PART
[

Database Basics

CHAPTER
1

Introduction
to Databases

4 Oracle Database 10g PL/SQL 101

- elcome to the wonderful world of databases. “Huh?” you might
' say to yourself. “What's so wonderful about databases?” The
~ answer lies not with databases themselves, but with what they

.~ contain: information. Information that can make your life easier,
transform a mountain of chaos into a manageable chunk of order,

and help you discover things you would never have the time to find out otherwise.

When you learn how to use databases knowledgeably, you learn how to control the

way you receive information. More and more, this fundamental skill is becoming

the difference between getting the answers you need and not.

What Exactly Is a Database?

Stripped down to its most basic form, a database is a list of information. Or a set of
lists that work together. A database program is a fancy list manager.

Databases are a regular part of just about everyone’s life. For example, a telephone
book is a paper representation of a database. It provides you with specific pieces of
information about people, and it sorts that information into an order designed to help
you find what you want quickly. If the telephone book contains business listings—
often called the “yellow pages”—the information there will be sorted by business
type, and within each business type, it will be sorted by name.

You probably have an address book—it’s a database, too. So is your checkbook
register. If your local television provider has a channel that shows what's playing on
each channel, that information is coming from a database.

You have probably used databases on the Internet, too. If you have looked for
a book or CD using a web site, the information that came back to you was pulled
from a database. (I recently designed just such a database for the world’s largest
music-publishing company.) Online auction sites are large databases containing
information about buyers, sellers, items, bids, and feedback. Internet search engines
such as Google and Yahoo! are enormous databases containing key information
about millions of web pages.

Tables

Databases are always designed to store a particular type of information. For instance,
in the case of a telephone book, the information is about people (in the white pages)
and about businesses (in the yellow pages). A database would generally store such
information by having one table containing all the information about people, and
another table containing the information about businesses. Each of these tables would
look a lot like a spreadsheet, with individual columns for each type of information
being stored (name, address, number, and so on) and a row for each person or
business. For instance, Table 1-1 demonstrates a simple employee table.

Chapter 1: Introduction to Databases

EMPLOYEE_ID FIRST NAME LAST_NAME SALARY HIRE_DATE
1024 Devin Campbell 63000 15-JAN-04
2048 Alexa Hammond 67000 17-FEB-05
3072 Blake Anthony 68000 27-JAN-06
4096 Brianna Berlin 69000 29-MAY-07

TABLE 1-1. A simple employee table

The most important thing to remember about a table is this: It stores information
about one type of thing. A table about people will not store information about
lawnmowers! A table about school classes will not store information about the people
who take those classes. If a database needs to store information about more than one
type of thing—and it almost always will—it does so by using more than one table. For
example, to properly track school classes, a database would have (at the very least) a
table for faculty, another one for classes, a third one for classrooms, and a fourth one
for students. Keeping the different types of information separate allows a database to
store information very efficiently, and in a highly organized (and therefore easy-to-use)
manner.

Rows/Records

The simple employee table shown earlier contains information about four people.
Each person’s information is on a line of its own. Each line is called a row, and
the data it contains is called a record. Each row will contain the information for
one—and only one—of the items defined by the table’s name. For instance, in an
employee table, each row contains information for only one employee. Similarly,
each employee’s information is stored on just one row. You design the table so
that it only takes one row to hold all of the information specific to each of whatever
the table’s name says it holds. (You'll be doing this yourself very soon.)

Columns/Fields

Each row contains several pieces of information. In the employee example, those
pieces included employee 1D, first name, last name, and so on. In a table, these
pieces of information are stored in columns. The junction point of a row and a
column—for instance, a particular person’s first name—is called a field. A field
contains a single piece of information about something—for instance, a telephone
number for one person.

5

6 Oracle Database 10g PL/SQL 101

Let’s think about a concrete example. Imagine that you want to put information
for five of your friends onto 3” x 5” index cards. Each friend will get his or her own
index card, so you'll use a total of five cards. By doing this, you're creating a small
database. It's a physical database, as opposed to one on a computer, but it’s a
database nonetheless, and the concepts of tables, records, and fields still apply.
Figure 1-1 shows the relationships between the index cards and these terms.

Now let’s say you've put the information for the same five friends into a
spreadsheet. Figure 1-2 shows how the terms you’ve just learned would apply to
that situation.

Table Records
Sven Schramm |
Mark King |
James Bridstrup |
Virginia Havelin v
Pl Michael Huebner
(555) 234-5678 mhuebner@mail.com
Likes motorcycles, photography, guitars, and
| mellow dogs.

Fields

FIGURE 1-1. Friend information laid out on index cards

Chapter 1: Introduction to Databases

B 606.xls H=E
A I =] [u] E zl'
| 1 |First Name Last Name Phone Email Comments

Likes phatography,
Michael Huebner (555) 234-5678 mhuebner@mail net guitars, and mellow dogs
Intrepid traveler and all-
| 3 |Virginia Hawvelin (555) 345-6789 vhavelin@mail.net around cool person
| 4 |James Bridstrup (555) 456-7880 jbridstrup@mail.net Mickname: Mr. Smooove
| 5 |Mark king (555) 567-BA01 mking@mail net If | had a single sister..
Be sure to fly to east
coast only when he is
| B |Sven Schramm (555) 678-8012 sschramm@mail.net MNOT warking Jd
141 | oy

~

FIGURE 1-2. Friend information laid out in a spreadsheet

How Is a Database
Different from a Spreadsheet?

Based on the “list of friends” example, it would be easy to think “Well, why not just
keep the list in a spreadsheet?” For a list like the one shown, you could. A database
becomes appropriate when the lists get more complicated, or when they need to be
used in a more sophisticated environment. What follows are several distinctive
features that databases offer.

Many Rows

Since spreadsheets are designed primarily for financial calculations—essentially,
they function as ledger sheets with formulas where the answers go—they aren’t
designed to accommodate the number of rows that a business database will need.
It's common for a spreadsheet to have a limit of 65,536 on the number of rows it
can contain. While that is a lot of rows for a spreadsheet, it isn’t really that many
for a database. (For example, | just used a web site to find out how many Internet
newsgroup messages contain the world “Oracle.” There were approximately
2,330,000 matching messages, and every one of those messages is stored in the
web site’s database. That web site’s database contains over two million records
about Oracle messages alone; imagine how many records it contains in total!) It's
not uncommon for a business database to contain millions of rows and for large
businesses to have databases containing billions of rows. No spreadsheet is going
to handle that!

7

8 Oracle Database 10g PL/SQL 101

Many Users Simultaneously

Because databases are at the core of many businesses, it’s essential that they
allow lots of people access to the same data simultaneously. To understand
why, imagine a retail store chain that has a hundred computerized cash registers
distributed among its stores. On a busy sale day, many of those registers are
going to be doing transactions at the same time. If you had to wait for all of the
other transactions to be completed before yours could go through, you would
probably get frustrated and leave, and so would a lot of other people—and

sales would suffer. On a bigger scale, airline reservation systems can deal with
thousands of requests every second—if each of those had to wait for all the
others, the reservation system would be very slow and annoying. The ability to
accommodate large numbers of simultaneous users is one of the key characteristics
of a database. A well-designed database can answer requests from thousands—
or even millions—of users simultaneously and still provide excellent performance.

Security

Databases contain some of the most sensitive information in a business: salaries,
customer information, and project schedules, for instance. If this information were
to be deleted, changed, or revealed to coworkers or competitors, it could cause
problems ranging from embarrassment to failure of the business itself. Because of
this, databases have extremely robust security systems. You won'’t find any passwords
stored in easily snooped text files in a database system; everything is encrypted,
including the information sent between the database and a user’s computer when
he or she logs in.

Even valid users of a database don’t necessarily get access to everything the
database contains. Users can be given privileges to specific tables, and not to others.
It's even possible to make some columns within a table visible to all users, and other
columns visible to only a select group. In addition, a database can be instructed to
filter a table’s rows so that some users see only certain rows, while other users see
all rows.

A database’s security features go even further. In addition to controlling who
can see what information, a database allows you to specify who can insert new
information, update existing information, or delete information. This helps ensure
that people who have no business reason to change or delete data, for instance,
cannot do so accidentally (or not so accidentally).

In a large database system—say, one with 1,000 users or more—managing all of
these different kinds of privileges would quickly become impossible if they had to be
set on a user-by-user basis. Fortunately, databases like Oracle allow you to gather a
specific set of privileges into something called a role. That way, whenever users are
added to the database, they are assigned one or more roles, and those roles carry the
privileges the users can exercise. This works well because businesses generally have
specific job descriptions, and the privileges each user will need relate directly to his

Chapter 1: Introduction to Databases

or her job description. An accounting clerk will need the ability to enter data from bills,
but perhaps only the accounting managers will have the ability to change data once
it's been entered. Similarly, perhaps only accounting executives can do anything at
all with the company’s salary data. Each of these three job descriptions would be a
good candidate for a database role. For instance, an “accounting clerk” role would be
assigned to all of the accounting clerks. Security roles help ensure that everyone has
exactly the privileges they need. Roles also make it very easy to assign a new privilege
to a group: You just add the privilege to that group’s role, and the job is done.

Relational Abilities

Since a database employs separate tables to store different types of data—remember
the example of a school’s database having individual tables for faculty, classes,
classrooms, and students—there must be a way to connect records in one table
with relevant records in the other tables. Databases accommodate this by letting
you define relationships between the tables.

For example, let’s consider an order-entry system. The core of this type of system
is the business’ inventory, so there will always be a table containing information
about products. The PRODUCT table will store each piece of information pertaining
to an inventory item, including description, manufacturer, price, and quantity currently
in stock. The PRODUCT table will also store a unique identifier for each product,
as a way of unquestionably identifying one product as opposed to another. Let’s say
for the sake of discussion that in the PRODUCT table, the unique identifier is the
Stock Keeping Unit (SKU).

Now that we have a table in which to store products, we need another table in
which to store orders for those products. Each row in the ORDER table will store the
date, time, location, and total order value. The ORDER table must also identify what
product the order is for, and it can do this simply by storing the product’s SKU as
part of the order record. Here’s where the relationship comes in: The only product
information an order contains is the product’s SKU. The product’s description, price,
and other information are not stored in the ORDER table. Why? It would waste space,
among other reasons, because each product’s description, price, and so on are already
available in the PRODUCT table. The only requirement to making this work is that
the database must be told how to relate an order’s SKU to a unique record in the
PRODUCT table. Once it knows that, the database can join information from both
tables, and present the combined information on a single line, as if it came from
one table.

A database that employs this technique of relating records in separate tables is
called a relational database. It's not uncommon for business databases to contain
tables that have relationships to dozens of other tables. There are many reasons for
doing this, and they will be discussed in depth in Chapter 6. The opposite of this
approach is a single large table that repeats information every time it is needed. This
type of table is called a flat file, indicating that it is two-dimensional—just rows and
columns, no related tables.

10 Oracle Database 10g PL/SQL 101

Constraints to Ensure Data Quality

Sometimes the data stored in a database comes directly from other machines:
automated sensors, timers, or counters. Most of the data in a database, though,

is entered by people. And people make mistakes. (Not you, of course, but I’'m
sure you know others who do.) When designing a database, it's easy to define
constraints identifying conditions that data in a particular field must meet before
the database accepts the record. The constraint defines what must be true about
the data in order for it to be accepted. These constraints can be very simple—Ilike
ensuring that a price is a positive number—or more involved, like ensuring that a
SKU entered into an order actually exists in the PRODUCT table, or requiring
that certain fields in a record be entered if other fields contain specific values.

By automating these types of quality-control functions, the database helps
guarantee that the data it contains is clean.

Review Questions

1. What is the most significant characteristic of a table?

2. Define the following terms: row, record, column, field, table, database,
constraint.

3. What are the key features that make a database suitable for storing large
amounts of data?

Hands-On Project

1. Gather four blank sheets of paper. The sheets can be any size—index cards
will work as well as 8.5" x 11" sheets.

2. On each sheet, write the first name, last name, phone number, and e-mail
address of a friend or associate (you will do this for a total of four people—
one per sheet).

3. After you have written the information onto the sheets, lay the sheets on a
table—separately, so that they do not touch each other.

4. Move the sheets right next to each other, so they form a grid that is two
sheets wide and two sheets high. In this arrangement, each sheet will
touch two other sheets.

5. Tape the sheets together in this arrangement.

6. Take a pen that is a different color and on the top-left sheet, circle each
item that would be stored in a database field. Write the word “Fields” at
the bottom of the sheet, and draw arrows to each of the circled fields.

Chapter 1: Introduction to Databases

7. Next, put a rectangle around each item in the four-sheet grid that would
relate to a row in a database. Write the word “Rows” in the center of the
four-sheet grid, and draw arrows from the word to each square.

8. Finally, write “e-mail column” wherever on the four-sheet grid you have
some space. Then draw one long line that connects that phrase to every
item in the grid that would be stored in a table’s e-mail column.

How Will Knowing This Help You?

Everybody is busy these days, and if you are reading a book about PL/SQL, you are
probably busier than most. It's reasonable that you will want to know how something
is going to help you before investing the time to learn it. What follows is a list of the
ways that learning PL/SQL can help you in different situations.

When Doing Database Administration

It's impossible to be an Oracle database administrator (DBA) without knowing the
standard database language called Structured Query Language (SQL), and very
difficult without knowing Oracle’s SQL superset named PL/SQL. This is because
many of the tasks that are generally done by a DBA are accomplished using SQL,
and quite a few require the programming capabilities of PL/SQL, as well. While
Oracle does provide a number of software programs enabling administrators to
perform tasks using a nice graphic user interface (GUI), these tools have their fair
share of bugs. In addition, some tasks can just be done faster when using SQL
directly, and in some database installations, connections to databases are accomplished
using text-based terminals that cannot run the pretty GUI tools. The importance of
SQL is reflected in the fact that Oracle’s own DBA certification program, which
consists of five separate exams, devotes the entire first exam to SQL and PL/SQL.

When Developing Software

When writing programs of your own, the chances are good that at some point you will
need to write some SQL code to interact with a database directly. Many developers
stumble through this, making mistakes that cost them time and performance. Investing
the time to learn SQL properly will pay for itself many times over. The documentation
supplied with Oracle includes sections dedicated to interacting with Oracle via Java,
C, C++, and COBOL.

When Doing Business Analysis

Being able to slice and dice huge mounds of data into the information you need is an
essential part of a business analyst’s job. Lots of people do this by getting an extract
of their company’s database, putting it in a spreadsheet, and manually creating the
analyses they need. This approach is flexible, but it can be time-consuming. Some

11

12 Oracle Database 10g PL/SQL 101

companies also provide their analysts with software tools designed to make data
analysis quick and easy. But even these tools don’t provide every imaginable way of
looking at the information; they provide the subsets that their designers think are the
most likely to be used. The chances are good that you will want to look at the data in
some way that the tool doesn’t support. Often a single SQL query can provide the
information you need.

If You Just Want to Know
How to Use Databases Better

Recently | visited Silicon Valley and, when | had some free time, decided to go to
a movie. | purchased a local newspaper and turned to the movie listings. | was
struck by what | saw: two sets of listings, one sorted by geographic area, and the
other sorted by movie title. So if you wanted to find out what was showing near you,
you would use one listing; if you wanted to find out where a specific movie was
playing, you would use the other. This simple, powerful idea made the listings a
real pleasure to use. I'm positive that it was thought up by someone with database
experience, someone who was familiar with the idea that the content of the data
and how it is displayed are two different things.

These days, practically everything is built around a database. If you understand
how databases work, you understand how a lot of businesses function. This can be
extremely useful. For instance, if you call a company’s customer service department
but don’t have your customer number with you, you might think to ask, “What else
can you search on to find my record?” When you use a web search site to locate
information, you will get the results you want much more quickly if you understand
how databases interpret search terms. (My friends are regularly amazed at how quickly |
can find relevant information using search sites. My only trick: educated decisions
about what to enter as search criteria.) Understanding databases is becoming a lot
like being able to do basic math quickly in your head: It isn’t essential, but it sure
comes in handy a lot.

History of SQL

A little bit of history is useful to give perspective, and the history of SQL parallels the
history of relational databases. In 1969, Dr. Edgar F. Codd published an IBM Research
Report with the catchy title Derivability, Redundancy, and Consistency of Relations
Stored in Large Data Banks. This paper described an approach to structuring databases
with related tables, which was quite different than the flat-file approach used by
databases at the time. The paper was stamped with IBM’s Limited Distribution Notice,
so it wasn’t widely read. Codd revised the concepts and published them in a 1970
article titled “A Relational Model of Data for Large Shared Data Banks” in the journal of
the Association of Computer Machinery. The relational model described by Codd was
used in a prototype relational database management system (RDBMS) called System
R in 1974. Describing the system’s query language in a November 1976 article in

Chapter 1: Introduction to Databases

the IBM Journal of R&D, IBM used the name Structured English QUEry Language
(SEQUEL). The language and its name evolved, becoming Structured Query Language
(SQL, pronounced either “sequel” or “S-Q-L"). The first commercially available
version of SQL was released in 1979 by Oracle Corporation (although the company’s
name was Relational Software, Inc. at the time).

In 1986, the American National Standards Institute (ANSI) stepped in and
published a formal SQL standard, which it identified as ANSI X3.135-1986. The
International Standards Organization (ISO) picked up this standard the following
year and published it as ISO 9075-1987. The specification was expanded in 1992,
and then again in 1999. The current specification is in five parts, named ANSI/
ISO/IEC 9051-1-1999 through 9051-5-1999.

SQL has become the de facto standard language for querying databases. Each
database company modifies it a bit to suit its needs, but the core SQL functions
remain essentially unchanged. This is good news for database users and developers,
because the time invested in learning SQL will reap benefits for years to come,
across software revision after software revision, and even to other products.

The bottom line is: SQL is a versatile and essential tool for anyone who works
with databases regularly.

SQL Command Categories

SQL commands fall into functional groups that help make them easy to remember.
These groups include:

B Data Definition
Data Manipulation
Data Control

Data Retrieval

Transaction Control

Your work with these commands will start in Chapter 2, and will continue
throughout the book. Here’s an overview of the command categories you will
learn to use.

Data Definition

Oracle and all major database programs are database platforms—meaning they provide
an environment that supports working with tables very well, but they don’t provide
any tables already created for your use. You get to define what data will be stored
and in what configuration. SQL provides a collection of commands for these
purposes: CREATE, ALTER, DROP, RENAME, and TRUNCATE.

These commands fall into a group called Data Definition Language, which is
routinely referred to as DDL.

13

14 Oracle Database 10g PL/SQL 101

Data Manipulation

Okay, you learn how to create some tables. What's the next step? Putting data into
them. SQL provides an INSERT command enabling you to add data to tables. After the
data has been inserted, you can change it using the UPDATE command, or remove it
using the DELETE command.

This category of commands is called SQL’s Data Manipulation Language, more
often referred to as DML.

Data Control

Remember the security features discussed earlier in this chapter? (I'm sure you do,
but if anyone reading over your shoulder doesn’t remember it, it’s in the section
titled “How Is a Database Different from a Spreadsheet?”.) The ability to let some
users utilize particular tables while other users cannot is enforced by assigning
users privileges for specific tables or activities. An object privilege allows a user
to perform specified actions on a table (or other database object). An example of
an object privilege would be the ability to insert records into an EMPLOYEE table.
In contrast, a system privilege enables a user to perform a particular type of action
anywhere in the database. An example of a system privilege would be the ability
to insert records into any table in the database, or the ability to create a new table.
Database privileges are assigned and removed using the SQL commands GRANT
and REVOKE. These commands fall into the category of Data Control Language (DCL).

Data Retrieval

The whole point of putting information into a database is getting it out again in a
controlled fashion. There is just one command in this category—SELECT—Dbut it
has a wealth of parameters that provide a lot of flexibility. The SELECT command
is the command you’re likely to use more than any other, especially if you plan to
use SQL from another programming language.

Transaction Control

Oracle’s SQL provides an undo capability enabling you to cancel any recent DML
commands before they are applied to the database. (Quick quiz: What commands
are DML commands? If you need a reminder, take another look at the section titled
“SQL Command Categories” earlier in this chapter.) After performing one or more
DML commands, you can either issue a COMMIT command to save your changes
to the database, or issue a ROLLBACK command to undo them.

The undo capability provides multiple levels, too: You can reverse just the last
DML transaction, or the last several, or whatever level you need. Taking advantage
of this multiple-level redo takes a little more forethought than it does in your favorite
word processor, however. If you want to be able to undo to intermediate points, you
have to mark those points by issuing a SAVEPOINT command at whatever point you
want to be able to roll back to.

Chapter 1: Introduction to Databases

Chapter Summary

Stripped down to its most basic form, a database is a list of information. Or a set
of lists that work together. A database program is a fancy list manager. Familiar
databases include telephone books, checkbook registers, and web sites providing
online auctions, ordering, and searching.

Databases are always designed to store a particular type of information. For
instance, in the case of a telephone book, the information is about people (in the
white pages), and about businesses (in the yellow pages). A database would generally
store such information by having one table containing all the information about
people, and another table containing the information about businesses. Each of these
tables would look a lot like a spreadsheet, with individual columns for each type of
information being stored (name, address, number, and so on) and a row for each
person or business.

The most important thing to remember about a table is this: It stores information
about one type of thing. If a database needs to store information about more than
one type of thing—and it almost always will—it does so by using more than one
table. Keeping the different types of information separate allows a database to store
information very efficiently, and in a highly organized (and therefore easy-to-use)
manner.

Each line in a table contains information about one instance of whatever the
table is designed to store. Each line is called a row, and the data it contains is
called a record. You design the table so that it only takes one row to hold all of
the information that is specific to each item the table contains.

Each row contains several pieces of information. In a table, these pieces of
information are stored in columns. The junction point of a row and a column—
for instance, a particular person’s first name—is called a field. A field contains a
single piece of information about something—for example, the last name for one
person.

While a table in a database stores data in rows and columns like a spreadsheet,
there are many characteristics that make a database more appropriate when the
data gets more complicated, or when it needs to be used in a more sophisticated
environment. These include the ability to handle billions of rows, accommodate
thousands of simultaneous users, provide object-specific security, relate many
tables together, and constrain the content of incoming data to ensure quality
information.

Understanding how to use SQL can benefit you in a number of different areas.
It's an essential skill if you're planning to be an Oracle DBA, because many DBA
tasks are executed using SQL commands. When developing software, it’s likely you
will need to write SQL commands to insert, select, update, and delete data within
programs you write. When doing business analysis, knowing SQL enables you to
interact directly with the database, slicing and dicing its information the way you
want, without being limited by pre-designed queries created by someone else.

15

16 Oracle Database 10g PL/SQL 101

And if you just want to know how to use databases better, understanding SQL will
help you understand how to use a variety of products and services used in daily life.
SQL is based on concepts pioneered by Dr. Edgar F. Codd and first published in
1969. It has become the de facto standard language for interacting with all major
database programs. Its commands fall into functional categories, which include
data definition, data manipulation, data control, data retrieval, and transaction
control. The Data Definition Language (DDL) commands are used to define how
you want your data to be stored; these commands include CREATE, ALTER,
DROP, RENAME, and TRUNCATE. The Data Manipulation Language (DML)
commands enable you to work with your data; they include INSERT, UPDATE,
and DELETE. The Data Control Language (DCL) commands control who can do
what within the database, with object privileges controlling access to individual
database objects and system privileges providing global privileges across the
entire database. The DCL commands include GRANT and REVOKE. For data
retrieval, SELECT is the sole command, but its many variations are likely to make
it the most-used command in your arsenal. To control transactions, SQL provides
the COMMIT command to save recent DML changes to the database; the
ROLLBACK command to undo recent DML changes; and the SAVEPOINT
command to let you undo some, but not all, of a string of DML commands.

Chapter Questions
1. Which of the following are examples of databases that you're likely to
encounter in daily life?
Front page news
Telephone books
Checkbook registers
Web sites providing online auctions, ordering, and searching

Ads with sale prices

m m O 0O = »

Movie listings
2. What is the most significant characteristic of a table?
A. It has rows and columns.
B. It can be related to other tables.
C. It stores information about one type of thing.
D

. It contains records and fields.

Chapter 1: Introduction to Databases

3. Relate each term on the left with the appropriate description on the

right.

Term

Row
Record
Column
Field
Table

Database

Constraint

Description

Stores all information about one type of thing (for
instance, people or products)

Defines what must be true about the data in order for
it to be accepted by the database

One line in a table

Collection of one type of information stored in a table
(for instance, all of the phone numbers or all of the
last names)

Data contained in a table row

Contains a single piece of information about
something

Collection of related tables

4. Which of the following are reasons why a database is the best choice for
handling large quantities of business data?

A. Can handle billions of rows

m m U 0O =

Runs only on PCs

Can accommodate thousands of simultaneous users
Provides object-specific security
Can relate many tables together

Allows you to define constraints defining conditions that data must

satisfy before it is accepted into the database

5. Whose work pioneered relational database theory?

A. E. F. Skinner
B. Edgar Winter
C. Edgar F. Codd
D. Edgar Piece

17

18 Oracle Database 10g PL/SQL 101

6. Relate each SQL command category on the left with the appropriate
commands on the right.

SQL Command Category Commands
Data Definition Language (DDL) GRANT and REVOKE
Data Manipulation Language (DML) SELECT

Data Control Language (DCL) CREATE, ALTER, DROP, RENAME,
and TRUNCATE

Data Retrieval COMMIT, ROLLBACK, and SAVEPOINT

Transaction Control INSERT, UPDATE, and DELETE

Answers to Chapter Questions

1. B,C, D, F. Telephone books; checkbook registers; web sites providing
online auctions, ordering, and searching; and movie listings.

Explanation The essence of a database is a list that can be presented in a chosen
order, and filtered to display only selected records. Front page news does not fit this
description; it cannot be sorted or filtered. The same is true for ads. However, the
other categories do fit this description.

2. C. ltstores information about one type of thing.

Explanation Choices A and D are true, but they are also true of spreadsheets, so they
cannot be a table’s most significant characteristic. B is also true, but its importance does
not compare with choice C. The single most important characteristic of a table is that
it stores information about one type of thing.

3. Term Description

Row One line in a table

Record Data contained in a table row

Column Collection of one type of information stored in a table
(for instance, all of the phone numbers or all of the
last names)

Field Contains a single piece of information about
something

Table Stores all information about one type of thing (for

instance, people or products)

Chapter 1: Introduction to Databases 19

Term Description
Database Collection of related tables
Constraint Defines what must be true about the data in order for

it to be accepted by the database

4. A, C,D,E F. Can handle billions of rows, can accommodate thousands of
simultaneous users, provides object-specific security, can relate many tables
together, allows you to define constraints defining conditions that data must
satisfy before it is accepted into the database.

Explanation Each of the answers provided is a powerful reason for using a relational
database to handle large quantities of information, with the exception of B. Large
databases do not run only on PCs—for instance, Oracle is available for computers
running Unix, Linux, Windows NT, and a variety of other operating systems. Even if
it was available only on PCs, that would be a liability, not an asset, because the other
operating systems are designed for industrial-strength use and tend to be more stable
than PC-based systems.

5. C. EdgarF. Codd

Explanation Dr. Edgar F. Codd published ground-breaking papers about relational
database theory in 1969. He is widely regarded as the father of relational database
design.

6. SQL Command Category Commands

Data Definition Language (DDL) CREATE, ALTER, DROP, RENAME,
and TRUNCATE

Data Manipulation Language (DML) INSERT, UPDATE, and DELETE

Data Control Language (DCL) GRANT and REVOKE

Data Retrieval SELECT

Transaction Control COMMIT, ROLLBACK, and SAVEPOINT

