TQ3XGroupGetPrevObjectPositionMethod) (
TQ3GroupObject group,
TQ3Object object,
TQ3GroupPosition *gPos);

group A group object.

object An object.

gPos A position in a group object.

DESCRIPTION

The TQ3XGroupGetPrevObjectPositionMethod method returns in gPos the position
of the previous instance of object object before gPos in the group group. On exit,
gPos contains NULL if there is no prior instance of object object.

TQ3XMethodTypeGroupPositionSize 10

The TQ3XMethodTypeGroupPositionSize method gets the size of your group
position private data.

unsigned long TQ3XMethodTypeGroupPositionSize;

C H A P T E R 1 0

Group Objects

Extending Group Objects 757

DESCRIPTION

The TQ3XMethodTypeGroupPositionSize method returns the size in bytes of your
group position private data.

TQ3XGroupPositionNewMethod 10

The TQ3XGroupPositionNewMethod method makes a new group position in a
group object.

TQ3Status (*TQ3XGroupPositionNewMethod) (
void *gPos,
TQ3Object object,
const void *initData);

gPos A position in a group object.

object An object.

initData Data with which to initialize the position.

DESCRIPTION

The TQ3XGroupPositionNewMethod method creates a new position gPos in the
object object, initializing it with the data in initData.

TQ3XGroupPositionCopyMethod 10

The TQ3XGroupPositionCopyMethod method copies a group position in a group
object.

TQ3Status (*TQ3XGroupPositionCopyMethod) (
void *srcGPos,
void *dstGPos);

srcGPos The position to be copied from.

srcGPos The position to be copied into.

C H A P T E R 1 0

Group Objects

758 Extending Group Objects

DESCRIPTION

The TQ3XGroupPositionCopyMethod method copies position srcGPos in the group
object into position srcGPos.

TQ3XGroupPositionDeleteMethod 10

The TQ3XGroupPositionDeleteMethod method deletes a group position in a group
object.

TQ3Status (*TQ3XGroupPositionDeleteMethod) (void *gPos);

gPos The position to be deleted.

DESCRIPTION

The TQ3XGroupPositionDeleteMethod method deletes position gPos in the group
object.

TQ3XGroupStartIterateMethod 10

The TQ3XGroupStartIterateMethod method helps draw a view by iteration. It is
called once when drawing begins and returns the first object to be drawn.

TQ3Status (*TQ3XGroupStartIterateMethod) (
TQ3GroupObject group,
TQ3GroupPosition *iterator,
TQ3Object *object,
TQ3ViewObject view);

group A group object.

iterator An iteration position in the group.

object An object to be drawn.

view A view.

C H A P T E R 1 0

Group Objects

Extending Group Objects 759

DESCRIPTION

The TQ3XGroupStartIterateMethod method finds the first object to be drawn in
view and returns it in the object parameter. If the returned object value is NULL,
then GroupEndIterate will not be called. The iterator parameter is uninitialized
when GroupStartIterate is called.

EXAMPLE

TQ3Status GroupStartIterate(
TQ3GroupObject group,
TQ3GroupPosition *iterator,
TQ3Object *object,
TQ3ViewObject view)

{
// initialize gPos and object
*iterator = NULL;
*object = NULL;

// get position of first object in group
if (Q3Group_GetFirstPosition(group, iterator) == kQ3Failure)

return kQ3Failure;

if (*iterator == NULL)
return kQ3Success;

// get first object in group
if (Q3Group_GetPositionObject(group, *iterator, object)

== kQ3Failure)
return kQ3Failure;

return kQ3Success;
}

C H A P T E R 1 0

Group Objects

760 Extending Group Objects

TQ3XGroupEndIterateMethod 10

The TQ3XGroupEndIterateMethod method helps draw a view by iteration. It is
called repeatedly while a group is traversed, returning the next object to be
drawn each time.

TQ3Status (*TQ3XGroupEndIterateMethod) (
TQ3GroupObject group,
TQ3GroupPosition *iterator,
TQ3Object *object,
TQ3ViewObject view);

group A group object.

iterator An iteration position in the group.

object An object to be drawn.

view A view.

DESCRIPTION

The TQ3XGroupEndIterateMethod method is called repeatedly with the previous
object and iterator values. It returns in object the next object to be drawn, or
NULL when when there are no more objects to be drawn. It is your responsibility
to dispose of object.

EXAMPLE

TQ3Status GroupEndIterate(
TQ3GroupObject group,
TQ3GroupPosition *iterator,
TQ3Object *object,
TQ3ViewObject view)

{
if (*object != NULL) {

// dispose previous object
Q3Object_Dispose(*object);
*object = NULL;

C H A P T E R 1 0

Group Objects

Extending Group Objects 761

// get position of next object in group
if (Q3Group_GetNextPosition(group, iterator) == kQ3Failure)

return kQ3Failure;

if (*iterator == NULL)
return kQ3Success;

// get next object in group
return Q3Group_GetPositionObject(group, *iterator, object);

} else {
*iterator = NULL;
return kQ3Success;
}

}

TQ3XGroupEndReadMethod 10

The TQ3XGroupEndReadMethod method is a cleanup method that is called when a
group has been completely read.

TQ3Status (*TQ3XGroupEndReadMethod) (TQ3GroupObject group);

group A group object.

DESCRIPTION

The TQ3XGroupEndReadMethod method performs validation for the group group
and cleans up any memory caches used for reading.

C H A P T E R 1 0

Group Objects

762 Group Errors

Group Errors 10

The following errors may be returned by group object routines. A list of general
QuickDraw 3D errors is given in “QuickDraw 3D Errors, Warnings, and
Notices” (page 87).

kQ3ErrorInvalidPositionForGroup
kQ3ErrorInvalidObjectForGroup
kQ3ErrorInvalidObjectForPosition

About Renderer Objects 763

C H A P T E R 1 1

Renderer Objects 11Figure 11-0
Listing 11-0
Table 11-0

This chapter describes renderer objects (or renderers) and the functions you can
use to manipulate them. You use renderers to specify the various aspects of the
kind of image you want to create. A single renderer is associated with a view,
along with a list of lights, a camera, and other settings that affect the drawing of
a model. QuickDraw 3D supplies several kinds of renderers, but you can easily
add other kinds of renderers to support alternate drawing algorithms.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about associating a renderer with a view, see the chapter
“View Objects.”

This chapter begins by describing renderer objects and their features. Then it
shows how to create and manipulate renderers. The section “Renderer Objects
Reference,” beginning on page 771 provides a complete description of the
routines you can use to create and manipulate renderer objects. The section
“Renderer Methods,” beginning on page 792 discusses methods that a custom
renderer can or must support. The section “Draw Region Interface,” beginning
on page 817 describes the draw region interface, which lets custom renderers
access the QuickDraw 3D frame buffer and communicate information about the
configuration and state of the drawing context.

About Renderer Objects 11

A renderer object (or, more briefly, a renderer) is a type of QuickDraw 3D
object that you can use to render a model—that is, to create an image from a
view and a model. A renderer controls various aspects of the model and the
resulting image, including:

C H A P T E R 1 1

Renderer Objects

764 About Renderer Objects

■ the kinds of geometric objects the renderer can draw without decomposing
them into simpler objects

■ the parts of objects to be drawn (for example, only the edges or filled faces)

■ the types of lights that are available and the illumination model to be applied

■ the types of shaders that are available and kinds of interpolation that can be
performed

To render an image of a model, you first need to create an instance of a renderer
object. To do that, you’ll need to know which types of renderers are available.
QuickDraw 3D provides routines that you can use to get information about the
available renderers and their capabilities. Once you’ve decided which renderer
you want to use, you then create an instance of that renderer and attach it to a
view. You can do this in several, ways, by calling Q3Renderer_NewFromType and
then Q3View_SetRenderer, or by calling the function Q3View_SetRendererByType.

Types of Renderers 11

QuickDraw 3D currently supplies three types of renderers, a wireframe
renderer, an interactive renderer, and a generic renderer. Only the wireframe
and interactive renderers can actually draw images; the generic renderer is
available for you to collect a view’s state without actually rendering an image.

The wireframe renderer creates line drawings of models; it operates extremely
quickly and with comparatively little memory. Figure 11-1 shows an example of
a model drawn by QuickDraw 3D’s wireframe renderer (see also Color Plate 1
at the beginning of this book).

Because a wireframe image is simply a line drawing, there is no way to
illuminate or shade surfaces. The wireframe renderer ignores the group of lights
associated with a view and invokes none of the standard shaders supplied by
QuickDraw 3D. Note, however, that the wireframe renderer does invoke any
custom shaders you have associated with a view.

C H A P T E R 1 1

Renderer Objects

About Renderer Objects 765

Figure 11-1 An image drawn by the wireframe renderer

The interactive renderer uses a fast and accurate depth-sorting algorithm for
drawing solid, shaded surfaces as well as vectors. It is usually slower and
requires more memory than the wireframe renderer. When the size of a model is
reasonable and only very simple shadings are required, however, the interactive
renderer is usually fast enough to provide acceptable interactive performance.
The interactive renderer is also capable of rendering highly detailed, complex
models with very realistic surface illumination and shading, but at the expense
of time and memory. On machines with small amounts of memory, the
interactive renderer may need to traverse a model in multiple passes to render
the image completely. Figure 11-2 shows an image created by QuickDraw 3D’s
interactive renderer.

Figure 11-2 An image drawn by the interactive renderer

C H A P T E R 1 1

Renderer Objects

766 About Renderer Objects

The interactive renderer is capable of driving either a software-only rasterizer
or a hardware accelerator. In general, the interactive renderer uses a hardware
accelerator if one is available, to provide maximum performance. You can,
however, set the renderer preferences to indicate whether the interactive
renderer should operate in software only or whether it should take advantage
of a hardware accelerator. (See the “Using Renderer Objects” for details on
setting a renderer’s preferences.)

The interactive renderer supports all three available illumination shaders
(Phong, Lambert, and null). Some rendering capabilities, however, are available
only when the interactive renderer is using the hardware accelerator supplied
by Apple Computer, Inc., including transparency, shadows, and constructive
solid geometry (CSG).

Renderer Features 11

It’s possible that the renderer allows the user to activate or deactivate certain
renderer features in a modal dialog box displayed by the renderer. You can call
the Q3Renderer_HasModalConfigure function to determine whether a particular
renderer supports a modal settings dialog box. If it does, you can cause that
dialog box to be displayed by calling the Q3Renderer_ModalConfigure function.

Constructive Solid Geometry 11

When the hardware accelerator provided by Apple Computer, Inc., is available,
the interactive renderer can support constructive solid geometry (CSG),
a method of modeling solid objects constructed from the union, intersection, or
difference of other solid objects. For instance, you can define two cubes and
then render the solid object that is the intersection of those two cubes. Similarly,
you can define three cubes and render the solid object that is the union of two of
them minus the third. For example, Figure 11-3 shows three cubes (A, B, and C)
together with the result of using CSG to create the solid object defined by the
function (A ∪ B) ∩ ¬C.

C H A P T E R 1 1

Renderer Objects

About Renderer Objects 767

Note
In this chapter, CSG operations are described using
standard set operators: the operation A ∩ B is the set of all
points that are in both A and B (that is, the intersection of
A and B); A ∪ B is the set of all points that are in either A or
B (that is, the union of A and B); ¬A is the set of all points
that are not in A (that is, the complement of A). ◆

Figure 11-3 A constructed CSG object

The interactive renderer supports CSG operations on up to five objects in a
model. You select the objects to operate on by assigning a CSG object ID to
an object, an attribute of type kQ3AttributeTypeConstructiveSolidGeometryID.
There are five CSG object IDs:

kQ3SolidGeometryObjA
kQ3SolidGeometryObjB
kQ3SolidGeometryObjC
kQ3SolidGeometryObjD
kQ3SolidGeometryObjE

You specify the CSG operations to perform by passing a CSG equation to the
Q3InteractiveRenderer_SetCSGEquation function. A CSG equation is a 32-bit
value that encodes which CSG operations are to be performed on which CSG
objects. QuickDraw 3D provides constants for some common CSG operations:

A

B

A

CC

C H A P T E R 1 1

Renderer Objects

768 About Renderer Objects

typedef enum TQ3CSGEquation {
kQ3CSGEquationAandB = (int) 0x88888888,
kQ3CSGEquationAandnotB = 0x22222222,
kQ3CSGEquationAanBonCad = 0x2F222F22,
kQ3CSGEquationnotAandB = 0x44444444,
kQ3CSGEquationnAaBorCanD = 0x74747474

} TQ3CSGEquation;

For instance, the constant kQ3CSGEquationAandB indicates that the interactive
renderer should render only the intersecting portion of the objects with CSG
object IDs kQ3SolidGeometryObjA and kQ3SolidGeometryObjB. There are 232 CSG
equations for the five possible CSG objects. You calculate a CSG equation for a
particular configuration of objects A, B, C, D, and E by using Table 11-1.

You calculate a CSG equation by determining which of the rows in the table
satisfy the desired CSG construction. Then you set the indicated bit positions in
a 32-bit value and clear the remaining bit positions. For instance, the value 1
appears in both of the columns for objects A and B for bit positions 3, 7, 11, 15,
19, 23, 27, and 31. The CSG equation, then, for the operation A ∩ B is
10001000100010001000100010001000, or 0x88888888 (kQ3CSGEquationAandB).
Similarly, the value 1 appears in the column for object A and the value 0
appears in the column for object B for bit positions 1, 5, 9, 13, 17, 21, 25, and 29.
The CSG equation, then, for the operation A ∩ ¬B is
00100010001000100010001000100010, or 0x22222222 (kQ3CSGEquationAandnotB).
Finally, the CSG equation used to construct the composite object shown in
Figure 11-3 (page 767), drawn using the operation (A ∪ B) ∩ ¬C, is
00110010001100100011001000110010, or 0x32323232.

Table 11-1 Calculating CSG equations

E
4

D
3

C
2

B
1

A
0

Object
Bit position

0 0 0 0 0 0 LSB
0 0 0 0 1 1
0 0 0 1 0 2
0 0 0 1 1 3
0 0 1 0 0 4
0 0 1 0 1 5
0 0 1 1 0 6
0 0 1 1 1 7

C H A P T E R 1 1

Renderer Objects

About Renderer Objects 769

Transparency 11

Transparency is the ability of an object to transmit light, possibly permitting a
viewer to see objects behind it. The interactive renderer allows you to draw
objects with varying degrees of transparency. You specify how much light can
pass through an object by setting its transparency color. A transparency color is
an attribute of type TQ3ColorRGB, where the value (0, 0, 0) indicates complete
transparency, and (1, 1, 1) indicates complete opacity. By default, objects are
rendered opaque.

You specify an object’s transparency color by adding an attribute of type
kQ3AttributeTypeTransparencyColor to the object’s attribute set. QuickDraw 3D

0 1 0 0 0 8
0 1 0 0 1 9
0 1 0 1 0 10
0 1 0 1 1 11
0 1 1 0 0 12
0 1 1 0 1 13
0 1 1 1 0 14
0 1 1 1 1 15
1 0 0 0 0 16
1 0 0 0 1 17
1 0 0 1 0 18
1 0 0 1 1 19
1 0 1 0 0 20
1 0 1 0 1 21
1 0 1 1 0 22
1 0 1 1 1 23
1 1 0 0 0 24
1 1 0 0 1 25
1 1 0 1 0 26
1 1 0 1 1 27
1 1 1 0 0 28
1 1 1 0 1 29
1 1 1 1 0 30
1 1 1 1 1 31 MSB

Table 11-1 Calculating CSG equations (continued)

E
4

D
3

C
2

B
1

A
0

Object
Bit position

C H A P T E R 1 1

Renderer Objects

770 Using Renderer Objects

multiplies that transparency color by the object’s diffuse color whenever a
transparency color attribute is attached to the object.

Using Renderer Objects 11

A renderer is of type TQ3RendererObject, which is a type of shared object. You
create an instance of a renderer by calling Q3Renderer_New or
Q3Renderer_NewFromType. Once you’ve created a new renderer, you need to
associate it with a particular view, for example by calling Q3View_SetRenderer.

You’ve already seen (in the section “Creating a View,” beginning on page 67)
how to create a renderer object and attach it to a view object. As indicated
previously, you can ensure that you take advantage of any available hardware
accelerator by using the interactive renderer, as follows:

myRenderer = Q3Renderer_NewFromType(kQ3RendererTypeInteractive);

To make the rendered images coherent, you should make the associated draw
context double buffered (that is, you should set the doubleBufferState field of
the draw context data structure to the value kQ3True). Some hardware rasterizer
engines (such as the one supplied by Apple Computer, Inc.) can make coherent
images without double buffering. This can provide a significant speed
advantage, at the possible cost of some tearing. To take advantage of such
hardware, you keep the draw context double buffered (to indicate that you
want the images to be coherent) and call the function
Q3InteractiveRenderer_SetDoubleBufferBypass , as follows:

Q3InteractiveRenderer_SetDoubleBufferBypass(myRenderer, kQ3True);

In the unlikely event that you want to use a particular rasterizer with the
interactive renderer, you can set a preference with the code:

Q3InteractiveRenderer_SetPreferences(myRenderer, vendor, engine);

Values that define the available vendors and engines are described in “Vendor
IDs” (page 771) and “Engine IDs” (page 771).

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 771

Renderer Objects Reference 11

This section describes the constants, data structures, and routines provided by
QuickDraw 3D that you can use to create and manage renderers.

Constants 11

This section describes the constants that you can use to specify vendor and
engine IDs, CSG object IDs, and CSG equations.

Vendor IDs 11

QuickDraw 3D provides constants that you can use to specify an ID for a
renderer vendor.

#define kQAVendor_BestChoice (–1)
#define kQAVendor_Apple 0
#define kQAVendor_ATI 1
#define kQAVendor_Radius 2
#define kQAVendor_Mentor 3
#define kQAVendor_Matrox 4
#define kQAVendor_Yarc 5
#define kQAVendor_DiamondMM 6
#define kQAVendor_3DLabs 7

Constant description

kQAVendor_BestChoice
The best available choice. QuickDraw 3D selects the
available drawing engine that produces the best output on
the target device.

Engine IDs 11

QuickDraw 3D provides constants that you can use to specify an ID for the
rendering engines supplied by Apple Computer, Inc.

C H A P T E R 1 1

Renderer Objects

772 Renderer Objects Reference

#define kQAEngine_AppleHW (–1)
#define kQAEngine_AppleSW 0

Constant descriptions

kQAEngine_AppleHW The rasterizer associated with the hardware accelerator
supplied by Apple Computer, Inc.

kQAEngine_AppleSW The default software rasterizer supplied by Apple
Computer, Inc.

CSG Object IDs 11

QuickDraw 3D provides constants that you can use to specify an ID for a CSG
object. You assign a CSG object ID to an object by including an attribute of type
kQ3AttributeTypeConstructiveSolidGeometryID in the object’s attribute set.
Currently, QuickDraw 3D supports up to five CSG objects per model.

#define kQ3SolidGeometryObjA 0
#define kQ3SolidGeometryObjB 1
#define kQ3SolidGeometryObjC 2
#define kQ3SolidGeometryObjD 3
#define kQ3SolidGeometryObjE 4

Constant descriptions

kQ3SolidGeometryObjA
The CSG object A.

kQ3SolidGeometryObjB
The CSG object B.

kQ3SolidGeometryObjC
The CSG object C.

kQ3SolidGeometryObjD
The CSG object D.

kQ3SolidGeometryObjE
The CSG object E.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 773

CSG Equations 11

QuickDraw 3D provides constants for some common CSG equations. See
“Constructive Solid Geometry” (page 766) for more information on how CSG
equations are determined.

typedef enum TQ3CSGEquation {
kQ3CSGEquationAandB = (int) 0x88888888,
kQ3CSGEquationAandnotB = 0x22222222,
kQ3CSGEquationAanBonCad = 0x2F222F22,
kQ3CSGEquationnotAandB = 0x44444444,
kQ3CSGEquationnAaBorCanD = 0x74747474

} TQ3CSGEquation;

Constant descriptions

kQ3CSGEquationAandB
A ∩ B. The renderer draws the intersection of object A and
object B.

kQ3CSGEquationAandnotB
A ∩ ¬B. The renderer draws the portion of object A that lies
outside of object B.

kQ3CSGEquationAanBonCad
(A ∩ ¬B) ∪ (¬C ∩ D). The renderer draws the portion of
object A that lies outside of object B, and the portion of
object D that lies outside of object C.

kQ3CSGEquationnotAandB
¬A ∩ B. The renderer draws the portion of object B that lies
outside of object A.

kQ3CSGEquationnAaBorCanD
(¬A ∩ B) ∪ (C ∩ ¬D). The renderer draws the portion of
object B that lies outside of object A, and the portion of
object C that lies outside of object D.

Data Structures 11

This section describes the data structures that you use with renderer objects.

C H A P T E R 1 1

Renderer Objects

774 Renderer Objects Reference

Dialog Anchor 11

You use the dialog anchor data structure with the Q3Renderer_ModalConfigure
function, described on page 781. It has three forms, as described below.

With the Mac OS, the dialog anchor data structure has this form:

typedef struct TQ3DialogAnchor {
TQ3MacOSDialogEventHandler clientEventHandler;

} TQ3DialogAnchor;

With Windows 32, the dialog anchor data structure has this form:

typedef struct TQ3DialogAnchor {
HWND ownerWindow;

} TQ3DialogAnchor;

With other operating systems, the dialog anchor data structure has this form:

typedef struct TQ3DialogAnchor {
char notUsed; /* place holder */

} TQ3DialogAnchor;

Renderer Object Routines 11

This section describes QuickDraw 3D routines that you can use to manage
renderer objects.

Creating and Managing Renderers 11

QuickDraw 3D provides routines that you can use to create and manage
instances of a renderer.

Q3Renderer_NewFromType 11

You can use the Q3Renderer_NewFromType function to create an instance of a
certain type of renderer.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 775

TQ3RendererObject Q3Renderer_NewFromType (
TQ3ObjectType rendererObjectType);

rendererObjectType
A value that specifies a renderer type.

DESCRIPTION

The Q3Renderer_NewFromType function returns, as its function result, a new
renderer of the type specified by the rendererObjectType parameter. You can use
these values to specify QuickDraw 3D’s wireframe and interactive renderers:

kQ3RendererTypeWireFrame
kQ3RendererTypeInteractive

You can also pass the value kQ3RendererTypeGeneric to create a generic renderer.
A generic renderer does not render any image, but you can use it to collect state
information.

If Q3Renderer_NewFromType is not able to create an instance of the specified
renderer type, it returns NULL.

SPECIAL CONSIDERATIONS

You should create a renderer object once and associate it with a view (by calling
Q3View_SetRenderer); you should not create a new renderer object for each
frame.

SEE ALSO

You can call the Q3View_SetRendererByType function to create a new renderer of
a specified type and attach it to a view. See the chapter “View Objects” for
complete information.

Q3Renderer_GetType 11

You can use the Q3Renderer_GetType function to get the type of a renderer.

TQ3ObjectType Q3Renderer_GetType (TQ3RendererObject renderer);

C H A P T E R 1 1

Renderer Objects

776 Renderer Objects Reference

renderer A renderer.

DESCRIPTION

The Q3Renderer_GetType function returns, as its function result, the type of the
renderer object specified by the renderer parameter. The types of renderer
objects currently supported by QuickDraw 3D are defined by these constants:

kQ3RendererTypeWireFrame
kQ3RendererTypeGeneric
kQ3RendererTypeInteractive

If the specified renderer object is invalid or is not one of these types,
Q3Renderer_GetType returns the value kQ3ObjectTypeInvalid.

Synchronizing and Flushing Renderers 11

You can use the Q3View_Sync function (page 885) to ensure that a drawing
operation has finished. You should call Q3View_Sync only after you’ve called
Q3View_EndRendering.

You can use the Q3View_Flush function (page 885) to flush any image buffers
maintained internally by a renderer. You should call Q3View_Flush only between
calls to the Q3View_StartRendering and Q3View_EndRendering functions.

Managing Interactive Renderers 11

QuickDraw 3D provides routines that you can use to manage interactive
renderers.

Q3Renderer_IsInteractive 11

You can use the Q3Renderer_IsInteractive function to determine whether a
renderer is interactive.

TQ3Boolean Q3Renderer_IsInteractive (TQ3RendererObject renderer);

renderer A renderer.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 777

DESCRIPTION

The Q3Renderer_IsInteractive function returns kQ3True if renderer is an
interactive renderer and kQ3False otherwise.

Q3InteractiveRenderer_GetPreferences 11

You can use the Q3InteractiveRenderer_GetPreferences function to get the
current preference settings of an interactive renderer.

TQ3Status Q3InteractiveRenderer_GetPreferences (
TQ3RendererObject renderer,
long *vendorID,
long *engineID);

renderer An interactive renderer.

vendorID On exit, the vendor ID currently associated with the interactive
renderer. See “Vendor IDs” (page 771) for the values that can be
returned in this parameter.

engineID On exit, the engine ID currently associated with the interactive
renderer. See “Engine IDs” (page 771) for the values that can be
returned in this parameter.

DESCRIPTION

The Q3InteractiveRenderer_GetPreferences function returns, in the vendorID
and engineID parameters, the vendor and engine IDs currently associated with
the interactive renderer specified by the renderer parameter.

Q3InteractiveRenderer_SetPreferences 11

You can use the Q3InteractiveRenderer_SetPreferences function to set the
preference settings of the interactive renderer.

C H A P T E R 1 1

Renderer Objects

778 Renderer Objects Reference

TQ3Status Q3InteractiveRenderer_SetPreferences (
TQ3RendererObject renderer,
long vendorID,
long engineID);

renderer An interactive renderer.

vendorID A vendor ID. See “Vendor IDs” (page 771) for the values you
can pass in this parameter.

engineID An engine ID. See “Engine IDs” (page 771) for the values you
can pass in this parameter.

DESCRIPTION

The Q3InteractiveRenderer_SetPreferences function sets the default vendor
and engine to be used by the interactive renderer specified by the renderer
parameter to the values passed in the vendorID and engineID parameters.

Q3InteractiveRenderer_GetCSGEquation 11

You can use the Q3InteractiveRenderer_GetCSGEquation function to get the CSG
equation used by the interactive renderer.

TQ3Status Q3InteractiveRenderer_GetCSGEquation (
TQ3RendererObject renderer,
TQ3CSGEquation *equation);

renderer An interactive renderer.

equation On exit, the CSG equation currently associated with the
interactive renderer. See “CSG Equations” (page 773) for the
values that can be returned in this parameter.

DESCRIPTION

The Q3InteractiveRenderer_GetCSGEquation function returns, in the equation
parameter, the CSG equation currently associated with the interactive renderer
specified by the renderer parameter.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 779

Q3InteractiveRenderer_SetCSGEquation 11

You can use the Q3InteractiveRenderer_SetCSGEquation function to set the CSG
equation used by the interactive renderer.

TQ3Status Q3InteractiveRenderer_SetCSGEquation (
TQ3RendererObject renderer,
TQ3CSGEquation equation);

renderer An interactive renderer.

equation A CSG equation. See “CSG Equations” (page 773) for the values
you can pass in this parameter.

DESCRIPTION

The Q3InteractiveRenderer_SetCSGEquation function sets the CSG equation to
be used by the interactive renderer specified by the renderer parameter to the
equation specified by the equation parameter.

Q3InteractiveRenderer_GetDoubleBufferBypass 11

You can use the Q3InteractiveRenderer_GetDoubleBufferBypass function to get
the current double buffer bypass state of the interactive renderer.

TQ3Status Q3InteractiveRenderer_GetDoubleBufferBypass (
TQ3RendererObject renderer,
TQ3Boolean *bypass);

renderer An interactive renderer.

bypass On exit, a Boolean value that indicates the current double buffer
bypass state of the specified interactive renderer.

DESCRIPTION

The Q3InteractiveRenderer_GetDoubleBufferBypass function returns, in the
bypass parameter, a Boolean value that indicates the current double buffer

C H A P T E R 1 1

Renderer Objects

780 Renderer Objects Reference

bypass state of the interactive renderer specified by the renderer parameter. If
bypass is kQ3True, double buffering is currently being bypassed.

Q3InteractiveRenderer_SetDoubleBufferBypass 11

You can use the Q3InteractiveRenderer_SetDoubleBufferBypass function to set
the double buffer bypass state of the interactive renderer.

TQ3Status Q3InteractiveRenderer_SetDoubleBufferBypass (
TQ3RendererObject renderer,
TQ3Boolean bypass);

renderer An interactive renderer.

bypass A Boolean value that indicates the desired double buffer bypass
state of the specified interactive renderer.

DESCRIPTION

The Q3InteractiveRenderer_SetDoubleBufferBypass function sets the state of
double buffer bypassing for the interactive renderer specified by the renderer
parameter to the Boolean value specified by the bypass parameter.

Managing Renderer Features 11

QuickDraw 3D provides routines that you can use to manage a renderer’s
features.

Q3Renderer_HasModalConfigure 11

You can use the Q3Renderer_HasModalConfigure function to determine whether a
renderer can display a modal settings dialog box.

TQ3Boolean Q3Renderer_HasModalConfigure (TQ3RendererObject renderer);

renderer A renderer.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 781

DESCRIPTION

The Q3Renderer_HasModalConfigure function returns, as its function result, a
Boolean value that indicates whether the renderer specified by the renderer
parameter can display a modal settings dialog box (kQ3True) or not (kQ3False).

Q3Renderer_ModalConfigure 11

You can use the Q3Renderer_ModalConfigure function to pop up a modal dialog box
used to configure the renderer’s settings.

TQ3Status Q3Renderer_ModalConfigure (
TQ3RendererObject renderer,
TQ3DialogAnchor dialogAnchor,
TQ3Boolean *canceled);

renderer A renderer.

dialogAnchor A dialog anchor data structure (see page 774).

canceled Returned value indicating whether the request has been
canceled (kQ3True) or not (kQ3False).

DESCRIPTION

The Q3Renderer_ModalConfigure function displays a modal settings dialog box to
configure the settings for the renderer specified by the renderer parameter. The
canceled parameter is a Boolean that returns kQ3True if the request has been
canceled, kQ3False otherwise.

The Q3Renderer_ModalConfigure function returns kQ3Failure if an error occurred.

Q3Renderer_GetConfigurationData 11

An application can use the Q3Renderer_GetConfigurationData function to access
private renderer configuration data, which it can then save in a preference file or style
template. The application should tag this data with the renderer’s object name.

C H A P T E R 1 1

Renderer Objects

782 Renderer Objects Reference

TQ3Status Q3Renderer_GetConfigurationData (
TQ3RendererObject renderer,
unsigned char *dataBuffer,
unsigned long bufferSize,
unsigned long *actualDataSize);

renderer A renderer object.

dataBuffer A pointer to a data buffer.

bufferSize The actual size in bytes of the memory block pointed to by
dataBuffer.

actualDataSize
On return, the actual number of bytes written to the buffer. If you set
dataBuffer to null, actualDataSize returns the number of bytes that
will be required to store the configuration data .

DESCRIPTION

The Q3Renderer_GetConfigurationData function stores private configuration
data for the renderer object designated by renderer in a buffer pointed to by the
dataBuffer parameter, and returns in actualDataSize the number of bytes
written. If you set dataBuffer to null, Q3Renderer_GetConfigurationData will
return in actualDataSize the buffer size required, without writing data out.

Q3Renderer_SetConfigurationData 11

You can use the Q3Renderer_SetConfigurationData function to set a renderer to a
configuration state previously accessed by Q3Renderer_GetConfigurationData.

TQ3Status Q3Renderer_SetConfigurationData (
TQ3RendererObject renderer,
unsigned char *dataBuffer,
unsigned long bufferSize);

renderer A renderer object.

dataBuffer A pointer to a data buffer.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 783

bufferSize The actual size in bytes of the memory block pointed to by
dataBuffer.

DESCRIPTION

The Q3Renderer_SetConfigurationData function sets the renderer designated by
renderer to the configuration state determined by the private data structure
pointed to by dataBuffer. The bufferSize parameter indicates the size of the
buffer.

Q3RendererClass_GetNickNameString 11

You can use the Q3RendererClass_GetNickNameString function to to get a
renderer’s name string. The name string can then be used to provide user
selections, for example in a menu.

TQ3Status Q3RendererClass_GetNickNameString(
TQ3ObjectType rendererClassType,
TQ3ObjectClassNameString rendererClassString);

rendererClassType
A renderer object type.

rendererClassString
A string containing the renderer’s name.

DESCRIPTION

The Q3RendererClass_GetNickNameString function returns, in the
rendererClassString parameter, the user-identifiable name of a renderer.

The renderer is responsible for storing the name in a localizable format—for
example as a resource. If Q3RendererClass_GetNickNameString returns NULL in
rendererClassString, then the caller may choose to use the renderer’s class
name instead. Applications should always try to get the name string before
using the class name, because the class name is not localizable.

C H A P T E R 1 1

Renderer Objects

784 Renderer Objects Reference

Managing RAVE Features 11

The QuickDraw 3D Renderer Acceleration Virtual Engine (RAVE) is the part of
the Mac OS that controls 3D drawing engines, also called 3D drivers. It is used
internally by QuickDraw 3D. A drawing engine is software that supports the
low-level rasterization operations required for interactive 3D rendering. To
achieve interactive performance, a drawing engine is often associated with
some hardware device designed specifically to accelerate 3D rasterization.

For most 3D drawing and interaction, you should use the high-level application
programming interfaces described in this book. In some cases, however, you
may need to use the low-level services provided by RAVE; for example,

■ if you are writing a specialized application (such as a game-development
framework) that needs to take advantage of any available 3D acceleration
hardware.

■ if you are writing interactive software (such as a game or other entertainment
software) that requires the extremely fast 3D rendering that can be achieved
with a very low-level, lightweight graphics library.

■ if you are developing 3D acceleration hardware or software that is to be
accessed by any applications rendering 3D images.

This section describes four QuickDraw 3D routines that provide you with
limited access to RAVE. Two of them get and set the RAVE texture filter; the
other two get and set RAVE context hints.

The texture mapping filter mode of the drawing engine determines how the
engine performs texture mapping. The default value for a drawing engine that
supports texture mapping is kQATextureFilter_Fast. The texture mapping filter
state variable is optional; it must be supported only when a drawing engine
supports the kQAOptional_Texture feature.

You specify an engine’s texture filter by assigning a value to its
kQATag_TextureFilter state variable. The default value of this variable for a
drawing engine that supports texture mapping is kQATextureFilter_Fast.

#define kQATextureFilter_Fast 0
#define kQATextureFilter_Mid 1
#define kQATextureFilter_Best 2

Constant descriptions

kQATextureFilter_Fast
The drawing engine performs whatever level of texture

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 785

filtering it can do with no speed penalty. This often means
that no texture filtering is performed.

kQATextureFilter_Mid
The drawing engine performs a medium level of texture
filtering. You should use this texture mapping filter mode
when you want to perform texture mapping interactively.

kQATextureFilter_Best
The drawing engine performs the highest level of texture
filtering it can. This mode may be unsuitable for interactive
rendering.

Q3InteractiveRenderer_GetRAVETextureFilter 11

You can use the Q3InteractiveRenderer_GetRAVETextureFilter function to access
the current RAVE kQATag_TextureFilter state variable described above.

TQ3Status Q3InteractiveRenderer_GetRAVETextureFilter (
TQ3RendererObject renderer,
unsigned long *RAVEtextureFilterValue);

renderer A renderer object.

RAVEtextureFilterValue
The value of the renderer’s kQATag_TextureFilter state variable.

DESCRIPTION

The Q3InteractiveRenderer_GetRAVETextureFilter function returns, in the
RAVEtextureFilterValue parameter, the current value of the renderer’s
kQATag_TextureFilter state variable.

Q3InteractiveRenderer_SetRAVETextureFilter 11

You can use the Q3InteractiveRenderer_SetRAVETextureFilter function to set
the current RAVE kQATag_TextureFilter state variable.

C H A P T E R 1 1

Renderer Objects

786 Renderer Objects Reference

TQ3Status Q3InteractiveRenderer_SetRAVETextureFilter (
TQ3RendererObject renderer,
unsigned long RAVEtextureFilterValue);

renderer A renderer object.

RAVEtextureFilterValue
The value of the renderer’s kQATag_TextureFilter state variable.

DESCRIPTION

The Q3InteractiveRenderer_SetRAVETextureFilter function sets the value in the
RAVEtextureFilterValue parameter to be the current value of the renderer’s
kQATag_TextureFilter state variable. For a list of possible values, see page 784.

Although a drawing engine may be capable of supporting more than one
device, it cannot divide a raster across multiple devices. Instead, every drawing
command sent to a drawing engine must be destined for a single device.
QuickDraw 3D RAVE guarantees this by requiring a calling application to
specify a draw context as a parameter for every drawing command. A draw
context is a structure (of type TQADrawContext) that maintains state information
and other data associated with a particular drawing engine and device.

As mentioned at the end of the previous section, you need to create several
draw contexts if you want to draw into a window that spans several devices.
Similarly, you need to create several draw contexts if you want to draw into
several different windows on the same device. Each draw context maintains its
own state information image buffers and is unaffected by any functions that
operate on another draw context.

The state information associated with a draw context is maintained using a
large number of state variables. For example, the background color of a draw
context is specified by four state variables, designated by the four identifiers (or
tags) kQATag_ColorBG_a, kQATag_ColorBG_r, kQATag_ColorBG_g, and
kQATag_ColorBG_b.

Q3InteractiveRenderer_GetRAVEContextHints 11

You can use the Q3InteractiveRenderer_GetRAVEContextHints function to get the
RAVE draw context hints for a specific renderer.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 787

TQ3Status Q3InteractiveRenderer_GetRAVEContextHints (
TQ3RendererObject renderer,
unsigned long *RAVEContextHints);

renderer A renderer.

RAVEContextHints
A set of RAVE draw context hints.

DESCRIPTION

The Q3InteractiveRenderer_GetRAVEContextHints function returns, in the
RAVEContextHints parameter, the stored context hints for renderer.

Q3InteractiveRenderer_SetRAVEContextHints 11

You can use the Q3InteractiveRenderer_SetRAVEContextHints function to set the
RAVE draw context hints for a specific renderer.

TQ3Status Q3InteractiveRenderer_SetRAVEContextHints (
TQ3RendererObject renderer,
unsigned long RAVEContextHints);

renderer A renderer.

RAVEContextHints
A set of RAVE draw context hints.

DESCRIPTION

The Q3InteractiveRenderer_SetRAVEContextHints function sets the draw context
hints for renderer to the value in the RAVEContextHints parameter.

Using Renderer Attribute Set Tools 11

QuickDraw 3D supports two tools, which you can call only from a renderer
plug-in module, that provide fast access to geometry attribute sets.

C H A P T E R 1 1

Renderer Objects

788 Renderer Objects Reference

Q3XAttributeSet_GetPointer 11

You can use the Q3XAttributeSet_GetPointer function to obtain a pointer to
QuickDraw 3D’s internal data structure for elements and attributes in an attribute set.

void *Q3XAttributeSet_GetPointer (
TQ3AttributeSet attributeSet,
TQ3AttributeType attributeType);

attributeSet An attribute set.

attributeType An attribute type.

return value Pointer to an attribute set data structure.

DESCRIPTION

The Q3XAttributeSet_GetPointer function returns a pointer to internal data
structure for elements and attributes in the attribute set designated by
attributeSet, of the type designated by attributeType. It returns null if no such
attribute set data structure exists. Q3XAttributeSet_GetPointer uses the same
internal data structure as Q3AttributeSet_Add, described on page 530.

Q3XAttributeSet_GetMask 11

A renderer can use the Q3XAttributeSet_GetMask function to obtain a set of
masks for the internal data structure returned by Q3XAttributeSet_GetPointer.

TQ3XAttributeMask Q3XAttributeSet_GetMask (
TQ3AttributeSet attributeSet);

typedef unsigned long TQ3XAttributeMask;

attributeSet An attribute set.

return value A set of masks of type TQ3XAttributeMask.

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 789

DESCRIPTION

To determine which attributes are present in an attribute set, a renderer can obtain a set
of the masks by calling Q3XAttributeSet_GetMask. It returns the masks for the
attribute set designated by attributeSet as an unsigned long value.

The returned mask values are as follows:

#define kQ3XAttributeMaskNone 0L

#define kQ3XAttributeMaskSurfaceUV (1 << (kQ3AttributeTypeSurfaceUV - 1))

#define kQ3XAttributeMaskShadingUV (1 << (kQ3AttributeTypeShadingUV - 1))

#define kQ3XAttributeMaskNormal (1 << (kQ3AttributeTypeNormal - 1))

#define kQ3XAttributeMaskAmbientCoefficient
(1 << (kQ3AttributeTypeAmbientCoefficient - 1))

#define kQ3XAttributeMaskDiffuseColor
(1 << (kQ3AttributeTypeDiffuseColor - 1))

#define kQ3XAttributeMaskSpecularColor
(1 << (kQ3AttributeTypeSpecularColor - 1))

#define kQ3XAttributeMaskSpecularControl
(1 << (kQ3AttributeTypeSpecularControl - 1))

#define kQ3XAttributeMaskTransparencyColor
(1 << (kQ3AttributeTypeTransparencyColor - 1))

#define kQ3XAttributeMaskSurfaceTangent
(1 << (kQ3AttributeTypeSurfaceTangent - 1))

#define kQ3XAttributeMaskHighlightState
(1 << (kQ3AttributeTypeHighlightState - 1))

#define kQ3XAttributeMaskSurfaceShader
(1 << (kQ3AttributeTypeSurfaceShader - 1))

#define kQ3XAttributeMaskCustomAttribute 0x80000000

C H A P T E R 1 1

Renderer Objects

790 Renderer Objects Reference

#define kQ3XAttributeMaskAll
(kQ3XAttributeMaskSurfaceUV
| kQ3XAttributeMaskShadingUV
| kQ3XAttributeMaskNormal
| kQ3XAttributeMaskAmbientCoefficient
| kQ3XAttributeMaskDiffuseColor
| kQ3XAttributeMaskSpecularColor
| kQ3XAttributeMaskSpecularControl
| kQ3XAttributeMaskTransparencyColor
| kQ3XAttributeMaskSurfaceTangent
| kQ3XAttributeMaskHighlightState
| kQ3XAttributeMaskSurfaceShader
| kQ3XAttributeMaskCustomAttribute)

#define kQ3XAttributeMaskInherited
(kQ3XAttributeMaskSurfaceUV
| kQ3XAttributeMaskShadingUV
| kQ3XAttributeMaskNormal
| kQ3XAttributeMaskAmbientCoefficient
| kQ3XAttributeMaskDiffuseColor
| kQ3XAttributeMaskSpecularColor
| kQ3XAttributeMaskSpecularControl
| kQ3XAttributeMaskTransparencyColor
| kQ3XAttributeMaskSurfaceTangent
| kQ3XAttributeMaskHighlightState
| kQ3XAttributeMaskSurfaceShader
| kQ3XAttributeMaskCustomAttribute)

#define kQ3XAttributeMaskInterpolated
(kQ3XAttributeMaskSurfaceUV
| kQ3XAttributeMaskShadingUV
| kQ3XAttributeMaskNormal
| kQ3XAttributeMaskAmbientCoefficient
| kQ3XAttributeMaskDiffuseColor
| kQ3XAttributeMaskSpecularColor
| kQ3XAttributeMaskSpecularControl
| kQ3XAttributeMaskTransparencyColor
| kQ3XAttributeMaskSurfaceTangent)

C H A P T E R 1 1

Renderer Objects

Renderer Objects Reference 791

Using Renderer View Tools 11

QuickDraw 3D supports two tools, which you can call only from a renderer
plug-in module, that report rendering progress.

Q3XView_IdleProgress 11

The Q3XView_IdleProgress function can be called by a renderer to call the user
idle method and provide progress information. The user must have supplied an
idleProgress method using Q3XView_SetIdleProgressMethod; otherwise, the
generic idle method Q3View_SetIdleMethod will be called with no progress data.

TQ3Status Q3XView_IdleProgress (
TQ3ViewObject view,
unsigned long current,
unsigned long completed);

view A view object.

current A progress value in the range 0..n–1, where n is the value of
completed.

completed The maximum progress number.

DESCRIPTION

The Q3XView_IdleProgress function passes, in the current parameter, a value
that represents rendering progress from 0 to the value of completed. It returns
kQ3Failure if rendering is cancelled.

SEE ALSO

You can use view idle methods to interrupt long renderings. While running the
idler callback, the application can check for a Command-period key event or a
mouse click on a Cancel button to see if the user wants to interrupt rendering.
View idle methods are discussed in Chapter 13, “Application-Defined
Routines,” beginning on page 909.

C H A P T E R 1 1

Renderer Objects

792 Renderer Methods

Q3XView_EndFrame 11

An asynchronous renderer calls the Q3XView_EndFrame function when it
completes a frame.

TQ3Status Q3XView_EndFrame (TQ3ViewObject view);

view A view object.

DESCRIPTION

The Q3XView_EndFrame function tells the view object view that an asynchronous
renderer has finished rendering a frame.

The Q3XView_EndFrame function differs from Q3View_Sync in that notification of
frame completion takes place in the opposite direction. With Q3View_Sync, the
application asks a renderer to finish rendering a frame and blocks until the
frame is complete. With Q3XView_EndFrame, the renderer tells the application that
it has completed a frame.

If Q3View_Sync is called before Q3XView_EndFrame, Q3XView_EndFrame will never be
called. If Q3View_Sync is called after Q3XView_EndFrame, Q3XView_EndFrame will
return immediately because the frame has already been completed.

Q3View_Sync is described in “Q3View_Sync” (page 885).

Application-Defined Routines 11

Among the functions that you might need to define when working with
renderer objects is an event filter function to handle events that occur while a
movable modal dialog box is displayed.

Renderer Methods 11

This section describes methods that a renderer can or must support.

C H A P T E R 1 1

Renderer Objects

Renderer Methods 793

IMPORTANT

Some of the methods described here are required, as noted
below. ▲

The renderer support methods include update methods and submit methods.
An update method is called whenever the state has changed, before invoking a
submit method in a renderer. A renderer will have many update methods that
do little more than copy data or pointers into the renderer’s private state.

Updates are not called in any particular order and therefore cross-state
dependencies should not be resolved until a submit method is invoked.For
example, every view has an attribute state and a shader state, each of which
may contain a SurfaceShader object. The attribute SurfaceShader object (if not
null) overrides the shader object, because it is inherited deeper in a geometry.
However, a renderer should not depend on these being called in any particular
order. It should not keep one surfaceShader state variable and perform this
inheritance in the update methods, because the behavior may vary.

Note
Some exceptions apply. In particular, matrix updates are
called in a specific order based on matrix dependencies. For
example, LocalToWorld is always called before
LocalToWorldInverse, as explained on page 805. ◆

Update methods update only those items which have changed, and only those
objects supported by a renderer are updated. In addition, updates are
accumulated until a geometry, light, or camera is encountered; therefore data
submitted to the view may never reach a renderer if it never applies to a
geometry, light, or camera.

If the renderer supports the RendererPush and RendererPop methods, it must
maintain its own state stack; updates are not called for changed data when the
view stack is popped. See “Push and Pop Methods,” beginning on page 813 for
more information.

The following renderer submit functionality is discussed in “Submit Method,”
beginning on page 794:

TQ3XRendererSubmitGeometryMethod

The following renderer configuration functionalities are discussed in
“Configuration Methods,” beginning on page 796:

C H A P T E R 1 1

Renderer Objects

794 Renderer Methods

kQ3XMethodTypeRendererIsInteractive
TQ3XRendererModalConfigureMethod
TQ3XRendererGetNickNameStringMethod
TQ3XRendererGetConfigurationDataMethod
TQ3XRendererSetConfigurationDataMethod

The following renderer update functionalities are discussed in “Update
Methods,” beginning on page 801:

TQ3XRendererUpdateStyleMethod
TQ3XRendererUpdateAttributeMethod
TQ3XRendererUpdateShaderMethod
TQ3XRendererUpdateMatrixMethod

The following renderer drawing state methods are discussed in “Drawing State
Methods,” beginning on page 807:

TQ3XRendererStartFrameMethod
TQ3XRendererStartPassMethod
TQ3XRendererFlushFrameMethod
TQ3XRendererEndPassMethod
TQ3XRendererEndFrameMethod
TQ3XRendererCancelMethod

The following state stack functions are discussed in “Push and Pop Methods,”
beginning on page 813:

TQ3XRendererPushMethod
TQ3XRendererPopMethod

The renderer support method TQ3XRendererIsBoundingBoxVisibleMethod, used to
cull group and geometric objects, is described in “Renderer Cull Method,”
beginning on page 816.

Submit Method 11

This section describes the renderer geometry submit method.

C H A P T E R 1 1

Renderer Objects

Renderer Methods 795

TQ3XRendererSubmitGeometryMethod 11

The TQ3XRendererSubmitGeometryMethod renderer support functionality is
required.

#define kQ3XMethodTypeRendererSubmitGeometryMetaHandler
Q3_METHOD_TYPE ('r','d','g','m')

typedef TQ3XFunctionPointer
(*TQ3XRendererSubmitGeometryMetaHandlerMethod)(
TQ3ObjectType geometryType)

typedef TQ3Status (*TQ3XRendererSubmitGeometryMethod)(
TQ3ViewObject view,
void *rendererPrivate,
TQ3GeometryObject geometry,
const void *publicData);

geometryType A geometric object type (see “About Geometric Objects,”
beginning on page 237).

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

Objectgeometry
The geometry for which this call was registered. It must be a geometry
object containing publicData, or NULL if this call was made in
immediate mode.

publicData A pointer to the public data structure associated with Objectgeometry.
This pointer is passed into Submit calls, so the data may become
invalid after TQ3XRendererSubmitGeometryMethod exits. If
Objectgeometry is not null, you may call Q3Shared_GetReference
and save the publicData pointer to preserve the information. In this
case, call Q3Object_Dispose on the geometry when you are through.

C H A P T E R 1 1

Renderer Objects

796 Renderer Methods

DESCRIPTION

The method type kQ3XMethodTypeRendererSubmitGeometryMetaHandler returns a
function pointer of type TQ3XRendererSubmitGeometryMetaHandlerMethod. This
function enables a geometry of type geometryType and returns methods of type
TQ3XRendererSubmitGeometryMethod.

This renderer functionality is required, and it must support the following
geometric object types:

kQ3GeometryTypeTriangle
kQ3GeometryTypeLine
kQ3GeometryTypePoint
kQ3GeometryTypePixmapMarker

Configuration Methods 11

This section describes renderer configuration methods, all of which are
optional.

Q3XMethodTypeRendererIsInteractive 11

The Q3XMethodTypeRendererIsInteractive renderer support functionality is
optional. If it is supplied, it should report whether or not the renderer is
interactive.

#define kQ3XMethodTypeRendererIsInteractive
Q3_METHOD_TYPE('i','s','i','n')

DESCRIPTION

There is no actual method required for kQ3XMethodTypeRendererIsInteractive.
The metahandler just returns (TQ3XFunctionPointer)kQ3True if the renderer is
intended to be used in interactive settings and (TQ3XFunctionPointer)kQ3False
otherwise.

If neither value is returned, the renderer is assumed to be noninteractive.

C H A P T E R 1 1

Renderer Objects

Renderer Methods 797

TQ3XRendererModalConfigureMethod 11

The TQ3XRendererModalConfigureMethod renderer support functionality is
optional. If it is supplied, it should display a modal dialog to let the user edit
the renderer settings found in the renderer’s private data.

#define kQ3XMethodTypeRendererModalConfigure
Q3_METHOD_TYPE('r','d','m','c')

typedef TQ3Status (*TQ3XRendererModalConfigureMethod)(
TQ3RendererObject renderer,
TQ3DialogAnchor dialogAnchor,
TQ3Boolean *canceled,
void *rendererPrivate);

renderer A renderer object.

dialogAnchor Platform-specific data passed by the client to support movable
modal dialogs (described below).

canceled Returns a boolean value to indicate that the user canceled the
dialog.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

DESCRIPTION

The renderer calls TQ3XRendererModalConfigureMethod for events not handled by
the normal settings dialog; this is needed to support movable modal dialogs.

The dialogAnchor parameter is platform-specific. With the MacOS it is a callback
to the calling application’s event handler, which must return kQ3True if it
handles the event passed to the callback and kQ3False if not. An application
that doesn’t want to support a movable modal configure dialog should pass
NULL for the clientEventHandler field of TQ3DialogAnchor and should implement
a nonmovable dialog.

Modal dialogs in windows applications are always movable. With Windows,
therefore, dialogAnchor is the handle of the owning window, typically the
application’s main window.

C H A P T E R 1 1

Renderer Objects

798 Renderer Methods

TQ3XRendererGetNickNameStringMethod 11

The TQ3XRendererGetNickNameStringMethod renderer support functionality is
optional. If it is supplied, it lets an application collect the name of the renderer
for display in user interface items such as menus. Such a name may be localized
or may be more user-friendly than the name string provided at registration.

#define kQ3XMethodTypeRendererGetNickNameString
Q3_METHOD_TYPE ('r','d','y','u')

typedef TQ3Status (TQ3XRendererGetNickNameStringMethod)(
unsigned char *dataBuffer,
unsigned long bufferSize,
unsigned long *actualDataSize);

dataBuffer Data buffer to hold the renderer’s name.

bufferSize The actual size of the memory block pointed to by dataBuffer.

actualDataSize
On return, the actual number of bytes written to the buffer; or if
dataBuffer is NULL, the required size of dataBuffer.

DESCRIPTION

An application uses TQ3XRendererGetNickNameStringMethod to get a
user-identifiable name of a renderer. If dataBuffer is NULL, actualDataSize
returns the required size in bytes of a data buffer large enough to store the
renderer’s name.

EXAMPLE

The following is example code for getting the name strings for all the
currently-registered plug-in renderers.

C H A P T E R 1 1

Renderer Objects

Renderer Methods 799

void Menu_Init(
void)

{
Handle menuBar;
MenuHandle menu;
TQ3SubClassData subClassData;
TQ3ObjectType *classPointer;
short i;

if (!(menuBar = GetNewMBar(kMenuBar))) {
SysBeep(1);
ExitToShell();

}

SetMenuBar(menuBar);
DisposeHandle(menuBar);
DrawMenuBar();

AddResMenu(GetMHandle(kMenu_Apple), 'DRVR');
InsertMenu(GetMenu(…));

menu = GetMHandle(kMenu_Renderer);

Q3ObjectHierarchy_GetSubClassData(
kQ3SharedTypeRenderer, &subClassData);

classPointer = subClassData.classTypes;
i = subClassData.numClasses;

while (i--) {
TQ3ObjectClassNameString objectClassName;
Q3RendererClass_GetNickNameString(

*classPointer, objectClassName);
AppendMenu(menu, c2pstr(objectClassName));
gRendererCount++;
classPointer++;

}

Q3ObjectHierarchy_EmptySubClassData(
&subClassData);

}

C H A P T E R 1 1

Renderer Objects

800 Renderer Methods

TQ3XRendererGetConfigurationDataMethod 11

The TQ3XRendererGetConfigurationDataMethod renderer support functionality is
optional. If it is supplied, it lets an application collect private configuration data
from the renderer, which it will then save. The application may save the data in
a preference file, in a registry key (in the Windows environment), or in a style
template. The application will normally tag the data with the renderer's object
name.

#define kQ3XMethodTypeRendererGetConfigurationData
Q3_METHOD_TYPE('r','d','g','p')

typedef TQ3Status (*TQ3XRendererGetConfigurationDataMethod)(
TQ3RendererObject renderer,
unsigned char *dataBuffer,
unsigned long bufferSize,
unsigned long *actualDataSize,
void *rendererPrivate);

renderer A renderer object.

dataBuffer Buffer to hold the renderer’s configuration data.

bufferSize The actual size of the memory block pointed to by dataBuffer.

actualDataSize
On return, the actual number of bytes written to the buffer; if
dataBuffer is NULL, it is the required size of the buffer.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

DESCRIPTION

The renderer calls TQ3XRendererGetConfigurationDataMethod to access
configuration data from a renderer’s private data space. If dataBuffer is NULL,
actualDataSize returns the required size in bytes of a data buffer large enough
to store the private data.

C H A P T E R 1 1

Renderer Objects

Renderer Methods 801

TQ3XRendererSetConfigurationDataMethod 11

The TQ3XRendererSetConfigurationDataMethod renderer support functionality is
optional. If it is supplied, it lets an application pass private configuration data
that it previously obtained via Q3Renderer_GetConfigurationData.

#define kQ3XMethodTypeRendererSetConfigurationData
Q3_METHOD_TYPE('r','d','s','p')

typedef TQ3Status (*TQ3XRendererSetConfigurationDataMethod)(
TQ3RendererObject renderer,
unsigned char *dataBuffer,
unsigned long bufferSize,
void *rendererPrivate);

renderer A renderer object.

dataBuffer Buffer to hold the renderer’s configuration data.

bufferSize The actual size of the memory block pointed to by dataBuffer.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

DESCRIPTION

The renderer calls TQ3XRendererSetConfigurationDataMethod to place previously
obtained renderer configuration data into a renderer’s private data space.

Update Methods 11

This section describes renderer update methods.

C H A P T E R 1 1

Renderer Objects

802 Renderer Methods

TQ3XRendererUpdateStyleMethod 11

#define kQ3XMethodTypeRendererUpdateStyleMetaHandler
Q3_METHOD_TYPE ('r','d','y','u')

typedef TQ3XFunctionPointer
(*TQ3XRendererUpdateStyleMetaHandlerMethod)(
TQ3ObjectType styleType);

typedef TQ3Status (*TQ3XRendererUpdateStyleMethod)(
TQ3ViewObject view,
void *rendererPrivate,
const void *publicData);

styleType A style object type (see “Q3Style_GetType,” beginning on
page 557).

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

publicData A pointer the public data structure associated with a style. You may
retain a copy of the pointer passed to you and use it to access the state.
The state remains valid until either another update on this style type is
made at this depth or a pop action occurs. A push action does not
invalidate the pointer.

DESCRIPTION

The method type kQ3XMethodTypeRendererUpdateStyleMetaHandler returns a
function pointer of type TQ3XRendererUpdateStyleMetaHandlerMethod. This
function enables a style of type styleType and returns methods of type
TQ3XRendererUpdateStyleMethod.

C H A P T E R 1 1

Renderer Objects

Renderer Methods 803

The types of the data structures pointed to by publicData corresponds to the
style types shown in the following table:

TQ3XRendererUpdateAttributeMethod 11

#define kQ3XMethodTypeRendererUpdateAttributeMetaHandler
Q3_METHOD_TYPE ('r','d','a','u')

typedef TQ3XFunctionPointer
(*TQ3XRendererUpdateAttributeMetaHandlerMethod)(
TQ3AttributeType attributeType);

typedef TQ3Status (*TQ3XRendererUpdateAttributeMethod)(
TQ3ViewObject view,
void *rendererPrivate,
const void *publicData);

attributeType An attribute object type (see “Types of Attributes and Attribute
Sets,” beginning on page 516).

view The current view being rendered to.

Style type Data structure type

kQ3StyleTypeBackfacing TQ3BackfacingStyle *

kQ3StyleTypeInterpolation TQ3InterpolationStyle *

kQ3StyleTypeFill TQ3FillStyle *

kQ3StyleTypePickID unsigned long *

kQ3StyleTypeReceiveShadows TQ3Boolean *

kQ3StyleTypeHighlight TQ3AttributeSet *

kQ3StyleTypeSubdivision TQ3SubdivisionStyleData *

kQ3StyleTypeOrientation TQ3OrientationStyle *

kQ3StyleTypePickParts TQ3PickParts *

kQ3StyleTypeAntiAlias TQ3AntiAliasStyleData

C H A P T E R 1 1

Renderer Objects

804 Renderer Methods

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

publicData A pointer the public data structure associated with an attribute object.
You may retain a copy of the pointer passed to you and use it to access
the state. The state remains valid until either another update on this
attribute type is made at this depth or a pop action occurs. A push
action does not invalidate the pointer.

DESCRIPTION

The method type kQ3XMethodTypeRendererUpdateAttributeMetaHandler returns a
function pointer of type TQ3XRendererUpdateAttributeMetaHandlerMethod. This
function enables an attribute of type attributeType and returns methods of type
TQ3XRendererUpdateAttributeMethod.

The types of the data structures pointed to by publicData corresponds to the
attribute types shown in the following table:

TQ3XRendererUpdateShaderMethod 11

#define kQ3XMethodTypeRendererUpdateShaderMetaHandler
Q3_METHOD_TYPE ('r','d','s','u')

typedef TQ3XFunctionPointer
(*TQ3XRendererUpdateShaderMetaHandlerMethod)(
TQ3ObjectType shaderType);

Attribute type Data structure type
kQ3AttributeTypeAmbientCoefficient float *

kQ3AttributeTypeDiffuseColor TQ3ColorRGB *

kQ3AttributeTypeNormal TQ3Vector3D *

kQ3AttributeTypeSpecularColor TQ3ColorRGB *

kQ3AttributeTypeSpecularControl float *

kQ3AttributeTypeTransparencyColor TQ3ColorRGB *

kQ3AttributeTypeSurfaceShader TQ3ShaderObject *

C H A P T E R 1 1

Renderer Objects

Renderer Methods 805

typedef TQ3Status (*TQ3XRendererUpdateShaderMethod)(
TQ3ViewObject view,
void *rendererPrivate,
TQ3ShaderObject *shaderObject);

shaderType A shader object type (see “Q3Shader_GetType,” beginning on
page 929).

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

shaderObject A shader object. A shaderObject pointer is never NULL. The pointer
to it, *shaderObject, may be NULL; this value disables that particular
type of shader. Generally, a renderer should retain a reference obtained
from Q3Shared_GetReference to a non-NULL *shaderObject pointer
and use it to shade any subsequently rendered objects.

DESCRIPTION

The method type kQ3XMethodTypeRendererUpdateShaderMetaHandler returns a
function pointer of type TQ3XRendererUpdateShaderMetaHandlerMethod. This
function enables a shader of type shaderType and returns methods of type
TQ3XRendererUpdateShaderMethod.

▲ W AR N I N G

The surface shader state may be overridden by a non-NULL
surface shader attribute state. Do not depend on these states being
updated in any particular order. ▲

TQ3XRendererUpdateMatrixMethod 11

#define kQ3XMethodTypeRendererUpdateMatrixMetaHandler
Q3_METHOD_TYPE ('r','d','x','u')

typedef TQ3XMetaHandler TQ3XRendererUpdateMatrixMetaHandlerMethod;

C H A P T E R 1 1

Renderer Objects

806 Renderer Methods

typedef TQ3Status (*TQ3XRendererUpdateMatrixMethod) (
TQ3ViewObject view,
void *rendererPrivate,
const TQ3Matrix4x4 *matrix);

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

matrix A pointer to a matrix.

DESCRIPTION

TQ3XRendererUpdateMatrixMetaHandlerMethod switches on the following types of
methods and returns methods of type TQ3XRendererUpdateMatrixMethod:

#define kQ3XMethodTypeRendererUpdateMatrixLocalToWorld
Q3_METHOD_TYPE ('u','l','w','x')

#define kQ3XMethodTypeRendererUpdateMatrixLocalToWorldInverse
Q3_METHOD_TYPE ('u','l','w','i')

#define kQ3XMethodTypeRendererUpdateMatrixLocalToWorldInverseTranspose
Q3_METHOD_TYPE ('u','l','w','t')

#define kQ3XMethodTypeRendererUpdateMatrixLocalToCamera
Q3_METHOD_TYPE ('u','l','c','x')

#define kQ3XMethodTypeRendererUpdateMatrixLocalToFrustum
Q3_METHOD_TYPE ('u','l','f','x')

#define kQ3XMethodTypeRendererUpdateMatrixWorldToFrustum
Q3_METHOD_TYPE ('u','w','f','x')

IMPORTANT

Matrix update methods are called in the order shown in the
foregoing list. ▲

C H A P T E R 1 1

Renderer Objects

Renderer Methods 807

Drawing State Methods 11

This section describes renderer support methods for the drawing state in a
view.

TQ3XRendererStartFrameMethod 11

The TQ3XRendererStartFrameMethod functionality is required in a renderer.

#define kQ3XMethodTypeRendererStartFrame
Q3_METHOD_TYPE('r','d','c','l')

typedef TQ3Status (*TQ3XRendererStartFrameMethod)(
TQ3ViewObject view,
void *rendererPrivate,
TQ3DrawContextObject drawContext);

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

drawContext A draw context object.

DESCRIPTION

The kQ3XMethodTypeRendererStartFrame method type returns a function pointer
of type TQ3XRendererStartFrameMethod.

TQ3XRendererStartFrameMethod is first called from Q3View_StartRendering. It
should perform these tasks:

■ initialize any renderer states to their default values

■ extract all useful data from the drawContext object

■ if the renderer passed in kQ3RendererFlagClearBuffer at registration, it
should also clear the draw context.

■ clear the drawContext object

C H A P T E R 1 1

Renderer Objects

808 Renderer Methods

When clearing the drawContext object, the renderer may opt to use any one of
these procedures:

■ not clear anything (for example, if it already touches every pixel)

■ clear with its own routine, or

■ use the draw context default clear method by calling Q3DrawContext_Clear.
Q3DrawContext_Clear takes advantage of any hardware in the system that is
available for clearing the drawing context.

TQ3XRendererStartFrameMethod also signals the beginning of receiving default
submit commands from the view. The renderer will receive updates for the
default view state via its update methods before StartScene is called. Renderer
submit and update methods are discussed on page 792.

TQ3XRendererStartPassMethod 11

The TQ3XRendererStartPassMethod functionality is required in a renderer.

#define kQ3XMethodTypeRendererStartPass
Q3_METHOD_TYPE('r','d','s','t')

typedef TQ3Status (*TQ3XRendererStartPassMethod)(
TQ3ViewObject view,
void *rendererPrivate,
TQ3CameraObject camera,
TQ3GroupObject lightGroup);

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

camera A camera object.

lightGroup A light group object.

C H A P T E R 1 1

Renderer Objects

Renderer Methods 809

DESCRIPTION

The kQ3XMethodTypeRendererStartPass method type returns a function pointer
of type TQ3XRendererStartPassMethod.

TQ3XRendererStartPassMethod is called during Q3View_StartRendering after the
StartFrame command. It should perform these tasks:

■ collect camera and light information

■ prepare any additional states before object submit calls are made

If the renderer supports deferred camera transformation, camera represents the
main camera that will be submitted somewhere in the hierarchy. Its value is
never NULL. If your renderer does not support deferred camera transformation,
camera represents the transformed camera.

If the renderer supports deferred light transformation, the value of lightGroup
will be NULL and it will be submitted to your light draw methods instead.

Calling TQ3XRendererStartPassMethod signals the end of the default update state
and the start of submit commands from the user to the view.

TQ3XRendererFlushFrameMethod 11

The TQ3XRendererFlushFrameMethod functionality is optional and is implemented
only by asynchronous renderers.

#define kQ3XMethodTypeRendererFlushFrame
Q3_METHOD_TYPE('r','d','f','l')

typedef TQ3Status (*TQ3XRendererFlushFrameMethod)(
TQ3ViewObject view,
void *rendererPrivate,
TQ3DrawContextObject drawContext);

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

C H A P T E R 1 1

Renderer Objects

810 Renderer Methods

drawContext A draw context object.

DESCRIPTION

The kQ3XMethodTypeRendererFlushFrame method type returns a function pointer
of type TQ3XRendererFlushFrameMethod.

TQ3XRendererFlushFrameMethod is called between the StartScene and EndScene
methods. It is called when the user wishes to flush any asynchronous drawing
tasks that draw to the drawContext object, but does not want to block
asynchronous drawing altogether. As a result, an image should eventually
appear asynchronously. In asynchronous rendering, this call is non-blocking.

An interactive renderer should ensure that all received geometries are drawn in
the image. If it controls the hardware, it should force the hardware to generate
an image.

A deferred renderer should exhibit similar behavior, though this is not a
requirement. A deferred renderer should spawn a process that generates a
partial image from the currently accumulated drawing state.

Implementing TQ3XRendererFlushFrameMethod is not recommended for
computation-intensive renderers such as ray-tracers.

TQ3XRendererEndPassMethod 11

The TQ3XRendererEndPassMethod functionality is required in a renderer.

#define kQ3XMethodTypeRendererEndPass
Q3_METHOD_TYPE('r','d','e','d')

typedef TQ3ViewStatus (*TQ3XRendererEndPassMethod)(
TQ3ViewObject view,
void *rendererPrivate);

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

C H A P T E R 1 1

Renderer Objects

Renderer Methods 811

DESCRIPTION

The kQ3XMethodTypeRendererEndPass method type returns a function pointer of
type TQ3XRendererEndPassMethod.

TQ3XRendererEndPassMethod is called at Q3View_EndRendering and signals the end
of sending submit commands to the view. If the renderer requires another pass
on the data being rendered, it should return kQ3ViewStatusRetraverse.

If rendering was cancelled, TQ3XRendererEndPassMethod will not be called and
the view will return kQ3ViewStatusCancelled. Otherwise, your renderer should
initiate completion of the process of generating the image in the drawing
context. If it has buffered any drawing data, the data must be flushed.
TQ3XRendererEndPassMethod should have an effect similar to that of FlushFrame.

A synchronous renderer must update the front buffer; otherwise DrawContext
will update the front buffer after returning. If a synchronous renderer supports
kQ3RendererClassSupportDoubleBuffer, it must finish rendering the entire frame.

An asynchronous renderer must spawn a rendering thread for the entire frame.
If it supports kQ3RendererClassSupportDoubleBuffer, it must eventually either
update the front buffer asynchronously, then call Q3View_EndFrame, or update the
back buffer asynchronously, then call Q3View_EndFrame.

If an error occurs with TQ3XRendererEndPassMethod, the renderer should call
Q3Error_Post and return kQ3ViewStatusError.

TQ3XRendererEndFrameMethod 11

The TQ3XRendererEndFrameMethod functionality is optional and is implemented
only by asynchronous renderers.

#define kQ3XMethodTypeRendererEndFrame
Q3_METHOD_TYPE('r','d','s','y')

typedef TQ3Status (*TQ3XRendererEndFrameMethod)(
TQ3ViewObject view,
void *rendererPrivate,
TQ3DrawContextObject drawContext);

view The current view being rendered to.

C H A P T E R 1 1

Renderer Objects

812 Renderer Methods

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

drawContext A draw context object.

DESCRIPTION

The kQ3XMethodTypeRendererEndFrame method type returns a function pointer of
type TQ3XRendererEndFrameMethod.

TQ3XRendererEndFrameMethod is called from Q3View_Sync, which is called after
Q3View_EndRendering. It signals that the user wishes to see the completed image
and is willing to block drawing. No call to Q3View_EndFrame is needed.

If your renderer supports kQ3RendererFlagDoubleBuffer, it must update the front
buffer completely; otherwise it must update the back buffer completely.

TQ3XRendererEndFrameMethod is equivalent in functionality to FlushFrame, but it
blocks drawing until the image is completed.

If TQ3XRendererEndFrameMethod is not supplied, the default action is no
operation.

Note
Registering a method of type TQ3XRendererEndFrameMethod
indicates that your renderer will continue rendering after
Q3View_EndRendering has been called. ◆

TQ3XRendererCancelMethod 11

The TQ3XRendererEndPassMethod functionality is required in a renderer.

#define kQ3XMethodTypeRendererCancel
Q3_METHOD_TYPE('r','d','a','b')

typedef void (*TQ3XRendererCancelMethod)(
TQ3ViewObject view,
void *rendererPrivate);

C H A P T E R 1 1

Renderer Objects

Renderer Methods 813

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

DESCRIPTION

The kQ3XMethodTypeRendererCancel method type returns a function pointer of
type TQ3XRendererCancelMethod.

TQ3XRendererCancelMethod is called after Q3View_StartRendering and signals the
termination of all rendering operations. Your renderer should clean up any
cached data and cancel all rendering operations.

IMPORTANT

If TQ3XRendererCancelMethod is called before
Q3View_EndRendering, TQ3XRendererEndPassMethod is not
called. ▲

If TQ3XRendererCancelMethod is called after Q3View_EndRendering, your renderer
should kill any rendering threads and terminate any further rendering. If your
renderer is asynchronous, TQ3XRendererCancelMethod will never be called after
Q3View_EndRendering.

Push and Pop Methods 11

You can call renderer push and pop methods whenever the graphics state in the
view needs to be pushed or popped. Code may isolate the state by submitting a
display group that pushes and pops or by making calls such as the following:

Q3Attribute_Submit(kQ3AttributeTypeDiffuseColor, &red, view);
Q3Attribute_Submit(kQ3AttributeTypeTransparencyColor, &blue, view);
Q3Attribute_Submit(kQ3AttributeTypeSpecularColor, &white, view);
Q3Box_Submit(&unitBox, view);
Q3TranslateTransform_Submit(&unitVector, view);
Q3Push_Submit(view);
Q3Attribute_Submit(kQ3AttributeTypeDiffuseColor, &blue, view);
Q3Attribute_Submit(kQ3AttributeTypeTransparencyColor, &green, view);
Q3Box_Submit(&unitBox, view);

C H A P T E R 1 1

Renderer Objects

814 Renderer Methods

Q3Pop_Submit(view);
Q3TranslateTransform_Submit(&unitVector, view);
Q3Box_Submit(&unitBox, view);

Even though you support RendererPush and RendererPop in your renderer, you
must also maintain your drawing state as a stack. Your code will not
automatically be updated with the popped state after RendererPop is called. If
you do not support push and pop functionality in your renderer, you may
maintain a single copy of the drawing state. Your code will be updated with
changed fields after the view stack is popped.

A renderer that supports RendererPush and RendererPop will be called in the
following sequence, based on the previous example:

RendererUpdateAttributeDiffuseColor(...,&red)
RendererUpdateAttributeTransparencyColor(...,&blue)
RendererUpdateAttributeSpecularColor(...,&white)
RendererUpdateMatrixLocalToWorld(...)
RendererSubmitGeometryBox(...)
RendererPush(...)
RendererUpdateAttributeDiffuseColor(...,&blue)
RendererUpdateAttributeTransparencyColor(...,&green)
RendererSubmitGeometryBox(...)
RendererPop(...)
RendererUpdateMatrixLocalToWorld(...)
RendererSubmitGeometryBox(...)

A renderer that does not support RendererPush and RendererPop will be called in
the following sequence:

RendererUpdateAttributeDiffuseColor(...,&red)
RendererUpdateAttributeTransparencyColor(...,&blue)
RendererUpdateAttributeSpecularColor(...,&white)
RendererUpdateMatrixLocalToWorld(...)
RendererSubmitGeometryBox(...)
RendererUpdateAttributeDiffuseColor(...,&blue)
RendererUpdateAttributeTransparencyColor(...,&green)
RendererSubmitGeometryBox(...)
RendererUpdateAttributeDiffuseColor(...,&red)
RendererUpdateAttributeTransparencyColor(...,&blue)
RendererUpdateMatrixLocalToWorld(...)
RendererSubmitGeometryBox(...)

C H A P T E R 1 1

Renderer Objects

Renderer Methods 815

Note
In both cases, update calls may be in a different order, as
explained in “Renderer Methods,” beginning on
page 792. ◆

TQ3XRendererPushMethod 11

#define kQ3XMethodTypeRendererPush
Q3_METHOD_TYPE('r','d','p','s')

typedef TQ3Status (*TQ3XRendererPushMethod)(
TQ3ViewObject view,
void *rendererPrivate);

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

DESCRIPTION

The kQ3XMethodTypeRendererPush method type returns a function pointer of type
TQ3XRendererPushMethod.

TQ3XRendererPopMethod 11

#define kQ3XMethodTypeRendererPop
Q3_METHOD_TYPE('r','d','p','o')

typedef TQ3Status (*TQ3XRendererPopMethod)(
TQ3ViewObject view,
void *rendererPrivate);

view The current view being rendered to.

C H A P T E R 1 1

Renderer Objects

816 Renderer Methods

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

DESCRIPTION

The kQ3XMethodTypeRendererPop method type returns a function pointer of type
TQ3XRendererPopMethod.

Renderer Cull Method 11

This section describes TQ3XRendererIsBoundingBoxVisibleMethod, a renderer
support method used to cull group and geometric objects.

TQ3XRendererIsBoundingBoxVisibleMethod 11

#define kQ3XMethodTypeRendererIsBoundingBoxVisible
Q3_METHOD_TYPE('r','d','b','x')

typedef TQ3Boolean (*TQ3XRendererIsBoundingBoxVisibleMethod)(
TQ3ViewObject view,
void *rendererPrivate,
const TQ3BoundingBox *bBox);

view The current view being rendered to.

rendererPrivate
A pointer to structure of size instanceSize, passed into
Q3ObjectHierarchy_RegisterClass, and initialized in your
kQ3MethodTypeObjectNew method.

bBox A bounding box.

DESCRIPTION

The kQ3XMethodTypeRendererIsBoundingBoxVisible method type returns a
function pointer of type TQ3XRendererIsBoundingBoxVisibleMethod.

C H A P T E R 1 1

Renderer Objects

Draw Region Interface 817

This renderer support method is called to cull complex groups and geometries
by passing their bounding box in local space. It should transform the
local-space bounding box coordinates to frustum space and return a value of
type TQ3Boolean indicating whether or not the box appears within the viewing
frustum. If no method is supplied, the default behavior is to return kQ3True.

Draw Region Interface 11

The draw region interface lets renderers access the QuickDraw 3D frame buffer
and communicate information about the configuration and state of the drawing
context. Renderers are required to use some portions of the draw region
interface. Other portions may or may not be required, depending on the nature
of the renderer, as specified below.

Because of the complexity inherent in dealing with frame buffers and other
rendering targets, you are encouraged to examine the Apple Sample Renderer
(SR) provided on the QD3D 1.5 Software Developers Kit (SDK). It helps explain
the functionality described here and illustrates how to use it.

Obtaining a DrawRegion 11

Draw regions are attached to the draw context by QuickDraw 3D. Typically,
there will be one draw region per monitor attached to a machine. A draw region
is an opaque structure:

typedef struct TQ3XDrawRegionPrivate *TQ3XDrawRegion;

You can use the Q3XDrawContext_GetDrawRegion routine to get the first draw
region attached to a draw context. If there are additional draw regions, the rest
of them can be obtained by repeated calls to Q3XDrawRegion_GetNextRegion. Your
Q3XDrawRegion_GetNextRegion call will return NULL after the last draw region has
been retrieved.

C H A P T E R 1 1

Renderer Objects

818 Draw Region Interface

Q3XDrawContext_GetDrawRegion 11

The Q3XDrawContext_GetDrawRegion function lets you obtain the first draw
region attached to a draw context.

TQ3Status Q3XDrawContext_GetDrawRegion(
TQ3DrawContextObject drawContext,
TQ3XDrawRegion *drawRegion);

drawContext A draw context.

drawRegion On return, the first draw region attached to drawContext.

DESCRIPTION

The Q3XDrawContext_GetDrawRegion function returns, in the drawRegion
parameter, the first draw region attached to the draw context designated by the
drawContext parameter.

Q3XDrawRegion_GetNextRegion 11

The Q3XDrawRegion_GetNextRegion function returns additional draw regions
attached to a draw context.

TQ3Status Q3XDrawRegion_GetNextRegion(
TQ3XDrawRegion drawRegion,
TQ3XDrawRegion *nextDrawRegion);

drawRegion The draw region returned by Q3XDrawContext_GetDrawRegion.

nextDrawRegion
An additional draw region attached to the same draw context,
or NULL if there are no more.

DESCRIPTION

The Q3XDrawRegion_GetNextRegion function returns, in the nextDrawRegion
parameter, a draw region attached to the same draw context as drawRegion. It
returns NULL after it has returned all the draw regions for that draw context.

C H A P T E R 1 1

Renderer Objects

Draw Region Interface 819

Draw Region Validation 11

The state of all draw regions attached to a draw context are validated by the
draw context and draw region internal code before a frame is rendered.
However, renderers may wish to modify their own state—for example, to alter
cached information. To support such modifications, QuickDraw 3D supplies
renderers with information about what has changed in the draw region via the
Q3XDrawContext_GetValidationFlags routine.

The following mask values let you determine which draw region states have
changed since the last frame. Call the Q3XDrawContext_ClearValidationFlags
routine afterward to clear the flag information.

typedef enum TQ3XDrawContextValidationMasks {
kQ3XDrawContextValidationClearFlags = 0x00000000L,
kQ3XDrawContextValidationDoubleBuffer = 1 << 0,
kQ3XDrawContextValidationShader = 1 << 1,
kQ3XDrawContextValidationClearFunction = 1 << 2,
kQ3XDrawContextValidationActiveBuffer = 1 << 3,
kQ3XDrawContextValidationInternalOffScreen = 1 << 4,
kQ3XDrawContextValidationPane = 1 << 5,
kQ3XDrawContextValidationMask = 1 << 6,
kQ3XDrawContextValidationDevice = 1 << 7,
kQ3XDrawContextValidationWindow = 1 << 8,
kQ3XDrawContextValidationWindowSize = 1 << 9,
kQ3XDrawContextValidationWindowClip = 1 << 10,
kQ3XDrawContextValidationWindowPosition = 1 << 11,
kQ3XDrawContextValidationPlatformAttributes = 1 << 12,
kQ3XDrawContextValidationForegroundShader = 1 << 13,
kQ3XDrawContextValidationBackgroundShader = 1 << 14,
kQ3XDrawContextValidationColorPalette = 1 << 15,
kQ3XDrawContextValidationAll = ~0

} TQ3XDrawContextValidationMasks;

typedef unsigned long TQ3XDrawContextValidation;

C H A P T E R 1 1

Renderer Objects

820 Draw Region Interface

Q3XDrawContext_GetValidationFlags 11

The Q3XDrawContext_GetValidationFlags function lets you determine which
draw context states have changed since the last frame.

typedef unsigned long TQ3XDrawContextValidation;

TQ3Status Q3XDrawContext_GetValidationFlags(
TQ3DrawContextObject drawContext,
TQ3XDrawContextValidation *validationFlags);

drawContext A draw context.

validationFlags
Validation flags from the TQ3XDrawContextValidationMasks
enumeration.

DESCRIPTION

The Q3XDrawContext_GetValidationFlags function returns, in the
validationFlags parameter, flags indicating which states of the drawContext
draw context have changed since the last frame.

Q3XDrawContext_ClearValidationFlags 11

Once your renderer has updated the current draw context state, it should call
the Q3XDrawContext_ClearValidationFlags routine to clear the validation flags.
Otherwise flags may remain set during the next frame when the state has not
changed.

TQ3Status Q3XDrawContext_ClearValidationFlags(
TQ3DrawContextObject drawContext);

drawContext A draw context.

C H A P T E R 1 1

Renderer Objects

Draw Region Interface 821

DESCRIPTION

The Q3XDrawContext_ClearValidationFlags function clears all the validation
flags returned by Q3XDrawContext_GetValidationFlags.

Draw Region Services 11

The draw region can perform, at the direction of the renderer, two optional
services: it can clear the rendering target (e.g., a window) and it can lock the
target’s DDSurface draw context type in a Windows environment.

These two services are described by the following enumeration:

typedef enum TQ3XDrawRegionServicesMasks {
kQ3XDrawRegionServicesNoneFlag = 0L,
kQ3XDrawRegionServicesClearFlag = 1 << 0,
kQ3XDrawRegionServicesDontLockDDSurfaceFlag = 1 << 1

} TQ3XDrawRegionServicesMasks;

typedef unsigned long TQ3XDrawRegionServices;

The renderer controls which of these services are used by passing a value in
Q3XDrawRegion_Start (page 823) or Q3XDrawRegion_StartAccessToImageBuffer
(page 823).

Note
If a draw context must be cleared before each frame, either
the draw region or the renderer must be directed to do the
clearing. The same applies to locking the DDSurface when
using that particular Windows draw context type. ◆

Starting and Ending Draw Regions 11

Generally, there is one draw region per monitor. At any particular time,
however, a window associated with a draw context may not appear in the
active monitor. Thus one or more draw regions may be inactive at a given time
and should be explicitly ignored by the renderer. You can use the
Q3XDrawRegion_IsActive function to determine if a given draw region is
currently active.

C H A P T E R 1 1

Renderer Objects

822 Draw Region Interface

For active draw regions, one of two calls must be made before rendering into
the draw region, regardless of how much draw region functionality is required:
Q3XDrawRegion_Start or Q3XDrawRegion_StartAccessToImageBuffer.

You can use the Q3XDrawRegion_Start function if double-buffering and image
access services are not needed; it just returns a pointer to the draw region
descriptor TQ3XDrawRegionDescriptor (page 825). However, the function
described below is more useful for most plug-in renderers.

The Q3XDrawRegion_StartAccessToImageBuffer function provides image access
and double-buffering services for your renderer. Besides returning a pointer to
the draw region descriptor, it also returns a pointer to the raster image into
which rendering occurs. For single-buffering, this is a pointer to video memory;
for double buffering, it is a pointer to a system-allocated back buffer. The
double-buffering process is handled by the draw region. Most plug-in renderers
must use the Q3XDrawRegion_StartAccessToImageBuffer function instead of
Q3XDrawRegion_Start.

Once a renderer is done with a draw region, it must call the Q3XDrawRegion_End
function.

Q3XDrawRegion_IsActive 11

The Q3XDrawRegion_IsActive function lets you determine whether a draw region
is active or inactive. If it is inactive, the renderer may ignore it.

TQ3Status Q3XDrawRegion_IsActive(
TQ3XDrawRegion drawRegion,
TQ3Boolean *isActive);

drawRegion A draw region.

isActive Returns kQ3True if the draw region is active; kQ3False otherwise.

DESCRIPTION

The Q3XDrawRegion_IsActive function returns, in the isActive parameter,
kQ3True if the draw region designated by drawRegion is active and kQ3False
otherwise.

C H A P T E R 1 1

Renderer Objects

Draw Region Interface 823

Q3XDrawRegion_Start 11

The Q3XDrawRegion_Start function returns a draw region descriptor to a
renderer that does not require double-buffering or image access.

TQ3Status Q3XDrawRegion_Start(
TQ3XDrawRegion drawRegion,
TQ3XDrawRegionServices services,
TQ3XDrawRegionDescriptor **descriptor);

drawRegion A draw region.

services Draw region services requested (see page 821).

descriptor On return, a draw region descriptor (see page 825).

DESCRIPTION

The Q3XDrawRegion_Start function returns, in the descriptor parameter, a
pointer to a draw region descriptor for the draw region designated by
drawRegion.

The Q3XDrawRegion_Start function may be called if double-buffering and image
access services are not needed. The renderer must provide a valid value in the
services parameter, requesting if clearing or DDSurface locking is required (see
page 821).

This function is rarely used, because the renderer is then required to do all the
work of allocating, locating, clearing, and double buffering the image raster.
Most plug-in renderers use the Q3XDrawRegion_StartAccessToImageBuffer
function instead of Q3XDrawRegion_Start.

Q3XDrawRegion_StartAccessToImageBuffer 11

The Q3XDrawRegion_StartAccessToImageBuffer function provides image access
and double-buffering services for a renderer. In addition to returning a pointer
to the draw region descriptor, it also returns a pointer to the raster image into
which rendering occurs is returned. In the case of single-buffering, this is a
pointer to the video memory; in the case of double-buffering, it is a pointer to a

C H A P T E R 1 1

Renderer Objects

824 Draw Region Interface

system-allocated back buffer. All double-buffering, etc., is now handled by the
draw region.

TQ3Status Q3XDrawRegion_StartAccessToImageBuffer(
TQ3XDrawRegion drawRegion,
TQ3XDrawRegionServices services,
TQ3XDrawRegionDescriptor **descriptor,
void **image);

drawRegion A draw region.

services Draw region services requested (see page 821).

descriptor On return, a draw region descriptor (see page 825).

image On return, a pointer to the target raster image.

DESCRIPTION

The Q3XDrawRegion_StartAccessToImageBuffer function returns a draw region
descriptor in the descriptor parameter and a pointer to the renderer’s target
raster in the image parameter, both for the draw region designated by
drawRegion.

SPECIAL CONSIDERATIONS

Most plug-in renderers use the Q3XDrawRegion_StartAccessToImageBuffer
function instead of Q3XDrawRegion_Start.

Q3XDrawRegion_End 11

A renderer must call the Q3XDrawRegion_End function when it has finished with a
draw region.

TQ3Status Q3XDrawRegion_End(
TQ3XDrawRegion drawRegion);

drawRegion A draw region.

C H A P T E R 1 1

Renderer Objects

Draw Region Interface 825

DESCRIPTION

After rendering, the Q3XDrawRegion_End function performs internal clean-up and
memory release for the draw region designated by drawRegion.

Draw Region Descriptor 11

The TQ3XDrawRegionDescriptor data structure describes the raster into which a
renderer draws. This data structure contains dimensions, pixel size, and format
information.

You can get a pointer to the TQ3XDrawRegionDescriptor data structure by calling
Q3XDrawRegion_Start (page 823) or Q3XDrawRegion_StartAccessToImageBuffer
(page 823).

typedef struct TQ3XDrawRegionDescriptor {
unsigned long width;
unsigned long height;
unsigned long rowBytes;
unsigned long pixelSize;
TQ3XDevicePixelType pixelType;
TQ3XColorDescriptor colorDescriptor;
TQ3Endian bitOrder;
TQ3Endian byteOrder;
TQ3Bitmap *clipMask;

} TQ3XDrawRegionDescriptor;

Field descriptions
width, height Width and height, in pixels, of the area rendered into.
rowBytes The raster may be embedded in a larger area of memory, so

its scan lines may not be contiguous in memory. This field
gives the number of bytes to the next row (scan line).

pixelSize The number of bytes in each pixel.
pixelType The formatting type of the pixel; see “Device Pixel Types”

(page 826).
colorDescriptor Currently not used.
bitOrder, byteOrder

Endianess; may be kQ3EndianBig or kQ3EndianLittle.
clipMask The clip mask for the region; may be NULL.

C H A P T E R 1 1

Renderer Objects

826 Draw Region Interface

Device Pixel Types 11

Pixels described in the TQ3XDrawRegionDescriptor data structure may be any of
several types, as described in the following enumeration. Not all pixel types are
supported on all devices.

typedef enum TQ3XDevicePixelType {
kQ3XDevicePixelTypeInvalid = 0,
kQ3XDevicePixelTypeRGB32 = 1,
kQ3XDevicePixelTypeARGB32 = 2,
kQ3XDevicePixelTypeRGB24 = 3,
kQ3XDevicePixelTypeRGB16 = 4,
kQ3XDevicePixelTypeARGB16 = 5,
kQ3XDevicePixelTypeRGB16_565 = 6,
kQ3XDevicePixelTypeIndexed8 = 7,
kQ3XDevicePixelTypeIndexed4 = 8,
kQ3XDevicePixelTypeIndexed2 = 9,
kQ3XDevicePixelTypeIndexed1 = 10

} TQ3XDevicePixelType;

Color Descriptor 11

Draw regions store color information in a color descriptor:

typedef struct TQ3XColorDescriptor {
unsigned long redShift;
unsigned long redMask;
unsigned long greenShift;
unsigned long greenMask;
unsigned long blueShift;
unsigned long blueMask;
unsigned long alphaShift;
unsigned long alphaMask;

} TQ3XColorDescriptor;

Clipping Information 11

Draw regions contain information about the clipping state. A region may be in
one of three states, encoded by the following enumeration:

C H A P T E R 1 1

Renderer Objects

Draw Region Interface 827

typedef enum TQ3XClipMaskState {
kQ3XClipMaskFullyExposed,
kQ3XClipMaskPartiallyExposed,
kQ3XClipMaskNotExposed

} TQ3XClipMaskState;

A fully exposed draw region has no overlapping windows; a partially exposed
draw region has some overlapping windows; a not exposed draw region is
entirely offscreen or completely covered by another window. You can determine
the clipping state with the Q3XDrawRegion_GetClipFlags function.

If the clipping state is kQ3XClipMaskPartiallyExposed, you can use the
Q3XDrawRegion_GetClipMask function to query the draw region for a bitmap that
describes the clipping of the window. In the Mac OS environment, you can also
use the Q3XDrawRegion_GetClipRegion routine to get information about clipping
in the form of a handle to a QuickDraw region (a rgnHandle), or you can use the
Q3XDrawRegion_GetGDHandle routine to return a GDHandle.

Q3XDrawRegion_GetClipFlags 11

The Q3XDrawRegion_GetClipFlags function lets you get the clipping state of a
draw region.

TQ3Status Q3XDrawRegion_GetClipFlags(
TQ3XDrawRegion drawRegion,
TQ3XClipMaskState *clipMaskState);

drawRegion A draw region.

clipMaskState
The draw region’s clipping mask state.

DESCRIPTION

The Q3XDrawRegion_GetClipFlags function returns, in the clipMaskState
parameter, one of three values that define the draw region’s clipping mask state.
The TQ3XClipMaskState values that can be returned are enumerated on page 827.

C H A P T E R 1 1

Renderer Objects

828 Draw Region Interface

Q3XDrawRegion_GetClipMask 11

The Q3XDrawRegion_GetClipMask function lets you get a bitmap that describes the
clipping state of a partially exposed draw region.

TQ3Status Q3XDrawRegion_GetClipMask(
TQ3XDrawRegion drawRegion,
TQ3Bitmap **clipMask);

drawRegion A draw region.

clipMask A bitmap that describes the clipping of the draw region’s
window.

DESCRIPTION

The Q3XDrawRegion_GetClipMask function returns, in the clipMask parameter, a
bitmap that describes the clipping of the window for the partially exposed draw
region drawRegion. In this bitmap, 1 bits indicate exposed pixels and 0 bits
indicate occluded pixels.

On a Macintosh, additional window-system-specific information about clipping
is available, in the form of a RgnHandle describing the clip region, or a GDHandle:

Q3XDrawRegion_GetClipRegion 11

The Q3XDrawRegion_GetClipRegion function lets you obtain a Mac OS RgnHandle
value that describes the clip region of a partially exposed draw region.

TQ3Status Q3XDrawRegion_GetClipRegion(
TQ3XDrawRegion drawRegion,
RgnHandle *rgnHandle);

drawRegion A draw region.

rgnHandle A handle to a QuickDraw region.

C H A P T E R 1 1

Renderer Objects

Draw Region Interface 829

DESCRIPTION

The Q3XDrawRegion_GetClipRegion function returns, in the rgnHandle parameter,
a handle to a QuickDraw region that describes the clipping of the window for
the partially exposed draw region drawRegion.

Q3XDrawRegion_GetGDHandle 11

The Q3XDrawRegion_GetGDHandle function lets you obtain a Mac OS GDHandle
value that describes the clip region of a partially exposed draw region.

TQ3Status Q3XDrawRegion_GetGDHandle(
TQ3XDrawRegion drawRegion,
GDHandle *gdHandle);

drawRegion A draw region.

gdHandle A handle to a gDevice record.

DESCRIPTION

The Q3XDrawRegion_GetGDHandle function returns, in the gdHandle parameter, a
handle to a gDevice record that describes the clipping of the window for the
partially exposed draw region drawRegion. For further information about
gDevice records, see Inside Macintosh: QuickDraw Objects.

Draw Region Location and Dimensions 11

QuickDraw 3D provides several routines to support renderers that are handling
much of the draw region work themselves. They return the X-axis and Y-axis
values of various sizes and offsets of the raster.

▲ W AR N I N G

Putting functionality at this level of detail in a renderer is
strongly discouraged. ▲

C H A P T E R 1 1

Renderer Objects

830 Draw Region Interface

Q3XDrawRegion_GetDeviceScaleX 11

For a draw region, the Q3XDrawRegion_GetDeviceScaleX function lets you get the
X-dimension size of the visible (onscreen) portion of the unclipped window.

TQ3Status Q3XDrawRegion_GetDeviceScaleX(
TQ3XDrawRegion drawRegion,
float *deviceScaleX);

drawRegion A draw region.

deviceScaleX The X-axis window size for the draw region.

DESCRIPTION

The Q3XDrawRegion_GetDeviceScaleX function returns, in the deviceScaleX
parameter, the X-axis onscreen window dimension, ignoring clipping and
occlusion, for the draw region designated by drawRegion.

Q3XDrawRegion_GetDeviceScaleY 11

For a draw region, the Q3XDrawRegion_GetDeviceScaleY function lets you get the
Y-dimension size of the visible (onscreen) portion of the unclipped window.

TQ3Status Q3XDrawRegion_GetDeviceScaleY(
TQ3XDrawRegion drawRegion,
float *deviceScaleY);

drawRegion A draw region.

deviceScaleY The Y-axis window size for the draw region.

DESCRIPTION

The Q3XDrawRegion_GetDeviceScaleY function returns, in the deviceScaleY
parameter, the Y-axis onscreen window dimension, ignoring clipping and
occlusion, for the draw region designated by drawRegion.

C H A P T E R 1 1

Renderer Objects

Draw Region Interface 831

Q3XDrawRegion_GetDeviceOffsetX 11

The Q3XDrawRegion_GetDeviceOffsetX function lets you get the X-axis window
offset, relative to the monitor, for a draw region.

TQ3Status Q3XDrawRegion_GetDeviceOffsetX(
TQ3XDrawRegion drawRegion,
float *deviceOffsetX);

drawRegion A draw region.

deviceOffsetX
The X-axis window offset for the draw region.

DESCRIPTION

The Q3XDrawRegion_GetDeviceOffsetX function returns, in the deviceOffsetX
parameter, the X-axis offset between the window and the monitor origin (upper
left corner) for the draw region designated by drawRegion. With single buffering
this value is the actual offset; with double buffering it is always 0.

Q3XDrawRegion_GetDeviceOffsetY 11

The Q3XDrawRegion_GetDeviceOffsetY function lets you get the Y-axis window
offset, relative to the monitor, for a draw region.

TQ3Status Q3XDrawRegion_GetDeviceOffsetY(
TQ3XDrawRegion drawRegion,
float *deviceOffsetY);

drawRegion A draw region.

deviceOffsetY
The Y-axis window offset for the draw region.

DESCRIPTION

The Q3XDrawRegion_GetDeviceOffsetY function returns, in the deviceOffsetY
parameter, the Y-axis offset between the window and the monitor origin (upper

C H A P T E R 1 1

Renderer Objects

832 Draw Region Interface

left corner) for the draw region designated by drawRegion. With single buffering
this value is the actual offset; with double buffering it is always 0.

Q3XDrawRegion_GetWindowScaleX 11

The Q3XDrawRegion_GetWindowScaleX function lets you get the X-axis window
dimension for a draw region.

TQ3Status Q3XDrawRegion_GetWindowScaleX(
TQ3XDrawRegion drawRegion,
float *windowScaleX);

drawRegion A draw region.

windowScaleX The X-axis window dimension for the draw region.

DESCRIPTION

The Q3XDrawRegion_GetWindowScaleX function returns, in the windowScaleX
parameter, the X-axis window dimension for the draw region designated by
drawRegion. This dimension is the same with both single and double buffering.

Q3XDrawRegion_GetWindowScaleY 11

The Q3XDrawRegion_GetWindowScaleY function lets you get the Y-axis window
dimension for a draw region.

TQ3Status Q3XDrawRegion_GetWindowScaleY(
TQ3XDrawRegion drawRegion,
float *windowScaleY);

drawRegion A draw region.

windowScaleY The Y-axis window dimension for the draw region.

C H A P T E R 1 1

Renderer Objects

Draw Region Interface 833

DESCRIPTION

The Q3XDrawRegion_GetWindowScaleY function returns, in the windowScaleY
parameter, the Y-axis window dimension for the draw region designated by
drawRegion. This dimension is the same with both single and double buffering.

Q3XDrawRegion_GetWindowOffsetX 11

The Q3XDrawRegion_GetWindowOffsetX function lets you get the absolute X-axis
window offset for a draw region.

TQ3Status Q3XDrawRegion_GetWindowOffsetX(
TQ3XDrawRegion drawRegion,
float *windowOffsetX);

drawRegion A draw region.

windowOffsetX
The X-axis window offset for the draw region.

DESCRIPTION

The Q3XDrawRegion_GetWindowOffsetX function returns, in the windowOffsetX
parameter, the X-axis absolute offset of the window for the draw region
designated by drawRegion. This value is the same with single and double
buffering.

Q3XDrawRegion_GetWindowOffsetY 11

The Q3XDrawRegion_GetWindowOffsetY function lets you get the absolute Y-axis
window offset for a draw region.

TQ3Status Q3XDrawRegion_GetWindowOffsetY(
TQ3XDrawRegion drawRegion,
float *windowOffsetY);

drawRegion A draw region.

C H A P T E R 1 1

Renderer Objects

834 Draw Region Interface

windowOffsetY
The Y-axis window offset for the draw region.

DESCRIPTION

The Q3XDrawRegion_GetWindowOffsetY function returns, in the windowOffsetY
parameter, the Y-axis absolute offset of the window for the draw region
designated by drawRegion. This value is the same with single and double
buffering.

Q3XDrawRegion_GetDeviceTransform 11

The Q3XDrawRegion_GetDeviceTransform function lets you get the device
transform for a draw region.

TQ3Status Q3XDrawRegion_GetDeviceTransform(
TQ3XDrawRegion drawRegion,
TQ3Matrix4x4 **deviceTransform);

drawRegion A draw region.

deviceTransform
The device transform for the draw region.

DESCRIPTION

The Q3XDrawRegion_GetDeviceTransform function returns, in the deviceTransform
parameter, the device transform for the draw region designated by drawRegion.

Renderer-Private Data in Draw Regions 11

A renderer may attach private data to a draw region; for example, a Z-buffer
renderer can attach its Z buffer to the draw region instead of maintaining it
elsewhere.

To attach data, the renderer uses the Q3XDrawRegion_SetRendererPrivate
function. It must provide an opaque pointer to the data (or data structure), as
well as provide a method to be used by the draw region to dispose of the data;

C H A P T E R 1 1

Renderer Objects

Draw Region Interface 835

this function is called when the draw region is itself disposed. Thus the
renderer is responsible for providing the callback so that the attached data will
properly be disposed of.

To retrieve data previously attached to a draw region, a renderer can use the
Q3XDrawRegion_GetRendererPrivate function. Note that this merely returns the
pointer provided in the Q3XDrawRegion_SetRendererPrivate call; it does not
remove the need for a disposal callback.

Q3XDrawRegion_SetRendererPrivate 11

The Q3XDrawRegion_SetRendererPrivate function attaches renderer-private data
to a draw region.

typedef void (*TQ3XDrawRegionRendererPrivateDeleteMethod)(
void *rendererPrivate);

TQ3Status Q3XDrawRegion_SetRendererPrivate(
TQ3XDrawRegion drawRegion,
const void *rendererPrivate,
TQ3XDrawRegionRendererPrivateDeleteMethod deleteMethod);

drawRegion A draw region.

rendererPrivate
Pointer to private data.

deleteMethod Private data disposal method.

DESCRIPTION

The Q3XDrawRegion_SetRendererPrivate function attaches the private data
pointed to by the rendererPrivate parameter to the draw region designated by
the drawRegion parameter. It also registers the data disposal method designated
by deleteMethod. The draw region will call this method to dispose of the private
data when it is itself disposed of.

C H A P T E R 1 1

Renderer Objects

836 Renderer Errors

Q3XDrawRegion_GetRendererPrivate 11

The Q3XDrawRegion_GetRendererPrivate functionality lets a renderer retrieve
private data that was previously attached to a draw region by using the
Q3XDrawRegion_SetRendererPrivate routine.

TQ3Status Q3XDrawRegion_GetRendererPrivate(
TQ3XDrawRegion drawRegion,
void **rendererPrivate);

drawRegion A draw region.

rendererPrivate
On return, a pointer to the private data attached to the draw
region designated by drawRegion.

DESCRIPTION

The Q3XDrawRegion_GetRendererPrivate function returns, in the rendererPrivate
parameter, the pointer to private data that was passed in a previous call to
Q3XDrawRegion_SetRendererPrivate.

Renderer Errors 11

Renderer routines may return the following errors. A list of general
QuickDraw 3D errors is given in “QuickDraw 3D Errors, Warnings, and
Notices” (page 87).

kQ3ErrorUnknownStudioType
kQ3ErrorAlreadyRendering
kQ3ErrorStartGroupRange
kQ3ErrorUnsupportedGeometryType
kQ3ErrorInvalidGeometryType
kQ3ErrorUnsupportedFunctionality
kQ3WarningFunctionalityNotSupported

About Draw Context Objects 837

C H A P T E R 1 2

Draw Context Objects 12Figure 12-0
Listing 12-0
Table 12-0

This chapter describes draw context objects (or draw contexts) and the
functions you can use to manipulate them. You use draw contexts to connect
your application to a specific drawing destination, such as a window system.
For example, to draw into a Mac OS window, you create an instance of a
Macintosh draw context object and attach it to a view.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects” earlier in this
book. For information about attaching a draw context to a view, see the chapter
“View Objects” in this book. You do not, however, need to know how to create
or manipulate views to read this chapter.

This chapter begins by describing draw contexts and their features. Then it
shows how to configure the settings of a draw context object. The section
“Draw Context Objects Reference,” beginning on page 843 provides a complete
description of draw context objects and the routines you can use to create and
manipulate them.

About Draw Context Objects 12

The QuickDraw 3D graphics library is able to direct its output—a rendered
image—into one or more destinations (hereafter called its drawing
destinations). For instance, you can use QuickDraw 3D to draw
three-dimensional images into a standard Mac OS window.To achieve this
cross-platform drawing capability, and thereby to insulate most of the
application programming interfaces from details of the underlying drawing
destination, QuickDraw 3D uses objects called draw context objects. A draw
context object (or, more briefly, a draw context) is a QuickDraw 3D object that
maintains information specific to a particular window system or drawing
destination.

C H A P T E R 1 2

Draw Context Objects

838 About Draw Context Objects

In general, QuickDraw 3D does not duplicate existing methods of creating,
handling user actions in, or manipulating drawing destinations. For example,
QuickDraw 3D does not provide any means of creating a Mac OS window,
handling events in the window, or modifying the size or location of the
window. A QuickDraw 3D draw context, which provides a link between your
application and the Mac OS window, simply contains the minimum amount of
information it needs to draw into the window. You must use the Window
Manager for all other operations on a Mac OS window.

A draw context is of type TQ3DrawContextObject, which is a subtype of shared
object. You need to create an instance of a specific type of draw context object
and then attach it to a view, usually by calling Q3View_SetDrawContext.
QuickDraw 3D currently supports these types of draw contexts:

■ Macintosh draw contexts

■ pixmap draw contexts

■ Microsoft Windows draw contexts

Not all drawing destinations are windows. QuickDraw 3D supports the pixmap
draw context for drawing an image into an arbitrary region of memory (that is,
a pixmap). You can, if necessary, even create instances of several kinds of draw
contexts and draw the same scene into several different kinds of windows.

All draw contexts share a set of basic properties, which are maintained in a
structure of type TQ3DrawContextData.

typedef struct TQ3DrawContextData {
TQ3DrawContextClearImageMethod clearImageMethod;
TQ3ColorARGB clearImageColor;
TQ3Area pane;
TQ3Boolean paneState;
TQ3Bitmap mask;
TQ3Boolean maskState;
TQ3Boolean doubleBufferState;

} TQ3DrawContextData;

IMPORTANT

Windows 32 draw contexts are always implicitly double
buffered and Direct Draw surface draw contexts are single
buffered, regardless of the value of doubleBufferState. ▲

C H A P T E R 1 2

Draw Context Objects

About Draw Context Objects 839

The TQ3DrawContextData fields define the manner in which a window (or region
of memory) is cleared, the size of the destination drawing pane, the drawing
mask, and the state of the double buffering. These basic properties are designed
to be independent of any particular window system. You can rely on the
capabilities provided by these properties across window systems, whether or
not the drawing destination supports them.

Note
Not all the basic properties maintained in the
TQ3DrawContextData data structure are supported by all
draw contexts. For example, it makes no sense to use
double buffering when drawing into a pixmap. ◆

In addition to these basic properties that are common to all draw contexts, each
specific type of draw context defines context-specific properties. For example,
the Macintosh draw context maintains information about the window into
which QuickDraw 3D is to draw, the optional use of a two-dimensional
graphics library (QuickDraw or QuickDraw GX), and so forth. The following
sections describe the specific draw context types.

Macintosh Draw Contexts 12

A Macintosh draw context is a draw context associated with a Mac OS window.
You specify a Mac OS window by providing a pointer to a window (of type
CWindowPtr) which defines the area into which QuickDraw 3D will draw images
of rendered models. In addition, you can attach to a Macintosh draw context
either a QuickDraw color graphics port (of type CGrafPort) or a QuickDraw GX
view port (of type gxViewPort). Using this optional two-dimensional graphics
library, you can achieve special effects such as clipping, dithering, and
geometrical transforms of the image. At most one 2D graphics library can be
associated with a Macintosh draw context at one time, and you are responsible
for initializing the graphics library and performing any other required set-up.

QuickDraw 3D cannot use a two-dimensional graphics library unless the draw
context is configured for double buffering and the active buffer is set to the back
buffer. QuickDraw and QuickDraw GX effects are applied when the front buffer
is updated from the back buffer. Figure 12-1 illustrates the three possibilities for
drawing in a Macintosh draw context. You can use QuickDraw to set a clip
region (middle possibility) and QuickDraw GX to set a clip shape (right
possibility).

C H A P T E R 1 2

Draw Context Objects

840 About Draw Context Objects

Figure 12-1 Using a two-dimensional graphics library in a Macintosh draw context

Pixmap Draw Contexts 12

A pixmap draw context is a draw context associated with a pixmap, that is, a
region of memory not directly associated with a window. The two-dimensional
image produced by the renderer is simply written into that memory region.

Note
See the chapter “Geometric Objects” for information on the
structure of pixmaps. ◆

To draw an image into an offscreen graphics world (pointed to by a variable of
type GWorldPtr), for instance, you need to (1) create the offscreen graphics world
using standard QuickDraw routines, (2) call LockPixels to lock the pixels in
memory, and (3) create a pixmap draw context in which the address of the
pixmap is the pointer returned by the GetPixBaseAddr function. You need to lock

library

CWindowPtr CGrafPtr gxViewport

kQ3Mac2DLibraryNone kQ3Mac2DLibraryQuickDraw kQ3Mac2DLibraryQuickDrawGX

C H A P T E R 1 2

Draw Context Objects

Using Draw Context Objects 841

the pixmap in memory because QuickDraw 3D routines may move or purge
memory.

Note
See the book Inside Macintosh: Imaging With QuickDraw for
complete information about offscreen graphics worlds. ◆

You can update a window without rendering to it by rendering to an offscreen
graphics world and then copying the data to the window.

Windows Draw Contexts 12

QuickDraw 3D provides routines that you can use to create and manipulate
Windows 32 draw contexts. See “Managing Windows 32 Draw Contexts,”
beginning on page 864, for details.

Using Draw Context Objects 12

QuickDraw 3D supplies routines that you can use to create and configure draw
context objects. This section describes how to accomplish these tasks.

Creating and Configuring a Draw Context 12

You create a draw context object by calling a constructor function such as
Q3MacDrawContext_New or Q3PixMapDrawContext_New. These functions take as a
parameter a pointer to a data structure that contains information about the
draw context you want to create. For example, you pass the
Q3MacDrawContext_New function a pointer to a structure of type
TQ3MacDrawContextData, defined as follows:

typedef struct TQ3MacDrawContextData {
TQ3DrawContextData drawContextData;
CWindowPtr window;
TQ3MacDrawContext2DLibrary library;
gxViewPort viewPort;
CGrafPtr grafPort;

} TQ3MacDrawContextData;

C H A P T E R 1 2

Draw Context Objects

842 Using Draw Context Objects

The first field is just a draw context data structure that contains basic
information about the draw context (see page 838). The remaining fields contain
specific information about the Mac OS window and 2D graphics library
associated with the draw context.

See Listing 1-7 (page 65) for a sample routine that creates a Macintosh draw
context.

Using Double Buffering 12

In general, when drawing to a screen or other device visible by the user, you’ll
want to use QuickDraw 3D’s double buffering capability to reduce the amount
of flicker that occurs when the image on the screen is updated. You enable
double buffering by calling Q3DrawContext_SetDoubleBufferState or by setting
the doubleBufferState field of a draw context data structure to kQ3True before
calling the draw context constructor method.

Note
In general, QuickDraw 3D will take advantage of any
double buffering capabilities available on the target
window system. ◆

When double buffering is active for a draw context, the draw context is
associated with two buffers, the front buffer and the back buffer. The front
buffer is the area of memory that is being displayed on the screen. The back
buffer is some other area of memory that has the same size as the front buffer.

When double buffering is active, all drawing (as performed by routines such as
Q3Group_Submit in a rendering loop) is done into the back buffer, and the front
buffer is updated only after the call to Q3View_EndRendering on the final pass
through your rendering loop. Some renderers (especially those that rely on
hardware accelerators) may return control to your application before the image
on the screen has been updated. You can call the Q3View_Sync function to block
execution until the renderer is done drawing in the screen’s draw context. You
might want to do this if you intend to grab the image on the screen or if you
intend to allow the user to pick objects displayed on the screen. See the chapter
“Renderer Objects” for complete information about calling Q3View_Sync.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 843

Draw Context Objects Reference 12

This section describes the QuickDraw 3D data structures and routines that you
can use to manage drawing contexts.

Data Structures 12

QuickDraw 3D provides data structures that you can use to define draw
contexts.

Draw Context Data Structure 12

QuickDraw 3D defines the draw context data structure to maintain information
that is common to all the supported draw contexts. The draw context data
structure is defined by the TQ3DrawContextData data type.

typedef struct TQ3DrawContextData {
TQ3DrawContextClearImageMethod clearImageMethod;
TQ3ColorARGB clearImageColor;
TQ3Area pane;
TQ3Boolean paneState;
TQ3Bitmap mask;
TQ3Boolean maskState;
TQ3Boolean doubleBufferState;

} TQ3DrawContextData;

Field descriptions
clearImageMethod A constant that indicates how the drawing destination

should be cleared. You can use these constants to specify a
method to clear the image.

typedef enum TQ3DrawContextClearImageMethod {
kQ3ClearMethodNone,
kQ3ClearMethodWithColor,

} TQ3DrawContextClearImageMethod;

C H A P T E R 1 2

Draw Context Objects

844 Draw Context Objects Reference

The constant kQ3ClearMethodNone indicates that the drawing
destination should not be cleared. The exact behavior when
Q3View_StartRendering is called is renderer-dependent. For
example, some renderers expect to redraw every pixel in
the drawing destination. By specifying kQ3ClearMethodNone,
you allow those renderers to apply optimizations during
rendering. The constant kQ3ClearMethodWithColor indicates
that the drawing destination should be cleared with the
color specified in the clearImageColor field.

clearImageColor The color to be used when clearing the drawing destination
with a color. This field is ignored unless the value in the
clearImageMethod field is kQ3ClearMethodWithColor.

pane The rectangular area (specified in window coordinates) in
the drawing destination within which all drawing occurs. If
the output pane is smaller than the window’s port
rectangle, the image is scaled (not clipped) to fit into the
pane.

paneState A Boolean value that determines whether the area specified
in the pane field is to be used (kQ3True) or is to be ignored
(kQ3False). Set this field to kQ3False to use the entire
window as the output pane. If this field is set to kQ3True,
the pane field must contain a valid area.

mask A bitmap that is used to mask out certain portions of the
drawing destination. Each bit in the bitmap corresponds to
a pixel in the drawing area. If a bit is set, the corresponding
pixel is drawn; if a bit is clear, the corresponding pixel is
not drawn. If the value in this field is NULL, the entire
window is used as the clipping region.

maskState A Boolean value that determines whether the mask
specified in the mask field is to be used (kQ3True) or is to be
ignored (kQ3False). If this field is set to kQ3True, the mask
field must contain a valid bitmap.

doubleBufferState A Boolean value that determines whether double buffering
is to used for the drawing destination (kQ3True) or not
(kQ3False). When double buffering is enabled, the back
buffer is the active buffer.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 845

Macintosh Draw Context Structure 12

QuickDraw 3D defines the Macintosh draw context data structure to maintain
information that is specific to Macintosh draw contexts. The Macintosh draw
context data structure is defined by the TQ3MacDrawContextData data type.

typedef struct TQ3MacDrawContextData {
TQ3DrawContextData drawContextData;
CWindowPtr window;
TQ3MacDrawContext2DLibrary library;
gxViewPort viewPort;
CGrafPtr grafPort;

} TQ3MacDrawContextData;

Field descriptions
drawContextData A draw context data structure defining basic information

about the draw context.
window A pointer to a window.
library The two-dimensional graphics library to use when

rendering an image. You can use these constants to specify
a 2D graphics library:

typedef enum TQ3MacDrawContext2DLibrary {
kQ3Mac2DLibraryNone,
kQ3Mac2DLibraryQuickDraw,
kQ3Mac2DLibraryQuickDrawGX

} TQ3MacDrawContext2DLibrary;

The constants kQ3Mac2DLibraryQuickDraw and
kQ3Mac2DLibraryQuickDrawGX indicate that the renderer
should use QuickDraw or QuickDraw GX, respectively, in
the final stage of rendering. Either the viewPort or the
grafPort field must contain a non-null value if QuickDraw
or QuickDraw GX is to be used. The two-dimensional
library is used only when copying from the back to the
front buffer, never when drawing directly to the front
buffer.

viewPort A view port, as defined by QuickDraw GX. See the book
Inside Macintosh: QuickDraw GX Objects for complete
information about view ports.

C H A P T E R 1 2

Draw Context Objects

846 Draw Context Objects Reference

grafPort A graphics port, as defined by QuickDraw. See the book
Inside Macintosh: Imaging With QuickDraw for complete
information about graphics ports.

Pixmap Draw Context Structure 12

QuickDraw 3D defines the pixmap draw context data structure to maintain
information that is specific to pixmap draw contexts. The pixmap draw context
data structure is defined by the TQ3PixmapDrawContextData data type.

typedef struct TQ3PixmapDrawContextData {
TQ3DrawContextData drawContextData;
TQ3Pixmap pixmap;

} TQ3PixmapDrawContextData;

Field descriptions
drawContextData A draw context data structure defining basic information

about the draw context.
pixmap A pixmap (that is, a pixel map in memory). This pixmap is

assumed to have a pixel size of 24 bits.

Windows 32 Draw Context Structure 12

QuickDraw 3D defines the Windows 32 draw context data structure to
maintain information that is specific to Windows 32 draw contexts. The
Windows 32 draw context data structure is defined by the
TQ3Win32DCDrawContextData data type.

typedef struct TQ3Win32DCDrawContextData {
HDC hdc;

} TQ3Win32DCDrawContextData;

Field descriptions
hdc Microsoft Windows draw context (obtained from a window

using the Windows GetDC function).

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 847

Direct Draw Surface Draw Context Structure 12

QuickDraw 3D defines the direct draw surface draw context data structure to
maintain information that is specific to Windows direct draw surface draw
contexts. The Windows direct draw surface draw context data structure is
defined by the TQ3DDSurfaceDrawContextData data type.

typedef enum {
kQ3DirectDrawObject = 1,
kQ3DirectDrawObject2 = 2

} TQ3DirectDrawObjectSelector;

typedef enum {
kQ3DirectDrawSurface = 1,
kQ3DirectDrawSurface2 = 2

} TQ3DirectDrawSurfaceSelector;

typedef struct TQ3DDSurfaceDescriptor {
TQ3DirectDrawObjectSelector objectSelector;
union
{

LPDIRECTDRAW lpDirectDraw;
LPDIRECTDRAW2 lpDirectDraw2;

};
TQ3DirectDrawSurfaceSelector surfaceSelector;
union
{

LPDIRECTDRAWSURFACE lpDirectDrawSurface;
LPDIRECTDRAWSURFACE2 lpDirectDrawSurface2;

};
} TQ3DDSurfaceDescriptor;

typedef struct TQ3DDSurfaceDrawContextData {
TQ3DrawContextData drawContextData;
TQ3DDSurfaceDescriptor ddSurfaceDescriptor;

} TQ3DDSurfaceDrawContextData;

Field descriptions
objectSelector A Direct Draw object selector that specifies whether the

caller is using version 1 or version 2 Direct Draw objects.
lpDirectDraw Direct Draw context data.

C H A P T E R 1 2

Draw Context Objects

848 Draw Context Objects Reference

surfaceSelector A Direct Draw surface selector that specifies whether the
caller is using version 1 or version 2 Direct Draw surfaces.

lpDirectDrawSurface
Direct Draw surface context data.

drawContextData A draw context data structure defining basic information
about the draw context.

ddSurfaceDescriptor
The union of an object selector and a surface selector.

Data for the lpDirectDraw and lpDirectDrawSurface fields can be obtained
within Microsoft Windows by calling IDirectDraw::CreateSurface or
IDirectDraw::GetGDISurface.

Draw Context Objects Routines 12

This section describes routines you can use to manage draw contexts.

Managing Draw Contexts 12

QuickDraw 3D provides a number of general routines for operating with draw
context objects.

Q3DrawContext_GetType 12

You can use the Q3DrawContext_GetType function to get the type of a draw
context.

TQ3ObjectType Q3DrawContext_GetType (TQ3DrawContextObject drawContext);

drawContext A draw context object.

DESCRIPTION

The Q3DrawContext_GetType function returns, as its function result, the type of
the draw context specified by the drawContext parameter. The types of draw
contexts currently supported by QuickDraw 3D are defined by these constants:

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 849

kQ3DrawContextTypeMacintosh
kQ3DrawContextTypePixmap
kQ3DrawContextTypeWin32DC
kQ3DrawContextTypeDDSurface

Q3DrawContext_GetData 12

You can use the Q3DrawContext_GetData function to get the data associated with
a draw context.

TQ3Status Q3DrawContext_GetData (
TQ3DrawContextObject context,
TQ3DrawContextData *contextData);

context A draw context object.

contextData On exit, a pointer to a draw context data structure.

DESCRIPTION

The Q3DrawContext_GetData function returns, in the contextData parameter, a
pointer to a draw context data structure for the draw context specified by the
context parameter.

Q3DrawContext_SetData 12

You can use the Q3DrawContext_SetData function to set the data associated with
a draw context.

TQ3Status Q3DrawContext_SetData (
TQ3DrawContextObject context,
const TQ3DrawContextData *contextData);

context A draw context object.

contextData A pointer to a draw context data structure.

C H A P T E R 1 2

Draw Context Objects

850 Draw Context Objects Reference

DESCRIPTION

The Q3DrawContext_SetData function sets the data associated with the draw
context specified by the context parameter to that specified in the draw context
data structure pointed to by the contextData parameter.

Q3DrawContext_GetClearImageColor 12

You can use the Q3DrawContext_GetClearImageColor function to get the image
clearing color of a draw context.

TQ3Status Q3DrawContext_GetClearImageColor (
TQ3DrawContextObject context,
TQ3ColorARGB *color);

context A draw context object.

color On exit, the current image clearing color of the specified draw
context.

DESCRIPTION

The Q3DrawContext_GetClearImageColor function returns, in the color parameter,
a constant that indicates the current image clearing color for the draw context
specified by the context parameter.

Q3DrawContext_SetClearImageColor 12

You can use the Q3DrawContext_SetClearImageColor function to set the image
clearing color of a draw context.

TQ3Status Q3DrawContext_SetClearImageColor (
TQ3DrawContextObject context,
const TQ3ColorARGB *color);

context A draw context object.

color The desired image clearing color of the specified draw context.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 851

DESCRIPTION

The Q3DrawContext_SetClearImageColor function sets the image clearing color of
the draw context specified by the context parameter to the value specified in
the color parameter.

Q3DrawContext_GetPane 12

You can use the Q3DrawContext_GetPane function to get the pane of a draw
context.

TQ3Status Q3DrawContext_GetPane (
TQ3DrawContextObject context,
TQ3Area *pane);

context A draw context object.

pane On exit, the area in the specified draw context in which all
drawing occurs.

DESCRIPTION

The Q3DrawContext_GetPane function returns, in the pane parameter, the area in
the draw context specified by the context parameter in which all drawing
occurs.

Q3DrawContext_SetPane 12

You can use the Q3DrawContext_SetPane function to set the pane of a draw
context.

TQ3Status Q3DrawContext_SetPane (
TQ3DrawContextObject context,
const TQ3Area *pane);

C H A P T E R 1 2

Draw Context Objects

852 Draw Context Objects Reference

context A draw context object.

pane The area in the specified draw context in which all drawing
should occur.

DESCRIPTION

The Q3DrawContext_SetPane function sets the area of the draw context specified
by the context parameter within which all drawing is to occur to the area
specified in the pane parameter.

Q3DrawContext_GetPaneState 12

You can use the Q3DrawContext_GetPaneState function to get the pane state of a
draw context.

TQ3Status Q3DrawContext_GetPaneState (
TQ3DrawContextObject context,
TQ3Boolean *state);

context A draw context object.

state On exit, the current pane state of the specified draw context.

DESCRIPTION

The Q3DrawContext_GetPaneState function returns, in the state parameter, a
Boolean value that determines whether the pane associated with the draw
context specified by the context parameter is to be used (kQ3True) or not
(kQ3False).

Q3DrawContext_SetPaneState 12

You can use the Q3DrawContext_SetPaneState function to set the pane state of a
draw context.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 853

TQ3Status Q3DrawContext_SetPaneState (
TQ3DrawContextObject context,
TQ3Boolean state);

context A draw context object.

state The desired pane state of the specified draw context.

DESCRIPTION

The Q3DrawContext_SetPaneState function sets the pane state of the draw
context specified by the context parameter to the value specified in the state
parameter. If the value of state is kQ3True, the pane associated with that draw
context is to be used; if kQ3False, the pane is not used.

Q3DrawContext_GetClearImageMethod 12

You can use the Q3DrawContext_GetClearImageMethod function to get the image
clearing method of a draw context.

TQ3Status Q3DrawContext_GetClearImageMethod (
TQ3DrawContextObject context,
TQ3DrawContextClearImageMethod *method);

context A draw context object.

method On exit, the current image clearing method of the specified draw
context. See page 843 for the values that can be returned in this
parameter.

DESCRIPTION

The Q3DrawContext_GetClearImageMethod function returns, in the method
parameter, a constant that indicates the current image clearing method for the
draw context specified by the context parameter.

C H A P T E R 1 2

Draw Context Objects

854 Draw Context Objects Reference

Q3DrawContext_SetClearImageMethod 12

You can use the Q3DrawContext_SetClearImageMethod function to set the image
clearing method of a draw context.

TQ3Status Q3DrawContext_SetClearImageMethod (
TQ3DrawContextObject context,
TQ3DrawContextClearImageMethod method);

context A draw context object.

method The desired image clearing method of the specified draw
context. See page 843 for the values that can be passed in this
parameter.

DESCRIPTION

The Q3DrawContext_SetClearImageMethod function sets the image clearing
method of the draw context specified by the context parameter to the value
specified in the method parameter.

Q3DrawContext_GetMask 12

You can use the Q3DrawContext_GetMask function to get the mask of a draw
context.

TQ3Status Q3DrawContext_GetMask (
TQ3DrawContextObject context,
TQ3Bitmap *mask);

context A draw context object.

mask On exit, the mask of the specified draw context.

DESCRIPTION

The Q3DrawContext_GetMask function returns, in the mask parameter, the current
mask for the draw context specified by the context parameter. The mask is a
bitmap whose bits determine whether or not corresponding pixels in the

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 855

drawing destination are drawn or are masked out. Q3DrawContext_GetMask
allocates memory internally for the returned bitmap; when you’re done using
the bitmap, you should call the Q3Bitmap_Empty function to dispose of that
memory.

Q3DrawContext_SetMask 12

You can use the Q3DrawContext_SetMask function to set the mask of a draw
context.

TQ3Status Q3DrawContext_SetMask (
TQ3DrawContextObject context,
const TQ3Bitmap *mask);

context A draw context object.

mask The desired mask of the specified draw context.

DESCRIPTION

The Q3DrawContext_SetMask function sets the mask of the draw context specified
by the context parameter to the bitmap specified in the mask parameter.
Q3DrawContext_SetMask copies the bitmap to internal QuickDraw 3D memory, so
you can dispose of the specified bitmap after calling Q3DrawContext_SetMask.

Q3DrawContext_GetMaskState 12

You can use the Q3DrawContext_GetMaskState function to get the mask state of a
draw context.

TQ3Status Q3DrawContext_GetMaskState (
TQ3DrawContextObject context,
TQ3Boolean *state);

context A draw context object.

state On exit, the current mask state of the specified draw context.

C H A P T E R 1 2

Draw Context Objects

856 Draw Context Objects Reference

DESCRIPTION

The Q3DrawContext_GetMaskState function returns, in the state parameter, a
Boolean value that determines whether the mask associated with the draw
context specified by the context parameter is to be used (kQ3True) or not
(kQ3False).

Q3DrawContext_SetMaskState 12

You can use the Q3DrawContext_SetMaskState function to set the mask state of a
draw context.

TQ3Status Q3DrawContext_SetMaskState (
TQ3DrawContextObject context,
TQ3Boolean state);

context A draw context object.

state The desired mask state of the specified draw context.

DESCRIPTION

The Q3DrawContext_SetMaskState function sets the mask state of the draw
context specified by the context parameter to the value specified in the state
parameter. Set state to kQ3True if you want the mask enabled and to kQ3False
otherwise.

Q3DrawContext_GetDoubleBufferState 12

You can use the Q3DrawContext_GetDoubleBufferState function to get the double
buffer state of a draw context.

TQ3Status Q3DrawContext_GetDoubleBufferState (
TQ3DrawContextObject context,
TQ3Boolean *state);

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 857

context A draw context object.

state On exit, the current mask state of the specified draw context.

DESCRIPTION

The Q3DrawContext_GetDoubleBufferState function returns, in the state
parameter, a Boolean value that determines whether double buffering is
enabled for the draw context specified by the context parameter (kQ3True) or
not (kQ3False).

Q3DrawContext_SetDoubleBufferState 12

You can use the Q3DrawContext_SetDoubleBufferState function to set the double
buffer state of a draw context.

TQ3Status Q3DrawContext_SetDoubleBufferState (
TQ3DrawContextObject context,
TQ3Boolean state);

context A draw context object.

state The desired mask state of the specified draw context.

DESCRIPTION

The Q3DrawContext_SetDoubleBufferState function sets the double buffer state
of the draw context specified by the context parameter to the value specified in
the state parameter. Set state to kQ3True if you want the double buffering
enabled and to kQ3False otherwise. When you enable double buffering, the
active buffer is the back buffer.

Managing Macintosh Draw Contexts 12

QuickDraw 3D provides routines that you can use to create and manipulate
Macintosh draw contexts.

C H A P T E R 1 2

Draw Context Objects

858 Draw Context Objects Reference

Q3MacDrawContext_New 12

You can use the Q3MacDrawContext_New function to create a new Macintosh draw
context.

TQ3DrawContextObject Q3MacDrawContext_New (
const TQ3MacDrawContextData *drawContextData);

drawContextData
A pointer to a Macintosh draw context data structure.

DESCRIPTION

The Q3MacDrawContext_New function returns, as its function result, a new draw
context object having the characteristics specified by the drawContextData
parameter. See “Macintosh Draw Context Structure” (page 845) for information
on the drawContextData parameter.

Q3MacDrawContext_GetWindow 12

You can use the Q3MacDrawContext_GetWindow function to get the window
associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_GetWindow (
TQ3DrawContextObject drawContext,
CWindowPtr *window);

drawContext A Macintosh draw context object.

window On exit, a pointer to a window.

DESCRIPTION

The Q3MacDrawContext_GetWindow function returns, in the window parameter, a
pointer to the window currently associated with the draw context specified by
the drawContext parameter.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 859

Q3MacDrawContext_SetWindow 12

You can use the Q3MacDrawContext_SetWindow function to set the window
associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_SetWindow (
TQ3DrawContextObject drawContext,
const CWindowPtr window);

drawContext A Macintosh draw context object.

window A pointer to a window.

DESCRIPTION

The Q3MacDrawContext_SetWindow function sets the window associated with the
draw context specified by the drawContext parameter to the window specified
by the window parameter.

Q3MacDrawContext_Get2DLibrary 12

You can use the Q3MacDrawContext_Get2DLibrary function to get the
two-dimensional drawing library associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_Get2DLibrary (
TQ3DrawContextObject drawContext,
TQ3MacDrawContext2DLibrary *library);

drawContext A Macintosh draw context object.

library On exit, a constant that specifies the two-dimensional graphics
library used when rendering an image in the specified draw
context. See page 845 for the values that can be returned in this
field.

C H A P T E R 1 2

Draw Context Objects

860 Draw Context Objects Reference

DESCRIPTION

The Q3MacDrawContext_Get2DLibrary function returns, in the library parameter,
the two-dimensional drawing library currently associated with the draw
context specified by the drawContext parameter.

Q3MacDrawContext_Set2DLibrary 12

You can use the Q3MacDrawContext_Set2DLibrary function to set the
two-dimensional drawing library associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_Set2DLibrary (
TQ3DrawContextObject drawContext,
TQ3MacDrawContext2DLibrary library);

drawContext A Macintosh draw context object.

library A constant that specifies the desired two-dimensional graphics
library to be used when rendering an image in the specified
draw context. See page 845 for the values that can be passed in
this field.

DESCRIPTION

The Q3MacDrawContext_Set2DLibrary function sets the two-dimensional drawing
library associated with the draw context specified by the drawContext parameter
to the library specified by the library parameter.

Q3MacDrawContext_GetGXViewPort 12

You can use the Q3MacDrawContext_GetGXViewPort function to get the
QuickDraw GX view port associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_GetGXViewPort (
TQ3DrawContextObject drawContext,
gxViewPort *viewPort);

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 861

drawContext A Macintosh draw context object.

viewPort On exit, the QuickDraw GX view port currently associated with
the specified draw context.

DESCRIPTION

The Q3MacDrawContext_GetGXViewPort function returns, in the viewPort
parameter, the QuickDraw GX view port currently associated with the draw
context specified by the drawContext parameter. If no view port is associated
with the draw context or the two-dimensional graphics library is not set to
kQ3Mac2DLibraryQuickDrawGX, Q3MacDrawContext_GetGXViewPort returns NULL in
the viewPort parameter.

Q3MacDrawContext_SetGXViewPort 12

You can use the Q3MacDrawContext_SetGXViewPort function to set the
QuickDraw GX view port associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_SetGXViewPort (
TQ3DrawContextObject drawContext,
const gxViewPort viewPort);

drawContext A Macintosh draw context object.

viewPort The QuickDraw GX view port to be associated with the
specified draw context.

DESCRIPTION

The Q3MacDrawContext_SetGXViewPort function sets the QuickDraw GX view
port associated with the draw context specified by the drawContext parameter to
the view port specified by the viewPort parameter. The two-dimensional
graphics library associated with the specified draw context must be
kQ3Mac2DLibraryQuickDrawGX.

C H A P T E R 1 2

Draw Context Objects

862 Draw Context Objects Reference

Q3MacDrawContext_GetGrafPort 12

You can use the Q3MacDrawContext_GetGrafPort function to get the QuickDraw
graphics port associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_GetGrafPort (
TQ3DrawContextObject drawContext,
CGrafPtr *grafPort);

drawContext A Macintosh draw context object.

grafPort On exit, the QuickDraw graphics port currently associated with
the specified draw context.

DESCRIPTION

The Q3MacDrawContext_GetGrafPort function returns, in the grafPort parameter,
the QuickDraw graphics port currently associated with the draw context
specified by the drawContext parameter. If no graphics port is associated with
the draw context or the two-dimensional graphics library is not
kQ3Mac2DLibraryQuickDraw, Q3MacDrawContext_GetGrafPort returns NULL in the
grafPort parameter.

Q3MacDrawContext_SetGrafPort 12

You can use the Q3MacDrawContext_SetGrafPort function to set the QuickDraw
graphics port associated with a Macintosh draw context.

TQ3Status Q3MacDrawContext_SetGrafPort (
TQ3DrawContextObject drawContext,
const CGrafPtr grafPort);

drawContext A Macintosh draw context object.

grafPort The QuickDraw graphics port to be associated with the
specified draw context.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 863

DESCRIPTION

The Q3MacDrawContext_SetGrafPort function sets the QuickDraw graphics port
associated with the draw context specified by the drawContext parameter to the
graphics port specified by the grafPort parameter. The two-dimensional
graphics library associated with the specified draw context must be
kQ3Mac2DLibraryQuickDraw.

Managing Pixmap Draw Contexts 12

QuickDraw 3D provides routines that you can use to create and manipulate
pixmap draw contexts.

Q3PixmapDrawContext_New 12

You can use the Q3PixmapDrawContext_New function to create a new pixmap draw
context.

TQ3DrawContextObject Q3PixmapDrawContext_New (
const TQ3PixmapDrawContextData *contextData);

contextData A pointer to a pixmap draw context data structure.

DESCRIPTION

The Q3PixmapDrawContext_New function returns, as its function result, a new
draw context object having the characteristics specified by the contextData
parameter.

Q3PixmapDrawContext_GetPixmap 12

You can use the Q3PixmapDrawContext_GetPixmap function to get the pixmap
associated with a pixmap draw context.

C H A P T E R 1 2

Draw Context Objects

864 Draw Context Objects Reference

TQ3Status Q3PixmapDrawContext_GetPixmap (
TQ3DrawContextObject drawContext,
TQ3Pixmap *pixmap);

drawContext A pixmap draw context object.

pixmap On exit, a pointer to a pixmap.

DESCRIPTION

The Q3PixmapDrawContext_GetPixmap function returns, in the pixmap parameter, a
pointer to the pixmap currently associated with the draw context specified by
the drawContext parameter.

Q3PixmapDrawContext_SetPixmap 12

You can use the Q3PixmapDrawContext_SetPixmap function to set the pixmap
associated with a pixmap draw context.

TQ3Status Q3PixmapDrawContext_SetPixmap (
TQ3DrawContextObject drawContext,
const TQ3Pixmap *pixmap);

drawContext A pixmap draw context object.

pixmap A pointer to a pixmap.

DESCRIPTION

The Q3PixmapDrawContext_SetPixmap function sets the pixmap associated with
the draw context specified by the drawContext parameter to the pixmap
specified by the pixmap parameter.

Managing Windows 32 Draw Contexts 12

QuickDraw 3D provides routines that you can use to create and manipulate
Windows 32 draw contexts.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 865

Note
QuickDraw 3D both locks and clears the Direct Draw
surface before each rendering loop, so your software need
not perform these operations for a surface during
rendering. ◆

Note
Windows 32 draw contexts are always implicitly double
buffered. ◆

Q3Win32DCDrawContext_New 12

You can use the Q3Win32DCDrawContext_New function to create a new Windows 32
draw context object.

TQ3DrawContextObject Q3Win32DCDrawContext_New (
const TQ3Win32DCDrawContextData *drawContextData);

drawContextData
Pointer to a Windows 32 draw context data structure.

return value A Windows 32 draw context object.

DESCRIPTION

Q3Win32DCDrawContext_New returns a Windows 32 draw context object if it is
successful; otherwise it returns NULL. The application must set up the necessary
data structure, as described in “Windows 32 Draw Context Structure,”
beginning on page 846.

Q3Win32DCDrawContext_GetDC 12

You can use the Q3Win32DCDrawContext_GetDC function to retrieve the Microsoft
Windows draw context associated with a Windows 32 draw context object.

C H A P T E R 1 2

Draw Context Objects

866 Draw Context Objects Reference

TQ3Status Q3Win32DCDrawContext_GetDC (
TQ3DrawContextObject drawContext,
HDC *hdc);

drawContext A draw context object.

hdc Pointer to a Microsoft Windows draw context.

DESCRIPTION

Q3Win32DCDrawContext_GetDC returns in a structure pointed to by hdc the
Microsoft Windows draw context that is associated with the draw context object
specified by drawContext.

Q3Win32DCDrawContext_SetDC 12

You can use the Q3Win32DCDrawContext_SetDC function to set the Microsoft
Windows draw context for a Windows 32 draw context object.

TQ3Status Q3Win32DCDrawContext_SetDC (
TQ3DrawContextObject drawContext,
const HDC hdc);

drawContext A draw context object.

hdc Pointer to a Microsoft Windows draw context (can be obtained
from a window using the Windows GetDC function).

DESCRIPTION

Q3Win32DCDrawContext_SetDC sets the draw context object identified by
drawContext to the draw context specified by hdc.

Managing Direct Draw Surface Draw Contexts 12

QuickDraw 3D provides routines that you can use to create and manipulate
direct draw surface draw contexts.

C H A P T E R 1 2

Draw Context Objects

Draw Context Objects Reference 867

Note
Windows 32 draw contexts are always implicitly single
buffered. ◆

Q3DDSurfaceDrawContext_New 12

You can use the Q3DDSurfaceDrawContext_New function to create a new Direct
Draw surface draw context object.

TQ3DrawContextObject Q3DDSurfaceDrawContext_New (const
TQ3DDSurfaceDrawContextData *drawContextData);

drawContextData
Pointer to a Direct Draw surface draw context data structure.

return value A Direct Draw surface draw context object.

DESCRIPTION

Q3DDSurfaceDrawContext_New returns a Direct Draw surface draw context object
if it is successful; otherwise it returns NULL. The application must set up the
necessary data structure, as described in “Direct Draw Surface Draw Context
Structure,” beginning on page 847.

Q3DDSurfaceDrawContext_GetDirectDrawSurface 12

You can use the Q3DDSurfaceDrawContext_GetDirectDrawSurface function to
retrieve the surface descriptor associated with a Direct Draw surface draw
context object.

TQ3Status Q3DDSurfaceDrawContext_GetDirectDrawSurface (
TQ3DrawContextObject drawContext,
TQ3DDSurfaceDescriptor *ddSurfaceDescriptor);

C H A P T E R 1 2

Draw Context Objects

868 Draw Context Objects Reference

drawContext A draw context object.

ddSurfaceDescriptor
A surface descriptor (see “Direct Draw Surface Draw Context
Structure,” beginning on page 847).

DESCRIPTION

Q3DDSurfaceDrawContext_GetDirectDrawSurface returns in ddSurfaceDescriptor
the Direct Draw surface descriptor that is associated with the draw context
object specified by drawContext.

Q3DDSurfaceDrawContext_SetDirectDrawSurface 12

You can use the Q3DDSurfaceDrawContext_SetDirectDrawSurface function to set
the surface descriptor associated with a Direct Draw surface draw context
object.

TQ3Status Q3DDSurfaceDrawContext_SetDirectDrawSurface (
TQ3DrawContextObject drawContext,
const TQ3DDSurfaceDescriptor *ddSurfaceDescriptor);

drawContext A draw context object.

ddSurfaceDescriptor
A surface descriptor (see “Direct Draw Surface Draw Context
Structure,” beginning on page 847).

DESCRIPTION

Q3DDSurfaceDrawContext_SetDirectDrawSurface sets the draw context object
identified by drawContext to use the surface descriptor specified by
ddSurfaceDescriptor.

C H A P T E R 1 2

Draw Context Objects

Draw Context Errors, Warnings, and Notices 869

Draw Context Errors, Warnings, and Notices 12

The following errors, warnings, and notices may be returned by draw context
object routines. A list of general QuickDraw 3D errors is given in
“QuickDraw 3D Errors, Warnings, and Notices” (page 87).

kQ3ErrorBadDrawContextType
kQ3ErrorBadDrawContextFlag
kQ3ErrorBadDrawContext
kQ3ErrorUnsupportedPixelDepth
kQ3WarningInvalidPaneDimensions
kQ3NoticeDrawContextNotSetUsingInternalDefaults

C H A P T E R 1 2

Draw Context Objects

870 Draw Context Errors, Warnings, and Notices

871

C H A P T E R 1 3

View Objects 13Figure 13-0
Listing 13-0
Table 13-0

This chapter describes view objects (or views) and the functions you can use to
manipulate them. You use a view to specify the camera, the group of lights, the
draw context, and the renderer that you want QuickDraw 3D to use when
rendering an image of a model. You also use views when picking and
performing some other operations on a model.

To use this chapter, you should already be familiar with cameras, light groups,
draw contexts, and renderers. See the chapters “Camera Objects,” “Group
Objects,” “Draw Context Objects,” and “Renderer Objects” for information on
creating and manipulating these four kinds of objects. You must create and
configure instances of these objects before you can attach them to a view.

You can also attach one or more kinds of shaders to a view to achieve special
visual effects. Once again, you must create and configure a shader before
attaching it to a view. See the chapter “Shader Objects” for information on the
available kinds of shaders.

This chapter begins by describing view objects and their features. Then it shows
how to create and attach objects to views. The section “View Objects Routines,”
beginning on page 876 provides a complete description of the routines you can
use to create and manipulate view objects.

QuickDraw 3D provides one subclass of the view class, the user interface view
class. A user interface view is a type of view that allows the user to interact
(using interface elements such as a 3D cursor or widgets) with the
three-dimensional objects displayed in the view. See the chapter “Pointing
Device Manager” for information on user interface views and the functions you
can use to create and manipulate them.

C H A P T E R 1 3

View Objects

872 About View Objects

About View Objects 13

A view object (or, more briefly, a view) is a type of QuickDraw 3D object that
maintains the information necessary to render a single scene or image of a
model. A view also maintains the information necessary to perform picking,
calculate a bounding box or sphere, and write data to a file. A view is
essentially a collection of a single camera, a (possibly empty) group of lights, a
draw context, and a renderer. As you’ve seen, a camera defines a point of view
onto a three-dimensional model and a method of projecting the model onto a
two-dimensional view plane. The group of lights provides illumination on the
objects in the model. The draw context defines the destination of the
two-dimensional image, and the renderer determines the method of generating
the image from the model.

In addition to these four types of objects that are necessary to render a single
image of a model, a view can also contain one or more kinds of shaders. The
QuickDraw 3D shading architecture provides a powerful way to modify aspects
of an image. QuickDraw 3D supports many kinds of shaders, which are applied
at different stages of the process of generating an image of a model. This
chapter describes how to attach a shader to a view. For a complete description
of the QuickDraw 3D shading architecture and for information on creating an
instance of a specific kind of shader, see the chapter “Shader Objects.”

A view is of type TQ3ViewObject, which is one of the four main subclasses of
QuickDraw 3D objects. The structure of a view object is opaque; you must
create and manipulate views solely using functions supplied by QuickDraw 3D
(for example, Q3View_New).

Using View Objects 13

QuickDraw 3D supplies routines that you can use to create view objects, attach
cameras, renderers, and other objects to them, and render images in those view
objects. This section describes how to accomplish these tasks.

C H A P T E R 1 3

View Objects

Using View Objects 873

▲ W AR N I N G

After instantiating a view object you can no longer register
a new object; doing so will put the view memory structure
out of sync. For example, if you register or unregister a
shape object while a view is instantiated, the system will
crash because the view stacks have become invalid. ▲

Creating and Configuring a View 13

You create a view object by calling the function Q3View_New. If successful,
Q3View_New returns a new empty view object. You must then configure the view
object by specifying a renderer, a camera, a group of lights, and a model.
Listing 1-9 (page 67) illustrates how to create and configure a view. Only one
object of each of these types can be associated with a view object at a given
time. You can, however, have multiple view objects in your application, each
associated with a different window.

Note
The group of lights is optional. A view, however, must
contain a camera, a renderer, and a draw context. ◆

Rendering an Image 13

Once you have created and configured a view, you can use it to render an image
of a model. To do so, you need to enter into the rendering state by calling the
Q3View_StartRendering function. Then you specify the model to be drawn and
call Q3View_EndRendering. Because the renderer might not have had sufficient
memory to complete the rendering when you call Q3View_EndRendering, you
might need to respecify the model, to give the renderer another pass at the
model’s data. As a result, you almost always call Q3View_StartRendering and
Q3View_EndRendering in a rendering loop, shown in outline in Listing 13-1.

C H A P T E R 1 3

View Objects

874 Using View Objects

Listing 13-1 Rendering a model

Q3View_StartRendering(myView);
do {

/*submit the model here*/
} while (Q3View_EndRendering(myView) ==

kQ3ViewStatusRetraverse);

The Q3View_EndRendering function returns a view status value that indicates the
status of the rendering process. If Q3View_EndRendering returns the value
kQ3ViewStatusRetraverse, you should reenter your rendering loop. If
Q3View_EndRendering returns kQ3ViewStatusDone, kQ3ViewStatusError, or
kQ3ViewStatusCancelled, you should exit the loop.

As you know, QuickDraw 3D supports immediate mode, retained mode, and
mixed mode rendering. You use a rendering loop for all these rendering modes,
but they differ in how you create and draw the objects in a model. To use
retained mode rendering, you let QuickDraw 3D allocate memory to hold the
data associated with a particular object or group of objects. For example, to
render a box in retained mode, you must first create the box by calling the
Q3Box_New function. Then you draw the box by calling the Q3Geometry_Submit
function, as illustrated in Listing 13-2.

Listing 13-2 Creating and rendering a retained object

TQ3BoxData myBoxData;
TQ3GeometryObject myBox;

Q3Point3D_Set(&myBoxData.origin, 1.0, 1.0, 1.0);
Q3Vector3D_Set(&myBoxData.orientation, 0, 2.0, 0);
Q3Vector3D_Set(&myBoxData.minorAxis, 2.0, 0, 0);
Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 2.0);
myBox = Q3Box_New(&myBoxData);

Q3View_StartRendering(myView);
do {

Q3Geometry_Submit(myBox, myView);
} while (Q3View_EndRendering(myView) ==

kQ3ViewStatusRetraverse);

C H A P T E R 1 3

View Objects

View Objects Reference 875

In general, you use retained mode rendering when much of the model remains
unchanged from frame to frame. For retained mode rendering, you can use the
following routines inside a rendering loop:

Q3Style_Submit
Q3Geometry_Submit
Q3Transform_Submit
Q3Group_Submit

To use immediate mode rendering, you allocate memory for an object yourself
and draw the object using an immediate mode drawing routine, as illustrated in
Listing 13-3.

Listing 13-3 Creating and rendering an immediate object

TQ3BoxData myBoxData;

Q3Point3D_Set(&myBoxData.origin, 1.0, 1.0, 1.0);
Q3Vector3D_Set(&myBoxData.orientation, 0, 2.0, 0);
Q3Vector3D_Set(&myBoxData.minorAxis, 2.0, 0, 0);
Q3Vector3D_Set(&myBoxData.majorAxis, 0, 0, 2.0);

Q3View_StartRendering(myView);
do {

Q3Box_Submit(myBoxData, myView);
} while (Q3View_EndRendering(myView) ==

kQ3ViewStatusRetraverse);

In general, you use immediate mode when your application does not need to
retain the geometric data for subsequent use.

View Objects Reference 13

This section describes the QuickDraw 3D routines that you can use to manage
view objects.

C H A P T E R 1 3

View Objects

876 View Objects Reference

View Objects Routines 13

This section describes the routines you can use to manage views.

Creating and Configuring Views 13

QuickDraw 3D provides routines for creating a new view and for getting or
setting a view’s renderer, camera, light group, and draw context.

Q3View_New 13

You can use the Q3View_New function to create a new view object.

TQ3ViewObject Q3View_New (void);

DESCRIPTION

The Q3View_New function returns, as its function result, a new view object. Before
you can render a model in that view, you must first set the view’s renderer,
camera, and draw context. You can also set the view’s group of lights.
Q3View_New returns NULL if it cannot create a new view object.

Q3View_GetRenderer 13

You can use the Q3View_GetRenderer function to get the renderer associated with
a view.

TQ3Status Q3View_GetRenderer (
TQ3ViewObject view,
TQ3RendererObject *renderer);

view A view.

renderer On exit, the renderer object currently associated with the
specified view.

C H A P T E R 1 3

View Objects

View Objects Reference 877

DESCRIPTION

The Q3View_GetRenderer function returns, in the renderer parameter, the
renderer currently associated with the view specified by the view parameter.
The reference count of that renderer is incremented.

Q3View_SetRenderer 13

You can use the Q3View_SetRenderer function to set the renderer associated with
a view.

TQ3Status Q3View_SetRenderer (
TQ3ViewObject view,
TQ3RendererObject renderer);

view A view.

renderer A renderer object.

DESCRIPTION

The Q3View_SetRenderer function attaches the renderer specified by the renderer
parameter to the view specified by the view parameter. The reference count of
the specified renderer is incremented. In addition, if some other renderer was
already attached to the specified view, the reference count of that renderer is
decremented.

SEE ALSO

For information on creating and manipulating renderers, see the chapter
“Renderer Objects.”

Q3View_SetRendererByType 13

You can use the Q3View_SetRendererByType function to set the renderer
associated with a view by specifying its type.

C H A P T E R 1 3

View Objects

878 View Objects Reference

TQ3Status Q3View_SetRendererByType (
TQ3ViewObject view,
TQ3ObjectType type);

view A view.

type A renderer type.

DESCRIPTION

The Q3View_SetRendererByType function attaches the renderer having the type
specified by the type parameter to the view specified by the view parameter. The
reference count of the specified render is incremented. In addition, if some other
renderer was already attached to the specified view, the reference count of that
renderer is decremented.

Q3View_GetCamera 13

You can use the Q3View_GetCamera function to get the camera associated with a
view.

TQ3Status Q3View_GetCamera (
TQ3ViewObject view,
TQ3CameraObject *camera);

view A view.

camera On exit, the camera object currently associated with the
specified view.

DESCRIPTION

The Q3View_GetCamera function returns, in the camera parameter, the camera
currently associated with the view specified by the view parameter. The
reference count of that camera is incremented.

C H A P T E R 1 3

View Objects

View Objects Reference 879

Q3View_SetCamera 13

You can use the Q3View_SetCamera function to set the camera associated with a
view.

TQ3Status Q3View_SetCamera (
TQ3ViewObject view,
TQ3CameraObject camera);

view A view.

camera A camera object.

DESCRIPTION

The Q3View_SetCamera function attaches the camera specified by the camera
parameter to the view specified by the view parameter. The reference count of
the specified camera is incremented. In addition, if some other camera was
already attached to the specified view, the reference count of that camera is
decremented.

SEE ALSO

For information on creating and manipulating cameras, see the chapter
“Camera Objects.”

Q3View_GetLightGroup 13

You can use the Q3View_GetLightGroup function to get the light group associated
with a view.

TQ3Status Q3View_GetLightGroup (
TQ3ViewObject view,
TQ3GroupObject *lightGroup);

view A view.

lightGroup On exit, the light group currently associated with the specified
view.

C H A P T E R 1 3

View Objects

880 View Objects Reference

DESCRIPTION

The Q3View_GetLightGroup function returns, in the lightGroup parameter, the
light group currently associated with the view specified by the view parameter.
The reference count of that light group is incremented.

Q3View_SetLightGroup 13

You can use the Q3View_SetLightGroup function to set the light group associated
with a view.

TQ3Status Q3View_SetLightGroup (
TQ3ViewObject view,
TQ3GroupObject lightGroup);

view A view.

lightGroup A light group.

DESCRIPTION

The Q3View_SetLightGroup function attaches the light group specified by the
lightGroup parameter to the view specified by the view parameter. The reference
count of the specified light group is incremented. In addition, if some other
light group was already attached to the specified view, the reference count of
that light group is decremented.

SEE ALSO

For information on creating and manipulating light groups, see the chapters
“Light Objects” and “Group Objects.”

Q3View_GetDrawContext 13

You can use the Q3View_GetDrawContext function to get the draw context
associated with a view.

C H A P T E R 1 3

View Objects

View Objects Reference 881

TQ3Status Q3View_GetDrawContext (
TQ3ViewObject view,
TQ3DrawContextObject *drawContext);

view A view.

drawContext On exit, the draw context currently associated with the specified
view.

DESCRIPTION

The Q3View_GetDrawContext function returns, in the drawContext parameter, the
draw context currently associated with the view specified by the view
parameter. The reference count of that draw context is incremented.

Q3View_SetDrawContext 13

You can use the Q3View_SetDrawContext function to set the draw context
associated with a view.

TQ3Status Q3View_SetDrawContext (
TQ3ViewObject view,
TQ3DrawContextObject drawContext);

view A view.

drawContext A draw context object.

DESCRIPTION

The Q3View_SetDrawContext function attaches the draw context specified by the
drawContext parameter to the view specified by the view parameter. The
reference count of the specified draw context is incremented. In addition, if
some other draw context was already attached to the specified view, the
reference count of that draw context is decremented.

C H A P T E R 1 3

View Objects

882 View Objects Reference

SEE ALSO

For information on creating and manipulating draw contexts, see the chapter
“Draw Context Objects.”

Rendering in a View 13

QuickDraw 3D provides routines that you can use to manage the process of
rendering in a view. The view must already exist and be fully configured before
you call these routines.

Q3View_StartRendering 13

You can use the Q3View_StartRendering function to start rendering an image of a
model.

TQ3Status Q3View_StartRendering (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3View_StartRendering function begins the process of rendering an image
of a model in the view specified by the view parameter. After calling
Q3View_StartRendering, you specify the model to be drawn (for instance, by
calling Q3Geometry_Submit). When you have completely specified that model,
you should call Q3View_EndRendering to complete the rendering of the image.
Because the renderer attached to the specified view might need to reprocess the
model data, you should always call Q3View_StartRendering and
Q3View_EndRendering in a rendering loop.

Calling Q3View_StartRendering automatically clears the buffer into which the
rendered image is drawn.

SPECIAL CONSIDERATIONS

You should not call Q3View_StartRendering while rendering is already
occurring.

C H A P T E R 1 3

View Objects

View Objects Reference 883

ERRORS

kQ3ErrorRenderingIsActive

SEE ALSO

See “Rendering an Image” (page 873) for more information about a rendering
loop.

Q3View_EndRendering 13

You can use the Q3View_EndRendering function to stop rendering an image of a
model.

TQ3ViewStatus Q3View_EndRendering (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3View_EndRendering function returns, as its function result, a view status
value that indicates the current state of the rendering of an image of a model in
the view specified by the view parameter. Q3View_EndRendering returns one of
these four values:

typedef enum TQ3ViewStatus {
kQ3ViewStatusDone,
kQ3ViewStatusRetraverse,
kQ3ViewStatusError,
kQ3ViewStatusCancelled

} TQ3ViewStatus;

If Q3View_EndRendering returns kQ3ViewStatusDone, the rendering of the image
has been completed and the specified view is no longer in rendering mode. At
that point, it is safe to exit your rendering loop. If double-buffering is active, the
front buffer is updated with the rendered image.

C H A P T E R 1 3

View Objects

884 View Objects Reference

IMPORTANT

If the renderer associated with the specified view relies on a
hardware accelerator for some or all of its operation,
Q3View_EndRendering may return kQ3ViewStatusDone even
though the rendering has not yet completed. (When a
hardware accelerator is present, rendering occurs
asynchronously.) If you must know when the rendering has
actually finished, call the Q3View_Sync function. ▲

If Q3View_EndRendering returns kQ3ViewStatusRetraverse, the rendering of the
image has not yet been completed. You should respecify the model by
reentering your rendering loop.

If Q3View_EndRendering returns kQ3ViewStatusError, the rendering of the image
has failed because the renderer associated with the view encountered an error
in processing the model. You should exit the rendering loop.

If Q3View_EndRendering returns kQ3ViewStatusCancelled, the rendering of the
image has been canceled. You should exit the rendering loop.

SPECIAL CONSIDERATIONS

You should call Q3View_EndRendering only if rendering is already occurring.

SEE ALSO

See “Rendering an Image” (page 873) for a sample rendering loop.

Q3View_Cancel 13

You can use the Q3View_Cancel function to cancel the rendering, picking,
bounding, or writing operation currently occurring in a view.

TQ3Status Q3View_Cancel (TQ3ViewObject view);

view A view.

C H A P T E R 1 3

View Objects

View Objects Reference 885

DESCRIPTION

The Q3View_Cancel function interrupts the process of rendering an image of a
model, submitting objects for picking, calculating a bounding box or sphere, or
writing data to a file in accordance with the view specified by the view
parameter. Any subsequent calls to _Submit routines for the specified view will
fail, and Q3View_EndRendering (or the similar call for picking, bounding, or
writing) will return kQ3ViewStatusCancelled when it is next executed. Note that
you must still call Q3View_EndRendering (or the similar call for picking,
bounding, or writing) after you have called Q3View_Cancel.

You can call Q3View_Cancel at any time. If the specified view is not in the
submitting state, Q3View_Cancel returns kQ3Failure.

Q3View_Flush 13

You can use the Q3View_Flush function to flush buffered graphics to a rasterizer.

TQ3Status Q3View_Flush (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3View_Flush function is a non-blocking call that flushes all buffered graphics to
a rasterizer (if one is implemented). It may or may not update the draw context,
depending on the type of renderer. The Q3View_Flush function may be called only
between calls to Q3View_StartRendering and Q3View_EndRendering.

Q3View_Sync 13

You can use the Q3View_Sync function to flush buffered graphics to a rasterizer and
also update the draw context.

TQ3Status Q3View_Sync (TQ3ViewObject view);

view A view.

C H A P T E R 1 3

View Objects

886 View Objects Reference

DESCRIPTION

The Q3View_Sync function is a blocking call that flushes all buffered graphics to a
rasterizer and updates the draw context. Calling this function guarantees that the image
is updated on return. You may call it only after calling Q3View_EndRendering.

Picking in a View 13

QuickDraw 3D provides routines that you can use to manage the process of
picking in a view. The view must already exist and be fully configured before
you call these routines.

Q3View_StartPicking 13

You can use the Q3View_StartPicking function to start picking in a view.

TQ3Status Q3View_StartPicking (
TQ3ViewObject view,
TQ3PickObject pick);

view A view.

pick A pick object.

DESCRIPTION

The Q3View_StartPicking function begins the process of picking in the view
specified by the view parameter, using the pick object specified by the pick
parameter. After calling Q3View_StartPicking, you specify the model (for
instance, by calling Q3Geometry_Submit). When you have completely specified
that model, you should call Q3View_EndPicking to complete the picking
operation. The renderer attached to the specified view might need to reprocess
the model data, so you should always call Q3View_StartPicking and
Q3View_EndPicking in a picking loop.

SPECIAL CONSIDERATIONS

You should not call Q3View_StartPicking while picking is already occurring.

C H A P T E R 1 3

View Objects

View Objects Reference 887

Q3View_EndPicking 13

You can use the Q3View_EndPicking function to end picking in a view.

TQ3ViewStatus Q3View_EndPicking (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3View_EndPicking function returns, as its function result, a view status
value that indicates the current state of the picking in the view specified by the
view parameter. Q3View_EndPicking returns one of these four values:

typedef enum TQ3ViewStatus {
kQ3ViewStatusDone,
kQ3ViewStatusRetraverse,
kQ3ViewStatusError,
kQ3ViewStatusCancelled

} TQ3ViewStatus;

If Q3View_EndPicking returns kQ3ViewStatusDone, the picking has been completed
and the specified view is no longer in picking mode. At that point, it is safe to
exit your picking loop.

If Q3View_EndPicking returns kQ3ViewStatusRetraverse, the picking has not yet
been completed. You should respecify the model by reentering your picking
loop.

If Q3View_EndPicking returns kQ3ViewStatusError, the picking has failed because
the renderer associated with the view encountered an error in processing the
model. You should exit the picking loop.

If Q3View_EndPicking returns kQ3ViewStatusCancelled, the picking has been
canceled. You should exit the picking loop.

SPECIAL CONSIDERATIONS

You should call Q3View_EndPicking only if picking is already occurring.

C H A P T E R 1 3

View Objects

888 View Objects Reference

Writing in a View 13

QuickDraw 3D provides routines that you can use to manage the process of
writing a view’s data to a file. The view must already exist and be fully
configured before you call these routines.

Q3View_StartWriting 13

You can use the Q3View_StartWriting function to start writing to a file.

TQ3Status Q3View_StartWriting (
TQ3ViewObject view,
TQ3FileObject file);

view A view.

file A file object.

DESCRIPTION

The Q3View_StartWriting function begins the process of writing in the view
specified by the view parameter, using the file object specified by the file
parameter. After calling Q3View_StartWriting, you specify the model (for
instance, by calling Q3Geometry_Submit). When you have completely specified
that model, you should call Q3View_EndWriting to complete the write operation.
The renderer attached to the specified view might need to reprocess the model
data, so you should always call Q3View_StartWriting and Q3View_EndWriting in
a writing loop.

SPECIAL CONSIDERATIONS

You should not call Q3View_StartWriting while writing is already occurring.

Q3View_EndWriting 13

You can use the Q3View_EndWriting function to end writing to a file.

C H A P T E R 1 3

View Objects

View Objects Reference 889

TQ3ViewStatus Q3View_EndWriting (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3View_EndWriting function returns, as its function result, a view status
value that indicates the current state of the writing in the view specified by the
view parameter. Q3View_EndWriting returns one of these four values:

typedef enum TQ3ViewStatus {
kQ3ViewStatusDone,
kQ3ViewStatusRetraverse,
kQ3ViewStatusError,
kQ3ViewStatusCancelled

} TQ3ViewStatus;

If Q3View_EndWriting returns kQ3ViewStatusDone, the writing has been completed
and the specified view is no longer in writing mode. At that point, it is safe to
exit your writing loop.

If Q3View_EndWriting returns kQ3ViewStatusRetraverse, the writing has not yet
been completed. You should respecify the model by reentering your writing
loop.

If Q3View_EndWriting returns kQ3ViewStatusError, the writing has failed because
the renderer associated with the view encountered an error in processing the
model. You should exit the writing loop.

If Q3View_EndWriting returns kQ3ViewStatusCancelled, the writing has been
canceled. You should exit the writing loop.

SPECIAL CONSIDERATIONS

You should call Q3View_EndWriting only if writing is already occurring.

Bounding in a View 13

As described in the chapters “Geometric Objects” and “Group Objects”,
QuickDraw 3D provides routines that you can use to compute the bounding
box and bounding sphere of an object or a group of objects in a model.
Computing an object’s bounding box or bounding sphere requires applying to

C H A P T E R 1 3

View Objects

890 View Objects Reference

it all the transforms in the current view transform stack. QuickDraw 3D
provides routines that you must call before and after computing an object’s
bounds.

QuickDraw 3D also provides a routine that you can use to determine whether a
bounding box is visible in a view. You might use that routine to avoid
specifying portions of a model that aren’t visible.

Q3View_StartBoundingBox 13

You can use the Q3View_StartBoundingBox function to start computing an
object’s bounding box.

TQ3Status Q3View_StartBoundingBox (
TQ3ViewObject view,
TQ3ComputeBounds computeBounds);

view A view.

computeBounds
A constant that specifies how the bounding box should be
computed. See the following description for details.

DESCRIPTION

The Q3View_StartBoundingBox function begins the process of calculating a
bounding box in the view specified by the view parameter. After calling
Q3View_StartBoundingBox, you specify the model (for instance, by calling
Q3Geometry_Submit). When you have completely specified that model, you
should call Q3View_EndBoundingBox to complete the bounding operation. The
renderer attached to the specified view might need to reprocess the model data,
so you should always call Q3View_StartBoundingBox and Q3View_EndBoundingBox
in a bounding loop.

The computeBounds parameter determines the algorithm that QuickDraw 3D
uses to calculate the bounding box. You should set computeBounds to one of these
constants:

C H A P T E R 1 3

View Objects

View Objects Reference 891

typedef enum TQ3ComputeBounds {
kQ3ComputeBoundsExact,
kQ3ComputeBoundsApproximate

} TQ3ComputeBounds;

If you set computeBounds to kQ3ComputeBoundsExact, the vertices of the geometric
object are transformed into world space, and then the world space bounding
box is computed from the transformed vertices. This method of calculating a
bounding box produces the most precise bounding box but is slower than using
the kQ3ComputeBoundsApproximate method.

If you set computeBounds to kQ3ComputeBoundsApproximate, a local bounding box
is computed from the vertices of the geometric object, and then that bounding
box is transformed into world space. The transformed bounding box is returned
as the approximate bounding box of the geometric object. This method of
calculating a bounding box is faster than using the kQ3ComputeBoundsExact
method but produces a bounding box that might be larger than that computed
by the exact method.

Q3View_EndBoundingBox 13

You can use the Q3View_EndBoundingBox function to stop computing an object’s
bounding box.

TQ3ViewStatus Q3View_EndBoundingBox (
TQ3ViewObject view,
TQ3BoundingBox *result);

view A view.

result On exit, the bounding box for the objects specified in the
bounding loop.

DESCRIPTION

The Q3View_EndBoundingBox function returns, as its function result, a view status
value that indicates the current state of the bounding box calculation of the
objects in the view specified by the view parameter. Q3View_EndBoundingBox
returns one of these four values:

C H A P T E R 1 3

View Objects

892 View Objects Reference

typedef enum TQ3ViewStatus {
kQ3ViewStatusDone,
kQ3ViewStatusRetraverse,
kQ3ViewStatusError,
kQ3ViewStatusCancelled

} TQ3ViewStatus;

If Q3View_EndBoundingBox returns kQ3ViewStatusDone, the bounding box
calculation has completed. At that point, it is safe to exit your bounding loop.
The result parameter contains the bounding box.

If Q3View_EndBoundingBox returns kQ3ViewStatusRetraverse, the bounding box
calculation has not yet completed. You should respecify the model by reentering
your bounding loop.

If Q3View_EndBoundingBox returns kQ3ViewStatusError, the bounding box
calculation has failed. You should exit the bounding loop.

If Q3View_EndBoundingBox returns kQ3ViewStatusCancelled, the bounding box
calculation has been canceled. You should exit the bounding loop.

SPECIAL CONSIDERATIONS

You should call Q3View_EndBoundingBox only if bounding box calculation is
already occurring.

Q3View_StartBoundingSphere 13

You can use the Q3View_StartBoundingSphere function to start computing an
object’s bounding sphere.

TQ3Status Q3View_StartBoundingSphere (
TQ3ViewObject view,
TQ3ComputeBounds computeBounds);

view A view.

computeBounds
A constant that specifies how the bounding sphere should be
computed. See the following description for details.

C H A P T E R 1 3

View Objects

View Objects Reference 893

DESCRIPTION

The Q3View_StartBoundingSphere function begins the process of calculating a
bounding sphere in the view specified by the view parameter. After calling
Q3View_StartBoundingSphere, you specify the model (for instance, by calling
Q3Geometry_Submit). When you have completely specified that model, you
should call Q3View_EndBoundingSphere to complete the bounding operation. The
renderer attached to the specified view might need to reprocess the model data,
so you should always call Q3View_StartBoundingSphere and
Q3View_EndBoundingSphere in a bounding loop.

The computeBounds parameter determines the algorithm that QuickDraw 3D
uses to calculate the bounding sphere. You should set computeBounds to one of
these constants:

typedef enum TQ3ComputeBounds {
kQ3ComputeBoundsExact,
kQ3ComputeBoundsApproximate

} TQ3ComputeBounds;

If you set computeBounds to kQ3ComputeBoundsExact, the vertices of the geometric
object are transformed into world space, and then the world space bounding
sphere is computed from the transformed vertices. This method of calculating a
bounding sphere produces the most precise bounding sphere but is slower than
using the kQ3ComputeBoundsApproximate method.

If you set computeBounds to kQ3ComputeBoundsApproximate, a local bounding
sphere is computed from the vertices of the geometric object, and then that
bounding sphere is transformed into world space. The transformed bounding
sphere is returned as the approximate bounding sphere of the geometric object.
This method of calculating a bounding sphere is faster than using the
kQ3ComputeBoundsExact method but produces a bounding sphere that might be
larger than that computed by the exact method.

Q3View_EndBoundingSphere 13

You can use the Q3View_EndBoundingSphere function to stop computing an
object’s bounding sphere.

C H A P T E R 1 3

View Objects

894 View Objects Reference

TQ3ViewStatus Q3View_EndBoundingSphere (
TQ3ViewObject view,
TQ3BoundingSphere *result);

view A view.

result On exit, the bounding sphere for the objects specified in the
bounding loop.

DESCRIPTION

The Q3View_EndBoundingSphere function returns, as its function result, a view
status value that indicates the current state of the bounding sphere calculation
of the objects in the view specified by the view parameter.
Q3View_EndBoundingBox returns one of these four values:

typedef enum TQ3ViewStatus {
kQ3ViewStatusDone,
kQ3ViewStatusRetraverse,
kQ3ViewStatusError,
kQ3ViewStatusCancelled

} TQ3ViewStatus;

If Q3View_EndBoundingSphere returns kQ3ViewStatusDone, the bounding sphere
calculation has completed. At that point, it is safe to exit your bounding loop.
The result parameter contains the bounding sphere.

If Q3View_EndBoundingSphere returns kQ3ViewStatusRetraverse, the bounding
sphere calculation has not yet completed. You should respecify the model by
reentering your bounding loop.

If Q3View_EndBoundingSphere returns kQ3ViewStatusError, the bounding sphere
calculation has failed. You should exit the bounding loop.

If Q3View_EndBoundingSphere returns kQ3ViewStatusCancelled, the bounding
sphere calculation has been canceled. You should exit the bounding loop.

SPECIAL CONSIDERATIONS

You should call Q3View_EndBoundingSphere only if bounding sphere calculation
is already occurring.

C H A P T E R 1 3

View Objects

View Objects Reference 895

Q3View_IsBoundingBoxVisible 13

You can use the Q3View_IsBoundingBoxVisible function to determine whether a
bounding box is visible in a view (that is, whether it lies in the viewing
frustum).

TQ3Boolean Q3View_IsBoundingBoxVisible (
TQ3ViewObject view,
const TQ3BoundingBox *bbox);

view A view.

bbox A bounding box.

DESCRIPTION

The Q3View_IsBoundingBoxVisible function returns, as its function result, a
Boolean value that indicates whether the bounding box specified by the bbox
parameter is visible in the view specified by the view parameter (kQ3True) or is
not visible (kQ3False). Q3View_IsBoundingBoxVisible transforms the specified
bounding box by the view’s local-to-world transform and then determines
whether the box lies in the viewing frustum.

Setting Idle Methods 13

QuickDraw 3D provides a function that you can use to set a view’s idle method.
QuickDraw 3D executes your idle method occasionally during lengthy
operations. See “Application-Defined Routines” (page 909) for information on
writing an idle method.

IMPORTANT

Your application’s callback method may be called during a
hardware interrupt, and therefore it should not use
Macintosh Toolbox routines. To overcome this limitation,
an interrupt-level render completion function can set a
global variable, requesting Toolbox calls, that the client
polls at noninterrupt time. ▲

C H A P T E R 1 3

View Objects

896 View Objects Reference

Q3View_SetIdleMethod 13

You can use the Q3View_SetIdleMethod function to set a view’s idle method.

TQ3Status Q3View_SetIdleMethod (
TQ3ViewObject view,
TQ3ViewIdleMethod idleMethod,
const void *idlerData);

view A view.

idleMethod A pointer to an idle method.

idlerData A pointer to an application-defined block of data. This pointer is
passed to the idle method when it is executed.

DESCRIPTION

The Q3View_SetIdleMethod function sets the idle method of the view specified by
the view parameter to the function specified by the idleMethod parameter. The
idlerData parameter is passed to your callback routine whenever it is executed.

SPECIAL CONSIDERATIONS

Because your callback function may be called at hardware interrupt level, be
careful about using Macintosh Toolbox routines. To call the Toolbox, you may
want to set a global variable that you can later poll at noninterrupt level.

Writing Custom Data 13

QuickDraw 3D provides a function that you can use to write custom objects. In
general, you should call this function only within your custom write method.

Q3View_SubmitWriteData 13

You can use the Q3View_SubmitWriteData function to submit for writing the data
associated with a custom object.

C H A P T E R 1 3

View Objects

View Objects Reference 897

TQ3Status Q3View_SubmitWriteData (
TQ3ViewObject view,
TQ3Size size,
void *data,
void *deleteData);

view A view.

size The number of bytes of data to write. This value should be
aligned on 4-byte boundaries.

data A pointer to a buffer of data to be submitted for writing.

deleteData A pointer to a data-deletion method. This method is called after
your custom write method exits (whether or not the write
method succeeds or fails). The value of the data parameter is
passed as a parameter to your method.

DESCRIPTION

The Q3View_SubmitWriteData function submits the data specified by the data and
size parameters for writing in the view specified by the view parameter. You
can call Q3View_SubmitWriteData in a custom object-traversal method to write
the data of a custom object. Q3View_SubmitWriteData calls the write method
associated with that custom object type to actually write the data to a file object.
When the write method returns, Q3View_SubmitWriteData executes the
data-deletion method specified by the deleteData parameter.

SPECIAL CONSIDERATIONS

You should call this function only within a custom object-traversal method. See
the chapter “File Objects” for more information about traversal methods.

Pushing and Popping the Graphics State 13

QuickDraw 3D maintains a graphics state during rendering that contains
camera and lighting information, a transformation matrix stack, an attributes
stack, and a style stack. When it is traversing a hierarchical scene database,
QuickDraw 3D automatically pushes and pops graphics states onto and off the
graphics state stack.

C H A P T E R 1 3

View Objects

898 View Objects Reference

QuickDraw 3D provides routines that you can use to push and pop a graphics
state during the rendering of an image or other view operation. You can push a
graphics state by calling Q3Push_Submit. Subsequent rendering may alter the
graphics state by drawing materials, styles, and transforms. You can restore a
saved graphics state by calling Q3Pop_Submit. You’re likely to use these functions
only if you want to simulate the traversal of a hierarchical structure when
operating in immediate mode.

Q3Push_Submit 13

You can use the Q3Push_Submit function to push a graphics state onto the
graphics state stack.

TQ3Status Q3Push_Submit (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3Push_Submit function pushes the current graphics state of the view
specified by the view parameter onto the graphics state stack. There must be a
matching call to Q3Pop_Submit before the next call to Q3View_EndRendering.

SPECIAL CONSIDERATIONS

You should call Q3Push_Submit only in a submitting loop.

Q3Pop_Submit 13

You can use the Q3Pop_Submit function to pop a graphics state off the graphics
state stack.

TQ3Status Q3Pop_Submit (TQ3ViewObject view);

view A view.

C H A P T E R 1 3

View Objects

View Objects Reference 899

DESCRIPTION

The Q3Pop_Submit function pops the graphics state of the view specified by the
view parameter off the graphics state stack. Every call to Q3Pop_Submit must
match a previous call to Q3Push_Submit.

SPECIAL CONSIDERATIONS

You should call Q3Pop_Submit only in a submitting loop.

Getting a View’s Transforms 13

QuickDraw 3D provides routines that you can use to get matrix representations
of the transforms associated with a view.

IMPORTANT

You should call these routines only between calls to
Q3View_StartRendering and Q3View_EndRendering (or similar
submitting loops). If you call them at any other time, they
return kQ3Failure. ▲

Q3View_GetLocalToWorldMatrixState 13

You can use the Q3View_GetLocalToWorldMatrixState function to get a view’s
local-to-world transform matrix.

TQ3Status Q3View_GetLocalToWorldMatrixState (
TQ3ViewObject view,
TQ3Matrix4x4 *matrix);

view A view.

matrix On exit, a 4-by-4 matrix representing the local-to-world
transform of the specified view.

C H A P T E R 1 3

View Objects

900 View Objects Reference

DESCRIPTION

The Q3View_GetLocalToWorldMatrixState function returns, in the matrix
parameter, a 4-by-4 matrix that represents the local-to-world transform of the
view specified by the view parameter.

Q3View_GetWorldToFrustumMatrixState 13

You can use the Q3View_GetWorldToFrustumMatrixState function to get a view’s
world-to-frustum transform matrix.

TQ3Status Q3View_GetWorldToFrustumMatrixState (
TQ3ViewObject view,
TQ3Matrix4x4 *matrix);

view A view.

matrix On exit, a 4-by-4 matrix representing the world-to-frustum
transform of the specified view.

DESCRIPTION

The Q3View_GetWorldToFrustumMatrixState function returns, in the matrix
parameter, a 4-by-4 matrix that represents the world-to-frustum transform of
the view specified by the view parameter.

SPECIAL CONSIDERATIONS

You should call the Q3View_GetWorldToFrustumMatrixState function only from
within a rendering loop. Its behavior when called outside a rendering loop is
unpredictable.

Q3View_GetFrustumToWindowMatrixState 13

You can use the Q3View_GetFrustumToWindowMatrixState function to get a view’s
frustum-to-window transform matrix.

C H A P T E R 1 3

View Objects

View Objects Reference 901

TQ3Status Q3View_GetFrustumToWindowMatrixState (
TQ3ViewObject view,
TQ3Matrix4x4 *matrix);

view A view.

matrix On exit, a 4-by-4 matrix representing the frustum-to-window
transform of the specified view.

DESCRIPTION

The Q3View_GetFrustumToWindowMatrixState function returns, in the matrix
parameter, a 4-by-4 matrix that represents the frustum-to-window transform of
the view specified by the view parameter. The window is either the pixmap
associated with a pixmap draw context or the window associated with a
window draw context (for example, the Macintosh draw context). If, in a
window system draw context, a part of a window (a pane) has been associated
with the view, this function returns the matrix that maps the view frustum to
that part of the window.

The z value of a point pw in window space obtained by applying the transform
returned by Q3View_GetFrustumToWindowMatrixState to a point pf in the frustum
space is the z value of point pf (which ranges from 0.0 to 1.0, inclusive). You
might use the z value of a transformed point to determine whether that point
would be clipped (if the z value is less than 0 or greater than 1.0, the original
point lies outside the viewing frustum).

Managing a View’s Style States 13

QuickDraw 3D provides routines that you can use to get information about the
style state of a view.

Note
For information about styles and style types, see the
chapter “Style Objects.” ◆

C H A P T E R 1 3

View Objects

902 View Objects Reference

Q3View_GetBackfacingStyleState 13

You can use the Q3View_GetBackfacingStyleState function to get the current
backfacing style of a view.

TQ3Status Q3View_GetBackfacingStyleState (
TQ3ViewObject view,
TQ3BackfacingStyle *backfacingStyle);

view A view.

backfacingStyle
On exit, the current backfacing style of the specified view.

DESCRIPTION

The Q3View_GetBackfacingStyleState function returns, in the backfacingStyle
parameter, the current backfacing style of the view specified by the view
parameter.

Q3View_GetInterpolationStyleState 13

You can use the Q3View_GetInterpolationStyleState function to get the current
interpolation style of a view.

TQ3Status Q3View_GetInterpolationStyleState (
TQ3ViewObject view,
TQ3InterpolationStyle *interpolationType);

view A view.

interpolationType
On exit, the current interpolation style of the specified view.

DESCRIPTION

The Q3View_GetInterpolationStyleState function returns, in the
interpolationType parameter, the current interpolation style of the view
specified by the view parameter.

C H A P T E R 1 3

View Objects

View Objects Reference 903

Q3View_GetFillStyleState 13

You can use the Q3View_GetFillStyleState function to get the current fill style of
a view.

TQ3Status Q3View_GetFillStyleState (
TQ3ViewObject view,
TQ3FillStyle *fillStyle);

view A view.

fillStyle On exit, the current fill style of the specified view.

DESCRIPTION

The Q3View_GetFillStyleState function returns, in the fillStyle parameter, the
current fill style of the view specified by the view parameter.

Q3View_GetHighlightStyleState 13

You can use the Q3View_GetHighlightStyleState function to get the current
highlight style of a view.

TQ3Status Q3View_GetHighlightStyleState (
TQ3ViewObject view,
TQ3AttributeSet *highlightStyle);

view A view.

highlightStyle
On exit, the current highlight style of the specified view.

DESCRIPTION

The Q3View_GetHighlightStyleState function returns, in the highlightStyle
parameter, the current highlight style of the view specified by the view
parameter. You are responsible for disposing of the returned attribute set (by
calling Q3Object_Dispose) when you are done using it.

C H A P T E R 1 3

View Objects

904 View Objects Reference

Q3View_GetSubdivisionStyleState 13

You can use the Q3View_GetSubdivisionStyleState function to get the current
subdivision style of a view.

TQ3Status Q3View_GetSubdivisionStyleState (
TQ3ViewObject view,
TQ3SubdivisionStyleData *subdivisionStyle);

view A view.

subdivisionStyle
On exit, the current subdivision style of the specified view.

DESCRIPTION

The Q3View_GetSubdivisionStyleState function returns, in the subdivisionStyle
parameter, the current subdivision style of the view specified by the view
parameter.

Q3View_GetOrientationStyleState 13

You can use the Q3View_GetOrientationStyleState function to get the current
frontfacing direction style of a view.

TQ3Status Q3View_GetOrientationStyleState (
TQ3ViewObject view,
TQ3OrientationStyle *fontFacingDirectionStyle);

view A view.

fontFacingDirectionStyle
On exit, the current frontfacing direction style of the specified
view.

C H A P T E R 1 3

View Objects

View Objects Reference 905

DESCRIPTION

The Q3View_GetOrientationStyleState function returns, in the
fontFacingDirectionStyle parameter, the current frontfacing direction style of
the view specified by the view parameter.

Q3View_GetReceiveShadowsStyleState 13

You can use the Q3View_GetReceiveShadowsStyleState function to get the current
shadow-receiving style of a view.

TQ3Status Q3View_GetReceiveShadowsStyleState (
TQ3ViewObject view,
TQ3Boolean *receives);

view A view.

receives On exit, the current shadow-receiving style of the specified
view.

DESCRIPTION

The Q3View_GetReceiveShadowsStyleState function returns, in the receives
parameter, the current shadow-receiving style of the view specified by the view
parameter.

Q3View_GetPickIDStyleState 13

You can use the Q3View_GetPickIDStyleState function to get the current picking
ID style of a view.

TQ3Status Q3View_GetPickIDStyleState (
TQ3ViewObject view,
unsigned long *pickIDStyle);

view A view.

pickIDStyle On exit, the current picking ID style of the specified view.

C H A P T E R 1 3

View Objects

906 View Objects Reference

DESCRIPTION

The Q3View_GetPickIDStyleState function returns, in the pickIDStyle parameter,
the current picking ID style of the view specified by the view parameter.

Q3View_GetPickPartsStyleState 13

You can use the Q3View_GetPickPartsStyleState function to get the current
picking parts style of a view.

TQ3Status Q3View_GetPickPartsStyleState (
TQ3ViewObject view,
TQ3PickParts *pickPartsStyle);

view A view.

pickPartsStyle
On exit, the current picking parts style of the specified view.

DESCRIPTION

The Q3View_GetPickPartsStyleState function returns, in the pickPartsStyle
parameter, the current picking parts style of the view specified by the view
parameter.

Q3View_GetAntiAliasStyleState 13

You can use the Q3View_GetAntiAliasStyleState function to determine the state
of antialiasing in a view.

TQ3Status Q3View_GetAntiAliasStyleState(
TQ3ViewObject view,
TQ3AntiAliasStyleData *antiAliasData);

view A view.

antiAliasData Pointer to an antialias style data structure.

C H A P T E R 1 3

View Objects

View Objects Reference 907

DESCRIPTION

The Q3View_GetAntiAliasStyleState function must be called within a rendering
loop. It returns the current state of the antialiasing style of the specified
TQ3ViewObject view in a TQ3AntiAliasStyleData structure whose pointer is passed as
antiAliasData.

Managing a View’s Attribute Set 13

QuickDraw 3D provides routines that you can use to manage a view’s attribute
set.

Q3View_GetDefaultAttributeSet 13

You can use the Q3View_GetDefaultAttributeSet function to get the default
attribute set associated with a view.

TQ3Status Q3View_GetDefaultAttributeSet (
TQ3ViewObject view,
TQ3AttributeSet *attributeSet);

view A view.

attributeSet On exit, the default attribute set associated with the specified
view.

DESCRIPTION

The Q3View_GetDefaultAttributeSet function returns, in the attributeSet
parameter, the default attribute set of the view specified by the view parameter.
QuickDraw 3D supplies a default set of attributes for every view so that you
can safely render a view without having to set a value for each attribute. The
default attribute values are defined by constants:

#define kQ3ViewDefaultAmbientCoefficient1.0
#define kQ3ViewDefaultDiffuseColor 0.5, 0.5, 0.5
#define kQ3ViewDefaultSpecularColor 0.5, 0.5, 0.5
#define kQ3ViewDefaultSpecularControl 4.0
#define kQ3ViewDefaultTransparency 1.0, 1.0, 1.0

C H A P T E R 1 3

View Objects

908 View Objects Reference

#define kQ3ViewDefaultHighlightColor 1.0, 0.0, 0.0
#define kQ3ViewDefaultSubdivisionMethod kQ3SubdivisionMethodScreenSpace
#define kQ3ViewDefaultSubdivisionC1 20.0
#define kQ3ViewDefaultSubdivisionC2 20.0

Q3View_SetDefaultAttributeSet 13

You can use the Q3View_SetDefaultAttributeSet function to set the default
attribute set associated with a view.

TQ3Status Q3View_SetDefaultAttributeSet (
TQ3ViewObject view,
TQ3AttributeSet attributeSet);

view A view.

attributeSet The default attribute set to be associated with the specified view.

DESCRIPTION

The Q3View_SetDefaultAttributeSet function sets the default attribute set of the
view specified by the view parameter to the set specified in the attributeSet
parameter.

Q3View_GetAttributeSetState 13

You can use the Q3View_GetAttributeSetState function to get the current
attribute set associated with a view.

TQ3Status Q3View_GetAttributeSetState (
TQ3ViewObject view,
TQ3AttributeSet *attributeSet);

view A view.

attributeSet On exit, the attribute set currently associated with the specified
view.

C H A P T E R 1 3

View Objects

View Objects Reference 909

DESCRIPTION

The Q3View_GetAttributeSetState function returns, in the attributeSet
parameter, the current attribute set of the view specified by the view parameter.

Q3View_GetAttributeState 13

You can use the Q3View_GetAttributeState function to get the state of a view’s
attribute.

TQ3Status Q3View_GetAttributeState (
TQ3ViewObject view,
TQ3AttributeType attributeType,
void *data);

view A view.

attributeType An attribute type.

data On exit, a pointer to the attribute data associated with the
specified attribute type.

DESCRIPTION

The Q3View_GetAttributeState function returns, in the data parameter, a pointer
to the attribute data associated with the attribute type specified by the
attributeType parameter in the attribute set of the view specified by the view
parameter. If the value NULL is returned in the data parameter, there is no
attribute of the specified type in the view’s attribute set.

Application-Defined Routines 13

QuickDraw 3D allows you to specify idle methods that QuickDraw 3D can call
occasionally during lengthy operations. Two tools, TQ3ViewIdleProgressMethod
and TQ3ViewEndFrameMethod, provide progress and end-of-frame information.
They can be called only from a renderer plug-in module.

C H A P T E R 1 3

View Objects

910 View Objects Reference

TQ3ViewIdleMethod 13

You can define an idle method to receive occasional callbacks to your
application during lengthy operations.

typedef TQ3Status (*TQ3ViewIdleMethod) (
TQ3ViewObject view,
const void *idleData);

view A view.

idleData A pointer to an application-defined block of data.

DESCRIPTION

Your TQ3ViewIdleMethod function is called occasionally during lengthy
operations, such as rendering a complex model. You can use an idle method to
provide a means for the user to cancel the lengthy operation (for example, by
clicking a button or pressing a key sequence such as Command-period).

If your idle method returns kQ3Success, QuickDraw 3D continues its current
operation. If your idle method returns kQ3Failure, QuickDraw 3D cancels its
current operation and returns kQ3ViewStatusCancelled the next time you call
Q3View_EndRendering or a similar function. You should not call Q3View_Cancel (or
any other QuickDraw 3D routine) inside your idle method.

There is currently no way to indicate how often you want your idle method to
be called. You can read the time maintained by the Operating System if you
need to determine the amount of time that has elapsed since your idle method
was last called.

SPECIAL CONSIDERATIONS

You must not call any QuickDraw 3D routines inside your idle method. In
particular, you must not change any of the settings of the view being rendered
or call Q3View_StartRendering on that same view.

Some renderers (particularly those that use hardware accelerators) might not
support idle methods.

C H A P T E R 1 3

View Objects

View Objects Reference 911

TQ3ViewIdleProgressMethod 13

You can use the TQ3ViewIdleProgressMethod function to to register callback
routines that the view can call during long operations. It helps provide data for
a user interface indicator showing progress, and may also be used to interrupt
long renderings or traversals. Within the idler callback code, the application can
check for a cancel button or command key combination that lets the user
interrupt rendering.

TQ3ViewIdleProgressMethod can be called only from a renderer plug-in module.

TQ3Status Q3View_SetIdleProgressMethod(
TQ3ViewObject view,
TQ3ViewIdleProgressMethod idleMethod,
const void *idleData);

view A view.

idleMethod An idle method (see below).

idleData A pointer to an application-defined block of data.

typedef TQ3Status (*TQ3ViewIdleProgressMethod)(
TQ3ViewObject view,
const void *idlerData,
unsigned long current,
unsigned long completed);

view A view.

idlerData A pointer to an application-defined block of data. This pointer is
passed to the idle method when it is executed.

current Numerator of progress fraction. Its value is always less than the
value of completed.

completed Denominator of progress fraction. The value of
current/completed gives the degree of completion.

DESCRIPTION

TQ3ViewIdleProgressMethod registers a callback that also returns progress
information. This information is supplied by the renderer, and may or may not

C H A P T E R 1 3

View Objects

912 View Objects Reference

be based on real time. If a renderer doesn't support the progress method, your
method will be called with current and completed both set to 0. Otherwise, you
are certain to get called at least twice:

■ once idleMethod(view, 0, n) Initialize, show dialog

■ 0 or more times idleMethod(view, 1..n-1, n) Update progress

■ once idleMethod(view, n, n) Exit, hide dialog

There is no way to set timer intervals when you want to be called—it is up to
the application’s idler callback to check clock times to see how long ago the
application was called. TQ3ViewIdleProgressMethod returns kQ3Failure to cancel
rendering, kQ3Success to continue. It does not post errors.

SPECIAL CONSIDERATIONS

Because your callback function may be called at hardware interrupt level, be
careful about using Macintosh Toolbox routines. To call the Toolbox, you may
want to set a global variable that you can later poll at noninterrupt level.

▲ W AR N I N G

It is not legal to call QD3D routines inside an idler callback. ▲

TQ3ViewEndFrameMethod 13

You can use the TQ3ViewEndFrameMethod function to determine when an
asynchronous renderer has completed rendering a frame.

TQ3ViewEndFrameMethod can be called only from a renderer plug-in module.

TQ3Status Q3View_SetEndFrameMethod(
TQ3ViewObject view,
TQ3ViewEndFrameMethod endFrame,
void *endFrameData);

view A view.

endFrame An end-of-frame method (see below).

endFrameData A pointer to an application-defined block of data.

C H A P T E R 1 3

View Objects

View Errors, Warnings, and Notices 913

typedef void (*TQ3ViewEndFrameMethod)(
TQ3ViewObject view,
void *endFrameData);

view A view.

endFrameData A pointer to an application-defined block of data.

DESCRIPTION

TQ3ViewEndFrameMethod provides an alternative to Q3View_Sync for determining
when an asynchronous renderer has completed rendering a frame. With
Q3View_Sync, the application asks a renderer to finish rendering a frame and
blocks until the frame is complete. With TQ3ViewEndFrameMethod, the renderer
tells the application that it has completed a frame.

IMPORTANT

If Q3View_Sync is called before TQ3ViewEndFrameMethod has
been called, TQ3ViewEndFrameMethod will never be called. If
Q3View_Sync is called after TQ3ViewEndFrameMethod has been
called, Q3View_Sync will return immediately because the
frame has already been completed. ▲

View Errors, Warnings, and Notices 13

The following errors, warnings, and notices may be returned by view object
routines. A list of general QuickDraw 3D errors is given in “QuickDraw 3D
Errors, Warnings, and Notices” (page 87).

kQ3ErrorViewNotStarted kQ3ErrorPickingNotStarted
kQ3ErrorViewIsStarted kQ3ErrorBoundsNotStarted
kQ3ErrorRendererNotSet kQ3ErrorDataNotAvailable
kQ3ErrorRenderingIsActive kQ3ErrorNothingToPop
kQ3ErrorImmediateModeUnderflow kQ3WarningViewTraversalInProgress
kQ3ErrorDisplayNotSet kQ3WarningNonInvertibleMatrix
kQ3ErrorCameraNotSet kQ3NoticeViewSyncCalledAgain
kQ3ErrorDrawContextNotSet
kQ3ErrorNonInvertibleMatrix
kQ3ErrorRenderingNotStarted

C H A P T E R 1 3

View Objects

914 View Errors, Warnings, and Notices

About Shader Objects 915

C H A P T E R 1 4

Shader Objects 14Figure 14-0
Listing 14-0
Table 14-0

This chapter describes shader objects (or shaders) and the functions you can use
to manipulate them. You use shaders to provide shading and other effects to the
objects in a model. For example, you can use a texture shader to apply a texture
to the surface of an object in a model.

To use this chapter, you should already be familiar with views and lights,
described in the chapters “View Objects” and “Light Objects” earlier in this
book.

This chapter begins by describing shader objects and their features. Then it
shows how to create and manipulate shaders. The section “Shader Objects
Reference,” beginning on page 928 provides a complete description of shader
objects and the routines you can use to create and manipulate them.

About Shader Objects 14

A shader object (or, more briefly, a shader) is a type of QuickDraw 3D object
that you can use to manipulate visual effects that depend on the illumination
provided by a view’s group of lights, the color and other material properties
(such as the reflectance and texture) of surfaces in a model, and the position and
orientation of the lights and objects in a model. Shaders that affect the surfaces
of geometric objects based on their material properties, position, and orientation
(and other factors) are surface-based shaders. QuickDraw 3D supplies several
surface-based shaders, and you can define your own custom surface-based
shaders to create other special effects. For instance, you can define a custom
surface-based shader to handle custom attributes you have attached to surfaces
or parts of surfaces.

The application of surface-based shaders occurs within the QuickDraw 3D
shading architecture, an environment in which shaders can be applied at

C H A P T E R 1 4

Shader Objects

916 About Shader Objects

various stages in the imaging pipeline. This architecture provides well-defined
entry points at specific locations along the imaging pipeline. At each such
location, you can invoke a shader. This capability allows you to create both
two-dimensional and three-dimensional visual effects.

The QuickDraw 3D shading architecture is implemented using an object-based
class hierarchy. For each location in the imaging pipeline at which a shader can
be invoked, a subclass of the shader object has been defined. The following
sections describe the available classes of shader objects.

Surface-Based Shaders 14

Several of the base classes of shaders apply shading effects to the surfaces of
geometric objects.

■ Surface shaders are applied when calculating the appearance of a surface.
A geometric object (or group of geometric objects) can be associated with a
surface shader, which is called to evaluate the shading effect for each face,
vertex, or pixel of the object. QuickDraw 3D currently defines one subclass of
surface shaders:

n Texture shaders apply shading to an object using a texture. See “Textures”
(page 922) for more information on textures and texture shaders.

■ Illumination shaders determine the effects of the view’s group of lights on
the objects in a model. QuickDraw 3D currently defines three subclasses of
illumination shaders. See “Illumination Models” (page 916) for more
information on these illumination models.

n The Lambert illumination shader implements a Lambert illumination
model.

n The Phong illumination shader implements a Phong illumination model.

n The null illumination shader draws objects using only the diffuse colors
of those objects, ignoring the view’s group of lights.

Illumination Models 14

As you’ve seen, an illumination shader determines the effects of a view’s group
of lights on the objects in a model. In order for the lights to have any effect, you
must attach an illumination shader to the view. QuickDraw 3D provides three
types of illumination shaders.

C H A P T E R 1 4

Shader Objects

About Shader Objects 917

Lambert Illumination 14

The Lambert illumination shader implements an illumination model based on
the diffuse reflection (also called the Lambertian reflection) of a surface. Diffuse
reflection is characteristic of light reflected from a dull, nonshiny surface.
Objects illuminated solely by diffusely reflected light exhibit an equal light
intensity from all viewing directions. Figure 14-1 shows an object illuminated
using the Lambert illumination shader. See also Color Plate 4 at the beginning
of this book.

Figure 14-1 Effects of the Lambert illumination shader

For a point on a surface, the Lambert illumination provided by i distinct lights
is given by the following equation:

Here, Ia is the intensity of the ambient light, and ka is the ambient coefficient. Od
is the diffuse color of the surface of the object being illuminated. N is the surface
normal vector at the point whose illumination is being evaluated, and Li is a
normalized vector indicating the direction to the ith light source. Notice that if
the dot product (N ⋅ Li) is 0 for a particular light (that is, if N and Li are
perpendicular), that light contributes nothing to the illumination of the point.
Ii is the intensity of the ith light source, and kd is the diffuse coefficient of the
surface being illuminated (that is, the level of diffuse reflection of the surface).

I Lambert I akaOd N Li•()I ikdOd
i

∑+=

C H A P T E R 1 4

Shader Objects

918 About Shader Objects

As you can see, the intensity of the light reflected by a point on a surface
depends solely on the ambient light and the diffuse reflection of the surface at
that point.

Note
QuickDraw 3D does not currently provide a way to set the
value of the diffuse coefficient of a surface directly. Instead,
you must use the product kdOd as the surface’s diffuse
color. You specify a diffuse color by inserting an attribute of
type kQ3AttributeTypeDiffuseColor into the surface’s
attribute set. ◆

Phong Illumination 14

The Phong illumination shader implements an illumination model based on
both diffuse reflection and specular reflection of a surface. Specular reflection is
characteristic of light reflected from a shiny surface, where a bright highlight
appears from certain viewing directions. Figure 14-2 shows an object
illuminated using the Phong illumination shader. See also Color Plate 4 at the
beginning of this book.

Figure 14-2 Effects of the Phong illumination shader

C H A P T E R 1 4

Shader Objects

About Shader Objects 919

For a point on a surface, the Phong illumination provided by i distinct lights is
given by the following equation:

Notice that the Phong illumination equation is simply the Lambert illumination
equation with an additional summand to account for specular reflection. Here,
R is the direction of reflection and V is the direction of viewing. The exponent n
is the specular reflection exponent, and ks is the specular reflection coefficient.
The specular reflection exponent determines how quickly the specular
reflection diminishes as the viewing direction moves away from the direction of
reflection. In other words, the specular reflection exponent determines the size
of the specular highlight (a bright area on the surface of the object caused by
specular reflection). When the value of n is small, the size of the specular
highlight is large; as n increases, the size of the specular highlight shrinks.

Note
Note that setting the specular reflection exponent to 0
results in no specular reflection (because n0 = 1 for any
number n). Moreover, values between 0 and 1 reduce the
amount of specular reflection. In general, the specular
reflection exponent should be a value greater than or equal
to 1. ◆

The specular coefficient (or specular reflection coefficient), symbolized by ks in
the equation above, indicates the level of the object’s specular reflection. It
controls the overall brightness of the specular highlight, independent of the
brightness of the light sources and the direction of viewing.

Figure 14-3 shows an object illuminated using a variety of values for the
specular reflection exponent and the specular coefficient. In this figure, the
specular reflection exponent increases from left to right, resulting in a smaller
specular highlight. In addition, the specular coefficient increases from top to
bottom, resulting in a brighter specular highlight.

I Phong I akaOd N Li•()I ikdOd() R V•()n
ks()+[]

i
∑+=

C H A P T E R 1 4

Shader Objects

920 About Shader Objects

Note
A surface’s specular reflection coefficient is also called its
specular control. You specify a specular reflection
coefficient by inserting an attribute of type
kQ3AttributeTypeSpecularControl into the surface’s
attribute set. ◆

Figure 14-3 Phong illumination with various specular exponents and coefficients

C H A P T E R 1 4

Shader Objects

About Shader Objects 921

Null Illumination 14

The null illumination shader ignores the lights in a view’s light group and
configures the renderer to draw all objects using only the diffuse colors of those
objects. The net effect of the this shader is to draw objects as if the only light
source was an ambient light at full intensity. Figure 14-4 shows an object
illuminated using the null illumination shader.

Figure 14-4 Effects of the null illumination shader

For any point on a surface, the null illumination is given by the following
equation:

Here, Od is the diffuse color of the surface of the object being illuminated. As
you can see, when the null illumination shader is active, all facets of an object
are drawn the same color (unless different facets have attribute sets that
override the diffuse color of the object).

I null Od=

C H A P T E R 1 4

Shader Objects

922 Using Shader Objects

Textures 14

As indicated earlier, QuickDraw 3D supports texture shaders that allow you to
perform texture mapping, a technique wherein a predefined image (the texture)
is mapped onto the surface of an object in a model. For instance, you can create
a wood-grain image and map it onto objects in a model to give those objects a
wooden appearance. Similarly, you can digitize an image of a person and apply
it, using a texture shader, to the face of an object to create a picture, in the
model, of that person. In general, you’ll use texture shaders to create
realistic-looking surfaces (such as wood, stone, or cloth) in your models.

You create a texture shader by calling Q3TextureShader_New, passing it a texture
object (or, more briefly, a texture). QuickDraw 3D provides a number of
functions that you can use to create and manipulate texture objects. Currently
QuickDraw 3D supports one subclass of texture objects, pixmap texture
objects, which are images defined by pixmaps. You call Q3PixmapTexture_New to
create a new texture object from a pixmap.

Note
See the chapter “Geometric Objects” for information on
pixmaps. ◆

Once you’ve created a texture from a pixmap, you need to attach the texture to
surfaces in your model. See “Using Texture Shaders” (page 923) for details.

Using Shader Objects 14

QuickDraw 3D supplies routines that you use to create and configure shader
objects. You can make a shader’s effects appear in a rendered image in several
ways. You can submit the shader inside a rendering loop, or you can add the
shader to a group and submit the group inside a rendering loop. These ways of
applying a shader are all equally good, and which of them you use depends on
the circumstances. For instance, if you put a shader object into an unordered
display group, it will affect only the objects following it in the group.

C H A P T E R 1 4

Shader Objects

Using Shader Objects 923

Using Illumination Shaders 14

You create an illumination shader by calling the _New function for the type of
illumination model you want to use. For example, to use Phong illumination,
you can call the Q3PhongIllumination_New function.

Once you’ve created an illumination shader, you apply it to the objects in a
model by submitting the shader inside of a submitting loop, or by adding it to a
group that is submitted in a submitting loop. For instance, to apply Phong
illumination to all the objects in a model, you can call the function
Q3Shader_Submit in your rendering loop, as shown in Listing 14-1.

Listing 14-1 Applying an illumination shader

Q3View_StartRendering(myView);
do {

Q3Shader_Submit(myPhongShader, myView);

/*submit styles, groups, and other objects here*/

myViewStatus = Q3View_EndRendering(myView);
} while (myViewStatus == kQ3ViewStatusRetraverse);

Using Texture Shaders 14

You create a texture shader by calling the Q3TextureShader_New function,
to which you pass a texture object. QuickDraw 3D currently supports only
pixmap texture objects, which you create by calling the Q3PixMapTexture_New
function.

Once you’ve created a texture shader, you can apply it to all the objects in a
model by submitting the shader inside of a rendering loop, as shown in
Listing 14-2.

Listing 14-2 Applying a texture shader in a submitting loop

Q3View_StartRendering(myView);
do {

Q3Shader_Submit(myTextureShader, myView);

C H A P T E R 1 4

Shader Objects

924 Using Shader Objects

/*submit styles, groups, and other objects here*/

myViewStatus = Q3View_EndRendering(myView);
} while (myViewStatus == kQ3ViewStatusRetraverse);

You can apply the shader to the objects in a group by adding it to a group that is
submitted in a rendering loop, as shown in Listing 14-3. (The myGroup group is
an ordered display group.)

Listing 14-3 Applying a texture shader in a group

Q3Group_AddObject(myGroup, myTextureShader);

Q3View_StartRendering(myView);
do {

Q3Group_Submit(myGroup, myView);
myViewStatus = Q3View_EndRendering(myView);

} while (myViewStatus == kQ3ViewStatusRetraverse);

You can also apply a texture shader to all the objects in a model by adding the
shader as an attribute of type kQ3AttributeTypeSurfaceShader to the view’s
attribute set. Similarly, you can attach the texture shader to a part of a geometric
object as an attribute. For example, you can attach a texture shader to the face of
a cube or a mesh to have that face shaded with a texture. Listing 14-4 illustrates
how to create a texture shader and use it to shade a triangle. Note that the
function MyCreateShadedTriangle defined in Listing 14-4 sets up a custom
surface parameterization for the triangle, because there is no standard surface
parameterization for a triangle.

Listing 14-4 Applying a texture shader as an attribute

TQ3GeometryObject MyCreateShadedTriangle (TQ3StoragePixmap myPixmap)
{

TQ3ShaderObject myShader;
TQ3TextureObject myTexture;
TQ3TriangleData myTriData;
TQ3GeometryObject myTriangle;

C H A P T E R 1 4

Shader Objects

Using Shader Objects 925

TQ3Param2D myParam2D;
TQ3Vertex3D myVertices[3] = {

{ { 0.5, 0.5, 0.0}, NULL },
{ {-0.5, 0.5, 0.0}, NULL },
{ {-0.5, -0.5, 0.0}, NULL }};

/*Create a new texture from the pixmap passed in.*/
myTexture = Q3PixmapTexture_New(&myPixmap);
if (myTexture == NULL)

return (NULL);
Q3Object_Dispose(myPixmap.image);

/*Create a new texture shader from the texture.*/
myShader = Q3TextureShader_New(myTexture);
if (myShader == NULL)

return (NULL);
Q3Object_Dispose(myTexture);

/*Configure triangle data.*/
/*First, attach uv values to the three vertices.*/
myParam2D.u = 0;
myParam2D.v = 0;
myVertices[0].attributeSet = Q3AttributeSet_New();
Q3AttributeSet_Add(myVertices[0].attributeSet, kQ3AttributeTypeShadingUV,

&myParam2D);
myParam2D.u = 0;
myParam2D.v = 1;
myVertices[1].attributeSet = Q3AttributeSet_New();
Q3AttributeSet_Add(myVertices[1].attributeSet, kQ3AttributeTypeShadingUV,

&myParam2D);
myParam2D.u = 1;
myParam2D.v = 1;
myVertices[2].attributeSet = Q3AttributeSet_New();
Q3AttributeSet_Add(myVertices[2].attributeSet, kQ3AttributeTypeShadingUV,

&myParam2D);

/*Define the triangle, using the vertices and uv values just set up.*/
myTriData.vertices[0] = myVertices[0];
myTriData.vertices[1] = myVertices[1];
myTriData.vertices[2] = myVertices[2];

C H A P T E R 1 4

Shader Objects

926 Using Shader Objects

/*Attach a texture surface shader as an attribute.*/
myTriData.triangleAttributeSet = Q3AttributeSet_New();
Q3AttributeSet_Add(myTriData.triangleAttributeSet,

kQ3AttributeTypeSurfaceShader, &myShader);

myTriangle = Q3Triangle_New(&myTriData);
Q3Object_Dispose(myVertices[0].attributeSet);
Q3Object_Dispose(myVertices[1].attributeSet);
Q3Object_Dispose(myVertices[2].attributeSet);

return(myTriangle);
}

The function MyCreateShadedTriangle defined in Listing 14-4 creates a texture
from the pixmap it is passed and then creates a new texture shader from that
texture. MyCreateShadedTriangle then attaches uv parameterization values to
each of the three triangle vertices and defines the triangle data. Finally,
MyCreateShadedTriangle creates a triangle and returns it to its caller. When the
triangle is drawn (perhaps by being submitted in a rendering loop), it will have
the specified texture mapped onto it.

Creating Storage Pixmaps 14

The data passed to the Q3PixmapTexture_New function (as in Listing 14-4
(page 924)) is a storage pixmap, of type TQ3StoragePixmap. The image field of a
storage pixmap specifies a storage object that contains the pixmap data to be
applied as a texture. You can call either Q3MemoryStorage_New or
Q3MemoryStorage_NewBuffer to create a storage object. Which function you use
depends on whether (1) you want QuickDraw 3D to maintain the image data in
an internal buffer or (2) you want to maintain the data in your own buffer.

To let QuickDraw 3D manage the pixmap data, you can assign the image field of
a storage pixmap using code like this:

myStoragePixmap.image = Q3MemoryStorage_New(myBuffer, mySize);

This code asks QuickDraw 3D to allocate a buffer internally, of the specified
size. Once Q3MemoryStorage_New returns successfully, you can dispose of the
buffer myBuffer, because QuickDraw 3D has copied the texture pixmap data
into its own internal memory.

C H A P T E R 1 4

Shader Objects

Using Shader Objects 927

If you prefer, you can maintain the pixmap data in your application’s memory
partition and avoid the overhead of having the data copied to internal
QuickDraw 3D memory. (This is especially useful if you want to animate a
texture by changing the texture pixmap data from frame to frame.) To do this,
you create a storage object by calling the Q3MemoryStorage_NewBuffer function,
like this:

myStoragePixmap.image = Q3MemoryStorage_NewBuffer
(myBuffer, mySize, mySize);

In this case, you should not dispose of the data buffer. You can change the
pixmap data by calling Q3MemoryStorage_SetBuffer.

Q3MemoryStorage_SetBuffer
(myStoragePixmap.image, myBuffer, mySize, mySize);

You need to call Q3MemoryStorage_SetBuffer to force QuickDraw 3D to update
any caches.

Note
You can also change the data of a storage object created by
a call to Q3MemoryStorage_New, by calling
Q3MemoryStorage_Set. ◆

Handling uv Values Outside the Valid Range 14

As you’ve seen, a uv parameterization defines how to map one object (for
example, a pixmap) onto another (typically a surface). The standard surface
parameterizations defined by QuickDraw 3D all use u and v parametric values
that are in the valid range 0.0 to 1.0. A custom surface parameterization,
however, is free to define some other range of u and v values. When this
happens, you need to indicate how you want QuickDraw 3D to handle uv
values outside the valid range.

Currently, QuickDraw 3D supports two boundary-handling methods:
wrapping and clamping. To wrap a shader effect is to replicate the entire effect
across the mapped area. For example, to wrap a texture is to replicate the
texture across the entire mapped area, as many times as are necessary to fill the
mapped area. To clamp a shader effect is to replicate the boundaries of the effect
across the portion of the mapped area that lies outside the valid range 0.0 to 1.0.

C H A P T E R 1 4

Shader Objects

928 Shader Objects Reference

You can specify the boundary-handling methods of the u and v directions
independently. You can call the Q3Shader_SetUBoundary function to indicate how
to handle values in the u parametric direction that lie outside the valid range,
and you can call the Q3Shader_SetVBoundary function to indicate how to handle
values in the v parametric direction that lie outside the valid range. The default
boundary-handling method is to wrap in both the u and v parametric
directions.

Shader Objects Reference 14

This section describes the constants, data structures, and routines you can use to
create and manipulate shaders and textures.

Constants 14

This section describes the constants that you use to specify uv
boundary-handling methods.

Boundary-Handling Methods 14

You use a boundary-handling method specifier to indicate how you want a
shader to handle uv values that are outside the valid range (namely, 0 to 1). For
example, you pass one of these constants to the Q3Shader_SetUBoundary function
to indicate how to handle values in the u parametric direction that lie outside
the valid range.

Note
For a fuller description of boundary-handling methods, see
“Handling uv Values Outside the Valid Range,” beginning
on page 927. ◆

typedef enum TQ3ShaderUVBoundary {
kQ3ShaderUVBoundaryWrap,
kQ3ShaderUVBoundaryClamp

} TQ3ShaderUVBoundary;

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 929

Constant descriptions

kQ3ShaderUVBoundaryWrap
Values outside the valid range are to be wrapped. To wrap
a shader effect is to replicate the entire effect across the
mapped area. For example, for a texture shader, wrapping
causes the entire image to be replicated across the surface
onto which the texture is mapped.

kQ3ShaderUVBoundaryClamp
Values outside the valid range are to be clamped. To clamp
a shader effect is to replicate the boundaries of the effect
across the portion of the mapped area that lies outside the
valid range. For example, for a texture shader, clamping
causes boundaries of the image to be smeared across the
portion of the surface onto which the texture is mapped
that lies outside the valid range.

Shader Objects Routines 14

This section describes the routines you can use to manage shaders and textures.

Managing Shaders 14

QuickDraw 3D provides routines that you can use to manage shaders.

Q3Shader_GetType 14

You can use the Q3Shader_GetType function to get the type of a shader object.

TQ3ObjectType Q3Shader_GetType (TQ3ShaderObject shader);

shader A shader object.

C H A P T E R 1 4

Shader Objects

930 Shader Objects Reference

DESCRIPTION

The Q3Shader_GetType function returns, as its function result, the type of the
shader object specified by the shader parameter. The types of shader objects
currently supported by QuickDraw 3D are defined by these constants:

kQ3ShaderTypeSurface
kQ3ShaderTypeIllumination

If the specified shader object is invalid or is not one of these types,
Q3Shader_GetType returns the value kQ3ObjectTypeInvalid.

Q3Shader_Submit 14

You can use the Q3Shader_Submit function to submit a shader in a view.

TQ3Status Q3Shader_Submit (
TQ3ShaderObject shader,
TQ3ViewObject view);

shader A shader.

view A view.

DESCRIPTION

The Q3Shader_Submit function submits the shader specified by the shader
parameter for drawing or writing in the view specified by the view parameter.

SPECIAL CONSIDERATIONS

You should call this function only in a submitting loop.

Managing Shader Characteristics 14

QuickDraw 3D provides routines for getting and setting characteristics that
define how a shader affects a surface.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 931

Q3Shader_GetUVTransform 14

You can use the Q3Shader_GetUVTransform function to get the current transform
in uv parametric space.

TQ3Status Q3Shader_GetUVTransform (
TQ3ShaderObject shader,
TQ3Matrix3x3 *uvTransform);

shader A shader.

uvTransform On exit, a pointer to the current transform in uv parametric
space.

DESCRIPTION

The Q3Shader_GetUVTransform function returns, in the uvTransform parameter,
the current transform in uv parametric space for the shader specified by the
shader parameter.

Q3Shader_SetUVTransform 14

You can use the Q3Shader_SetUVTransform function to set the transform in uv
parametric space.

TQ3Status Q3Shader_SetUVTransform (
TQ3ShaderObject shader,
const TQ3Matrix3x3 *uvTransform);

shader A shader.

uvTransform A pointer to the desired transform in uv parametric space.

DESCRIPTION

The Q3Shader_SetUVTransform function sets the transform in uv parametric space
for the shader specified by the shader parameter to the transform specified by
the uvTransform parameter. For example, a texture shader that relies on uv

C H A P T E R 1 4

Shader Objects

932 Shader Objects Reference

values to index a texture mapping can rotate, scale, or translate the texture by
setting appropriate values in the uv transform.

Q3Shader_GetUBoundary 14

You can use the Q3Shader_GetUBoundary function to get the current
boundary-handling method for u values that are outside the range 0 to 1.

TQ3Status Q3Shader_GetUBoundary (
TQ3ShaderObject shader,
TQ3ShaderUVBoundary *uBoundary);

shader A shader.

uBoundary On exit, a value that indicates the current method of handling u
values that are outside the range 0 to 1. See
“Boundary-Handling Methods” (page 928) for a description of
the values that can be returned.

DESCRIPTION

The Q3Shader_GetUBoundary function returns, in the uBoundary parameter, the
current method used by the shader specified by the shader parameter of
handling u values that are outside the range 0 to 1. If Q3Shader_GetUBoundary
completes successfully, the uBoundary parameter contains one of these values:

typedef enum TQ3ShaderUVBoundary {
kQ3ShaderUVBoundaryWrap,
kQ3ShaderUVBoundaryClamp

} TQ3ShaderUVBoundary;

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 933

Q3Shader_SetUBoundary 14

You can use the Q3Shader_SetUBoundary function to set the current
boundary-handling method for u values that are outside the range 0 to 1.

TQ3Status Q3Shader_SetUBoundary (
TQ3ShaderObject shader,
TQ3ShaderUVBoundary uBoundary);

shader A shader.

uBoundary A value that indicates the desired method of handling u values
that are outside the range 0 to 1. See “Boundary-Handling
Methods” (page 928) for a description of the values that you can
pass in this parameter.

DESCRIPTION

The Q3Shader_SetUBoundary function sets the boundary-handling method for u
values to be used by the shader specified by the shader parameter to the
method specified by the uBoundary parameter.

Q3Shader_GetVBoundary 14

You can use the Q3Shader_GetVBoundary function to get the current
boundary-handling mode for v values that are outside the range 0 to 1.

TQ3Status Q3Shader_GetVBoundary (
TQ3ShaderObject shader,
TQ3ShaderUVBoundary *vBoundary);

shader A shader.

vBoundary On exit, a value that indicates the current method of handling v
values that are outside the range 0 to 1. See
“Boundary-Handling Methods” (page 928) for a description of
the values that can be returned.

C H A P T E R 1 4

Shader Objects

934 Shader Objects Reference

DESCRIPTION

The Q3Shader_GetVBoundary function returns, in the vBoundary parameter, the
current method used by the shader specified by the shader parameter of
handling v values that are outside the range 0 to 1. If Q3Shader_GetVBoundary
completes successfully, the vBoundary parameter contains one of these values:

typedef enum TQ3ShaderUVBoundary {
kQ3ShaderUVBoundaryWrap,
kQ3ShaderUVBoundaryClamp

} TQ3ShaderUVBoundary;

Q3Shader_SetVBoundary 14

You can use the Q3Shader_SetVBoundary function to set the current
boundary-handling mode for v values that are outside the range 0 to 1.

TQ3Status Q3Shader_SetVBoundary (
TQ3ShaderObject shader,
TQ3ShaderUVBoundary vBoundary);

shader A shader.

vBoundary A value that indicates the desired method of handling v values
that are outside the range 0 to 1. See “Boundary-Handling
Methods” (page 928) for a description of the values that you can
pass in this parameter.

DESCRIPTION

The Q3Shader_SetVBoundary function sets the boundary-handling method for v
values to be used by the shader specified by the shader parameter to the
method specified by the vBoundary parameter.

Managing Surface Shaders 14

QuickDraw 3D provides routines that you can use to manage surface shaders.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 935

Q3SurfaceShader_GetType 14

You can use the Q3SurfaceShader_GetType function to get the type of a surface
shader.

TQ3ObjectType Q3SurfaceShader_GetType (TQ3SurfaceShaderObject shader);

shader A surface shader.

DESCRIPTION

The Q3SurfaceShader_GetType function returns, as its function result, the type of
the surface shader specified by the shader parameter. The types of surface
shaders currently supported by QuickDraw 3D are defined by these constants:

kQ3SurfaceShaderType_Texture

If the specified surface shader is invalid or is not one of these types,
Q3SurfaceShader_GetType returns the value kQ3ObjectTypeInvalid.

Managing Texture Shaders 14

QuickDraw 3D provides routines that you can use to create and manage texture
shaders.

Q3TextureShader_New 14

You can use the Q3TextureShader_New function to create a new texture shader.

TQ3ShaderObject Q3TextureShader_New (TQ3TextureObject texture);

texture A texture object.

DESCRIPTION

The Q3TextureShader_New function returns, as its function result, a new texture
shader that uses the texture specified by the texture parameter. If

C H A P T E R 1 4

Shader Objects

936 Shader Objects Reference

Q3TextureShader_New cannot create a new texture shader, it returns the value
NULL.

Q3TextureShader_GetTexture 14

You can use the Q3TextureShader_GetTexture function to get the texture
associated with a texture shader.

TQ3Status Q3TextureShader_GetTexture (
TQ3ShaderObject shader,
TQ3TextureObject *texture);

shader A texture shader.

texture On exit, the texture object currently associated with the specified
texture shader.

DESCRIPTION

The Q3TextureShader_GetTexture function returns, in the texture parameter, the
texture object currently associated with the texture shader specified by the
shader parameter.

Q3TextureShader_SetTexture 14

You can use the Q3TextureShader_SetTexture function to set the texture
associated with a texture shader.

TQ3Status Q3TextureShader_SetTexture (
TQ3ShaderObject shader,
TQ3TextureObject texture);

shader A texture shader.

texture The texture object to be associated with the specified texture
shader.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 937

DESCRIPTION

The Q3TextureShader_SetTexture function sets the texture object associated with
the texture shader specified by the shader parameter to the texture specified by
the texture parameter.

Managing Illumination Shaders 14

QuickDraw 3D provides routines that you can use to create and manage
illumination shaders. QuickDraw 3D supplies two types of illumination
shaders, Lambert illumination shaders and Phong illumination shaders.

Q3LambertIllumination_New 14

You can use the Q3LambertIllumination_New function to create a new
illumination shader that provides Lambert illumination.

TQ3ShaderObject Q3LambertIllumination_New (void);

DESCRIPTION

The Q3LambertIllumination_New function returns, as its function result, a new
illumination shader that implements a Lambert illumination model. See
“Illumination Models” (page 916) for information on the Lambert illumination
algorithm.

Q3PhongIllumination_New 14

You can use the Q3PhongIllumination_New function to create a new illumination
shader that provides Phong illumination.

TQ3ShaderObject Q3PhongIllumination_New (void);

C H A P T E R 1 4

Shader Objects

938 Shader Objects Reference

DESCRIPTION

The Q3PhongIllumination_New function returns, as its function result, a new
illumination shader that implements a Phong illumination model. See
“Illumination Models” (page 916) for information on the Phong illumination
algorithm.

Q3NULLIllumination_New 14

You can use the Q3NULLIllumination_New function to create a new null
illumination shader.

TQ3ShaderObject Q3NULLIllumination_New (void);

DESCRIPTION

The Q3NULLIllumination_New function returns, as its function result, a new null
illumination shader.

Q3IlluminationShader_GetType 14

You can use the Q3IlluminationShader_GetType function to get the type of an
illumination shader.

TQ3ObjectType Q3IlluminationShader_GetType (
TQ3ShaderObject shader);

shader An illumination shader.

DESCRIPTION

The Q3IlluminationShader_GetType function returns, as its function result, the
type of the illumination shader specified by the shader parameter. The types of
illumination shaders currently supported by QuickDraw 3D are defined by
these constants:

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 939

kQ3IlluminationTypeLambert
kQ3IlluminationTypePhong
kQ3IlluminationTypeNULL

If the specified illumination shader is invalid or is not one of these types,
Q3IlluminationShader_GetType returns the value kQ3ObjectTypeInvalid.

Managing Textures 14

QuickDraw 3D provides routines that you can use to get information about the
characteristics of a texture. You can get the dimensions of a texture, as well as
the number of channels and the number of bits per channel. You cannot,
however, reset any of these texture characteristics (they are determined at the
time you create a texture object). You can also get the current alpha and RGB
channels of a texture. You can reset these characteristics to achieve special
effects.

Note
To create a texture object, you need to create an instance of
some subclass of the texture class. For example, you can
create a pixmap texture object by calling
Q3PixmapTexture_New. See “Managing Pixmap Textures”
(page 941) for information on creating and manipulating
pixmap textures. ◆

Q3Texture_GetType 14

You can use the Q3Texture_GetType function to get the type of a texture object.

TQ3ObjectType Q3Texture_GetType (TQ3TextureObject texture);

texture A texture object.

DESCRIPTION

The Q3Texture_GetType function returns, as its function result, the type of the
texture object specified by the texture parameter. The type of texture objects
currently supported by QuickDraw 3D is defined by these constants:

C H A P T E R 1 4

Shader Objects

940 Shader Objects Reference

kQ3TextureTypePixmap
kQ3TextureTypeMipmap

If the specified texture object is invalid or is not of this type, Q3Texture_GetType
returns the value kQ3ObjectTypeInvalid.

Q3Texture_GetWidth 14

You can use the Q3Texture_GetWidth function to get the width of a texture.

TQ3Status Q3Texture_GetWidth (
TQ3TextureObject texture,
unsigned long *width);

texture A texture object.

width On exit, the width of the specified texture.

DESCRIPTION

The Q3Texture_GetWidth function returns, in the width parameter, the width of
the texture specified by the texture parameter.

Q3Texture_GetHeight 14

You can use the Q3Texture_GetHeight function to get the height of a texture.

TQ3Status Q3Texture_GetHeight (
TQ3TextureObject texture,
unsigned long *height);

texture A texture object.

height On exit, the height of the specified texture.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 941

DESCRIPTION

The Q3Texture_GetHeight function returns, in the height parameter, the height of
the texture specified by the texture parameter.

Managing Pixmap Textures 14

QuickDraw 3D provides routines that you can use to create and manipulate
pixmap textures.

Q3PixmapTexture_New 14

You can use the Q3PixmapTexture_New function to create a new pixmap texture.

TQ3TextureObject Q3PixmapTexture_New (const TQ3StoragePixmap *pixmap);

pixmap A storage pixmap.

DESCRIPTION

The Q3PixmapTexture_New function returns, as its function result, a new texture
object that uses the storage pixmap specified by the pixmap parameter. If
Q3PixmapTexture_New cannot create a new pixmap texture object, it returns the
value NULL.

Q3PixmapTexture_GetPixmap 14

You can use the Q3PixmapTexture_GetPixmap function to get the pixmap
associated with a pixmap texture object.

TQ3Status Q3PixmapTexture_GetPixmap (
TQ3TextureObject texture,
TQ3StoragePixmap *pixmap);

texture A pixmap texture object.

C H A P T E R 1 4

Shader Objects

942 Shader Objects Reference

pixmap On exit, the storage pixmap currently associated with the
specified pixmap texture object.

DESCRIPTION

The Q3PixmapTexture_GetPixmap function returns, in the pixmap parameter, the
pixmap currently associated with the pixmap texture object specified by the
texture parameter.

Q3PixmapTexture_SetPixmap 14

You can use the Q3PixmapTexture_SetPixmap function to set the pixmap
associated with a pixmap texture object.

TQ3Status Q3PixmapTexture_SetPixmap (
TQ3TextureObject texture,
const TQ3StoragePixmap *pixmap);

texture A pixmap texture object.

pixmap The storage pixmap to be associated with the specified pixmap
texture object.

DESCRIPTION

The Q3PixmapTexture_SetPixmap function sets the pixmap to be associated with
the pixmap texture object specified by the texture parameter to the pixmap
specified by the pixmap parameter.

Managing Mipmap Textures 14

QuickDraw 3D provides routines that you can use to create and manipulate
mipmap textures. A mipmap is stored in a structure of type TQ3Mipmap, which
may contain up to 32 images of type TQ3MipmapImage:

typedef struct TQ3Mipmap {
TQ3StorageObject image;
TQ3Boolean useMipmapping;

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 943

TQ3PixelType pixelType;
TQ3Endian bitOrder;
TQ3Endian byteOrder;
unsigned long reserved; /* NULL */
TQ3MipmapImage mipmaps[32];

} TQ3Mipmap;

typedef struct TQ3MipmapImage {
unsigned long width;
unsigned long height;
unsigned long rowBytes;
unsigned long offset;

} TQ3MipmapImage;

Field descriptions
image A storage object containing the texture map; if

useMipmapping is kQ3True, it contains the mipmap data.
useMipmapping kQ3True if mipmapping should be used and all mipmaps

are provided.
mipmaps Images of type TQ3MipmapImage. The actual number of

mipmaps is determined by the size of the first mipmap.
width Width of the mipmap; must be a power of 2.
height Height of the mipmap; must be a power of 2.
rowBytes Rowbytes of the mipmap.
offset Offset from the image base to this mipmap.

Q3MipmapTexture_New 14

You can use the Q3MipmapTexture_New function to create a new mipmap texture.

TQ3TextureObject Q3MipmapTexture_New (const TQ3Mipmap *mipmap);

mipmap A mipmap.

C H A P T E R 1 4

Shader Objects

944 Shader Objects Reference

DESCRIPTION

The Q3MipmapTexture_New function returns, as its function result, a new texture
object that uses the mipmap specified by the mipmap parameter. If
Q3MipmapTexture_New cannot create a new mipmap texture object, it returns the
value NULL.

Q3MipmapTexture_GetMipmap 14

You can use the Q3MipmapTexture_GetMipmap function to get the mipmap
associated with a mipmap texture object.

TQ3Status Q3MipmapTexture_GetMipmap (
TQ3TextureObject texture,
TQ3Mipmap *mipmap);

texture A mipmap texture object.

mipmap On exit, the mipmap currently associated with the specified
mipmap texture object.

DESCRIPTION

The Q3MipmapTexture_GetMipmap function returns, in the mipmap parameter, the
mipmap currently associated with the mipmap texture object specified by the
texture parameter.

Q3MipmapTexture_SetMipmap 14

You can use the Q3MipmapTexture_SetMipmap function to set the mipmap
associated with a mipmap texture object.

TQ3Status Q3MipmapTexture_SetMipmap (
TQ3TextureObject texture,
const TQ3Mipmap *mipmap);

texture A mipmap texture object.

C H A P T E R 1 4

Shader Objects

Shader Objects Reference 945

mipmap The mipmap to be associated with the specified mipmap texture
object.

DESCRIPTION

The Q3MipmapTexture_SetMipmap function sets the mipmap to be associated with
the mipmap texture object specified by the texture parameter to the mipmap
specified by the mipmap parameter.

C H A P T E R 1 4

Shader Objects

946 Shader Objects Reference

About Pick Objects 947

C H A P T E R 1 5

Pick Objects 15Figure 15-0
Listing 15-0
Table 15-0

This chapter describes pick objects and the functions you can use to manipulate
them. You use pick objects to get a list of objects in a view that intersect a
specified geometric object (for example, objects the user has selected in an
image on the screen).

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects.” For
information about views, see the chapter “View Objects.” You do not, however,
need to know how to create or manipulate views.

This chapter begins by describing pick objects and their features. Then it shows
how to create and use pick objects. The section “Pick Objects Reference,”
beginning on page 961 provides a complete description of pick objects and the
routines you can use to create and manipulate them.

About Pick Objects 15

Picking is the process of identifying the objects in a view that are close to a
specified geometric object. You might, for example, want to determine which
objects in a view, if any, are sufficiently close to a particular ray. You’ll use
picking primarily to allow users to select objects in a view. Picking thereby
provides the foundation for user interaction with three-dimensional models.
You can, however, use picking for other purposes. You might, for example, use
picking to determine which objects in a model are visible from a particular
camera location.

Screen-space picking (or window picking) involves testing whether the
projections of three-dimensional objects onto the screen intersect or are close
enough to a specified two-dimensional object on the screen.

C H A P T E R 1 5

Pick Objects

948 About Pick Objects

QuickDraw 3D returns information about the picked geometric objects as they
are defined in three-dimensional space. For example, you might want to know
the distance of a picked object from some point. The distance reported by
QuickDraw 3D is always a three-dimensional world-space distance, not a
two-dimensional screen-space distance.

You perform a picking operation by creating a pick object (or, more briefly, a
pick). QuickDraw 3D provides a variety of routines that you can use to create
pick objects, depending on the desired picking method. For example, you can
call Q3WindowPointPick_New to create a pick object that selects objects in a view
whose projections onto the screen are close enough to a particular point. The
geometric object used in any picking method is the pick geometry.

To get the objects in the model that are close to the pick geometry, you must
submit the entire model. The code you use to do this is similar to the rendering
loop you use when drawing a model and therefore is called the picking loop.
(A picking loop is a type of submitting loop.) In a picking loop, however,
instead of drawing the model, you pick the model by calling routines such as
Q3DisplayGroup_Submit. See Listing 15-1 (page 956) for code that illustrates a
picking loop.

Once you’ve completely specified the model within a picking loop,
QuickDraw 3D can return to your application a list of all objects in the model
that are close to the pick geometry. This list is the hit list. You can search
through the returned hit list for individual items and obtain information about
those items. You can also specify an order in which you want the items in the
hit list to be sorted, and you can indicate in advance the kinds of objects you
want QuickDraw 3D to put into the hit list. For example, you can indicate that
you want QuickDraw 3D to put only entire objects into the hit list or that you
want QuickDraw 3D to put only parts of objects (that is, its component vertices,
edges, or faces) into the hit list.

Types of Pick Objects 15

A pick object is of type TQ3PickObject, which is one of the basic types of
QuickDraw 3D objects. QuickDraw 3D defines several subtypes of pick objects,
which are distinguished from one another by the pick geometry.

QuickDraw 3D provides two types of screen-space pick objects: window-point
pick objects and window-rectangle pick objects. These pick objects test for
closeness between the pick geometry (a point or rectangle in a window) and the
screen projections of the objects in the model. In general, you’ll use one of these

C H A P T E R 1 5

Pick Objects

About Pick Objects 949

two screen-space pick objects when using picking as the basis of user
interaction.

Note
There are many optimizations that can be used to
determine whether an object in a model is suitably close to
a pick geometry without having to perform all the
projections that otherwise would be required.
QuickDraw 3D uses these optimizations whenever
appropriate. ◆

Hit Identification 15

Once you have created a pick object and specified the model within a picking
loop, QuickDraw 3D determines which, if any, of the objects in the model are
suitably close to the pick geometry specified in the pick object. QuickDraw 3D
uses hit-tests that are appropriate to the specific pick object and the objects in
the model being tested. For example, if you’re using a window-point pick object
and your model contains a triangle, QuickDraw 3D tests whether the pick
geometry—a point—is inside the two-dimensional screen projection of the
triangle. If it is, QuickDraw 3D adds the triangle to the hit list.

For the window point pick geometry, QuickDraw 3D allows you to specify two
tolerance values, which indicate how close a pick geometry must be to an object
in a model for a hit to occur. A pick object’s vertex tolerance indicates how close
two points must be for a hit to occur. A pick object’s edge tolerance indicates
how close a point must be to a line for a hit to occur. Edge and vertex tolerances
apply to mesh shape parts; edge tolerances apply to lines and polylines; and
point tolerances apply to vertices.

Table 15-1 lists the hit-tests that QuickDraw 3D uses for window-space pick
objects. The tolerances for these picks are floating-point values that specify

C H A P T E R 1 5

Pick Objects

950 About Pick Objects

units in the window coordinate system. QuickDraw 3D adds an object in a view
to the hit list if the specified condition is fulfilled.

IMPORTANT

If the view within which picking is occurring is associated
with a pixmap draw context, you need to transform the
window-space pick coordinates (usually obtained from the
mouse coordinates) to the pixmap’s coordinate space. You
can use original QuickDraw’s MapPt function to do this. ▲

Table 15-1 Hit-tests for window-space pick objects

Object Point pick objects Rectangle pick objects

Marker The pick point is inside the
marker bitmap and on an active
pixel. (No tolerance is used.)

The pick rectangle intersects the
marker bitmap and covers an active
pixel in the bitmap.

Point The distance from the pick point
to the screen projection of the
point is less than or equal to the
vertex tolerance.

The screen projection of the point is
within the pick rectangle.

Line The distance from the pick point
to the closest point on the screen
projection of the line is less than
or equal to the edge tolerance.

The screen projection of the line
intersects the pick rectangle.

Triangle The pick point is inside of the
screen projection of the triangle.

The screen projection of the triangle
intersects the pick rectangle or lies
completely within it.

Polygon The pick point is inside of the
screen projection of the polygon.

The screen projection of the polygon
intersects the pick rectangle or lies
completely within it.

Mesh For object picking, the pick point
is inside of the screen projection
of any element of the mesh. For
mesh vertex, edge, or face
picking, the criteria for points,
line, and triangles apply,
respectively.

For object picking, the screen
projection of any element of the
mesh intersects the pick rectangle or
lies completely within it. For mesh
vertex, edge, or face picking, the
criteria for points, line, and triangles
apply, respectively

C H A P T E R 1 5

Pick Objects

About Pick Objects 951

Hit Sorting 15

In some cases, you can have QuickDraw 3D sort a hit list before returning it to
your application. The sorting is based on either increasing or decreasing
distance from some point, the pick origin. As a result, hit-list sorting is possible
only when the pick geometry has a clearly defined pick origin. Pick objects
whose pick geometries have a pick origin are called metric pick objects (or
metric picks). Window-point picking uses metric pick objects. With
window-rectangle pick objects, however, there is no clearly defined pick origin.
As a result, window-rectangle pick objects are not metric: you cannot have the
hit list sorted by distance.

With a metric pick, distances are measured along the ray from the pick origin to
the point of intersection on the picked object. If that ray intersects a picked
object more than once, QuickDraw 3D always returns the hit that’s closest to the
pick origin.

Recall that you can have QuickDraw 3D put either entire objects or parts of
objects into a hit list. When you are hit-testing parts of objects—vertices, edges,
and faces—you need to keep in mind that the tolerance values can complicate
the process of calculating distances (and hence the process of sorting hits). For
example, a window point might be equally distant from both a vertex and an
edge, at least within the tolerance values associated with the window-point pick
object. To establish a unique sorting order in such cases, QuickDraw 3D gives
priority to vertices, then to edges, and finally to faces.

Note that the distances used to establish a sort order might not be the same
distances reported to your application when you retrieve hit information.
Consider, for example, the situation illustrated in Figure 15-1. Here, the vertex V
is within the current vertex tolerance of the window point pick object and
therefore qualifies as a hit. QuickDraw 3D uses the distance d’ from the pick
origin to the closest point on the pick ray (that is, V’) as the basis for sorting
vertex V in the hit list. However, when reporting the distance from the pick
origin to the picked vertex V, QuickDraw 3D gives the actual distance d.

C H A P T E R 1 5

Pick Objects

952 About Pick Objects

Figure 15-1 Determining a vertex sorting distance

QuickDraw 3D calculates distances to edges and faces in an analogous manner.
If the pick ray passes within the current edge tolerance of an edge, the sorting
distance is set to the distance d’ from the pick ray origin to the projection onto
the pick ray of the point on the edge that is closest to the pick ray. See
Figure 15-2.

Figure 15-2 Determining an edge sorting distance

If the pick ray intersects a face, the sorting distance is set to the distance from
the pick ray origin to the projection onto the pick ray of the face vertex that is
closest to the pick ray. See Figure 15-3.

d

V

Pick origin
Pick ray

d

V

Pick origin
Pick ray

C H A P T E R 1 5

Pick Objects

About Pick Objects 953

Figure 15-3 Determining a face sorting distance

Note
The sorting distance d’ is not always less than the actual
distance d to the hit object. In Figure 15-3, for example, d’ is
greater than d. ◆

Hit Information 15

When you create a pick object, you specify (in the mask field of a pick data
structure) a hit information mask value that indicates the kind of information
you want returned about objects in the model. For example, you could use this
code to request information about surface normals and the distance from the
pick origin:

TQ3PickData myPickData;
myPickData.mask = kQ3PickDetailMaskNormal |

kQ3PickDetailMaskDistance;

Once you’ve created the hit list, you can obtain information about a particular
hit in the list by calling the Q3Pick_GetPickDetailData function. You pass this
function a pick object, an index to a hit within the hit list, and the desired
pickDetailValue from one of the bit values defined by the TQ3PickDetailMasks
data type:

V

Pick origin

Pick ray

d

C H A P T E R 1 5

Pick Objects

954 About Pick Objects

typedef enum TQ3PickDetailMasks {
kQ3PickDetail_None = 0,
kQ3PickDetailMask_PickID = 1 << 0,
kQ3PickDetailMask_Path = 1 << 1,
kQ3PickDetailMask_Object = 1 << 2,
kQ3PickDetailMask_LocalToWorldMatrix = 1 << 3,
kQ3PickDetailMask_XYZ = 1 << 4,
kQ3PickDetailMask_Distance = 1 << 5,
kQ3PickDetailMask_Normal = 1 << 6,
kQ3PickDetailMask_ShapePart = 1 << 7,
kQ3PickDetailMask_PickPart = 1 << 8,
kQ3PickDetailMask_UV = 1 << 9,

} TQ3PickDetailMasks;

typedef unsigned long TQ3PickDetail;

QuickDraw 3D returns the specified pick detail data. Before using this
information you should call Q3Pick_GetPickDetailValidMask to see what
information QuickDraw 3D has returned. The values in the mask field of an
initial pick data structure and the validMask value returned by this call can
differ.

You need to pay attention to what information is returned in part because some
kinds of information are not available for some combinations of pick object
types and picked object types. For example, you cannot get information about a
surface normal for a hit on a point (because points do not have normals).
Similarly, you cannot get a distance value for a window-rectangle pick object
(because rectangles have no origin from which to measure). Table 15-2 indicates
the kinds of information you can receive about each type of picked object.

C H A P T E R 1 5

Pick Objects

Using Pick Objects 955

IMPORTANT

QuickDraw 3D can always return information for the
pickID, path, object, and localToWorldMatrix data types. As
a result, those fields are omitted from Table 15-2. ▲

Using Pick Objects 15

A pick object contains all the information necessary to calculate geometric
intersections between the pick geometry and the objects in a model. To create a
pick object, you need to fill out data structures with the appropriate
information, including

■ how the hits are to be sorted

■ how many hits to return

■ what information should be returned about any hits

■ whether to pick whole objects or parts of objects

■ how much tolerance to allow when calculating hits

■ the pick geometry

Table 15-2 Pick geometries and information types supported by view objects

View object xyzPoint distance normal shapePart

Marker

Point Point
Rectangle

Point

Line Point Point

Triangle Point Point Point

Polygon Point Point Point

Decomposition Point Point Point

Mesh Point Point Point Point

C H A P T E R 1 5

Pick Objects

956 Using Pick Objects

The following sections illustrate how to perform these tasks.

Handling Object Picking 15

Listing 15-1 illustrates how to create, use, and dispose of pick objects. It defines
a function, MyHandleClickInWindow, that takes a window pointer and an event
record and handles mouse clicks in that window.

Listing 15-1 Picking objects

TQ3Status MyHandleClickInWindow (CGrafPtr myWindow, EventRec myEvent)
{

TQ3WindowPointPickData myWPPickData;
TQ3PickObject myPickObject;
unsigned long myNumHits;
unsigned long myIndex;
Point myPoint;
TQ3Point2D my2DPoint;
TQ3ViewObject myView;

/*Get the window coordinates of a mouse click.*/
SetPort(myWindow);
myPoint = myEvent.where; /*get location of mouse click*/
GlobalToLocal(&myPoint); /*convert to window coordinates*/
my2DPoint.x = myPoint.h; /*configure a 2D point*/
my2DPoint.y = myPoint.v;

/*Set up picking data structures.*/
/*Set sorting type: objects nearer to pick origin are returned first.*/
myWPPickData.data.sort = kQ3PickSortNearToFar;
myWPPickData.data.mask = kQ3PickDetailMaskPickID | kQ3PickDetailMaskXYZ |

kQ3PickDetailMaskObject;
myWPPickData.data.numHitsToReturn = kQ3ReturnAllHits;

C H A P T E R 1 5

Pick Objects

Using Pick Objects 957

myWPPickData.point = my2DPoint;
myWPPickData.vertexTolerance = 2.0;
myWPPickData.edgeTolerance = 2.0;

/*Create a new window-point pick object.*/
myPickObject = Q3WindowPointPick_New(&myWPPickData);

myView = MyGetViewFromWindow(myWindow); /*increments reference count*/

/*Pick a group object.*/
Q3View_StartPicking(myView, myPickObject);
do {

Q3DisplayGroup_Submit(gGroup, myView);
} while (Q3View_EndPicking(myView) == kQ3ViewStatusRetraverse);

/*See whether any hits occurred.*/
if (Q3Pick_GetNumHits(myPickObject, &myNumHits) == kQ3Failure || myNumHits==0) {

Q3Object_Dispose(myPickObject);
return;

}

/* Process each hit */
for (myIndex = 0; myIndex = myNumHits; myIndex++) {

TQ3Point3D xyzPoint;
unsigned long pickID;
TQ3Object object;

/* Get validMask first */
if (Q3Pick_GetPickDetailValidMask(myPickObject, myIndex, &validMask)

== kQ3Failure) {
break;

}

if (! ((validMask & kQ3PickDetailMaskXYZ) &&
 (validMask & kQ3PickDetailMaskPickID) &&
 (validMask & kQ3PickDetailMaskObject))) {
continue;

}

/* Get world space intersection, pick ID, and geometry object reference */
object = NULL;

C H A P T E R 1 5

Pick Objects

958 Using Pick Objects

status = Q3Pick_GetPickDetailData (myPickObject, myIndex,
kQ3PickDetailMaskXYZ, &xyzPoint);

status = Q3Pick_GetPickDetailData (myPickObject, myIndex,
kQ3PickDetailMaskPickID, &pickID);

status = Q3Pick_GetPickDetailData (myPickObject, myIndex,
kQ3PickDetailMaskObject, &object);

/* Operate on xyzPoint, pickID, and object */
...

if (object != NULL) {
Q3Object_Dispose(object);

}
}

/*Dispose of all hits in the hit list.*/
Q3Pick_EmptyHitList(myPickObject);

/*Dispose of the pick object.*/
Q3Object_Dispose(myPickObject);

/*Dispose of the view object.*/
Q3Object_Dispose(myView);

}

Note that the call to Q3Pick_EmptyHitList is redundant, because disposing of a
pick object (by calling Q3Object_Dispose) also disposes of its associated hit list.
The call is included in Listing 15-1 simply to illustrate how to call
Q3Pick_EmptyHitList. You would, however, need to call to Q3Pick_EmptyHitList
if you wanted to reuse the associated pick object in another pick operation.

Handling Mesh Part Picking 15

When a model includes a mesh, you can decide whether the entire mesh only or
parts of the mesh also are eligible for picking. You do this by specifying an
appropriate hit information mask. For example, to allow mesh parts to be
selected, you can set up the hit information mask like this:

myPickData.mask = kQ3PickDetailMaskShapePart |
kQ3PickDetailMaskObject |
kQ3PickDetailMaskDistance;

C H A P T E R 1 5

Pick Objects

Using Pick Objects 959

This line of code indicates that you want QuickDraw 3D to return information
about objects and any distinguishable parts of objects, as well as the distances
from the objects to the pick origin. (To prevent mesh parts from being selected,
you simply omit adding in the kQ3PickDetailMaskShapePart mask.)

You can determine whether data returned by Q3Pick_GetPickDetailData applies
to a shape part by inspecting the validMask bit. If the value of the bit is 1, the
data contains information about a shape part. Currently the only available
shape parts are mesh parts. Listing 15-2 illustrates how to use the shapePart
field to determine the type of mesh part selected and to perform some operation
on the selected mesh part.

Listing 15-2 Picking mesh parts

Q3Pick_GetPickDetailValidMask(myPickObject, myIndex);
Q3Pick_GetPickDetailData(myPickObject, myIndex, shapePart);

if (shapePart != NULL) {
switch(Q3Object_GetLeafType(shapePart)) {

case kQ3MeshPartTypeMeshFacePart:
Q3MeshFacePart_GetFace(shapePart, &myFace);
MyDoPickFace(object, myFace);
break;

case kQ3MeshPartTypeMeshEdgePart:
Q3MeshEdgePart_GetEdge(shapePart, &myEdge);
MyDoPickEdge(object, myEdge);
break;

case kQ3MeshPartTypeMeshVertexPart:
Q3MeshVertexPart_GetVertex(shapePart, &myVertex);
MyDoPickVertex(object, myVertex);
break;

}
}

This code branches on the type of the mesh part indicated by the shapePart
field. For each defined type of mesh part, the code calls a QuickDraw 3D
routine to retrieve the corresponding mesh face, edge, or vertex. Then it calls an
application-defined routine (for example, MyDoPickFace) to handle the mesh part
selection.

C H A P T E R 1 5

Pick Objects

960 Using Pick Objects

Picking in Immediate Mode 15

Picking IDs are particularly useful when picking in immediate mode.
Listing 15-3 shows how to create a triangle, attach a picking ID to it, and then
process hits.

Listing 15-3 Picking in immediate mode

void MyImmediateModePickID (TQ3ViewObject view, WindowPtr window)
{

TQ3WindowRectPickData myPickData;
TQ3TriangleData myTriangleData;
TQ3PickObject myPick;
TQ3ViewStatus myViewStatus;
unsigned long pickID;
Rect myPortRect;
Point myCenter;
unsigned long myNumHits;

/*Set up a triangle.*/
Q3Point3D_Set(&myTriangleData.vertices[0].point, -1.0, -0.5, 0.0);
Q3Point3D_Set(&myTriangleData.vertices[1].point, 1.0, 0.0, 0.0);
Q3Point3D_Set(&myTriangleData.vertices[2].point, -0.5, 1.5, 0.0);
myTriangleData.vertices[0].attributeSet = NULL;
myTriangleData.vertices[1].attributeSet = NULL;
myTriangleData.vertices[2].attributeSet = NULL;
myTriangleData.triangleAttributeSet = NULL;

/*Set up TQ3WindowPointPickData structure.*/
myPickData.data.sort = kQ3PickSortNone;
myPickData.data.mask = kQ3PickDetailMaskPickID | kQ3PickDetailMaskObject;
myPickData.data.numHitsToReturn = kQ3ReturnAllHits;

myPortRect = ((GrafPtr) window)->myPortRect;
myCenter.h = (myPortRect.right - myPortRect.left)/2.0;
myCenter.v = (myPortRect.bottom - myPortRect.top) /2.0;

Q3Point2D_Set(&myPickData.rect.min, myCenter.h - 5, myCenter.v - 5);
Q3Point2D_Set(&myPickData.rect.max, myCenter.h + 5, myCenter.v + 5);

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 961

/*Create the window rectangle window pick.*/
myPick = Q3WindowRectPick_New(&myPickData);

/*Submit the pick ID and triangle in immediate mode.*/
Q3View_StartPicking(view, myPick);
do
{

Q3PickIDStyle_Submit(kPickID, view);
Q3Triangle_Submit(&myTriangleData, view);
myViewStatus = Q3View_EndPicking(view);

} while (myViewStatus == kQ3ViewStatusRetraverse);

Q3Pick_GetNumHits(myPick, &myNumHits);
if (numHits == 1)
{

/*Get the pickID data (for first and only hit) and check if it's
the expected pick ID.*/

Q3Pick_GetPickDetailData(myPick, 0);
if (pickID == kPickID)
{

/*picked on triangle with pick ID*/
}

}

Q3Object_Dispose(myPick);
}

Pick Objects Reference 15

This section describes the constants, data structures, and routines provided by
QuickDraw 3D that you can use to manage pick objects.

Constants 15

QuickDraw 3D provides constants that you can use to specify how to sort hit
lists, what kinds of information you want returned about the items in a hit list,
and what features of an object you want information about.

C H A P T E R 1 5

Pick Objects

962 Pick Objects Reference

Hit List Sorting Values 15

You specify a hit list sorting value to determine the kind of sorting (relative to
the pick origin) that is to be done on the hit list.

typedef enum TQ3PickSort {
kQ3PickSortNone,
kQ3PickSortNearToFar,
kQ3PickSortFarToNear

} TQ3PickSort;

Constant descriptions

kQ3PickSortNone No sorting is to be done on the hit list. There is no meaning
to the order of hits in the list.

kQ3PickSortNearToFar
The hit list is sorted according to increasing distance from
the origin of the pick point. Objects nearer to the origin are
returned before objects farther away.

kQ3PickSortFarToNear
The hit list is sorted according to decreasing distance from
the origin of the pick point. Objects farther away from the
origin are returned before objects nearer to it.

Hit Information Masks 15

The Q3Pick_GetPickDetailValidMask function returns a mask for all types of
TQ3PickDetail information that is relevant to a hit with the specified index for
the given pick object. The Q3Pick_GetPickDetailValidMask call should be
followed with a call to Q3Pick_GetPickDetailData for each corresponding type
of pickDetail value set in the returned pickDetailValidMask. If a bit in
pickDetailValidMask is 0, it means that either the pick detail type wasn’t
specified when the pick was created, or if it was specified then it was
meaningless for the type of pick object or the geometry intersected.

The hit detail masks are values of type TQ3PickDetailMasks. See “Hit Detail
Data” (page 967) for a more complete description of the information these
masks specify.

typedef enum TQ3PickDetailMasks {
kQ3PickDetailNone = 0,
kQ3PickDetailMaskPickID = 1 << 0,

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 963

kQ3PickDetailMaskPath = 1 << 1,
kQ3PickDetailMaskObject = 1 << 2,
kQ3PickDetailMaskLocalToWorldMatrix = 1 << 3,
kQ3PickDetailMaskXYZ = 1 << 4,
kQ3PickDetailMaskDistance = 1 << 5,
kQ3PickDetailMaskNormal = 1 << 6,
kQ3PickDetailMaskShapePart = 1 << 7,
kQ3PickDetailMaskPart = 1 << 8,
kQ3PickDetailMaskUV = 1 << 9,
} TQ3PickDetailMasks;

Constant descriptions

kQ3PickDetailNone
No pick detail. This mask results in faster picking, because
various calculations do not need to be performed.

kQ3PickDetailMaskPickID
The picking ID of the picked object.

kQ3PickDetailMaskPath
The path through the model’s group hierarchy to the
picked object.

kQ3PickDetailMaskObject
A reference to the object handle of the picked object.

kQ3PickDetailMaskLocalToWorldMatrix
The matrix that transforms the local coordinate system of
the picked object to the world coordinate system. Note that
the local-to-world transform matrix for a
multiply-referenced object differs for each reference to the
object.

kQ3PickDetailMaskXYZ
The point of intersection between the picked object and the
pick geometry in world space.

kQ3PickDetailMaskDistance
The distance between the intersected geometry and the
origin of the pick geometry.

kQ3PickDetailMaskNormal
The surface normal of the picked object at the point of
intersection with the pick geometry. The magnitude of this
normal should always be returned as a normalized vector.

C H A P T E R 1 5

Pick Objects

964 Pick Objects Reference

kQ3PickDetailMaskShapePart
The reference to the shape part object of the picked object.

kQ3PickDetailMaskPart
The object, edge, or vertex.

kQ3PickDetailMaskUV
The surface parameterization of the picked object.

Pick Parts Masks 15

QuickDraw 3D defines pick parts masks to indicate the kinds of objects it has
placed in the hit list. You use the face, vertex, and edge values to pick parts of
meshes. To pick any other object, use the value kQ3PickPartsObject.

typedef enum TQ3PickPartsMasks {
kQ3PickPartsObject = 0,
kQ3PickPartsMaskFace = 1 << 0,
kQ3PickPartsMaskEdge = 1 << 1,
kQ3PickPartsMaskVertex = 1 << 2

} TQ3PickPartsMasks;

typedef unsigned long TQ3PickParts;

Constant descriptions

kQ3PickPartsObject
The hit list contains only whole objects.

kQ3PickPartsMaskFace
The hit list contains faces.

kQ3PickPartsMaskEdge
The hit list contains edges.

kQ3PickPartsMaskVertex
The hit list contains vertices.

Data Structures 15

This section describes the data structures you need to use for creating pick
objects and retrieving the information returned in a hit list.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 965

Pick Data Structure 15

You use a pick data structure to specify information when creating a pick object
for subsequent picking. The pick data structure, common to all pick types, is
defined by the TQ3PickData data type.

typedef struct TQ3PickData {
TQ3PickSort sort;
TQ3PickDetail mask;
unsigned long numHitsToReturn;

} TQ3PickData;

Field descriptions
sort A hit list sorting value that determines the kind of sorting,

if any, that is to be done on the hit list.
mask A hit information mask that determines the type of pick

detail information to be returned for the items in a hit list.
numHitsToReturn The maximum number of hits to return. QuickDraw 3D

discards any hits that would exceed this limit, but only after
all possible hits have been found and placed into the sort
order determined by the sort field. You can specify the
constant kQ3ReturnAllHits to request that all hits be
returned.

Window-Point Pick Data Structure 15

You use a window-point pick data structure to specify information when
creating a pick object for subsequent window-point picking. A window-point
pick data structure is defined by the TQ3WindowPointPickData data type.

typedef struct TQ3WindowPointPickData {
TQ3PickData data;
TQ3Point2D point;
float vertexTolerance;
float edgeTolerance;

} TQ3WindowPointPickData;

Field descriptions
data A pick data structure specifying basic information about

the window-point pick object.

C H A P T E R 1 5

Pick Objects

966 Pick Objects Reference

point A point, in local window coordinates, where each unit
equals 1/72 inch.

vertexTolerance The vertex tolerance.
edgeTolerance The edge tolerance.
Vertex and edge tolerances are discussed in “Hit Identification,” beginning on
page 949.

Window-Rectangle Pick Data Structure 15

You use a window-rectangle pick data structure to specify information when
creating a pick object for subsequent window-rectangle picking. A
window-rectangle pick data structure is defined by the TQ3WindowRectPickData
data type.

typedef struct TQ3WindowRectPickData {
TQ3PickData data;
TQ3Area rect;

} TQ3WindowRectPickData;

Field descriptions
data A pick data structure specifying basic information about

the window-rectangle pick object.
rect A rectangle, in local window coordinates, where each unit

equals 1/72 inch.

Hit Path Structure 15

You use a hit path structure to get group information about the path through a
model hierarchy to a specific picked object. A hit path structure is defined by
the TQ3HitPath data type.

typedef struct TQ3HitPath {
TQ3GroupObject rootGroup;
unsigned long depth;
TQ3GroupPosition *positions;

} TQ3HitPath;

Field descriptions
rootGroup The root group that was picked.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 967

depth The number of positions in the path. If the picked object is
not in the model hierarchy, this field contains the value 0.

positions A pointer to an array of group positions. This array is
allocated by QuickDraw 3D.

Hit Detail Data 15

As described in “Hit Information Masks,” beginning on page 962,
Q3Pick_GetPickDetailData returns data for specific pick detail masks. The
values of the returned data for each mask are shown in Table 15-3.

Table 15-3 Pick detail return data

Mask Meaning

PickID The style pick ID in the group of the picked object. The
picking ID is a 32-bit value specified by your
application. See the chapter “Style Objects” for more
information about picking IDs. Picking IDs are
especially useful for immediate mode picking. See
Listing 15-3 (page 960) for a sample routine that uses
picking IDs.

Path The path through the model hierarchy to the picked
object, from the root group of the hierarchy to the leaf
object. See “Hit Path Structure” (page 966) for
information about a path. For immediate mode picking,
this field is not valid.

Object A reference to the picked geometry object. For
immediate mode picking, this field is not valid.

LocalToWorldMatrix The matrix that transforms the local coordinates of the
picked object to world-space coordinates. This matrix is
copied from the graphics state in effect at the time the
object is hit. If there are multiple references to an object,
this matrix may be different for each individual
reference.

XYZ For window-point picking, the point (in world-space
coordinates) at which the picked object and the pick
geometry intersect. For all other types of picking, this
field is undefined.

C H A P T E R 1 5

Pick Objects

968 Pick Objects Reference

Pick Objects Routines 15

This section describes the routines you can use to manage pick objects and hit
lists.

Managing Pick Objects 15

QuickDraw 3D provides a number of general routines for managing pick
objects of any kind.

Q3Pick_GetType 15

You can use the Q3Pick_GetType function to get the type of a pick object.

Distance For window-point picking, the distance (in world
space) from the origin of the picking ray to the point of
intersection with the picked object. (This is effectively
the distance from the camera to the intersection point,
in world space.) For all other types of picking, this field
is undefined.

Normal The surface normal of the picked object at the point of
intersection with the pick geometry. This field is valid
only for window-point picking.

ShapePart The shape part object, if any, that was picked. If the
picked object has no distinguishable shape parts, this
field contains the value NULL. If the value of this field is
not NULL, you can call the Q3ShapePart_GetType function
to get the type of this shape part object, or
Q3Object_GetLeafType to get the leaf type of this shape
part.

Part The object, edge, or vertex.

UV The surface parameterization of the picked object.

Table 15-3 Pick detail return data (continued)

Mask Meaning

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 969

TQ3ObjectType Q3Pick_GetType (TQ3PickObject pick);

pick A pick object.

DESCRIPTION

The Q3Pick_GetType function returns, as its function result, the type of the pick
object specified by the pick parameter. The types of pick objects currently
supported by QuickDraw 3D are defined by these constants:

kQ3PickTypeWindowPoint
kQ3PickTypeWindowRect

If the specified pick object is invalid or is not one of these types, Q3Pick_GetType
returns the value kQ3ObjectTypeInvalid.

Q3Pick_GetData 15

You can use the Q3Pick_GetData function to get the basic data associated with a
pick object.

TQ3Status Q3Pick_GetData (
TQ3PickObject pick,
TQ3PickData *data);

pick A pick object.

data On entry, a pointer to a pick data structure.

DESCRIPTION

The Q3Pick_GetData function returns, through the data parameter, basic
information about the pick object specified by the pick parameter. See “Pick
Data Structure” (page 965) for a description of a pick data structure. Your
application is responsible for allocating memory for the pick data structure
before calling Q3Pick_GetData and for disposing of that memory when you’re
finished using that structure.

C H A P T E R 1 5

Pick Objects

970 Pick Objects Reference

Q3Pick_SetData 15

You can use the Q3Pick_SetData function to set the basic data associated with a
pick object.

TQ3Status Q3Pick_SetData (
TQ3PickObject pick,
const TQ3PickData *data);

pick A pick object.

data A pointer to a pick data structure.

DESCRIPTION

The Q3Pick_SetData function sets the data associated with the pick object
specified by the pick parameter to the data specified by the data parameter.

Q3Pick_GetVertexTolerance 15

You can use the Q3Pick_GetVertexTolerance function to get the current vertex
tolerance of a pick object.

TQ3Status Q3Pick_GetVertexTolerance (
TQ3PickObject pick,
float *vertexTolerance);

pick A pick object.

vertexTolerance
On exit, the current vertex tolerance of the specified pick object.

DESCRIPTION

The Q3Pick_GetVertexTolerance function returns, in the vertexTolerance
parameter, the current vertex tolerance of the pick object specified by the pick
parameter. If the specified pick object does not support a vertex tolerance,
Q3Pick_GetVertexTolerance generates an error. Tolerances are discussed in “Hit
Identification,” beginning on page 949.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 971

Q3Pick_SetVertexTolerance 15

You can use the Q3Pick_SetVertexTolerance function to set the vertex tolerance
of a pick object.

TQ3Status Q3Pick_SetVertexTolerance (
TQ3PickObject pick,
float vertexTolerance);

pick A pick object.

vertexTolerance
The desired vertex tolerance of the specified pick object.

DESCRIPTION

The Q3Pick_SetVertexTolerance function sets the vertex tolerance of the pick
object specified by the pick parameter to the tolerance specified by the
vertexTolerance parameter. If the specified pick object does not support a
vertex tolerance, Q3Pick_SetVertexTolerance generates an error. Tolerances are
discussed in “Hit Identification,” beginning on page 949.

Q3Pick_GetEdgeTolerance 15

You can use the Q3Pick_GetEdgeTolerance function to get the current edge
tolerance of a pick object.

TQ3Status Q3Pick_GetEdgeTolerance (
TQ3PickObject pick,
float *edgeTolerance);

pick A pick object.

edgeTolerance
On exit, the current edge tolerance of the specified pick object.

C H A P T E R 1 5

Pick Objects

972 Pick Objects Reference

DESCRIPTION

The Q3Pick_GetEdgeTolerance function returns, in the edgeTolerance parameter,
the current edge tolerance of the pick object specified by the pick parameter. If
the specified pick object does not support an edge tolerance,
Q3Pick_GetEdgeTolerance generates an error. Tolerances are discussed in “Hit
Identification,” beginning on page 949.

Q3Pick_SetEdgeTolerance 15

You can use the Q3Pick_SetEdgeTolerance function to set the edge tolerance of a
pick object.

TQ3Status Q3Pick_SetEdgeTolerance (
TQ3PickObject pick,
float edgeTolerance);

pick A pick object.

edgeTolerance
The desired edge tolerance of the specified pick object.

DESCRIPTION

The Q3Pick_SetEdgeTolerance function sets the edge tolerance of the pick object
specified by the pick parameter to the tolerance specified by the edgeTolerance
parameter. If the specified pick object does not support an edge tolerance,
Q3Pick_SetEdgeTolerance generates an error. Tolerances are discussed in “Hit
Identification,” beginning on page 949.

Q3Pick_GetPickDetailValidMask 15

You can use the Q3Pick_GetPickDetailValidMask function to return a mask
designating the available TQ3PickDetail information. It should be followed with
a call to Q3Pick_GetPickDetailData for each pickDetail bit set in the returned
mask.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 973

TQ3Status Q3Pick_GetPickDetailValidMask (
TQ3PickObject pick,
unsigned long index,
TQ3PickDetail *pickDetailValidMask);

pick A pick object.

index An index into a hit list.

pickDetailValidMask
The detail mask. For mask values, see “Hit Information,”
beginning on page 953.

DESCRIPTION

Q3Pick_GetPickDetailValidMask returns, in the pickDetailValidMask parameter,
a mask designating available pick detail data for the pick object pick and hit
index index. If a bit in pickDetailValidMask is 0, it means that either the pick
detail type wasn’t specified when the pick was created, or if it was specified
then it was meaningless for the type of pick object or the geometry intersected.

The index parameter is a zero-based value within the maximum number of hits
obtained by callingQ3Pick_GetNumHits.

Q3Pick_GetPickDetailData 15

You can use the Q3Pick_GetPickDetailData function to obtain pick detail data for
a given bit out of the mask returned by Q3Pick_GetPickDetailValidMask.

TQ3Status Q3Pick_GetPickDetailData (
TQ3PickObject pick,
unsigned long index,
TQ3PickDetail pickDetailValue,
void *detailData);

pick A pick object.

index An index into a hit list.

pickDetailValue
A single-bit mask.

C H A P T E R 1 5

Pick Objects

974 Pick Objects Reference

detailData The returned detail pick data.

DESCRIPTION

The Q3Pick_GetPickDetailData function returns, in the detailData parameter,
the data corresponding to a pickDetailValue mask for the pick object pick and
hit index index. See “Hit Detail Data” (page 967) for descriptions of the
information retrurned.

The value of pickDetailValue can be only one bit from the set of possible
TQ3PickDetailMasks values returned by Q3Pick_GetPickDetailValidMask.
TQ3PickDetailMasks values may not be combined using OR.

Upon successful completion, Q3Pick_GetPickDetailData returns a function result
of kQ3Success.

Q3HitPath_EmptyData 15

You must use the Q3HitPath_EmptyData function to dispose of the path data that
QuickDraw 3D allocated internally as the result of a previous call to
Q3Pick_GetPickDetailData.

TQ3Status Q3HitPath_EmptyData (TQ3HitPath *hitPath);

hitPath A hit path.

DESCRIPTION

The Q3HitPath_EmptyData function disposes of path data allocated internally as
the result of a previous call to Q3Pick_GetPickDetailData. It returns kQ3Success if
it completes successfully.

It is the responsibility of the application to dispose of the path data using
Q3HitPath_EmptyData and the object and shapePart references using
Q3Object_Dispose; otherwise undisposed memory or objects will be leaked.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 975

Q3Pick_GetNumHits 15

You can use the Q3Pick_GetNumHits function to get the number of hits in the hit
list of a pick object.

TQ3Status Q3Pick_GetNumHits (
TQ3PickObject pick,
unsigned long *numHits);

pick A pick object.

numHits On exit, the number of items in the hit list of the specified pick
object.

DESCRIPTION

The Q3Pick_GetNumHits function returns, in the numHits parameter, the number
of items in the hit list associated with the pick object specified by the pick
parameter. This number never exceeds the maximum number of items specified
in the pick object’s data structure.

Q3Pick_EmptyHitList 15

You can use the Q3Pick_EmptyHitList function to empty a pick object’s hit list.

TQ3Status Q3Pick_EmptyHitList (TQ3PickObject pick);

pick A pick object.

DESCRIPTION

The Q3Pick_EmptyHitList function disposes of all QuickDraw 3D-allocated
memory occupied by the hit list associated with the pick object specified by the
pick parameter. (This memory is also disposed of when the specified pick object
is disposed of.) Q3Pick_EmptyHitList also sets the hit count of the specified pick
object to 0.

C H A P T E R 1 5

Pick Objects

976 Pick Objects Reference

Managing Shape Parts and Mesh Parts 15

QuickDraw 3D provides routines that you can use to get shape parts and mesh
parts and to determine the shape objects that correspond to those parts. They
use these types:

typedef TQ3ShapePartObject TQ3MeshPartObject;
typedef TQ3MeshPartObject TQ3MeshFacePartObject;
typedef TQ3MeshPartObject TQ3MeshEdgePartObject;
typedef TQ3MeshPartObject TQ3MeshVertexPartObject;

Q3ShapePart_GetShape 15

You can use the Q3ShapePart_GetShape function to get the shape object that
contains a shape part object.

TQ3Status Q3ShapePart_GetShape (
TQ3ShapePartObject shapePartObject,
TQ3ShapeObject *shapeObject);

shapePartObject
A shape part object.

shapeObject On exit, the shape object that contains the specified shape part
object.

DESCRIPTION

The Q3ShapePart_GetShape function returns, in the shapeObject parameter, the
shape object that contains the shape part object specified by the shapePartObject
parameter.

Q3ShapePart_GetType 15

You can use the Q3ShapePart_GetType function to get the type of a shape part
object.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 977

TQ3ObjectType Q3ShapePart_GetType (TQ3ShapePartObject shapePartObject);

shapePartObject
A shape part object.

DESCRIPTION

The Q3ShapePart_GetType function returns, as its function result, the type
identifier of the shape part object specified by the shapePartObject parameter. If
successful, Q3ShapePart_GetType returns this constant:

kQ3ShapePartTypeMeshPart

If the type cannot be determined or is invalid, Q3ShapePart_GetType returns the
value kQ3ObjectTypeInvalid.

Q3MeshPart_GetType 15

You can use the Q3MeshPart_GetType function to get the type of a mesh part
object.

TQ3ObjectType Q3MeshPart_GetType (TQ3MeshPartObject meshPartObject);

meshPartObject
A mesh part object.

DESCRIPTION

The Q3MeshPart_GetType function returns, as its function result, the type
identifier of the mesh part object specified by the meshPartObject parameter. If
successful, Q3MeshPart_GetType returns one of these constants:

kQ3MeshPartTypeMeshFacePart
kQ3MeshPartTypeMeshEdgePart
kQ3MeshPartTypeMeshVertexPart

If the type cannot be determined or is invalid, Q3MeshPart_GetType returns the
value kQ3ObjectTypeInvalid.

C H A P T E R 1 5

Pick Objects

978 Pick Objects Reference

Q3MeshPart_GetComponent 15

You can use the Q3MeshPart_GetComponent function to get the mesh component
that contains a mesh part.

TQ3Status Q3MeshPart_GetComponent (
TQ3MeshPartObject meshPartObject,
TQ3MeshComponent *component);

meshPartObject
A mesh part object.

component On exit, the mesh component that contains the specified mesh
part object.

DESCRIPTION

The Q3MeshPart_GetComponent function returns, in the component parameter, the
mesh component that contains the mesh part object specified by the
meshPartObject parameter.

Q3MeshFacePart_GetFace 15

You can use the Q3MeshFacePart_GetFace function to get the mesh face that
corresponds to a mesh face part.

TQ3Status Q3MeshFacePart_GetFace (
TQ3MeshFacePartObject meshFacePartObject,
TQ3MeshFace *face);

meshFacePartObject
A mesh face part object.

face On exit, the mesh face that corresponds to the specified mesh
face part object.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 979

DESCRIPTION

The Q3MeshFacePart_GetFace function returns, in the face parameter, the mesh
face that corresponds to the mesh face part object specified by the
meshFacePartObject parameter.

Q3MeshEdgePart_GetEdge 15

You can use the Q3MeshEdgePart_GetEdge function to get the mesh edge that
corresponds to a mesh edge part.

TQ3Status Q3MeshEdgePart_GetEdge (
TQ3MeshEdgePartObject meshEdgePartObject,
TQ3MeshEdge *edge);

meshEdgePartObject
A mesh edge part object.

edge On exit, the mesh edge that corresponds to the specified mesh
face part object.

DESCRIPTION

The Q3MeshEdgePart_GetEdge function returns, in the edge parameter, the mesh
edge that corresponds to the mesh edge part object specified by the
meshEdgePartObject parameter.

Q3MeshVertexPart_GetVertex 15

You can use the Q3MeshVertexPart_GetVertex function to get the mesh vertex
that corresponds to a mesh vertex part.

TQ3Status Q3MeshVertexPart_GetVertex (
TQ3MeshVertexPartObject meshVertexPartObject,
TQ3MeshVertex *vertex);

C H A P T E R 1 5

Pick Objects

980 Pick Objects Reference

meshVertexPartObject
A mesh vertex part object.

vertex On exit, the mesh vertex that corresponds to the specified mesh
vertex part object.

DESCRIPTION

The Q3MeshVertexPart_GetVertex function returns, in the vertex parameter, the
mesh vertex that corresponds to the mesh vertex part object specified by the
meshVertexPartObject parameter.

Picking With Window Points 15

QuickDraw 3D provides routines that you can use to pick with window points.
The location of the point is in the resolution of the current draw context.

Q3WindowPointPick_New 15

You can use the Q3WindowPointPick_New function to create a new window-point
pick object.

TQ3PickObject Q3WindowPointPick_New (
const TQ3WindowPointPickData *data);

data A pointer to a window-point pick data structure.

DESCRIPTION

The Q3WindowPointPick_New function returns, as its function result, a new
window-point pick object having the characteristics specified by the data
parameter. If Q3WindowPointPick_New fails, it returns NULL.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 981

Q3WindowPointPick_GetPoint 15

You can use the Q3WindowPointPick_GetPoint function to get the point of a
window-point pick object.

TQ3Status Q3WindowPointPick_GetPoint (
TQ3PickObject pick,
TQ3Point2D *point);

pick A window-point pick object.

point On exit, the current point of the specified window-point pick
object.

DESCRIPTION

The Q3WindowPointPick_GetPoint function returns, in the point parameter, the
current point of the window-point pick object specified by the pick parameter.

Q3WindowPointPick_SetPoint 15

You can use the Q3WindowPointPick_SetPoint function to set the point of a
window-point pick object in screen space.

TQ3Status Q3WindowPointPick_SetPoint (
TQ3PickObject pick,
const TQ3Point2D *point);

pick A window-point pick object.

point The desired point for the specified window-point pick object.

DESCRIPTION

The Q3WindowPointPick_SetPoint function sets the point of the window-point
pick object specified by the pick parameter to the point specified by the point
parameter.

C H A P T E R 1 5

Pick Objects

982 Pick Objects Reference

Q3WindowPointPick_GetData 15

You can use the Q3WindowPointPick_GetData function to get the data associated
with a window-point pick object.

TQ3Status Q3WindowPointPick_GetData (
TQ3PickObject pick,
TQ3WindowPointPickData *data);

pick A window-point pick object.

data On exit, a pointer to a window-point pick data structure.

DESCRIPTION

The Q3WindowPointPick_GetData function returns, through the data parameter,
information about the window-point pick object specified by the pick
parameter. See “Window-Point Pick Data Structure” (page 965) for a description
of a window-point pick data structure.

Q3WindowPointPick_SetData 15

You can use the Q3WindowPointPick_SetData function to set the data associated
with a window-point pick object.

TQ3Status Q3WindowPointPick_SetData (
TQ3PickObject pick,
const TQ3WindowPointPickData *data);

pick A window-point pick object.

data A pointer to a window-point pick data structure.

DESCRIPTION

The Q3WindowPointPick_SetData function sets the data associated with the
window-point pick object specified by the pick parameter to the data specified
by the data parameter.

C H A P T E R 1 5

Pick Objects

Pick Objects Reference 983

Picking With Window Rectangles 15

QuickDraw 3D provides routines that you can use to pick with window
rectangles. The dimensions of the rectangle are in the resolution of the current
draw context.

Q3WindowRectPick_New 15

You can use the Q3WindowRectPick_New function to create a new
window-rectangle pick object.

TQ3PickObject Q3WindowRectPick_New (
const TQ3WindowRectPickData *data);

data A pointer to a window-rectangle pick data structure.

DESCRIPTION

The Q3WindowRectPick_New function returns, as its function result, a new
window-rectangle pick object having the characteristics specified by the data
parameter. If Q3WindowRectPick_New fails, it returns NULL.

Q3WindowRectPick_GetRect 15

You can use the Q3WindowRectPick_GetRect function to get the rectangle of a
window-rectangle pick object.

TQ3Status Q3WindowRectPick_GetRect (
TQ3PickObject pick,
TQ3Area *rect);

pick A window-rectangle pick object.

rect On exit, the current rectangle of the specified window-rectangle
pick object.

C H A P T E R 1 5

Pick Objects

984 Pick Objects Reference

DESCRIPTION

The Q3WindowRectPick_GetRect function returns, in the rect parameter, the
current rectangle of the window-rectangle pick object specified by the pick
parameter.

Q3WindowRectPick_SetRect 15

You can use the Q3WindowRectPick_SetRect function to set the rectangle of a
window-rectangle pick object.

TQ3Status Q3WindowRectPick_SetRect (
TQ3PickObject pick,
const TQ3Area *rect);

pick A window-rectangle pick object.

rect The desired rectangle for the window-rectangle pick object.

DESCRIPTION

The Q3WindowRectPick_SetRect function sets the rectangle of the
window-rectangle pick object specified by the pick parameter to the rectangle
specified by the rect parameter.

Q3WindowRectPick_GetData 15

You can use the Q3WindowRectPick_GetData function to get the data associated
with a window-rectangle pick object.

TQ3Status Q3WindowRectPick_GetData (
TQ3PickObject pick,
TQ3WindowRectPickData *data);

pick A window-rectangle pick object.

data On exit, a pointer to a window-rectangle pick data structure.

C H A P T E R 1 5

Pick Objects

Picking Warnings 985

DESCRIPTION

The Q3WindowRectPick_GetData function returns, through the data parameter,
information about the window-rectangle pick object specified by the pick
parameter. See “Window-Rectangle Pick Data Structure” (page 966) for the
structure of a window-rectangle pick data structure.

Q3WindowRectPick_SetData 15

You can use the Q3WindowRectPick_SetData function to set the data associated
with a window-rectangle pick object.

TQ3Status Q3WindowRectPick_SetData (
TQ3PickObject pick,
const TQ3WindowRectPickData *data);

pick A window-rectangle pick object.

data A pointer to a window-rectangle pick data structure.

DESCRIPTION

The Q3WindowRectPick_SetData function sets the data associated with the
window-rectangle pick object specified by the pick parameter to the data
specified by the data parameter.

Picking Warnings 15

The kQ3WarningPickParamOutside warning may be returned by picking routines.
A list of general QuickDraw 3D errors is given in “QuickDraw 3D Errors,
Warnings, and Notices” (page 87).

C H A P T E R 1 5

Pick Objects

986 Picking Warnings

About Storage Objects 987

C H A P T E R 1 6

Storage Objects 16Figure 16-0
Listing 16-0
Table 16-0

This chapter describes storage objects and the functions you can use to
manipulate them. You use storage objects to represent a piece of storage
accessible in a computer (for example, a file on disk, a block of memory, or some
data on the Clipboard). A storage object connects a physical storage device to a
file object. You use storage objects together with file objects to access the data on
that storage device.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects.” For
information about file objects, see the chapter “File Objects.” You do not,
however, need to know how to create file objects or attach them to storage
objects to read this chapter.

This chapter begins by describing storage objects and their features. Then it
shows how to create and manipulate storage objects. The section “Storage
Objects Reference,” beginning on page 992 provides a complete description of
storage objects and the routines you can use to create and manipulate them.

About Storage Objects 16

A storage object is a type of QuickDraw 3D object that you can use to represent
a physical piece of storage in a computer. The piece of storage can be any data
that is accessible in a linear, stream-based manner. QuickDraw 3D currently
supports three basic types of data storage formats: data stored in memory, data
stored in the data fork of a Macintosh file, and data stored in files accessed
through the C programming language standard I/O library. QuickDraw 3D
represents these data storage devices as storage objects.

To read data from (or write data to) a data storage device, you first need to
create a storage object of the appropriate type. For example, to read data from a

C H A P T E R 1 6

Storage Objects

988 About Storage Objects

Macintosh file, you can create a Macintosh storage object. You also need to
create a file object (of type TQ3FileObject) and attach the file object to the
storage object. Once you’ve created a storage object and a file object and
attached them to one another, you can then read data from the file object by
using file object reading calls. See the chapter “File Objects” for information on
creating file objects, attaching them to storage objects, and reading or writing
data using those file objects.

QuickDraw 3D distinguishes between storage objects and file objects primarily
so that you can read and write stored data using a single set of functions.
QuickDraw 3D supports only one class of file object, instances of which can be
attached to any of the types of storage objects that it supports.

A storage object is of type TQ3StorageObject, which is a type of shared object.
QuickDraw 3D provides three subclasses of the TQ3StorageObject type:

■ A memory storage object (of type kQ3StorageTypeMemory) represents a
dynamically allocated block of RAM. You can allocate the block of memory
yourself, or you can have QuickDraw 3D allocate a block of memory on your
behalf. Memory storage objects are available on all computer systems.
QuickDraw 3D supports one subclass of the kQ3StorageTypeMemory storage
object type:

■ A handle storage object (of type kQ3MemoryStorageTypeHandle) represents a
handle to a block of dynamically allocated RAM. On the Macintosh
Operating System, QuickDraw 3D uses the SetHandleSize function when it
needs to change the size of the memory block. On operating systems that do
not support handles, QuickDraw 3D allocates and maintains the memory
blocks internally.

■ A Macintosh storage object (of type kQ3StorageTypeMacintosh) represents the
data fork of a Macintosh file using a file reference number. Macintosh storage
objects are available only on the Macintosh Operating System.
QuickDraw 3D supports one subclass of the kQ3StorageTypeMacintosh storage
object type:

■ A Macintosh FSSpec storage object of type kQ3MacintoshStorageTypeFSSpec
represents the data fork of a Macintosh file using a file system specification
structure (of type FSSpec). QuickDraw 3D uses the Alias Manager to create
cross-file references.

■ A UNIX® storage object (of type kQ3StorageTypeUnix) represents a file using
a structure of type FILE. This structure is accessed using the standard I/O
library, a collection of functions that provide character I/O and

C H A P T E R 1 6

Storage Objects

Using Storage Objects 989

file-manipulation services for C programs on any operating system. The
represented object can be a pipe, the standard input file, the standard output
file, or any other FILE abstraction. QuickDraw 3D supports one subclass of
the kQ3StorageTypeUnix storage object type:

■ A UNIX path name storage object (of type kQ3UnixStorageTypePath)
represents a file using a path name.

IMPORTANT

UNIX storage objects and UNIX path name storage objects
can be used to represent any object accessible through the
standard I/O library on any operating system. The names,
which can therefore be confusing, derive from the origin of
the standard I/O library on the UNIX operating system. ▲

For a description of pointers and handles, see the book Inside Macintosh:
Memory. For a description of the Macintosh file-specification methods (that is,
file reference numbers and file system specification structures), see the book
Inside Macintosh: Files. For a description of the standard I/O library, see the
documentation for any UNIX-based computer (for example, A/UX Essentials
from Apple Computer, Inc., or The UNIX Programming Environment by
Kernighan and Pike), or any book devoted specifically to C language
programming (for example, The C Programming Language by Kernighan and
Ritchie).

Using Storage Objects 16

As indicated earlier, you use storage objects to represent physical storage
devices available on a computer. Most often, you’ll simply create a new storage
object associated with some part of a storage device (for instance, with some file
on a disk drive) and then attach that storage object to a file object (by calling the
Q3File_SetStorage function). If necessary, you can also get or set some of the
information associated with a particular storage object. For example, you can
determine the file reference number of the open file associated with a Macintosh
storage object. This section describes how to perform these two tasks.

C H A P T E R 1 6

Storage Objects

990 Using Storage Objects

Creating a Storage Object 16

Creating a storage object essentially involves indicating to QuickDraw 3D the
location and possibly also the size of the piece of physical storage you later
want to read data from or write data to. Once you’ve created a storage object,
you attach it to a file object and perform all I/O operations using file object
functions. Listing 16-1 illustrates how to create a storage object connected to an
open Macintosh file.

Listing 16-1 Creating a Macintosh storage object

myErr = FSpOpenDF(&myFSSpec, fsCurPerm, &myFRefNum);
if (!myErr)

myStorageObj = Q3MacintoshStorage_New(myFRefNum);

Listing 16-2 illustrates how to open a file and create a UNIX storage object
connected to that open file.

Listing 16-2 Creating a UNIX storage object

myFile = fopen("..:teacup.eb", "r");
if (myFile)

myStorageObj = Q3UnixStorage_New(myFile);

Listing 16-3 illustrates how to allocate a block of memory and create a storage
object connected to that block.

Listing 16-3 Creating a memory storage object

#define kBufferSize 256

myBuffer = malloc(kBufferSize);
if (myBuffer)

myStorageObj = Q3MemoryStorage_NewBuffer(myBuffer, 0, kBufferSize);

In the code shown in Listing 16-1 through Listing 16-3, your application
specifically reserves the desired piece of the physical storage device, either by

C H A P T E R 1 6

Storage Objects

Using Storage Objects 991

opening a file or by allocating memory. In these cases, your application must
also make sure to close the file or deallocate the memory block after you’ve
closed or disposed of the associated storage object.

Note, however, that QuickDraw 3D provides two types of memory storage
functions. The function Q3MemoryStorage_NewBuffer creates a new memory
storage object using a specified buffer. The function Q3MemoryStorage_New creates
a new memory storage object but copies the data in the specified buffer into its
own internal memory. If you create a storage object by calling
Q3MemoryStorage_New, you can dispose of the buffer once Q3MemoryStorage_New
returns.

IMPORTANT

Whenever you create a storage object associated with an
open file or an allocated memory block, you must close the
file or dispose of the memory. ▲

▲ W AR N I N G

When you open a piece of storage (that is, a file or a block
of memory), you must not access that piece of storage once
you’ve created a storage object to represent it.
QuickDraw 3D assumes that it has exclusive access to all
data in any part of a physical storage device associated
with an open storage object. ▲

Getting and Setting Storage Object Information 16

QuickDraw 3D provides routines that you can use to get or set some of the
information it maintains about storage objects. For example, you can get the file
reference number of the Macintosh file associated with a Macintosh storage
object by calling the function Q3MacintoshStorage_Get. Similarly, you can
determine the starting address and size of a buffer associated with a memory
storage object by calling Q3MemoryStorage_GetBuffer.

In general, the routines that get and set storage object information operate like
the get and set routines for other types of QuickDraw 3D objects, but with
several important differences:

■ For memory storage objects created by a call to Q3MemoryStorage_NewBuffer,
the returned address is the address of the actual buffer associated with the
storage object, not the address of a copy of that buffer. In addition, that buffer
may change locations in memory (but only if QuickDraw 3D allocated the

C H A P T E R 1 6

Storage Objects

992 Storage Objects Reference

buffer on your behalf and writing data to the storage object causes
QuickDraw 3D to resize the buffer).

■ You cannot access subclass data using the get and set methods of a class. For
example, you cannot use Q3MemoryStorage_Get or Q3MemoryStorage_Set with a
handle storage object (of type kQ3MemoryStorageTypeHandle). Similarly, you
cannot use Q3UnixStorage_Get or Q3UnixStorage_Set with a UNIX path name
storage object (of type kQ3UnixStorageTypePath).

■ You cannot use the get or set methods with a storage object that is open.
A storage object is considered open whenever its associated storage is in
use—for example, when an application is reading data from a file object
attached to the storage object. (To be more specific, a storage object is open if
it has been attached to a file object by a call to the Q3File_SetStorage function
and that file object has been opened by a call to the Q3File_OpenRead or
Q3File_OpenWrite function.) A storage object is considered closed at all other
times. (Note that a storage object can be closed even though the associated
file on disk is open to the operating system.)

Storage Objects Reference 16

This section describes the routines you can use to create and manipulate storage
objects.

Storage Objects Routines 16

This section describes routines you can use to manage storage objects.

Managing Storage Objects 16

QuickDraw 3D provides several general routines for getting the type and size of
storage objects. It also provides routines you can use to get and set the private
data of a storage object.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 993

Q3Storage_GetType 16

You can use the Q3Storage_GetType function to get the type of a storage object.

TQ3ObjectType Q3Storage_GetType (TQ3StorageObject storage);

storage A storage object.

DESCRIPTION

The Q3Storage_GetType function returns, as its function result, the type of the
storage object specified by the storage parameter. The types of storage objects
currently supported by QuickDraw 3D are defined by these constants:

kQ3StorageTypeMemory
kQ3StorageTypeMacintosh
kQ3StorageTypeUnix
kQ3StorageTypeWin32

If the specified storage object is invalid or is not one of these types,
Q3Storage_GetType returns the value kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Q3Storage_GetSize 16

You can use the Q3Storage_GetSize function to get the size of the data stored in
a storage object.

TQ3Status Q3Storage_GetSize (
TQ3StorageObject storage,
unsigned long *size);

storage A storage object.

C H A P T E R 1 6

Storage Objects

994 Storage Objects Reference

size On entry, a pointer to a buffer. On exit, the number of bytes of
data stored in the specified storage object.

DESCRIPTION

The Q3Storage_GetSize function returns, through the size parameter, the
number of bytes of data stored in the storage object specified by the storage
parameter. That storage object must already be open when you call
Q3Storage_GetSize.

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter
kQ3ErrorStorageNotOpen

Q3Storage_GetData 16

You can use the Q3Storage_GetData function to get the data stored in a storage
object.

TQ3Status Q3Storage_GetData (
TQ3StorageObject storage,
unsigned long offset,
unsigned long dataSize,
unsigned char *data,
unsigned long *sizeRead);

storage A storage object.

offset An offset into the private data associated with the specified
storage object.

dataSize The number of bytes of data from the specified storage object to
be returned in the specified buffer.

data On entry, a pointer to a buffer that is at least large enough to
contain the number of bytes of data specified by the dataSize
parameter. On exit, this buffer is filled with data from the
specified storage object.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 995

sizeRead On exit, the number of bytes of data read from the specified
storage object.

DESCRIPTION

The Q3Storage_GetData function returns, through the data parameter, some or
all of the private data associated with the storage object specified by the storage
parameter. The data to be returned begins at an offset specified by the offset
parameter and extends for dataSize bytes from that location. On exit, the
sizeRead parameter contains the number of bytes actually retrieved from the
storage object’s private data into the data buffer. If the value returned in the
sizeRead parameter is less than the number of bytes requested in the dataSize
parameter, then the end of the storage object’s private data occurs at the
distance offset + sizeRead from the beginning of the private data.

If the specified storage object is associated with a file object, that file object must
be closed before you call Q3Storage_GetData.

Q3Storage_SetData 16

You can use the Q3Storage_SetData function to set the data stored in a storage
object.

TQ3Status Q3Storage_SetData (
TQ3StorageObject storage,
unsigned long offset,
unsigned long dataSize,
const unsigned char *data,
unsigned long *sizeWritten);

storage A storage object.

offset An offset into the specified storage object.

dataSize The number of bytes of data from the specified buffer to be
written to the specified storage object.

data On entry, a pointer to a buffer that contains the data you want to
be written to the specified storage object.

C H A P T E R 1 6

Storage Objects

996 Storage Objects Reference

sizeWritten On exit, the number of bytes of data written to the specified
storage object.

DESCRIPTION

The Q3Storage_SetData function sets the data associated with the storage object
specified by the storage parameter to the data specified by the dataSize and
data parameters. The data is written to the storage object starting at the byte
offset specified by the offset parameter. Q3Storage_SetData returns, in the
sizeWritten parameter, the number of bytes of data written to the storage
object. If the value returned in the sizeWritten parameter is less than the
number of bytes requested in the dataSize parameter, then the end of the
storage object’s private data occurs at the distance offset + sizeWritten from
the beginning of the private data.

Creating and Accessing Memory Storage Objects 16

QuickDraw 3D provides routines for creating and managing memory storage
objects.

Q3MemoryStorage_New 16

You can use the Q3MemoryStorage_New function to create a new memory storage
object.

TQ3StorageObject Q3MemoryStorage_New (
const unsigned char *buffer,
unsigned long validSize);

buffer A pointer to a buffer in memory, or NULL.

validSize The size, in bytes, of the valid metafile data contained in the
specified buffer. If buffer is set to NULL, this parameter specifies
the initial size and also the grow size of the buffer that
QuickDraw 3D allocates internally.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 997

DESCRIPTION

The Q3MemoryStorage_New function returns, as its function result, a new memory
storage object associated with the data in the buffer specified by the buffer and
validSize parameters. The data in the specified buffer is copied into internal
QuickDraw 3D memory, so you can dispose of the buffer if Q3MemoryStorage_New
returns successfully.

If you pass the value NULL in the buffer parameter, QuickDraw 3D allocates a
buffer of validSize bytes, increases the buffer by that size whenever necessary,
and later disposes of the buffer when the associated storage object is closed or
disposed of. If buffer is set to NULL and validSize is set to 0, QuickDraw 3D uses
a default initial buffer and grow size.

If Q3MemoryStorage_New cannot create a new storage object, it returns the value
NULL.

ERRORS

kQ3ErrorOutOfMemory

Q3MemoryStorage_NewBuffer 16

You can use the Q3MemoryStorage_NewBuffer function to create a new memory
storage object. The data you provide is not copied into QuickDraw 3D memory.

TQ3StorageObject Q3MemoryStorage_NewBuffer (
unsigned char *buffer,
unsigned long validSize,
unsigned long bufferSize);

buffer A pointer to a buffer in memory, or NULL.

validSize The size, in bytes, of the valid metafile data contained in the
specified buffer. If buffer is set to NULL, this parameter specifies
the initial size and also the grow size of the buffer that
QuickDraw 3D allocates internally.

bufferSize The size, in bytes, of the specified buffer.

C H A P T E R 1 6

Storage Objects

998 Storage Objects Reference

DESCRIPTION

The Q3MemoryStorage_NewBuffer function returns, as its function result, a new
memory storage object associated with the buffer specified by the buffer and
validSize parameters. The data in the specified buffer is not copied into internal
QuickDraw 3D memory, so your application must not access that buffer until
the associated storage object is closed or disposed of.

If you pass the value NULL in the buffer parameter, QuickDraw 3D allocates a
buffer of validSize bytes, increases the buffer by that size whenever necessary,
and later disposes of the buffer when the associated storage object is closed or
disposed of. If buffer is set to NULL and validSize is set to 0, QuickDraw 3D uses
a default initial buffer and grow size.

The bufferSize parameter specifies the size of the specified buffer. The
validSize parameter specifies the size of the valid metafile data contained in the
buffer. The value of the validSize parameter should always be less than or
equal to the value of the bufferSize parameter. This allows you to maintain
other data in the buffer following the valid metafile data.

If Q3MemoryStorage_NewBuffer cannot create a new storage object, it returns the
value NULL.

ERRORS

kQ3ErrorOutOfMemory

Q3MemoryStorage_Set 16

You can use the Q3MemoryStorage_Set function to set the data of a memory
storage object.

TQ3Status Q3MemoryStorage_Set (
TQ3StorageObject storage,
const unsigned char *buffer,
unsigned long validSize);

storage A memory storage object.

buffer A pointer to a contiguous block of memory to be associated with
the specified storage object, or NULL.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 999

validSize The size, in bytes, of the valid metafile data contained in the
specified buffer. If buffer is set to NULL, this parameter specifies
the initial size and also the grow size of the buffer that
QuickDraw 3D allocates internally.

DESCRIPTION

The Q3MemoryStorage_Set function sets the data for the memory storage object
specified by the storage parameter to the values specified in the buffer and
validSize parameters. The data in the specified buffer is copied into internal
QuickDraw 3D memory, so you can dispose of the buffer if Q3MemoryStorage_Set
returns successfully.

If you pass the value NULL in the buffer parameter, QuickDraw 3D allocates a
buffer of validSize bytes, increases the buffer by that size whenever necessary,
and later disposes of the buffer when the associated storage object is closed or
disposed of. If buffer is set to NULL and validSize is set to 0, and if the buffer
parameter was set to NULL when the storage object was created, QuickDraw 3D
uses a default initial buffer and grow size.

SPECIAL CONSIDERATIONS

You must not use Q3MemoryStorage_Set with an open memory storage object.

ERRORS

kQ3ErrorAccessRestricted
kQ3ErrorInvalidObjectParameter

Q3MemoryStorage_GetBuffer 16

You can use the Q3MemoryStorage_GetBuffer function to get the data of a
memory storage object.

TQ3Status Q3MemoryStorage_GetBuffer (
TQ3StorageObject storage,
unsigned char **buffer,
unsigned long *validSize,
unsigned long *bufferSize);

C H A P T E R 1 6

Storage Objects

1000 Storage Objects Reference

storage A memory storage object.

buffer On entry, a pointer to a pointer. On exit, a pointer to a pointer to
the block of memory associated with the specified storage
object.

validSize On exit, the size, in bytes, of the valid metafile data contained in
the specified buffer.

bufferSize On exit, the size, in bytes, of the block of memory whose
address is returned through the buffer parameter.

DESCRIPTION

The Q3MemoryStorage_GetBuffer function returns, in the buffer and bufferSize
parameters, the address and size of the block of memory currently associated
with the memory storage object specified by the storage parameter. Note that
the returned address is the address of the storage object’s data, not of a copy of
that data. As a result, the returned pointer may become a dangling pointer if the
buffer holding the storage object’s data is dynamically reallocated (perhaps
because additional data was written to the object).

ERRORS

kQ3ErrorAccessRestricted
kQ3ErrorInvalidObjectParameter

Q3MemoryStorage_SetBuffer 16

You can use the Q3MemoryStorage_SetBuffer function to set the data of a memory
storage object.

TQ3Status Q3MemoryStorage_SetBuffer (
TQ3StorageObject storage,
unsigned char *buffer,
unsigned long validSize,
unsigned long bufferSize);

storage A memory storage object.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 1001

buffer A pointer to a block of memory to be associated with the
specified storage object, or NULL.

validSize The size, in bytes, of the valid metafile data contained in the
specified buffer. If the value of buffer is NULL, this parameter
specifies the initial size and also the grow size of the buffer that
QuickDraw 3D allocates internally.

bufferSize The size, in bytes, of the specified buffer.

DESCRIPTION

The Q3MemoryStorage_SetBuffer function sets the buffer location, size, and valid
size of the memory storage object specified by the storage parameter to the
values specified in the buffer, bufferSize, and validSize parameters.

If you pass the value NULL in the buffer parameter, QuickDraw 3D allocates a
buffer of validSize bytes, increases the buffer by that size whenever necessary,
and later disposes of the buffer when the associated storage object is closed or
disposed of. If buffer is set to NULL and validSize is set to 0, QuickDraw 3D uses
a default initial buffer and grow size.

SPECIAL CONSIDERATIONS

You must not use Q3MemoryStorage_SetBuffer with an open memory storage
object.

Q3MemoryStorage_GetType 16

You can use the Q3MemoryStorage_GetType function to get the type of a memory
storage object.

TQ3ObjectType Q3MemoryStorage_GetType (TQ3StorageObject storage);

storage A memory storage object.

C H A P T E R 1 6

Storage Objects

1002 Storage Objects Reference

DESCRIPTION

The Q3MemoryStorage_GetType function returns, as its function result, the type of
the memory storage object specified by the storage parameter. The types of
memory storage objects currently supported by QuickDraw 3D are defined by
this constant:

kQ3MemoryStorageTypeHandle

If the specified memory storage object is invalid or is not of this type,
Q3MemoryStorage_GetType returns the value kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorNoSubclass
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Creating and Accessing Handle Storage Objects 16

QuickDraw 3D provides routines for creating and managing handle storage
objects.

Q3HandleStorage_New 16

You can use the Q3HandleStorage_New function to create a new handle storage
object.

TQ3StorageObject Q3HandleStorage_New (
Handle handle,
unsigned long validSize);

handle A handle to a buffer in memory, or NULL.

validSize The size, in bytes, of the specified buffer.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 1003

DESCRIPTION

The Q3HandleStorage_New function returns, as its function result, a new handle
storage object associated with the buffer specified by the handle and validSize
parameters. Your application must not access that buffer until the associated
storage object is closed or disposed of. If Q3HandleStorage_New cannot create a
new storage object, it returns the value NULL. If you pass the value NULL in the
handle parameter, QuickDraw 3D allocates a buffer of the specified size and
later disposes of that buffer when the associated storage object is closed or
disposed of.

ERRORS

kQ3ErrorOutOfMemory

Q3HandleStorage_Get 16

You can use the Q3HandleStorage_Get function to get information about a handle
storage object.

TQ3Status Q3HandleStorage_Get (
TQ3StorageObject storage,
Handle *handle,
unsigned long *validSize);

storage A handle storage object.

handle On entry, a pointer to a handle. On exit, a pointer to a handle to
the block of memory associated with the specified storage
object.

validSize On exit, the size, in bytes, of the block of memory whose
address is returned through the buffer parameter.

DESCRIPTION

The Q3HandleStorage_Get function returns, in the handle and validSize
parameters, the handle and size of the block of memory currently associated
with the handle storage object specified by the storage parameter. Note that the

C H A P T E R 1 6

Storage Objects

1004 Storage Objects Reference

returned handle is a handle to the storage object’s data, not of a copy of that
data.

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Q3HandleStorage_Set 16

You can use the Q3HandleStorage_Set function to set information about a handle
storage object.

TQ3Status Q3HandleStorage_Set (
TQ3StorageObject storage,
Handle handle,
unsigned long validSize);

storage A handle storage object.

handle A handle to a contiguous block of memory to be associated with
the specified storage object, or NULL.

validSize The size, in bytes, of the specified buffer.

DESCRIPTION

The Q3HandleStorage_Set function sets the buffer location and size of the handle
storage object specified by the storage parameter to the values specified in the
handle and validSize parameters. If you pass the value NULL in the handle
parameter, QuickDraw 3D allocates a buffer of the specified size and later
disposes of that buffer when the associated storage object is closed or disposed
of. If you pass NULL in handle and 0 in validSize, QuickDraw 3D allocates a
buffer of a private default size.

SPECIAL CONSIDERATIONS

You must not use Q3HandleStorage_Set with an open handle storage object.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 1005

ERRORS

kQ3ErrorInvalidObjectParameter

Creating and Accessing Macintosh Storage Objects 16

QuickDraw 3D provides routines for creating and managing Macintosh storage
objects.

Q3MacintoshStorage_New 16

You can use the Q3MacintoshStorage_New function to create a new Macintosh
storage object.

TQ3StorageObject Q3MacintoshStorage_New (short fsRefNum);

fsRefNum A file reference number of the data fork of a Macintosh file. This
file must already be open.

DESCRIPTION

The Q3MacintoshStorage_New function returns, as its function result, a new
storage object associated with the Macintosh file specified by the fsRefNum
parameter. The specified file is assumed to be open, and it must remain open as
long as you use the returned storage object. In addition, you are responsible for
closing the file once the associated storage object has been closed or disposed of.
If Q3MacintoshStorage_New cannot create a new storage object, it returns the
value NULL.

ERRORS

kQ3ErrorOutOfMemory

C H A P T E R 1 6

Storage Objects

1006 Storage Objects Reference

Q3MacintoshStorage_Get 16

You can use the Q3MacintoshStorage_Get function to get information about a
Macintosh storage object.

TQ3Status Q3MacintoshStorage_Get (
TQ3StorageObject storage,
short *fsRefNum);

storage A Macintosh storage object.

fsRefNum On exit, the file reference number of the Macintosh file
associated with the specified storage object.

DESCRIPTION

The Q3MacintoshStorage_Get function returns, in the fsRefNum parameter, the file
reference number of the Macintosh file associated with the Macintosh storage
object specified by the storage parameter.

Q3MacintoshStorage_Set 16

You can use the Q3MacintoshStorage_Set function to set information about a
Macintosh storage object.

TQ3Status Q3MacintoshStorage_Set (
TQ3StorageObject storage,
short fsRefNum);

storage A Macintosh storage object.

fsRefNum A file reference number.

DESCRIPTION

The Q3MacintoshStorage_Set function sets the file reference number of the file
associated with the Macintosh storage object specified by the storage parameter
to the number specified by the fsRefNum parameter.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 1007

SPECIAL CONSIDERATIONS

You must not use Q3MacintoshStorage_Set with an open Macintosh storage
object.

ERRORS

kQ3ErrorStorageIsOpen

Q3MacintoshStorage_GetType 16

You can use the Q3MacintoshStorage_GetType function to get the type of a
Macintosh storage object.

TQ3ObjectType Q3MacintoshStorage_GetType (TQ3StorageObject storage);

storage A Macintosh storage object.

DESCRIPTION

The Q3MacintoshStorage_GetType function returns, as its function result, the type
of the Macintosh storage object specified by the storage parameter. The types of
Macintosh storage objects currently supported by QuickDraw 3D are defined
by this constant:

kQ3MacintoshStorageTypeFSSpec

If the specified memory storage object is invalid or is not of this type,
Q3MacintoshStorage_GetType returns the value kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorNoSubclass
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

C H A P T E R 1 6

Storage Objects

1008 Storage Objects Reference

Creating and Accessing FSSpec Storage Objects 16

QuickDraw 3D provides routines for creating and managing Macintosh storage
objects specified using a file system specification structure.

Q3FSSpecStorage_New 16

You can use the Q3FSSpecStorage_New function to create a new memory storage
object specified using a file system specification structure.

TQ3StorageObject Q3FSSpecStorage_New (const FSSpec *fs);

fs A file system specification structure specifying the name and
location of a Macintosh file.

DESCRIPTION

The Q3FSSpecStorage_New function returns, as its function result, a new storage
object associated with the Macintosh file specified by the fs parameter. The
specified file is assumed to be closed. QuickDraw 3D opens the file, and, when
the associated storage object is closed or disposed of, QuickDraw 3D closes the
file. If Q3FSSpecStorage_New cannot create a new storage object, it returns the
value NULL.

ERRORS

kQ3ErrorOutOfMemory
kQ3ErrorNULLParameter

Q3FSSpecStorage_Get 16

You can use the Q3FSSpecStorage_Get function to get information about an
FSSpec storage object.

TQ3Status Q3FSSpecStorage_Get (
TQ3StorageObject storage,
FSSpec *fs);

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 1009

storage A Macintosh FSSpec storage object.

fs On entry, a pointer to a file system specification structure. On
exit, a pointer to the file system specification structure
associated with the specified Macintosh FSSpec storage object.

DESCRIPTION

The Q3FSSpecStorage_Get function returns, through the fs parameter, the file
system specification structure associated with the Macintosh FSSpec storage
object specified by the storage parameter.

Q3FSSpecStorage_Set 16

You can use the Q3FSSpecStorage_Set function to set information about an
FSSpec storage object.

TQ3Status Q3FSSpecStorage_Set (
TQ3StorageObject storage,
const FSSpec *fs);

storage A Macintosh FSSpec storage object.

fs A file system specification structure specifying the name and
location of a Macintosh file.

DESCRIPTION

The Q3FSSpecStorage_Set function sets the file system specification structure of
the file associated with the Macintosh FSSpec storage object specified by the
storage parameter to the structure specified by the fs parameter.

SPECIAL CONSIDERATIONS

You must not use Q3FSSpecStorage_Set with an open Macintosh FSSpec storage
object.

C H A P T E R 1 6

Storage Objects

1010 Storage Objects Reference

ERRORS

kQ3ErrorStorageIsOpen

Creating and Accessing UNIX Storage Objects 16

QuickDraw 3D provides routines for creating and managing UNIX storage
objects.

Note
You need to link your application with the standard I/O
library to use these functions. ◆

Q3UnixStorage_New 16

You can use the Q3UnixStorage_New function to create a new UNIX storage
object.

TQ3StorageObject Q3UnixStorage_New (FILE *stdFile);

stdFile A pointer to a file. This file must already be open.

DESCRIPTION

The Q3UnixStorage_New function returns, as its function result, a new UNIX
storage object associated with the file specified by the stdFile parameter. The
specified file is assumed to be open, and it must remain open as long as you use
the returned storage object. In addition, you are responsible for closing the file
once the associated storage object has been closed or disposed of. If
Q3UnixStorage_New cannot create a new storage object, it returns the value NULL.

ERRORS

kQ3ErrorOutOfMemory
kQ3ErrorNULLParameter

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 1011

Q3UnixStorage_Get 16

You can use the Q3UnixStorage_Get function to get information about a UNIX
storage object.

TQ3Status Q3UnixStorage_Get (TQ3StorageObject storage, FILE **stdFile);

storage A UNIX storage object.

stdFile On entry, a pointer to a FILE structure. On exit, a pointer to the
FILE structure associated with the specified UNIX storage object.

DESCRIPTION

The Q3UnixStorage_Get function returns, through the stdFile parameter, the
FILE structure associated with the UNIX storage object specified by the storage
parameter.

ERRORS

kQ3ErrorAccessRestricted
kQ3ErrorInvalidObjectParameter

Q3UnixStorage_Set 16

You can use the Q3UnixStorage_Set function to set information about a UNIX
storage object.

TQ3Status Q3UnixStorage_Set (TQ3StorageObject storage, FILE *stdFile);

storage A UNIX storage object.

stdFile A pointer to a FILE structure.

DESCRIPTION

The Q3UnixStorage_Set function sets the FILE structure associated with the
UNIX storage object specified by the storage parameter to the structure
specified by the stdFile parameter.

C H A P T E R 1 6

Storage Objects

1012 Storage Objects Reference

SPECIAL CONSIDERATIONS

You must not use Q3UnixStorage_Set with an open UNIX storage object.

ERRORS

kQ3ErrorAccessRestricted
kQ3ErrorInvalidObjectParameter
kQ3ErrorStorageIsOpen

Q3UnixStorage_GetType 16

You can use the Q3UnixStorage_GetType function to get the type of a UNIX
storage object.

TQ3ObjectType Q3UnixStorage_GetType (TQ3StorageObject storage);

storage A UNIX storage object.

DESCRIPTION

The Q3UnixStorage_GetType function returns, as its function result, the type of
the UNIX storage object specified by the storage parameter. The types of UNIX
storage objects currently supported by QuickDraw 3D are defined by this
constant:

kQ3UnixStorageTypePath

If the specified memory storage object is invalid or is not of this type,
Q3UnixStorage_GetType returns the value kQ3ObjectTypeInvalid.

ERRORS

kQ3ErrorNoSubclass
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 1013

Creating and Accessing UNIX Path Name Storage Objects 16

QuickDraw 3D provides routines for creating and managing UNIX storage
objects specified using a path name.

Note
You need to link your application with the standard I/O
library to use these functions. ◆

Q3UnixPathStorage_New 16

You can use the Q3UnixPathStorage_New function to create a new UNIX storage
object specified using a path name.

TQ3StorageObject Q3UnixPathStorage_New (const char *pathName);

pathName A path name of a file. The path name is a null-terminated C
string.

DESCRIPTION

The Q3UnixPathStorage_New function returns, as its function result, a new
storage object associated with the file specified by the pathName parameter. The
specified file is assumed to be closed. QuickDraw 3D opens the file (by calling
fopen) and, when the associated storage object is closed or disposed of,
QuickDraw 3D closes the file (by calling fclose). If Q3UnixPathStorage_New
cannot create a new storage object, it returns the value NULL.

ERRORS

kQ3ErrorOutOfMemory
kQ3ErrorNULLParameter

C H A P T E R 1 6

Storage Objects

1014 Storage Objects Reference

Q3UnixPathStorage_Get 16

You can use the Q3UnixPathStorage_Get function to get information about a
UNIX path name storage object.

TQ3Status Q3UnixPathStorage_Get (
TQ3StorageObject storage,
char *pathName);

storage A UNIX path name storage object.

pathName On entry, a pointer to a block of memory large enough to hold a
string of size kQ3StringMaximumLength. The path name of the file
associated with the specified storage object is copied into that
block of memory. The path name is a null-terminated C string.

DESCRIPTION

The Q3UnixPathStorage_Get function returns, through the pathName parameter, a
copy of the path name of the file associated with the UNIX path storage object
specified by the storage parameter.

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Q3UnixPathStorage_Set 16

You can use the Q3UnixPathStorage_Set function to set information about a
UNIX path name storage object.

TQ3Status Q3UnixPathStorage_Set (
TQ3StorageObject storage,
const char *pathName);

storage A UNIX path name storage object.

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 1015

pathName A pointer to the path name of a file. The path name is a
null-terminated C string. (A file does not yet need to exist in that
location.)

DESCRIPTION

The Q3UnixPathStorage_Set function sets the path name of the file associated
with the UNIX path name storage object specified by the storage parameter to
the string pointed to by the pathName parameter.

SPECIAL CONSIDERATIONS

You must not use Q3UnixPathStorage_Set with an open UNIX path name storage
object.

ERRORS

kQ3ErrorAccessRestricted
kQ3ErrorInvalidObjectParameter

Creating and Accessing Windows Storage Objects 16

QuickDraw 3D provides routines for creating and managing Windows storage
objects.

Q3Win32Storage_New 16

You use the Q3Win32Storage_New function to create a Windows storage object.

TQ3StorageObject Q3Win32Storage_New (const HANDLE hFile);

hFile A handle to a file.

DESCRIPTION

The Q3Win32Storage_New function returns, as its function result, a new storage
object associated with the file specified by the hFile parameter. The specified

C H A P T E R 1 6

Storage Objects

1016 Storage Objects Reference

file is assumed to be closed. QuickDraw 3D opens the file and, when the
associated storage object is closed or disposed of, QuickDraw 3D closes the file.
If Q3Win32Storage_New cannot create a new storage object, it returns the value
NULL.

EXAMPLES

The HANDLE type is a native Windows entity that’s created using the Windows
CreateFile call. The following illustrates a typical way of using this call to read
an existing variable of type HANDLE:

hFile = CreateFile(
pathName, // pointer to name of the file
GENERIC_READ, // access (read-write) mode
0, // share mode
NULL, // pointer to security descriptor
OPEN_EXISTING, // how to create
FILE_ATTRIBUTE_NORMAL, // file attributes
NULL // handle to file with attributes

// to copy
);
A3Assert(hFile != INVALID_HANDLE_VALUE);
A3Assert((srcStorage = Q3Win32Storage_New(hFile)) != NULL);

The following is a typical way of using the Windows CreateFile call to write to
a variable of type HANDLE:

hFile = CreateFile(
pathName, // pointer to name of the file
GENERIC_WRITE, // access (read-write) mode
0, // share mode
NULL, // pointer to security descriptor
CREATE_NEW, // how to create
FILE_ATTRIBUTE_NORMAL, // file attributes
NULL // handle to file with

// attributes to copy
);

A3Assert(hFile != INVALID_HANDLE_VALUE);
A3Assert((dstStorage = Q3Win32Storage_New(hFile)) != NULL);

C H A P T E R 1 6

Storage Objects

Storage Objects Reference 1017

Q3Win32Storage_Get 16

You can use the Q3Win32Storage_Get function to get the file associated with a
Windows storage object.

TQ3Status Q3Win32Storage_Get (
TQ3StorageObject storage,
const HANDLE *hFile);

storage A Windows storage object.

hFile On exit, a handle to the file associated with the specified storage
object.

DESCRIPTION

The Q3Win32Storage_Get function returns, through the hFile parameter, a handle
to the file associated with the Windows storage object specified by the storage
parameter.

Q3Win32Storage_Set 16

You can use the Q3Win32Storage_Set function to set the file associated with a
Windows storage object.

TQ3Status Q3Win32Storage_Set (
TQ3StorageObject storage,
const HANDLE hFile);

storage A Windows storage object.

hFile A handle to a file.

DESCRIPTION

The Q3Win32Storage_Set function sets the file associated with the Windows
storage object specified by the storage parameter to the file specified by the
hFile parameter.

C H A P T E R 1 6

Storage Objects

1018 Storage Object Errors

Storage Object Errors 16

The following errors may be returned by storage object routines. A list of
general QuickDraw 3D errors is given in “QuickDraw 3D Errors, Warnings, and
Notices” (page 87).

kQ3ErrorStorageInUse
kQ3ErrorStorageAlreadyOpen
kQ3ErrorStorageNotOpen
kQ3ErrorStorageIsOpen

About File Objects 1019

C H A P T E R 1 7

File Objects 17Figure 17-0
Listing 17-0
Table 17-0

This chapter describes file objects and the functions you can use to manipulate
them. You use file objects, together with storage objects, to read and write data
stored in the QuickDraw 3D Object Metafile format. A storage object connects a
physical storage device to a file object.

To use this chapter, you should already be familiar with the QuickDraw 3D
class hierarchy, described in the chapter “QuickDraw 3D Objects.” You also
need to know how to create and configure storage objects, as explained in the
chapter “Storage Objects.”

This chapter begins by describing file objects and their features. Then it shows
how to create and manipulate file objects. The section “File Objects Reference,”
beginning on page 1029 provides a complete description of file objects and the
routines you can use to create and manipulate them.

Note
For a discussion of file-oriented custom object methods, see
“I/O Methods” (page 233). ◆

About File Objects 17

A file object (or, more briefly, a file) is a type of QuickDraw 3D object that you
use to read and write data that conforms to the QuickDraw 3D Object Metafile
(3DMF), a standard file format intended to facilitate the interchange of
three-dimensional data among applications. You can use the 3DMF both as a 3D
data storage format and as a 3D data interchange format. For example, when a
user saves a 3D model created by your application, you can write the data to a
file object. The data-writing methods of the file object and its associated storage
object ensure that the data in the piece of storage associated with that storage
object (for example, a file on disk or a block of memory) conforms to the 3DMF

C H A P T E R 1 7

File Objects

1020 About File Objects

specification. All other applications capable of handling 3DMF files can thus
open and read that data.

By using file objects, you can insulate your application from having to know the
actual details of the QuickDraw 3D Object Metafile standard. You use file object
routines to read and write data in a piece of storage that conforms to the 3DMF
and, if necessary, to get information about that storage. In all likelihood, you’ll
need to know about the details of the 3DMF only if you cannot use file objects
to access 3DMF data. For instance, you would need to know the structure of the
3DMF if you wanted to read and write 3DMF files using a 3D graphics system
other than QuickDraw 3D.

Note
See Quickdraw 3D 1.5 Metafile Reference for complete
information about the structure of the QuickDraw 3D
Object Metafile. ◆

File I/O 17

The relationship between file objects and storage objects is similar to that
between view objects and draw context objects. A draw context object receives
the raw data needed to draw an image on a particular window system, and the
associated view object is an abstraction in which you perform all drawing.
Similarly, a storage object receives the raw data read from or written to a
particular piece of storage, and the associated file object is an abstraction in
which you perform all I/O operations. View objects maintain information about
the current state of the drawing, and file objects maintain information about the
current state of I/O operations. Just as you must perform all drawing in a
rendering loop, between calls to Q3View_StartRendering and
Q3View_EndRendering, you must perform all file writing in a writing loop,
between calls to Q3View_StartWriting and Q3View_EndWriting. See “Writing Data
to a File Object,” beginning on page 1028 for more information on writing
3DMF data.

A QuickDraw 3D file object is of type TQ3FileObject, which is a type of shared
object. QuickDraw 3D currently provides no subclasses of the TQ3FileObject
type.

C H A P T E R 1 7

File Objects

About File Objects 1021

File Types 17

As mentioned earlier, the data associated with a file object must conform to the
QuickDraw 3D Object Metafile standard. That standard defines two general
forms for the 3D data: text form and binary form. A text file is a stream of ASCII
characters with meaningful labels for each type of object contained in the file
(for example, NURBCurve for a NURB curve). A binary file is a stream of raw
binary data, the type of which is indicated by more cryptic object type codes
(for example, nrbc for a NURB curve). The text form is most useful when you’re
writing and debugging your application, but the binary form is usually smaller
(requiring less storage space on disk or in memory) and can be read and written
much faster.

IMPORTANT

Disk-based metafile data, whether a text file or a binary file,
should be contained in a file of type '3DMF'. ▲

In addition, there are three ways to organize the data in a text or binary file
object. A file object can be organized in normal mode, stream mode, or database
mode.

In normal mode, a file object contains a table of contents that lists all
multiply-referenced objects in the file. This is usually the most compact file
object organization, but it requires random access to the file object data in order
to resolve references. (It might not, therefore, be the best mode to use when
transferring 3D data to a remote machine on a network.)

In stream mode, a file object does not contain a table of contents and any
references to objects are simply copies of the objects themselves. This may result
in a larger file than normal mode, but it allows the file object to be processed
sequentially, without random access.

In database mode, a file object contains a table of contents that lists every object
in the file, whether or not it is referenced within the file. This organization is
useful if you want to determine what information a file object contains without
having to read and process the entire file. This would be useful, for example, for
creating a catalog of textures.

Figure 17-1 shows a sample text file object organized in each of these three
ways. Once again, for complete information about the types of file objects and
the ways of organizing them, see the 3D Metafile Reference.

C H A P T E R 1 7

File Objects

1022 About File Objects

View Hints 17

To include in a metafile information about the lights, the renderer, the camera,
and other view settings, you can by create and write a view hints object. A view
hints object is an object in a metafile that gives hints about how to configure a
scene. For instance, you can create a view hints object (by calling
Q3ViewHints_New) and then record a view’s current settings by calling functions
like Q3ViewHints_SetRenderer and Q3ViewHints_SetCamera. Conversely, when
you are reading objects from a metafile and you encounter a view hints object in
the file, you can use the information in that object to configure a view object,
thereby reconstructing the image as accurately as possible. Or, you can choose
to ignore the information in a view hints object you find in a metafile. For
information about using view hints objects see “Managing View Hints Objects”
(page 1074).

C H A P T E R 1 7

File Objects

About File Objects 1023

Figure 17-1 Types of file objects

3DMetafile (0 5 Database Label0>)

Label2:
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)

 Label3:
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Label4:
Translate (2 0 0)

Reference (1)

Label5:
Translate (0 0 -2)

Reference (1)

Label6:
Translate (-2 0 0)

Reference (1)

Label0:
TableOfContents (
 Label1> # next TOC
 6 # reference seed
 -1 # typeSeed
 1 # tocEntryType
 16 # tocEntrySize
 5 # nEntries
 1 Label2>
 Box
 2 Label3>
 GeometryAttributeSet
 3 Label4>
 Translate
 4 Label5>
 Translate
 5 Label6>
 Translate
)

3DMetafile (0 5 Normal Label0>)

Label2:
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Label11:
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Label3:
Translate (2 0 0)

Reference (1)

Label4:
Translate (0 0 -2)

Reference (1)

Label5:
Translate (-2 0 0)

Reference (1)

Label0:
TableOfContents (
 Label1> # next TOC
 2 # reference seed
 -1 # typeSeed
 0 # tocEntryType
 12 # tocEntrySize
 1 # nEntries
 1 Label2>
)

3DMetafile (0 5 Stream Label0>)

Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (2 0 0)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (0 0 -2)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (-2 0 0)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Normal organization Stream organization Database organization

C H A P T E R 1 7

File Objects

1024 Using File Objects

Using File Objects 17

You use file objects to read 3DMF data from or write 3DMF data to a storage
object, which represents a physical storage device available on a computer.
Before you can access 3DMF data in a piece of storage, however, you need to
create a storage object to represent the physical storage device, create a file
object, and attach the file object to the storage object.

Creating a File Object 17

To access the data in a piece of storage that conforms to the 3DMF standard
(such as a file on disk or a block of memory on the Clipboard), you need to
create a new storage object, create a new file object, and attach the file object to
the storage object. Thereafter, you can open the file object and read the data in it
or write data to it. Listing 17-1 illustrates how to create storage and file objects
and attach them to one another.

The MyGetInputFile function defined in Listing 17-1 calls the application-
defined routine MyGetInputFileName to get the name of the disk file to open.
Then it calls Q3FSSpecStorage_New to create a new storage object associated with
that disk file and Q3File_New to create a new file object. If both creation calls
complete successfully, MyGetInputFile calls Q3File_SetStorage to attach the file
object to the storage object.

Note
See the chapter “Storage Objects” for complete details on
creating storage objects. ◆

Listing 17-1 Creating a new file object

TQ3FileObject MyGetInputFile (void)
{

TQ3FileObject myFileObj;
TQ3StorageObject myStorageObj;
OSType myFileType;
FSSpec myFSSpec;

C H A P T E R 1 7

File Objects

Using File Objects 1025

if (MyGetInputFileName(&myFSSpec) == kQ3False)
return(NULL);

/*Create new storage object and new file object.*/
if(((myStorageObj = Q3FSSpecStorage_New(&myFSSpec)) == NULL)

|| ((myFileObj = Q3File_New()) == NULL))
{

if (myStorageObj)
Q3Object_Dispose(myStorageObj);

return(NULL);
}

/*Set the storage for the file object.*/
Q3File_SetStorage(myFileObj, myStorageObj);
Q3Object_Dispose(myStorageObj);

return (myFileObj);
}

Notice that the call to Q3File_SetStorage is followed immediately by a call to
Q3Object_Dispose. The call to Q3File_SetStorage increases the reference count of
the storage object, and the call to Q3Object_Dispose simply decreases that count.

Reading Data from a File Object 17

The data in an 3DMF file is organized into discrete units called metafile objects
(or, more briefly, and despite the risk of confusion with QuickDraw 3D objects,
objects). You read data from an 3DMF file by reading each individual metafile
object in it (by calling the Q3File_ReadObject function), until you reach the end
of the file. Listing 17-2 illustrates how to read the metafile objects in an 3DMF
file.

The MyRead3DMFModel function defined in Listing 17-2 opens a file object and
sequentially reads each metafile object in the 3DMF file into a QuickDraw 3D
object. MyRead3DMFModel determines the type of the QuickDraw 3D object read.
If the object is a view hints object, MyRead3DMFModel returns that object in the
viewHints parameter. If the object isn’t a view object, it must be some other
drawable QuickDraw 3D object. In that case, MyRead3DMFModel either returns
that object in the model parameter (if there are no more objects in the 3DMF file)
or adds it to a display group. When it executes successfully, MyRead3DMFModel
returns both a 3D model and a view hints object to its caller.

C H A P T E R 1 7

File Objects

1026 Using File Objects

Listing 17-2 Reading metafile objects

TQ3Status MyRead3DMFModel
(TQ3FileObject file, TQ3Object *model, TQ3Object *viewHints)

{
TQ3Object myGroup;
TQ3Object myObject;

/*Initialize view hints and model to be returned.*/
*viewHints = NULL;
*model = NULL;
myGroup = NULL;
myObject = NULL;

/*Open the file object and exit gracefully if unsuccessful.*/
if (Q3File_OpenRead(file, NULL) != kQ3Success)
{

DoError("MyRead3DMFModel", "Reading failed %s", filename);
return kQ3Failure;

}

while (Q3File_IsEndOfFile(file) == kQ3False)
{

myObject = NULL;
/*Read a metafile object from the file object.*/
myObject = Q3File_ReadObject(file);
if (myObject == NULL)

continue;

/*Save a view hints object, and add any drawable objects to a group.*/
if (Q3Object_IsType(myObject, kQ3SharedTypeViewHints))
{

if (*viewHints == NULL)
{

*viewHints = myObject;
myObject = NULL;

}
}
else if (Q3Object_IsDrawable(myObject))
{

if (myGroup)

C H A P T E R 1 7

File Objects

Using File Objects 1027

{
Q3Group_AddObject(myGroup, myObject);

}
else if (*model == NULL)
{

*model = myObject;
myObject = NULL;

}
else
{

myGroup = Q3DisplayGroup_New();
Q3Group_AddObject(myGroup, *model);
Q3Group_AddObject(myGroup, myObject);
Q3Object_Dispose(*model);
*model = myGroup;

}
}
if (myObject != NULL)

Q3Object_Dispose(myObject);
}

if (Q3Error_Get(NULL) != kQ3ErrorNone)
{

if (*model != NULL) {
Q3Object_Dispose(*model);
*model = NULL;

}

if (*viewHints != NULL) {
Q3Object_Dispose(*viewHints);
*viewHints = NULL;

}
return (kQ3Failure);

}
 return kQ3Success;
}

C H A P T E R 1 7

File Objects

1028 Using File Objects

Writing Data to a File Object 17

To write a model or other 3D data into a file conforming to the QuickDraw 3D
Object Metafile format, you can use submit calls (such as Q3Object_Submit) with
an open file object that is attached to a storage object. Depending on the
complexity of the model and the amount of available memory, QuickDraw 3D
might need to traverse the model more than once to write the data to the target
physical storage device. Accordingly, you should perform all write operations
within a writing loop, bracketed by calls to Q3View_StartWriting and
Q3View_EndWriting. Listing 17-3 illustrates a simple writing loop.

Listing 17-3 Writing 3D data to a file object

Q3View_StartWriting(myView, myFileObj);
do {

Q3Object_Submit(myModel, myView);
Q3Polyline_Submit(&myAnimatedData, myView);
Q3TriGrid_Submit(&myBumpExtrapolationGrid, myView);

} while (Q3View_EndWriting(myView) == kQ3ViewStatusRetraverse);

Metafile External References 17

Suppose E is a metafile that contains an object R that you wish to reference from
another metafile M. E must have an entry to object R in its Table of Contents
(TOC). There are two ways to achieve this: you can write E out in database
mode or make sure that R is written out twice in E while E is in normal mode.

With such a metafile E, the first step in writing object R out as an external
reference is to read R from E. You must open E using the UnixPath storage class.
While E is still open for reading, call Q3File_MarkAsExternalReference on R and
the TQ3FileObject associated with E. This marks R as an object that will always
be written out as an external reference. This means that whenever a
Q3..._Submit call is made on the object in a write loop, an external reference
object is written out that specifies the location of the object in E.

The process of reading metafiles containing external references is transparent to
the user, so long as no problems arise. If the location of the object is not given
correctly by the UNIX pathname, then the read call on the external reference
object will return NULL. Also, the file object containing the externally referenced
object must not currently be open for reading or writing.

C H A P T E R 1 7

File Objects

File Objects Reference 1029

The external reference object contains two pieces of information: the name (or
pathname) of the metafile that’s being externally referenced (E in this example),
and the reference ID of the object R.

Once a file containing external references has been created, calling
Q3File_GetExternalReferences returns the names of the files that are externally
referred to by M. If no files are externally referred to, the call returns NULL. If one
or more files are externally referred to, Q3File_GetExternalReferences returns a
group that contains one Q3String object for each external reference object in the
metafile. The Q3String object contains the name (in general, the pathname) of
the file in question. Because one Q3String object is produced per external
reference, it is possible for the same name to appear in several Q3String objects.

Routines that let you access and manipulate external references in metafiles are
described in “Custom File Object Routines,” beginning on page 1086. For
general information about metafiles, see the document QuickDraw 3D 1.5
Metafile Reference.

File Objects Reference 17

This section describes the constants, data structures, and routines that you can
use to create and manage file objects.

Constants 17

This section describes the constants you can use to specify file modes for file
objects.

File Mode Flags 17

QuickDraw 3D defines a set of file mode flags to specify a file object’s current
file mode. The file mode is returned to you when you call Q3File_OpenRead,
Q3Open_Write, or Q3File_GetMode.

typedef enum TQ3FileModeMasks {
kQ3FileModeNormal = 0,
kQ3FileModeStream = 1 << 0,

C H A P T E R 1 7

File Objects

1030 File Objects Reference

kQ3FileModeDatabase = 1 << 1,
kQ3FileModeText = 1 << 2

} TQ3FileModeMasks;

Constant descriptions

kQ3FileModeNormal
Set if the file object is organized in normal mode. A file
object is in normal mode if it contains a table of contents
that lists all referenced objects in the file object. Normal
mode is the most compact metafile representation.

kQ3FileModeStream
Set if the file object is organized in stream mode. A file is in
stream mode if there are no internal references in the file.
You can use stream mode for reading or writing
unidirectional streams, but a file in stream mode is usually
larger than a file in normal mode.

kQ3FileModeDatabase
Set if the file object is organized in database mode. A file
object is in database mode if the file object lists in its table
of contents all shared objects contained in the file object,
whether or not those objects are multiply referenced.

kQ3FileModeText Set if the file object is a text file. The file object is read as
text, using tokens and behaviors appropriate for text file
objects.

You can combine the kQ3FileModeText mask with any of the other masks, and
you can combine the kQ3FileModeStream and kQ3FileModeDatabase masks in a
single file mode.

Data Structures 17

This section describes the data structures provided by QuickDraw 3D for
accessing the data in a text or binary unknown object.

Primitive Types 17

typedef unsigned char TQ3Uns8; /* 1 byte unsigned integer */

C H A P T E R 1 7

File Objects

File Objects Reference 1031

typedef signed char TQ3Int8; /* 1 byte signed integer */

typedef unsigned short TQ3Uns16; /* 2 byte unsigned integer */

typedef signed short TQ3Int16; /* 2 byte signed integer */

typedef unsigned long TQ3Uns32; /* 4 byte unsigned integer */

typedef signed long TQ3Int32; /* 4 byte signed integer */

typedef struct TQ3Uns64 { /* for the Mac OS */
unsigned long hi;
unsigned long lo;

} TQ3Uns64; /* 8 byte unsigned integer */

typedef struct TQ3Uns64 { /* for Windows */
unsigned long lo;
unsigned long hi;

} TQ3Uns64; /* 8 byte unsigned integer */

typedef struct TQ3Int64 { /* for the Mac OS */
signed long hi;
unsigned long lo;

} TQ3Int64; /* 8 byte signed integer */

typedef struct TQ3Int64 { /* for Windows */
unsigned long lo;
signed long hi;

} TQ3Int64; /* 8 byte signed integer */

typedef float TQ3Float32; /* 4 byte floating point number */

typedef double TQ3Float64; /* 8 byte floating point number */

typedef TQ3Uns32 TQ3Size;

C H A P T E R 1 7

File Objects

1032 File Objects Reference

Version and Mode 17

#define Q3FileVersion(majorVersion, minorVersion)
(TQ3FileVersion) ((((TQ3Uns32) majorVersion & 0xFFFF) << 16)
| ((TQ3Uns32) minorVersion & 0xFFFF))

typedef unsigned long TQ3FileVersion;

#define kQ3FileVersionCurrent Q3FileVersion(1,2)

typedef enum TQ3FileModeMasks {
kQ3FileModeNormal = 0,
kQ3FileModeStream = 1 << 0,
kQ3FileModeDatabase = 1 << 1,
kQ3FileModeText = 1 << 2

} TQ3FileModeMasks;
typedef unsigned long TQ3FileMode;

Group Reading States 17

typedef enum TQ3FileReadGroupStateMasks{
kQ3FileReadWholeGroup = 0,
kQ3FileReadObjectsInGroup = 1 << 0,
kQ3FileCurrentlyInsideGroup = 1 << 1

} TQ3FileReadGroupStateMasks;
typedef unsigned long TQ3FileReadGroupState;

Unknown Object Data Structures 17

QuickDraw 3D returns data about unknown text or binary data objects in an
unknown text data structure or an unknown binary data structure. An
unknown text data structure is defined by the TQ3UnknownTextData data type.

typedef struct TQ3UnknownTextData {
char *objectName; /*'\0' terminated*/
char *contents; /*'\0' terminated*/

} TQ3UnknownTextData;

C H A P T E R 1 7

File Objects

File Objects Reference 1033

Field descriptions
objectName A pointer to the name of the unknown text object. This

name is a C string terminated by the null character (‘\0’).
contents A pointer to the contents of the unknown text object. This

string is a C string terminated by the null character (‘\0’).
An unknown binary data structure is defined by the TQ3UnknownBinaryData data
type.

typedef struct TQ3UnknownBinaryData {
TQ3ObjectType objectType;
unsigned long size;
TQ3Endian byteOrder;
char *contents;

} TQ3UnknownBinaryData;

Field descriptions
objectType The type of the data in the unknown binary object.
size The size, in bytes, of the data in the unknown binary object.
byteOrder The order in which the bytes in a word are addressed. This

field must contain kQ3EndianBig or kQ3EndianLittle.
contents A pointer to a copy of the data of the unknown binary

object.

File Objects Routines 17

This section describes routines you can use to create and manage file objects.

Creating File Objects 17

QuickDraw 3D provides a routine that you can use to create a file object.

Q3File_New 17

You can use the Q3File_New function to create a new file object.

C H A P T E R 1 7

File Objects

1034 File Objects Reference

TQ3FileObject Q3File_New (void);

DESCRIPTION

The Q3File_New function returns, as its function result, a new file object. If
Q3File_New cannot create a new file object, it returns the value NULL.

ERRORS

kQ3ErrorOutOfMemory

Attaching File Objects to Storage Objects 17

To read data from or write data to a file object, you must first attach the file
object to a storage object. QuickDraw 3D provides routines you can use to get
and set the current storage object for a file object.

Q3File_GetStorage 17

You can use the Q3File_GetStorage function to get the current storage object for
a file object.

TQ3Status Q3File_GetStorage (
TQ3FileObject file,
TQ3StorageObject *storage);

file A file object.

storage On exit, the storage object currently attached to the specified file
object.

DESCRIPTION

The Q3File_GetStorage function returns, in the storage parameter, the storage
object currently attached to the file object specified by the file parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 1035

ERRORS

kQ3ErrorInvalidObject
kQ3ErrorNULLParameter

Q3File_SetStorage 17

You can use the Q3File_SetStorage function to set the storage object for a file
object.

TQ3Status Q3File_SetStorage (
TQ3FileObject file,
TQ3StorageObject storage);

file A file object.

storage A storage object, or NULL.

DESCRIPTION

The Q3File_SetStorage function attaches the file object specified by the file
parameter to the storage object specified by the storage parameter. The
reference count of the storage object is incremented. You can pass the value NULL
in the storage parameter to clear a file object’s storage.

You cannot attach the same storage object to more than one file object.

ERRORS

kQ3ErrorFileAlreadyOpen
kQ3ErrorInvalidObject
kQ3ErrorStorageInUse

Accessing File Objects 17

QuickDraw 3D provides routines that you can use to open file objects, access
information about them, and read and write their data.

C H A P T E R 1 7

File Objects

1036 File Objects Reference

Q3File_OpenRead 17

You can use the Q3File_OpenRead function to open a file object for reading.

TQ3Status Q3File_OpenRead (
TQ3FileObject file,
TQ3FileMode *mode);

file A file object.

mode On exit, a set of bit flags that specify the file mode of the
specified file object. Set this field to NULL if you do not want a file
mode to be returned.

DESCRIPTION

The Q3File_OpenRead function opens for reading the file object specified by the
file parameter and returns, in the mode parameter, the file mode of the file
object. See “File Mode Flags” (page 1029) for a description of the available file
mode flags.

ERRORS

kQ3ErrorOSError
kQ3ErrorOutOfMemory

Q3File_OpenWrite 17

You can use the Q3File_OpenWrite function to open a file object for writing.

TQ3Status Q3File_OpenWrite (
TQ3FileObject file,
TQ3FileMode mode);

file A file object.

mode On exit, a set of bit flags that specify the file mode of the
specified file object. Set this field to NULL if you do not want a file
mode to be returned.

C H A P T E R 1 7

File Objects

File Objects Reference 1037

DESCRIPTION

The Q3File_OpenWrite function opens for writing the file object specified by the
file parameter and returns the file mode of the file object in the mode parameter.
See “File Mode Flags” (page 1029) for a description of the available file mode
flags.

ERRORS

kQ3ErrorOSError
kQ3ErrorOutOfMemory

Q3File_IsOpen 17

You can use the Q3File_IsOpen function to determine whether a file object is
open.

TQ3Status Q3File_IsOpen (TQ3FileObject file, TQ3Boolean *isOpen);

file A file object.

isOpen On exit, a Boolean value that indicates whether the specified file
is open (kQ3True) or closed (kQ3False).

DESCRIPTION

The Q3File_IsOpen function returns, in the isOpen parameter, a Boolean value
that indicates whether the file object specified by the file parameter is open
(kQ3True) or closed (kQ3False).

ERRORS

kQ3ErrorFileNotOpen
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

C H A P T E R 1 7

File Objects

1038 File Objects Reference

Q3File_Close 17

You can use the Q3File_Close function to close a file object.

TQ3Status Q3File_Close (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_Close function closes the file object specified by the file parameter.
Q3File_Close flushes any caches associated with the file and releases that
memory for other uses. You should close a file object only when all operations
on the file have completed successfully and you no longer need to keep the file
object open.

ERRORS

kQ3ErrorFileInUse
kQ3ErrorInvalidObjectParameter
kQ3ErrorOSError

Q3File_Cancel 17

You can use the Q3File_Cancel function to cancel a file object.

TQ3Status Q3File_Cancel (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_Cancel function removes from memory any data associated with the
file object specified by the file parameter and disposes of the file object itself.
You should call Q3File_Cancel when some fatal error occurs in your application
or simply when you’re finished using a file object. Once the file object has been
canceled, you can no longer read data from it or write data to it. In all
likelihood, the file object is corrupt after you call the Q3File_Cancel function.

C H A P T E R 1 7

File Objects

File Objects Reference 1039

ERRORS

kQ3ErrorInvalidObjectParameter
kQ3ErrorOSError

Q3File_GetMode 17

You can use the Q3File_GetMode function to determine an open file object’s
current file mode.

TQ3Status Q3File_GetMode (
TQ3FileObject file,
TQ3FileMode *mode);

file A file object. This file object must be open.

mode On exit, the current file mode of the specified file object.

DESCRIPTION

The Q3File_GetMode function returns, in the mode parameter, a set of flags that
encodes the current file mode of the file object specified by the file parameter.
See “File Mode Flags” (page 1029) for a complete description of the available
file mode flags.

ERRORS

kQ3ErrorFileNotOpen
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Q3File_GetVersion 17

You can use the Q3File_GetVersion function to get the version of an open file
object.

C H A P T E R 1 7

File Objects

1040 File Objects Reference

TQ3Status Q3File_GetVersion (
TQ3FileObject file,
TQ3FileVersion *version);

file A file object.

version On entry, a pointer to a file version. On exit, the current version
of the specified file object.

DESCRIPTION

The Q3File_GetVersion function returns, through the version parameter, the
current version of the file object specified by the file parameter.

ERRORS

kQ3ErrorFileNotOpen
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Accessing Objects Directly 17

QuickDraw 3D provides low-level routines that you can use to find and
manipulate objects in a file by reading sequentially through all the objects in it.

Q3File_GetNextObjectType 17

You can use the Q3File_GetNextObjectType function to get the type of the next
object in a file.

TQ3ObjectType Q3File_GetNextObjectType (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_GetNextObjectType function returns, as its function result, the type
of the next object in the file object specified by the file parameter. Depending

C H A P T E R 1 7

File Objects

File Objects Reference 1041

on the type of that object, you can then call Q3File_ReadObject to read it or
Q3File_SkipObject to skip it.

If an error occurs, Q3File_GetNextObjectType returns the value
kQ3ObjectTypeInvalid.

Q3File_IsNextObjectOfType 17

You can use the Q3File_IsNextObjectOfType function to determine whether the
next object in a file is of a certain type.

TQ3Boolean Q3File_IsNextObjectOfType (
TQ3FileObject file,
TQ3ObjectType ofType);

file A file object.

ofType An object type.

DESCRIPTION

The Q3File_IsNextObjectOfType function returns, as its function result, a
Boolean value that indicates whether the next object in the file object specified
by the file parameter is of the type specified by the ofType parameter (kQ3True)
or not (kQ3False).

Q3File_ReadObject 17

You can use the Q3File_ReadObject function to read the next object in a file.

TQ3Object Q3File_ReadObject (TQ3FileObject file);

file A file object.

C H A P T E R 1 7

File Objects

1042 File Objects Reference

DESCRIPTION

The Q3File_ReadObject function returns, as its function result, the next object in
the file specified by the file parameter. If an error occurs, Q3File_ReadObject
returns the value NULL.

Q3File_SkipObject 17

You can use the Q3File_SkipObject function to skip over an object in a file.

TQ3Status Q3File_SkipObject (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_SkipObject function skips the next object in the file object specified
by the file parameter. Note that Q3File_SkipObject skips the next object
whether or not you have already called Q3File_GetNextObjectType to get
information about that object’s type.

Q3File_IsEndOfFile 17

You can use the Q3File_IsEndOfFile function to determine whether the file
position of a file object is at the end of the file.

TQ3Boolean Q3File_IsEndOfFile (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_IsEndOfFile function returns, as its function result, a Boolean value
that indicates whether the current file position of the file object specified by the
file parameter is at the end of the file (kQ3True) or not (kQ3False).

C H A P T E R 1 7

File Objects

File Objects Reference 1043

ERRORS

kQ3ErrorFileNotOpen
kQ3ErrorInvalidObjectParameter
kQ3ErrorNULLParameter

Setting Idle Methods 17

QuickDraw 3D provides a function that you can use to set a file object’s idle
method. QuickDraw 3D executes your idle method occasionally during lengthy
file operations. See “Application-Defined Routines” (page 1095) for information
on writing an idle method.

Q3File_SetIdleMethod 17

You can use the Q3File_SetIdleMethod function to set a file object’s idle method.

TQ3Status Q3File_SetIdleMethod (
TQ3FileObject file,
TQ3FileIdleMethod idle,
const void *idleData);

file A file object.

idle A pointer to an idle method. See page 1096 for information on
idle methods.

idlerData A pointer to an application-defined block of data. This pointer is
passed to the idler callback routine when it is executed.

DESCRIPTION

The Q3File_SetIdleMethod function sets the idle method of the file object
specified by the file parameter to the function specified by the idle parameter.
The idlerData parameter is passed to your idle method whenever it is executed.

Reading and Writing File Subobjects 17

QuickDraw 3D provides functions that you can use to read QuickDraw 3D
objects that are subobjects of custom objects. In general, you should call these

C H A P T E R 1 7

File Objects

1044 File Objects Reference

functions only within your custom read data method. For additional routines
you can use, see “Custom File Object Routines,” beginning on page 1086.

Q3File_IsEndOfData 17

You can use the Q3File_IsEndOfData function to determine whether there is
more data for your application to read.

TQ3Boolean Q3File_IsEndOfData (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3File_IsEndOfData function returns, as its function result, a Boolean value
that indicates whether there is more data to be read from the file object specified
by the file parameter (kQ3True) or not (kQ3False).

SPECIAL CONSIDERATIONS

You should call this function only within a custom read data method.

Q3File_IsEndOfContainer 17

You can use the Q3File_IsEndOfContainer function to determine whether there
are more subobjects of a custom object for your application to read.

TQ3Boolean Q3File_IsEndOfContainer (
TQ3FileObject file,
TQ3Object rootObject);

file A file object.

rootObject A root object in the specified file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1045

DESCRIPTION

The Q3File_IsEndOfContainer function returns, as its function result, a Boolean
value that indicates whether more subobjects remain to be read from a custom
object specified by the rootObject parameter in the file object specified by the
file parameter (kQ3True) or not (kQ3False).

SPECIAL CONSIDERATIONS

You should call this function only within a custom read data method.

Reading and Writing File Data 17

QuickDraw 3D provides routines that you can use to access custom data in a
file object. In all cases, the reading or writing occurs at the current file position,
and the file position is advanced if the read or write operation completes
successfully.

IMPORTANT

You should call the _Read functions only in a custom read
data method (of type kQ3MethodTypeObjectReadData), and
you should call the _Write functions only in a custom write
method (of type kQ3MethodTypeObjectWrite). ▲

These functions can read and write data in either text or binary files.

Q3Uns8_Read 17

You can use the Q3Uns8_Read function to read an unsigned 8-byte value from a
file object.

TQ3Status Q3Uns8_Read (TQ3Uns8 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold
an unsigned 8-byte value.

file A file object.

C H A P T E R 1 7

File Objects

1046 File Objects Reference

DESCRIPTION

The Q3Uns8_Read function returns, in the block of memory pointed to by the data
parameter, the unsigned 8-byte value read from the current position in the file
object specified by the file parameter.

Q3Uns8_Write 17

You can use the Q3Uns8_Write function to write an unsigned 8-byte value to a
file object.

TQ3Status Q3Uns8_Write (const TQ3Uns8 data, TQ3FileObject file);

data A pointer to an unsigned 8-byte value.

file A file object.

DESCRIPTION

The Q3Uns8_Write function writes the unsigned 8-byte value pointed to by the
data parameter to the file object specified by the file parameter.

Q3Int8_Read 17

You can use the Q3Int8_Read function to read an 8-byte integer value from a file
object.

TQ3Status Q3Int8_Read (TQ3Int8 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold
an 8-byte integer value.

file A file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1047

DESCRIPTION

The Q3Int8_Read function returns, in the block of memory pointed to by the data
parameter, the signed 8-byte integer value read from the current position in the
file object specified by the file parameter.

Q3Int8_Write 17

You can use the Q3Int8_Write function to write an 8-byte integer value to a file
object.

TQ3Status Q3Int8_Write (const TQ3Int8 data, TQ3FileObject file);

data A pointer to an 8-byte integer value.

file A file object.

DESCRIPTION

The Q3Int8_Write function writes the signed 8-byte integer value pointed to by
the data parameter to the file object specified by the file parameter.

Q3Uns16_Read 17

You can use the Q3Uns16_Read function to read an unsigned 16-byte value from a
file object.

TQ3Status Q3Uns16_Read (TQ3Uns16 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold
an unsigned 16-byte value.

file A file object.

C H A P T E R 1 7

File Objects

1048 File Objects Reference

DESCRIPTION

The Q3Uns16_Read function returns, in the block of memory pointed to by the
data parameter, the unsigned 16-byte value read from the current position in
the file object specified by the file parameter.

Q3Uns16_Write 17

You can use the Q3Uns16_Write function to write an unsigned 16-byte value to a
file object.

TQ3Status Q3Uns16_Write (const TQ3Uns16 data, TQ3FileObject file);

data A pointer to an unsigned 16-byte value.

file A file object.

DESCRIPTION

The Q3Uns16_Write function writes the unsigned 16-byte value pointed to by the
data parameter to the file object specified by the file parameter.

Q3Int16_Read 17

You can use the Q3Int16_Read function to read a 16-byte integer value from a file
object.

TQ3Status Q3Int16_Read (TQ3Int16 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold a
16-byte integer value.

file A file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1049

DESCRIPTION

The Q3Int16_Read function returns, in the block of memory pointed to by the
data parameter, the signed 16-byte integer value read from the current position
in the file object specified by the file parameter.

Q3Int16_Write 17

You can use the Q3Int16_Write function to write a 16-byte integer value to a file
object.

TQ3Status Q3Int16_Write (const TQ3Int16 data, TQ3FileObject file);

data A pointer to a 16-byte integer value.

file A file object.

DESCRIPTION

The Q3Int16_Write function writes the signed 16-byte integer value pointed to
by the data parameter to the file object specified by the file parameter.

Q3Uns32_Read 17

You can use the Q3Uns32_Read function to read an unsigned 32-byte value from a
file object.

TQ3Status Q3Uns32_Read (TQ3Uns32 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold
an unsigned 32-byte value.

file A file object.

C H A P T E R 1 7

File Objects

1050 File Objects Reference

DESCRIPTION

The Q3Uns32_Read function returns, in the block of memory pointed to by the
data parameter, the unsigned 32-byte value read from the current position in
the file object specified by the file parameter.

Q3Uns32_Write 17

You can use the Q3Uns32_Write function to write an unsigned 32-byte value to a
file object.

TQ3Status Q3Uns32_Write (const TQ3Uns32 data, TQ3FileObject file);

data A pointer to an unsigned 32-byte value.

file A file object.

DESCRIPTION

The Q3Uns32_Write function writes the unsigned 32-byte value pointed to by the
data parameter to the file object specified by the file parameter.

Q3Int32_Read 17

You can use the Q3Int32_Read function to read a signed 32-byte value from a file
object.

TQ3Status Q3Int32_Read (TQ3Int32 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold a
signed 32-byte value.

file A file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1051

DESCRIPTION

The Q3Int32_Read function returns, in the block of memory pointed to by the
data parameter, the signed 32-byte value read from the current position in the
file object specified by the file parameter.

Q3Int32_Write 17

You can use the Q3Int32_Write function to write a signed 32-byte value to a file
object.

TQ3Status Q3Int32_Write (const TQ3Int32 data, TQ3FileObject file);

data A pointer to a signed 32-byte value.

file A file object.

DESCRIPTION

The Q3Int32_Write function writes the signed 32-byte value pointed to by the
data parameter to the file object specified by the file parameter.

Q3Uns64_Read 17

You can use the Q3Uns64_Read function to read an unsigned 64-byte value from a
file object.

TQ3Status Q3Uns64_Read (TQ3Uns64 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold
an unsigned 64-byte value.

file A file object.

C H A P T E R 1 7

File Objects

1052 File Objects Reference

DESCRIPTION

The Q3Uns64_Read function returns, in the block of memory pointed to by the
data parameter, the unsigned 64-byte value read from the current position in
the file object specified by the file parameter.

Q3Uns64_Write 17

You can use the Q3Uns64_Write function to write an unsigned 64-byte value to a
file object.

TQ3Status Q3Uns64_Write (const TQ3Uns64 data, TQ3FileObject file);

data A pointer to an unsigned 64-byte value.

file A file object.

DESCRIPTION

The Q3Uns64_Write function writes the unsigned 64-byte value pointed to by the
data parameter to the file object specified by the file parameter.

Q3Int64_Read 17

You can use the Q3Int64_Read function to read a signed 64-byte value from a file
object.

TQ3Status Q3Int64_Read (TQ3Int64 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold a
signed 64-byte value.

file A file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1053

DESCRIPTION

The Q3Int64_Read function returns, in the block of memory pointed to by the
data parameter, the signed 64-byte value read from the current position in the
file object specified by the file parameter.

Q3Int64_Write 17

You can use the Q3Int64_Write function to write a signed 64-byte value to a file
object.

TQ3Status Q3Int64_Write (const TQ3Int64 data, TQ3FileObject file);

data A pointer to a signed 64-byte value.

file A file object.

DESCRIPTION

The Q3Int64_Write function writes the signed 64-byte value pointed to by the
data parameter to the file object specified by the file parameter.

Q3Float32_Read 17

You can use the Q3Float32_Read function to read a floating-point 32-byte value
from a file object.

TQ3Status Q3Float32_Read (TQ3Float32 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold a
floating-point 32-byte value.

file A file object.

C H A P T E R 1 7

File Objects

1054 File Objects Reference

DESCRIPTION

The Q3Float32_Read function returns, in the block of memory pointed to by the
data parameter, the floating-point 32-byte value read from the current position
in the file object specified by the file parameter.

Q3Float32_Write 17

You can use the Q3Float32_Write function to write a floating-point 32-byte value
to a file object.

TQ3Status Q3Float32_Write (
const TQ3Float32 data,
TQ3FileObject file);

data A pointer to a floating-point 32-byte value.

file A file object.

DESCRIPTION

The Q3Float32_Write function writes the floating-point 32-byte value pointed to
by the data parameter to the file object specified by the file parameter.

Q3Float64_Read 17

You can use the Q3Float64_Read function to read a floating-point 64-byte value
from a file object.

TQ3Status Q3Float64_Read (TQ3Float64 *data, TQ3FileObject file);

data On entry, a pointer to a block of memory large enough to hold a
floating-point 64-byte value.

file A file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1055

DESCRIPTION

The Q3Float64_Read function returns, in the block of memory pointed to by the
data parameter, the floating-point 64-byte value read from the current position
in the file object specified by the file parameter.

Q3Float64_Write 17

You can use the Q3Float64_Write function to write a floating-point 64-byte value
to a file object.

TQ3Status Q3Float64_Write (
const TQ3Float64 data,
TQ3FileObject file);

data A pointer to a floating-point 64-byte value.

file A file object.

DESCRIPTION

The Q3Float64_Write function writes the floating-point 64-byte value pointed to
by the data parameter to the file object specified by the file parameter.

Q3Size_Pad 17

You can use the Q3Size_Pad function to determine the number of bytes occupied
by a longword-aligned block.

TQ3Size Q3Size_Pad (TQ3Size size);

size The size, in bytes, of an object or structure.

C H A P T E R 1 7

File Objects

1056 File Objects Reference

DESCRIPTION

The Q3Size_Pad function returns, as its function result, the number of bytes it
would take to contain a longword-aligned block whose size, before alignment,
is specified by the size parameter.

Q3String_Read 17

You can use the Q3String_Read function to read a string from a file object.

TQ3Status Q3String_Read (
char *data,
unsigned long *length,
TQ3FileObject file);

data On entry, a pointer to a buffer whose length is of size
kQ3StringMaximumLength, or NULL. On exit, a pointer to the string
read from the specified file object. If this parameter is set to NULL
on entry, no string is read, but its length is returned in the length
parameter.

length On exit, the number of characters actually copied into the
specified buffer. If data is set to NULL on entry, this parameter
returns the length of the string.

file A file object.

DESCRIPTION

The Q3String_Read function returns, in the data parameter, a pointer to the next
string in the file object specified by the file parameter. The string data is 7-bit
ASCII, with standard escape sequences for any special characters in the string.
The Q3String_Read function also returns, in the length parameter, the length of
the string.

Q3String_Write 17

You can use the Q3String_Write function to write a string to a file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1057

TQ3Status Q3String_Write (const char *data, TQ3FileObject file);

data A pointer to a string.

file A file object.

DESCRIPTION

The Q3String_Write function writes the string data pointed to by the data
parameter to the file object specified by the file parameter. The number of
bytes written to the file object is equal to Q3Size_Pad(strlen(data)+1).

Q3NewLine_Write 17

You can use the Q3NewLine_Write function to write a newline character to a text
metafile.

TQ3Status Q3NewLine_Write (TQ3FileObject file);

file A file object.

DESCRIPTION

The Q3NewLine_Write function writes a newline character to the text file object
specified by the file parameter. It writes nothing if the file is binary.

Q3RawData_Read 17

You can use the Q3RawData_Read function to read raw data from a file object.

TQ3Status Q3RawData_Read (
unsigned char *data,
unsigned long size,
TQ3FileObject file);

C H A P T E R 1 7

File Objects

1058 File Objects Reference

data On entry, a pointer to a buffer whose length is of the specified
size. On exit, a pointer to the raw data read from the specified
file object.

size On entry, the number of bytes of raw data to be read from the
specified file object into the specified buffer. On exit, the number
of bytes actually copied into the specified buffer.

file A file object.

DESCRIPTION

The Q3RawData_Read function returns, in the data parameter, a pointer to the next
size bytes of raw data in the file object specified by the file parameter.

Q3RawData_Write 17

You can use the Q3RawData_Write function to write raw data to a file object.

TQ3Status Q3RawData_Write (
const unsigned char *data,
unsigned long size,
TQ3FileObject file);

data On entry, a pointer to a buffer of raw data whose length is of the
specified size.

size On entry, the number of bytes of raw data to be read from the
specified buffer and written to the specified file object. On exit,
the number of bytes actually written to the file object.

file A file object.

DESCRIPTION

The Q3RawData_Write function writes the raw data pointed to by the data
parameter to the file object specified by the file parameter. The number of
bytes written to the file object is equal to Q3Size_Pad(size). If the number of
bytes written to the file object is greater than size, Q3RawData_Write pads the
data to the nearest 4-byte boundary with 0’s.

C H A P T E R 1 7

File Objects

File Objects Reference 1059

In text files, raw data is output in hexadecimal form.

Q3Point2D_Read 17

You can use the Q3Point2D_Read function to read a two-dimensional point from
a file object.

TQ3Status Q3Point2D_Read (
TQ3Point2D *point2D,
TQ3FileObject file);

point2D On entry, a pointer to a block of memory large enough to hold a
two-dimensional point.

file A file object.

DESCRIPTION

The Q3Point2D_Read function returns, in the block of memory pointed to by the
point2D parameter, the two-dimensional point read from the current position in
the file object specified by the file parameter.

Q3Point2D_Write 17

You can use the Q3Point2D_Write function to write a two-dimensional point to a
file object.

TQ3Status Q3Point2D_Write (
const TQ3Point2D *point2D,
TQ3FileObject file);

point2D A pointer to a two-dimensional point.

file A file object.

C H A P T E R 1 7

File Objects

1060 File Objects Reference

DESCRIPTION

The Q3Point2D_Write function writes the two-dimensional point pointed to by
the point2D parameter to the file object specified by the file parameter.

Q3Point3D_Read 17

You can use the Q3Point3D_Read function to read a three-dimensional point from
a file object.

TQ3Status Q3Point3D_Read (
TQ3Point3D *point3D,
TQ3FileObject file);

point3D On entry, a pointer to a block of memory large enough to hold a
three-dimensional point.

file A file object.

DESCRIPTION

The Q3Point3D_Read function returns, in the block of memory pointed to by the
point3D parameter, the three-dimensional point read from the current position
in the file object specified by the file parameter.

Q3Point3D_Write 17

You can use the Q3Point3D_Write function to write a three-dimensional point to
a file object.

TQ3Status Q3Point3D_Write (
const TQ3Point3D *point3D,
TQ3FileObject file);

point3D A pointer to a three-dimensional point.

file A file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1061

DESCRIPTION

The Q3Point3D_Write function writes the three-dimensional point pointed to by
the point3D parameter to the file object specified by the file parameter.

Q3RationalPoint3D_Read 17

You can use the Q3RationalPoint3D_Read function to read a rational
three-dimensional point from a file object.

TQ3Status Q3RationalPoint3D_Read (
TQ3RationalPoint3D *point3D,
TQ3FileObject file);

point3D On entry, a pointer to a block of memory large enough to hold a
rational three-dimensional point.

file A file object.

DESCRIPTION

The Q3RationalPoint3D_Read function returns, in the block of memory pointed
to by the point3D parameter, the rational three-dimensional point read from the
current position in the file object specified by the file parameter.

Q3RationalPoint3D_Write 17

You can use the Q3RationalPoint3D_Write function to write a rational
three-dimensional point to a file object.

TQ3Status Q3RationalPoint3D_Write (
const TQ3RationalPoint3D *point3D,
TQ3FileObject file);

point3D A pointer to a rational three-dimensional point.

file A file object.

C H A P T E R 1 7

File Objects

1062 File Objects Reference

DESCRIPTION

The Q3RationalPoint3D_Write function writes the rational three-dimensional
point pointed to by the point3D parameter to the file object specified by the file
parameter.

Q3RationalPoint4D_Read 17

You can use the Q3RationalPoint4D_Read function to read a rational
four-dimensional point from a file object.

TQ3Status Q3RationalPoint4D_Read (
TQ3RationalPoint4D *point4D,
TQ3FileObject file);

point4D On entry, a pointer to a block of memory large enough to hold a
rational four-dimensional point.

file A file object.

DESCRIPTION

The Q3RationalPoint4D_Read function returns, in the block of memory pointed
to by the point4D parameter, the rational four-dimensional point read from the
current position in the file object specified by the file parameter.

Q3RationalPoint4D_Write 17

You can use the Q3RationalPoint4D_Write function to write a rational
four-dimensional point to a file object.

TQ3Status Q3RationalPoint4D_Write (
const TQ3RationalPoint4D *point4D,
TQ3FileObject file);

point4D A pointer to a rational four-dimensional point.

file A file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1063

DESCRIPTION

The Q3RationalPoint4D_Write function writes the rational four-dimensional
point pointed to by the point4D parameter to the file object specified by the file
parameter.

Q3Vector2D_Read 17

You can use the Q3Vector2D_Read function to read a two-dimensional vector
from a file object.

TQ3Status Q3Vector2D_Read (
TQ3Vector2D *vector2D,
TQ3FileObject file);

vector2D On entry, a pointer to a block of memory large enough to hold a
two-dimensional vector.

file A file object.

DESCRIPTION

The Q3Vector2D_Read function returns, in the block of memory pointed to by the
vector2D parameter, the two-dimensional vector read from the current position
in the file object specified by the file parameter.

Q3Vector2D_Write 17

You can use the Q3Vector2D_Write function to write a two-dimensional vector to
a file object.

TQ3Status Q3Vector2D_Write (
const TQ3Vector2D *vector2D,
TQ3FileObject file);

vector2D A pointer to a two-dimensional vector.

file A file object.

C H A P T E R 1 7

File Objects

1064 File Objects Reference

DESCRIPTION

The Q3Vector2D_Write function writes the two-dimensional vector pointed to by
the vector2D parameter to the file object specified by the file parameter.

Q3Vector3D_Read 17

You can use the Q3Vector3D_Read function to read a three-dimensional vector
from a file object.

TQ3Status Q3Vector3D_Read (
TQ3Vector3D *vector3D,
TQ3FileObject file);

vector3D On entry, a pointer to a block of memory large enough to hold a
three-dimensional vector.

file A file object.

DESCRIPTION

The Q3Vector3D_Read function returns, in the block of memory pointed to by the
vector3D parameter, the three-dimensional vector read from the current position
in the file object specified by the file parameter.

Q3Vector3D_Write 17

You can use the Q3Vector3D_Write function to write a three-dimensional vector
to a file object.

TQ3Status Q3Vector3D_Write (
const TQ3Vector3D *vector3D,
TQ3FileObject file);

vector3D A pointer to a three-dimensional vector.

file A file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1065

DESCRIPTION

The Q3Vector3D_Write function writes the three-dimensional vector pointed to
by the vector3D parameter to the file object specified by the file parameter.

Q3Matrix4x4_Read 17

You can use the Q3Matrix4x4_Read function to read a 4-by-4 matrix from a file
object.

TQ3Status Q3Matrix4x4_Read (
TQ3Matrix4x4 *matrix4x4,
TQ3FileObject file);

matrix4x4 On entry, a pointer to a block of memory large enough to hold a
4-by-4 matrix.

file A file object.

DESCRIPTION

The Q3Matrix4x4_Read function returns, in the block of memory pointed to by
the matrix4x4 parameter, the 4-by-4 matrix read from the current position in the
file object specified by the file parameter.

Q3Matrix4x4_Write 17

You can use the Q3Matrix4x4_Write function to write a 4-by-4 matrix to a file
object.

TQ3Status Q3Matrix4x4_Write (
const TQ3Matrix4x4 *matrix4x4,
TQ3FileObject file);

matrix4x4 A pointer to a 4-by-4 matrix.

file A file object.

C H A P T E R 1 7

File Objects

1066 File Objects Reference

DESCRIPTION

The Q3Matrix4x4_Write function writes the 4-by-4 matrix pointed to by the
matrix4x4 parameter to the file object specified by the file parameter.

Q3Tangent2D_Read 17

You can use the Q3Tangent2D_Read function to read a two-dimensional tangent
from a file object.

TQ3Status Q3Tangent2D_Read (
TQ3Tangent2D *tangent2D,
TQ3FileObject file);

tangent2D On entry, a pointer to a block of memory large enough to hold a
two-dimensional tangent.

file A file object.

DESCRIPTION

The Q3Tangent2D_Read function returns, in the block of memory pointed to by
the tangent2D parameter, the two-dimensional tangent read from the current
position in the file object specified by the file parameter.

Q3Tangent2D_Write 17

You can use the Q3Tangent2D_Write function to write a two-dimensional tangent
to a file object.

TQ3Status Q3Tangent2D_Write (
const TQ3Tangent2D *tangent2D,
TQ3FileObject file);

tangent2D A pointer to a two-dimensional tangent.

file A file object.

C H A P T E R 1 7

File Objects

File Objects Reference 1067

DESCRIPTION

The Q3Tangent2D_Write function writes the two-dimensional tangent pointed to
by the tangent2D parameter to the file object specified by the file parameter.

Q3Tangent3D_Read 17

You can use the Q3Tangent3D_Read function to read a three-dimensional tangent
from a file object.

TQ3Status Q3Tangent3D_Read (
TQ3Tangent3D *tangent3D,
TQ3FileObject file);

tangent3D On entry, a pointer to a block of memory large enough to hold a
three-dimensional tangent.

file A file object.

DESCRIPTION

The Q3Tangent3D_Read function returns, in the block of memory pointed to by
the tangent3D parameter, the three-dimensional tangent read from the current
position in the file object specified by the file parameter.

Q3Tangent3D_Write 17

You can use the Q3Tangent3D_Write function to write a three-dimensional
tangent to a file object.

TQ3Status Q3Tangent3D_Write (
const TQ3Tangent3D *tangent3D,
TQ3FileObject file);

tangent3D A pointer to a three-dimensional tangent.

file A file object.

C H A P T E R 1 7

File Objects

1068 File Objects Reference

DESCRIPTION

The Q3Tangent3D_Write function writes the three-dimensional tangent pointed to
by the tangent3D parameter to the file object specified by the file parameter.

Q3Comment_Write 17

You can use the Q3Comment_Write function to write a comment to a file object.

TQ3Status Q3Comment_Write (
char *comment,
TQ3FileObject file);

comment A pointer to a null-terminated C string.

file A file object.

DESCRIPTION

The Q3Comment_Write function writes the string of characters pointed to by the
comment parameter to the file object specified by the file parameter.
QuickDraw 3D currently supports writing comments to text files only; if you
call Q3Comment_Write to write a comment to a binary file, QuickDraw 3D ignores
the call. In addition, you cannot currently use QuickDraw 3D to read comments
from a file.

Managing Unknown Objects 17

QuickDraw 3D creates an unknown object when it encounters an unrecognized
type of object while reading a metafile. Your application might know how to
handle objects of that type, so QuickDraw 3D provides routines that you can
use to get the type and contents of an unknown object.

Note
You cannot explicitly create an unknown object. ◆

C H A P T E R 1 7

File Objects

File Objects Reference 1069

Q3Unknown_GetType 17

You can use the Q3Unknown_GetType function to get the type of an unknown
object.

TQ3ObjectType Q3Unknown_GetType (TQ3UnknownObject unknownObject);

unknownObject
An unknown object.

DESCRIPTION

The Q3Unknown_GetType function returns, as its function result, the type of the
unknown object specified by the unknownObject parameter. If successful,
Q3Unknown_GetType returns one of these constants:

kQ3UnknownTypeBinary
kQ3UnknownTypeText

If the type cannot be determined or is invalid, Q3Unknown_GetType returns the
value kQ3ObjectTypeInvalid.

Q3Unknown_GetDirtyState 17

You can use the Q3Unknown_GetDirtyState function to get the current dirty state
of an unknown object.

TQ3Status Q3Unknown_GetDirtyState (
TQ3UnknownObject unknownObject,
TQ3Boolean *isDirty);

unknownObject
An unknown object.

isDirty On exit, a Boolean value that indicates whether the specified
unknown object is dirty (kQ3True) or not (kQ3False).

C H A P T E R 1 7

File Objects

1070 File Objects Reference

DESCRIPTION

The Q3Unknown_GetDirtyState function returns, in the isDirty parameter, the
current dirty state of the unknown object specified by the unknownObject
parameter. The dirty state of an unknown object is a Boolean value that
indicates whether an unknown object is preserved in its original state (kQ3False)
or should be updated when written back to the file object from which it was
originally read (kQ3True).

An unknown object is marked as dirty when it’s first read into memory. You can
mark the object as not dirty (by calling Q3Unknown_SetDirtyState) if you know
that no state or contextual information has changed in the object. The
application that generated the unknown data is responsible for either
discarding any dirty data or attempting to preserve it.

Q3Unknown_SetDirtyState 17

You can use the Q3Unknown_SetDirtyState function to set the dirty state of an
unknown object.

TQ3Status Q3Unknown_SetDirtyState (
TQ3UnknownObject unknownObject,
TQ3Boolean isDirty);

unknownObject
An unknown object.

isDirty A Boolean value that indicates whether the specified unknown
object is dirty (kQ3True) or not (kQ3False).

DESCRIPTION

The Q3Unknown_SetDirtyState function sets the dirty state of the unknown object
specified by the unknownObject parameter to the Boolean value passed in the
isDirty parameter.

C H A P T E R 1 7

File Objects

File Objects Reference 1071

Q3UnknownText_GetData 17

You can use the Q3UnknownText_GetData function to get the data of an unknown
text object.

TQ3Status Q3UnknownText_GetData (
TQ3UnknownObject unknownObject,
TQ3UnknownTextData *unknownTextData);

unknownObject
An unknown text object.

unknownTextData
A pointer to an unknown text data structure.

DESCRIPTION

The Q3UnknownText_GetData function returns, in the objectName and contents
fields of the unknown text data structure pointed to by the unknownTextData
parameter, pointers to the name and contents of an unknown text object (that is,
an unknown object of type kQ3UnknownTypeText) specified by the unknownObject
parameter. The contents field of the unknown text data structure points to the
data stored in the text metafile, excluding any excess white space and any
delimiter characters (that is, outermost parentheses).

Your application is responsible for allocating the memory occupied by the
unknownTextData parameter. Q3UnknownText_GetData allocates memory to hold
the name and contents pointed to by the fields of that structure. You must make
certain to call Q3UnknownText_EmptyData to release the memory allocated by
Q3UnknownText_GetData when you are finished using the data.

Q3UnknownText_EmptyData 17

You can use the Q3UnknownText_EmptyData function to dispose of the memory
allocated by a previous call to Q3UnknownText_GetData.

TQ3Status Q3UnknownText_EmptyData (
TQ3UnknownTextData *unknownTextData);

C H A P T E R 1 7

File Objects

1072 File Objects Reference

unknownTextData
A pointer to an unknown text data structure that was filled in by
a previous call to Q3UnknownText_GetData.

DESCRIPTION

The Q3UnknownText_EmptyData function deallocates the memory pointed to by
the fields of the unknownTextData parameter. If successful,
Q3UnknownText_EmptyData sets those fields to the value NULL.

Q3UnknownBinary_GetData 17

You can use the Q3UnknownBinary_GetData function to get the data of an
unknown binary object.

TQ3Status Q3UnknownBinary_GetData (
TQ3UnknownObject unknownObject,
TQ3UnknownBinaryData *unknownBinaryData);

unknownObject
An unknown binary object.

unknownBinaryData
A pointer to an unknown binary data structure.

DESCRIPTION

The Q3UnknownBinary_GetData function returns, in the contents field of the
unknown binary data structure pointed to by the unknownBinaryData parameter,
a pointer to a copy of the contents of the unknown binary object (that is, an
unknown object of type kQ3UnknownTypeBinary) specified by the unknownObject
parameter. Q3UnknownBinary_GetData also returns, in the objectType and size
fields of the unknown binary data structure, the type of the unknown binary
object and the size, in bytes, of the data pointed to by the contents field.

Your application is responsible for allocating the memory occupied by the
unknownBinaryData parameter. Q3UnknownBinary_GetData allocates memory to
hold the data pointed to by the contents field of that structure. You must make

C H A P T E R 1 7

File Objects

File Objects Reference 1073

certain to call Q3UnknownBinary_EmptyData to release the memory allocated by
Q3UnknownBinary_GetData when you are finished using the data.

Q3UnknownBinary_EmptyData 17

You can use the Q3UnknownBinary_EmptyData function to dispose of the memory
allocated by a previous call to Q3UnknownBinary_GetData.

TQ3Status Q3UnknownBinary_EmptyData (
TQ3UnknownBinaryData *unknownBinaryData);

unknownBinaryData
A pointer to an unknown binary data structure that was filled in
by a previous call to Q3UnknownBinary_GetData.

DESCRIPTION

The Q3UnknownBinary_EmptyData function deallocates the memory pointed to by
the contents field of the unknownBinaryData parameter. If successful,
Q3UnknownBinary_EmptyData sets that field to the value NULL. It also sets the
objectType and size fields to default values.

Q3UnknownBinary_GetTypeString 17

You can use the Q3UnknownBinary_GetTypeString function to get the type string
of an unknown binary object.

TQ3Status Q3UnknownBinary_GetTypeString (
TQ3UnknownObject unknownObject,
char **typeString);

unknownObject
An unknown binary object.

typeString
A handle to the type string of an unknown binary data
structure.

C H A P T E R 1 7

File Objects

1074 File Objects Reference

DESCRIPTION

The Q3UnknownBinary_GetTypeString function returns a handle to the type string
of an unknown binary object.

Your application is responsible for allocating the memory occupied by the
typeString parameter. You must call Q3UnknownBinary_EmptyTypeString to
release the memory allocated by Q3UnknownBinary_GetTypeString when you are
finished using the data.

Q3UnknownBinary_EmptyTypeString 17

You can use the Q3UnknownBinary_EmptyTypeString function to dispose of the
memory allocated by a previous call to Q3UnknownBinary_GetTypeString.

TQ3Status Q3UnknownBinary_EmptyTypeString (
char **typeString);

typeString A handle to the type string of an unknown binary data
structure.

DESCRIPTION

The Q3UnknownBinary_EmptyTypeString function deallocates the memory used by
a previous call to Q3UnknownBinary_GetTypeString.

Managing View Hints Objects 17

QuickDraw 3D provides routines that you can use to create and manage view
hints objects. A view hints object is an object in a metafile that gives hints about
how to render a scene. You can use that information to configure a view object,
or you can choose to ignore it.

A view hints object contains specific information, derived from a view object
and stored in a 3DMF file, that is separate from the group model submitted
with a view. The view hints object is created from an existing view object using
the Q3ViewHints_New call and should be written out at the beginning of the
3DMF file, followed by the group model for a scene. When an application reads
a 3DMF file it should check for view hints and set up the view with the view
hints settings if it wishes to preserve a scene’s appearance between applications.

C H A P T E R 1 7

File Objects

File Objects Reference 1075

View hints may include instructions about the renderer, camera, lights, and
view attributes, plus other information in the draw context such as the
window’s dimensions, mask state, mask bitmap, and clear image color. The
version 1.5.1 QuickDraw 3D Viewer source code uses the following view hints
information and applies it to the model’s view if a view hints object is found
while reading a 3DMF file:

■ light group

■ camera

■ renderer

■ window dimensions

■ clear image color.

Q3ViewHints_New 17

You can use the Q3ViewHints_New function to create a new view hints object.

TQ3ViewHintsObject Q3ViewHints_New (TQ3ViewObject view);

view A view.

DESCRIPTION

The Q3ViewHints_New function returns, as its function result, a new view hints
object that incorporates the view configuration information of the view object
specified by the view parameter.

Q3ViewHints_GetRenderer 17

You can use the Q3ViewHints_GetRenderer function to get the renderer associated
with a view hints object.

TQ3Status Q3ViewHints_GetRenderer (
TQ3ViewHintsObject viewHints,
TQ3RendererObject *renderer);

C H A P T E R 1 7

File Objects

1076 File Objects Reference

viewHints A view hints object.

renderer On exit, the renderer currently associated with the specified
view hints object.

DESCRIPTION

The Q3ViewHints_GetRenderer function returns, in the renderer parameter, the
renderer currently associated with the view hints object specified by the
viewHints parameter. The reference count of that renderer is incremented.

Q3ViewHints_SetRenderer 17

You can use the Q3ViewHints_SetRenderer function to set the renderer associated
with a view hints object.

TQ3Status Q3ViewHints_SetRenderer (
TQ3ViewHintsObject viewHints,
TQ3RendererObject renderer);

viewHints A view hints object.

renderer A renderer object.

DESCRIPTION

The Q3ViewHints_SetRenderer function attaches the renderer specified by the
renderer parameter to the view hints object specified by the viewHints
parameter. The reference count of the specified renderer is incremented. In
addition, if some other renderer was already attached to the specified view
hints object, the reference count of that renderer is decremented.

Q3ViewHints_GetCamera 17

You can use the Q3ViewHints_GetCamera function to get the camera associated
with a view hints object.

C H A P T E R 1 7

File Objects

File Objects Reference 1077

TQ3Status Q3ViewHints_GetCamera (
TQ3ViewHintsObject viewHints,
TQ3CameraObject *camera);

viewHints A view hints object.

camera On exit, the camera object currently associated with the
specified view hints object.

DESCRIPTION

The Q3ViewHints_GetCamera function returns, in the camera parameter, the
camera currently associated with the view hints object specified by the
viewHints parameter. The reference count of that camera is incremented.

Q3ViewHints_SetCamera 17

You can use the Q3ViewHints_SetCamera function to set the camera associated
with a view hints object.

TQ3Status Q3ViewHints_SetCamera (
TQ3ViewHintsObject viewHints,
TQ3CameraObject camera);

viewHints A view hints object.

camera A camera object.

DESCRIPTION

The Q3ViewHints_SetCamera function attaches the camera specified by the camera
parameter to the view hints object specified by the viewHints parameter. The
reference count of the specified camera is incremented. In addition, if some
other camera was already attached to the specified view hints object, the
reference count of that camera is decremented.

C H A P T E R 1 7

File Objects

1078 File Objects Reference

Q3ViewHints_GetLightGroup 17

You can use the Q3ViewHints_GetLightGroup function to get the light group
associated with a view hints object.

TQ3Status Q3ViewHints_GetLightGroup (
TQ3ViewHintsObject viewHints,
TQ3GroupObject *lightGroup);

viewHints A view hints object.

lightGroup On exit, the light group currently associated with the specified
view hints object.

DESCRIPTION

The Q3ViewHints_GetLightGroup function returns, in the lightGroup parameter,
the light group currently associated with the view hints object specified by the
viewHints parameter. The reference count of that light group is incremented.

Q3ViewHints_SetLightGroup 17

You can use the Q3ViewHints_SetLightGroup function to set the light group
associated with a view hints object.

TQ3Status Q3ViewHints_SetLightGroup (
TQ3ViewHintsObject viewHints,
TQ3GroupObject lightGroup);

viewHints A view hints object.

lightGroup A light group.

DESCRIPTION

The Q3ViewHints_SetLightGroup function attaches the light group specified by
the lightGroup parameter to the view hints object specified by the viewHints
parameter. The reference count of the specified light group is incremented. In

C H A P T E R 1 7

File Objects

File Objects Reference 1079

addition, if some other light group was already attached to the specified view
hints object, the reference count of that light group is decremented.

Q3ViewHints_GetAttributeSet 17

You can use the Q3ViewHints_GetAttributeSet function to get the current
attribute set associated with a view hints object.

TQ3Status Q3ViewHints_GetAttributeSet (
TQ3ViewHintsObject viewHints,
TQ3AttributeSet *attributeSet);

viewHints A view hints object.

attributeSet On exit, the attribute set currently associated with the specified
view hints object.

DESCRIPTION

The Q3ViewHints_GetAttributeSet function returns, in the attributeSet
parameter, the current attribute set of the view hints object specified by the
viewHints parameter. The reference count of the attribute set is incremented.

Q3ViewHints_SetAttributeSet 17

You can use the Q3ViewHints_SetAttributeSet function to set the attribute set
associated with a view hints object.

TQ3Status Q3ViewHints_SetAttributeSet (
TQ3ViewHintsObject viewHints,
TQ3AttributeSet attributeSet);

viewHints A view hints object.

attributeSet An attribute set.

C H A P T E R 1 7

File Objects

1080 File Objects Reference

DESCRIPTION

The Q3ViewHints_SetAttributeSet function attaches the attribute set specified by
the attributeSet parameter to the view hints object specified by the viewHints
parameter. The reference count of the specified attribute set is incremented. In
addition, if some other attribute set was already attached to the specified view
hints object, the reference count of that attribute set is decremented.

Q3ViewHints_GetDimensionsState 17

You can use the Q3ViewHints_GetDimensionsState function to get the dimension
state associated with a view hints object.

TQ3Status Q3ViewHints_GetDimensionsState (
TQ3ViewHintsObject viewHints,
TQ3Boolean *isValid);

viewHints A view hints object.

isValid On exit, the current dimension state of the specified view hints
object.

DESCRIPTION

The Q3ViewHints_GetDimensionsState function returns, in the isValid parameter,
a Boolean value that indicates whether the dimensions in the view hints object
specified by the viewHints parameter are to be used (kQ3True) or not (kQ3False).

Q3ViewHints_SetDimensionsState 17

You can use the Q3ViewHints_SetDimensionsState function to set the dimension
state associated with a view hints object.

TQ3Status Q3ViewHints_SetDimensionsState (
TQ3ViewHintsObject viewHints,
TQ3Boolean isValid);

C H A P T E R 1 7

File Objects

File Objects Reference 1081

viewHints A view hints object.

isValid A dimension state.

DESCRIPTION

The Q3ViewHints_SetDimensionsState function sets the dimension state of the
view hints object specified by the viewHints parameter to the value passed in
the isValid parameter.

Q3ViewHints_GetDimensions 17

You can use the Q3ViewHints_GetDimensions function to get the dimensions
associated with a view hints object.

TQ3Status Q3ViewHints_GetDimensions (
TQ3ViewHintsObject viewHints,
unsigned long *width,
unsigned long *height);

viewHints A view hints object.

width On exit, the width of the specified view hints object.

height On exit, the height of the specified view hints object.

DESCRIPTION

The Q3ViewHints_GetDimensions function returns, in the width and height
parameters, the current width and height associated with the view hints object
specified by the viewHints parameter.

Q3ViewHints_SetDimensions 17

You can use the Q3ViewHints_SetDimensions function to set the dimensions
associated with a view hints object.

C H A P T E R 1 7

File Objects

1082 File Objects Reference

TQ3Status Q3ViewHints_SetDimensions (
TQ3ViewHintsObject viewHints,
unsigned long width,
unsigned long height);

viewHints A view hints object.

width The desired width of the view hints object.

height The desired height of the view hints object.

DESCRIPTION

The Q3ViewHints_SetDimensions function sets the width and height of the view
hints object specified by the viewHints parameter to the values passed in the
width and height parameters.

Q3ViewHints_GetMaskState 17

You can use the Q3ViewHints_GetMaskState function to get the mask state
associated with a view hints object.

TQ3Status Q3ViewHints_GetMaskState (
TQ3ViewHintsObject viewHints,
TQ3Boolean *isValid);

viewHints A view hints object.

isValid On exit, the current mask state of the specified view hints object.

DESCRIPTION

The Q3ViewHints_GetMaskState function returns, in the isValid parameter, a
Boolean value that determines whether the mask associated with the view hints
object specified by the viewHints parameter is to be used (kQ3True) or not
(kQ3False).

C H A P T E R 1 7

File Objects

File Objects Reference 1083

Q3ViewHints_SetMaskState 17

You can use the Q3ViewHints_SetMaskState function to set the mask state
associated with a view hints object.

TQ3Status Q3ViewHints_SetMaskState (
TQ3ViewHintsObject viewHints,
TQ3Boolean isValid);

viewHints A view hints object.

isValid The desired mask state of the specified view hints object.

DESCRIPTION

The Q3ViewHints_SetMaskState function sets the mask state of the view hints
object specified by the viewHints parameter to the value specified in the isValid
parameter. Set isValid to kQ3True if you want the mask enabled and to kQ3False
otherwise.

Q3ViewHints_GetMask 17

You can use the Q3ViewHints_GetMask function to get the mask associated with a
view hints object.

TQ3Status Q3ViewHints_GetMask (
TQ3ViewHintsObject viewHints,
TQ3Bitmap *mask);

viewHints A view hints object.

mask On exit, the mask of the specified view hints object.

DESCRIPTION

The Q3ViewHints_GetMask function returns, in the mask parameter, the current
mask for the view hints object specified by the viewHints parameter. The mask
is a bitmap whose bits determine whether or not corresponding pixels in the
drawing destination are drawn or are masked out. Q3ViewHints_GetMask

C H A P T E R 1 7

File Objects

1084 File Objects Reference

allocates memory internally for the returned bitmap; when you’re done using
the bitmap, you should call the Q3Bitmap_Empty function to dispose of that
memory.

Q3ViewHints_SetMask 17

You can use the Q3ViewHints_SetMask function to set the mask associated with a
view hints object.

TQ3Status Q3ViewHints_SetMask (
TQ3ViewHintsObject viewHints,
const TQ3Bitmap *mask);

viewHints A view hints object.

mask The desired mask of the specified view hints object.

DESCRIPTION

The Q3ViewHints_SetMask function sets the mask of the view hints object
specified by the viewHints parameter to the bitmap specified in the mask
parameter. Q3ViewHints_SetMask copies the bitmap to internal QuickDraw 3D
memory, so you can dispose of the specified bitmap after calling
Q3ViewHints_SetMask.

Q3ViewHints_GetClearImageMethod 17

You can use the Q3ViewHints_GetClearImageMethod function to get the image
clearing method associated with a view hints object.

TQ3Status Q3ViewHints_GetClearImageMethod (
TQ3ViewHintsObject viewHints,
TQ3DrawContextClearImageMethod *clearMethod);

viewHints A view hints object.

C H A P T E R 1 7

File Objects

File Objects Reference 1085

clearMethod On exit, the current image clearing method of the specified view
hints object. See “Draw Context Data Structure” (page 843) for
the values that can be returned in this parameter.

DESCRIPTION

The Q3ViewHints_GetClearImageMethod function returns, in the clearMethod
parameter, a constant that indicates the current image clearing method for the
view hints object specified by the viewHints parameter.

Q3ViewHints_SetClearImageMethod 17

You can use the Q3ViewHints_SetClearImageMethod function to set the image
clearing method associated with a view hints object.

TQ3Status Q3ViewHints_SetClearImageMethod (
TQ3ViewHintsObject viewHints,
TQ3DrawContextClearImageMethod clearMethod);

viewHints A view hints object.

clearMethod The desired image clearing method of the specified view hints
object. See “Draw Context Data Structure” (page 843) for the
values that can be passed in this parameter.

DESCRIPTION

The Q3ViewHints_SetClearImageMethod function sets the image clearing method
of the view hints object specified by the viewHints parameter to the value
specified in the clearMethod parameter.

Q3ViewHints_GetClearImageColor 17

You can use the Q3ViewHints_GetClearImageColor function to get the image
clearing color associated with a view hints object.

C H A P T E R 1 7

File Objects

1086 File Objects Reference

TQ3Status Q3ViewHints_GetClearImageColor (
TQ3ViewHintsObject viewHints,
TQ3ColorARGB *color);

viewHints A view hints object.

color On exit, the current image clearing color of the specified view
hints object.

DESCRIPTION

The Q3ViewHints_GetClearImageColor function returns, in the color parameter, a
constant that indicates the current image clearing color for the view hints object
specified by the viewHints parameter.

Q3ViewHints_SetClearImageColor 17

You can use the Q3ViewHints_SetClearImageColor function to set the image
clearing color associated with a view hints object.

TQ3Status Q3ViewHints_SetClearImageColor (
TQ3ViewHintsObject viewHints,
const TQ3ColorARGB *color);

viewHints A view hints object.

color The desired image clearing color of the specified view hints
object.

DESCRIPTION

The Q3ViewHints_SetClearImageColor function sets the image clearing color of
the view hints object specified by the viewHints parameter to the value specified
in the color parameter.

Custom File Object Routines 17

This section describes routines you can use to manage custom file objects.

C H A P T E R 1 7

File Objects

File Objects Reference 1087

Marking and Getting External References 17

QuickDraw 3D supplies routines you can use to manage external references
from one metafile to another.

Q3File_MarkAsExternalReference 17

You can use the Q3File_MarkAsExternalReference function to mark an object in a
metafile as being shared with another metafile.

TQ3Status Q3File_MarkAsExternalReference(
TQ3FileObject file,
TQ3SharedObject sharedObject);

file A metafile object.

sharedObject An object in the metafile that is shared with another metafile.

DESCRIPTION

The Q3File_MarkAsExternalReference function marks the object sharedObject in
the metafile object file as an object that will always be written out as an external
reference. Whenever a submit call is made on the object in write loop, an external
reference object will be written out that specifies the location of the object in file.

Q3File_GetExternalReferences 17

You can use the Q3File_GetExternalReferences function to obtain the names of
files externally referred to by a metafile.

TQ3GroupObject Q3File_GetExternalReferences(
TQ3FileObject file);

file A metafile object.

C H A P T E R 1 7

File Objects

1088 File Objects Reference

DESCRIPTION

The Q3File_GetExternalReferences function returns the names of the files that are
externally referred to by a metafile that contains external references. It returns a group
that contains one Q3String object for each external reference object in the metafile. The
Q3String object contains the name (in general, the pathname) of the file. Since one
Q3String object is produced for each external reference, it is possible for the same
name to appear in several Q3String objects. If no files are externally referred to, the call
returns NULL.

Group Reading Modes 17

QuickDraw 3D provides routines that let you control how group objects are
read.

Q3File_SetReadInGroup 17

You can use the Q3File_SetReadInGroup function to set the mode by which
objects in a group are read.

TQ3Status Q3File_SetReadInGroup(
TQ3FileObject file,
TQ3FileReadGroupState readGroupState);

file A metafile object.

readGroupState
The mode of reading objects in a group; see “Group Reading
States” (page 1032).

DESCRIPTION

The Q3File_SetReadInGroup function sets the group reading mode for the
metafile object file to one of the two following values, based on the value of
readGroupState. The default value for readGroupState is kQ3FileReadWholeGroup.

kQ3FileReadWholeGroup
A group is read as a single object; a single call to
Q3File_ReadObject reads the group and everything in it.

C H A P T E R 1 7

File Objects

File Objects Reference 1089

kQ3FileReadObjectsInGroup
Each object inside the group is read individually. In this
case, the first call to Q3File_ReadObject reads the group
itself and returns an empty group. Each subsequent
Q3File_ReadObject call reads one more object. The last
Q3File_ReadObject call returns an EndGroup object; this
signals that the end of the group has been read.
So long as the TQ3FileReadGroupState has most recently
been set to kQ3FileReadObjectsInGroup, every group that’s
encountered will be read this way.
You can set kQ3FileReadObjectsInGroup, read some groups,
then set the state back to kQ3FileReadWholeGroup. When
this has been done, then every new group will be read in as
with kQ3FileReadWholeGroup, but groups currently being
read will finish as with kQ3FileReadObjectsInGroup.
Because groups can be nested, it is possible to be inside of
many groups, all of which would be completed as with
kQ3FileReadObjectsInGroup.

Q3File_GetReadInGroup 17

You can use the Q3File_GetReadInGroup function to set the mode by which
objects in a group are read.

TQ3Status Q3File_GetReadInGroup(
TQ3FileObject file,
TQ3FileReadGroupState *readGroupState);

file A metafile object.

readGroupState
A mask for the mode of reading objects in a group; see “Group
Reading States” (page 1032).

DESCRIPTION

The Q3File_SetReadInGroup function gets a mask for the group reading mode of
the metafile object file and returns it in readGroupState. In addition to either of

C H A P T E R 1 7

File Objects

1090 File Objects Reference

the values described in “Q3File_SetReadInGroup” (kQ3FileReadWholeGroup or
kQ3FileReadObjectsInGroup), readGroupState can have this value:

kQ3FileCurrentlyInsideGroup
This value is OR-combined into the mask if the reading process is
currently inside a group. This value is compatible with the next
group being read with either kQ3FileReadWholeGroup or
kQ3FileReadObjectsInGroup.

Writing to Custom File Objects 17

Writing to custom file objects is done in two stages: the traversal stage, where
the data to be written is set up, and the actual writing stage.

Traversal is done by the custom object’s TQ3XObjectTraverseMethod or
TQ3XObjectTraverseDataMethod:

typedef TQ3Status (QD3D_CALLBACK
*TQ3XObjectTraverseMethod)(
TQ3Object object,
void *data,
TQ3ViewObject view);

Writing is done by the custom object’s TQ3XObjectWriteMethod:

typedefTQ3Status(QD3D_CALLBACK *TQ3XObjectWriteMethod)(
const void *object,
TQ3FileObject file);

The first part of the custom object’s TQ3XObjectTraverseMethod traverses the root
object. A metafile object always has a root object, which may or may not have
one or more subobjects. The root object consists of all data that is not itself a
QD3D object. All data in the form of QD3D objects must appear in the metafile
as subobjects. For example, in a box the geometrical data (origin, orientation,
and axes) makes up the root object. But the attribute sets (both face attribute
sets and box attribute sets) are themselves QD3D objects, so they must be
subobjects. If an object has subobjects, then the root and the subobjects are all
contained in a container. If there are no subobjects, then no container is
necessary.

The custom object’s TQ3XObjectTraverseMethod computes the size of the root
object and then calls Q3XView_SubmitWriteData once to traverse the root. After

C H A P T E R 1 7

File Objects

File Objects Reference 1091

that, it can submit the subobjects, if any. It does this by making the public API
call Q3Object_Submit on each subobject. As a shortcut, it can call the
Q3XView_SubmitSubObjectData function.

If you need data from the view that’s passed to the Q3View_StartWriting call
that initiates the write loop, you must obtain it during your traverse routine
(which is passed this view as argument). You cannot obtain data from the view
during your write routine, since it does not take a view as argument and there
is no other way to access the view from within it.

Note that your TQ3XObjectTraverseMethod can check some condition and, based
on the result, decide not to write a particular part of the memory accessible
from the data parameter in Q3XView_SubmitWriteData as part of the root object.
It does this by not adding bytes to the size parameter. This decision must be
mirrored in your TQ3XObjectWriteMethod method, where the corresponding
Q3..._Write calls must be bypassed. The TQ3XObjectTraverseMethod can decide
not to make any particular Q3Object_Submit call on a subobject, but this doesn't
require any mirroring in the TQ3XObjectWriteMethod because Q3Object_Submit in
the traverse method is all that’s needed for writing a subobject. There is one
special case: your traverse method can decide to write nothing at all by simply
returning kQ3Success immediately. In that case the write method will never get
called, so it doesn’t need to do any checking of conditions.

Your TQ3XObjectWriteMethod consists of making any of the following calls (and
no others) to write out the data of its root object. These calls are described in
“Reading and Writing File Data,” beginning on page 1045.

Q3Uns8_Write
Q3Uns16_Write
Q3Uns32_Write
Q3Int32_Write
Q3Uns64_Write
Q3Float32_Write
Q3Float64_Write
Q3Point2D_Write
Q3Point3D_Write
Q3RationalPoint3D_Write
Q3RationalPoint4D_Write
Q3Vector2D_Write
Q3Vector3D_Write
Q3Matrix4x4_Write
Q3Tangent2D_Write
Q3Tangent3D_Write

C H A P T E R 1 7

File Objects

1092 File Objects Reference

Q3NewLine_Write
Q3String_Write
Q3Size_Pad
Q3RawData_Write
Q3Comment_Write

The TQ3XObjectWriteMethod does nothing with subobjects; their roots are written
by their own TQ3XObjectWriteMethod.

Q3XView_SubmitWriteData 17

You can use the Q3XView_SubmitWriteData function to write data to a custom file
object.

TQ3Status Q3XView_SubmitWriteData(
 TQ3ViewObject view,
 TQ3Size size,
 void *data,
 TQ3XDataDeleteMethod deleteData);

view A view.

size The size of the data actually written.

data A pointer to memory containing the data to be written.

deleteData A TQ3XDataDeleteMethod method.

DESCRIPTION

The Q3XView_SubmitWriteData function writes the data pointed to by data, of
size size, to the view view object. The deleteData parameter designates a
method that disposes of memory allocations upon completion.

It is important that the size parameter matches the size of the data actually
written. If this is not so, Q3XView_SubmitWriteData will fail.

The data pointer is later passed to your TQ3XObjectWriteMethod. Typically, it will
point to a data structure, and your write routine will contain various calls from
the family Q3Uns8_Write, Q3Uns32_Write, etc (see “Reading and Writing File

C H A P T E R 1 7

File Objects

File Objects Reference 1093

Data,” beginning on page 1045), which will write to various fields in that data
structure.

The deleteData parameter designates a TQ3XDataDeleteMethod. It is passed a
pointer to your data structure, and it will delete whatever needs to be deleted
(dispose of QD3D objects, deallocate memory, and so on). The delete method
will be called upon exit of your write method whether or not your write
method succeeded.

Q3XView_SubmitSubObjectData 17

You can use the Q3XView_SubmitSubObjectData function to write data to a custom
file object more efficiently than you can with Q3XView_SubmitWriteData.

TQ3Status Q3XView_SubmitSubObjectData(
TQ3ViewObject view,
TQ3XObjectClass objectClass,
TQ3Size size,
void *data,
TQ3XDataDeleteMethod deleteData);

view A view.

size The size of the data actually written.

objectClass An object class.

data A pointer to memory containing the data to be written.

deleteData A TQ3XDataDeleteMethod method.

DESCRIPTION

The Q3XView_SubmitSubObjectData function is a shortcut alternative to the
Q3XView_SubmitWriteData function. It writes the data pointed to by data, of size
size, to the view view object. The deleteData parameter designates a method
that disposes of memory allocations upon completion.

You can use the Q3XView_SubmitSubObjectData function in the following situation.
Suppose that your custom object C1 has another object of class S1 as a subobject in its
metafile, and the only purpose for the existence of class S1 is to enable the writing and

C H A P T E R 1 7

File Objects

1094 File Objects Reference

reading of these metafile subobjects. On the writing side, you don’t need to create the
object. You can just to do what’s needed in a traverse method (pass its size and a pointer
to the data), using Q3XView_SubmitSubObjectData. (Q3XView_SubmitSubObjectData
also takes a TQ3XObjectClass as a parameter; this parameter is implicit in
Q3XView_SubmitWriteData, where it is assumed to be the class of the root.) The
traversal routine for C1 can call Q3XView_SubmitSubObjectData, where the data is C1’s
data structure, instead of having to first create an object of class S1 and then call
Q3Object_Submit on that object. The write method for class S1 remains as it is with
Q3XView_SubmitWriteData.

Edit Tracking 17

The EditTracking feature is designed to allow users to keep track of whether an
object that contains custom elements or attributes (including unknown elements
or attributes) has been edited.

Here’s an example of applying this feature. ObjA is created and written out by
application AppA, which registers custom attribute type CusAttA. ObjA
contains some attributes of type CusAttA. Assume that ObjA is a geometry and
attributes of type CusAttA are per-vertex attributes that depend on the overall
geometry of the object. Suppose now that ObjA is read by AppB, which does
not register attribute type CusAttA. This means that when AppB reads in ObjA,
every attribute of type CusAttA is read in as an unknown object. Suppose that
AppB edits the geometry of ObjA, resulting in object ObjB. Since AppB doesn’t
know about attributes of type CusAttA, it cannot edit them so that they
conform properly to the edited geometry. This means that in ObjB, geometry
and attributes of type CusAttA may be incompatible. To track this possibility,
when AppB writes ObjB into a metafile the EditTracking feature will add a
special subobject of type edited to ObjB.

Suppose now that the user is back working in AppA and reads in ObjB. AppA
recognizes attributes of type CusAttA, so they will be read in as known and will
have their effect during rendering. During reading AppA also reads in the
edited subobject. This automatically marks object ObjB in such a way that the
call Q3Shared_GetEditTrackingState made on ObjB returns 1, signifying that the
object contains a custom attribute (or element) which was edited after having been read
in. In this case, there is a risk of incorrect rendering. If this condition is not satisfied,
Q3Shared_GetEditTrackingState returns 0.

C H A P T E R 1 7

File Objects

File Objects Reference 1095

Q3Shared_GetEditTrackingState 17

You can use the Q3Shared_GetEditTrackingState function to determine if an
object contains a custom attribute or element that was edited after having been read in.

unsigned long Q3Shared_GetEditTrackingState(
TQ3SharedObject sharedObject);

sharedObject An object shared by two or more metafiles.

DESCRIPTION

The Q3Shared_GetEditTrackingState function returns 1 if object sharedObject
contains a custom attribute or element that was edited after having been read in;
otherwise it returns 0.

Q3Shared_ClearEditTracking 17

You can use the Q3Shared_ClearEditTracking function to clear the marker read
by Q3Shared_GetEditTrackingState.

TQ3Status Q3Shared_ClearEditTracking(
TQ3SharedObject sharedObject);

sharedObject An object shared by two or more metafiles.

DESCRIPTION

You can call the Q3Shared_ClearEditTracking function on an object if you wish to
guarantee that an edited subobject will not be written to the metafile or that an object
that has been read in will return 0 from Q3Shared_GetEditTrackingState.

Application-Defined Routines 17

This section describes the I/O methods you can implement to handle a custom
object type. Your custom methods are reported to QuickDraw 3D by your object

C H A P T E R 1 7

File Objects

1096 File Objects Reference

metahandler. This section also describes how to write a file idler callback
routine.

Note
For information about defining an object metahandler and
about the basic methods for handling custom objects, see
the chapter “QuickDraw 3D Objects.” ◆

These I/O methods define how QuickDraw 3D handles your custom objects
when reading them from or writing them to a metafile. Each distinct object in a
metafile consists of a root object that determines the object’s type and default
data. Some types of objects can have child objects attached to them, which add
information to the parent object or override the parent’s default data. A parent
object and its child (or children) are encapsulated in a container, the first object
in which is always the parent object.

To read a custom object from a file, you need to define a read data method for
the custom object. To write a custom object to a file, you need to define two I/O
methods for the custom object: a traversal method and a write method.

TQ3FileIdleMethod 17

You can define an idle method to receive occasional callbacks to your
application during lengthy file operations.

typedef TQ3Status (*TQ3FileIdleMethod) (
TQ3FileObject file,
const void *idlerData);

file A file object.

idlerData A pointer to an application-defined block of data.

DESCRIPTION

Your TQ3FileIdleMethod function is called occasionally during lengthy file
operations. You can use an idle method to provide a method for the user to
cancel the lengthy operation (for example, by clicking a button or pressing a key
sequence such as Command-period).

C H A P T E R 1 7

File Objects

File System Errors, Warnings, and Notices 1097

If your idle method returns kQ3Success, QuickDraw 3D continues its current
operation. If your idle method returns kQ3Failure, QuickDraw 3D cancels its
current operation and returns kQ3ViewStatusCancelled the next time you call
Q3View_EndWriting.

There is currently no way to indicate how often you want your idle method to
be called. You can read the time maintained by the Operating System if you
need to determine the amount of time that has elapsed since your idle method
was last called.

You must not call any QuickDraw 3D routines inside your idle method.

File System Errors, Warnings, and Notices 17

The following is a list of file system errors, warnings, and notices. A list of
general QuickDraw 3D errors is given in “QuickDraw 3D Errors, Warnings, and
Notices” (page 87).

kQ3ErrorNoStorageSetForFile
kQ3ErrorEndOfFile
kQ3ErrorFileCancelled
kQ3ErrorInvalidMetafile
kQ3ErrorInvalidMetafilePrimitive
kQ3ErrorInvalidMetafileLabel
kQ3ErrorInvalidMetafileObject
kQ3ErrorInvalidMetafileSubObject
kQ3ErrorInvalidSubObjectForObject
kQ3ErrorUnresolvableReference
kQ3ErrorUnknownObject
kQ3ErrorFileAlreadyOpen
kQ3ErrorFileNotOpen
kQ3ErrorFileIsOpen
kQ3ErrorBeginWriteAlreadyCalled
kQ3ErrorBeginWriteNotCalled
kQ3ErrorEndWriteNotCalled
kQ3ErrorReadStateInactive
kQ3ErrorStateUnavailable
kQ3ErrorWriteStateInactive
kQ3ErrorSizeNotLongAligned
kQ3ErrorFileModeRestriction

C H A P T E R 1 7

File Objects

1098 File System Errors, Warnings, and Notices

kQ3ErrorInvalidHexString
kQ3ErrorWroteMoreThanSize
kQ3ErrorWroteLessThanSize
kQ3ErrorReadLessThanSize
kQ3ErrorReadMoreThanSize
kQ3ErrorNoBeginGroup
kQ3ErrorSizeMismatch
kQ3ErrorStringExceedsMaximumLength
kQ3ErrorValueExceedsMaximumSize
kQ3ErrorNonUniqueLabel
kQ3ErrorEndOfContainer
kQ3ErrorUnmatchedEndGroup
kQ3ErrorFileVersionExists
kQ3ErrorBadStringType
kQ3WarningInvalidSubObjectForObject
kQ3WarningInvalidHexString
kQ3WarningUnknownObject
kQ3WarningInvalidMetafileObject
kQ3WarningUnmatchedBeginGroup
kQ3WarningUnmatchedEndGroup
kQ3WarningInvalidTableOfContents
kQ3WarningUnresolvableReference
kQ3WarningNoAttachMethod
kQ3WarningInconsistentData
kQ3WarningReadLessThanSize
kQ3WarningFilePointerResolutionFailed
kQ3WarningFilePointerRedefined
kQ3WarningStringExceedsMaximumLength
kQ3NoticeFileAliasWasChanged
kQ3NoticeFileCancelled

About the Pointing Device Manager 1099

C H A P T E R 1 8

Pointing Device Manager 18Figure 18-0
Listing 18-0
Table 18-0

This chapter describes the QuickDraw 3D Pointing Device Manager, a set of
functions that you can use to manage three-dimensional pointing devices. By
using this manager, you ensure that your application’s users can interact with
the three-dimensional objects modeled in your windows in a simple and
natural manner, using the input devices that are available on their computers.

To use this chapter, you should already be familiar with creating and
manipulating views, as described in the chapter “View Objects.” If you are
developing a 3D pointing device (which allows the user to control locations in
three dimensions), you need to read the information on trackers and controllers
in this chapter, as well as the information on writing device drivers in the book
Inside Macintosh: Devices.

This chapter begins by describing controllers and trackers. Then it provides
some sample code illustrating how to use the routines in the QuickDraw 3D
Pointing Device Manager. The chapter ends with a complete reference for this
manager.

About the Pointing Device Manager 18

The QuickDraw 3D Pointing Device Manager is a set of functions that you can
use to manage three-dimensional pointing devices. The QuickDraw 3D
Pointing Device Manager is the 3D analogue of some of the managers contained
in the Macintosh Toolbox, which you can use to create and handle
two-dimensional aspects of your application’s user interface (such as windows,
controls, and menus). The key benefit in both cases (that is, two- and
three-dimensional) is the same: by using the routines supplied by Apple
Computer, Inc., you can guarantee that your application looks and acts just like
any other applications that use those routines.

C H A P T E R 1 8

Pointing Device Manager

1100 About the Pointing Device Manager

This consistency of the user interface among different applications helps users
learn to use your application; it also helps them focus on the distinctive features
of your application, because they are not distracted by unnecessary differences
between your application and other 3D applications they may have used.

IMPORTANT

In general, you should use the user interface routines
contained in the QuickDraw 3D Pointing Device Manager
for your three-dimensional user interface elements unless
you have a compelling reason to adopt some other user
interface paradigms. ▲

The QuickDraw 3D Pointing Device Manager contains several kinds of
routines, including routines you can use to

■ determine what kinds of pointing devices are available on a particular
computer

■ configure one or more of those devices to control items in a 3D model (such
as the position of an object or a camera)

The following sections describe these tasks and the routines you can use to
perform them.

Controllers 18

In order for a user to interact successfully with the objects in a
three-dimensional model, it’s necessary for the computer to provide some
means of manipulating positions along three independent axes. Most existing
computer systems support only two-dimensional input devices, such as mouse
pointers or graphics tablets. QuickDraw 3D provides a standard interface
between applications and devices that allows users to work with any available
3D pointing devices. In addition, the QuickDraw 3D Pointing Device Manager
provides routines that you can use to determine what kinds of 3D pointing
devices are available and to assign certain of them to specific uses in your
application.

A 3D pointing device is any physical device capable of controlling movements
or specifying positions in three-dimensional space. QuickDraw 3D represents
3D pointing devices as controller objects (or, more briefly, controllers). A user
can attach more than one 3D pointing device to a computer. Accordingly,
QuickDraw 3D can support more than one controller at a time. When several
3D pointing devices are present, they can all contribute to the movement of a

C H A P T E R 1 8

Pointing Device Manager

About the Pointing Device Manager 1101

single user interface element (such as the position of the selected object), or they
can control different elements. For example, a particular 3D pointing device can
be dedicated to controlling a view’s camera, and another 3D pointing device
can drive the position of the selected object.

The position and orientation of a single element in your application’s user
interface are represented by a tracker object (or, more briefly, a tracker). For
instance, the position and orientation of a selected object are represented by a
tracker, as is any other interface element you’ve assigned to some controller.
Each controller can affect only one tracker, but a tracker can be affected by one
or more controllers. Figure 18-1 illustrates a possible arrangement of devices,
controllers, and trackers.

Figure 18-1 A sample configuration of input devices, controllers, and trackers

The controller object associated with a particular 3D pointing device is usually
created by a device driver, the software that communicates with the device
using whatever low-level protocols are appropriate for the device. The device
can be connected to the computer through a serial port, via ADB connections,
through an expansion card, or by other means. The device driver receives data
from the device and passes it to the associated controller. As already indicated,
a controller is associated with exactly one tracker. Changes in the position or
orientation of the pointing device thereby result in changes in the position or
orientation of the associated tracker.

Cursor
(system)

TQ3Controller TQ3Tracker Application

Space ball
(driver)

Camera modelCamera
(application)

Default

Roller mouse
(driver)

C H A P T E R 1 8

Pointing Device Manager

1102 About the Pointing Device Manager

IMPORTANT

By default, a controller contributes to the position of the
system’s cursor. You can, if you wish, reassign a particular
controller to control the position or orientation of some
other user interface element. ▲

All controllers are capable of controlling positions, and some controllers are
capable of controlling orientations as well. Pointing devices contain one or more
buttons; the associated controller must be capable of reading button states (up
or down) from the pointing device and reporting those states to the tracker.
Currently, QuickDraw 3D supports up to 32 buttons on a 3D pointing device.
More generally, a pointing device may support additional input and output
modes as well. For example, it’s possible to construct a 3D pointing device that
contains a number of dials and alphanumeric displays labeling those dials. The
device’s controller must then be able to communicate information about dials
and labels between the device and an application using that device.

Any piece of information, beyond the standard position, orientation, and
buttons, that the user sends to the application by means of an input device is
called a controller value. Any piece of information sent from the application to
the input device is called a controller channel. A dial position, for example, is a
controller value, whereas an alphanumeric label generated by the application is
a controller channel.

In general, your application does not need to communicate with controllers
directly. As already indicated, controllers are almost always created by their
associated device drivers, which read data from the devices and pass it to the
associated controller. Moreover, a controller is by default connected to the
cursor. Your application needs to access a controller only to assign it to some
interface element other than the cursor or to read controller data other than
position, orientation, and button states. To get information about other
controller values, for instance, you need to call routines that query the
controller directly.

QuickDraw 3D maintains a list of all the controllers that are available on a
computer. A controller is identified by its signature, which is a string that
uniquely identifies the manufacturer and model of the controller. You can
search for a controller by signature by calling QuickDraw 3D Pointing Device
Manager routines. Once a controller is added to the list of available controllers,
it cannot be removed from it, but it can be made inactive. If for some reason a
device becomes unavailable, the device driver should mark the controller as
inactive. The device might later become available, in which case the driver can

C H A P T E R 1 8

Pointing Device Manager

About the Pointing Device Manager 1103

reactivate the controller. You should always check that a controller is active
before directly accessing a controller from the list of controllers.

Note
Because controllers may be shared by multiple
applications, you cannot dispose of a controller. Instead,
you can decommission the controller by calling
Q3Controller_Decommission. Decommissioning a controller
makes it inoperative for any application. ◆

Controllers are referenced by the TQ3ControllerRef type:

typedef void *TQ3ControllerRef;

Controller States 18

When your application is inactive, some other application might use a
particular pointing device your application was using. That other application
might also reset some of the controller channels. As a result, you need to keep
track of the current controller state across the times your application is inactive.
A controller state object (or, more briefly, a controller state) consists mainly of
the current channels and other settings of a controller. When your application is
about to be inactivated, you should call the function
Q3ControllerState_SaveAndReset to save the current controller state. Then,
when your application is reactivated, you should call
Q3ControllerState_Restore to restore the proper controller state.

Trackers 18

A tracker is a kind of QuickDraw 3D object that controls the position,
orientation, and button state of a specific element in your application’s user
interface. QuickDraw 3D always provides a tracker that controls the location
and orientation of the system cursor. You can create additional trackers and
attach them to other visible elements of your application’s user interface. As
suggested earlier, you can attach a 3D pointing device to a view’s camera and
then let users control the camera’s position and orientation using the device. If
the device has one or more buttons, you could let users turn the lights on and
off using those buttons.

C H A P T E R 1 8

Pointing Device Manager

1104 Using the QuickDraw 3D Pointing Device Manager

Note
This is not necessarily a good human interface for turning
lights on and off; it is intended only for illustrative
purposes. ◆

All the controllers currently reporting data to a particular tracker, whether
absolute or relative, jointly contribute to the button states of the tracker. The
button state of a tracker button of a particular index is the logical OR of the
button states of all controller buttons of that index.

You can determine that a tracker has moved in one or both of two ways. You
can poll for a tracker serial number, which changes every time the coordinates
of the tracker are updated by a controller. Or, you can install a tracker notify
function that is called whenever the coordinates of a tracker change by more
than a specified amount (the tracker thresholds). Your tracker notify function
can respond itself to the change, or it can just wake up your application. These
two techniques can also be combined.

Using the QuickDraw 3D Pointing Device Manager 18

This section shows how to use some of the routines in the QuickDraw 3D
Pointing Device Manager. In particular, it shows how to reassign a 3D pointing
device to control a camera’s position.

Controlling a Camera Position With a Pointing Device 18

By default, a 3D pointing device contributes to the position and orientation of
the cursor. You can, however, reassign a particular pointing device so that it
controls some other element in a user interface view, such as the position and
orientation of the view’s camera. To do this, you must first find the pointing
device. Then you need to disconnect the device from the cursor and connect it
to the desired user interface element.

Suppose that the pointing box you want to reassign is a knob box, which
consists of a set of 12 knobs and associated alphanumeric displays. Six of the
knobs control the standard position and orientation values, and the remaining 6
knobs are device-specific. Listing 18-1 shows first how to search for the knob
box.

C H A P T E R 1 8

Pointing Device Manager

Using the QuickDraw 3D Pointing Device Manager 1105

Listing 18-1 Searching for a particular 3D pointing device

TQ3ControllerRef gBoxController = NULL;
TQ3TrackerObject gBoxTracker = NULL;
unsigned long gBoxSerialNumber = 0;

void MyFindKnobBox (void)
{

TQ3ControllerRef controller;
char mySig[256]; /*controller signature*/
char *boxSig =

"Knob Systems, Inc.::Knob Box Grandé";
TQ3Boolean isActive;

/*Find the box controller.*/
for (Q3Controller_Next(NULL, &controller); controller != NULL;

Q3Controller_Next(controller, &controller)) {
Q3Controller_GetSignature(controller, mySig, 256);
Q3Controller_GetActivation(controller, &isActive);

if (isActive && strncmp(mySig, boxSig, strlen(boxSig))

== 0)
gBoxController = controller;

}

/*If we found a knob box, remember it.*/
if (gBoxController != NULL) {

gBoxTracker = Q3Tracker_New(MyBoxNotifyFunc);
if (gBoxTracker != NULL) {

Q3Tracker_SetNotifyThresholds(gBoxTracker, 0.05, 0.05);
}
Q3Controller_SetTracker(gBoxController, gBoxTracker);

}
}

Once you’ve found a knob box, you must connect it to the camera, but only for
as long as your application’s window is active. When the window is inactive,
the box should revert to its previous function. Listing 18-2 defines two functions
you should call when your application becomes active or inactive.

C H A P T E R 1 8

Pointing Device Manager

1106 Using the QuickDraw 3D Pointing Device Manager

Listing 18-2 Activating and deactivating a pointing device

void MyOnActivation (void)
{

/*Any knob box data goes to your tracker.*/
if (gBoxController != NULL)

Q3Controller_SetTracker(gBoxController, gBoxTracker);
}

void MyOnDeactivation (void)
{

/*Any knob box data goes to the default tracker.*/
if (gBoxController != NULL)

Q3Controller_SetTracker(gBoxController, NULL);
}

As long as the knob box is attached to a view’s camera, your application
receives notification of changes in the knob box through the notify function
MyBoxNotifyFunc, defined in Listing 18-3. MyBoxNotifyFunc may be called at
interrupt time. On Macintosh computers, you should wake up your process so
that it can poll the tracker. This ensures that the application will recover control
from the WaitNextEvent function.

Listing 18-3 Receiving notification of changes in a pointing device

TQ3Status MyBoxNotifyFunc (TQ3TrackerObject tracker,
TQ3ControllerRef controller)

{
MyOSWakeUpMyProcess(); /*wake up app; poll for data later*/
return(kQ3Success);

}

The MyPollKnobBox function defined in Listing 18-4 shows how to poll for data
from the device. Your application’s idle procedure should call MyPollKnobBox.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1107

Listing 18-4 Polling for data from a pointing device

void MyPollKnobBox (void)
{

TQ3Boolean changed;
TQ3Point3D position;
TQ3Vector3D delta;

/*Get the current knob positions.*/
changed = kQ3False;
if (gBoxTracker != NULL) {

Q3Tracker_GetPosition(gBoxTracker, &position, &delta,
&changed, &gBoxSerialNumber);

}

/*Move camera and redraw if positions are new.*/
if (changed) {

MyComputeCameraFromKnobBox(&position, &orientation);
MyRedrawScene();

}
}

QuickDraw 3D Pointing Device Manager Reference 18

This section describes the QuickDraw 3D data structures and routines that you
can use to manage controllers and controller states, trackers, and cursors.

Data Structures 18

This section describes the data structure that you use to create a new controller
object. In general, only device drivers need to create controller objects.

C H A P T E R 1 8

Pointing Device Manager

1108 QuickDraw 3D Pointing Device Manager Reference

Controller Data Structure 18

You use a controller data structure to specify information when creating a new
controller object. A controller data structure is defined by the TQ3ControllerData
data type.

typedef struct TQ3ControllerData {
char *signature;
unsigned long valueCount;
unsigned long channelCount;
TQ3ChannelGetMethod channelGetMethod;
TQ3ChannelSetMethod channelSetMethod;

} TQ3ControllerData;

Field descriptions
signature The controller’s signature. A signature is a null-terminated

C string that uniquely identifies the manufacturer and
model of a controller device. You are responsible for
defining your controller’s signature.

valueCount The number of values supported by the controller.
channelCount The number of channels supported by the controller. If the

value in this field is greater than 0, you may define optional
routines that get and set those channels.

channelGetMethod A pointer to a controller’s channel-getting method. See
page 1140 for information on this method. This field is
valid only if the value in the channelCount field is greater
than 0. You may, however, pass NULL in this field if the
controller cannot report the current channels.

channelSetMethod A pointer to a controller’s channel-setting method. See
page 1141 for information on this method. This field is
valid only if the value in the channelCount field is greater
than 0. You may, however, pass NULL in this field if the
controller cannot set the channels.

QuickDraw 3D Pointing Device Manager Routines 18

This section describes routines you can use to manage various aspects of your
application’s user interface or to create and manage controllers and trackers.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1109

Creating and Managing Controllers 18

QuickDraw 3D provides routines that you can use to create and manipulate
controller objects.

Note
Some of these functions are intended for use only by
controller device drivers. You should not call those
functions from within applications. ◆

Q3Controller_New 18

You can use the Q3Controller_New function to create a new controller.

TQ3ControllerRef Q3Controller_New (
const TQ3ControllerData *controllerData);

controllerData
A pointer to a controller data structure.

DESCRIPTION

The Q3Controller_New function returns, as its function result, a reference to a
new controller object having the characteristics specified by the controllerData
parameter. The new controller object is initially made active and is associated
with the system cursor’s tracker. You can call Q3Controller_SetTracker to
associate the controller with some other tracker. The serial number of the new
controller object is set to 1. If Q3Controller_New cannot create a new controller, it
returns NULL.

You cannot delete a controller, but you can make it no longer operational. See
the description of Q3Controller_Decommission (page 1111) for details.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

C H A P T E R 1 8

Pointing Device Manager

1110 QuickDraw 3D Pointing Device Manager Reference

SEE ALSO

See “Controller Data Structure” (page 1108) for a description of the fields of the
controller data structure.

Q3Controller_GetListChanged 18

You can use the Q3Controller_GetListChanged function to determine whether
the list of available controllers has changed.

TQ3Status Q3Controller_GetListChanged (
TQ3Boolean *listChanged,
unsigned long *serialNumber);

listChanged On exit, a Boolean value that indicates whether the list of
available controllers has changed (kQ3True) or not (kQ3False).

serialNumber On entry, a serial number of the list of available controllers. On
exit, the current serial number of that list.

DESCRIPTION

The Q3Controller_GetListChanged function returns, in the listChanged
parameter, a Boolean value that indicates whether the list of available
controllers has changed since the time the serial number passed in the
serialNumber parameter was generated. If the list has changed, the new serial
number is returned in the serialNumber parameter; otherwise, the serialNumber
parameter is unchanged.

Q3Controller_Next 18

You can use the Q3Controller_Next function to read through the list of available
controllers.

TQ3Status Q3Controller_Next (
TQ3ControllerRef controllerRef,
TQ3ControllerRef *nextControllerRef);

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1111

controllerRef A reference to a controller, or NULL.

nextControllerRef
On exit, a reference to the controller that immediately follows
the specified controller. If the value in the controllerRef
parameter is NULL, this parameter returns a reference to the first
controller.

DESCRIPTION

The Q3Controller_Next function returns, in the nextControllerRef parameter, a
reference to the controller that immediately follows the controller specified by
the controllerRef parameter. To get the first controller in the list, pass the value
NULL in the controllerRef parameter. If the controller specified by the
controllerRef parameter is the last controller in the list, nextControllerRef is
set to NULL.

Q3Controller_Decommission 18

You can use the Q3Controller_Decommission function to make a controller
inactive.

TQ3Status Q3Controller_Decommission (TQ3ControllerRef controllerRef);

controllerRef A reference to a controller.

DESCRIPTION

The Q3Controller_Decommission function makes the controller specified by the
controllerRef parameter inactive. Any remaining references to a controller that
has been decommissioned are still valid, but the controller is no longer
operational. (In other words, when the specified controller is referred to by an
application or process other than the one that created it, reasonable default
values are returned, not kQ3Failure.) Decommissioning a controller might cause
the notify function of the tracker currently associated with the specified
controller to be called.

C H A P T E R 1 8

Pointing Device Manager

1112 QuickDraw 3D Pointing Device Manager Reference

SPECIAL CONSIDERATIONS

The Q3Controller_Decommission function should be called only by the
application or process that created the specified controller.

Q3Controller_GetActivation 18

You can use the Q3Controller_GetActivation function to get the activation state
of a controller.

TQ3Status Q3Controller_GetActivation (
TQ3ControllerRef controllerRef,
TQ3Boolean *active);

controllerRef A reference to a controller.

active On exit, a Boolean value that indicates whether the specified
controller is active (kQ3True) or inactive (kQ3False).

DESCRIPTION

The Q3Controller_GetActivation function returns, in the active parameter, a
Boolean value that indicates whether the controller specified by the
controllerRef parameter is currently active or inactive.

Q3Controller_SetActivation 18

You can use the Q3Controller_SetActivation function to set the activation state
of a controller.

TQ3Status Q3Controller_SetActivation (
TQ3ControllerRef controllerRef,
TQ3Boolean active);

controllerRef A reference to a controller.

active A Boolean value that indicates whether the specified controller
is to be made active (kQ3True) or inactive (kQ3False).

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1113

DESCRIPTION

The Q3Controller_SetActivation function sets the activation state of the
controller specified by the controllerRef parameter to the value specified in the
active parameter. If the activation state of a controller is changed, the serial
number of the list of available controllers is incremented. A controller should be
inactive if it is temporarily off-line.

The notify function of the tracker currently associated with the specified
controller might be called when Q3Controller_SetActivation is called.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

Q3Controller_GetSignature 18

You can use the Q3Controller_GetSignature function to get the signature of a
controller.

TQ3Status Q3Controller_GetSignature (
TQ3ControllerRef controllerRef,
char *signature,
unsigned long numChars);

controllerRef A reference to a controller.

signature On entry, a pointer to a buffer that is to be filled with the
signature of the specified controller.

numChars On entry, the size of the buffer pointed to by the signature
parameter.

DESCRIPTION

The Q3Controller_GetSignature function returns, through the signature
parameter, the signature of the controller specified by the controllerRef
parameter. You are responsible for allocating a buffer whose address is passed
in the signature parameter and whose size is passed in the numChars parameter.

C H A P T E R 1 8

Pointing Device Manager

1114 QuickDraw 3D Pointing Device Manager Reference

If the signature is larger than the specified size, the signature is truncated to fit
in the buffer.

Q3Controller_GetChannel 18

You can use the Q3Controller_GetChannel function to get a controller channel.

TQ3Status Q3Controller_GetChannel (
TQ3ControllerRef controllerRef,
unsigned long channel,
void *data,
unsigned long *dataSize);

controllerRef A reference to a controller.

channel An index into the list of channels associated with the specified
controller. This value is always greater than or equal to 0 and
less than the channel count specified at the time
Q3Controller_New was called.

data On exit, a pointer to the current value of the specified controller
channel. The data type of the returned channel is
controller-specific.

dataSize On entry, the number of bytes in the specified buffer. On exit,
the number of bytes actually written to that buffer.

DESCRIPTION

The Q3Controller_GetChannel function returns, through the data parameter, the
current controller channel specified by the controllerRef and channel
parameters. You are responsible for allocating memory for the data buffer and
passing the size of that buffer in the dataSize parameter.
Q3Controller_GetChannel returns, in the dataSize parameter, the number of
bytes written to the data buffer.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1115

Q3Controller_SetChannel 18

You can use the Q3Controller_SetChannel function to set a controller channel.

TQ3Status Q3Controller_SetChannel (
TQ3ControllerRef controllerRef,
unsigned long channel,
const void *data,
unsigned long dataSize);

controllerRef A reference to a controller.

channel An index into the list of channels associated with the specified
controller. This value is always greater than or equal to 0 and
less than the channel count specified at the time
Q3Controller_New was called.

data On entry, a pointer to a buffer that contains the desired value of
the specified controller channel. The data type of the channel is
controller-specific. If this field contains the value NULL, the
specified channel is reset to a default or inactive value.

dataSize On entry, the number of bytes of data in the specified buffer.

DESCRIPTION

The Q3Controller_SetChannel function sets the controller channel specified by
the controllerRef and channel parameters to the data whose address is passed
in the data parameter. The dataSize parameter specifies the number of bytes in
the data buffer.

Q3Controller_GetValueCount 18

You can use the Q3Controller_GetValueCount function to get the number of
values of a controller.

TQ3Status Q3Controller_GetValueCount (
TQ3ControllerRef controllerRef,
unsigned long *valueCount);

C H A P T E R 1 8

Pointing Device Manager

1116 QuickDraw 3D Pointing Device Manager Reference

controllerRef A reference to a controller.

valueCount On exit, the number of values supported by the specified
controller.

DESCRIPTION

The Q3Controller_GetValueCount function returns, in the valueCount parameter,
the number of values supported by the controller specified by the controllerRef
parameter.

Q3Controller_SetTracker 18

You can use the Q3Controller_SetTracker function to set the tracker associated
with a controller.

TQ3Status Q3Controller_SetTracker (
TQ3ControllerRef controllerRef,
TQ3TrackerObject tracker);

controllerRef A reference to a controller.

tracker A tracker object.

DESCRIPTION

The Q3Controller_SetTracker function associates the tracker specified by the
tracker parameter with the controller specified by the controllerRef parameter.
If the value of the tracker parameter is NULL, the controller is attached to the
system cursor tracker. Changing a controller’s tracker might cause the notify
functions of both the previous tracker and the new tracker to be called.

Q3Controller_HasTracker 18

You can use the Q3Controller_HasTracker function to determine whether a
controller is currently associated with a tracker.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1117

TQ3Status Q3Controller_HasTracker (
TQ3ControllerRef controllerRef,
TQ3Boolean *hasTracker);

controllerRef A reference to a controller.

hasTracker On exit, a Boolean value that indicates whether the specified
controller is currently associated with an active tracker (kQ3True)
or not (kQ3False).

DESCRIPTION

The Q3Controller_HasTracker function returns, in the hasTracker parameter, a
Boolean value that indicates whether the controller specified by the
controllerRef parameter is active and is currently associated with an active
tracker.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

Q3Controller_Track2DCursor 18

You can use the Q3Controller_Track2DCursor function to determine whether a
controller is currently affecting the two-dimensional system cursor.

TQ3Status Q3Controller_Track2DCursor (
TQ3ControllerRef controllerRef,
TQ3Boolean *track2DCursor);

controllerRef A reference to a controller.

track2DCursor On exit, a Boolean value that indicates whether the specified
controller is currently affecting the two-dimensional system
cursor (kQ3True) or not (kQ3False).

C H A P T E R 1 8

Pointing Device Manager

1118 QuickDraw 3D Pointing Device Manager Reference

DESCRIPTION

The Q3Controller_Track2DCursor function returns, in the track2DCursor
parameter, a Boolean value that indicates whether the controller specified by
the controllerRef parameter is currently affecting the two-dimensional system
cursor but the z axis values and orientation of the system cursor tracker are
being ignored. If the specified controller is not attached to the system cursor
tracker or if that controller is inactive, track2DCursor is set to kQ3False.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

Q3Controller_Track3DCursor 18

You can use the Q3Controller_Track3DCursor function to determine whether a
controller is currently affecting the depth information also being used with the
system cursor.

TQ3Status Q3Controller_Track3DCursor (
TQ3ControllerRef controllerRef,
TQ3Boolean *track3DCursor);

controllerRef A reference to a controller.

track3DCursor On exit, a Boolean value that indicates whether the specified
controller is currently affecting the system cursor and the depth
is being used (kQ3True) or not (kQ3False).

DESCRIPTION

The Q3Controller_Track3DCursor function returns, in the track3DCursor
parameter, a Boolean value that indicates whether the controller specified by
the controllerRef parameter is currently affecting the two-dimensional system
cursor and the z axis values and orientation of the system cursor tracker are not
being ignored. If the specified controller is not attached to the system cursor
tracker or if that controller is inactive, track3DCursor is set to kQ3False.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1119

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

Q3Controller_GetButtons 18

You can use the Q3Controller_GetButtons function to get the button state of a
controller.

TQ3Status Q3Controller_GetButtons (
TQ3ControllerRef controllerRef,
unsigned long *buttons);

controllerRef A reference to a controller.

buttons On exit, the current button state value of the specified controller.

DESCRIPTION

The Q3Controller_GetButtons function returns, in the buttons parameter, the
current button state value of the controller specified by the controllerRef
parameter.

Q3Controller_SetButtons 18

You can use the Q3Controller_SetButtons function to set the button state of a
controller.

TQ3Status Q3Controller_SetButtons (
TQ3ControllerRef controllerRef,
unsigned long buttons);

controllerRef A reference to a controller.

buttons A button state value.

C H A P T E R 1 8

Pointing Device Manager

1120 QuickDraw 3D Pointing Device Manager Reference

DESCRIPTION

The Q3Controller_SetButtons function sets the button state of the controller
specified by the controllerRef parameter to the button state value passed in the
buttons parameter. If the specified controller is inactive,
Q3Controller_SetButtons has no effect. Changing a controller’s button state
might cause the notify function of the tracker currently associated with that
controller to be called.

Q3Controller_GetTrackerPosition 18

You can use the Q3Controller_GetTrackerPosition function to get the position of
a controller’s tracker.

TQ3Status Q3Controller_GetTrackerPosition (
TQ3ControllerRef controllerRef,
TQ3Point3D *position);

controllerRef A reference to a controller.

position On exit, the current position of the tracker associated with the
specified controller.

DESCRIPTION

The Q3Controller_GetTrackerPosition function returns, in the position
parameter, the current position of the tracker associated with the controller
specified by the controllerRef parameter. If no tracker is currently associated
with that controller, Q3Controller_GetTrackerPosition returns the position of
the system cursor’s tracker. Q3Controller_GetTrackerPosition has no effect if
the controller is inactive.

Q3Controller_SetTrackerPosition 18

You can use the Q3Controller_SetTrackerPosition function to set the position of
a controller’s tracker.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1121

TQ3Status Q3Controller_SetTrackerPosition (
TQ3ControllerRef controllerRef,
const TQ3Point3D *position);

controllerRef A reference to a controller.

position The desired position of the tracker associated with the specified
controller.

DESCRIPTION

The Q3Controller_SetTrackerPosition function changes the position of the
tracker currently associated with the controller specified by the controllerRef
parameter to the position specified in the position parameter. If no tracker is
currently associated with that controller, Q3Controller_SetTrackerPosition
changes the position of the system cursor’s tracker.
Q3Controller_SetTrackerPosition has no effect if the controller is inactive.

Note
Calling Q3Controller_SetTrackerPosition might cause the
notify function of the controller’s tracker to be called. ◆

Q3Controller_MoveTrackerPosition 18

You can use the Q3Controller_MoveTrackerPosition function to move a
controller’s tracker relative to its current position.

TQ3Status Q3Controller_MoveTrackerPosition (
TQ3ControllerRef controllerRef,
const TQ3Vector3D *delta);

controllerRef A reference to a controller.

delta A three-dimensional vector specifying a relative change in the
position of the tracker associated with the specified controller.

C H A P T E R 1 8

Pointing Device Manager

1122 QuickDraw 3D Pointing Device Manager Reference

DESCRIPTION

The Q3Controller_MoveTrackerPosition function changes the position of the
tracker currently associated with the controller specified by the controllerRef
parameter by the relative amount specified in the delta parameter. If no tracker
is currently associated with that controller, Q3Controller_MoveTrackerPosition
changes the position of the system cursor’s tracker relative to its current
position. Q3Controller_MoveTrackerPosition has no effect if the controller is
inactive.

Note
Calling Q3Controller_MoveTrackerPosition might cause the
notify function of the controller’s tracker to be called. ◆

Q3Controller_GetTrackerOrientation 18

You can use the Q3Controller_GetTrackerOrientation function to get the current
orientation of a controller’s tracker.

TQ3Status Q3Controller_GetTrackerOrientation (
TQ3ControllerRef controllerRef,
TQ3Quaternion *orientation);

controllerRef A reference to a controller.

orientation On exit, the current orientation of the tracker associated with the
specified controller.

DESCRIPTION

The Q3Controller_GetTrackerOrientation function returns, in the orientation
parameter, the current orientation of the tracker associated with the controller
specified by the controllerRef parameter. If no tracker is currently associated
with that controller, Q3Controller_GetTrackerOrientation returns the
orientation of the system cursor’s tracker. Q3Controller_GetTrackerOrientation
has no effect if the controller is inactive.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1123

Q3Controller_SetTrackerOrientation 18

You can use the Q3Controller_SetTrackerOrientation function to set the
orientation of a controller’s tracker.

TQ3Status Q3Controller_SetTrackerOrientation (
TQ3ControllerRef controllerRef,
const TQ3Quaternion *orientation);

controllerRef A reference to a controller.

orientation The desired orientation of the tracker associated with the
specified controller.

DESCRIPTION

The Q3Controller_SetTrackerOrientation function changes the orientation of
the tracker currently associated with the controller specified by the
controllerRef parameter to the orientation specified in the orientation
parameter. If no tracker is currently associated with that controller,
Q3Controller_SetTrackerOrientation changes the orientation of the system
cursor’s tracker. Q3Controller_SetTrackerOrientation has no effect if the
controller is inactive.

Note
Calling Q3Controller_SetTrackerOrientation might cause
the notify function of the controller’s tracker to be called. ◆

Q3Controller_MoveTrackerOrientation 18

You can use the Q3Controller_MoveTrackerOrientation function to reorient a
controller’s tracker relative to its current orientation.

TQ3Status Q3Controller_MoveTrackerOrientation (
TQ3ControllerRef controllerRef,
const TQ3Quaternion *delta);

C H A P T E R 1 8

Pointing Device Manager

1124 QuickDraw 3D Pointing Device Manager Reference

controllerRef A reference to a controller.

delta The desired relative change in the orientation of the tracker
associated with the specified controller.

DESCRIPTION

The Q3Controller_MoveTrackerOrientation function changes the orientation of
the tracker currently associated with the controller specified by the
controllerRef parameter by the relative amount specified in the delta
parameter. If no tracker is currently associated with that controller,
Q3Controller_MoveTrackerOrientation changes the orientation of the system
cursor’s tracker relative to its current orientation.
Q3Controller_MoveTrackerOrientation has no effect if the controller is inactive.

Note
Calling Q3Controller_MoveTrackerOrientation might cause
the notify function of the controller’s tracker to be called. ◆

Q3Controller_GetValues 18

You can use the Q3Controller_GetValues function to get the list of values of a
controller.

TQ3Status Q3Controller_GetValues (
TQ3ControllerRef controllerRef,
unsigned long valueCount,
float *values,
TQ3Boolean *changed,
unsigned long *serialNumber);

controllerRef A reference to a controller.

valueCount The number of elements in the array pointed to by the values
parameter.

values On entry, a pointer to an array of controller values. The size of
the array is determined by the number of elements in the array
(as specified by the valueCount parameter) and the size of a
controller value (which is controller-dependent).

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1125

changed On exit, a Boolean value that indicates whether the specified
array of values was changed (kQ3True) or not (kQ3False).

serialNumber On entry, a controller serial number, or NULL.

DESCRIPTION

The Q3Controller_GetValues function returns, in the values parameter, a pointer
to an array that contains the current values for the controller specified in the
controllerRef parameter. The valueCount parameter specifies the number of
elements in the array (which you must already have allocated).
Q3Controller_GetValues might fill in fewer elements if the controller does not
support the specified number of values.

If the value of the serialNumber parameter is NULL, Q3Controller_GetValues fills
in the values array and returns the value kQ3True in the changed parameter.
Otherwise, the value specified in the serialNumber parameter is compared with
the controller’s current serial number. If the two serial numbers are identical,
Q3Controller_GetValues leaves the values array and the serialNumber parameter
unchanged and returns the value kQ3False in the changed parameter. If the two
serial number differ, Q3Controller_GetValues fills in the values array, updates
the serialNumber parameter, and returns the value kQ3True in the changed
parameter.

If the specified controller is inactive, the values array and the changed parameter
are unchanged.

Q3Controller_SetValues 18

You can use the Q3Controller_SetValues function to set the list of values of a
controller.

TQ3Status Q3Controller_SetValues (
TQ3ControllerRef controllerRef,
const float *values,
unsigned long valueCount);

controllerRef A reference to a controller.

C H A P T E R 1 8

Pointing Device Manager

1126 QuickDraw 3D Pointing Device Manager Reference

values A pointer to an array of controller values. The size of the array is
determined by the number of elements in the array (as specified
by the valueCount parameter) and the size of a controller value
(which is controller-dependent).

valueCount The number of elements in the array pointed to by the values
parameter.

DESCRIPTION

The Q3Controller_SetValues function copies the data specified in the values
parameter into the value list of the controller specified by the controllerRef
parameter. Q3Controller_SetValues copies the number of elements specified by
the valueCount parameter.

SPECIAL CONSIDERATIONS

In general, you need to use this function only if you are writing a device driver
for a controller.

Managing Controller States 18

QuickDraw 3D provides routines that you can use to save and restore the states
of all the channels associated with a controller. You should save the controller
states when your application becomes inactive and restore them when it
becomes active once again.

Q3ControllerState_New 18

You can use the Q3ControllerState_New function to create a new controller state
object.

TQ3ControllerStateObject Q3ControllerState_New (
TQ3ControllerRef controllerRef);

controllerRef A reference to a controller.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1127

DESCRIPTION

The Q3ControllerState_New function returns, as its function result, a reference to
a new controller state object for the controller specified by the controllerRef
parameter. You need to call Q3ControllerState_SaveAndReset to actually fill in
the new controller state object with the current channels. If
Q3ControllerState_New cannot create a new controller state object, it returns
NULL.

Q3ControllerState_SaveAndReset 18

You can use the Q3ControllerState_SaveAndReset function to save the current
state of a controller.

TQ3Status Q3ControllerState_SaveAndReset (
TQ3ControllerStateObject controllerStateObject);

controllerStateObject
A controller state object.

DESCRIPTION

The Q3ControllerState_SaveAndReset function saves the current state of the
controller that is associated with the controller state object specified by the
controllerStateObject parameter. Q3ControllerState_SaveAndReset also resets
those channels to their inactive states. You should call
Q3ControllerState_SaveAndReset to save a controller’s channels when your
application becomes inactive.

Q3ControllerState_Restore 18

You can use the Q3ControllerState_Restore function to restore a saved set of
controller state values.

TQ3Status Q3ControllerState_Restore (
TQ3ControllerStateObject controllerStateObject);

C H A P T E R 1 8

Pointing Device Manager

1128 QuickDraw 3D Pointing Device Manager Reference

controllerStateObject
A controller state object.

DESCRIPTION

The Q3ControllerState_Restore function sets the channels of the controller
associated with the controller state object specified by the
controllerStateObject parameter to the channels saved in that state object.

Creating and Managing Trackers 18

QuickDraw 3D provides routines that you can use to create and manipulate
tracker objects.

Q3Tracker_New 18

You can use the Q3Tracker_New function to create a new tracker.

TQ3TrackerObject Q3Tracker_New (TQ3TrackerNotifyFunc notifyFunc);

notifyFunc A pointer to a tracker notify function. See page 1143 for
information on writing a tracker notify function.

DESCRIPTION

The Q3Tracker_New function returns, as its function result, a reference to a new
tracker object. The notifyFunc parameter specifies the tracker’s notify function,
which is called whenever the position or orientation of the tracker changes. If
you want to poll for such changes instead of being notified, set notifyFunc to
NULL. The new tracker is active and has both its position threshold and its
orientation threshold set to 0. If Q3Tracker_New cannot create a new tracker, it
returns NULL.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1129

Q3Tracker_GetNotifyThresholds 18

You can use the Q3Tracker_GetNotifyThresholds function to get the current
notify thresholds of a tracker.

TQ3Status Q3Tracker_GetNotifyThresholds (
TQ3TrackerObject trackerObject,
float *positionThresh,
float *orientationThresh);

trackerObject A tracker object.

positionThresh
On exit, the current position threshold of the specified tracker.

orientationThresh
On exit, the current orientation threshold (in radians) of the
specified tracker.

DESCRIPTION

The Q3Tracker_GetNotifyThresholds function returns, in the positionThresh and
orientationThresh parameters, the current position and orientation thresholds
of the tracker specified by the trackerObject parameter. These thresholds
determine whether or not a change in position or orientation is large enough to
cause QuickDraw 3D to call the tracker’s notify function. Both thresholds for a
new tracker are set to 0.

Q3Tracker_SetNotifyThresholds 18

You can use the Q3Tracker_SetNotifyThresholds function to set the notify
thresholds of a tracker.

TQ3Status Q3Tracker_SetNotifyThresholds (
TQ3TrackerObject trackerObject,
float positionThresh,
float orientationThresh);

trackerObject A tracker object.

C H A P T E R 1 8

Pointing Device Manager

1130 QuickDraw 3D Pointing Device Manager Reference

positionThresh
The desired position threshold of the specified tracker.

orientationThresh
The desired orientation threshold (in radians) of the specified
tracker.

DESCRIPTION

The Q3Tracker_SetNotifyThresholds function sets the position and orientation
thresholds of the tracker specified by the trackerObject parameter to the values
in the positionThresh and orientationThresh parameters.

Q3Tracker_GetActivation 18

You can use the Q3Tracker_GetActivation function to get the activation state of a
tracker.

TQ3Status Q3Tracker_GetActivation (
TQ3TrackerObject trackerObject,
TQ3Boolean *active);

trackerObject A tracker object.

active On exit, a Boolean value that indicates whether the specified
tracker is active (kQ3True) or inactive (kQ3False).

DESCRIPTION

The Q3Tracker_GetActivation function returns, in the active parameter, a
Boolean value that indicates whether the tracker specified by the trackerObject
parameter is currently active or inactive.

Q3Tracker_SetActivation 18

You can use the Q3Tracker_SetActivation function to set the activation state of a
tracker.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1131

TQ3Status Q3Tracker_SetActivation (
TQ3TrackerObject trackerObject,
TQ3Boolean active);

trackerObject A tracker object.

active A Boolean value that indicates whether the specified tracker is
to be made active (kQ3True) or inactive (kQ3False).

DESCRIPTION

The Q3Tracker_SetActivation function sets the activation state of the tracker
specified by the trackerObject parameter to the value specified in the active
parameter. If the activation state of a tracker is changed, the serial number of
the tracker is incremented.

Q3Tracker_GetEventCoordinates 18

You can use the Q3Tracker_GetEventCoordinates function to get the settings
(coordinates) of a tracker that were recorded at a particular moment (typically,
the time of a button click) by a previous call to Q3Tracker_SetEventCoordinates.

TQ3Status Q3Tracker_GetEventCoordinates (
TQ3TrackerObject trackerObject,
unsigned long timeStamp,
unsigned long *buttons,
TQ3Point3D *position,
TQ3Quaternion *orientation);

trackerObject A tracker object.

timeStamp A time stamp.

buttons On exit, the button state value of the specified tracker at the
specified time.

position On exit, the position of the specified tracker at the specified
time. If the tracker is absolute, this parameter contains the
absolute coordinates of the tracker. If the tracker is relative, this
parameter contains the change in position since the last call to
Q3Tracker_GetEventCoordinates.

C H A P T E R 1 8

Pointing Device Manager

1132 QuickDraw 3D Pointing Device Manager Reference

orientation On exit, the orientation of the specified tracker at the specified
time.

DESCRIPTION

The Q3Tracker_GetEventCoordinates function returns, in the buttons, position,
and orientation parameters, the button state value, position, and orientation of
the tracker specified by the trackerObject parameter, at the time specified by
the timeStamp parameter. You can set any of the buttons, position, and
orientation parameters to NULL to prevent Q3Tracker_GetEventCoordinates from
returning a value in that parameter.

Q3Tracker_GetEventCoordinates selects the set of event coordinates whose time
stamp is closest to the value specified in the timeStamp parameter. Any event
coordinate sets that are older are discarded from the tracker’s ring buffer. If the
ring buffer is empty, Q3Tracker_GetEventCoordinates returns kQ3Failure.

Q3Tracker_SetEventCoordinates 18

You can use the Q3Tracker_SetEventCoordinates function to record the settings
(coordinates) of a tracker at a particular time.

TQ3Status Q3Tracker_SetEventCoordinates (
TQ3TrackerObject trackerObject,
unsigned long timeStamp,
unsigned long buttons,
const TQ3Point3D *position,
const TQ3Quaternion *orientation);

trackerObject A tracker object.

timeStamp A time stamp.

buttons The button state value of the specified tracker, or NULL.

position The position of the specified tracker, or NULL.

orientation The orientation (in radians) of the specified tracker, or NULL.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1133

DESCRIPTION

The Q3Tracker_SetEventCoordinates function places into the ring buffer of event
coordinates for the tracker specified by the trackerObject parameter the values
specified in the buttons, position, and orientation parameters. The event
coordinates are marked with the time stamp specified by the timeStamp
parameter. If the tracker’s ring buffer is full, the oldest item in the buffer is
discarded.

Note
A tracker’s ring buffer can contain up to 10 items. Time
stamps of items in the buffer increase from oldest to
newest. ◆

Q3Tracker_GetButtons 18

You can use the Q3Tracker_GetButtons function to get the button state of a
tracker.

TQ3Status Q3Tracker_GetButtons (
TQ3TrackerObject trackerObject,
unsigned long *buttons);

trackerObject A tracker object.

buttons On exit, the current button state value of the specified tracker.

DESCRIPTION

The Q3Tracker_GetButtons function returns, in the buttons parameter, the
current button state of the tracker specified by the trackerObject parameter.

Q3Tracker_ChangeButtons 18

You can use the Q3Tracker_ChangeButtons function to change the button state of
a tracker.

C H A P T E R 1 8

Pointing Device Manager

1134 QuickDraw 3D Pointing Device Manager Reference

TQ3Status Q3Tracker_ChangeButtons (
TQ3TrackerObject trackerObject,
TQ3ControllerRef controllerRef,
unsigned long buttons,
unsigned long buttonMask);

trackerObject A tracker object.

controllerRef A reference to a controller.

buttons The desired button state value of the specified tracker.

buttonMask A button mask.

DESCRIPTION

The Q3Tracker_ChangeButtons function sets the button state of the tracker
specified by the trackerObject parameter to the value specified in the buttons
parameter. The buttonMask parameter specifies a button mask for the tracker. A
bit in the mask should be set if the corresponding button has changed since the
last call to Q3Tracker_ChangeButtons.

The notify function of the specified tracker object may be called when the
Q3Tracker_ChangeButtons function is executed. If, however, the tracker is
inactive when Q3Tracker_ChangeButtons is called, the tracker’s activation count
for the buttons is updated but the notify function is not called.

Note
The controllerRef parameter is used only by the tracker’s
notify function. ◆

Q3Tracker_GetPosition 18

You can use the Q3Tracker_GetPosition function to get the position of a tracker.

TQ3Status Q3Tracker_GetPosition (
TQ3TrackerObject trackerObject,
TQ3Point3D *position,

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1135

TQ3Vector3D *delta,
TQ3Boolean *changed,
unsigned long *serialNumber);

trackerObject A tracker object.

position On exit, the current position of the specified tracker.

delta On exit, the change in position since the last call to
Q3Tracker_GetPosition.

changed On exit, a Boolean value that indicates whether the position or
delta parameter was changed (kQ3True) or not (kQ3False).

serialNumber On entry, a tracker serial number, or NULL. On output, the
current tracker serial number.

DESCRIPTION

The Q3Tracker_GetPosition function returns, in the position parameter, the
current position of the tracker specified by the trackerObject parameter. In
addition, it can return, in the delta parameter, the relative change in position
since the previous call to Q3Tracker_GetPosition.

On entry, if the value of delta is NULL, the relative contribution is combined into
the reported position. If the value of delta is not NULL, then delta is set to the
relative motion that has been accumulated since the previous call to
Q3Tracker_GetPosition. In either case, the position accumulator is set to (0, 0, 0)
by this function.

If the value of the serialNumber parameter is NULL, Q3Tracker_GetPosition fills in
the position and delta parameters and returns the value kQ3True in the changed
parameter. Otherwise, the value specified in the serialNumber parameter is
compared with the tracker’s current serial number. If the two serial numbers are
identical, Q3Tracker_GetPosition leaves the two coordinate parameters and the
serialNumber parameter unchanged and returns the value kQ3False in the
changed parameter. If the two serial number differ, Q3Tracker_GetPosition fills in
the two coordinate parameters, updates the serialNumber parameter, and
returns the value kQ3True in the changed parameter.

If the specified tracker is inactive, then the position parameter is set to the point
(0, 0, 0), the delta parameter is set to (0, 0, 0) if it is non-NULL, and the changed
parameter is set to kQ3False if it is non-NULL.

C H A P T E R 1 8

Pointing Device Manager

1136 QuickDraw 3D Pointing Device Manager Reference

Q3Tracker_SetPosition 18

You can use the Q3Tracker_SetPosition function to set the position of a tracker.

TQ3Status Q3Tracker_SetPosition (
TQ3TrackerObject trackerObject,
TQ3ControllerRef controllerRef,
const TQ3Point3D *position);

trackerObject A tracker object.

controllerRef A reference to a controller.

position The desired position of the specified tracker.

DESCRIPTION

The Q3Tracker_SetPosition function sets the position of the tracker specified by
the trackerObject and controllerRef parameters to the value specified in the
position parameter. If the specified tracker is inactive, Q3Tracker_SetPosition
has no effect.

Note
Calling Q3Tracker_SetPosition might cause the notify
function of the tracker to be called. ◆

Q3Tracker_MovePosition 18

You can use the Q3Tracker_MovePosition function to move the position of a
tracker relative to its current position.

TQ3Status Q3Tracker_MovePosition (
TQ3TrackerObject trackerObject,
TQ3ControllerRef controllerRef,
const TQ3Vector3D *delta);

trackerObject A tracker object.

controllerRef A reference to a controller.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1137

delta The desired change in position of the specified tracker.

DESCRIPTION

The Q3Tracker_MovePosition function adds the value specified by the delta
parameter to the position of the tracker specified by the trackerObject and
controllerRef parameters. If the specified tracker is inactive,
Q3Tracker_MovePosition has no effect.

Note
Calling Q3Tracker_MovePosition might cause the notify
function of the tracker to be called. ◆

Q3Tracker_GetOrientation 18

You can use the Q3Tracker_GetOrientation function to get the current
orientation of a tracker.

TQ3Status Q3Tracker_GetOrientation (
TQ3TrackerObject trackerObject,
TQ3Quaternion *orientation,
TQ3Quaternion *delta,
TQ3Boolean *changed,
unsigned long *serialNumber);

trackerObject A tracker object.

orientation On exit, the current orientation of the specified tracker.

delta On exit, the change in orientation since the last call to
Q3Tracker_GetOrientation.

changed On exit, a Boolean value that indicates whether the orientation
or delta parameters was changed (kQ3True) or not (kQ3False).

serialNumber On entry, a tracker serial number, or NULL. On output, the
current tracker serial number.

C H A P T E R 1 8

Pointing Device Manager

1138 QuickDraw 3D Pointing Device Manager Reference

DESCRIPTION

The Q3Tracker_GetOrientation function returns, in the orientation parameter,
the current orientation of the tracker specified by the trackerObject parameter.
In addition, it may return, in the delta parameter, the relative change in
orientation since the previous call to Q3Tracker_GetOrientation.

On entry, if the value of delta is NULL, the relative contribution is combined into
the reported orientation. If the value of delta is not NULL, then delta is set to the
relative motion that has been accumulated since the previous call to
Q3Tracker_GetOrientation. In either case, the orientation accumulator is set to
identity by this function.

If the value of the serialNumber parameter is NULL, Q3Tracker_GetOrientation
fills in the orientation and delta parameters and returns the value kQ3True in
the changed parameter. Otherwise, the value specified in the serialNumber
parameter is compared with the tracker’s current serial number. If the two serial
numbers are identical, Q3Tracker_GetOrientation leaves the two coordinate
parameters and the serialNumber parameter unchanged and returns the value
kQ3False in the changed parameter. If the two serial number differ,
Q3Tracker_GetOrientation fills in the two coordinate parameters, updates the
serialNumber parameter, and returns the value kQ3True in the changed
parameter.

If the specified tracker is inactive, then the orientation parameter is set to
identity, the delta parameter is set to identity if it is non-NULL, and the changed
parameter is set to kQ3False if it is non-NULL.

Q3Tracker_SetOrientation 18

You can use the Q3Tracker_SetOrientation function to set the orientation of a
tracker.

TQ3Status Q3Tracker_SetOrientation (
TQ3TrackerObject trackerObject,
TQ3ControllerRef controllerRef,
const TQ3Quaternion *orientation);

trackerObject A tracker object.

controllerRef A reference to a controller.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1139

orientation The desired orientation (in radians) of the specified tracker, or
NULL.

DESCRIPTION

The Q3Tracker_SetOrientation function sets the orientation of the tracker
specified by the trackerObject and controllerRef parameters to the value
specified in the orientation parameter. If the specified tracker is inactive,
Q3Tracker_SetOrientation has no effect.

Note
Calling Q3Tracker_SetOrientation might cause the notify
function of the tracker to be called. ◆

Q3Tracker_MoveOrientation 18

You can use the Q3Tracker_MoveOrientation function to set the orientation of a
tracker relative to its current orientation.

TQ3Status Q3Tracker_MoveOrientation (
TQ3TrackerObject trackerObject,
TQ3ControllerRef controllerRef,
const TQ3Quaternion *delta);

trackerObject A tracker object.

controllerRef A reference to a controller.

delta The desired change in orientation of the specified tracker.

DESCRIPTION

The Q3Tracker_MoveOrientation function adds the value specified by the delta
parameter to the orientation of the tracker specified by the trackerObject and
controllerRef parameters. If the specified tracker is inactive,
Q3Tracker_MoveOrientation has no effect.

C H A P T E R 1 8

Pointing Device Manager

1140 QuickDraw 3D Pointing Device Manager Reference

Note
Calling Q3Tracker_MoveOrientation might cause the notify
function of the tracker to be called. ◆

Application-Defined Routines 18

This section describes the routines you might need to define when using the
routines in the QuickDraw 3D Pointing Device Manager.

TQ3ChannelGetMethod 18

You can define a function that QuickDraw 3D calls to get a channel of a
controller.

typedef TQ3Status (*TQ3ChannelGetMethod) (
TQ3ControllerRef controllerRef,
unsigned long channel,
void *data,
unsigned long *dataSize);

controllerRef A reference to a controller.

channel An index into the list of channels associated with the specified
controller. This value is always greater than or equal to 0 and
less than the channel count specified at the time
Q3Controller_New was called.

data On entry, a pointer to a buffer. You should put the current value
of the specified controller channel into this buffer.

dataSize On exit, the number of bytes of data written to the specified
buffer.

DESCRIPTION

Your TQ3ChannelGetMethod function should return, in the buffer pointed to by
the data parameter, the current value of the controller channel specified by the
controllerRef and channel parameters. Your function should also return, in the
dataSize parameter, the size of that data. QuickDraw 3D allocates memory for

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1141

the data buffer before it calls your function and deallocates the memory after
your function has returned. The maximum number of bytes that the data buffer
can hold is defined by a constant:

#define kQ3ControllerSetChannelMaxDataSize 256

SPECIAL CONSIDERATIONS

You need to define a channel-getting method only if you are writing a device
driver for a controller. You can, however, call Q3Controller_GetChannel at any
time to invoke a controller’s channel-getting method.

RESULT CODES

Your channel-getting method should return kQ3Success if it is able to return the
requested information and kQ3Failure otherwise.

SEE ALSO

See the description of Q3Controller_GetChannel on page 1114 for information on
getting a controller’s channels.

TQ3ChannelSetMethod 18

You can define a function that QuickDraw 3D calls to set a channel of a
controller.

typedef TQ3Status (*TQ3ChannelSetMethod) (
TQ3ControllerRef controllerRef,
unsigned long channel,
const void *data,
unsigned long dataSize);

controllerRef A reference to a controller.

C H A P T E R 1 8

Pointing Device Manager

1142 QuickDraw 3D Pointing Device Manager Reference

channel An index into the list of channels associated with the specified
controller. This value is always greater than or equal to 0 and
less than the channel count specified at the time
Q3Controller_New was called.

data On entry, a pointer to a buffer that contains the desired value of
the specified controller channel. If this field contains the value
NULL, you should reset the specified channel to a default or
inactive value.

dataSize On entry, the number of bytes of data in the specified buffer.

DESCRIPTION

Your TQ3ChannelSetMethod function should set the controller channel specified
by the controllerRef and channel parameters to the value specified by the data
parameter. The dataSize parameter specifies the number of bytes in the data
buffer. QuickDraw 3D allocates memory for the data buffer before it calls your
function and deallocates the memory after your function has returned. The
maximum number of bytes that the data buffer can hold is defined by a
constant:

#define kQ3ControllerSetChannelMaxDataSize 256

SPECIAL CONSIDERATIONS

You need to define a channel-setting method only if you are writing a device
driver for a controller. You can, however, call Q3Controller_SetChannel at any
time to invoke a controller’s channel-setting method.

RESULT CODES

Your channel-setting method should return kQ3Success if it is able to set the
specified channel to the specified value and kQ3Failure otherwise.

SEE ALSO

See the description of Q3Controller_SetChannel on page 1115 for information on
setting a controller’s channels.

C H A P T E R 1 8

Pointing Device Manager

QuickDraw 3D Pointing Device Manager Reference 1143

TQ3TrackerNotifyFunc 18

You can define a tracker notify function that QuickDraw 3D calls when a
controller associated with a tracker has new data.

typedef TQ3Status (*TQ3TrackerNotifyFunc) (
TQ3TrackerObject trackerObject,
TQ3ControllerRef controllerRef);

trackerObject A tracker object.

controllerRef A reference to a controller.

DESCRIPTION

Your TQ3TrackerNotifyFunc function is called whenever any controller
associated with a tracker has new data to be processed and the data meets or
exceeds the current position and orientation thresholds for the tracker. The
affected controller and tracker are passed in the controllerRef and
trackerObject parameters. Your tracker notify function might, for example,
schedule your application to awaken and redraw the scene.

SPECIAL CONSIDERATIONS

Your tracker notify function might be called at interrupt time, but it is never
called reentrantly.

RESULT CODES

Your tracker notify function should return kQ3Success if it is successful and
kQ3Failure otherwise.

SEE ALSO

See the description of Q3Tracker_New page 1128 for information on setting the
notify function of a tracker.

C H A P T E R 1 8

Pointing Device Manager

1144 Pointing Device Errors

Cursor Tracker Routines 18

QuickDraw 3D provides six cursor tracker routines that operate in the same
ways as other tracker routines:

TQ3Status Q3CursorTracker_PrepareTracking (void);

TQ3Status Q3CursorTracker_SetTrackDeltas(
TQ3Boolean trackDeltas);

TQ3Status Q3CursorTracker_GetAndClearDeltas(
float *depth,
TQ3Quaternion *orientation,
TQ3Boolean *hasOrientation,
TQ3Boolean *changed,
unsigned long *serialNumber);

TQ3Status Q3CursorTracker_SetNotifyFunc(
TQ3CursorTrackerNotifyFunc notifyFunc);

TQ3Status Q3CursorTracker_GetNotifyFunc(
TQ3CursorTrackerNotifyFunc *notifyFunc);

typedef void (*TQ3CursorTrackerNotifyFunc) (void);

Pointing Device Errors 18

Pointing device routines may return the following errors. A list of general
QuickDraw 3D errors is given in “QuickDraw 3D Errors, Warnings, and
Notices” (page 87).

kQ3ErrorController
kQ3ErrorTracker

About the Error Manager 1145

C H A P T E R 1 9

Error Manager 19Figure 19-0
Listing 19-0
Table 19-0

This chapter describes the Error Manager, the part of QuickDraw 3D that you
can use to handle any errors or other exceptional conditions that occur during
the execution of QuickDraw 3D routines. Lists of QuickDraw 3D errors,
warnings, and notices in specific areas are given at the end of each chapter.

About the Error Manager 19

QuickDraw 3D defines several levels of exceptional conditions that can occur
during the execution of QuickDraw 3D routines. An exceptional condition can
be an error, a warning, or a notice, depending on the severity of the exceptional
condition.

■ An error is a nonrecoverable condition that causes the currently executing
QuickDraw 3D routine to fail. A fatal error is an error whose effects persist
even after the call that caused it has ended. Once a fatal error has occurred,
all future calls to QuickDraw 3D routines are likely to fail. After a nonfatal
error, future calls should be limited to the error determination routines
described in this chapter. Although some QuickDraw 3D routine calls made
after a nonfatal error might succeed, system operation will be unpredictable
and may lead to a system crash or loss of data.

■ A warning is a condition that, although less severe than an error, might
cause an error if your application continues execution without handling the
warning.

■ A notice is a condition that is less severe than a warning and will likely not
cause problems. In general, notices indicate inefficiencies or other small
problems in using QuickDraw 3D.

QuickDraw 3D notifies your application of errors, warnings, and notices by
executing application-defined callback routines you have previously registered

C H A P T E R 1 9

Error Manager

1146 Using the Error Manager

with the Error Manager. Once a callback routine is registered, QuickDraw 3D
calls it whenever the appropriate condition occurs.

IMPORTANT

Notices are generated only by debugging versions of the
QuickDraw 3D shared library. ▲

You register a callback routine by passing its address to the Q3Error_Register,
Q3Warning_Register, or Q3Notice_Register function, depending on whether the
callback routine is to handle errors, warnings, or notices. If you do not register a
callback routine for errors, the Error Manager calls an internal error handler
that attempts to handle the exception. The manner in which the exception
handler handles that error can vary, depending on the operating system. For
example, on the Macintosh Operating System, the internal exception handler of
the debugging version calls the DebugStr function.

Using the Error Manager 19

For each level of exceptional condition (that is, for errors, warnings, and
notices), QuickDraw 3D keeps track of the first and the most recent exceptional
conditions that have occurred since the last time an exceptional condition of
that type was posted. For example, when the first error occurs, that error is
posted both as the first and as the most recent error. Any subsequent error is
posted as the most recent error to occur.

When you call a _Get function to retrieve an error, warning, or notice, the
function returns, as its function result, the most recent error, warning, or notice.
For example, when you call Q3Error_Get, it returns, as its function result, the
most recent error. Q3Error_Get also returns, through its firstError parameter,
the oldest unreported error that occurred during a QuickDraw 3D routine. You
can set this parameter to NULL if you do not care about the oldest unreported
error.

Note
The oldest unreported error, warning, or notice is
sometimes called sticky. ◆

Once you’ve called the Q3Error_Get function to retrieve the most recent and the
oldest unreported QuickDraw 3D errors, the Error Manager automatically

C H A P T E R 1 9

Error Manager

Error Manager Reference 1147

clears those error codes the next time you call a QuickDraw 3D function that is
not part of the Error Manager.

If an error occurs in the operating system on which QuickDraw 3D is running,
the Error Manager posts an error indicating which the operating system
encountered the error. You can then call an appropriate function to retrieve the
system-specific error. For instance, if an error occurs while reading or writing a
file in the Macintosh Operating System, then the Q3Error_Get function returns
the error kQ3ErrorMacintoshError. In that case, you can call the
Q3MacintoshError_Get function to get the Macintosh-specific error code.

Error Manager Reference 19

This section describes the routines provided by the Error Manager. It also
describes the callback routines you can define to handle QuickDraw 3D errors,
warnings, and notices.

Error Manager Routines 19

This section describes the Error Manager routines you can use to handle errors,
warnings, and notices.

Registering Error, Warning, and Notice Callback Routines 19

The Error Manager provides functions that you can use to register error,
warning, and notice callback routines.

Q3Error_Register 19

You can use the Q3Error_Register function to register an application-defined
error-handling routine.

TQ3Status Q3Error_Register (TQ3ErrorMethod errorPost, long reference);

errorPost A pointer to an application-defined error-handling routine.

C H A P T E R 1 9

Error Manager

1148 Error Manager Reference

reference A long integer for your application’s own use.

DESCRIPTION

The Q3Error_Register function registers with the Error Manager the
error-handling routine specified by the errorPost parameter. See page 1154 for
information on defining an error-handling routine.

Q3Warning_Register 19

You can use the Q3Warning_Register function to register an application-defined
warning-handling routine.

TQ3Status Q3Warning_Register (
TQ3WarningMethod warningPost,
long reference);

warningPost A pointer to an application-defined warning-handling routine.

reference A long integer for your application’s own use.

DESCRIPTION

The Q3Warning_Register function registers with the Error Manager the
warning-handling routine specified by the warningPost parameter. See
page 1155 for information on defining a warning-handling routine.

Q3Notice_Register 19

You can use the Q3Notice_Register function to register an application-defined
notice-handling routine.

TQ3Status Q3Notice_Register (TQ3NoticeMethod noticePost, long reference);

noticePost A pointer to an application-defined notice-handling routine.

reference A long integer for your application’s own use.

C H A P T E R 1 9

Error Manager

Error Manager Reference 1149

DESCRIPTION

The Q3Notice_Register function registers with the Error Manager the
notice-handling routine specified by the noticePost parameter. See page 1156
for information on defining a notice-handling routine.

Determining Whether an Error Is Fatal 19

The Error Manager provides a routine that you can use to determine whether
an error is a fatal error.

Q3Error_IsFatalError 19

You can use the Q3Error_IsFatalError function to determine whether an error is
fatal.

TQ3Boolean Q3Error_IsFatalError (TQ3Error error);

error A code that indicates the type of error that has occurred.

DESCRIPTION

The Q3Error_IsFatalError function returns, as its function result, a Boolean
value that indicates whether the error value specified by the error parameter is
a fatal error (kQ3True) or is not a fatal error (kQ3False). You can call
Q3Error_IsFatalError from within an error-handling method or after having
called Q3Error_Get to get an error directly. If Q3Error_IsFatalError returns
kQ3True, you should not call any other QuickDraw 3D routines. QuickDraw 3D
executes a long jump when it encounters a fatal error; your application should
terminate.

Currently, QuickDraw 3D recognizes these errors as fatal:

kQ3ErrorInternalError
kQ3ErrorNoRecovery

C H A P T E R 1 9

Error Manager

1150 Error Manager Reference

Getting Errors, Warnings, and Notices Directly 19

The Error Manager provides routines that you can use to retrieve an error,
warning, or notice directly.

IMPORTANT

You should use these routines only if you have not already
registered an error-, warning-, or notice-handling callback
routine. ▲

These routines return the following types, the values of which are enumerated
in the header file QD3DErrors.h:

TQ3Error
TQ3Warning
TQ3Notice

Q3Error_Get 19

You can use the Q3Error_Get function to get the most recent and the oldest
unreported errors from a QuickDraw 3D routine.

TQ3Error Q3Error_Get (TQ3Error *firstError);

firstError On exit, the first unreported error from a QuickDraw 3D
routine. Set this parameter to NULL if you do not want the first
unreported error to be returned to you.

DESCRIPTION

The Q3Error_Get function returns, as its function result, the code of the most
recent error that occurred after one or more previous calls to any
QuickDraw 3D routines. Q3Error_Get causes QuickDraw 3D to clear that error
code when you next call any QuickDraw 3D routine other than Q3Error_Get
itself. Q3Error_Get also returns, in the firstError parameter, the oldest
unreported error that occurred during a QuickDraw 3D routine.

C H A P T E R 1 9

Error Manager

Error Manager Reference 1151

Q3Warning_Get 19

You can use the Q3Warning_Get function to get the most recent and the oldest
unreported warnings from a QuickDraw 3D routine.

TQ3Warning Q3Warning_Get (TQ3Warning *firstWarning);

firstWarning On exit, the first unreported warning from a QuickDraw 3D
routine. Set this parameter to NULL if you do not want the first
unreported warning to be returned to you.

DESCRIPTION

The Q3Warning_Get function returns, as its function result, the code of the most
recent warning that occurred after one or more previous calls to any
QuickDraw 3D routines. Q3Warning_Get causes QuickDraw 3D to clear that
warning code when you next call any QuickDraw 3D routine other than
Q3Warning_Get itself. Q3Warning_Get also returns, in the firstWarning parameter,
the last unreported warning that occurred during a QuickDraw 3D routine.

Q3Notice_Get 19

You can use the Q3Notice_Get function to get the most recent and the oldest
unreported notice from a QuickDraw 3D routine.

TQ3Notice Q3Notice_Get (TQ3Notice *firstNotice);

firstNotice On exit, the first unreported notice from a QuickDraw 3D
routine. Set this parameter to NULL if you do not want the first
unreported notice to be returned to you.

DESCRIPTION

The Q3Notice_Get function returns, as its function result, the code of the most
recent notice that occurred after one or more previous calls to any
QuickDraw 3D routines. Q3Notice_Get causes QuickDraw 3D to clear that notice
code when you next call any QuickDraw 3D routine other than Q3Notice_Get

C H A P T E R 1 9

Error Manager

1152 Error Manager Reference

itself. Q3Notice_Get also returns, in the firstNotice parameter, the last
unreported notice that occurred during a QuickDraw 3D routine.

Notices are returned only by the debugging version of the QuickDraw 3D
shared library.

Getting Operating System Errors 19

The Error Manager provides routines that you can use to retrieve errors that are
specific to a particular operating system. In general, these errors are posted by
the underlying operating system in response to errors encountered when
accessing a file, a resource, or a window system.

Q3MacintoshError_Get 19

You can use the Q3MacintoshError_Get function to get the most recent and the
oldest unreported error generated by the Macintosh Operating System.

OSErr Q3MacintoshError_Get (OSErr *firstMacErr);

firstMacErr On exit, the first unreported error from a Macintosh system
software routine.

DESCRIPTION

The Q3MacintoshError_Get function returns, as its function result, the most
recent error generated by the Macintosh system software. Q3MacintoshError_Get
also returns, in the firstMacErr parameter, the first unreported error that
occurred during a Macintosh system software routine.

Error-Reporting For Extensions 19

Extensions may need to report errors, warnings, and notices. These reports are
handled by application-supplied handlers, or by the default QuickDraw 3D
handlers if the application doesn’t provide alternatives.

C H A P T E R 1 9

Error Manager

Error Manager Reference 1153

Q3XError_Post 19

You can use the Q3XError_Post function to post a QuickDraw 3D error from an
extension.

void Q3XError_Post (TQ3Error error);

error A code that indicates the type of error that has occurred.

DESCRIPTION

The Q3XError_Post function posts the error code passed in the error parameter.

Q3XWarning_Post 19

You can use the Q3XWarning_Post function to post a QuickDraw 3D warning
from an extension.

void Q3XWarning_Post (TQ3Warning warning);

warning A code that indicates the type of warning.

DESCRIPTION

The Q3XWarning_Post function posts the warning code passed in the warning
parameter.. The warning code you pass into this routine must already be
defined in QD3DErrors.h.

Q3XNotice_Post 19

You can use the Q3XNotice_Post function to post a QuickDraw 3D notice from
an extension.

void Q3XNotice_Post (TQ3Notice notice);

C H A P T E R 1 9

Error Manager

1154 Error Manager Reference

notice A code that indicates the type of notice.

DESCRIPTION

The Q3XNotice_Post function posts the notice code passed in the notice
parameter.. The notice code you pass into this routine must already be defined
in QD3DErrors.h.

Q3XMacintoshError_Post 19

You can use the Q3XMacintoshError_Post function to post the QuickDraw 3D
error kQ3ErrorMacintoshError or the Mac OS error macOSErr.

void Q3XMacintoshError_Post (OSErr macOSErr);

macOSErr A Mac OS or QuickDraw 3D error code.

DESCRIPTION

The Q3XMacintoshError_Post function posts the error code passed in the
macOSErr parameter. You can retrieve this code by using Q3MacintoshError_Get,
described on page 1152.

Application-Defined Routines 19

This section describes the callback routines you can define if you want your
application to be automatically informed whenever an error, warning, or notice
occurs during the execution of QuickDraw 3D routines.

TQ3ErrorMethod 19

You can define an error-handling function to handle errors that occur during
the execution of QuickDraw 3D routines.

C H A P T E R 1 9

Error Manager

Error Manager Reference 1155

typedef void (*TQ3ErrorMethod) (
TQ3Error firstError,
TQ3Error lastError,
long reference);

firstError A code that indicates the first error that occurred since the last
time your error-handling function was called.

lastError A code that indicates the most recent error that occurred.

reference A long integer for your application’s own use.

DESCRIPTION

Your TQ3ErrorMethod function is called whenever a QuickDraw 3D routine
generates an error (fatal or otherwise) during its execution that QuickDraw 3D
cannot handle internally. Your error-handling function should handle the error
conditions indicated by the firstError and lastError parameters. If necessary,
you can long jump out of your error method.

Your function must not call any QuickDraw 3D routines other than
Q3Error_IsFatalError (which you can call to determine if the error was fatal).
The reference parameter contains the long integer that you passed to
Q3Error_Register when you registered your error handler. You can, for
example, use that long integer to point to any data required by your error
handler.

TQ3WarningMethod 19

You can define a function to handle warnings that occur during the execution of
QuickDraw 3D routines.

typedef void (*TQ3WarningMethod) (
TQ3Warning firstWarning,
TQ3Warning lastWarning,
long reference);

firstWarning A code that indicates the first warning that occurred since the
last time your warning-handling function was called.

lastWarning A code that indicates the most recent warning that occurred.

C H A P T E R 1 9

Error Manager

1156 Error Manager Reference

reference A long integer for your application’s own use.

DESCRIPTION

Your TQ3WarningMethod function is called whenever a QuickDraw 3D routine
generates a warning during its execution that QuickDraw 3D cannot handle
internally. Your warning-handling function should handle the warning
conditions indicated by the firstWarning and lastWarning parameters. Your
function must not call any QuickDraw 3D routines. The reference parameter
contains the long integer that you passed to Q3Warning_Register when you
registered your warning handler. You can, for example, use that long integer to
point to any data required by your warning handler.

TQ3NoticeMethod 19

You can define a function to handle notices that occur during the execution of
QuickDraw 3D routines.

typedef void (*TQ3NoticeMethod) (
TQ3Notice firstNotice,
TQ3Notice lastNotice,
long reference);

firstNotice A code that indicates the first notice that occurred since the last
time your notice-handling function was called.

lastNotice A code that indicates the most recent notice that occurred.

reference A long integer for your application’s own use.

DESCRIPTION

Your TQ3NoticeMethod function is called whenever a QuickDraw 3D routine
generates a notice during its execution that QuickDraw 3D cannot handle
internally. Your notice-handling function should handle the notice conditions
indicated by the firstNotice and lastNotice parameters. Your function must
not call any QuickDraw 3D routines. The reference parameter contains the long
integer that you passed to Q3Notice_Register when you registered your notice

C H A P T E R 1 9

Error Manager

Error Manager Reference 1157

handler. You can, for example, use that long integer to point to any data
required by your notice handler.

C H A P T E R 1 9

Error Manager

1158 Error Manager Reference

About the Mathematical Utilities 1159

C H A P T E R 2 0

Mathematical Utilities 20Figure 20-0
Listing 20-0
Table 20-0

This chapter describes a large number of mathematical utility functions
provided by QuickDraw 3D that you can use to perform mathematical
operations on points, vectors, matrices, and quaternions. It also describes the
trigonometric and other standard mathematical routines that QuickDraw 3D
provides.

To use this chapter, you should already be familiar with the basic definitions of
points, vectors, matrices, and quaternions that are in the chapter “Geometric
Objects.”

About the Mathematical Utilities 20

QuickDraw 3D provides a large number of utility functions for operating on
basic mathematical objects such as points, vectors, matrices, and quaternions.
You can use these utilities to

■ set the components of points and vectors

■ convert dimensions of points and vectors

■ subtract points from points

■ calculate distances between points

■ determine point-relative ratios

■ add and subtract points and vectors

■ scale vectors

■ determine the lengths of vectors

■ normalize vectors

C H A P T E R 2 0

Mathematical Utilities

1160 QuickDraw 3D Mathematical Utilities Reference

■ add and subtract vectors

■ determine vector cross products and dot products

■ transform points and vectors

■ negate vectors

■ convert points from Cartesian form to polar or spherical form

■ determine affine combinations of points

■ manipulate matrices

■ set up transformation matrices

■ calculate trigonometric ratios

■ manipulate quaternions

Many of these functions might be implemented as C language macros. As a
result, you should avoid such operations as applying the auto-increment
operator (++) to function parameters.

QuickDraw 3D also supplies functions that you can use to manage bounding
boxes and spheres for any kind of QuickDraw 3D object.

QuickDraw 3D Mathematical Utilities Reference 20

This section describes the QuickDraw 3D utility routines that you can use to
perform mathematical operations on points, vectors, matrices, and quaternions.
It also describes the data structures and routines that you can use to manage
bounding volumes.

Data Structures 20

This section describes the data structures you can use to define bounding
volumes. QuickDraw 3D provides two kinds of bounding volumes:

■ bounding boxes

■ bounding spheres

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1161

Bounding Boxes 20

A bounding box is a rectangular box, aligned with the coordinate axes, that
completely encloses an object. A bounding box is defined by the TQ3BoundingBox
data type.

typedef struct TQ3BoundingBox {
TQ3Point3D min;
TQ3Point3D max;
TQ3Boolean isEmpty;

} TQ3BoundingBox;

Field descriptions
min The lower-left corner of the bounding box.
max The upper-right corner of the bounding box.
isEmpty A Boolean value that specifies whether the bounding box is

empty (kQ3True) or not (kQ3False). If this field contains the
value kQ3True, the other field of this structure are invalid.

Bounding Spheres 20

A bounding sphere is a sphere that completely encloses an object. A bounding
sphere is defined by the TQ3BoundingSphere data type.

typedef struct TQ3BoundingSphere {
TQ3Point3D origin;
float radius;
TQ3Boolean isEmpty;

} TQ3BoundingSphere;

Field descriptions
origin The origin of the bounding sphere.
radius The radius of the bounding sphere; all points making up

the bounding sphere are this far away from the origin of
the sphere.

isEmpty A Boolean value that specifies whether the bounding
sphere is empty (kQ3True) or not (kQ3False). If this field
contains the value kQ3True, the other field of this structure
are invalid.

C H A P T E R 2 0

Mathematical Utilities

1162 QuickDraw 3D Mathematical Utilities Reference

QuickDraw 3D Mathematical Utilities 20

This section describes QuickDraw 3D’s utility functions for operating on basic
mathematical objects such as points, vectors, matrices, and quaternions. It also
describes routines you can use to manage bounding volumes.

IMPORTANT

QuickDraw 3D mathematical utilities do not automatically
normalize vectors. They expect vectors to be normalized by
the calling code. ▲

Setting Points and Vectors 20

QuickDraw 3D supplies routines that you can use to set the components of a
point or vector. You must already have allocated space for the point or vector
before attempting to modify its contents.

Q3Point2D_Set 20

You can use the Q3Point2D_Set function to set the coordinates of a
two-dimensional point.

TQ3Point2D *Q3Point2D_Set (
TQ3Point2D *point2D,
float x,
float y);

point2D A two-dimensional point.

x The x coordinate of the point.

y The y coordinate of the point.

DESCRIPTION

The Q3Point2D_Set function returns, as its function result and in the point2D
parameter, the two-dimensional point specified by the x and y parameters.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1163

Q3Param2D_Set 20

You can use the Q3Param2D_Set function to set the components of a
two-dimensional parametric point.

TQ3Param2D *Q3Param2D_Set (
TQ3Param2D *param2D,
float u,
float v);

param2D A parametric point.

u The u component of the parametric point.

v The v component of the parametric point.

DESCRIPTION

The Q3Param2D_Set function returns, as its function result and in the param2D
parameter, the two-dimensional parametric point specified by the u and v
parameters.

Q3Point3D_Set 20

You can use the Q3Point3D_Set function to set the coordinates of a
three-dimensional point.

TQ3Point3D *Q3Point3D_Set (
TQ3Point3D *point3D,
float x,
float y,
float z);

point3D A three-dimensional point.

x The x coordinate of the point.

y The y coordinate of the point.

z The z coordinate of the point.

C H A P T E R 2 0

Mathematical Utilities

1164 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Point3D_Set function returns, as its function result and in the point3D
parameter, the three-dimensional point specified by the x, y, and z parameters.

Q3RationalPoint3D_Set 20

You can use the Q3RationalPoint3D_Set function to set the coordinates of a
three-dimensional rational point.

TQ3RationalPoint3D *Q3RationalPoint3D_Set (
TQ3RationalPoint3D *point3D,
float x,
float y,
float w);

point3D A three-dimensional point.

x The x coordinate of the point.

y The y coordinate of the point.

w The w coordinate of the point.

DESCRIPTION

The Q3RationalPoint3D_Set function returns, as its function result and in the
point3D parameter, the three-dimensional rational point specified by the x, y,
and w parameters.

Q3RationalPoint4D_Set 20

You can use the Q3RationalPoint4D_Set function to set the coordinates of a
four-dimensional rational point.

TQ3RationalPoint4D *Q3RationalPoint4D_Set (
TQ3RationalPoint4D *point4D,
float x,

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1165

float y,
float z,
float w);

point4D A four-dimensional point.

x The x coordinate of the point.

y The y coordinate of the point.

z The z coordinate of the point.

w The w coordinate of the point.

DESCRIPTION

The Q3RationalPoint4D_Set function returns, as its function result and in the
point4D parameter, the four-dimensional rational point specified by the x, y, z,
and w parameters.

Q3PolarPoint_Set 20

You can use the Q3PolarPoint_Set function to set the components of a polar
point.

TQ3PolarPoint *Q3PolarPoint_Set (
TQ3PolarPoint *polarPoint,
float r,
float theta);

polarPoint A polar point.

r The r component of the polar point.

theta The θ component of the polar point.

DESCRIPTION

The Q3PolarPoint_Set function returns, as its function result and in the
polarPoint parameter, the polar point specified by the r and theta parameters.

C H A P T E R 2 0

Mathematical Utilities

1166 QuickDraw 3D Mathematical Utilities Reference

Q3SphericalPoint_Set 20

You can use the Q3SphericalPoint_Set function to set the components of a
spherical point.

TQ3SphericalPoint *Q3SphericalPoint_Set (
TQ3SphericalPoint *sphericalPoint,
float rho,
float theta,
float phi);

sphericalPoint
A spherical point.

rho The ρ component of the spherical point.

theta The θ component of the spherical point.

phi The φ component of the spherical point.

DESCRIPTION

The Q3SphericalPoint_Set function returns, as its function result and in the
sphericalPoint parameter, the spherical point specified by the rho, theta, and
phi parameters.

Q3Vector2D_Set 20

You can use the Q3Vector2D_Set function to set the scalar components of a
two-dimensional vector.

TQ3Vector2D *Q3Vector2D_Set (
TQ3Vector2D *vector2D,
float x,
float y);

vector2D A two-dimensional vector.

x The x scalar component of the vector.

y The y scalar component of the vector.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1167

DESCRIPTION

The Q3Vector2D_Set function returns, as its function result and in the vector2D
parameter, the two-dimensional vector whose scalar components are specified
by the x and y parameters.

Q3Vector3D_Set 20

You can use the Q3Vector3D_Set function to set the scalar components of a
three-dimensional vector.

TQ3Vector3D *Q3Vector3D_Set (
TQ3Vector3D *vector3D,
float x,
float y,
float z);

vector3D A three-dimensional vector.

x The x scalar component of the vector.

y The y scalar component of the vector.

z The z scalar component of the vector.

DESCRIPTION

The Q3Vector3D_Set function returns, as its function result and in the vector3D
parameter, the three-dimensional vector whose scalar components are specified
by the x, y, and z parameters.

Converting Dimensions of Points and Vectors 20

QuickDraw 3D provides routines that you can use to convert a point or vector
of a given dimension to another dimension. When the given dimension is less
than the result dimension, the last component is set to 1.0. When the given
dimension is greater than the result dimension, each component in the result
structure is set to its corresponding component in the given structure divided
by the last component.

C H A P T E R 2 0

Mathematical Utilities

1168 QuickDraw 3D Mathematical Utilities Reference

IMPORTANT

You must already have allocated space for the result
structure before attempting to convert the dimension of a
point or vector. ▲

Q3Point2D_To3D 20

You can use the Q3Point2D_To3D function to convert a two-dimensional point to
a three-dimensional point.

TQ3Point3D *Q3Point2D_To3D (
const TQ3Point2D *point2D,
TQ3Point3D *result);

point2D A two-dimensional point.

result On exit, a three-dimensional point.

DESCRIPTION

The Q3Point2D_To3D function returns, as its function result and in the result
parameter, the three-dimensional point that corresponds to the
two-dimensional point point2D.

Q3Point3D_To4D 20

You can use the Q3Point3D_To4D function to convert a three-dimensional point to
a four-dimensional point.

TQ3RationalPoint4D *Q3Point3D_To4D (
const TQ3Point3D *point3D,
TQ3RationalPoint4D *result);

point3D A three-dimensional point.

result On exit, a rational four-dimensional point.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1169

DESCRIPTION

The Q3Point3D_To4D function returns, as its function result and in the result
parameter, the rational four-dimensional point that corresponds to the
three-dimensional point point3D.

Q3RationalPoint3D_To2D 20

You can use the Q3RationalPoint3D_To2D function to convert a
three-dimensional rational point to a two-dimensional point.

TQ3Point2D *Q3RationalPoint3D_To2D (
const TQ3RationalPoint3D *point3D,
TQ3Point2D *result);

point3D A rational three-dimensional point.

result On exit, a two-dimensional point.

DESCRIPTION

The Q3RationalPoint3D_To2D function returns, as its function result and in the
result parameter, the two-dimensional point that corresponds to the rational
three-dimensional point point3D.

Q3RationalPoint4D_To3D 20

You can use the Q3RationalPoint4D_To3D function to convert a four-dimensional
rational point to a three-dimensional point.

TQ3Point3D *Q3RationalPoint4D_To3D (
const TQ3RationalPoint4D *point4D,
TQ3Point3D *result);

point4D A rational four-dimensional point.

result On exit, a three-dimensional point.

C H A P T E R 2 0

Mathematical Utilities

1170 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3RationalPoint4D_To3D function returns, as its function result and in the
result parameter, the three-dimensional point that corresponds to the rational
four-dimensional point point4D.

Q3Vector2D_To3D 20

You can use the Q3Vector2D_To3D function to convert a two-dimensional vector
to a three-dimensional vector.

TQ3Vector3D *Q3Vector2D_To3D (
const TQ3Vector2D *vector2D,
TQ3Vector3D *result);

vector2D A two-dimensional vector.

result On exit, a three-dimensional vector.

DESCRIPTION

The Q3Vector2D_To3D function returns, as its function result and in the result
parameter, the three-dimensional vector that corresponds to the
two-dimensional vector vector2D.

Q3Vector3D_To2D 20

You can use the Q3Vector3D_To2D function to convert a three-dimensional vector
to a two-dimensional vector.

TQ3Vector2D *Q3Vector3D_To2D (
const TQ3Vector3D *vector3D,
TQ3Vector2D *result);

vector3D A three-dimensional vector.

result On exit, a two-dimensional vector.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1171

DESCRIPTION

The Q3Vector3D_To2D function returns, as its function result and in the result
parameter, the two-dimensional vector that corresponds to the
three-dimensional vector vector3D.

Subtracting Points 20

QuickDraw 3D provides routines that you can use to subtract a point of a given
dimension from another of the same dimension. All of these routines return a
vector that is the difference of the two points.

Q3Point2D_Subtract 20

You can use the Q3Point2D_Subtract function to subtract one two-dimensional
point from another.

TQ3Vector2D *Q3Point2D_Subtract (
const TQ3Point2D *p1,
const TQ3Point2D *p2,
TQ3Vector2D *result);

p1 A two-dimensional point.

p2 A two-dimensional point.

result On exit, a two-dimensional vector that is the result of
subtracting the point p2 from p1.

DESCRIPTION

The Q3Point2D_Subtract function returns, as its function result and in the result
parameter, the two-dimensional vector that is the result of subtracting the point
p2 from p1.

C H A P T E R 2 0

Mathematical Utilities

1172 QuickDraw 3D Mathematical Utilities Reference

Q3Param2D_Subtract 20

You can use the Q3Param2D_Subtract function to subtract one two-dimensional
parametric point from another.

TQ3Vector2D *Q3Param2D_Subtract (
const TQ3Param2D *p1,
const TQ3Param2D *p2,
TQ3Vector2D *result);

p1 A two-dimensional parametric point.

p2 A two-dimensional parametric point.

result On exit, a two-dimensional vector that is the result of
subtracting the parametric point p2 from p1.

DESCRIPTION

The Q3Param2D_Subtract function returns, as its function result and in the result
parameter, the two-dimensional vector that is the result of subtracting the
parametric point p2 from p1.

Q3Point3D_Subtract 20

You can use the Q3Point3D_Subtract function to subtract one three-dimensional
point from another.

TQ3Vector3D *Q3Point3D_Subtract (
const TQ3Point3D *p1,
const TQ3Point3D *p2,
TQ3Vector3D *result);

p1 A three-dimensional point.

p2 A three-dimensional point.

result On exit, a three-dimensional vector that is the result of
subtracting the point p2 from p1.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1173

DESCRIPTION

The Q3Point3D_Subtract function returns, as its function result and in the result
parameter, the three-dimensional vector that is the result of subtracting the
point p2 from p1.

Calculating Distances Between Points 20

QuickDraw 3D provides routines that you can use to determine the distance
between two points. QuickDraw 3D also provides routines that you can use to
determine the square of the distance between two points. These
distance-squared routines are much faster than the simple distance routines and
are therefore recommended for situations in which only relative distances are
important to you.

Q3Point2D_Distance 20

You can use the Q3Point2D_Distance function to determine the distance between
two two-dimensional points.

float Q3Point2D_Distance (
const TQ3Point2D *p1,
const TQ3Point2D *p2);

p1 A two-dimensional point.

p2 A two-dimensional point.

DESCRIPTION

The Q3Point2D_Distance function returns, as its function result, the absolute
value of the distance between points p1 and p2.

Q3Param2D_Distance 20

You can use the Q3Param2D_Distance function to determine the distance between
two two-dimensional parametric points.

C H A P T E R 2 0

Mathematical Utilities

1174 QuickDraw 3D Mathematical Utilities Reference

float Q3Param2D_Distance (
const TQ3Param2D *p1,
const TQ3Param2D *p2);

p1 A two-dimensional parametric point.

p2 A two-dimensional parametric point.

DESCRIPTION

The Q3Param2D_Distance function returns, as its function result, the absolute
value of the distance between parametric points p1 and p2.

Q3Point3D_Distance 20

You can use the Q3Point3D_Distance function to determine the distance between
two three-dimensional points.

float Q3Point3D_Distance (
const TQ3Point3D *p1,
const TQ3Point3D *p2);

p1 A three-dimensional point.

p2 A three-dimensional point.

DESCRIPTION

The Q3Point3D_Distance function returns, as its function result, the absolute
value of the distance between points p1 and p2.

Q3RationalPoint3D_Distance 20

You can use the Q3RationalPoint3D_Distance function to determine the distance
between two three-dimensional rational points.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1175

float Q3RationalPoint3D_Distance (
const TQ3RationalPoint3D *p1,
const TQ3RationalPoint3D *p2);

p1 A rational three-dimensional point.

p2 A rational three-dimensional point.

DESCRIPTION

The Q3RationalPoint3D_Distance function returns, as its function result, the
absolute value of the distance between points p1 and p2. The distance returned
is a two-dimensional distance.

Q3RationalPoint4D_Distance 20

You can use the Q3RationalPoint4D_Distance function to determine the distance
between two four-dimensional rational points.

float Q3RationalPoint4D_Distance (
const TQ3RationalPoint4D *p1,
const TQ3RationalPoint4D *p2);

p1 A rational four-dimensional point.

p2 A rational four-dimensional point.

DESCRIPTION

The Q3RationalPoint4D_Distance function returns, as its function result, the
absolute value of the distance between points p1 and p2. The distance returned
is a three-dimensional distance.

Q3Point2D_DistanceSquared 20

You can use the Q3Point2D_DistanceSquared function to determine the square of
the distance between two two-dimensional points.

C H A P T E R 2 0

Mathematical Utilities

1176 QuickDraw 3D Mathematical Utilities Reference

float Q3Point2D_DistanceSquared (
const TQ3Point2D *p1,
const TQ3Point2D *p2);

p1 A two-dimensional point.

p2 A two-dimensional point.

DESCRIPTION

The Q3Point2D_DistanceSquared function returns, as its function result, the
square of the distance between points p1 and p2.

Q3Param2D_DistanceSquared 20

You can use the Q3Param2D_DistanceSquared function to determine the square of
the distance between two two-dimensional parametric points.

float Q3Param2D_DistanceSquared (
const TQ3Param2D *p1,
const TQ3Param2D *p2);

p1 A two-dimensional parametric point.

p2 A two-dimensional parametric point.

DESCRIPTION

The Q3Param2D_DistanceSquared function returns, as its function result, the
square of the distance between parametric points p1 and p2.

Q3Point3D_DistanceSquared 20

You can use the Q3Point3D_DistanceSquared function to determine the square of
the distance between two three-dimensional points.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1177

float Q3Point3D_DistanceSquared (
const TQ3Point3D *p1,
const TQ3Point3D *p2);

p1 A three-dimensional point.

p2 A three-dimensional point.

DESCRIPTION

The Q3Point3D_DistanceSquared function returns, as its function result, the
square of the distance between points p1 and p2.

Q3RationalPoint3D_DistanceSquared 20

You can use the Q3RationalPoint3D_DistanceSquared function to determine the
square of the distance between two rational three-dimensional points.

float Q3RationalPoint3D_DistanceSquared (
const TQ3RationalPoint3D *p1,
const TQ3RationalPoint3D *p2);

p1 A rational three-dimensional point.

p2 A rational three-dimensional point.

DESCRIPTION

The Q3RationalPoint3D_DistanceSquared function returns, as its function result,
the square of the distance between points p1 and p2. The distance returned is a
two-dimensional distance.

Q3RationalPoint4D_DistanceSquared 20

You can use the Q3RationalPoint4D_DistanceSquared function to determine the
square of the distance between two rational four-dimensional points.

C H A P T E R 2 0

Mathematical Utilities

1178 QuickDraw 3D Mathematical Utilities Reference

float Q3RationalPoint4D_DistanceSquared (
const TQ3RationalPoint4D *p1,
const TQ3RationalPoint4D *p2);

p1 A rational four-dimensional point.

p2 A rational four-dimensional point.

DESCRIPTION

The Q3RationalPoint4D_DistanceSquared function returns, as its function result,
the square of the distance between points p1 and p2. The distance returned is a
three-dimensional distance.

Determining Point Relative Ratios 20

QuickDraw 3D provides routines that you can use to determine point-relative
ratios between two points. These routines return a point on the line segment
defined by those two points that is at a desired distance from the first point.

Q3Point2D_RRatio 20

You can use the Q3Point2D_RRatio function to find a point lying between two
given two-dimensional points that is at a desired distance ratio from one of
those points.

TQ3Point2D *Q3Point2D_RRatio (
const TQ3Point2D *p1,
const TQ3Point2D *p2,
float r1,
float r2,
TQ3Point2D *result);

p1 A two-dimensional point.

p2 A two-dimensional point.

r1 A floating-point number.

r2 A floating-point number.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1179

result On exit, the two-dimensional point that is at a desired distance
ratio from p1 along the line segment between p1 and p2.

DESCRIPTION

The Q3Point2D_RRatio function returns, as its function result and in the result
parameter, the two-dimensional point that lies on the line segment between the
points p1 and p2 and that is at a distance from the first point determined by the
ratio r1/(r1 + r2).

Q3Param2D_RRatio 20

You can use the Q3Param2D_RRatio function to find a point lying between two
given two-dimensional parametric points that is at a desired distance ratio from
one of those points.

TQ3Param2D *Q3Param2D_RRatio (
const TQ3Param2D *p1,
const TQ3Param2D *p2,
float r1,
float r2,
TQ3Param2D *result);

p1 A two-dimensional parametric point.

p2 A two-dimensional parametric point.

r1 A floating-point number.

r2 A floating-point number.

result On exit, the two-dimensional parametric point that is at a
desired distance ratio from p1 along the line segment between p1
and p2.

DESCRIPTION

The Q3Param2D_RRatio function returns, as its function result and in the result
parameter, the two-dimensional parametric point that lies on the line segment

C H A P T E R 2 0

Mathematical Utilities

1180 QuickDraw 3D Mathematical Utilities Reference

between the points p1 and p2 and that is at a distance from the first parametric
point determined by the ratio r1/(r1 + r2).

Q3Point3D_RRatio 20

You can use the Q3Point3D_RRatio function to find a point lying between two
given three-dimensional points that is at a desired distance ratio from one of
those points.

TQ3Point3D *Q3Point3D_RRatio (
const TQ3Point3D *p1,
const TQ3Point3D *p2,
float r1,
float r2,
TQ3Point3D *result);

p1 A three-dimensional point.

p2 A three-dimensional point.

r1 A floating-point number.

r2 A floating-point number.

result On exit, the three-dimensional point that is at a desired distance
ratio from p1 along the line segment between p1 and p2.

DESCRIPTION

The Q3Point3D_RRatio function returns, as its function result and in the result
parameter, the three-dimensional point that lies on the line segment between
the points p1 and p2 and that is at a distance from the first point determined by
the ratio r1/(r1 + r2).

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1181

Q3RationalPoint4D_RRatio 20

You can use the Q3RationalPoint4D_RRatio function to find a point lying
between two given four-dimensional points that is at a desired distance ratio
from one of those points.

TQ3RationalPoint4D *Q3RationalPoint4D_RRatio (
const TQ3RationalPoint4D *p1,
const TQ3RationalPoint4D *p2,
float r1,
float r2,
TQ3RationalPoint4D *result);

p1 A rational four-dimensional point.

p2 A rational four-dimensional point.

r1 A floating-point number.

r2 A floating-point number.

result On exit, the four-dimensional point that is at a desired distance
ratio from p1 along the line segment between p1 and p2.

DESCRIPTION

The Q3RationalPoint4D_RRatio function returns, as its function result and in the
result parameter, the four-dimensional point that lies on the line segment lying
between the points p1 and p2 and that is at a distance from the first point
determined by the ratio r1/(r1 + r2).

Adding and Subtracting Points and Vectors 20

QuickDraw 3D provides routines that you can use to add a vector to a point or
subtract a vector from a point. For increased floating-point precision, it is better
to use the vector-point subtraction routines than to reverse a vector and then
add it to a point.

C H A P T E R 2 0

Mathematical Utilities

1182 QuickDraw 3D Mathematical Utilities Reference

Q3Point2D_Vector2D_Add 20

You can use the Q3Point2D_Vector2D_Add function to add a two-dimensional
vector to a two-dimensional point.

TQ3Point2D *Q3Point2D_Vector2D_Add (
const TQ3Point2D *point2D,
const TQ3Vector2D *vector2D,
TQ3Point2D *result);

point2D A two-dimensional point.

vector2D A two-dimensional vector.

result On exit, a two-dimensional point that is the result of adding
vector2D to point2D.

DESCRIPTION

The Q3Point2D_Vector2D_Add function returns, as its function result and in the
result parameter, the two-dimensional point that is the result of adding the
vector vector2D to the point point2D.

Q3Param2D_Vector2D_Add 20

You can use the Q3Param2D_Vector2D_Add function to add a two-dimensional
vector to a two-dimensional parametric point.

TQ3Param2D *Q3Param2D_Vector2D_Add (
const TQ3Param2D *param2D,
const TQ3Vector2D *vector2D,
TQ3Param2D *result);

param2D A two-dimensional parametric point.

vector2D A two-dimensional vector.

result On exit, a two-dimensional point that is the result of adding
vector2D to param2D.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1183

DESCRIPTION

The Q3Param2D_Vector2D_Add function returns, as its function result and in the
result parameter, the two-dimensional parametric point that is the result of
adding the vector vector2D to the parametric point param2D.

Q3Point3D_Vector3D_Add 20

You can use the Q3Point3D_Vector3D_Add function to add a three-dimensional
vector to a three-dimensional point.

TQ3Point3D *Q3Point3D_Vector3D_Add (
const TQ3Point3D *point3D,
const TQ3Vector3D *vector3D,
TQ3Point3D *result);

point3D A three-dimensional point.

vector3D A three-dimensional vector.

result On exit, a three-dimensional point that is the result of adding
vector3D to point3D.

DESCRIPTION

The Q3Point3D_Vector3D_Add function returns, as its function result and in the
result parameter, the three-dimensional point that is the result of adding the
vector vector3D to the point point3D.

Q3Point2D_Vector2D_Subtract 20

You can use the Q3Point2D_Vector2D_Subtract function to subtract a
two-dimensional vector from a two-dimensional point.

TQ3Point2D *Q3Point2D_Vector2D_Subtract (
const TQ3Point2D *point2D,
const TQ3Vector2D *vector2D,
TQ3Point2D *result);

C H A P T E R 2 0

Mathematical Utilities

1184 QuickDraw 3D Mathematical Utilities Reference

point2D A two-dimensional point.

vector2D A two-dimensional vector.

result On exit, a two-dimensional point that is the result of subtracting
vector2D from point2D.

DESCRIPTION

The Q3Point2D_Vector2D_Subtract function returns, as its function result and in
the result parameter, the two-dimensional point that is the result of subtracting
the vector vector2D from the point point2D.

Q3Param2D_Vector2D_Subtract 20

You can use the Q3Param2D_Vector2D_Subtract function to subtract a
two-dimensional vector from a two-dimensional parametric point.

TQ3Param2D *Q3Param2D_Vector2D_Subtract (
const TQ3Param2D *param2D,
const TQ3Vector2D *vector2D,
TQ3Param2D *result);

param2D A two-dimensional parametric point.

vector2D A two-dimensional vector.

result On exit, a two-dimensional parametric point that is the result of
subtracting vector2D from param2D.

DESCRIPTION

The Q3Param2D_Vector2D_Subtract function returns, as its function result and in
the result parameter, the two-dimensional parametric point that is the result of
subtracting the vector vector2D from the point param2D.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1185

Q3Point3D_Vector3D_Subtract 20

You can use the Q3Point3D_Vector3D_Subtract function to subtract a
three-dimensional vector from a three-dimensional point.

TQ3Point3D *Q3Point3D_Vector3D_Subtract (
const TQ3Point3D *point3D,
const TQ3Vector3D *vector3D,
TQ3Point3D *result);

point3D A three-dimensional point.

vector3D A three-dimensional vector.

result On exit, a three-dimensional point that is the result of
subtracting vector3D from point3D.

DESCRIPTION

The Q3Point3D_Vector3D_Subtract function returns, as its function result and in
the result parameter, the three-dimensional point that is the result of
subtracting the vector vector3D from the point point3D.

Scaling Vectors 20

QuickDraw 3D provides routines that you can use to multiply a vector by a
floating-point scalar value.

Q3Vector2D_Scale 20

You can use the Q3Vector2D_Scale function to scale a two-dimensional vector.

TQ3Vector2D *Q3Vector2D_Scale (
const TQ3Vector2D *vector2D,
float scalar,
TQ3Vector2D *result);

C H A P T E R 2 0

Mathematical Utilities

1186 QuickDraw 3D Mathematical Utilities Reference

vector2D A two-dimensional vector.

scalar A floating-point number.

result On exit, a two-dimensional vector that is the result of
multiplying each of the components of vector2D by the value of
the scalar parameter.

DESCRIPTION

The Q3Vector2D_Scale function returns, as its function result and in the result
parameter, the two-dimensional vector that is the result of multiplying each of
the components of the vector vector2D by the value of the scalar parameter.
Note that on entry the result parameter can be the same as the vector2D
parameter.

Q3Vector3D_Scale 20

You can use the Q3Vector3D_Scale function to scale a three-dimensional vector.

TQ3Vector3D *Q3Vector3D_Scale (
const TQ3Vector3D *vector3D,
float scalar,
TQ3Vector3D *result);

vector3D A three-dimensional vector.

scalar A floating-point number.

result On exit, a three-dimensional vector that is the result of
multiplying each of its components by the value of the scalar
parameter.

DESCRIPTION

The Q3Vector3D_Scale function returns, as its function result and in the result
parameter, the three-dimensional vector that is the result of multiplying each of
the components of the vector vector3D by the value of the scalar parameter.
Note that on entry the result parameter can be the same as the vector3D
parameter.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1187

Determining the Lengths of Vectors 20

QuickDraw 3D provides routines that you can use to determine the length of a
vector.

Q3Vector2D_Length 20

You can use the Q3Vector2D_Length function to determine the length of a
two-dimensional vector.

float Q3Vector2D_Length (const TQ3Vector2D *vector2D);

vector2D A two-dimensional vector.

DESCRIPTION

The Q3Vector2D_Length function returns, as its function result, the length of the
vector vector2D.

Q3Vector3D_Length 20

You can use the Q3Vector3D_Length function to determine the length of a
three-dimensional vector.

float Q3Vector3D_Length (const TQ3Vector3D *vector3D);

vector3D A three-dimensional vector.

DESCRIPTION

The Q3Vector3D_Length function returns, as its function result, the length of the
vector vector3D.

C H A P T E R 2 0

Mathematical Utilities

1188 QuickDraw 3D Mathematical Utilities Reference

Normalizing Vectors 20

QuickDraw 3D provides routines that you can use to normalize a vector. The
normalized form of a vector is the vector having the same direction as the given
vector but a length equal to 1.0.

Q3Vector2D_Normalize 20

You can use the Q3Vector2D_Normalize function to normalize a two-dimensional
vector.

TQ3Vector2D *Q3Vector2D_Normalize (
const TQ3Vector2D *vector2D,
TQ3Vector2D *result);

vector2D A two-dimensional vector.

result On exit, the normalized form of the specified vector.

DESCRIPTION

The Q3Vector2D_Normalize function returns, as its function result and in the
result parameter, the normalized form of the vector vector2D. Note that on
entry the result parameter can be the same as the vector2D parameter.

Q3Vector3D_Normalize 20

You can use the Q3Vector3D_Normalize function to normalize a
three-dimensional vector.

TQ3Vector3D *Q3Vector3D_Normalize (
const TQ3Vector3D *vector3D,
TQ3Vector3D *result);

vector3D A three-dimensional vector.

result On exit, the normalized form of the specified vector.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1189

DESCRIPTION

The Q3Vector3D_Normalize function returns, as its function result and in the
result parameter, the normalized form of the vector vector3D. Note that on
entry the result parameter can be the same as the vector3D parameter.

Adding and Subtracting Vectors 20

QuickDraw 3D provides routines that you can use to add a vector to a vector or
to subtract a vector from a vector.

Q3Vector2D_Add 20

You can use the Q3Vector2D_Add function to add two two-dimensional vectors.

TQ3Vector2D *Q3Vector2D_Add (
const TQ3Vector2D *v1,
const TQ3Vector2D *v2,
TQ3Vector2D *result);

v1 A two-dimensional vector.

v2 A two-dimensional vector.

result On exit, the sum of v1 and v2.

DESCRIPTION

The Q3Vector2D_Add function returns, as its function result and in the result
parameter, the two-dimensional vector that is the sum of the two vectors v1 and
v2. Note that on entry the result parameter can be the same as either v1 or v2
(or both).

Q3Vector3D_Add 20

You can use the Q3Vector3D_Add function to add two three-dimensional vectors.

C H A P T E R 2 0

Mathematical Utilities

1190 QuickDraw 3D Mathematical Utilities Reference

TQ3Vector3D *Q3Vector3D_Add (
const TQ3Vector3D *v1,
const TQ3Vector3D *v2,
TQ3Vector3D *result);

v1 A three-dimensional vector.

v2 A three-dimensional vector.

result On exit, the sum of v1 and v2.

DESCRIPTION

The Q3Vector3D_Add function returns, as its function result and in the result
parameter, the three-dimensional vector that is the sum of the two vectors v1
and v2. Note that on entry the result parameter can be the same as either v1 or
v2 (or both).

Q3Vector2D_Subtract 20

You can use the Q3Vector2D_Subtract function to subtract a two-dimensional
vector from a two-dimensional vector.

TQ3Vector2D *Q3Vector2D_Subtract (
const TQ3Vector2D *v1,
const TQ3Vector2D *v2,
TQ3Vector2D *result);

v1 A two-dimensional vector.

v2 A two-dimensional vector.

result On exit, the result of subtracting v2 from v1.

DESCRIPTION

The Q3Vector2D_Subtract function returns, as its function result and in the
result parameter, the two-dimensional vector that is the result of subtracting
vector v2 from vector v1. Note that on entry the result parameter can be the
same as either v1 or v2 (or both).

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1191

Q3Vector3D_Subtract 20

You can use the Q3Vector3D_Subtract function to subtract a three-dimensional
vector from a three-dimensional vector.

TQ3Vector3D *Q3Vector3D_Subtract (
const TQ3Vector3D *v1,
const TQ3Vector3D *v2,
TQ3Vector3D *result);

v1 A three-dimensional vector.

v2 A three-dimensional vector.

result On exit, the result of subtracting v2 from v1.

DESCRIPTION

The Q3Vector3D_Subtract function returns, as its function result and in the
result parameter, the three-dimensional vector that is the result of subtracting
vector v2 from vector v1. Note that on entry the result parameter can be the
same as either v1 or v2 (or both).

Determining Vector Cross Products 20

QuickDraw 3D provides routines that you can use to calculate cross products of
vectors.

Q3Vector2D_Cross 20

You can use the Q3Vector2D_Cross function to determine the cross product of
two two-dimensional vectors.

float Q3Vector2D_Cross (
const TQ3Vector2D *v1,
const TQ3Vector2D *v2);

C H A P T E R 2 0

Mathematical Utilities

1192 QuickDraw 3D Mathematical Utilities Reference

v1 A two-dimensional vector.

v2 A two-dimensional vector.

DESCRIPTION

The Q3Vector2D_Cross function returns, as its function result, the cross product
of the vectors v1 and v2.

Q3Vector3D_Cross 20

You can use the Q3Vector3D_Cross function to determine the cross product of
two three-dimensional vectors.

TQ3Vector3D *Q3Vector3D_Cross (
const TQ3Vector3D *v1,
const TQ3Vector3D *v2,
TQ3Vector3D *result);

v1 A three-dimensional vector.

v2 A three-dimensional vector.

result On exit, the cross product of v1 and v2.

DESCRIPTION

The Q3Vector3D_Cross function returns, as its function result and in the result
parameter, the cross product of the vectors v1 and v2.

Q3Point3D_CrossProductTri 20

You can use the Q3Point3D_CrossProductTri function to determine the cross
product of the two vectors defined by three three-dimensional points.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1193

TQ3Vector3D *Q3Point3D_CrossProductTri (
const TQ3Point3D *point1,
const TQ3Point3D *point2,
const TQ3Point3D *point3,
TQ3Vector3D *crossVector);

point1 A three-dimensional point.

point2 A three-dimensional point.

point3 A three-dimensional point.

crossVector On exit, the cross product of the two vectors determined by
subtracting point2 from point1 and point3 from point1.

DESCRIPTION

The Q3Point3D_CrossProductTri function returns, as its function result and in
the crossVector parameter, the cross product of the two vectors determined by
subtracting point2 from point1 and point3 from point2.

Determining Vector Dot Products 20

QuickDraw 3D provides routines that you can use to calculate dot (or scalar, or
inner) products of vectors.

Q3Vector2D_Dot 20

You can use the Q3Vector2D_Dot function to determine the dot product of two
two-dimensional vectors.

float Q3Vector2D_Dot (
const TQ3Vector2D *v1,
const TQ3Vector2D *v2);

v1 A two-dimensional vector.

v2 A two-dimensional vector.

C H A P T E R 2 0

Mathematical Utilities

1194 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Vector2D_Dot function returns, as its function result, a floating-point
value that is the dot product of the two vectors v1 and v2.

Q3Vector3D_Dot 20

You can use the Q3Vector3D_Dot function to determine the dot product of two
three-dimensional vectors.

float Q3Vector3D_Dot (
const TQ3Vector3D *v1,
const TQ3Vector3D *v2);

v1 A three-dimensional vector.

v2 A three-dimensional vector.

DESCRIPTION

The Q3Vector3D_Dot function returns, as its function result, a floating-point
value that is the dot product of the two vectors v1 and v2.

Transforming Points and Vectors 20

QuickDraw 3D provides routines that you can use to multiply a point or vector
by a matrix, thereby applying a transform to that point or vector.
QuickDraw 3D also provides routines that you can use to apply a transform to
each point in an array of points.

Q3Vector2D_Transform 20

You can use the Q3Vector2D_Transform function to apply a transform to a
two-dimensional vector.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1195

TQ3Vector2D *Q3Vector2D_Transform (
const TQ3Vector2D *vector2D,
const TQ3Matrix3x3 *matrix3x3,
TQ3Vector2D *result);

vector2D A two-dimensional vector.

matrix3x3 A 3-by-3 matrix.

result On exit, the vector that is the result of multiplying vector2D by
matrix3x3.

DESCRIPTION

The Q3Vector2D_Transform function returns, as its function result and in the
result parameter, the vector that is the result of multiplying the vector vector2D
by the matrix transform matrix3x3. Note that on entry the result parameter can
be the same as the vector2D parameter.

Q3Vector3D_Transform 20

You can use the Q3Vector3D_Transform function to apply a transform to a
three-dimensional vector.

TQ3Vector3D *Q3Vector3D_Transform (
const TQ3Vector3D *vector3D,
const TQ3Matrix4x4 *matrix4x4,
TQ3Vector3D *result);

vector3D A three-dimensional vector.

matrix4x4 A 4-by-4 matrix.

result On exit, the vector that is the result of multiplying vector3D by
matrix4x4.

DESCRIPTION

The Q3Vector3D_Transform function returns, as its function result and in the
result parameter, the vector that is the result of multiplying the vector vector3D

C H A P T E R 2 0

Mathematical Utilities

1196 QuickDraw 3D Mathematical Utilities Reference

by the matrix transform matrix4x4. Note that on entry the result parameter can
be the same as the vector3D parameter.

Q3Point2D_Transform 20

You can use the Q3Point2D_Transform function to apply a transform to a
two-dimensional point.

TQ3Point2D *Q3Point2D_Transform (
const TQ3Point2D *point2D,
const TQ3Matrix3x3 *matrix3x3,
TQ3Point2D *result);

point2D A two-dimensional point.

matrix3x3 A 3-by-3 matrix.

result On exit, the point that is the result of multiplying point2D by
matrix3x3.

DESCRIPTION

The Q3Point2D_Transform function returns, as its function result and in the
result parameter, the point that is the result of multiplying the point point2D by
the matrix transform matrix3x3. Note that on entry the result parameter can be
the same as the point2D parameter.

Q3Param2D_Transform 20

You can use the Q3Param2D_Transform function to apply a transform to a
two-dimensional parametric point.

TQ3Param2D *Q3Param2D_Transform (
const TQ3Param2D *param2D,
const TQ3Matrix3x3 *matrix3x3,
TQ3Param2D *result);

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1197

param2D A two-dimensional parametric point.

matrix3x3 A 3-by-3 matrix.

result On exit, the point that is the result of multiplying param2D by
matrix3x3.

DESCRIPTION

The Q3Param2D_Transform function returns, as its function result and in the
result parameter, the parametric point that is the result of multiplying the
parametric point param2D by the matrix transform matrix3x3. Note that on entry
the result parameter can be the same as the param2D parameter.

Q3Point3D_Transform 20

You can use the Q3Point3D_Transform function to apply a transform to a
three-dimensional point.

TQ3Point3D *Q3Point3D_Transform (
const TQ3Point3D *point3D,
const TQ3Matrix4x4 *matrix4x4,
TQ3Point3D *result);

point3D A three-dimensional point.

matrix4x4 A 4-by-4 matrix.

result On exit, the point that is the result of multiplying point3D by
matrix4x4.

DESCRIPTION

The Q3Point3D_Transform function returns, as its function result and in the
result parameter, the point that is the result of multiplying the point point3D by
the matrix transform matrix4x4. Note that on entry the result parameter can be
the same as the point3D parameter.

C H A P T E R 2 0

Mathematical Utilities

1198 QuickDraw 3D Mathematical Utilities Reference

Q3RationalPoint4D_Transform 20

You can use the Q3RationalPoint4D_Transform function to apply a transform to a
four-dimensional rational point.

TQ3RationalPoint4D *Q3RationalPoint4D_Transform (
const TQ3RationalPoint4D *point4D,
const TQ3Matrix4x4 *matrix4x4,
TQ3RationalPoint4D *result);

point4D A four-dimensional point.

matrix4x4 A 4-by-4 matrix.

result On exit, the point that is the result of multiplying point4D by
matrix4x4.

DESCRIPTION

The Q3RationalPoint4D_Transform function returns, as its function result and in
the result parameter, the point that is the result of multiplying the rational
point point4D by the matrix transform matrix4x4. Note that on entry the result
parameter can be the same as the point4D parameter.

Q3Point3D_To3DTransformArray 20

You can use the Q3Point3D_To3DTransformArray function to apply a transform to
each point in an array of three-dimensional points.

TQ3Status Q3Point3D_To3DTransformArray (
const TQ3Point3D *inVertex,
const TQ3Matrix4x4 *matrix,
TQ3Point3D *outVertex,
long numVertices,
unsigned long inStructSize,
unsigned long outStructSize);

inVertex A pointer to an array of three-dimensional points. This is the
source array.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1199

matrix A 4-by-4 matrix.

outVertex A pointer to an array of three-dimensional points. This is the
destination array.

numVertices The number of vertices.

inStructSize The size of an element in the source array. Effectively, this is the
distance, in bytes, between successive points in the source array.

outStructSize
The size of an element in the destination array. Effectively, this is
the distance, in bytes, between successive points in the
destination array.

DESCRIPTION

The Q3Point3D_To3DTransformArray function returns, in the outVertex parameter,
an array of three-dimensional points, each of which is the result of multiplying
a point in the inVertex array by the matrix transform matrix. The outVertex
array contains the same number of points (that is, vertices) as the inVertex
array, as specified by the numVertices parameter. The inStructSize and
outStructSize parameters specify the sizes of an element in the inVertex and
outVertex arrays, respectively.

Q3Point3D_To4DTransformArray 20

You can use the Q3Point3D_To4DTransformArray function to apply a transform to
each point in an array of three-dimensional points, while changing the
dimension of each point from three to four dimensions.

TQ3Status Q3Point3D_To4DTransformArray (
const TQ3Point3D *inVertex,
const TQ3Matrix4x4 *matrix,
TQ3RationalPoint4D *outVertex,
long numVertices,
unsigned long inStructSize,
unsigned long outStructSize);

C H A P T E R 2 0

Mathematical Utilities

1200 QuickDraw 3D Mathematical Utilities Reference

inVertex A pointer to an array of three-dimensional points. This is the
source array.

matrix A 4-by-4 matrix.

outVertex A pointer to an array of four-dimensional points. This is the
destination array.

numVertices The number of vertices.

inStructSize The size of an element in the source array. Effectively, this is the
distance, in bytes, between successive points in the source array.

outStructSize
The size of an element in the destination array. Effectively, this is
the distance, in bytes, between successive points in the
destination array.

DESCRIPTION

The Q3Point3D_To4DTransformArray function returns, in the outVertex parameter,
an array of four-dimensional points, each of which is the result of changing the
dimensionality of a point in the inVertex array from three to four and
multiplying by the matrix transform matrix. The outVertex array contains the
same number of points (that is, vertices) as the inVertex array, as specified by
the numVertices parameter. The inStructSize and outStructSize parameters
specify the sizes of an element in the inVertex and outVertex arrays,
respectively.

Q3RationalPoint4D_To4DTransformArray 20

You can use the Q3RationalPoint4D_To4DTransformArray function to apply a
transform to each point in an array of four-dimensional points.

TQ3Status Q3RationalPoint4D_To4DTransformArray (
const TQ3RationalPoint4D *inVertex,
const TQ3Matrix4x4 *matrix,
TQ3RationalPoint4D *outVertex,
long numVertices,
unsigned long inStructSize,
unsigned long outStructSize);

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1201

inVertex A pointer to an array of four-dimensional points. This is the
source array.

matrix A 4-by-4 matrix.

outVertex A pointer to an array of four-dimensional points. This is the
destination array.

numVertices The number of vertices.

inStructSize
The size of an element in the source array. Effectively, this is the
distance, in bytes, between successive points in the source array.

outStructSize
The size of an element in the destination array. Effectively, this is
the distance, in bytes, between successive points in the
destination array.

DESCRIPTION

The Q3RationalPoint4D_To4DTransformArray function returns, in the outVertex
parameter, an array of four-dimensional points, each of which is the result of
multiplying a point in the inVertex array by the matrix transform matrix. The
outVertex array contains the same number of points (that is, vertices) as the
inVertex array, as specified by the numVertices parameter. The inStructSize and
outStructSize parameters specify the sizes of an element in the inVertex and
outVertex arrays, respectively.

Negating Vectors 20

QuickDraw 3D provides routines that you can use to negate (or reverse)
vectors. The result of negating a vector is a vector having the same magnitude
but the opposite direction as the original vector.

Q3Vector2D_Negate 20

You can use the Q3Vector2D_Negate function to negate a two-dimensional vector.

C H A P T E R 2 0

Mathematical Utilities

1202 QuickDraw 3D Mathematical Utilities Reference

TQ3Vector2D *Q3Vector2D_Negate (
const TQ3Vector2D *vector2D,
TQ3Vector2D *result);

vector2D A two-dimensional vector.

result On exit, the negation of the specified vector.

DESCRIPTION

The Q3Vector2D_Negate function returns, as its function result and in the result
parameter, the vector that is the negation of the vector vector2D.

Q3Vector3D_Negate 20

You can use the Q3Vector3D_Negate function to negate a three-dimensional
vector.

TQ3Vector3D *Q3Vector3D_Negate (
const TQ3Vector3D *vector3D,
TQ3Vector3D *result);

vector3D A three-dimensional vector.

result On exit, the negation of the specified vector.

DESCRIPTION

The Q3Vector3D_Negate function returns, as its function result and in the result
parameter, the vector that is the negation of the vector vector3D.

Converting Points from Cartesian to Polar or Spherical Form 20

QuickDraw 3D provides routines that you can use to convert two-dimensional
points from Cartesian form (x, y) to polar form (r, θ), and vice versa.
QuickDraw 3D also provides routines that you can use to convert
three-dimensional points from Cartesian form (x, y, z) to spherical form (ρ, θ, φ),
and vice versa.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1203

Q3Point2D_ToPolar 20

You can use the Q3Point2D_ToPolar function to convert a two-dimensional point
from Cartesian form to polar form.

TQ3PolarPoint *Q3Point2D_ToPolar (
const TQ3Point2D *point2D,
TQ3PolarPoint *result);

point2D A two-dimensional point.

result On exit, a polar point.

DESCRIPTION

The Q3Point2D_ToPolar function returns, as its function result and in the result
parameter, a polar point that is the same point as the two-dimensional point
specified by the point2D parameter.

Q3PolarPoint_ToPoint2D 20

You can use the Q3PolarPoint_ToPoint2D function to convert a polar point to
Cartesian form.

TQ3Point2D *Q3PolarPoint_ToPoint2D (
const TQ3PolarPoint *polarPoint,
TQ3Point2D *result);

polarPoint A polar point.

result On exit, a two-dimensional point.

DESCRIPTION

The Q3PolarPoint_ToPoint2D function returns, as its function result and in the
result parameter, the two-dimensional point that is the same point as the polar
point specified by the polarPoint parameter.

C H A P T E R 2 0

Mathematical Utilities

1204 QuickDraw 3D Mathematical Utilities Reference

Q3Point3D_ToSpherical 20

You can use the Q3Point3D_ToSpherical function to convert a three-dimensional
point from Cartesian form to spherical form.

TQ3SphericalPoint *Q3Point3D_ToSpherical (
const TQ3Point3D *point3D,
TQ3SphericalPoint *result);

point3D A three-dimensional point.

result On exit, a spherical point.

DESCRIPTION

The Q3Point3D_ToSpherical function returns, as its function result and in the
result parameter, a spherical point that is the same point as the
three-dimensional point specified by the point3D parameter.

Q3SphericalPoint_ToPoint3D 20

You can use the Q3SphericalPoint_ToPoint3D function to convert a spherical
point to Cartesian form.

TQ3Point3D *Q3SphericalPoint_ToPoint3D (
const TQ3SphericalPoint *sphericalPoint,
TQ3Point3D *result);

sphericalPoint
A spherical point.

result On exit, a three-dimensional point.

DESCRIPTION

The Q3SphericalPoint_ToPoint3D function returns, as its function result and in
the result parameter, the three-dimensional point that is the same point as the
spherical point specified by the sphericalPoint parameter.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1205

Determining Point Affine Combinations 20

QuickDraw 3D provides routines that you can use to determine a point that is
the affine combination of some given points.

Q3Point2D_AffineComb 20

You can use the Q3Point2D_AffineComb function to determine the
two-dimensional point that is the affine combination of an array of points.

TQ3Point2D *Q3Point2D_AffineComb (
const TQ3Point2D *points2D,
const float *weights,
unsigned long nPoints,
TQ3Point2D *result);

points2D A pointer to an array of two-dimensional points.

weights A pointer to an array of weights. The sum of the weights must
be 1.0.

nPoints The number of points in the points2D array.

result On exit, the point that is the affine combination of the points in
points2D having the weights in the weights array.

DESCRIPTION

The Q3Point2D_AffineComb function returns, as its function result and in the
result parameter, the point that is the affine combination of the points in the
array points2D having the weights in the array weights.

Q3Param2D_AffineComb 20

You can use the Q3Param2D_AffineComb function to determine the
two-dimensional parametric point that is the affine combination of an array of
parametric points.

C H A P T E R 2 0

Mathematical Utilities

1206 QuickDraw 3D Mathematical Utilities Reference

TQ3Param2D *Q3Param2D_AffineComb (
const TQ3Param2D *params2D,
const float *weights,
unsigned long nPoints,
TQ3Param2D *result);

params2D A pointer to an array of two-dimensional parametric points.

weights A pointer to an array of weights. The sum of the weights must
be 1.0.

nPoints The number of points in the params2D array.

result On exit, the parametric point that is the affine combination of
the parametric points in params2D having the weights in the
weights array.

DESCRIPTION

The Q3Param2D_AffineComb function returns, as its function result and in the
result parameter, the parametric point that is the affine combination of the
parametric points in the array params2D having the weights in the array weights.

Q3Point3D_AffineComb 20

You can use the Q3Point3D_AffineComb function to determine the
three-dimensional point that is the affine combination of an array of points.

TQ3Point3D *Q3Point3D_AffineComb (
const TQ3Point3D *points3D,
const float *weights,
unsigned long nPoints,
TQ3Point3D *result);

points3D A pointer to an array of three-dimensional points.

weights A pointer to an array of weights. The sum of the weights must
be 1.0.

nPoints The number of points in the points3D array.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1207

result On exit, the point that is the affine combination of the points in
points3D having the weights in the weights array.

DESCRIPTION

The Q3Point3D_AffineComb function returns, as its function result and in the
result parameter, the point that is the affine combination of the points in the
array points3D having the weights in the array weights.

Q3RationalPoint3D_AffineComb 20

You can use the Q3RationalPoint3D_AffineComb function to determine the
rational three-dimensional point that is the affine combination of an array of
points.

TQ3RationalPoint3D *Q3RationalPoint3D_AffineComb (
const TQ3RationalPoint3D *points3D,
const float *weights,
unsigned long nPoints,
TQ3RationalPoint3D *result);

points3D A pointer to an array of rational three-dimensional points.

weights A pointer to an array of weights. The sum of the weights must
be 1.0.

nPoints The number of points in the points3D array.

result On exit, the point that is the affine combination of the points in
points3D having the weights in the weights array.

DESCRIPTION

The Q3RationalPoint3D_AffineComb function returns, as its function result and in
the result parameter, the rational point that is the affine combination of the
points in the array points3D having the weights in the array weights.

C H A P T E R 2 0

Mathematical Utilities

1208 QuickDraw 3D Mathematical Utilities Reference

Q3RationalPoint4D_AffineComb 20

You can use the Q3RationalPoint4D_AffineComb function to determine the
rational four-dimensional point that is the affine combination of an array of
points.

TQ3RationalPoint4D *Q3RationalPoint4D_AffineComb (
const TQ3RationalPoint4D *points4D,
const float *weights,
unsigned long nPoints,
TQ3RationalPoint4D *result);

points4D A pointer to an array of rational four-dimensional points.

weights A pointer to an array of weights. The weights must sum to 1.0.

nPoints The number of points in the points4D array.

result On exit, the point that is the affine combination of the points in
points4D which have the weights in the weights array.

DESCRIPTION

The Q3RationalPoint4D_AffineComb function returns, as its function result and in
the result parameter, the rational point that is the affine combination of the
points in the array points4D which have the weights in the array weights.

Managing Matrices 20

QuickDraw 3D provides routines that you can use to perform standard
operations on 3-by-3 and 4-by-4 matrices. Each routine performs some
operation on one or more source matrices and returns a pointer to the
destination matrix in the result parameter. Any of the source or destination
matrices may be the same matrix. The source matrices are unchanged, unless
one of them is also specified as the destination matrix.

Q3Matrix3x3_Copy 20

You can use the Q3Matrix3x3_Copy function to get a copy of a 3-by-3 matrix.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1209

TQ3Matrix3x3 *Q3Matrix3x3_Copy (
const TQ3Matrix3x3 *matrix3x3,
TQ3Matrix3x3 *result);

matrix3x3 A 3-by-3 matrix.

result On exit, a copy of matrix3x3.

DESCRIPTION

The Q3Matrix3x3_Copy function returns, as its function result and in the result
parameter, a copy of the matrix matrix3x3.

Q3Matrix4x4_Copy 20

You can use the Q3Matrix4x4_Copy function to get a copy of a 4-by-4 matrix.

TQ3Matrix4x4 *Q3Matrix4x4_Copy (
const TQ3Matrix4x4 *matrix4x4,
TQ3Matrix4x4 *result);

matrix4x4 A 4-by-4 matrix.

result On exit, a copy of matrix4x4.

DESCRIPTION

The Q3Matrix4x4_Copy function returns, as its function result and in the result
parameter, a copy of the matrix matrix4x4.

Q3Matrix3x3_SetIdentity 20

You can use the Q3Matrix3x3_SetIdentity function to set a 3-by-3 matrix to the
identity matrix.

TQ3Matrix3x3 *Q3Matrix3x3_SetIdentity (TQ3Matrix3x3 *matrix3x3);

C H A P T E R 2 0

Mathematical Utilities

1210 QuickDraw 3D Mathematical Utilities Reference

matrix3x3 On exit, the 3-by-3 identity matrix.

DESCRIPTION

The Q3Matrix3x3_SetIdentity function returns, as its function result and in the
matrix3x3 parameter, the 3-by-3 identity matrix.

Q3Matrix4x4_SetIdentity 20

You can use the Q3Matrix4x4_SetIdentity function to set a 4-by-4 matrix to the
identity matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetIdentity (TQ3Matrix4x4 *matrix4x4);

matrix4x4 On exit, the 4-by-4 identity matrix.

DESCRIPTION

The Q3Matrix4x4_SetIdentity function returns, as its function result and in the
matrix4x4 parameter, the 4-by-4 identity matrix.

Q3Matrix3x3_Transpose 20

You can use the Q3Matrix3x3_Transpose function to transpose a 3-by-3 matrix.

TQ3Matrix3x3 *Q3Matrix3x3_Transpose (
const TQ3Matrix3x3 *matrix3x3,
TQ3Matrix3x3 *result);

matrix3x3 A 3-by-3 matrix.

result On exit, the transpose of matrix3x3.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1211

DESCRIPTION

The Q3Matrix3x3_Transpose function returns, as its function result and in the
result parameter, the transpose of the matrix matrix3x3.

Q3Matrix4x4_Transpose 20

You can use the Q3Matrix4x4_Transpose function to transpose a 4-by-4 matrix.

TQ3Matrix4x4 *Q3Matrix4x4_Transpose (
const TQ3Matrix4x4 *matrix4x4,
TQ3Matrix4x4 *result);

matrix4x4 A 4-by-4 matrix.

result On exit, the transpose of matrix4x4.

DESCRIPTION

The Q3Matrix4x4_Transpose function returns, as its function result and in the
result parameter, the transpose of the matrix matrix4x4.

Q3Matrix3x3_Invert 20

You can use the Q3Matrix3x3_Invert function to invert a 3-by-3 matrix.

TQ3Matrix3x3 *Q3Matrix3x3_Invert (
const TQ3Matrix3x3 *matrix3x3,
TQ3Matrix3x3 *result);

matrix3x3 A 3-by-3 matrix.

result On exit, the inverse of matrix3x3.

DESCRIPTION

The Q3Matrix3x3_Invert function returns, as its function result and in the result
parameter, the inverse of the matrix matrix3x3.

C H A P T E R 2 0

Mathematical Utilities

1212 QuickDraw 3D Mathematical Utilities Reference

Q3Matrix4x4_Invert 20

You can use the Q3Matrix4x4_Invert function to invert a 4-by-4 matrix.

TQ3Matrix4x4 *Q3Matrix4x4_Invert (
const TQ3Matrix4x4 *matrix4x4,
TQ3Matrix4x4 *result);

matrix4x4 A 4-by-4 matrix.

result On exit, the inverse of matrix4x4.

DESCRIPTION

The Q3Matrix4x4_Invert function returns, as its function result and in the result
parameter, the inverse of the matrix matrix4x4.

Q3Matrix3x3_Adjoint 20

You can use the Q3Matrix3x3_Adjoint function to adjoin a 3-by-3 matrix.

TQ3Matrix3x3 *Q3Matrix3x3_Adjoint (
const TQ3Matrix3x3 *matrix3x3,
TQ3Matrix3x3 *result);

matrix3x3 A 3-by-3 matrix.

result On exit, the adjoint of matrix3x3.

DESCRIPTION

The Q3Matrix3x3_Adjoint function returns, as its function result and in the
result parameter, the adjoint of the matrix matrix3x3.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1213

Q3Matrix3x3_Multiply 20

You can use the Q3Matrix3x3_Multiply function to multiply two 3-by-3 matrices.

TQ3Matrix3x3 *Q3Matrix3x3_Multiply (
const TQ3Matrix3x3 *matrixA,
const TQ3Matrix3x3 *matrixB,
TQ3Matrix3x3 *result);

matrixA A 3-by-3 matrix.

matrixB A 3-by-3 matrix.

result On exit, the product of matrixA and matrixB.

DESCRIPTION

The Q3Matrix3x3_Multiply function returns, as its function result and in the
result parameter, the product of the two 3-by-3 matrices matrixA and matrixB.

Q3Matrix4x4_Multiply 20

You can use the Q3Matrix4x4_Multiply function to multiply two 4-by-4 matrices.

TQ3Matrix4x4 *Q3Matrix4x4_Multiply (
const TQ3Matrix4x4 *matrixA,
const TQ3Matrix4x4 *matrixB,
TQ3Matrix4x4 *result);

matrixA A 4-by-4 matrix.

matrixB A 4-by-4 matrix.

result On exit, the product of matrixA and matrixB.

DESCRIPTION

The Q3Matrix4x4_Multiply function returns, as its function result and in the
result parameter, the product of the two 4-by-4 matrices matrixA and matrixB.

C H A P T E R 2 0

Mathematical Utilities

1214 QuickDraw 3D Mathematical Utilities Reference

Q3Matrix3x3_Determinant 20

You can use the Q3Matrix3x3_Determinant function to get the determinant of a
3-by-3 matrix.

float Q3Matrix3x3_Determinant (const TQ3Matrix3x3 *matrix3x3);

matrix3x3 A 3-by-3 matrix.

DESCRIPTION

The Q3Matrix3x3_Determinant function returns, as its function result, the
determinant of the matrix matrix3x3.

Q3Matrix4x4_Determinant 20

You can use the Q3Matrix4x4_Determinant function to get the determinant of a
4-by-4 matrix.

float Q3Matrix4x4_Determinant (const TQ3Matrix4x4 *matrix4x4);

matrix4x4 A 4-by-4 matrix.

DESCRIPTION

The Q3Matrix4x4_Determinant function returns, as its function result, the
determinant of the matrix matrix4x4.

Setting Up Transformation Matrices 20

QuickDraw 3D provides routines that you can use to configure matrices to be
used as geometric transformations. You must already have allocated the
memory for a matrix before calling one of these routines.

All functions operating on 3-by-3 matrices assume that the resulting transform
matrices are to be used to transform only homogeneous two-dimensional data
types (such as TQ3RationalPoint3D). Similarly, all functions operating on 4-by-4
matrices assume that the resulting transform matrices are to be used to

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1215

transform only homogeneous three-dimensional data types (such as
TQ3RationalPoint4D).

You specify an angle (for example, for Q3Matrix3x3_SetRotateAboutPoint) by
passing a value that is interpreted in radians. If you prefer to use degrees,
QuickDraw 3D provides C language macros that convert radians into degrees.

Q3Matrix3x3_SetTranslate 20

You can use the Q3Matrix3x3_SetTranslate function to configure a 3-by-3
translation transformation matrix.

TQ3Matrix3x3 *Q3Matrix3x3_SetTranslate (
TQ3Matrix3x3 *matrix3x3,
float xTrans,
float yTrans);

matrix3x3 A 3-by-3 matrix.

xTrans The desired amount of translation along the x coordinate axis.

yTrans The desired amount of translation along the y coordinate axis.

DESCRIPTION

The Q3Matrix3x3_SetTranslate function returns, as its function result and in the
matrix3x3 parameter, a transformation matrix that translates an object by the
amount xTrans along the x coordinate axis and by the amount yTrans along the
y coordinate axis.

Q3Matrix3x3_SetScale 20

You can use the Q3Matrix3x3_SetScale function to configure a 3-by-3 scaling
transformation matrix.

C H A P T E R 2 0

Mathematical Utilities

1216 QuickDraw 3D Mathematical Utilities Reference

TQ3Matrix3x3 *Q3Matrix3x3_SetScale (
TQ3Matrix3x3 *matrix3x3,
float xScale,
float yScale);

matrix3x3 A 3-by-3 matrix.

xScale The desired amount of scaling along the x coordinate axis.

yScale The desired amount of scaling along the y coordinate axis.

DESCRIPTION

The Q3Matrix3x3_SetScale function returns, as its function result and in the
matrix3x3 parameter, a scaling matrix that scales an object by the amount xScale
along the x coordinate axis and by the amount yScale along the y coordinate
axis.

Q3Matrix3x3_SetRotateAboutPoint 20

You can use the Q3Matrix3x3_SetRotateAboutPoint function to configure a 3-by-3
rotation transformation matrix.

TQ3Matrix3x3 *Q3Matrix3x3_SetRotateAboutPoint (
TQ3Matrix3x3 *matrix3x3,
const TQ3Point2D *origin,
float angle);

matrix3x3 A 3-by-3 matrix.

origin The desired origin of rotation.

angle The desired angle of rotation, in radians.

DESCRIPTION

The Q3Matrix3x3_SetRotateAboutPoint function returns, as its function result
and in the matrix3x3 parameter, a rotation matrix that rotates an object by the
angle angle around the point origin.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1217

Q3Matrix4x4_SetTranslate 20

You can use the Q3Matrix4x4_SetTranslate function to configure a 4-by-4
translation transformation matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetTranslate (
TQ3Matrix4x4 *matrix4x4,
float xTrans,
float yTrans,
float zTrans);

matrix4x4 A 4-by-4 matrix.

xTrans The desired amount of translation along the x coordinate axis.

yTrans The desired amount of translation along the y coordinate axis.

zTrans The desired amount of translation along the z coordinate axis.

DESCRIPTION

The Q3Matrix4x4_SetTranslate function returns, as its function result and in the
matrix4x4 parameter, a transformation matrix that translates an object by the
amount xTrans along the x coordinate axis, by the amount yTrans along the y
coordinate axis, and by the amount zTrans along the z coordinate axis.

Q3Matrix4x4_SetScale 20

You can use the Q3Matrix4x4_SetScale function to configure a 4-by-4 scaling
transformation matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetScale (
TQ3Matrix4x4 *matrix4x4,
float xScale,
float yScale,
float zScale);

matrix4x4 A 4-by-4 matrix.

xScale The desired amount of scaling along the x coordinate axis.

C H A P T E R 2 0

Mathematical Utilities

1218 QuickDraw 3D Mathematical Utilities Reference

yScale The desired amount of scaling along the y coordinate axis.

zScale The desired amount of scaling along the z coordinate axis.

DESCRIPTION

The Q3Matrix4x4_SetScale function returns, as its function result and in the
matrix4x4 parameter, a scaling matrix that scales an object by the amount xScale
along the x coordinate axis, by the amount yScale along the y coordinate axis,
and by the amount zScale along the z coordinate axis.

Q3Matrix4x4_SetRotateAboutPoint 20

You can use the Q3Matrix4x4_SetRotateAboutPoint function to configure a 4-by-4
rotation transformation matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotateAboutPoint (
TQ3Matrix4x4 *matrix4x4,
const TQ3Point3D *origin,
float xAngle,
float yAngle,
float zAngle);

matrix4x4 A 4-by-4 matrix.

origin The desired origin of rotation.

xAngle The desired angle of rotation around the x component of origin,
in radians.

yAngle The desired angle of rotation around the y component of origin,
in radians.

zAngle The desired angle of rotation around the z component of origin,
in radians.

DESCRIPTION

The Q3Matrix4x4_SetRotateAboutPoint function returns, as its function result
and in the matrix4x4 parameter, a rotation matrix that rotates an object by the
specified angle around the point origin.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1219

Q3Matrix4x4_SetRotateAboutAxis 20

You can use the Q3Matrix4x4_SetRotateAboutAxis function to configure a 4-by-4
rotate-about-axis transformation matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotateAboutAxis (
TQ3Matrix4x4 *matrix4x4,
const TQ3Point3D *origin,
const TQ3Vector3D *orientation,
float angle);

matrix4x4 A 4-by-4 matrix.

origin The desired origin of rotation.

orientation The desired orientation of the axis of rotation.

angle The desired angle of rotation, in radians.

DESCRIPTION

The Q3Matrix4x4_SetRotateAboutAxis function returns, as its function result and
in the matrix4x4 parameter, an rotate-about-axis matrix that rotates an object by
the angle angle around the axis determined by the point origin and the
orientation orientation.

Q3Matrix4x4_SetRotate_X 20

You can use the Q3Matrix4x4_SetRotate_X function to configure a 4-by-4
transformation matrix that rotates objects around the x axis.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_X (
TQ3Matrix4x4 *matrix4x4,
float angle);

matrix4x4 A 4-by-4 matrix.

angle The desired angle of rotation around the x coordinate axis, in
radians.

C H A P T E R 2 0

Mathematical Utilities

1220 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Matrix4x4_SetRotate_X function returns, as its function result and in the
matrix4x4 parameter, a rotational matrix that rotates an object by the angle
angle around the x axis.

Q3Matrix4x4_SetRotate_Y 20

You can use the Q3Matrix4x4_SetRotate_Y function to configure a 4-by-4
transformation matrix that rotates objects around the y axis.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_Y (
TQ3Matrix4x4 *matrix4x4,
float angle);

matrix4x4 A 4-by-4 matrix.

angle The desired angle of rotation around the y coordinate axis, in
radians.

DESCRIPTION

The Q3Matrix4x4_SetRotate_Y function returns, as its function result and in the
matrix4x4 parameter, a rotational matrix that rotates an object by the angle
angle around the y axis.

Q3Matrix4x4_SetRotate_Z 20

You can use the Q3Matrix4x4_SetRotate_Z function to configure a 4-by-4
transformation matrix that rotates objects around the z axis.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_Z (
TQ3Matrix4x4 *matrix4x4,
float angle);

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1221

matrix4x4 A 4-by-4 matrix.

angle The desired angle of rotation around the z coordinate axis, in
radians.

DESCRIPTION

The Q3Matrix4x4_SetRotate_Z function returns, as its function result and in the
matrix4x4 parameter, a rotational matrix that rotates an object by the angle
angle around the z axis.

Q3Matrix4x4_SetRotate_XYZ 20

You can use the Q3Matrix4x4_SetRotate_XYZ function to configure a 4-by-4
transformation matrix that rotates objects around all three coordinate axes.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotate_XYZ (
TQ3Matrix4x4 *matrix4x4,
float xAngle,
float yAngle,
float zAngle);

matrix4x4 A 4-by-4 matrix.

xAngle The desired angle of rotation around the x axis, in radians.

yAngle The desired angle of rotation around the y axis, in radians.

zAngle The desired angle of rotation around the z axis, in radians.

DESCRIPTION

The Q3Matrix4x4_SetRotate_XYZ function returns, as its function result and in
the matrix4x4 parameter, a rotational matrix that rotates an object by the
specified angles around the x, y, and z axes.

C H A P T E R 2 0

Mathematical Utilities

1222 QuickDraw 3D Mathematical Utilities Reference

Q3Matrix4x4_SetRotateVectorToVector 20

You can use the Q3Matrix4x4_SetRotateVectorToVector function to configure a
4-by-4 transformation matrix that rotates objects around the origin in such a
way that a transformed vector matches a given vector.

TQ3Matrix4x4 *Q3Matrix4x4_SetRotateVectorToVector (
TQ3Matrix4x4 *matrix4x4,
const TQ3Vector3D *v1,
const TQ3Vector3D *v2);

matrix4x4 A 4-by-4 matrix.

v1 A three-dimensional vector.

v2 A three-dimensional vector.

DESCRIPTION

The Q3Matrix4x4_SetRotateVectorToVector function returns, as its function
result and in the matrix4x4 parameter, a rotational matrix that rotates objects
around the origin in such a way that the transformed vector v1 matches the
vector v2. Both v1 and v2 should be normalized.

Q3Matrix4x4_SetQuaternion 20

You can use the Q3Matrix4x4_SetQuaternion function to configure a 4-by-4
quaternion transformation matrix.

TQ3Matrix4x4 *Q3Matrix4x4_SetQuaternion (
TQ3Matrix4x4 *matrix,
const TQ3Quaternion *quaternion);

matrix A 4-by-4 matrix.

quaternion A quaternion.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1223

DESCRIPTION

The Q3Matrix4x4_SetQuaternion function returns, as its function result and in
the matrix parameter, a 4-by-4 matrix that represents the quaternion specified
by the quaternion parameter.

Utility Functions 20

QuickDraw 3D provides several mathematical utility functions. You can use the
following two macros to convert degrees to radians, and vice versa. These
functions use the constant kQ3Pi, equal to π.

#define Q3Math_DegreesToRadians(x) ((x) * kQ3Pi / 180.0)

#define Q3Math_RadiansToDegrees(x) ((x) * 180.0 / kQ3Pi)

You can use the following two macros to get the minimum and maximum of
two values.

#define Q3Math_Min(x,y) ((x) <= (y) ? (x) : (y))

#define Q3Math_Max(x,y) ((x) >= (y) ? (x) : (y))

Managing Quaternions 20

QuickDraw 3D provides routines that you can use to operate on quaternions.

Q3Quaternion_Set 20

You can use the Q3Quaternion_Set function to set the components of a
quaternion.

TQ3Quaternion *Q3Quaternion_Set (
TQ3Quaternion *quaternion,
float w,
float x,
float y,
float z);

C H A P T E R 2 0

Mathematical Utilities

1224 QuickDraw 3D Mathematical Utilities Reference

quaternion A quaternion.

w The desired w component of a quaternion.

x The desired x component of a quaternion.

y The desired y component of a quaternion.

z The desired z component of a quaternion.

DESCRIPTION

The Q3Quaternion_Set function returns, as its function result and in the
quaternion parameter, the quaternion whose components are specified by the w,
x, y, and z parameters.

Q3Quaternion_SetIdentity 20

You can use the Q3Quaternion_SetIdentity function to set a quaternion to the
identity quaternion.

TQ3Quaternion *Q3Quaternion_SetIdentity (
TQ3Quaternion *quaternion);

quaternion On exit, the identity quaternion.

DESCRIPTION

The Q3Quaternion_SetIdentity function returns, as its function result and in the
quaternion parameter, the identity quaternion.

Q3Quaternion_Copy 20

You can use the Q3Quaternion_Copy function to get a copy of a quaternion.

TQ3Quaternion *Q3Quaternion_Copy (
const TQ3Quaternion *quaternion,
TQ3Quaternion *result);

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1225

quaternion A quaternion.

result On exit, a copy of quaternion.

DESCRIPTION

The Q3Quaternion_Copy function returns, as its function result and in the result
parameter, a copy of the quaternion quaternion.

Q3Quaternion_IsIdentity 20

You can use the Q3Quaternion_IsIdentity function to determine whether a
quaternion is the identity quaternion.

TQ3Boolean Q3Quaternion_IsIdentity (
const TQ3Quaternion *quaternion);

quaternion A quaternion.

DESCRIPTION

The Q3Quaternion_IsIdentity function returns kQ3True if the quaternion
parameter is the identity quaternion; Q3Quaternion_IsIdentity returns kQ3False
otherwise.

Q3Quaternion_Invert 20

You can use the Q3Quaternion_Invert function to invert a quaternion.

TQ3Quaternion *Q3Quaternion_Invert (
const TQ3Quaternion *quaternion,
TQ3Quaternion *result);

quaternion A quaternion.

result On exit, the inverse of quaternion.

C H A P T E R 2 0

Mathematical Utilities

1226 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3Quaternion_Invert function returns, as its function result and in the
result parameter, the inverse of the quaternion specified by the quaternion
parameter.

Q3Quaternion_Normalize 20

You can use the Q3Quaternion_Normalize function to normalize a quaternion.

TQ3Quaternion *Q3Quaternion_Normalize (
const TQ3Quaternion *quaternion,
TQ3Quaternion *result);

quaternion A quaternion.

result On exit, the normalized form of quaternion.

DESCRIPTION

The Q3Quaternion_Normalize function returns, as its function result and in the
result parameter, the normalized form of the quaternion quaternion. Note that
on entry the result parameter can be the same as the quaternion parameter.

Q3Quaternion_Dot 20

You can use the Q3Quaternion_Dot function to determine the dot product of two
quaternions.

float Q3Quaternion_Dot (
const TQ3Quaternion *q1,
const TQ3Quaternion *q2);

q1 A quaternion.

q2 A quaternion.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1227

DESCRIPTION

The Q3Quaternion_Dot function returns, as its function result, a floating-point
value that is the dot product of the two quaternions q1 and q2.

Q3Quaternion_Multiply 20

You can use the Q3Quaternion_Multiply function to multiply two quaternions.

TQ3Quaternion *Q3Quaternion_Multiply (
const TQ3Quaternion *q1,
const TQ3Quaternion *q2,
TQ3Quaternion *result);

q1 A quaternion.

q2 A quaternion.

result On exit, the product of q1 and q2.

DESCRIPTION

The Q3Quaternion_Multiply function returns, as its function result and in the
result parameter, the product of the two quaternions q1 and q2.

If you want to rotate an object by the quaternion qFirst and then rotate the
resulting object by the quaternion qSecond, you can accomplish both rotations at
once by applying the quaternion qResult that is obtained as follows:

Q3Quaternion_Multiply(qSecond, qFirst, qResult);

Note the order of the quaternion multiplicands.

Q3Quaternion_SetRotateAboutAxis 20

You can use the Q3Quaternion_SetRotateAboutAxis function to configure a
rotate-about-axis quaternion.

C H A P T E R 2 0

Mathematical Utilities

1228 QuickDraw 3D Mathematical Utilities Reference

TQ3Quaternion *Q3Quaternion_SetRotateAboutAxis (
TQ3Quaternion *quaternion,
const TQ3Vector3D *axis,
float angle);

quaternion A quaternion.

axis The desired axis of rotation.

angle The desired angle of rotation, in radians.

DESCRIPTION

The Q3Quaternion_SetRotateAboutAxis function returns, as its function result
and in the quaternion parameter, a rotate-about-axis quaternion that rotates an
object by the angle angle around the axis specified by the axis parameter.

Q3Quaternion_SetRotate_X 20

You can use the Q3Quaternion_SetRotate_X function to configure a quaternion
that rotates objects around the x axis.

TQ3Quaternion *Q3Quaternion_SetRotate_X (
TQ3Quaternion *quaternion,
float angle);

quaternion A quaternion.

angle The desired angle of rotation around the x coordinate axis, in
radians.

DESCRIPTION

The Q3Quaternion_SetRotate_X function returns, as its function result and in the
quaternion parameter, a quaternion that rotates an object by the angle angle
around the x axis.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1229

Q3Quaternion_SetRotate_Y 20

You can use the Q3Quaternion_SetRotate_Y function to configure a quaternion
that rotates objects around the y axis.

TQ3Quaternion *Q3Quaternion_SetRotate_Y (
TQ3Quaternion *quaternion,
float angle);

quaternion A quaternion.

angle The desired angle of rotation around the y coordinate axis, in
radians.

DESCRIPTION

The Q3Quaternion_SetRotate_Y function returns, as its function result and in the
quaternion parameter, a quaternion that rotates an object by the angle angle
around the y axis.

Q3Quaternion_SetRotate_Z 20

You can use the Q3Quaternion_SetRotate_Z function to configure a quaternion
that rotates objects around the z axis.

TQ3Quaternion *Q3Quaternion_SetRotate_Z (
TQ3Quaternion *quaternion,
float angle);

quaternion A quaternion.

angle The desired angle of rotation around the z coordinate axis, in
radians.

DESCRIPTION

The Q3Quaternion_SetRotate_Z function returns, as its function result and in the
quaternion parameter, a quaternion that rotates an object by the angle angle
around the z axis.

C H A P T E R 2 0

Mathematical Utilities

1230 QuickDraw 3D Mathematical Utilities Reference

Q3Quaternion_SetRotate_XYZ 20

You can use the Q3Quaternion_SetRotate_XYZ function to configure a quaternion
having a specified rotation around the x, y, and z axes.

TQ3Quaternion *Q3Quaternion_SetRotate_XYZ (
TQ3Quaternion *quaternion,
float xAngle,
float yAngle,
float zAngle);

quaternion A quaternion.

xAngle The desired angle of rotation around the x axis, in radians.

yAngle The desired angle of rotation around the y axis, in radians.

zAngle The desired angle of rotation around the z axis, in radians.

DESCRIPTION

The Q3Quaternion_SetRotate_XYZ function returns, as its function result and in
the quaternion parameter, a quaternion that rotates an object by the specified
angles around the x, y, and z axes.

Q3Quaternion_SetMatrix 20

You can use the Q3Quaternion_SetMatrix function to configure a quaternion
from a matrix.

TQ3Quaternion *Q3Quaternion_SetMatrix (
TQ3Quaternion *quaternion,
const TQ3Matrix4x4 *matrix);

quaternion A quaternion.

matrix A 4-by-by matrix.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1231

DESCRIPTION

The Q3Quaternion_SetMatrix function returns, as its function result and in the
quaternion parameter, a quaternion that has the same transformational
properties as the matrix specified by the matrix parameter.

Q3Quaternion_SetRotateVectorToVector 20

You can use the Q3Quaternion_SetRotateVectorToVector function to configure a
quaternion that rotates objects around the origin in such a way that a
transformed vector matches a given vector.

TQ3Quaternion *Q3Quaternion_SetRotateVectorToVector (
TQ3Quaternion *quaternion,
const TQ3Vector3D *v1,
const TQ3Vector3D *v2);

quaternion A quaternion.

v1 A three-dimensional vector.

v2 A three-dimensional vector.

DESCRIPTION

The Q3Quaternion_SetRotateVectorToVector function returns, as its function
result and in the quaternion parameter, a quaternion that rotates objects around
the origin in such a way that the transformed vector v1 matches the vector v2.
Both v1 and v2 should be normalized.

Q3Quaternion_MatchReflection 20

You can use the Q3Quaternion_MatchReflection function to match the
orientation of a quaternion.

C H A P T E R 2 0

Mathematical Utilities

1232 QuickDraw 3D Mathematical Utilities Reference

TQ3Quaternion *Q3Quaternion_MatchReflection (
const TQ3Quaternion *q1,
const TQ3Quaternion *q2,
TQ3Quaternion *result);

q1 A quaternion.

q2 A quaternion.

result On exit, a quaternion that is either q1 or the negative of q1, and
that matches the orientation of q2.

DESCRIPTION

The Q3Quaternion_MatchReflection function returns, as its function result and in
the result parameter, a quaternion that is either identical to the quaternion
specified by the q1 parameter or is the negative of q1, depending on whether q1
or its negative matches the orientation of the quaternion specified by the q2
parameter.

Q3Quaternion_InterpolateFast 20

You can use the Q3Quaternion_InterpolateFast function to interpolate quickly
between two quaternions.

TQ3Quaternion *Q3Quaternion_InterpolateFast (
const TQ3Quaternion *q1,
const TQ3Quaternion *q2,
float t,
TQ3Quaternion *result);

q1 A quaternion.

q2 A quaternion.

t An interpolation factor. This parameter should contain a value
between 0.0 and 1.0.

result On exit, a quaternion that is a fast interpolation between the two
specified quaternions.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1233

DESCRIPTION

The Q3Quaternion_InterpolateFast function returns, as its function result and in
the result parameter, a quaternion that interpolates between the two
quaternions specified by the q1 and q2 parameters, according to the factor
specified by the t parameter. If the value of t is 0.0,
Q3Quaternion_InterpolateFast returns a quaternion identical to q1. If the value
of t is 1.0, Q3Quaternion_InterpolateFast returns a quaternion identical to q2. If
t is any other value in the range [0.0, 1.0], Q3Quaternion_InterpolateFast
returns a quaternion that is interpolated between the two quaternions.

The interpolation returned by Q3Quaternion_InterpolateFast is not as smooth
or constant as that returned by Q3Quaternion_InterpolateLinear, but
Q3Quaternion_InterpolateFast is usually faster than
Q3Quaternion_InterpolateLinear.

Q3Quaternion_InterpolateLinear 20

You can use the Q3Quaternion_InterpolateLinear function to interpolate linearly
between two quaternions.

TQ3Quaternion *Q3Quaternion_InterpolateLinear (
const TQ3Quaternion *q1,
const TQ3Quaternion *q2,
float t,
TQ3Quaternion *result) ;

q1 A quaternion.

q2 A quaternion.

t An interpolation factor. This parameter should contain a value
between 0.0 and 1.0.

result On exit, a quaternion that is a smooth and constant interpolation
between the two specified quaternions.

DESCRIPTION

The Q3Quaternion_InterpolateLinear function returns, as its function result and
in the result parameter, a quaternion that interpolates smoothly between the

C H A P T E R 2 0

Mathematical Utilities

1234 QuickDraw 3D Mathematical Utilities Reference

two quaternions specified by the q1 and q2 parameters, according to the factor
specified by the t parameter. If the value of t is 0.0,
Q3Quaternion_InterpolateLinear returns a quaternion identical to q1. If the
value of t is 1.0, Q3Quaternion_InterpolateLinear returns a quaternion identical
to q2. If t is any other value in the range [0.0, 1.0],
Q3Quaternion_InterpolateLinear returns a quaternion that is interpolated
between the two quaternions in a smooth and constant manner.

Q3Vector3D_TransformQuaternion 20

You can use the Q3Vector3D_TransformQuaternion function to transform a vector
by a quaternion.

TQ3Vector3D *Q3Vector3D_TransformQuaternion (
const TQ3Vector3D *vector,
const TQ3Quaternion *quaternion,
TQ3Vector3D *result);

vector A three-dimensional vector.

quaternion A quaternion.

result On exit, a three-dimensional vector that is the result of
transforming the specified vector by the specified quaternion.

DESCRIPTION

The Q3Vector3D_TransformQuaternion function returns, as its function result and
in the result parameter, a three-dimensional vector that is the result of
transforming the vector specified by the vector parameter using the quaternion
specified by the quaternion parameter.

Q3Point3D_TransformQuaternion 20

You can use the Q3Point3D_TransformQuaternion function to transform a point
by a quaternion.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1235

TQ3Point3D *Q3Point3D_TransformQuaternion (
const TQ3Point3D *point,
const TQ3Quaternion *quaternion,
TQ3Point3D *result);

point A three-dimensional point.

quaternion A quaternion.

result On exit, a three-dimensional point that is the result of
transforming the specified point by the specified quaternion.

DESCRIPTION

The Q3Point3D_TransformQuaternion function returns, as its function result and
in the result parameter, a three-dimensional point that is the result of
transforming the point specified by the point parameter using the quaternion
specified by the quaternion parameter.

Managing Bounding Boxes 20

QuickDraw 3D provides routines that you can use to manage bounding boxes.

Q3BoundingBox_Copy 20

You can use the Q3BoundingBox_Copy function to make a copy of a bounding box.

TQ3BoundingBox *Q3BoundingBox_Copy (
const TQ3BoundingBox *src,
TQ3BoundingBox *dest);

src A pointer to the bounding box to be copied.

dest On entry, a pointer to a buffer large enough to hold a bounding
box. On exit, a pointer to a copy of the bounding box specified
by the src parameter.

C H A P T E R 2 0

Mathematical Utilities

1236 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3BoundingBox_Copy function returns, as its function result and in the dest
parameter, a copy of the bounding box specified by the src parameter.
Q3BoundingBox_Copy does not allocate any memory for the destination bounding
box; the dest parameter must point to space allocated in the heap or on the
stack before you call Q3BoundingBox_Copy.

Q3BoundingBox_Union 20

You can use the Q3BoundingBox_Union function to find the union of two
bounding boxes.

TQ3BoundingBox *Q3BoundingBox_Union (
const TQ3BoundingBox *v1,
const TQ3BoundingBox *v2,
TQ3BoundingBox *result);

v1 A pointer to a bounding box.

v2 A pointer to a bounding box.

result On exit, a pointer to the union of the bounding boxes v1 and v2.

DESCRIPTION

The Q3BoundingBox_Union function returns, as its function result and in the
result parameter, a pointer to the bounding box that is the union of the two
bounding boxes specified by the parameters v1 and v2. The result parameter
can point to the memory occupied by either v1 or v2, thereby performing the
union operation in place.

Q3BoundingBox_Set 20

You can use the Q3BoundingBox_Set function to set the defining points of a
bounding box.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1237

TQ3BoundingBox *Q3BoundingBox_Set (
TQ3BoundingBox *bBox,
const TQ3Point3D *min,
const TQ3Point3D *max,
TQ3Boolean isEmpty);

bBox A pointer to a bounding box.

min A pointer to a three-dimensional point.

max A pointer to a three-dimensional point.

isEmpty A Boolean value that indicates whether the specified bounding
box is empty (kQ3True) or not (kQ3False).

DESCRIPTION

The Q3BoundingBox_Set function assigns the values min and max to the min and
max fields of the bounding box specified by the bBox parameter.
Q3BoundingBox_Set also assigns the value of the isEmpty parameter to the
isEmpty field of the bounding box.

Q3BoundingBox_UnionPoint3D 20

You can use the Q3BoundingBox_UnionPoint3D function to find the union of a
bounding box and a three-dimensional point.

TQ3BoundingBox *Q3BoundingBox_UnionPoint3D (
const TQ3BoundingBox *bBox,
const TQ3Point3D *pt3D,
TQ3BoundingBox *result);

bBox A pointer to a bounding box.

pt3D A three-dimensional point.

result On exit, a pointer to the union of the specified bounding box
and the specified point.

C H A P T E R 2 0

Mathematical Utilities

1238 QuickDraw 3D Mathematical Utilities Reference

DESCRIPTION

The Q3BoundingBox_UnionPoint3D function returns, as its function result and in
the result parameter, a pointer to the bounding box that is the union of the
bounding box specified by the bBox parameter and the three-dimensional point
specified by the pt3D parameter. The result parameter can point to the memory
pointed to by bBox, thereby performing the union operation in place.

Q3BoundingBox_UnionRationalPoint4D 20

You can use the Q3BoundingBox_UnionRationalPoint4D function to find the union
of a bounding box and a rational four-dimensional point.

TQ3BoundingBox *Q3BoundingBox_UnionRationalPoint4D (
const TQ3BoundingBox *bBox,
const TQ3RationalPoint4D *pt4D,
TQ3BoundingBox *result);

bBox A pointer to a bounding box.

pt4D A rational four-dimensional point.

result On exit, a pointer to the union of the specified bounding box
and the specified point.

DESCRIPTION

The Q3BoundingBox_UnionRationalPoint4D function returns, as its function result
and in the result parameter, a pointer to the bounding box that is the union of
the bounding box specified by the bBox parameter and the rational
four-dimensional point specified by the pt4D parameter. The result parameter
can point to the memory pointed to by bBox, thereby performing the union
operation in place.

Q3BoundingBox_SetFromPoints3D 20

You can use the Q3BoundingBox_SetFromPoints3D function to find the bounding
box that bounds an arbitrary list of three-dimensional points.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1239

TQ3BoundingBox *Q3BoundingBox_SetFromPoints3D (
TQ3BoundingBox *bBox,
const TQ3Point3D *pts,
unsigned long nPts,
unsigned long structSize);

bBox A pointer to a bounding box.

pts A pointer to a list of three-dimensional points.

nPts The number of points in the specified list.

structSize The number of bytes of data that separate two successive points
in the specified list of points.

DESCRIPTION

The Q3BoundingBox_SetFromPoints3D function returns, as its function result and
in the bBox parameter, a pointer to a bounding box that contains all the points in
the list of three-dimensional points specified by the pts parameter. The nPts
parameter indicates how many points are in that list, and the structSize
parameter indicates the offset between any two successive points in the list. By
suitably specifying the value of the structSize parameter, you can have
QuickDraw 3D extract points that are embedded in an array of larger data
structures.

Q3BoundingBox_SetFromRationalPoints4D 20

You can use the Q3BoundingBox_SetFromRationalPoints4D function to find the
bounding box that bounds an arbitrary list of rational four-dimensional points.

TQ3BoundingBox *Q3BoundingBox_SetFromRationalPoints4D (
TQ3BoundingBox *bBox,
const TQ3RationalPoint4D *pts,
unsigned long nPts,
unsigned long structSize);

bBox A pointer to a bounding box.

pts A pointer to a list of rational four-dimensional points.

C H A P T E R 2 0

Mathematical Utilities

1240 QuickDraw 3D Mathematical Utilities Reference

nPts The number of points in the specified list.

structSize The number of bytes of data that separate two successive points
in the specified list of points.

DESCRIPTION

The Q3BoundingBox_SetFromRationalPoints4D function returns, as its function
result and in the bBox parameter, a pointer to a bounding box that contains all
the points in the list of rational four-dimensional points specified by the pts
parameter. The nPts parameter indicates how many points are in that list, and
the structSize parameter indicates the offset between any two successive
points in the list. By suitably specifying the value of the structSize parameter,
you can have QuickDraw 3D extract points that are embedded in an array of
larger data structures.

Managing Bounding Spheres 20

QuickDraw 3D provides routines that you can use to manage bounding
spheres.

Q3BoundingSphere_Copy 20

You can use the Q3BoundingSphere_Copy function to make a copy of a bounding
sphere.

TQ3BoundingSphere *Q3BoundingSphere_Copy (
const TQ3BoundingSphere *src,
TQ3BoundingSphere *dest);

src A pointer to the bounding sphere to be copied.

dest On entry, a pointer to a buffer large enough to hold a bounding
sphere. On exit, a pointer to a copy of the bounding sphere
specified by the src parameter.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1241

DESCRIPTION

The Q3BoundingSphere_Copy function returns, as its function result and in the
dest parameter, a copy of the bounding sphere specified by the src parameter.
Q3BoundingSphere_Copy does not allocate any memory for the destination
bounding sphere; the dest parameter must point to space allocated in the heap
or on the stack before you call Q3BoundingSphere_Copy.

Q3BoundingSphere_Union 20

You can use the Q3BoundingSphere_Union function to find the union of two
bounding spheres.

TQ3BoundingSphere *Q3BoundingSphere_Union (
const TQ3BoundingSphere *s1,
const TQ3BoundingSphere *s2,
TQ3BoundingSphere *result);

s1 A pointer to a bounding sphere.

s2 A pointer to a bounding sphere.

result On exit, a pointer to the union of the bounding spheres s1 and
s2.

DESCRIPTION

The Q3BoundingSphere_Union function returns, as its function result and in the
result parameter, a pointer to the bounding sphere that is the union of the two
bounding spheres specified by the parameters s1 and s2. The result parameter
can point to the memory occupied by either s1 or s2, thereby performing the
union operation in place.

Q3BoundingSphere_Set 20

You can use the Q3BoundingSphere_Set function to set the defining origin and
radius of a bounding sphere.

C H A P T E R 2 0

Mathematical Utilities

1242 QuickDraw 3D Mathematical Utilities Reference

TQ3BoundingSphere *Q3BoundingSphere_Set (
TQ3BoundingSphere *bSphere,
const TQ3Point3D *origin,
float radius,
TQ3Boolean isEmpty);

bSphere A pointer to a bounding sphere.

origin A pointer to a three-dimensional point.

radius A floating-point value that specifies the desired radius of the
bounding sphere.

isEmpty A Boolean value that indicates whether the specified bounding
sphere is empty (kQ3True) or not (kQ3False).

DESCRIPTION

The Q3BoundingSphere_Set function assigns the values origin and radius to the
origin and radius fields of the bounding sphere specified by the bSphere
parameter. Q3BoundingSphere_Set also assigns the value of the isEmpty
parameter to the isEmpty field of the bounding sphere.

Q3BoundingSphere_UnionPoint3D 20

You can use the Q3BoundingSphere_UnionPoint3D function to find the union of a
bounding sphere and a three-dimensional point.

TQ3BoundingSphere *Q3BoundingSphere_UnionPoint3D (
const TQ3BoundingSphere *bSphere,
const TQ3Point3D *pt3D,
TQ3BoundingSphere *result);

bSphere A pointer to a bounding sphere.

pt3D A three-dimensional point.

result On exit, a pointer to the union of the specified bounding sphere
and the specified point.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1243

DESCRIPTION

The Q3BoundingSphere_UnionPoint3D function returns, as its function result and
in the result parameter, a pointer to the bounding sphere that is the union of
the bounding sphere specified by the bSphere parameter and the
three-dimensional point specified by the pt3D parameter. The result parameter
can point to the memory pointed to by bSphere, thereby performing the union
operation in place.

Q3BoundingSphere_UnionRationalPoint4D 20

You can use the Q3BoundingSphere_UnionRationalPoint4D function to find the
union of a bounding sphere and a rational four-dimensional point.

TQ3BoundingSphere *Q3BoundingSphere_UnionRationalPoint4D (
const TQ3BoundingSphere *bSphere,
const TQ3RationalPoint4D *pt4D,
TQ3BoundingSphere *result);

bSphere A pointer to a bounding sphere.

pt4D A rational four-dimensional point.

result On exit, a pointer to the union of the specified bounding sphere
and the specified point.

DESCRIPTION

The Q3BoundingSphere_UnionRationalPoint4D function returns, as its function
result and in the result parameter, a pointer to the bounding sphere that is the
union of the bounding sphere specified by the bSphere parameter and the
rational four-dimensional point specified by the pt4D parameter. The result
parameter can point to the memory pointed to by bSphere, thereby performing
the union operation in place.

C H A P T E R 2 0

Mathematical Utilities

1244 QuickDraw 3D Mathematical Utilities Reference

Q3BoundingSphere_SetFromPoints3D 20

You can use the Q3BoundingSphere_SetFromPoints3D function to find the
bounding sphere that bounds an arbitrary list of three-dimensional points.

TQ3BoundingSphere *Q3BoundingSphere_SetFromPoints3D (
TQ3BoundingSphere *bSphere,
const TQ3Point3D *pts,
unsigned long nPts,
unsigned long structSize);

bSphere A pointer to a bounding sphere.

pts A pointer to a list of three-dimensional points.

nPts The number of points in the specified list.

structSize The number of bytes of data that separate two successive points
in the specified list of points.

DESCRIPTION

The Q3BoundingSphere_SetFromPoints3D function returns, as its function result
and in the bSphere parameter, a pointer to a bounding sphere that contains all
the points in the list of three-dimensional points specified by the pts parameter.
The nPts parameter indicates how many points are in that list, and the
structSize parameter indicates the offset between any two successive points in
the list. By suitably specifying the value of the structSize parameter, you can
have QuickDraw 3D extract points that are embedded in an array of larger data
structures.

Q3BoundingSphere_SetFromRationalPoints4D 20

You can use the Q3BoundingSphere_SetFromRationalPoints4D function to find the
bounding sphere that bounds an arbitrary list of rational four-dimensional
points.

C H A P T E R 2 0

Mathematical Utilities

QuickDraw 3D Mathematical Utilities Reference 1245

TQ3BoundingSphere *Q3BoundingSphere_SetFromRationalPoints4D (
TQ3BoundingSphere *bSphere,
const TQ3RationalPoint4D *pts,
unsigned long nPts,
unsigned long structSize);

bSphere A pointer to a bounding sphere.

pts A pointer to a list of rational four-dimensional points.

nPts The number of points in the specified list.

structSize The number of bytes of data that separate two successive points
in the specified list of points.

DESCRIPTION

The Q3BoundingSphere_SetFromRationalPoints4D function returns, as its function
result and in the bSphere parameter, a pointer to a bounding sphere that
contains all the points in the list of rational four-dimensional points specified by
the pts parameter. The nPts parameter indicates how many points are in that
list, and the structSize parameter indicates the offset between any two
successive points in the list. By suitably specifying the value of the structSize
parameter, you can have QuickDraw 3D extract points that are embedded in an
array of larger data structures.

C H A P T E R 2 0

Mathematical Utilities

1246 QuickDraw 3D Mathematical Utilities Reference

About the Color Utilities 1247

C H A P T E R 2 1

Color Utilities 21Figure 21-0
Listing 21-0
Table 21-0

This chapter describes the QuickDraw 3D Color Utilities, a set of functions that
you can use to manage colors. You can use these functions to develop
distinctive color schemes for the user interface elements of your application.

About the Color Utilities 21

QuickDraw 3D provides a set of utility routines that you can use to manage
colors. You can use these routines to add, subtract, scale, interpolate, and
perform other operations on colors. These utilities are intended to facilitate the
creation of distinctive color schemes (that is, sets of correlated colors) for user
interface elements in your application. You can, however, use these routines to
manage colors anywhere in your application.

See the chapter “Pointing Device Manager” for complete information on
creating and manipulating color schemes.

QuickDraw 3D supports one color space, the RGB color space defined by three
color component values (one each for red, green, and blue). The RGB color
space can be visualized as a cube, as in Figure 21-1, with corners of black, the
three primary colors (red, green, and blue), the three secondary colors (cyan,
magenta, and yellow), and white.

C H A P T E R 2 1

Color Utilities

1248 Using the QuickDraw 3D Color Utilities

Figure 21-1 RGB color space

You specify a single color in the RGB color space by filling in a structure of type
TQ3ColorRGB:

typedef struct TQ3ColorRGB {
float r; /*red component*/
float g; /*green component*/
float b; /*blue component*/

} TQ3ColorRGB;

The QuickDraw 3D Color utilities all operate on structures of type TQ3ColorRGB.
Each field in an TQ3ColorRGB structure should contain a value in the range 0.0 to
1.0, inclusive.

Using the QuickDraw 3D Color Utilities 21

You can use the Q3ColorRGB_Set function to set the fields of an RGB color
structure. For example, to specify the color white, you can call Q3ColorRGB_Set
as shown in Listing 21-1.

Blue

Black

Green

Yellow

White

Magenta

Cyan

C H A P T E R 2 1

Color Utilities

QuickDraw 3D Color Utilities Reference 1249

Listing 21-1 Specifying the color white

TQ3ColorRGB myColor;

Q3ColorRGB_Set(&myColor, 1.0, 1.0, 1.0);

Most of the QuickDraw 3D Color Utilities operate on two existing colors and
return a third color. For example, you can call the Q3ColorRGB_Add function to
add together two colors, as shown in Listing 21-2.

Listing 21-2 Adding two colors

TQ3ColorRGB myColor1, myColor2, myResult;
TQ3ColorRGB *myResultPtr;

myResultPtr = Q3ColorRGB_Add(&myColor1, &myColor2, &myResult);

As you can see, Q3ColorRGB_Add returns the address of the resulting RGB color
structure both in the myResult parameter and as its function result. This allows
you to nest calls to the QuickDraw 3D Color Utilities in function calls, as
follows:

Q3ColorRGB_Add(Q3ColorRGB_Add(&myColor1, &myColor2, &myResult),
&myColor3, &myResult);

This line of code adds the colors specified by the myColor1 and myColor2
parameters and adds that sum to the color specified by the myColor3 parameter.
If this line of code completes successfully, the parameter myResult is a pointer to
an RGB color structure that contains the sum of all three colors.

QuickDraw 3D Color Utilities Reference 21

This section describes the color utilities provided by QuickDraw 3D, as well as
the basic color data structures.

C H A P T E R 2 1

Color Utilities

1250 QuickDraw 3D Color Utilities Reference

Data Structures 21

This section describes the data structures that you use to specify colors.

Color Structures 21

You use an RGB color structure to specify a color. The RGB color structure is
defined by the TQ3ColorRGB data type.

typedef struct TQ3ColorRGB {
float r; /*red component*/
float g; /*green component*/
float b; /*blue component*/

} TQ3ColorRGB;

Field descriptions
r The red component of the color. The value in this field

should be between 0.0 and 1.0.
g The green component of the color. The value in this field

should be between 0.0 and 1.0.
b The blue component of the color. The value in this field

should be between 0.0 and 1.0.
You use an ARGB color structure to specify a color together with an alpha
channel. The ARGB color structure is defined by the TQ3ColorARGB data type.

typedef struct TQ3ColorARGB {
float a; /*alpha channel*/
float r; /*red component*/
float g; /*green component*/
float b; /*blue component*/

} TQ3ColorARGB;

Field descriptions
a The alpha channel of the color. The value in this field

should be between 0.0 (transparent) and 1.0. (solid).
r The red component of the color. The value in this field

should be between 0.0 and 1.0.
g The green component of the color. The value in this field

should be between 0.0 and 1.0.

C H A P T E R 2 1

Color Utilities

QuickDraw 3D Color Utilities Reference 1251

b The blue component of the color. The value in this field
should be between 0.0 and 1.0.

QuickDraw 3D Color Utilities 21

This section describes the QuickDraw 3D utilities you can use to handle colors.
Because most of these routines return a pointer to an RGB color structure both
as a function result and through the result parameter, you can nest these
routines.

Q3ColorRGB_Set 21

You can use the Q3ColorRGB_Set function to set the fields of an RGB color
structure.

TQ3ColorRGB *Q3ColorRGB_Set (
TQ3ColorRGB *color,
float r,
float g,
float b);

color On exit, a pointer to an RGB color structure.

r The red component of the color.

g The green component of the color.

b The blue component of the color.

DESCRIPTION

The Q3ColorRGB_Set function returns, as its function result and in the color
parameter, a pointer to an RGB color structure whose fields contain the values
in the r, g, and b parameters.

C H A P T E R 2 1

Color Utilities

1252 QuickDraw 3D Color Utilities Reference

Q3ColorARGB_Set 21

You can use the Q3ColorARGB_Set function to set the fields of an ARGB color
structure.

TQ3ColorARGB *Q3ColorARGB_Set (
TQ3ColorARGB *color,
float a,
float r,
float g,
float b);

color On exit, a pointer to an ARGB color structure.

a The alpha channel of the color.

r The red component of the color.

g The green component of the color.

b The blue component of the color.

DESCRIPTION

The Q3ColorARGB_Set function returns, as its function result and in the color
parameter, a pointer to an ARGB color structure whose fields contain the values
in the a, r, g, and b parameters.

Q3ColorRGB_Add 21

You can use the Q3ColorRGB_Add function to add two colors.

TQ3ColorRGB *Q3ColorRGB_Add (
const TQ3ColorRGB *c1,
const TQ3ColorRGB *c2,
TQ3ColorRGB *result);

c1 An RGB color structure.

c2 An RGB color structure.

C H A P T E R 2 1

Color Utilities

QuickDraw 3D Color Utilities Reference 1253

result On exit, a pointer to an RGB color structure for the color that is
the sum of the two specified colors.

DESCRIPTION

The Q3ColorRGB_Add function returns, as its function result and in the result
parameter, a pointer to an RGB color structure that represents the sum of the
colors specified by the c1 and c2 parameters.

Q3ColorRGB_Subtract 21

You can use the Q3ColorRGB_Subtract function to subtract one color from
another.

TQ3ColorRGB *Q3ColorRGB_Subtract (
const TQ3ColorRGB *c1,
const TQ3ColorRGB *c2,
TQ3ColorRGB *result);

c1 An RGB color structure.

c2 An RGB color structure.

result On exit, a pointer to an RGB color structure for the color that is
the difference of the two specified colors.

DESCRIPTION

The Q3ColorRGB_Subtract function returns, as its function result and in the
result parameter, a pointer to an RGB color structure that represents the result
of subtracting the color specified by the c2 parameter from the color specified
by the c1 parameter.

C H A P T E R 2 1

Color Utilities

1254 QuickDraw 3D Color Utilities Reference

Q3ColorRGB_Scale 21

You can use the Q3ColorRGB_Scale function to scale a color.

TQ3ColorRGB *Q3ColorRGB_Scale (
const TQ3ColorRGB *color,
float scale,
TQ3ColorRGB *result);

color An RGB color structure.

scale A scaling factor.

result On exit, a pointer to an RGB color structure for the color that is
the scale of the specified color.

DESCRIPTION

The Q3ColorRGB_Scale function returns, as its function result and in the result
parameter, a pointer to an RGB color structure that represents the result of
scaling the color specified by the color parameter by the factor specified by the
scale parameter.

Q3ColorRGB_Clamp 21

You can use the Q3ColorRGB_Clamp function to clamp a color.

TQ3ColorRGB *Q3ColorRGB_Clamp (
const TQ3ColorRGB *color,
TQ3ColorRGB *result);

color An RGB color structure.

result On exit, a pointer to an RGB color structure for the color that is
the clamped version of the specified color.

C H A P T E R 2 1

Color Utilities

QuickDraw 3D Color Utilities Reference 1255

DESCRIPTION

The Q3ColorRGB_Clamp function returns, as its function result and in the result
parameter, a pointer to an RGB color structure that clamps each component of
the color specified by the color parameter. A clamped component lies between
0.0 and 1.0, inclusive.

Q3ColorRGB_Lerp 21

You can use the Q3ColorRGB_Lerp function to interpolate two colors linearly.

TQ3ColorRGB *Q3ColorRGB_Lerp (
const TQ3ColorRGB *first,
const TQ3ColorRGB *last,
float alpha,
TQ3ColorRGB *result);

first An RGB color structure.

last An RGB color structure.

alpha An alpha value.

result On exit, a pointer to an RGB color structure for the color that is
the linear interpolation, by the specified alpha value, of the two
specified colors.

DESCRIPTION

The Q3ColorRGB_Lerp function returns, as its function result and in the result
parameter, a pointer to an RGB color structure that is linearly interpolated
between the two colors specified by the first and last parameters. The alpha
parameter specifies the desired alpha value for the interpolation.

C H A P T E R 2 1

Color Utilities

1256 QuickDraw 3D Color Utilities Reference

Q3ColorRGB_Accumulate 21

You can use the Q3ColorRGB_Accumulate function to accumulate colors.

TQ3ColorRGB *Q3ColorRGB_Accumulate (
const TQ3ColorRGB *src,
TQ3ColorRGB *result);

src An RGB color structure.

result On entry, an RGB color structure. On exit, a pointer to an RGB
color structure for the color that is the result of adding the
source color to the result color.

DESCRIPTION

The Q3ColorRGB_Accumulate function returns, as its function result and in the
result parameter, a pointer to an RGB color structure that is the result of adding
the color specified by the src parameter to the color specified by the result
parameter.

Q3ColorRGB_Luminance 21

You can use the Q3ColorRGB_Luminance function to compute the luminance of a
color.

float *Q3ColorRGB_Luminance (
const TQ3ColorRGB *color,
float *luminance);

color An RGB color structure.

luminance On exit, the luminance of the specified color.

DESCRIPTION

The Q3ColorRGB_Luminance function returns, as its function result and in the
luminance parameter, the luminance of the color specified by the color
parameter. A color’s luminance is computed using this formula:

C H A P T E R 2 1

Color Utilities

QuickDraw 3D Color Utilities Reference 1257

luminance =
 (0.30078125 × color.r) + (0.58984375 × color.g) + (0.109375 × color.b)

C H A P T E R 2 1

Color Utilities

1258 QuickDraw 3D Color Utilities Reference

Introduction 1259

3D Metafile 1.5 Reference 22Figure 22-0
Listing 22-0
Table 22-0

This document describes the 3D Metafile, a file format designed to permit the
storage and interchange of 3D data.

▲ W AR N I N G

This information in this document is preliminary and is
subject to change. ▲

Introduction 22

The 3D Metafile is a file format for 3D graphics applications that makes use of
the Apple QuickDraw 3D (QD3D) 1.5 graphics library or other 3D graphics
libraries. This document describes the 3D Metafile file format, Version 1.5.

The purpose of the metafile is to establish a standard file format for 3D graphics
files. This includes establishing canonical forms for descriptions of familiar 3D
graphics objects.

This standard is put forward to promote compatibility among 3D graphics
applications and is meant to facilitate the transfer and exchange of data
between distinct applications. The file format also permits a project to be saved
to a file so that it may be resumed or altered at a later time.

The canonical forms for descriptions of 3D graphics objects outlined in this
document embody an object– and class–based approach to 3D graphics. The 3D
metafile objects are defined using a small number of basic data types and some
object formation devices. Each object is a member of a class; the class structure
reflects the structure of the QuickDraw 3D class hierarchy. (But it is worth
pointing out that QD3D also supports immediate mode, which does not require
creation of objects, and QD3D can write objects in immediate mode.)

3D Metafile 1.5 Reference

1260 Introduction

Each class of objects, and thus each object, is correlated with a particular node
in that structure. We use the terms parent and child to describe the relationships
among objects located at immediately adjacent and connected nodes in the
structure. For example, a color attribute may be included in a set of attributes
that is assigned to a geometric object. In that case, the geometric object is a
parent of the attribute set, which in turn is a parent of the color attribute, while
the color attribute is a child of the attribute set, which in turn is a child of the
geometric object. See the book 3D Graphics Programming With QuickDraw 3D for
complete details on this approach to the classification of 3D graphics objects.

A metafile is simply a sequence or list of one or more valid metafile objects.
Each metafile must contain exactly one 3D metafile header, and this header
must be the first object to occur in the file. Objects following the header may
occur in any order permitted by the metafile class hierarchy. Currently, every
object that begins in a metafile must be wholly contained in that file; thus, it is
not legal to truncate the description of an object at the end of a file.

Note
For examples of complete 3D metafiles, see “Polyhedra,”
beginning on page 1331, and “Attribute Arrays,” beginning
on page 1350. ◆

A metafile object’s data can take two forms:

■ data that is itself another metafile object

■ data that is not another metafile object

Collectively the 2nd type of data makes up the root object. The data in a root
object is some combination of the basic data types (see “Basic Data Types,”
beginning on page 1261). If a metafile object contains other metafile objects
(called subobjects), then the entire object is enclosed in a container. The first
item in the container is the root object, and the subobjects take up the rest of the
container. See “Containers,” beginning on page 1292.

This document defines a format for ASCII text files and also defines a format for
binary files. The two formats incorporate the same functional features, and
there is a close correspondence between their components. Most objects are
represented very similarly in the two formats. However, some objects, such as
file pointers, are represented differently, as described below. Any text metafile
can be converted to a binary metafile, and vice versa, without loss of
information.

3D Metafile 1.5 Reference

Basic Data Types 1261

The metafile file format permits objects to be labeled and referenced: if the same
object appears more than once in a metafile, only the first occurrence need be
written out fully. All other occurrences take the form of a reference to that first
occurrence. The referencing machinery makes use of three special entities: file
pointers, reference objects, and table of contents objects. A table of contents
provides a complete or partial catalog of the items contained in a metafile. For
details, see “File Pointers,” beginning on page 1272, “Reference Objects,”
beginning on page 1285, and “Tables of Contents,” beginning on page 1279.

Note that a metafile is not itself a database and does not have the capabilities of
a database. Applications that wish to apply the capabilities of a database to the
contents of a metafile must connect that file to a preexisting database program.

If desired, the objects in a metafile can be organized by adding them to groups.
Almost all objects can be added to one or another of the available groups.
Groups are themselves objects, and they can be nested, so that more complex
objects can be created that have as much hierarchical structure as desired. See
“Groups,” beginning on page 1473.

The strategy of exposition is as follows: we begin with the basic data types.
From these we define the defined data types. This is followed by a discussion of
abstract (or structural) data types, which are part of the structure of a metafile
object. Next is a section containing descriptions of six special metafile objects.
This is followed by a section that contains examples illustrating the structure of
metafile objects, especially the cross-referencing machinery. The remainder of
this document describes the remaining metafile objects.

Basic Data Types 22

All metafile object specifications, including specifications of custom objects you
define yourself, must use only the following basic data types. All other data
types are defined from these. This means that your read and write code need
only contain routines to read and write these data types.

If you are using Apple QuickDraw 3D, special metafile types corresponding to
the first ten types below are declared in QD3DIO.h. (TQ3Uns8, TQ3Uns16, etc.)
QD3DIO.h also contains prototypes for routines to read and write each of these
types. Additional basic data types may be introduced in the future if the need
for them arises.

3D Metafile 1.5 Reference

1262 Basic Data Types

Unsigned Integer Data Types 22

Uns8 An unsigned 8-bit integer.
Uns16 An unsigned 16-bit integer.
Uns32 An unsigned 32-bit integer.
Uns64 An unsigned 64-bit integer.
In binary metafiles, Uns64 is a 64-bit quantity; in text metafiles, it is represented
by the following struct:

typedef struct Uns64 {

Uns32 hi

Uns32 lo

} Uns64

Signed Integer Data Types 22

Int8 A signed 8-bit integer.
Int16 A signed 16-bit integer.
Int32 A signed 32-bit integer.
Int64 A signed 64-bit integer.
In binary metafiles, Int64 is a 64-bit quantity; in text metafiles, it is represented
by the following struct:

typedef struct Int64 {

Int32 hi

Uns32 lo

} Int64

Floating-Point Integer Data Types 22

Float32 A single-precision 32-bit floating-point number.
Float64 A double-precision 64-bit floating-point number.
Floating point numbers must be represented as specified by the IEEE
floating-point standard (IEEE 754). For details, consult the standard itself. If you
are working with Power Macintosh computers, the book Inside Macintosh:
PowerPC Numerics may be useful.

3D Metafile 1.5 Reference

Basic Data Types 1263

Strings 22

In a text file, a string is a sequence of ASCII text symbols enclosed in double
quotation marks.

Only the following escape sequences may occur in a text file string:

\n newline
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\' single quotation mark
\" double quotation mark
In a binary file, a string is represented by a string of zero-terminated padded
characters. The size of a string in a binary file is determined as follows (note
that we add 1 to the length to account for the terminating \0):

len = strlen(string) + 1;

remainder = len % 4;

pad = ((remainder > 0) ? (4 - remainder) : 0);

size = len + pad;

Raw Data 22

Raw data is used to store information that is platform-dependent or is
inherently not alphanumeric.

In a text file, raw data is stored as hexadecimal strings prefixed by the
characters ' 0x ' . Strings of raw data are not padded in text files. However, your
application may pad them if you wish.

In a binary file, raw data is stored as sequences of bytes, padded to a 4-byte
boundary. The size of raw data is computed as follows (the computation differs
from that for string in that raw data doesn’t require a terminating \0):

remainder = radDataSize % 4;

pad = ((remainder > 0) ? (4 - remainder) : 0);

size = radDataSize + pad;

3D Metafile 1.5 Reference

1264 Defined 3D Data Types

Symbolic Constants 22

The metafile format for many 3DMF objects includes fields that can take values
from a predefined range of constants. In the C programming language, such
constants would be defined by means of enumerations or #defines. (For
examples, see the QD3D interface files.) In C, this means that a symbolic
constant is associated with a particular numerical value. This kind of correlation
between symbolic constant and numerical value is also maintained in the
metafile, in the following way: the symbolic constant appears in the text
metafile, and the corresponding numerical value appears in the binary metafile.

The symbolic constants that appear in text metafiles may include either text
characters or digits, but may not include blank spaces or punctuation marks.
The logical ’or’ symbol (|) is used to catenate symbolic constants that function
as bitfields.

The corresponding numbers that appear in binary metafiles take the form of
unsigned 32-bit integers such as (in hexadecimal) 0x00000001 , 0x0000000E .

3DMF contains two basic symbolic constants, Boolean and Switch . The metafile
representation of an enumerated Boolean type is:

Text Binary

False 0x00000000
True 0x00000001
The metafile representation of an enumerated Switch type is:
Text Binary

Off 0x00000000
On 0x00000001

Defined 3D Data Types 22

The following 3D data types are defined using the basic data types described in
the previous section. These definitions are obviously convenient when giving
the specifications below. But it’s good to keep in mind that these types are not
distinguished in the metafile format itself. For example, a three-dimensional
point in a metafile is just three successive 32 bit quantities; the metafile contains
no grouping device that would indicate that these 96 bits make up a point.
Given the metafile itself, one may not be able to tell whether these are three

3D Metafile 1.5 Reference

Defined 3D Data Types 1265

Float32 , three Int32 , or three Uns32. In a binary metafile, additionally, one
would not be able to tell whether these are six Int16 , twelve Uns8, etc. And in a
text metafile, additionally, one may not be able to tell whether these are three
Int16 or three Uns8.
Also, Macintosh QuickDraw 3D does not have distinguished metafile types for
the defined data types in this section. QD3DIO.h does contain routines to read
and write many of them, but they takes as arguments the regular data types
used in the core API—for example, TQ3Point2D .

Two-Dimensional Points 22

typedef struct Point2D {

Float32 x;

Float32 y;

} Point2D;

typedef struct DPoint2D {

Float64 x;

Float64 y;

} DPoint2D;

Three-Dimensional Points 22

typedef struct Point3D {

Float32 x;

Float32 y;

Float32 z;

} Point3D;

typedef struct DPoint3D {

Float64 x;

Float64 y;

Float64 z;

} DPoint3D;

3D Metafile 1.5 Reference

1266 Defined 3D Data Types

Three-Dimensional Rational Points 22

typedef struct RationalPoint3D {

Float32 x;

Float32 y;

Float32 w;

} RationalPoint3D;

typedef struct DRationalPoint3D {

Float64 x;

Float64 y;

Float64 w;

} DRationalPoint3D;

Four-Dimensional Rational Points 22

typedef struct RationalPoint4D {

Float32 x;

Float32 y;

Float32 z;

Float32 w;

} RationalPoint4D;

typedef struct DRationalPoint4D {

Float64 x;

Float64 y;

Float64 z;

Float64 w;

} DRationalPoint4D;

Note
Three– and four–dimensional points are used to represent
two– and three–dimensional points respectively in
homogeneous coordinate systems. ◆

3D Metafile 1.5 Reference

Defined 3D Data Types 1267

Color Data Types 22

typedef struct RGBColor {

Float32 red;

Float32 green;

Float32 blue;

} RGBColor;

typedef struct ARGBColor {

Float32 alpha;

Float32 red;

Float32 green;

Float32 blue;

} ARGBColor;

IMPORTANT

The values in the fields of a color data type must lie in the
closed interval [0, 1]. 0 is the minimum value; 1 is the
maximum value. ▲

The 3D metafile currently supports only the RGB (red, green, blue) color model
(as opposed to color models such as HSV, LAB, etc.).

Two-Dimensional Vectors 22

typedef struct Vector2D {

Float32 x;

Float32 y;

} Vector2D;

typedef struct DVector2D {

Float64 x;

Float64 y;

} DVector2D;

3D Metafile 1.5 Reference

1268 Defined 3D Data Types

Three-Dimensional Vectors 22

typedef struct Vector3D {

Float32 x;

Float32 y;

Float32 z;

} Vector3D;

typedef struct DVector3D {

Float64 x;

Float64 y;

Float64 z;

} DVector3D;

Parameterizations 22

typedef struct Param2D {

Float32 u;

Float32 v;

} Param2D;

typedef struct Param3D {

Float32 u;

Float32 v;

Float32 w;

} Param3D;

typedef struct DParam2D {

Float64 u;

Float64 v;

} DParam2D;

3D Metafile 1.5 Reference

Defined 3D Data Types 1269

typedef struct DParam3D {

Float64 u;

Float64 v;

Float64 w;

} DParam3D;

Tangents 22

typedef struct Tangent2D {

Vector3D uTangent;

Vector3D vTangent;

} Tangent2D;

typedef struct Tangent3D {

Vector3D uTangent;

Vector3D vTangent;

Vector3D wTangent;

} Tangent3D;

typedef struct DTangent2D {

DVector3D uTangent;

DVector3D vTangent;

} DTangent2D;

typedef struct DTangent3D {

DVector3D uTangent;

DVector3D vTangent;

DVector3D wTangent;

} DTangent3D;

Matrices 22

typedef Float32 Matrix3x3 [3][3];

typedef Float32 Matrix4x4 [4][4];

3D Metafile 1.5 Reference

1270 Abstract Data Types

typedef Float64 DMatrix3x3 [3][3];

typedef Float64 DMatrix4x4 [4][4];

Abstract Data Types 22

The 3D Metafile file format defines the following three abstract (more
accurately, structural) data types: object type, size, and file pointer. They are
called structural because they are part of the structure needed to represent
objects.

Object Type 22

Every metafile object has a type. In a text file, an object type is expressed by a
character string, such as Polygon . In a binary file, an object type is expressed by
a 4-byte code, such as plyg . In both text and binary files, every object
specification begins with an object type.

The metafile file format allows you to introduce new types of custom objects. A
new type can be introduced anywhere in a file, so long as its format, and the
locations of its occurrences, meet the basic conditions described in this
document. For Version 1.5 of the Metafile specification, in binary files only, if the
binary 4-byte code is <= -1, then the first occurrence of the 4-byte code must be
preceded by a Type object. The Type object establishes a correlation between the
character string encoding of the type and the 4-byte code. In Version 1.5, the
4-byte code is dynamically allocated on a per-metafile basis, and may vary from
metafile to metafile. It is the character string encoding of the type that remains
fixed. See “Types,” beginning on page 1290.

The following section contains an example of an object type.

Size 22

Size fields appear only in binary metafiles. They specify the size (i.e. the extent)
of an object, and so determine its end. In a text file, the extent of an object is
determined by parentheses; (specifies its beginning and) its end. Here’s an
example of a text file:

3D Metafile 1.5 Reference

Abstract Data Types 1271

Polygon (# object type

3 # number of vertices

0 0 0 # first vertex

1 0 0 # second vertex

0 1 0 # third vertex

)

This polygon can be viewed as a structure having two fields. The value in the
first field is an unsigned 32-bit integer and the value in the second field is an
array of three three-dimensional points. The size of an unsigned 32-bit integer is
4 bytes and the size of a three-dimensional point is 12 bytes, so the size of the
above polygon is 40 bytes.

In a binary file, an object specification begins with a 4-byte type code. That is
immediately followed by 4 bytes that specify the size of the object. The size
does not include the 4-byte type code, nor the 4-byte size specification itself.
Thus, the size of the above polygon is 40 bytes, not 44 or 48.

The above polygon would be specified in a binary file as follows:

00: 706C6967 plyg # object type

04: 00000028 40 # object size

08: 00000003 3 # number of vertices

0A: 00000000 0.0 # x coordinate of first vertex

10: 00000000 0.0 # y coordinate of first vertex

14: 00000000 0.0 # z coordinate of first vertex

18: 3F800000 1.0 # x coordinate of second vertex

.

.

An object may be of size 0. In a text file, an object of size 0 is described by the
type-identifying string followed by a pair of empty parentheses. For example,
AttributeSet () specifies an object of size 0. Some objects have a defined
default specification. If such an object is represented as being of size 0, it is
understood that the default specification is intended. A binary metafile object of
size 0 consists of its 4-byte type ID, followed by the 4-byte size specification
(which has value 0) and nothing else.

All binary metafile objects are padded to 4-byte boundaries; thus, the size of an
object is always a multiple of 4.

3D Metafile 1.5 Reference

1272 Abstract Data Types

File Pointers 22

DESCRIPTION

A metafile file pointer indicates the location of another object in that metafile, to
which it points. A file pointer and the object to which it points (called the target
object) must occur in the same file. A target object may occur before or after an
associated file pointer in a metafile. A file pointer may fail to have a target
object; such a file pointer is null. File pointers may occur both in ASCII text
metafiles and in binary metafiles. A file pointer is neither declared nor
initialized; it is identified as such by the positions in which it may appear and
(in a text file) by the type of expression used to represent it.

In a binary metafile, a file pointer is an unsigned 64-bit integer that specifies the
address or location of its target object in the metafile. The generator of a binary
metafile must determine the number of bytes by which the beginning of the
target object is offset from the beginning of the header in order to write the
correct value of a pointer to that object. (The beginning of the target object is the
begining of its 4-byte type identifier.) A metafile generator must update that file
pointer whenever any new objects are inserted between the beginning of the
header and the beginning of the target object.

Note
A file pointer is offset relative to the beginning of the 3DMF
header of the metafile in which it occurs, not relative to the
end of the header . ◆

In an ASCII text metafile, a file pointer is represented by a character string
composed of at least two characters, the last of which is a right angle bracket
(>). Thus p> and Arrow> are file pointers; p, >, and Arrow are not. In a text file, the
target object of a file pointer must bear a label corresponding to that file pointer.
The label corresponding to a file pointer is the result of omitting the final right
angle bracket from the string representing that file pointer. For example, the
label corresponding to string5> is string5 . Such a label is always followed
immediately by a colon and then, on a new line, by the target object:

string5:
targetobject

Each file pointer may correspond to at most one label, and each label may
correspond to at most one file pointer. Metafiles of type normal will typically
contain labels that are not being pointed to by a file pointer, because the code

3D Metafile 1.5 Reference

Abstract Data Types 1273

that writes the metafile must write a label for every shared object. It must do
this because it cannot predict whether the object about to be written will be
written a second time (at which point it will be written as a reference and so
will have to make use of a file pointer to that label).

Two types of file pointers may occur in a metafile, corresponding to two types
of target object a file pointer may have. The target object of a file pointer of the
first type is a table of contents; such a file pointer is meant to indicate the
location of a table of contents and serves no other purpose. A file pointer of this
type must occur in the fourth field of each header. A file pointer of this type
must also occur in the first field of each table of contents; this pointer points to
the location of the next subsequent table of contents, if one exists. A file pointer
of this type may occur in no other position.

The target object of a file pointer of the second type must be either an object of
type shared, or a container with root object of type shared. (To determine
whether an object is of type shared, check its description in this document.) The
root object of a container may not be the target object of a file pointer. The
purpose of a file pointer of this type is to enable the metafile writer to make
repeated reference to a target object without repeating that object’s definition.
(A file pointer of this type may occur only in the second field of a table of
contents entry; thus, a metafile that contains file pointers of this type must
include at least one table of contents.) The way in which repeated reference to
an object is accomplished through the use of file pointers of this type is
explained in the next paragraph.

An application may permit a user to make reference in one context to an object
specified in another context. The 3DMF specification supports both reference to
another object in the same metafile, and reference to an object in another
metafile. We use the term external reference whenever we wish to talk about
the second of these; the first is simply termed a reference. This section discusses
references; external references are discussed in “External Reference Objects,”
beginning on page 1286.

A typical case of using references is to repeatedly use the same geometry but
make it appear in different locations through appropriate uses of transforms (an
example is given in “Examples of Metafile Structures,” beginning on
page 1295). Another case is to apply the same texture shader to several different
objects, or different faces of objects.

In a metafile, reference to objects involves several components: a file pointer, a
target object, an integer, an entry in a table of contents, and a special metafile
object called a reference object. (In a text file, the label that immediately

3D Metafile 1.5 Reference

1274 Abstract Data Types

precedes the object pointed to by the file pointer must also be present.) The
object to be referenced must be the target object of a file pointer. That file
pointer must appear together with an appropriately chosen integer, called a
reference ID, in an entry in a table of contents located in the file containing the
target object. (If that file contains no table of contents, then a table of contents
must be created.) The reference ID associated with that file pointer must be the
data of a reference object, one occurrence of which must be placed at each
position at which the target object is to be referenced. In a text file, a reference
object looks like this:

Reference (2)

The target object, file pointer, table of contents, and reference object must all
occur in the same file. There may be at most one file pointer to any target object;
thus, once a reference ID has been associated with a pointer to a target object in
a table of contents entry, that refID is the only integer that may be used to
reference that target object. If a metafile contains a reference object with a
reference ID that does not appear in the table of contents, then obviously the
reference cannot be resolved and the read call on the reference object should
return NULL. Many metafile readers would view this as an error in reading, so
metafiles containing reference objects with unresolved refID values are
regarded as incorrect.

Clearly, a metafile reader must be programmed to recognize and to respond
appropriately to reference objects, tables of contents, file pointers (and perhaps
labels) and not to confuse them with other types of objects. As noted, a metafile
may contain file pointers and labels that are idle. A metafile reader cannot
determine whether a file pointer or label is idle by inspection of that object
alone, so it must be able to read these objects whether or not they’re idle.

EXAMPLE

Here is an example of the legal use of file pointers in an ASCII text metafile:

Note
In this and other examples, the text metafile is followed by
its equivalent binary metafile. ◆

3D Metafile 1.5 Reference

Abstract Data Types 1275

3DMetafile (1 5 Normal tableofcontents0>)# header; includes pointer to TOC

line2: # label

Line (# target object

0 0 0 1 0 0)

translate3:

Translate (0 1 0)

Reference (1) # reference object with refID

tableofcontents0: # label for TOC

TableOfContents (

tableofcontents1> # next TOC; may be idle

2 # reference seed

-1 # typeSeed

1 # tocEntryType

16 # tocEntrySize

1 # nEntries

1 line2> # TOC entry; includes refID,

filePtr, Line# and type

identifier

)

The file pointer line2> is used to place its target object within the scope of a
Translate object; thus, it adds to the model a copy of the original line that’s
been transformed by a translation.

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2020 3DMF············

0010 2020 2020 2020 2058 6C69 6E65 2020 2018 ·······Xline····

0020 2020 2020 2020 2020 2020 2020 3F80 2020 ············?···

0030 2020 2020 2020 2020 7472 6E73 2020 200C ········trns····

0040 2020 2020 3F80 2020 2020 2020 7266 726E ····?·······rfrn

0050 2020 2004 2020 2001 746F 6320 2020 202C ········toc····,

0060 2020 2020 2020 2020 2020 2002 FFFF FFFF ················

0070 2020 2001 2020 2010 2020 2001 2020 2001 ················

0080 2020 2020 2020 2018 6C69 6E65 ········line

3D Metafile 1.5 Reference

1276 Metafile Object Specifications

Metafile Object Specifications 22

The following sections contain descriptions of all currently valid metafile
objects. Each section concerns a particular type of metafile object, and indicates
the required form of specification for objects of that type in text files and in
binary files. Each section also includes an example of a valid text file object
specification and other pertinent information.

Special Metafile Objects 22

This section describes six special metafile objects: headers, tables of contents,
reference objects, external reference objects, types, and containers.

3D Metafile Header 22

LABELS

ASCII 3DMetafile

Binary 3DMF (= 0x33444D46)

METAFILE FLAGS

Each metafile header includes a flag that indicates the uses to which file
pointers and reference objects are put in that metafile. The left column below
gives the form of the flag found in text metafiles, while the right colun gives the
form found in binary metafiles.

Normal 0x00000000

Stream 0x00000001

Database 0x00000002

Constant descriptions

Normal This flag indicates that objects in the metafile can be
instantiated by reference, using the mechanism of file

3D Metafile 1.5 Reference

Metafile Object Specifications 1277

pointers and reference objects described above. The table of
contents contains only entries for objects that actually have
at least one instantiation by reference. (Note that normal
metafiles are not prohibited from having the same full
description of an object occur in two different places in the
file.) In order to read a normal metafile, a parser should
have random access to that file.

Stream This flag indicates that there are no internal references in
the metafile. Objects cannot be instantiated by reference;
the complete specification of an object must occur at each
place in the file at which that object is to be instantiated. In
order to read a stream metafile, a parser need have
sequential access only.

Database This flag indicates that every shared object in the metafile
that is not itself a reference object is the target object of a
file pointer appearing in a table of contents in the metafile.
That is, every object that could be instantiated by reference
and is not itself a reference object must be listed in a table
of contents (whether or not that object has actually been
instantiated by reference in this file). All of the shared
contents of a database metafile may be discovered by a
parser through examination of its tables of contents. Note
that an object can be both stream and database; this means
that there are no reference objects but the metafile contains
a complete table of contents for the shared objects.

DATA FORMAT

Uns16 majorVersion

Uns16 minorVersion

MetafileFlags flags

FilePointer tocLocation

Field descriptions
majorVersion The version number of the metafile. Currently, the version

number is 1.

minorVersion The revision number of the metafile. Currently, the revision
number is 5.

flags The metafile header flag.

3D Metafile 1.5 Reference

1278 Metafile Object Specifications

tocLocation A file pointer to the location (in the metafile) of a table of
contents object. If the value in this field is NULL, then the
entire metafile must be parsed in order to find any extant
tables of contents.

DATA SIZE

20

DESCRIPTION

A metafile header is a structure having four fields. The first two fields specify
the version and revision numbers of the metafile. The third field contains a flag
indicating the type of the metafile (normal, stream, or database). The fourth
field contains a pointer to the location of a table of contents for the metafile. A
metafile header in a file indicates that the file is a metafile and provides some
information about its contents.

Each metafile must contain exactly one metafile header, and this header must
precede every other object in that file. Though each metafile header contains a
pointer to the location of a table of contents, there need be no corresponding
table of contents in the metafile.

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1279

EXAMPLE

3DMetafile (1 5 Normal tableofcontents0>)

box2:

Box (

0 0 1 # orientation

1 0 0 # majorAxis

0 0 0 # minorAxis

0 1 0 # origin

)

Tables of Contents 22

LABELS

ASCII TableOfContents

Binary toc (= 0x746F6320)

DATA TYPE DEFINITION: TOC ENTRY TYPE 0

TOCEntry (

Uns32 refID

FilePointer objLocation

)

SIZE

12

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2020 3DMF············

0010 2020 2020 2020 2020 626F 7820 2020 2030 ········box····0

0020 2020 2020 2020 2020 3F80 2020 3F80 2020 ········?···?···

0030 2020 2020 2020 2020 2020 2020 2020 2020 ················

0040 2020 2020 2020 2020 3F80 2020 2020 2020 ········?·······

3D Metafile 1.5 Reference

1280 Metafile Object Specifications

DATA TYPE DEFINITION: TOC ENTRY TYPE 1

TOCEntry (

Uns32 refID

FilePointer objLocation

ObjectType objType

)

SIZE

16

Field descriptions
refID The value of the refID field of a reference object.

objLocation A pointer to the location of a metafile object that can be
referenced.

objType The type identifier of the target object of the file pointer
listed in the objLocation field. In a text metafile, this field
should appear on a separate line.

Note
Type 1 TOC entries allow a parser to determine the type of
a referenced object by inspecting tables of contents; type 0
TOC entries do not. Because QD3D 1.5 contains a new call
(Q3File_GetExternalReferences) that makes use of this
feature, in QD3D 1.5 the table of contents in both normal
and database metafiles are written as type 1. In QD3D 1.0,
the TOC entries in a normal metafile were written as type 0;
the TOC entries in a database metafile were written as
type 1. ◆

DATA FORMAT

FilePointer nextTOC

Uns32 refSeed

Int32 typeSeed

Uns32 tocEntryType

3D Metafile 1.5 Reference

Metafile Object Specifications 1281

Uns32 tocEntrySize

Uns32 nEntries

TOCEntry tocEntries[nEntries]

Field descriptions
nextTOC A pointer to the location of the next table of contents in the

metafile. (If there is no subsequent table of contents, then
this pointer is idle. In a text file this means there is a file
pointer but no label that resolves it. In a binary file this
means that the file pointer is zero.)

refSeed The least integer that may occur in the refID field of a
reference object added to the metafile after this table of
contents is written. The value in this field must be greater
than 0 and is incremented whenever a new reference object
is added to the preceding section of the metafile or is listed
in a TOC entry added to this table of contents.

typeSeed The greatest integer that may occur in the typeID field of a
type object added to the metafile after this table of contents
is written. The value in this field must be less than 0 and is
decremented whenever a new type object is added to the
preceding section of the metafile.

tocEntryType A numerical constant that indicates the type of the entries
contained in the table of contents. The permitted values of
this field are 0 and 1. A value of 0 indicates that all entries
in the array tocEntries[] are of type 0; a value of 1
indicates that all entries in that array are of type 1. The
occurrence of this constant should cause no confusion, as
all entries in any particular table of contents must be of the
same type.

tocEntrySize A numerical constant that indicates the binary sizes of the
entries contained in the table of contents. The permitted
values of this field are 12 and 16. If the value in the
previous field is 0, then the value in this field must be 12; if
the value in the previous field is 1, then the value in this
field must be 16. Again, this constant should cause no
confusion, as all entries in any particular table of contents
must be of the same size.

3D Metafile 1.5 Reference

1282 Metafile Object Specifications

nEntries The number of entries contained in the table of contents;
that is, the size of the array tocEntries[] . If the value in
this field is 0, then that array is empty.

tocEntries[] An array of TOCEntry objects, all of which are of the same
entry type.

DATA SIZE

20 + (tocEntrySize * nEntries)

DESCRIPTION

A table of contents is a structure that provides a record of associations between
reference IDs and file pointers. These associations are specified by the TOC
entries of the table of contents. A metafile reader must use its tables of contents
to discover linkages between reference objects and file pointers, as there is no
other record of those associations. See “File Pointers,” beginning on page 1272
and “Reference Objects,” beginning on page 1285 for complete details regarding
these objects.

A metafile that contains a reference to another object (by means of a reference
object) must include at least one table of contents.

If a metafile contains more than one table of contents, then each table of
contents should continue the record provided by the immediately previous
table of contents (if such exists) without duplication. A table of contents may
contain information about objects occurring before or after it or both, but
should not contain information about any object that either precedes an object
mentioned in a previous table of contents or follows an object mentioned in a
subsequent table of contents.

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1283

CHILD OBJECTS

None.

EXAMPLE

3DMetafile (1 5 Database

tableofcontents0>)

box2:

Container (

Box (

0 0 1 # orientation

1 0 0 # majorAxis

0 0 0 # minorAxis

0 1 0 # origin

)

attributeset3:

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

)

)

translate4:

Translate (3 0 0)

Reference (1)

translate5:

Translate (0 3 0)

Reference (1)

translate6:

Translate (-3 1 0)

Reference (1)

tableofcontents0:

TableOfContents (

tableofcontents1> # next TOC

6 # reference seed

-1 # typeSeed

1 # tocEntryType

16 # tocEntrySize

3D Metafile 1.5 Reference

1284 Metafile Object Specifications

5 # nEntries

1 box2>

Box

2 attributeset3>

AttributeSet

3 translate4>

Translate

4 translate5>

Translate

5 translate6>

Translate

)

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2002 3DMF············

0010 2020 2020 2020 20DC 636E 7472 2020 205C ········cntr···\

0020 626F 7820 2020 2030 2020 2020 2020 2020 box····0········

0030 3F80 2020 3F80 2020 2020 2020 2020 2020 ?···?···········

0040 2020 2020 2020 2020 2020 2020 2020 2020 ················

0050 3F80 2020 2020 2020 636E 7472 2020 201C ?·······cntr····

0060 6174 7472 2020 2020 6B64 6966 2020 200C attr····kdif····

0070 3F66 6666 3F66 6666 3E4C CCCD 7472 6E73 ?fff?fff>L··trns

0080 2020 200C 4040 2020 2020 2020 2020 2020 ····@@··········

0090 7266 726E 2020 2004 2020 2001 7472 6E73 rfrn········trns

00A0 2020 200C 2020 2020 4040 2020 2020 2020 ········@@······

00B0 7266 726E 2020 2004 2020 2001 7472 6E73 rfrn········trns

00C0 2020 200C C040 2020 3F80 2020 2020 2020 ·····@··?·······

00D0 7266 726E 2020 2004 2020 2001 746F 6320 rfrn········toc·

00E0 2020 206C 2020 2020 2020 2020 2020 2006 ···l············

00F0 FFFF FFFF 2020 2001 2020 2010 2020 2005 ················

0100 2020 2001 2020 2020 2020 2018 626F 7820 ············box·

0110 2020 2002 2020 2020 2020 2058 6174 7472 ···········Xattr

0120 2020 2003 2020 2020 2020 207C 7472 6E73 ···········|trns

0130 2020 2004 2020 2020 2020 209C 7472 6E73 ············trns

0140 2020 2005 2020 2020 2020 20BC 7472 6E73 ············trns

3D Metafile 1.5 Reference

Metafile Object Specifications 1285

Reference Objects 22

LABELS

ASCII Reference

Binary rfrn (= 0x7266726E)

DATA FORMAT

Uns32 refID

Field descriptions
refID A positive integer. The reference object with this refID is

linked to a file pointer by means of a table of contents entry
that contains both the refID and the file pointer.

DATA SIZE

4

DESCRIPTION

A reference object is used to permit an object defined elsewhere to be referenced
at one or more locations in a metafile. See “File Pointers,” beginning on
page 1272, for details.

PARENT HIERARCHY

Shared.

PARENT OBJECTS

A reference object sometimes but not always has a parent object.

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

1286 Metafile Object Specifications

EXAMPLE

See the example in “Tables of Contents,” beginning on page 1279.

External Reference Objects 22

LABELS

ASCII ExternalReference

Binary rfex (= 0x72666578)

DATA FORMAT

Uns32 refID

Field descriptions
refID A positive integer. The ExternalReference object with this

refID is linked to a file pointer in the external file by means
of a table of contents entry in the external file that contains
both the refID and the file pointer. (The external file itself is
specified by means of a subobject; see below.)

DATA SIZE

4

DESCRIPTION

An external reference object is used to permit an object defined in another file to
be referenced at one or more locations in a metafile.

Version 1.0 of this document described a design for external references that was
not implemented in QD3D 1.0. In implementing external references in QD3D
1.5 we have decided on a somewhat different design. Its main advantage is that
it allows the table of contents to contain the ExternalReference type, which
means that tables of contents can be searched for all external references.

Suppose that in metafile F2 you want to reference an object ObjR that’s
contained in some other metafile F1. For this to be possible, F1 must have an

3D Metafile 1.5 Reference

Metafile Object Specifications 1287

entry to object ObjR in its table of contents. In metafile F2, a reference to ObjR is
made by an external reference object. Its syntax is:

Container (

ExternalReference (2)

CString ("ExtRefTransform.TXT"

)

)

In this example, 2 is the reference ID, which is the number used by the TOC to
find the object in F1. The string "ExtRefTransform.TXT" is the name of file F1
enclosed in quotation marks.

There are two conditions that must be met by the TOC of any metafile that
contains ExternalReference objects:

■ The TOC must have tocEntryType = 1, so that the objectType of each object
appears in the tocEntry .

■ The TOC must contain an entry for each ExternalReference object in the
metafile. This is so even if the metafile type is Normal and the
ExternalReference object only appears once in the metafile.

These are needed so that the QD3D call Q3File_GetExternalReferences works
properly. This call looks at the objectTypes in the TOC to determine whether
ExternalReference objects are present.

PARENT HIERARCHY

Shared.

PARENT OBJECTS

An ExternalReference object sometimes but not always has a parent object.

CHILD OBJECTS

C string that gives the pathname of the file that contains the object to be
externally referenced, as described above.

3D Metafile 1.5 Reference

1288 Metafile Object Specifications

EXAMPLES

3DMetafile (1 5 Normal tableofcontents4>)

lambertillumination6:

LambertIllumination ()

translate7:

Container (

ExternalReference (1)

cstring8:

CString (

"ExtRefTransformAA.TXT"

)

)

box9:

Container (

ExternalReference (2)

cstring10:

CString (

"ExtRefTransformAA.TXT"

)

)

Reference (1)

tableofcontents4:

TableOfContents (

tableofcontents5> # next TOC

3 # reference seed

-1 # typeSeed

1 # tocEntryType

16 # tocEntrySize

2 # nEntries

1 translate7>

ExternalReference

2 box9>

ExternalReference

)

3D Metafile 1.5 Reference

Metafile Object Specifications

1289

3DMetafile (1 5 Database

tableofcontents0>)

translate2:

Translate (-40 30 20)

box3:

Box (

25 0 0 # orientation

0 10 0 # majorAxis

0 0 20 # minorAxis

-30 -5 -10 # origin

)

tableofcontents0:

TableOfContents (

tableofcontents1> # next TOC

3 # reference seed

-1 # typeSeed

1 # tocEntryType

16 # tocEntrySize

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2020 3DMF············

0010 2020 2020 2020 2094 6C6D 696C 2020 2020 ········lmil····

0020 636E 7472 2020 202C 7266 6578 2020 2004 cntr···,rfex····

0030 2020 2001 7374 7263 2020 2018 4578 7452 ····strc····ExtR

0040 6566 5472 616E 7366 6F72 6D41 412E 4249 efTransformAA.BI

0050 4E20 2020 636E 7472 2020 202C 7266 6578 N···cntr···,rfex

0060 2020 2004 2020 2002 7374 7263 2020 2018 ········strc····

0070 4578 7452 6566 5472 616E 7366 6F72 6D41 ExtRefTransformA

0080 412E 4249 4E20 2020 7266 726E 2020 2004 A.BIN···rfrn····

0090 2020 2001 746F 6320 2020 203C 2020 2020 ····toc····<····

00A0 2020 2020 2020 2003 FFFF FFFF 2020 2001 ················

00B0 2020 2010 2020 2002 2020 2001 2020 2020 ················

00C0 2020 2020 7266 6578 2020 2002 2020 2020 ····rfex········

00D0 2020 2054 7266 6578 ···Trfex

3D Metafile 1.5 Reference

1290

Metafile Object Specifications

2 # nEntries

1 translate2>

Translate

2 box3>

Box

)

Types 22

LABELS

ASCII

Type

Binary

type (

=

0x74797065

)

DATA FORMAT

Int32 typeID

String owner

Field descriptions

typeID

A negative integer. No two type objects in the same file
may have the same value in this field.

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2002 3DMF············

0010 2020 2020 2020 2064 7472 6E73 2020 200C ·······dtrns····

0020 C220 2020 41F0 2020 41A0 2020 626F 7820 ····A···A···box·

0030 2020 2030 41C8 2020 2020 2020 2020 2020 ···0A···········

0040 2020 2020 4120 2020 2020 2020 2020 2020 ····A···········

0050 2020 2020 41A0 2020 C1F0 2020 C0A0 2020 ····A···········

0060 C120 2020 746F 6320 2020 203C 2020 2020 ····toc····<····

0070 2020 2020 2020 2003 FFFF FFFF 2020 2001 ················

0080 2020 2010 2020 2002 2020 2001 2020 2020 ················

0090 2020 2018 7472 6E73 2020 2002 2020 2020 ····trns········

00A0 2020 202C 626F 7820 ···,box·

3D Metafile 1.5 Reference

Metafile Object Specifications

1291

owner

An ISO 9070 owner string. The value of this field may not
occur in any other type object. The string must not contain
a

#

 character, which is used to demarcate comments in
3DMF.

DATA SIZE

4 +

sizeof(String)

DESCRIPTION

Type objects are used only in conjunction with custom objects, and have a role
only in binary metafiles. The purpose of the type object is to establish a
correlation between the dynamically-allocated 4-byte type identifiers used to
identify types in binary metafiles, and the text string type identifiers that are the
fundamental type identifiers in 3DMF and QD3D. That the text string is the sole
identifier of a custom type, and the 4-byte quantity is only dynamic, is a feature
that is new in Version 1.5. By

dynamic

 we mean that the 4-byte identifier is
created anew each time the custom object is registered by an application. A key
point is that the 4-byte type identifier need not be constant from metafile to
metafile, or from session to session. The 4-byte type identifiers are negative
numbers, starting with –1 and decreasing by 1.

The reason there is no need for type objects in text metafiles is that the 4-byte
identifiers do not appear at all in text metafiles. So there is no need for a type
object that establishes a correlation between a 4-byte identifier and a text string
identifier.

This functionality, which is new in Version 1.5, is reflected in the new ways of
registering custom objects in QD3D 1.5. Otherwise, it is transparent to the user
of the QD3D API.

3D Metafile 1.5 Reference

1292

Metafile Object Specifications

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Containers 22

LABELS

ASCII

Container

Binary

cntr

 (

=

0x636E7472

)

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2020 3DMF············

0010 2020 2020 2020 2070 7479 7065 2020 2014 ·······ptype····

0020 FFFF FFFB 4375 7374 6F6D 203A 2045 6C65 ····Custom·:·Ele

0030 6D44 2020 636E 7472 2020 2028 7365 7420 mD··cntr···(set·

0040 2020 2020 636E 7472 2020 2018 FFFF FFFB ····cntr········

0050 2020 2004 2020 2001 696E 7470 2020 2004 ········intp····

0060 2020 2001 7266 726E 2020 2004 2020 2001 ····rfrn········

0070 746F 6320 2020 202C 2020 2020 2020 2020 toc····,········

0080 2020 2002 FFFF FFFF 2020 2001 2020 2010 ················

0090 2020 2001 2020 2001 2020 2020 2020 2034 ···············4

00A0 7365 7420 set·

3D Metafile 1.5 Reference

Metafile Object Specifications

1293

DATA FORMAT

No data.

DATA SIZE

8

k

 +

Σ

, where

k

 is the number of elements in the container and

Σ

is the sum of
the sizes of those elements. (For each of the

k

 elements, 4 bytes for the type ID
and 4 bytes for the field that holds the element’s size, plus the size of the
element.)

DESCRIPTION

A container is an ordered collection of objects. Containers are used to form
complex objects from simpler objects in ways permitted by the structure of the
metafile object hierarchy. In particular, child objects (also called

subobjects

) are
attached to parent objects (also called the

root

) through the use of containers.
The first object in a container is the parent (or root) object. Every container must
contain at least one object. Containers may be nested. An object may be
instantiated more than once in a hierarchy of nested containers.

The notation for containers in text metafiles is as follows:

Container (

object

0

.

.

.

object

nobjects-1

)

Notations for contained objects are separated by blank spaces rather than by
punctuation marks, as is the case in the notation for other objects having
nonzero size.

The root object of a container must be a shared object, may not be a container
itself, and may not be the target object of a file pointer. The position in the
metafile object hierarchy of the root object of a container constrains the number,
type, and in some cases the order of occurrence of other elements of that
container. Each element of a container other than the root object must be either a
legitimate child object of the root object or another container. In the latter case,

3D Metafile 1.5 Reference

1294

Metafile Object Specifications

the root object of the inner container must be a legitimate child object of the root
object of the outer one.

A container may be the target object of a file pointer.

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

3DMetafile (1 5 Normal tableofcontents0>)

box2:

Container (

Box (

0 0 1 # orientation

1 0 0 # majorAxis

0 0 0 # minorAxis

0 1 0 # origin

)

attributeset3:

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

)

)

3D Metafile 1.5 Reference

Metafile Object Specifications

1295

Examples of Metafile Structures 22

To illustrate the differences among the three types of metafile—stream, normal,
and database—we show how a single model (Figure 22-1) is described in a text
file of each type. The model consists of four occurrences (at different locations)
of a colored box.

Figure 22-1

Four instantiations of a box

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2020 3DMF············

0010 2020 2020 2020 2020 636E 7472 2020 205C ········cntr···\

0020 626F 7820 2020 2030 2020 2020 2020 2020 box····0········

0030 3F80 2020 3F80 2020 2020 2020 2020 2020 ?···?···········

0040 2020 2020 2020 2020 2020 2020 2020 2020 ················

0050 3F80 2020 2020 2020 636E 7472 2020 201C ?·······cntr····

0060 6174 7472 2020 2020 6B64 6966 2020 200C attr····kdif····

0070 3F66 6666 3F66 6666 3E4C CCCD ?fff?fff>L··

3D Metafile 1.5 Reference

1296

Metafile Object Specifications

The following is a complete specification of each colored box shown in Figure
22-1:

3DMetafile (1 5 Normal tableofcontents0>)

box2:

Container (

Box (

0 0 1 # orientation

1 0 0 # majorAxis

0 0 0 # minorAxis

0 1 0 # origin

)

attributeset3:

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

)

)

The expression

Container

(...)

 is used subsequently to abbreviate this
specification. Transforms are used to place the box in various positions.

In a stream file, the specification of the box must occur four times, as shown in
Listing 22-1.

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2020 3DMF············

0010 2020 2020 2020 2020 636E 7472 2020 205C ········cntr···\

0020 626F 7820 2020 2030 2020 2020 2020 2020 box····0········

0030 3F80 2020 3F80 2020 2020 2020 2020 2020 ?···?···········

0040 2020 2020 2020 2020 2020 2020 2020 2020 ················

0050 3F80 2020 2020 2020 636E 7472 2020 201C ?·······cntr····

0060 6174 7472 2020 2020 6B64 6966 2020 200C attr····kdif····

0070 3F66 6666 3F66 6666 3E4C CCCD ?fff?fff>L··

3D Metafile 1.5 Reference

Metafile Object Specifications

1297

Listing 22-1

A stream metafile

3DMetafile (1 5 Stream

tableofcontents0>)

Container (

Box (

0 0 1 # orientation

1 0 0 # majorAxis

0 0 0 # minorAxis

0 1 0 # origin

)

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

)

)

Translate (3 0 0)

Container (

Box (

0 0 1 # orientation

1 0 0 # majorAxis

0 0 0 # minorAxis

0 1 0 # origin

)

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

)

)

Translate (0 3 0)

Container (

Box (

0 0 1 # orientation

1 0 0 # majorAxis

0 0 0 # minorAxis

0 1 0 # origin

)

3D Metafile 1.5 Reference

1298

Metafile Object Specifications

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

)

)

Translate (-3 1 0)

Container (

Box (

0 0 1 # orientation

1 0 0 # majorAxis

0 0 0 # minorAxis

0 1 0 # origin

)

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

)

)

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2001 3DMF············

0010 2020 2020 2020 2020 636E 7472 2020 205C ········cntr···\

0020 626F 7820 2020 2030 2020 2020 2020 2020 box····0········

0030 3F80 2020 3F80 2020 2020 2020 2020 2020 ?···?···········

0040 2020 2020 2020 2020 2020 2020 2020 2020 ················

0050 3F80 2020 2020 2020 636E 7472 2020 201C ?·······cntr····

0060 6174 7472 2020 2020 6B64 6966 2020 200C attr····kdif····

0070 3F66 6666 3F66 6666 3E4C CCCD 7472 6E73 ?fff?fff>L··trns

0080 2020 200C 4040 2020 2020 2020 2020 2020 ····@@··········

0090 636E 7472 2020 205C 626F 7820 2020 2030 cntr···\box····0

00A0 2020 2020 2020 2020 3F80 2020 3F80 2020 ········?···?···

00B0 2020 2020 2020 2020 2020 2020 2020 2020 ················

00C0 2020 2020 2020 2020 3F80 2020 2020 2020 ········?·······

00D0 636E 7472 2020 201C 6174 7472 2020 2020 cntr····attr····

00E0 6B64 6966 2020 200C 3F66 6666 3F66 6666 kdif····?fff?fff

3D Metafile 1.5 Reference

Metafile Object Specifications

1299

Such repetition can make stream files lengthy. However, a stream file can be
read by a parser having only sequential access to that file.

In a normal file, the box is completely specified once and is instantiated by
reference three times. The file pointers and reference objects used to effect
instantiations by reference are listed together in the table of contents. Other
objects able to be referenced (such as the transforms) that are instantiated once
only are not listed in the table of contents. The normal metafile permits the most
compact representation of the model.

Listing 22-2

A normal metafile

3DMetafile (1 5 Normal tableofcontents0>)

box2:

Container (

Box (

0 0 1 # orientation

1 0 0 # majorAxis

0 0 0 # minorAxis

0 1 0 # origin

)

00F0 3E4C CCCD 7472 6E73 2020 200C 2020 2020 >L··trns········

0100 4040 2020 2020 2020 636E 7472 2020 205C @@······cntr···\

0110 626F 7820 2020 2030 2020 2020 2020 2020 box····0········

0120 3F80 2020 3F80 2020 2020 2020 2020 2020 ?···?···········

0130 2020 2020 2020 2020 2020 2020 2020 2020 ················

0140 3F80 2020 2020 2020 636E 7472 2020 201C ?·······cntr····

0150 6174 7472 2020 2020 6B64 6966 2020 200C attr····kdif····

0160 3F66 6666 3F66 6666 3E4C CCCD 7472 6E73 ?fff?fff>L··trns

0170 2020 200C C040 2020 3F80 2020 2020 2020 ·····@··?·······

0180 636E 7472 2020 205C 626F 7820 2020 2030 cntr···\box····0

0190 2020 2020 2020 2020 3F80 2020 3F80 2020 ········?···?···

01A0 2020 2020 2020 2020 2020 2020 2020 2020 ················

01B0 2020 2020 2020 2020 3F80 2020 2020 2020 ········?·······

01C0 636E 7472 2020 201C 6174 7472 2020 2020 cntr····attr····

01D0 6B64 6966 2020 200C 3F66 6666 3F66 6666 kdif····?fff?fff

01E0 3E4C CCCD >L··

3D Metafile 1.5 Reference

1300

Metafile Object Specifications

attributeset3:

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

)

)

translate4:

Translate (3 0 0)

Reference (1)

translate5:

Translate (0 3 0)

Reference (1)

translate6:

Translate (-3 1 0)

Reference (1)

tableofcontents0:

TableOfContents (

tableofcontents1> # next TOC

2 # reference seed

-1 # typeSeed

1 # tocEntryType

16 # tocEntrySize

1 # nEntries

1 box2>

Box

)

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2020 3DMF············

0010 2020 2020 2020 20DC 636E 7472 2020 205C ········cntr···\

0020 626F 7820 2020 2030 2020 2020 2020 2020 box····0········

0030 3F80 2020 3F80 2020 2020 2020 2020 2020 ?···?···········

0040 2020 2020 2020 2020 2020 2020 2020 2020 ················

0050 3F80 2020 2020 2020 636E 7472 2020 201C ?·······cntr····

0060 6174 7472 2020 2020 6B64 6966 2020 200C attr····kdif····

0070 3F66 6666 3F66 6666 3E4C CCCD 7472 6E73 ?fff?fff>L··trns

0080 2020 200C 4040 2020 2020 2020 2020 2020 ····@@··········

3D Metafile 1.5 Reference

Metafile Object Specifications

1301

The pointer

box2>

 is a file pointer correlated with the label

box2

 that precedes
the specification of the box.

Reference (1)

 is a reference object correlated
with

box2>

 (and thus with the specification of the box) in the table of contents.
See “File Pointers,” beginning on page 1272 for an explanation of how
instantiation by reference is accomplished through the use of these objects.

In a database file, the box is also instantiated by reference, and the file pointers
and reference objects used to instantiate it are listed in the table of contents.
With the exception of reference objects themselves, all other objects able to be
referenced (the attribute set which contains the box’s color attributes, and the
transforms) are referenced, and all of these references are listed in the table of
contents.

The contents of a database file can be discovered quickly by inspecting its tables
of contents.

Listing 22-3

A database metafile

3DMetafile (1 5 Database

tableofcontents0>)

box2:

Container (

Box (

0 0 1 # orientation

1 0 0 # majorAxis

0 0 0 # minorAxis

0 1 0 # origin

)

0090 7266 726E 2020 2004 2020 2001 7472 6E73 rfrn········trns

00A0 2020 200C 2020 2020 4040 2020 2020 2020 ········@@······

00B0 7266 726E 2020 2004 2020 2001 7472 6E73 rfrn········trns

00C0 2020 200C C040 2020 3F80 2020 2020 2020 ·····@··?·······

00D0 7266 726E 2020 2004 2020 2001 746F 6320 rfrn········toc·

00E0 2020 202C 2020 2020 2020 2020 2020 2002 ···,············

00F0 FFFF FFFF 2020 2001 2020 2010 2020 2001 ················

0100 2020 2001 2020 2020 2020 2018 626F 7820 ············box·

3D Metafile 1.5 Reference

1302

Metafile Object Specifications

attributeset3:

Container (

AttributeSet ()

DiffuseColor (0.9 0.9 0.2)

)

)

translate4:

Translate (3 0 0)

Reference (1)

translate5:

Translate (0 3 0)

Reference (1)

translate6:

Translate (-3 1 0)

Reference (1)

tableofcontents0:

TableOfContents (

tableofcontents1> # next TOC

6 # reference seed

-1 # typeSeed

1 # tocEntryType

16 # tocEntrySize

5 # nEntries

1 box2>

Box

2 attributeset3>

AttributeSet

3 translate4>

Translate

4 translate5>

Translate

5 translate6>

Translate

)

3D Metafile 1.5 Reference

Metafile Object Specifications

1303

Figure 22-2 shows, side by side, the three principal forms of a metafile.

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2002 3DMF············

0010 2020 2020 2020 20DC 636E 7472 2020 205C ········cntr···\

0020 626F 7820 2020 2030 2020 2020 2020 2020 box····0········

0030 3F80 2020 3F80 2020 2020 2020 2020 2020 ?···?···········

0040 2020 2020 2020 2020 2020 2020 2020 2020 ················

0050 3F80 2020 2020 2020 636E 7472 2020 201C ?·······cntr····

0060 6174 7472 2020 2020 6B64 6966 2020 200C attr····kdif····

0070 3F66 6666 3F66 6666 3E4C CCCD 7472 6E73 ?fff?fff>L··trns

0080 2020 200C 4040 2020 2020 2020 2020 2020 ····@@··········

0090 7266 726E 2020 2004 2020 2001 7472 6E73 rfrn········trns

00A0 2020 200C 2020 2020 4040 2020 2020 2020 ········@@······

00B0 7266 726E 2020 2004 2020 2001 7472 6E73 rfrn········trns

00C0 2020 200C C040 2020 3F80 2020 2020 2020 ·····@··?·······

00D0 7266 726E 2020 2004 2020 2001 746F 6320 rfrn········toc·

00E0 2020 206C 2020 2020 2020 2020 2020 2006 ···l············

00F0 FFFF FFFF 2020 2001 2020 2010 2020 2005 ················

0100 2020 2001 2020 2020 2020 2018 626F 7820 ············box·

0110 2020 2002 2020 2020 2020 2058 6174 7472 ···········Xattr

0120 2020 2003 2020 2020 2020 207C 7472 6E73 ···········|trns

0130 2020 2004 2020 2020 2020 209C 7472 6E73 ············trns

0140 2020 2005 2020 2020 2020 20BC 7472 6E73 ············trns

3D Metafile 1.5 Reference

1304

Metafile Object Specifications

Figure 22-2

Types of metafiles

3DMetafile (0 5 Database Label0>)

Label2:
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)

 Label3:
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Label4:
Translate (2 0 0)

Reference (1)

Label5:
Translate (0 0 -2)

Reference (1)

Label6:
Translate (-2 0 0)

Reference (1)

Label0:
TableOfContents (
 Label1> # next TOC
 6 # reference seed
 -1 # typeSeed
 1 # tocEntryType
 16 # tocEntrySize
 5 # nEntries
 1 Label2>
 Box
 2 Label3>
 GeometryAttributeSet
 3 Label4>
 Translate
 4 Label5>
 Translate
 5 Label6>
 Translate
)

3DMetafile (0 5 Normal Label0>)

Label2:
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Label11:
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Label3:
Translate (2 0 0)

Reference (1)

Label4:
Translate (0 0 -2)

Reference (1)

Label5:
Translate (-2 0 0)

Reference (1)

Label0:
TableOfContents (
 Label1> # next TOC
 2 # reference seed
 -1 # typeSeed
 0 # tocEntryType
 12 # tocEntrySize
 1 # nEntries
 1 Label2>
)

3DMetafile (0 5 Stream Label0>)

Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (2 0 0)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (0 0 -2)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Translate (-2 0 0)
Container (
 Box (
 0 1 0 0 0 1 1 0 0 0 0 0)
 Container (
 GeometryAttributeSet ()
 DiffuseColor (0.9 0.9 0.2)
)
)

Normal organization Stream organization Database organization

3D Metafile 1.5 Reference

Metafile Object Specifications

1305

String Objects 22

C Strings 22

LABELS

ASCII

CString

Binary

strc (= 0x73747263)

DATA FORMAT

String cString

Field descriptions
cString A string constant (that is, a sequence of ASCII characters

enclosed in double-quotation marks). See “Strings,”
beginning on page 1263, for a list of the escape sequences
that may occur in a cString object.

DATA SIZE

sizeof(String)

DESCRIPTION

A C string may be used to include text in a metafile.

PARENT HIERARCHY

Shared, string.

PARENT OBJECTS

None.

3D Metafile 1.5 Reference

1306 Metafile Object Specifications

CHILD OBJECTS

None.

EXAMPLE

cString (

“Copyright Apple Computer, Inc., 1995”

)

Unicode Objects 22

LABELS

ASCII Unicode

Binary uncd (= 0x756E6364)

DATA FORMAT

uns32 length

RawData unicode[length * 2]

Field descriptions
length The length of the encoded text.

unicode[] An array of raw data that encodes text.

DATA SIZE

4 + length * 2

DESCRIPTION

A unicode object may be used to include text in a binary metafile.

3D Metafile 1.5 Reference

Metafile Object Specifications 1307

PARENT HIERARCHY

Shared, String.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Unicode (

6

0x457363686572

)

Geometric Objects 22

This section describes the geometric objects currently supported by the metafile
specification.

Points 22

LABELS

ASCII Point

Binary pnt (= 0x706E7420)

DATA FORMAT

Point3D point

3D Metafile 1.5 Reference

1308 Metafile Object Specifications

Field descriptions
point A three-dimensional point.

DATA SIZE

12

DESCRIPTION

A point object is used to specify a point in world space. A point object may
appear only in a group or as part of the definition of a custom data type. Unlike
the corresponding point data type, a geometric point object may be assigned
attributes such as color. Thus, an application may use point objects to specify
visible dots.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

Point (0 0 0)

DEFAULT SIZE

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1309

Lines 22

Figure 22-3 shows a line.

Figure 22-3 A line

LABELS

ASCII Line

Binary line (= 0x6C696E65)

DATA FORMAT

Point3D start

Point3D end

Field descriptions
start One endpoint of the line.

end The other endpoint of the line.

DATA SIZE

24

DESCRIPTION

A line is a straight segment in three-dimensional space defined by its two
endpoints. Attributes may be assigned to the vertices of a line and to the entire
line.

vertices[1].point

vertices[0].point

3D Metafile 1.5 Reference

1310 Metafile Object Specifications

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a line is (0, 0) at start and (1, 0) at end .

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional), vertex attribute set list (optional). An attribute set may
be used to assign attributes to the entire line. The vertex attribute set list may
include attribute sets for one or both vertices of the line. For the purpose of
attribute assignment, the start and end vertices of a line are indexed by the
integers 0 and 1 respectively. See “Vertex Attribute Set Lists,” beginning on
page 1420 for a description of these lists.

EXAMPLE
Container (

Line (

0 0 0

1 0 0

)

Container (

VertexAttributeSetList (2 Exclude 0)

Container (

AttributeSet ()

DiffuseColor (1 0 0)

)

Container (

AttributeSet ()

DiffuseColor (0 0 1)

)

)

)

3D Metafile 1.5 Reference

Metafile Object Specifications 1311

DEFAULT SIZE

None.

Polylines 22

Figure 22-4 shows a polyline.

Figure 22-4 A polyline

LABELS

ASCII Polyline

Binary plin (= 0x706C696E)

DATA FORMAT

Uns32 numVertices

Point3D vertices[numVertices]

Field descriptions
numVertices The number of vertices of the polyline.

vertices[] An array of vertices that define the polyline.

DATA SIZE

4 + (numVertices * 12)

vertices[1].point

vertices[2].point

vertices[3].point

vertices[4].point
vertices[0].point

3D Metafile 1.5 Reference

1312 Metafile Object Specifications

DESCRIPTION

A polyline is a collection of n lines defined by the n+1 points that define the
vertices of its segments. For 1≤i ≤n−1, the second vertex of the ith line is the first
vertex of the i+1st line; the n+1st vertex of a polyline is not connected to the
first. Attributes may be assigned separately to each vertex and to each segment
of a polyline as well as to the entire polyline.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set, geometry attribute set list, vertex attribute set list. Use a vertex
attribute set list to assign attribute sets to as many vertices as desired; use a
geometry attribute set list to assign attribute sets to as many segments as
desired. Use an attribute set to assign attributes to the entire polyline.

EXAMPLE

PolyLine(

5 #numVertices

0 0 0 #first vertex

1 1 0 #second vertex

.5 .5 0

0 1 0

1 1 0

)

3D Metafile 1.5 Reference

Metafile Object Specifications 1313

DEFAULT SIZE

None.

Triangles 22

Figure 22-5 shows a triangle.

Figure 22-5 A triangle

LABELS

ASCII Triangle

Binary trng (= 0x74726E67)

DATA FORMAT

Point3D vertices[3]

Field descriptions
vertices[] An array of triangle vertices.

DATA SIZE

36

vertices[0].point vertices[1].point

vertices[2].point

3D Metafile 1.5 Reference

1314 Metafile Object Specifications

DESCRIPTION

A triangle is a closed plane figure defined by three vertices. Attributes may be
assigned to each vertex of a triangle and also to its entire face.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Vertex attribute set list (optional), attribute set (optional). A vertex attribute set
list may be used to attach attributes to one or more vertices of the triangle. An
attribute set may be used to attach attributes to the entire face of the triangle.

EXAMPLE

Container (

Triangle (

-1 -0.5 -0.25

0 0 0

-0.5 1.5 0.45

)

Container (

VertexAttributeSetList (3 Exclude 0)

Container (

AttributeSet ()

DiffuseColor (1 0 0)

)

Container (

AttributeSet ()

3D Metafile 1.5 Reference

Metafile Object Specifications 1315

DiffuseColor (0 1 0)

)

Container (

AttributeSet ()

DiffuseColor (0 0 1)

)

)

Container (

AttributeSet ()

DiffuseColor (0.8 0.5 0.2)

)

)

DEFAULT SIZE

None.

Simple Polygons 22

Figure 22-6 shows a simple polygon.

Figure 22-6 A simple polygon

vertices[0].point

vertices[4].point

vertices[2].point

vertices[1].point

vertices[3].point

3D Metafile 1.5 Reference

1316 Metafile Object Specifications

LABELS

ASCII Polygon

Binary plyg (= 0x706C7967)

DATA FORMAT

uns32 nVertices

Point3D vertices[nVertices]

Field descriptions
nVertices The number of vertices of the polygon.

vertices[] An array of vertices that define the polygon.

DATA SIZE

4 + (numVertices * 12)

DESCRIPTION

A simple polygon is a convex plane figure defined by a list of vertices. In other
words, a simple polygon is a polygon defined by a single contour. (Vertices are
assumed to be coplanar to within floating-point tolerances.) The lines
connecting the vertices of a simple polygon do not cross. Attributes may be
assigned to each vertex of a simple polygon and also to its entire face.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1317

CHILD OBJECTS

Vertex attribute set list (optional), attribute set (optional). A vertex attribute set
list may be used to attach attribute sets to one or more vertices of the simple
polygon. An attribute set may be used to attach attributes to the entire face of
the simple polygon. For the purpose of attribute assignment, the vertices of a
polygon are indexed by position in the array vertices[] ; that is, the index of
vertices[i] is i. See “Vertex Attribute Set Lists,” beginning on page 1420, for an
explanation of the structure and syntax of these objects.

EXAMPLE

Polygon(

5 #nVertices

0 0 0

1 0 0

2 1 0

1 2 0

0 1 0

)

DEFAULT SIZE

None.

General Polygons 22

Figure 22-7 shows a general polygon.

3D Metafile 1.5 Reference

1318 Metafile Object Specifications

Figure 22-7 A general polygon

LABELS

ASCII GeneralPolygon

Binary gpgn (= 0x6770676E)

POLYGON DATA DATA TYPE

uns32 nVertices

Point3D vertices[nVertices]

Field descriptions
nVertices The number of vertices of this contour of the general

polygon.

vertices[] An array of vertices that define this contour of the general
polygon.

contour[0].vertices[2]

contour[0].vertices[3]

contour[0].vertices[4]

contour[0].vertices[5]

contour[1].vertices[2]

contour[1].vertices[1]

contour[0].vertices[6]

contour[0].vertices[7]

contour[0].vertices[0]

contour[0].vertices[1]

contour[1].vertices[0]

3D Metafile 1.5 Reference

Metafile Object Specifications 1319

DATA FORMAT

Uns32 nContours

PolygonData polygons[nContours]

Field descriptions
nContours The number of contours of the general polygon.

polygons[] An array of contours that define the general polygon.

DATA SIZE

sizeof(PolygonData) = 4 + nVertices * 12

sizeof(GeneralPolygon) = 4 + sizeof(polygons[0...nContours-1])

DESCRIPTION

A general polygon is a closed plane figure defined by one or more lists of
vertices. In other words, a general polygon is a polygon defined by one or more
contours. Each contour may be concave or convex, and contours may be nested.
All contours, however, must be coplanar. A general polygon can have holes in
it. If it does, the even-odd rule is used to determine which regions are included
in the polygon. Attributes may be assigned to each vertex of each contour of a
general polygon and to the entire general polygon.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

3D Metafile 1.5 Reference

1320 Metafile Object Specifications

CHILD OBJECTS

Attribute set, general polygon hint, vertex attribute set list (all optional). Use an
attribute set to attach attributes to an entire general polygon. Use a general
polygon hint to specify whether a general polygon is concave, convex, or
complex; see “General Polygon Hints,” beginning on page 1322 for complete
details on this object. Use a vertex attribute set list to assign attributes to the
vertices of the contours of a general polygon. For purposes of attribute
assignment, the vertices of a general polygon are indexed in the order of their
occurrence in the specification of that polygon; the index does not distinguish
between contours. For purposes of attribute assignment, the nth contour of a
general polygon is the contour defined by (polygons[n-1])[1] , and the index
of the nth contour is n–1. The nth vertex of a general polygon is the pth vertex of
the mth contour, where

m = max{ k ≤ nContours : Σ0≤i <κ−1 (polygons[i])[0] < n},

and n = Σ0≤i <m (polygons[i])[0] + p; the index of the nth vertex of a general
polygon is n- 1. The pth vertex of the mth contour of a general polygon is the
(Σ0≤i <µ−1 (polygons[i])[0] + p) th vertex of the general polygon; its index is
Σ0≤i <µ−1 (polygons[i])[0] + (p – 1). See “Face Attribute Set Lists,” beginning
on page 1416, and “Vertex Attribute Set Lists,” beginning on page 1420, for
explanations of the structure and syntax of these objects.

EXAMPLE

Container (

GeneralPolygon (

2 # nContours

#contour 0

3 # nVertices, contour 0

-1 0 0 # vertex 0

1 0 0 # vertex 1

0 1.7 0 # vertex 2

#contour 1

3 # nVertices, contour 1

-1 0.4 0 # vertex 3

1 0.4 0 # vertex 4

0 2.1 0 # vertex 5

)

3D Metafile 1.5 Reference

Metafile Object Specifications 1321

Container (

VertexAttributeSetList (6 Exclude 2 0 4) #see note

Container (

AttributeSet () # vertex 1

DiffuseColor (0 0 1)

)

Container (

AttributeSet () # vertex 2 (contour 0)

DiffuseColor (0 1 1)

)

Container (

AttributeSet () # vertex 3 (contour 1)

DiffuseColor (1 0 1)

)

Container (

AttributeSet () # vertex 5 (contour 1)

DiffuseColor (1 1 0)

)

)

Container (

AttributeSet ()

DiffuseColor (1 1 1)

)

)

Note
In the above example, the general polygon has two
contours. Each contour is a triangle. The triangles overlap.
The intersection of the triangles is included in an even
number of contours; thus, it constitutes a hole in the
general polygon. The relative complements of the triangles
are included in an odd number of contours; thus, they are
included in the general polygon. ◆

DEFAULT SIZE

None.

3D Metafile 1.5 Reference

1322 Metafile Object Specifications

General Polygon Hints 22

LABELS

ASCII GeneralPolygonHint

Binary gplh (= 0x67706C68)

GENERAL POLYGON HINTS

Complex 0x00000000

Concave 0x00000001

Convex 0x00000002

Constant descriptions

Complex The parent general polygon may include concave, convex,
and self-intersecting polygons.

Concave All contours of the parent general polygon are concave and
none is self-intersecting.

Convex All contours of the parent general polygon are convex and
none is self-intersecting.

DATA FORMAT

GeneralPolygonHintEnum shapeHint

Field descriptions
shapeHint The value in this field must be one of the constants defined

above.

DATA SIZE

4

DESCRIPTION

A general polygon hint object is used to provide a reading application with an
indication of the shape of a general polygon.

3D Metafile 1.5 Reference

Metafile Object Specifications 1323

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Data.

PARENT OBJECTS

General polygon. A general polygon hint object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

GeneralPolygon (...)

GeneralPolygonHint (Complex)

)

DEFAULT VALUE

Complex .

Boxes 22

Figure 22-8 shows a box.

3D Metafile 1.5 Reference

1324 Metafile Object Specifications

Figure 22-8 A box

LABELS

ASCII Box

Binary box (= 0x626F7820)

DATA FORMAT

Vector3D orientation

Vector3D majorAxis

Vector3D minorAxis

Point3D origin

Field descriptions
orientation The orientation of the box.

majorAxis The major axis of the box.
minorAxis The minor axis of the box.
origin The origin of the box.

orientation

origin

ma
jo
rA
xi
s

minorAxis

3D Metafile 1.5 Reference

Metafile Object Specifications 1325

DATA SIZE

0 or 48

DESCRIPTION

A box is a three-dimensional object defined by an origin (that is, a corner of the
box) and three vectors that define the edges of the box that meet in that corner.
A box may be used to model a cube, rectangular prism, or other parallelipiped.
Attributes may be applied to each of the six faces of a box and to the entire
geometry of the box.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a box is as shown in Figure 22-9.

Figure 22-9 The default surface parameterization of a box

Orientation

origin
majorAxis

(0,1)

(0,0)

(1,1)

(1,0)

Top

(0,1)

(0,0)

(1,1)

(1,0)

Left

(0,1)

(0,0)

(1,1)

(1,0)

Front

(0,1)

(0,0)

(1,1)

(1,0)

Right

(0,1)

(0,0)

(1,1)

(1,0)

Back

(1,0)

(1,1)

(0,0)

(0,1)

Bottom

3D Metafile 1.5 Reference

1326 Metafile Object Specifications

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Face attribute set list (optional), attribute set (optional). For the purpose of
attribute assignment, the faces of a box are indexed as follows:

0 The face perpendicular to the orientation vector having the
endpoint of the orientation vector as one of its vertices. In
Figure 22-9, this is the top face of the box.

1 The face perpendicular to the orientation vector having the
origin as one of its vertices. In Figure 22-9, this is the
bottom face of the box.

2 The face perpendicular to the major axis having the
endpoint of the major axis as one of its vertices. In Figure
22-9, this is the front face of the box.

3 The face perpendicular to the major axis having the origin
as one of its vertices. In Figure 22-9, this is the back face of
the box.

4 The face perpendicular to the minor axis having the
endpoint of the minor axis as one of its vertices. In Figure
22-9, this is the right face of the box.

5 The face perpendicular to the minor axis having the origin
as one of its vertices. In Figure 22-9, this is the front face of
the box.

EXAMPLE

Container (

Box (...)

Container (

FaceAttributeSetList (6 Exclude 2 1 4)

3D Metafile 1.5 Reference

Metafile Object Specifications 1327

Container (

AttributeSet () #left face

DiffuseColor (1 0 0)

)

Container (

AttributeSet () #bottom face

DiffuseColor (0 1 1)

)

Container (

AttributeSet () #top face

DiffuseColor (0 1 0)

)

Container (

AttributeSet () #front face

DiffuseColor (1 0 1)

)

)

Container (

AttributeSet ()

DiffuseColor(0 0 0)

)

)

DEFAULT SIZE

For objects of size 0, the default is
1 0 0
0 1 0
0 0 1
0 0 0

Trigrids 22

Figure 22-10 shows a trigrid.

3D Metafile 1.5 Reference

1328 Metafile Object Specifications

Figure 22-10 A trigrid

LABELS

ASCII TriGrid

Binary trig (= 0x74726967)

DATA FORMAT

Uns32 numUVertices

Uns32 numVVertices

Point3D vertices[numUVertices * numVVertices]

Field descriptions
numUVertices The number of vertices in the u parametric direction.

numVVertices The number of vertices in the v parametric direction.
vertices[] An array of vertices. The size of this array must equal the

number of vertices of the trigrid. Vertices are to be listed in
a rectangular order, first in the direction of increasing v,
then in the direction of increasing u. That is, the vertex
having parametric coordinates (u, v) precedes the vertex
having parametric coordinates (u’, v’) if and only if either
u < u’, or u = u’ and v < v’.

vertices[9]
vertices[10]

vertices[11]

vertices[7]

vertices[3]
vertices[2]

vertices[6]

vertices[0]

vertices[1]

vertices[4]

vertices[8]

6

7 8

0

1 2 3 4

10

119

5

vertices[5]

3D Metafile 1.5 Reference

Metafile Object Specifications 1329

DATA SIZE

8 + (numUVertices * numVVertices * 12)

DESCRIPTION

A trigrid is a grid composed of triangular facets. The triangulation should be
serpentine (that is, quadrilaterals are divided into triangles in an alternating
fashion) to reduce shading artifacts when using Gouraud or Phong shading.
Attributes may be assigned to each vertex and to each facet of a trigrid, and also
to the entire trigrid.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Vertex attribute set list (optional), face attribute set list (optional), attribute set
(optional). A face attribute set list may be used to assign attributes to the facets
of a trigrid. The number of facets of a trigrid is the same as the number of its
vertices. The vertices and facets of a trigrid are indexed in the manner shown by
Figure 22-10. The vertex index prefers u to v and prefers 0 to 1; thus, it follows
the canonical lexicographical ordering of the points in uv parametric space. The
facet index is less easily defined but is readily apprehended. Consider first the
serpentine path through the trigrid along the diagonals belonging to facets of
the trigid. Now consider the alternative serpentine path composed of segments
connecting all and only those vertices not on the first path. The second path
passes through each facet and intersects all of the diagonals on the first path.
The facets of the trigrid are numbered in the order that they would be
encountered by a traveler along the second serpentine path.

3D Metafile 1.5 Reference

1330 Metafile Object Specifications

EXAMPLE

Container (

TriGrid (

3 #numUVertices

4 #numVVertices

2 0 0 2 1 0 2 2 0 2 3 0

1 0 0 1 1 0 1 2 0 1 3 0

0 0 0 0 1 0 0 2 0 0 3 0

)

Container (

FaceAttributeSetList (12 include 61 3 5 7 9 11)

Container (

AttributeSet()

DiffuseColor (1 1 1)

)

.

.

.

Container (

AttributeSet()

DiffuseColor (1 1 1)

)

)

Container (

AttributeSet ()

DiffuseColor (0 0 0)

)

)

DEFAULT SIZE

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1331

Polyhedra 22

LABELS

ASCII Polyhedron

Binary plhd

DATA FORMAT

The clearest way to understand the metafile format for polyhedra is to begin
with the polyhedron data structures in the QD3D file QD3DGeometry.h:

typedef enum TQ3PolyhedronEdgeMasks {

kQ3PolyhedronEdgeNone = 0,

kQ3PolyhedronEdge01 = 1 << 0,

kQ3PolyhedronEdge12 = 1 << 1,

kQ3PolyhedronEdge20 = 1 << 2,

kQ3PolyhedronEdgeAll = kQ3PolyhedronEdge01 |

 kQ3PolyhedronEdge12 |

 kQ3PolyhedronEdge20

} TQ3PolyhedronEdgeMasks;

typedef unsigned long TQ3PolyhedronEdge;

typedef struct TQ3PolyhedronEdgeData {

unsigned long vertexIndices[2];

unsigned long triangleIndices[2];

TQ3AttributeSet edgeAttributeSet;

} TQ3PolyhedronEdgeData;

typedef struct TQ3PolyhedronTriangleData {

unsigned long vertexIndices[3];

TQ3PolyhedronEdge edgeFlag;

TQ3AttributeSet triangleAttributeSet;

} TQ3PolyhedronTriangleData;

3D Metafile 1.5 Reference

1332 Metafile Object Specifications

typedef struct TQ3PolyhedronData {

unsigned long numVertices;

TQ3Vertex3D *vertices;

unsigned long numEdges;

TQ3PolyhedronEdgeData *edges;

unsigned long numTriangles;

TQ3PolyhedronTriangleData *triangles;

TQ3AttributeSet polyhedronAttributeSet;

} TQ3PolyhedronData;

The polyhedron metafile object makes use of the following auxiliary data
structures. These differ from the above data structures in that all attributeSet
fields have been removed. Instead, the attributeSet fields are collected in
AttributeSetList subobjects, which are discussed in “Attribute Set Lists,”
beginning on page 1414.

typedef enum PolyhedronEdge {

PolyhedronEdgeNone = 0,

PolyhedronEdge01 = 1 << 0,

PolyhedronEdge12 = 1 << 1,

PolyhedronEdge20 = 1 << 2,

PolyhedronEdgeAll = PolyhedronEdge01 |

 PolyhedronEdge12|

 PolyhedronEdge20

} PolyhedronEdge;

typedef struct PolyhedronEdgeData {

unsigned long vertexIndices[2];

unsigned long triangleIndices[2];

} PolyhedronEdgeData;

typedef struct PolyhedronTriangleData {

unsigned long vertexIndices[3];

PolyhedronEdge edgeFlag;

} PolyhedronTriangleData;

Given these, the metafile format of the polyhedron object itself is:

3D Metafile 1.5 Reference

Metafile Object Specifications 1333

Uns32 numVertices

Uns32 numEdges

Uns32 numTriangles

Point3D vertices[numVertices]

PolyhedronEdgeData edges[numEdges]

PolyhedronTriangleData triangles[numTriangles]

numVertices The number of vertices.

numEdges The number of edges.
numTriangles The number of edges.
vertices[numVertices]

An array of Point3D . See the QD3D polyhedron data
structure above to see how it fits into the geometry as a
whole.

edges[numEdges] An array of PolyhedronEdgeData . The PolyhedronEdgeData
data structure consists two fields. The first field is an array
of two indices into the array of vertices; the two specified
vertices are the two points that bound the edge. The second
field is an array of two indices into the array of triangles;
the two specified triangles are those whose common side
consitutes the edge. A nonexistent triangle (e.g. one with an
edge at the boundary of a planar surface) is indicated by
the value 0xFFFFFFFF.

triangles[numTriangles]

An array of PolyhedronTriangleData . The
PolyhedronTriangleData data structure consists of two
fields. The first field is an array of 3 indices into the array of
vertices; these 3 vertices are the vertices of the triangle. The
second field is a PolyhedronEdge flag. It indicates which
sides of the triangle are visible.

DATA SIZE

12 + (numVertices * 12) + (numEdges * 16) + (numTriangles * 16)

DESCRIPTION

A polyhedron is composed of triangular faces. The basic idea is to have a list of
points (the vertices), and then organize those points into a set of triangular

3D Metafile 1.5 Reference

1334 Metafile Object Specifications

faces. The triangles are specified by indices into the array of points. Since
typically a single point is a vertex of 3 or more triangles, referencing the points
by index saves space. (For further details on the polyhedron geometry, see 3D
Graphics Programming With QuickDraw 3D 1.5. Also, see develop magazine by
Apple Computer, Issue 28, Dec. 1996, “New QuickDraw 3D Geometries,” p. 32.)

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

In addition to the data in its root object, a polyhedron object can have as many
as four subobjects: A VertexAttributeSetList for the attributeSet s in the
array of TQ3Vertex3D ; a GeometryAttributeSetList for the attributeSet s in the
array of TQ3PolyhedronEdgeData ; and a FaceAttributeSetList for the
attributeSets in the array of TQ3PolyhedronTriangleData ; and the usual
geometry AttributeSet . See the appropriate sections of this document for
descriptions of their formats.

DEFAULT SIZE

None.

EXAMPLE

The following example represents a complete metafile written by QD3D 1.5. For
information about attribute arrays, see “Attribute Arrays,” beginning on
page 1350.

3DMetafile (1 5 Normal tableofcontents0>)

polyhedron2:

Container (

3D Metafile 1.5 Reference

Metafile Object Specifications 1335

Polyhedron (

6 0 4 # numVertices

numEdges

numTriangles

-20 -20 0 -20 10 0 0 0 0 0 30 0 20 -20 0 20 10 0

0 3 1 Edge01 | Edge12 | Edge20

0 2 3 Edge01 | Edge12 | Edge20

2 4 3 Edge01 | Edge12 | Edge20

4 5 3 Edge01 | Edge12 | Edge20

)

Container (

VertexAttributeSetList (6 Exclude 0)

attributeset3:

Container (

AttributeSet ()

AmbientCoefficient (1)

DiffuseColor (0 1 1)

)

attributeset4:

Container (

AttributeSet ()

AmbientCoefficient (1)

DiffuseColor (0 0.95 1)

)

attributeset5:

Container (

AttributeSet ()

AmbientCoefficient (1)

DiffuseColor (0 0.9 1)

)

attributeset6:

Container (

AttributeSet ()

AmbientCoefficient (1)

DiffuseColor (0 0.85 1)

)

3D Metafile 1.5 Reference

1336 Metafile Object Specifications

attributeset7:

Container (

AttributeSet ()

AmbientCoefficient (1)

DiffuseColor (0 0.8 1)

)

attributeset8:

Container (

AttributeSet ()

AmbientCoefficient (1)

DiffuseColor (0 0.75 1)

)

)

Container (

FaceAttributeSetList (4 Exclude 0)

attributeset9:

Container (

AttributeSet ()

AmbientCoefficient (1)

DiffuseColor (0 0.7 1)

)

attributeset10:

Container (

AttributeSet ()

AmbientCoefficient (1)

DiffuseColor (0 0.65 1)

)

attributeset11:

Container (

AttributeSet ()

AmbientCoefficient (1)

DiffuseColor (0 0.6 1)

)

3D Metafile 1.5 Reference

Metafile Object Specifications 1337

attributeset12:

Container (

AttributeSet ()

AmbientCoefficient (1)

DiffuseColor (0 0.55 1)

)

)

attributeset13:

Container (

AttributeSet ()

AmbientCoefficient (0.5)

DiffuseColor (1 0 0)

)

)

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2020 3DMF············

0010 2020 2020 2020 2020 636E 7472 2020 02E4 ········cntr····

0020 706C 6864 2020 2094 2020 2006 2020 2020 plhd············

0030 2020 2004 C1A0 2020 C1A0 2020 2020 2020 ················

0040 C1A0 2020 4120 2020 2020 2020 2020 2020 ····A···········

0050 2020 2020 2020 2020 2020 2020 41F0 2020 ············A···

0060 2020 2020 41A0 2020 C1A0 2020 2020 2020 ····A···········

0070 41A0 2020 4120 2020 2020 2020 2020 2020 A···A···········

0080 2020 2003 2020 2001 2020 2007 2020 2020 ················

0090 2020 2002 2020 2003 2020 2007 2020 2002 ················

00A0 2020 2004 2020 2003 2020 2007 2020 2004 ················

00B0 2020 2005 2020 2003 2020 2007 636E 7472 ············cntr

00C0 2020 0134 7661 736C 2020 200C 2020 2006 ···4vasl········

00D0 2020 2001 2020 2020 636E 7472 2020 2028 ········cntr···(

00E0 6174 7472 2020 2020 6361 6D62 2020 2004 attr····camb····

00F0 3F80 2020 6B64 6966 2020 200C 2020 2020 ?···kdif········

0100 3F80 2020 3F80 2020 636E 7472 2020 2028 ?···?···cntr···(

0110 6174 7472 2020 2020 6361 6D62 2020 2004 attr····camb····

0120 3F80 2020 6B64 6966 2020 200C 2020 2020 ?···kdif········

0130 3F73 3333 3F80 2020 636E 7472 2020 2028 ?s33?···cntr···(

3D Metafile 1.5 Reference

1338 Metafile Object Specifications

Meshes 22

Figure 22-11 shows a mesh.

0140 6174 7472 2020 2020 6361 6D62 2020 2004 attr····camb····

0150 3F80 2020 6B64 6966 2020 200C 2020 2020 ?···kdif········

0160 3F66 6666 3F80 2020 636E 7472 2020 2028 ?fff?···cntr···(

0170 6174 7472 2020 2020 6361 6D62 2020 2004 attr····camb····

0180 3F80 2020 6B64 6966 2020 200C 2020 2020 ?···kdif········

0190 3F59 999A 3F80 2020 636E 7472 2020 2028 ?Y··?···cntr···(

01A0 6174 7472 2020 2020 6361 6D62 2020 2004 attr····camb····

01B0 3F80 2020 6B64 6966 2020 200C 2020 2020 ?···kdif········

01C0 3F4C CCCD 3F80 2020 636E 7472 2020 2028 ?L··?···cntr···(

01D0 6174 7472 2020 2020 6361 6D62 2020 2004 attr····camb····

01E0 3F80 2020 6B64 6966 2020 200C 2020 2020 ?···kdif········

01F0 3F40 2020 3F80 2020 636E 7472 2020 20D4 ?@··?···cntr····

0200 6661 736C 2020 200C 2020 2004 2020 2001 fasl············

0210 2020 2020 636E 7472 2020 2028 6174 7472 ····cntr···(attr

0220 2020 2020 6361 6D62 2020 2004 3F80 2020 ····camb····?···

0230 6B64 6966 2020 200C 2020 2020 3F33 3333 kdif········?333

0240 3F80 2020 636E 7472 2020 2028 6174 7472 ?···cntr···(attr

0250 2020 2020 6361 6D62 2020 2004 3F80 2020 ····camb····?···

0260 6B64 6966 2020 200C 2020 2020 3F26 6666 kdif········?&ff

0270 3F80 2020 636E 7472 2020 2028 6174 7472 ?···cntr···(attr

0280 2020 2020 6361 6D62 2020 2004 3F80 2020 ····camb····?···

0290 6B64 6966 2020 200C 2020 2020 3F19 999A kdif········?···

02A0 3F80 2020 636E 7472 2020 2028 6174 7472 ?···cntr···(attr

02B0 2020 2020 6361 6D62 2020 2004 3F80 2020 ····camb····?···

02C0 6B64 6966 2020 200C 2020 2020 3F0C CCCD kdif········?···

02D0 3F80 2020 636E 7472 2020 2028 6174 7472 ?···cntr···(attr

02E0 2020 2020 6361 6D62 2020 2004 3F20 2020 ····camb····?···

02F0 6B64 6966 2020 200C 3F80 2020 2020 2020 kdif····?·······

0300 2020 2020 ····

3D Metafile 1.5 Reference

Metafile Object Specifications 1339

Figure 22-11 A mesh

LABELS

ASCII Mesh

Binary mesh (= 0x6D657368)

MESH FACE DATA TYPE

Int nFaceVertexIndices

Uns faceVertexIndices[|nFaceVertexIndices|]

Field descriptions
nFaceVertexIndices

An integer, the absolute value of which is equal to the
number of indices to the vertices of a mesh face or mesh
contour: that is, equal to the number of vertices of that face
or contour. The value of this field may be positive or
negative. A positive value indicates that this mesh face
object specifies a face (to which attributes may be
assigned). A negative value indicates that this mesh face
object specifies a hole (here called a contour). The absolute
value of the value in this field must be at least 3.

Mesh edge

Mesh face Mesh vertex

Mesh corner

3D Metafile 1.5 Reference

1340 Metafile Object Specifications

faceVertexIndices []
An array of indices to elements of the array vertices[] ,
where i is the index of vertices[i] . This array specifies a
verticed object by giving the indices of its vertices. The
specified object is either a face or a contour of the mesh, as
determined by the value of nVertices . The number of
fields of this array must equal the absolute value of the
value of the nVertices field.

DESCRIPTION

The mesh face data type is used to specify a vertexed object and to specify
whether that object is a face or a contour of a mesh. This data type occurs only
as the value of a field in the faces[] array of a mesh specification.

DATA FORMAT

Uns32 nVertices

Vertex3D vertices[nVertices]

Uns32 nFaces

Uns32 nContours

MeshFace faces[nFaces + nContours]

Field descriptions
nVertices The number of vertices of the mesh. The value of this field

must be at least 3.

vertices[] An array of vertices.
nFaces The number of faces of the mesh.
nContours The number of contours of the mesh (that is, the number of

holes in the mesh).
faces[] An array of mesh face objects, each of which specifies either

a face or a contour (hole) of the mesh. The size of this array
is equal to the sum of the values of the nVertices and
nContours fields. Each array element that specifies a face
should precede all array elements that specify holes in that
face; any such latter elements may occur in any order but
should be grouped together and should precede any
subsequent array element that specifies a face: if the value

3D Metafile 1.5 Reference

Metafile Object Specifications 1341

of field i specifies a face intended to have n holes, then the
objects that specify those holes must occupy the next n
fields: that is, fields
i+1, ..., i+n.

DATA SIZE

sizeof(MeshFace) = fabs(Int) * 4
sizeof(Mesh) = 4 + nVertices * 12 + 8 +
sizeof(faces[0...nFaces+nContours-1])

DESCRIPTION

A mesh is an object defined by a collection of vertices, faces, and contours.
Meshes may be used to model polyhedra, grids, and other faceted objects. A
mesh may have a boundary. The term contour is used here to refer to a
polygonal hole contained in a single face of a mesh. A mesh face (or contour) is
a list of vertices that defines a polygonal facet. A face (or contour) need not be
planar, and a contour and its surrounding face need not be coplanar; however,
rendering of a mesh having a nonplanar face or contour, or having a contour
not coplanar with its surrounding face, may lead to unexpected results.

The specification of a mesh includes an array of vertices and an array of faces
and contours. The vertices of a mesh are indexed by array position; these
indices are used to specify the faces and contours of that mesh. Faces and
contours are also indexed by array position; this index does not distinguish
between faces and contours. Both of these indices are used in the specification
of child objects.

Attributes may be attached separately and selectively to the vertices, faces, face
edges, and corners of a mesh.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

3D Metafile 1.5 Reference

1342 Metafile Object Specifications

PARENT OBJECTS

None.

CHILD OBJECTS

Face attribute set list (optional), vertex attribute set list (optional), mesh corners
(optional), mesh edges (optional). See “Mesh Corners,” beginning on page 1343,
and “Mesh Edges,” beginning on page 1345, for descriptions of these objects.

EXAMPLE

Mesh (

10 # nVertices

-1 1 1 # enumeration of vertices

-1 1 -1

1 1 -1

1 -1 -1

1 -1 1

0 -1 1

-1 -1 0

-1 -1 -1

1 1 1

-1 0 1

7 # nFaces

0 # nContours

3 6 5 9 # enumeration of contours

5 7 6 9 0 1

4 2 3 7 1

4 2 8 4 3

4 1 0 8 2

5 4 8 0 9 5

5 3 4 5 6 7

)

DEFAULT SIZE

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1343

Mesh Corners 22

LABELS

ASCII MeshCorners

Binary crnr (= 0x63726E72)

MESHCORNER DATA TYPE

Uns32 vertexIndex

Uns32 nFaces

Uns32 faces[nFaces]

Field descriptions
vertexIndex The index of a vertex of the parent mesh.

nFaces The number of faces of the parent mesh, sharing the vertex
that is the value of the vertexIndex field, that are to be
correlated with child objects of the mesh corners object. The
value of this field must not exceed the number of faces of
the parent mesh meeting at the vertex whose index is the
value of the vertexIndex field.

faces[] An array of face indices representing faces of the parent
mesh. The vertex whose index is the value of the
vertexIndex field must be among the vertices of each face
of the parent mesh whose face index appears in this array.
The number of fields of this array must equal the value of
nFaces .

DATA FORMAT

Uns32 nCorners

MeshCorner corners[nCorners]

Field descriptions
nCorners The number of corners of the parent mesh treated by this

mesh corners object.

3D Metafile 1.5 Reference

1344 Metafile Object Specifications

corners[] An array of mesh corners data types. The elements of this
array are correlated with attribute sets which occur as child
objects of the mesh corners object. The number of fields of
this array must equal the value of nCorners .

DATA SIZE

sizeof(MeshCorner) = 8 + nFaces * 4

sizeof(MeshCorners) = 4 + sizeof(corners[0...nCorners-1])

DESCRIPTION

The mesh corners object is used to attach more than one attribute set to a vertex
of a mesh and to override other attributes inherited by a vertex or assigned to it
elsewhere. You can use mesh corners in various ways: for example, to apply
different normals and shadings in order to create the appearance of a sharp
edge or peak. This object occurs only as a child object to a mesh and always has
attribute sets as child objects of its own.

PARENT HIERARCHY

Data.

PARENT OBJECTS

Mesh (always).

CHILD OBJECTS

Attribute sets (always). The number of child objects is equal to the value of the
numCorners field. Child objects are correlated with elements of the array
corners[] in the order of their occurrence in the specification of the mesh
corners object and its child objects; that is, the ith child object is correlated with
the ith element of the array corners[] .

3D Metafile 1.5 Reference

Metafile Object Specifications 1345

EXAMPLE

Container (

Mesh (...) # parent mesh

Container(

MeshCorners (

2 # numCorners

Corner 0

5 # vertexIndex

2 # faces

25 26 # face indices

Corner 1

5 # vertexIndex

2 # faces

23 24 # face indices

)

Container (

AttributeSet ()

Normal (-0.2 0.8 0.3)

)

Container (

AttributeSet ()

Normal (-0.7 -0.1 0.4)

)

)

)

Mesh Edges 22

LABELS

ASCII MeshEdges

Binary edge (= 0x65646765)

3D Metafile 1.5 Reference

1346 Metafile Object Specifications

MESH EDGE DATA TYPE

Uns32 vertexIndex1

Uns32 vertexIndex2

Field descriptions
vertexIndex1 The smaller of the indices of the two vertices of the mesh

edge. The indices are taken from the vertex index of the
parent mesh.

vertexIndex2 The larger of the indices of the two vertices of the mesh
edge.

IMPORTANT

The edge defined by a mesh edge data type must be an edge of
a face (not merely a contour) of the parent mesh. ▲

DATA FORMAT

Uns32 nEdges

MeshEdge edges[nEdges]

Field descriptions
nEdges The number of edges of the parent mesh treated by this

mesh edge object. The value in this field must be greater
than 0 and less than or equal to the number of edges of
faces of the parent mesh.

edges[] An array of mesh edge data types. The elements of this
array are correlated with attribute sets that occur as child
objects of the mesh edges object. The number of fields of
this array must equal the value of nEdges .

DATA SIZE

4 + sizeof(edges[0...nEdges-1])

DESCRIPTION

The mesh edges object is used to attach attribute sets separately and selectively
to one or more edges of faces of a mesh.

3D Metafile 1.5 Reference

Metafile Object Specifications 1347

PARENT HIERARCHY

Data.

PARENT OBJECTS

Mesh (always).

CHILD OBJECTS

Attribute sets (always). The number of child objects is equal to the value of the
nEdges field. Child objects are correlated with elements of the array edges[] in
the order of their occurrence in the specification of the mesh edges object and its
child objects; that is, the ith child object is correlated with the ith element of the
array edges[] .

EXAMPLE

Container (

Mesh (...)

Container (

MeshEdges (

2 # numEdges

0 1 # first edge

1 3 # second edge

)

Container (# first edge attribute set

AttributeSet ()

DiffuseColor (0.2 0.8 0.3)

)

Container (# second edge attribute set

AttributeSet ()

DiffuseColor (0.8 0.2 0.3)

)

)

)

3D Metafile 1.5 Reference

1348 Metafile Object Specifications

Trimeshes 22

This section gives the 3DMF specification of the Trimesh object. Trimesh binary
metafiles implement a simple type of compression, using a scheme described
below.

Note
Normally a Trimesh also has one or more AttributeArray
subobjects. For details, see “Attribute Arrays,” beginning
on page 1350. ◆

LABELS

ASCII TriMesh

Binary tmsh (= 0x746D7368)

AUXILIARY DATA STRUCTURES

The following auxiliary data structures are used to specify trimeshes. They are
mirror images of the similarly-named structures in the file QD3DGeometry.h.
See 3D Graphics Programming With QuickDraw 3D 1.5 for a detailed description.

typedef struct TriMeshTriangleData {

Uns32 pointIndices[3];

} TriMeshTriangleData;

typedef struct TriMeshEdgeData {

Uns32 pointIndices[2];

Uns32 triangleIndices[2];

} TriMeshEdgeData;

typedef struct BoundingBox {

Point3D min;

Point3D max;

Boolean isEmpty;

} BoundingBox;

3D Metafile 1.5 Reference

Metafile Object Specifications 1349

DATA FORMAT

Uns32 numTriangles

Uns32 numTriangleAttributeTypes

Uns32 numEdges

Uns32 numEdgeAttributeTypes

Uns32 numPoints

Uns32 numVertexAttributeTypes

TriMeshTriangleData triangles[numTriangles]

TriMeshEdgeData edges[numEdges]

Point3D points[numPoints]

BoundingBox bBox

DATA COMPRESSION

The triangles and edges fields in a trimesh are compressed. These fields are
arrays of indices into arrays of elements; the maximum value of the indices
depends on the size of the array of elements. Hence, the maximum value of an
index in the TriMeshTriangleData field pointIndices is equal to numPoints . The
same is true for the pointIndices field of TriMeshEdgeData ; the maximum value
of an index in the triangleIndices field is numTriangles . Compression is
performed as follows:

■ If maximum value of index <= 0xFE, write index as Uns8

■ If maximum value of index > 0xFE and <= 0xFFFE, write index as Uns16

■ If maximum value of index > 0xFFFE, write index as Uns32

The triangleIndices field of TriMeshEdgeData has, in addition, the following
special case. If a side of an edge does not have a triangle (as is the case if the
edge is on a boundary), this is indicated in the trimesh data structure by the
constant kQ3ArrayIndexNULL . Since this is a 32-bit quantity, you may need to
compress it. Do this by writing kQ3ArrayIndexNULL as follows:

■ If maximum value of index <= 0xFE, write 0xFF

■ If maximum value of index > 0xFE and <= 0xFFFE, write 0xFFFF

■ If maximum value of index > 0xFFFE, write kQ3ArrayIndexNULL

3D Metafile 1.5 Reference

1350 Metafile Object Specifications

EXAMPLE

For an example of a trimesh text metafile, see “Attribute Arrays,” beginning on
page 1350.

Attribute Arrays 22

An attribute array contains all of the information contained in a single
TQ3TriMeshAttribute (described below). It also contains information that
identifies the location of this particular attribute array with respect to all of the
other attribute arrays contained in the trimesh.

LABELS

ASCII AttributeArray

Binary atar (= 0x61746172)

HEADER AND DATA

An attribute array has a header consisting of five numbers. The first number is
type TQ3Int32 and the last four are type TQ3Uns32.

Field descriptions
TQ3Int32 AttributeType field of TQ3TriMeshAttribute

TQ3Uns32 Reserved and currently unused; should always be 0.
TQ3Uns32 Call this field positionOfArray . 0 means this

TQ3TriMeshAttribute is an element in the array of
TQ3TriMeshAttribute s pointed to by the
triangleAttributeTypes field of TQ3TriMeshData . Similarly,
1 means it’s an element in the edgeAttributeTypes array,
and 2 means it’s in vertexAttributeTypes .

TQ3Uns32 Call this field positionInArray . It specifies the element in
the array singled out by field 3 above (positionOfArray).
It’s 0-based, so 0 means the first TQ3TriMeshAttribute in
the array, 1 the second, etc.

TQ3Uns32 A flag; 0 if the attributeUseArray field of
TQ3TriMeshAttribute is NULL, 1 otherwise. If it’s 1, the
attributeUseArray data follows immediately. It consists of
one TQ3Uns8 for each attribute in the attribute array.

3D Metafile 1.5 Reference

Metafile Object Specifications 1351

The header is followed by the data. For built-in attributes, if the attribute type is
anything other than kQ3AttributeTypeSurfaceShader , the data is part of the
attribute array’s root object, so it immediately follows the header in a
continuous stream. The size of the data is determined by the AttributeType
field. If the attribute type is kQ3AttributeTypeSurfaceShader , then the texture
shaders appear as subobjects, and the attribute array root contains only the
header. If the attribute is a custom attribute, then the attributes also appear as
subobjects. This is the case even if the data for the custom attribute is simple,
such as one float value.

EXAMPLE

The following is an example of a metafile that describes a trimesh with a
moderately complex set of attribute arrays. This example represents a complete
metafile written by QD3D 1.5.

3DMetafile (1 5 Normal tableofcontents0>)

trimesh2:

Container (

TriMesh (

4 2 3 1 6 1 # numTriangles

numTriangleAttributeTypes

numEdges

numEdgeAttributeTypes

numPoints

numVertexAttributeTypes

0 3 1

0 2 3

2 4 3

4 5 3

0 3 0 1

2 3 1 2

3 4 2 3

-20 -20 0 -20 10 0 0 0 0

0 30 0 20 -20 0 20 10 0

-20 -20 -1 20 30 1 False)

AttributeArray (

6 0 0 0 0

3D Metafile 1.5 Reference

1352 Metafile Object Specifications

0.2 0.6 0.8

1 0 0

0 1 0.5

0 0.2 1

)

Container (

AttributeArray (11 0 0 1 0

)

textureshader3:

Container (

TextureShader ()

pixmaptexture4:

PixmapTexture (

8 8 36 32 # RGB32 BigEndian BigEndian

0x000000FF000000FF0000FF000000FF00

0x0000FF000000FF000000FF000000FF00

0x01909860000000FF000000FF0000FF00

0x0000FF000000FF000000FF000000FF00

0x0000FF00047F00000000FF000000FF00

0x0000FF000000FF000000FF000000FF00

0x0000FF000000FF00000000000000FF00

0x0000FF000000FF000000FF000000FF00

0x0000FF000000FF000000FF00B7A401E6

0x0000FF000000FF000000FF000000FF00

0x0000FF000000FF000000FF000000FF00

0x000000500000FF000000FF000000FF00

0x0000FF000000FF000000FF000000FF00

0x0000FF00000000000000FF000000FF00

0x0000FF000000FF000000FF000000FF00

0x0000FF000000FF0001E856400000FF00

0x0000FF000000FF000000FF000000FF00

0x0000FF000000FF000000FF0000000000

)

)

textureshader5:

Container (

3D Metafile 1.5 Reference

Metafile Object Specifications 1353

TextureShader ()

pixmaptexture6:

PixmapTexture (

8 8 36 32 # RGB32 BigEndian BigEndian

0x00FFFF0000FFFF0000FFFF0000FFFF00

0x00FFFF0000FFFF0000FF000000FF0000

0x0012602000FFFF0000FFFF0000FFFF00

0x00FFFF0000FFFF0000FFFF0000FF0000

0x00FF000001E857B000FFFF0000FFFF00

0x00FFFF0000FFFF0000FFFF0000FFFF00

0x00FF000000FF0000AB00001400FFFF00

0x00FFFF0000FFFF0000FFFF0000FFFF00

0x00FFFF0000FF000000FF000000000030

0x00FFFF0000FFFF0000FFFF0000FFFF00

0x00FFFF0000FFFF0000FF000000FF0000

0x0000000000FFFF0000FFFF0000FFFF00

0x00FFFF0000FFFF0000FFFF0000FF0000

0x00FF000001E6B75C00FF000000FF0000

0x00FF000000FF000000FF000000FF0000

0x00FF000000FF00000001000000FF0000

0x00FF000000FF000000FF000000FF0000

0x00FF000000FF000000FF0000000001E6

)

)

Reference (1)

Reference (2)

)

AttributeArray (

7 0 1 0 0

0.3

0.4

0.6

)

AttributeArray (

2 0 2 0 0

3D Metafile 1.5 Reference

1354 Metafile Object Specifications

0 0

0 1

1 0

1 1

0 0

0 1

)

attributeset7:

Container (

AttributeSet ()

AmbientCoefficient (0.5)

DiffuseColor (1 0 0)

)

)

tableofcontents0:

TableOfContents (

tableofcontents1> # next TOC

3 # reference seed

-1 # typeSeed

1 # tocEntryType

16 # tocEntrySize

2 # nEntries

1 textureshader3>

TextureShader

2 textureshader5>

TextureShader

)

Offset Hexadecimal code ASCII

0000 3344 4D46 2020 2010 2001 2005 2020 2020 3DMF············

0010 2020 2020 2020 0490 636E 7472 2020 0470 ········cntr···p

0020 746D 7368 2020 2094 2020 2004 2020 2002 tmsh············

0030 2020 2003 2020 2001 2020 2006 2020 2001 ················

0040 2003 0120 0203 0204 0304 0503 2003 2001 ················

0050 0203 0102 0304 0203 C1A0 2020 C1A0 2020 ················

0060 2020 2020 C1A0 2020 4120 2020 2020 2020 ········A·······

0070 2020 2020 2020 2020 2020 2020 2020 2020 ················

3D Metafile 1.5 Reference

Metafile Object Specifications 1355

0080 41F0 2020 2020 2020 41A0 2020 C1A0 2020 A·······A·······

0090 2020 2020 41A0 2020 4120 2020 2020 2020 ····A···A·······

00A0 C1A0 2020 C1A0 2020 BF80 2020 41A0 2020 ············A···

00B0 41F0 2020 3F80 2020 2020 2020 6174 6172 A···?·······atar

00C0 2020 2044 2020 2006 2020 2020 2020 2020 ···D············

00D0 2020 2020 2020 2020 3E4C CCCD 3F19 999A ········>L··?···

00E0 3F4C CCCD 3F80 2020 2020 2020 2020 2020 ?L··?···········

00F0 2020 2020 3F80 2020 3F20 2020 2020 2020 ····?···?·······

0100 3E4C CCCD 3F80 2020 636E 7472 2020 02DC >L··?···cntr····

0110 6174 6172 2020 2014 2020 200B 2020 2020 atar············

0120 2020 2020 2020 2001 2020 2020 636E 7472 ············cntr

0130 2020 014C 7478 7375 2020 2020 7478 706D ···Ltxsu····txpm

0140 2020 013C 2020 2008 2020 2008 2020 2024 ···<···········$

0150 2020 2020 2020 2020 2020 2020 2020 2020 ················

0160 2020 20FF 2020 20FF 2020 FF20 2020 FF20 ················

0170 2020 FF20 2020 FF20 2020 FF20 2020 FF20 ················

0180 0190 9860 2020 20FF 2020 20FF 2020 FF20 ···`············

0190 2020 FF20 2020 FF20 2020 FF20 2020 FF20 ················

01A0 2020 FF20 047F 2020 2020 FF20 2020 FF20 ················

01B0 2020 FF20 2020 FF20 2020 FF20 2020 FF20 ················

01C0 2020 FF20 2020 FF20 2020 2020 2020 FF20 ················

01D0 2020 FF20 2020 FF20 2020 FF20 2020 FF20 ················

01E0 2020 FF20 2020 FF20 2020 FF20 B7A4 01E6 ················

01F0 2020 FF20 2020 FF20 2020 FF20 2020 FF20 ················

0200 2020 FF20 2020 FF20 2020 FF20 2020 FF20 ················

0210 2020 2050 2020 FF20 2020 FF20 2020 FF20 ···P············

0220 2020 FF20 2020 FF20 2020 FF20 2020 FF20 ················

0230 2020 FF20 2020 2020 2020 FF20 2020 FF20 ················

0240 2020 FF20 2020 FF20 2020 FF20 2020 FF20 ················

0250 2020 FF20 2020 FF20 01E8 5640 2020 FF20 ··········V@····

0260 2020 FF20 2020 FF20 2020 FF20 2020 FF20 ················

0270 2020 FF20 2020 FF20 2020 FF20 2020 2020 ················

0280 636E 7472 2020 014C 7478 7375 2020 2020 cntr···Ltxsu····

0290 7478 706D 2020 013C 2020 2008 2020 2008 txpm···<········

02A0 2020 2024 2020 2020 2020 2020 2020 2020 ···$············

3D Metafile 1.5 Reference

1356 Metafile Object Specifications

02B0 2020 2020 20FF FF20 20FF FF20 20FF FF20 ················

02C0 20FF FF20 20FF FF20 20FF FF20 20FF 2020 ················

02D0 20FF 2020 2012 6020 20FF FF20 20FF FF20 ······`·········

02E0 20FF FF20 20FF FF20 20FF FF20 20FF FF20 ················

02F0 20FF 2020 20FF 2020 01E8 57B0 20FF FF20 ··········W·····

0300 20FF FF20 20FF FF20 20FF FF20 20FF FF20 ················

0310 20FF FF20 20FF 2020 20FF 2020 AB20 2014 ················

0320 20FF FF20 20FF FF20 20FF FF20 20FF FF20 ················

0330 20FF FF20 20FF FF20 20FF 2020 20FF 2020 ················

0340 2020 2030 20FF FF20 20FF FF20 20FF FF20 ···0············

0350 20FF FF20 20FF FF20 20FF FF20 20FF 2020 ················

0360 20FF 2020 2020 2020 20FF FF20 20FF FF20 ················

0370 20FF FF20 20FF FF20 20FF FF20 20FF FF20 ················

0380 20FF 2020 20FF 2020 01E6 B75C 20FF 2020 ···········\····

0390 20FF 2020 20FF 2020 20FF 2020 20FF 2020 ················

03A0 20FF 2020 20FF 2020 20FF 2020 2001 2020 ················

03B0 20FF 2020 20FF 2020 20FF 2020 20FF 2020 ················

03C0 20FF 2020 20FF 2020 20FF 2020 20FF 2020 ················

03D0 2020 01E6 7266 726E 2020 2004 2020 2001 ····rfrn········

03E0 7266 726E 2020 2004 2020 2002 6174 6172 rfrn········atar

03F0 2020 2020 2020 2007 2020 2020 2020 2001 ················

0400 2020 2020 2020 2020 3E99 999A 3ECC CCCD ········>···>···

0410 3F19 999A 6174 6172 2020 2044 2020 2002 ?···atar···D····

0420 2020 2020 2020 2002 2020 2020 2020 2020 ················

0430 2020 2020 2020 2020 2020 2020 3F80 2020 ············?···

0440 3F80 2020 2020 2020 3F80 2020 3F80 2020 ?·······?···?···

0450 2020 2020 2020 2020 2020 2020 3F80 2020 ············?···

0460 636E 7472 2020 2028 6174 7472 2020 2020 cntr···(attr····

0470 6361 6D62 2020 2004 3F20 2020 6B64 6966 camb····?···kdif

0480 2020 200C 3F80 2020 2020 2020 2020 2020 ····?···········

0490 746F 6320 2020 203C 2020 2020 2020 2020 toc····<········

04A0 2020 2003 FFFF FFFF 2020 2001 2020 2010 ················

04B0 2020 2002 2020 2001 2020 2020 2020 012C ···············,

04C0 7478 7375 2020 2002 2020 2020 2020 0280 txsu············

04D0 7478 7375 txsu

3D Metafile 1.5 Reference

Metafile Object Specifications 1357

Ellipses 22

Figure 22-12 shows an ellipse.

Figure 22-12 An ellipse

LABELS

ASCII Ellipse

Binary elps (= 0x656C7073)

DATA FORMAT

Vector3D majorAxis

Vector3D minorAxis

Point3D origin

Float32 uMin

Float32 uMax

Field descriptions
majorAxis The (semi-) major axis of the ellipse.

minorAxis The (semi-) minor axis of the ellipse.
origin The center of the ellipse.
uMin Minimum parametric limit value, assuming

parametrization of the angle between the major axis and
the vector from origin to the circumference. A value of
u = 0 corresponds to 0 radians, and u = 1 corresponds to
2 π radians. This is used to create partial ellipses. The basic

minorRadius

majorRadius

origin

3D Metafile 1.5 Reference

1358 Metafile Object Specifications

idea is that only the part of the ellipse between uMin and
uMax is drawn. For details, see the QD3D documentation
or develop magazine, Dec. 96. Must be 0 in Version 1.5.

uMax Maximum parametric limit value; see uMin above. Must be
1 in Version 1.5.

DATA SIZE

0 or 44

DESCRIPTION

An ellipse is a two-dimensional object defined by an origin (that is, the center of
the ellipse) and two orthogonal vectors that define the major and minor radii of
the ellipse. The origin and the two endpoints of the major and minor radii
define the plane in which the ellipse lies. Attributes may be assigned only to the
entire ellipse.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional).

3D Metafile 1.5 Reference

Metafile Object Specifications 1359

EXAMPLE

Ellipse (

2 0 0 #majorRadius

0 1 0 #minorRadius

0 0 0 #origin

0 #uMin

1 #uMax

)

DEFAULT SIZE

For objects of size 0, the default is shown in the example above.

NURB Curves 22

Figure 22-13 shows a NURB curve.

Figure 22-13 A NURB curve

3D Metafile 1.5 Reference

1360 Metafile Object Specifications

LABELS

ASCII NURBCurve

Binary nrbc (= 0x6E726263)

DATA FORMAT

Uns32 order

Uns32 nPoints

RationalPoint4D points[nPoints]

Float32 knots[order + nPoints]

Field descriptions
order The order of the NURB curve. For NURB curves defined by

ratios of cubic B-spline polynomials, the order is 4. In
general, the order of a NURB curve defined by polynomial
equations of degree n is n+1. The value of this field must be
greater than 1.

nPoints The number of control points that define the NURB curve.
The value of this field must be greater than 1.

points[] An array of rational four-dimensional control points that
define the NURB curve. The w coordinate of each control
point must be greater than 0.

knots[] An array of knots that define the NURB curve. The number
of knots in a NURB curve is the sum of the values in the
order and nPoints fields. The values in this array must be
nondecreasing. Successive values may be equal, up to a
multiplicity equivalent to the order of the curve; that is, if
the order of a NURB curve is n, then at most n successive
values may be equal.

DATA SIZE

8 + (nPoints * 16) + ((nPoints + order) * 4)

DESCRIPTION

A nonuniform rational B-spline (NURB) curve is a three-dimensional projection
of a four-dimensional curve. A NURB curve is specified by its order, the

3D Metafile 1.5 Reference

Metafile Object Specifications 1361

number of control points used to define it, the control points themselves, and
the knots used to define it. Attributes may be applied only to the entire NURB
curve.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

NURBCurve (

4 # order

7 # nPoints

0 0 0 1 # points

1 1 0 1

2 0 0 1

3 1 0 1

4 0 0 1

5 1 0 1

6 0 0 1

0 0 0 0 0.25 0.5 0.75 1 1 1 1 # knots

)

DEFAULT SIZE

None.

3D Metafile 1.5 Reference

1362 Metafile Object Specifications

2D NURB Curves 22

LABELS

ASCII NURBCurve2D

Binary nb2c (= 0x6E623263)

DATA FORMAT

Uns32 order

Uns32 nPoints

RationalPoint3D points[nPoints]

Float32 knots[order + nPoints]

Field descriptions
order The order of the NURB curve. In general, the order of a

NURB curve defined by polynomial equations of degree n
is n+1. The value of this field must be greater than 1.

nPoints The number of control points that define the 2D NURB
curve. The value of this field must be greater than 1.

points[] An array of three-dimensional control points that define the
2D NURB curve. The z coordinate of each point in this
array must be greater than 0.

knots[] An array of knots that define the 2D NURB curve. The
number of knots in a NURB curve is the sum of the values
in the order and nPoints fields. The values in this array
must be nondecreasing, but successive values may be
equal.

DATA SIZE

8 + 12 * nPoints + 4 * (order + nPoints)

DESCRIPTION

See “NURB Curves,” beginning on page 1359 for a general description of NURB
curves. 2D NURB curves occur only as child objects to trim loop objects, and

3D Metafile 1.5 Reference

Metafile Object Specifications 1363

trim loop objects occur only as child objects to NURB patches. This object is the
only two-dimensional curve permitted by 3D metafile Version 1.0.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Data.

PARENT OBJECTS

Trim loop object (always).

CHILD OBJECTS

None.

DEFAULT SIZE

None.

Trim Loops 22

LABELS

ASCII TrimLoop

Binary trml (= 0x74726D6C)

DATA FORMAT

None.

DATA SIZE

0

3D Metafile 1.5 Reference

1364 Metafile Object Specifications

DESCRIPTION

A trim loop object is used to bind two-dimensional curves to a NURB patch for
the purpose of trimming that patch. As of this release, only 2D NURB curves
may be used for trimming.

Trimming curves are attached to a NURB patch by placing them in a container
the root object of which is a trim loop object and placing that container in a
further container together with the relevant NURB patch.

The two-dimensional curves governed by a trim loop object must form a
sequence such that the last control point of the ith curve is also the first control
point of the i+1st curve, and the last control point of the last curve is also the
first control point of the first curve.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Data.

PARENT OBJECTS

NURB patch (always).

CHILD OBJECTS

2D NURB curves (required). A trim loop object may have several child objects.

EXAMPLE

Container (

NURBPatch (...)

Container (

TrimLoop ()

NURBCurve2D (...)

.

.

3D Metafile 1.5 Reference

Metafile Object Specifications 1365

.

NURBCurve2D (...)

)

DEFAULT SIZE

None.

NURB Patches 22

Figure 22-14 shows a NURB patch.

Figure 22-14 A NURB patch

controlPoints[10]

controlPoints[11]

controlPoints[9]

controlPoints[4]

controlPoints[0]

controlPoints[1]

controlPoints[2]

controlPoints[6]

controlPoints[5]

controlPoints[3]

controlPoints[7]

v
u

controlPoints[8]

3D Metafile 1.5 Reference

1366 Metafile Object Specifications

LABELS

ASCII NURBPatch

Binary nrbp (= 0x6E726270)

DATA FORMAT

Uns32 uOrder

Uns32 vOrder

Uns32 numMPoints

Uns32 numNPoints

RationalPoint4D points[numMPoints * numNPoints]

Float32 uKnots[uOrder + numMPoints]

Float32 vKnots[vOrder + numNPoints]

Field descriptions
uOrder The order of a NURB patch in the u parametric direction.

For NURB patches defined by ratios of B-spline
polynomials that are cubic in u, the order is 4. In general,
the order of a NURB patch defined by polynomial
equations in which u is of degree n is n+1.

vOrder The order of a NURB patch in the v parametric direction.
For NURB patches defined by ratios of B-spline
polynomials that are cubic in v, the order is 4. In general,
the order of a NURB patch defined by polynomial
equations in which v is of degree n is n+1.

numMPoints The number of control points in the u parametric direction.
The value of this field must be greater than 1.

numNPoints The number of control points in the v parametric direction.
The value of this field must be greater than 1.

points[] An array of rational four-dimensional control points that
define the NURB patch. The size of this array is as
indicated in the data format.

uKnots[] An array of knots in the u parametric direction that define
the NURB patch. The values in this array must be
nondecreasing, but successive values may be equal. The
size of this array is as indicated in the data format.

3D Metafile 1.5 Reference

Metafile Object Specifications 1367

vKnots[] An array of knots in the v parametric direction that define
the NURB patch. The values in this array must be
nondecreasing, but successive values may be equal. The
size of this array is as indicated in the data format.

DATA SIZE

16 + (16 * numMPoints * numNPoints) + (uOrder + numNPoints + vOrder +

numMPoints) * 4

DESCRIPTION

A NURB patch is a three-dimensional surface defined by ratios of B-spline
surfaces, which are three-dimensional analogs of B-spline curves.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization of a NURB patch is as shown in
Figure 22-14.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Trim curves (optional). A trim curves object is a collection of two-dimensional
NURB curves that are used to trim a NURB surface. See “Trim Loops,”
beginning on page 1363, and “2D NURB Curves,” beginning on page 1362, for
descriptions of these objects.

3D Metafile 1.5 Reference

1368 Metafile Object Specifications

EXAMPLE

NURBPatch (

4 #uOrder

4 #vOrder

4 #numMPoints

4 #numNPoints

-2 2 0 1 -1 2 0 1 1 2 0 1 2 2 0 1 #points

-2 2 0 1 -1 2 0 1 1 0 5 1 2 2 0 1

-2 -2 0 1 -1 -2 0 1 1 -2 0 1 2 -2 0 1

-2 -2 0 1 -1 -2 0 1 1 -2 0 1 2 -2 0 1

0 0 0 0 1 1 1 1 #uKnots

0 0 0 0 1 1 1 1 #vKnots

)

Note
The control points of a NURB patch are listed in a
rectangular order, first in order of increasing v, then in
order of increasing u. ◆

DEFAULT SIZE

None.

Ellipsoids 22

Figure 22-15 shows an ellipsoid.

3D Metafile 1.5 Reference

Metafile Object Specifications 1369

Figure 22-15 An ellipsoid

LABELS

ASCII Ellipsoid

Binary elpd (= 0x656C7064)

DATA FORMAT

Vector3D orientation

Vector3D majorRadius

Vector3D minorRadius

Point3D origin

Float32 uMin

Float32 uMax

Float32 vMin

Float32 vMax

Field descriptions
orientation The orientation of the ellipsoid.

majorRadius The major radius of the ellipsoid.
minorRadius The minor radius of the ellipsoid.

origin

minorRadiusmajorRadius

v

u

orientation

3D Metafile 1.5 Reference

1370 Metafile Object Specifications

origin The origin (that is, the center) of the ellipsoid.
uMin Minimum parametric limit value for u. To understand u,

first consider u for the ellipse determined by majorRadius
and minorRadius .The value of u on this sub-ellipse is
parametrized by the angle between the major axis and the
vector from the origin to the circumference of the ellipse.
The value u = 0 corresponds to 0 radians, and u = 1
corresponds to 2 π radians.The values uMin and uMax are
used to create partial ellipses. The basic idea is that only the
part of the ellipse between uMin and uMax is drawn. For
such a particular partial sub-ellipse, the partial ellipsoid
can be thought of as the result of keeping uMin and uMax
fixed but letting v vary through its admissible range. For
details, see the QD3D documentation or develop magazine,
Dec. 96. Must be 0 in Version 1.5.

uMax Maximum parametric limit value in u direction; see uMin
above. Must be 1 in Version 1.5.

vMin Minimum parametric limit value for v. To understand v,
first consider v for the ellipse determined by majorRadius
and orientation. The value of v on this sub-ellipse is
parametrized by the angle between the major axis and the
vector from the origin to the circumference of the ellipse.
The value v = 0 corresponds to 0 radians, and v = 1
corresponds to π (not 2π) radians. The values vMin and vMax
are used to create partial ellipses of this sub-ellipse. The
basic idea is that only the part of the ellipse between vMin
and vMax is drawn. Let pMin be the endpoint of the partial
sub-ellipse that corresponds to vMin , and pMax be the
endpoint that corresponds to vMax. Then the partial
ellipsoid is the result of truncating the whole ellipsoid by a
two planes parallel to the plane specified by majorAxis and
minorAxis : one of these planes passes through vMin and the
other plane passes through vMax. For details, see the QD3D
documentation or develop magazine, Dec. 96. Must be 0 in
Version 1.5

vMax Maximum parametric limit value in v direction; see vMin
above. Must be 1 in Version 1.5.

3D Metafile 1.5 Reference

Metafile Object Specifications 1371

DATA SIZE

0 or 64

DESCRIPTION

An ellipsoid is a three-dimensional object defined by an origin (that is, the
center of the ellipsoid) and three pairwise orthogonal vectors that define the
orientation and the major and minor radii of the ellipsoid.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for an ellipsoid is as shown in Figure
22-15. To the left of the major radius, v = 0; to the right of the major radius, v = 1.
At the (top of the) orientation vector, and at the bottom of the ellipsoid, u = 0.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

Ellipsoid ()

Ellipsoid (

2 0 0

0 1 0

0 0 1

0 0 0

0 # uMin

1 # uMax

0 # vMin

3D Metafile 1.5 Reference

1372 Metafile Object Specifications

1 # vMax

)

Container (

Ellipsoid ()

Container (

AttributeSet ()

DiffuseColor (1 1 0)

)

)

DEFAULT SIZE

For objects of size 0, the default is:

1 0 0
0 1 0
0 0 1
0 0 0
0
1
0
1

Caps 22

LABELS

ASCII Caps

Binary caps (= 0x63617073)

CAPS FLAGS

None 0x00000000

Top 0x00000001

Bottom 0x00000002

Constant descriptions

None The parent cone or cylinder shall not have any caps.

3D Metafile 1.5 Reference

Metafile Object Specifications 1373

Top The parent cylinder shall have a cap at the end opposite to
its base.

Bottom The parent cone or cylinder shall have a cap at its base.

DATA FORMAT

CapsFlags caps

Field descriptions
caps A bitfield expression specifying one or more flags.

DATA SIZE

4

DESCRIPTION

A cap is a plane figure having the shape of an oval that closes the base of a cone
or one end of a cylinder. A cone and a cylinder may each be supplied with a
bottom cap. Only a cylinder may be supplied with a top cap. The length of the
semimajor axis of a cap is equal to the length of the major radius of its parent
object; the length of the semiminor axis of a cap is equal to the length of the
minor radius of its parent object. A cap lies in a plane perpendicular to the
orientation vector of its parent object. The center of a top cap is at the end of the
orientation vector of its parent object; the center of a bottom cap is at the origin
of its parent object. A separate attribute set may be assigned to each cap of an
object having one or more caps.

PARENT HIERARCHY

Data, cap data.

PARENT OBJECTS

Cone, cylinder (always).

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

1374 Metafile Object Specifications

EXAMPLE

Container (

Cone (...)

Caps (Top | Bottom)

Container (

BottomCapAttributeSet ()

DiffuseColor (0 1 0)

)

)

DEFAULT VALUE

None.

Cylinders 22

Figure 22-16 shows a cylinder.

Figure 22-16 A cylinder

origin

v

u
majorRadius minorRadius

orientation

3D Metafile 1.5 Reference

Metafile Object Specifications 1375

LABELS

ASCII Cylinder

Binary cyln (= 0x63796C6E)

DATA FORMAT

Vector3D orientation

Vector3D majorRadius

Vector3D minorRadius

Point3D origin

Float32 uMin

Float32 uMax

Float32 vMin

Float32 vMax

Field descriptions
orientation The orientation of the cylinder.

majorRadius The major radius of the cylinder.
minorRadius The minor radius of the cylinder.
origin The origin (that is, the center of the base) of the cylinder.
uMin Minimum parametric limit value for u. To understand u,

first consider u for the ellipse determined by majorRadius
and minorRadius . The value of u on this ellipse is
parametrized by the angle between the major axis and the
vector from the origin to the circumference of the ellipse.
The value u = 0 corresponds to 0 radians, and u = 1
corresponds to 2 π radians. The values uMin and uMax are
used to create partial ellipses. The basic idea is that only the
part of the ellipse between uMin and uMax is drawn. For
such a particular partial ellipse, the partial cylinder can be
thought of as the result of keeping uMin and uMax fixed but
letting v vary through its admissible range. The result looks
like a cylinder with a wedge taken out. For details, see the
QD3D documentation or develop magazine, Dec. 96. Must
be 0 in Version 1.5.

uMax Maximum parametric limit value in u direction; see uMin
above. Must be 1 in Version 1.5.

3D Metafile 1.5 Reference

1376 Metafile Object Specifications

vMin Minimum parametric limit value in v direction. The value
of v can be viewed as arc length parametrization of the
orientation vector, ranging from 0 at the origin to 1 at the
tip. If vMin is not 0, then a cylinder-shaped slice will be
removed from the bottom of the cylinder. Must be 0 in
Version 1.5.

vMax Maximum parametric limit value in v direction; see vMin
above. Must be 1 in Version 1.5.

DATA SIZE

0 or 64

DESCRIPTION

A cylinder is a three-dimensional object defined by an origin (that is, the center
of the cylinder) and three mutually perpendicular vectors that define the
orientation and the major and minor radii of the cylinder. A cylinder may
include a top cap, a bottom cap, or both. Attributes may be assigned to each
included cap, to the face of the cylinder, and to the entire cylinder.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a cylinder is as shown in Figure 22-16.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Caps (top), top cap attribute set, caps (bottom), bottom cap attribute set, face
cap attribute set, attribute set. All child objects are optional.

3D Metafile 1.5 Reference

Metafile Object Specifications 1377

EXAMPLE

Cylinder ()

Cylinder (

0 2 0

0 1 0

0 0 1

0 0 0

0 # uMin

1 # uMax

0 # vMin

1 # vMax

)

Container (

Cylinder ()

Caps (Bottom | Top)

Container (

BottomCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (0 1 0)

)

)

Container (

FaceCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (1 0 1)

)

)

Container (

TopCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (1 1 0)

3D Metafile 1.5 Reference

1378 Metafile Object Specifications

)

)

)

Note
In the above example, color attributes are attached to the
surface of the cylinder very indirectly. As you see, color
objects are elements of ordinary attribute sets rather than of
cap attribute sets. Those attribute sets are elements of
containers, which, in turn, are elements of cap attribute
sets. The cap attribute sets serve to bind the ordinary
attribute sets to the caps of the cylinder. ◆

DEFAULT SIZE

For objects of size 0, the default is:

1 0 0
0 1 0
0 0 1
0 0 0
0
1
0
1

Disks 22

Figure 22-17 shows a disk.

Figure 22-17 A disk

v u

majorRadius
minorRadius

origin

3D Metafile 1.5 Reference

Metafile Object Specifications 1379

LABELS

ASCII Disk

Binary disk (= 0x6469736B)

DATA FORMAT

Vector3D majorRadius

Vector3D minorRadius

Point3D origin

Float32 uMin

Float32 uMax

Field descriptions
majorRadius The major radius of the disk.

minorRadius The minor radius of the disk.
origin The center of the disk.
uMin Minimum parametric limit value, assuming

parametrization of the angle between majorRadius and the
vector from origin to the circumference. The value u = 0
corresponds to 0 radians, and u = 1 corresponds to 2 π
radians. This is used to create partial ellipses. Let pMin be
the point on the boundary of the partial ellipse that
corresponds to uMin , and pMax the point corresponding to
uMax. Then only the following part of the disk is drawn: the
part bounded by the partial ellipse from pMin to pMax, the
vector from the origin to pMin, and the vector from the
origin to pMax. For details, see the QD3D documentation or
develop magazine, Dec. 96. Must be 0 in Version 1.5.

uMax Maximum parametric limit value; see uMin above. Must be
1 in Version 1.5.

vMin Minimum parametric limit value in v direction. v can be
viewed as the parametrization of the vector from origin to
the circumference, ranging from 0 at the origin to 1 at the
edge. Must be 0 in version 1.5.

vMax Maximum parametric limit value in v direction; see vMin
above. Must be 1 in version 1.5.

3D Metafile 1.5 Reference

1380 Metafile Object Specifications

DATA SIZE

0 or 52

DESCRIPTION

A disk is a two-dimensional object defined by an origin (that is, the center of the
disk) and two vectors that define the major and minor radii of the disk. A disk
may have the shape of a circle, ellipse, or other oval. Attributes may be assigned
to the entire disk only.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a disk is as shown in Figure 22-17.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

Disk (

1 0 0 # majorRadius

0 1 0 # minorRadius

0 0 0 # origin

0 #uMin

1 #uMax

0 #vMin

1 #vMax

)

3D Metafile 1.5 Reference

Metafile Object Specifications 1381

DEFAULT SIZE

For objects of size 0, the default is as in the previous example.

Cones 22

Figure 22-18 shows a cone.

Figure 22-18 A cone

LABELS

ASCII Cone

Binary cone (= 0x636F6E65)

DATA FORMAT

Vector3D orientation

Vector3D majorRadius

Vector3D minorRadius

Point3D origin

Float32 uMin

minorRadius
majorRadius

orientation

origin

v

u

3D Metafile 1.5 Reference

1382 Metafile Object Specifications

Float32 uMax

Float32 vMin

Float32 vMax

Field descriptions
orientation The orientation of the cone. This vector also specifies the

height of the cone.

majorRadius The major radius of the cone.
minorRadius The minor radius of the cone.
origin The origin (that is, the center of the base) of the cone.
uMin Minimum parametric limit value for u. To understand u,

first consider u for the ellipse determined by majorRadius
and minorRadius . The value of u on this ellipse is
parametrized by the angle between the major axis and the
vector from the origin to the circumference of the ellipse.
The value u = 0 corresponds to 0 radians, and u = 1
corresponds to 2 π radians. The values uMin and uMax are
used to create partial ellipses. The basic idea is that only the
part of the ellipse between uMin and uMax is drawn. For
such a particular partial ellipse, the partial cone can be
thought of as the result of keeping uMin and uMax fixed but
letting v vary through its admissible range. The result looks
like a cone with a wedge taken out. For details, see the
QD3D documentation or develop magazine, Dec. 96. Must
be 0 in Version 1.5.

uMax Maximum parametric limit value in u direction; see uMin
above. Must be 1 in Version 1.5.

vMin Minimum parametric limit value in v direction. v can be
viewed as arc length parametrization of the orientation
vector, ranging from 0 at the origin to 1 at the tip. If vMin is
not 0, then a truncated cone shaped slice will be removed
from the bottom of the cylinder. Must be 0 in Version 1.5.

vMax Maximum parametric limit value in v direction; see vMin
above. If vMax is less than 1, then a small cone will be
chopped off the top of the original cone, resulting in a
truncated cone. Must be 1 in Version 1.5.

3D Metafile 1.5 Reference

Metafile Object Specifications 1383

DATA SIZE

0 or 64

DESCRIPTION

A cone is a three-dimensional object defined by an origin (that is, the center of
the base) and three vectors that define the orientation and major and minor
radii of the cone. A cap may be attached to the base of a cone. Attributes may be
assigned to the cap and face of a cone, and also to the entire cone.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a cone is as shown in Figure 22-18.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Caps (optional), bottom cap attribute set (optional), face cap attribute set
(optional), attribute set (optional). A cone must have a bottom cap in order to
have a bottom cap attribute set. Use Caps (Bottom) to set a cap on the base of a
cone.

EXAMPLE

Container (

Cone (

0 1 0 # orientation

0 0 1 # major axis

1 0 0 # minor axis

0 0 0 # origin

0 # uMin

3D Metafile 1.5 Reference

1384 Metafile Object Specifications

1 # uMax

0 # vMin

1 # vMax

)

Caps (Bottom)

Container (

BottomCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (1 0 0)

)

)

Container (

FaceCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (0 0 1)

)

)

)

Note
See the note in “Cylinders,” beginning on page 1374, for an
explanation of cap attribute sets. ◆

DEFAULT SIZE

For objects of size 0, the default is:

1 0 0

0 1 0

0 0 1

0 0 0

0

1

0

1

3D Metafile 1.5 Reference

Metafile Object Specifications 1385

Tori 22

Figure 22-19 shows a torus.

Figure 22-19 A torus

LABELS

ASCII Torus

Binary tors (= 0x746F7273)

DATA FORMAT

Vector3D orientation

Vector3D majorRadius

Vector3D minorRadius

Point3D origin

Float32 ratio

Float32 uMin

Float32 uMax

Float32 vMin

Float32 vMax

minorRadius

majorRadiusr origin

orientation

3D Metafile 1.5 Reference

1386 Metafile Object Specifications

Field descriptions
orientation The orientation of the torus. This field specifies the axis of

rotation and half-thickness of the torus. The orientation
must be orthogonal to both the major and minor radii.

majorRadius The major radius of the torus.
minorRadius The minor radius of the torus.
origin The center of the torus.
ratio The ratio of the length of the major radius of the rotated

ellipse to the length of the orientation vector of the torus.
(In Figure 22-19, this is ρ ÷ length(orientation .) This field
indicates the eccentricity of a vertical cross-section through
the torus (wide if ratio > 1, narrow if ratio < 1).

uMin Minimum parametric limit value for u. To understand u,
first consider u for the ellipse determined by majorRadius
and minorRadius . If the torus is thought of as a doughnut,
one can think of the doughnut as created by starting with
this ellipse and making it thicker. The value of u on this
ellipse is parametrized by the angle between the major axis
and the vector from the origin to the circumference of the
ellipse. The value u = 0 corresponds to 0 radians, and u = 1
corresponds to 2 π radians. The values uMin and uMax are
used to create partial ellipses. The basic idea is that only the
part of the ellipse between uMin and uMax is drawn. For
such a partial ellipse, the partial torus can be thought of as
the part of the doughnut between uMin and uMax. For
details, see the QD3D documentation or develop magazine,
Dec. 96. Must be 0 in Version 1.5.

uMax Maximum parametric limit value in u direction; see uMin
above. Must be 1 in Version 1.5.

vMin Minimum parametric limit value in v direction. To
understand v, we start with the ellipse described above for
the uMin field. Pick any point p on this ellipse, and consider
the following second ellipse: One axis is the orientation
vector rooted at point p. The other axis (call it M) has the
same direction as a vector from point p to the torus’ origin,
and its length is (ratio) times (length of orientation vector).
This second ellipse describes the profile of the tube of the
doughnut. The parametric value v of a point q on this
ellipse is given by the angle between axis M and a vector

3D Metafile 1.5 Reference

Metafile Object Specifications 1387

from point p to point q. The value v = 0 corresponds to 0
radians, and v = 1 corresponds to 2 π radians. The values
vMin and vMax are used to create partial ellipses. The basic
idea is that only the part of the ellipse between vMin and
vMax is drawn. Assuming that uMin = 0 and uMax = 1, if vMin
!= 0 and vMax != 0, the resulting partial torus can be thought
of as a whole doughnut with a wedge-shaped groove cut
out of it. For example, if uMin = 0 and uMax = .5, the result
looks like a bagel sliced in half, ready to have cream cheese
spread on it. The value of vMin must be 0 in Version 1.5.

vMax Maximum parametric limit value in v direction; see vMin
above. Must be 1 in Version 1.5.

DATA SIZE

0 or 68

DESCRIPTION

A torus is a three-dinensional object formed by the rotation of an ellipse about
an axis in the plane of the ellipse that does not cut the ellipse. The major and
minor radii of the torus are the distance of the center of the ellipse from that
axis.

DEFAULT SURFACE PARAMETERIZATION

The default surface parameterization for a torus is as shown in Figure 22-20.

3D Metafile 1.5 Reference

1388 Metafile Object Specifications

Figure 22-20 The defalt surface parameterization of a torus

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (optional).

Cross section

Top view

v=1

v=0

u=0

u=1

v=1

v=0

Orientation

minorRadius

majorRadius

3D Metafile 1.5 Reference

Metafile Object Specifications 1389

EXAMPLES

Container (

Torus (

0 .2 0 #orientation

1 0 0 #majorRadius

0 0 1 #minorRadius

0 0 0 #origin

.5 #ratio

0 #uMin

1 #uMax

0 #vMin

1 #vMax

)

Container (

AttributeSet ()

DiffuseColor (1 1 0)

)

)

DEFAULT SIZE

For objects of size 0, the default is:

1 0 0

0 1 0

0 0 1

0 0 0

1

0

1

0

1

3D Metafile 1.5 Reference

1390 Metafile Object Specifications

Markers 22

Figure 22-21 shows a marker.

Figure 22-21 A marker

LABELS

ASCII Marker

Binary mrkr (= 0x6D726B72)

DATA FORMAT

Point3D location

Int32 xOffset

Int32 yOffset

Uns32 width

Uns32 height

Uns32 rowBytes

EndianEnum bitOrder

RawData data[height * rowBytes]

Field descriptions
location The origin of the marker.

xOffset The number of pixels, in the horizontal direction, to offset
the upper-left corner of the marker from the origin
specified in the location field.

yOffset The number of pixels, in the vertical direction, to offset the
upper-left corner of the marker from the origin specified in
the location field.

3D Metafile 1.5 Reference

Metafile Object Specifications 1391

width The width of the marker, in pixels. The value of this field
must be greater than 0.

height The height of the marker, in pixels. The value of this field
must be greater than 0.

rowBytes The number of bytes in a row of the marker.
bitOrder The order in which the bits in a byte are addressed. This

field must contain one of the constants BigEndian or
LittleEndian .

data[] This field defines a bitmap that specifies the image to be
drawn.

DATA SIZE

36 + (rowBytes * height) + padding

DESCRIPTION

A marker is a two-dimensional object typically used to indicate the position of
an object (or part of an object) in a window. The marker is drawn perpendicular
to the viewing vector, aligned with the window, with its origin at the specified
location. A marker is always drawn with the same size, shape, and orientation,
no matter what transformations are active. However, a transformation may
move the origin and thereby affect the position of the marker in the window.
Attributes may be assigned only to the entire marker; these attributes apply to
those bits in the bitmap that are set to 1.

DEFAULT SURFACE PARAMETERIZATION

None.

PARENT HIERARCHY

Shared, shape, geometry.

PARENT OBJECTS

None.

3D Metafile 1.5 Reference

1392 Metafile Object Specifications

CHILD OBJECTS

Attribute set (optional).

EXAMPLE

Container (

Marker (

0.5 0.5 0.5 # location

-28 # xOffset

-3 # yOffset

56 # width

6 # height

7 # rowBytes

BigEndian # bitOrder

0x7E3C3C667E7C18606066666066187C3C

0x607E7C661860066066607C1860066666

0x6066007E3C3C667E6618

)

Container (

AttributeSet ()

DiffuseColor (0.8 0.2 0.6)

)

)

Marker (

0 0 0 # location

-16 # xOffset

-16 # yOffset

32 # width

32 # height

4 # rowBytes

BigEndian # bitOrder

0x001000402167E0201098181011300C08

0x1E60C6860D403A461880274CB0C041FC

0x60A0811C608301193080119E30908B38

0x18604E300CC1CA3037B23C7043181870

0x0387E82001A01DC000502B4000502A80

3D Metafile 1.5 Reference

Metafile Object Specifications 1393

0x00506A80005DD3000076220000484C00

0x00501800006060000041800000420000

0x0042000000FF000000FF000000FF0000

)

DEFAULT SIZE

None.

Attributes 22

Diffuse Color 22

LABELS

ASCII DiffuseColor

Binary kdif (= 0x6B646966)

DATA FORMAT

ColorRGB diffuseColor

Field descriptions
diffuseColor A structure having three fields: red, green, blue. The

permitted values of these fields are 32-bit floating-point
numbers in the closed interval [0, 1], where 0 is the
minimum value and 1 is the maximum value.

DATA SIZE

12

3D Metafile 1.5 Reference

1394 Metafile Object Specifications

DESCRIPTION

Diffuse color is the color of the light of a diffuse reflection (the type of reflection
that is characteristic of light reflected from a dull, non-shiny surface). A diffuse
color attribute specifies the color of the light diffusely reflected by the objects to
which it is assigned.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. A diffuse color object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

DiffuseColor (0 1 0)

)

Specular Color 22

LABELS

ASCII SpecularColor

Binary kspc (= 0x6b737063)

DATA FORMAT

ColorRGB specularColor

3D Metafile 1.5 Reference

Metafile Object Specifications 1395

Field descriptions
specularColor A structure having three fields: red, green, blue. The

permitted values of these fields are 32-bit floating-point
numbers in the closed interval [0, 1], where 0 is the
minimum value and 1 is the maximum value.

DATA SIZE

12

DESCRIPTION

Specular color is the color of the light of a specular reflection (specular reflection
is the type of reflection that is characteristic of light reflected from a shiny
surface). A specular color attribute specifies the color of the light specularly
reflected by the objects to which it is assigned. Note that the diffuse color and
specular color assigned to the same object can differ.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. A specular color object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

DiffuseColor (.1 .1 .1) # near-black

SpecularColor (1 1 1) # white

)

3D Metafile 1.5 Reference

1396 Metafile Object Specifications

Specular Control 22

LABELS

ASCII SpecularControl

Binary cspc (= 0x63737063)

DATA FORMAT

Float32 specularControl

Field descriptions
specularControl The exponent to be used in computing the intensity of the

specular color of one or more objects. The value of this field
must be greater than or equal to 0, and is normally an
integer greater than or equal to 1.

DATA SIZE

4

DESCRIPTION

A specular control object specifies the specular reflection exponent used in the
Phong and related illumination models.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. A specular control object always has a parent object.

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1397

EXAMPLE

Container (

AttributeSet ()

DiffuseColor (1 0 0) # red

SpecularColor (1 1 1) # white highlights

SpecularControl (60) # sharp fall-off

)

Ellipsoid()

)

Transparency Color 22

LABELS

ASCII TransparencyColor

Binary kxpr (= 0x6B787072)

DATA FORMAT

ColorRGB transparency

Field descriptions
transparency A structure having three fields: red, green, blue. The

permitted values of these fields are 32-bit floating-point
numbers in the closed interval [0, 1], where 0 is the
minimum value and 1 is the maximum value.

DATA SIZE

12

DESCRIPTION

A transparency color attribute affects the amount of color allowed to pass
through an object that is not opaque. The transparency color values are
multiplied by the color values of obscured objects during pixel color

3D Metafile 1.5 Reference

1398 Metafile Object Specifications

computations. Thus, the transparency color values (1 1 1) indicate complete
transparency and the values (0 0 0) indicate complete opacity. The values
(0 1 0) indicate that all light in the green color channel is allowed to pass
through the foreground object, and no light in the red and blue channels is
allowed to pass through the foreground object.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. A transparency color object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

TransparencyColor (.5 .5 .5)

)

Surface UV 22

LABELS

ASCII SurfaceUV

Binary sruv (= 0x73727576)

DATA FORMAT

Param2D surfaceUV

3D Metafile 1.5 Reference

Metafile Object Specifications 1399

Field descriptions
surfaceUV The values in the two fields of this structure specify a

surface uv parameterization for one or more objects. Both of
these values must be floating-point numbers greater than
or equal to 0 and less than or equal to 1.

DATA SIZE

8

DESCRIPTION

A surface UV object is used to specify a surface uv parameterization for one or
more objects. A surface UV object is normally used in conjunction with a trim
shader.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute set. A surface UV object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

Mesh (...)

Container (

VertexAttributeSetList (

200 Include 4 10 21 22 11

)

3D Metafile 1.5 Reference

1400 Metafile Object Specifications

Container (

AttributeSet ()

SurfaceUV (0 0)

)

Container (

AttributeSet ()

SurfaceUV (0 1)

)

Container (

AttributeSet ()

SurfaceUV (1 1)

)

Container (

AttributeSet ()

SurfaceUV (1 0)

)

)

)

Shading UV 22

LABELS

ASCII ShadingUV

Binary shuv (= 0x73687576)

DATA FORMAT

Param2D shadingUV

Field descriptions
shadingUV The values in the two fields of this structure specify

parameters in u and v for the purpose of shading. Both of
these values must be floating-point numbers greater than
or equal to 0 and less than or equal to 1.

3D Metafile 1.5 Reference

Metafile Object Specifications 1401

DATA SIZE

8

DESCRIPTION

A shading UV object is used to specify uv parameters for the purpose of
shading. A shading UV object is normally used in conjunction with a texture
shader.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute set. A shading UV object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

ShadingUV (0 0)

)

Surface Tangents 22

LABELS

ASCII SurfaceTangent

Binary srtn (= 0x7372746E)

3D Metafile 1.5 Reference

1402 Metafile Object Specifications

DATA FORMAT

Vector3D paramU

Vector3D paramV

Field descriptions
paramU The tangent in the u parametric direction.

paramV The tangent in the v parametric direction.

DATA SIZE

24

DESCRIPTION

A surface tangent object is used to specify three-dimensional tangents to the
surface of a geometric object. These tangents serve to indicate the direction of
increasing u and v in the surface parameterization of that object.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute set. A surface tangent always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

SurfaceUV (0 0)

SurfaceTangent (

1 0 0

3D Metafile 1.5 Reference

Metafile Object Specifications 1403

0 1 0

)

)

Normals 22

LABELS

ASCII Normal

Binary nrml (= 0x6E726D6C)

DATA FORMAT

Vector3D normal

Field descriptions
normal The surface normal at a vertex. This vector should be

normalized.

DATA SIZE

12

DESCRIPTION

The surface normal at a vertex of a verticed object is the average of the normals
to the faces of that object sharing that vertex. This normal is obtained by
normalizing the relevant face normal vectors, adding those vectors together,
and normalizing the result. The surface normal vector is used in Gouraud
shading calculations.

PARENT HIERARCHY

Element, attribute.

3D Metafile 1.5 Reference

1404 Metafile Object Specifications

PARENT OBJECTS

Attribute sets. A normal always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

Normal (-1 0 0)

)

Ambient Coefficients 22

LABELS

ASCII AmbientCoefficient

Binary camb (= 0x63616D62)

DATA FORMAT

Float32 ambientCoefficient

Field descriptions
ambientCoefficient

The value of this field must lie in the closed interval [0, 1]. 0
is the minimum value, 1 is the maximum value.

DATA SIZE

4

3D Metafile 1.5 Reference

Metafile Object Specifications 1405

DESCRIPTION

The ambient coefficient is a measure of the level of an object’s reflection of
ambient light. Ambient coefficients may be assigned separately and selectively
to the facets and vertices of faceted and verticed objects, and the same ambient
coefficient may be assigned to several objects by placing the coefficient in a
suitably located attribute set.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. An ambient coefficient always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AttributeSet ()

AmbientCoefficient (0.5)

DiffuseColor (1 1 1)

)

Highlight State 22

LABELS

ASCII HighlightState

Binary hlst (= 0x686C7374)

3D Metafile 1.5 Reference

1406 Metafile Object Specifications

DATA FORMAT

Boolean highlighted

Field descriptions
highlighted A value of True indicates that affected geometric objects are

to receive the highlighting effects specified by an associated
highlight style object during rendering. A value of False
indicates that the affected objects are not to receive those
effects.

DATA SIZE

4

DESCRIPTION

A highlight state object is used to specify whether affected geometric objects are
to receive highlighting effects during rendering. The relevant highlighting
effects are specified by an associated highlight style object. If a geometric
object’s highlight state is set to True (and an associated highlight style object has
been defined), then any renderer that supports highlighting will apply the
attributes specified by the highlight style object to that geometric object when
rendering; these attributes will override incompatible attributes assigned to that
geometric object by other means. A highlight state object is idle if no associated
highlight style object exists. See “Highlight Styles,” beginning on page 1428, for
complete details on highlight style objects.

PARENT HIERARCHY

Element, attribute.

PARENT OBJECTS

Attribute sets. A highlight state object always has a parent object.

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1407

EXAMPLE

Container (

Container (

HighlightStyle () # highlight style object

Container (

AttributeSet ()

DiffuseColor (1 0 0) # highlighting: red color

)

)

Container (

Polygon (...)

Container (

AttributeSet ()

DiffuseColor (0 0 1) # polygon’s normal color: blue

HighlightState (True) # polygon is to be highlighted

) # and will appear red when

) # rendered

Attribute Sets 22

Attribute Sets 22

LABELS

ASCII AttributeSet

Binary attr (= 0x61747472)

DATA FORMAT

No data.

DATA SIZE

0

3D Metafile 1.5 Reference

1408 Metafile Object Specifications

DESCRIPTION

An attribute set is a collection of attributes to be applied to an object, a facet of
an object, or a vertex of an object. An attribute set may include attribute objects
of as many types as desired, but may include only one attribute object of any
particular type. Thus, an attribute set may contain both a diffuse color attribute
and a specular color attribute, but may not contain two diffuse color attributes.

Though any attribute object may be included in any attribute set, some
attributes cannot sensibly be applied to objects of certain types. For example, a
normal cannot sensibly be applied to an entire view, as encapsulated in a view
hints object. An application should disregard such attribute specifications.

Attributes may be assigned to other objects only indirectly, through the use of
attribute sets. Attributes are included in an attribute set by placing the attribute
objects and the attribute set object together in a container. The attributes in that
set may be assigned to a geometric object by placing the relevant container and
the geometric object together in a further container.

An attribute set may also be placed in a cap attribute set of any type; in this
way, attributes may be assigned separately and selectively to the caps and face
of a cone or cylinder. Attribute sets may also be placed in face, geometry, and
vertex attribute set lists; in this way, attributes may be assigned separately and
selectively to the facets, segments, and vertices of geometric objects having
those features.

An attribute set may also be placed in a group. Unless overridden, the attributes
in an attribute set placed in a hierarchically structured group are inherited by
objects at lower levels in the hierarchy of that group. (An application should not
permit an attribute to be inherited by an object to which that attribute cannot
sensibly be applied.) See the sections on cap attribute sets, attribute set lists, and
groups for complete details on the composition of these objects.

PARENT HIERARCHY

Shared, set.

PARENT OBJECTS

Any geometric object, cap attribute set, attribute set list, or group. An attribute
set always has a parent object.

3D Metafile 1.5 Reference

Metafile Object Specifications 1409

CHILD OBJECTS

Attributes: ambient coefficient, diffuse color, specular color, specular control,
transparency color, highlight state, shading UV, surface UV (all optional).

EXAMPLE

Container (

Polygon (...) # all attributes in set applied to polygon

Container (# container puts attributes in set

AttributeSet ()

AmbientCoefficient (...)

DiffuseColor (...)

SpecularColor (...)

SpecularControl (...)

Normal (...)

)

)

Top Cap Attribute Sets 22

LABELS

ASCII TopCapAttributeSet

Binary tcas (= 0x74636173)

DATA FORMAT

No data.

DATA SIZE

0

3D Metafile 1.5 Reference

1410 Metafile Object Specifications

DESCRIPTION

A top cap attribute set is used to attach attributes to the top cap of a cylinder
that has an optional top cap. The attributes to be assigned to the cap are placed
in a regular attribute set in the usual manner. Then the container holding the
regular attribute set and the attributes is placed in the cap attribute set by
including that container and the cap attribute set in a further container.

The attributes associated with a top cap attribute set are not drawn if the parent
object lacks a top cap.

PARENT HIERARCHY

Data, cap data.

PARENT OBJECTS

Cylinder (always).

CHILD OBJECTS

Attribute set (optional). An empty top cap attribute set has no effect.

EXAMPLE

Container (

Cylindner (...)

Caps (Top)

Container (

TopCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (0.2 0.9 0.4)

)

)

)

3D Metafile 1.5 Reference

Metafile Object Specifications 1411

Bottom Cap Attribute Sets 22

LABELS

ASCII BottomCapAttributeSet

Binary bcas (= 0x62636173)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A bottom cap attribute set is used to attach attributes to the bottom cap of a
cone or cylinder that has an optional bottom cap. The attributes to be assigned
to the cap are placed in a regular attribute set in the usual manner. Then the
container holding the regular attribute set and the attributes is placed in the cap
attribute set by including that container and the cap attribute set in a further
container.

The attributes associated with a bottom cap attribute set are not drawn if the
parent object lacks a bottom cap.

PARENT HIERARCHY

Data, cap data.

PARENT OBJECTS

Cone, cylinder (always).

CHILD OBJECTS

Attribute set (optional). An empty bottom cap attribute set has no effect.

3D Metafile 1.5 Reference

1412 Metafile Object Specifications

EXAMPLE

Container (

Cylinder ()

Caps (Bottom)

Container (

BottomCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (0.2 0.9 0.4)

)

)

)

Face Cap Attribute Sets 22

LABELS

ASCII FaceCapAttributeSet

Binary fcas (= 0x66636173)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A face cap attribute set is used to attach an attribute set to the surface of a cone
or cylinder but not to its caps. This object is used to apply attributes to a cone or
cylinder in a way that does not cause them to be inherited by its caps.

3D Metafile 1.5 Reference

Metafile Object Specifications 1413

PARENT HIERARCHY

Data, cap data.

PARENT OBJECTS

Cone, cylinder (always).

CHILD OBJECTS

Attribute set (optional). An empty face cap attribute set has no effect.

EXAMPLE

Container (

Cylinder ()

Caps (Top)

Container (

AttributeSet ()

SurfaceShader (...)

)

Container (

FaceCapAttributeSet ()

Container (

AttributeSet ()

DiffuseColor (1 0 0)

)

)

)

3D Metafile 1.5 Reference

1414 Metafile Object Specifications

Attribute Set Lists 22

Geometry Attribute Set Lists 22

LABELS

ASCII GeometryAttributeSetList

Binary gasl (= 0x6761736C)

DATA FORMAT

Uns32 nObjects

PackingEnum packing

Uns32 nIndices

Uns indices[nIndices]

Field descriptions
nObjects The total number of instances of the relevant feature of the

parent geometric object possessed by that object. If the
parent object is a polyline, the relevant feature is polyline
segment, so the value of this field is the total number of
segments of the polyline.

packing See “Face Attribute Set Lists,” beginning on page 1416, for
a complete explanation of this field.

nIndices The size of the following array. See “Face Attribute Set
Lists,” beginning on page 1416, for a complete explanation
of this field.

indices[] An array of indices. A standard method of indexing
instances of the relevant feature of the parent object is
assumed to have been established, as with the segments of
a polyline. The values of this field are the indices of such
instances and are to be specified in increasing order. See
“Face Attribute Set Lists,” beginning on page 1416, for a
complete explanation of this field.

3D Metafile 1.5 Reference

Metafile Object Specifications 1415

DATA SIZE

16 + nIndices * sizeof(Uns) + padding

DESCRIPTION

A geometry attribute set list is used to assign sets of attributes separately and
selectively to distinct instances of a tractable feature of geometric objects. A
standard method of indexing the instances of such a feature is presupposed by
a geometry attribute set list.

At present, the polyline is the only primitive geometric object to which a
geometry attribute set list may be attached. The attribute sets appearing in a
geometry attribute set list are assigned to the line segments of which the
polyline is composed, not to the vertices of the polyline. (To attach attributes to
the vertices, use a vertex attribute set list.)

The standard index of the segments of a polyline is described in “Polylines,”
beginning on page 1311. To recapitulate, the segment having index i is the
segment having as its endpoints vertices[i] and vertices[i+1] .

PARENT HIERARCHY

Data, attribute set list.

PARENT OBJECTS

Polyline (always).

CHILD OBJECTS

Attribute sets (required). See “Face Attribute Set Lists,” beginning on page 1416,
for a complete explanation of how child objects are correlated with instances of
the relevant features of the parent geometric object.

3D Metafile 1.5 Reference

1416 Metafile Object Specifications

EXAMPLE

Container (

PolyLine (...) #parent geometric object

Container (

GeometryAttributeSetList ()

6 exclude 4 # there are 6 segments; exclude 4 of them

0 2 3 5 # indices of the segments to be excluded

#child objects

Container (

AttributeSet ‘ #applied to segment 1

DiffuseColor (...)

)

Container (

AttributeSet #applied to segment 4

DiffuseColor (...)

)

)

)

Face Attribute Set Lists 22

LABELS

ASCII FaceAttributeSetList

Binary fasl (= 0x6661736C)

PACKING ENUM DATA TYPE

PackingEnum

The permitted values are include (= 0x00000000)
and exclude (= 0x00000001).

3D Metafile 1.5 Reference

Metafile Object Specifications 1417

DATA FORMAT

Uns32 nObjects

PackingEnum packing

Uns32 nIndices

Uns32 indices[nIndices]

Field descriptions
nObjects The total number of faces or facets of the parent object. If

the parent object is a box, the value of this field is 6. If the
parent object is a trigrid, the value of this field is the
number of vertices used to define that trigrid, which is also
the number of facets of the trigrid. If the parent object is a
mesh, the value of this field is the number of faces of that
mesh.

packing The value of this field determines whether the facets of the
parent object of the set list to receive attributes are those
whose facet indices appear in the array indices[] or are
those whose indices do not appear in that array. A value of
include indicates the former; exclude indicates the latter.
You may wish to select include if most facets of the parent
object are not to receive any attributes. Should any other
value appear in this field, the entire set list and all of its
child objects should be ignored.

nIndices The number of facets of the parent object to which the
action specified in the packing field is to be applied; that is,
the number of facets to be included in (or excluded from)
the group of facets to receive attributes. The value of this
field may not exceed that of the nObjects field.

indices[] An array of facet indices. The values in the fields of this
array are the indices of those facets of the parent object to
be subject to the action of the value of the packing field, in
the event that the number of facets to receive attributes is
less than the value in the nObjects field. The size of this
array must equal the value in the nIndices field. Indices are
to be entered in fields of this array in increasing order; no
index may appear more than once. If the value in the
packing field is include , then the field values represent
those facets which are to receive attributes in consequence
of the set list. If the value in the packing field is exclude ,

3D Metafile 1.5 Reference

1418 Metafile Object Specifications

then the field values represent those facets that are not to
receive attributes in consequence of the set list. If the value
in the packing field is exclude and the value in the
nIndices field is 0, then this field may be left unspecified;
similarly, if the value in the packing field is include and the
value in the nIndices field is equal to the value in the
nObjects field, then this field may be left unspecified.

DATA SIZE

16 + nIndices * sizeof(Uns) + padding

DESCRIPTION

A face attribute set list is used to assign sets of attributes separately and
selectively to one or more facets of a multi-faceted geometric object (that is, to
the faces of a box or mesh, or to the triangular facets of a trigrid). A face
attribute set list may not be assigned to a general polygon. The listed attribute
sets themselves occur as child objects of the set list object and are correlated
with facets of the parent object of the set list as described later in this section.
You may think of the child objects as the items in the set list; officially, the set
list is the object defined in this section.

For convenience, the packing field allows you to choose whether to specify (by
inclusion) the facets to receive attributes or to specify (by exclusion) the facets
not to receive attributes. The number of child objects you must specify is equal
to the number of facets actually to receive attributes, whichever option you
select for the packing field. You may wish to specify by inclusion rather than by
exclusion if most facets are not to receive any attributes. This option can reduce
the size of the indices[] array, save work, and save disk space.

If the value of the packing field of a set list is include , then the number of child
objects of that set list must equal the value of the nIndices field of that set list. If
the value of the packing field is exclude , then the number of child objects must
equal the (absolute value of) the difference between the values of the nObjects
and nIndices fields.

Child objects are correlated with facets of the parent object of the set list as
follows. Let the child objects of the set list be enumerated in the order of their
occurrence in the metafile. If the value of the packing field is include , then the
ith child object is correlated with the facet whose index is the value of the ith
field of the array indices[] , or indices[i-1] . If the value of the packing field is

3D Metafile 1.5 Reference

Metafile Object Specifications 1419

exclude , then the ith child object is correlated with the facet whose facet index is
the ith element of the sequence (in increasing order) of facets whose indices do
not appear in the array indices[] . For example, suppose that the parent object
is a mesh having 17 faces, packing is set to exclude , nIndices is 11, and the
elements of indices[] are 1, 2, 4, 6, 7, 8, 11, 12, 13, 14, 16. Then six facets are to
receive attributes: facets 0, 3, 5, 9, 10, 15, so the set list will have six child objects
c0,..., c5. The third child object (that is, c2) is correlated with facet 5, and, in
general, the ith element of the sequence <c0,..., c5> is correlated with the ith
element of the sequence <0, 3, 5, 9, 10, 15>.

The index used to enumerate the facets of a multifaceted geometric object is
described in the section pertaining to that object. Indices begin with zero, so
that the index of the i+1st facet of a multifaceted object is i. The index used to
construct an attribute set list must be standard.

PARENT HIERARCHY

Data, attribute set list.

PARENT OBJECTS

Box, mesh, trigrid.

CHILD OBJECTS

Attribute sets (required). The number of child objects is determined in the
manner indicated in the description of a face attribute set list.

EXAMPLE

Container (

TriGrid (...) #parent object

Container (

FaceAttributeSetList ()

6 #nObjects (parent has six facets;

exclude #packing (exclude

4 #nIndices (four of them:

0 2 3 5 #indices[] (these four.)

3D Metafile 1.5 Reference

1420 Metafile Object Specifications

#begin list

Container (

AttributeSet #apply to facet 1

DiffuseColor (...)

)

Container (

AttributeSet #apply to facet 4

DiffuseColor (...)

#end list

)

)

)

Vertex Attribute Set Lists 22

LABELS

ASCII VertexAttributeSetList

Binary vasl (= 0x7661736C)

DATA FORMAT

Uns32 nObjects

PackingEnum packing

Uns32 nIndices

Uns indices[nIndices]

Field descriptions
nObjects The number of vertices of the parent geometric object.

packing See “Face Attribute Set Lists,” beginning on page 1416, for
a complete explanation of this field.

nIndices Size of the following array. See “Face Attribute Set Lists,”
beginning on page 1416, for a complete explanation of this
field.

3D Metafile 1.5 Reference

Metafile Object Specifications 1421

indices[] An array of vertex indices. See “Face Attribute Set Lists,”
beginning on page 1416, for a complete explanation of this
field.

DATA SIZE

16 + nIndices * sizeof(Uns) + padding

DESCRIPTION

A vertex attribute set list is used to assign sets of attributes separately and
selectively to the vertices of a verticed geometric object. Among the primitive
metafile geometric objects, the following have vertices: general polygons, lines,
meshes, polygons, polylines, triangles, and trigrids.

The index used to enumerate the vertices of an object of one of these types is
described in the section on objects of that type. To recapitulate, in all cases the
vertices are enumerated in the order of their occurrence in the specification of
the parent geometric object. In the case of a general polygon, the index does not
distinguish between contours.

PARENT HIERARCHY

Data, attribute set list.

PARENT OBJECTS

General polygon, line, mesh, polygon, polyline, triangle, trigrid. A vertex
attribute set list always has a parent object.

CHILD OBJECTS

Attribute sets (required). See “Face Attribute Set Lists,” beginning on page 1416,
for a complete explanation of how child objects are correlated with aspects of
the parent geometric object.

3D Metafile 1.5 Reference

1422 Metafile Object Specifications

EXAMPLE

Container (

GeneralPolygon (# parent geometric object

2 # nContours

#contour 0

3 # nVertices, contour 0

-1 0 0 # vertex 0

1 0 0 # vertex 1

0 1.7 0 # vertex 2

#contour 1

3 # nVertices, contour 1

-1 0.4 0 # vertex 3

1 0.4 0 # vertex 4

0 2.1 0 # vertex 5

)

Container (

VertexAttributeSetList (6 Exclude 2 0 4) # set list

Container (# child objects

AttributeSet () # vertex 1 (contour 0)

DiffuseColor (0 0 1)

)

Container (

AttributeSet () # vertex 2 (contour 0)

DiffuseColor (0 1 1)

)

Container (

AttributeSet () # vertex 3 (contour 1)

DiffuseColor (1 0 1)

)

Container (

AttributeSet () # vertex 5 (contour 1)

DiffuseColor (1 1 0)

)

)

Container (

AttributeSet ()

DiffuseColor (1 1 1)

)

)

3D Metafile 1.5 Reference

Metafile Object Specifications 1423

Styles 22

Back-facing Styles 22

LABELS

ASCII BackfacingStyle

Binary bckf (= 0x62636B66)

BACK-FACING STYLES

Both 0x00000000

Culled 0x00000001

Flipped 0x00000002

Constant descriptions

Both A renderer should draw shapes that face toward and away
from the camera. If a shape has only front-facing attributes,
those attributes are used for both sides of the shape.

Culled A renderer should not draw shapes that face away from the
camera (this is not the same as hidden surface removal).

Flipped A renderer should draw shapes that face toward and away
from the camera. If a shape has only front-facing attributes,
those attributes are used for both sides of the shape, but the
normals of back-facing shapes are inverted, so that they
face toward the camera.

DATA FORMAT

BackfacingEnum backfacing

backfacing The value in this field must be one of the three constants
defined above.

3D Metafile 1.5 Reference

1424 Metafile Object Specifications

DESCRIPTION

A scene’s back-facing style determines whether or not a renderer draws shapes
that face away from a scene’s camera. This style object defines some of the
characteristics of a renderer and generally applies to all of the objects in a
model.

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (OrderedDisplayGroup ())

Matrix (...)

BackfacingStyle (Both)

Mesh (...)

Mesh (...)

EndGroup ()

Interpolation Styles 22

LABELS

ASCII InterpolationStyle

Binary intp (= 0x696E7470)

3D Metafile 1.5 Reference

Metafile Object Specifications 1425

INTERPOLATION STYLES

None 0x00000000

Vertex 0x00000001

Pixel 0x00000002

Constant descriptions

None No interpolation is to occur. The renderer is to apply each
effect uniformly across a surface.

Vertex The renderer is to interpolate values linearly across a
verticed surface, using the values at the vertices.

Pixel The renderer is to calculate a value of each effect for every
pixel in the image.

DATA FORMAT

InterpolationStyleEnum interpolationStyle

Field descriptions
interpolationStyle

The value in this field must be one of these constants: None,
Vertex , or Pixel .

DATA SIZE

4

DESCRIPTION

A scene’s interpolation style determines the method of interpolation a renderer
uses when applying lighting or other shading effects to a surface. A value of
None causes the surfaces of a model to have a faceted appearance; the other two
values cause its surfaces to be rendered smoothly.

PARENT HIERARCHY

Shared, shape, style.

3D Metafile 1.5 Reference

1426 Metafile Object Specifications

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (DisplayGroup ())

InterpolationStyle (Vertex)

Container (

Triangle (...)

VertexAttributeSetList (...)

.

.

.

)

EndGroup ()

Fill Styles 22

LABELS

ASCII FillStyle

Binary fist (= 0x66697374)

FILL STYLES

Filled 0x00000000

Edges 0x00000001

Points 0x00000002

Constant descriptions

Filled The renderer should draw shapes as solid filled objects.

3D Metafile 1.5 Reference

Metafile Object Specifications 1427

Edges The renderer should draw shapes as the sets of lines that
define the edges of surfaces.

Points The renderer should draw shapes as the sets of points that
define the vertices of surfaces.

DATA FORMAT

FillStyleEnum fillStyle

Field descriptions
fillStyle The value of this field must be one of these constants:

Filled , Edges , Points .

DATA SIZE

4

DESCRIPTION

A scene’s fill style determines whether an object is drawn as a solid filled object
or is decomposed into a set of edges or points.

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

1428 Metafile Object Specifications

EXAMPLE

BeginGroup (DisplayGroup ())

FillStyle (Edges)

Container (

Mesh (...)

VertexAttributeSetList (...)

)

Torus (...)

EndGroup()

Highlight Styles 22

LABELS

ASCII HighlightStyle

Binary high (= 0x68696768)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A highlight style object is used to specify attributes to be applied to selected
geometric objects during rendering. Any renderer that supports highlighting
will use the attributes specified by a highlight style object to override
incompatible attributes assigned to affected geometric objects in other ways.
The attributes specified by a highlight style object are applied to a geometric
object only if that geometric object also has a highlight state attribute that is set
to True . See “Highlight State,” beginning on page 1405, for complete details on
highlight state attributes.

3D Metafile 1.5 Reference

Metafile Object Specifications 1429

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

Attribute set (required).

EXAMPLE

BeginGroup (DisplayGroup ())

Container (

HighlightStyle () # highlight style object

Container (

AttributeSet ()

DiffuseColor (0 0 1) # highlight attribute

)

Container (

Polygon (...)

Container (

AttributeSet ()

DiffuseColor (1 0 0)

HighlightState (True) # polygon will be highlighted

)

)

Container (

Box

Container (

AttributeSet ()

DiffuseColor (0 1 0)

HighlightState (False)# box will not be highlighted

)

)

3D Metafile 1.5 Reference

1430 Metafile Object Specifications

Container (

Line (...) # line will not be highlighted

Container (

AttributeSet ()

DiffuseColor (1 1 1)

)

)

)

EndGroup ()

Subdivision Styles 22

LABELS

ASCII SubdivisionStyle

Binary sbdv (= 0x7364636C)

SUBDIVISION METHOD ENUM DATA TYPE

Constant 0x00000000

WorldSpace 0x00000001

ScreenSpace 0x00000002

Note
There are two data formats. ◆

FIRST DATA FORMAT

SubdivisionMethodEnum subdivisionMethod

Float32 value1

Field descriptions
subdivisionMethod

The value in this field must be one of the specifiers
WorldSpace or ScreenSpace . A value of WorldSpace
indicates that the renderer subdivides a curve (or surface)

3D Metafile 1.5 Reference

Metafile Object Specifications 1431

into polylines (or polygons) whose sides have a
world-space length that is at most as large as the value
specified in the value1 field. A value of ScreenSpace
indicates that the renderer subdivides a curve (or surface)
into polylines (or polygons) whose sides have a length that
is at most as large as the number of pixels specified in the
value1 field.

value1 For world-space subdivision, the maximum length of a
polyline segment (or polygon side) into which a curve (or
surface) is subdivided. For screen-space subdivision, the
maximum number of pixels in a polyline segment (or
polygon side) into which a curve (or surface) is subdivided.
The value in this field should be greater than 0.

DATA SIZE

8

SECOND DATA FORMAT

SubdivisionMethodEnum subdivisionMethod

Uns32 value1

Uns32 value2

Field descriptions
subdivisionMethod

The value in this field must be the specifier Constant . This
value indicates that the renderer subdivides a curve into a
number of polyline segments and a surface into a mesh of
polygons.

value1 The number of polylines into which a curve should be
subdivided, or the number of vertices in the u parametric
direction of the polygonal mesh into which a surface is
divided. The value in this field should be greater than 0.

value2 The number of vertices in the v parametric direction of the
polygonal mesh into which a surface is divided. The value
in this field should be greater than 0.

3D Metafile 1.5 Reference

1432 Metafile Object Specifications

DATA SIZE

12

DESCRIPTION

A scene’s subdivision style determines how a renderer decomposes smooth
curves and surfaces into polylines and polygonal meshes for display purposes.
Different specifiers and numerical values determine different degrees of
fineness of approximation.

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (DisplayGroup ()

SubdivisionStyle (Constant 32 32)

Ellipsoid (...)

)

Container (

SubdivisionStyle (WorldSpace 12)

Box (...)

)

EndGroup ()

3D Metafile 1.5 Reference

Metafile Object Specifications 1433

Orientation Styles 22

LABELS

ASCII OrientationStyle

Binary ornt (= 0x6F726E74)

ORIENTATION STYLES

CounterClockwise 0x00000000

Clockwise 0x00000001

Constant descriptions

CounterClockwise

The front face of a polygonal shape is defined using the
righthand rule.

Clockwise The front face of a polygonal shape is defined using the
lefthand rule.

DATA FORMAT

OrientationEnum orientation

Field descriptions
orientation The value in this field must be one of these constants:

CounterClockwise , Clockwise .

DATA SIZE

4

DESCRIPTION

A scene’s orientation style determines which side of a planar surface is
considered (by the renderer) to be the “front” side. This style may be changed in
order to change the orientation of a polygonal shape.

3D Metafile 1.5 Reference

1434 Metafile Object Specifications

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup(DisplayGroup ())

OrientationStyle (Clockwise)

.

.

.

EndGroup ()

Receive Shadows Styles 22

LABELS

ASCII ReceiveShadowsStyle

Binary rcsh (= 0x72637368)

DATA FORMAT

Boolean receiveShadows

Field descriptions
receiveShadows A value of True indicates that objects are to receive

shadows; a value of False indicates that objects are not to
receive shadows.

3D Metafile 1.5 Reference

Metafile Object Specifications 1435

DATA SIZE

4

DESCRIPTION

A scene’s receive shadows style specifies whether or not obscured objects shall
receive shadows in rendering.

Note
Some lights also specify whether or not the objects they
illuminate shall cast shadows. However, objects in the
scope of a receive shadows style set to False do not receive
shadows, regardless of whether they are also appropriately
situated to receive shadows from a light set to cast
shadows. ◆

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (DisplayGroup ())

PointLight (...)

ReceiveShadows (True)

Mesh (...)

Mesh (...)

Mesh (...)

EndGroup ()

3D Metafile 1.5 Reference

1436 Metafile Object Specifications

Pick ID Styles 22

LABELS

ASCII PickIDStyle

Binary pkid (= 0x706B6964)

DATA FORMAT

Uns32 id

Field descriptions
id An integer, supplied by your application.

DATA SIZE

4

DESCRIPTION

A pick ID style object is used to correlate the class of objects within its scope
with an integer. This integer may be included in the specification of a picking
operation to restrict that operation to the objects in that class. A pick ID style
object must be placed in a group or container to have effect; the scope of a pick
ID style object placed in a group (or container) is the class of objects located
between that style object and the end of that group (or container).

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1437

EXAMPLE

PickIDStyle (8)

Pick Parts Styles 22

LABELS

ASCII PickPartsStyle

Binary pkpt (= 0x706B7074)

PICK PARTS STYLES

Object 0x00000000

Face 0x00000001

Edge 0x00000002

Vertex 0x00000003

Constant descriptions

Object The hit list for picking contains only whole objects.
Face The hit list for picking contains faces of objects.
Edge The hit list for picking contains edges of objects.
Vertex The hit list for picking contains vertices of objects.

DATA FORMAT

PickPartsFlags pickParts

Field descriptions
pickParts The value in this field must be one of the four flags

specified in the PickPartsFlags data enumeration.

DATA SIZE

4

3D Metafile 1.5 Reference

1438 Metafile Object Specifications

DESCRIPTION

A pick parts style object is used to specify the sort of object to be picked during
the operation of picking. The flags Face , Edge, and Vertex are used to pick
meshes; the flag Object is used to pick all other objects. The default flag is
Object .

PARENT HIERARCHY

Shared, shape, style.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

PickPartsStyle (Object)

Transforms 22

Translate Transforms 22

LABELS

ASCII Translate

Binary trns (= 0x74726E73)

DATA FORMAT

Vector3D translate

3D Metafile 1.5 Reference

Metafile Object Specifications 1439

Field descriptions
translate A translation in three dimensions, specified by a vector.

DATA SIZE

12

DESCRIPTION

A translate transform moves an object along the x, y, and z axes by the values
specified by its translation vector. Thus, the transform Translate (i j k)
moves each point P = <Px, Py , Pz> in its scope to the point P’ = <Px+i, Py+j, Pz+k>.

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Translate (-1 1 0)

Scale Transforms 22

LABELS

ASCII Scale

Binary scal (= 0x7363616C)

3D Metafile 1.5 Reference

1440 Metafile Object Specifications

DATA FORMAT

Vector3D scale

Field descriptions
scale A scaling vector.

DATA SIZE

12

DESCRIPTION

A scale transform scales an object along the x, y, and z axes by the values
specified by its scaling vector.

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Scale (2 2 2)

Matrix Transforms 22

LABELS

ASCII Matrix

Binary mtrx (= 0x6D747278)

3D Metafile 1.5 Reference

Metafile Object Specifications 1441

DATA FORMAT

Matrix4x4 matrix

Field descriptions
matrix A 4-by-4 array specifying a custom matrix transformation.

The specified matrix should be invertible.

DATA SIZE

64

DESCRIPTION

A matrix transform is a transform by an arbitrary invertible 4-by-4 matrix.

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Matrix (

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

)

3D Metafile 1.5 Reference

1442 Metafile Object Specifications

Rotate Transforms 22

LABELS

ASCII Rotate

Binary rott (= 0x726F7474)

AXIS ENUM DATA TYPE

X 0x00000000

Y 0x00000001

Z 0x00000002

DATA FORMAT

AxisEnum axis

Float32 radians

Field descriptions
axis The axis of rotation. The value in this field must be one of

these constants: X, Y, or Z.

radians The number of radians to rotate around the axis of rotation.

DATA SIZE

8

DESCRIPTION

A rotate transform rotates an object about the x, y, or z axis by a specified
number of radians.

PARENT HIERARCHY

Shared, shape, transform.

3D Metafile 1.5 Reference

Metafile Object Specifications 1443

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Rotate (# rotate about the z axis by -1.57 radians

Z

-1.57

)

Rotate-About-Point Transforms 22

LABELS

ASCII RotateAboutPoint

Binary rtap (= 0x72746170)

DATA FORMAT

AxisEnum axis

Float32 radians

Point3D origin

Field descriptions
axis The axis of rotation.

radians The number of radians to rotate about the axis of rotation.
origin The point at which the rotation is to occur.

DATA SIZE

20

3D Metafile 1.5 Reference

1444 Metafile Object Specifications

DESCRIPTION

A rotate-about-point transform rotates an affected object by the specified
number of radians about the line parallel to the value in the axis field and
passing through the point specified in the origin field.

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Rotate (

Y # axis

1.0 # radians

2 3 4 # origin

)

Rotate-About-Axis Transforms 22

LABELS

ASCII RotateAboutAxis

Binary rtaa (= 0x72746161)

3D Metafile 1.5 Reference

Metafile Object Specifications 1445

DATA FORMAT

Point3D origin

Vector3D orientation

Float32 radians

Field descriptions
origin The origin of the axis of rotation.

orientation The orientation of the axis of rotation. This vector should
be normalized.

radians The number of radians by which an affected object is
rotated.

DATA SIZE

28

DESCRIPTION

A rotate-about-axis transform rotates an object about an arbitrary axis in space
by a specified number of radians. The value in the origin field and the
orientation vector are used to define the axis of rotation.

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

1446 Metafile Object Specifications

EXAMPLE

RotateAboutAxis (

20 0 0 # origin

.33 .33 .34 # orientation

1.57 # radians

)

Quaternion Transforms 22

LABELS

ASCII Quaternion

Binary qtrn (= 0x7174726E)

DATA FORMAT

Float32 w

Float32 x

Float32 y

Float32 z

Field descriptions
w The w component of the quaternion transform.
x The x component of the quaternion transform.
y The y component of the quaternion transform.
z The z component of the quaternion transform.

DATA SIZE

16

DESCRIPTION

A quaternion transform rotates and twists an object in a manner determined by
the mathematical properties of quaternions.

3D Metafile 1.5 Reference

Metafile Object Specifications 1447

PARENT HIERARCHY

Shared, shape, transform.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

Quaternion (0.2 0.7 0.2 1.57)

Shader Transforms 22

LABELS

ASCII ShaderTransform

Binary sdxf (= 0x73647866)

DATA FORMAT

Matrix4x4 shaderTransform

Field descriptions
shaderTransform A 4-by-4 matrix.

DATA SIZE

64

3D Metafile 1.5 Reference

1448 Metafile Object Specifications

DESCRIPTION

A shader transform transforms a shaded object into a distinct world-space
coordinate system. A shader transform does not affect the current
transformation hierarchy and does not affect the manner in which the object to
which it is applied is drawn.

PARENT HIERARCHY

Data.

PARENT OBJECTS

Any shader. A shader transform always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

CustomShader ()

ShaderTransform (

1 0 0 0

0 1 0 0

0 0 1 0

2 3 4 1

)

)

Shader UV Transforms 22

LABELS

ASCII ShaderUVTransform

Binary sduv (= 0x73647576)

3D Metafile 1.5 Reference

Metafile Object Specifications 1449

DATA FORMAT

Matrix3x3 matrix

Field descriptions
matrix A 3-by-3 matrix.

DATA SIZE

36

DESCRIPTION

A shader uv transform may be used to transform the surface uv
parameterization of a geometric object prior to shading. A shader uv transform
may be used to rotate a texture map.

PARENT HIERARCHY

Data.

PARENT OBJECTS

Any shader. A shader uv transform always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

TextureShader ()

ShaderUVTransform (

1 0 0

0 1 0

0.2 0.3 1

)

PixmapTexture (...)

)

3D Metafile 1.5 Reference

1450 Metafile Object Specifications

Lights 22

Attenuation and Fall-Off Values 22

Some lights suffer attenuation; that is, a loss of intensity over distance. The
application determines the degree of attenuation of a light by specifying
substituends for three distinct variables in a complex term that occurs in
whatever formula it uses to compute the intensity of that light at a given
distance from its source. The choice of constants determines whether the light
suffers attenuation and, if so, the degree to which its intensity diminishes as a
function of distance. These constants are specified in a data structure of the type
described here.

ATTENUATION DATATYPE

Float32 c0

Float32 c1

Float32 c2

DESCRIPTION

The attenuation factor determined by an attenuation data type is expressed by
the result of replacing the variables c0, c1, c2 by the values of the fields c0 , c1 , c2
in the complex term

(Here l is the location of the light source, p is the illuminated point, and dl, p is
the distance from l to p.)

The initial intensity of a light is multiplied by its attenuation factor when the
intensity of the light at a point is computed. Thus, if c0 = 1 and c1 = c2 = 0, then
the light does not suffer attenuation over distance. If c1 = 1 and c0 = c2 = 0, then
the intensity of the light at a point p diminishes in proportion to the distance
between p and the light source, provided that that distance is at least one unit. If

1

c0 c1dl p, c2dl p,
2

+ +
--

3D Metafile 1.5 Reference

Metafile Object Specifications 1451

c2 = 1 and c0 = c1 = 0, then the intensity of the light at p diminishes in proportion
to the square of the distance between p and the light source, again provided that
that distance is at least one unit. If c0 = c2 = 1 and c1 = 0, then the intensity of the
light at p diminishes in proportion to the sum of 1 and the square of the distance
between p and the light source.

The attenuation factor is not clamped to a maximum value. Thus, for some
choices of c0, c1, c2, the intensity of a light may exceed its source intensity at
distances of less than one unit, driving the RGB color values of the light toward
the maximum of (1, 1, 1), or pure white.

The amount of illumination that a point illuminated by a light receives from
that light also depends on several other factors. Among these factors are the
diffuse and specular reflection characteristics of the surface that contains that
point and the relative positions of the light source, the illuminated point, and
the viewer (the camera).

LIGHT FALL-OFF VALUES

A spot light specifies a cone of light emanating from a source location. Within
the inner cone defined by the hot angle of a spot light, the light may suffer
attenuation over distance from the light source. Within the outer section of the
cone between the hot angle and the outer angle of a spot light, the light may
suffer further attenuation.

Spot lights have a fall-off value that determines the manner of attenuation of
the light from the edge of the cone defined by the hot angle to the edge of the
cone defined by the outer angle. The direction of fall off is perpendicular to the
ray from the source location through the center of the cone. The amount of
additional attenuation determined by any fall-off value is the same along all
rays from the location of the light source forming the same angle with the axis
of the cone.

The following constants specify four fall-off values a spot light may have.

FALLOFF VALUES

None 0x00000000

Linear 0x00000001

Exponential 0x00000002

Cosine 0x00000003

3D Metafile 1.5 Reference

1452 Metafile Object Specifications

Constant descriptions

None The intensity of the light is not affected by the distance
from the center of the cone to the edge of the cone.

Linear The intensity of the light at the edge of the cone falls off at a
constant rate from the intensity of the light at the center of
the cone.

Exponential The intensity of the light at the edge of the cone falls off
exponentially from the intensity of the light at the center of
the cone.

Cosine The intensity of the light at the edge of the cone falls off as
the cosine of the outer angle from the intensity of the light
at the center of the cone.

Light Data 22

LABELS

ASCII LightData

Binary lght (= 0x6C676874)

DATA FORMAT

Boolean isOn

Float32 intensity

ColorRGB color

Field descriptions
isOn A value of True indicates that the parent light is active (is

on). A value of False indicates that the parent light is
inactive (is off).

intensity The intensity of the parent light at its source. The value in
this field must be in the closed interval [0, 1]. 0 is the
minimum value; 1 is the maximum value.

color The RGB color of the parent light.

3D Metafile 1.5 Reference

Metafile Object Specifications 1453

DATA SIZE

20

DESCRIPTION

A light data object specifies the color and source intensity of a parent light, and
whether that light is currently active or inactive. A light object that does not
have a light data object as a child object should be given the default values
indicated below.

Note
A value of less than 1.0 in the intensity field of a light data
object affects the color of the parent light. ◆

PARENT HIERARCHY

Data.

PARENT OBJECTS

A light data object always has a parent object; the parent object is always a light
object.

CHILD OBJECTS

None.

EXAMPLE

Container (

AmbientLight ()

LightData (

True # is on

0.75 # intensity

0.7 0.3 0.4 # color

)

)

3D Metafile 1.5 Reference

1454 Metafile Object Specifications

DEFAULT SETTING

True # is on

1.0 # intensity (full)

1 1 1 # color (white)

Ambient Light 22

LABELS

ASCII AmbientLight

Binary ambn (= 0x616D626E)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

Ambient light is a base amount of light that is added to the illumination of all
surfaces in a scene. Ambient light has no apparent source or location; its
intensity is constant, and it does not cast shadows.

PARENT HIERARCHY

Shared, shape, light.

PARENT OBJECTS

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1455

CHILD OBJECTS

Light data (optional). If no child object is specified, the light should have the
properties specified in the default setting of a light data object.

EXAMPLE

Container (

ViewHints ()

.

.

.

BeginGroup (DisplayGroup ())

Container (

AmbientLight ()

LightData (...)

)

Container (

DirectionalLight()

LightData (...)

)

EndGroup ()

)

Directional Lights 22

LABELS

ASCII DirectionalLight

Binary drct (= 0x64726374)

DATA FORMAT

Vector3D direction

Boolean castsShadows

3D Metafile 1.5 Reference

1456 Metafile Object Specifications

Field descriptions
direction The direction of the directional light. This vector should be

normalized.

castsShadows A value of True indicates that the light casts shadows; a
value of False indicates that the light does not cast
shadows.

DATA SIZE

16

DESCRIPTION

A directional light is a light that emits parallel rays in a specific direction. A
directional light may be set to cast shadows.

Note
Some style objects also specify whether or not objects in a
scene shall receive shadows. However, objects in the scope
of a receive shadows style set to False do not receive
shadows, regardless of whether they are also appropriately
situated to receive shadows from a light set to cast
shadows. ◆

PARENT HIERARCHY

Shared, shape, light.

PARENT OBJECTS

None.

CHILD OBJECTS

Light data (optional). If no child object is specified, the light should have the
properties specified in the default setting of a light data object.

3D Metafile 1.5 Reference

Metafile Object Specifications 1457

EXAMPLE

Container (

DirectionalLight (1 0 0 True)

LightData (...)

)

Point Lights 22

LABELS

ASCII PointLight

Binary pntl (= 0x706E746C)

DATA FORMAT

Point3D location

Attenuation attenuation

Boolean castsShadows

Field descriptions
location The location of the source of the point light.

attenuation This structure determines the amount that the intensity of
the light diminishes over distance. See the section
“Attenuation and Fall-Off Values” (page 1450) for a
description of this structure.

castsShadows A value of True specifies that objects illuminated by the
light are to cast shadows; a value of False specifies that
objects illuminated by the light are not to cast shadows.

DATA SIZE

20

3D Metafile 1.5 Reference

1458 Metafile Object Specifications

DESCRIPTION

A point light is a light that emits rays in all directions from a specific point
source. A point light may suffer attenuation over distance and may cast
shadows.

Note
Some style objects also specify whether or not objects in a
scene shall receive shadows. However, objects in the scope
of a receive shadows style set to False do not receive
shadows, regardless of whether they are also appropriately
situated to receive shadows from a light set to cast
shadows. ◆

PARENT HIERARCHY

Shared, shape, light.

PARENT OBJECTS

None.

CHILD OBJECTS

Light data (optional). If no child object is specified, the light should have the
properties specified in the default setting of a light data object.

EXAMPLE

BeginGroup (DisplayGroup ())

Triangle (...)

Box (...)

Container (

PointLight (

-10, 1, -1 # location

1 0 1 # attenuation

True # casts shadows

)

LightData (...)

)

EndGroup ()

3D Metafile 1.5 Reference

Metafile Object Specifications 1459

Spot Lights 22

LABELS

ASCII SpotLight

Binary spot (= 0x73706F74)

DATA FORMAT

Point3D location

Vector3D orientation

Boolean castsShadows

Attenuation attenuation

Float32 hotAngle

Float32 outerAngle

FallOffEnum fallOff

Field descriptions
location The location of the source of the spot light.

orientation The orientation of the cone of light emitted by the spot
light. The direction of this vector is toward the light source.
This vector should be normalized.

castsShadows A value of True specifies that objects illuminated by the
light are to cast shadows; a value of False indicates that
objects illuminated by the light are not to cast shadows.

attenuation This structure determines the amount that the intensity of
the light diminishes over distance. See “Attenuation and
Fall-Off Values,” beginning on page 1450, for a description
of this structure.

hotAngle The half-angle (specified in radians) from the center of the
cone of light within which the light remains at constant full
intensity. The value in this field should be in the half-open
interval [0, π/2).

outerAngle The half-angle (specified in radians) from the center to the
edge of the cone of the spot light. The value in this field
should be in the half-open interval [0, π/2), and should not
be less than the value in the hotAngle field.

3D Metafile 1.5 Reference

1460 Metafile Object Specifications

fallOff The fall-off value for the spot light. The value in this field
determines the manner of attenuation of the light from the
edge of the hot angle to the edge of the outer angle. See
“Attenuation and Fall-Off Values,” beginning on page 1450,
for a description of the constants that can be used in this
field.

DATA SIZE

44

DESCRIPTION

A spot light is a light source that emits a circular cone of light in a specific
direction from a specific location. Every spot light has a hot angle and an outer
angle that together define the shape of the cone of light and the amount of
attenuation that occurs from the center of the cone to the edge of the cone. The
attenuation of the light’s intensity from the edge of the hot angle to the edge of
the outer angle is determined by the light’s fall-off value.

Note
Some style objects also specify whether or not objects in a
scene shall receive shadows. Thus, conflicting shadowing
instructions can be sent to a renderer. The outcome in such
a case is renderer-specific, application-specific, or both. ◆

PARENT HIERARCHY

Shared, shape, light.

PARENT OBJECTS

None.

CHILD OBJECTS

Light data. If no child object is specified, the light should have the properties
specified in the default setting of a light data object.

3D Metafile 1.5 Reference

Metafile Object Specifications 1461

EXAMPLE

Container (

SpotLight (

0 9 0 # location

0 1 0 # orientation

True # castsShadows

0 0 1 # attenuation

0.3 # hotAngle

0.5 # outerAngle

Linear # fallOff

)

LightData (...)

)

Cameras 22

Camera Placement 22

LABELS

ASCII CameraPlacement

Binary cmpl (= 0x636D706C)

DATA FORMAT

Point3D location

Point3D pointOfInterest

Vector3D upVector

Field descriptions
location The location (in world-space coordinates) of the eye point

of the parent camera.

3D Metafile 1.5 Reference

1462 Metafile Object Specifications

pointOfInterest The point at which the parent camera is aimed, in
world-space coordinates.

upVector The up-vector of the parent camera. This vector should be
perpendicular to the viewing direction defined by the
values in the location and pointOfInterest fields. This
vector should be normalized.

DATA SIZE

36

DESCRIPTION

A camera placement object defines the location, point of interest, and
orientation of its parent camera, in world-space coordinates. The camera vector
(also called the view vector) is defined to be the vector pointOfInterest -
location . This vector is normal to the projection plane and to the clipping
planes, and the distances from the camera to those planes are measured along
this vector.

A camera placement object determines the coordinate system of the projection
plane as follows. The origin of the projection plane is the point at the
intersection of the projection plane and the line through the location and point
of interest. The y axis of the projection plane coincides with the projection onto
the projection plane of the up vector, and the x axis of the projection plane is the
axis such that it, the y axis of the projection plane, and the inverse of the camera
vector form a righthanded coordinate system.

If no camera placement object is specified for a camera, that camera should
receive the default camera placement values specified below.

PARENT HIERARCHY

Data.

PARENT OBJECTS

View angle aspect camera, view plane camera, orthographic camera. A camera
placement object always has a camera as a parent object.

3D Metafile 1.5 Reference

Metafile Object Specifications 1463

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewAngleAspectCamera (...)

CameraPlacement (

0 0 30 # location on z axis

0 0 0 # point of interest is the origin

0 1 0 # up vector aligned with yaxis

)

)

DEFAULT VALUES

0 0 1 # location

0 0 0 # pointOfInterest

0 1 0 # upVector

Camera Range 22

LABELS

ASCII CameraRange

Binary cmrg (= 0x636D7267)

DATA FORMAT

Float32 hither

Float32 yon

3D Metafile 1.5 Reference

1464 Metafile Object Specifications

Field descriptions
hither The distance from the location of the parent camera to the

near clipping plane. The value in this field should be
greater than 0.

yon The distance from the location of the parent camera to the
far clipping plane. The value in this field should be greater
than the value in the hither field.

DATA SIZE

8

DESCRIPTION

A camera range object is used to set the near and far clipping planes of its
parent camera. Distances are measured in the direction defined by the camera
vector, which is normal to both clipping planes.

PARENT HIERARCHY

Data.

PARENT OBJECTS

View angle aspect camera, view plane camera, orthographic camera. A camera
placement object always has a parent object.

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1465

EXAMPLE

Container (

ViewPlaneCamera (...)

CameraPlacement (...)

CameraRange (

.01 # hither

75 # yon

)

)

Camera Viewport 22

LABELS

ASCII CameraViewPort

Binary cmvp (= 0x636D7670)

DATA FORMAT

Point2D origin

Float32 width

Float32 height

Field descriptions
origin The origin of the view port of the parent camera. The

abscissa and ordinate of this point should lie in the closed
interval [–1, 1]. The value in this field is the upper-left
corner of the view port.

width The width of the view port of the parent camera. The value
in this field should lie in the half-open interval (0, 2], and
should not be greater than the absolute value of the
difference between 1 and the abscissa of the origin.

height The height of the view port of the parent camera. The value
in this field should lie in the half-open interval (0, 2], and
should not be greater than the difference between –1 and
the ordinate of the origin.

3D Metafile 1.5 Reference

1466 Metafile Object Specifications

DATA SIZE

16

DESCRIPTION

Every camera specifies the dimensions of the largest (rectangular) image that
that camera can produce (called the parent image), either explicitly or implicitly.
The parent image may be specified by giving the coordinates of its vertices, by
giving the height to width ratio of its sides, or in some other fashion. The
camera view port object specifies the subregion of the parent image that is
actually to be drawn. The value in the origin field defines the upper left corner
of the view port; the values in the other two fields determine the lengths of the
sides of the view port.

The default setting specified below sets the view port equal to the parent image.
Other settings may be used to clip the parent image to desired specifications.

Camera view port specifications are made in a coordinate system in which the
height-to-width ratio of the parent image is one to one, and the coordinates of
the upper-left and lower-right corners of that image are (–1, 1) and (1, –1),
respectively. The actual height-to-width ratio of the parent image may not be
one to one. If not, then view port specifications should be made under the
assumption that the view port will be rescaled by the inverse of the
height-to-width ratio of the parent image after the view port specifications have
been made. Thus, if the height-to-width ratio of the parent image is i/j, and the
height-to-width ratio of the image actually to be drawn is i’/j’, then the
height-to-width ratio of the rectangle specified in the view port should be i’j/ij’.
Any view port having a different height-to-width ratio will result in a distorted
image.

PARENT HIERARCHY

Data.

PARENT OBJECTS

View angle aspect camera, view plane camera, orthographic camera. A camera
viewport object always has a parent object.

3D Metafile 1.5 Reference

Metafile Object Specifications 1467

CHILD OBJECTS

None.

EXAMPLE

CameraViewPort (

-0.5 0.5

1.0

1.0

)

DEFAULT VALUES

-1 1 # origin at upper left corner of the parent image

2 # width is the entire width of the parent image

2 # height is the entire height of the parent image

Orthographic Cameras 22

LABELS

ASCII OrthographicCamera

Binary orth (= 0x6F727468)

DATA FORMAT

Float32 left

Float32 top

Float32 right

Float32 bottom

Field descriptions
left The x coordinate (in the camera’s coordinate system) of the

upper left corner of the front face of the view volume; or,

3D Metafile 1.5 Reference

1468 Metafile Object Specifications

the distance from the center of the camera lens (that is, the
view rectangle) to the left side of the lens.

top The y coordinate (in the camera’s coordinate system) of the
upper left corner of the front face of the view volume; or,
the distance from the center of the camera lens (that is, the
view rectangle) to the top side of the lens.

right The x coordinate (in the camera’s coordinate system) of the
lower right corner of the front face of the view volume; or,
the distance from the center of the camera lens (that is, the
view rectangle) to the right side of the lens.

bottom The y coordinate (in the camera’s coordinate system) of the
lower right corner of the front face of the view volume; or,
the distance from the center of the camera lens (that is, the
view rectangle) to the left side of the lens.

DATA SIZE

16

DESCRIPTION

An orthographic camera is a parallel projection camera that employs an
orthographic projection to obtain its image. The direction of projection is the
opposite of the camera vector (that is, location - pointOfInterest), the
projection plane is the near clipping plane, and the projection is thus along a
normal to the projection plane. The origin of the projection plane is the point at
hither (camera vector); if the absolute values of the fields top and bottom are
equal, and the absolute values of the fields left and right are equal, then the
origin of the projection plane is at the center of the front face of the view
volume.

PARENT HIERARCHY

Shared, shape, camera.

PARENT OBJECTS

View hints (sometimes).

3D Metafile 1.5 Reference

Metafile Object Specifications 1469

CHILD OBJECTS

Camera placement, camera range, camera view port (optional). If a camera does
not have one of these child objects, then it should be assigned the default values
specified in the section on that child object.

EXAMPLE

OrthographicCamera (

-10

-10

10

10

)

View Plane Cameras 22

LABELS

ASCII ViewPlaneCamera

Binary vwpl (= 0x7677706C)

DATA FORMAT

Float32 viewPlane

Float32 halfWidthAtViewPlane

Float32 halfHeightatViewPlane

Float32 centerXOnViewPlane

Float32 centerYOnViewPlane

Field descriptions
viewPlane The distance from the camera location to the view plane.

halfWidthAtViewPlane

One half the width of the view plane window.

3D Metafile 1.5 Reference

1470 Metafile Object Specifications

halfHeightAtViewPlane

The value in the halfWidthAtViewPlane field divided by the
horizontal-to-vertical aspect ratio of the view port. The
value in this field determines the half-height of the view
plane window.

centerXOnViewPlane

The x coordinate of the center of the view plane window,
specified in the view plane coordinate system.

centerYOnViewPlane

The y coordinate of the center of the view plane window,
specified in the view plane coordinate system.

DATA SIZE

20

DESCRIPTION

A view plane camera is a type of perspective camera defined in terms of an
arbitrary view plane. The camera vector is normal to the view plane, and the
distance from the camera location to the view plane is measured in the direction
defined by the camera vector. The window on the view plane and its center are
defined in the projection plane coordinate system determined by the camera’s
camera placement object. The view volume of a view plane camera is
determined by the four rays through the camera location and through the four
corners of the rectangular window on the view plane, together with the two
clipping planes. The view volume is the frustum whose top is the rectangle
having as its vertices the intersections of these four rays with the near clipping
plane and whose base is the rectangle having as its vertices the intersections of
these rays with the far clipping plane.

The center of projection of a view plane camera is the camera location point. If
the center of the window defined by a view plane camera is not at the origin of
the view plane, then the camera yields an off-axis view. The projection
determined by a view plane camera may have one, two, or three principal
vanishing points.

A view plane camera may be used to obtain a close-up image of a single object
by using the approximate center and dimensions of that object to specify the
size and location of the window on the view plane.

3D Metafile 1.5 Reference

Metafile Object Specifications 1471

PARENT HIERARCHY

Shared, shape, camera.

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

Camera placement, camera view port, camera range (optional). If a camera does
not have one of these child objects, then it should be assigned the default values
specified in the section on that child object.

EXAMPLE

Container (

ViewPlaneCamera (

20

15.0

15.0

18

29

)

CameraPlacement (...)

CameraRange (...)

CameraViewPort (...)

)

View Angle Aspect Cameras 22

LABELS

ASCII ViewAngleAspectCamera

Binary vana (= 0x76616E61)

3D Metafile 1.5 Reference

1472 Metafile Object Specifications

DATA FORMAT

Float32 fieldOfView

Float32 aspectRatioXtoY

Field descriptions
fieldOfView An angle, specified in radians, that defines the maximum

field of view of the camera. The value in this field should
lie in the open interval (0, π).

aspectRatioXtoY The horizontal-to-vertical aspect ratio of the camera. If the
value in this field is less than 1.0, the camera’s field of view
is vertical; otherwise, the camera’s field of view is
horizontal.

DATA SIZE

8

DESCRIPTION

A view angle aspect camera is a type of perspective camera defined in terms of
a field of view angle and a horizontal-to-vertical aspect ratio. The aspect ratio
determines the ratio of the base to the height of the rectangles that define the
top and base of the camera’s view volume. These rectangles lie in the near and
far clipping planes, respectively, are upright in the camera’s coordinate system,
and are centered at the points of intersection of the line along the camera vector
and the clipping planes.

If the aspect ratio is less than 1.0, then the field of view angle is in the x = 0
plane of the camera’s coordinate system. Otherwise, the field of view angle is in
the y = 0 plane of the camera’s coordinate system. In both cases the rays that
define the angle intersect in the camera location point, and the field of view
angle is bisected by the ray from the camera location defined by the camera
vector. The center of projection is the camera location point. The view volume of
a view angle aspect camera is symmetrical about its center line. The method of
projection determined by a view angle aspect camera has one principal
vanishing point, located at the origin of the projection plane.

3D Metafile 1.5 Reference

Metafile Object Specifications 1473

PARENT HIERARCHY

Shared, shape, camera.

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

Camera placement, camera view port, camera range (optional). If a camera does
not have one of these child objects, then it should be assigned the default values
specified in the section on that child object.

EXAMPLE

Container (

ViewAngleAspectCamera (

1.7

1.0

)

CameraPlacement (...)

CameraRange (...)

CameraViewPort (...)

)

Groups 22

Display Groups 22

LABELS

ASCII DisplayGroup

Binary dspg (= 0x6C697374)

3D Metafile 1.5 Reference

1474 Metafile Object Specifications

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A display group is a list of drawable objects and containers the root objects of
which are drawable objects. Types of drawable objects include geometric
objects, attribute sets, styles, transforms, and other display groups. A display
group is delimited by begin group and end group objects.

PARENT HIERARCHY

Shared, shape, group.

PARENT OBJECTS

None.

CHILD OBJECTS

Display group state (optional). If no child object is specified, group state flags
should be set to the default values specified in “Display Group States,”
beginning on page 1483.

EXAMPLE

BeginGroup (Display Group())

SubdivisionStyle (Constant 32 32)

Container (

Mesh (...)

VertexAttributeSetList (...)

FaceAttributeSetList (...)

)

3D Metafile 1.5 Reference

Metafile Object Specifications 1475

Container (

Mesh (...)

VertexAttributeSetList (...)

FaceAttributeSetList (...)

)

.

.

.

EndGroup ()

Ordered Display Groups 22

LABELS

ASCII OrderedDisplayGroup

Binary ordg (= 0x6F72646C)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

An ordered display group is a display group in which the objects listed are
sorted by type. The elements of an ordered display group are listed in the
following order: transforms, styles, attribute sets, shaders, geometric objects,
other groups. An ordered display group is delimited by BeginGroup and
EndGroup objects.

PARENT HIERARCHY

Shared, shape, group, display group.

3D Metafile 1.5 Reference

1476 Metafile Object Specifications

PARENT OBJECTS

None.

CHILD OBJECTS

Display group state (optional). If no child object is specified, group state flags
should be set to the default values specified in “Display Group States,”
beginning on page 1483.

EXAMPLE

BeginGroup (OrderedDisplayGroup ())

RotateTransform (...)

ScaleTransform (...)

SubdivisionStyle (...)

BackfacingStyle (...)

BeginGroup (DisplayGroup ())

.

.

.

EndGroup ()

EndGroup ()

Light Groups 22

LABELS

ASCII LightGroup

Binary lghg (= 0x676C6768)

DATA FORMAT

No data.

3D Metafile 1.5 Reference

Metafile Object Specifications 1477

DATA SIZE

0

DESCRIPTION

A light group is simply a list of light objects. A light group is delimited by begin
group and end group objects.

PARENT HIERARCHY

Shared, shape, group.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (LightGroup ())

AmbientLight ()

DirectionalLight (...)

SpotLight (...)

EndGroup ()

I/O Proxy Display Groups 22

LABELS

ASCII IOProxyDisplayGroup

Binary iopx (= 0x70727879)

3D Metafile 1.5 Reference

1478 Metafile Object Specifications

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

An I/O proxy display group is used to place distinct specifications of the same
model together in a group. The purpose of an I/O proxy display group is to
permit a reading application that does not recognize all specifications of a
model to pass over those that it does not recognize until it encounters one that it
does recognize and can use to recover the model. For example, a pentagon may
be represented by either a mesh or a polygon. If both representations are placed
together in an I/O proxy display group, then a reading application that
recognizes meshes but does not recognize polygons can recover the pentagon
from its mesh representation.

Representations of a model in an I/O proxy display group should appear in
preferential order: any representation of a model is to be preferred to any other
representation of that model occurring later in the group. While drawing,
bounding, or picking, the reading application should use the first representation
of the model that it recognizes and should ignore all other representations.

PARENT HIERARCHY

Shared, shape, group.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

Metafile Object Specifications 1479

EXAMPLE

BeginGroup (IOProxyDisplayGroup ())

Polygon (...) # first preference

GeneralPolygon (...) # second preference

Mesh # third preference

EndGroup ()

Info Groups 22

LABELS

ASCII InfoGroup

Binary info (= 0x696E666F)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

An info group is a list of string objects delimited by begin group and end group
objects. An info group allows objects containing information in text form to be
placed together in a group.

PARENT HIERARCHY

Shared, shape, group.

PARENT OBJECTS

None.

3D Metafile 1.5 Reference

1480 Metafile Object Specifications

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (InfoGroup ())

CString (...)

.

.

.

CString (...)

EndGroup ()

Groups (Generic) 22

LABELS

ASCII Group

Binary grup (= 0x67727570)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A group (generic) is simply a list of drawable objects, delimited by begin group
and end group objects.

PARENT HIERARCHY

Shared, shape, group.

3D Metafile 1.5 Reference

Metafile Object Specifications 1481

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (Group ())

.

.

.

EndGroup ()

Begin Group Objects 22

LABELS

ASCII BeginGroup

Binary bgng (= 0x62676E67)

DESCRIPTION

A begin group object is used to declare a group and to delimit the start of that
group. Every group must begin with a begin group object.

PARENT HIERARCHY

3DMF.

PARENT OBJECTS

None.

3D Metafile 1.5 Reference

1482 Metafile Object Specifications

CHILD OBJECTS

None.

EXAMPLE

BeginGroup(

DisplayGroup () # empty group

)

EndGroup ()

End Group Objects 22

LABELS

ASCII EndGroup

Binary endg (= 0x656E6467)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

An end group object is placed immediately after the last object in a group and is
used to delimit that group.

PARENT HIERARCHY

3DMF.

3D Metafile 1.5 Reference

Metafile Object Specifications 1483

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

BeginGroup (DisplayGroup ()) # empty group

EndGroup ()

Display Group States 22

LABELS

ASCII DisplayGroupState

Binary dgst (= 0x64677374)

DISPLAY GROUP STATE FLAGS

None 0x00000000

IsInline 0x00000001

DoNotDraw 0x00000002

NoBoundingBox 0x00000004

NoBoundingSphere 0x00000008

DoNotPick 0x00000010

Constant descriptions

None No flags are specified.
IsInline The parent group is to be executed inline (that is, without

pushing the graphics state on a stack before execution and
popping it after execution). This flag is used to prevent the
objects in the parent group from inheriting properties
specified at a higher level in a hierarchical model
containing the parent group. If this flag is set, then objects

3D Metafile 1.5 Reference

1484 Metafile Object Specifications

in the parent group receive only those properties specified
in that group.

DoNotDraw The parent group is not to be drawn when rendering or
picking. If this flag is set, then the parent group is not to be
traversed when it is encountered in a hierarchical model.

NoBoundingBox The bounding box of the parent group is not to be used for
rendering.

NoBoundingSphere

The bounding sphere of the parent group is not to be used
for rendering.

DoNotPick The parent group is not eligible for inclusion in the hit list
of a pick object.

DATA FORMAT

DisplayGroupStateFlags traversalFlags

Field descriptions
traversalFlags A bitfield expression specifying one or more display group

state flags.

DATA SIZE

4

DESCRIPTION

A display group state object is used to specify a set of flags that determines how
its parent display group is to be traversed during rendering or picking and
whether a bounding box or bounding sphere is to be used during rendering. If a
display group does not have a display group state object as a child object, that
group’s state flags should be set to the default state specified below.

In a text file, a display group state object should be placed together with a
group object in the begin group object that immediately precedes that group.

PARENT HIERARCHY

Data.

3D Metafile 1.5 Reference

Metafile Object Specifications 1485

PARENT OBJECTS

Display group, ordered display group. A display group state object always has
a parent object.

CHILD OBJECTS

None.

DEFAULT DISPLAY GROUP STATE FLAGS

None (= 0x00000000)

EXAMPLE

BeginGroup (

DisplayGroup ()

DisplayGroupState (DoNotPick)

)

.

.

.

EndGroup ()

Renderers 22

Wireframe Renderers 22

LABELS

ASCII WireFrame

Binary wrfr (= 0x77726672)

3D Metafile 1.5 Reference

1486 Metafile Object Specifications

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A wireframe renderer creates line drawings of models. Such a renderer does not
decompose polylines or polygons during rendering. It can render all
back-facing, point, and edge drawing styles.

PARENT HIERARCHY

Shared, renderer.

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewHints ()

Wireframe ()

ViewPlaneCamera (...)

PointLight (...)

BeginGroup (DisplayGroup ())

.

.

.

EndGroup ()

)

3D Metafile 1.5 Reference

Metafile Object Specifications 1487

Interactive Renderers 22

LABELS

ASCII InteractiveRenderer

Binary ctwn (= 0x6374776E)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

The interactive renderer uses a fast and accurate depth-sorting algorithm for
drawing solid, shaded surfaces as well as vectors. The interactive renderer is
also capable of rendering highly detailed, complex models with very realistic
surface illumination and shading, but at the expense of time and memory.

PARENT HIERARCHY

Shared, renderer.

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

None.

3D Metafile 1.5 Reference

1488 Metafile Object Specifications

EXAMPLE

Container (

ViewHints ()

InteractiveRenderer ()

ViewPlaneCamera (...)

PointLight (...)

BeginGroup (DisplayGroup ())

.

.

.

EndGroup ()

)

Generic Renderers 22

LABELS

ASCII GenericRenderer

Binary gnrr (= 0x676E7272)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A generic renderer performs no rendering functions, but may be used to pick or
to accumulate state.

PARENT HIERARCHY

Shared, renderer.

3D Metafile 1.5 Reference

Metafile Object Specifications 1489

PARENT OBJECTS

View hints (sometimes).

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewHints ()

GenericRenderer ()

ViewPlaneCamera (...)

PointLight (...)

BeginGroup (DisplayGroup ())

.

.

.

EndGroup ()

)

Shaders 22

Shader Data Objects 22

LABELS

ASCII Shader

Binary shdr (= 0x73686472)

SHADER UV BOUNDARY TYPES

Wrap 0x00000000

Clamp 0x00000001

3D Metafile 1.5 Reference

1490 Metafile Object Specifications

Constant descriptions

Wrap Values outside the valid range of uv values are to be
wrapped. To wrap a shader effect is to replicate the entire
effect across the mapped area.

Clamp Values outside the valid range of uv values are to be
clamped. To clamp a shader effect is to replicate the
boundaries of the effect across the portion of the mapped
area that lies outside the valid range.

DATA FORMAT

ShaderUVBoundaryEnum uBounds

ShaderUVBoundaryEnum vBounds

Field descriptions
uBounds The value in this field determines whether values in the u

parametric direction that lie outside the valid range are
wrapped or clamped by the parent shader.

vBounds The value in this field determines whether values in the v
parametric direction that lie outside the valid range are
wrapped or clamped by the parent shader.

DATA SIZE

8

DESCRIPTION

A shader data object is a boundary-handling method specifier that determines
how a parent shader handles parametric uv values that are outside the valid
range (namely, 0 to 1).

PARENT HIERARCHY

Data.

3D Metafile 1.5 Reference

Metafile Object Specifications 1491

PARENT OBJECTS

Any shader. A shader data object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

CustomShader (...)

ShaderData (Wrap Clamp)

)

DEFAULT VALUES

Wrap Wrap

Texture Shaders 22

LABELS

ASCII TextureShader

Binary txsu (= 0x74787375)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

A texture shader is used to apply a texture to a surface in shading.

3D Metafile 1.5 Reference

1492 Metafile Object Specifications

PARENT HIERARCHY

Shared, shape, shader, surface shader.

PARENT OBJECTS

None.

CHILD OBJECTS

Pixmap texture object. A texture shader always has one child object.

EXAMPLE

Container (

TextureShader ()

PixmapTexture (...)

)

Pixmap Texture Objects 22

LABELS

ASCII PixmapTexture

Binary txpm (= 0x7478706D)

ENDIAN TYPES

BigEndian 0x00000000

LittleEndian 0x00000001

Constant descriptions

BigEndian Packing is to be done in a big-endian manner.
LittleEndian Packing is to be done in a little-endian manner.

3D Metafile 1.5 Reference

Metafile Object Specifications 1493

PIXEL TYPES

RGB8 0x00000000

RGB16 0x00000001

RGB24 0x00000002

RGB32 0x00000003

Constant descriptions

RGB8 8 bits are devoted to each pixel in the pixmap.
RGB16 16 bits are devoted to each pixel in the pixmap.
RGB24 24 bits are devoted to each pixel in the pixmap.
RGB32 32 bits are devoted to each pixel in the pixmap.

DATA FORMAT

Uns32 width

Uns32 height

Uns32 rowBytes

Uns32 pixelSize

PixelTypeEnum pixelType

EndianEnum bitOrder

EndianEnum byteOrder

RawData image[rowBytes * height]

Field descriptions
width The width of the pixmap. The value in this field must be

greater than 0.

height The height of the pixmap. The value in this field must be
greater than 0.

rowBytes The number of bytes in a row of the pixmap. The value in
this field cannot be less than the product of the values in
the width and pixelSize fields.

pixelSize The size of each pixel in the pixmap. The value in this field
must be greater than 0 and less than 32.

pixelType The type of the pixels of the pixmap:
0x00000000 = RGB32
0x00000001 = ARGB32

3D Metafile 1.5 Reference

1494 Metafile Object Specifications

0x00000010 = RGB16
0x00000011 = ARGB16

bitOrder The order in which the bits in a byte are addressed. This
field must contain one of the constants BigEndian or
LittleEndian .

byteOrder The order in which the bytes in a word are addressed. This
field must contain one of the constants BigEndian or
LittleEndian .

image[] The array that defines the pixmap.

DATA SIZE

28 + rowBytes * height + padding

DESCRIPTION

A pixmap texture object is a generic method of transferring pixmap data that is
used in conjunction with a texture shader.

PARENT HIERARCHY

Shared, texture.

PARENT OBJECTS

Texture shader. A pixmap texture object sometimes, but not always, has a
parent object.

CHILD OBJECTS

None.

EXAMPLE

PixmapTexture (

256 256 # width/height

128 # rowBytes

32 # pixelSize

3D Metafile 1.5 Reference

Metafile Object Specifications 1495

RGB24

BigEndian BigEndian

0x00123232...

0x...

)

View Objects 22

View Hints 22

LABELS

ASCII ViewHints

Binary vwhn (= 0x7677686E)

DATA FORMAT

No data.

DATA SIZE

0

DESCRIPTION

The view hints object is used to group together all of the objects needed to
render an image from a model (that is, a renderer, a camera, lights, and any
additional information to be supplied to the renderer). These other objects occur
as child objects to the view hints object; a container may be used to group them
together. The container holding a view hints object and its associated rendering
specifications should be placed immediately before the models to be rendered
according to those specifications.

A metafile may contain more than one view hints object. If a metafile contains
more than one view hints object, the specifications associated with each view
hints object are inherited by all subsequent view hints objects, unless

3D Metafile 1.5 Reference

1496 Metafile Object Specifications

overridden by contrary specifications. Accordingly, a subsequent view hints
object need have as child objects only those specifications that differ from those
of its predecessors. For example, you may wish to render the same model using
different cameras, while keeping the lights and other specifications intact. Once
the initial specifications have been made, you need only specify a different
camera together with a new view hints object. The model may be placed in the
scope of a subsequent view hints object through the use of a reference object;
the specification of the model need not be repeated.

PARENT HIERARCHY

Shared.

PARENT OBJECTS

None.

CHILD OBJECTS

Renderer, camera, lights (as many as desired), attribute set, image dimensions,
image mask, image clear color (all optional).

EXAMPLE

3DMetafile (1 0 Normal toc>)

Container (

ViewHints ()

Container (

ViewAngleAspectCamera (0.73 1.0)

CameraPlacement (

0 0 30

0 0 0

0 1 0

)

)

DirectionalLight (-0.7 -0.7 -0.65)

Container (

AttributeSet ()

DiffuseColor (0.2 0.2 0.2)

3D Metafile 1.5 Reference

Metafile Object Specifications 1497

SpecularControl (3)

)

ImageDimensions (200 200)

)

ref1:

BeginGroup (DisplayGroup ())

.

.

.

EndGroup ()

Container (

ViewHints ()

Container (

ViewAngleAspectCamera (0.73 1.0)

CameraPlacement (

0 10 0

0 0 0

0 1 0

)

)

)

Reference (1)

Image Masks 22

LABELS

ASCII ImageMask

Binary immk (= 0x696D6D6B)

DATA FORMAT

Uns32 width

Uns32 height

Uns32 rowBytes

RawData image[rowBytes * height]

3D Metafile 1.5 Reference

1498 Metafile Object Specifications

Field descriptions
width The width, in bits, of the bitmap whose bits are listed in the

array image[] . The value in this field should be greater than
0.

height The height, in bits, of the bitmap whose bits are listed in the
array image[] . The value in this field should be greater than
0.

rowBytes The number of bytes in a row of the bitmap.
image[] An array of bit specifications.

DATA SIZE

12 + (rowBytes * height) + padding

DESCRIPTION

An image mask is a bitmap that is used to mask out certain portions of an
image. The values in the width and height fields of an image mask specify the
boundaries of the rectangular subregion of an image that is actually to be
drawn. (Width and height are measured from the upper-left corner of the image
to which a mask is applied.) Each bit listed in the array images[] corresponds to
1 pixel in the rectangle defined by the width and height of the mask. If a bit is
set, then the corresponding pixel is drawn with the color determined by the
underlying image. If a bit is clear, then the corresponding pixel is drawn black.
Normally, an image mask is applied to an image after that image has been
rasterized.

An image dimensions object may be used together with an image mask: the
former may be used to clip an image, and the latter may be used to filter the
clipped image.

PARENT HIERARCHY

Data, view hints data.

PARENT OBJECTS

View hints. An image mask always has a parent object.

3D Metafile 1.5 Reference

Metafile Object Specifications 1499

CHILD OBJECTS

None.

EXAMPLE

3DMetafile (1 0 Normal toc>)

Container (

ViewHints ()

ImageDimensions (32 32)

ImageClearColor (1 1 1)

ImageMask (

32 32 # width, height

4 # rowBytes

BigEndian # bitOrder

0x000000000FFFF8000FFFF8000FFFF800

0x0FFFF8000FFFF8000FFFF8000FFFFFE0

0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0

0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0

0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0

0x0FFFFFE00FFFFFE00FFFFFE00FFFFFE0

0x0C61FFE00F24FFE00E64FFE00F24FFE0

0x0F24FFE00C61FFE00FFFFFE000000000

)

)

Rotate (X 0.25)

Rotate (Y 0.23)

Container (

Torus (0 0.7 0 0 0 1 1 0 0 0 0 0 0.7)

Container (

AttributeSet ()

DiffuseColor (0.2 0.9 0.9)

)

)

3D Metafile 1.5 Reference

1500 Metafile Object Specifications

Image Dimensions Objects 22

LABELS

ASCII ImageDimensions

Binary imdm (= 0x696D646D)

DATA FORMAT

Uns32 width

Uns32 height

Field descriptions
width The preferred width, in pixels, of the displayed portion of

an image.

height The preferred height, in pixels, of the displayed portion of
an image.

DATA SIZE

8

DESCRIPTION

An image dimensions object is used to specify the height and width of the
rectangular portion of an image that is to be displayed. The height and width of
an image dimensions object are measured from the upper-left corner of the
image to which that image dimensions object is applied. Normally, an image is
rasterized before an image dimensions object is applied to it. An image
dimensions object may be used together with an image mask: the former may
be used to clip an image, and the latter may be used to filter the clipped image.

PARENT HIERARCHY

Data, view hints data.

3D Metafile 1.5 Reference

Metafile Object Specifications 1501

PARENT OBJECTS

View hints. An image dimensions object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewHints ()

ImageDimensions (32 32)

ImageMask (...)

)

Image Clear Color Objects 22

LABELS

ASCII ImageClearColor

Binary imcc (= 0x696D6363)

DATA FORMAT

ColorRGB clearColor

Field descriptions
clearColor The RGB color to be given to the visible background of a

model when an image is rendered from that model.

DATA SIZE

4

3D Metafile 1.5 Reference

1502 Metafile Object Specifications

DESCRIPTION

An image clear color object is used to assign color to the background of a model
in a rendered image when the model does not completely fill that image.

PARENT HIERARCHY

Data, view hints data.

PARENT OBJECTS

View hints. An image clear color object always has a parent object.

CHILD OBJECTS

None.

EXAMPLE

Container (

ViewHints ()

ImageDimensions (...)

ImageClearColor (1 1 1)

.

.

.

)

Unknown Objects 22

Unknown Text 22

LABELS

ASCII UnknownText

3D Metafile 1.5 Reference

Metafile Object Specifications 1503

Binary uktx (= 0x756B7478)

DATA FORMAT

String asciiName

String contents

Field descriptions
asciiName The object type of the unknown object, enclosed in double

quotation marks.

contents The specification (without encapsulation) of the unknown
object, enclosed in double quotation marks. Blank space
and comments in the original object specification of the
unknown object may be omitted when this field is written.

DATA SIZE

sizeof(asciiName) + sizeof(contents)

DESCRIPTION

An unknown text object is used to transport unknown data found in a text file.
It is an encapsulated replica of that unknown data. In the usual case, an
unknown text object contains an ill-formed object specification. Your file
reading program may be designed to transport the data contained in an
unknown text object, to validate and convert the data to a specification of a
known object, or to discard the data.

An unknown text object may occur in a binary file as well as in a text file.

PARENT HIERARCHY

Shared, shape.

PARENT OBJECTS

Any object that may have a child object may be a parent object to an unknown
text object.

3D Metafile 1.5 Reference

1504 Metafile Object Specifications

CHILD OBJECTS

None.

EXAMPLE

UnknownText (

"Sphere" # unknown object type

"1 0 0 0 1 0 0 0 1 0 0 a" # illegal specification

)

Unknown Binary 22

LABELS

ASCII UnknownBinary

Binary ukbn (= 0x756B626E)

DATA FORMAT

Int32 objectType

Uns32 objectSize

EndianEnum byteOrder

RawData objectData[objectSize]

Field descriptions
objectType The binary representation of the type of the unknown

object.

objectSize The size of the unknown object.
byteOrder The byte order of the unknown object. The information in

this field is needed to transport unknown data between
processors and permits parsing endian-specific primitives
contained in the object data:
0x00000000 = BigEndian
0x00000001 = LittleEndian

3D Metafile 1.5 Reference

Metafile Object Specifications 1505

objectData[] The specification of the unknown object in the form of raw
data.

DATA SIZE

12 + sizeof(objectData)

DESCRIPTION

An unknown binary object is used to transport unknown data found in a binary
file. It is an encapsulated replica of that unknown data. In the usual case, an
unknown binary object contains an ill-formed object specification. Your file
reading program may be designed to transport the data contained in an
unknown text object, to validate and convert the data to a specification of a
known object, or to discard the data.

An unknown binary object may occur in a text file as well as in a binary file.

PARENT HIERARCHY

Shared, shape.

PARENT OBJECTS

None.

CHILD OBJECTS

None.

EXAMPLE

UnknownBinary (

1701605476

4

BigEndian

0x0AB2

)

3D Metafile 1.5 Reference

1506 Metafile Object Specifications

1507

QuickDraw 3D RAVE 23Figure 23-0
Listing 23-0
Table 23-0

This chapter describes the QuickDraw 3D Renderer Acceleration Virtual Engine
(RAVE), the part of the Macintosh system software that controls 3D drawing
engines (also known as 3D drivers). As explained more fully below, a drawing
engine is software that supports the low-level rasterization operations required
for interactive 3D rendering. To achieve interactive performance, a drawing
engine is often associated with some hardware device designed specifically to
accelerate the 3D rasterization process.

QuickDraw 3D RAVE is used internally by QuickDraw 3D, the 3D graphics
library from Apple Computer, Inc. that you can use to create, configure, render,
and interact with models of three-dimensional objects. For most 3D drawing
and interaction, you should use the high-level application programming
interfaces provided by QuickDraw 3D. In some cases, however, you might need
to use the low-level services provided by QuickDraw 3D RAVE. You can use
QuickDraw 3D RAVE if

■ you are writing a specialized application (such as a game-development
framework) that needs to take advantage of Apple’s optimized software
rasterizers and any available 3D acceleration hardware

■ you are writing interactive software (such as a game or other entertainment
software) that requires the extremely fast 3D rendering that can be achieved
with a very low-level, lightweight graphics library

■ you are developing 3D acceleration hardware or software that is to be
accessed by any applications rendering 3D images

To use this document, you should already be familiar with QuickDraw 3D,
described in 3D Graphics Programming With QuickDraw 3D. You should also be
familiar with low-level 3D rendering algorithms. The bibliography lists a
number of standard 3D reference books that document those algorithms.

This document begins by describing the basic capabilities of QuickDraw 3D
RAVE. Then it shows how to use some of those capabilities to find the available

QuickDraw 3D RAVE

1508 About QuickDraw 3D RAVE

drawing engines, select and configure a drawing engine, and use that drawing
engine to draw 3D images. The section “Writing a Drawing Engine,” beginning
on page 1524, shows how to add a new drawing engine to those already
available for use by QuickDraw 3D RAVE. You need to read this section only if
you are developing custom 3D acceleration hardware or software.

The section “QuickDraw 3D RAVE Reference,” beginning on page 1535,
provides a complete reference to the constants, data structures, and functions
provided by QuickDraw 3D RAVE.

IMPORTANT

QuickDraw 3D RAVE is used by the interactive renderer
supplied as part of QuickDraw 3D version 1.0. However,
the features described here that provide compatibility with
OpenGL™ are not supported by that renderer and are
subject to change in future versions of QuickDraw 3D
RAVE. ▲

About QuickDraw 3D RAVE 23

The QuickDraw 3D Renderer Acceleration Virtual Engine (or, more briefly,
QuickDraw 3D RAVE) is the part of the Macintosh system software that
controls 3D drawing engines. A drawing engine is software that supports
low-level rasterization operations—that is, the process of determining values
for pixels in an image on the screen or some other medium. You are probably
already familiar with QuickDraw, which is a 2D drawing engine. The 3D
drawing engines managed by QuickDraw 3D RAVE differ from 2D drawing
engines in several important respects:

■ A 3D drawing engine must support a z (or depth) value for hidden surface
removal (removing any surfaces in a model that are hidden by opaque
surfaces of objects).

■ A 3D drawing engine typically supports double buffering, the use of two
different buffers to store pixel images. Double buffering helps reduce the
flashing caused by redrawing an image. Double buffering can also be used to
avoid tearing artifacts caused by updating a window at high speed.

■ A 3D drawing engine typically supports special rasterization modes, such as
texture mapping or constructive solid geometry.

QuickDraw 3D RAVE

About QuickDraw 3D RAVE 1509

In almost all other respects, a 3D drawing engine operates just like a 2D
drawing engine. You draw objects by sending drawing commands to the
drawing engine, which interprets the commands and constructs a rasterized
image. A 3D drawing engine is often associated with hardware designed
specifically to accelerate the 3D rasterization process.

Figure 23-1 illustrates the position of QuickDraw 3D RAVE in relation to
drawing engines, the clients that call it, and the devices driven by the drawing
engines.

Figure 23-1 The position of QuickDraw 3D RAVE

QuickDraw 3D RAVE and all registered drawing engines with their associated
devices comprise the QuickDraw 3D Acceleration Layer. As you can see, this

3D interactive
game

Application layer

Application

QuickDraw 3D OpenGL

Application Application

System Software
layer

QuickDraw 3D RAVE

Drawing
engine

Virtual device

Drawing
engine

Virtual device

QuickDraw 3D
acceleration layer

Hardware layer

Drawing
engine

Virtual device Virtual device

QuickDraw 3D RAVE

1510 About QuickDraw 3D RAVE

layer operates as a hardware abstraction layer that insulates the system
software (for instance, QuickDraw 3D) or other clients from the actual video
display hardware and graphics acceleration hardware available on a particular
Macintosh computer.

Most applications creating 3D images should use QuickDraw 3D, which
determines the best drawing engine and associated output device to use to
display an image. QuickDraw 3D calls that drawing engine, using functions
provided by QuickDraw 3D RAVE. As a result, most applications do not need
to know about the QuickDraw 3D Acceleration Layer. Instead, they should use
high-level 3D system software (such as QuickDraw 3D or OpenGL) to create
and render 3D models.

Occasionally, however, some software (like the 3D game shown in Figure 23-1)
needs interactive performance but only limited 3D rendering capabilities. In
these cases, the software can call QuickDraw 3D RAVE functions directly, to
find and configure a drawing engine and to issue drawing commands.

The QuickDraw 3D Acceleration Layer is intended to provide a basis for 3D
rendering at interactive speeds. Accordingly, QuickDraw 3D RAVE is
implemented in such a way as to minimize the overhead incurred by
communication between an application and a drawing engine. In particular, a
function call from an application to QuickDraw 3D RAVE does not require a
context change. In addition, a function call from an application to a drawing
engine does not require intermediate processing by QuickDraw 3D RAVE.
Instead, drawing calls are implemented as C language macros that call directly
into the code of a drawing engine. (See “Manipulating Draw Contexts”
(page 1598) for details.)

IMPORTANT

As a result of these two features, calling a drawing engine
through QuickDraw 3D RAVE provides the same level of
performance as linking the engine directly with the calling
application. ▲

Drawing Engines 23

A drawing engine is a plug-in software module that accepts drawing
commands and produces a rasterized image. QuickDraw 3D RAVE is designed
to make it easy for you to add drawing engines to those already available.
When you register a drawing engine, it thereby becomes available for use by
any application or system software running on a Macintosh computer.

QuickDraw 3D RAVE

About QuickDraw 3D RAVE 1511

QuickDraw 3D RAVE expects that a drawing engine will have a certain
minimum set of required features and possibly one or more optional features.
Every drawing engine must provide these features:

■ hidden surface removal (usually accomplished using z buffering with at least
16 bits per pixel)

■ point and line drawing, with application-specifiable point and line widths

■ drawing of Gouraud-shaded triangles

■ drawing of bitmaps having depths of 1, 16, or 32 bits per pixel

■ support for double buffering

In addition to the required features, a drawing engine may support one or more
of these optional features:

■ high-precision hidden surface removal (using z buffering with at least 24 bits
per pixel)

■ perspective-corrected hidden surface removal

■ texture mapping

■ triangle meshes (a memory and time optimization that allows rendered
triangles to share vertices)

■ transparency blending, with or without an alpha channel

■ antialiasing

■ z-sorted rendering of non-opaque objects

■ support for OpenGL features (such as scissoring, multiple blending modes,
area and line stipple patterns, and so forth)

The interactive renderer supplied as part of QuickDraw 3D uses a
software-only drawing engine that can draw to any available device. In
addition to the required features listed earlier, the drawing engine supplied
with the interactive renderer supports these optional features:

■ z buffering with 16 or 32 bits per pixel

■ direct rendering at 16 or 32 bits per pixel (rendering at fewer than 16 bits per
pixel is also supported, but with lower performance)

■ perspective-corrected texture mapping

QuickDraw 3D RAVE

1512 About QuickDraw 3D RAVE

It’s important to keep in mind that a drawing engine is a low-level 3D driver
and hence does not support some features found in higher-level interfaces. The
current programming interfaces to drawing engines do not support any of these
features:

■ transformations, shading, or clipping

■ I/O support (such as reading and writing 3D metafiles)

■ high-level primitives (such as curved surfaces)

■ support for drawing to windows that straddle two or more devices

IMPORTANT

Because of these limitations, most applications should not
use QuickDraw 3D RAVE directly. Instead, you should use
the high-level programming interfaces provided by
QuickDraw 3D or other system software that provides 3D
capabilities. ▲

QuickDraw 3D RAVE does not require that a drawing engine be capable of
drawing to all devices available on a particular computer. Rather, a particular
drawing engine may support only a single output device. For example, a
drawing engine that uses a frame buffer’s built-in 3D acceleration hardware
may be incapable of rendering to any other device. As a result, QuickDraw 3D
RAVE won’t allow some other device to be associated with that drawing
engine. This means that QuickDraw 3D RAVE does not provide automatic
support for drawing into windows that cross multiple devices. Instead, it is the
application’s responsibility to determine when a window does straddle devices
and to construct multiple draw contexts (described next) for the output image.

Draw Contexts 23

Although a drawing engine may be capable of supporting more than one
device, it cannot divide a raster across multiple devices. Instead, every drawing
command sent to a drawing engine must be destined for a single device.
QuickDraw 3D RAVE guarantees this by requiring a calling application to
specify a draw context as a parameter for every drawing command. A draw
context is a structure (of type TQADrawContext) that maintains state information
and other data associated with a particular drawing engine and device.

As mentioned at the end of the previous section, you need to create several
draw contexts if you want to draw into a window that spans several devices.

QuickDraw 3D RAVE

Using QuickDraw 3D RAVE 1513

Similarly, you need to create several draw contexts if you want to draw into
several different windows on the same device. Each draw context maintains its
own state information image buffers and is unaffected by any functions that
operate on another draw context.

The state information associated with a draw context is maintained using a
large number of state variables. For example, the background color of a draw
context is specified by four state variables, designated by the four identifiers (or
tags) kQATag_ColorBG_a, kQATag_ColorBG_r, kQATag_ColorBG_g, and
kQATag_ColorBG_b. See “Creating and Configuring a Draw Context,” beginning
on page 1517, for some sample code that reads and sets state variables, and
“Tags for State Variables,” beginning on page 1539, for a complete list of the
available state variables.

A hardware device (such as a frame buffer or a video interface) is represented in
QuickDraw 3D RAVE by a virtual device, a structure of type TQADevice that
determines which one of a variety of types of hardware devices a draw context
draws into. On Macintosh computers, QuickDraw 3D RAVE supports two
kinds of virtual devices: memory devices and graphics devices. A memory
device represents an area of memory, and a graphics device represents a video
device (such as a plug-in video card or built-in video interface) that controls a
screen, or an offscreen graphics world (which allows your application to build
complex images off the screen before displaying them). In effect, a virtual
device specifies the buffers into which all drawing commands associated with a
draw context write pixels.

Using QuickDraw 3D RAVE 23

This section illustrates how to use QuickDraw 3D RAVE. In particular, it
provides source code examples that show how you can

■ specify a virtual device

■ determine which drawing engines are available and what features they have

■ create and configure a draw context

■ draw objects in a draw context

■ use a draw context as an image cache

■ use a texture map’s alpha channel for transparency or as a blend matte

QuickDraw 3D RAVE

1514 Using QuickDraw 3D RAVE

■ render with antialiasing

These are examples of operations that an application might need to perform. To
learn how to write and register a new drawing engine, see the section “Writing
a Drawing Engine,” beginning on page 1524.

Note
The code examples shown in this section provide only very
rudimentary error handling. ◆

Specifying a Virtual Device 23

You send all drawing commands to a draw context. To create a draw context,
you need to specify a virtual device and a drawing engine. This section shows
how to initialize a virtual device. See the next section for information on
specifying a drawing engine.

On Macintosh computers, a virtual device represents either an area of memory,
a video device, or an offscreen graphics world. You specify a virtual device by
filling in fields of a device structure, defined by the TQADevice data type.

typedef struct TQADevice {
TQADeviceType deviceType;
TQAPlatformDevice device;

} TQADevice;

The deviceType field indicates the type of virtual device you want to draw into.
Currently, you can pass either kQADeviceMemory or kQADeviceGDevice to select a
Macintosh device type. The device field indicates a platform device data
structure, which is either of type TQADeviceMemory for memory devices or
GDHandle for graphics devices.

typedef union TQAPlatformDevice {
TQADeviceMemory memoryDevice;
GDHandle gDevice;

} TQAPlatformDevice;

To specify a memory device, you fill in the fields of a memory device structure,
defined by the TQADeviceMemory data type.

QuickDraw 3D RAVE

Using QuickDraw 3D RAVE 1515

typedef struct TQADeviceMemory {
long rowBytes;
TQAImagePixelType pixelType;
long width;
long height;
void *baseAddr;

} TQADeviceMemory;

Listing 23-1 shows how to initialize a memory device.

Listing 23-1 Initializing a memory device

TQADevice myDevice;
long myTargetMemory[100][100];

myDevice.deviceType = kQADeviceMemory;
myDevice.device.memoryDevice.rowBytes = 100 * sizeof(long);
myDevice.device.memoryDevice.pixelType = kQAPixel_ARGB32;
myDevice.device.memoryDevice.width = 100;
myDevice.device.memoryDevice.height = 100;
myDevice.device.memoryDevice.baseAddr = myTargetMemory;

Drawing to memory always occurs in the native pixel format of the platform.
Note that not all drawing engines support drawing to memory. For information
on determining what kinds of virtual devices a particular drawing engine
supports, see “Finding a Drawing Engine” (page 1516).

Listing 23-2 shows how to initialize a virtual graphics device.

Listing 23-2 Initializing a graphics device

TQADevice myDevice;
GDHandle gDeviceHandle;

/*create a GDHandle (perhaps by calling NewGDevice)*/
...
myDevice.deviceType = kQADeviceGDevice;
myDevice.device.gDevice = gDeviceHandle;

QuickDraw 3D RAVE

1516 Using QuickDraw 3D RAVE

The code in Listing 23-2 assumes that the gDeviceHandle global variable has
been assigned a handle to a GDevice record. See Inside Macintosh: Imaging With
QuickDraw for complete information on creating and configuring graphics
devices.

Note
A draw context can be associated with only a single virtual
device and hence with only a single GDevice. Macintosh
windows can straddle several screens, each associated with
a different GDevice. It is your responsibility to determine
which graphics devices a window straddles and to create a
separate draw context for each one. ◆

Finding a Drawing Engine 23

Not all drawing engines are capable of drawing into all type of virtual devices.
For example, some drawing engines might not support memory devices at all,
and other drawing engines might support only a particular graphics device. As
a result, once you’ve initialized a virtual device, you need to find a drawing
engine that is capable of drawing into that device. You do this by finding the
available drawing engines and selecting one that is capable of drawing into the
desired virtual device. If more than one engine supports that device, you need
to choose one of them.

QuickDraw 3D versions 1.1 and later provide a control panel that allows the
user to select the drawing engine to use for each available monitor.

You can search through the list of available drawing engines by calling the
QADeviceGetFirstEngine and QADeviceGetNextEngine functions. The
QADeviceGetFirstEngine function returns the preferred drawing engine for the
specified device; in most cases, this engine is the best engine to use for high
performance rendering. However, you might need specific drawing features
that are not supported by the preferred drawing engine. If so, you can use the
QAEngineGestalt function to query the engine’s capabilities, as shown in
Listing 23-3.

QuickDraw 3D RAVE

Using QuickDraw 3D RAVE 1517

Listing 23-3 Finding a drawing engine with fast texture mapping

TQAEngine *MyFindPreferredEngine (TQADevice *device)
{

TQAEngine *myEngine;
unsigned long fast;

for (myEngine = QADeviceGetFirstEngine(device);
myEngine;
myEngine = QADeviceGetNextEngine(device, myEngine)) {

if (QAEngineGestalt(myEngine, kQAGestalt_FastFeatures, &fast) == kQANoErr) {
if (fast & kQAFast_Texture)

return(myEngine);
}

}
return(NULL);

}

The MyFindPreferredEngine function defined in Listing 23-3 calls the
QADeviceGetFirstEngine function to get the preferred drawing engine for the
specified device. Then it calls QAEngineGestalt, passing the
kQAGestalt_FastFeatures selector, to determine which (if any) features are
accelerated by that engine. If the engine supports accelerated texture mapping,
the MyFindPreferredEngine function returns that drawing engine. Otherwise, the
MyFindPreferredEngine function loops through all engines capable of drawing
into the specified device until it finds one that does support fast texture
mapping. If none is found, MyFindPreferredEngine returns the value NULL.

Note
See “Gestalt Selectors” (page 1559) for a complete
description of the selectors you can pass to the
QAEngineGestalt function. ◆

Creating and Configuring a Draw Context 23

Once you’ve initialized a virtual device and selected a drawing engine capable
of drawing to that device, you can call the QADrawContextNew function to create a
new draw context. You pass the device and engine to that function, along with a
drawing rectangle, a clipping region, and a set of draw context flags. The flags

QuickDraw 3D RAVE

1518 Using QuickDraw 3D RAVE

specify features of the new draw context. Listing 23-4 illustrates how to create a
double-buffered draw context with z buffering.

Listing 23-4 Creating a draw context

TQADrawContext *myDrawContext;

if (QADrawContextNew(&myDevice, &myRect, &myClip, myEngine,
kQAContext_DoubleBuffer, &myDrawContext) != kQANoErr) {

/*Error! Could not create new draw context.*/
}

If QADrawContextNew succeeds, it returns the result code kQANoErr and sets the
myDrawContext parameter to the new draw context. Otherwise, if an error occurs,
QADrawContextNew returns some other result code and sets the myDrawContext
parameter to the value NULL.

Note
When you are finished using the new draw context, you
should free the memory and other resources it uses by
calling the QADrawContextDelete function. ◆

QuickDraw 3D RAVE does not provide a function to reposition an existing
draw context. If a window associated with a draw context is moved on the
screen, you need to delete the existing draw context and create a new draw
context at the new location. Similarly, QuickDraw 3D RAVE does not provide a
function to change the clipping region of a draw context. If you want to change
a clipping region, you need to delete the existing draw context and create a new
draw context with the desired clipping region.

However, you can change a number of other features of a draw context without
having to delete an existing draw context and create a new one. The features
you can change are indicated by the state variables of the draw context. For
example, to change the background color of a draw context to opaque black,
you can use the code shown in Listing 23-5.

QuickDraw 3D RAVE

Using QuickDraw 3D RAVE 1519

Listing 23-5 Setting a draw context state variable

void MySetBackgroundToBlack (TQADrawContext *drawContext);
{

QASetFloat(drawContext, kQATag_ColorBG_a, 1.0);
QASetFloat(drawContext, kQATag_ColorBG_r, 0.0);
QASetFloat(drawContext, kQATag_ColorBG_g, 0.0);
QASetFloat(drawContext, kQATag_ColorBG_b, 0.0);

}

The QASetFloat function sets a draw context state variable that has a
floating-point value. QuickDraw 3D RAVE provides functions to get and set
state variables with floating-point, long integer, or pointer values.

Note
See “Tags for State Variables,” beginning on page 1539, for
a complete description of the available draw context state
variables. ◆

The QASetFloat function is defined using a C language macro:

#define QASetFloat(drawContext,tag,newValue) \
(drawContext)->setFloat (drawContext,tag,newValue)

During compilation, the QASetFloat call is replaced by code that directly calls
the drawing engine’s floating-point setting method. This allows you to achieve
the highest possible performance when configuring a draw context.

Drawing in a Draw Context 23

QuickDraw 3D RAVE allows you to draw five kinds of objects in a draw
context: points, lines, triangles, triangle meshes, and bitmaps. You draw by
calling a function to draw the desired type of object. For instance, to draw a
single point, you can call the QADrawPoint function, as follows:

QADrawPoint(myDrawContext, myPoint);

Here, the myPoint parameter specifies the point to draw. All objects that a
drawing engine can draw (except for bitmaps) are defined by points or vertices.
QuickDraw 3D RAVE supports two different types of vertices: Gouraud vertices

QuickDraw 3D RAVE

1520 Using QuickDraw 3D RAVE

and texture vertices. You use Gouraud vertices for drawing Gouraud-shaded
triangles, and also for drawing points and lines. A Gouraud vertex is defined by
the TQAVGouraud data structure, which specifies the position, depth, color, and
transparency information.

You use texture vertices to define triangles to which a texture is to be mapped.
A texture vertex is defined by the TQAVTexture data structure, which specifies
the position, depth, transparency, and texture mapping information.

IMPORTANT

QuickDraw 3D RAVE does not currently support clipping
to a draw context. All triangles and other objects drawn to
a draw context must lie entirely within the draw context. ◆

Using a Draw Context as a Cache 23

QuickDraw 3D RAVE supports draw context caching, a technique that allows
you to improve rendering performance when a large number of the objects in a
scene don’t change from frame to frame. A draw context cache is simply a draw
context that contains an image and is designated as the initial context in a call to
QARenderStart. The contents of that context are drawn into the destination draw
context before any other objects.

To create a draw context cache, you first create a draw context by calling the
QADrawContextNew function, where the flags parameter has the QAContext_Cache
flag set. Then you draw the unchanging objects into the draw context cache. For
example, suppose that you want to draw a series of frames in which two
triangles remain constant from frame to frame but a third triangle changes
every frame. Listing 23-6 shows how to do this.

Listing 23-6 Creating and using a draw context cache

TQAVGouraud tri1[3], tri2[3], tri3[3];
TQADrawContext *myCache, *myDest;

/*Create draw context cache and destination draw context.*/
QADrawContextNew(myDev, rect, NULL, myEng, QAContext_Cache, &myCache);
QADrawContextNew(myDev, rect, NULL, myEng, QAContext_DoubleBuffer, &myDest);

/*Set up the image in the cache context.*/

QuickDraw 3D RAVE

Using QuickDraw 3D RAVE 1521

QARenderStart(myCache, NULL, NULL);
QADrawTriGouraud(myCache, &tri1[0], &tri1[1], &tri1[2], kQATriFlags_None);
QADrawTriGouraud(myCache, &tri2[0], &tri2[1], &tri2[2], kQATriFlags_None);
QARenderEnd(myCache, NULL);

/*Render frames using the cache and moving tri3 only.*/
while (gStillMovingTriangle3) {

MyMoveTri(tri3);
QARenderStart(myDest, NULL, myCache);
QADrawTriGouraud(myDest, &tri3[0], &tri3[1], &tri3[2], kQATriFlags_None);
QARenderEnd(myDest, NULL);

}

Not all drawing engines support draw context caching. If a drawing engine
does not support caching, it should return the value NULL whenever you pass
the QAContext_Cache flag to QADrawContextNew.

IMPORTANT

All draw context caches must be single buffered, and they
must be created using the same device and rectangle as the
destination draw contexts with which they will be used. ▲

Once you’ve created a draw context cache (by setting the QAContext_Cache flag
when calling QADrawContextNew), you cannot use that draw context as a
non-cached draw context. Objects rendered into a draw context cache never
appear on a device (not even on a memory device). The only way to view
objects rendered into a draw context cache is to use that cache to initialize a
non-cached draw context, as illustrated in Listing 23-6. You can, however, use a
draw context cache to initialize another draw context cache. Moreover, you can
initialize a draw context cache with itself in order to add more objects to an
existing draw context cache.

Using a Texture Map Alpha Channel 23

Texture maps whose pixel type is either kQAPixel_ARGB16 or kQAPixel_ARGB32
contain an alpha channel value for each pixel in the map. You can use the alpha
channel value to control the transparency of an object on a pixel-by-pixel basis,
or you can use the alpha channel value as a blend matte that exposes only
certain portions of an image.

QuickDraw 3D RAVE

1522 Using QuickDraw 3D RAVE

To use the alpha channel to control transparency, you should set the drawing
engine’s transparency blending mode to kQABlend_Premultiply. (You specify an
engine’s transparency blending mode by assigning a value to its kQATag_Blend
state variable.) For pixels of type kQAPixel_ARGB16, the alpha channel value
occupies bit 15; when the value is 1, the pixel is opaque; when the value is 0, the
pixel is completely transparent. For pixels of type kQAPixel_ARGB32, the alpha
channel value occupies bits 31 through 24; when the value is 255, the pixel is
opaque; when the value is 0, the pixel is completely transparent.

IMPORTANT

The kQABlend_Premultiply transparency model assumes
that the diffuse color of a pixel has been premultiplied by
the alpha channel value. As a result, every pixel of the
texture map must be premultiplied by its associated alpha
channel value before you create the texture map by calling
QATextureNew. ▲

Note that the specular highlight is unaffected by the diffuse transparency of an
object. As a result, setting an object’s alpha channel value to 0 when using the
kQABlend_Premultiply transparency blending mode does not cause the object to
vanish. The specular highlight is still rendered.

To use the alpha channel as a blend matte to cut out certain portions of a
rendered object, you should set the drawing engine’s transparency blending
mode to kQABlend_Interpolate. If the alpha channel value of all pixels in an
object is 0, neither the object nor its specular highlight is rendered. This
effectively eliminates the object from the rendered image.

IMPORTANT

The kQABlend_Interpolate transparency model assumes
that the diffuse color of a pixel has not been premultiplied
by the alpha channel value. This multiplication is
performed by the blending operation. ▲

The kQABlend_Interpolate blending mode cannot render a transparent surface
as accurately as the kQABlend_Premultiply mode, because the specular highlight
is scaled by the alpha value. In some cases, you can compensate for this
behavior by increasing the brightness of the specular highlight.

QuickDraw 3D RAVE

Using QuickDraw 3D RAVE 1523

Rendering With Antialiasing 23

A drawing engine may support an antialiasing mode that determines the kind
of antialiasing applied to a drawing context. (Antialiasing is the smoothing of
jagged edges on a displayed shape by modifying the transparencies of
individual pixels along the shape’s edge.)

Note
The antialiasing mode state variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_Antialias feature. ◆

You specify an engine’s antialiasing mode by assigning a value to its
kQATag_Antialias state variable. QuickDraw 3D RAVE provides these constants
for antialiasing modes:

#define kQAAntiAlias_Off 0
#define kQAAntiAlias_Fast 1
#define kQAAntiAlias_Mid 2
#define kQAAntiAlias_Best 3

The interpretation of these values is specific to each drawing engine. For
example, a drawing engine might be able to support antialiased line drawing
with no performance penalty but that same engine might incur a 50 percent
slowdown when drawing antialiased triangles. Accordingly, this engine might
interpret the kQAAntiAlias_Fast antialiasing mode as rendering antialiased lines
only, and it might interpret the kQAAntiAlias_Mid mode as rendering both
antialiased lines and triangles.

Note
QuickDraw 3D RAVE interprets antialiasing modes
independently of the transparency blending modes, unlike
some other rendering technologies. For instance, with
OpenGL you must select specific blending modes when
antialiasing is enabled. ◆

QuickDraw 3D RAVE

1524 Writing a Drawing Engine

Writing a Drawing Engine 23

This section shows how to write a new drawing engine and add it to the
QuickDraw 3D Acceleration Layer.

IMPORTANT

You need to read this section only if you are developing
custom 3D acceleration hardware or software. If you
simply want to create a draw context and draw into it
using low-level drawing functions, see “Using
QuickDraw 3D RAVE,” beginning on page 1513. ▲

To develop a new drawing engine and add it to the QuickDraw 3D Acceleration
Layer, you need to perform these seven steps:

1. Write methods for the public functions pointed to by the fields of a draw
context structure (for example, setInt). These methods are described in detail
in the section “Public Draw Context Methods,” beginning on page 1618.

2. Write methods for the TQADrawPrivateNew and TQADrawPrivateDelete function
prototypes. These functions are called internally by the QADrawContextNew and
QADrawContextDelete functions, respectively. You use these methods to
allocate and release any private data (such as state variables) maintained by
your drawing engine. These methods are described in detail in the section
“Private Draw Context Methods,” beginning on page 1639.

3. Write methods for any texture and bitmap functions supported by your
drawing engine (TQATextureNew, TQATextureDetach, TQATextureDelete,
TQABitmapNew, TQABitmapDetach, and TQABitmapDelete). These functions are
called by their public counterparts (for example, QABitmapNew). These
methods are described in detail in the section “Texture and Bitmap
Methods,” beginning on page 1644.

4. Write a method to handle the QAEngineGestalt function when your drawing
engine is the target engine. This method is described in detail on page 1642.

5. Write a method to handle the QAEngineCheckDevice function when your
drawing engine is the target engine. QuickDraw 3D RAVE calls this method
to determine which devices your drawing engine supports. This method is
described in detail on page 1641.

QuickDraw 3D RAVE

Writing a Drawing Engine 1525

6. Write a method for the TQAEngineGetMethod function prototype.
QuickDraw 3D RAVE calls this method to get some of your engine’s methods
during engine registration. This method is described in detail on page 1650.

7. Build your code as a shared library. The initialization routine of the shared
library should register your drawing engine with QuickDraw 3D RAVE by
calling the QARegisterEngine function.

The following sections describe some of these steps in more detail. The section
“Supporting OpenGL Hardware,” beginning on page 1531 contains information
that is useful if you are implementing a drawing engine to support hardware
that is based on an OpenGL rasterization model.

Writing Public Draw Context Methods 23

As you’ve seen, the draw context structure (of type TQADrawContext) contains
function pointers to the public draw context methods supported by your
drawing engine. These methods are called whenever an application calls one of
the public functions provided by QuickDraw 3D RAVE. For example, when an
application calls the QADrawPoint function for a draw context associated with
your drawing engine, your engine’s TQADrawPoint method (pointed to by the
drawPoint field) is called. The TQADrawPoint method is declared like this:

typedef void (*TQADrawPoint) (
const TQADrawContext *drawContext,
const TQAVGouraud *v);

A draw context structure is passed as the first parameter to all the public draw
context methods you need to define. This allows your methods to find the
private data associated with the draw context (which is pointed to by the
drawPrivate field).

Notice that the function prototype for a point-drawing method passes the draw
context as a const parameter. This indicates that your method should not alter
any of the fields of the draw context structure passed to it. Only three draw
context methods (namely TQASetInt, TQASetFloat, and TQASetPtr) are allowed to
alter the draw context.

Listing 23-7 shows a sample definition for a point-drawing method.

QuickDraw 3D RAVE

1526 Writing a Drawing Engine

Listing 23-7 A TQADrawPoint method

void MyDrawPoint (const TQADrawContext *drawContext, const TQAVGouraud *v)
{

MyPrivateData *myData; /*our actual private data type*/

/*Cast generic drawPrivate pointer to our actual private data type.*/
myData = (MyPrivateData *) drawContext->drawPrivate;

/*Call our z-buffered pixel drawing function with xyz and argb, and
 also pass it the current zfunction, which is stored in the private draw
 context data structure. Note that this isn't a complete implementation!
 (We should be using kQATag_Width, for example.)*/

MyDrawPixelWithZ(v->x, v->y, v->z, v->a, v->r, v->g, v->b,
myData->stateVariable[kQATag_ZFunction]);

}

Note
See “Public Draw Context Methods,” beginning on
page 1618 for complete information on the public draw
context methods your drawing engine must define. ◆

Once you’ve defined the necessary public draw context methods, you need to
insert pointers to those methods into a draw context structure. You accomplish
this step in your TQADrawPrivateNew method, described in the next section.

Writing Private Draw Context Methods 23

Once you’ve written the public draw context methods supported by your
drawing engine, you need to write several private draw context methods. In
particular, you need to write a TQADrawPrivateNew method to initialize a draw
context and a TQADrawPrivateDelete method to delete a draw context. The
TQADrawPrivateNew method is called whenever an application creates a new
draw context by calling the QADrawContextNew function. Listing 23-8 illustrates a
sample TQADrawPrivateNew method.

QuickDraw 3D RAVE

Writing a Drawing Engine 1527

Listing 23-8 A TQADrawPrivateNew method

TQAError MyDrawPrivateNew (
TQADrawContext *drawContext,
const TQADevice *device,
const TQARect *rect,
const TQAClip *clip,
unsigned long flags)

{
MyPrivateData *myData;

/*Allocate a new MyPrivateData structure and store it in draw context.*/
myData = MyDataNew(...);
drawContext->drawPrivate = (TQADrawPrivate *) myData;
if (!myData)

return (kQAOutOfMemory);

/*Set the method pointers of drawContext to point to our draw methods.*/
newDrawContext->setFloat = MySetFloat;
newDrawContext->setInt = MySetInt;
...
return(kQANoErr);

}

As you can see, the MyDrawPrivateNew function defined in Listing 23-8 allocates
space for its private data, installs a pointer to that data in the drawPrivate field
of the draw context structure, and then installs pointers to all the public draw
context methods supported by the drawing engine into the draw context
structure.

Your TQADrawPrivateDelete method should simply undo any work done by
your TQADrawPrivateNew method. In this case, the delete method just needs to
release the private storage allocated by the TQADrawPrivateNew method.
Listing 23-9 shows a sample TQADrawPrivateDelete method.

QuickDraw 3D RAVE

1528 Writing a Drawing Engine

Listing 23-9 A TQADrawPrivateDelete method

void MyDrawPrivateDelete (TQADrawPrivate *drawPrivate)
{

MyDataDelete((MyPrivateData *) drawPrivate);
}

You register your private draw context methods with QuickDraw 3D RAVE
using another private method, the TQAEngineGetMethod method. See
“Registering a Drawing Engine,” beginning on page 1529 for details.

Handling Gestalt Selectors 23

To support calls to the public function QAEngineGestalt, your drawing engine
must define a TQAEngineGestalt method. This method returns information
about the capabilities of your drawing engine. For example, suppose that your
drawing engine supports texture mapping and accelerates both Gouraud
shading and line drawing. Suppose further that you have been assigned a
vendor ID of 5, and that the engine ID of your engine is 1001. In that case, you
could define a method like the one shown in Listing 23-10.

Listing 23-10 A TQAEngineGestalt method

TQAError MyEngineGestalt (TQAGestaltSelector selector, void *response)
{

const static char *myEngineName = "SurfDraw 3D";

switch (selector) {
case kQAGestalt_OptionalFeatures:

*((unsigned long *) response) = kQAOptional_Texture;
break;

case kQAGestalt_FastFeatures:
*((unsigned long *) response) = kQAFast_Line | kQAFast_Gouraud;
break;

case kQAGestalt_VendorID:
*((long *) response) = 5;
break;

case kQAGestalt_EngineID:
*((long *) response) = 1001;

QuickDraw 3D RAVE

Writing a Drawing Engine 1529

break;
case kQAGestalt_Revision:

*((long *) response) = 0;
break;

case kQAGestalt_ASCIINameLength:
*((long *) response) = strlen(myEngineName);
break;

case kQAGestalt_ASCIIName:
strcpy(response, myEngineName);
break;

default: /*must flag unrecognized selectors*/
return (kQAParamErr);

}
return (kQANoErr);

}

If two different drawing engines should return identical vendor and engine IDs,
QuickDraw 3D RAVE chooses the one that returns the most recent revision
number (that is, the value returned for the kQAGestalt_Revision selector). The
larger number is considered newer.

You register your TQAEngineGestalt method with QuickDraw 3D RAVE using
the TQAEngineGetMethod method, described in the next section.

Registering a Drawing Engine 23

Once you written all the necessary public and private draw context methods, as
well as methods to handle textures and bitmaps, you must write a
TQAEngineGetMethod method that reports the addresses of some of those
methods to QuickDraw 3D RAVE. Listing 23-11 shows a sample
TQAEngineGetMethod method. Notice that this method returns the addresses only
of the private draw context methods and the methods to handle textures and
bitmaps. The pointers for the public draw context methods are assigned directly
to the fields of a draw context structure by your TQADrawPrivateNew method (as
shown in Listing 23-8).

QuickDraw 3D RAVE

1530 Writing a Drawing Engine

Listing 23-11 A TQAEngineGetMethod method

TQAError MyEngineGetMethod (TQAEngineMethodTag methodTag, TQAEngineMethod *method)
{

switch (methodTag) {
case kQADrawPrivateNew:

method->drawPrivateNew = MyDrawPrivateNew;
break;

case kQADrawPrivateDelete:
method->drawPrivateDelete = MyDrawPrivateDelete;
break;

case kQAEngineCheckDevice:
method->engineCheckDevice = MyEngineCheckDevice;
break;

case kQAEngineGestalt:
method->engineGestalt = MyEngineGestalt;
break;

case kQABitmapNew:
method->bitmapNew = MyBitmapNew;
break;

case kQABitmapDetach:
method->bitmapDetach = MyBitmapDetach;
break;

case kQABitmapDelete:
method->bitmapDelete = MyBitmapDelete;
break;

default:
return(kQANotSupported);

}
return(kQANoErr);

}

Finally, you register your drawing engine by passing the address of your
TQAEngineGetMethod method to the QARegisterEngine function:

QARegisterEngine(&MyEngineGetMethod);

You can call QARegisterEngine in two ways. During product development, you
can link your drawing engine code directly with a test application, in which
case you should call QARegisterEngine from your application’s initialization
code. Alternatively, once you’ve completed development, you should build

QuickDraw 3D RAVE

Writing a Drawing Engine 1531

your engine’s code into a shared library of type 'tnsl'. In this case, you should
call QARegisterEngine from the initialization routine of the shared library. When
the shared library containing QuickDraw 3D RAVE is loaded, it searches for
and loads any drawing engines contained in shared libraries in the current
folder or in the Extensions folder.

Supporting OpenGL Hardware 23

This section contains information that is useful if you are implementing a
drawing engine to support hardware that is based on an OpenGL rasterization
model. It describes special considerations for handling transparency and texture
mapping.

Transparency 23

QuickDraw 3D RAVE supports three transparency models: the premultiplied,
interpolated, and OpenGL transparency models. Support for the OpenGL
transparency model (indicated by the kQABlend_OpenGL constant) should be
automatic for hardware that is based on the OpenGL rasterization model. The
other two models, indicated by the kQABlend_PreMultiply and
kQABlend_Interpolate constants) may require emulation by your drawing
engine.

For example, consider the premultiplied blending function, specified by these
equations:

(Here, the factors as, rs, gs, and bs represent the alpha, red, green and blue
components of a source pixel; the factors ad, rd, gd, and bd represent the alpha,
red, green and blue components of a destination pixel.)

Note
A complete description of how transparent objects are
blended together with each of these models is provided in
“Blending Operations” (page 1550). ◆

a 1 1 as–() 1 ad–()×()–=
r r s 1 as–() r d×()+=

g gs 1 as–() gd×()+=

b bs 1 as–() bd×()+=

QuickDraw 3D RAVE

1532 Writing a Drawing Engine

OpenGL directly supports the premultiplied transparency blending function
(and the interpolated transparency blending function) for the RGB components
only. In other words, the alpha channel component (which is the same for both
blending operations) cannot be directly implemented in OpenGL-compliant
hardware. It is possible, however, to emulate these two transparency modes on
OpenGL hardware, using several different methods. You can blend the RGB
values only, or you can blend the ARGB values using a multipass algorithm.
Which of these emulations you use depends on whether your drawing engine is
associated with a frame buffer that stores an alpha channel or not.

If your drawing engine is associated with a frame buffer that doesn’t store an
alpha channel value, you can implement the premultiplied and interpolated
blending functions by simply ignoring the alpha channel component. These
functions are then equivalent to OpenGL blending modes. The premulitplied
blending function, with its alpha channel ignored, can be emulated by this
function:

gBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);

Similarly, the interpolated blending function, with its alpha channel ignored,
can be emulated by this function:

gBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

IMPORTANT

A drawing engine that uses this method of emulating the
QuickDraw 3D RAVE blending functions on OpenGL
hardware should not set the kQAOptional_BlendAlpha flag of
the kQAGestalt_OptionalFeatures selector to the
QAEngineGestalt function. ▲

To achieve a more complete blending, you can have your drawing engine
rasterize each transparent object more than once, altering in each pass the
blending mode, object alpha channel, and buffer write masks. The first pass
should perform RGB blending. Accordingly, you should disable writing any
alpha channel or z buffer data during this pass.

/*first pass*/
glColorMask(TRUE, TRUE, TRUE, FALSE); /*disable alpha channel*/
glDepthMask(FALSE); /*disable Z buffer*/
if (premultpliedTransparency)

glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);

QuickDraw 3D RAVE

Writing a Drawing Engine 1533

else
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

/*render the object here*/

On the second pass, you should set the frame buffer alpha channel value to
(1–as)×(1–ad). To do this, you need to render the object again, with a different
alpha value, as follows:

/*second pass*/
glColorMask(FALSE, FALSE, FALSE, TRUE); /*enable alpha channel*/
glDepthMask(FALSE); /*disable Z buffer*/
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ZERO);
/*render the object with alpha replaced with 1-a*/

Finally, the third pass should replace the value in the alpha channel with the
final value 1–((1–as)×(1–ad)). To do this, you need to render the object again,
with its alpha value set to 1, as follows:

/*third pass*/
glColorMask(FALSE, FALSE, FALSE, TRUE); /*enable alpha channel*/
glDepthMask(TRUE); /*enable Z buffer*/
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ZERO);
/*render the object with alpha replaced with 1*/

After the third pass, the frame buffer contains the correctly blended object.

Texture Mapping 23

QuickDraw 3D RAVE supports several texture mapping operations, which are
controlled by the flags in the kQATag_TextureOp state variable. Currently these
flags are defined:

#define kQATextureOp_Modulate (1 << 0)
#define kQATextureOp_Highlight (1 << 1)
#define kQATextureOp_Decal (1 << 2)
#define kQATextureOp_Shrink (1 << 3)

Note
A complete description of texture mapping operations is
provided in “Texture Operations” (page 1553). ◆

QuickDraw 3D RAVE

1534 Writing a Drawing Engine

To support the kQATextureOp_Modulate mode on an OpenGL-compliant
rasterizer, you can use the GL_MODULATE mode, where the kd_r, kd_g, and kd_b
fields of a texture vertex specify the modulating color. Note, however, that
GL_MODULATE does not allow these color values to be greater than 1.0, whereas
QuickDraw 3D RAVE does allow them to be greater than 1.0. Values greater
than 1.0 can provide improved image realism, and new hardware should
support them. A more reasonable maximum modulation amplitude is 2.0.

You can support the kQATextureOp_Highlight mode by performing two
rendering passes. The first pass should render the texture-mapped object
(possibly also with modulation, as just described), and the second pass should
add the specular highlight value.

/*first pass*/
glDepthMask(FALSE); /*disable Z buffer*/
/*render the texture-mapped object here*/

/*second pass*/
glDepthMask(TRUE); /*enable Z buffer*/
glBlendFunc(GL_ONE, GL_ONE); /*add highlight color*/
/*render the highlight color as a Gouraud-shaded object here*/

On the second pass, you should render the highlight color, using the ks_r, ks_g,
and ks_b fields of a texture vertex, as a Gouraud-shaded object.

If the kQATextureOp_Modulate flag is clear (that is, is no texture map color
modulation is to be performed), you can support the kQATextureOp_Decal mode
using the OpenGL GL_DECAL mode. If, in addition, the kQATextureOp_Highlight
flag is set, you need to perform two rendering passes, as just described.

IMPORTANT

There is currently no known method of accurately
rendering to OpenGL-compliant hardware when both the
kQATextureOp_Decal and the kQATextureOp_Modulate flags
are set. You should determine the best method of
implementing this mode correctly on your hardware. If
your hardware cannot handle both modes at once, you
should ignore the kQATextureOp_Modulate mode whenever
kQATextureOp_Decal is set. ▲

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1535

QuickDraw 3D RAVE Reference 23

This section describes the constants, data structures, and routines provided by
QuickDraw 3D RAVE. It also describes the functions you must define in order
to write a drawing engine.

The application programming interfaces of QuickDraw 3D RAVE follow these
simple naming conventions:

■ All names of constants begin with the prefix kQA (for example,
kQATextureFilter_Fast).

■ All names of data types begin with the prefix TQA (for example,
TQADrawContext).

■ All names of functions begin with the prefix QA (for example,
QADrawContextNew).

Constants 23

This section describes the constants provided by QuickDraw 3D RAVE.

Version Values 23

The version field of a draw context structure (of type TQADrawContext) specifies
the current version of QuickDraw 3D RAVE. This field contains one of these
constants:

typedef enum TQAVersion {
kQAVersion_Prerelease = 0,
kQAVersion_1_0 = 1,
kQAVersion_1_0_5 = 2,
kQAVersion_1_1 = 3

} TQAVersion;

Constant descriptions

kQAVersion_Prerelease
A prerelease version.

QuickDraw 3D RAVE

1536 QuickDraw 3D RAVE Reference

kQAVersion_1_0 Version 1.0. This is the version that supports the interactive
renderer included with QuickDraw 3D version 1.0.

kQAVersion_1_0_5 Version 1.0.5. This version supports triangle meshes and
color lookup tables.

kQAVersion_1_1 Version 1.1. This version supports notice methods, texture
compression flags, and the kQAGestalt_AvailableTexMem
selector for the QAEngineGestalt function.

Pixel Types 23

The pixelType field of a memory device structure (of type TQADeviceMemory)
specifies a pixel format (that is, the size and organization of the memory
associated with a single pixel in a memory pixmap). You use these constants to
assign a value to that field and also to parameters to the QATextureNew and
QABitmapNew functions.

typedef enum TQAImagePixelType {
kQAPixel_Alpha1 = 0,
kQAPixel_RGB16 = 1,
kQAPixel_ARGB16 = 2,
kQAPixel_RGB32 = 3,
kQAPixel_ARGB32 = 4,
kQAPixel_CL4 = 5,
kQAPixel_CL8 = 6,
kQAPixel_RGB16_565 = 7,
kQAPixel_RGB24 = 8

} TQAImagePixelType;

Constant descriptions

kQAPixel_Alpha1 A pixel occupies 1 bit of memory, which is interpreted as an
alpha channel value. This value is relevant only for the
QABitmapNew function. When a bit is 1, it is opaque and is
rendered in the color passed to the QADrawBitmap function;
when the bit is 0, it is completely transparent.

kQAPixel_RGB16 A pixel occupies 16 bits of memory, with the red
component in bits 14 through 10, the green component in
bits 9 through 5, and the blue component in bits 4 through
0. There is no per-pixel alpha channel value. As a result, the
pixmap (perhaps defining a texture) is treated as opaque.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1537

(You can, however, apply transparency to the pixmap using
the alpha channel values of a triangle vertex, for instance.)

kQAPixel_ARGB16 A pixel occupies 16 bits of memory, with the red
component in bits 14 through 10, the green component in
bits 9 through 5, and the blue component in bits 4 through
0. In addition, the pixel’s alpha channel value is in bit 15.
When the alpha value is 1, the pixmap is opaque; when the
alpha value is 0, the pixmap is completely transparent.

kQAPixel_RGB32 A pixel occupies 32 bits of memory, with the red
component in bits 23 through 16, the green component in
bits 15 through 8, and the blue component in bits 7 through
0. There is no per-pixel alpha channel value. As a result, the
pixmap (perhaps defining a texture) is treated as opaque.
(You can, however, apply transparency to the pixmap using
the alpha channel values of a triangle vertex, for instance.)

kQAPixel_ARGB32 A pixel occupies 32 bits of memory, with the red
component in bits 23 through 16, the green component in
bits 15 through 8, and the blue component in bits 7 through
0. In addition, the pixel’s alpha channel value is in bits 31
through 24. When the alpha value is 255, the pixmap is
opaque; when the alpha value is 0, the pixmap is
completely transparent.

kQAPixel_CL4 A pixel value is an index into a 4-bit color lookup table.
This color lookup table is always big-endian (that is, the
high 4 bits affect the leftmost pixel). This pixel type is valid
only as a parameter for the QATextureNew and QABitmapNew
functions. Not all drawing engines support this pixel type;
it is supported only when a drawing engine supports the
kQAOptional_CL4 feature.

kQAPixel_CL8 A pixel value is an index into a 8-bit color lookup table.
This pixel type is valid only as a parameter for the
QATextureNew and QABitmapNew functions. Not all drawing
engines support this pixel type; it is supported only when a
drawing engine supports the kQAOptional_CL8 feature.

kQAPixel_RGB16_565 A pixel occupies 16 bits of memory, with the red
component in bits 15 through 11, the green component in
bits 10 through 5, and the blue component in bits 4 through
0. There is no per-pixel alpha channel value. This pixel type
is currently defined only for Windows 32 devices.

QuickDraw 3D RAVE

1538 QuickDraw 3D RAVE Reference

kQAPixel_RGB24 A pixel occupies 24 bits of memory, with the red
component in bits 23 through 16, the green component in
bits 15 through 8, and the blue component in bits 7 through
0. There is no per-pixel alpha channel value. This pixel type
is currently defined only for Windows 32 devices.

Color Lookup Table Types 23

The tableType parameter of the QAColorTableNew function specifies a color
lookup table type. QuickDraw 3D RAVE currently supports these types of color
lookup tables:

typedef enum TQAColorTableType {
kQAColorTable_CL8_RGB32 = 0,
kQAColorTable_CL4_RGB32 = 1

} TQAColorTableType;

Constant descriptions

kQAColorTable_CL8_RGB32
The color lookup table contains 256 colors, and each color
occupies 32 bits of memory, with the red component in bits
23 through 16, the green component in bits 15 through 8,
and the blue component in bits 7 through 0.

kQAColorTable_CL4_RGB32
The color lookup table contains 16 colors, and each color
occupies 32 bits of memory, with the red component in bits
23 through 16, the green component in bits 15 through 8,
and the blue component in bits 7 through 0.

Device Types 23

The deviceType field of a device data structure (of type TQADevice) specifies a
device type. You use these constants to assign a value to that field.

typedef enum TQADeviceType {
kQADeviceMemory = 0,
kQADeviceGDevice = 1,

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1539

kQADeviceWin32DC = 2,
kQADeviceDDSurface = 3

} TQADeviceType;

Constant descriptions

kQADeviceMemory A memory device.
kQADeviceGDevice A graphics device (of type GDevice).
kQADeviceWin32DC A Windows 32 device.
kQADeviceDDSurface A Windows direct draw surface.

Clip Types 23

The clipType field of a clip data structure (of type TQAClip) specifies a clip type.
You use these constants to assign a value to that field.

typedef enum TQAClipType {
kQAClipRgn = 0,
kQAClipWin32Rgn = 1

} TQAClipType;

Constant descriptions

kQAClipRgn A clipping region.
kQAClipWin32Rgn A Windows 32 clipping region.

Tags for State Variables 23

A drawing engine maintains a large number of state variables that determine
how the engine draws into a device. Each state variable has a state value, which
is either an unsigned long integer, a floating-point value, or a pointer. You can
read and write state values by calling QuickDraw 3D RAVE functions. (For
instance, you can set a state value by calling QASetInt, QASetFloat, or QASetPtr.)
You specify which state variable to get or set using a state tag, a unique
identifier associated with that variable.

QuickDraw 3D RAVE

1540 QuickDraw 3D RAVE Reference

Note
All tag values greater than 0 and less than
kQATag_EngineSpecific_Minimum are reserved for use by
QuickDraw 3D RAVE. If you need to define engine-specific
tags, you should assign them tag values greater than or
equal to kQATag_EngineSpecific_Minimum. ◆

Here are the tags for state variables having unsigned long integer values:

typedef enum TQATagInt {
kQATag_ZFunction = 0, /*required variables*/
kQATag_Antialias = 8, /*optional variables*/
kQATag_Blend = 9,
kQATag_PerspectiveZ = 10,
kQATag_TextureFilter = 11,
kQATag_TextureOp = 12,
kQATag_CSGTag = 14,
kQATag_CSGEquation = 15,
kQATag_BufferComposite = 16,
kQATagGL_DrawBuffer = 100, /*OpenGL variables*/
kQATagGL_TextureWrapU = 101,
kQATagGL_TextureWrapV = 102,
kQATagGL_TextureMagFilter = 103,
kQATagGL_TextureMinFilter = 104,
kQATagGL_ScissorXMin = 105,
kQATagGL_ScissorYMin = 106,
kQATagGL_ScissorXMax = 107,
kQATagGL_ScissorYMax = 108,
kQATagGL_BlendSrc = 109,
kQATagGL_BlendDst = 110,
kQATagGL_LinePattern = 111,
kQATagGL_AreaPattern0 = 117,
kQATagGL_AreaPattern31 = 148,
kQATag_EngineSpecific_Minimum = 1000

} TQATagInt;

Constant descriptions

kQATag_ZFunction The z sorting function of the drawing engine. This function
determines which surfaces are to be removed during
hidden surface removal. See “Z Sorting Function Selectors”
(page 1548) for a description of the available z sorting

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1541

functions. The default value for a drawing engine that is z
buffered is kQAZFunction_LT; the default value for a draw
context that is not z buffered is kQAZFunction_None. The z
sorting function state variable must be supported by all
drawing engines.

kQATag_Antialias The antialiasing mode of the drawing engine. This mode
determines how, if at all, antialiasing is applied to the draw
context. See “Antialiasing Selectors” (page 1549) for a
description of the available antialiasing modes. The default
value for a drawing engine that supports antialiasing is
kQAAntiAlias_Fast. The antialiasing mode state variable is
optional; it must be supported only when a drawing engine
supports the kQAOptional_Antialias feature.

kQATag_Blend The transparency blending function of the drawing engine.
See “Blending Operations” (page 1550) for a description of
the available transparency blending functions. The default
value for a drawing engine that supports blending is
kQABlend_Premultiply. The transparency blending function
state variable is optional; it must be supported only when a
drawing engine supports the kQAOptional_Blend feature.

kQATag_PerspectiveZ
The z perspective control of the drawing engine. This
control determines how a drawing engine performs hidden
surface removal. See “Z Perspective Selectors” (page 1551)
for a description of the available z perspective controls. The
default value for a drawing engine that supports z
perspective is kQAPerspectiveZ_Off. The z perspective
control state variable is optional; it must be supported only
when a drawing engine supports the
kQAOptional_PerspectiveZ feature.

kQATag_TextureFilter
The texture mapping filter mode of the drawing engine.
This mode determines how a drawing engine performs
texture mapping. See “Texture Filter Selectors” (page 1552)
for a description of the available texture mapping filter
modes. The default value for a drawing engine that
supports texture mapping is kQATextureFilter_Fast. The
texture mapping filter state variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_Texture feature.

QuickDraw 3D RAVE

1542 QuickDraw 3D RAVE Reference

kQATag_TextureOp The texture mapping operation of the drawing engine. This
mode determines the current texture mapping operation of
a drawing engine. See “Texture Operations” (page 1553) for
a description of the available texture mapping operations.
The default value for a drawing engine that supports
texture mapping is kQATextureOp_None. The texture
mapping operation variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_Texture feature.

kQATag_CSGTag The CSG ID of triangles subsequently submitted to the
drawing engine. See “CSG IDs” (page 1554) for a
description of the available CSG IDs. The default value for
a drawing engine that supports CSG operations is
kQACSGTag_None. The CSG ID variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_CSG feature.

kQATag_CSGEquation The CSG equation for the drawing engine, which
determines the manner in which triangles with CSG IDs are
combined into solid objects. See the book 3D Graphics
Programming With QuickDraw 3D for an explanation of how
to specify a CSG equation. The CSG equation variable is
optional; it must be supported only when a drawing engine
supports the kQAOptional_CSG feature.

kQATag_BufferComposite
The buffer compositing mode of the drawing engine. This
mode determines how a drawing engine composites
generated pixels with the initial contents of the drawing
buffer. See “Buffer Compositing Modes” (page 1555) for a
description of the available buffer compositing modes. The
default value for a drawing engine that supports buffer
compositing is kQABufferComposite_None. The buffer
compositing state variable is optional; it must be supported
only when a drawing engine supports the
kQAOptional_BufferComposite feature.

kQATagGL_DrawBuffer
The OpenGL color buffer of the drawing engine. This
determines where a drawing engine draws when writing
colors to a frame buffer. See “Buffer Drawing Operations”
(page 1557) for a description of the buffer drawing modes.
The default value of this variable for a drawing engine that

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1543

supports OpenGL buffering is kQAGL_DrawBuffer_Front for
single-buffered contexts and kQAGL_DrawBuffer_Back for
double-buffered contexts. The OpenGL color buffer state
variable is optional; it must be supported only when a
drawing engine supports the kQAOptional_OpenGL feature.

kQATagGL_TextureWrapU
The OpenGL texture u wrapping mode of the drawing
engine. See “Texture Wrapping Values” (page 1556) for a
description of the wrapping modes. The default value of
this variable for a drawing engine that supports OpenGL
texture wrapping is kQAGL_Repeat. The OpenGL texture u
wrapping mode state variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_OpenGL feature.

kQATagGL_TextureWrapV
The OpenGL texture v wrapping mode of the drawing
engine. See “Texture Wrapping Values” (page 1556) for a
description of the wrapping modes. The default value of
this variable for a drawing engine that supports OpenGL
texture wrapping is kQAGL_Repeat. The OpenGL texture v
wrapping mode state variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_OpenGL feature.

kQATagGL_TextureMagFilter
The OpenGL texture magnification function of the
drawing engine. This function is called when a pixel being
textured maps to an area that is less than or equal to one
texture element. The default value of this variable for a
drawing engine that supports OpenGL texture
magnification is kQAGL_Linear. The OpenGL texture
magnification function state variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_OpenGL feature.

kQATagGL_TextureMinFilter
The OpenGL texture minifying function of the drawing
engine. This function is called when a pixel being textured
maps to an area that is greater than one texture element.
See [to be supplied] for a description of the available
minifying functions. The default value of this variable for a
drawing engine that supports OpenGL texture minifying is

QuickDraw 3D RAVE

1544 QuickDraw 3D RAVE Reference

kQAGL_ToBeSupplied. The OpenGL texture minifying
function state variable is optional; it must be supported
only when a drawing engine supports the
kQAOptional_OpenGL feature.

kQATagGL_ScissorXMin
The minimum x value of the scissor box, a rectangle that
determines which pixels can be modified by drawing
commands. This state variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_OpenGL feature.

kQATagGL_ScissorYMin
The minimum y value of the scissor box. This state variable
is optional; it must be supported only when a drawing
engine supports the kQAOptional_OpenGL feature.

kQATagGL_ScissorXMax
The maximum x value of the scissor box. This state variable
is optional; it must be supported only when a drawing
engine supports the kQAOptional_OpenGL feature.

kQATagGL_ScissorYMax
The maximum y value of the scissor box. This state variable
is optional; it must be supported only when a drawing
engine supports the kQAOptional_OpenGL feature.

kQATagGL_BlendSrc The source blending operation of the drawing engine. This
control determines how a drawing engine computes the
red, green, blue, and alpha source-blending factors when
performing transparency blending. The source blending
operation state variable is optional; it must be supported
only when a drawing engine supports both the
kQAOptional_Blend and kQAOptional_OpenGL features.

kQATagGL_BlendDst The destination blending operation of the drawing engine.
This control determines how a drawing engine computes
the red, green, blue, and alpha destination-blending factors
when performing transparency blending. The destination
blending operation state variable is optional; it must be
supported only when a drawing engine supports both the
kQAOptional_Blend and kQAOptional_OpenGL features.

kQATagGL_LinePattern
The OpenGL line stipple pattern of the drawing engine.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1545

This pattern specifies which bits in a line are to be drawn
and which are masked out.

kQATagGL_AreaPattern0
The first of 32 registers that specify an area stipple pattern.

kQATagGL_AreaPattern31
The last of 32 area stipple pattern registers.

kQATag_EngineSpecific_Minimum
The minimum tag value to be used for variables that are
specific to a particular drawing engine. Any custom
variables you support must have tag values greater than or
equal to this value. Note that you should use
engine-specific tags only in exceptional circumstances,
because the operations determined by the associated state
variables are not generally accessible.

Here are the tags for state variables having floating-point values:

typedef enum TQATagFloat {
kQATag_ColorBG_a = 1, /*required variables*/
kQATag_ColorBG_r = 2,
kQATag_ColorBG_g = 3,
kQATag_ColorBG_b = 4,
kQATag_Width = 5,
kQATag_ZMinOffset = 6,
kQATag_ZMinScale = 7,
kQATagGL_DepthBG = 112, /*OpenGL variables*/
kQATagGL_TextureBorder_a = 113,
kQATagGL_TextureBorder_r = 114,
kQATagGL_TextureBorder_g = 115,
kQATagGL_TextureBorder_b = 116

} TQATagFloat;

Constant descriptions

kQATag_ColorBG_a The alpha channel value of a drawing engine’s background
color. This value must be greater than or equal to 0.0 and
less than or equal to 1.0. The default value for the
background color alpha channel is 0.0. The background
color alpha channel state variable must be supported by all
drawing engines.

QuickDraw 3D RAVE

1546 QuickDraw 3D RAVE Reference

kQATag_ColorBG_r The red component of a drawing engine’s background
color. This value must be greater than or equal to 0.0 and
less than or equal to 1.0. The default value for the
background color red component is 0.0. The background
color red component state variable must be supported by
all drawing engines.

kQATag_ColorBG_g The green component of a drawing engine’s background
color. This value must be greater than or equal to 0.0 and
less than or equal to 1.0. The default value for the
background color green component is 0.0. The background
color green component state variable must be supported by
all drawing engines.

kQATag_ColorBG_b The blue component of a drawing engine’s background
color. This value must be greater than or equal to 0.0 and
less than or equal to 1.0. The default value for the
background color blue component is 0.0. The background
color blue component state variable must be supported by
all drawing engines.

kQATag_Width The width (in pixels) of points or lines drawn by the
drawing engine. This value must be greater than or equal
to 0.0 and less than or equal to kQAMaxWidth (currently
defined as 128.0). The default value for the width is 1.0. The
width state variable must be supported by all drawing
engines.

kQATag_ZMinOffset The minimum z offset that must be performed to guarantee
that a drawn object passes the kQAZFunction_LT hidden
surface test. This variable is read-only; you cannot set its
value. In general, a drawing engine that employs
fixed-point values for the z coordinate returns a small
negative value (for example, –1/65536) for the minimum
offset; a drawing engine that employs floating-point values
for the z coordinate returns 0.0 for the minimum offset.

kQATag_ZMinScale The minimum z scale factor that must be applied to
guarantee that a drawn object passes the kQAZFunction_LT
hidden surface test. This variable is read-only; you cannot
set its value. In general, a drawing engine that employs
fixed-point values for the z coordinate returns 1.0 for the
minimum scale factor; a drawing engine that employs
floating-point values for the z coordinate returns a value

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1547

slightly less than 1.0 (for example, 0.9999) for the minimum
scale factor.

kQATagGL_DepthBG The OpenGL background z of the drawing engine. The
default value of this variable for a drawing engine that
supports OpenGL texture magnification is kQAGL_Linear.
The OpenGL background z state variable is optional; it
must be supported only when a drawing engine supports
the kQAOptional_OpenGL feature.

kQATagGL_TextureBorder_a
The alpha component of a drawing engine’s texture border
color. This value must be greater than or equal to 0.0 and
less than or equal to 1.0. The default value for the texture
border color alpha component is 0.0. The texture border
color alpha component state variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_OpenGL feature.

kQATagGL_TextureBorder_r
The red component of a drawing engine’s texture border
color. This value must be greater than or equal to 0.0 and
less than or equal to 1.0. The default value for the texture
border color red component is 0.0. The texture border color
red component state variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_OpenGL feature.

kQATagGL_TextureBorder_g
The green component of a drawing engine’s texture border
color. This value must be greater than or equal to 0.0 and
less than or equal to 1.0. The default value for the texture
border color green component is 0.0. The texture border
color green component state variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_OpenGL feature.

kQATagGL_TextureBorder_b
The blue component of a drawing engine’s texture border
color. This value must be greater than or equal to 0.0 and
less than or equal to 1.0. The default value for the texture
border color blue component is 0.0. The texture border
color blue component state variable is optional; it must be
supported only when a drawing engine supports the
kQAOptional_OpenGL feature.

QuickDraw 3D RAVE

1548 QuickDraw 3D RAVE Reference

Here are the tags for state variables having pointer values:

typedef enum TQATagPtr {
kQATag_Texture = 13

} TQATagPtr;

Constant descriptions

kQATag_Texture A pointer to the current texture map of the drawing engine,
as created by the QATextureNew function. The default value
for the texture map pointer is NULL. The texture map pointer
state variable is optional; it must be supported only when a
drawing engine supports the kQAOptional_Texture feature.

Z Sorting Function Selectors 23

A drawing engine must support a z sorting function that determines which
surfaces are to be removed during hidden surface removal. You specify an
engine’s z sorting function by assigning a value to its kQATag_ZFunction state
variable. The default value of this variable for a drawing engine that is z
buffered is kQAZFunction_LT; the default value (and also the only possible value)
for a draw context that is not z buffered is kQAZFunction_None.

IMPORTANT

If a drawing engine supports kQAOptional_PerspectiveZ
and if the state variable kQATag_PerspectiveZ is set to the
value kQAPerspectiveZ_On, then the state variable
kQATag_ZFunction should be interpreted so that it yields the
same result as when the value of kQATag_PerspectiveZ is
kQAPerspectiveZ_Off. ▲

#define kQAZFunction_None 0
#define kQAZFunction_LT 1
#define kQAZFunction_EQ 2
#define kQAZFunction_LE 3
#define kQAZFunction_GT 4
#define kQAZFunction_NE 5
#define kQAZFunction_GE 6
#define kQAZFunction_True 7

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1549

Constant descriptions

kQAZFunction_None The z value is neither tested nor written.
kQAZFunction_LT A new z value is visible if it is less than the value in the z

buffer.
kQAZFunction_EQ A new z value is visible if it is equal to the value in the z

buffer. This selector should be passed only to drawing
engines that support the optional OpenGL features.

kQAZFunction_LE A new z value is visible if it is less than or equal to the
value in the z buffer. This selector should be passed only to
drawing engines that support the optional OpenGL
features.

kQAZFunction_GT A new z value is visible if it is greater than the value in the
z buffer. This selector should be passed only to drawing
engines that support the optional OpenGL features.

kQAZFunction_NE A new z value is visible if it is not equal to the value in the
z buffer. This selector should be passed only to drawing
engines that support the optional OpenGL features.

kQAZFunction_GE A new z value is visible if it is greater than or equal to the
value in the z buffer. This selector should be passed only to
drawing engines that support the optional OpenGL
features.

kQAZFunction_True A new z value is always visible.

Antialiasing Selectors 23

You specify an engine’s antialiasing mode by assigning a value to its
kQATag_Antialias state variable. The default value of this variable for a drawing
engine that supports antialiasing is kQAAntiAlias_Fast.

#define kQAAntiAlias_Off 0
#define kQAAntiAlias_Fast 1
#define kQAAntiAlias_Mid 2
#define kQAAntiAlias_Best 3

Constant descriptions

kQAAntiAlias_Off Antialiasing is off.

QuickDraw 3D RAVE

1550 QuickDraw 3D RAVE Reference

kQAAntiAlias_Fast The drawing engine performs whatever level of
antialiasing it can do with no speed penalty. This often
means that antialiasing is turned off.

kQAAntiAlias_Mid The drawing engine performs a medium level of
antialiasing. You should use this antialiasing mode when
you want to perform antialiasing interactively.

kQAAntiAlias_Best The drawing engine performs the highest level of
antialiasing it can. This mode may be unsuitable for
interactive rendering.

Blending Operations 23

A drawing engine may support a transparency blending function that
determines the kind of transparency blending applied to a drawing context
when combining new (“source”) pixels with the pixels already in a frame buffer
(“destination”). You specify an engine’s transparency blending function by
assigning a value to its kQATag_Blend state variable. The default value of this
variable for a draw context that supports transparency blending is
kQABlend_PreMultiply.

In the equations below, the factors as, rs, gs, and bs represent the alpha, red,
green and blue components of a source pixel; the factors ad, rd, gd, and bd
represent the alpha, red, green and blue components of a destination pixel.

#define kQABlend_PreMultiply 0
#define kQABlend_Interpolate 1
#define kQABlend_OpenGL 2

Constant descriptions

kQABlend_PreMultiply
The drawing engine uses a premultiplied blending
function. The components of a pixel written to the frame
buffer are computed using these equations:

a 1 1 as–() 1 ad–()×()–=
r r s 1 as–() r d×()+=

g gs 1 as–() gd×()+=

b bs 1 as–() bd×()+=

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1551

In general, you should use the premultiplied blending
function for rendering shaded transparent 3D primitives
(such as triangles). The premultiplied function does not
scale the source color components by the alpha value as; as
a result, this function allows a transparent object to have a
specular highlight value that is greater than its alpha
channel value. For example, a sheet of glass might allow
99% of the light behind it to pass though (indicating an
alpha channel value of 0.01). However, that same sheet of
glass might have a specular highlight value much greater
than 0.01. The premultiplied function allows the drawing
engine to render this object correctly.

kQABlend_Interpolate
The drawing engine uses an interpolated blending
function. The components of a pixel written to the frame
buffer are computed using these equations:

The interpolated blending function is not entirely suitable
for rendering shaded transparent objects, but it is very
effective for compositing bitmap images.

kQABlend_OpenGL The drawing engine uses the OpenGL blending function
determined by the values of the kQATagGL_BlendSrc and
kQATagGL_BlendDest state variables. For complete
information on OpenGL blending functions, consult the
description of the glBlendFunc function in OpenGL™
Reference Manual. OpenGL blending functions are
supported only by drawing engines that support the
kQAOptional_OpenGL feature.

Z Perspective Selectors 23

A drawing engine may support a z perspective control that determines
whether the z or the invW field of a vertex (of type TQAVGouraud or TQAVTexture) is
to be used for hidden surface removal. You specify an engine’s z perspective

a 1 1 as–() 1 ad–()×()–=
r r s as×() 1 as–() r d×()+=

g gs as×() 1 as–() gd×()+=

b bs as×() 1 as–() bd×()+=

QuickDraw 3D RAVE

1552 QuickDraw 3D RAVE Reference

control by assigning a value to its kQATag_PerspectiveZ state variable. The
default value of this variable for a drawing engine that supports z perspective is
kQAPerspectiveZ_Off.

#define kQAPerspectiveZ_Off 0
#define kQAPerspectiveZ_On 1

Constant descriptions

kQAPerspectiveZ_Off
The drawing engine performs hidden surface removal
using z values, as is standard.

kQAPerspectiveZ_On The drawing engine performs hidden surface removal
using invW values, which results in perspective-correct
hidden surface removal.

Texture Filter Selectors 23

A drawing engine may support a texture mapping filter mode that determines
how a drawing engine performs texture mapping. You specify an engine’s
texture filter by assigning a value to its kQATag_TextureFilter state variable. The
default value of this variable for a drawing engine that supports texture
mapping is kQATextureFilter_Fast.

#define kQATextureFilter_Fast 0
#define kQATextureFilter_Mid 1
#define kQATextureFilter_Best 2

Constant descriptions

kQATextureFilter_Fast
The drawing engine performs whatever level of texture
filtering it can do with no speed penalty. This often means
that no texture filtering is performed.

kQATextureFilter_Mid
The drawing engine performs a medium level of texture
filtering. You should use this texture mapping filter mode
when you want to perform texture mapping interactively.

kQATextureFilter_Best
The drawing engine performs the highest level of texture

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1553

filtering it can. This mode may be unsuitable for interactive
rendering.

Texture Operations 23

A drawing engine may support a texture mapping operation that determines
how a drawing engine performs texture mapping. You specify an engine’s
texture mapping operation by assigning a value to its kQATag_TextureOp state
variable. The default value of this variable for a drawing engine that supports
texture mapping is kQATextureOp_None.

You can use the following masks to specify a texture mapping operation. The
bits are ORed together to determine the desired operation.

#define kQATextureOp_None 0
#define kQATextureOp_Modulate (1 << 0)
#define kQATextureOp_Highlight (1 << 1)
#define kQATextureOp_Decal (1 << 2)
#define kQATextureOp_Shrink (1 << 3)

Constant descriptions

kQATextureOp_None The drawing engine supports no special texture mapping
operations. The drawing engine simply replaces an object’s
color with the texture map color. This mode results in a
flat-looking image with no lighting effects, which is most
useful when the texture mapping engine is used as a 2D
warping engine (for example, for video effects). The texture
map’s alpha channel values control the transparency of a
rendered object on a per-pixel basis. The alpha channel
value of a particular pixel is the product of texture map’s
alpha channel value and the vertex alpha channel value
(which is interpolated from the TQAVTexture data structure).

kQATextureOp_Modulate
The texture map color is modulated with the interpolated
diffuse colors (from the kd_r, kd_g, and kd_b fields of a
texture vertex).

kQATextureOp_Highlight
The interpolated specular colors (from the ks_r, ks_g, and
ks_b fields of a texture vertex) are added to the texture map
color.

QuickDraw 3D RAVE

1554 QuickDraw 3D RAVE Reference

kQATextureOp_Decal The texture map alpha channel value is used to blend the
texture map color and the interpolated decal colors (from
the r, g, and b fields of a texture vertex). When the texture
map alpha channel value is 0, the texture map color is
replaced with the interpolated r, g, and b values.

kQATextureOp_Shrink
The drawing engine modifies any u and v values so that
they always lie in the range 0.0 to 1.0 inclusive. This
guarantees that wrapping not occur. In theory, u and v
values in the range [0.0, 1.0] should never cause wrapping.
In practice, however, errors that occur during uv
interpolation can cause uv overflow or underflow, which
can result in occasional one pixel texture wrapping at the
0.0 and 1.0 boundaries.

IMPORTANT

The clamping specified by the kQATextureOp_Shrink flag is
not the same type of OpenGL texture clamping specified by
the kQATagGL_TextureWrapU and kQATagGL_TextureWrapV state
variables (see “Texture Wrapping Values” (page 1556)).
OpenGL clamping is designed to accept arbitrary uv
values, while clamping specified by the
kQATextureOp_Shrink flag operates only on uv values in the
range 0.0 to 1.0. The kQATextureOp_Shrink clamping is
therefore less expensive to implement (perhaps simply by
compressing the range of u and v slightly before beginning
interpolation). Any drawing engine that does support
OpenGL clamping can use that code to support
kQATextureOp_Shrink clamping. ▲

CSG IDs 23

A drawing engine may support CSG IDs that determine what number a
drawing engine assigns to triangles submitted for drawing. You specify an
engine’s CSG ID by assigning a value to its kQATag_CSGTag state variable. The
default value of this variable for a drawing engine that supports CSG is
kQACSGTag_None. You can use the following constants to specify a CSG ID.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1555

#define kQACSGTag_None 0xffffffffUL
#define kQACSGTag_0 0
#define kQACSGTag_1 1
#define kQACSGTag_2 2
#define kQACSGTag_3 3
#define kQACSGTag_4 4

Constant descriptions

kQACSGTag_None Do not assign CSG IDs to submitted triangles.
kQACSGTag_0 Submitted triangles have the CSG ID 0.
kQACSGTag_1 Submitted triangles have the CSG ID 1.
kQACSGTag_2 Submitted triangles have the CSG ID 2.
kQACSGTag_3 Submitted triangles have the CSG ID 3.
kQACSGTag_4 Submitted triangles have the CSG ID 4.

Buffer Compositing Modes 23

A drawing engine may support a buffer compositing mode that determines
how the drawing engine composites generated pixels with the initial contents of
the drawing buffer. You specify an engine’s buffer compositing mode by
assigning a value to its kQATag_BufferComposite state variable. The default value
of this variable for a drawing engine that supports buffer compositing is
kQABufferComposite_None. You can use the following constants to specify a
buffer compositing mode.

#define kQABufferComposite_None 0
#define kQABufferComposite_PreMultiply 1
#define kQABufferComposite_Interpolate 2

Constant descriptions

kQABufferComposite_None
The drawing engine performs no compositing. Newly
generated pixels overwrite the initial contexts of the buffer.

kQABufferComposite_PreMultiply
The drawing engine composites new pixels with existing
pixels by premulitplying their color components.

QuickDraw 3D RAVE

1556 QuickDraw 3D RAVE Reference

kQABufferComposite_Interpolate
The drawing engine composites new pixels with existing
pixels by interpolating their color components.

Texture Wrapping Values 23

A drawing engine may support OpenGL texture wrapping, in which case you
might need to specify a texture wrapping mode in the u and v parametric
directions. You specify an engine’s texture wrapping modes by assigning a
value to its kQATagGL_TextureWrapU and kQATagGL_TextureWrapV state variables.
The default value of both these variables for a drawing engine that supports
OpenGl texture wrapping is kQAGL_Repeat. You can use the following constants
to specify a texture wrapping mode.

#define kQAGL_Repeat 0
#define kQAGL_Clamp 1

Constant descriptions

kQAGL_Repeat The integer part of a u or v coordinate is ignored, thereby
causing a texture to be repeated across the surface of an
object.

kQAGL_Clamp The u or v coordinates are clamped to the range [0, 1]. This
mode prevents wrapping artifacts from occurring when a
single texture is mapped onto an object.

Source Blending Values 23

When a drawing engine’s transparency blending function is set to the value
kQABlend_OpenGL, the state variable kQATagGL_BlendSrc must be set to a value to
indicate the red, green, blue, and alpha source blending factors. You can use
these constants to define the source blending factors.

#define kQAGL_SourceBlend_XXX 0

Constant descriptions

kQAGL_SourceBlend_XXX

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1557

Destination Blending Values 23

When a drawing engine’s transparency blending function is set to the value
kQABlend_OpenGL, the state variable kQATagGL_BlendDst must be set to a value to
indicate the red, green, blue, and alpha destination blending factors. You can
use these constants to define the destination blending factors.

#define kQAGL_DestBlend_XXX 0

Constant descriptions

kQAGL_DestBlend_XXX

Buffer Drawing Operations 23

A drawing engine may support an OpenGL buffer drawing mode that
determines which color buffers a drawing engine draws into. You specify one or
more buffers by assigning a value to the kQATagGL_DrawBuffer state variable of
that engine. The default value of this variable for a drawing engine that
supports OpenGL buffering is kQAGL_DrawBuffer_Front for single-buffered
contexts and kQAGL_DrawBuffer_Back for double-buffered contexts. You can use
the following masks to specify a buffer drawing mode.

#define kQAGL_DrawBuffer_None 0
#define kQAGL_DrawBuffer_FrontLeft (1 << 0)
#define kQAGL_DrawBuffer_FrontRight (1 << 1)
#define kQAGL_DrawBuffer_BackLeft (1 << 2)
#define kQAGL_DrawBuffer_BackRight (1 << 3)
#define kQAGL_DrawBuffer_Front \

(kQAGL_DrawBuffer_FrontLeft | kQAGL_DrawBuffer_FrontRight)
#define kQAGL_DrawBuffer_Back \

(kQAGL_DrawBuffer_BackLeft | kQAGL_DrawBuffer_BackRight)

Constant descriptions

kQAGL_DrawBuffer_None
The drawing engine draws into no color buffer.

kQAGL_DrawBuffer_FrontLeft
The drawing engine draws into the front left buffer only.

kQAGL_DrawBuffer_FrontRight
The drawing engine draws into the front right buffer only.

QuickDraw 3D RAVE

1558 QuickDraw 3D RAVE Reference

kQAGL_DrawBuffer_BackLeft
The drawing engine draws into the back left buffer only.

kQAGL_DrawBuffer_BackRight
The drawing engine draws into the back right buffer only.

kQAGL_DrawBuffer_Front
The drawing engine draws into the front left and right
buffers only.

kQAGL_DrawBuffer_Back
The drawing engine draws into the back left and right
buffers only.

Vertex Modes 23

The vertexMode parameter for the QADrawVGouraud and QADrawVTexture functions
specifies a vertex mode, which determines how the drawing engine interprets
and draws an array of vertices.

typedef enum TQAVertexMode {
kQAVertexMode_Point = 0,
kQAVertexMode_Line = 1,
kQAVertexMode_Polyline = 2,
kQAVertexMode_Tri = 3,
kQAVertexMode_Strip = 4,
kQAVertexMode_Fan = 5,
kQAVertexMode_NumModes = 6

} TQAVertexMode;

Constant descriptions

kQAVertexMode_Point
Draw points. Each vertex in the array is drawn as a point.
The engine draws nVertices points (where nVertices is the
number of vertices in the vertex array).

kQAVertexMode_Line Draw line segments. Each successive pair of vertices in the
array determines a single line segment. The engine draws
nVertices/2 line segments.

kQAVertexMode_Polyline
Draw connected line segments. Each vertex in the array
and its predecessor determine a line segment. The engine
draws nVertices–1 line segments.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1559

kQAVertexMode_Tri Draw triangles. Each successive triple of vertices in the
array determines a single triangle. The engine draws
nVertices/3 triangles.

kQAVertexMode_Strip
Draw a strip of triangles. The first three vertices in the
array determine a triangle, and each successive vertex and
its two predecessors determine a triangle that abuts the
existing strip of triangles. The engine draws nVertices–2
triangles.

kQAVertexMode_Fan Draw a fan. The first three vertices in the array determine a
triangle; each successive vertex, its immediate predecessor,
and the first vertex in the array determine a triangle that
abuts the existing fan. The engine draws nVertices–2
triangles.

kQAVertexMode_NumModes
The number of vertex modes currently defined.

Gestalt Selectors 23

You can use the QAEngineGestalt function to get information about a drawing
engine. You pass QAEngineGestalt a selector that determines the kind of
information about the engine you want to receive and a pointer to a buffer into
which the information is to be copied. The selectors are defined by constants.
Note that your application must allocate space for the buffer (pointed to by the
response parameter) into which the information is copied.

typedef enum TQAGestaltSelector {
kQAGestalt_OptionalFeatures = 0,
kQAGestalt_FastFeatures = 1,
kQAGestalt_VendorID = 2,
kQAGestalt_EngineID = 3,
kQAGestalt_Revision = 4,
kQAGestalt_ASCIINameLength = 5,
kQAGestalt_ASCIIName = 6,
kQAGestalt_TextureMemory = 7,
kQAGestalt_FastTextureMemory = 8,
kQAGestalt_NumSelectors = 9

} TQAGestaltSelector;

QuickDraw 3D RAVE

1560 QuickDraw 3D RAVE Reference

Constant descriptions

kQAGestalt_OptionalFeatures
QAEngineGestalt returns a value whose bits encode the
optional features supported by the drawing engine. The
response parameter must point to a buffer of type unsigned
long. See “Gestalt Optional Features Response Masks”
(page 1561) for a description of the meaning of the bits in
the returned value.

kQAGestalt_FastFeatures
QAEngineGestalt returns a value whose bits encode the
features supported by the drawing engine that are
accelerated. The response parameter must point to a buffer
of type unsigned long. See “Gestalt Fast Features Response
Masks” (page 1563) for a description of the meaning of the
bits in the returned value.

kQAGestalt_VendorID
QAEngineGestalt returns the vendor ID of the drawing
engine. The response parameter must point to a buffer of
type long. See “Vendor and Engine IDs” (page 1565) for a
list of the currently defined vendor IDs.

kQAGestalt_EngineID
QAEngineGestalt returns the engine ID of the drawing
engine. The response parameter must point to a buffer of
type long. See “Vendor and Engine IDs” (page 1565) for a
list of the currently defined engine IDs.

kQAGestalt_Revision
QAEngineGestalt returns the revision number of the
drawing engine. (Larger numbers indicate more recent
revisions.) The response parameter must point to a buffer of
type long.

kQAGestalt_ASCIINameLength
QAEngineGestalt returns the number of characters in the
ASCII name of the drawing engine. The response
parameter must point to a buffer of type long.

kQAGestalt_ASCIIName
QAEngineGestalt returns the ASCII name of the drawing
engine. The response parameter must point to a C string
whose length you have determined by passing the
kQAGestalt_ASCIINameLength selector to QAEngineGestalt.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1561

kQAGestalt_TextureMemory
QAEngineGestalt returns the size, in bytes, of the memory
available for storing texture maps. Note that the amount of
memory required to hold a particular texture map depends
on the texture flags of that texture map—in particular, on
the texture compression and mipmapping flags. (See
“Texture Flags Masks” (page 1566) for details.) As a result,
the size returned by QAEngineGestalt is only a rough
indication of the number of texture maps that can be
created. The response parameter must point to a buffer of
type Size.

kQAGestalt_FastTextureMemory
QAEngineGestalt returns the size, in bytes, of the fast
memory available for storing texture maps. (Fast texture
memory is memory located on a hardware accelerator.)
Note that the amount of memory required to hold a
particular texture map depends on the texture flags of that
texture map—in particular, on the texture compression and
mipmapping flags. (See “Texture Flags Masks” (page 1566)
for details.) As a result, the size returned by
QAEngineGestalt is only a rough indication of the number
of texture maps that can be created. The response
parameter must point to a buffer of type Size.

kQAGestalt_NumSelectors
The number of selectors currently defined.

Gestalt Optional Features Response Masks 23

When you pass the kQAGestalt_OptionalFeatures selector to the
QAEngineGestalt function, QAEngineGestalt returns (through its response
parameter) a value that indicates the optional features supported by a drawing
engine. You can use these masks to test that value for a specific feature. The bits
corresponding to supported features are ORed together to determine the
returned value.

Note
A drawing engine may support an optional feature in
software only (that is, unaccelerated). You can use the
kQAGestalt_FastFeatures selector to determine which, if
any, features are accelerated by a drawing engine. ◆

QuickDraw 3D RAVE

1562 QuickDraw 3D RAVE Reference

#define kQAOptional_None 0
#define kQAOptional_DeepZ (1 << 0)
#define kQAOptional_Texture (1 << 1)
#define kQAOptional_TextureHQ (1 << 2)
#define kQAOptional_TextureColor (1 << 3)
#define kQAOptional_Blend (1 << 4)
#define kQAOptional_BlendAlpha (1 << 5)
#define kQAOptional_Antialias (1 << 6)
#define kQAOptional_ZSorted (1 << 7)
#define kQAOptional_PerspectiveZ (1 << 8)
#define kQAOptional_OpenGL (1 << 9)
#define kQAOptional_NoClear (1 << 10)
#define kQAOptional_CSG (1 << 11)
#define kQAOptional_BoundToDevice (1 << 12)
#define kQAOptional_CL4 (1 << 13)
#define kQAOptional_CL8 (1 << 14)
#define kQAOptional_BufferComposite (1 << 15)

Constant descriptions

kQAOptional_None This value is returned if the drawing engine supports no
optional features.

kQAOptional_DeepZ This bit is set if the drawing engine supports deep z
buffering (that is, z buffering with a resolution of greater
than or equal to 24 bits per pixel).

kQAOptional_Texture
This bit is set if the drawing engine supports texture
mapping.

kQAOptional_TextureHQ
This bit is set if the drawing engine supports high-quality
texture mapping (that is, texture mapping using trilinear
interpolation or an equivalent algorithm).

kQAOptional_TextureColor
This bit is set if the drawing engine supports full color
texture modulation and highlighting.

kQAOptional_Blend This bit is set if the drawing engine supports transparency
blending.

kQAOptional_BlendAlpha
This bit is set if the drawing engine supports transparency
blending that uses an alpha channel.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1563

kQAOptional_Antialias
This bit is set if the drawing engine supports antialiasing.

kQAOptional_ZSorted
This bit is set if the drawing engine supports z sorted
rendering (for example, for transparency). If this bit is clear,
an application must submit transparent objects for
rendering in back-to-front z order (or the blending
functions will not yield correct results). In general, an
application should submit opaque objects first, followed by
any transparent objects in back-to-front z order.

kQAOptional_PerspectiveZ
This bit is set if the drawing engine supports
perspective-corrected hidden surface removal.

kQAOptional_OpenGL This bit is set if the drawing engine supports the extended
OpenGL feature set.

kQAOptional_NoClear
This bit is set if the drawing engine doesn’t clear the buffer
before drawing (so that double-buffering might not be
required in some applications).

kQAOptional_CSG This bit is set if the drawing engine supports CSG.
kQAOptional_BoundToDevice

This bit is set if the drawing engine is tightly bound to a
specific graphics device.

kQAOptional_CL4 This bit is set if the drawing engine supports the
kQAPixel_CL4 pixel type.

kQAOptional_CL8 This bit is set if the drawing engine supports the
kQAPixel_CL8 pixel type.

kQAOptional_BufferComposite
This bit is set if the drawing engine supports buffer
compositing.

Gestalt Fast Features Response Masks 23

When you pass the kQAGestalt_FastFeatures selector to the QAEngineGestalt
function, QAEngineGestalt returns (through its response parameter) a value that
indicates which, if any, features supported by a drawing engine are accelerated.
You can use these masks to test that value for a specific feature. The bits

QuickDraw 3D RAVE

1564 QuickDraw 3D RAVE Reference

corresponding to accelerated features are ORed together to determine the
returned value.

Note
A feature is considered accelerated if it is performed
substantially faster by the drawing engine than it would be
if performed in software only. ◆

#define kQAFast_None 0
#define kQAFast_Line (1 << 0)
#define kQAFast_Gouraud (1 << 1)
#define kQAFast_Texture (1 << 2)
#define kQAFast_TextureHQ (1 << 3)
#define kQAFast_Blend (1 << 4)
#define kQAFast_Antialiasing (1 << 5)
#define kQAFast_ZSorted (1 << 6)
#define kQAFast_CL4 (1 << 7)
#define kQAFast_CL8 (1 << 8)

Constant descriptions

kQAFast_None This value is returned if the drawing engine accelerates no
features.

kQAFast_Line This bit is set if the drawing engine accelerates line
drawing.

kQAFast_Gouraud This bit is set if the drawing engine accelerates Gouraud
shading.

kQAFast_Texture This bit is set if the drawing engine accelerates texture
mapping.

kQAFast_TextureHQ This bit is set if the drawing engine accelerates high-quality
texture mapping.

kQAFast_Blend This bit is set if the drawing engine accelerates
transparency blending.

kQAFast_Antialiasing
This bit is set if the drawing engine accelerates antialiasing.

kQAFast_ZSorted This bit is set if the drawing engine accelerates z sorted
rendering.

kQAFast_CL4 This bit is set if the drawing engine accelerates
kQAPixel_CL4 pixel type rendering.

kQAFast_CL8 This bit is set if the drawing engine accelerates
kQAPixel_CL8 pixel type rendering.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1565

Vendor and Engine IDs 23

QuickDraw 3D RAVE defines constants for vendor IDs. You pass a vendor ID as
a parameter to the QAEngineEnable and QAEngineDisable functions, and you
receive a vendor ID when you pass the kQAGestalt_VendorID selector to the
QAEngineGestalt function.

#define kQAVendor_BestChoice (–1)
#define kQAVendor_Apple 0
#define kQAVendor_ATI 1
#define kQAVendor_Radius 2
#define kQAVendor_Mentor 3
#define kQAVendor_Matrox 4
#define kQAVendor_Yarc 5
#define kQAVendor_DiamondMM 6

Constant descriptions

kQAVendor_BestChoice
The best drawing engine available for the target device.
You should use this value as the default.

kQAVendor_Apple The vendor is Apple Computer, Inc.
kQAVendor_ATI The vendor is ATI Technologies Inc.
kQAVendor_Radius The vendor is Radius.
kQAVendor_Mentor The vendor is Mentor Software, Inc.
kQAVendor_Matrox The vendor is Matrox Graphics.
kQAVendor_Yarc The vendor is YARC Systems.
kQAVendor_DiamondMM

The vendor is Diamond Multimedia.
For the vendor kQAVendor_Apple, QuickDraw 3D RAVE defines these constants
for engine IDs.

#define kQAEngine_AppleSW 0
#define kQAEngine_AppleHW (–1)
#define kQAEngine_AppleHW2 1
#define kQAEngine_AppleHW3 2

Constant descriptions

kQAEngine_AppleSW The default software rasterizer.
kQAEngine_AppleHW The QuickDraw 3D accelerator card.

QuickDraw 3D RAVE

1566 QuickDraw 3D RAVE Reference

kQAEngine_AppleHW2 Another Apple 3D accelerator.
kQAEngine_AppleHW3 Another Apple 3D accelerator.

Triangle Flags Masks 23

The flags parameter for the QADrawTriGouraud and QADrawTriTexture functions
specifies a triangle mode, which determines how the drawing engine draws a
triangle. You can use these masks to set the flags parameter.

#define kQATriFlags_None 0
#define kQATriFlags_Backfacing (1 << 0)

Constant descriptions

kQATriFlags_None Pass this value for no triangle flags. The triangle is
frontfacing or has an unspecified orientation.

kQATriFlags_Backfacing
The triangle is backfacing. You should set this bit for all
triangles known to be backfacing (to help the drawing
engine resolve ambiguous hidden surface removal
situations).

Texture Flags Masks 23

The flags parameter for the QATextureNew function specifies a texture mode,
which determines certain features of the new texture map. You can use these
masks to set the flags parameter.

#define kQATexture_None 0
#define kQATexture_Lock (1 << 0)
#define kQATexture_Mipmap (1 << 1)
#define kQATexture_NoCompression (1 << 2)
#define kQATexture_HighCompression (1 << 3)

Constant descriptions

kQATexture_None Pass this value for no texture features.
kQATexture_Lock The new texture map should remain locked in memory and

not be swapped out. You should set this flag for texture
maps that are heavily used during rendering. Note,

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1567

however, that this flag is usually ignored by software-based
drawing engines.

kQATexture_Mipmap The new texture map is mipmapped.
kQATexture_NoCompression

The new texture map should not be compressed.
kQATexture_HighCompression

The new texture map should be compressed (even if doing
so takes a considerable amount of time).

Bitmap Flags Masks 23

The flags parameter passed to the QABitmapNew function specifies a set of bit
flags that control features of the new bitmap. You can use these masks to
configure a flags parameter.

#define kQABitmap_None 0
#define kQABitmap_Lock (1 << 1)
#define kQABitmap_NoCompression (1 << 2)
#define kQABitmap_HighCompression (1 << 3)

Constant descriptions

kQABitmap_None Pass this value for no bitmap features.
kQABitmap_Lock The new bitmap should remain locked in memory and not

be swapped out. You should set this flag for bitmap that are
heavily used during rendering. Note, however, that this
flag is usually ignored by software-based drawing engines.

kQABitmap_NoCompression
The new bitmap should not be compressed.

kQABitmap_HighCompression
The new bitmap should be compressed (even if doing so
takes a considerable amount of time).

Draw Context Flags Masks 23

The flags parameter passed to the QADrawContextNew function specifies a set of
bit flags that control features of the new draw context. You can use these masks
to configure the flags parameter.

QuickDraw 3D RAVE

1568 QuickDraw 3D RAVE Reference

#define kQAContext_None 0
#define kQAContext_NoZBuffer (1 << 0)
#define kQAContext_DeepZ (1 << 1)
#define kQAContext_DoubleBuffer (1 << 2)
#define kQAContext_Cache (1 << 3)

Constant descriptions

kQAContext_None Pass this value for no draw context features.
kQAContext_NoZBuffer

The new draw context should not be z buffered.
kQAContext_DeepZ The new draw context should have a z buffer with at least

24 bits of precision.
kQAContext_DoubleBuffer

The new draw context should be double buffered.
kQAContext_Cache The new draw context should be used for a draw context

cache. When you create a draw context with this feature, it
is always considered a draw context cache. Accordingly,
objects rendered into a draw context cache never appear on
the device (not even on a memory device). The only way to
view objects rendered into a draw context cache is to use
that cache to initialize a non-cached draw context.

Drawing Engine Method Selectors 23

To determine the addresses of some of the methods defined by a drawing
engine, QuickDraw 3D RAVE calls the engine’s TQAEngineGetMethod function,
passing a method selector in the methodTag parameter. This selector indicates of
which method the engine should return the address in the method parameter.

typedef enum TQAEngineMethodTag {
kQADrawPrivateNew = 0,
kQADrawPrivateDelete = 1,
kQAEngineCheckDevice = 2,
kQAEngineGestalt = 3,
kQATextureNew = 4,
kQATextureDetach = 5,
kQATextureDelete = 6,
kQABitmapNew = 7,
kQABitmapDetach = 8,

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1569

kQABitmapDelete = 9,
kQAColorTableNew = 10,
kQAColorTableDelete = 11,
kQATextureBindColorTable = 12,
kQABitmapBindColorTable = 13

} TQAEngineMethodTag;

Constant descriptions

kQADrawPrivateNew The TQADrawPrivateNew method.
kQADrawPrivateDelete

The TQADrawPrivateDelete method.
kQAEngineCheckDevice

The TQAEngineCheckDevice method.
kQAEngineGestalt The TQAEngineGestalt method.
kQATextureNew The TQATextureNew method.
kQATextureDetach The TQATextureDetach method.
kQATextureDelete The TQATextureDelete method.
kQABitmapNew The TQABitmapNew method.
kQABitmapDetach The TQABitmapDetach method.
kQABitmapDelete The TQABitmapDelete method.
kQAColorTableNew The TQAColorTableNew method.
kQAColorTableDelete

The TQAColorTableDelete method.
kQATextureBindColorTable

The TQATextureBindColorTable method.
kQABitmapBindColorTable

The TQABitmapBindColorTable method.

Public Draw Context Method Selectors 23

The methodTag parameter passed to the QARegisterDrawMethod function specifies
a type of public draw context method. QuickDraw 3D RAVE defines these
constants for method selectors.

typedef enum TQADrawMethodTag {
kQASetFloat = 0,
kQASetInt = 1,

QuickDraw 3D RAVE

1570 QuickDraw 3D RAVE Reference

kQASetPtr = 2,
kQAGetFloat = 3,
kQAGetInt = 4,
kQAGetPtr = 5,
kQADrawPoint = 6,
kQADrawLine = 7,
kQADrawTriGouraud = 8,
kQADrawTriTexture = 9,
kQADrawVGouraud = 10,
kQADrawVTexture = 11,
kQADrawBitmap = 12,
kQARenderStart = 13,
kQARenderEnd = 14,
kQARenderAbort = 15,
kQAFlush = 16,
kQASync = 17,
kQASubmitVerticesGouraud = 18,
kQASubmitVerticesTexture = 19,
kQADrawTriMeshGouraud = 20,
kQADrawTriMeshTexture = 21,
kQASetNoticeMethod = 22,
kQAGetNoticeMethod = 23

} TQADrawMethodTag;

Constant descriptions

kQASetFloat The TQASetFloat method.
kQASetInt The TQASetInt method.
kQASetPtr The TQASetPtr method.
kQAGetFloat The TQAGetFloat method.
kQAGetInt The TQAGetInt method.
kQAGetPtr The TQAGetPtr method.
kQADrawPoint The TQADrawPoint method.
kQADrawLine The TQADrawLine method.
kQADrawTriGouraud The TQADrawTriGouraud method.
kQADrawTriTexture The TQADrawTriTexture method.
kQADrawVGouraud The TQADrawVGouraud method.
kQADrawVTexture The TQADrawVTexture method.
kQADrawBitmap The TQADrawBitmap method.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1571

kQARenderStart The TQARenderStart method.
kQARenderEnd The TQARenderEnd method.
kQARenderAbort The TQARenderAbort method.
kQAFlush The TQAFlush method.
kQASync The TQASync method.
kQASubmitVerticesGouraud

The TQASubmitVerticesGouraud method.
kQASubmitVerticesTexture

The TQASubmitVerticesTexture method.
kQADrawTriMeshGouraud

The TQADrawTriMeshGouraud method.
kQADrawTriMeshTexture

The TQADrawTriMeshTexture method.
kQASetNoticeMethod The TQASetNoticeMethod method.
kQAGetNoticeMethod The TQAGetNoticeMethod method.

Notice Method Selectors 23

The method parameter passed to the QAGetNoticeMethod and QASetNoticeMethod
functions specifies a type of notice method. QuickDraw 3D RAVE defines these
constants for method selectors.

typedef enum TQAMethodSelector {
kQAMethod_RenderCompletion = 0,
kQAMethod_DisplayModeChanged = 1
kQAMethod_ReloadTextures = 2,
kQAMethod_BufferInitialize = 3,
kQAMethod_BufferComposite = 4,
kQAMethod_NumSelectors = 5

} TQAMethodSelector;

Constant descriptions

kQAMethod_RenderCompletion
The renderer has finished rendering an image. If the draw
context is double buffered, the completion method is called
after the front and back buffers have been swapped.

QuickDraw 3D RAVE

1572 QuickDraw 3D RAVE Reference

kQAMethod_DisplayModeChanged
The display mode has changed. In response to this
notification, you should verify that all your draw contexts
are still visible on the screen.

kQAMethod_ReloadTextures
The texture memory has become invalid. In response to this
notification, you should reload any textures you’re using.

kQAMethod_BufferInitialize
A buffer needs to be initialized. This notification is sent
before rendering starts. You are responsible for clearing the
buffer to the desired image. Your buffer initialization
method is given a reference to the device to clear, which is
always a memory device. You can set a drawing engine’s
kQATag_BufferComposite state variable to indicate how you
want the engine to composite generated pixels with the
pixels in that image.

kQAMethod_BufferComposite
Rendering is finished and it is safe to composite. This
notification is sent after rendering has finished but before
the buffers are swapped. Your buffer compositing method
is given a reference to the device to composite into, which
is always a memory device.

kQAMethod_NumSelectors
The number of method selectors currently defined.

Data Structures 23

This section describes the data structures provided by QuickDraw 3D RAVE.

Memory Device Structure 23

You specify a memory device using a memory device structure, defined by the
TQADeviceMemory data type.

typedef struct TQADeviceMemory {
long rowBytes;
TQAImagePixelType pixelType;
long width;

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1573

long height;
void *baseAddr;

} TQADeviceMemory;

Field descriptions
rowBytes The distance, in bytes, from the beginning of one row of the

memory device to the beginning of the next row of the
memory device.

pixelType A value that specifies the size and organization of the
memory associated with a pixel in the pixmap. See “Pixel
Types” (page 1536) for information on the values you can
assign to this field.

width The width, in pixels, of the memory device.
height The height, in pixels, of the memory device.
baseAddr A pointer to the beginning of the memory device.

Rectangle Structure 23

You specify a rectangular region of memory (for instance, to define the area into
which a drawing engine is to draw) using a rectangle structure, defined by the
TQARect data type. All values are interpreted to be in device coordinates.

typedef struct TQARect {
long left;
long right;
long top;
long bottom;

} TQARect;

Field descriptions
left The left side of the rectangle.
right The right side of the rectangle.
top The top side of the rectangle.
bottom The bottom side of the rectangle.

QuickDraw 3D RAVE

1574 QuickDraw 3D RAVE Reference

Macintosh Device and Clip Structures 23

QuickDraw 3D RAVE supports two types of devices and one type of clipping
on the Macintosh Operating System. The available devices and clipping are
defined by unions of type TQAPlatformDevice and TQAPlatformClip.

typedef union TQAPlatformDevice {
TQADeviceMemory memoryDevice;
GDHandle gDevice;

} TQAPlatformDevice;

Field descriptions
memoryDevice A memory device data structure.
gDevice A handle to a graphics device (of type GDevice).

typedef union TQAPlatformClip {
RgnHandle clipRgn;

} TQAPlatformClip;

Field descriptions
clipRgn A handle to a clipping region.

Windows Device and Clip Structures 23

QuickDraw 3D RAVE supports two types of devices and one type of clipping
on Windows 32 systems. The available devices and clipping are defined by
unions of type TQAPlatformDevice and TQAPlatformClip.

typedef union TQAPlatformDevice {
TQADeviceMemory memoryDevice;
HDC hdc;
struct {

LPDIRECTDRAW lpDirectDraw;
LPDIRECTDRAWSURFACE lpDirectDrawSurface;

};
} TQAPlatformDevice;

Field descriptions
memoryDevice A memory device data structure.
hdc A handle to a draw context.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1575

lpDirectDraw

lpDirectDrawSurface

typedef union TQAPlatformClip {
HRGN clipRgn;

} TQAPlatformClip

Field descriptions
clipRgn A handle to a clipping region.

Generic Device and Clip Structures 23

QuickDraw 3D RAVE supports one type of device and one type of clipping on
generic operating systems. The available device and clipping are defined by
unions of type TQAPlatformDevice and TQAPlatformClip.

typedef union TQAPlatformDevice {
TQADeviceMemory memoryDevice;

} TQAPlatformDevice;

Field descriptions
memoryDevice A memory device data structure.

typedef union TQAPlatformClip {
void *region;

} TQAPlatformClip;

Field descriptions
region

Device Structure 23

You specify a device (for example, when creating a new draw context with the
QADrawContextNew function) by filling in a device structure, defined by the
TQADevice data type.

QuickDraw 3D RAVE

1576 QuickDraw 3D RAVE Reference

typedef struct TQADevice {
TQADeviceType deviceType;
TQAPlatformDevice device;

} TQADevice;

Field descriptions
deviceType The device type. See “Device Types” (page 1538) for

information on the types of devices that are currently
supported.

device A platform device data structure.

Clip Data Structure 23

You specify a clipping region (for example, when creating a new draw context
with the QADrawContextNew function) by filling in a clip data structure, defined
by the TQAClip data type. The clipping region determines which pixels are
drawn to a device.

typedef struct TQAClip {
TQAClipType clipType;
TQAPlatformClip clip;

} TQAClip;

Field descriptions
clipType The clip type. See “Clip Types” (page 1539) for the values

you can assign to this field.
clip A platform clip data structure.

Image Structure 23

Texture maps and bitmaps are defined using pixel images (or pixmaps). To
specify a pixel image, you fill in an image structure, defined by the TQAImage
data structure.

struct TQAImage {
long width;
long height;
long rowBytes;

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1577

void *pixmap;
};
typedef struct TQAImage TQAImage;

Field descriptions
width The width, in pixels, of the pixmap.
height The height, in pixels, of the pixmap.
rowBytes The distance, in bytes, from the beginning of one row of the

image data to the beginning of the next row of the image
data. (For some low-cost accelerators, setting the value in
this field to the product of the value in the width field and
the pixel size improves performance.)

pixmap A pointer to the image data.

Vertex Structures 23

QuickDraw 3D RAVE supports two different types of vertices: Gouraud vertices
and texture vertices. You use Gouraud vertices for drawing Gouraud-shaded
triangles, and also for drawing points and lines. A Gouraud vertex is defined by
the TQAVGouraud data structure, which specifies the position, depth, color, and
transparency information.

typedef struct TQAVGouraud {
float x;
float y;
float z;
float invW;
float r;
float g;
float b;
float a;

} TQAVGouraud;

Field descriptions
x The x coordinate of the vertex relative to the upper-left

corner of the draw context rectangle (that is, the rectangle
passed to the QADrawContextNew function). The value of this
field is a floating-point value that specifies a number of
pixels.

QuickDraw 3D RAVE

1578 QuickDraw 3D RAVE Reference

y The y coordinate of the vertex relative to the upper-left
corner of the draw context rectangle (that is, the rectangle
passed to the QADrawContextNew function). The value of this
field is a floating-point value that specifies a number of
pixels.

z The depth of the vertex. The value of this field is a
floating-point number between 0.0 and 1.0 inclusive, where
lower numbers specify points closer to the origin.

invW The inverse w value (that is, the value 1/w, where w is the
homogeneous correction factor). This field is valid only for
drawing engines that support the
kQAOptional_PerspectiveZ feature. When the state variable
kQATag_PerspectiveZ is set to kQAPerspectiveZ_On, hidden
surface removal is performed using the value in this field
rather than the value in the z field, thereby causing the
hidden surface removal to be perspective corrected.

r The red component of the vertex color.
g The green component of the vertex color.
b The blue component of the vertex color.
a The alpha channel value of the vertex, where 1.0 represents

opacity and 0.0 represents complete transparency.
You use texture vertices to define triangles to which a texture is to be mapped.
A texture vertex is defined by the TQAVTexture data structure, which specifies
the position, depth, transparency, and texture mapping information.

Note
Not all the fields of a TQAVTexture data structure need to be
filled out. Many of these fields are used only when texture
mapping operations are in force (that is, when the
kQATag_TextureOp state variable has some value other than
kQATextureOp_None). ◆

typedef struct TQAVTexture {
float x;
float y;
float z;
float invW;
float r;
float g;

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1579

float b;
float a;
float uOverW;
float vOverW;
float kd_r;
float kd_g;
float kd_b;
float ks_r;
float ks_g;
float ks_b;

} TQAVTexture;

Field descriptions
x The x coordinate of the vertex relative to the upper-left

corner of the draw context rectangle (that is, the rectangle
passed to the QADrawContextNew function). The value of this
field is a floating-point value that specifies a number of
pixels.

y The y coordinate of the vertex relative to the upper-left
corner of the draw context rectangle (that is, the rectangle
passed to the QADrawContextNew function). The value of this
field is a floating-point value that specifies a number of
pixels.

z The depth of the vertex. The value of this field is a
floating-point number between 0.0 and 1.0 inclusive, where
lower numbers specify points closer to the origin.

invW The inverse w value (that is, the value 1/w, where w is the
homogeneous correction factor). This field must contain a
value. For drawing engines that support the
kQAOptional_PerspectiveZ feature and when the state
variable kQATag_PerspectiveZ is set to kQAPerspectiveZ_On,
hidden surface removal is performed using the value in
this field rather than the value in the z field. For
non-perspective rendering, this field should be set to 1.0.

r The red component of the decal color. The value in this
field is used only when the kQATextureOp_Decal texture
mapping operation is enabled.

g The green component of the decal color. The value in this
field is used only when the kQATextureOp_Decal texture
mapping operation is enabled.

QuickDraw 3D RAVE

1580 QuickDraw 3D RAVE Reference

b The blue component of the decal color. The value in this
field is used only when the kQATextureOp_Decal texture
mapping operation is enabled.

a The alpha channel value of the vertex, where 1.0 represents
opacity and 0.0 represents complete transparency.

uOverW The perspective-corrected u coordinate of the vertex.
vOverW The perspective-corrected v coordinate of the vertex.
kd_r The red component of the diffuse color of the vertex. The

value in this field is used only when the
kQATextureOp_Modulate texture mapping operation is
enabled. The value in this field can be greater than 1.0 to
more accurately render scenes with high light intensities.

kd_g The green component of the diffuse color of the vertex. The
value in this field is used only when the
kQATextureOp_Modulate texture mapping operation is
enabled. The value in this field can be greater than 1.0 to
more accurately render scenes with high light intensities.

kd_b The blue component of the diffuse color of the vertex. The
value in this field is used only when the
kQATextureOp_Modulate texture mapping operation is
enabled. The value in this field can be greater than 1.0 to
more accurately render scenes with high light intensities.

ks_r The red component of the specular color of the vertex. The
value in this field is used only when the
kQATextureOp_Highlight texture mapping operation is
enabled.

ks_g The green component of the specular color of the vertex.
The value in this field is used only when the
kQATextureOp_Highlight texture mapping operation is
enabled.

ks_b The blue component of the specular color of the vertex. The
value in this field is used only when the
kQATextureOp_Highlight texture mapping operation is
enabled.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1581

IMPORTANT

A drawing engine may choose to use a single modulation
value instead of the three values kd_r, kd_g, and kd_b. This
change is transparent to applications, except that colored
lights applied to a texture appear white. As a result, a
drawing engine that uses this simplification must negate
the kQAOptional_TextureColor bit in the optional features
value returned by QAEngineGestalt. Similarly, a drawing
engine may choose to use a single highlight value instead
of the three values ks_r, ks_g, and ks_b. This change is
transparent to applications, except that a texture-mapped
object’s specular highlight appears white, not colored. As a
result, a drawing engine that uses this simplification must
negate the kQAOptional_TextureColor bit in the optional
features value. ▲

Draw Context Structure 23

QuickDraw 3D RAVE drawing routines operate on a draw context, which
maintains state information and other data associated with a drawing engine.
You access a draw context using a draw context structure, defined by the
TQADrawContext data type.

IMPORTANT

You should not directly access the fields of a draw context
structure. Instead, you should use the draw context
manipulation macros defined by QuickDraw 3D RAVE. See
“Manipulating Draw Contexts,” beginning on page 1598
for more information. ▲

struct TQADrawContext {
TQADrawPrivate *drawPrivate;
const TQAVersion version;
TQASetFloat setFloat;
TQASetInt setInt;
TQASetPtr setPtr;
TQAGetFloat getFloat;
TQAGetInt getInt;
TQAGetPtr getPtr;
TQADrawPoint drawPoint;

QuickDraw 3D RAVE

1582 QuickDraw 3D RAVE Reference

TQADrawLine drawLine;
TQADrawTriGouraud drawTriGouraud;
TQADrawTriTexture drawTriTexture;
TQADrawVGouraud drawVGouraud;
TQADrawVTexture drawVTexture;
TQADrawBitmap drawBitmap;
TQARenderStart renderStart;
TQARenderEnd renderEnd;
TQARenderAbort renderAbort;
TQAFlush flush;
TQASync sync;
TQASubmitVerticesGouraud submitVerticesGouraud;
TQASubmitVerticesTexture submitVerticesTexture;
TQADrawTriMeshGouraud drawTriMeshGouraud;
TQADrawTriMeshTexture drawTriMeshTexture;
TQASetNoticeMethod setNoticeMethod;
TQAGetNoticeMethod getNoticeMethod;

};
typedef struct TQADrawContext TQADrawContext;

Field descriptions
drawPrivate A pointer to the private data for the drawing engine

associated with this draw context.
version The version of QuickDraw 3D RAVE. This field is

initialized when you call QADrawContextNew. See “Version
Values” (page 1535) for the currently defined version
numbers.

setFloat A function pointer to the drawing engine’s method for
setting floating-point state variables.

setInt A function pointer to the drawing engine’s method for
setting unsigned long integer state variables.

setPtr A function pointer to the drawing engine’s method for
setting pointer state variables.

getFloat A function pointer to the drawing engine’s method for
getting floating-point state variables.

getInt A function pointer to the drawing engine’s method for
getting unsigned long integer state variables.

getPtr A function pointer to the drawing engine’s method for
getting pointer state variables.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1583

drawPoint A function pointer to the drawing engine’s method for
drawing points.

drawLine A function pointer to the drawing engine’s method for
drawing lines.

drawTriGouraud A function pointer to the drawing engine’s method for
drawing triangles with Gouraud shading.

drawTriTexture A function pointer to the drawing engine’s method for
drawing texture-mapped triangles.

drawVGouraud A function pointer to the drawing engine’s method for
drawing vertices with Gouraud shading.

drawVTexture A function pointer to the drawing engine’s method for
drawing texture-mapped vertices.

drawBitmap A function pointer to the drawing engine’s method for
drawing a bitmap.

renderStart A function pointer to the drawing engine’s method for
initializing in preparation for rendering.

renderEnd A function pointer to the drawing engine’s method for
completing a rendering operation and displaying an image.

renderAbort A function pointer to the drawing engine’s method for
canceling the current rendering operation and flushing any
queued operations.

flush A function pointer to the drawing engine’s method for
starting to render all queued drawing commands.

sync A function pointer to the drawing engine’s method for
waiting until all queued drawing commands have been
processed.

submitVerticesGouraud
A function pointer to the drawing engine’s method for
submitting Gouraud vertices.

submitVerticesTexture
A function pointer to the drawing engine’s method for
submitting texture vertices.

drawTriMeshGouraud A function pointer to the drawing engine’s method for
drawing triangle meshes with Gouraud shading.

drawTriMeshTexture A function pointer to the drawing engine’s method for
drawing texture-mapped triangle meshes.

QuickDraw 3D RAVE

1584 QuickDraw 3D RAVE Reference

setNoticeMethod A function pointer to the drawing engine’s method for
setting a notice method.

getNoticeMethod A function pointer to the drawing engine’s method for
getting a notice method.

Indexed Triangle Structure 23

The QADrawTriMeshGouraud and QADrawTriMeshTexture functions draw triangle
meshes defined by an array of indexed triangles. An indexed triangle is
represented by a data structure of type TQAIndexedTriangle that defines three
vertices and a set of triangle flags.

typedef struct TQAIndexedTriangle {
unsigned long triangleFlags;
unsigned long vertices[3];

} TQAIndexedTriangle;

Field descriptions
triangleFlags A set of triangle flags. See “Triangle Flags Masks,”

beginning on page 1566 for a complete description of the
available flags.

vertices An array of three indices into the array of vertices
submitted by the most recent call to
QASubmitVerticesGouraud or QASubmitVerticesTexture.

QuickDraw 3D RAVE Routines 23

This section describes the routines provided by QuickDraw 3D RAVE.

Creating and Deleting Draw Contexts 23

QuickDraw 3D RAVE provides routines that you can use to create and delete
draw contexts.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1585

QADrawContextNew 23

You can use the QADrawContextNew function to create a new draw context.

TQAError QADrawContextNew (
const TQADevice *device,
const TQARect *rect,
const TQAClip *clip,
const TQAEngine *engine,
unsigned long flags,
TQADrawContext **newDrawContext);

device A device.

rect The rectangular region (specified in device coordinates) of the
specified device that can be drawn into by the drawing engine
associated with the new draw context.

clip The two-dimensional clipping region for the new draw context,
or NULL if no clipping is desired. This parameter must be set to
NULL for devices of type kQADeviceMemory.

engine A drawing engine.

flags A set of bit flags specifying features of the new draw context.
See “Draw Context Flags Masks” (page 1567) for complete
information.

newDrawContext
On entry, the address of a pointer variable. On exit, that variable
points to a new draw context. If a new draw context cannot be
created, *newDrawContext is set to the value NULL.

DESCRIPTION

The QADrawContextNew function returns, through the newDrawContext parameter,
a new draw context associated with the device specified by the device
parameter and the drawing engine specified by the engine parameter.

QuickDraw 3D RAVE

1586 QuickDraw 3D RAVE Reference

QADrawContextDelete 23

You can use the QADrawContextDelete function to delete a draw context.

void QADrawContextDelete (TQADrawContext *drawContext);

drawContext A draw context.

DESCRIPTION

The QADrawContextDelete function deletes the draw context specified by the
drawContext parameter. Any memory and other resources associated with that
draw context are released.

Creating and Deleting Color Lookup Tables 23

QuickDraw 3D RAVE provides routines that you can use to create and dispose
of color lookup tables.

QAColorTableNew 23

You can use the QAColorTableNew function to create a new color lookup table.

TQAError QAColorTableNew (
const TQAEngine *engine,
TQAColorTableType tableType,
void *pixelData,
long transparentIndexFlag,
TQAColorTable **newTable);

engine A drawing engine.

tableType The type of the new color lookup table. See “Color Lookup
Table Types” (page 1538) for information on the available color
lookup table types.

pixelData A pointer to the color lookup table entries.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1587

transparentIndexFlag
A long integer, interpreted as a Boolean value, that indicates
whether the color lookup table entry at index 0 is completely
transparent (TRUE) or not (FALSE).

newTable On entry, the address of a pointer variable. On exit, that variable
points to a new color lookup table. If a new color lookup table
cannot be created, *newTable is set to the value NULL.

DESCRIPTION

The QAColorTableNew function returns, through the newTable parameter, a new
color lookup table associated with the drawing engine specified by the engine
parameter. The table entries for the new color lookup table are copied from the
block of data pointed to by the pixelData parameter; if QAColorTableNew
completes successfully, you can dispose of that block of memory. The data in
that block of memory is interpreted according to the format specified by the
tableType parameter. For example, if tableType is kQAColorTable_CL8_RGB32,
then pixelData should point to a block of data that is at least 1024 bytes long
and in which each 32-bit quantity is an RGB color value.

IMPORTANT

Currently, QuickDraw 3D RAVE supports only 32-bit RGB
color lookup table entries. The specified drawing engine
might reduce the size of individual color lookup table
entries to fit into its on-board memory. ▲

Not all drawing engines support color lookup tables, and QuickDraw 3D RAVE
does not provide color lookup table emulation for engines that do not support
them.

SEE ALSO

Use the QAColorTableDelete function (next) to delete a color lookup table. Use
the QATextureBindColorTable function page 1590 to bind a color lookup table to
a texture map. Use the QABitmapBindColorTable function page 1593 to bind a
color lookup table to a bitmap.

QuickDraw 3D RAVE

1588 QuickDraw 3D RAVE Reference

QAColorTableDelete 23

You can use the QAColorTableDelete function to delete a color lookup table.

void QAColorTableDelete (
const TQAEngine *engine,
TQAColorTable *colorTable);

engine A drawing engine.

colorTable A color lookup table.

DESCRIPTION

The QAColorTableDelete function deletes the color lookup table specified by the
colorTable parameter. Any memory and other resources associated with that
color lookup table are released.

SEE ALSO

Use the QAColorTableNew function page 1586 to create a color lookup table.

Manipulating Textures and Bitmaps 23

QuickDraw 3D RAVE provides routines that you can use to create and dispose
of texture maps and bitmaps. It also provides routines that you can use to bind
color lookup tables to texture maps and bitmaps.

QATextureNew 23

You can use the QATextureNew function to create a new texture map.

TQAError QATextureNew (
const TQAEngine *engine,
unsigned long flags,
TQAImagePixelType pixelType,
const TQAImage images[],
TQATexture **newTexture);

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1589

engine A drawing engine.

flags A set of bit flags specifying features of the new texture map. See
“Texture Flags Masks” (page 1566) for complete information.

pixelType The type of pixels in the new texture map. See “Pixel Types”
(page 1536) for a description of the values you can pass in this
parameter.

images An array of pixel images to use for the new texture map. The
values in the width and height fields of these structures must be
an even power of 2.

newTexture On entry, the address of a pointer variable. On exit, that variable
points to a new texture map. If a new texture map cannot be
created, *newTexture is set to the value NULL.

DESCRIPTION

The QATextureNew function returns, through the newTexture parameter, a new
texture map associated with the drawing engine specified by the engine
parameter. You can use the returned texture map to set the value of the
kQATag_Texture state variable.

The flags parameter specifies a set of texture map features. If the
kQATexture_Lock bit in that parameter is set but the drawing engine cannot
guarantee that the texture will remain locked in memory, the QATextureNew
function returns an error.

If the kQATexture_Mipmap bit of the flags parameter is clear, the images
parameter points to a single pixel image that defines the texture map. If the
kQATexture_Mipmap bit is set, the images parameter points to an array of pixel
images of varying pixel depths. The first element in the array must be the
mipmap page having the highest resolution, with a width and height that are
even powers of 2. Each subsequent pixel image in the array should have a
width and height that are half those of the previous image (with a minimum
width and height of 1).

SPECIAL CONSIDERATIONS

QATextureNew does not automatically copy the pixmap data pointed to by the
images parameter. As a result, you should not release or reuse the storage
occupied by the pixel images until you’ve called QATextureDetach. Note,

QuickDraw 3D RAVE

1590 QuickDraw 3D RAVE Reference

however, that QATextureNew does copy all of the information contained in the
TQAImage structures in the array, so you can free or reuse that memory after
QATextureNew completes successfully.

QATextureDetach 23

You can use the QATextureDetach function to detach a texture map from a
drawing engine.

TQAError QATextureDetach (const TQAEngine *engine, TQATexture *texture);

engine A drawing engine.

texture A texture map.

DESCRIPTION

The QATextureDetach function causes the drawing engine specified by the engine
parameter to copy the data associated with the texture map specified by the
texture parameter. Once the data are copied, you can reuse or dispose of the
memory you originally specified in a call to QATextureNew.

QATextureBindColorTable 23

You can use the QATextureBindColorTable function to bind a color lookup table
to a texture map.

TQAError QATextureBindColorTable (
const TQAEngine *engine,
TQATexture *texture,
TQAColorTable *colorTable);

engine A drawing engine.

texture A texture map.

colorTable A color lookup table (as returned by a previous call to
QAColorTableNew).

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1591

DESCRIPTION

The QATextureBindColorTable function binds the color lookup table specified by
the colorTable parameter to the texture map specified by the texture parameter.
Before you can draw any texture map whose pixel type is either kQAPixel_CL4 or
kQAPixel_CL8, you must bind a color lookup table to it. In addition, the type of
the specified color lookup table must match that of the pixel type of the texture
map to which it is bound. For example, a color lookup table of type
kQAColorTable_CL8_RGB32 can be bound only to a texture map whose pixel type
is kQAPixel_CL8.

QATextureDelete 23

You can use the QATextureDelete function to delete a texture map.

void QATextureDelete (const TQAEngine *engine, TQATexture *texture);

engine A drawing engine.

texture A texture map.

DESCRIPTION

The QATextureDelete function deletes the texture map specified by the texture
parameter from the drawing engine specified by the engine parameter.

QABitmapNew 23

You can use the QABitmapNew function to create a new bitmap.

TQAError QABitmapNew (
const TQAEngine *engine,
unsigned long flags,
TQAImagePixelType pixelType,
const TQAImage *image,
TQABitmap **newBitmap);

QuickDraw 3D RAVE

1592 QuickDraw 3D RAVE Reference

engine A drawing engine.

flags A set of bit flags specifying features of the new bitmap. See
“Bitmap Flags Masks” (page 1567) for complete information

pixelType The type of pixels in the new bitmap. See “Pixel Types”
(page 1536) for a description of the values you can pass in this
parameter.

image A pixel image to use for the new bitmap. The width and height
fields of this image can have any values greater than 0.

newBitmap On entry, the address of a pointer variable. On exit, that variable
points to a new bitmap. If a new bitmap cannot be created,
*newBitmap is set to the value NULL.

DESCRIPTION

The QABitmapNew function returns, through the newBitmap parameter, a pointer to
a new bitmap associated with the drawing engine specified by the engine
parameter. You can draw the returned bitmap by calling the QADrawBitmap
function.

The flags parameter specifies a set of bitmap features. If the kQABitmap_Lock bit
in that parameter is set but the drawing engine cannot guarantee that the
bitmap will remain locked in memory, the QABitmapNew function returns an
error.

SPECIAL CONSIDERATIONS

QABitmapNew does not automatically copy the pixmap data pointed to by the
images parameter. As a result, you should not release or reuse the storage
occupied by the pixel image until you’ve called QABitmapDetach. Note, however,
that QABitmapNew does copy all of the information contained in the TQAImage
structure, so you can free or reuse that memory after QABitmapNew completes
successfully.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1593

QABitmapDetach 23

You can use the QABitmapDetach function to detach a bitmap from a drawing
engine.

TQAError QABitmapDetach (const TQAEngine *engine, TQABitmap *bitmap);

engine A drawing engine.

bitmap A bitmap.

DESCRIPTION

The QABitmapDetach function causes the drawing engine specified by the engine
parameter to copy the data associated with the bitmap specified by the bitmap
parameter. Once the data are copied, you can reuse or dispose of the memory
you originally specified in a call to QABitmapNew.

QABitmapBindColorTable 23

You can use the QABitmapBindColorTable function to bind a color lookup table to
a bitmap.

TQAError QABitmapBindColorTable (
const TQAEngine *engine,
TQABitmap *bitmap,
TQAColorTable *colorTable);

engine A drawing engine.

bitmap A bitmap.

colorTable A color lookup table (as returned by a previous call to
QAColorTableNew).

DESCRIPTION

The QABitmapBindColorTable function binds the color lookup table specified by
the colorTable parameter to the bitmap specified by the bitmap parameter.

QuickDraw 3D RAVE

1594 QuickDraw 3D RAVE Reference

Before you can draw any bitmap whose pixel type is either kQAPixel_CL4 or
kQAPixel_CL8, you must bind a color lookup table to it. In addition, the type of
the specified color lookup table must match that of the pixel type of the bitmap
to which it is bound. For example, a color lookup table of type
kQAColorTable_CL8_RGB32 can be bound only to a bitmap whose pixel type is
kQAPixel_CL8.

QABitmapDelete 23

You can use the QABitmapDelete function to delete a bitmap.

void QABitmapDelete (const TQAEngine *engine, TQABitmap *bitmap);

engine A drawing engine.

bitmap A bitmap.

DESCRIPTION

The QABitmapDelete function deletes the bitmap specified by the bitmap
parameter from the drawing engine specified by the engine parameter.

Managing Drawing Engines 23

QuickDraw 3D RAVE provides routines that you can use to manage drawing
engines. For example, you can use these routines to find a drawing engine for a
particular device.

QADeviceGetFirstEngine 23

You can use the QADeviceGetFirstEngine function to get the first drawing engine
that can draw to a particular device.

TQAEngine *QADeviceGetFirstEngine (const TQADevice *device);

device A device, or the value NULL.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1595

DESCRIPTION

The QADeviceGetFirstEngine function returns, as its function result, the first
drawing engine that is capable of drawing into the device specified by the
device parameter. The first engine is defined to be the first engine that satisfies
one of these criteria:

1. The drawing engine selected by the user (for example, using the RAVE
control panel).

2. The drawing engine that is tightly coupled to the specified device (that is,
that can render only to that device).

3. The drawing engine that accelerates more features than any other drawing
engine.

If you pass the value NULL in the device parameter, QADeviceGetFirstEngine
returns a drawing engine without regard for its ability to drive any particular
device. You can use this technique to find all available engines.

QADeviceGetNextEngine 23

You can use the QADeviceGetNextEngine function to get the next drawing engine
that can draw to a particular device.

TQAEngine *QADeviceGetNextEngine (
const TQADevice *device,
const TQAEngine *currentEngine);

device A device, or the value NULL.

currentEngine A drawing engine.

DESCRIPTION

The QADeviceGetNextEngine function returns, as its function result, the drawing
engine that supports the device specified by the device parameter that follows
the engine specified by the currentEngine parameter. The value you pass in the
currentEngine parameter should have been obtained from a previous call to
QADeviceGetFirstEngine or QADeviceGetNextEngine.

QuickDraw 3D RAVE

1596 QuickDraw 3D RAVE Reference

If you pass the value NULL in the device parameter, QADeviceGetNextEngine
returns a the next drawing engine without regard for its ability to drive any
particular device. You can use this technique to find all available engines.

QAEngineCheckDevice 23

You can use the QAEngineCheckDevice function to determine whether a particular
drawing engine can draw into a particular device.

TQAError QAEngineCheckDevice (
const TQAEngine *engine,
const TQADevice *device);

engine A drawing engine.

device A device.

DESCRIPTION

The QAEngineCheckDevice function returns, as its function result, a code that
indicates whether the drawing engine specified by the engine parameter can
draw into the device specified by the device parameter (kQANoErr) or not
(kQAError).

QAEngineGestalt 23

You can use the QAEngineGestalt function to get information about a drawing
engine.

TQAError QAEngineGestalt (
const TQAEngine *engine,
TQAGestaltSelector selector,
void *response);

engine A drawing engine.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1597

selector A selector that determines what kind of information is to be
returned about the specified drawing engine. See “Gestalt
Selectors” (page 1559) for complete information about the
available selectors and the information they return.

response A pointer to a buffer into which the returned information is
copied. Your application is responsible for allocating this buffer.
The size and meaning of the data copied to the buffer depend on
the selector you pass in the selector parameter.

DESCRIPTION

The QAEngineGestalt function returns, in the response parameter, a buffer of
information about features of the type specified by the selector parameter
associated with the drawing engine specified by the engine parameter.

SEE ALSO

See “Finding a Drawing Engine” (page 1516) for code illustrating how to call
QAEngineGestalt.

QAEngineEnable 23

You can use the QAEngineEnable function to enable a drawing engine.

TQAError QAEngineEnable (long vendorID, long engineID);

vendorID A vendor ID.

engineID A drawing engine ID.

DESCRIPTION

The QAEngineEnable function enables the drawing engine specified by the
vendorID and engineID parameters.

QuickDraw 3D RAVE

1598 QuickDraw 3D RAVE Reference

QAEngineDisable 23

You can use the QAEngineDisable function to disable a drawing engine.

TQAError QAEngineDisable (long vendorID, long engineID);

vendorID A vendor ID.

engineID An engine ID.

DESCRIPTION

The QAEngineDisable function disables the drawing engine specified by the
vendorID and engineID parameters.

Manipulating Draw Contexts 23

QuickDraw 3D RAVE provides routines that you can use to manipulate draw
contexts. For example, you can use the QASetInt routine to set an integer-valued
state variable associated with a draw context.

IMPORTANT

These functions are currently implemented as C language
macros that call the methods of the drawing engine. Your
application should use these macros for all draw context
manipulation. ▲

See the section “Application-Defined Routines,” beginning on page 1618 for
complete information on the draw context methods invoked by these macros.

Note
There is one macro for each method whose address is
stored in a draw context structure (of type
TQADrawContext). ◆

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1599

QAGetFloat 23

You can use the QAGetFloat function to get a floating-point value of a draw
context state variable.

#define QAGetFloat(drawContext,tag) \
(drawContext)->getFloat (drawContext,tag)

drawContext A draw context.

tag A state variable tag.

DESCRIPTION

The QAGetFloat function returns, as its function result, the floating-point value
of the draw context state variable specified by the drawContext and tag
parameters. If the specified tag is not recognized or supported by that draw
context, QAGetFloat returns the value 0.

QASetFloat 23

You can use the QASetFloat function to set a floating-point value for a draw
context state variable.

#define QASetFloat(drawContext,tag,newValue) \
(drawContext)->setFloat (drawContext,tag,newValue)

drawContext A draw context.

tag A state variable tag.

newValue The new value of the specified state variable.

DESCRIPTION

The QASetFloat function sets the value of the draw context state variable
specified by the drawContext and tag parameters to the floating-point value
specified by the newValue parameter.

QuickDraw 3D RAVE

1600 QuickDraw 3D RAVE Reference

QAGetInt 23

You can use the QAGetInt function to get a long integer value of a draw context
state variable.

#define QAGetInt(drawContext,tag) \
(drawContext)->getInt (drawContext,tag)

drawContext A draw context.

tag A state variable tag.

DESCRIPTION

The QAGetInt function returns, as its function result, the long integer value of
the draw context state variable specified by the drawContext and tag parameters.
If the specified tag is not recognized or supported by that draw context,
QAGetInt returns the value 0.

QASetInt 23

You can use the QASetInt function to set a long integer value for a draw context
state variable.

#define QASetInt(drawContext,tag,newValue) \
(drawContext)->setInt (drawContext,tag,newValue)

drawContext A draw context.

tag A state variable tag.

newValue The new value of the specified state variable.

DESCRIPTION

The QASetInt function sets the value of the draw context state variable specified
by the drawContext and tag parameters to the long integer value specified by the
newValue parameter.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1601

QAGetPtr 23

You can use the QAGetPtr function to get a pointer value of a draw context state
variable.

#define QAGetPtr(drawContext,tag) \
(drawContext)->getPtr (drawContext,tag)

drawContext A draw context.

tag A state variable tag.

DESCRIPTION

The QAGetPtr function returns, as its function result, the pointer value of the
draw context state variable specified by the drawContext and tag parameters. If
the specified tag is not recognized or supported by that draw context, QAGetPtr
returns the value 0.

QASetPtr 23

You can use the QASetPtr function to set a pointer value for a draw context state
variable.

#define QASetPtr(drawContext,tag,newValue) \
(drawContext)->setPtr (drawContext,tag,newValue)

drawContext A draw context.

tag A state variable tag.

newValue The new value of the specified state variable.

DESCRIPTION

The QASetPtr function sets the value of the draw context state variable specified
by the drawContext and tag parameters to the pointer value specified by the
newValue parameter.

QuickDraw 3D RAVE

1602 QuickDraw 3D RAVE Reference

QADrawPoint 23

You can use the QADrawPoint function to draw a point.

#define QADrawPoint(drawContext,v) \
(drawContext)->drawPoint (drawContext,v)

drawContext A draw context.

v A Gouraud vertex.

DESCRIPTION

The QADrawPoint function draws the single point specified by the v parameter to
the draw context specified by the drawContext parameter. The size of the point is
determined by the kQATag_Width state variable of the draw context.

QADrawLine 23

You can use the QADrawLine function to draw a line between two points.

#define QADrawLine(drawContext,v0,v1) \
(drawContext)->drawLine (drawContext,v0,v1)

drawContext A draw context.

v0 A Gouraud vertex.

v1 A Gouraud vertex.

DESCRIPTION

The QADrawLine function draws the line specified by the v0 and v1 parameters to
the draw context specified by the drawContext parameter. The size of the line is
determined by the kQATag_Width state variable of the draw context. If the
specified vertices have different colors, the line color is interpolated smoothly
between the two vertex colors.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1603

QADrawTriGouraud 23

You can use the QADrawTriGouraud function to draw Gouraud-shaded triangles.

#define QADrawTriGouraud(drawContext,v0,v1,v2,flags) \
(drawContext)->drawTriGouraud (drawContext,v0,v1,v2,flags)

drawContext A draw context.

v0 A Gouraud vertex.

v1 A Gouraud vertex.

v2 A Gouraud vertex.

flags A set of triangle flags. See “Triangle Flags Masks,” beginning on
page 1566 for a complete description of the available flags.

DESCRIPTION

The QADrawTriGouraud function draws the Gouraud-shaded triangle determined
by the three points specified by the v0, v1, and v2 parameters into the draw
context specified by the drawContext parameter. Features of the triangle are
determined by the flags parameter. Currently, this parameter is used to specify
an orientation for the triangle.

QADrawTriTexture 23

You can use the QADrawTriTexture function to draw texture-mapped triangles.

#define QADrawTriTexture(drawContext,v0,v1,v2,flags) \
(drawContext)->drawTriTexture (drawContext,v0,v1,v2,flags)

drawContext A draw context.

v0 A texture vertex.

v1 A texture vertex.

v2 A texture vertex.

QuickDraw 3D RAVE

1604 QuickDraw 3D RAVE Reference

flags A set of triangle flags. See “Triangle Flags Masks,” beginning on
page 1566 for a complete description of the available flags.

DESCRIPTION

The QADrawTriTexture function draws the texture-mapped triangle determined
by the three points specified by the v0, v1, and v2 parameters into the draw
context specified by the drawContext parameter. The texture used for the
mapping is determined by the value of the kQATag_Texture state variable.
Features of the triangle are determined by the flags parameter. Currently, this
parameter is used to specify an orientation for the triangle.

SPECIAL CONSIDERATIONS

The QADrawTriTexture function is optional and must be supported only by
drawing engines that support texture mapping.

QASubmitVerticesGouraud 23

You can use the QASubmitVerticesGouraud function to submit Gouraud vertices.

#define QASubmitVerticesGouraud(drawContext,nVertices,vertices) \
(drawContext)->submitVerticesGouraud(drawContext,nVertices,vertices)

drawContext A draw context.

nVertices The number of Gouraud vertices pointed to by the vertices
parameter.

vertices A pointer to an array of Gouraud vertices.

DESCRIPTION

The QASubmitVerticesGouraud function submits the list of vertices pointed to by
the vertices parameter to the draw context specified by the drawContext
parameter. The vertices define a triangle mesh. Note, however, that
QASubmitVerticesGouraud does not draw the specified mesh, but simply defines
the mesh for a subsequent call to QADrawTriMeshGouraud.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1605

Your application is responsible for managing the memory occupied by the
Gouraud vertices. QASubmitVerticesGouraud does not copy the vertex data
pointed to by the vertices parameter. Accordingly, you must not dispose of or
reuse that memory until you’ve finished drawing the triangle mesh defined by
QASubmitVerticesGouraud.

SPECIAL CONSIDERATIONS

If a drawing engine does not support triangle meshes, QuickDraw 3D RAVE
decomposes a triangle mesh into individual triangles. As a result, you can
always use the QASubmitVerticesGouraud function to submit a triangle mesh.

QASubmitVerticesTexture 23

You can use the QASubmitVerticesTexture function to submit texture vertices.

#define QASubmitVerticesTexture(drawContext,nVertices,vertices) \
(drawContext)->submitVerticesTexture(drawContext,nVertices,vertices)

drawContext A draw context.

nVertices The number of texture vertices pointed to by the vertices
parameter.

vertices A pointer to an array of texture vertices.

DESCRIPTION

The QASubmitVerticesTexture function submits the list of vertices pointed to by
the vertices parameter to the draw context specified by the drawContext
parameter. The vertices define a triangle mesh. Note, however, that
QASubmitVerticesTexture does not draw the specified mesh, but simply defines
the mesh for a subsequent call to QADrawTriMeshTexture.

Your application is responsible for managing the memory occupied by the
texture vertices. QASubmitVerticesTexture does not copy the vertex data pointed
to by the vertices parameter. Accordingly, you must not dispose of or reuse
that memory until you’ve finished drawing the triangle mesh defined by
QASubmitVerticesTexture.

QuickDraw 3D RAVE

1606 QuickDraw 3D RAVE Reference

SPECIAL CONSIDERATIONS

The QASubmitVerticesTexture function is optional and must be supported only
by drawing engines that support texture mapping.

If a drawing engine does not support triangle meshes, QuickDraw 3D RAVE
decomposes a triangle mesh into individual triangles.

QADrawTriMeshGouraud 23

You can use the QADrawTriMeshGouraud function to draw a triangle mesh with
Gouraud shading.

#define QADrawTriMeshGouraud(drawContext,nTriangle,triangles) \
(drawContext)->drawTriMeshGouraud (drawContext,nTriangle,triangles)

drawContext A draw context.

nTriangle The number of indexed triangles pointed to by the triangles
parameter.

triangles A pointer to an array of indexed triangles. See “Indexed Triangle
Structure” (page 1584) for a description of indexed triangles.

DESCRIPTION

The QADrawTriMeshGouraud function draws, with Gouraud shading, the triangle
mesh specified by the triangles parameter into the draw context specified by
the drawContext parameter. Each triangle in the mesh is defined by a
TQAIndexedTriangle data structure, which contains three indices into the array
of Gouraud vertices previously submitted to the draw context by a call to the
QASubmitVerticesGouraud function.

SPECIAL CONSIDERATIONS

QADrawTriMeshGouraud operates only on a triangle mesh previously submitted
using the QASubmitVerticesGouraud function. Use QADrawTriMeshTexture to draw
a triangle mesh submitted using the QASubmitVerticesTexture function.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1607

QADrawTriMeshTexture 23

You can use the QADrawTriMeshTexture function to draw a texture-mapped
triangle mesh.

#define QADrawTriMeshTexture(drawContext,nTriangle,triangles) \
(drawContext)->drawTriMeshTexture (drawContext,nTriangle,triangles)

drawContext A draw context.

nTriangle The number of indexed triangles pointed to by the triangles
parameter.

triangles A pointer to an array of indexed triangles. See “Indexed Triangle
Structure” (page 1584) for a description of indexed triangles.

DESCRIPTION

The QADrawTriMeshTexture function draws the texture-mapped triangle mesh
specified by the triangles parameter into the draw context specified by the
drawContext parameter. Each triangle in the mesh is defined by a
TQAIndexedTriangle data structure, which contains three indices into the array
of texture vertices previously submitted to the draw context by a call to the
QASubmitVerticesTexture function.

SPECIAL CONSIDERATIONS

QADrawTriMeshTexture operates only on a triangle mesh previously submitted
using the QASubmitVerticesTexture function. Use QADrawTriMeshGouraud to draw
a triangle mesh submitted using the QASubmitVerticesGouraud function.

The QADrawTriMeshTexture function is optional and must be supported only by
drawing engines that support texture mapping.

QADrawVGouraud 23

You can use the QADrawVGouraud function to draw Gouraud-shaded objects
defined by vertices.

QuickDraw 3D RAVE

1608 QuickDraw 3D RAVE Reference

#define QADrawVGouraud(drawContext,nVertices,vertexMode,vertices,flags) \
 (drawContext)->drawVGouraud(drawContext,nVertices,vertexMode,vertices,flags)

drawContext A draw context.

nVertices The number of vertices contained in the vertices array.

vertexMode A vertex mode. See “Vertex Modes” (page 1558) for a
description of the available vertex modes.

vertices An array of Gouraud vertices.

flags An array of triangle flags, or the value NULL. See “Triangle Flags
Masks” (page 1566) for a description of the available triangle
flags. This parameter is valid only if the vertexMode parameter
contains the value kQAVertexMode_Tri, kQAVertexMode_Strip, or
kQAVertexMode_Fan.

DESCRIPTION

The QADrawVGouraud function draws the vertices in the array specified by the
vertices parameter into the draw context specified by the drawContext
parameter, according to the vertex modes flag specified by the vertexMode
parameter. For instance, if the value of the vertexMode parameter is
kQAVertexMode_Polyline, then the vertices in that array are interpreted as
defining a polyline (a set of connected line segments). Gouraud shading is
applied to whatever objects are drawn.

SPECIAL CONSIDERATIONS

The QADrawVGouraud function is optional and must be supported only by
drawing engines that do not want calls to QADrawVGouraud to be replaced by calls
to the QADrawPoint, QADrawLine, or QADrawTriGouraud functions.

QADrawVTexture 23

You can use the QADrawVTexture function to draw texture-mapped objects
defined by vertices.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1609

#define QADrawVTexture(drawContext,nVertices,vertexMode,vertices,flags) \
 (drawContext)->drawVTexture(drawContext,nVertices,vertexMode,vertices,flags)

drawContext A draw context.

nVertices The number of vertices contained in the vertices array.

vertexMode A vertex mode. See “Vertex Modes” (page 1558) for a
description of the available vertex modes.

vertices An array of texture vertices.

flags An array of triangle flags, or the value NULL. See “Triangle Flags
Masks” (page 1566) for a description of the available triangle
flags. This parameter is valid only if the vertexMode parameter
contains the value kQAVertexMode_Tri, kQAVertexMode_Strip, or
kQAVertexMode_Fan.

DESCRIPTION

The QADrawVTexture function draws the vertices in the array specified by the
vertices parameter into the draw context specified by the drawContext
parameter, according to the vertex modes flag specified by the vertexMode
parameter. For instance, if the value of the vertexMode parameter is
kQAVertexMode_Polyline, then the vertices in that array are interpreted as
defining a polyline (a set of connected line segments). Texture mapping (using
the texture determined by the value of the kQATag_Texture state variable) is
applied to whatever objects are drawn.

IMPORTANT

The vertex modes kQAVertexMode_Point and
kQAVertexMode_Line are supported only by drawing engines
that support the kQAOptional_OpenGL feature. All other
drawing engines should ignore requests to texture map
points or lines. ▲

SPECIAL CONSIDERATIONS

The QADrawVTexture function is optional and must be supported only by
drawing engines that support texture mapping and do not want calls to
QADrawVTexture to be replaced by calls to the QADrawPoint, QADrawLine, or
QADrawTriTexture methods.

QuickDraw 3D RAVE

1610 QuickDraw 3D RAVE Reference

QADrawBitmap 23

You can use the QADrawBitmap function to draw bitmaps into a draw context.

#define QADrawBitmap(drawContext,v,bitmap) \
(drawContext)->drawBitmap (drawContext,v,bitmap)

drawContext A draw context.

v A Gouraud vertex.

bitmap A pointer to a bitmap (returned by a previous call to
QABitmapNew).

DESCRIPTION

The QADrawBitmap function draws the bitmap specified by the bitmap parameter
into the draw context specified by the drawContext parameter, with the
upper-left corner of the bitmap located at the point specified by the v parameter.
The v parameter can contain negative values in its x or y fields, so you can
position upper-left corner of the bitmap outside the draw context rectangle.
This allows you to move the bitmap smoothly off any edge of the draw context.

QARenderStart 23

You can use the QARenderStart function to initialize a draw context before an
engine performs any rendering into that context.

#define QARenderStart(drawContext,dirtyRect,initialContext) \
(drawContext)->renderStart (drawContext,dirtyRect,initialContext)

drawContext A draw context.

dirtyRect The minimum area of the specified draw context to clear, or the
value NULL.

initialContext
A previously cached draw context, or the value NULL.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1611

DESCRIPTION

The QARenderStart function performs any operations necessary to initialize the
draw context specified by the drawContext parameter. This includes clearing the
z buffer and the color buffers of the draw context. If the value of the
initialContext parameter is NULL, then QARenderStart clears the z buffer to 1.0
and sets the color buffers to the values of the kQATag_ColorBG_a,
kQATag_ColorBG_r, kQATag_ColorBG_g, and kQATag_ColorBG_b draw context state
variables. If, however, the value of the initialContext parameter is not NULL,
then QARenderStart uses the previously cached draw context specified by that
parameter to initialize the draw context specified by the drawContext parameter.

The dirtyRect parameter indicates the minimum area, in local coordinates of
the draw context, of the specified draw context to clear on initialization. If the
value of the dirtyRect parameter is NULL, the entire draw context is cleared. If
the value of the dirtyRect parameter is not NULL, it indicates the rectangle in the
draw context to clear. Some drawing engines may exhibit improved
performance when an area that is smaller than the entire draw context rectangle
is passed. However, the interpretation of the dirtyRect parameter is dependent
on the drawing engine, which may choose to initialize the entire draw context.
As a result, you should not use this parameter as a means to avoid clearing all
of a draw context or to perform incremental rendering. Instead, you should use
the initialContext parameter to achieve such effects.

SPECIAL CONSIDERATIONS

You should call QARenderStart before performing any rendering operations in
the specified draw context, and you should call either QARenderEnd to signal the
end of rendering operations or QARenderAbort to cancel rendering operations.
However, when a drawing engine is performing OpenGL rendering, the
QARenderStart function operates just like the OpenGL function glClear. In
OpenGL mode, it is not necessary that a call to QARenderStart always be
balanced by a matching call to QARenderEnd, and drawing commands may occur
at any time.

SEE ALSO

See “Using a Draw Context as a Cache” (page 1520) for information on creating
a draw context cache (that is, a draw context you can use as the initial context
specified in the initialContext parameter).

QuickDraw 3D RAVE

1612 QuickDraw 3D RAVE Reference

QARenderEnd 23

You can use the QARenderEnd function to signal the end of any rendering into a
draw context.

#define QARenderEnd(drawContext,modifiedRect) \
(drawContext)->renderEnd (drawContext,modifiedRect)

drawContext A draw context.

modifiedRect The minimum area of the back buffer of the specified draw
context to display, or the value NULL.

DESCRIPTION

The QARenderEnd function performs any operations necessary to display an
image rendered into the draw context specified by the drawContext parameter. If
the draw context is double buffered, QARenderEnd displays the back buffer. If the
draw context is single buffered, QARenderEnd calls QAFlush.

The modifiedRect parameter indicates the minimum area of the back buffer of
the specified draw context that should be displayed. If the value of the
modifiedRect parameter is NULL, the entire back buffer is displayed. If the value
of the modifiedRect parameter is not NULL, it indicates the rectangle in the back
buffer to display. Some drawing engines may exhibit improved performance
when an area that is smaller than the entire draw context rectangle is passed (to
avoid unnecessary pixel copying). However, the interpretation of the
modifiedRect parameter is dependent on the drawing engine, which may
choose to draw the entire back buffer.

The QARenderEnd function returns a result code (of type TQAError) indicating
whether any errors have occurred since the previous call to QARenderStart. If all
rendering commands completed successfully, the value kQANoErr is returned. If
any other value is returned, you should assume that the rendered image is
incorrect.

SPECIAL CONSIDERATIONS

You should call QARenderStart before performing any rendering operations in
the specified draw context, and you should call either QARenderEnd to signal the
end of rendering operations or QARenderAbort to cancel rendering operations.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1613

Once you have called QARenderEnd, you should not submit any drawing requests
until you have called QARenderStart again.

QARenderAbort 23

You can use the QARenderAbort function to cancel any asynchronous drawing
requests for a draw context.

#define QARenderAbort(drawContext) \
(drawContext)->renderAbort (drawContext)

drawContext A draw context.

DESCRIPTION

The QARenderAbort function immediately stops the draw context specified by
the drawContext parameter from processing any asynchronous drawing
commands it is currently processing and causes it to discard any queued
commands.

The QARenderAbort function returns a result code (of type TQAError) indicating
whether any errors have occurred since the previous call to QARenderStart. If all
rendering commands completed successfully, the value kQANoErr is returned. If
any other value is returned, you should assume that the rendered image is
incorrect.

SPECIAL CONSIDERATIONS

You should call either QARenderEnd or QARenderAbort, but not both.

QAFlush 23

You can use the QAFlush function to flush a draw context.

#define QAFlush(drawContext) (drawContext)->flush (drawContext)

QuickDraw 3D RAVE

1614 QuickDraw 3D RAVE Reference

drawContext A draw context.

DESCRIPTION

The QAFlush function causes the drawing engine associated with the draw
context specified by the drawContext parameter to begin rendering all drawing
commands that are queued in a buffer awaiting processing. QuickDraw 3D
RAVE allows a drawing engine to buffer as many drawing commands as
desired. Accordingly, the successful completion of a drawing command (such as
QADrawPoint) does not guarantee that the specified object is visible on the screen.
You can call QAFlush to have a drawing engine start processing queued
commands. Note, however, that QAFlush is not a blocking call—that is, the
successful completion of QAFlush does not guarantee that all buffered
commands have been processed. Calling QAFlush guarantees only that all
queued commands will eventually be processed.

Typically, you should occasionally call QAFlush to update the screen image
during a lengthy set of rendering operations in a single-buffered draw context.
QAFlush has no visible effect when called on a double-buffered draw context,
but it does initiate rendering to the back buffer.

The TQAFlush function returns a result code (of type TQAError) indicating
whether any errors have occurred since the previous call to QARenderStart. If all
rendering commands completed successfully, the value kQANoErr is returned. If
any other value is returned, you should assume that the rendered image is
incorrect.

SPECIAL CONSIDERATIONS

The QARenderEnd function automatically calls QAFlush.

SEE ALSO

To ensure that all buffered commands have been processed, you can call QASync
instead of QAFlush.

QASync 23

You can use the QASync function to synchronize a draw context.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1615

#define QASync(drawContext) (drawContext)->sync (drawContext)

drawContext A draw context.

DESCRIPTION

The QASync function operates just like the QAFlush function, except that it waits
until all queued drawing commands have been processed before returning. See
the description of QAFlush page 1613 for complete details.

QAGetNoticeMethod 23

You can use the QAGetNoticeMethod function to get the notice method of a draw
context.

#define QAGetNoticeMethod(drawContext, method, completionCallBack, refCon) \
(drawContext)->getNoticeMethod (drawContext, method, completionCallBack, refCon)

drawContext A draw context.

method A method selector. See “Notice Method Selectors” (page 1571)
for a description of the available method selectors.

completionCallBack
On exit, a pointer to the current draw context notice method of
the specified type.

refCon On exit, the reference constant of the specified notice method.

DESCRIPTION

The QAGetNoticeMethod function returns, in the completionCallBack parameter, a
pointer to the current notice method of the draw context specified by the
drawContext parameter that has the type specified by the method parameter.
QAGetNoticeMethod also returns, in the refCon parameter, the reference constant
associated with that notice method.

QuickDraw 3D RAVE

1616 QuickDraw 3D RAVE Reference

SEE ALSO

Use QASetNoticeMethod (next) to set the notice method for a draw context.

QASetNoticeMethod 23

You can use the QASetNoticeMethod function to set the notice method of a draw
context.

#define QASetNoticeMethod(drawContext, method, completionCallBack, refCon) \
(drawContext)->setNoticeMethod (drawContext, method, completionCallBack, refCon)

drawContext A draw context.

method A method selector. See “Notice Method Selectors” (page 1571)
for a description of the available method selectors.

completionCallBack
A pointer to the desired draw context notice method of the
specified type. See “Notice Methods” (page 1651) for
information about notice methods.

refCon A reference constant for the specified notice method. This value
is passed unchanged to the notice method when it is called.

DESCRIPTION

The QASetNoticeMethod function sets the notice method of type method of the
draw context specified by the drawContext parameter to the function pointed to
by the completionCallBack parameter. QASetNoticeMethod also sets the reference
constant of that method to the value specified by the refCon parameter.

Registering a Custom Drawing Engine 23

QuickDraw 3D RAVE provides functions that you can use to register a custom
drawing engine and its drawing methods.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1617

QARegisterEngine 23

You can use the QARegisterEngine function to register a custom drawing engine
with QuickDraw 3D RAVE.

TQAError QARegisterEngine (TQAEngineGetMethod engineGetMethod);

engineGetMethod
The method retrieval method of your drawing engine. See
“Method Reporting Methods” (page 1650) for a complete
description of this method.

DESCRIPTION

The QARegisterEngine function registers your custom drawing engine with
QuickDraw 3D RAVE. You should call this function at startup time (usually
from the initialization routine in the shared library containing the code for your
drawing engine). QuickDraw 3D RAVE uses the method specified by the
engineGetMethod parameter to retrieve function pointers for the non-drawing
methods defined in your drawing engine.

SPECIAL CONSIDERATIONS

You should call QARegisterEngine only to register a custom drawing engine.
Applications using QuickDraw 3D RAVE to draw into one or more draw
contexts do not need to use this function.

QARegisterDrawMethod 23

You can use the QARegisterDrawMethod function to register a public draw context
method with QuickDraw 3D RAVE.

TQAError QARegisterDrawMethod (
TQADrawContext *drawContext,
TQADrawMethodTag methodTag,
TQADrawMethod method);

drawContext A draw context.

QuickDraw 3D RAVE

1618 QuickDraw 3D RAVE Reference

methodTag A selector that determines which draw context method is to be
registered for the specified draw context. See “Public Draw
Context Method Selectors” (page 1569) for complete information
about the available method selectors.

method A pointer to the draw context method of the specified type.

DESCRIPTION

The QARegisterDrawMethod function changes the method pointer of the draw
context specified by the drawContext parameter that has the type specified by
the methodTag parameter to the method specified by the method parameter. You
should call QARegisterDrawMethod instead of directly changing the fields of a
draw context structure.

Application-Defined Routines 23

This section describes the routines you might need to define to add a new
drawing engine to the QuickDraw 3D Acceleration Layer.

Note
See “Writing a Drawing Engine,” beginning on page 1524
for step-by-step details on writing a drawing engine. ◆

This section also describes the notice method you might need to define to have
your application receive notices when certain events occur. See “Notice
Methods” (page 1651) for details.

Public Draw Context Methods 23

To write a drawing engine, you need to implement a number of drawing
methods, pointers to which are contained in a draw context structure (of type
TQADrawContext). These functions are called whenever an application uses one of
the drawing macros described earlier (in “Manipulating Draw Contexts,”
beginning on page 1598). For example, when an application uses the
QADrawPoint macro to draw a point in a draw context linked to your drawing
engine, your engine’s TQADrawPoint method is called.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1619

A draw context structure is passed as the first parameter to all these draw
context methods. This allows you to retrieve your draw context’s private data,
which is pointed to by the first field of that structure.

IMPORTANT

Most of the draw context methods declare the draw context
structure passed to them as const, in which case you
should not alter any fields of that structure. Only three
methods are allowed to change fields of the draw context
structure: TQASetFloat, TQASetInt, and TQASetPtr. Failure to
heed the const declaration may cause any code calling your
engine (including QuickDraw 3D) to fail. ▲

Pointers to your drawing engine’s public draw context methods are assigned to
the fields of a draw context structure by your TQADrawPrivateNew method. See
page 1640 for details.

TQAGetFloat 23

A drawing engine must define a method to get a floating-point value of a draw
context state variable.

typedef float (*TQAGetFloat) (
const TQADrawContext *drawContext,
TQATagFloat tag);

drawContext A draw context.

tag A state variable tag.

DESCRIPTION

Your TQAGetFloat function should return, as its function result, the
floating-point value of the draw context state variable specified by the
drawContext and tag parameters. If you do not recognize or support the
specified tag, your TQAGetFloat function should return the value 0.

QuickDraw 3D RAVE

1620 QuickDraw 3D RAVE Reference

TQASetFloat 23

A drawing engine must define a method to set a floating-point value for a draw
context state variable.

typedef void (*TQASetFloat) (
TQADrawContext *drawContext,
TQATagFloat tag,
float newValue);

drawContext A draw context.

tag A state variable tag.

newValue The new value of the specified state variable.

DESCRIPTION

Your TQASetFloat function should set the value of the draw context state
variable specified by the drawContext and tag parameters to the floating-point
value specified by the newValue parameter.

Your drawing engine must accept all possible values for the tag parameter. If
you encounter a value in the tag parameter that you cannot recognize, you
should do nothing. Similarly, you should do nothing if the tag parameter
specifies a state variable for optional features your drawing engine does not
support.

SPECIAL CONSIDERATIONS

If your TQASetFloat function needs to change one or more of the function
pointers in the specified draw context, it must call the QARegisterDrawMethod
function to do so. It should not directly change the fields of a draw context.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1621

TQAGetInt 23

A drawing engine must define a method to get a long integer value of a draw
context state variable.

typedef unsigned long (*TQAGetInt) (
const TQADrawContext *drawContext,
TQATagInt tag);

drawContext A draw context.

tag A state variable tag.

DESCRIPTION

Your TQAGetInt function should return, as its function result, the long integer
value of the draw context state variable specified by the drawContext and tag
parameters. If you do not recognize or support the specified tag, your TQAGetInt
function should return the value 0.

TQASetInt 23

A drawing engine must define a method to set a long integer value for a draw
context state variable.

typedef void (*TQASetInt) (
TQADrawContext *drawContext,
TQATagInt tag,
unsigned long newValue);

drawContext A draw context.

tag A state variable tag.

newValue The new value of the specified state variable.

QuickDraw 3D RAVE

1622 QuickDraw 3D RAVE Reference

DESCRIPTION

Your TQASetInt function should set the value of the draw context state variable
specified by the drawContext and tag parameters to the long integer value
specified by the newValue parameter.

Your drawing engine must accept all possible values for the tag parameter. If
you encounter a value in the tag parameter that you cannot recognize, you
should do nothing. Similarly, you should do nothing if the tag parameter
specifies a state variable for optional features your drawing engine does not
support.

SPECIAL CONSIDERATIONS

If your TQASetInt function needs to change one or more of the function pointers
in the specified draw context, it must call the QARegisterDrawMethod function to
do so. It should not directly change the fields of a draw context.

TQAGetPtr 23

A drawing engine must define a method to get a pointer value of a draw
context state variable.

typedef void *(*TQAGetPtr) (
const TQADrawContext *drawContext,
TQATagPtr tag);

drawContext A draw context.

tag A state variable tag.

DESCRIPTION

Your TQAGetPtr function should return, as its function result, the pointer value
of the draw context state variable specified by the drawContext and tag
parameters. If you do not recognize or support the specified tag, your TQAGetPtr
function should return the value 0.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1623

TQASetPtr 23

A drawing engine must define a method to set a pointer value for a draw
context state variable.

typedef void (*TQASetPtr) (
TQADrawContext *drawContext,
TQATagPtr tag,
const void *newValue);

drawContext A draw context.

tag A state variable tag.

newValue The new value of the specified state variable.

DESCRIPTION

Your TQASetPtr function should set the value of the draw context state variable
specified by the drawContext and tag parameters to the pointer value specified
by the newValue parameter.

Your drawing engine must accept all possible values for the tag parameter. If
you encounter a value in the tag parameter that you cannot recognize, you
should do nothing. Similarly, you should do nothing if the tag parameter
specifies a state variable for optional features your drawing engine does not
support.

SPECIAL CONSIDERATIONS

If your TQASetPtr function needs to change one or more of the function pointers
in the specified draw context, it must call the QARegisterDrawMethod function to
do so. It should not directly change the fields of a draw context.

QuickDraw 3D RAVE

1624 QuickDraw 3D RAVE Reference

TQADrawPoint 23

A drawing engine must define a method to draw a point.

typedef void (*TQADrawPoint) (
const TQADrawContext *drawContext,
const TQAVGouraud *v);

drawContext A draw context.

v A Gouraud vertex.

DESCRIPTION

Your TQADrawPoint function should draw the single point specified by the v
parameter to the draw context specified by the drawContext parameter. The size
of the point is determined by the kQATag_Width state variable of the draw
context.

TQADrawLine 23

A drawing engine must define a method to draw a line between two points.

typedef void (*TQADrawLine) (
const TQADrawContext *drawContext,
const TQAVGouraud *v0,
const TQAVGouraud *v1);

drawContext A draw context.

v0 A Gouraud vertex.

v1 A Gouraud vertex.

DESCRIPTION

Your TQADrawLine function should draw the line specified by the v0 and v1
parameters to the draw context specified by the drawContext parameter. The size
of the line is determined by the kQATag_Width state variable of the draw context.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1625

If the specified vertices have different colors, the line color is interpolated
smoothly between the two vertex colors.

TQADrawTriGouraud 23

A drawing engine must define a method to draw Gouraud-shaded triangles.

typedef void (*TQADrawTriGouraud) (
const TQADrawContext *drawContext,
const TQAVGouraud *v0,
const TQAVGouraud *v1,
const TQAVGouraud *v2,
unsigned long flags);

drawContext A draw context.

v0 A Gouraud vertex.

v1 A Gouraud vertex.

v2 A Gouraud vertex.

flags A set of triangle flags. See “Triangle Flags Masks,” beginning on
page 1566 for a complete description of the available flags.

DESCRIPTION

Your TQADrawTriGouraud function should draw the Gouraud-shaded triangle
determined by the three points specified by the v0, v1, and v2 parameters into
the draw context specified by the drawContext parameter. Features of the
triangle are determined by the flags parameter. Currently, this parameter is
used to specify an orientation for the triangle.

QuickDraw 3D RAVE

1626 QuickDraw 3D RAVE Reference

TQADrawTriTexture 23

A drawing engine may define a method to draw texture-mapped triangles. This
method is optional and must be supported only by drawing engines that
support texture mapping.

typedef void (*TQADrawTriTexture) (
const TQADrawContext *drawContext,
const TQAVTexture *v0,
const TQAVTexture *v1,
const TQAVTexture *v2,
unsigned long flags);

drawContext A draw context.

v0 A texture vertex.

v1 A texture vertex.

v2 A texture vertex.

flags A set of triangle flags. See “Triangle Flags Masks,” beginning on
page 1566 for a complete description of the available flags.

DESCRIPTION

Your TQADrawTriTexture function should draw the texture-mapped triangle
determined by the three points specified by the v0, v1, and v2 parameters into
the draw context specified by the drawContext parameter. The texture used for
the mapping is determined by the value of the kQATag_Texture state variable.
Features of the triangle are determined by the flags parameter. Currently, this
parameter is used to specify an orientation for the triangle.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1627

TQASubmitVerticesGouraud 23

A drawing engine may define a method to submit Gouraud vertices.

typedef void (*TQASubmitVerticesGouraud) (
const TQADrawContext *drawContext,
unsigned long nVertices,
const TQAVGouraud *vertices);

drawContext A draw context.

nVertices The number of Gouraud vertices pointed to by the vertices
parameter.

vertices A pointer to an array of Gouraud vertices.

DESCRIPTION

Your TQASubmitVerticesGouraud function should prepare to render a
Gouraud-shaded triangular mesh in the draw context specified by the
drawContext parameter using the vertices pointed to by the vertices parameter.
The actual triangulation and drawing of the mesh does not occur until an
application calls the QADrawTriMeshGouraud function.

The calling application is responsible for managing the memory occupied by
the Gouraud vertices. Your TQASubmitVerticesGouraud function should not copy
the vertex data pointed to by the vertices parameter.

SPECIAL CONSIDERATIONS

The TQASubmitVerticesGouraud method is optional. If your drawing engine does
not support triangle meshes, QuickDraw 3D RAVE decomposes a triangle mesh
into individual triangles when the user calls the QASubmitVerticesGouraud
function to submit a triangle mesh.

There is no QuickDraw 3D RAVE function that an application can use to
unsubmit a triangle mesh. Your drawing engine must manage memory in some
appropriate manner.

QuickDraw 3D RAVE

1628 QuickDraw 3D RAVE Reference

TQASubmitVerticesTexture 23

A drawing engine may define a method to submit texture vertices. This method
is optional and must be supported only by drawing engines that support
texture mapping.

typedef void (*TQASubmitVerticesTexture) (
const TQADrawContext *drawContext,
unsigned long nVertices,
const TQAVTexture *vertices);

drawContext A draw context.

nVertices The number of texture vertices pointed to by the vertices
parameter.

vertices A pointer to an array of texture vertices.

DESCRIPTION

Your TQASubmitVerticesTexture function should prepare to render a
texture-mapped triangular mesh in the draw context specified by the
drawContext parameter using the vertices pointed to by the vertices parameter.
The actual triangulation and drawing of the mesh does not occur until an
application calls the QADrawTriMeshTexture function.

The calling application is responsible for managing the memory occupied by
the texture vertices. Your TQASubmitVerticesTexture function should not copy
the vertex data pointed to by the vertices parameter.

SPECIAL CONSIDERATIONS

The TQASubmitVerticesTexture method is optional. If your drawing engine does
not support triangle meshes, QuickDraw 3D RAVE decomposes a triangle mesh
into individual triangles when the user calls the QASubmitVerticesTexture
function to submit a triangle mesh.

There is no QuickDraw 3D RAVE function that an application can use to
unsubmit a triangle mesh. Your drawing engine must manage memory in some
appropriate manner.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1629

TQADrawTriMeshGouraud 23

A drawing engine may define a method to draw a triangle mesh with Gouraud
shading.

typedef void (*TQADrawTriMeshGouraud) (
const TQADrawContext *drawContext,
unsigned long nTriangles,
const TQAIndexedTriangle *triangles);

drawContext A draw context.

nTriangle The number of indexed triangles pointed to by the triangles
parameter.

triangles A pointer to an array of indexed triangles. See “Indexed Triangle
Structure” (page 1584) for a description of indexed triangles.

DESCRIPTION

Your TQADrawTriMeshGouraud function should draw, with Gouraud shading, the
triangle mesh specified by the triangles parameter into the draw context
specified by the drawContext parameter. Each triangle in the mesh is defined by
a TQAIndexedTriangle data structure, which contains three indices into the array
of Gouraud vertices previously submitted to the draw context by a call to the
QASubmitVerticesGouraud function.

SPECIAL CONSIDERATIONS

The TQADrawTriMeshGouraud method is optional. If your drawing engine does not
support triangle meshes, QuickDraw 3D RAVE decomposes a triangle mesh
into individual triangles when the user calls the QASubmitVerticesGouraud
function to submit a triangle mesh.

QuickDraw 3D RAVE

1630 QuickDraw 3D RAVE Reference

TQADrawTriMeshTexture 23

A drawing engine may define a method to draw a texture-mapped triangle
mesh. This method is optional and must be supported only by drawing engines
that support texture mapping.

typedef void (*TQADrawTriMeshTexture) (
const TQADrawContext *drawContext,
unsigned long nTriangles,
const TQAIndexedTriangle *triangles);

drawContext A draw context.

nTriangle The number of indexed triangles pointed to by the triangles
parameter.

triangles A pointer to an array of indexed triangles. See “Indexed Triangle
Structure” (page 1584) for a description of indexed triangles.

DESCRIPTION

Your TQADrawTriMeshTexture function should draw the texture-mapped triangle
mesh specified by the triangles parameter into the draw context specified by
the drawContext parameter. Each triangle in the mesh is defined by a
TQAIndexedTriangle data structure, which contains three indices into the array
of texture vertices previously submitted to the draw context by a call to the
QASubmitVerticesTexture function.

SPECIAL CONSIDERATIONS

The TQADrawTriMeshTexture method is optional. If your drawing engine does not
support triangle meshes, QuickDraw 3D RAVE decomposes a triangle mesh
into individual triangles when the user calls the QASubmitVerticesTexture
function to submit a triangle mesh.

TQADrawVGouraud 23

A drawing engine may define a method to draw Gouraud-shaded objects
defined by vertices. This method is optional and must be supported only by

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1631

drawing engines that do not want calls to QADrawVGouraud to be replaced by calls
to the QADrawPoint, QADrawLine, or QADrawTriGouraud methods.

typedef void (*TQADrawVGouraud) (
const TQADrawContext *drawContext,
unsigned long nVertices,
TQAVertexMode vertexMode,
const TQAVGouraud vertices[],
const unsigned long flags[]);

drawContext A draw context.

nVertices The number of vertices contained in the vertices array.

vertexMode A vertex mode. See “Vertex Modes” (page 1558) for a
description of the available vertex modes.

vertices An array of Gouraud vertices.

flags An array of triangle flags, or the value NULL. See “Triangle Flags
Masks” (page 1566) for a description of the available triangle
flags. This parameter is valid only if the vertexMode parameter
contains the value kQAVertexMode_Tri, kQAVertexMode_Strip, or
kQAVertexMode_Fan.

DESCRIPTION

Your TQADrawVGouraud function should draw the vertices in the array specified
by the vertices parameter into the draw context specified by the drawContext
parameter, according to the vertex modes flag specified by the vertexMode
parameter. For instance, if the value of the vertexMode parameter is
kQAVertexMode_Polyline, then the vertices in that array are interpreted as
defining a polyline (a set of connected line segments). Gouraud shading should
be applied to whatever objects are drawn.

TQADrawVTexture 23

A drawing engine may define a method to draw texture-mapped objects
defined by vertices. This method is optional and must be supported only by
drawing engines that support texture mapping and do not want calls to

QuickDraw 3D RAVE

1632 QuickDraw 3D RAVE Reference

QADrawVTexture to be replaced by calls to the QADrawPoint, QADrawLine, or
QADrawTriTexture methods.

typedef void (*TQADrawVTexture) (
const TQADrawContext *drawContext,
unsigned long nVertices,
TQAVertexMode vertexMode,
const TQAVTexture vertices[],
const unsigned long flags[]);

drawContext A draw context.

nVertices The number of vertices contained in the vertices array.

vertexMode A vertex mode. See “Vertex Modes” (page 1558) for a
description of the available vertex modes.

vertices An array of texture vertices.

flags An array of triangle flags, or the value NULL. See “Triangle Flags
Masks” (page 1566) for a description of the available triangle
flags. This parameter is valid only if the vertexMode parameter
contains the value kQAVertexMode_Tri, kQAVertexMode_Strip, or
kQAVertexMode_Fan.

DESCRIPTION

Your TQADrawVTexture function should draw the vertices in the array specified
by the vertices parameter into the draw context specified by the drawContext
parameter, according to the vertex modes flag specified by the vertexMode
parameter. For instance, if the value of the vertexMode parameter is
kQAVertexMode_Polyline, then the vertices in that array are interpreted as
defining a polyline (a set of connected line segments). Texture mapping (using
the texture determined by the value of the kQATag_Texture state variable) should
be applied to whatever objects are drawn.

IMPORTANT

The vertex modes kQAVertexMode_Point and
kQAVertexMode_Line are supported only by drawing engines
that support the kQAOptional_OpenGL feature. All other
drawing engines should ignore requests to texture map
points or lines. ▲

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1633

TQADrawBitmap 23

A drawing engine must define a method to draw bitmaps into a draw context.

typedef void (*TQADrawBitmap) (
const TQADrawContext *drawContext,
const TQAVGouraud *v,
TQABitmap *bitmap);

drawContext A draw context.

v A Gouraud vertex.

bitmap A pointer to a bitmap (returned by a previous call to
QABitmapNew).

DESCRIPTION

Your TQADrawBitmap function should draw the bitmap specified by the bitmap
parameter into the draw context specified by the drawContext parameter, with
the upper-left corner of the bitmap located at the point specified by the v
parameter. The v parameter can contain negative values in its x or y fields, so
you can position upper-left corner of the bitmap outside the draw context
rectangle. This allows you to move the bitmap smoothly off any edge of the
draw context.

TQARenderStart 23

A drawing engine must define a method to initialize a draw context before the
engine performs any rendering into that context.

typedef void (*TQARenderStart) (
const TQADrawContext *drawContext,
const TQARect *dirtyRect,
const TQADrawContext *initialContext);

drawContext A draw context.

dirtyRect The minimum area of the specified draw context to clear, or the
value NULL.

QuickDraw 3D RAVE

1634 QuickDraw 3D RAVE Reference

initialContext
A previously cached draw context, or the value NULL.

DESCRIPTION

Your TQARenderStart function should perform any operations necessary to
initialize the draw context specified by the drawContext parameter. This includes
clearing the z buffer and the color buffers of the draw context. If the value of the
initialContext parameter is NULL, then your TQARenderStart function should
clear the z buffer to 1.0 and set the color buffers to the values of the
kQATag_ColorBG_a, kQATag_ColorBG_r, kQATag_ColorBG_g, and kQATag_ColorBG_b
draw context state variables. If, however, the value of the initialContext
parameter is not NULL, then your TQARenderStart function should use the
previously cached draw context specified by that parameter to initialize the
draw context specified by the drawContext parameter.

The dirtyRect parameter indicates the minimum area of the specified draw
context that should be cleared on initialization. If the value of the dirtyRect
parameter is NULL, the entire draw context is cleared. If the value of the
dirtyRect parameter is not NULL, it indicates the rectangle in the draw context to
clear. Some drawing engines may exhibit improved performance when an area
that is smaller than the entire draw context rectangle is passed. However, the
interpretation of the dirtyRect parameter is dependent on the drawing engine,
which may choose to initialize the entire draw context. As a result, code calling
your QARenderStart function should not use this parameter as a means to avoid
clearing all of a draw context or to perform incremental rendering. Instead, that
code should use the initialContext parameter to achieve such effects.

SPECIAL CONSIDERATIONS

Applications should call QARenderStart before performing any rendering
operations in the specified draw context, and they should call either
QARenderEnd to signal the end of rendering operations or QARenderAbort to cancel
rendering operations. However, when a drawing engine is performing OpenGL
rendering, the QARenderStart function operates just like the OpenGL function
glClear. In OpenGL mode, it is not necessary that a call to QARenderStart always
be balanced by a matching call to QARenderEnd, and drawing commands may
occur at any time.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1635

TQARenderEnd 23

A drawing engine must define a method to signal the end of any rendering into
a draw context.

typedef TQAError (*TQARenderEnd) (
const TQADrawContext *drawContext,
const TQARect *modifiedRect);

drawContext A draw context.

modifiedRect The minimum area of the back buffer of the specified draw
context to display, or the value NULL.

DESCRIPTION

Your TQARenderEnd function should perform any operations necessary to display
an image rendered into the draw context specified by the drawContext
parameter. If the draw context is double buffered, your function should display
the back buffer. If the draw context is single buffered, your function should call
QAFlush. In either case, your drawing engine should unlock any frame buffers or
other memory that is locked, remove any cursor shields, and so forth.

The modifiedRect parameter indicates the minimum area of the back buffer of
the specified draw context that should be displayed. If the value of the
modifiedRect parameter is NULL, the entire back buffer is displayed. If the value
of the modifiedRect parameter is not NULL, it indicates the rectangle in the back
buffer to display. Some drawing engines may exhibit improved performance
when an area that is smaller than the entire draw context rectangle is passed (to
avoid unnecessary pixel copying). However, the interpretation of the
modifiedRect parameter is dependent on the drawing engine, which may
choose to draw the entire back buffer.

Your TQARenderEnd function should return a result code (of type TQAError)
indicating whether any errors have occurred since the previous call to your
TQARenderStart function. If all rendering commands completed successfully,
you should return the value kQANoErr. If you return any other value, the code
that called QARenderEnd should assume that the rendered image is incorrect.

QuickDraw 3D RAVE

1636 QuickDraw 3D RAVE Reference

SPECIAL CONSIDERATIONS

Applications should call QARenderStart before performing any rendering
operations in the specified draw context, and they should call either
QARenderEnd to signal the end of rendering operations or QARenderAbort to cancel
rendering operations. Once an application has called QARenderEnd, it should not
submit any drawing requests until it has called QARenderStart again.

TQARenderAbort 23

A drawing engine must define a method to cancel any asynchronous drawing
requests for a draw context.

typedef TQAError (*TQARenderAbort) (
const TQADrawContext *drawContext);

drawContext A draw context.

DESCRIPTION

Your TQARenderAbort function should immediately stop processing any
asynchronous drawing command it is currently processing and it should
discard any queued commands associated with the draw context specified by
the drawContext parameter.

Your TQARenderAbort function should return a result code (of type TQAError)
indicating whether any errors have occurred since the previous call to your
TQARenderStart function. If all rendering commands completed successfully,
you should return the value kQANoErr. If you return any other value, the code
that called QARenderEnd should assume that the rendered image is incorrect.

TQAFlush 23

A drawing engine must define a method to flush a draw context.

typedef TQAError (*TQAFlush) (const TQADrawContext *drawContext);

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1637

drawContext A draw context.

DESCRIPTION

Your TQAFlush function should cause your drawing engine to begin rendering
all drawing commands that are queued in a buffer awaiting processing for the
draw context specified by the drawContext parameter. QuickDraw 3D RAVE
allows a drawing engine to buffer as many drawing commands as desired.
Accordingly, the successful completion of a drawing command (such as
QADrawPoint) does not guarantee that the specified object is visible on the screen.
An application can call QAFlush to have your drawing engine start processing
queued commands. Note, however, that QAFlush is not a blocking call—that is,
the successful completion of QAFlush does not guarantee that all buffered
commands have been processed. Calling QAFlush guarantees only that all
queued commands will eventually be processed.

Typically, applications should occasionally call QAFlush to update the screen
image during a lengthy set of rendering operations in a single-buffered draw
context. QAFlush has no visible effect when called on a double-buffered draw
context, but it does initiate rendering to the back buffer.

Your TQAFlush function should return a result code (of type TQAError) indicating
whether any errors have occurred since the previous call to your
TQARenderStart function. If all rendering commands completed successfully,
you should return the value kQANoErr. If you return any other value, the code
that called QAFlush should assume that the rendered image is incorrect.

TQASync 23

A drawing engine must define a method to synchronize a draw context.

typedef TQAError (*TQASync) (const TQADrawContext *drawContext);

drawContext A draw context.

QuickDraw 3D RAVE

1638 QuickDraw 3D RAVE Reference

DESCRIPTION

Your TQASync function should operate just like your TQAFlush function, except
that it should wait until all queued drawing commands have been processed
before returning. See the description of TQAFlush page 1636 for complete details.

TQAGetNoticeMethod 23

A drawing engine must define a method to return the notice method of a draw
context.

typedef TQAError (*TQAGetNoticeMethod) (
const TQADrawContext *drawContext,
TQAMethodSelector method,
TQANoticeMethod *completionCallBack,
void **refCon);

drawContext A draw context.

method A method selector. See “Notice Method Selectors” (page 1571)
for a description of the available method selectors.

completionCallBack
On exit, a pointer to the current draw context notice method of
the specified type.

refCon On exit, the reference constant of the specified notice method.

DESCRIPTION

Your TQAGetNoticeMethod function should return, in the completionCallBack
parameter, a pointer to the current notice method of the draw context specified
by the drawContext parameter that has the type specified by the method
parameter. TQAGetNoticeMethod should also return, in the refCon parameter, the
reference constant associated with that notice method.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1639

TQASetNoticeMethod 23

A drawing engine must define a method to set the notice method of a draw
context.

typedef TQAError (*TQASetNoticeMethod) (
const TQADrawContext *drawContext,
TQAMethodSelector method,
TQANoticeMethod completionCallBack,
void *refCon);

drawContext A draw context.

method A method selector. See “Notice Method Selectors” (page 1571)
for a description of the available method selectors.

completionCallBack
A pointer to the desired draw context notice method of the
specified type. See “Notice Methods” (page 1651) for
information about notice methods.

refCon A reference constant for the specified notice method. This value
is passed unchanged to the notice method when it is called.

DESCRIPTION

Your TQASetNoticeMethod function should set the notice method of type method
of the draw context specified by the drawContext parameter to the function
pointed to by the completionCallBack parameter. TQASetNoticeMethod should
also set the reference constant of that method to the value specified by the
refCon parameter.

Private Draw Context Methods 23

To write a drawing engine, you need to implement several private methods for
managing draw contexts.

Pointers to your drawing engine’s private draw context methods are returned
to QuickDraw 3D RAVE by your TQAEngineGetMethod method. See page 1650 for
details.

QuickDraw 3D RAVE

1640 QuickDraw 3D RAVE Reference

TQADrawPrivateNew 23

A drawing engine must define a method to create its own private data and
initialize a new draw context.

typedef TQAError (*TQADrawPrivateNew) (
TQADrawContext *newDrawContext,
const TQADevice *device,
const TQARect *rect,
const TQAClip *clip,
unsigned long flags);

newDrawContext
The draw context to initialize. On entry, all the fields of this
structure have the value NULL.

device A device.

rect The rectangular region (specified in device coordinates) of the
specified device that can be drawn into by the drawing engine
associated with the new draw context.

clip The two-dimensional clipping region for the new draw context,
or NULL if no clipping is desired. This parameter must be set to
NULL for devices of type kQADeviceMemory.

flags A set of bit flags specifying features of the new draw context.
See “Draw Context Flags Masks” (page 1567) for complete
information.

DESCRIPTION

Your TQADrawPrivateNew function is called whenever an application calls
QADrawContextNew to create a new draw context associated with your drawing
engine. Your function should perform any initialization required for the new
draw context. In particular, it should return a pointer to the draw context’s
private data in the drawPrivate field of the draw context structure pointed to by
the newDrawContext parameter. In addition, your TQADrawPrivateNew function
should set any other fields of that draw context structure to point to public
draw context methods defined by the drawing engine.

Because it is the responsibility of your TQADrawPrivateNew function to initialize
the fields of a draw context structure, you can load different methods

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1641

depending on the features of the device or draw context specified by the device
and flags parameters. For instance, you might load one line drawing function
for a device that displays 16 bits per pixel and a different line drawing function
for a device that displays 32 bits per pixel. This technique allows you to avoid
testing the display depth each time you draw a line.

SEE ALSO

See Listing 23-8 (page 1527) for a sample TQADrawPrivateNew function.

TQADrawPrivateDelete 23

A drawing engine must define a method to delete its private data.

typedef void (*TQADrawPrivateDelete) (TQADrawPrivate *drawPrivate);

drawPrivate The draw context’s private data.

DESCRIPTION

Your TQADrawPrivateDelete function is called whenever an application calls
QADrawContextDelete. Your function should release any memory or other
resources that were allocated by your TQADrawPrivateNew function.

TQAEngineCheckDevice 23

A drawing engine must define a method to indicate whether the engine can
draw to a particular device.

typedef TQAError (*TQAEngineCheckDevice) (const TQADevice *device);

device A device.

QuickDraw 3D RAVE

1642 QuickDraw 3D RAVE Reference

DESCRIPTION

Your TQAEngineCheckDevice function should return, as its function result, a code
that indicates whether your drawing engine can draw into the device specified
by the device parameter (kQANoErr) or not (kQAError).

TQAEngineGestalt 23

A drawing engine must define a method to return information about its
capabilities.

typedef TQAError (*TQAEngineGestalt) (
TQAGestaltSelector selector,
void *response);

selector A selector that determines what kind of information is to be
returned about your drawing engine. See “Gestalt Selectors”
(page 1559) for complete information about the available
selectors and the information you should return.

response A pointer to a buffer into which the returned information is to
be copied. The calling application is responsible for allocating
this buffer. The size and meaning of the data to be copied
depends on the selector passed in the selector parameter.

DESCRIPTION

Your TQAEngineGestalt function is called whenever an application calls
QAEngineGestalt. Your function should return, in the buffer pointed to by the
response parameter, information about features of the type specified by the
selector parameter.

Color Lookup Table Methods 23

To write a drawing engine, you might need to implement several private
methods for creating and disposing of color lookup tables. Pointers to your
drawing engine’s color lookup table methods are returned to QuickDraw 3D
RAVE by your TQAEngineGetMethod method. See page 1650 for details.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1643

TQAColorTableNew 23

A drawing engine may define a method to create a new color lookup table. This
method is optional and must be supported only by drawing engines that
support color lookup tables.

typedef TQAError (*TQAColorTableNew) (
TQAColorTableType pixelType,
void *pixelData,
long transparentIndex,
TQAColorTable **newTable);

pixelType The type of the new color lookup table. See “Color Lookup
Table Types” (page 1538) for information on the available color
lookup table types.

pixelData A pointer to the color lookup table entries.

transparentIndexFlag
A long integer, interpreted as a Boolean value, that indicates
whether the color lookup table entry at index 0 is completely
transparent (TRUE) or not (FALSE).

newTable On entry, the address of a pointer variable. On exit, set that
variable to point to a new color lookup table. If a new color
lookup table cannot be created, set *newTable to the value NULL.

DESCRIPTION

Your TQAColorTableNew function is called whenever an application calls
QAColorTableNew. Your function should return, in the buffer pointed to by the
newTable parameter, a pointer to a new color lookup table of the type specified
by the pixelType parameter. The color table data is passed to your function in
the pixelData parameter. Your method should copy that data so that the caller
can dispose of the memory it occupies.

IMPORTANT

Currently, QuickDraw 3D RAVE supports only 32-bit RGB
color lookup table entries. Your drawing engine might
reduce the size of individual color lookup table entries to fit
into its on-board memory. ▲

QuickDraw 3D RAVE

1644 QuickDraw 3D RAVE Reference

SPECIAL CONSIDERATIONS

Not all drawing engines need to support color lookup tables, but
QuickDraw 3D RAVE does not provide color lookup table emulation for
engines that do not support them.

TQAColorTableDelete 23

A drawing engine may define a method to dispose of color lookup table. This
method is optional and must be supported only by drawing engines that
support color lookup tables.

typedef void (*TQAColorTableDelete) (TQAColorTable *colorTable);

colorTable A color lookup table.

DESCRIPTION

Your TQAColorTableDelete function is called whenever an application calls
QAColorTableDelete. Your function should delete the color lookup table
specified by the colorTable parameter. Any memory and other resources
associated with that color lookup table should be released.

Texture and Bitmap Methods 23

To write a drawing engine, you need to implement several private methods for
managing bitmaps. If your engine supports texture mapping, you also need to
implement several private methods for managing textures.

Pointers to your drawing engine’s texture and bitmap methods are returned to
QuickDraw 3D RAVE by your TQAEngineGetMethod method. See page 1650 for
details.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1645

TQATextureNew 23

A drawing engine may define a method to create a new texture map. This
method is optional and must be supported only by drawing engines that
support texture mapping.

typedef TQAError (*TQATextureNew) (
unsigned long flags,
TQAImagePixelType pixelType,
const TQAImage images[],
TQATexture **newTexture);

flags A set of bit flags specifying features of the new texture map. See
“Texture Flags Masks” (page 1566) for complete information.

pixelType The type of pixels in the new texture map. See “Pixel Types”
(page 1536) for a description of the values you can pass in this
parameter.

images An array of pixel images to use for the new texture map. The
values in the width and height fields of these structures must be
an even power of 2.

newTexture On entry, the address of a pointer variable. On exit, that variable
points to a new texture map. If a new texture map cannot be
created, *newTexture is set to the value NULL.

DESCRIPTION

Your TQATextureNew function is called whenever an application calls
QATextureNew. Your function should perform any tasks required to use the
texture in texture-mapping operations. This might involve loading the texture
into memory on the device associated with your drawing engine. If so, your
TQATextureNew function should not return until the texture has been completely
loaded.

The flags parameter specifies a set of texture map features. If the
kQATexture_Lock bit in that parameter is set but your drawing engine cannot
guarantee that the texture will remain locked in memory, your TQATextureNew
function should return an error.

If the kQATexture_Mipmap bit of the flags parameter is clear, the images
parameter points to a single pixel image that defines the texture map. If the

QuickDraw 3D RAVE

1646 QuickDraw 3D RAVE Reference

kQATexture_Mipmap bit is set, the images parameter points to an array of pixel
images of varying pixel depths. The first element in the array must be the
mipmap page having the highest resolution, with a width and height that are
even powers of 2. Each subsequent pixel image in the array should have a
width and height that are half those of the previous image (with a minimum
width and height of 1).

TQATextureDetach 23

A drawing engine may define a method to detach a texture map. This method is
optional and must be supported only by drawing engines that support texture
mapping.

typedef TQAError (*TQATextureDetach) (TQATexture *texture);

texture A texture map.

DESCRIPTION

Your TQATextureDetach function is called whenever an application calls
QATextureDetach. Your function should, if necessary, load the texture specified
by the texture parameter into memory on the device associated with your
drawing engine (so that the caller can release the memory occupied by the
texture). Your TQATextureDetach function should not return until the texture has
been completely loaded.

TQATextureBindColorTable 23

A drawing engine may define a method to bind a color lookup table to a texture
map.

typedef TQAError (*TQATextureBindColorTable) (
TQATexture *texture,
TQAColorTable *colorTable);

texture A texture map.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1647

colorTable A color lookup table (as returned by a previous call to
QAColorTableNew).

DESCRIPTION

Your TQATextureBindColorTable function is called whenever an application calls
QATextureBindColorTable. Your function should bind the color lookup table
specified by the colorTable parameter to the texture map specified by the
texture parameter. Note that the type of the specified color lookup table must
match that of the pixel type of the texture map to which it is bound. For
example, a color lookup table of type kQAColorTable_CL8_RGB32 can be bound
only to a texture map whose pixel type is kQAPixel_CL8.

TQATextureDelete 23

A drawing engine may define a method to delete a texture map. This method is
optional and must be supported only by drawing engines that support texture
mapping.

typedef void (*TQATextureDelete) (TQATexture *texture);

texture A texture map.

DESCRIPTION

Your TQATextureDelete function is called whenever an application calls
QATextureDelete. Your function should delete the texture map specified by the
texture parameter.

QuickDraw 3D RAVE

1648 QuickDraw 3D RAVE Reference

TQABitmapNew 23

A drawing engine must define a method to create a new bitmap.

typedef TQAError (*TQABitmapNew) (
unsigned long flags,
TQAImagePixelType pixelType,
const TQAImage *image,
TQABitmap **newBitmap);

flags A set of bit flags specifying features of the new bitmap. See
“Bitmap Flags Masks” (page 1567) for complete information

pixelType The type of pixels in the new bitmap. See “Pixel Types”
(page 1536) for a description of the values you can pass in this
parameter.

image A pixel image to use for the new bitmap. The width and height
fields of this image can have any values greater than 0.

newBitmap On entry, the address of a pointer variable. On exit, that variable
points to a new bitmap. If a new bitmap cannot be created,
*newBitmap is set to the value NULL.

DESCRIPTION

Your TQABitmapNew function is called whenever an application calls QABitmapNew.
Your function should perform any tasks required to draw the bitmap in the
draw context associated with your drawing engine. This might involve loading
the bitmap into memory on the device associated with your drawing engine. If
so, your TQABitmapNew function should not return until the bitmap has been
completely loaded.

The flags parameter specifies a set of bitmap features. If the kQABitmap_Lock bit
in that parameter is set but your drawing engine cannot guarantee that the
bitmap will remain locked in memory, your TQABitmapNew function should
return an error.

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1649

TQABitmapDetach 23

A drawing engine must define a method to detach a bitmap from a drawing
engine.

typedef TQAError (*TQABitmapDetach) (TQABitmap *bitmap);

bitmap A bitmap.

DESCRIPTION

Your TQABitmapDetach function is called whenever an application calls
QABitmapDetach. Your function should, if necessary, load the bitmap specified by
the bitmap parameter into memory on the device associated with your drawing
engine (so that the caller can release the memory occupied by the bitmap). Your
TQABitmapDetach function should not return until the bitmap has been
completely loaded.

TQABitmapBindColorTable 23

A drawing engine may define a method to bind a color lookup table to a
bitmap.

typedef TQAError (*TQABitmapBindColorTable) (
TQABitmap *bitmap,
TQAColorTable *colorTable);

bitmap A bitmap.

colorTable A color lookup table (as returned by a previous call to
QAColorTableNew).

DESCRIPTION

Your TQABitmapBindColorTable function is called whenever an application calls
QABitmapBindColorTable. Your function should bind the color lookup table
specified by the colorTable parameter to the bitmap specified by the bitmap
parameter. Note that the type of the specified color lookup table must match

QuickDraw 3D RAVE

1650 QuickDraw 3D RAVE Reference

that of the pixel type of the bitmap to which it is bound. For example, a color
lookup table of type kQAColorTable_CL8_RGB32 can be bound only to a bitmap
whose pixel type is kQAPixel_CL8.

TQABitmapDelete 23

A drawing engine must define a method to delete a bitmap.

typedef void (*TQABitmapDelete) (TQABitmap *bitmap);

bitmap A bitmap.

DESCRIPTION

Your TQABitmapDelete function is called whenever an application calls
QABitmapDelete. Your function should delete the bitmap specified by the bitmap
parameter.

Method Reporting Methods 23

To write a drawing engine, you need to implement a method for reporting some
of your engine’s methods to QuickDraw 3D RAVE.

A pointer to your drawing engine’s method reporting method is passed as a
parameter to the QARegisterEngine function. See page 1617 for details.

TQAEngineGetMethod 23

A drawing engine must define a method to return pointers to some of its
methods.

typedef TQAError (*TQAEngineGetMethod) (
TQAEngineMethodTag methodTag,
TQAEngineMethod *method);

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1651

methodTag A selector that determines which method is to be returned about
your drawing engine. See “Drawing Engine Method Selectors”
(page 1568) for complete information about the available
method selectors.

method On exit, a pointer to your drawing engine’s method of the
specified type.

DESCRIPTION

Your TQAEngineGetMethod function is called by QuickDraw 3D RAVE to retrieve
the addresses of some of your engine’s methods. Your function should return,
in the method parameter, a pointer to the drawing engine method whose type is
specified by the methodTag parameter.

Notice Methods 23

Your application can define a standard notice method that is called at specific
times (for example, when the renderer is finished rendering an image). You can
also define a buffer notice method to handle buffer-related notifications.

A pointer to your notice method is passed as a parameter to the
QASetNoticeMethod function.

TQAStandardNoticeMethod 23

An application can define a method to respond asynchronously to certain
events associated with the operation of QuickDraw 3D RAVE.

typedef void (*TQAStandardNoticeMethod)
(const TQADrawContext *drawContext, void *refCon);

drawContext A draw context.

refCon The reference constant associated with the notice method.

QuickDraw 3D RAVE

1652 QuickDraw 3D RAVE Reference

DESCRIPTION

Your TQAStandardNoticeMethod function is called by QuickDraw 3D RAVE at the
times specified when an application installed the notice method using the
QASetNoticeMethod function. For example, if the value of the method parameter
passed to QASetNoticeMethod was kQAMethod_RenderCompletion, then the
standard notice method is called whenever the renderer finishes rendering an
image in the draw context specified by the drawContext parameter. The refCon
parameter is an application-defined reference constant; this is simply the value
of the refCon parameter that was passed to QASetNoticeMethod.

Note
You can install one notice method for each defined notice
selector. See page 1571 for a description of the available
notice selectors. ◆

TQABufferNoticeMethod 23

An application can define a method to respond asynchronously to certain
events associated with the operation of QuickDraw 3D RAVE buffers.

typedef void (*TQABufferNoticeMethod)
(const TQADrawContext *drawContext,
 const TQADevice *buffer,
 const TQARect *dirtyRect,
 void *refCon);

drawContext A draw context.

buffer The back buffer.

dirtyRect A pointer to a rectangle describing the smallest area to update. If
this parameter is NULL, you should process the entire buffer.

refCon The reference constant associated with the notice method.

DESCRIPTION

Your TQABufferNoticeMethod function is called by QuickDraw 3D RAVE to
handle a buffer-specific notification. Currently, your buffer notice method might

QuickDraw 3D RAVE

QuickDraw 3D RAVE Reference 1653

receive kQAMethod_BufferInitialize or kQAMethod_BufferInitialize
notifications. On entry, the buffer parameter is a reference to the affected buffer.

The refCon parameter is an application-defined reference constant; this is
simply the value of the refCon parameter that was passed to QASetNoticeMethod.

Note
You can install one notice method for each defined notice
selector. See page 1571 for a description of the available
notice selectors. ◆

QuickDraw 3D RAVE

1654 Summary of QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 23

C Summary 23

Constants 23

Platform Values

#define kQAMacOS 1
#define kQAGeneric 2
#define kQAWin32 3

Version Values

typedef enum TQAVersion {
kQAVersion_Prerelease = 0,
kQAVersion_1_0 = 1,
kQAVersion_1_0_5 = 2,
kQAVersion_1_1 = 3

} TQAVersion;

Pixel Types

typedef enum TQAImagePixelType {
kQAPixel_Alpha1 = 0,
kQAPixel_RGB16 = 1,
kQAPixel_ARGB16 = 2,
kQAPixel_RGB32 = 3,
kQAPixel_ARGB32 = 4,
kQAPixel_CL4 = 5,
kQAPixel_CL8 = 6,

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1655

kQAPixel_RGB16_565 = 7,
kQAPixel_RGB24 = 8

} TQAImagePixelType;

Color Lookup Table Types

typedef enum TQAColorTableType {
kQAColorTable_CL8_RGB32 = 0,
kQAColorTable_CL4_RGB32 = 1

} TQAColorTableType;

Device Types

typedef enum TQADeviceType {
kQADeviceMemory = 0,
kQADeviceGDevice = 1,
kQADeviceWin32DC = 2,
kQADeviceDDSurface = 3

} TQADeviceType;

Clip Types

typedef enum TQAClipType {
kQAClipRgn = 0,
kQAClipWin32Rgn = 1

} TQAClipType;

Tags for State Variables

typedef enum TQATagInt {
kQATag_ZFunction = 0, /*required variables*/
kQATag_Antialias = 8, /*optional variables*/
kQATag_Blend = 9,
kQATag_PerspectiveZ = 10,
kQATag_TextureFilter = 11,
kQATag_TextureOp = 12,
kQATag_CSGTag = 14,
kQATag_CSGEquation = 15,
kQATag_BufferComposite = 16,
kQATagGL_DrawBuffer = 100, /*OpenGL variables*/
kQATagGL_TextureWrapU = 101,

QuickDraw 3D RAVE

1656 Summary of QuickDraw 3D RAVE

kQATagGL_TextureWrapV = 102,
kQATagGL_TextureMagFilter = 103,
kQATagGL_TextureMinFilter = 104,
kQATagGL_ScissorXMin = 105,
kQATagGL_ScissorYMin = 106,
kQATagGL_ScissorXMax = 107,
kQATagGL_ScissorYMax = 108,
kQATagGL_BlendSrc = 109,
kQATagGL_BlendDst = 110,
kQATagGL_LinePattern = 111,
kQATagGL_AreaPattern0 = 117,
kQATagGL_AreaPattern31 = 148,
kQATag_EngineSpecific_Minimum = 1000

} TQATagInt;

typedef enum TQATagFloat {
kQATag_ColorBG_a = 1, /*required variables*/
kQATag_ColorBG_r = 2,
kQATag_ColorBG_g = 3,
kQATag_ColorBG_b = 4,
kQATag_Width = 5,
kQATag_ZMinOffset = 6,
kQATag_ZMinScale = 7,
kQATagGL_DepthBG = 112, /*OpenGL variables*/
kQATagGL_TextureBorder_a = 113,
kQATagGL_TextureBorder_r = 114,
kQATagGL_TextureBorder_g = 115,
kQATagGL_TextureBorder_b = 116

} TQATagFloat;

typedef enum TQATagPtr {
kQATag_Texture = 13

} TQATagPtr;

Z Sorting Function Selectors

/*values for kQATag_ZFunction*/
#define kQAZFunction_None 0
#define kQAZFunction_LT 1
#define kQAZFunction_EQ 2
#define kQAZFunction_LE 3
#define kQAZFunction_GT 4

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1657

#define kQAZFunction_NE 5
#define kQAZFunction_GE 6
#define kQAZFunction_True 7

Antialiasing Selectors

/*values for kQATag_Antialias*/
#define kQAAntiAlias_Off 0
#define kQAAntiAlias_Fast 1
#define kQAAntiAlias_Mid 2
#define kQAAntiAlias_Best 3

Blending Operations

/*values for kQATag_Blend*/
#define kQABlend_PreMultiply 0
#define kQABlend_Interpolate 1
#define kQABlend_OpenGL 2

Z Perspective Selectors

/*values for kQATag_PerspectiveZ*/
#define kQAPerspectiveZ_Off 0
#define kQAPerspectiveZ_On 1

Texture Filter Selectors

/*values for kQATag_TextureFilter*/
#define kQATextureFilter_Fast 0
#define kQATextureFilter_Mid 1
#define kQATextureFilter_Best 2

Texture Operations

/*masks for kQATag_TextureOp*/
#define kQATextureOp_None 0
#define kQATextureOp_Modulate (1 << 0)
#define kQATextureOp_Highlight (1 << 1)
#define kQATextureOp_Decal (1 << 2)
#define kQATextureOp_Shrink (1 << 3)

QuickDraw 3D RAVE

1658 Summary of QuickDraw 3D RAVE

CSG IDs

/*values for kQATag_CSGTag*/
#define kQACSGTag_None 0xffffffffUL
#define kQACSGTag_0 0
#define kQACSGTag_1 1
#define kQACSGTag_2 2
#define kQACSGTag_3 3
#define kQACSGTag_4 4

Buffer Compositing Modes

#define kQABufferComposite_None 0
#define kQABufferComposite_PreMultiply 1
#define kQABufferComposite_Interpolate 2

Texture Wrapping Values

/*values for kQATagGL_TextureWrapU and kQATagGL_TextureWrapV*/
#define kQAGL_Repeat 0
#define kQAGL_Clamp 1

Source Blending Values

/*values for kQATagGL_BlendSrc*/
#define kQAGL_SourceBlend_XXX 0

Destination Blending Values

/*values for kQATagGL_BlendDst*/
#define kQAGL_DestBlend_XXX 0

Buffer Drawing Operations

/*masks for kQATagGL_DrawBuffer*/
#define kQAGL_DrawBuffer_None 0
#define kQAGL_DrawBuffer_FrontLeft (1 << 0)
#define kQAGL_DrawBuffer_FrontRight (1 << 1)
#define kQAGL_DrawBuffer_BackLeft (1 << 2)
#define kQAGL_DrawBuffer_BackRight (1 << 3)
#define kQAGL_DrawBuffer_Front \

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1659

(kQAGL_DrawBuffer_FrontLeft | kQAGL_DrawBuffer_FrontRight)
#define kQAGL_DrawBuffer_Back \

(kQAGL_DrawBuffer_BackLeft | kQAGL_DrawBuffer_BackRight)

Line and Point Widths

/*values for kQATag_Width*/
#define kQAMaxWidth 128.0

Vertex Modes

typedef enum TQAVertexMode {
kQAVertexMode_Point = 0,
kQAVertexMode_Line = 1,
kQAVertexMode_Polyline = 2,
kQAVertexMode_Tri = 3,
kQAVertexMode_Strip = 4,
kQAVertexMode_Fan = 5,
kQAVertexMode_NumModes = 6

} TQAVertexMode;

Gestalt Selectors

typedef enum TQAGestaltSelector {
kQAGestalt_OptionalFeatures = 0,
kQAGestalt_FastFeatures = 1,
kQAGestalt_VendorID = 2,
kQAGestalt_EngineID = 3,
kQAGestalt_Revision = 4,
kQAGestalt_ASCIINameLength = 5,
kQAGestalt_ASCIIName = 6,
kQAGestalt_TextureMemory = 7,
kQAGestalt_FastTextureMemory = 8,
kQAGestalt_NumSelectors = 9

} TQAGestaltSelector;

Gestalt Optional Features Response Masks

#define kQAOptional_None 0
#define kQAOptional_DeepZ (1 << 0)
#define kQAOptional_Texture (1 << 1)

QuickDraw 3D RAVE

1660 Summary of QuickDraw 3D RAVE

#define kQAOptional_TextureHQ (1 << 2)
#define kQAOptional_TextureColor (1 << 3)
#define kQAOptional_Blend (1 << 4)
#define kQAOptional_BlendAlpha (1 << 5)
#define kQAOptional_Antialias (1 << 6)
#define kQAOptional_ZSorted (1 << 7)
#define kQAOptional_PerspectiveZ (1 << 8)
#define kQAOptional_OpenGL (1 << 9)
#define kQAOptional_NoClear (1 << 10)
#define kQAOptional_CSG (1 << 11)
#define kQAOptional_BoundToDevice (1 << 12)
#define kQAOptional_CL4 (1 << 13)
#define kQAOptional_CL8 (1 << 14)
#define kQAOptional_BufferComposite (1 << 15)

Gestalt Fast Features Response Masks

#define kQAFast_None 0
#define kQAFast_Line (1 << 0)
#define kQAFast_Gouraud (1 << 1)
#define kQAFast_Texture (1 << 2)
#define kQAFast_TextureHQ (1 << 3)
#define kQAFast_Blend (1 << 4)
#define kQAFast_Antialiasing (1 << 5)
#define kQAFast_ZSorted (1 << 6)
#define kQAFast_CL4 (1 << 7)
#define kQAFast_CL8 (1 << 8)

Vendor and Engine IDs

#define kQAVendor_BestChoice (–1)
#define kQAVendor_Apple 0
#define kQAVendor_ATI 1
#define kQAVendor_Radius 2
#define kQAVendor_Mentor 3
#define kQAVendor_Matrox 4
#define kQAVendor_Yarc 5
#define kQAVendor_DiamondMM 6

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1661

#define kQAEngine_AppleSW 0
#define kQAEngine_AppleHW (–1)
#define kQAEngine_AppleHW2 1

Triangle Flags Masks

#define kQATriFlags_None 0
#define kQATriFlags_Backfacing (1 << 0)

Texture Flags Masks

#define kQATexture_None 0
#define kQATexture_Lock (1 << 0)
#define kQATexture_Mipmap (1 << 1)
#define kQATexture_NoCompression (1 << 2)
#define kQATexture_HighCompression (1 << 3)

Bitmap Flags Masks

#define kQABitmap_None 0
#define kQABitmap_Lock (1 << 1)
#define kQABitmap_NoCompression (1 << 2)
#define kQABitmap_HighCompression (1 << 3)

Draw Context Flags Masks

#define kQAContext_None 0
#define kQAContext_NoZBuffer (1 << 0)
#define kQAContext_DeepZ (1 << 1)
#define kQAContext_DoubleBuffer (1 << 2)
#define kQAContext_Cache (1 << 3)

Drawing Engine Method Selectors

typedef enum TQAEngineMethodTag {
kQADrawPrivateNew = 0,
kQADrawPrivateDelete = 1,
kQAEngineCheckDevice = 2,
kQAEngineGestalt = 3,
kQATextureNew = 4,

QuickDraw 3D RAVE

1662 Summary of QuickDraw 3D RAVE

kQATextureDetach = 5,
kQATextureDelete = 6,
kQABitmapNew = 7,
kQABitmapDetach = 8,
kQABitmapDelete = 9,
kQAColorTableNew = 10,
kQAColorTableDelete = 11,
kQATextureBindColorTable = 12,
kQABitmapBindColorTable = 13

} TQAEngineMethodTag;

Public Draw Context Method Selectors

typedef enum TQADrawMethodTag {
kQASetFloat = 0,
kQASetInt = 1,
kQASetPtr = 2,
kQAGetFloat = 3,
kQAGetInt = 4,
kQAGetPtr = 5,
kQADrawPoint = 6,
kQADrawLine = 7,
kQADrawTriGouraud = 8,
kQADrawTriTexture = 9,
kQADrawVGouraud = 10,
kQADrawVTexture = 11,
kQADrawBitmap = 12,
kQARenderStart = 13,
kQARenderEnd = 14,
kQARenderAbort = 15,
kQAFlush = 16,
kQASync = 17,
kQASubmitVerticesGouraud = 18,
kQASubmitVerticesTexture = 19,
kQADrawTriMeshGouraud = 20,
kQADrawTriMeshTexture = 21,
kQASetNoticeMethod = 22,
kQAGetNoticeMethod = 23

} TQADrawMethodTag;

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1663

Notice Method Selectors

typedef enum TQAMethodSelector {
kQAMethod_RenderCompletion = 0,
kQAMethod_DisplayModeChanged = 1
kQAMethod_ReloadTextures = 2,
kQAMethod_BufferInitialize = 3,
kQAMethod_BufferComposite = 4,
kQAMethod_NumSelectors = 5

} TQAMethodSelector;

Data Types 23

Basic Data Types

typedef struct TQAEngine TQAEngine;

typedef struct TQATexture TQATexture;

typedef struct TQABitmap TQABitmap;

typedef struct TQAColorTable TQAColorTable;

typedef struct TQADrawPrivate TQADrawPrivate;

Memory Device Structure

typedef struct TQADeviceMemory {
long rowBytes;
TQAImagePixelType pixelType;
long width;
long height;
void *baseAddr;

} TQADeviceMemory;

Rectangle Structure

typedef struct TQARect {
long left;
long right;

QuickDraw 3D RAVE

1664 Summary of QuickDraw 3D RAVE

long top;
long bottom;

} TQARect;

Macintosh Device and Clip Structures

typedef union TQAPlatformDevice {
TQADeviceMemory memoryDevice;
GDHandle gDevice;

} TQAPlatformDevice;

typedef union TQAPlatformClip {
RgnHandle clipRgn;

} TQAPlatformClip;

Windows Device and Clip Structures

typedef union TQAPlatformDevice {
TQADeviceMemory memoryDevice;
HDC hdc;
struct {

LPDIRECTDRAW lpDirectDraw;
LPDIRECTDRAWSURFACE lpDirectDrawSurface;

};
} TQAPlatformDevice;

typedef union TQAPlatformClip {
HRGN clipRgn;

} TQAPlatformClip

Generic Device and Clip Structures

typedef union TQAPlatformDevice {
TQADeviceMemory memoryDevice;

} TQAPlatformDevice;

typedef union TQAPlatformClip {
void *region;

} TQAPlatformClip;

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1665

Device Structure

typedef struct TQADevice {
TQADeviceType deviceType;
TQAPlatformDevice device;

} TQADevice;

Clip Data Structure

typedef struct TQAClip {
TQAClipType clipType;
TQAPlatformClip clip;

} TQAClip;

Image Structure

struct TQAImage {
long width;
long height;
long rowBytes;
void *pixmap;

};
typedef struct TQAImage TQAImage;

Vertex Structures

typedef struct TQAVGouraud {
float x;
float y;
float z;
float invW;
float r;
float g;
float b;
float a;

} TQAVGouraud;

typedef struct TQAVTexture {
float x;
float y;
float z;

QuickDraw 3D RAVE

1666 Summary of QuickDraw 3D RAVE

float invW;
float r;
float g;
float b;
float a;
float uOverW;
float vOverW;
float kd_r;
float kd_g;
float kd_b;
float ks_r;
float ks_g;
float ks_b;

} TQAVTexture;

Draw Context Structure

struct TQADrawContext {
TQADrawPrivate *drawPrivate;
const TQAVersion version;
TQASetFloat setFloat;
TQASetInt setInt;
TQASetPtr setPtr;
TQAGetFloat getFloat;
TQAGetInt getInt;
TQAGetPtr getPtr;
TQADrawPoint drawPoint;
TQADrawLine drawLine;
TQADrawTriGouraud drawTriGouraud;
TQADrawTriTexture drawTriTexture;
TQADrawVGouraud drawVGouraud;
TQADrawVTexture drawVTexture;
TQADrawBitmap drawBitmap;
TQARenderStart renderStart;
TQARenderEnd renderEnd;
TQARenderAbort renderAbort;
TQAFlush flush;
TQASync sync;
TQASubmitVerticesGouraud submitVerticesGouraud;
TQASubmitVerticesTexture submitVerticesTexture;
TQADrawTriMeshGouraud drawTriMeshGouraud;

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1667

TQADrawTriMeshTexture drawTriMeshTexture;
TQASetNoticeMethod setNoticeMethod;
TQAGetNoticeMethod getNoticeMethod;

};
typedef struct TQADrawContext TQADrawContext;

Drawing Engine Methods Union

typedef union TQAEngineMethod {
TQADrawPrivateNew drawPrivateNew;
TQADrawPrivateDelete drawPrivateDelete;
TQAEngineCheckDevice engineCheckDevice;
TQAEngineGestalt engineGestalt;
TQATextureNew textureNew;
TQATextureDetach textureDetach;
TQATextureDelete textureDelete;
TQABitmapNew bitmapNew;
TQABitmapDetach bitmapDetach;
TQABitmapDelete bitmapDelete;
TQAColorTableNew colorTableNew;
TQAColorTableDelete colorTableDelete;
TQATextureBindColorTable textureBindColorTable;
TQABitmapBindColorTable bitmapBindColorTable;

} TQAEngineMethod;

Public Draw Context Methods Union

typedef union TQADrawMethod {
TQASetFloat setFloat;
TQASetInt setInt;
TQASetPtr setPtr;
TQAGetFloat getFloat;
TQAGetInt getInt;
TQAGetPtr getPtr;
TQADrawPoint drawPoint;
TQADrawLine drawLine;
TQADrawTriGouraud drawTriGouraud;
TQADrawTriTexture drawTriTexture;
TQADrawVGouraud drawVGouraud;
TQADrawVTexture drawVTexture;
TQADrawBitmap drawBitmap;

QuickDraw 3D RAVE

1668 Summary of QuickDraw 3D RAVE

TQARenderStart renderStart;
TQARenderEnd renderEnd;
TQARenderAbort renderAbort;
TQAFlush flush;
TQASync sync;
TQASubmitVerticesGouraud submitVerticesGouraud;
TQASubmitVerticesTexture submitVerticesTexture;
TQADrawTriMeshGouraud drawTriMeshGouraud;
TQADrawTriMeshTexture drawTriMeshTexture;
TQASetNoticeMethod setNoticeMethod;
TQAGetNoticeMethod getNoticeMethod;

} TQADrawMethod;

Indexed Triangle Structure

typedef struct TQAIndexedTriangle {
unsigned long triangleFlags;
unsigned long vertices[3];

} TQAIndexedTriangle;

Notice Methods

typedef union TQANoticeMethod {
TQAStandardNoticeMethod standardNoticeMethod;
TQABufferNoticeMethod bufferNoticeMethod;

} TQANoticeMethod;

QuickDraw 3D RAVE Routines 23

Creating and Deleting Draw Contexts
TQAError QADrawContextNew (const TQADevice *device,

const TQARect *rect,
const TQAClip *clip,
const TQAEngine *engine,
unsigned long flags,
TQADrawContext **newDrawContext);

void QADrawContextDelete (TQADrawContext *drawContext);

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1669

Creating and Deleting Color Lookup Tables
TQAError QAColorTableNew (const TQAEngine *engine,

TQAColorTableType tableType,
void *pixelData,
long transparentIndexFlag,
TQAColorTable **newTable);

void QAColorTableDelete (const TQAEngine *engine, TQAColorTable *colorTable);

Manipulating Textures and Bitmaps
TQAError QATextureNew (const TQAEngine *engine,

unsigned long flags,
TQAImagePixelType pixelType,
const TQAImage images[],
TQATexture **newTexture);

TQAError QATextureDetach (const TQAEngine *engine, TQATexture *texture);

TQAError QATextureBindColorTable (const TQAEngine *engine,
TQATexture *texture,
TQAColorTable *colorTable);

void QATextureDelete (const TQAEngine *engine, TQATexture *texture);

TQAError QABitmapNew (const TQAEngine *engine,
unsigned long flags,
TQAImagePixelType pixelType,
const TQAImage *image,
TQABitmap **newBitmap);

TQAError QABitmapDetach (const TQAEngine *engine, TQABitmap *bitmap);

TQAError QABitmapBindColorTable (const TQAEngine *engine,
TQABitmap *bitmap,
TQAColorTable *colorTable);

void QABitmapDelete (const TQAEngine *engine, TQABitmap *bitmap);

Managing Drawing Engines
TQAEngine *QADeviceGetFirstEngine (const TQADevice *device);

TQAEngine *QADeviceGetNextEngine (const TQADevice *device,
const TQAEngine *currentEngine);

TQAError QAEngineCheckDevice (const TQAEngine *engine, const TQADevice *device);

QuickDraw 3D RAVE

1670 Summary of QuickDraw 3D RAVE

TQAError QAEngineGestalt (const TQAEngine *engine,
TQAGestaltSelector selector,
void *response);

TQAError QAEngineEnable (long vendorID, long engineID);

TQAError QAEngineDisable (long vendorID, long engineID);

Manipulating Draw Contexts

#define QAGetFloat(drawContext,tag) \
(drawContext)->getFloat (drawContext,tag)

#define QASetFloat(drawContext,tag,newValue) \
(drawContext)->setFloat (drawContext,tag,newValue)

#define QAGetInt(drawContext,tag) \
(drawContext)->getInt (drawContext,tag)

#define QASetInt(drawContext,tag,newValue) \
(drawContext)->setInt (drawContext,tag,newValue)

#define QAGetPtr(drawContext,tag) \
(drawContext)->getPtr (drawContext,tag)

#define QASetPtr(drawContext,tag,newValue) \
(drawContext)->setPtr (drawContext,tag,newValue)

#define QADrawPoint(drawContext,v) \
(drawContext)->drawPoint (drawContext,v)

#define QADrawLine(drawContext,v0,v1) \
(drawContext)->drawLine (drawContext,v0,v1)

#define QADrawTriGouraud(drawContext,v0,v1,v2,flags) \
(drawContext)->drawTriGouraud (drawContext,v0,v1,v2,flags)

#define QADrawTriTexture(drawContext,v0,v1,v2,flags) \
(drawContext)->drawTriTexture (drawContext,v0,v1,v2,flags)

#define QASubmitVerticesGouraud(drawContext,nVertices,vertices) \
(drawContext)->submitVerticesGouraud(drawContext,nVertices,vertices)

#define QASubmitVerticesTexture(drawContext,nVertices,vertices) \
(drawContext)->submitVerticesTexture(drawContext,nVertices,vertices)

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1671

#define QADrawTriMeshGouraud(drawContext,nTriangle,triangles) \
(drawContext)->drawTriMeshGouraud (drawContext,nTriangle,triangles)

#define QADrawTriMeshTexture(drawContext,nTriangle,triangles) \
(drawContext)->drawTriMeshTexture (drawContext,nTriangle,triangles)

#define QADrawVGouraud(drawContext,nVertices,vertexMode,vertices,flags) \
(drawContext)->drawVGouraud (drawContext,nVertices,vertexMode,vertices,flags)

#define QADrawVTexture(drawContext,nVertices,vertexMode,vertices,flags) \
(drawContext)->drawVTexture (drawContext,nVertices,vertexMode,vertices,flags)

#define QADrawBitmap(drawContext,v,bitmap) \
(drawContext)->drawBitmap (drawContext,v,bitmap)

#define QARenderStart(drawContext,dirtyRect,initialContext) \
(drawContext)->renderStart (drawContext,dirtyRect,initialContext)

#define QARenderEnd(drawContext,modifiedRect) \
(drawContext)->renderEnd (drawContext,modifiedRect)

#define QARenderAbort(drawContext) (drawContext)->renderAbort (drawContext)

#define QAFlush(drawContext) (drawContext)->flush (drawContext)

#define QASync(drawContext) (drawContext)->sync (drawContext)

#define QAGetNoticeMethod(drawContext, method, completionCallBack, refCon) \
(drawContext)->getNoticeMethod (drawContext, method, completionCallBack, refCon)

#define QASetNoticeMethod(drawContext, method, completionCallBack, refCon) \
(drawContext)->setNoticeMethod (drawContext, method, completionCallBack, refCon)

Registering a Custom Drawing Engine
TQAError QARegisterEngine (TQAEngineGetMethod engineGetMethod);

TQAError QARegisterDrawMethod (TQADrawContext *drawContext,
TQADrawMethodTag methodTag,
TQADrawMethod method);

QuickDraw 3D RAVE

1672 Summary of QuickDraw 3D RAVE

Application-Defined Routines 23

Public Draw Context Methods
typedef float (*TQAGetFloat) (const TQADrawContext *drawContext, TQATagFloat tag);

typedef void (*TQASetFloat) (TQADrawContext *drawContext,
TQATagFloat tag,
float newValue);

typedef unsigned long (*TQAGetInt)(const TQADrawContext *drawContext, TQATagInt tag);

typedef void (*TQASetInt) (TQADrawContext *drawContext,
TQATagInt tag,
unsigned long newValue);

typedef void *(*TQAGetPtr) (const TQADrawContext *drawContext, TQATagPtr tag);

typedef void (*TQASetPtr) (TQADrawContext *drawContext,
TQATagPtr tag,
const void *newValue);

typedef void (*TQADrawPoint) (const TQADrawContext *drawContext,
const TQAVGouraud *v);

typedef void (*TQADrawLine) (const TQADrawContext *drawContext,
const TQAVGouraud *v0,
const TQAVGouraud *v1);

typedef void (*TQADrawTriGouraud) (const TQADrawContext *drawContext,
const TQAVGouraud *v0,
const TQAVGouraud *v1,
const TQAVGouraud *v2,
unsigned long flags);

typedef void (*TQADrawTriTexture) (const TQADrawContext *drawContext,
const TQAVTexture *v0,
const TQAVTexture *v1,
const TQAVTexture *v2,
unsigned long flags);

typedef void (*TQASubmitVerticesGouraud) (
const TQADrawContext *drawContext,
unsigned long nVertices,
const TQAVGouraud *vertices);

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1673

typedef void (*TQASubmitVerticesTexture) (
const TQADrawContext *drawContext,
unsigned long nVertices,
const TQAVTexture *vertices);

typedef void (*TQADrawTriMeshGouraud) (
const TQADrawContext *drawContext,
unsigned long nTriangles,
const TQAIndexedTriangle *triangles);

typedef void (*TQADrawTriMeshTexture) (
const TQADrawContext *drawContext,
unsigned long nTriangles,
const TQAIndexedTriangle *triangles);

typedef void (*TQADrawVGouraud) (const TQADrawContext *drawContext,
unsigned long nVertices,
TQAVertexMode vertexMode,
const TQAVGouraud vertices[],
const unsigned long flags[]);

typedef void (*TQADrawVTexture) (const TQADrawContext *drawContext,
unsigned long nVertices,
TQAVertexMode vertexMode,
const TQAVTexture vertices[],
const unsigned long flags[]);

typedef void (*TQADrawBitmap) (const TQADrawContext *drawContext,
const TQAVGouraud *v,
TQABitmap *bitmap);

typedef void (*TQARenderStart) (const TQADrawContext *drawContext,
const TQARect *dirtyRect,
const TQADrawContext *initialContext);

typedef TQAError (*TQARenderEnd) (const TQADrawContext *drawContext,
const TQARect *modifiedRect);

typedef TQAError (*TQARenderAbort)(const TQADrawContext *drawContext);

typedef TQAError (*TQAFlush) (const TQADrawContext *drawContext);

typedef TQAError (*TQASync) (const TQADrawContext *drawContext);

QuickDraw 3D RAVE

1674 Summary of QuickDraw 3D RAVE

typedef TQAError (*TQAGetNoticeMethod) (
const TQADrawContext *drawContext,
TQAMethodSelector method,
TQANoticeMethod *completionCallBack,
void **refCon);

typedef TQAError (*TQASetNoticeMethod) (
const TQADrawContext *drawContext,
TQAMethodSelector method,
TQANoticeMethod completionCallBack,
void *refCon);

Private Draw Context Methods
typedef TQAError (*TQADrawPrivateNew) (

TQADrawContext *newDrawContext,
const TQADevice *device,
const TQARect *rect,
const TQAClip *clip,
unsigned long flags);

typedef void (*TQADrawPrivateDelete) (
TQADrawPrivate *drawPrivate);

typedef TQAError (*TQAEngineCheckDevice) (
const TQADevice *device);

typedef TQAError (*TQAEngineGestalt) (
TQAGestaltSelector selector, void *response);

Color Lookup Table Methods
typedef TQAError (*TQAColorTableNew)(

TQAColorTableType pixelType,
void *pixelData,
long transparentIndex,
TQAColorTable **newTable);

typedef void (*TQAColorTableDelete) (
TQAColorTable *colorTable);

QuickDraw 3D RAVE

Summary of QuickDraw 3D RAVE 1675

Texture and Bitmap Methods
typedef TQAError (*TQATextureNew) (unsigned long flags,

TQAImagePixelType pixelType,
const TQAImage images[],
TQATexture **newTexture);

typedef TQAError (*TQATextureDetach) (
TQATexture *texture);

typedef TQAError (*TQATextureBindColorTable) (
TQATexture *texture,
TQAColorTable *colorTable);

typedef void (*TQATextureDelete) (TQATexture *texture);

typedef TQAError (*TQABitmapNew) (unsigned long flags,
TQAImagePixelType pixelType,
const TQAImage *image,
TQABitmap **newBitmap);

typedef TQAError (*TQABitmapDetach) (
TQABitmap *bitmap);

typedef TQAError (*TQABitmapBindColorTable) (
TQABitmap *bitmap,
TQAColorTable *colorTable);

typedef void (*TQABitmapDelete) (TQABitmap *bitmap);

Method Reporting Methods
typedef TQAError (*TQAEngineGetMethod) (

TQAEngineMethodTag methodTag,
TQAEngineMethod *method);

Notice Methods
typedef void (*TQAStandardNoticeMethod)

(const TQADrawContext *drawContext, void *refCon);

typedef void (*TQABufferNoticeMethod)
(const TQADrawContext *drawContext,
 const TQADevice *buffer,
 const TQARect *dirtyRect,
 void *refCon);

QuickDraw 3D RAVE

1676 Summary of QuickDraw 3D RAVE

Result Codes 23

kQANoErr 0 No error
kQAError 1 Generic error code
kQAOutOfMemory 2 Insufficient memory for requested operation
kQANotSupported 3 Requested feature is not supported
kQAOutOfDate 4 A newer drawing engine was registered
kQAParamErr 5 Invalid parameter
kQAGestaltUnknown 6 Requested Gestalt type isn’t available
kQADisplayModeUnsupported 7 Engine cannot render to the display in its

current mode

1677

Bibliography

Farin, Gerald, NURB Curves and Surfaces From Projective Geometry To Practical
Use, A.K. Peters, Wellesley, MA, 1995.

Foley, J., A. van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles and
Practice, second edition, Addison-Wesley, Reading, MA, 1990.

Foley, J., A. van Dam, S. Feiner, J. Hughes, and R. Phillips, Introduction to
Computer Graphics, Addison-Wesley, Reading, MA, 1994.

Fraleigh, John B., and R. A. Beauregard, Linear Algebra, Addison-Wesley, 1987.

Glassner, A.S. ed., Graphics Gems, Harcourt Brace Jovanovich, Boston, 1990 and
following.

Hart, John C., G. Francis, and L. Kaufman, “Visualizing Quaternion Rotation,”
ACM Transactions on Computer Graphics, vol. 13, no. 3, July 1994, 256-276.

Hearn, Donald, and M. Pauline Baker, Computer Graphics, second edition,
Prentice-Hall, Englewood Cliffs, NJ, 1986.

Kernighan, Brian W., and Dennis M. Ritchie, The C Programming Language,
Prentice-Hall, Englewood Cliffs, NJ, 1978.

Kernighan, Brian W., and Rob Pike, The UNIX Programming Environment,
Prentice-Hall, Englewood Cliffs, NJ, 1984.

Rogers, David F., Procedural Elements for Computer Graphics, McGraw-Hill
Publishing Company, New York, 1985.

Rogers, David F., and J. Alan Adams, Mathematical Elements for Computer
Graphics, McGraw-Hill Publishing Company, New York, 1990.

Vince, John, The Language of Computer Graphics, Van Nostrand Reinhold, New
York, 1990.

Watt, Alan, 3D Computer Graphics, second edition, Addison-Wesley, Reading,
MA, 1993.

Watt, Alan, and M. Watt, Advanced Animation and Rendering Techniques,
Addison-Wesley, Wokingham, England, 1992.

B I B L I O G R A P H Y

1678

1679

Glossary

2D Two-dimensional. See also planar.

3D Three-dimensional. See also spatial.

3DMF See QuickDraw 3D Object
Metafile.

3D pointing device Any physical device
capable of controlling movements or
specifying positions in three-dimensional
space.

3D Viewer A shared library that you can
use to display 3D objects and other data in a
window and to allow users limited
interaction with those objects. See also
viewer object.

accelerator See graphics accelerator.

adjoint The transpose of a matrix in which
each element has been replaced by its
cofactor.

adjoint matrix See adjoint.

affine matrix A matrix that specifies an
affine transform.

affine transform Any arbitrary
concatenation of scale, translate, and rotate
transforms. An affine transform preserves
parallel lines in the objects transformed.

aliasing The jagged edges (or staircasing)
that result from drawing an image on a
raster device such as a computer screen.
Compare antialiasing.

alpha channel A color component in some
color spaces whose value represents the
opacity of the color defined in the other
components. Compare ARGB color
structure.

ambient coefficient A measure of an
object’s level of reflection of ambient light.

ambient light An amount of light of a
specific color that is added to the
illumination of all surfaces in a model.

ambient reflection coefficient See ambient
coefficient.

antialiasing The smoothing of jagged
edges on a displayed shape by modifying
the transparencies of individual pixels along
the shape’s edge. Compare aliasing.

antialiasing quality structure A data
structure that specifies data for the
antialiasing quality. Defined by the
TQ3AntialiasingQuality data type.

API See application programming
interface.

application coordinate system See world
coordinate system.

application space See world coordinate
system.

application programming interface
(API) The total set of constants, data
structures, routines, and other programming
elements that allow developers to use some
part of the system software.

G L O S S A R Y

1680

area A rectangular section of a plane.
Defined by the TQ3Area data type.

ARGB color space A color space whose
components measure the intensity of red,
green, and blue, together with the opacity
(or alpha component) of the color thus
defined.

ARGB color structure A data structure
that contains information about a color and
its opacity. Defined by the TQ3ColorARGB data
type.

artifact Any oddity or unwanted feature of
a rendered image. Compare aliasing.

aspect ratio The ratio of the width of an
image or other rectangular area to its height.

aspect ratio camera A type of perspective
camera defined in terms of a viewing angle
and a horizontal-to-vertical aspect ratio.

aspect ratio camera data structure A data
structure that contains basic information
about an aspect ratio camera. Defined by the
TQ3ViewAngleAspectCameraData data type.

attenuation The loss of light intensity over
distance.

attribute See attribute object.

attribute metahandler A metahandler that
defines methods for handling custom
attribute data.

attribute object A type of QuickDraw 3D
object that determines some of the
characteristics of a model, such as the color
of objects or parts of objects in the model,
the transparency of objects, and so forth. An
attribute is of type TQ3Element. See also
ambient coefficient, diffuse color, highlight
state, normal vector, shading

parameterization, specular color, specular
reflection exponent, standard surface
parameterization, surface shader, surface
tangent, transparency color.

attribute set A collection of zero or more
different attribute types and their associated
data.

axis See coordinate axis.

back clipping plane See yon plane.

backface culling Ignoring backfacing
polygons during rendering. Backface culling
can reduce the amount of time required to
render a model. Compare hidden surface
removal.

backfacing polygon Any polygon in a
surface whose surface normal points away
from a view’s camera.

backfacing style A type of QuickDraw 3D
object that determines whether or not a
renderer draws shapes that face away from
a scene’s camera.

background shader A shader that applies
an image to the yon (or far) clipping plane
of a view. Compare foreground shader.

badge A visual element in a frame of a 3D
model displayed by the 3D Viewer that
distinguishes the frame from a static image.

base class See parent class.

big-endian Data formatting in which each
field is addressed by referring to its most
significant byte. See also little-endian.

binary file A file object whose data is
a stream of raw binary data, the type of
which is indicated by object type codes.
Compare text file.

G L O S S A R Y

1681

bitmap A two-dimensional array of
values, each of which represents the state of
one pixel. Defined by the TQ3Bitmap data
type. See also mipmap, pixmap, storage
pixmap.

bitmap marker A type of marker that uses
a bitmap to specify the image that is to be
drawn on top of a rendered scene at the
specified location. Defined by the
TQ3MarkerData data type. Compare pixmap
marker.

bounding box A rectangular box, aligned
with the coordinate axes, that completely
encloses an object. Defined by the
TQ3BoundingBox data type.

bounding loop A section of code in which
all bounding box or sphere calculation takes
place. A bounding loop begins with a call to
the Q3View_StartBoundingBox (or
Q3View_StartBoundingSphere) routine and
should end when a call to
Q3View_EndBoundingBox (or
Q3View_EndBoundingSphere) returns some
value other than kQ3ViewStatusRetraverse. A
bounding loop is a type of submitting loop.
See also picking loop, rendering loop,
writing loop.

bounding sphere A sphere that
completely encloses an object. Defined by
the TQ3BoundingSphere data type.

bounding volume A bounding box or a
bounding sphere.

bounds See bounding volume.

box A three-dimensional object defined by
an origin (that is, a corner of the box) and
three vectors that define the edges of the box
meeting in that corner. Defined by the
TQ3BoxData data type.

B-spline curve A curve that passes
smoothly through a series of control points.

B-spline polynomial A parametric
equation that defines a B-spline curve.

B-spline surface A surface that passes
smoothly through a series of control points.

camera See camera object.

camera coordinate system The coordinate
system defined by a view’s camera. Also
called the view coordinate system. Compare
local coordinate system, window
coordinate system, world coordinate
system.

camera data structure A data structure
that contains basic information about a
camera. Defined by the TQ3CameraData data
type.

camera location The position, in the world
coordinate system, of a camera. Also called
the eye point. Compare camera placement
structure.

camera object A type of QuickDraw 3D
object that you can use to define a point of
view, a range of visible objects, and a
method of projection for generating a
two-dimensional image of those objects
from a three-dimensional model. A camera
object is an instance of the TQ3CameraObject
class. See also aspect ratio camera,
orthographic camera, view plane camera.

G L O S S A R Y

1682

camera placement The location,
orientation, and direction of a camera. See
also camera placement structure.

camera placement structure A data
structure that contains information about
the placement (that is, the location,
orientation, and direction) of a camera.
Defined by the TQ3CameraPlacement data
type.

camera range The spatial extent that lies
between the hither and yon planes of a
camera. See also camera range structure.

camera range structure A data structure
that contains information about the hither
and yon clipping planes for a camera.
Defined by the TQ3CameraRange data type.

camera space See camera coordinate
system.

camera vector See viewing direction.

camera viewpoint control A control in the
controller strip of a viewer object that, when
held down, causes a pop-up menu to appear
listing the available cameras. Compare
distance button, move button, rotate
button, zoom button.

camera view port The rectangular portion
of a view plane that is to be mapped onto
the area specified by the current draw
context.

camera view port structure A data
structure that contains information about
the view port of a camera. Defined by the
TQ3CameraViewPort data type.

cap See end cap.

Cartesian coordinate system A system of
assigning planar positions to objects in
terms of their distances from two mutually
perpendicular lines (the x and y coordinate
axes), or of assigning spatial positions to
objects in terms of their distances from three
mutually perpendicular lines (the x, y, and z
coordinate axes). Compare polar coordinate
system, spherical coordinate system.

center of projection The point at which
the projectors in a perspective projection
intersect.

child class A class that is immediately
below some other class (the parent class) in
the QuickDraw 3D class hierarchy. For
example, the light class is a child class of the
shape class. A child class inherits all of the
methods of its parent. Also called a subclass.

clamp For a shader effect, to replicate the
boundaries of the effect across the portion of
the mapped area that lies outside the valid
range 0.0 to 1.0. Compare wrap.

class See QuickDraw 3D class.

class type See object type.

clipping plane Either of the two planes
that limit the part of a model that is
rendered. See also hither plane, yon plane.

closed Not open. Compare open.

color space A specification of a particular
method for representing colors. Compare
RGB color space.

complement The set of points that lie
outside a given solid object. The
complement of the object A is represented
by the function ¬A. Compare intersection,
union.

G L O S S A R Y

1683

component See mesh component.

concave polygon A polygon with at least
one interior angle greater than 180°.
Compare convex polygon.

cone A three-dimensional object defined
by an origin (that is, the center of the base)
and three vectors that define the orientation
and the major and minor radii of the cone.
Defined by the TQ3ConeData data type.

conic See conic section.

conic section Any two-dimensional curve
that is formed by the intersection of a plane
with a right circular cone. The most
common conic sections are ellipses, circles,
parabolas, and hyperbolas. Compare
nonuniform rational B-spline (NURB).

connected Said of a pair of mesh vertices if
an unbroken path of edges exists linking one
vertex to the other. Compare mesh
component.

constant shading A method of shading
surfaces in which the incident light color
and intensity are calculated for a single
point on a polygon and then applied to the
entire polygon. Compare Gouraud shading,
Phong shading.

constant subdivision A method of
subdividing smooth curves and surfaces. In
this method, the renderer subdivides a curve
into some given number of polyline
segments and a surface into a certain-sized
mesh of polygons. Compare screen-space
subdivision, world-space subdivision.

constructive solid geometry (CSG) A way
of modeling solid objects constructed from
the union, intersection, or difference of other
solid objects.

container face The face in a mesh that
contains a particular contour.

contour A list of vertices. In a mesh, a
contour specifies a hole in a face. Compare
container face.

controller See controller object.

controller channel Any piece of
information sent from an application to an
input device. Compare controller value.

controller data structure A data structure
that contains information about a controller.
Defined by the TQ3ControllerData data type.

controller object A QuickDraw 3D object
that represents a 3D pointing device. A
controller object is an instance of the
TQ3ControllerObject class. See also tracker
object.

controller state See controller state object.

controller state object A QuickDraw 3D
object that represents the current channels
and other settings of a controller. A
controller state object is an instance of the
TQ3ControllerStateObject class.

controller strip A rectangular area at the
bottom of a viewer object that contains one
or more controls (usually buttons). Compare
camera viewpoint control, distance button,
move button, rotate button, zoom button.

controller value Any piece of information
sent from an input device to an application.
Compare controller channel.

control point A geometric point used to
control the curvature of a curve or surface.
Compare knot.

G L O S S A R Y

1684

convex polygon A polygon whose interior
angles are all less than or equal to 180°.
Compare concave polygon.

coordinate axis A line in a plane or in
space that helps to define the position of
geometric objects. See also x axis, y axis, z
axis.

coordinates (1) See coordinate system.
(2) See tracker coordinates.

coordinate space See coordinate system.

coordinate system Any system of
assigning planar or spatial positions to
objects. Compare Cartesian coordinate
system, polar coordinate system, spherical
coordinate system.

corner See mesh corner.

cross product The vector that is
perpendicular to two given vectors and
whose magnitude is the product of the
magnitudes of those two vectors multiplied
by the sine of the angle between them. The
cross product of the vectors u and v is
denoted u × v. Compare dot product.

CSG See constructive solid geometry.

CSG equation A value that encodes which
CSG operations are to be performed on a
model’s CSG objects.

CSG object ID A number, attached to an
object as an attribute, that identifies an
object for CSG operations.

C standard I/O library See standard I/O
library.

C string object A QuickDraw 3D object
that contains a standard C string (that is, an
array of characters terminated by the null
character).

culling See backface culling.

custom Supplied by your application, not
by QuickDraw 3D.

custom surface parameterization A
parameterization of a surface supplied by
your application. Compare natural surface
parameterization, standard surface
parameterization.

cylinder A three-dimensional object
defined by an origin (that is, the center of
the base) and three mutually perpendicular
vectors that define the orientation and the
major and minor radii of the cylinder.
Defined by the TQ3CylinderData data type.

database file A metafile in which all
shared objects contained in the file are listed
in the file’s table of contents. See also
normal file, stream file.

database mode The mode in which a
database file is opened. See also normal
mode, stream mode.

default surface parameterization See
standard surface parameterization.

degrees of freedom (DOF) The number of
dimensions that are independently
specifiable by a particular input device. For
example, a slider or a dial has one degree of
freedom; a mouse typically has two degrees
of freedom.

device coordinate system See window
coordinate system.

G L O S S A R Y

1685

device space See window coordinate
system.

differential scaling A scale transform in
which the scaling values dx, dy, and dz are
not all identical. Compare uniform scaling.

diffuse coefficient A measure of an
object’s level of diffuse reflection.

diffuse color The color of the light of a
diffuse reflection.

diffuse reflection The type of reflection
that is characteristic of light reflected from a
dull, nonshiny surface. Also called
Lambertian reflection. Compare specular
reflection.

diffuse reflection coefficient See diffuse
coefficient.

direct draw surface draw context data
structure A data structure that contains
information about a direct draw surface
draw context. Defined by the
TQ3DDSurfaceDrawContextData data type.

directional light A light source that emits
parallel rays of light in a specific direction.

directional light data structure A data
structure that contains information about a
directional light. Defined by the
TQ3DirectionalLightData data type.

dirty state A Boolean value that indicates
whether an unknown object is preserved in
its original state (kQ3False) or should be
updated when written back to the file object
from which it was originally read (kQ3True).

disk A two-dimensional surface defined
by an origin (that is, the center of the disk)
and two vectors that define the major and
minor radii of the disk. Defined by the
TQ3DiskData data type.

display group A type of group that
contains drawable objects. See also ordered
display group, proxy display group.

distance button A button in the controller
strip of a viewer object that, when clicked,
puts the cursor into trucking mode.
Subsequent dragging up or down in the
picture area causes the object to move
farther away or closer. Compare camera
viewpoint control, move button, rotate
button, zoom button.

DOF See degrees of freedom.

dot product The floating-point number
obtained by multiplying corresponding
scalar components of two vectors and then
adding together all those products. The dot
product of the vectors u and v is denoted u ⋅
v. Compare cross product.

drawable flag A group state flag that
determines whether a group is to be drawn
when it is passed to a view for rendering or
picking. Compare inline flag, picking flag.

draw context See draw context object.

draw context coordinate system See
window coordinate system.

draw context data structure A data
structure that contains basic information
about a draw context. Defined by the
TQ3DrawContextData data type.

G L O S S A R Y

1686

draw context object A QuickDraw 3D
object that maintains information specific to
a particular window system or drawing
destination. A draw context object is an
instance of the TQ3DrawContextObject class.
See also Macintosh draw context, pixmap
draw context, Windows draw context, X
draw context.

draw context space See window
coordinate system.

drawing completion callback routine An
application-defined function that is called
whenever the 3D Viewer has finished
drawing any part of a viewer object.

drawing destination The window or other
output destination for a rendered model.

edge A straight line that connects two
vertices. See also mesh edge.

edge tolerance A measure of how close a
point must be to a line for a hit to occur.
Compare vertex tolerance.

edit index A long integer associated with a
shared object that changes each time the
object is edited.

element See element object.

element object Any QuickDraw 3D object
that can be part of a set. An element object is
an instance of the TQ3ElementObject class.

elevation projection A type of
orthographic projection in which the view
plane is perpendicular to one of the
principal axes of the object being projected.
See also front elevation projection, side
elevation projection, top elevation
projection. Compare isometric projection.

ellipse A two-dimensional curve defined
by an origin (that is, the center of the ellipse)
and two perpendicular vectors that define
the major and minor radii of the ellipse.
Defined by the TQ3EllipseData data type.

ellipsoid A three-dimensional object
defined by an origin (that is, the center of
the ellipsoid) and three mutually
perpendicular vectors that define the
orientation and the major and minor radii of
the ellipsoid. Defined by the
TQ3EllipsoidData data type.

end cap The delimiting boundary of some
QuickDraw 3D geometric objects (for
instance, the oval top or bottom of a
cylinder). Compare interior cap.

error A nonrecoverable condition that
causes the currently executing
QuickDraw 3D routine to fail. See also fatal
error, notice, warning.

Error Manager The part of QuickDraw 3D
that you can use to handle any errors or
other exceptional conditions that occur
during the execution of QuickDraw 3D
routines.

even-odd rule A method of determining
which planar areas defined by an arbitrary
list of vertices are inside a polygon. To
determine whether a particular bounded
region is inside or outside a polygon, shoot a
ray from any point in that region in any
direction that does not intersect any vertex.
If the ray cuts an odd number of edges, that
region is inside the polygon; if the ray cuts
an even number of edges, that region is
outside the polygon.

eye point See camera location.

G L O S S A R Y

1687

face A closed figure that forms part of the
surface of an object. Usually faces are planar,
but mesh faces do not need to be planar. See
also mesh face.

face attribute An attribute that defines a
characteristic of a polygonal object.

face index In a mesh, a unique integer
(between 0 the total number of faces in the
mesh minus 1) associated with a face.
Compare vertex index.

facet See face.

faceted shading See constant shading.

fall-off value A measure of the attenuation
of a spot light’s intensity from the edge of
the hot angle to the edge of the outer angle.
See also hot angle, outer angle.

fan A strip in which all the triangles share
a common vertex.

far plane See yon plane.

fatal error An error whose effects persist
even after the call that caused it has ended.

field of view The horizontal or vertical
angular expanse visible through a camera.
See also aspect ratio camera.

file See file object.

file idle method A callback routine that is
called during lengthy file operations.
Compare view idle method.

file mode A set of flags that determine
which operations can be performed on a
piece of storage.

file mode flag A value used to construct a
file mode.

file object A type of QuickDraw 3D object
that you can use to access disk- or
memory-based data stored in a container. A
file object is an instance of the TQ3FileObject
class. See also storage object.

file status value A value returned by the
Q3File_EndWrite function that indicates
whether QuickDraw 3D has finished writing
the model to a file object.

fill style A type of QuickDraw 3D object
that determines whether an object is drawn
as a solid filled object or is decomposed into
its components (namely, into a set of edges
or points).

flat shading See constant shading.

foreground shader A shader that applies
an image to the hither (or near) clipping
plane of a view. Compare background
shader.

frame See viewer pane.

front clipping plane See hither plane.

front elevation projection A type of
elevation projection in which the view plane
is parallel to the front of the object being
projected.

frustum A solid figure created by cutting a
cone or pyramid with two parallel planes.
Compare view frustum.

frustum coordinate system See camera
coordinate system.

frustum space See camera coordinate
system.

frustum-to-window transform A
transform that defines the relationship
between a frustum coordinate system and a

G L O S S A R Y

1688

window coordinate system. Compare
local-to-world transform, world-to-frustum
transform.

general polygon A closed plane figure
defined by one or more lists of vertices (that
is, defined by one or more contours).
Defined by the TQ3GeneralPolygonData data
type. See also simple polygon.

generic renderer A renderer that you can
use solely to collect state information. The
generic renderer does not draw any image.

geometric object A type of QuickDraw 3D
object that describes a particular kind of
drawable shape, such as a triangle or a box.
A geometric object is an instance of the
TQ3GeometryObject class. See also box, cone,
cylinder, disk, ellipse, ellipsoid, general
polygon, line, marker, mesh, NURB curve,
NURB patch, point, polygon, polyhedron,
polyline, torus, triangle, trigrid, trimesh.

geometric primitive Any of the basic
geometric objects defined by
QuickDraw 3D.

geometry See geometric object.

geometry attribute An attribute that
defines a characteristic of a nonpolygonal
geometric object.

global coordinate system See world
coordinate system.

global space See world coordinate
system.

Gouraud shading A method of shading
surfaces in which the incident light color
and intensity are calculated for each vertex

of a polygon and then interpolated linearly
across the entire polygon. Compare constant
shading, Phong shading.

graphics accelerator Any hardware device
used by QuickDraw 3D to accelerate
rendering.

group See group object.

group object A type of QuickDraw 3D
object that you can use to collect objects
together into hierarchical models. A group
object is an instance of the TQ3GroupObject
class.

group position A pointer to a data
structure maintained internally by
QuickDraw 3D that indicates the position of
a group element in the group.

group state flag A value that indicates the
state of some characteristic of a group.

group state value A set of group state flags
that determine how a group is traversed
during rendering or picking, or during
computation of its bounding box or sphere.

handle storage object A storage object that
represents a handle to a dynamically
allocated block of RAM.

head The hot spot of a 3D cursor. Compare
tail.

hidden line removal The process of
removing any lines in a model that are
hidden by opaque surfaces of objects.

hidden surface removal The process of
removing any surfaces in a model that are
hidden by opaque surfaces of objects.
Compare backface culling.

G L O S S A R Y

1689

hierarchy See QuickDraw 3D class
hierarchy.

highlight state An attribute having data of
type TQ3Boolean that determines whether a
highlight style overrides the material
attributes of an object (kQ3True) or not.

highlight style A type of QuickDraw 3D
object that determines the material attributes
of a geometric object (or a group of
geometric objects) that override the normal
attributes of the object (or group of objects).

high-order bit See most significant bit.

hit An object in a model that is close
enough to the pick geometry. See also hit
list.

hit data structure A data structure that
contains information about a hit. Defined by
the TQ3HitData data type.

hither plane The clipping plane closest to
the camera.

hit information mask A value that
indicates the type of information you want
returned for the items in a hit list.

hit list A list of all objects in a model that
are close to the pick geometry.

hit list sorting value A value that
determines the kind of sorting that is to be
done on a hit list.

hit path structure A data structure that
contains information about the path through
a model hierarchy to a specific picked object.
Defined by the TQ3HitPath data type.

hit testing See picking.

hot angle The half-angle (specified in
radians) from the center of a spot light’s
cone of light within which the light remains
at constant full intensity. See also fall-off
value, outer angle.

identity matrix Any n × n square matrix
with elements aij such that aij = 1 if i = j and
aij = 0 otherwise. Compare inverse.

idle method See file idle method, view
idle method.

illumination shader A shader that
determines the effects of the view’s group of
lights on the objects in a model. Compare
Lambert illumination shader, Phong
illumination shader.

image The two-dimensional product of
rendering.

image plane structure A data structure
that contains information about an image
plane. Defined by the TQ3ImagePlane data
type.

immediate mode A mode of defining and
rendering a model in which the application
maintains the only copy of the model data.
See also retained mode.

immediate object An object that is
rendered in immediate mode. See also
retained object.

indexed vertex A three-dimensional vertex
specified by its index into an array of
three-dimensional points. Defined by the
TQ3IndexedVertex3D data type. (Polyhedra
are specified using indexed vertices.) See
also mesh vertex, vertex.

infinite light See directional light.

G L O S S A R Y

1690

information group A group that contains
one or more strings (and no other types of
QuickDraw 3D objects).

inherit To have the data and methods of a
parent class apply to a child class. Compare
override.

inheritance The property of the
QuickDraw 3D class hierarchy whereby a
child class inherits the data and methods of
its parent class.

initial line See polar axis.

inline A method of executing groups that
does not push and pop the graphics state
stack before and after it is executed.

inline flag A group state flag that
determines whether or not a group should
be executed inline. Compare drawable flag,
picking flag.

inner product See dot product.

input/output (I/O) The parts of a
computer system that transfer data to or
from peripheral devices.

instantiable class A class of which
instances can be created. All leaf classes are
instantiable, and many parent classes are
instantiable as well. (For example, both the
class TQ3AttributeSet and its parent class
TQ3SetObject are instantiable.)

interacting The process of selecting and
manipulating objects in a model.

interactive renderer A renderer that uses a
fast and accurate algorithm for drawing
solid, shaded surfaces. See also wireframe
renderer.

interior cap The delimiting boundary of
the cutaway section of a partial solid.

interpolated shading See Gouraud
shading.

interpolation style A type of
QuickDraw 3D object that determines the
method of interpolation a renderer uses
when applying lighting or other shading
effects to a surface.

intersection The set of points that lie
inside both of two given solid objects.
The intersection of the objects A and B is
represented by the function A ∩ B. Compare
complement, union.

inverse For an n × n square matrix A with
a nonzero determinant, the matrix B such
that AB = BA =I, where I is the n × n identity
matrix.

inverse matrix See inverse.

I/O See input/output.

I/O proxy display group A display group
that contains several representations of a
single geometric object.

isometric projection A type of
orthographic projection in which the view
plane is not perpendicular to any of the
principal axes of the object being projected
but makes equal angles with each of those
axes. Compare elevation projection.

iterative construction Constructing a
mesh by building it face-by-face, instead of
filling in a data structure and constructing it
from the data structure all at once.

join point See knot.

G L O S S A R Y

1691

knot A point on a curve that joins two
segments of the curve.

knot vector An array of numbers that
defines a curve’s knots.

Lambertian reflection See diffuse
reflection.

Lambert illumination A method of
calculating the illumination of a point on a
surface based on diffuse reflection. Compare
null illumination, Phong illumination.

Lambert illumination shader An
illumination shader that implements a
Lambert illumination model. Compare null
illumination shader, Phong illumination
shader.

leaf class A class that has no children.

leaf object An instance of a leaf class.

leaf type The object type of a leaf object.

least significant bit (LSB) The bit
contributing the least value in a string of
bits. Same as low-order bit. Compare most
significant bit.

left-handed coordinate system A
coordinate system that obeys the left-hand
rule. In a left-handed coordinate system,
positive rotations of an axis are clockwise.
Compare right-handed coordinate system.

left-hand rule A method of determining
the direction of the positive z axis (and
thereby the front of a planar surface).
According to the left-hand rule, if the thumb
of the left hand points in the direction of the
positive x axis and the index finger points in
the direction of the positive y axis, then the
middle finger points in the direction of the
positive z axis. Compare right-hand rule.

light See light object.

light attenuation See attenuation.

light data structure A data structure that
contains basic information about a light.
Defined by the TQ3LightData data type.

light fall-off See fall-off value.

light group A group that contains one or
more lights (and no other types of
QuickDraw 3D objects).

light object A type of QuickDraw 3D
object that you can use to illuminate the
surfaces in a model. A light object is an
instance of the TQ3LightObject class. See also
ambient light, directional light, point light,
spot light.

line A straight segment in
three-dimensional space defined by its two
endpoints, with an optional set of attributes.
Defined by the TQ3LineData data type.

line of projection See projector.

little-endian Data formatting in which
each field is addressed by referring to its
least significant byte. See also big-endian.

local coordinate system The coordinate
system in which an individual geometric
objects is defined. Also called the object
coordinate system or the modeling coordinate
system. Compare camera coordinate system,
window coordinate system, world
coordinate system.

local space See local coordinate system.

local-to-world transform A transform that
defines the relationship between an object’s
local coordinate system and the world

G L O S S A R Y

1692

coordinate system. Compare
frustum-to-window transform,
world-to-frustum transform.

low-order bit See least significant bit.

LSB See least significant bit.

luminance The intensity of light in a color.

Macintosh draw context A draw context
that is associated with a Macintosh window.

Macintosh draw context data structure A
data structure that contains information
about a Macintosh draw context. Defined by
the TQ3MacDrawContextData data type.

Macintosh FSSpec storage object A
storage object that represents the data fork
of a Macintosh file using a file system
specification structure (of type FSSpec).

Macintosh storage object A storage object
that represents the data fork of a Macintosh
file using a file reference number. Compare
Macintosh FSSpec storage object.

mapping The process of transforming one
coordinate space into another.

marker A two-dimensional object typically
used to indicate the position of an object (or
part of an object) in a window. See bitmap
marker, pixmap marker.

matrix A rectangular array of numbers.
QuickDraw 3D defines 3-by-3 and 4-by-4
matrices using the TQ3Matrix3x3 and
TQ3Matrix4x4 data types.

matrix transform Any transform specified
by an affine, invertible 4-by-4 matrix.

memory storage object A storage object
that represents a dynamically allocated
block of RAM. Compare handle storage
object.

mesh A collection of vertices, faces, and
edges that represent a topological
polyhedron. Defined by the TQ3Mesh data
type.

mesh component A collection of
connected vertices in a mesh. Defined by the
TQ3MeshComponent data type.

mesh corner A mesh face together with
one of its vertices. You can associate a set of
attributes with a mesh corner. The attributes
in a corner override any existing attributes
of the associated vertex.

mesh edge A line that connects two mesh
vertices. A mesh edge is part of one or more
mesh faces. Defined by the TQ3MeshEdge data
type.

mesh face A closed figure that forms part
of a mesh. Unlike the faces of other
geometric objects, mesh faces do not need to
be planar. Defined by the TQ3MeshFace data
type.

mesh iterator structure A data structure
used by QuickDraw 3D to maintain
information when iterating through parts of
a mesh. Defined by the TQ3MeshIterator data
type.

mesh part See mesh part object.

mesh part object A distinguishable part of
a mesh. A mesh part object is an instance of
the TQ3MeshPartObject class. See also mesh
edge part object, mesh face part object,
mesh vertex part object.

G L O S S A R Y

1693

mesh vertex A vertex (that is, a
three-dimensional point) that is contained in
a mesh. Defined by the TQ3MeshVertex data
type.

metafile A file format (that is, a
description of the format of a kind of file).
See also QuickDraw 3D Object Metafile.

metafile object A basic unit contained in a
file that conforms to the QuickDraw 3D
Object Metafile.

metahandler An application-defined
function that QuickDraw 3D calls to build a
method table for a custom object type.
Compare attribute metahandler.

method An item of data associated with a
particular object class. The data is usually a
function pointer or other information used
by the object class.

metric pick See metric pick object.

metric pick object A pick object whose
pick geometry has a pick origin.

mipmap An array of pixel images of
varying pixel depths. Defined by the
TQ3Mipmap data type. See also bitmap,
pixmap, storage pixmap.

mipmapping A method of storing texture
maps in an array of pixel images of varying
pixel depths. The first element in the array
must be the mipmap page having the
highest resolution, with a width and height
that are even powers of 2. Each subsequent
pixel image in the array should have a
width and height that are half those of the
previous image.

mipmap texture object A texture object in
which the texture is defined by a mipmap.

model A collection of synthetic
three-dimensional geometric objects and
groups of geometric objects. A model
represents a prototype.

modeling The process of creating a
representation of real or abstract objects.

modeling coordinate system See local
coordinate system.

modeling space See local coordinate
system.

most significant bit (MSB) The bit
contributing the greatest value in a string of
bits. Same as high-order bit. Compare least
significant bit.

move button A button in the controller
strip of a viewer object that, when clicked,
puts the cursor into move mode. Subsequent
dragging on an object in the picture area
causes the object to be moved to a new
location. Compare camera viewpoint
control, distance button, rotate button,
zoom button.

MSB See most significant bit.

natural attribute An attribute that can
naturally be contained in a set of attributes
of a specific type.

natural surface parameterization A
parameterization of a surface that can be
derived directly from the definition of the
surface. Compare custom surface
parameterization, standard surface
parameterization.

near plane See hither plane.

G L O S S A R Y

1694

nonuniform rational B-spline (NURB) A
curve defined by nonuniform parametric
ratios of B-spline polynomials. NURB curves
can be used to define very complex curves
and surfaces, as well as very common
geometric objects (for instance, the conic
sections). See also control point, knot,
NURB curve, NURB patch.

normal (a.) Perpendicular. (n.) A normal
vector.

normal file A metafile in which the
specification of an object in the file never
occurs more than once. In other words, a file
object that contains a table of contents that
lists all multiply-referenced objects in the
file. See also normal file, stream file.

normalized vector A vector whose length
is 1.

normal mode The mode in which a
normal file is opened. See also database
mode, stream mode.

normal vector A vector that is normal (that
is perpendicular) to a surface or planar
object at a specific point.

notice A condition that is less severe than
a warning, and that will likely not cause
problems. See also error, warning.

notify function See tracker notify
function.

null illumination A method of calculating
the illumination of a point on a surface that
depends only on the diffuse color of the
point. Compare Lambert illumination,
Phong illumination.

null illumination shader An illumination
shader that implements a null illumination
model. Compare Lambert illumination
shader, Phong illumination shader.

NURB See nonuniform rational B-spline.

NURB curve A three-dimensional curve
represented by a NURB equation. Defined
by the TQ3NURBCurveData data type.

NURB patch A three-dimensional surface
represented by a NURB equation. Defined
by the TQ3NURBPatchData data type.

object (1) See QuickDraw 3D object.
(2) See metafile object.

object coordinate system See local
coordinate system.

object space See local coordinate system.

object type The identifier of the class of
which a QuickDraw 3D object is an instance.
Also called the class type.

oblique projection A type of parallel
projection in which the view plane is not
perpendicular to the viewing direction.
Compare orthographic projection.

off-axis viewing A method of perspective
projection in which the center of the
projected object on the view plane is not on
the camera vector.

opaque (1) For a data structure, not
publicly defined. You must use
QuickDraw 3D functions to get and set
values in an opaque data structure. For an
object, having data and methods that are not
publicly defined. (2) For a geometric object,
not allowing light to pass though.

G L O S S A R Y

1695

open Said of a storage object whenever its
associated storage is in use—for example,
when an application is reading data from a
file object attached to the storage object.

order For a NURB curve or patch, one
more than the highest degree equation used
to define the curve or patch. For example,
the order of a NURB curve defined by cubic
polynomial equations is 4.

ordered display group A display group in
which the objects in the group are sorted by
their type.

orientation style A type of QuickDraw 3D
object that determines which side of a planar
surface is considered to be the “front” side.

origin In Cartesian coordinates, the point
(0, 0) or (0, 0, 0). The coordinate axes
intersect at the origin.

original QuickDraw See QuickDraw.

orthogonal Perpendicular.

orthographic camera A type of camera
that uses orthographic projection.

orthographic camera data structure A
data structure that contains basic
information about an orthographic camera.
Defined by the TQ3OrthographicCameraData
data type.

orthographic projection A type of parallel
projection in which the view plane is
perpendicular to the viewing direction.
Compare oblique projection. See also
elevation projection, isometric projection.

outer angle The half-angle (specified in
radians) from the center of a spot light’s
cone to the edge of the cone. See also fall-off
value, hot angle.

outer product See cross product.

override To define class data or methods
that replace those of the parent class.
Compare inherit.

parallel projection A method of projecting
a model onto a viewing plane that uses
parallel projectors. See also oblique
projection, orthographic projection.
Compare perspective projection.

parameterization A parametric function
that picks out all points on a geometric
object, such as a pixmap or a surface.
Compare surface parameterization.

parametric curve Any curve whose points
are described by one or more parametric
functions. A two-dimensional parametric
curve can be described by the parametric
functions x = x(t) and y = y(t). A
three-dimensional parametric curve is
described by the parametric functions
x = x(t), y = y(t), and z = z(t). Compare
B-spline polynomial, nonuniform rational
B-spline (NURB).

parametric equation See parametric
function.

parametric function A function of one or
more parameters (often denoted by s and t
or u and v).

parametric point A position in two- or
three-dimensional space picked out by a
parametric function. Defined by the
TQ3Param2D and TQ3Param3D data types.
Compare point, point object, rational point.

parent class The class (if any) of which a
given class is a subclass. In other words, a
class’ parent class is the class immediately
above that class in the QuickDraw 3D class

G L O S S A R Y

1696

hierarchy. For example, the shape class is the
parent class of the light class. Also called a
base class or a superclass.

partial solid A solid object whose uMin
field is greater than 0.0 or whose uMax field is
less than 1.0.

patch A portion of a surface defined by a
set of points. Compare NURB patch.

perspective foreshortening A feature of
perspective projections wherein the size of a
projected object varies inversely with the
distance of the object from the center of
projection.

perspective projection A method of
projecting a model onto a viewing plane that
uses nonparallel projectors. Compare
parallel projection.

Phong illumination A method of
calculating the illumination of a point on a
surface based on both diffuse reflection and
specular reflection. Compare Lambert
illumination, null illumination.

Phong illumination shader An
illumination shader that implements a
Phong illumination model. Compare
Lambert illumination shader, null
illumination shader.

Phong shading A method of shading
surfaces in which the incident light color
and intensity are calculated for a series of
points along each edge of a polygon and
then interpolated across the entire polygon.
Compare constant shading, Gouraud
shading.

pick (n.) See pick object. (v.) To determine
whether a specified object is close enough to
a pick geometry for a hit to be recorded.

pick data structure A data structure that
contains basic information about a pick
object. Defined by the TQ3PickData data type.

pick detail See hit information mask.

pick geometry The geometric object used
in any picking method.

pick hit See hit.

pick hit list See hit list.

picking The process of identifying the
objects in a view that are close to a specified
geometric object.

picking flag A binary flag in a group state
value that determines whether a group is
eligible for picking. Compare drawable flag,
inline flag.

picking ID An arbitrary 32-bit value that
you can use to determine which object was
selected by a pick operation.

picking ID style A type of style object that
determines the picking ID of an object or
group of objects in a model.

picking loop A section of code in which
all picking takes place. A picking loop
begins with a call to the
Q3View_StartPicking routine and should end
when a call to Q3View_EndPicking returns
some value other than
kQ3ViewStatusRetraverse. A picking loop is
a type of submitting loop. See also
bounding loop, rendering loop, writing
loop.

picking parts style A type of
QuickDraw 3D object that determines which
parts of a geometric object (for instance, a
mesh) are eligible for inclusion in a hit list.

G L O S S A R Y

1697

pick object A QuickDraw 3D object that is
used to select geometric objects in a model
that are close to a specified geometric object.
A pick object is an instance of the
TQ3PickObject class.

pick origin A point in space that
determines the origin of sorting hits.
Compare metric pick object.

pick parts mask A value that indicates the
kinds of objects placed in a hit list.

picture area The portion of a window
occupied by a viewer object that contains
the displayed image.

pixel image See pixmap

pixel map See pixmap

pixmap A two-dimensional array of
values, each of which represents the color of
one pixel. Defined by the TQ3Pixmap data
type. See also bitmap, mipmap, storage
pixmap.

pixmap draw context A draw context that
is associated with a pixmap.

pixmap draw context data structure A
data structure that contains information
about a pixmap draw context. Defined by
the TQ3PixmapDrawContextData data type.

pixmap marker A type of marker that uses
a pixmap to specify the image that is to be
drawn on top of a rendered scene at the
specified location. Defined by the
TQ3PixmapMarkerData data type. Compare
bitmap marker.

pixmap texture object A texture object in
which the texture is defined by a pixmap.

planar Contained completely in two
dimensions (as, for example, a circle). See
also spatial.

plane constant The value d in the plane
equation ax+by+cz+d = 0.

plan elevation projection See top
elevation projection.

plane equation An equation that defines a
plane. A plane equation can always be
reduced to the form ax+by+cz+d = 0. Defined
by the TQ3PlaneEquation data type.

point A dimensionless position in two- or
three-dimensional space. Defined by the
TQ3Point2D and TQ3Point3D data types.
Compare parametric point, point object,
rational point.

point light A light source that emits rays
of light in all directions from a specific
location.

point light data structure A data structure
that contains information about a point
light. Defined by the TQ3PointLightData data
type.

point object A dimensionless position in
three-dimensional space, with an optional
set of attributes. Defined by the
TQ3PointData data type.

point of interest The point in world space
at which a camera is aimed. The point of
interest and the camera location determine
the viewing direction.

point pick object See window-point pick
object.

polar coordinate system A system of
assigning planar positions to objects in
terms of their distances (r) from a point (the

G L O S S A R Y

1698

polar origin, or pole) along a ray that forms
a given angle (θ) with a coordinate line (the
polar axis). The polar origin has the polar
coordinates (0, θ), for any angle θ. Compare
Cartesian coordinate system, spherical
coordinate system.

polar axis A fixed ray that radiates from
the polar origin, in terms of which polar
coordinates are determined. Also called the
initial line.

polar origin The point in a plane from
which the polar axis radiates. Also called the
pole.

polar point A point in a plane described
using polar coordinates.

pole See polar origin.

polygon A closed plane figure. See general
polygon, simple polygon.

polygon mesh A mesh whose faces are
composed of polygons.

polyhedral primitive A three-dimensional
surface composed of polygonal faces that
share edges and vertices with other faces.
See mesh, polyhedron, trigrid, trimesh.

polyhedron (1) A polyhedral primitive
whose faces are triangular. Defined by the
TQ3PolyhedronData data type. (2) Any
polyhedral primitive.

polyhedron data structure A data
structure that contains information about a
polyhedron. Defined by the
TQ3PolyhedronData data type.

polyhedron edge data structure A data
structure that contains information about an
edge in a polyhedron. Defined by the
TQ3PolyhedronEdgeData data type.

polyhedron triangle data structure A data
structure that contains information about a
triangle (that is, a face) in a polyhedron.
Defined by the TQ3PolyhedronTriangleData
data type.

polyline A collection of n lines defined by
the n+1 points that define the endpoints of
each line segment. Defined by the
TQ3PolyLineData data type.

postmultiplied A term that describes the
order in which matrices are multiplied.
Matrix [A] is postmultiplied by matrix [B] if
matrix [A] is replaced by [A] × [B]. Compare
premultiplied.

premultiplied A term that describes the
order in which matrices are multiplied.
Matrix [A] is premultiplied by matrix [B] if
matrix [A] is replaced by [B] × [A]. Compare
postmultiplied.

primitive See geometric primitive.

private See opaque.

projection (1) A method of mapping
three-dimensional objects into two
dimensions. See also parallel projection,
perspective projection. Compare camera
object. (2) The image on the view plane that
results from mapping three-dimensional
objects into two dimensions.

projection plane See view plane.

projective transform See
frustum-to-window transform.

projector A ray that intersects both a point
on an object in a model and the view plane,
thereby projecting the object in the model
onto the view plane.

G L O S S A R Y

1699

prototype The object (or collection of
objects) represented in a model. Compare
model, synthetic.

prototypical Of or pertaining to a
prototype. Compare model, synthetic.

proxy display group See I/O proxy
display group.

quaternion A quadruple of floating-point
numbers that obeys the laws of quaternion
arithmetic. Defined by the TQ3Quaternion
data type.

quaternion transform A type of transform
that rotates and twists an object according to
the mathematical properties of quaternions.

QuickDraw A collection of system
software routines on Macintosh computers
that perform two-dimensional drawing on
the user’s screen.

QuickDraw 3D A graphics library
developed by Apple Computer, Inc., that
you can use to create, configure, render, and
interact with models of three-dimensional
objects. You can also use QuickDraw 3D to
read and write 3D data.

QuickDraw 3D class A structure for the
data that characterize QuickDraw 3D
objects, together with a set of methods that
operate on that data. Compare
QuickDraw 3D object. See also child class,
leaf class, parent class.

QuickDraw 3D class hierarchy The
hierarchical arrangement of QuickDraw 3D
object classes.

QuickDraw 3D object Any instance of a
QuickDraw 3D class. See also object type.

QuickDraw 3D Object Metafile
(3DMF) An extensible file format defined
by Apple Computer, Inc., for storing 3D data
and interchanging 3D data between
applications.

QuickDraw 3D Pointing Device
Manager A set of functions that you can
use to manage three-dimensional pointing
devices.

QuickDraw 3D shading architecture An
environment in which shaders can be
applied at various stages in the imaging
pipeline.

radius vector The ray that radiates from
the polar origin and that forms a given angle
with the polar axis (or two given angles with
the x and z axes). A polar or spherical point
lies at a given distance along the radius
vector. See also polar coordinate system,
spherical coordinate system.

rasterization The process of determining
values for the pixels in a rendered image.
Also called scan conversion.

rational point A dimensionless position in
two- or three-dimensional space together
with a floating-point weight. Defined by the
TQ3RationalPoint3D and TQ3RationalPoint4D
data types. Compare point.

ray A point of origin and a direction.
Defined by the TQ3Ray3D data type.

real See prototypical.

rectangle pick object See
window-rectangle pick object.

reference count The number of times a
shared object is being accessed.

G L O S S A R Y

1700

render To create an image (on the screen or
some other medium) of a model.

renderer See renderer object.

renderer feature flags A set of flags that
encode information about a specific
renderer.

renderer object A QuickDraw 3D object
that you can use to render a model—that is,
to create an image from a view and a model.
A renderer object is an instance of the
TQ3RendererObject class.

rendering The process of creating an
image (on the screen or some other medium)
of a model. See also rasterization.

rendering loop A section of code in which
all rendering takes place. A rendering loop
begins with a call to the
Q3View_StartRendering routine and should
end when a call to Q3View_EndRendering
returns some value other than
kQ3ViewStatusRetraverse. A rendering loop
is a type of submitting loop. See also
bounding loop, picking loop, writing loop.

retained mode A mode of defining and
rendering a model in which the graphics
library (for instance, QuickDraw 3D)
maintains a copy of the model. See also
immediate mode.

retained object An object that is defined
and rendered in retained mode. See also
immediate object.

RGB color space A color space whose
three components measure the intensity of
red, green, and blue.

RGB color structure A data structure that
contains information about a color. Defined
by the TQ3ColorRGB data type.

right-handed coordinate system A
coordinate system that obeys the right-hand
rule. In a right-handed coordinate system,
positive rotations of an axis are
counterclockwise. Compare left-handed
coordinate system.

right-hand rule A method of determining
the direction of the positive z axis (and
thereby the front of a planar surface).
According to the right-hand rule, if the
thumb of the right hand points in the
direction of the positive x axis and the index
finger points in the direction of the positive
y axis, then the middle finger points in the
direction of the positive z axis. Compare
left-hand rule.

rotate To reposition an object by revolving
(or turning) each point of the object by the
same angle around a point or axis.

rotate-about-axis transform A type of
transform that rotates an object about an
arbitrary axis in space by a specified number
of radians at an arbitrary point in space.

rotate-about-axis transform data
structure A data structure that contains
information on a rotate transform about an
arbitrary axis in space at an arbitrary point
in space. Defined by the
TQ3RotateAboutAxisTransformData data type.

rotate-about-point transform A type of
transform that rotates an object about the x,
y, or z axis by a specified number of radians
at an arbitrary point in space.

G L O S S A R Y

1701

rotate-about-point transform data
structure A data structure that contains
information on a rotate transform about an
arbitrary point in space. Defined by the
TQ3RotateAboutPointTransformData data
type.

rotate button A button in the controller
strip of a viewer object that, when clicked,
puts the cursor into rotate mode.
Subsequent dragging of the cursor in the
picture area causes the displayed object to
rotate in the direction in which the cursor is
dragged. Compare camera viewpoint
control, distance button, move button,
zoom button.

rotate transform A type of transform that
rotates an object about the x, y, or z axis at
the origin by a specified number of radians.

rotate transform data structure A data
structure that contains information about a
rotate transform. Defined by the
TQ3RotateTransformData data type.

rotation A transform that causes an object
to revolve around a point or an axis.
Compare rotate-about-axis transform,
rotate-about-point transform, rotate
transform.

scalar product See dot product.

scale To reposition and resize an object by
multiplying the x, y, and z coordinates of
each of its points by values dx, dy, and dz.
Compare differential scaling, uniform
scaling.

scale transform A type of transform that
scales an object along the x, y, and z axes by
specified values.

scan conversion See rasterization.

scene A combination of objects, lights, and
draw context.

screen coordinate system See window
coordinate system.

screen space See window coordinate
system.

screen-space picking The process of
testing whether the projections of
three-dimensional objects onto the screen
intersect or are close enough to a specified
two-dimensional object on the screen.

screen-space subdivision A method of
subdividing smooth curves and surfaces. In
this method, the renderer subdivides a curve
(or surface) into polylines (or polygons)
whose sides have a maximum length of
some specified number of pixels. Compare
constant subdivision, world-space
subdivision.

serpentine Said of a trigrid in which
quadrilaterals are divided into triangles in
an alternating fashion.

set See set object.

set object A collection of zero or more
elements, each of which has both an element
type and some associated element data. A
set object is an instance of the TQ3SetObject
class.

shader See shader object.

shader object A type of QuickDraw 3D
object that you can use to manipulate visual
effects that depend on the illumination
provided by a view’s group of lights, the
color and other material properties (such as
the reflectance and texture) of surfaces in a
model, and the position and orientation of

G L O S S A R Y

1702

the lights and objects in a model. A shader
object is an instance of the TQ3ShaderObject
class.

shading parameterization A surface uv
parameterization used when shading a
surface.

shadow-receiving style A type of
QuickDraw 3D object that determines
whether or not objects in a model receive
shadows when obscured by other objects in
the model.

shape See shape object.

shape hint A data item associated with a
general polygon that that specifies the shape
of the general polygon.

shape object A type of QuickDraw 3D
object that affects how and where a renderer
renders an object in a view. A shape object is
an instance of the TQ3ShapeObject class.

shape part See shape part object.

shape part object A distinguishable part
of a shape object. A shape part object is an
instance of the TQ3ShapePartObject class. See
also mesh part object.

shared object A QuickDraw 3D object that
may be referenced by many objects or the
application at the same time. A shared object
is an instance of the TQ3SharedObject class.

side elevation projection A type of
elevation projection in which the view plane
is parallel to a side of the object being
projected.

simple polygon A closed plane figure
defined by a list of vertices (that is, defined
by a single contour). Defined by the
TQ3PolygonData data type. See also general
polygon.

smooth shading See Gouraud shading,
Phong shading.

space (1) See coordinate system. (2) The
two- or three-dimensional extent defined by
a coordinate system.

spatial Contained completely in three
dimensions (as, for example, a box). See also
planar.

specular coefficient A measure of an
object’s level of specular reflection.

specular color The color of the light of a
specular reflection.

specular control See specular reflection
exponent.

specular exponent See specular reflection
exponent.

specular highlight A bright area on an
object’s surface caused by specular
reflection.

specular reflection The type of reflection
that is characteristic of light reflected from a
shiny surface. Compare diffuse reflection.

specular reflection coefficient See
specular coefficient.

specular reflection exponent A value that
determines how quickly the specular
reflection diminishes as the viewing
direction moves away from the direction of
reflection.

G L O S S A R Y

1703

spherical coordinate system A system of
assigning spatial positions to objects in
terms of their distances from the origin (ρ)
along a ray that forms a given angle (θ) with
the x axis and another angle (φ) with the z
axis. Compare Cartesian coordinate system,
polar coordinate system.

spherical point A point in space described
using spherical coordinates.

spot light A light source that emits a
circular cone of light in a specific direction
from a specific location. See also fall-off
value, hot angle, outer angle.

spot light data structure A data structure
that contains information about a spot light.
Defined by the TQ3SpotLightData data type.

standard I/O library A collection of
functions that provide character I/O and file
manipulation services for C programs.
Compare UNIX storage object.

standard surface parameterization A
parametric function that maps the unit
square to an object’s surface. Compare
custom surface parameterization, natural
surface parameterization.

storage object A QuickDraw 3D object
that represents any piece of storage in a
computer (for example, a file on disk, an
area of memory, or some data on the
Clipboard). A storage object is an instance of
the TQ3StorageObject class.

storage pixmap A two-dimensional array
of values contained in a storage object, each
of which represents the color of one pixel.
Defined by the TQ3StoragePixmap data type.
See also bitmap, mipmap, pixmap.

stream file A metafile that contains no
internal references. In other words, a file
object that does not contain a table of
contents and in which any references to
objects are simply copies of the objects
themselves. See also normal file, stream file.

stream mode The mode in which a stream
file is opened. See also database mode,
normal mode.

string See string object.

string object A QuickDraw 3D object that
contains a sequence of characters. A string
object is an instance of the TQ3StringObject
class. See also C string object.

strip A surface composed of triangles that
are ordered sequentially (that is, each
triangle has one edge in common with the
previous neighboring triangle, a second
edge in common with the next neighboring
triangle, and the remaining edge in common
with no other triangle). See also fan.

style See style object.

style object A type of QuickDraw 3D
object that determines some of the basic
characteristics of the renderer used to render
the curves and surfaces in a scene. A style
object is an instance of the TQ3StyleObject
class.

subclass See child class.

subdivision method A method of
subdividing smooth curves and surfaces.
See constant subdivision, screen-space
subdivision, world-space subdivision.

G L O S S A R Y

1704

subdivision method specifier An
indicator of the number of parts into which
a smooth curve or surface is to be
subdivided.

subdivision style A type of
QuickDraw 3D object that determines how a
renderer decomposes smooth curves and
surfaces into polylines and polygonal
meshes for display purposes.

subdivision style data structure A data
structure that contains information about
the type of subdivision of curves and
surfaces used by a renderer. Defined by the
TQ3SubdivisionStyleData data type.

submit To make an object (or group of
objects) eligible for drawing, picking,
writing, or bounding box or sphere
calculation. Compare submitting loop.

submitting loop A section of code in
which all submitting takes place. Compare
bounding loop, picking loop, rendering
loop, writing loop.

superclass See parent class.

surface-based shader A shader that affects
the surfaces of geometric objects based on
their material properties, position, and
orientation (and other factors). Compare
view-based shader.

surface parameterization A parametric
function that picks out all points on a
surface. See also custom surface
parameterization, natural surface
parameterization, standard surface
parameterization.

surface normal See normal vector.

surface shader A shader that is applied
when calculating the appearance of a
surface. Compare texture shader.

surface tangent A pair of vectors that
indicate the directions of changing u and v
parameters on a surface. Defined by the
TQ3Tangent2D data type.

surrounding light See ambient light.

synthetic Not real, as for example the
objects in a model. Compare prototypical.

synthetic camera See camera object.

tail The part of a 3D cursor at the point
(1, 0, 0) in the local coordinates of the cursor.
Compare head.

tangent A line or plane that intersects a
curve or surface at a single point. Compare
surface tangent.

tessellate To decompose a curve or surface
into polygonal faces.

text file A file object whose data is a
stream of ASCII characters with meaningful
labels for each type of object contained in
the file. Compare binary file.

texture See texture object.

texture mapping A technique wherein a
predefined image (the texture) is mapped
onto the surface of an object in a model.

texture object A type of QuickDraw 3D
object used to perform texture mapping.
Compare mipmap texture object, pixmap
texture object.

texture parameterization A parametric
function that maps the unit square to a
texture.

G L O S S A R Y

1705

texture shader A type of surface shader
that applies textures to surfaces.

tolerance See edge tolerance, vertex
tolerance.

top elevation projection A type of
elevation projection in which the view plane
is parallel to the top of the object being
projected. Also called plan elevation
projection.

topological modification The process of
adding and deleting vertices, faces, edges,
and other components in a geometric object,
such as a mesh.

torus A three-dimensional object formed
by the rotation of an ellipse about an axis in
the plane of the ellipse that does not cut the
ellipse. Defined by the TQ3TorusData data
type.

tracker See tracker object.

tracker coordinates The current settings
(that is, position and orientation) of a
tracker.

tracker notify function A function that is
called whenever the coordinates of a tracker
change by more than a specified amount.

tracker object A QuickDraw 3D object that
represents the position and orientation of a
single element in your application’s user
interface. A tracker object is an instance of
the TQ3TrackerObject class. See also
controller object.

tracker serial number A unique number
that changes every time the coordinates of a
tracker are updated by a controller.

tracker threshold The amount by which a
tracker’s coordinates must change for the
tracker notify function to be called.

transform See transform object.

transform object A type of QuickDraw 3D
object that you can use to modify or
transform the appearance or behavior of a
QuickDraw 3D object. A transform object is
an instance of the TQ3TransformObject class.

translate To reposition an object by adding
values dx, dy, and dz to the x, y, and z
coordinates of each of its points.

translate transform A type of transform
that translates an object along the x, y, and z
axes by specified values.

transparency The ability of an object to
allow light to pass through it.

transparency color A color of type
TQ3ColorRGB that determines the amount of
light that can pass through a surface. The
color (0, 0, 0) indicates complete
transparency, and (1, 1, 1) indicates complete
opacity.

transpose (n.) For an m × n matrix with
elements aij, the n × m matrix with elements
bij such that bij = aji. (v.) To form the
transpose of a given matrix.

transpose matrix See transpose.

triangle A closed plane figure defined by
three edges. Defined by the TQ3TriangleData
data type.

triangular mesh See trimesh.

trigrid A grid composed of triangular
facets. Defined by the TQ3TriGridData data
type.

G L O S S A R Y

1706

trimesh A collection of vertices, edges, and
faces in which all faces are triangular. (In
other words, a trimesh is simply a mesh
composed entirely of triangles.) Defined by
the TQ3TriMeshData data type.

trimesh attributes data structure A data
structure that contains information about
the attributes of a trimesh vertex, edge, or
face. Defined by the
TQ3TriMeshAttributeData data type.

trimesh data structure A data structure
that contains information about a trimesh.
Defined by the TQ3TriMeshData data type.

trimesh edge data structure A data
structure that contains information about an
edge in a trimesh. Defined by the
TQ3TriMeshEdgeData data type.

trimesh triangle data structure A data
structure that contains information about a
triangle (that is, a face) in a trimesh. Defined
by the TQ3TriMeshTriangleData data type.

type See object type.

under-color shader A shader associated
with some other shader that supplies an
under color for surfaces shaded by that
shader.

uniform scaling A scale transform in
which the scaling values dx, dy, and dz are all
identical. Compare differential scaling.

union The set of points that lie inside
either of two given solid objects. The union
of the objects A and B is represented by the
function A ∪ B. Compare complement,
intersection.

unit cube A box whose three defining
edges have a length of 1.

unit vector See normalized vector.

UNIX path name storage object A storage
object that represents a file using a path
name.

UNIX storage object A storage object that
represents a file using a structure of type
FILE (defined in the standard I/O library).
Compare UNIX path name storage object.

unknown object A type of QuickDraw 3D
object that is created when QuickDraw 3D
encounters data it doesn’t recognize while
reading a metafile. An unknown object is an
instance of the TQ3UnknownObject class.

up vector A vector that indicates which
direction is up. A camera has an up vector
that defines its orientation. Compare camera
placement.

user interface view See user interface
view object.

user interface view notify function A
function that is called whenever one of your
user interface views needs to be redrawn.

user interface view object A type of view
that allows the user to interact (using
interface elements such as a 3D cursor or
widgets) with the 3D objects displayed in
the view. A user interface view object is an
instance of the TQ3UIViewObject class.

valid range The range of u and v
parametric values for a standard surface
parameterization. For QuickDraw 3D, the
valid range is the closed interval [0.0, 1.0].

G L O S S A R Y

1707

vector A pair or triple of floating-point
numbers that obeys the laws of vector
arithmetic. Defined by the TQ3Vector2D and
TQ3Vector3D data types. Compare cross
product, dot product, normal.

vector-normal interpolation shading See
Phong shading.

vector product See cross product.

vertex A dimensionless position in three-
or four-dimensional space at which two or
more lines (for instance, edges) intersect,
with an optional set of vertex attributes.
Defined by the TQ3Vertex3D and TQ3Vertex4D
data types. See also indexed vertex, mesh
vertex.

vertex attribute An attribute that defines a
characteristic of a vertex of a polygonal
object.

vertex index In a mesh, a unique integer
(between 0 the total number of vertices in
the mesh minus 1) associated with a vertex.
Compare face index.

vertex tolerance A measure of how close
two points must be for a hit to occur.
Compare edge tolerance.

view See view object.

view attribute An attribute that defines a
characteristic of a view object.

view-based shader A shader that operates
independently of the material properties or
orientation of objects (in other words, that
operates solely on aspects of the view, such
as the camera position). Compare
surface-based shader.

viewing box The rectangular box defined
by an orthographic camera and the hither
and yon clipping planes. Compare viewing
frustum.

view coordinate system See camera
coordinate system.

viewer See viewer object.

Viewer See 3D Viewer.

viewer badge See badge.

viewer controller strip See controller
strip.

viewer flags A set of bit flags that specify
information about the appearance and
behavior of a viewer object.

viewer frame See viewer pane.

viewer object An instance of the
3D Viewer. A viewer object is of type
ViewerObject.

viewer pane The portion of a window
occupied by a viewer object. The pane
includes the picture area and the controller
strip.

viewer state flags A set of bit flags
returned by the Q3ViewerGetState function
that specify information about the current
state of a viewer object.

view hints object An object in a metafile
that gives hints about how to render a scene.

view idle method A callback routine that
is called during lengthy rendering
operations. Compare file idle method.

view information structure A data
structure that contains information about a
view. Defined by the TQ3ViewInfo data type.

G L O S S A R Y

1708

viewing box A rectangle defined by a
perspective camera and the hither and yon
clipping planes. Compare viewing frustum.

viewing direction The direction of a
view’s camera. Also called the camera vector
or the viewing vector.

viewing frustum A nonrectangular
frustum defined by a perspective camera
and the hither and yon clipping planes.
Compare viewing box.

viewing vector See viewing direction.

view mapping matrix A matrix
maintained by QuickDraw 3D that
transforms the viewing frustum into a
standard rectangular solid. The
world-to-frustum transform is the product
of the transforms specified by the view
orientation matrix and the view mapping
matrix. Compare view orientation matrix.

view object A type of QuickDraw 3D
object used to collect state information that
controls the appearance and position of
objects at the time of rendering. A view
object is an instance of the TQ3ViewObject
class.

view orientation matrix A matrix
maintained by QuickDraw 3D that rotates
and translates a view’s camera so that it is
pointing down the negative z axis. The
world-to-frustum transform is the product
of the transforms specified by the view
orientation matrix and the view mapping
matrix. Compare view mapping matrix.

view plane The plane onto which a model
is projected. Also called the projection plane.

view plane camera A type of perspective
camera defined in terms of an arbitrary view
plane.

view plane camera data structure A data
structure that contains basic information
about a view plane camera. Defined by the
TQ3ViewPlaneCameraData data type.

view plane coordinate system The
two-dimensional coordinate system whose
origin is the point at which the viewing
direction intersects the view plane and
whose positive y axis is parallel to the
camera’s up vector.

view port See camera view port.

view space See camera coordinate system.

view status value A value returned by the
Q3View_EndRendering function that indicates
whether the renderer has finished
processing the model.

view volume The part of world space that
is projected onto the view plane during
rendering. See also view box, view frustum.

virtual See synthetic.

virtual camera See camera object.

visual line determination See hidden line
removal.

visual surface determination See hidden
surface removal.

warning A condition that, though less
severe than an error, might cause an error if
your application continues execution
without handling the warning. See also
error, notice.

widget An element of an application’s 3D
user interface.

G L O S S A R Y

1709

window coordinate system The
coordinate system defined by a window.
Also called the screen coordinate system or the
draw context coordinate system. Compare
camera coordinate system, local coordinate
system, world coordinate system.

window picking See screen-space
picking.

window-point pick data structure A data
structure that contains information about a
window-point pick object. Defined by the
TQ3WindowPointPickData data type.

window-point pick object A pick object
that tests for closeness between a point in a
window and the screen projections of the
objects in the model.

window-rectangle pick data structure A
data structure that contains information
about a window-rectangle pick object.
Defined by the TQ3WindowRectPickData data
type.

window-rectangle pick object A pick
object that tests for closeness between a
rectangle in a window and the screen
projections of the objects in the model.

Windows 32 draw context A draw context
that is associated with a window in a
Windows computer.

Windows 32 draw context data
structure A data structure that contains
information about a Windows 32 draw
context. Defined by the
TQ3Win32DCDrawContextData data type.

window space See window coordinate
system.

wireframe renderer A renderer that
creates line drawings of models. See also
interactive renderer.

world coordinate system The coordinate
system that defines the locations of all
geometric objects as they exist at rendering
or picking time, with all applicable
transforms acting on them. Also called the
global coordinate system or the application
coordinate system. Compare camera
coordinate system, local coordinate system,
window coordinate system.

world space See world coordinate system.

world-space subdivision A method of
subdividing smooth curves and surfaces
according to which the renderer subdivides
a curve (or surface) into polylines (or
polygons) whose sides have a world-space
length that is at most as large as a given
value. Compare constant subdivision,
screen-space subdivision.

world-to-frustum transform A transform
that defines the relationship between the
world coordinate system and the frustum
coordinate system. Compare
frustum-to-window transform,
local-to-world transform.

wrap For a shader effect, to replicate the
entire effect across the mapped area.
Compare clamp.

writing loop A section of code in which all
writing takes place. A writing loop begins
with a call to the Q3View_StartWriting
routine and should end when a call to
Q3View_EndWriting returns some value other
than kQ3ViewStatusRetraverse. A writing

G L O S S A R Y

1710

loop is a type of submitting loop. See also
bounding loop, picking loop, rendering
loop.

x axis In Cartesian coordinates, the
horizontal axis.

X color map data structure A data
structure that contains information about an
X color map. Defined by the
TQ3XColormapData data type.

X draw context A draw context that is
associated with a window in an X windows
display.

X draw context data structure A data
structure that contains information about an
X draw context. Defined by the
TQ3XDrawContextData data type.

y axis In Cartesian coordinates, the vertical
axis.

yon plane The clipping plane farthest
away from the camera.

z axis In Cartesian coordinates, the axis
that represents depth.

zoom button A button in the controller
strip of a viewer object that, when clicked,
puts the cursor into zooming mode.
Subsequent dragging up or down in the
picture area causes the camera’s field of
view to increase or decrease. Compare
camera viewpoint control, distance button,
move button, rotate button.

1711

Index

Symbols

¬ (complement operator) 767
∩ (intersection operator) 767
∪ (union operator) 767

Numerals

3DMF. See QuickDraw 3D Object Metafile
3D pointing devices

controlling a camera with 1104–1107
defined 1100

3D Viewer 91–98
See also viewer objects
application-defined routines for 160–161
checking for availability of 99
constants for 104–109
defined 92–94
routines for 110–157
using 99–104

A

abstract data types 1270–1275
adjoining matrices 1212
alpha channels 1536, 1545, 1554, 1562, 1578, 1580

using for blend mattes 1522
using for transparency 1521–1522

ambient coefficients 528, 1404–1405
ambient light 1454–1455

creating 648
defined 633
getting data of 648
routines for 647–649
setting data of 649

ambient reflection coefficients. See ambient
coefficients

antialiasing modes 1523, 1541, 1549
application coordinate systems. See world

coordinate systems
application spaces. See world coordinate systems
areas 294
area stipple patterns 1545
ARGB color structure 1250, 1252
ASCII text files 1260
aspect ratio 688
aspect ratio camera data structure 687–688
aspect ratio cameras 681–682

creating 66–67, 707
data structure for 687
getting aspect ratio of 710
getting data of 708
getting field of view of 709
routines for 707–711
setting aspect ratio of 710
setting data of 708
setting field of view of 709

attachment objects
introduced 168

attenuation 633, 638
attenuation (of lights) 1450–1451
attribute inheritance 518–519
attribute metahandlers 516
attribute objects 515–544

adding to attribute sets 530
constants for 526–529
defined 515
drawing 529
registering custom 535–537
routines for 529
sharing 195
types of 516, 527–529

attributes 1393–1407
attributes. See attribute objects

I N D E X

1712

attributeSet constant 312
attribute set lists 1414–1422
attribute sets 1407–1413

adding attributes to 530
creating 530
defined 516
determining elements of 531
drawing 534
emptying 533
getting a view’s 908
getting a view’s default 907
getting data of an element of 531
getting types of elements 532
inheriting attributes 534
removing elements from 533
routines for 530–535
setting a view’s default 908

axes. See coordinate axes

B

back clipping planes. See yon planes
backfacing styles 546–547, 1423–1424

getting a view’s 902
routines for 558–560

background colors 786, 1513, 1518, 1545–1546
back-to-front rendering 1563
badges 93, 95–96
basic 3D data types 1264–1270
basic data types 1261–1262
begin group objects 1481–1482
binary files 1021, 1260
bitfields 1272
bitmap flags 1567
bitmap markers 329

routines for 499–505
bitmaps

defined 291
emptying 512
getting size of 513
methods for 1648–1650
routines for 512–513, 1591–1594

blend mattes 1522

bottom cap attribute sets 1411–1412
boundary-handling methods 927–928, 928–929
bounding boxes

defined 1161
routines for 1235–1240

bounding spheres
defined 1161
routines for 1240–1245

bounds. See bounding boxes, bounding spheres
boxes 1323–1327

defined 301–304
routines for 367–375
standard surface parameterization of 254, 302

B-spline polynomials 250
B-spline surfaces 251
buffer compositing 1555
buffer compositing modes 1542, 1555
button constants 136

C

C 1305
camera coordinate systems 590, 678
camera data structure 670, 685
camera location 670
camera objects 669–711, 1461–1473

See also aspect ratio cameras, orthographic
cameras, view plane cameras

adding to a view 68, 878, 879
creating 66–67
data structures for 683–688
defined 669
general routines for 688–694
getting data of 689
getting placement of 690
getting range of 691
getting transforms of 693–694
getting type of 688
getting view port of 692
introduced 43, 170
routines for 688–711
setting data of 689
setting placement of 690

I N D E X

1713

setting range of 691
setting view port of 692
types of 669, 688
using 683

camera placement objects 1461–1463
camera placements 670–671
camera placement structure 671, 683–684
camera range objects 1463–1465
camera ranges 672–673
camera range structure 673, 684
cameras. See camera objects
camera spaces. See camera coordinate systems
camera vector. See viewing direction
camera viewpoint control (3D Viewer) 94
camera viewport objects 1465–1467
camera view ports 673–676

defined 676
and draw context objects 676

camera view port structure 676, 684–685
caps. See end caps.
caps objects 1372–1374
Cartesian coordinates 587

routines for converting points to and
from 1202–1204

centers of projection 673
child objects 1260
clamp 1554
clamping 927, 929
classes. See QuickDraw 3D classes.
class types. See object types.
clip data structures 1576
clipping planes 672–673, 684
clip types 1539
color data types 1267
color look tables

methods for 1643–1644
color lookup tables

binding to a bitmap 1593, 1649
binding to a texture map 1590, 1646
pixel types for 1537
routines for creating and deleting 1586–1588
types of 1538

colors
See also QuickDraw 3D Color Utilities, RGB

color space

accumulating 1256
adding 1252
calculating luminance 1256
clamping 1254
linearly interpolating 1255
scaling 1254
subtracting 1253
utilities for manipulating 1247–1257

comments, writing to a file object 1068
compiler settings 53–54
components. See mesh components
cones 1381–1384

defined 325–326
routines for 482–491

connected 244
constant subdivision 549
constructive solid geometry 1508, 1542,

1554–1555, 1563
constructive solid geometry (CSG) 766–769
container faces 243
containers 1292–1295
containers, nesting of 1293
containers, notation for 1293
contours 243
contours (of general polygons) 1319
controller channels 1102
controller objects

creating 1109
data structures for 1108
decommissioning 1111
defined 1100–1103
determining if list of has changed 1110
determining if tracker exists for 1116
finding next 1110
getting activation state of 1112
getting button states of 1119
getting channels of 1114, 1115, 1140
getting signature of 1113
getting tracker orientation of 1122
getting tracker position of 1120
getting value count of 1115
getting values of 1124
moving tracker orientation of 1123
moving tracker position of 1121
routines for 1109–1126

I N D E X

1714

setting activation state of 1112
setting button states of 1119
setting channels of 1141
setting tracker of 1116
setting tracker orientation of 1123
setting tracker position of 1120
setting values of 1125
tracking cursors 1117–1119
and tracker objects 1101

controllers. See controller objects
controller state objects

creating 1126
defined 1103
restoring 1127
routines for 1126–1128
saving and reseting 1127

controller states. See controller state objects
controller strips 93, 94–95
controller values 1102
control points 251, 316
coordinate axes

constants for 73
defined 587

coordinates. See coordinate systems, tracker
coordinates

coordinate spaces. See coordinate systems
coordinate systems 587, 587–593
corners. See mesh corners
cross products 1191–1193
CSG. See constructive solid geometry
CSG equations 767–769, 773, 1542
CSG IDs 1542, 1554
CSG object IDs 767, 772
C standard I/O library. See standard I/O library
C string objects

creating 84
emptying character data of 87
getting character data of 85
getting length of 84
setting character data of 86

C strings 1305–1306
custom surface parameterizations 256
cylinders 1374–1378

defined 322–323
routines for 465–476

D

database files 1295
database mode 1021, 1030
deep buffer objects

introduced 168
default surface parameterizations. See standard

surface parameterizations
degrees, converting to radians 1223
determinants 1214
device coordinate systems. See window

coordinate systems
device spaces. See window coordinate systems
device structures 1514, 1575
device types 1538
diffuse coefficient 917
diffuse color objects 1393–1394
diffuse colors 528
diffuse reflection 917
diffuse reflection coefficient. See diffuse

coefficient
direct draw surface draw contexts

routines for 866–868
directional light data structure 640
directional lights 1455–1457

creating 649
defined 633
getting data of 652
getting direction of 651
getting shadow state of 650
routines for 649–653
setting data of 653
setting direction of 651
setting shadow state of 650

disks 1378–1381
defined 323–324
routines for 476–482

display group objects
defined 714
introduced 171
routines for 734–737

display groups 1473–1475
display group state objects 1483–1485
distance button (3D Viewer) 95

I N D E X

1715

distances between parametric points,
calculating 1173, 1176

distances between points, calculating 1173–1178
distances between rational points,

calculating 1174, 1175, 1177
dot products 1193–1194
double buffering 1508
double buffers 842
drag and drop, in 3 D Viewer 97–99
drawable flags 717
draw context caches 1520–1521
draw context coordinate systems. See window

coordinate systems
draw context data structure 843–844
draw context flags 1567
draw context objects 837–869

See also Macintosh draw contexts, pixmap draw
contexts

adding to a view 68, 881
and camera view ports 676
creating 65–66
data structures for 843–846
defined 837
general routines for 848–857
introduced 169
routines for 848–864
types of 838

draw contexts 1512–1513
creating 1517–1518
drawing in 1519–1520
repositioning 1518
routines for creating and deleting 1585–1586
routines for manipulating 1598–1616
setting state variables of 1518, 1519

draw contexts. See draw context objects
draw context spaces. See window coordinate

systems
draw context structures 1581–1584
drawing completion callback routines 161
drawing destinations 837
drawing engine methods

selectors for 1568
drawing engines 1510–1512

defined 1508
finding 1516–1517

optional features 1511
registering 1617
required features 1511
routines for 1594–1598
type of shared library for 1530
writing 1524–1534

E

edges. See mesh edges
edge tolerances 949

getting 971
setting 972

edit index 192
element objects

getting size of 207
introduced 167
registering 206–207
sharing 195
subclasses of 169

elements. See element objects
elevation projection 678
ellipses 1357–1359

defined 314–315
routines for 440–446

ellipsoids 1368–1372
defined 320–321
routines for 458–465

end caps 280
end group objects 1482–1483
endian types 279
engine IDs 1565
entries, number of (in table of contents) 1282
entry size (in table of contents) 1281
error-handling routines

defining 1154
registering 1147

Error Manager 1145–1157
application-defined routines in 1154–1157
defined 1145–1146
routines in 1147–1154

errors 87
defined 1145

I N D E X

1716

determining if fatal 1149
getting directly 1150
getting from a Macintosh draw context 1152

escape sequences 1263
even-odd rule 300, 1319
external reference objects 1286–1290
eye points. See camera locations

F

face attribute set lists 1416–1420
face cap attribute sets 1412–1413
face indices 401
faces. See also mesh faces
facets. See faces
fall-off 634–635
fall-off values 638–639, 642
fall-off values (of lights) 1451–1452
fans 311
far planes. See yon planes
fast features, selectors for 1564
fatal errors

defined 1145
field of view 681–682, 688
file mode flags 1029–1030
file objects 1019–1023

accessing objects in directly 1040–1043
application-defined routines for 1095–1097
canceling 1038
closing 1038
constants for 1029–1030
creating 1024–1025, 1033–1034
defined 1019–1020
determining if open 1037
getting mode 1039
getting version 1039
introduced 169
opening 1036
reading data from 1025–1027, 1045–1068
routines for 1033–1068
setting idle method of 1043
and storage objects 1020, 1034–1035
writing comments to 1068

writing data to 1028, 1045–1068
writing to 888–889

file pointers 1272–1275
files. See file objects
fill styles 548, 1426–1428

getting a view’s 903
routines for 563–566

flags, metafile 1276
floating-point data, reading from and writing to

file objects 1053–1055
floating-point integer data types 1262
frames. See viewer panes
front clipping planes. See hither planes
frustum coordinate systems. See camera

coordinate systems
frustum spaces. See camera coordinate systems
frustum-to-window transforms 592, 900

G

general polygon contour data structure 301
general polygon hints objects 1322–1323
general polygons 299–301, 1317–1321

routines for 360–367
generic renderer 764, 775
generic renderers 1488–1489
geometric objects 237–514, 1307–1393

attributes of 239–240
constants for 275–281
creating 257–258
data structures for 282–330
defined 238
deleting 257–258
drawing 333
general routines for 331–334
getting attribute set of 332
getting type of 331
introduced 170
routines for 331–513
setting attribute set of 333
types of 238, 275, 331

geometries. See geometric objects
geometry attribute set lists 1414–1416

I N D E X

1717

gestaltQD3DAvailable constant 72
gestaltQD3D constant 71
gestaltQD3DNotPresent constant 72
gestaltQD3DVersion constant 72
gestaltQD3DViewerAvailable constant 105
gestaltQD3DViewer constant 104
gestaltQD3DViewerNotPresent constant 105
global coordinate systems. See world coordinate

systems
global spaces. See world coordinate systems
Gouraud vertices 1519, 1577
graphics devices

defined 1513
graphics ports 846
graphics states, popping and pushing 717,

897–899
group objects 713–762, 1473–1485

adding objects to 728, 729, 730
constants for 721–723
counting objects in 727
creating 718, 723–726
defined 713
emptying 733
extending 195
general routines for 726–734
getting type of 726
introduced 170
routines for 723–746
types of 714–715, 726

group positions 715
routines for 737–743

groups. See group objects
groups (generic) 1480–1481
group state flags 716–717, 722–723
group state values 716

H

handle storage objects 988
routines for 1002–1005

headers 1276
hidden surface removal 1508
hierarchy 1259

hierarchy. See QuickDraw 3D class hierarchy.
highlight state objects 1405–1407
highlight states 549
highlight styles 548–549, 1428–1430

getting a view’s 903
routines for 566–568

hit data structure 953, 967
hither planes 672–673, 684
hit information masks 962–964
hit lists

defined 948
emptying 975
getting number of hits in 975
sorting 951–953
specifying information returned in 962–964
specifying sort order of 962

hit list sorting values 962
hit path structure 966
hits

getting information about 953–954
getting number in hit list 975
identifying 949–950

hit testing. See picking
hot angle 634

I

identity matrices 1209–1210
idle methods 895–896, 909–910, 1043
illumination models 916–920
illumination shaders

attaching to a window 60
defined 916
routines for 937–939
types of 938

image clear color objects 1501–1502
image dimensions objects 1500–1501
image masks 1497–1499
image structures 1576
immediate mode 50–52, 258, 875
indexed triangle structures 1584
infinite lights. See directional lights
info groups 1479–1480

I N D E X

1718

information groups 715
inheritance. See attribute inheritance
initial lines. See polar axes
inline flags 717
inner products. See dot products
integer data, reading from and writing to file

objects 1045–1053
interacting 43
interactive renderer 765

optional features 1511
interactive renderers 1487–1488
interpolation styles 547–548, 1424–1426

getting a view’s 902
routines for 561–563

inverting matrices 1211–1212
I/O proxy display groups 715, 1477–1479
isometric projection 678

J

join points. See knots

K

knots 251, 316, 319
knot vectors 251
kQ3AntiAliasModeMaskEdges constant 554
kQ3AntiAliasModeMaskFilled constant 554
kQ3ArrayIndexNULL constant 308, 313
kQ3AttenuationTypeInverseDistance

constant 638
kQ3AttenuationTypeInverseDistanceSquared

constant 638
kQ3AttenuationTypeNone constant 638
kQ3AttributeTypeAmbientCoefficient

constant 528
kQ3AttributeTypeConstructiveSolidGeometry

ID constant 772
kQ3AttributeTypeDiffuseColor constant 528
kQ3AttributeTypeHighlightState constant 528
kQ3AttributeTypeNone constant 527

kQ3AttributeTypeNormal constant 528
kQ3AttributeTypeNumTypes constant 529
kQ3AttributeTypeShadingUV constant 527
kQ3AttributeTypeSpecularColor constant 528
kQ3AttributeTypeSpecularControl

constant 528
kQ3AttributeTypeSurfaceShader constant 528
kQ3AttributeTypeSurfaceTangent constant 528
kQ3AttributeTypeSurfaceUV constant 527
kQ3AttributeTypeTransparencyColor

constant 528
kQ3AxisX constant 73
kQ3AxisY constant 73
kQ3AxisZ constant 73
kQ3BackfacingStyleBoth constant 547
kQ3BackfacingStyleFlip constant 547
kQ3BackfacingStyleRemove constant 547
kQ3CameraTypeOrthographic constant 688
kQ3CameraTypeViewAngleAspect constant 688
kQ3CameraTypeViewPlane constant 688
kQ3ClearMethodNone constant 843
kQ3ClearMethodWithColor constant 843
kQ3ComputeBoundsApproximate constant 891
kQ3ComputeBoundsExact constant 891
kQ3ControllerSetChannelMaxDataSize

constant 1141
kQ3CSGEquationAanBonCad constant 768
kQ3CSGEquationAandB constant 768
kQ3CSGEquationAandnotB constant 768
kQ3CSGEquation constants 773
kQ3CSGEquationnAaBorCanD constant 768
kQ3CSGEquationnotAandB constant 768
kQ3DirectDrawObject2 constant 847
kQ3DirectDrawObject constant 847
kQ3DirectDrawSurface2 constant 847
kQ3DirectDrawSurface constant 847
kQ3DisplayGroupStateMaskIsDrawn

constant 716, 722
kQ3DisplayGroupStateMaskIsInline

constant 716, 722
kQ3DisplayGroupStateMaskIsPicked

constant 716, 722
kQ3DisplayGroupStateMaskIsWritten

constant 716, 722

I N D E X

1719

kQ3DisplayGroupStateMaskUseBoundingBox
constant 716, 722

kQ3DisplayGroupStateMaskUseBoundingSphere
constant 716, 722

kQ3DisplayGroupStateNone constant 716, 722
kQ3DisplayGroupTypeIOProxy constant 200
kQ3DisplayGroupTypeOrdered constant 200
kQ3DrawContextTypeDDSurface constant 849
kQ3DrawContextTypeMacintosh constant 849
kQ3DrawContextTypePixmap constant 849
kQ3DrawContextTypeWin32DC constant 849
kQ3ElementTypeAttribute constant 199
kQ3ElementTypeName constant 193
kQ3ElementTypeNone constant 193
kQ3ElementTypeSet constant 193
kQ3ElementTypeUnknown constant 193
kQ3ElementTypeURL constant 193
kQ3EndCapMaskBottom constant 280
kQ3EndCapMaskInterior constant 281
kQ3EndCapMaskTop constant 280
kQ3EndCapNone constant 280
kQ3EndianBig constant 279
kQ3EndianLittle constant 279
kQ3ErrorAcceleratorAlreadySet result

code 89
kQ3ErrorAccessRestricted result code 234
kQ3ErrorAlreadyInitialized result code 88
kQ3ErrorAlreadyRendering result code 836
kQ3ErrorAttributeInvalidType result

code 544
kQ3ErrorAttributeNotContained result

code 544
kQ3ErrorBadDrawContextFlag result code 869
kQ3ErrorBadDrawContext result code 869
kQ3ErrorBadDrawContextType result code 869
kQ3ErrorBadStringType result code 89, 1098
kQ3ErrorBeginWriteAlreadyCalled result

code 1097
kQ3ErrorBeginWriteNotCalled result code 1097
kQ3ErrorBoundingLoopFailed result code 89
kQ3ErrorBoundsNotStarted result code 913
kQ3ErrorCameraNotSet result code 913
kQ3ErrorController result code 1144
kQ3ErrorDataNotAvailable result code 913
kQ3ErrorDegenerateGeometry result code 513

kQ3ErrorDisplayNotSet result code 913
kQ3ErrorDrawContextNotSet result code 913
kQ3ErrorEndOfContainer result code 1098
kQ3ErrorEndOfFile result code 1097
kQ3ErrorEndWriteNotCalled result code 1097
kQ3ErrorExtensionError result code 89
kQ3ErrorFileAlreadyOpen result code 1097
kQ3ErrorFileCancelled result code 1097
kQ3ErrorFileIsOpen result code 1097
kQ3ErrorFileModeRestriction result code 1097
kQ3ErrorFileNotOpen result code 1097
kQ3ErrorFileVersionExists result code 1098
kQ3ErrorGeometryInsufficientNumberOfPoint

s result code 513
kQ3ErrorImmediateModeUnderflow result

code 913
kQ3ErrorInternalError result code 88
kQ3ErrorInvalidCameraValues result code 711
kQ3ErrorInvalidData result code 88
kQ3ErrorInvalidGeometryType result code 836
kQ3ErrorInvalidHexString result code 1098
kQ3ErrorInvalidMetafileLabel result

code 1097
kQ3ErrorInvalidMetafileObject result

code 1097
kQ3ErrorInvalidMetafilePrimitive result

code 1097
kQ3ErrorInvalidMetafile result code 1097
kQ3ErrorInvalidMetafileSubObject result

code 1097
kQ3ErrorInvalidObjectClass result code 234
kQ3ErrorInvalidObjectForGroup result

code 762
kQ3ErrorInvalidObjectForPosition result

code 762
kQ3ErrorInvalidObjectName result code 234
kQ3ErrorInvalidObject result code 234
kQ3ErrorInvalidObjectType result code 234
kQ3ErrorInvalidParameter result code 88
kQ3ErrorInvalidPositionForGroup result

code 762
kQ3ErrorInvalidSubObjectForObject result

code 1097
kQ3ErrorLastFatalError result code 88
kQ3ErrorMacintoshError result code 88

I N D E X

1720

kQ3ErrorMemoryLeak result code 88
kQ3ErrorMetaHandlerRequired result code 234
kQ3ErrorNeedRequiredMethods result code 234
kQ3ErrorNoBeginGroup result code 1098
kQ3ErrorNoExtensionsFolder result code 89
kQ3ErrorNone result code 88
kQ3ErrorNonInvertibleMatrix result code 913
kQ3ErrorNonUniqueLabel result code 1098
kQ3ErrorNoRecovery result code 88
kQ3ErrorNoStorageSetForFile result code 1097
kQ3ErrorNoSubClassType result code 234
kQ3ErrorNothingToPop result code 913
kQ3ErrorNotInitialized result code 88
kQ3ErrorNotSupported result code 234
kQ3ErrorNULLParameter result code 88
kQ3ErrorObjectClassInUse result code 234
kQ3ErrorOutOfMemory result code 88
kQ3ErrorParameterOutOfRange result code 88
kQ3ErrorPickingLoopFailed result code 89
kQ3ErrorPickingNotStarted result code 913
kQ3ErrorPrivateExtensionError result

code 89
kQ3ErrorReadLessThanSize result code 1098
kQ3ErrorReadMoreThanSize result code 1098
kQ3ErrorReadStateInactive result code 1097
kQ3ErrorRegistrationFailed result code 88
kQ3ErrorRendererNotSet result code 913
kQ3ErrorRenderingIsActive result code 913
kQ3ErrorRenderingLoopFailed result code 89
kQ3ErrorRenderingNotStarted result code 913
kQ3ErrorScaleOfZero result code 630
kQ3ErrorSizeMismatch result code 1098
kQ3ErrorSizeNotLongAligned result code 1097
kQ3ErrorStartGroupRange result code 836
kQ3ErrorStateUnavailable result code 1097
kQ3ErrorStorageAlreadyOpen result code 1018
kQ3ErrorStorageInUse result code 1018
kQ3ErrorStorageIsOpen result code 1018
kQ3ErrorStorageNotOpen result code 1018
kQ3ErrorStringExceedsMaximumLength result

code 1098
kQ3ErrorTracker result code 1144
kQ3ErrorTypeAlreadyExistsAndHasObjectInst

ances result code 234

kQ3ErrorTypeAlreadyExistsAndHasSubclasses
result code 234

kQ3ErrorTypeAlreadyExistsAndOtherClassesD
ependOnIt result code 234

kQ3ErrorUnimplemented result code 88
kQ3ErrorUnixError result code 88
kQ3ErrorUnknownElementType result code 234
kQ3ErrorUnknownObject result code 1097
kQ3ErrorUnknownStudioType result code 836
kQ3ErrorUnmatchedEndGroup result code 1098
kQ3ErrorUnresolvableReference result

code 1097
kQ3ErrorUnsupportedFunctionality result

code 836
kQ3ErrorUnsupportedGeometryType result

code 836
kQ3ErrorUnsupportedPixelDepth result

code 869
kQ3ErrorValueExceedsMaximumSize result

code 1098
kQ3ErrorVector3DNotUnitLength result

code 89
kQ3ErrorVector3DZeroLength result code 89
kQ3ErrorViewIsStarted result code 913
kQ3ErrorViewNotStarted result code 913
kQ3ErrorWin32Error result code 88
kQ3ErrorWriteStateInactive result code 1097
kQ3ErrorWritingLoopFailed result code 89
kQ3ErrorWroteLessThanSize result code 1098
kQ3ErrorWroteMoreThanSize result code 1098
kQ3ErrorX11Error result code 88
kQ3Failure constant 73
kQ3FallOffTypeCosine constant 639
kQ3FallOffTypeExponential constant 639
kQ3FallOffTypeLinear constant 639
kQ3FallOffTypeNone constant 639
kQ3False constant 47, 72
kQ3FileCurrentlyInsideGroup constant 1032
kQ3FileModeDatabase constant 1030, 1032
kQ3FileModeNormal constant 1030, 1032
kQ3FileModeStream constant 1030, 1032
kQ3FileModeText constant 1030, 1032
kQ3FileReadObjectsInGroup constant 1032
kQ3FileReadWholeGroup constant 1032
kQ3FileVersionCurrent type 1032

I N D E X

1721

kQ3FillStyleEdges constant 548
kQ3FillStyleFilled constant 548
kQ3FillStylePoints constant 548
kQ3GeneralPolygonShapeHintComplex

constant 279
kQ3GeneralPolygonShapeHintConcave

constant 280
kQ3GeneralPolygonShapeHintConvex

constant 280
kQ3GeometryTypeBox constant 276
kQ3GeometryTypeCone constant 276
kQ3GeometryTypeCylinder constant 276
kQ3GeometryTypeDisk constant 276
kQ3GeometryTypeEllipse constant 276
kQ3GeometryTypeEllipsoid constant 276
kQ3GeometryTypeGeneralPolygon constant 276
kQ3GeometryTypeLine constant 276
kQ3GeometryTypeMarker constant 276
kQ3GeometryTypeMesh constant 276
kQ3GeometryTypeNURBCurve constant 276
kQ3GeometryTypeNURBPatch constant 277
kQ3GeometryTypePixmapMarker constant 277
kQ3GeometryTypePoint constant 277
kQ3GeometryTypePolygon constant 277
kQ3GeometryTypePolyhedron constant 277
kQ3GeometryTypePolyLine constant 277
kQ3GeometryTypeTorus constant 277
kQ3GeometryTypeTriangle constant 277
kQ3GeometryTypeTriGrid constant 277
kQ3GeometryTypeTriMesh constant 277
kQ3GroupTypeDisplay constant 200
kQ3GroupTypeInfo constant 200
kQ3GroupTypeLight constant 200
kQ3IlluminationTypeLambert constant 939
kQ3IlluminationTypeNULL constant 939
kQ3IlluminationTypePhong constant 939
kQ3InterpolationStyleNone constant 547
kQ3InterpolationStylePixel constant 548
kQ3InterpolationStyleVertex constant 548
kQ3LightTypeAmbient constant 643
kQ3LightTypeDirectional constant 643
kQ3LightTypePoint constant 643
kQ3LightTypeSpot constant 643
kQ3Mac2DLibraryNone constant 845
kQ3Mac2DLibraryQuickDraw constant 845

kQ3Mac2DLibraryQuickDrawGX constant 845
kQ3MacintoshStorageTypeFSSpec constant 988
kQ3MemoryStorageTypeHandle constant 988
kQ3MeshPartTypeMeshEdgePart constant 201
kQ3MeshPartTypeMeshFacePart constant 201
kQ3MeshPartTypeMeshVertexPart constant 201
kQ3MethodTypeAttributeCopyInherit

constant 523
kQ3MethodTypeAttributeInherit constant 523
kQ3MethodTypeAttributeInterpolate

constant 523
kQ3MethodTypeElementCopyAdd constant 523
kQ3MethodTypeElementCopyDuplicate

constant 523
kQ3MethodTypeElementCopyGet constant 523
kQ3MethodTypeElementCopyReplace

constant 523
kQ3MethodTypeElementDelete constant 523
kQ3MethodTypeObjectClassRegister

constant 213
kQ3MethodTypeObjectClassReplace

constant 213
kQ3MethodTypeObjectClassUnregister

constant 213
kQ3MethodTypeObjectClassVersion

constant 213
kQ3MethodTypeObjectCopy constant 213
kQ3MethodTypeObjectDelete constant 213, 523
kQ3MethodTypeObjectNew constant 213
kQ3MethodTypeObjectReadData constant 523,

1045
kQ3MethodTypeObjectTraverse constant 523
kQ3MethodTypeObjectTraverseData

constant 213
kQ3MethodTypeObjectWrite constant 523, 1045
kQ3NoticeBrightnessGreaterThanOne result

code 667
kQ3NoticeDataAlreadyEmpty result code 89
kQ3NoticeDrawContextNotSetUsingInternalDe

faults result code 869
kQ3NoticeFileAliasWasChanged result

code 1098
kQ3NoticeFileCancelled result code 1098
kQ3NoticeInvalidAttenuationTypeUsingInter

nalDefaults result code 667

I N D E X

1722

kQ3NoticeMeshEdgeIsNotBoundary result
code 514

kQ3NoticeMeshEdgeVertexDoNotCorrespond
result code 514

kQ3NoticeMeshInvalidVertexFacePair result
code 514

kQ3NoticeMeshVertexHasNoComponent result
code 514

kQ3NoticeMethodNotSupported result code 235
kQ3NoticeNone result code 88
kQ3NoticeObjectAlreadySet result code 235
kQ3NoticeParameterOutOfRange result code 89
kQ3NoticeScaleContainsZeroEntries result

code 630
kQ3NoticeSystemAlreadyInitialized result

code 88
kQ3NoticeViewSyncCalledAgain result

code 913
kQ3ObjectTypeElement constant 48
kQ3ObjectTypeInvalid constant 48
kQ3ObjectTypePick constant 48
kQ3ObjectTypeShared constant 48
kQ3ObjectTypeView constant 48
kQ3Off constant 47
kQ3On constant 47
kQ3OrientationStyleClockwise constant 550
kQ3OrientationStyleCounterClockwise

constant 550
kQ3PickDetailMask_Distance constant 954
kQ3PickDetailMaskDistance constant 963
kQ3PickDetailMask_LocalToWorldMatrix

constant 954
kQ3PickDetailMaskLocalToWorldMatrix

constant 963
kQ3PickDetailMask_Normal constant 954
kQ3PickDetailMaskNormal constant 963
kQ3PickDetailMask_Object constant 954
kQ3PickDetailMaskObject constant 963
kQ3PickDetailMaskPart constant 964
kQ3PickDetailMask_Path constant 954
kQ3PickDetailMaskPath constant 963
kQ3PickDetailMask_PickID constant 954
kQ3PickDetailMaskPickID constant 963
kQ3PickDetailMask_PickPart constant 954
kQ3PickDetailMask_ShapePart constant 954

kQ3PickDetailMaskShapePart constant 964
kQ3PickDetailMask_UV constant 954
kQ3PickDetailMaskUV constant 964
kQ3PickDetailMask_XYZ constant 954
kQ3PickDetailMaskXYZ constant 963
kQ3PickDetail_None constant 954
kQ3PickDetailNone constant 963
kQ3PickPartsMaskEdge constant 964
kQ3PickPartsMaskFace constant 964
kQ3PickPartsMaskVertex constant 964
kQ3PickPartsObject constant 964
kQ3PickSortFarToNear constant 962
kQ3PickSortNearToFar constant 962
kQ3PickSortNone constant 962
kQ3PickTypeWindowPoint constant 969
kQ3PickTypeWindowRect constant 969
kQ3Pi constant 1223
kQ3PixelTypeARGB16 constant 278
kQ3PixelTypeARGB32 constant 278
kQ3PixelTypeRGB16_565 constant 278
kQ3PixelTypeRGB16 constant 278
kQ3PixelTypeRGB24 constant 279
kQ3PixelTypeRGB32 constant 278
kQ3PolyhedronEdge01 constant 281
kQ3PolyhedronEdge12 constant 281
kQ3PolyhedronEdge20 constant 281
kQ3PolyhedronEdgeAll constant 281
kQ3PolyhedronEdgeNone constant 281
kQ3RendererType constants 776
kQ3RendererTypeGeneric constant 199, 776
kQ3RendererTypeInteractive constant 199, 776
kQ3RendererTypeWireFrame constant 199, 775
kQ3ReturnAllHits constant 965
kQ3SetTypeAttribute constant 77, 201
kQ3ShaderTypeIllumination constant 930
kQ3ShaderTypeSurface constant 930
kQ3ShaderUVBoundaryClamp constant 929
kQ3ShaderUVBoundaryWrap constant 929
kQ3ShapePartTypeMeshPart constant 201
kQ3ShapeTypeCamera constant 82, 200
kQ3ShapeTypeGeometry constant 82, 199
kQ3ShapeTypeGroup constant 82, 200, 714
kQ3ShapeTypeLight constant 82, 200
kQ3ShapeTypeReference constant 201
kQ3ShapeTypeShader constant 82, 199

I N D E X

1723

kQ3ShapeTypeStyle constant 82, 200
kQ3ShapeTypeTransform constant 82, 200
kQ3ShapeTypeUnknown constant 82, 200
kQ3SharedTypeAttachment constant 191
kQ3SharedTypeControllerState constant 191
kQ3SharedTypeDrawContext constant 191
kQ3SharedTypeFile constant 191
kQ3SharedTypeReference constant 191
kQ3SharedTypeRenderer constant 191
kQ3SharedTypeSet constant 191
kQ3SharedTypeShape constant 191
kQ3SharedTypeShapePart constant 191
kQ3SharedTypeStorage constant 191
kQ3SharedTypeString constant 191
kQ3SharedTypeTexture constant 191
kQ3SharedTypeTracker constant 191
kQ3SharedTypeViewHints constant 191
kQ3SolidGeometryObjA constant 767
kQ3SolidGeometryObjB constant 767
kQ3SolidGeometryObjC constant 767
kQ3SolidGeometryObj constants 772
kQ3SolidGeometryObjD constant 767
kQ3SolidGeometryObjE constant 767
kQ3StorageTypeMacintosh constant 988, 993
kQ3StorageTypeMemory constant 988, 993
kQ3StorageTypeUnix constant 988, 993
kQ3StorageTypeWin32 constant 993
kQ3StringMaximumLength constant 185
kQ3StringTypeCString constant 84
kQ3StyleTypeAntiAlias constant 200
kQ3StyleTypeBackfacing constant 557
kQ3StyleTypeFill constant 557
kQ3StyleTypeHighlight constant 557
kQ3StyleTypeInterpolation constant 557
kQ3StyleTypeOrientation constant 557
kQ3StyleTypePickID constant 557
kQ3StyleTypePickParts constant 557
kQ3StyleTypeReceiveShadows constant 557
kQ3StyleTypeSubdivision constant 557
kQ3SubdivisionMethodConstant constant 549
kQ3SubdivisionMethodScreenSpace

constant 549
kQ3SubdivisionMethodWorldSpace constant 549
kQ3Success constant 73
kQ3SurfaceShaderTypeTexture constant 199

kQ3TextureTypeMipmap constant 201, 940
kQ3TextureTypePixmap constant 201, 940
kQ3TransformTypeMatrix constant 601
kQ3TransformTypeQuaternion constant 601
kQ3TransformTypeReset constant 200
kQ3TransformTypeRotateAboutAxis

constant 601
kQ3TransformTypeRotateAboutPoint

constant 601
kQ3TransformTypeRotate constant 601
kQ3TransformTypeScale constant 601
kQ3TransformTypeTranslate constant 601
kQ3True constant 47, 72
kQ3UnixStorageTypePath constant 989
kQ3UnknownTypeBinary constant 1069
kQ3UnknownTypeText constant 1069
kQ3ViewDefaultAmbientCoefficient

constant 907
kQ3ViewDefaultDiffuseColor constant 907
kQ3ViewDefaultHighlightColor constant 908
kQ3ViewDefaultSpecularColor constant 907
kQ3ViewDefaultSpecularControl constant 907
kQ3ViewDefaultSubdivisionC1 constant 908
kQ3ViewDefaultSubdivisionC2 constant 908
kQ3ViewDefaultSubdivisionMethod

constant 908
kQ3ViewDefaultTransparency constant 907
kQ3ViewerActive constant 106
kQ3ViewerButtonCamera constant 106
kQ3ViewerButtonDolly constant 107
kQ3ViewerButtonOrbit constant 106
kQ3ViewerButtonReset constant 107
kQ3ViewerButtonTruck constant 106
kQ3ViewerButtonZoom constant 106
kQ3ViewerCameraBack constant 109
kQ3ViewerCameraBottom constant 109
kQ3ViewerCameraFit constant 109
kQ3ViewerCameraFront constant 109
kQ3ViewerCameraLeft constant 109
kQ3ViewerCameraRestore constant 109
kQ3ViewerCameraRight constant 109
kQ3ViewerCameraTop constant 109
kQ3ViewerClassName constant 157
kQ3ViewerClipboardFormat constant 157
kQ3ViewerControllerVisible constant 106

I N D E X

1724

kQ3ViewerDefault constant 107
kQ3ViewerDraggingInOff constant 107
kQ3ViewerDraggingOff constant 106
kQ3ViewerDraggingOutOff constant 107
kQ3ViewerDragMode constant 107
kQ3ViewerDrawDragBorder constant 107
kQ3ViewerDrawFrame constant 106
kQ3ViewerDrawGrowBox constant 107
kQ3ViewerEmpty constant 108
kQ3ViewerHasModel constant 108
kQ3ViewerHasUndo constant 108
kQ3ViewerOutputTextMode constant 107
kQ3ViewerShowBadge constant 106
kQ3ViewStatusCancelled constant 883
kQ3ViewStatusDone constant 883
kQ3ViewStatusError constant 883
kQ3ViewStatusRetraverse constant 883
kQ3WarningExtensionNotLoading result

code 89
kQ3WarningFilePointerRedefined result

code 1098
kQ3WarningFilePointerResolutionFailed

result code 1098
kQ3WarningFunctionalityNotSupported result

code 836
kQ3WarningInconsistentData result code 1098
kQ3WarningInternalException result code 88
kQ3WarningInvalidHexString result code 1098
kQ3WarningInvalidMetafileObject result

code 1098
kQ3WarningInvalidObjectInGroupMetafile

result code 235
kQ3WarningInvalidPaneDimensions result

code 869
kQ3WarningInvalidSubObjectForObject result

code 1098
kQ3WarningInvalidTableOfContents result

code 1098
kQ3WarningLowMemory result code 88
kQ3WarningNoAttachMethod result code 1098
kQ3WarningNone result code 88
kQ3WarningNonInvertibleMatrix result

code 913
kQ3WarningNoObjectSupportForDrawMethod

result code 234

kQ3WarningNoObjectSupportForDuplicateMeth
od result code 234

kQ3WarningNoObjectSupportForReadMethod
result code 234

kQ3WarningNoObjectSupportForWriteMethod
result code 234

kQ3WarningParameterOutOfRange result
code 89

kQ3WarningPickParamOutside result code 985
kQ3WarningPossibleMemoryLeak result code 88
kQ3WarningQuaternionEntriesAreZero result

code 513
kQ3WarningReadLessThanSize result code 1098
kQ3WarningScaleContainsNegativeEntries

result code 630
kQ3WarningScaleEntriesAllZero result

code 630
kQ3WarningStringExceedsMaximumLength result

code 1098
kQ3WarningTypeAlreadyRegistered result

code 235
kQ3WarningTypeAndMethodAlreadyDefined

result code 234
kQ3WarningTypeHasNotBeenRegistered result

code 235
kQ3WarningTypeIsOutOfRange result code 235
kQ3WarningTypeNewerVersionAlreadyRegister

ed result code 235
kQ3WarningTypeSameVersionAlreadyRegistere

d result code 235
kQ3WarningUnknownElementType result

code 234
kQ3WarningUnknownObject result code 1098
kQ3WarningUnmatchedBeginGroup result

code 1098
kQ3WarningUnmatchedEndGroup result code 1098
kQ3WarningUnresolvableReference result

code 1098
kQ3WarningVector3DNotUnitLength result

code 513
kQ3WarningViewTraversalInProgress result

code 913
kQ3XAttributeMaskAll constant 790
kQ3XAttributeMaskAmbientCoefficient

constant 789

I N D E X

1725

kQ3XAttributeMaskCustomAttribute
constant 789

kQ3XAttributeMaskDiffuseColor constant 789
kQ3XAttributeMaskHighlightState

constant 789
kQ3XAttributeMaskInherited constant 790
kQ3XAttributeMaskInterpolated constant 790
kQ3XAttributeMaskNone constant 789
kQ3XAttributeMaskNormal constant 789
kQ3XAttributeMaskShadingUV constant 789
kQ3XAttributeMaskSpecularColor constant 789
kQ3XAttributeMaskSpecularControl

constant 789
kQ3XAttributeMaskSurfaceShader constant 789
kQ3XAttributeMaskSurfaceTangent

constant 789
kQ3XAttributeMaskSurfaceUV constant 789
kQ3XAttributeMaskTransparencyColor

constant 789
kQ3XClipMaskFullyExposed constant 827
kQ3XClipMaskNotExposed constant 827
kQ3XClipMaskPartiallyExposed constant 827
kQ3XDevicePixelTypeARGB16 constant 826
kQ3XDevicePixelTypeARGB32 constant 826
kQ3XDevicePixelTypeIndexed1 constant 826
kQ3XDevicePixelTypeIndexed2 constant 826
kQ3XDevicePixelTypeIndexed4 constant 826
kQ3XDevicePixelTypeIndexed8 constant 826
kQ3XDevicePixelTypeInvalid constant 826
kQ3XDevicePixelTypeRGB16_565 constant 826
kQ3XDevicePixelTypeRGB16 constant 826
kQ3XDevicePixelTypeRGB24 constant 826
kQ3XDevicePixelTypeRGB32 constant 826
kQ3XDrawContextValidationActiveBuffer

constant 819
kQ3XDrawContextValidationAll constant 819
kQ3XDrawContextValidationBackgroundShader

constant 819
kQ3XDrawContextValidationClearFlags

constant 819
kQ3XDrawContextValidationClearFunction

constant 819
kQ3XDrawContextValidationColorPalette

constant 819

kQ3XDrawContextValidationDevice
constant 819

kQ3XDrawContextValidationDoubleBuffer
constant 819

kQ3XDrawContextValidationForegroundShader
constant 819

kQ3XDrawContextValidationInternalOffScree
n constant 819

kQ3XDrawContextValidationMask constant 819
kQ3XDrawContextValidationPane constant 819
kQ3XDrawContextValidationPlatformAttribut

es constant 819
kQ3XDrawContextValidationShader

constant 819
kQ3XDrawContextValidationWindowClip

constant 819
kQ3XDrawContextValidationWindow

constant 819
kQ3XDrawContextValidationWindowPosition

constant 819
kQ3XDrawContextValidationWindowSize

constant 819
kQ3XDrawRegionServicesClearFlag

constant 821
kQ3XDrawRegionServicesDontLockDDSurfaceFl

ag constant 821
kQ3XDrawRegionServicesNoneFlag constant 821
kQ3XMethodTypeAttributeCopyInherit

constant 544
kQ3XMethodTypeAttributeInherit constant 543
kQ3XMethodTypeElementCopyAdd constant 539
kQ3XMethodTypeElementCopyDuplicate

constant 541
kQ3XMethodTypeElementCopyGet constant 540
kQ3XMethodTypeElementCopyReplace

constant 539
kQ3XMethodTypeElementDelete constant 542
kQ3XMethodTypeObjectAttach constant 233
kQ3XMethodTypeObjectClassRegister

constant 225
kQ3XMethodTypeObjectClassReplace

constant 227
kQ3XMethodTypeObjectClassUnregister

constant 226

I N D E X

1726

kQ3XMethodTypeObjectClassVersion
constant 228

kQ3XMethodTypeObjectDelete constant 230
kQ3XMethodTypeObjectDuplicate constant 231
kQ3XMethodTypeObjectNew constant 229
kQ3XMethodTypeObjectRead constant 233
kQ3XMethodTypeObjectReadData constant 233
kQ3XMethodTypeObjectTraverse constant 233
kQ3XMethodTypeObjectTraverseData

constant 233
kQ3XMethodTypeObjectWrite constant 233
kQ3XMethodTypeRendererCancel constant 812
kQ3XMethodTypeRendererEndFrame constant 811
kQ3XMethodTypeRendererEndPass constant 810
kQ3XMethodTypeRendererFlushFrame

constant 809
kQ3XMethodTypeRendererGetConfigurationDat

a constant 800
kQ3XMethodTypeRendererGetNickNameString

constant 798
kQ3XMethodTypeRendererIsBoundingBoxVisibl

e constant 816
kQ3XMethodTypeRendererIsInteractive

constant 796
kQ3XMethodTypeRendererModalConfigure

constant 797
kQ3XMethodTypeRendererPop constant 815
kQ3XMethodTypeRendererPush constant 815
kQ3XMethodTypeRendererSetConfigurationDat

a constant 801
kQ3XMethodTypeRendererStartFrame

constant 807
kQ3XMethodTypeRendererStartPass

constant 808
kQ3XMethodTypeRendererSubmitGeometryMetaH

andler constant 795
kQ3XMethodTypeRendererUpdateAttributeMeta

Handler constant 803
kQ3XMethodTypeRendererUpdateMatrixLocalTo

Camera constant 806
kQ3XMethodTypeRendererUpdateMatrixLocalTo

Frustum constant 806
kQ3XMethodTypeRendererUpdateMatrixLocalTo

World constant 806

kQ3XMethodTypeRendererUpdateMatrixLocalTo
WorldInverse constant 806

kQ3XMethodTypeRendererUpdateMatrixLocalTo
WorldInverseTranspose constant 806

kQ3XMethodTypeRendererUpdateMatrixMetaHan
dler constant 805

kQ3XMethodTypeRendererUpdateMatrixWorldTo
Frustum constant 806

kQ3XMethodTypeRendererUpdateShaderMetaHan
dler constant 804

kQ3XMethodTypeRendererUpdateStyleMetaHand
ler constant 802

kQAAntiAlias_Best constant 1550
kQAAntiAlias_Fast constant 1550
kQAAntiAlias_Mid constant 1550
kQAAntiAlias_Off constant 1549
kQABitmapBindColorTable constant 1569
kQABitmapDelete constant 1569
kQABitmapDetach constant 1569
kQABitmap_HighCompression constant 1567
kQABitmap_Lock constant 1567
kQABitmapNew constant 1569
kQABitmap_NoCompression constant 1567
kQABitmap_None constant 1567
kQABlend_Interpolate constant 1551
kQABlend_OpenGL constant 1551
kQABlend_PreMultiply constant 1550
kQABufferComposite_Interpolate

constant 1556
kQABufferComposite_None constant 1555
kQABufferComposite_PreMultiply

constant 1555
kQAClipRgn constant 1539
kQAClipWin32Rgn constant 1539
kQAColorTable_CL4_RGB32 constant 1538
kQAColorTable_CL8_RGB32 constant 1538
kQAColorTableDelete constant 1569
kQAColorTableNew constant 1569
kQAContext_Cache constant 1568
kQAContext_DeepZ constant 1568
kQAContext_DoubleBuffer constant 1568
kQAContext_None constant 1568
kQAContext_NoZBuffer constant 1568
kQACSGTag_0 constant 1555
kQACSGTag_1 constant 1555

I N D E X

1727

kQACSGTag_2 constant 1555
kQACSGTag_3 constant 1555
kQACSGTag_4 constant 1555
kQACSGTag_None constant 1555
kQADeviceDDSurface constant 1539
kQADeviceGDevice constant 1539
kQADeviceMemory constant 1539
kQADeviceWin32DC constant 1539
kQADrawBitmap constant 1570
kQADrawLine constant 1570
kQADrawPoint constant 1570
kQADrawPrivateDelete constant 1569
kQADrawPrivateNew constant 1569
kQADrawTriGouraud constant 1570
kQADrawTriMeshGouraud constant 1571
kQADrawTriMeshTexture constant 1571
kQADrawTriTexture constant 1570
kQADrawVGouraud constant 1570
kQADrawVTexture constant 1570
kQAEngine_AppleHW2 constant 1566
kQAEngine_AppleHW3 constant 1566
kQAEngine_AppleHW constant 772, 1565
kQAEngine_AppleSW constant 772, 1565
kQAEngineCheckDevice constant 1569
kQAEngineGestalt constant 1569
kQAFast_Antialiasing constant 1564
kQAFast_Blend constant 1564
kQAFast_CL4 constant 1564
kQAFast_CL8 constant 1564
kQAFast_Gouraud constant 1564
kQAFast_Line constant 1564
kQAFast_None constant 1564
kQAFast_Texture constant 1564
kQAFast_TextureHQ constant 1564
kQAFast_ZSorted constant 1564
kQAFlush constant 1571
kQAGestalt_ASCIIName constant 1560
kQAGestalt_ASCIINameLength constant 1560
kQAGestalt_EngineID constant 1560
kQAGestalt_FastFeatures constant 1560
kQAGestalt_FastTextureMemory constant 1561
kQAGestalt_NumSelectors constant 1561
kQAGestalt_OptionalFeatures constant 1560
kQAGestalt_Revision constant 1560
kQAGestalt_TextureMemory constant 1561

kQAGestalt_VendorID constant 1560
kQAGetFloat constant 1570
kQAGetInt constant 1570
kQAGetNoticeMethod constant 1571
kQAGetPtr constant 1570
kQAGL_Clamp constant 1556
kQAGL_DrawBuffer_Back constant 1558
kQAGL_DrawBuffer_BackLeft constant 1558
kQAGL_DrawBuffer_BackRight constant 1558
kQAGL_DrawBuffer_Front constant 1558
kQAGL_DrawBuffer_FrontLeft constant 1557
kQAGL_DrawBuffer_FrontRight constant 1557
kQAGL_DrawBuffer_None constant 1557
kQAGL_Repeat constant 1556
kQAMethod_BufferComposite constant 1572
kQAMethod_BufferInitialize constant 1572
kQAMethod_DisplayModeChanged constant 1572
kQAMethod_NumSelectors constant 1572
kQAMethod_ReloadTextures constant 1572
kQAMethod_RenderCompletion constant 1571
kQAOptional_Antialias constant 1563
kQAOptional_BlendAlpha constant 1562
kQAOptional_Blend constant 1562
kQAOptional_BoundToDevice constant 1563
kQAOptional_BufferComposite constant 1563
kQAOptional_CL4 constant 1563
kQAOptional_CL8 constant 1563
kQAOptional_CSG constant 1563
kQAOptional_DeepZ constant 1562
kQAOptional_NoClear constant 1563
kQAOptional_None constant 1562
kQAOptional_OpenGL constant 1563
kQAOptional_PerspectiveZ constant 1563
kQAOptional_TextureColor constant 1562
kQAOptional_Texture constant 1562
kQAOptional_TextureHQ constant 1562
kQAOptional_ZSorted constant 1563
kQAPerspectiveZ_Off constant 1552
kQAPerspectiveZ_On constant 1552
kQAPixel_Alpha1 constant 1536
kQAPixel_ARGB16 constant 1537
kQAPixel_ARGB32 constant 1537
kQAPixel_CL4 constant 1537
kQAPixel_CL8 constant 1537
kQAPixel_RGB16_565 constant 1537

I N D E X

1728

kQAPixel_RGB16 constant 1536
kQAPixel_RGB24 constant 1538
kQAPixel_RGB32 constant 1537
kQARenderAbort constant 1571
kQARenderEnd constant 1571
kQARenderStart constant 1571
kQASetFloat constant 1570
kQASetInt constant 1570
kQASetNoticeMethod constant 1571
kQASetPtr constant 1570
kQASubmitVerticesGouraud constant 1571
kQASubmitVerticesTexture constant 1571
kQASync constant 1571
kQATag_Antialias constant 1541
kQATag_Blend constant 1541
kQATag_BufferComposite constant 1542
kQATag_ColorBG_a constant 1545
kQATag_ColorBG_b constant 1546
kQATag_ColorBG_g constant 1546
kQATag_ColorBG_r constant 1546
kQATag_CSGEquation constant 1542
kQATag_CSGTag constant 1542
kQATag_EngineSpecific_Minimum constant 1545
kQATagGL_AreaPattern0 constant 1545
kQATagGL_AreaPattern31 constant 1545
kQATagGL_BlendDst constant 1544
kQATagGL_BlendSrc constant 1544
kQATagGL_DepthBG constant 1547
kQATagGL_DrawBuffer constant 1542
kQATagGL_LinePattern constant 1544
kQATagGL_ScissorXMax constant 1544
kQATagGL_ScissorXMin constant 1544
kQATagGL_ScissorYMax constant 1544
kQATagGL_ScissorYMin constant 1544
kQATagGL_TextureBorder_a constant 1547
kQATagGL_TextureBorder_b constant 1547
kQATagGL_TextureBorder_g constant 1547
kQATagGL_TextureBorder_r constant 1547
kQATagGL_TextureMagFilter constant 1543
kQATagGL_TextureMinFilter constant 1543
kQATagGL_TextureWrapU constant 1543
kQATagGL_TextureWrapV constant 1543
kQATag_PerspectiveZ constant 1541
kQATag_Texture constant 1548
kQATag_TextureFilter constant 1541

kQATag_TextureOp constant 1542
kQATag_Width constant 1546
kQATag_ZFunction constant 1540
kQATag_ZMinOffset constant 1546
kQATag_ZMinScale constant 1546
kQATextureBindColorTable constant 1569
kQATextureDelete constant 1569
kQATextureDetach constant 1569
kQATextureFilter_Best constant 785, 1552
kQATextureFilter_Fast constant 784, 1552
kQATextureFilter_Mid constant 785, 1552
kQATexture_HighCompression constant 1567
kQATexture_Lock constant 1566
kQATexture_Mipmap constant 1567
kQATextureNew constant 1569
kQATexture_NoCompression constant 1567
kQATexture_None constant 1566
kQATextureOp_Decal constant 1554
kQATextureOp_Highlight constant 1553
kQATextureOp_Modulate constant 1553
kQATextureOp_None constant 1553
kQATextureOp_Shrink constant 1554
kQATriFlags_Backfacing constant 1566
kQATriFlags_None constant 1566
kQAVendor_3DLabs constant 771
kQAVendor_Apple constant 771, 1565
kQAVendor_ATI constant 771, 1565
kQAVendor_BestChoice constant 771, 1565
kQAVendor_DiamondMM constant 771, 1565
kQAVendor_Matrox constant 771, 1565
kQAVendor_Mentor constant 771, 1565
kQAVendor_Radius constant 771, 1565
kQAVendor_Yarc constant 771, 1565
kQAVersion_1_0_5 constant 1536
kQAVersion_1_0 constant 1536
kQAVersion_1_1 constant 1536
kQAVersion_Prerelease constant 1535
kQAVertexMode_Fan constant 1559
kQAVertexMode_Line constant 1558
kQAVertexMode_NumModes constant 1559
kQAVertexMode_Point constant 1558
kQAVertexMode_Polyline constant 1558
kQAVertexMode_Strip constant 1559
kQAVertexMode_Tri constant 1559
kQAZFunction_EQ constant 1549

I N D E X

1729

kQAZFunction_GE constant 1549
kQAZFunction_GT constant 1549
kQAZFunction_LE constant 1549
kQAZFunction_LT constant 1549
kQAZFunction_NE constant 1549
kQAZFunction_None constant 1549
kQAZFunction_True constant 1549

L

labels 1272
Lambertian reflection. See diffuse reflection
Lambert illumination 937
Lambert illumination shader 916
light attenuation. See attenuation
light data objects 1452–1454
light data structure 632, 639–640
light fall-off. See fall-off values
light groups 1476–1477

adding to a view 880
defined 714

light objects 631–634, 1450–1461
See also ambient light, directional lights, point

lights, spot lights
adding to a view 68
constants for 637–639
creating 62–64
data structures for 639–642
defined 631
general routines for 642–647
getting brightness of 644
getting color of 645
getting data of 646
getting state of 643
getting type of 643
introduced 43, 170
routines for 642–667
setting brightness of 645
setting color of 646
setting data of 647
setting state of 644
types of 632, 643

lights. See light objects

lines 295–296, 1309–1311
routines for 337–342

lines of projection. See projectors
line stipple patterns 1545
local coordinate systems 588–589
local spaces. See local coordinate systems
local-to-world transforms 589, 899
luminance, calculating 1256

M

Macintosh draw context data structure 845–846
Macintosh draw contexts

data structures for 845–846
defined 839–840
getting errors generated by 1152
routines for 857–863

Macintosh FSSpec storage objects 988
routines for 1008–1010

Macintosh storage objects 988
routines for 1005–1007

macros, for traversing meshes 273
markers 329–330, 1390–1393
material properties. See attribute objects
matrices

adjoining 1212
copying 1208–1209
defined 290–291
getting determinants of 1214
inverting 1211–1212
multiplying 1213
reading from and writing to file

objects 1065–1066
routines for 1208–1214
transposing 1210–1211

matrix data types 1269
matrix transforms 594, 1440–1441

routines for 603–605
maximum, of two numbers 1223
memory devices

defined 1513
memory device structures 1514, 1572
memory storage objects 988

I N D E X

1730

routines for 996–1002
mesh components 244
mesh corners 243
mesh corners objects 1343–1345
mesh edges 242
mesh edges objects 1345–1347
meshes 240–244, 1338–1342

defined 240, 305–307
routines for 382–410
traversing 272–274, 410–429

mesh faces 241
assigning parameterizations to 271

mesh iterator functions 242, 410–429
mesh iterator structure 273, 306
mesh part objects

defined 243
picking 958–959
routines for 977–980

mesh parts. See mesh part objects
mesh vertices 242
metafile 46
metafile file structure 1261–1303
metahandler 196
method reporting methods 1650–1651
methods 213
method selectors 1568
metric pick objects 951
metric picks. See metric pick objects
minimum, of two numbers 1223
mipmapping 1567, 1589, 1646
mipmap textures

routines for 942–945
modeling 43
modeling coordinate systems. See local

coordinate systems
modeling spaces. See local coordinate systems
models

creating 56–59
picking 886–887
rendering 69–71, 882–885
writing 888–889

move button (3D Viewer) 95
multiplying matrices 1213

N

natural attributes 517–518
natural surface parameterizations 254
near planes. See hither planes
normal files 1295
normal mode 1021
normals 1403–1404
notice-handling routines

defining 1156
registering 1148

notice methods 1651–1653
methods for getting and setting 1638–1639
routines for getting and setting 1615–1616
selectors for 1571
writing 1651–1652

notices 1145, 1151
notices 87
notify functions. See tracker notify functions
notify thresholds 1129
null file pointers 1272
null illumination 938
NURB curves 248–251, 1359–1361

defined 249
routines for 446–451

NURB curves, 2D 1362–1363
NURB patches 248–251, 1365–1368

defined 249
routines for 451–458

O

object coordinate systems. See local coordinate
systems

object hierarchy 184
object naming 198
objects. See QuickDraw 3D objects, metafile

objects
object sizes 1270
object spaces. See local coordinate systems
object types 175–176, 198–201, 1270
off-axis viewing 679
offscreen graphics worlds 841

I N D E X

1731

offset, relative 1272
opaque 164
OpenGL 1508, 1531–1534
OpenGL buffer drawing modes 1557
OpenGL texture wrapping modes 1556
optional features, selectors for 1561
ordered display groups 714, 1475–1476
orientation styles 550–551, 1433–1434

getting a view’s 904
routines for 571–574

original QuickDraw. See QuickDraw
origins 587
orthographic camera data structure 686
orthographic cameras 677–679, 1467–1469

creating 694
data structure for 686
defined 677
getting data of 695
managing sides of 696–700
routines for 694–700
setting data of 695

orthographic projection 677
outer angle 634
outer products. See cross products
owner strings (in type objects) 1291

P

packing enum data type 1416
parallel projections 673
parameterization data types 1268
parameterizations 252
parametric curves 249
parametric points

See also points, point objects, rational points
calculating distances between 1173, 1176
defined 288–289
determining affine combinations of 1205
setting 1163
subtracting 1172

parent objects 1260
perspective foreshortening 674
perspective projections 673, 674–676

Phong illumination 937
Phong illumination shader 916, 918–920
pick data structure 965
pick details. See hit information masks
pick geometry 948
pick hit lists. See hit lists
pick hits. See hits
pick ID styles 1436–1437
picking 947
picking flags 717
picking IDs 552
picking ID styles 552

defined 552
getting a view’s 905
routines for 576–579

picking loops 948
picking parts styles 552–553

getting a view’s 906
routines for 579–581

pick objects 947–985
constants for 961–964
data structures for 964–968
defined 947–948
general routines for 968–975
getting data of 969
getting type of 968
introduced 167
routines for 968–985
setting data of 970
types of 948–949, 969

pick origins 951
pick parts masks 964
pick parts styles 1437–1438
picture areas 93
pixel images. See pixmaps
pixel maps. See pixmaps
pixel types 277–279, 1536
pixmap draw context data structure 846
pixmap draw contexts

data structures for 846
defined 840–841
routines for 863–864

pixmap markers 329
routines for 505–512

pixmaps 291

I N D E X

1732

pixmap texture objects 922, 1492–1495
pixmap textures

routines for 941–942
plane constants 294
plane equations 294
plug-in subclasses 194
pointIndex constant 312
pointing devices. See QuickDraw 3D Pointing

Device Manager
point light data structure 640–641
point lights 633, 1457–1458

creating 653
defined 633
getting attenuation of 655
getting data of 657
getting location of 656
getting shadow state of 654
routines for 653–658
setting attenuation of 655
setting data of 658
setting location of 657
setting shadow state of 654

point objects 295, 1307–1308
routines for 334–337

point pick objects. See window-point pick objects
points

adding vectors to 1182–1183
calculating distances between 1173–1178
calculating relative ratios between 1178–1181
converting coordinate forms 1202–1204
converting dimensions of 1167–1170
defined 283
determining affine combinations of 1205–1208
reading from and writing to file

objects 1059–1061
setting 1162, 1163–1164
subtracting 1171–1173
subtracting vectors from 1183–1185
transforming 1196–1201

points, three-dimensional 1265
points, two-dimensional 1265
points of interest 670
polar axes 285
polar coordinates

defined 588

routines for converting points to and
from 1202–1204

polar points
defined 284
setting 1165

poles. See polar origins
polygons, general 1317–1321
polygons, simple 1315–1317
polyhedra 245–246

defined 311–314
routines for 432–440

polylines 296–297, 1311–1313
routines for 342–349

popping graphics states 898
primitives. See geometric objects
private. See opaque
private class data 201, 221
private draw context methods 1639–1642

writing 1526–1528
projection planes. See view planes
projections 673–682
projective transforms. See frustum-to-window

transforms
projectors 673
proxy display groups. See I/O proxy display

groups
public draw context methods 1618–1639

registering 1617
selectors for 1569
writing 1525–1526

pushing graphics states 898

Q

Q3AmbientLight_GetData function 648
Q3AmbientLight_New function 648
Q3AmbientLight_SetData function 649
Q3AntiAliasStyle_GetData function 583
Q3AntiAliasStyle_New function 581
Q3AntiAliasStyle_SetData function 583
Q3AntiAliasStyle_Submit function 582
Q3AttributeClass_Register function 536
Q3AttributeSet_Add function 530

I N D E X

1733

Q3AttributeSet_Clear function 533
Q3AttributeSet_Contains function 531
Q3AttributeSet_Empty function 533
Q3AttributeSet_Get function 531
Q3AttributeSet_GetNextAttributeType

function 532
Q3AttributeSet_Inherit function 534
Q3AttributeSet_New function 530
Q3AttributeSet_Submit function 534
Q3Attribute_Submit function 529
Q3BackfacingStyle_Get function 559
Q3BackfacingStyle_New function 558
Q3BackfacingStyle_Set function 560
Q3BackfacingStyle_Submit function 559
Q3Bitmap_Empty function 512
Q3Bitmap_GetImageSize function 513
Q3BoundingBox_Copy function 1235
Q3BoundingBox_SetFromPoints3D function 1238
Q3BoundingBox_SetFromRationalPoints4D

function 1239
Q3BoundingBox_Set function 1236
Q3BoundingBox_Union function 1236
Q3BoundingBox_UnionPoint3D function 1237
Q3BoundingBox_UnionRationalPoint4D

function 1238
Q3BoundingSphere_Copy function 1240
Q3BoundingSphere_SetFromPoints3D

function 1244
Q3BoundingSphere_SetFromRationalPoints4D

function 1244
Q3BoundingSphere_Set function 1241
Q3BoundingSphere_Union function 1241
Q3BoundingSphere_UnionPoint3D function 1242
Q3BoundingSphere_UnionRationalPoint4D

function 1243
Q3Box_EmptyData function 370
Q3Box_GetData function 369
Q3Box_GetFaceAttributeSet function 374
Q3Box_GetMajorAxis function 372
Q3Box_GetMinorAxis function 373
Q3Box_GetOrientation function 371
Q3Box_GetOrigin function 370
Q3Box_New function 368
Q3Box_SetData function 369
Q3Box_SetFaceAttributeSet function 375

Q3Box_SetMajorAxis function 373
Q3Box_SetMinorAxis function 374
Q3Box_SetOrientation function 372
Q3Box_SetOrigin function 371
Q3Box_Submit function 368
Q3Camera_GetData function 689
Q3Camera_GetPlacement function 690
Q3Camera_GetRange function 691
Q3Camera_GetType function 688
Q3Camera_GetViewPort function 692
Q3Camera_GetViewToFrustum function 693
Q3Camera_GetWorldToFrustum function 694
Q3Camera_GetWorldToView function 693
Q3Camera_SetData function 689
Q3Camera_SetPlacement function 690
Q3Camera_SetRange function 691
Q3Camera_SetViewPort function 692
Q3ColorARGB_Set function 1252
Q3ColorRGB_Accumulate function 1256
Q3ColorRGB_Add function 1252
Q3ColorRGB_Clamp function 1254
Q3ColorRGB_Lerp function 1255
Q3ColorRGB_Luminance function 1256
Q3ColorRGB_Scale function 1254
Q3ColorRGB_Set function 1251
Q3ColorRGB_Subtract function 1253
Q3Comment_Write function 1068
Q3Cone_EmptyData function 484
Q3Cone_GetBottomAttributeSet function 490
Q3Cone_GetCaps function 488
Q3Cone_GetData function 483
Q3Cone_GetFaceAttributeSet function 489
Q3Cone_GetMajorRadius function 486
Q3Cone_GetMinorRadius function 487
Q3Cone_GetOrientation function 485
Q3Cone_GetOrigin function 484
Q3Cone_New function 482
Q3Cone_SetBottomAttributeSet function 491
Q3Cone_SetCaps function 488
Q3Cone_SetData function 483
Q3Cone_SetFaceAttributeSet function 489
Q3Cone_SetMajorRadius function 487
Q3Cone_SetMinorRadius function 488
Q3Cone_SetOrientation function 486
Q3Cone_SetOrigin function 485

I N D E X

1734

Q3Cone_Submit function 482
Q3Controller_Decommission function 1111
Q3Controller_GetActivation function 1112
Q3Controller_GetButtons function 1119
Q3Controller_GetChannel function 1114
Q3Controller_GetListChanged function 1110
Q3Controller_GetSignature function 1113
Q3Controller_GetTrackerOrientation

function 1122
Q3Controller_GetTrackerPosition

function 1120
Q3Controller_GetValueCount function 1115
Q3Controller_GetValues function 1124
Q3Controller_HasTracker function 1116
Q3Controller_MoveTrackerOrientation

function 1123
Q3Controller_MoveTrackerPosition

function 1121
Q3Controller_New function 1109
Q3Controller_Next function 1110
Q3Controller_SetActivation function 1112
Q3Controller_SetButtons function 1119
Q3Controller_SetChannel function 1115
Q3Controller_SetTracker function 1116
Q3Controller_SetTrackerOrientation

function 1123
Q3Controller_SetTrackerPosition

function 1120
Q3Controller_SetValues function 1125
Q3ControllerState_New function 1126
Q3ControllerState_Restore function 1127
Q3ControllerState_SaveAndReset

function 1127
Q3Controller_Track2DCursor function 1117
Q3Controller_Track3DCursor function 1118
Q3CString_EmptyData function 87
Q3CString_GetLength function 84
Q3CString_GetString function 85
Q3CString_New function 84
Q3CString_SetString function 86
Q3CursorTracker_GetAndClearDeltas

function 1144
Q3CursorTracker_GetNotifyFunc function 1144
Q3CursorTracker_PrepareTracking

function 1144

Q3CursorTracker_SetNotifyFunc function 1144
Q3CursorTracker_SetTrackDeltas

function 1144
Q3Cylinder_EmptyData function 467
Q3Cylinder_GetBottomAttributeSet

function 475
Q3Cylinder_GetCaps function 472
Q3Cylinder_GetData function 466
Q3Cylinder_GetFaceAttributeSet function 474
Q3Cylinder_GetMajorRadius function 470
Q3Cylinder_GetMinorRadius function 471
Q3Cylinder_GetOrientation function 469
Q3Cylinder_GetOrigin function 468
Q3Cylinder_GetTopAttributeSet function 473
Q3Cylinder_New function 465
Q3Cylinder_SetBottomAttributeSet

function 475
Q3Cylinder_SetCaps function 472
Q3Cylinder_SetData function 467
Q3Cylinder_SetFaceAttributeSet function 474
Q3Cylinder_SetMajorRadius function 470
Q3Cylinder_SetMinorRadius function 471
Q3Cylinder_SetOrientation function 469
Q3Cylinder_SetOrigin function 468
Q3Cylinder_SetTopAttributeSet function 473
Q3Cylinder_Submit function 466
Q3DDSurfaceDrawContext_GetDirectDrawSurfa

ce function 867
Q3DDSurfaceDrawContext_New function 867
Q3DDSurfaceDrawContext_SetDirectDrawSurfa

ce function 868
Q3DirectionalLight_GetCastShadowsState

function 650
Q3DirectionalLight_GetData function 652
Q3DirectionalLight_GetDirection

function 651
Q3DirectionalLight_New function 649
Q3DirectionalLight_SetCastShadowsState

function 650
Q3DirectionalLight_SetData function 653
Q3DirectionalLight_SetDirection

function 651
Q3Disk_EmptyData function 478
Q3Disk_GetData function 477
Q3Disk_GetMajorRadius function 480

I N D E X

1735

Q3Disk_GetMinorRadius function 481
Q3Disk_GetOrigin function 479
Q3Disk_New function 476
Q3Disk_SetData function 478
Q3Disk_SetMajorRadius function 480
Q3Disk_SetMinorRadius function 481
Q3Disk_SetOrigin function 479
Q3Disk_Submit function 477
Q3DisplayGroup_GetState function 735
Q3DisplayGroup_GetType function 734
Q3DisplayGroup_New function 724
Q3DisplayGroup_SetState function 736
Q3DisplayGroup_Submit function 736
Q3DrawContext_GetClearImageColor

function 850
Q3DrawContext_GetClearImageMethod

function 853
Q3DrawContext_GetData function 849
Q3DrawContext_GetDoubleBufferState

function 856
Q3DrawContext_GetMask function 854
Q3DrawContext_GetMaskState function 855
Q3DrawContext_GetPane function 851
Q3DrawContext_GetPaneState function 852
Q3DrawContext_GetType function 848
Q3DrawContext_SetClearImageColor

function 850
Q3DrawContext_SetClearImageMethod

function 854
Q3DrawContext_SetData function 849
Q3DrawContext_SetDoubleBufferState

function 857
Q3DrawContext_SetMask function 855
Q3DrawContext_SetMaskState function 856
Q3DrawContext_SetPane function 851
Q3DrawContext_SetPaneState function 852
Q3ElementClass_Register function 206
Q3ElementType_GetElementSize function 207
Q3Ellipse_EmptyData function 443
Q3Ellipse_GetData function 442
Q3Ellipse_GetMajorRadius function 444
Q3Ellipse_GetMinorRadius function 445
Q3Ellipse_GetOrigin function 443
Q3Ellipse_New function 441
Q3Ellipse_SetData function 442

Q3Ellipse_SetMajorRadius function 445
Q3Ellipse_SetMinorRadius function 446
Q3Ellipse_SetOrigin function 444
Q3Ellipse_Submit function 441
Q3Ellipsoid_EmptyData function 461
Q3Ellipsoid_GetData function 459
Q3Ellipsoid_GetMajorRadius function 463
Q3Ellipsoid_GetMinorRadius function 464
Q3Ellipsoid_GetOrientation function 462
Q3Ellipsoid_GetOrigin function 461
Q3Ellipsoid_New function 458
Q3Ellipsoid_SetData function 460
Q3Ellipsoid_SetMajorRadius function 464
Q3Ellipsoid_SetMinorRadius function 465
Q3Ellipsoid_SetOrientation function 463
Q3Ellipsoid_SetOrigin function 462
Q3Ellipsoid_Submit function 459
Q3Error_Get function 1150
Q3Error_IsFatalError function 1149
Q3Error_Register function 1147
Q3Exit function

sample use of 56
Q3Exit function 74
Q3File_Cancel function 1038
Q3File_Close function 1038
Q3File_GetExternalReferences function 1087
Q3File_GetMode function 1039
Q3File_GetNextObjectType function 1040
Q3File_GetReadInGroup function 1089
Q3File_GetStorage function 1034
Q3File_GetVersion function 1039
Q3File_IsEndOfContainer function 1044
Q3File_IsEndOfData function 1044
Q3File_IsEndOfFile function 1042
Q3File_IsNextObjectOfType function 1041
Q3File_IsOpen function 1037
Q3File_MarkAsExternalReference

function 1087
Q3File_New function 1033
Q3File_OpenRead function 1036
Q3File_OpenWrite function 1036
Q3File_ReadObject function 1041
Q3File_SetIdleMethod function 1043
Q3File_SetReadInGroup function 1088
Q3File_SetStorage function 1035

I N D E X

1736

Q3File_SkipObject function 1042
Q3FileVersion type 1032
Q3FillStyle_Get function 565
Q3FillStyle_New function 563
Q3FillStyle_Set function 565
Q3FillStyle_Submit function 564
Q3Float32_Read function 1053
Q3Float32_Write function 1054
Q3Float64_Read function 1054
Q3Float64_Write function 1055
Q3ForEachComponentEdge macro 411
Q3ForEachComponentVertex macro 410
Q3ForEachContourEdge macro 412
Q3ForEachContourFace macro 412
Q3ForEachContourVertex macro 412
Q3ForEachFaceContour macro 412
Q3ForEachFaceEdge macro 411
Q3ForEachFaceFace macro 412
Q3ForEachFaceVertex macro 412
Q3ForEachMeshComponent macro 410
Q3ForEachMeshEdge macro 411
Q3ForEachMeshFace macro 274, 411
Q3ForEachMeshVertex macro 411
Q3ForEachVertexEdge macro 411
Q3ForEachVertexFace macro 411
Q3ForEachVertexVertex macro 411
Q3FSSpecStorage_Get function 1008
Q3FSSpecStorage_New function 1008
Q3FSSpecStorage_Set function 1009
Q3GeneralPolygon_EmptyData function 363
Q3GeneralPolygon_GetData function 361
Q3GeneralPolygon_GetShapeHint function 366
Q3GeneralPolygon_GetVertexAttributeSet

function 365
Q3GeneralPolygon_GetVertexPosition

function 363
Q3GeneralPolygon_New function 360
Q3GeneralPolygon_SetData function 362
Q3GeneralPolygon_SetShapeHint function 367
Q3GeneralPolygon_SetVertexAttributeSet

function 366
Q3GeneralPolygon_SetVertexPosition

function 364
Q3GeneralPolygon_Submit function 361
Q3Geometry_GetAttributeSet function 332

Q3Geometry_GetType function 331
Q3Geometry_SetAttributeSet function 333
Q3Geometry_Submit function 333
Q3GetVersion function 75
Q3Group_AddObjectAfter function 730
Q3Group_AddObjectBefore function 729
Q3Group_AddObject function 728
Q3Group_CountObjects function 727
Q3Group_CountObjectsOfType function 727
Q3Group_EmptyObjects function 733
Q3Group_EmptyObjectsOfType function 733
Q3Group_GetFirstObjectPosition function 743
Q3Group_GetFirstPosition function 737
Q3Group_GetFirstPositionOfType function 738
Q3Group_GetLastObjectPosition function 744
Q3Group_GetLastPosition function 739
Q3Group_GetLastPositionOfType function 739
Q3Group_GetNextObjectPosition function 745
Q3Group_GetNextPosition function 740
Q3Group_GetNextPositionOfType function 741
Q3Group_GetPositionObject function 731
Q3Group_GetPreviousObjectPosition

function 746
Q3Group_GetPreviousPosition function 742
Q3Group_GetPreviousPositionOfType

function 742
Q3Group_GetType function 726
Q3Group_New function 723
Q3Group_RemovePosition function 732
Q3Group_SetPositionObject function 731
Q3HandleStorage_Get function 1003
Q3HandleStorage_New function 1002
Q3HandleStorage_Set function 1004
Q3HighlightStyle_Get function 567
Q3HighlightStyle_New function 566
Q3HighlightStyle_Set function 568
Q3HighlightStyle_Submit function 567
Q3HitPath_EmptyData function 974
Q3IlluminationShader_GetType function 938
Q3InfoGroup_New function 724
Q3Initialize function

sample use of 55
Q3Initialize function 74
Q3Int16_Read function 1048
Q3Int16_Write function 1049

I N D E X

1737

Q3Int32_Read function 1050
Q3Int32_Write function 1051
Q3Int64_Read function 1052
Q3Int64_Write function 1053
Q3Int8_Read function 1046
Q3Int8_Write function 1047
Q3InteractiveRenderer_GetCSGEquation

function 778
Q3InteractiveRenderer_GetDoubleBufferBypa

ss function 779
Q3InteractiveRenderer_GetPreferences

function 777
Q3InteractiveRenderer_GetRAVEContextHints

function 786
Q3InteractiveRenderer_GetRAVETextureFilte

r function 785
Q3InteractiveRenderer_SetCSGEquation

function 779
Q3InteractiveRenderer_SetDoubleBufferBypa

ss function 780
Q3InteractiveRenderer_SetPreferences

function 777
Q3InteractiveRenderer_SetRAVEContextHints

function 787
Q3InteractiveRenderer_SetRAVETextureFilte

r function 785
Q3InterpolationStyle_Get function 562
Q3InterpolationStyle_New function 561
Q3InterpolationStyle_Set function 563
Q3InterpolationStyle_Submit function 562
Q3IOProxyDisplayGroup_New function 725
Q3IsInitialized function 75
Q3LambertIllumination_New function 937
Q3Light_GetBrightness function 644
Q3Light_GetColor function 645
Q3Light_GetData function 646
Q3Light_GetState function 643
Q3Light_GetType function 643
Q3LightGroup_New function 723
Q3Light_SetBrightness function 645
Q3Light_SetColor function 646
Q3Light_SetData function 647
Q3Light_SetState function 644
Q3Line_EmptyData function 342
Q3Line_GetData function 339

Q3Line_GetVertexAttributeSet function 341
Q3Line_GetVertexPosition function 340
Q3Line_New function 338
Q3Line_SetData function 339
Q3Line_SetVertexAttributeSet function 341
Q3Line_SetVertexPosition function 340
Q3Line_Submit function 338
Q3MacDrawContext_Get2DLibrary function 859
Q3MacDrawContext_GetGrafPort function 862
Q3MacDrawContext_GetGXViewPort function 860
Q3MacDrawContext_GetWindow function 858
Q3MacDrawContext_New function 858
Q3MacDrawContext_Set2DLibrary function 860
Q3MacDrawContext_SetGrafPort function 862
Q3MacDrawContext_SetGXViewPort function 861
Q3MacDrawContext_SetWindow function 859
Q3MacintoshError_Get function 1152
Q3MacintoshStorage_Get function 1006
Q3MacintoshStorage_GetType function 1007
Q3MacintoshStorage_New function 1005
Q3MacintoshStorage_Set function 1006
Q3Marker_EmptyData function 501
Q3Marker_GetBitmap function 504
Q3Marker_GetData function 500
Q3Marker_GetPosition function 501
Q3Marker_GetXOffset function 502
Q3Marker_GetYOffset function 503
Q3Marker_New function 499
Q3Marker_SetBitmap function 505
Q3Marker_SetData function 500
Q3Marker_SetPosition function 502
Q3Marker_SetXOffset function 503
Q3Marker_SetYOffset function 504
Q3Marker_Submit function 499
Q3Math_DegreesToRadians function 1223
Q3Math_DegreesToRadians macro 1223
Q3Math_Max function 1223
Q3Math_Max macro 1223
Q3Math_Min function 1223
Q3Math_Min macro 1223
Q3Math_RadiansToDegrees function 1223
Q3Math_RadiansToDegrees macro 1223
Q3Matrix3x3_Adjoint function 1212
Q3Matrix3x3_Copy function 1208
Q3Matrix3x3_Determinant function 1214

I N D E X

1738

Q3Matrix3x3_Invert function 1211
Q3Matrix3x3_Multiply function 1213
Q3Matrix3x3_SetIdentity function 1209
Q3Matrix3x3_SetRotateAboutPoint

function 1216
Q3Matrix3x3_SetScale function 1215
Q3Matrix3x3_SetTranslate function 1215
Q3Matrix3x3_Transpose function 1210
Q3Matrix4x4_Copy function 1209
Q3Matrix4x4_Determinant function 1214
Q3Matrix4x4_Invert function 1212
Q3Matrix4x4_Multiply function 1213
Q3Matrix4x4_Read function 1065
Q3Matrix4x4_SetIdentity function 1210
Q3Matrix4x4_SetQuaternion function 1222
Q3Matrix4x4_SetRotateAboutAxis

function 1219
Q3Matrix4x4_SetRotateAboutPoint

function 1218
Q3Matrix4x4_SetRotateVectorToVector

function 1222
Q3Matrix4x4_SetRotate_X function 1219
Q3Matrix4x4_SetRotate_XYZ function 1221
Q3Matrix4x4_SetRotate_Y function 1220
Q3Matrix4x4_SetRotate_Z function 1220
Q3Matrix4x4_SetScale function 1217
Q3Matrix4x4_SetTranslate function 1217
Q3Matrix4x4_Transpose function 1211
Q3Matrix4x4_Write function 1065
Q3MatrixTransform_Get function 604
Q3MatrixTransform_New function 603
Q3MatrixTransform_Set function 605
Q3MatrixTransform_Submit function 604
Q3MemoryStorage_GetBuffer function 999
Q3MemoryStorage_GetType function 1001
Q3MemoryStorage_NewBuffer function 997
Q3MemoryStorage_New function 996
Q3MemoryStorage_SetBuffer function 1000
Q3MemoryStorage_Set function 998
Q3Mesh_ContourToFace function 387
Q3Mesh_DelayUpdates function 385
Q3MeshEdgePart_GetEdge function 979
Q3Mesh_FaceDelete function 384
Q3Mesh_FaceNew function 384
Q3MeshFacePart_GetFace function 978

Q3Mesh_FaceToContour function 386
Q3Mesh_FirstComponentEdge function 415
Q3Mesh_FirstComponentVertex function 414
Q3Mesh_FirstContourEdge function 427
Q3Mesh_FirstContourFace function 429
Q3Mesh_FirstContourVertex function 428
Q3Mesh_FirstFaceContour function 426
Q3Mesh_FirstFaceEdge function 423
Q3Mesh_FirstFaceFace function 425
Q3Mesh_FirstFaceVertex function 424
Q3Mesh_FirstMeshComponent function 412
Q3Mesh_FirstMeshEdge function 419
Q3Mesh_FirstMeshFace function 273, 418
Q3Mesh_FirstMeshVertex function 417
Q3Mesh_FirstVertexEdge function 420
Q3Mesh_FirstVertexFace function 422
Q3Mesh_FirstVertexVertex function 421
Q3Mesh_GetComponentBoundingBox function 392
Q3Mesh_GetComponentNumEdges function 392
Q3Mesh_GetComponentNumVertices function 391
Q3Mesh_GetComponentOrientable function 393
Q3Mesh_GetContourFace function 407
Q3Mesh_GetContourNumVertices function 408
Q3Mesh_GetCornerAttributeSet function 408
Q3Mesh_GetEdgeAttributeSet function 406
Q3Mesh_GetEdgeComponent function 405
Q3Mesh_GetEdgeFaces function 404
Q3Mesh_GetEdgeOnBoundary function 404
Q3Mesh_GetEdgeVertices function 403
Q3Mesh_GetFaceAttributeSet function 402
Q3Mesh_GetFaceComponent function 401
Q3Mesh_GetFaceIndex function 400
Q3Mesh_GetFaceNumContours function 400
Q3Mesh_GetFaceNumVertices function 398
Q3Mesh_GetFacePlaneEquation function 399
Q3Mesh_GetNumComponents function 387
Q3Mesh_GetNumCorners function 389
Q3Mesh_GetNumEdges function 388
Q3Mesh_GetNumFaces function 389
Q3Mesh_GetNumVertices function 388
Q3Mesh_GetOrientable function 390
Q3Mesh_GetVertexAttributeSet function 397
Q3Mesh_GetVertexComponent function 396
Q3Mesh_GetVertexCoordinates function 394
Q3Mesh_GetVertexIndex function 395

I N D E X

1739

Q3Mesh_GetVertexOnBoundary function 396
Q3Mesh_New function 382
Q3Mesh_NextComponentEdge function 416
Q3Mesh_NextComponentVertex function 415
Q3Mesh_NextContourEdge function 427
Q3Mesh_NextContourFace function 429
Q3Mesh_NextContourVertex function 428
Q3Mesh_NextFaceContour function 426
Q3Mesh_NextFaceEdge function 423
Q3Mesh_NextFaceFace function 425
Q3Mesh_NextFaceVertex function 424
Q3Mesh_NextMeshComponent function 413
Q3Mesh_NextMeshEdge function 419
Q3Mesh_NextMeshFace function 273, 418
Q3Mesh_NextMeshVertex function 417
Q3Mesh_NextVertexEdge function 420
Q3Mesh_NextVertexFace function 422
Q3Mesh_NextVertexVertex function 421
Q3MeshPart_GetComponent function 978
Q3MeshPart_GetType function 977
Q3Mesh_ResumeUpdates function 385
Q3Mesh_SetCornerAttributeSet function 409
Q3Mesh_SetEdgeAttributeSet function 407
Q3Mesh_SetFaceAttributeSet function 403
Q3Mesh_SetVertexAttributeSet function 398
Q3Mesh_SetVertexCoordinates function 394
Q3Mesh_VertexDelete function 383
Q3Mesh_VertexNew function 383
Q3MeshVertexPart_GetVertex function 979
Q3_METHOD_TYPE macro 48
Q3MipmapTexture_GetMipmap function 944
Q3MipmapTexture_New function 943
Q3MipmapTexture_SetMipmap function 944
Q3NewLine_Write function 1057
Q3Notice_Get function 1151
Q3Notice_Register function 1148
Q3NULLIllumination_New function 938
Q3NURBCurve_EmptyData function 448
Q3NURBCurve_GetControlPoint function 449
Q3NURBCurve_GetData function 447
Q3NURBCurve_GetKnot function 450
Q3NURBCurve_New function 446
Q3NURBCurve_SetControlPoint function 449
Q3NURBCurve_SetData function 448
Q3NURBCurve_SetKnot function 451

Q3NURBCurve_Submit function 447
Q3NURBPatch_EmptyData function 454
Q3NURBPatch_GetControlPoint function 454
Q3NURBPatch_GetData function 453
Q3NURBPatch_GetUKnot function 456
Q3NURBPatch_GetVKnot function 457
Q3NURBPatch_New function 451
Q3NURBPatch_SetControlPoint function 455
Q3NURBPatch_SetData function 453
Q3NURBPatch_SetUKnot function 456
Q3NURBPatch_SetVKnot function 458
Q3NURBPatch_Submit function 452
Q3_OBJECT_CLASS_GET_MAJOR_VERSION

macro 219
Q3_OBJECT_CLASS_GET_MINOR_VERSION

macro 219
Q3ObjectClass_Unregister function 205
Q3_OBJECT_CLASS_VERSION macro 229
Q3Object_Dispose function 179
Q3Object_Duplicate function 180
Q3Object_GetLeafType function 182
Q3Object_GetType function 182
Q3ObjectHierarchy_EmptySubClassData

function 188
Q3ObjectHierarchy_GetStringFromType

function 186
Q3ObjectHierarchy_GetSubClassData

function 188
Q3ObjectHierarchy_GetTypeFromString

function 185
Q3ObjectHierarchy_IsNameRegistered

function 187
Q3ObjectHierarchy_IsTypeRegistered

function 187
Q3Object_IsDrawable function 180
Q3Object_IsType function 183
Q3Object_IsWritable function 181
Q3Object_Submit function 178
Q3_OBJECT_TYPE macro 48
Q3OrderedDisplayGroup_New function 725
Q3OrientationStyle_Get function 573
Q3OrientationStyle_New function 571
Q3OrientationStyle_Set function 573
Q3OrientationStyle_Submit function 572
Q3OrthographicCamera_GetBottom function 699

I N D E X

1740

Q3OrthographicCamera_GetData function 695
Q3OrthographicCamera_GetLeft function 696
Q3OrthographicCamera_GetRight function 698
Q3OrthographicCamera_GetTop function 697
Q3OrthographicCamera_New function 694
Q3OrthographicCamera_SetBottom function 699
Q3OrthographicCamera_SetData function 695
Q3OrthographicCamera_SetLeft function 696
Q3OrthographicCamera_SetRight function 698
Q3OrthographicCamera_SetTop function 697
Q3Param2D_AffineComb function 1205
Q3Param2D_Distance function 1173
Q3Param2D_DistanceSquared function 1176
Q3Param2D_RRatio function 1179
Q3Param2D_Set function 1163
Q3Param2D_Subtract function 1172
Q3Param2D_Transform function 1196
Q3Param2D_Vector2D_Add function 1182
Q3Param2D_Vector2D_Subtract function 1184
Q3PhongIllumination_New function 937
Q3Pick_EmptyHitList function 975
Q3Pick_GetData function 969
Q3Pick_GetEdgeTolerance function 971
Q3Pick_GetNumHits function 975
Q3Pick_GetPickDetailData function 973
Q3Pick_GetPickDetailValidMask function 972
Q3Pick_GetType function 968
Q3Pick_GetVertexTolerance function 970
Q3PickIDStyle_Get function 578
Q3PickIDStyle_New function 577
Q3PickIDStyle_Set function 578
Q3PickIDStyle_Submit function 577
Q3PickPartsStyle_Get function 580
Q3PickPartsStyle_New function 579
Q3PickPartsStyle_Set function 581
Q3PickPartsStyle_Submit function 580
Q3Pick_SetData function 970
Q3Pick_SetEdgeTolerance function 972
Q3Pick_SetVertexTolerance function 971
Q3PixmapDrawContext_GetPixmap function 863
Q3PixmapDrawContext_New function 863
Q3PixmapDrawContext_SetPixmap function 864
Q3PixmapMarker_EmptyData function 508
Q3PixmapMarker_GetData function 506
Q3PixmapMarker_GetPixmap function 511

Q3PixmapMarker_GetPosition function 508
Q3PixmapMarker_GetXOffset function 509
Q3PixmapMarker_GetYOffset function 510
Q3PixmapMarker_New function 505
Q3PixmapMarker_SetData function 507
Q3PixmapMarker_SetPixmap function 512
Q3PixmapMarker_SetPosition function 509
Q3PixmapMarker_SetXOffset function 510
Q3PixmapMarker_SetYOffset function 511
Q3PixmapMarker_Submit function 506
Q3PixmapTexture_GetPixmap function 941
Q3PixmapTexture_New function 941
Q3PixmapTexture_SetPixmap function 942
Q3Point2D_AffineComb function 1205
Q3Point2D_Distance function 1173
Q3Point2D_DistanceSquared function 1175
Q3Point2D_Read function 1059
Q3Point2D_RRatio function 1178
Q3Point2D_Set function 1162
Q3Point2D_Subtract function 1171
Q3Point2D_To3D function 1168
Q3Point2D_ToPolar function 1203
Q3Point2D_Transform function 1196
Q3Point2D_Vector2D_Add function 1182
Q3Point2D_Vector2D_Subtract function 1183
Q3Point2D_Write function 1059
Q3Point3D_AffineComb function 1206
Q3Point3D_CrossProductTri function 1192
Q3Point3D_Distance function 1174
Q3Point3D_DistanceSquared function 1176
Q3Point3D_Read function 1060
Q3Point3D_RRatio function 1180
Q3Point3D_Set function 1163
Q3Point3D_Subtract function 1172
Q3Point3D_To3DTransformArray function 1198
Q3Point3D_To4D function 1168
Q3Point3D_To4DTransformArray function 1199
Q3Point3D_ToSpherical function 1204
Q3Point3D_Transform function 1197
Q3Point3D_TransformQuaternion function 1234
Q3Point3D_Vector3D_Add function 1183
Q3Point3D_Vector3D_Subtract function 1185
Q3Point3D_Write function 1060
Q3Point_EmptyData function 336
Q3Point_GetData function 335

I N D E X

1741

Q3Point_GetPosition function 337
Q3PointLight_GetAttenuation function 655
Q3PointLight_GetCastShadowsState

function 654
Q3PointLight_GetData function 657
Q3PointLight_GetLocation function 656
Q3PointLight_New function 653
Q3PointLight_SetAttenuation function 655
Q3PointLight_SetCastShadowsState

function 654
Q3PointLight_SetData function 658
Q3PointLight_SetLocation function 657
Q3Point_New function 334
Q3Point_SetData function 336
Q3Point_SetPosition function 337
Q3Point_Submit function 334
Q3PolarPoint_Set function 1165
Q3PolarPoint_ToPoint2D function 1203
Q3Polygon_EmptyData function 357
Q3Polygon_GetData function 356
Q3Polygon_GetVertexAttributeSet

function 359
Q3Polygon_GetVertexPosition function 357
Q3Polygon_New function 354
Q3Polygon_SetData function 356
Q3Polygon_SetVertexAttributeSet

function 359
Q3Polygon_SetVertexPosition function 358
Q3Polygon_Submit function 355
Q3Polyhedron_EmptyData function 435
Q3Polyhedron_GetData function 434
Q3Polyhedron_GetEdgeData function 439
Q3Polyhedron_GetTriangleData function 438
Q3Polyhedron_GetVertexAttributeSet

function 437
Q3Polyhedron_GetVertexPosition function 435
Q3Polyhedron_New function 433
Q3Polyhedron_SetData function 434
Q3Polyhedron_SetEdgeData function 440
Q3Polyhedron_SetTriangleData function 438
Q3Polyhedron_SetVertexAttributeSet

function 437
Q3Polyhedron_SetVertexPosition function 436
Q3Polyhedron_Submit function 433
Q3PolyLine_EmptyData function 345

Q3PolyLine_GetData function 344
Q3PolyLine_GetSegmentAttributeSet

function 348
Q3PolyLine_GetVertexAttributeSet

function 346
Q3PolyLine_GetVertexPosition function 345
Q3PolyLine_New function 343
Q3PolyLine_SetData function 344
Q3PolyLine_SetSegmentAttributeSet

function 348
Q3PolyLine_SetVertexAttributeSet

function 347
Q3PolyLine_SetVertexPosition function 346
Q3PolyLine_Submit function 343
Q3Pop_Submit function 898
Q3Push_Submit function 898
Q3Quaternion_Copy function 1224
Q3Quaternion_Dot function 1226
Q3Quaternion_InterpolateFast function 1232
Q3Quaternion_InterpolateLinear

function 1233
Q3Quaternion_Invert function 1225
Q3Quaternion_IsIdentity function 1225
Q3Quaternion_MatchReflection function 1231
Q3Quaternion_Multiply function 1227
Q3Quaternion_Normalize function 1226
Q3Quaternion_Set function 1223
Q3Quaternion_SetIdentity function 1224
Q3Quaternion_SetMatrix function 1230
Q3Quaternion_SetRotateAboutAxis

function 1227
Q3Quaternion_SetRotateVectorToVector

function 1231
Q3Quaternion_SetRotate_X function 1228
Q3Quaternion_SetRotateX function 1228
Q3Quaternion_SetRotate_XYZ function 1230
Q3Quaternion_SetRotateXYZ function 1230
Q3Quaternion_SetRotate_Y function 1229
Q3Quaternion_SetRotateY function 1229
Q3Quaternion_SetRotate_Z function 1229
Q3Quaternion_SetRotateZ function 1229
Q3QuaternionTransform_Get function 628
Q3QuaternionTransform_New function 627
Q3QuaternionTransform_Set function 628
Q3QuaternionTransform_Submit function 627

I N D E X

1742

Q3RationalPoint3D_AffineComb function 1207
Q3RationalPoint3D_Distance function 1174
Q3RationalPoint3D_DistanceSquared

function 1177
Q3RationalPoint3D_Read function 1061
Q3RationalPoint3D_Set function 1164
Q3RationalPoint3D_To2D function 1169
Q3RationalPoint3D_Write function 1061
Q3RationalPoint4D_AffineComb function 1208
Q3RationalPoint4D_Distance function 1175
Q3RationalPoint4D_DistanceSquared

function 1177
Q3RationalPoint4D_Read function 1062
Q3RationalPoint4D_RRatio function 1181
Q3RationalPoint4D_Set function 1164
Q3RationalPoint4D_To3D function 1169
Q3RationalPoint4D_To4DTransformArray

function 1200
Q3RationalPoint4D_Transform function 1198
Q3RationalPoint4D_Write function 1062
Q3RawData_Read function 1057
Q3RawData_Write function 1058
Q3ReceiveShadowsStyle_Get function 575
Q3ReceiveShadowsStyle_New function 574
Q3ReceiveShadowsStyle_Set function 576
Q3ReceiveShadowsStyle_Submit function 575
Q3RendererClass_GetNickNameString

function 783
Q3Renderer_Flush function 776
Q3Renderer_GetConfigurationData

function 781
Q3Renderer_GetType function 775
Q3Renderer_HasModalConfigure function 780
Q3Renderer_IsInteractive function 776
Q3Renderer_ModalConfigure function 781
Q3Renderer_NewFromType function 774
Q3Renderer_SetConfigurationData

function 782
Q3Renderer_Sync function 776
Q3ResetTransform_New function 629
Q3ResetTransform_Submit function 629
Q3RotateAboutAxisTransform_GetAngle

function 620
Q3RotateAboutAxisTransform_GetData

function 617

Q3RotateAboutAxisTransform_GetOrientation
function 619

Q3RotateAboutAxisTransform_GetOrigin
function 618

Q3RotateAboutAxisTransform_New function 616
Q3RotateAboutAxisTransform_SetAngle

function 621
Q3RotateAboutAxisTransform_SetData

function 617
Q3RotateAboutAxisTransform_SetOrientation

function 620
Q3RotateAboutAxisTransform_SetOrigin

function 619
Q3RotateAboutAxisTransform_Submit

function 616
Q3RotateAboutPointTransform_GetAboutPoint

function 614
Q3RotateAboutPointTransform_GetAngle

function 613
Q3RotateAboutPointTransform_GetAxis

function 612
Q3RotateAboutPointTransform_GetData

function 611
Q3RotateAboutPointTransform_New

function 610
Q3RotateAboutPointTransform_SetAboutPoint

function 615
Q3RotateAboutPointTransform_SetAngle

function 614
Q3RotateAboutPointTransform_SetAxis

function 613
Q3RotateAboutPointTransform_SetData

function 612
Q3RotateAboutPointTransform_Submit

function 611
Q3RotateTransform_GetAngle function 609
Q3RotateTransform_GetAxis function 608
Q3RotateTransform_GetData function 607
Q3RotateTransform_New function 606
Q3RotateTransform_SetAngle function 609
Q3RotateTransform_SetAxis function 608
Q3RotateTransform_SetData function 607
Q3RotateTransform_Submit function 606
Q3ScaleTransform_Get function 623
Q3ScaleTransform_New function 621

I N D E X

1743

Q3ScaleTransform_Set function 623
Q3ScaleTransform_Submit function 622
Q3Set_Add function 77
Q3Set_Clear function 81
Q3Set_Contains function 79
Q3Set_Empty function 80
Q3Set_Get function 78
Q3Set_GetNextElementType function 79
Q3Set_GetType function 77
Q3Set_New function 77
Q3Shader_GetType function 929
Q3Shader_GetUBoundary function 932
Q3Shader_GetUVTransform function 931
Q3Shader_GetVBoundary function 933
Q3Shader_SetUBoundary function 933
Q3Shader_SetUVTransform function 931
Q3Shader_SetVBoundary function 934
Q3Shader_Submit function 930
Q3Shape_AddElement function 81
Q3Shape_ClearElement function 81
Q3Shape_ContainsElement function 81
Q3Shape_EmptyElements function 81
Q3Shape_GetElement function 81
Q3Shape_GetNextElementType function 81
Q3Shape_GetSet function 82
Q3Shape_GetType function 82
Q3ShapePart_GetShape function 976
Q3ShapePart_GetType function 976
Q3Shape_SetSet function 83
Q3Shared_ClearEditTracking function 1095
Q3Shared_Edited function 192
Q3Shared_GetEditIndex function 191
Q3Shared_GetEditTrackingState function 1095
Q3Shared_GetReference function 189
Q3Shared_GetType function 190
Q3Shared_IsReferenced function 189
Q3Size_Pad function 1055
Q3SphericalPoint_Set function 1166
Q3SphericalPoint_ToPoint3D function 1204
Q3SpotLight_GetAttenuation function 660
Q3SpotLight_GetCastShadowsState

function 659
Q3SpotLight_GetData function 666
Q3SpotLight_GetDirection function 662
Q3SpotLight_GetFallOff function 665

Q3SpotLight_GetHotAngle function 663
Q3SpotLight_GetLocation function 661
Q3SpotLight_GetOuterAngle function 664
Q3SpotLight_New function 658
Q3SpotLight_SetAttenuation function 660
Q3SpotLight_SetCastShadowsState

function 659
Q3SpotLight_SetData function 666
Q3SpotLight_SetDirection function 662
Q3SpotLight_SetFallOff function 665
Q3SpotLight_SetHotAngle function 663
Q3SpotLight_SetLocation function 661
Q3SpotLight_SetOuterAngle function 664
Q3Storage_GetData function 994
Q3Storage_GetSize function 993
Q3Storage_GetType function 993
Q3Storage_SetData function 995
Q3String_GetType function 83
Q3String_Read function 1056
Q3String_Write function 1056
Q3Style_GetType function 557
Q3Style_Submit function 557
Q3SubdivisionStyle_GetData function 570
Q3SubdivisionStyle_New function 568
Q3SubdivisionStyle_SetData function 570
Q3SubdivisionStyle_Submit function 569
Q3SurfaceShader_GetType function 935
Q3Tangent2D_Read function 1066
Q3Tangent2D_Write function 1066
Q3Tangent3D_Read function 1067
Q3Tangent3D_Write function 1067
Q3Texture_GetHeight function 940
Q3Texture_GetType function 939
Q3Texture_GetWidth function 940
Q3TextureShader_GetTexture function 936
Q3TextureShader_New function 935
Q3TextureShader_SetTexture function 936
Q3Torus_EmptyData function 493
Q3Torus_GetData function 492
Q3Torus_GetMajorRadius function 496
Q3Torus_GetMinorRadius function 497
Q3Torus_GetOrientation function 495
Q3Torus_GetOrigin function 494
Q3Torus_GetRatio function 498
Q3Torus_New function 491

I N D E X

1744

Q3Torus_SetData function 493
Q3Torus_SetMajorRadius function 496
Q3Torus_SetMinorRadius function 497
Q3Torus_SetOrientation function 495
Q3Torus_SetOrigin function 494
Q3Torus_SetRatio function 498
Q3Torus_Submit function 492
Q3Tracker_ChangeButtons function 1133
Q3Tracker_GetActivation function 1130
Q3Tracker_GetButtons function 1133
Q3Tracker_GetEventCoordinates function 1131
Q3Tracker_GetNotifyThresholds function 1129
Q3Tracker_GetOrientation function 1137
Q3Tracker_GetPosition function 1134
Q3Tracker_MoveOrientation function 1139
Q3Tracker_MovePosition function 1136
Q3Tracker_New function 1128
Q3Tracker_SetActivation function 1130
Q3Tracker_SetEventCoordinates function 1132
Q3Tracker_SetNotifyThresholds function 1129
Q3Tracker_SetOrientation function 1138
Q3Tracker_SetPosition function 1136
Q3Transform_GetMatrix function 602
Q3Transform_GetType function 601
Q3Transform_Submit function 602
Q3TranslateTransform_Get function 625
Q3TranslateTransform_New function 624
Q3TranslateTransform_Set function 626
Q3TranslateTransform_Submit function 625
Q3Triangle_EmptyData function 351
Q3Triangle_GetData function 350
Q3Triangle_GetVertexAttributeSet

function 353
Q3Triangle_GetVertexPosition function 352
Q3Triangle_New function 349
Q3Triangle_SetData function 351
Q3Triangle_SetVertexAttributeSet

function 353
Q3Triangle_SetVertexPosition function 352
Q3Triangle_Submit function 349
Q3TriGrid_EmptyData function 378
Q3TriGrid_GetData function 376
Q3TriGrid_GetFacetAttributeSet function 381
Q3TriGrid_GetVertexAttributeSet

function 379

Q3TriGrid_GetVertexPosition function 378
Q3TriGrid_New function 375
Q3TriGrid_SetData function 377
Q3TriGrid_SetFacetAttributeSet function 381
Q3TriGrid_SetVertexAttributeSet

function 380
Q3TriGrid_SetVertexPosition function 379
Q3TriGrid_Submit function 376
Q3TriMesh_EmptyData function 432
Q3TriMesh_GetData function 431
Q3TriMesh_New function 430
Q3TriMesh_SetData function 431
Q3TriMesh_Submit function 430
Q3UnixPathStorage_Get function 1014
Q3UnixPathStorage_New function 1013
Q3UnixPathStorage_Set function 1014
Q3UnixStorage_Get function 1011
Q3UnixStorage_GetType function 1012
Q3UnixStorage_New function 1010
Q3UnixStorage_Set function 1011
Q3UnknownBinary_EmptyData function 1073,

1074
Q3UnknownBinary_EmptyTypeString

function 1074
Q3UnknownBinary_GetData function 1072, 1073
Q3UnknownBinary_GetTypeString function 1073
Q3Unknown_GetDirtyState function 1069
Q3Unknown_GetType function 1069
Q3Unknown_SetDirtyState function 1070
Q3UnknownText_EmptyData function 1071
Q3UnknownText_GetData function 1071
Q3Uns16_Read function 1047, 1048
Q3Uns16_Write function 1048, 1049
Q3Uns32_Read function 1049
Q3Uns32_Write function 1050
Q3Uns64_Read function 1051, 1052
Q3Uns64_Write function 1052, 1053
Q3Uns8_Read function 1045, 1046
Q3Uns8_Write function 1046, 1047
Q3Vector2D_Add function 1189
Q3Vector2D_Cross function 1191
Q3Vector2D_Dot function 1193
Q3Vector2D_Length function 1187
Q3Vector2D_Negate function 1201
Q3Vector2D_Normalize function 1188

I N D E X

1745

Q3Vector2D_Read function 1063
Q3Vector2D_Scale function 1185
Q3Vector2D_Set function 1166
Q3Vector2D_Subtract function 1190
Q3Vector2D_To3D function 1170
Q3Vector2D_Transform function 1194
Q3Vector2D_Write function 1063
Q3Vector3D_Add function 1189
Q3Vector3D_Cross function 1192
Q3Vector3D_Dot function 1194
Q3Vector3D_Length function 1187
Q3Vector3D_Negate function 1202
Q3Vector3D_Normalize function 1188
Q3Vector3D_Read function 1064
Q3Vector3D_Scale function 1186
Q3Vector3D_Set function 1167
Q3Vector3D_Subtract function 1191
Q3Vector3D_To2D function 1170
Q3Vector3D_Transform function 1195
Q3Vector3D_TransformQuaternion

function 1234
Q3Vector3D_Write function 1064
Q3ViewAngleAspectCamera_GetAspectRatio

function 710
Q3ViewAngleAspectCamera_GetData

function 708
Q3ViewAngleAspectCamera_GetFOV function 709
Q3ViewAngleAspectCamera_New function 707
Q3ViewAngleAspectCamera_SetAspectRatio

function 710
Q3ViewAngleAspectCamera_SetData

function 708
Q3ViewAngleAspectCamera_SetFOV function 709
Q3View_Cancel function 884
Q3View_EndBoundingBox function 891
Q3View_EndBoundingSphere function 893
Q3View_EndPicking function 887
Q3View_EndRendering function 883
Q3View_EndWriting function 888
Q3ViewerAdjustCursor function 151
Q3ViewerClear function 155
Q3ViewerContinueTracking function 148
Q3ViewerCopy function 153
Q3ViewerCursorChanged function 152
Q3ViewerCut function 153

Q3ViewerDispose function 112
Q3ViewerDrawContent function 115
Q3ViewerDrawControlStrip function 116
Q3ViewerDraw function 114
Q3ViewerEvent function 145
Q3ViewerGetBackgroundColor function 141
Q3ViewerGetBounds function 127
Q3ViewerGetButtonRect function 136
Q3ViewerGetCameraCount function 122
Q3ViewerGetCurrentButton function 137
Q3ViewerGetDimension function 139
Q3ViewerGetFlags function 125
Q3ViewerGetGroup function 131
Q3ViewerGetMininumDimension function 128
Q3ViewerGetPict function 135
Q3ViewerGetPort function 130
Q3ViewerGetReleaseVersion function 119
Q3ViewerGetState function 132
Q3ViewerGetUndoString function 133
Q3ViewerGetVersion function 118
Q3ViewerGetView function 120
Q3ViewerHandleKeyEvent function 150
Q3ViewerMouseDown function 146
Q3ViewerMouseUp function 147
Q3ViewerNew function 110
Q3ViewerPaste function 154
Q3ViewerRestoreView function 121
Q3ViewerSetBackgroundColor function 141
Q3ViewerSetBounds function 127
Q3ViewerSetCameraByNumber function 123
Q3ViewerSetCameraByView function 124
Q3ViewerSetCurrentButton function 138
Q3ViewerSetDimension function 140
Q3ViewerSetDrawingCallbackMethod

function 117
Q3ViewerSetFlags function 126
Q3ViewerSetPort function 130
Q3ViewerUndo function 156
Q3ViewerUseData function 113
Q3ViewerUseFile function 112
Q3ViewerUseGroup function 131
Q3ViewerWriteData function 143
Q3ViewerWriteFile function 142
Q3View_Flush function 885
Q3View_GetAntiAliasStyleState function 906

I N D E X

1746

Q3View_GetAttributeSetState function 908
Q3View_GetAttributeState function 909
Q3View_GetBackfacingStyleState function 902
Q3View_GetCamera function 878
Q3View_GetDefaultAttributeSet function 907
Q3View_GetDrawContext function 880
Q3View_GetFillStyleState function 903
Q3View_GetFrustumToWindowMatrixState

function 900
Q3View_GetHighlightStyleState function 903
Q3View_GetInterpolationStyleState

function 902
Q3View_GetLightGroup function 879
Q3View_GetLocalToWorldMatrixState

function 899
Q3View_GetOrientationStyleState

function 904
Q3View_GetPickIDStyleState function 905
Q3View_GetPickPartsStyleState function 906
Q3View_GetReceiveShadowsStyleState

function 905
Q3View_GetRenderer function 876
Q3View_GetSubdivisionStyleState

function 904
Q3View_GetWorldToFrustumMatrixState

function 900
Q3ViewHints_GetAttributeSet function 1079
Q3ViewHints_GetCamera function 1076
Q3ViewHints_GetClearImageColor

function 1085
Q3ViewHints_GetClearImageMethod

function 1084
Q3ViewHints_GetDimensions function 1081
Q3ViewHints_GetDimensionsState

function 1080
Q3ViewHints_GetLightGroup function 1078
Q3ViewHints_GetMask function 1083
Q3ViewHints_GetMaskState function 1082
Q3ViewHints_GetRenderer function 1075
Q3ViewHints_New function 1075
Q3ViewHints_SetAttributeSet function 1079
Q3ViewHints_SetCamera function 1077
Q3ViewHints_SetClearImageColor

function 1086

Q3ViewHints_SetClearImageMethod
function 1085

Q3ViewHints_SetDimensions function 1081
Q3ViewHints_SetDimensionsState

function 1080
Q3ViewHints_SetLightGroup function 1078
Q3ViewHints_SetMask function 1084
Q3ViewHints_SetMaskState function 1083
Q3ViewHints_SetRenderer function 1076
Q3View_IsBoundingBoxVisible function 895
Q3View_New function 876
Q3ViewPlaneCamera_GetCenterX function 705
Q3ViewPlaneCamera_GetCenterY function 706
Q3ViewPlaneCamera_GetData function 701
Q3ViewPlaneCamera_GetHalfHeight

function 704
Q3ViewPlaneCamera_GetHalfWidth function 703
Q3ViewPlaneCamera_GetViewPlane function 702
Q3ViewPlaneCamera_New function 700
Q3ViewPlaneCamera_SetCenterX function 705
Q3ViewPlaneCamera_SetCenterY function 707
Q3ViewPlaneCamera_SetData function 701
Q3ViewPlaneCamera_SetHalfHeight

function 704
Q3ViewPlaneCamera_SetHalfWidth function 703
Q3ViewPlaneCamera_SetViewPlane function 702
Q3View_SetCamera function 879
Q3View_SetDefaultAttributeSet function 908
Q3View_SetDrawContext function 881
Q3View_SetIdleMethod function 896
Q3View_SetIdleProgressMethod type 911
Q3View_SetLightGroup function 880
Q3View_SetRendererByType function 877
Q3View_SetRenderer function 877
Q3View_StartBoundingBox function 890
Q3View_StartBoundingSphere function 892
Q3View_StartPicking function 886
Q3View_StartRendering function 882
Q3View_StartWriting function 888
Q3View_SubmitWriteData function 896
Q3View_Sync function 885
Q3VNM_BADGEHIT constant 158
Q3VNM_BUTTONSET constant 158
Q3VNM_CANUNDO constant 158
Q3VNM_DRAWCOMPLETE constant 158

I N D E X

1747

Q3VNM_DROPFILES constant 158
Q3VNM_SETVIEW constant 158
Q3VNM_SETVIEWNUMBER constant 158
Q3Warning_Get function 1151
Q3Warning_Register function 1148
Q3Win32DCDrawContext_GetDC function 865
Q3Win32DCDrawContext_New function 865
Q3Win32DCDrawContext_SetDC function 866
Q3Win32Storage_Get function 1017
Q3Win32Storage_New function 1015
Q3Win32Storage_Set function 1017
Q3WindowPointPick_GetData function 982
Q3WindowPointPick_GetPoint function 981
Q3WindowPointPick_New function 980
Q3WindowPointPick_SetData function 982
Q3WindowPointPick_SetPoint function 981
Q3WindowRectPick_GetData function 984
Q3WindowRectPick_GetRect function 983
Q3WindowRectPick_New function 983
Q3WindowRectPick_SetData function 985
Q3WindowRectPick_SetRect function 984
Q3WinViewerAdjustCursor function 151
Q3WinViewerClear function 155
Q3WinViewerContinueTracking function 149
Q3WinViewerCopy function 154
Q3WinViewerCursorChanged function 152
Q3WinViewerCut function 153
Q3WinViewerDispose function 112
Q3WinViewerDrawContent function 115
Q3WinViewerDrawControlStrip function 116
Q3WinViewerDraw function 115
Q3WinViewerGetBackgroundColor function 141
Q3WinViewerGetBitmap function 160
Q3WinViewerGetBounds function 127
Q3WinViewerGetButtonRect function 136
Q3WinViewerGetCameraCount function 122
Q3WinViewerGetControlStrip function 160
Q3WinViewerGetCurrentButton function 137
Q3WinViewerGetDimension function 139
Q3WinViewerGetFlags function 125
Q3WinViewerGetGroup function 131
Q3WinViewerGetMinimumDimension function 129
Q3WinViewerGetReleaseVersion function 119
Q3WinViewerGetState function 132
Q3WinViewerGetUndoString function 134

Q3WinViewerGetVersion function 118
Q3WinViewerGetViewer function 159
Q3WinViewerGetView function 120
Q3WinViewerGetWindow function 158
Q3WinViewerMouseDown function 146
Q3WinViewerMouseUp function 148
Q3WinViewerNew function 111
Q3WinViewerPaste function 154
Q3WinViewerRestoreView function 121
Q3WinViewerSetBackgroundColor function 142
Q3WinViewerSetBounds function 128
Q3WinViewerSetCameraNumber function 123
Q3WinViewerSetCameraView function 124
Q3WinViewerSetCurrentButton function 138
Q3WinViewerSetDimension function 140
Q3WinViewerSetFlags function 126
Q3WinViewerSetWindow function 159
Q3WinViewerUndo function 156
Q3WinViewerUseData function 114
Q3WinViewerUseFile function 113
Q3WinViewerUseGroup function 132
Q3WinViewerWriteData function 144
Q3WinViewerWriteFile function 143
Q3XAttributeClass_Register function 537
Q3XAttributeSet_GetMask function 788
Q3XAttributeSet_GetPointer function 788
Q3XDrawContext_ClearValidationFlags

function 820
Q3XDrawContext_GetDrawRegion function 818
Q3XDrawContext_GetValidationFlags

function 820
Q3XDrawRegion_End function 824
Q3XDrawRegion_GetClipFlags function 827
Q3XDrawRegion_GetClipMask function 828
Q3XDrawRegion_GetClipRegion function 828
Q3XDrawRegion_GetDeviceOffsetX function 831
Q3XDrawRegion_GetDeviceOffsetY function 831
Q3XDrawRegion_GetDeviceScaleX function 830
Q3XDrawRegion_GetDeviceScaleY function 830
Q3XDrawRegion_GetDeviceTransform

function 834
Q3XDrawRegion_GetGDHandle function 829
Q3XDrawRegion_GetNextRegion function 818
Q3XDrawRegion_GetRendererPrivate

function 836

I N D E X

1748

Q3XDrawRegion_GetWindowOffsetX function 833
Q3XDrawRegion_GetWindowOffsetY function 833
Q3XDrawRegion_GetWindowScaleX function 832
Q3XDrawRegion_GetWindowScaleY function 832
Q3XDrawRegion_IsActive function 822
Q3XDrawRegion_SetRendererPrivate

function 835
Q3XDrawRegion_StartAccessToImageBuffer

function 823
Q3XDrawRegion_Start function 823
Q3XElementClass_Register function 538
Q3XElementType_GetElementSize function 542
Q3XError_Post function 1153
Q3XGroup_GetPositionPrivate function 747
Q3XMacintoshError_Post function 1154
Q3XMethodTypeObjectClassVersion

function 228
Q3XMethodTypeRendererIsInteractive

function 796
Q3XNotice_Post function 1153
Q3XObjectClass_GetClassPrivate function 223
Q3XObjectClass_GetLeafType function 216
Q3XObjectClass_GetMethod function 220
Q3XObjectClass_GetPrivate function 221
Q3XObjectClass_GetSubClassType function 217
Q3XObjectClass_GetType function 216
Q3XObject_GetClass function 218
Q3XObject_GetClassPrivate function 222
Q3XObject_GetSubClassType function 218
Q3XObjectHierarchy_GetClassVersion

function 219
Q3XObjectHierarchy_GetMethod function 220
Q3XObjectHierarchy_NewObject function 215
Q3XObjectHierarchy_RegisterClass

function 202
Q3XObjectHierarchy_UnregisterClass

function 205
Q3XSharedLibrary_Register function 210
Q3XSharedLibrary_Unregister function 210
Q3XView_EndFrame function 792
Q3XView_IdleProgress function 791
Q3XView_SubmitSubObjectData function 1093
Q3XView_SubmitWriteData function 1092
Q3XWarning_Post function 1153
QABitmapBindColorTable function 1593

QABitmapDelete function 1594
QABitmapDetach function 1593
QABitmapNew function 1591
QAColorTableDelete function 1588
QAColorTableNew function 1586
QADeviceGetFirstEngine function 1516, 1594
QADeviceGetNextEngine function 1516, 1595
QADrawBitmap function 1610
QADrawContextDelete function 1586
QADrawContextNew function 1585
QADrawLine function 1602
QADrawPoint function 1602
QADrawTriGouraud function 1603
QADrawTriMeshGouraud function 1606
QADrawTriMeshTexture function 1607
QADrawTriTexture function 1603
QADrawVGouraud function 1607
QADrawVTexture function 1608
QAEngineCheckDevice function 1596
QAEngineDisable function 1598
QAEngineEnable function 1597
QAEngineGestalt function

selectors for 1559
QAEngineGestalt function 1596
QAFlush function 1613
QAGetFloat function 1599
QAGetInt function 1600
QAGetNoticeMethod function 1615
QAGetPtr function 1601
QARegisterDrawMethod function 1617
QARegisterEngine function 1617
QARenderAbort function 1613
QARenderEnd function 1612
QARenderStart function 1610
QASetFloat function 1599
QASetInt function 1600
QASetNoticeMethod function 1616
QASetPtr function 1601
QASubmitVerticesGouraud function 1604
QASubmitVerticesTexture function 1605
QASync function 1614
QATextureBindColorTable function 1590
QATextureDelete function 1591
QATextureDetach function 1590
QATextureNew function 1588

I N D E X

1749

QD3D_CALLBACK macro 177
quaternions

calculating dot products of 1226
copying 1224
defined 287
inverting 1225
multiplying 1227
normalizing 1226
routines for 1223–1235
setting 1223
setting from matrices 1230
setting identity 1224
setting to rotate about axes 1227

quaternion transforms 598, 1446–1447
getting matrix representations of 1222
routines for 626–629

QuickDraw 3D
checking for features of 54
class hierarchy 164–171
configuring windows 59–62
defined 41
determining whether objects are drawable 180
determining whether objects are writable 181
disposing of objects 179
drawing objects 178
duplicating objects 180
extending 44–46
general constants for 71–73
general routines for 73–87
getting leaf object types 182
getting object types 182, 183
getting the version of 75
initializing and terminating 54–56, 73–75
introduction to 41–89
naming conventions in 47–50
rendering modes 50–52
sample code for 52–71
unregistering object classes 205

QuickDraw 3D Acceleration Layer 1509
QuickDraw 3D classes 163

methods in 213
QuickDraw 3D class hierarchy 164–171
QuickDraw 3D Color Utilities 1247–1257

data structures for 1250–1251
routines for 1251–1257

QuickDraw 3D Mathematical Utilities 1159–1245
data structures for 1160–1161
introduced 1159–1160
routines for 1162–1245

QuickDraw 3D Object Metafile 1020
QuickDraw 3D objects 163

general routines for 178–184
routines for determining object types 181–184
routines for managing objects 178–181

QuickDraw 3D Pointing Device
Manager 1099–1144

application-defined routines for 1140–1144
data structures for 1107–1108
defined 1099–1100
routines for 1108–1140

QuickDraw 3D RAVE 1507–1676
application-defined routines in 1618–1652
constants for 1535–1571
data structures for 1572–1584
defined 1508
naming conventions 1535
result codes 1676
routines in 1584–1618
sample code for 1513–1523
version of 1535

QuickDraw 3D shading architecture 916

R

radians, converting to degrees 1223
radius vectors 284, 285
rational points

See also points
calculating distances between 1174, 1175, 1177
defined 284
determining affine combinations of 1207, 1208
reading from and writing to file

objects 1061–1063
setting 1164

rational points, four-dimensional 1266
rational points, three-dimensional 1266
RAVE control panel 1595
raw data 1263

I N D E X

1750

rays 288
receive shadows styles 1434–1435
rectangle pick objects. See window-rectangle pick

objects
rectangle structures 1573
reference counts 171–175

defined 168
reference objects 170, 1285–1286
references 1273
ref ID 1285, 1286
ref seed (in table of contents) 1281
relative ratios between points,

calculating 1178–1181
renderer objects 763, 1485–1489

adding to a view 68, 877
application-defined routines for 792
creating 774–775
defined 763–764
introduced 169
managing 776–780
plug-in 195
routines for 774–780
types of 764–766, 776

renderers. See renderer objects
rendering 43
rendering loops 69–71, 873–875
rendering modes 874–875
reset button (3D Viewer) 95
result codes 1676
retained mode 50–52, 257, 874–875
revision numbers (of metafiles) 1277
RGB color data types 1267
RGB color space 1247
RGB color structure 1250, 1251
right-handed rule 587
rotate-about-axis transform data structure 600
rotate-about-axis transforms 597–598, 1444–1446

getting matrix representations of 1219
routines for 615–621

rotate-about-point transform data structure 600
rotate-about-point transforms 597, 1443–1444

getting matrix representations of 1216, 1218
routines for 610–615

rotate button (3D Viewer) 95
rotate transform data structure 599

rotate transforms 596, 1442–1443
routines for 605–610

S

sample routines
MyAddCornersToMesh 274
MyBoxNotifyFunc 1106
MyBuildMesh 271
MyCountAttributesInSet 522
MyCreateShadedTriangle 924
MyCreateViewer 101
MyDraw 70–71
MyDrawPoint 1526
MyDrawPrivateDelete 1528
MyDrawPrivateNew 1527
MyEngineGestalt 1528
MyEngineGetMethod 1530
MyEnvironmentHas3DViewer 99
MyEnvironmentHasQuickDraw3D 54
MyFindKnobBox 1105
MyFindPreferredEngine 1517
MyFinishUp 56
MyGet3DViewerVersion 101
MyGetInputFile 1024–1025
MyHandleClickInWindow 956–958
MyImmediateModePickID 960
MyInitialize 56
MyNewCamera 66–67
MyNewDrawContext 65
MyNewLights 63–64
MyNewModel 58–59
MyNewPointLight 636
MyNewView 67–69
MyNewWindow 60–62
MyOnActivation 1106
MyPollKNobBox 1107
MyRead3DMFModel 1026
MySetBackgroundToBlack 1519
MySetMeshFacesDiffuseColor 273
MySetTriangleVerticesDiffuseColor 520
MyStartUpQuickDraw3D 526
MyTemperatureDataCopyReplace 525

I N D E X

1751

MyTemperatureDataDispose 524
MyTemperatureDataMetaHandler 524
MyToggleOrderedGroupLights 720
MyTurnOnOrOffViewLights 719

scalar products. See dot products
scale transforms 595, 1439–1440

getting matrix representations of 1215, 1217
routines for 621–624

scissor boxes 1544
screen coordinate systems. See window

coordinate systems
screen-space picking 947
screen spaces. See window coordinate systems
screen-space subdivision 549
serpentine triangulation 304
set lists 1414–1422
set objects

adding elements to 77
creating 77
defined 76
determining element types of 79
determining next element type of 79
emptying 80
extending 193
getting an element’s data 78
getting type of 77
introduced 169
removing an element type from 81
routines for 76–81
types of 77

sets. See set objects
shader data objects 1489–1491
shader objects 915, 1489–1495

constants for 928–929
defined 915–916
introduced 168, 170
routines for 929–945

shaders. See shader objects
shader transforms 1447–1448
shader UV transforms 1448–1449
shading UV objects 1400–1401
shadow-receiving styles 551–552

getting a view’s 905
routines for 574–576

shape hints 279

shape objects
extending 193
getting a set 82
getting type of 82
introduced 169
routines for 81–83
setting a set 83
subclasses of 170
types of 82

shape part objects
getting 968
introduced 169
routines for 976–980

shape parts. See shape part objects
shapes. See shape objects
shared objects 189, 232

defined 167–168
getting references to 189
getting type of 190
routines for 189–193
subclasses of 168–169
types of 191

signed integer data types 1262
simple polygons 298–299, 1315–1317

routines for 354–360
spaces. See coordinate systems
special metafile objects 1276–1307
specular coefficients 919
specular color objects 1394–1395
specular colors 528
specular control objects 1396–1397
specular controls. See specular reflection

exponents
specular exponents. See specular reflection

exponents
specular highlights 919
specular reflection 918
specular reflection exponents 919
spherical coordinates

defined 588
routines for converting points to and

from 1202–1204
spherical points

defined 285
setting 1166

I N D E X

1752

spot light data structure 641–642
spot lights 634–635, 1459–1461

creating 658
defined 634
getting attenuation of 660
getting data of 666
getting direction of 662
getting fall-off value of 665
getting hot angle of 663
getting location of 661
getting outer angle of 664
getting shadow state of 659
routines for 658–667
setting attenuation of 660
setting data of 666
setting direction of 662
setting fall-off value of 665
setting hot angle of 663
setting location of 661
setting outer angle of 664
setting shadow state of 659

standard I/O library 987, 988–989
standard surface parameterizations 254
state variables

defined 786, 1513
setting 1518–1519
tags for 1539–1548

storage objects 987–1018
creating 990–991
defined 987–989
and file objects 1020
general routines for 992–996
getting and setting information 991–992
getting data from 994
getting size of data 993
getting type of 993
introduced 169
routines for 992–1017
setting data for 995
types of 993

storage pixmaps 293, 926–927
stream files 1295
stream mode 1021, 1030
String 1305
string constants 1305

string objects 1305–1307
See also C string objects
getting type of 83
introduced 169
routines for 83–87
types of 84

strings 1263
strings. See string objects
strips 311
style objects 545, 1423–1438

data structures for 555–556
defined 545–553
general routines for 556–558
introduced 170
routines for 556–581
types of 546

styles. See style objects
subdivision methods 550
subdivision method specifiers 550
subdivision style data structure 555
subdivision styles 549–550, 1430–1432

getting a view’s 904
routines for 568–571

surface-based shaders
introduced 915
types of 916

surface normals 1403–1404
surface parameterization

assigning to a mesh face 271
surface parameterizations 252–256

See also custom surface parameterization,
natural surface parameterizations,
standard surface parameterizations

surface shaders 916
routines for 934–935

surface tangents 289, 1401–1403
surface UV objects 1398–1400
surrounding light. See ambient light
synthetic cameras. See camera objects

T

table of contents 1021

I N D E X

1753

tables of contents 1279–1284
tags

defined 786, 1513
tangents 289

reading from and writing to file
objects 1066–1068

tangents (two- and three-dimensional) 1269
tangents, surface 1401–1403
target object 1272
text files 1021, 1260
text mode 1030
texture border colors 1547
texture flags 1566
texture magnification functions 1543
texture mapping 922
texture mapping filter modes 784, 1552
texture mapping operations 1542, 1553

supporting in OpenGL 1533–1534
texture minifying functions 1543
texture modes 1566
texture objects 922, 923–927

introduced 168, 170
routines for 939–945

textures
compressing 1567
determining memory available for 1561
methods for 1645–1647
routines for 1588–1591

textures. See texture objects
texture shaders 1491–1492

attaching to objects 923–926
defined 916
routines for 935–937

texture vertices 1520, 1578
3D metafile headers 1276–1279
'tnsl' shared library type 1530
toc entry types 1279–1280
tocLocation file pointers 1278
tolerances. See edge tolerances, vertex tolerances
top cap attribute sets 1409–1410
tori 1385–1389

defined 326–329
routines for 491–499

TQ3AntiAliasModeMasks type 553
TQ3AntiAliasMode type 553

TQ3AntiAliasStyleData type 554
TQ3Area data type 294
TQ3AttenuationType type 638
TQ3AttributeTypes type 527
TQ3AttributeType type 537
TQ3Axis type 73
TQ3BackfacingStyle type 547
TQ3Bitmap data type 291
TQ3Boolean type 47, 72
TQ3BoundingBox type 1161
TQ3BoundingSphere data type 1161
TQ3BoxData data type 303
TQ3BoxData type 240
TQ3CameraData type 670, 685
TQ3CameraPlacement type 590, 684
TQ3CameraRange type 673, 684
TQ3CameraViewPort type 685
TQ3ChannelGetMethod function 1140
TQ3ChannelSetMethod function 1141
TQ3ColorARGB type 1250
TQ3ColorRGB data type 1250
TQ3ColorRGB type 1248
TQ3ComputeBounds data type 891, 893
TQ3ComputeBounds type 891, 893
TQ3ConeData type 325
TQ3ControllerData data type 1108
TQ3ControllerRef type 1103
TQ3CSGEquation type 768
TQ3CursorTrackerNotifyFunc function 1144
TQ3CylinderData type 322
TQ3DDSurfaceDescriptor type 847
TQ3DDSurfaceDrawContextData type 847
TQ3DialogAnchor type 774
TQ3DirectDrawObjectSelector type 847
TQ3DirectDrawSurfaceSelector type 847
TQ3DirectionalLightData data type 640
TQ3DirectionalLightData type 640
TQ3DiskData type 324
TQ3DisplayGroupStateMasks type 716, 722
TQ3DisplayGroupState type 716
TQ3DrawContextClearImageMethod type 843
TQ3DrawContextData type 838, 843
TQ3ElementType type 193, 537
TQ3EllipseData type 315
TQ3EllipsoidData type 321

I N D E X

1754

TQ3EndCapMasks data type 280
TQ3EndCap type 280
TQ3Endian type 279
TQ3ErrorMethod function 1154
TQ3Error type 1150
TQ3FallOffType type 638
TQ3FileIdleMethod function 1096
TQ3FileModeMasks type 1029, 1032
TQ3FileMode type 1032
TQ3FileReadGroupStateMasks type 1032
TQ3FileReadGroupState type 1032
TQ3FileVersion type 1032
TQ3FillStyle type 548
TQ3Float32 type 1031
TQ3Float64 type 1031
TQ3FunctionPointer type 196
TQ3GeneralPolygonContourData data type 301
TQ3GeneralPolygonData data type 301
TQ3GeneralPolygonShapeHint type 279
TQ3GroupPosition type 715
TQ3HitPath data type 966
TQ3HitPath type 966
TQ3IndexedVertex3D type 312
TQ3Int16 type 1031
TQ3Int32 type 1031
TQ3Int64 type 1031
TQ3Int8 type 1031
TQ3InterpolationStyle type 547
TQ3LightData data type 639
TQ3LightData type 632, 639
TQ3LineData data type 295
TQ3MacDrawContext2DLibrary type 845
TQ3MacDrawContextData type 841, 845
TQ3MarkerData type 329
TQ3Matrix3x3 data type 290
TQ3Matrix4x4 data type 290
TQ3MeshComponent type 305
TQ3MeshContour type 305
TQ3MeshEdgePartObject type 976
TQ3MeshEdge type 305
TQ3MeshFacePartObject type 976
TQ3MeshFace type 305
TQ3MeshIterator data type 307
TQ3MeshPartObject type 976
TQ3MeshVertexPartObject type 976

TQ3MeshVertex type 383
TQ3MetaHandler function 196
TQ3MethodType type 213
TQ3MipmapImage type 943
TQ3Mipmap type 943
TQ3NoticeMethod function 1156
TQ3Notice type 1150
TQ3NURBCurveData type 315
TQ3NURBPatchData type 318
TQ3NURBPatchTrimCurveData type 319
TQ3NURBPatchTrimLoopData type 319
TQ3ObjectClassNameString type 185
TQ3ObjectClass type 176
TQ3Object data type 166
TQ3ObjectType type 181
TQ3OrientationStyle type 550
TQ3OrthographicCameraData type 686
TQ3Param2D data type 288
TQ3Param3D data type 288
TQ3PickData data type 965
TQ3PickData type 965
TQ3PickDetailMasks type 954, 962
TQ3PickDetail type 954
TQ3PickPartsMasks type 552, 964
TQ3PickParts type 964
TQ3PickSort type 962
TQ3PixelType type 277
TQ3Pixmap data type 292
TQ3PixmapDrawContextData data type 846
TQ3PixmapMarkerData type 330
TQ3PlaneEquation data type 294
TQ3Point2D data type 283
TQ3Point3D data type 283
TQ3PointData data type 295
TQ3PointLightData data type 641
TQ3PointLightData type 641
TQ3PolarPoint data type 285
TQ3PolygonData data type 299
TQ3PolyhedronData type 246, 264, 313
TQ3PolyhedronEdgeData type 263, 312
TQ3PolyhedronEdgeMasks type 261, 281
TQ3PolyhedronEdge type 261
TQ3PolyhedronTriangleData type 245, 262, 313
TQ3PolyLineData data type 297
TQ3Quaternion data type 287

I N D E X

1755

TQ3RationalPoint3D data type 284
TQ3RationalPoint4D data type 284
TQ3Ray3D data type 288
TQ3RotateAboutAxisTransformData type 600
TQ3RotateAboutPointTransformData type 600
TQ3RotateTransformData type 599
TQ3ShaderUVBoundary type 928
TQ3Size type 1031
TQ3SphericalPoint data type 286
TQ3SpotLightData data type 641
TQ3SpotLightData type 641
TQ3Status type 47, 73
TQ3StoragePixmap data type 293
TQ3SubClassData type 188
TQ3SubdivisionMethod type 549
TQ3SubdivisionStyleData type 555
TQ3Switch type 47
TQ3Tangent2D data type 289
TQ3Tangent3D data type 289
TQ3TorusData type 328
TQ3TrackerNotifyFunc function 1143
TQ3TriangleData data type 298
TQ3TriangleData type 239
TQ3TriGridData data type 305
TQ3TriGridData type 244
TQ3TriMeshAttributeData type 309
TQ3TriMeshData type 309
TQ3TriMeshEdgeData type 308
TQ3TriMeshTriangleData type 308
TQ3UnknownBinaryData type 1033
TQ3UnknownTextData data type 1032
TQ3UnknownTextData type 1032
TQ3Uns16 type 1031
TQ3Uns32 type 1031
TQ3Uns64 type 1031
TQ3Uns8 type 1030
TQ3Vector2D data type 287
TQ3Vector3D data type 287
TQ3Vertex3D data type 290
TQ3ViewAngleAspectCameraData type 687
TQ3ViewEndFrameMethod function 912
TQ3ViewerButtonSet type 158
TQ3ViewerCameraView type 109
TQ3ViewerDrawingCallbackMethod function 161
TQ3ViewerDropFiles type 157

TQ3ViewerObject type 111
TQ3ViewerSetViewNumber type 157
TQ3ViewerSetView type 157
TQ3ViewIdleMethod function 910
TQ3ViewIdleProgressMethod function 911
TQ3ViewPlaneCameraData type 686
TQ3ViewStatus type 883, 887, 889, 892
TQ3WarningMethod function 1155
TQ3Warning type 1150
TQ3Win32DCDrawContextData data type 846
TQ3Win32DCDrawContextData type 846
TQ3WindowPointPickData data type 965
TQ3WindowPointPickData type 965
TQ3WindowRectPickData data type 966
TQ3WindowRectPickData type 966
TQ3XAttributeCopyInheritMethod function 544
TQ3XAttributeInheritMethod function 543
TQ3XAttributeMask type 788
TQ3XClipMaskState type 827
TQ3XColorDescriptor type 826
TQ3XDevicePixelType type 826
TQ3XDrawContextValidationMasks type 819
TQ3XDrawContextValidation type 819
TQ3XDrawRegionDescriptor type 825
TQ3XDrawRegionServicesMasks type 821
TQ3XDrawRegion type 817
TQ3XElementCopyAddMethod function 539
TQ3XElementCopyDuplicateMethod function 541
TQ3XElementCopyGetMethod function 540
TQ3XElementCopyReplaceMethod function 539
TQ3XElementDeleteMethod function 542
TQ3XFunctionPointer type 177
TQ3XGroupAcceptObjectMethod function 747
TQ3XGroupAddObjectAfterMethod function 749
TQ3XGroupAddObjectBeforeMethod function 748
TQ3XGroupAddObjectMethod function 748
TQ3XGroupCountObjectsOfTypeMethod

function 753
TQ3XGroupEmptyObjectsOfTypeMethod

function 753
TQ3XGroupEndIterateMethod function 760
TQ3XGroupEndReadMethod function 761
TQ3XGroupGetFirstObjectPositionMethod

function 754

I N D E X

1756

TQ3XGroupGetFirstPositionOfTypeMethod
function 751

TQ3XGroupGetLastObjectPositionMethod
function 755

TQ3XGroupGetLastPositionOfTypeMethod
function 751

TQ3XGroupGetNextObjectPositionMethod
function 755

TQ3XGroupGetNextPositionOfTypeMethod
function 752

TQ3XGroupGetPrevObjectPositionMethod
function 756

TQ3XGroupGetPrevPositionOfTypeMethod
function 752

TQ3XGroupPositionCopyMethod function 757
TQ3XGroupPositionDeleteMethod function 758
TQ3XGroupPositionNewMethod function 757
TQ3XGroupRemovePositionMethod function 750
TQ3XGroupSetPositionObjectMethod

function 749
TQ3XGroupStartIterateMethod function 758
TQ3XMetaHandler type 177
TQ3XMethodTypeGroupPositionSize

function 756
TQ3XMethodType type 177
TQ3XObjectAttachMethod function 233
TQ3XObjectClassRegisterMethod function 225
TQ3XObjectClassReplaceMethod function 227
TQ3XObjectClass type 216
TQ3XObjectClassUnregisterMethod

function 226
TQ3XObjectClassVersion type 228
TQ3XObjectDeleteMethod function 230
TQ3XObjectDuplicateMethod function 231
TQ3XObjectNewMethod function 229
TQ3XObjectUnregisterMethod function 232
TQ3XRendererCancelMethod function 812
TQ3XRendererEndFrameMethod function 811
TQ3XRendererEndPassMethod function 810
TQ3XRendererFlushFrameMethod function 809
TQ3XRendererGetConfigurationDataMethod

function 800
TQ3XRendererGetNickNameStringMethod

function 798

TQ3XRendererIsBoundingBoxVisibleMethod
function 816

TQ3XRendererModalConfigureMethod
function 797

TQ3XRendererPopMethod function 815
TQ3XRendererPushMethod function 815
TQ3XRendererSetConfigurationDataMethod

function 801
TQ3XRendererStartFrameMethod function 807
TQ3XRendererStartPassMethod function 808
TQ3XRendererSubmitGeometryMethod

function 795
TQ3XRendererUpdateAttributeMethod

function 803
TQ3XRendererUpdateMatrixMethod function 805
TQ3XRendererUpdateShaderMethod function 804
TQ3XRendererUpdateStyleMethod function 802
TQ3XSharedLibraryInfo type 210, 232
TQ3XSharedLibraryRegister function 232
TQABitmapDelete method 1650
TQABitmapDetach method 1649
TQABitmapNew method 1648
TQABufferNoticeMethod method 1652
TQAClip data type 1576
TQAClip type 1576
TQADevice data type 1576
TQADeviceMemory data type 1572
TQADeviceMemory type 1572
TQADevice type 1576
TQADrawBitmap method 1633
TQADrawContext data type 1581
TQADrawContext type 1581
TQADrawLine method 1624
TQADrawPoint method 1525, 1624
TQADrawPrivateDelete method 1527, 1641
TQADrawPrivateNew method 1526, 1640
TQADrawTriGouraud method 1625
TQADrawTriMeshGouraud function 1629
TQADrawTriMeshTexture function 1630
TQADrawTriTexture method 1626
TQADrawVGouraud method 1630
TQADrawVTexture method 1631
TQAEngineCheckDevice method 1641
TQAEngineGestalt method 1528–1529, 1642

I N D E X

1757

TQAEngineGetMethod method 1528, 1529,
1529–1531, 1650

TQAFlush method 1636
TQAGetFloat method 1619
TQAGetInt method 1621
TQAGetNoticeMethod function 1638
TQAGetPtr method 1622
TQAImage data type 1576
TQAImage type 1576
TQAIndexedTriangle data structure 1584
TQAIndexedTriangle type 1584
TQAPlatformClip data type 1574, 1575
TQAPlatformClip type 1574, 1575
TQAPlatformDevice data type 1574, 1575
TQAPlatformDevice type 1574, 1575
TQARect data type 1573
TQARect type 1573
TQARenderAbort method 1636
TQARenderEnd method 1635
TQARenderStart method 1633
TQASetFloat method 1620
TQASetInt method 1621
TQASetNoticeMethod function 1639
TQASetPtr method 1623
TQAStandardNoticeMethod method 1651
TQASubmitVerticesGouraud function 1627
TQASubmitVerticesTexture function 1628
TQASync method 1637
TQATextureDelete method 1647
TQATextureDetach method 1646
TQATextureNew method 1643, 1644, 1645
TQAVGouraud data type 1577
TQAVGouraud type 1577
TQAVTexture data type 1578
TQAVTexture type 1578
tracker coordinates 1104
tracker notify functions 1104, 1143
tracker objects

changing button state of 1133
and controller objects 1101
creating 1128
defined 1103–1104
getting activation state of 1130
getting button state of 1133
getting event coordinates of 1131

getting notify thresholds 1129
getting orientation of 1137
getting position of 1134
moving orientation of 1139
moving position of 1136
routines for 1128–1140
setting activation state of 1130
setting event coordinates of 1132
setting notify thresholds 1129
setting orientation of 1138
setting position of 1136
specifying notify functions for 1143

trackers. See tracker objects
tracker serial numbers 1104
tracker thresholds 1104
transformation matrices

setting up 1214–1223
transform objects 585–630, 1438–1449

data structures for 599–601
defined 585
general routines for 601–603
getting a view’s 899–901
getting type of 601
introduced 170
routines for 601–629
types of 586, 593–598, 601

transforms. See transform objects
translate transforms 594, 1438–1439

getting matrix representations of 1215, 1217
routines for 624–626

transparency 769–770
transparency blending functions 1541, 1550

destination blending values 1557
source blending values 1556
supporting in OpenGL 1531–1533

transparency color objects 1397–1398
transparency colors 528, 769
transposing matrices 1210–1211
triangle flags 1566
triangle meshes

drawing 1606–1607, 1629–1630
introduced 1511
submitting vertices for 1604–1606, 1627–1628

triangle modes 1566
triangles 297–298, 1313–1315

I N D E X

1758

routines for 349–354
trigrids 244, 304–305, 1327–1330, 1331–1334

routines for 375–382
trim curve data structure 319
trimeshes

defined 307–310
routines for 430–432

trim loop data structure 319
trim loops objects 1363–1365
two-dimensional graphics libraries 839, 845
type ID 1290
type objects 1290–1292
types. See object types.
types (of objects) 1270
type seed (in table of contents) 1281

U

Unicode objects 1306–1307
UNIX path name storage objects 989

routines for 1013–1015
UNIX storage objects 989

routines for 1010–1012
unknown binary data structure 1032
unknown binary objects 1504–1505
unknown objects 1502–1505

data structures for 1030–1033
defined 1068
emptying the contents of 1071, 1073, 1074
getting type of 1069
introduced 171
routines for 1068–1074

unknown text data structure 1032
unknown text objects 1502–1504
unregistering object classes 205
unsigned integer data types 1262
up vectors 670
uv transforms 256

V

valid ranges 927
variable-sized integer types 1276
vector products. See cross products
vectors

adding and subtracting 1189–1191
calculating cross products of 1191–1193
calculating dot products of 1193–1194
converting dimensions of 1170–1171
defined 286–287
getting lengths of 1187
negating 1201–1202
normalizing 1188–1189
reading from and writing to file

objects 1063–1065
scaling 1185–1186
setting 1166–1167
transforming 1194–1196

vectors, three-dimensional 1268
vectors, two-dimensional 1267
vendor IDs 1565
version, of QuickDraw 3D RAVE 1535
version number (of metafiles) 1277
vertex attribute set lists 1420–1422
vertex indices 395
vertex modes 1558
vertex tolerances 949

getting 970
setting 971

vertices 289–290
See also indexed vertices, mesh vertices

view angle aspect cameras 1471–1473
view coordinate systems. See camera coordinate

systems
Viewer. See 3D Viewer
viewer badges. See badges
viewer controller strips. See controller strips
viewer flags 102, 105–107
viewer frames 93
viewer frames. See viewer panes
viewer objects

adjusting the cursor for 150–152
application-defined routines for 160–161
attaching data to 102–103

I N D E X

1759

constants for 104–109
creating 101–102, 110
defined 93
disposing of 112
drawing 114
getting bounds of 127
getting flags of 125
getting port of 130
getting state of 132
getting the view of 120
handling editing commands for 153–157
handling events for 103–104, 145–150
restoring the view of 121
routines for 110–157
setting bounds of 127
setting data displayed in 113
setting file displayed in 112
setting flags of 126
setting port of 130
using 99–104

viewer panes 93
viewers. See viewer objects
viewer state flags 108
view hints objects 1022, 1495–1497

introduced 169
routines for 1074–1095

viewing boxes 591
viewing directions 670
viewing frustra 591
viewing vectors. See viewing directions
view objects 871, 1495–1502

application-defined routines for 909–910
canceling submitting 884
creating 67–69, 876
defined 872
ending rendering 883
getting camera of 878
getting draw context of 880
getting light group of 879
getting the renderer for 876
introduced 168
managing attribute set of 907–909
managing bounds of 889–895
managing style states of 901–906
picking in 886–887

popping and pushing graphics states 897–899
rendering in 882–885
routines for 876–909
setting camera of 879
setting draw context of 881
setting idle method of 895–896
setting light group of 880
setting renderer for 877
starting rendering 882

view plane camera data structure 686–687
view plane cameras 679–680, 1469–1471

creating 700
data structure for 686
getting data of 701
managing characteristics of 702–707
routines for 700–707
setting data of 701

view plane coordinate system 680
view planes 591, 673–676
view ports. See camera view ports
view ports (QuickDraw GX) 845
views. See view objects
view spaces. See camera coordinate systems
view status values 69, 883, 887, 889
view-to-frustum transforms 693
virtual cameras. See camera objects
virtual devices

defined 1513
specifying 1514–1516

W

warning-handling routines 1148, 1155
warnings 87, 1145, 1151
window coordinate systems 591
window picking. See screen-space picking
window-point pick data structure 965
window-point pick objects

creating 980
defined 949
getting the data of 982
getting the point of 981
routines for 980–982

I N D E X

1760

setting the data of 982
setting the point of 981

window-rectangle pick data structure 966
window-rectangle pick objects

creating 983
defined 949
getting the data of 984
getting the rectangle of 983
routines for 983–985
setting the data of 985
setting the rectangle of 984

windows, configuring for QuickDraw 3D 59–62
Windows 32

class name 157
clipboard type 157

Windows 32 draw contexts
routines for 864–866

window spaces. See window coordinate systems
Windows storage objects

routines for 1015–1017
wireframe renderer 764
wireframe renderers 1485–1486
WM_NOTIFY data structures 157
WM_NOTIFY definitions 158
world coordinate systems 589
world spaces. See world coordinate systems
world-space subdivision 549
world-to-frustum transforms 592, 694, 900
world-to-view space transforms 693
wrapping 927, 929
writing loops 1028

Y

yon planes 672–673, 684

Z

zoom button (3D Viewer) 95
z perspective controls 1541, 1552
z sorting functions 1541, 1548

I N D E X

1761

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh computers
and FrameMaker software. Line art was
created using Adobe Illustrator™ and
Adobe Photoshop™. PostScript™, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Adobe Letter
Gothic.

WRITER
George Towner

DEVELOPMENTAL EDITOR
Jeanne Woodward

ILLUSTRATORS
Ruth Anderson and Sandee Karr

ONLINE PRODUCTION
Bill Harris

Special thanks to Kent Davidson,
Tracey Davis, Robert Dierkes,
Pablo Fernicola, Julian Gómez,
Mark Halstead, Mike Kelley,
Eiichiro Mikami, Tim Monroe,
Brent Pease, Philip Schneider,
Klaus Strelau, Nick Thompson,
David Vasquez, Dan Venolia, Ingrid Voss,
and Kevin Wu.

Acknowledgments to George Corrick,
Joe Flesch, Vicky Kaiser,
Pete Litwinowicz, Charles Loop,
Malcom MacFail, Fábio Pettinati,
Brian Rowe, Steve Rubin, Melissa Sleeter,
Ken Turkowski, and John Wang.

	About This Document
	Ch.1: Introduction to QuickDraw 3D
	About QuickDraw 3D
	Using QuickDraw 3D
	QuickDraw 3D Reference
	QuickDraw 3D Errors, Warnings, and Notices

	Ch. 2: 3D Viewer
	About the 3D Viewer
	Using the 3D Viewer
	3D Viewer Reference

	Ch. 3: QuickDraw 3D Objects
	About QuickDraw 3D Objects
	Using QuickDraw 3D Objects
	QuickDraw 3D Objects Reference
	Creating Custom Object Subclasses
	Object Errors, Warnings, and Notices

	Ch. 4: Geometric Objects
	About Geometric Objects
	Attributes of Geometric Objects
	Polyhedral Primitives
	Meshes
	Trigrids
	Polyhedra
	Trimeshes
	Comparison of the Polyhedral Primitives

	NURB Curves and Patches
	Surface Parameterizations

	Using Geometric Objects
	Creating and Deleting Geometric Objects
	Using Polyhedrons
	Using Trimeshes
	Using Meshes
	Using Trigrids

	Geometric Objects Reference
	Constants
	Data Structures
	Points
	Rational Points
	Polar and Spherical Points
	Vectors
	Quaternions
	Rays
	Parametric Points
	Tangents
	Vertices
	Matrices
	Bitmaps and Pixel Maps
	Areas and Plane Equations
	Point Objects
	Lines
	Polylines
	Triangles
	Simple Polygons
	General Polygons
	Boxes
	Trigrids
	Meshes
	Trimeshes
	Polyhedra
	Ellipses
	NURB Curves
	NURB Patches
	Ellipsoids
	Cylinders
	Disks
	Cones
	Tori
	Markers

	Geometric Objects Routines
	Managing Geometric Objects
	Points
	Lines
	Polylines
	Triangles
	Simple Polygons
	General Polygons
	Boxes
	Trigrids
	Meshes
	Trimeshes
	Polyhedra
	Ellipses
	NURB Curves
	NURB Patches
	Ellipsoids
	Cylinders
	Disks
	Cones
	Tori
	Bitmap Markers
	Pixmap Markers
	Managing Bitmaps

	Geometry Errors, Warnings, and Notices

	Ch. 5: Attribute Objects
	About Attribute Objects
	Types of Attributes and Attribute Sets
	Attribute Inheritance

	Using Attribute Objects
	Creating and Configuring Attribute Sets
	Iterating Through an Attribute Set
	Defining Custom Attribute Types

	Attribute Objects Reference
	Attribute Errors

	Ch. 6: Style Objects
	About Style Objects
	Backfacing Styles
	Interpolation Styles
	Highlight Styles
	Subdivision Styles
	Orientation Styles
	Shadow-Receiving Styles
	Picking ID Styles
	Picking Parts Styles
	Anti-Alias Style

	Using Style Objects
	Style Objects Reference

	Ch. 7: Transform Objects
	About Transform Objects
	Transform Objects Reference
	Transform Errors, Warnings, and Notices

	Ch. 8: Light Objects
	About Light Objects
	Using Light Objects
	Light Objects Reference
	Light Notices

	Ch. 9: Camera Objects
	About Camera Objects
	Using Camera Objects
	Camera Objects Reference
	Camera Errors

	Ch. 10: Group Objects
	About Group Objects
	Using Group Objects
	Group Objects Reference
	Extending Group Objects
	Group Errors

	Ch. 11: Renderer Objects
	About Renderer Objects
	Using Renderer Objects
	Renderer Objects Reference
	Renderer Methods
	Renderer Errors

	Ch. 12: Draw Context Objects
	About Draw Context Objects
	Using Draw Context Objects
	Draw Context Objects Reference
	Draw Context Errors, Warnings, and Notices

	Ch. 13: View Objects
	About View Objects
	Using View Objects
	View Objects Reference
	View Errors, Warnings, and Notices

	Ch. 14: Shader Objects
	About Shader Objects
	Using Shader Objects
	Shader Objects Reference

	Ch. 15: Pick Objects
	About Pick Objects
	Using Pick Objects
	Pick Objects Reference
	Picking Warnings

	Ch. 16: Storage Objects
	About Storage Objects
	Using Storage Objects
	Storage Objects Reference
	Storage Object Errors

	Ch. 17: File Objects
	About File Objects
	Using File Objects
	File Objects Reference
	File System Errors, Warnings, and Notices

	Ch. 18: Pointing Device Manager
	About the Pointing Device Manager
	Using the QuickDraw 3D Pointing Device Manager
	QuickDraw 3D Pointing Device Manager Reference
	Pointing Device Errors

	Ch. 19: Error Manager
	About the Error Manager
	Using the Error Manager
	Error Manager Reference

	Ch. 20: Mathematical Utilities
	About the Mathematical Utilities
	QuickDraw 3D Mathematical Utilities Reference

	Ch. 21: Color Utilities
	About the Color Utilities
	Using the QuickDraw 3D Color Utilities
	QuickDraw 3D Color Utilities Reference

	3D Metafile 1.5 Reference
	Introduction
	Basic Data Types
	Defined 3D Data Types
	Abstract Data Types
	Object Type
	Size
	File Pointers

	Metafile Object Specifications
	Special Metafile Objects
	3D Metafile Header
	Tables of Contents
	Reference Objects
	External Reference Objects
	Types
	Containers

	Examples of Metafile Structures
	String Objects
	Geometric Objects
	Points
	Lines
	Polylines
	Triangles
	Simple Polygons
	General Polygons
	General Polygon Hints
	Boxes
	Trigrids
	Polyhedra
	Meshes
	Mesh Corners
	Mesh Edges
	Trimeshes
	Attribute Arrays
	Ellipses
	NURB Curves
	2D NURB Curves
	Trim Loops
	NURB Patches
	Ellipsoids
	Caps
	Cylinders
	Disks
	Cones
	Tori
	Markers

	Attributes
	Diffuse Color
	Specular Color
	Specular Control
	Transparency Color
	Surface UV
	Shading UV
	Surface Tangents
	Normals
	Ambient Coefficients
	Highlight State

	Attribute Sets
	Attribute Sets
	Top Cap Attribute Sets
	Bottom Cap Attribute Sets
	Face Cap Attribute Sets

	Attribute Set Lists
	Geometry Attribute Set Lists
	Face Attribute Set Lists
	Vertex Attribute Set Lists

	Styles
	Back-facing Styles
	Interpolation Styles
	Fill Styles
	Highlight Styles
	Subdivision Styles
	Orientation Styles
	Receive Shadows Styles
	Pick ID Styles
	Pick Parts Styles

	Transforms
	Translate Transforms
	Scale Transforms
	Matrix Transforms
	Rotate Transforms
	Rotate-About-Point Transforms
	Rotate-About-Axis Transforms
	Quaternion Transforms
	Shader Transforms
	Shader UV Transforms

	Lights
	Attenuation and Fall-Off Values
	Light Data
	Ambient Light
	Directional Lights
	Point Lights
	Spot Lights

	Cameras
	Camera Placement
	Camera Range
	Camera Viewport
	Orthographic Cameras
	View Plane Cameras
	View Angle Aspect Cameras

	Groups
	Display Groups
	Ordered Display Groups
	Light Groups
	I/O Proxy Display Groups
	Info Groups
	Groups (Generic)
	Begin Group Objects
	End Group Objects
	Display Group States

	Renderers
	Wireframe Renderers
	Interactive Renderers
	Generic Renderers

	Shaders
	Shader Data Objects
	Texture Shaders
	Pixmap Texture Objects

	View Objects
	View Hints
	Image Masks
	Image Dimensions Objects
	Image Clear Color Objects

	Unknown Objects
	Unknown Text
	Unknown Binary

	QuickDraw 3D RAVE
	Bibliography
	Glossary
	Index

