
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Design Patterns  
in Java 

 

 
 



 

2© 2004 by CRC Press LLC



BASIC PATTERNS

The patterns discussed in this section are some of the most common, basic and
important design patterns one can find in the areas of object-oriented design and
programming. Some of these fundamental design patterns, such as the Interface,
Abstract Parent, Private Methods, etc., are used extensively during the discussion
of the other patterns in this book. 

Chapter Pattern Name Description

3 Interface Can be used to design a set of service provider classes
that offer the same service so that a client object can 
use different classes of service provider objects in a 
seamless manner without having to alter the client 
implementation.

4 Abstract Parent 
Class

Useful for designing a framework for the consistent 
implementation of the functionality common to a set of 
related classes.

5 Private Methods Provide a way of designing a class behavior so that
external objects are not permitted to access the 
behavior that is meant only for the internal use.

6 Accessor 
Methods

Provide a way of accessing an object’s state using specific 
methods. This approach discourages different client 
objects from directly accessing the attributes of an 
object, resulting in a more maintainable class structure. 

7 Constant Data 
Manager

Useful for designing an easy to maintain, centralized 
repository for the constant data in an application.

8 Immutable 
Object

Used to ensure that the state of an object cannot be 
changed. May be used to ensure that the concurrent 
access to a data object by several client objects does not 
result in race conditions.

3



The Java programming language has built-in support for some of the funda-
mental design patterns in the form of language features. The other fundamental
patterns can very easily be implemented using the Java language constructs.

4



3

INTERFACE

This pattern was previously described in Grand98.

DESCRIPTION

In general, the functionality of an object-oriented system is encapsulated in the
form of a set of objects. These objects provide different services either on their
own or by interacting with other objects. In other words, a given object may rely
upon the services offered by a different object to provide the service it is designed
for. An object that requests a service from another object is referred as a client
object. Some other objects in the system may seek the services offered by the
client object.

From Figure 3.1, the client object assumes that the service provider objects
corresponding to a specific service request are always of the same class type and
interacts directly with the service provider object. This type of direct interaction
ties the client with a specific class type for a given service request. This approach
works fine when there is only one class of objects offering a given service, but
may not be adequate when there is more than one class of objects that provide
the same service required by the client (Figure 3.2). Because the client expects
the service provider to be always of the same class type, it will not be able to
make use of the different classes of service provider objects in a seamless manner.
It requires changes to the design and implementation of the client and greatly
reduces the reusability of the client by other objects.

In such cases, the Interface pattern can be used to better design different
service provider classes that offer the same service to enable the client object to
use different classes of service provider objects with little or no need for altering

Figure 3.1 Client–Service Provider Interaction

Client ServiceProvider

service()

<<requests service>>

5



g

the client code. Applying the Interface pattern, the common services offered by
different service provider classes can be abstracted out and declared as a separate
interface. Each of the service provider classes can be designed as implementers
of this common interface.

With this arrangement, the client can safely assume the service provider object
to be of the interface type. From the class hierarchy in Figure 3.3, objects of
different service provider classes can be treated as objects of the interface type.
This enables the client to use different types of service provider objects in a
seamless manner without requiring any changes. The client does not need to be
altered even when a new service provider is designed as part of the class hierarchy
in Figure 3.3.

EXAMPLE

Let us build an application to calculate and display the salaries of dif ferent
employees of an organization with the categorization of designations as listed in
Table 3.1. 

Figure 3.2 Different Classes of Service Providers Offering the Same Set of Services

Figure 3.3 Common Interface with Different Service Providers as Implementers

Client ServiceProvider_1

service()

<<requests service>>

ServiceProvider_2

service()

Client

ServiceProvider_1

service()

<<requests service>>

ServiceProvider_2

service()

<<interface>>

ServiceIF

service()

6



Let us assume that the application needs to consider only those employees
whose designations are part of Category-A. The salary calculation functionality
for all employees of Category-A can be designed in the form of the CategoryA

class as follows:

public class CategoryA {

 double baseSalary;

 double OT;

 public CategoryA(double base, double overTime) {

 baseSalary = base;

 OT = overTime;

 }

 public double getSalary() {

 return (baseSalary + OT);

 }

}

The class representation of an employee, in its simplest form, can be designed
as in the following listing with two attributes: the employee name and the category
of designation.

public class Employee {

CategoryA salaryCalculator;

String name;

public Employee(String s, CategoryA c) {

name = s;

salaryCalculator = c;

}

public void display() {

System.out.println("Name=" + name);

System.out.println("salary= " +

salaryCalculator.getSalary());

}

}

Table 3.1 Different Categories of Designations

Designations Category

Programmer, Designer and Consultant Category-A

Sales Rep, Sales Manager, Account Rep Category-B

… …

C-Level Executives Category-n

… …

7



g

A client object can configure an Employee object with values for the name and
the category type attributes at the time of invoking its constructor. Subsequently the
client object can invoke the display method to display the details of the employee
name and salary. Because we are dealing only with employees who belong to
Category-A, instances of the Employee class always expect the category type and
hence the salary calculator to be always of the CategoryA type. As part of its
implementation of the display method, the Employee class uses the salary
calculation service provided by the CategoryA class.

The main application object MainApp that needs to display the salary details
of employees performs the following tasks:

� Creates an instance of the CategoryA class by passing appropriate details
required for the salary calculation.

� Creates an Employee object and configures it with the CategoryA object
created above.

� Invokes the display method on the Employee object.
� The Employee object makes use of the services of the CategoryA object

in calculating the salary of the employee it represents. In this aspect, the
Employee object acts as a client to the CategoryA object.

public class MainApp {

public static void main(String [] args) {

CategoryA c = new CategoryA(10000, 200);

Employee e = new Employee ("Jennifer,”c);

e.display();

}

}

This design works fine as long as the need is to calculate the salary for
Category-A employees only and there is only one class of objects that provides
this service. But the fact that the Employee object expects the salary calculation
service provider object to be always of the CategoryA class type affects the
maintainability and results in an application design that is restrictive in terms of
its adaptability.

Let us assume that the application also needs to calculate the salary of
employees who are part of Category-B, such as sales representatives and account
representatives, and the corresponding salary calculation service is provided by
objects of a different class CategoryB.

public class CategoryB {

double salesAmt;

double baseSalary;

final static double commission = 0.02;

public CategoryB(double sa, double base) {

baseSalary = base;

8



 salesAmt = sa;

}

public double getSalary() {

return (baseSalary + (commission * salesAmt));

}

}

The main application object MainApp will be able to create an instance of
the CategoryB class but will not be able to configure the Employee object
with this instance. This is because the Employee object expects the salary
calculator to be always of the CategoryA type. As a result, the main application
will not be able to reuse the existing Employee class to represent different types
of employees (Figure 3.4). The existing Employee class implementation needs
to undergo necessary modifications to accept additional salary calculator service
provider types. These limitations can be addressed by using the Interface pattern
resulting in a much more flexible application design.

Applying the Interface pattern, the following three changes can be made to
the application design.

1. The common salary calculating service provided by different objects can
be abstracted out to a separate SalaryCalculator interface.

public interface SalaryCalculator {

public double getSalary();

}

2. Each of the CategoryA and the CategoryB classes can be designed as
implementers of the SalaryCalculator interface (Figure 3.5).

public class CategoryA implements SalaryCalculator {

double baseSalary;

double OT;

Figure 3.4 Employee/Consultant/Salesrep Class Association

Employee

display()

CategoryA

getSalary():double

<<requests salary

calc. service>>

CategoryB

getSalary():double

11..*

MainApp

9



g

public CategoryA(double base, double overTime) {

baseSalary = base;

OT = overTime;

}

public double getSalary() { 

return (baseSalary + OT);

}

}

public class CategoryB implements SalaryCalculator {

double salesAmt;

double baseSalary;

final static double commission = 0.02;

public CategoryB(double sa, double base) {

baseSalary = base;

salesAmt = sa;

}

public double getSalary() {

return (baseSalary + (commission * salesAmt));

}

}

3. The Employee class implementation needs to be changed to accept a
salary calculator service provider of type SalaryCalculator.

public class Employee {

SalaryCalculator empType;

String name;

Figure 3.5 Salary Calculation Service Provider Class Hierarchy

<<interface>>

SalaryCalculator

getSalary():double

CategoryA

getSalary():double

CategoryB

getSalary():double

10



public Employee(String s, SalaryCalculator c) {

name = s;

empType = c;

}

public void display() {

System.out.println("Name=" + name);

System.out.println("salary= " + empType.getSalary());

}

}

With these changes in place, the main application object MainApp can now
create objects of different types of salary calculator classes and use them to
configure different Employee objects. Because the Employee class, in the revised
design, accepts objects of the SalaryCalculator type, it can be configured
with an instance of any SalaryCalculator implementer class (or its subclass).
Figure 3.6 shows the application object association.

public class MainApp {

public static void main(String [] args) {

SalaryCalculator c = new CategoryA(10000, 200);

Employee e = new Employee ("Jennifer”,c);

e.display();

c = new CategoryB(20000, 800);

e = new Employee ("Shania”,c);

e.display();

}

}

Figure 3.6 Example Application/Class Association

<<interface>>

SalaryCalculator

getSalary():double

CategoryA

getSalary():double

CategoryB

getSalary():double

Employee

display()

<<requests salary

calc. service>>

1 1..*

MainApp

11



g

PRACTICE QUESTIONS

1. Design a Search interface that declares methods for searching an item in
a list. Design and implement two implementers — BinarySearch and
LinearSearch — to conduct a binary and linear search of the list,
respectively.

2. Design an AddressValidator interface that declares methods for vali-
dating different parts of a given address. Design and implement two
implementer classes — USAddress and CAAddress — to validate a
given U.S. and Canadian address, respectively.

12



4

ABSTRACT PARENT CLASS

This pattern was previously described in Grand98.

DESCRIPTION

The Abstract Parent Class pattern is useful for designing a framework for the

consistent implementation of functionality common to a set of related classes.

An abstract method is a method that is declared, but contains no implemen-

tation. An abstract class is a class with one or more abstract methods. Abstract

methods, with more than one possible implementation, represent variable parts

of the behavior of an abstract class. An abstract class may contain implemen-

tations for other methods, which represent the invariable parts of the class

functionality.

Different subclasses may be designed when the functionality outlined by

abstract methods in an abstract class needs to be implemented differently. An

abstract class, as is, may not be directly instantiated. When a class is designed as

a subclass of an abstract class, it must implement all of the abstract methods

declared in the parent abstract class. Otherwise the subclass itself becomes an

abstract class. Only nonabstract subclasses of an abstract class can be instantiated.

The requirement that every concrete subclass of an abstract class must implement

all of its abstract methods ensures that the variable part of the functionality will

be implemented in a consistent manner in terms of the method signatures. The

set of methods implemented by the abstract parent class is automatically inherited

by all subclasses. This eliminates the need for redundant implementations of these

methods by each subclass. Figure 4.1 shows an abstract class with two concrete

subclasses.

In the Java programming language there is no support for multiple inheritance.

That means a class can inherit only from one single class. Hence inheritance

should be used only when it is absolutely necessary. Whenever possible, methods

denoting the common behavior should be declared in the form of a Java interface

to be implemented by different implementer classes. But interfaces suffer from

the limitation that they cannot provide method implementations. This means that

every implementer of an interface must explicitly implement all methods declared

in an interface, even when some of these methods represent the invariable part

of the functionality and have exactly the same implementation in all of the

13



g

implementer classes. This leads to redundant code. The following example dem-

onstrates how the Abstract Parent Class pattern can be used in such cases without

requiring redundant method implementations.

EXAMPLE

In a typical organization, it is very common to have employees with different

designations. This can be represented in form of a class hierarchy with a base

class and a set of subclasses each corresponding to employees with

a specific designation.

Let us consider the following operations as part of designing the representation

of an employee.

1. Save employee data

2. Display employee data

3. Access employee attributes such as name and ID

4. Calculate compensation

While Operation 1 through Operation 3 remain the same for all employees,

the compensation calculation will be different for employees with different des-

ignations. Such an operation, which can be performed in different ways, is a

good candidate to be declared as an abstract method. This forces different concrete

subclasses of the class to provide a custom implementation for the

salary calculation operation.

From the base class implementation in Listing 4.1, it can be seen

that the base class provides implementation for the 

and methods while it declares the 

method as an abstract method.

Let us define two concrete subclasses — and — of

the class (Listing 4.2) representing employees who are consultants

and sales representatives, respectively. Each of these subclasses must implement

the method. Otherwise these subclasses need to be

Figure 4.1 An Abstract Class with Two Concrete Subclasses

ConcreteSubClass_1

abstractMethod()

ConcreteSubClass_2

abstractMethod()

AbstractClass

abstractMethod()

14



declared as abstract and it becomes impossible to instantiate them. Figure 4.2

shows the class hierarchy with and concrete subclasses

of the class.

Abstract Parent Class versus Interface

As an alternate design strategy, we could design the employee representation as

a Java interface, instead of designing it as an abstract class, with both the

and the classes as its implementers. Figure 4.3 shows

the resulting class hierarchy.

But doing so would require both the implementers to implement the ,

, , and the methods.

Because the implementation of the , , and

Listing 4.1 Abstract Employee Class

15



g

Listing 4.2 Concrete Employee Subclasses

Figure 4.2 Employee Class Hierarchy

Consultant

computeCompensation():String

SalesRep

computeCompensation():String

Employee

getName():string

getID():String

save()

toString():String

computeCompensation():String

16



methods remains the same for all implementers, this leads to redundant code in

the application. The implementation of these invariable methods cannot be made

part of the interface. This is because a Java interface cannot provide

implementation for a method. An interface is used for the declaration purpose

only. By designing the Employee class as an abstract class, the need for a redundant

implementation can be eliminated.

PRACTICE QUESTIONS

1. Consider the details of different bank account types as follows:

a. All bank accounts allow

i. Deposits

ii. Balance enquiries

b. Savings accounts

i. Allow no checking

ii. Do not charge service fee

iii. Give interest

c. Checking accounts

i. Allow checking

ii. Charge service fee

iii. Do not give interest

Design a class hierarchy with as an abstract class with the class

representations for both the savings account and the checking account as two

concrete subclasses of it.

Figure 4.3 Employee as an Interface with Two Implementers

Consultant SalesRep

<<interface>>

Employee

getName():string

getID():String

save()

toString():String

computeCompensation():String

getName():string

getID():String

save()

toString():String

computeCompensation():String

getName():string

getID():String

save()

toString():String

computeCompensation():String

17



g

2. Both the right-angled triangle and the equilateral triangle are triangles with

specific differences. Design a class hierarchy with as an abstract

class with the class representations for both the right-angled triangle and

the equilateral triangle as two concrete subclasses of it.

18



5

PRIVATE METHODS

DESCRIPTION

Typically a class is designed to offer a well-defined and related set of services to
its clients. These services are offered in the form of its methods, which constitute
the overall behavior of that object. In case of a well-designed class, each method
is designed to perform a single, defined task. Some of these methods may use
the functionality offered by other methods or even other objects to perform the
task they are designed for. Not all methods of a class are always meant to be
used by external client objects. Those methods that offer defined services to
different client objects make up an object’s public protocol and are to be declared
as public methods. Some of the other methods may exist to be used internally
by other methods or inner classes of the same object. The Private Methods pattern
recommends designing such methods as private methods.

In Java, a method signature starts with an access specifier (private/protected/public).
Access specifiers indicate the scope and visibility of a method/variable.

A method is declared as private by using the “private” keyword as part of its signature.
e.g.,

private int hasValidChars(){

//…

}

External client objects cannot directly access private methods. This in turn
hides the behavior contained in these methods from client objects.

EXAMPLE

Let us design an OrderManager class as in Figure 5.1 that can be used by
different client objects to create orders.

public class OrderManager {

private int orderID = 0;

//Meant to be used internally

19



g

private int getNextID() {

++orderID;

return orderID;

}

//public method to be used by client objects

public void saveOrder(String item, int qty) {

int ID = getNextID();

System.out.println("Order ID=" + ID + "; Item=" + item +

"; Qty=" + qty + " is saved. ");

}

}

From the OrderManager implementation it can be observed that the saveOrder
method is declared as public as it is meant to be used by client objects, whereas
the getNextID method is used internally by the saveOrder method and is not
meant to be used by client objects directly. Hence the getNextID method is
designed as a private method. This automatically prevents client objects from
accessing the getNextID method directly.

PRACTICE QUESTIONS

1. Design a CreditCard class, which offers the functionality to validate
credit card numbers. Design the card validation method to internally use
a private method to check if the card number has valid characters.

2. The OrderManager class built during the example discussion does not
define a constructor. Add a private constructor to the OrderManager
class. What changes must be made to the OrderManager class so that
client objects can create OrderManager instances?

Figure 5.1 OrderManager

OrderManager

-getNextID():int

+saveOrder(item:String, qty:int)

orderID:int

20



6

ACCESSOR METHODS

DESCRIPTION

The Accessor Methods pattern is one of the most commonly used patterns in the
area of object-oriented programming. In fact, this pattern has been used in most
of the examples discussed in this book for different patterns. In general, the values
of different instance variables of an object, at a given point of time, constitute its
state. The state of an object can be grouped into two categories — public and
private. The public state of an object is available to different client objects to
access, whereas the private state of an object is meant to be used internally by
the object itself and not to be accessed by other objects.

Consider the class representation of a customer in Figure 6.1.
The instance variable ID is maintained separately and used internally by each

Customer class instance and is not to be known by other objects. This makes the
variable ID the private state of a Customer object to be used internally by the
Customer object. On the other hand, variables such as name, SSN (Social Security
Number) and the address make up the public state of the Customer object and
are supposed to be used by client objects. In case of such an object, the Accessor
Method pattern recommends:

� All instance variables being declared as private and provide public methods
known as accessor methods to access the public state of an object. This
prevents external client objects from accessing object instance variables
directly. In addition, accessor methods hide from the client whether a
property is stored as a direct attribute or as a derived one.

Figure 6.1 Customer Class

Customer

ID:int

name:String

SSN:String

address:String

21



g

� Client objects can make use of accessor methods to move a Customer
object from one state (source) to another state (target). In general, if the
object cannot reach the target state, it should notify the caller object that
the transition could not be completed. This can be accomplished by having
the accessor method throw an exception.

� An object can access its private variables directly. But doing so could
greatly affect the maintainability of an application, which the object is part
of. When there is a change in the way a particular instance variable is to
be defined, it requires changes to be made in every place of the application
code where the instance variable is referenced directly. Similar to its client
objects, if an object is designed to access its instance variables through
accessor methods, any change to the definition of an instance variable
requires a change only to its accessor methods.

ACCESSOR METHOD NOMENCLATURE

There is no specific requirement for an accessor method to be named following
a certain naming convention. But most commonly the following naming rules are
followed:

� To access a non-Boolean instance variable:
– Define a getXXXX method to read the values of an instance variable
XXXX. E.g., define a getFirstName() method to read the value of an
instance variable named firstName.

– Define a setXXXX(new value) method to alter the value of an instance
variable XXXX. E.g., define a setFirstName(String) method to alter
the value of an instance variable named firstName.

� To access a Boolean instance variable:
– Define an isXXXX() method to check if the value of an instance variable
XXXX is true or false. E.g., define an isActive() method on a Customer
object to check if the customer represented by the Customer object is
active.

– Define a setXXXX(new value) method to alter the value of a Boolean
instance variable XXXX. E.g., define a setActive(boolean) method
on a Customer object to mark the customer as active.

The following Customer class example explains the usage of accessor
methods.

EXAMPLE

Suppose that you are designing a Customer class as part of a large application.
A generic representation of a customer in its simplest form can be designed as
in Figure 6.2.

Applying the Accessor Method pattern, the set of accessor methods listed in Table
6.1 can be defined corresponding to each of the instance variables (Listing 6.1). 

Figure 6.3 shows the resulting class structure.

22



Different client objects can access the object state variables using the accessor
methods listed in Table 6.1. The Customer object itself can access its state variables
directly, but using the accessor methods will greatly improve the maintainability
of the Customer class code. This in turn contributes to the overall application
maintainability.

DIRECT REFERENCE VERSUS ACCESSOR METHODS

Let us suppose that we need to add the following two new methods to the
Customer class.

1. isValidCustomer — To check if the customer data is valid.
2. save — To save the customer data to a data file.

As can be seen from the Customer class implementation in Listing 6.2, the
newly added methods access different instance variables directly. Different client

Figure 6.2 Customer Representation

Table 6.1 List of Accessor Methods

Variable Method Purpose

firstName getFirstName To read the value of the firstName instance 
variable

setFirstName To alter the value of the firstName instance 
variable

lastName getLastName To read the value of the lastName instance
variable

setLastName To alter the value of the lastName instance 
variable

address getAddress To read the value of the address instance variable

setAddress To alter the value of the address instance variable

active isActive To read the value of the active Boolean
instance variable

setActive To alter the value of the active Boolean
instance variable

Customer

firstName:String

lastName:String

active:boolean

address:String

23



g

objects can use the Customer class in this form without any difficulty. But when
there is a change in the definition of any of the instance variables, it requires a
change to the implementation of all the methods that access these instance
variables directly. For example, if the address variable need to be changed from
its current definition as a string to a StringBuffer or something different,
then all methods that refer to the address variable directly needs to be altered.

As an alternative approach, Customer object methods can be redesigned to
access the object state through its accessor methods (Listing 6.3).

Listing 6.1 Customer Class with Accessor Methods

public class Customer {

private String firstName;

private String lastName;

private String address;

private boolean active;

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

public String getAddress() {

return address;

}

public boolean isActive() {

return active;

}

public void setFirstName(String newValue) {

firstName = newValue;

}

public void setLastName(String newValue) {

lastName = newValue;

}

public void setAddress(String newValue) {

address = newValue;

}

public void isActive(boolean newValue) {

active = newValue;

}

}

24



In this approach, any change to the definition of any of the instance variables
requires a change only to the implementation of the corresponding accessor
methods. No changes are required for any other part of the class implementation
and the class becomes more maintainable.

PRACTICE QUESTIONS

1. Design an Order class with accessor methods for its instance variables.
2. Identify the effect of using accessor methods when a class is subclassed.

Figure 6.3 Customer Class with Accessor Methods

Customer

getFirstName():String

getLastName():String

getAddress():String

isActive():boolean

setFirstName(newValue:String)

setLastName(newValue:String)

setAddress(newValue:String)

setActive(newValue:boolean)

firstName:String

lastName:String

active:boolean

address:String

25



g

Listing 6.2 Customer Class Directly Accessing Its Instance Variables

public class Customer {

…

…

public String getFirstName() {

return firstName;

}

…

…

public boolean isValidCustomer() {

if ((firstName.length() > 0) && (lastName.length() > 0) &&

(address.length() > 0))

return true;

return false;

}

public void save() {

String data =

firstName + ”," + lastName + ”," + address +

 ”," + active;

FileUtil futil = new FileUtil();

futil.writeToFile("customer.txt”,data, true, true);

}

}

26



Listing 6.3 Customer Class Using Accessor Methods to Access Its Instance Variables

public class Customer {

…

…

public String getFirstName() {

return firstName;

}

…

…

public boolean isValidCustomer() {

if ((getFirstName().length() > 0) &&

(getLastName().length() > 0) &&

(getAddress().length() > 0))

return true;

return false;

}

public void save() {

String data =

getFirstName() + ”," + getLastName() + ”," +

getAddress() + ”," + isActive();

FileUtil futil = new FileUtil();

futil.writeToFile("customer.txt”,data, true, true);

}

}

27



7

CONSTANT DATA MANAGER

DESCRIPTION

Objects in an application usually make use of different types of data in offering
the functionality they are designed for. Such data can either be variable data or
constant data. The Constant Data Manager pattern is useful for designing an
efficient storage mechanism for the constant data used by different objects in an
application. In general, application objects access different types of constant data
items such as data file names, button labels, maximum and minimum range values,
error codes and error messages, etc.

Instead of allowing the constant data to be present in different objects, the
Constant Data Manager pattern recommends all such data, which is considered
as constant in an application, be kept in a separate object and accessed by other
objects in the application. This type of separation provides an easy to maintain,
centralized repository for the constant data in an application.

EXAMPLE

Let us consider a Customer Data Management application that makes use of three
types of objects — Account, Address and CreditCard — to represent
different parts of the customer data (Figure 7.1). Each of these objects makes use
of different items of constant data as part of offering the services it is designed
for (Listing 7.1).

Instead of allowing the distribution of the constant data across different classes,
it can be encapsulated in a separate ConstantDataManager (Listing 7.2) object
and is accessed by each of the Account, Address and CreditCard objects.

The interaction among these classes can be depicted as in Figure 7.2. 
Whenever any of the constant data items needs to be modified, only the

ConstantDataManager needs to be altered without affecting other application
objects. On the other side, it is easy to lose track of constants that do not get used
anymore when code gets thrown out over the years but constants remain in the
class.

28



g

PRACTICE QUESTIONS

1. Constant data can also be declared in a Java interface. Any class that
implements such an interface can use the constants declared in it without
any qualifications. Redesign the example application with the Constant-
DataManager as an interface.

2. Identify how the Constant Data Manager pattern can be used to store
different application-specific error messages.

Figure 7.1 Different Application Objects

Account

save()

final ACCOUNT_DATA_FILE:String ="ACCOUNT.TXT"

final VALID_MIN_LNAME_LEN:int =2

Address

save()

final ADDRESS_DATA_FILE:String ="ADDRESS.TXT"

final VALID_ST_LEN:int =2

final VALID_ZIP_CHARS:String ="0123456789"

final DEFAULT_COUNTRY:String ="USA"

CreditCard

save()

final CC_DATA_FILE:String ="CC.TXT"

final VALID_CC_CHARS:String ="0123456789"

final MASTER:String ="MASTER"

final VISA:String ="VISA"

final DISCOVER:String ="DISCOVER"

29



g

3. The ConstantDataManager in Listing 7.2 contains hard-coded values
for different constant items. Enhance the ConstantDataManager class
to read values from a file and initialize different constant data items when
it is first constructed.

Listing 7.1 Application Classes: Account, Address and CreditCard

public class Account {

public static final String ACCOUNT_DATA_FILE = "ACCOUNT.TXT";

public static final int VALID_MIN_LNAME_LEN = 2;

public void save() {

}

}

public class Address {

public static final String ADDRESS_DATA_FILE = "ADDRESS.TXT";

public static final int VALID_ST_LEN = 2;

public static final String VALID_ZIP_CHARS = "0123456789";

public static final String DEFAULT_COUNTRY = "USA";

public void save() {

}

}

public class CreditCard {

public static final String CC_DATA_FILE = "CC.TXT";

public static final String VALID_CC_CHARS = "0123456789";

public static final String MASTER = "MASTER";

public static final String VISA = "VISA";

public static final String DISCOVER = "DISCOVER";

public void save() {

}

}

30



g

Listing 7.2 ConstantDataManager Class

public class ConstantDataManager {

public static final String ACCOUNT_DATA_FILE = "ACCOUNT.TXT";

public static final int VALID_MIN_LNAME_LEN = 2;

public static final String ADDRESS_DATA_FILE = "ADDRESS.TXT";

public static final int VALID_ST_LEN = 2;

public static final String VALID_ZIP_CHARS = "0123456789";

public static final String DEFAULT_COUNTRY = "USA";

public static final String CC_DATA_FILE = "CC.TXT";

public static final String VALID_CC_CHARS = "0123456789";

public static final String MASTER = "MASTER";

public static final String VISA = "VISA";

public static final String DISCOVER = "DISCOVER";

}

31



g

Figure 7.2 Different Application Objects Access the ConstantDataManager for the 
Constant Data

ConstantDataManager

save()

final ACCOUNT_DATA_FILE:String ="ACCOUNT.TXT"

final VALID_MIN_LNAME_LEN:int =2

final ADDRESS_DATA_FILE:String ="ADDRESS.TXT"

final VALID_ST_LEN:int =2

final VALID_ZIP_CHARS:String ="0123456789"

final DEFAULT_COUNTRY:String ="USA"

final CC_DATA_FILE:String ="CC.TXT"

final VALID_CC_CHARS:String ="0123456789"

final MASTER:String ="MASTER"

final VISA:String ="VISA"

final DISCOVER:String ="DISCOVER"

Account

save()

CreditCard

save()

Address

save()

<<uses>>

<<uses>>

<<uses>>

32



8

IMMUTABLE OBJECT

This pattern was previously described in Grand98.

DESCRIPTION

In general, classes in an application are designed to carry data and have
behavior. Sometimes a class may be designed in such a way that its instances
can be used just as carriers of related data without any specific behavior. Such
classes can be called data model classes and instances of such classes ar e
referred to as data objects. For example, consider the Employee class in Figure
8.1 and Listing 8.1.

Figure 8.1 Employee Representation

Employee

getFirstName():String

getLastName():String

getSSN():String

getAddress():String

getCar():Car

setFirstName(fname:String)

setLastName(lname:String)

setSSN(ssn:String)

setAddress(addr:String)

setCar(c:Car)

save():boolean

delete():boolean

isValid():boolean

update():boolean

firstName:String

lastName:String

SSN:String

address:String

car:Car

33



g

Listing 8.1 Employee Class

public class Employee {

//State

private String firstName;

private String lastName;

private String SSN;

private String address;

private Car car;

//Constructor

public Employee(String fn, String ln, String ssn,

 String addr, Car c) {

firstName = fn;

lastName = ln;

SSN = ssn;

address = addr;

car = c;

}

//Behavior

public boolean save() {

//…

return true;

}

public boolean isValid() {

//…

return true;

}

public boolean update() {

//…

 return true;

}

(continued)

34



j

Instances of the Employee class above have both the data and the behavior.
The corresponding data model class can be designed as in Figure 8.2 and Listing
8.2 without any behavior.

In a typical application scenario, several client objects may simultaneously
access instances of such data model classes. This could lead to problems if changes

Listing 8.1 Employee Class (Continued)

//Setters

public void setFirstName(String fname) {

firstName = fname;

}

public void setLastName(String lname) {

lastName = lname;

}

public void setSSN(String ssn) {

SSN = ssn;

}

public void setCar(Car c) {

car = c;

}

public void setAddress(String addr) {

address = addr;

}

//Getters

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

public String getSSN() {

return SSN;

}

public Car getCar() {

return car;

}

public String getAddress() {

return address;

}

}

35



g

Figure 8.2 EmployeeModel Class

Listing 8.2 EmployeeModel Class

public class EmployeeModel {

//State

private String firstName;

private String lastName;

private String SSN;

private String address;

private Car car;

//Constructor

public EmployeeModel(String fn, String ln, String ssn,

String addr, Car c) {

firstName = fn;

lastName = ln;

SSN = ssn;

address = addr;

car = c;

}

(continued)

EmployeeModel

getFirstName():String

getLastName():String

getSSN():String

getAddress():String

getCar():Car

setFirstName(fname:String)

setLastName(lname:String)

setSSN(ssn:String)

setAddress(addr:String)

setCar(c:Car)

firstName:String

lastName:String

SSN:String

address:String

car:Car

36



j

to the state of a data object are not coordinated properly. The Immutable Object
pattern can be used to ensure that the concurrent access to a data object by
several client objects does not result in any problem. The Immutable Object
pattern accomplishes this without involving the overhead of synchronizing the
methods to access the object data.

Listing 8.2 EmployeeModel Class (Continued)

//Setters

public void setFirstName(String fname) {

firstName = fname;

}

public void setLastName(String lname) {

lastName = lname;

}

public void setSSN(String ssn) {

SSN = ssn;

}

public void setCar(Car c) {

car = c;

}

public void setAddress(String addr) {

address = addr;

}

//Getters

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

public String getSSN() {

return SSN;

}

public Car getCar() {

return car;

}

public String getAddress() {

return address;

}

}

37



g

Applying the Immutable Object pattern, the data model class can be designed
in such a way that the data carried by an instance of the data model class remains
unchanged over its entire lifetime. That means the instances of the data model
class become immutable.

In general, concurrent access to an object creates problems when one thread
can change data while a different thread is reading the same data. The fact that
the data of an immutable object cannot be modified makes it automatically thread-
safe and eliminates any concurrent access related problems.

Though using the Immutable Object pattern opens up an application for all
kinds of performance tuning tricks, it must be noted that designing an object as
immutable is an important decision. Every now and then it turns out that objects
that were once thought of as immutables are in fact mutable, which could result
in difficult implementation changes.

EXAMPLE

As an example, let us redesign the EmployeeModel class to make it immutable
by applying the following changes.

1. All instance variables (state) must be set in the constructor alone. No other
method should be provided to modify the state of the object. The con-
structor is automatically thread-safe and hence does not lead to problems.

2. It may be possible to override class methods to modify the state. In order
to prevent this, declare the class as final. Declaring a class as final does
not allow the class to be extended further.

3. All instance variables should be declared final so that they can be set only
once, inside the constructor.

4. If any of the instance variables contain a reference to an object, the
corresponding getter method should return a copy of the object it refers
to, but not the actual object itself.

Figure 8.3 and Listing 8.3 show the resulting immutable version of the Employ-
eeModel class.

The immutable version of the EmployeeModel objects can safely be used in
a multithreaded environment.

PRACTICE QUESTIONS

1. Design an immutable class that contains the line styles and colors used in
a given image.

2. Design an immutable class to carry the data related to a company such as
the company address, phone, fax, company name and other details.

38



j

Figure 8.3 EmployeeModel Class: Immutable Version

EmployeeModel

getFirstName():String

getLastName():String

getSSN():String

getAddress():String

getCar():Car

final firstName:String

final lastName:String

final SSN:String

final address:String

final car:Car

final class

return car.clone();

39



g

Listing 8.3 EmployeeModel Class: Immutable Version

public final class EmployeeModel {

//State

private final String firstName;

private final String lastName;

private final String SSN;

private final String address;

private final Car car;

//Constructor

public EmployeeModel(String fn, String ln, String ssn,

String addr, Car c) {

firstName = fn;

lastName = ln;

SSN = ssn;

address = addr;

car = c;

}

//Getters

public String getFirstName() {

return firstName;

}

public String getLastName() {

return lastName;

}

public String getSSN() {

return SSN;

}

public Car getCar() {

//return a copy of the car object

return (Car) car.clone();

}

public String getAddress() {

return address;

}

}

40



I 
 

 
 
 

CREATIONAL PATTERNS 
 
 
 
 
 
 
Creational Patterns: 
 

Deal with one of the most commonly performed tasks in an OO application, 
the creation of objects. 
Support a uniform, simple, and controlled mechanism to create objects. 
Allow the encapsulation of the details about what classes are instantiated 
and how these instances are created. 

Encourage the use of interfaces, which reduces coupling. 
 

 
Chapter Pattern Name Description 

 
1 Factory 

Method 
 
 
 
 
 
 
 

 

When a client object does not know which class to 
instantiate, it can make use of the factory method to create 
an instance of an appropriate class from a class hierarchy 
or a family of related classes. The factory method may be 
designed as part of the client itself or in a separate class. 
The class that contains the factory method or any of its 
subclasses decides on which class to select and how to 
instantiate it. 

2 Singleton Provides a controlled object creation mechanism to ensure 
that only one instance of a given class exists. 

3 Abstract 
Factory 

 

Allows the creation of an instance of a class from a suite of 
related classes without having a client object to specify the 
actual concrete class to be instantiated. 

4 Prototype Provides a simpler way of creating an object by cloning it 
from an existing (prototype) object. 

5 Builder Allows the creation of a complex object by providing the 
information on only its type and content, keeping the 
details of the object creation transparent to the client. This 
allows the same construction process to produce different 
representations of the object. 

 
 
 
 
 
 
 
 
 

 

41



1 
 
 
 
 

FACTORY METHOD 
 
 
 
 
 
 

DESCRIPTION 
 

In general, all subclasses in a class hierarchy inherit the methods implemented 
by the parent class. A subclass may override the parent class implementation to 
offer a different type of functionality for the same method. When an application 
object is aware of the exact functionality it needs, it can directly instantiate the 
class from the class hierarchy that offers the required functionality. 
At times, an application object may only know that it needs to access a class 

from within the class hierarchy, but does not know exactly which class fr om 
among the set of subclasses of the parent class is to be selected. The choice of 
an appropriate class may depend on factors such as: 

 

 
The state of the running application 
Application configuration settings 
Expansion of requirements or enhancements 

 
In such cases, an application object needs to implement the class selection 

criteria to instantiate an appropriate class from the hierarchy to access its services 

(Figure 1.1). 
This type of design has the following disadvantages: 

 
Because every application object that intends to use the services offered 
by the class hierarchy needs to implement the class selection criteria, it 
results in a high degree of coupling between an application object and 
the service provider class hierarchy. 
Whenever the class selection criteria change, every application object that 
uses the class hierarchy must undergo a corresponding change. 
Because class selection criteria needs to take all the factors that could 
affect the selection process into account, the implementation of an appli- 
cation object could contain inelegant conditional statements. 

 
 
 
 
 
 
 
 

 

42



 
 
 
 

Client  

 

 
 
 
Class Hierarchy  

 

 
 

App_object  

 

 
ParentClass  

 
 
 
 
 
 
 
 
 

SubClass_2  

 
 
 
 
 
 
 
 
 
SubClass_1  

 
 
 
 
 
 

Figur e 1.1 Client Object Dir ectl y Accessing a Ser vice Provider Class Hier archy 
 

 
If different classes in the class hierarchy need to be instantiated in diverse 
manners, the implementation of an application object can become more 
complex. 
It requires an application object to be fully aware of the existence and the 
functionality offered by each class in the service provider class hierarchy. 

 
In such cases, the Factory Method patter n recommends encapsulating the 

functionality  required,  to  select  and  instantiate  an  appr opriate  class,  inside  a 
designated method referred to as a  factory method. Thus, a factory method can 
be defined as a method in a class that: 

 
Selects an appropriate class from a class hierarchy based on the application 
context and other influencing factors 
Instantiates the selected class and returns it as an instance of the parent 
class type 

 
Encapsulation  of  the  required  implementation  to  select  and  instantiate  an 

appropriate class in a separate method has the following advantages: 

 
Application objects can make use of the factory method to get access to 
the appropriate class instance. This eliminates the need for an application 
object to deal with the varying class selection criteria. 
Besides the class selection criteria, the factory method also implements 
any special mechanisms required to instantiate the selected class. This 
is applicable if different classes in the hierarchy need to be instantiated 
in different ways. The factory method hides these details fr om applica- 
tion  objects  and  eliminates  the  need  for  them  to  deal  with  these 
intricacies. 

 

 
 
 
 

 

43



 
 
 

Client  
 

App_object  

 

 
 
 
Class Hierarchy  

 
 

ParentClass  
 

 
 

Factory Method  Implementation  
 

 
<<interface>> 

Creator  

 
factoryMethod():ParentClass  

 

 
 
 
 
SubClass_2  
 

 

 
 
 
 
SubClass_1  
 

 
 
 
 

 
ConcreteCreator  

 
 

factoryMethod():ParentClass  
 

 
 
 
 

Figur e 1.2 A Client Object  Accessing a Ser vice Provider Class Hier archy Using a F actor y 
Method  

 
Because the factory method returns the selected class instance as an object 
of the parent class type, an application object does not have to be aware 
of the existence of the classes in the hierarchy. 

 
One of the simplest ways of designing a factory method is to create an abstract 

class or an interface that  just declares the factory method. Different subclasses 
(or implementer classes in the case of an interface) can be designed to implement 
the factory method in its entirety as depicted in Figure 1.2. Another strategy is to 
create a concrete creator class with default implementation for the factory 
method in it. Different subclasses of this concrete class can override the factory 
method to implement specialized class selection criteria. 
 
 

44



2 
 
 
 
 

SINGLETON 
 
 
 
 
 
 

DESCRIPTION 
 

The Singleton pattern is an easy to understand design pattern. Sometimes, there 
may be a need to have one and only one instance of a given class during the 
lifetime of an application. This may be due to necessity or, more often, due to 
the fact that only a single instance of the class is sufficient. For example, we may 
need a single database connection object in an application. The Singleton pattern 
is useful in such cases because it ensures that there exists one and only one 
instance of a particular object ever. Further, it suggests that client objects should 
be able to access the single instance in a consistent manner. 
 
 

WHO SHOULD BE RESPONSIBLE?  
 

Having an instance of the class in a global variable seems like an easy way to 
maintain  the  single  instance.  All  client  objects  can  access  this  instance  in  a 
consistent manner through this global variable. But this does not prevent clients 
from creating other instances of the class. For this approach to be successful, all 
of the client objects have to be responsible for controlling the number of instances 
of the class. This widely distributed responsibility is not desirable because a client 
should be free from any class creation process details. The responsibility for 
making sure that there is only one instance of the class should belong to the 
class itself, leaving client objects free from having to handle these details. 

A class that maintains its single instance nature by itself is referred to as a 
Singleton class. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

45



3 
 
 
 
 

ABSTRACT FACTORY 
 
 
 
 
 

DESCRIPTION 
 
During the discussion of the Factory Method pattern we saw that: 
 

In the context of a factory method, there exists a class hierarchy composed 
of a set of subclasses with a common parent class. 
A factory method is used when a client object knows when to create an 
instance of the parent class type, but does not know (or should not know) 
exactly which class from among the set of subclasses (and possibly the 
parent class) should be instantiated. Besides the class selection criteria, a 
factory method also hides any special mechanism required to instantiate 
the selected class. 

 
The Abstract Factory pattern takes the same concept to the next level. In 

simple terms, an  abstract factory is a class that provides an interface to produce a 
family of objects. In the Java programming language, it can be implemented 
either as an interface or as an abstract class. 

In the context of an abstract factory there exist: 

 
Suites or families of related, dependent classes. 
A group of concrete factory classes that implements the interface provided 
by the abstract factory class. Each of these factories controls or provides 
access to a particular suite of related, dependent objects and implements 
the abstract factory interface in a manner that is specific to the family of 
classes it controls. 

 
The Abstract Factory pattern is useful when a client object wants to create an 

instance of one of a suite of related, dependent classes without having to know 
which specific concrete class is to be instantiated. In the absence of an abstract 
factory, the required implementation to select an appropriate class (in other words, 
the class selection criterion) needs to be present everywhere such an instance is 
created. An abstract factory helps avoid this duplication by providing the necessary 

 

 
 
 
 
 

 

46



 

 
 

<<interface>> 
AbstractFactory 

 

 
 
 
ConcreteFactory_2 

 
createProduct_A() 
createProduct_B() 

 
createProduct_A() 
createProduct_B() 

 
 
 

 
ConcreteFactory_1 

 

 
 
 
Product_A1 
 

 

 
 
 
Product_A2 
 

 

 
createProduct_A() 
createProduct_B() 

 
 
<<creates>>  
 

 

 
<<creates>>  

 

 
Product_B1 

 
 
 
 
Product_B2 

 

 
<<interface>> 

Product_A 
 

 
 
 
 

 
<<interface>> 

Product_B 
 

 
 
 

Figur e 3.1 Generic Class  Associations While Applying the  Abstr act Factor y Pattern  
 
interface for creating such instances. Different concrete factories implement this 
interface. Client objects make use of these concrete factories to create objects 
and, therefore, do not need to know which concrete class is actually instantiated. 
Figure 3.1 shows the generic class association when the Abstract Factory pattern 
is applied. 
The abstract factory shown in the Figure 3.1 class diagram is designed as a 

Java interface with its implementers as concrete factories. In Java, an abstract 
factory can also be designed as an abstract class with its concrete subclasses as 
factories, where each factory is responsible for creating and providing access to 
the objects of a particular suite of classes. 
 
 

ABSTRACT FACTORY VERSUS FACTORY METHOD 
 

Abstract Factory is used to create groups of related objects while hiding the actual 
concrete classes. This is useful for plugging in a different group of objects to alter 
the  behavior  of  the  system.   For  each  group  or  family,  a  concrete  factory  is 
implemented that manages the creation of the objects and the interdependencies 
and consistency requirements between them. Each concrete factory implements 
the interface of the abstract factory. 
This situation often arises when designing a framework or a library, which 

needs to be kept extensible. One example is the JDBC (Java Database Connectivity) 
 

 
 
 
 

 

47



 
 
 
 
driver system, where each driver contains classes that implement  the  Connec- 
tion , the  Statement  and the  ResultSet interfaces. The set of classes that 
the Oracle JDBC driver contains are different from the set of classes that the DB2 
JDBC driver contains and they must not be mixed up. This is where the role of 
the factory comes in: It knows which classes belong together and how to create 
objects in a consistent way. 
Factory Method is specifying a method for the cr eation of an object, thus 

allowing subclasses or implementing classes to define the concrete object. Abstract 
Factories are usually implemented using the Factory Method patter n. Another 
approach would be to use the Prototype pattern. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

48



4 
 
 
 
 

PROTOTYPE 
 
 
 
 
 
 

DESCRIPTION 
 

As discussed in earlier chapters, both the Factory Method and the Abstract Factory 
patterns allow a system to be independent of the object creation process. In other 
words, these patterns enable a client object to create an instance of an appropriate 
class by invoking a designated method without having to specify the exact concrete 
class to be instantiated. While addressing the same problem as the Factory Method 
and Abstract Factory patterns, the Prototype pattern offers a different, more flexible 
way of achieveing the same result. 

Other uses of the Prototype pattern include: 
 

When a client needs to create a set of objects that are alike or differ from 
each other only in terms of their state and it is expensive to create such 
objects in terms of the time and the processing involved. 
As an alternative to building numerous factories that mirror the classes to 
be instantiated (as in the Factory Method). 

 
In such cases, the Prototype pattern suggests to: 

 
Create one object upfront and designate it as a prototype object. 
Create other objects by simply making a copy of the prototype object and 
making required modifications. 

 
In the real world, we use the Prototype pattern on many occasions to reduce 

the time and effort spent on different tasks. The following are two such examples: 

 
1.  New Software Program Creation — Typically programmers tend to make a 
copy of an existing program with similar structure and modify it to create 
new programs. 

2.  Cover Letters — When applying for positions at different organizations, an 
applicant may not create cover letters for each organization individually 
from scratch. Instead, the applicant would create one cover letter in the 

 

 
 
 
 
 

 

49



 
 
 

most appealing format, make a copy of it and personalize it for every 
organization. 

 
As can be seen from the examples above, some of the objects are created 

from scratch, whereas other objects are created as copies of existing objects and 
then modified. But the system or the process that uses these objects does not 
differentiate between them on the basis of how they are actually created. In a 
similar manner, when using the Prototype pattern, a system should be independent 
of the creation, composition and  representation details of the objects it uses. 
One of the  requirements of the prototype object is that it should provide a 

way for clients to create a copy of it. By default, all Java objects inherit the built- 
in  clone()  method from the topmost  java.lang.Object  class. The built-in 
clone()  method creates a clone of the original object as a shallow copy. 
 
 

SHALL OW COPY VERSUS DEEP COPY 
 
When an object is cloned as a shallow copy: 
 

The original top-level object and all of its primitive members are duplicated. 
Any lower-level objects that the top-level object contains are not duplicated. 
Only references to these objects are copied. This results in both the orginal 
and the cloned object referring to the same copy of the lower-level object. 
Figure 4.1 shows this behavior. 

 
In contrast, when an object is cloned as a deep copy: 
 

The original top-level object and all of its primitive members are duplicated. 
Any lower-level objects that the top-level object contains are also dupli- 
cated. In this case, both the orginal and the cloned object refer to two 
different lower-level objects.  Figure 4.2 shows this behavior. 

 

 
OriginalObject  

 

 
ClonedObject 

 

 
NonobjectReferences 
ObjectReference-1 

 

 

 
CopyofNonObjectReferences 
CopyofObjectReference-1 

 
Refers to  

 

 
 
Refers to  

 
 
 
 
 

Object-1 
 

 
 
 

Figur e 4.1 Shallo w Cop y 
 
 
 
 
 

 

50



 
 
 

OriginalObject  

 
 
 
ClonedObject  

 

 
NonobjectReferences  
ObjectReference-1  

 
 
CopyofNonObjectReferences  
CopyofObjectReference-1  

 
 
 
 
 

Object-1  

 
 
 
 
 
CopyofObject-1  

 

 
 
 

Figur e 4.2 Deep Cop y 
 
 

Shallo w Copy Example  
 
The  following  is  an  example  of  cr eating  a  shallow  copy  using  the  built-in 
java.lang.Object clone()  method. Let us design a  Person  class (Listing 
4.1) as an implementer of the built-in Java  java.lang.Cloneable  interface 
with two attributes, a string variable  name and a  Car  object  car . 
In general, a class must implement the  Cloneable  interface to indicate that a 

field-for-field copy of instances of that class is allowed by the Object.clone() 
method. When a class implements the  Cloneable  interface, it should override 
the  Object.clone  method with a public method. Note that when the  clone 
method is invoked on an object that does not implement the Cloneable  interface, 
the exception  CloneNotSupportedException  is thrown. 
As part of its implementation of the public clone  method, the Person  class 

simply invokes the built-in  clone  method. The built-in  clone  method creates a 
clone of the current object as a shallow copy, which is returned to the calling 
client object. 
 

Deep Copy Example  
 

The same example above can be redesigned by overriding the built-in clone() 
method to create a deep copy of the  Person object (Listing 4.3). As part of its 
implementation of the  clone  method, to create a deep copy, the  Person 
class creates a new Person  object with its attribute values the same as the original 
object and returns it to the client object. 

 
 
 
 

 

51



5 
 
 
 
 

BUILDER  
 
 
 
 
 
 

DESCRIPTION 
 

In general, object construction details such as instantiating and initializing the 
components that make up the object are kept within the object, often as part of 
its constructor. This type of design closely ties the object construction pr ocess 
with the components that make up the object. This approach is suitable as long 
as the object under construction is simple and the object construction process is 
definite and always produces the same  representation of the object. 
This design may not be effective when the object being created is complex 

and the series of steps constituting the object creation process can be implemented 
in  different  ways  producing  different   representations  of  the  object.  Because 
different implementations of the construction process are all kept within the object, 
the object can become bulky (construction bloat) and less modular. Subsequently, 
adding a new implementation or making changes to an existing implementation 
requires changes to the existing code. 
Using the Builder pattern, the process of constructing such an object can be 

designed more effectively. The Builder pattern suggests moving  the construction 
logic out of the object class to a separate class  r eferred to as  a builder class. 
There can be more than one such builder class each with different implementation 
for the series of steps to construct the object. Each such builder implementation 
results in a different representation of the object. This type of separation reduces 
the object size. In addition: 
 

The  design  turns  out  to  be  more  modular  with  each  implementation 
contained in a different builder object. 
Adding a new implementation (i.e., adding a new builder) becomes easier. 
The object construction process becomes independent of the components 
that  make  up  the  object.  This  pr ovides  more  control  over  the  object 
construction process. 

 

In terms of implementation, each of the different steps in the construction process 
can be declared as methods of a common interface to be implemented by different 
concrete builders. Figure 5.1 shows the resulting builder class hierarchy. 

 

 
 
 
 

 

52



 
 
 
 

<<interface>> 
Builder  

 

 
createComponent_A() 
createComponent_B() 
getObject()  

 
 
 
 
 
 
 

ConcreteBuilder_1  

 
 
 
 
 
 
 
ConcreteBuilder_2  

 
 

createComponent_A() 
createComponent_B() 
getObject()  

 
 
createComponent_A() 
createComponent_B() 
getObject()  

 

 
 

Figur e 5.1 Generic  Builder    Class Hier archy 
 

 
 
 

Clien t ConcreteBuilder_1 
 

create() 
 
 
 

createComponent_A() 
 
 
 

createComponent_B() 
 
 
 
 
 
 

Figur e 5.2 Client/Builder  Direct Inter action  
 

 
A client object can create an instance of a concrete builder and invoke the 

set of methods required to construct different parts of the final object. Figure 5.2 
shows the corresponding message flow. 
This approach requires every client object to be aware of the construction 

logic. Whenever the construction logic undergoes a change, all client objects need 
to  be  modified  accordingly.  The  Builder  pattern  introduces  another  level  of 
separation that addresses this problem. Instead of having client objects invoke 
different builder methods directly, the Builder pattern suggests using a dedicated 
object referred to as a Director, which is responsible for invoking different builder 
 
 
 
 

 
 

53



 

methods required for the construction of the final object. Different client objects 
can make use of the Director object to create the required object. Once the object 
is constructed, the client object can directly request from the builder the fully 
constructed object. To facilitate this process, a new method  getObject  can be 
declared in the common Builder interface to be implemented by different concrete 
builders. 
The new design eliminates the need for a client object to deal with the methods 

constituting the object construction process and encapsulates the details of how 
the object is constructed from the client. Figure 5.3 shows the association between 
different classes. 
The interaction between the client object, the Director and the Builder objects 

can be summarized as follows: 

 
The  client  object  creates  instances  of  an  appropriate  concrete  Builder 
implementer and the Director. The client may use a factory for creating 
an appropriate Builder object. 

The client associates the Builder object with the Director object. 
The client invokes the  build  method on the Director instance to begin 
the object creation process. Internally, the Director invokes different Builder 
methods required to construct the final object. 
Once the object creation is completed, the client invokes the getObject 
method on the concrete Builder instance to get the newly created object. 
Figure 5.4 shows the overall message flow. 

 

 
<<interface>> 

Builder 
 

 
createComponent_A() 
createComponent_B() 
getObject() 

 

 
 
 
 

<<contains>>  
 
1 1..*  
 

 
 

 
 
 

Director 
 
 
 
build() 
 
 

 

 
 
 
 
 
 
 

ConcreteBuilder 
 
 

createComponent_A() 
createComponent_B() 
getObject() 

 
      responsible for the actual 

construction of the object 
 
 
 

 
 
 

Figur e 5.3 Class Association  
 
 
 
 
 
 
 

 

54



g 
 
 
 

Client ConcreteBuilder 

 
 
 
Director 

 
create() 

 

 
 

create(builder:ConcreteBuilder) 
 

build() 
 

createComponent_A() 
 

createComponent_B() 
 

getObject() 
 
 
 
 

Figur e 5.4 Object Cr eation  When the Builder Pattern Is  Applied  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

55



II 
 

 
 
 

COLLECTIONAL P ATTERNS 
 
 
 
 
 
 
Collectional patterns primarily: 

 
Deal with groups or collections of objects 
Deal with the details of how to compose classes and objects to form larger 
structures 
Concentrate on the most efficient way of designing a class so that its 
instances do not carry any duplicate data 

Allow the definition of operations on collections of objects 
 

 
Chapter Pattern Name Description 

 

6 Composite Allows both individual objects and composite objects 
to be treated uniformly. 

7 Iterator Allows a client to access the contents of an aggregate 
object (collection of objects) in some sequential 
manner, without having any knowledge about the 
internal representation of its contents. 

 Flyweight The intrinsic, invariant common information and the variable parts 
of a class are separated into two classes, leading to savings in 
terms of the memory usage and the amount of time required for 
the creation of a large number of its instances. 

 

 Visitor Allows an operation to be defined across a collection of 
different objects without changing the classes of objects on 
which it operates. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

56



6 
 
 
 
 

COMPOSITE 
 
 
 
 
 
 
 

DESCRIPTION 
 

Every component or object can be classified into one of the two categories — 
Individual Components or Composite Components — which are composed of 
individual components or other composite components. The Composite pattern is 
useful in designing a common interface for both individual and composite 
components so that client programs can view both the individual components 
and groups of components uniformly. In other words, the Composite design 
pattern allows a client object to treat both single components and collections of 
components in an identical manner. 
This can also be explained in terms of a tree structure. The Composite pattern 

allows uniform reference to both Nonterminal nodes (which represent collections 
of components or composites) and terminal nodes (which represent individual 
components). 
 
 

EXAMPLE  
 

Let us create an application to simulate the Windows/UNIX file system. The file 
system  consists  mainly  of  two  types  of  components  —  dir ectories  and  files. 
Directories can be made up of other directories or files, whereas files cannot 
contain any other file system component. In this aspect, directories act as non- 
terminal nodes and files act as terminal nodes of a tree structure. 
 
 

DESIGN APPROACH I 
 

Let us define a common interface for both directories and files in the form of a 
Java interface FileSystemComponent  (Figure 6.1). The FileSystemCompo- 
nent  interface declares methods that are common for both file components and 
directory components. 

Let us further define two classes —  FileComponent  and  DirComponent 
— as implementers of the common  FileSystemComponent  interface.  Figure 
6.2 shows the resulting class hierarchy. 

 

 
 
 
 
 

 

57



 
 
 
 

<<interface>> 
FileSystemComponent  

 

 
 

getComponentSize():long  
 
 
 

Figur e 6.1 The Common  FileSystemComponent  Interface  
 
 
 
 

<<interface>> 
FileSystemComponent  

*  

 
getComponentSize():long  

 

 
 
 
 
 
 

FileComponent  

 
 
 
 
 
 
DirComponent  

 
 

getComponentSize():long  
 
 

 
getComponentSize():long 
addComponent(fc:FileSystemComponent) 
getComponent(location:int)  

:FileSystemComponent  
 

 
 

Figur e 6.2 The FileSystemComponent    Class Hier archy 
 
 

FileComponent  
 

The  FileComponent  class represents a file in the file system and offers imple- 
mentation for the following methods. 
 
 

getComponentSize()  
 

This method returns the size (in kilobytes) of the file represented by the  File- 
Component  object. 
 
 

DirComponent  
 

This class represents a directory in the file system. Since directories are composite 
entities, the  DirComponent  provides methods to deal with the components it 
contains. These methods are in addition to the common  getComponentSize 
method declared in the  FileSystemComponent  interface. 
 
 
 
 
 
 
 

 

58



p 
 
 

addComponent(F ileSystemComponent)  
 

This method is used by client applications to add different  DirComponent  and 
FileComponent objects to a  DirComponent  object. 
 
 

getComponent(int)  
 

The  DirComponent  stores the other  FileSystemComponent  objects inside a 
vector. This method is used to retrieve one such object stored  at the specified 
location. 
 
 

getComponentSize()  
 

This method returns the size (in kilobytes) of the directory represented by the 
DirComponent  object. As part of the implementation, the DirComponent  object 
iterates over the collection of  FileSystemComponent  objects it contains, in a 
recursive manner, and sums up the sizes of all individual  FileComponents. 
The final sum is returned as the size of the directory it represents. 
A typical client would first create a set of FileSystemComponent  objects (both 

DirComponent  and  FileComponent  instances). It can use the  addComponent 
method of the  DirComponent  to add different  FileSystemComponents  to a 
DirComponent , creating a hierarchy of file system  (FileSystemComponent) 
objects. 
When the client wants to query any of these objects for its size, it can simply 

invoke the  getComponentSize  method. The client does not have to be aware 
of the calculations involved or the manner in which the calculations are carried 
out in determining the component size. In this aspect, the client treats both the 
FileComponent  and the  DirComponent  object in the same manner. No sep- 
arate code is required to query  FileComponent  objects and  DirComponent 
objects for their size. 
Though  the  client  treats  both  the   FileComponent   and  DirComponent 

objects in a uniform manner in the case of the common  getComponentSize 
method, it does need to distinguish when calling composite specific methods such 
as  addComponent  and  getComponent  defined exclusively in the  DirCompo- 
nent.  Because these methods are not available with FileComponent objects, 
the client needs to check to make sure that the FileSystemComponent  object 
it is working with is in fact a  DirComponent  object. 

The following Design Approach II eliminates this requirement from the client. 
 
 

DESIGN APPROACH II 
 
The objective of this approach is to: 
 

Provide the same advantage of allowing the client application to treat both 
the  composite   DirComponent   and  the  individual   FileComponent 
objects in a uniform manner while invoking the  getComponentSize 
method 

 
 
 
 
 
 

 

59



 
 

 
 
 

FileSystemComponent 
 
 

getComponentSize():long 
addComponent(fc:FileSystemComponent) 
getComponent(location:int) 

:FileSystemComponent 
 
 

*  

<<contains children 
of type  

FileSystemComponent>>  
 
 
 

FileComponent 

 

 
 
DirComponent 

 

 
getComponentSize():long 

 

 
 

 

 
getComponentSize():long 
addComponent(fc:FileSystemComponent) 
getComponent(location:int) 

:FileSystemComponent 
 
 
 

Figur e 6.3 Class Association  
 

 
Free the client application from having to check to make sure that the 
FileSystemComponent  it is dealing with is an instance of the DirCom- 
ponent class while invoking any of the composite-specific methods such 
as  addComponent  or  getComponent 

 
In the new design (Figure 6.3), the composite-specific  addComponent  and 

getComponent  methods are moved to the common interface  FileSystem- 
Component . The FileSystemComponent  provides the default implementation 
for these methods and is designed as an abstract clas. 
The default implementation of these methods consists of what is applicable 

to FileComponent  objects. FileComponent  objects are individual objects and 
do not contain other FileSystemComponent objects within. Hence, the default 
implementation does nothing and simply throws a custom  CompositeExcep- 
tion exception. The derived composite  DirComponent class overrides these 
methods to provide custom implementation. 
Because there is no change in the way the common  getComponentSize 

method is designed, the client will still be able to tr eat both the composite 
DirComponent  and  FileComponent  objects identically. 
Because the common parent  FileSystemComponent  class now contains 

default implementations for the addComponent  and the  getComponent  meth- 
ods, the client application does not need to make any check before making a 
call to these composite-specific methods. 
 
 
 
 
 
 

 

60



 

 
 
 
 
 
 
 

7 
 
 
 
 

ITERATOR 
 
 
 
 
 

DESCRIPTION 
 

The Iterator pattern allows a client object to access the contents of a container 
in a sequential manner, without having any knowledge about the internal repre- 
sentation of its contents. 

The term container, used above, can simply be defined as a collection of data 
or objects. The objects within the container could in turn be collections, making it 
a collection of collections. The Iterator pattern enables a client object to traverse 
through this collection of objects (or the container) without having the container 
to reveal how the data is stored internally. 

To accomplish this, the Iterator pattern suggests that a  Container  object 
should be designed to provide a public interface in the form of an Iterator object 
for different client objects to access its contents. An  Iterator  object contains 
public methods to allow a client object to navigate through the list of objects 
within the container. 

 
 

ITERATORS IN JAVA 
 

One of the simplest iterators available in Java is the  java.sql.ResultSet 
class, which is used to hold database records. This class offers a method next() 
for navigating along rows and a set of getter methods for column positioning. 
Java also offers an interface Enumeration  as part of the java.util  package, 

which declares the methods listed in Table 7.1. 
 

 
Table 7.1  Enumer ation Methods  

 
Method Return Description 

 

hasMoreElements() boolean Checks if there are more elements in the 
collection 

nextElement() Object Returns the next element in the collection 
 

61



 
 
 

Table 7.2  Iterator Interface Methods  
 

Method Return Description 
 

hasNext() boolean Checks if there are more elements in the collection. 
next() Object Returns the next element in the collection. 
remove() void Removes from the collection, the last element returned by 

the iterator. 
 
 

Concrete iterators can be built as implementers of the Enumeration  interface 
by providing implementation for its methods. 

In addition, the  java.util.Vector  class offers a method: 

 
public final synchronized Enumeration elements() 

 
that returns an enumeration of elements or objects. The returned Enumeration 
object works as an iterator for the   Vector  object. The Java  Enumeration 
interface methods listed in Table 7.1 can be used on the returned Enumeration 
object to sequentially fetch elements stored in the  Vector  object. 

Besides the Enumeration  interface, Java also offers the java.util.Iter- 
ator  interface. The Iterator  interface declares three methods as in Table 7.2. 
Similar  to  the  Enumeration   interface,  concrete  iterators  can  be  built  as 

implementers of the  java.util.Iterator  interface. 
Though it is considered useful to employ existing Java iterator interfaces such 

as Iterator  or Enumeration,  it is not necessary to utilize one of these built- 
in Java interfaces to implement an iterator. One can design a custom iterator 
interface that is more suitable for an application need. 
 
 

FILTERED ITERATORS 
 

In the case of the java.util.Vector  class, its iterator simply returns the next 
element in the collection. In addition to this basic behavior, an iterator may be 
implemented to do more than simply returning the next object in line. For instance, 
an iterator object can return a selected set of objects (instead of all objects) in a 
sequential order. This filtering can be based on some form of input from the 
client. These types of iterators are referred to as  filtered iterators. 
 
 

INTERNAL VERSUS EXTERNAL ITERATORS 
 
An iterator can be designed either as an internal iterator or as an external iterator. 

 
Internal iterators 
–   The collection itself offers methods to allow a client to visit different 
objects within the collection. For example, the  java.util.Result- 
Set  class contains the data and also offers methods such as  next() 
to navigate through the item list. 

–   There can be only one iterator on a collection at any given time. 
–   The collection has to maintain or save the state of iteration. 

 
 

62



 

 

 

 

External iterators 
–   The iteration functionality is separated from the collection and kept inside a 
different object referred to as an  iterator. Usually, the collection itself 
returns an appropriate iterator object to the client depending on the client 
input. For example, the java.util.Vector  class has its iterator defined 
in the form of a separate object of type  Enumeration . This object is 
returned to a client object in response to the elements()  method call. 

–   There can be multiple iterators on a given collection at any given time. 
–   The overhead involved in storing the state of iteration is not associated 
with the collection. It lies with the exclusive  Iterator  object. 

 
 

 
 

63



III 
 

 
 
 

STRUCTURAL PATTERNS 
 
 
 
 
 
 
Structural patterns primarily: 
 

Deal with objects delegating responsibilities to other objects. This results 
in a layered architecture of components with low degree of coupling. 
Facilitate interobject communication when one object is not accessible to 
the other by normal means or when an object is not usable because of 
its incompatible interface. 
Provide ways to structure an aggregate object so that it is created in full 
and to reclaim system resources in a timely manner. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

64



Chapter Pattern Name Description 
 

8 Decorator Extends the functionality of an object in a manner 
that is transparent to its clients without using 
inheritance. 

9 Adapter Allows the conversion of the interface of a class to 
another interface that clients expect. This allows 
classes with incompatible interfaces to work 
together. 

10 Chain of 
Responsibility 

 
 

Avoids coupling a (request) sender object to a 
receiver object. Allows a sender object to pass its 
request along a chain of objects without knowing 
which object will actually handle the request. 

11 Façade Provides a higher-level interface to a subsystem of 
classes, making the subsystem easier to use. 

12 Proxy Allows a separate object to be used as a substitute 
to provide controlled access to an object that is not 
accessible by normal means. 

13 Bridge Allows the separation of an abstract interface from 
its implementation. This eliminates the 
dependency between the two, allowing them to be 
modified independently. 

 Virtual Proxy Facilitates the mechanism for delaying the creation of an 
object until it is actually needed in a manner that is 
transparent to its client objects. 

 Counting Proxy When there is a need to perform supplemental operations 
such as logging and counting before or after a method call 
on an object, recommends encapsulating the 
supplemental functionality into a separate object. 

 Aggregate Enforcer Recommends that when an aggregate object is instantiated, 
all of its member variables representing the set of 
constituting objects must also be initialized. In other 
words, whenever an aggregate object is instantiated it 
must be constructed in full. 

 Explicit Object 
Release 

 

Recommends that when an object goes out of scope, all of 
the system resources tied up with that object must be 
released in a timely manner. 

 Object Cache Stores the results of a method call on an object in a 

repository. When client objects invoke the same method, 
instead of accessing the actual object, results are returned 
to the client object from the repository. This is done mainly 
to achieve a faster response time. 

 
 
 
 
 
 
 
 
 
 
 

 

65



8 
 
 
 
 

DECORATOR 
 
 
 
 
 
 
 

DESCRIPTION 
 

The Decorator Pattern is used to extend the functionality of an object dynamically 
without having to change the original class source or using inheritance. This is 
accomplished by creating an object wrapper referred to as a  Decorator around 
the actual object. 
 
 

CHARACTERISTICS OF A DECORATOR 
 

The  Decorator  object is designed to have the same inter face as the 
underlying object. This allows a client object to interact with the  Deco- 
rator object in exactly the same manner as it would with the underlying 
actual object. 

The  Decorator  object contains a reference to the actual object. 
The  Decorator object receives all requests (calls) from a client. It in 
turn forwards these calls to the underlying object. 
The Decorator  object adds some additional functionality before or after 
forwarding requests to the underlying object. This ensures that the addi- 
tional functionality can be added to a given object externally at runtime 
without modifying its structure. 

 
Typically,  in  object-oriented  design,  the  functionality  of  a  given  class  is 

extended using inheritance. Table 8.1 lists the differences between the Decorator 
pattern and inheritance. 
 
 

EXAMPLE  
 

Let us revisit the message logging utility we built while discussing the Factory 
Method and the Singleton patterns earlier. Our design mainly comprised a Logger 
interface and two of its implementers — FileLogger  and ConsoleLogger  — 
to log messages to a file and to the screen, respectively. In addition, we had the 
LoggerFactory  class with a factory method in it. 

 
 
 
 
 

 

66



 
 

 
 

Table 8.1  Decorator Pattern v ersus Inheritance  
 

Decorator Pattern Inheritance 
 

Used to extend the functionality of a 
particular object. 

 

Used to extend the functionality of a class 
of objects. 

Does not require subclassing. Requires subclassing. 
Dynamic. Static. 
Runtime assignment of responsibilities. Compile time assignment of 

responsibilities. 
Prevents the proliferation of subclasses 
leading to less complexity and 
confusion. 

Could lead to numerous subclasses, 
exploding class hierarchy on specific 
occasions. 

More flexible. Less flexible. 
Possible to have different decorator 
objects for a given object simultaneously. 
A client can choose what capabilities it 
wants by sending messages to an 
appropriate decorator. 

Easy to add any combination of 
capabilities. The same capability can even 
be added twice. 

Having subclasses for all possible 
combinations of additional capabilities, 
which clients expect out of a given class, 
could lead to a proliferation of 
subclasses. 

Difficult. 
 
 

 
 
 

The  LoggerFactory is not shown in Figure 8.1. This is because it is not 
directly related to the current example discussion. 
Let us suppose that some of the clients are now in need of logging messages 

in new ways beyond what is offered by the message logging utility. Let us consider 
the following two small features that clients would like to have: 

 

 
Transform an incoming message to an HTML document. 
Apply a simple encryption by transposition logic on an incoming message. 

 
 

<<interface>> 
Logger  

 
log(msg:String)  

 
 
 
 
 
 

ConsoleLogger  

 
 
 
 
 
 
FileLogger  

 
 

log(msg:String)  

 
 
log(msg:String)  

 
 
 

Figur e 8.1 Logging Utility Class Hier archy 
 
 
 
 
 

 

67



Table 8.2  Subclasses of  FileLogger  and  ConsoleLogger  
 

Subclass Parent Class Functionality 
 

HTMLFileLogger FileLogger Transform an incoming message to an 
HTML document and store it in a log 
file. 

HTMLConsLogger ConsoleLogger Transform an incoming message to an 
HTML document and display it on the 
screen. 

EncFileLogger FileLogger Apply encryption on an incoming 
message and store it in a log file. 

EncConsLogger ConsoleLogger Apply encryption on an incoming 
message and display it on the screen. 

 
 

Typically, in object-oriented design, without changing the code of an existing 
class, new functionality can be added by applying inheritance, i.e., by subclassing 
an existing class and overriding its methods to add the required new functionality. 
Applying inheritance, we would subclass both the  FileLogger and the 
ConsoleLogger  classes to add the new functionality with the following set of 

new subclasses (Table 8.2). 
As can be seen from the class diagram in Figure 8.2, a set of four new 

subclasses are added in order to add the new functionality. If we had additional 
Logger  types (for example a DBLogger  to log messages to a database), it would 
lead to more subclasses. With every new feature that needs to be added, there 
will be a multiplicative growth in the number of subclasses and soon we will 
have an exploding class hierarchy. 
 
 

<<interface>> 
Logger  

 
log(msg:String)  

 
 
 
 
 

ConsoleLogger  

 
 
 
 
 
FileLogger  

 
log(msg:String)  

 
 
log(msg:String)  

 
 
 
 

HTMLConsLogger  

 
 
 
 
EncConsLogger  

 
 
 
 
HTMLFileLogger  

 
 
 
 
EncFileLogger  

 
 

log(msg:String)  

 
 
log(msg:String)  

 
 
log(msg:String)  

 
 
log(msg:String)  

 
 
 

Figur e 8.2 The Resulting Class Hier archy after  Appl ying Inheritance to  Add the Ne w  
Functionality  

 
 
 
 

 

68



 
 
 

Listing 8.1  LoggerDecorator    Class  
 

public class LoggerDecorator implements Logger { 

Logger logger; 

public LoggerDecorator(Logger inp_logger) { 

logger = inp_logger; 

} 

public void log(String DataLine) { 

/* 

Default implementation 

to be overriden by subclasses. 

*/ 

logger.log(DataLine); 

} 

}//end of class 
 
 
 

The Decorator pattern comes to our rescue in situations like this. The Decorator 
pattern recommends having a wrapper around an object to extend its functionality 
by object composition rather than by inheritance. 
Applying  the  Decorator  patter n,  let  us  define  a  default  root  decorator 

LoggerDecorator  (Listing 8.1) for the message logging utility with the follow- 
ing characteristics: 
 

The LoggerDecorator  contains a reference to a Logger  instance. This 
reference points to a  Logger  object it wraps. 
The  LoggerDecorator  implements the  Logger  interface and provides 
the basic default implementation for the  log method, where it simply 
forwards an incoming call to the Logger object it wraps. Every subclass 
of the LoggerDecorator  is hence guaranteed to have the log method 
defined in it. 

 

It is important for every logger decorator to have the  log method because a 
decorator object must provide the same interface as the object it wraps. When clients 
create an instance of the decorator, they interact with the decorator in exactly the 
same manner as they would with the original object using the same interface. 
Let us define two subclasses,  HTMLLogger  and  EncryptLogger , of the 

default  LoggerDecorator  as shown in  Figure 8.3. 
 
 
 
 

HTMLLogger  

 
 
CONCRETE LOGGER DECORATORS  
 
 

 

The  HTMLLogger  (Listing 8.2) overrides the default implementation of the  log 
method. Inside the log  method, this decorator transforms an incoming message to 
an HTML document and then sends it to the Logger  instance it contains for logging. 
 
 
 

 
 

69



<<interface>> 
Logger  1 

 
log(msg:String)  

 
 
 
 

1 
LoggerDecorator  

 
logger:Logger  

 
log(msg:String)  

 
 
 
 
 

HTMLLogger  

 
 
 
 
 
EncryptLogger  

 
 

log(msg:String)  
makeHTML(dataLine:String)  

 
 
log(msg:String)  
encrypt(dataLine:String)  

 

 
 

Figur e 8.3 The Decor ator Class Structur e for the Logging Utility to  Add the Ne w  
Functionality  

 
 
 

EncryptLogger  
 

Similar to the  HTMLLogger , the  EncryptLogger  (Listing 8.3) overrides the 
log  method. Inside the  log  method, the  EncryptLogger  implements simple 
encryption logic by shifting characters to the right by one position and sends it 
to the  Logger  instance it contains for logging. 
The class diagram in  Figure 8.4 shows how different classes are arranged 

while applying the Decorator pattern. 

In order to log messages using the newly designed decorators a client object 
(Listing 8.4) needs to: 

 
Create an appropriate Logger  instance (FileLogger/ConsoleLogger ) 
using the  LoggerFactory  factory method. 
Create an appropriate LoggerDecorator instance by passing the Log- 
ger  instance created in Step 1 as an argument to its constructor. 
Invoke methods on the  LoggerDecorator  instance as it would on the 
Logger  instance. 

 
Figure 8.5 shows the message flow when a client object uses the HTMLLogger 

object to log messages. 
 
 
 
 
 
 

 

70



 
 
 

Listing 8.2  HTMLLogger    Class  
 

public class HTMLLogger extends LoggerDecorator { 

public HTMLLogger(Logger inp_logger) { 

super(inp_logger); 

} 

public void log(String DataLine) { 

/* 

Added functionality 

*/ 

DataLine = makeHTML(DataLine); 

/* 

Now forward the encrypted text to the FileLogger 

for storage 

*/ 

logger.log(DataLine); 

} 

public String makeHTML(String DataLine) { 

/* 

Make it into an HTML document. 

*/ 

DataLine = "<HTML><BODY>" + "<b>" + DataLine + 

"</b>" + "</BODY></HTML>"; 

return DataLine; 

} 

}//end of class 
 
 
 
 
 
 

ADDING A NEW MESSAGE LOGGER  
 

In case of the message logging utility, applying the Decorator pattern does  not 
lead to a large number of subclasses with a fast growing class hierarchy as it 
would if we apply inheritance. Let us say that we have another Logger type, say a  
DBLogger , that logs messages to a database. In order to apply the HTML 
transformation or to apply the encryption before logging to the database, all that 
a client object needs to do is to follow the list of steps mentioned earlier. Because 
the  DBLogger would be of the  Logger  type, it can be sent to any of the 
HTMLLogger  or the  EncryptLogger  classes as an argument while invoking 
their constructors. 
 
 
 
 
 
 
 

 
 

71



Listing 8.3  EncryptLogger  Class  
 

public class EncryptLogger extends LoggerDecorator { 

public EncryptLogger(Logger inp_logger) { 

super(inp_logger); 

} 

public void log(String DataLine) { 

/* 

Added functionality 

*/ 

DataLine = encrypt(DataLine); 

/* 

Now forward the encrypted text to the FileLogger 

for storage 

*/ 

logger.log(DataLine); 

} 

public String encrypt(String DataLine) { 

/* 

Apply simple encryption by Transposition… 

Shift all characters by one position. 

*/ 

DataLine = DataLine.substring(DataLine.length() - 1 ) + 

DataLine.substring(0, DataLine.length() - 1); 

return DataLine; 

} 

}//end of class 
 
 
 
 
 

ADDING A NEW DECORATOR 
 

From the example it can be observed that a LoggerDecorator  instance contains 
a reference to an object of type  Logger . It forwards requests to this  Logger 
object before or after adding the new functionality. Since the base  LoggerDec- 
orator  class implements the  Logger  interface, an instance of  LoggerDeco- 
rator  or any of its subclasses can be treated as of the  Logger  type. Hence a 
LoggerDecorator  can contain an instance of any of its subclasses and forward 
calls to it. In general, a decorator object can contain another decorator object and 
can forward calls to it. In this way, new decorators, and hence new functionality, 
can be built by wrapping an existing decorator object. 
 
 
 
 
 
 

 
 

72



 
 

 
 

<<interface>> 
Logger 

 
 
 

ConsoleLogger 

 
1 

log(msg:String) 
 

 
 
 

log(msg:String) 
 

 
 
 
 
 

 

 
LoggerDecorator 

1
 

 
logger:Logger 

 
log(msg:String) 

 
 
 
 

FileLogger 
 
 
log(msg:String) 

 
 
 
 
 

HTMLLogger 

 
 
 
 
 
EncryptLogger 

 

 
log(msg:String) 
makeHTML(dataLine:String) 

 
 
log(msg:String) 
encrypt(dataLine:String) 

 

 
 

Figur e 8.4 Association betw een Differ ent Logger Classes and Logger Decorators  
 
 
 
 
 

Listing 8.4  Client  DecoratorClient  Class  
 

class DecoratorClient { 

public static void main(String[] args) { 

LoggerFactory factory = new LoggerFactory(); 

Logger logger = factory.getLogger(); 

HTMLLogger hLogger = new HTMLLogger(logger); 

//the decorator object provides the same interface.  

hLogger.log("A Message to Log"); 

EncryptLogger eLogger = new EncryptLogger(logger); 

eLogger.log("A Message to Log"); 

} 

}//End of class 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

73



:DecoratorClient  :LoggerFactory  :FileLogger  :HTMLLogger  

 
LoggerFactory()  

 
getLogger()  

 

 
 
 
 
getLogger()  

 
 
get access to the 
singleton FileLogger 
instance  

 

 
HTMLLogger(logger:Logger)  

 
log(msg:String)  

 

 
 

makeHTML(msg:String)  

 
log(msg:String)  

 
 
 
 

Figur e 8.5 Message Flo w  When a Client Uses the  HTMLLogger  (Decorator) to Log a  
Message  

 
 
 

PRACTICE QUESTIONS 
 

1.  Create a FileReader  utility class with a method to read lines from a file. 
2.  The EncryptLogger  in the example application encrypts a given text by 
shifting  characters  to  the  right  by  one  position.  Cr eate  a  Decorator 
DecryptFileReader  for the  FileReader  to add the decryption func- 
tionality, after reading data from a file. 

3.  Enhance  DecoratorClient  class to do the following: 
–   Write a message to a file using the  EncryptLogger . 
–   Read using the DecryptFileReader  decorator to display the message 
in an unencrypted form. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

74



9 
 
 
 
 

ADAPTER  
 
 
 
 
 
 
 

DESCRIPTION 
 

In general, clients of a class access the services offered by the class through its 
interface. Sometimes, an existing class may provide the functionality required by 
a client, but its interface may not be what the client expects. This could happen 
due to various reasons such as the existing interface may be too detailed, or it 
may lack in detail, or the terminology used by the interface may be different from 
what the client is looking for. 
In  such  cases,  the  existing  inter face  needs  to  be  converted  into  another 

interface, which the client expects, preserving the reusability of the existing class. 
Without such conversion, the client will not be able to use the functionality offered 
by the class. This can be accomplished by using the Adapter pattern. The Adapter 
pattern suggests defining a wrapper class around the object with the incompatible 
interface. This wrapper object is referred as an  adapter and the object it wraps 
is referred to as an adaptee. The adapter provides the required interface expected 
by the client. The implementation of the adapter interface converts client requests 
into calls to the adaptee class interface. In other words, when a client calls an 
adapter method, internally the adapter class calls a method of the adaptee class, 
which the client has no knowledge of. This gives the client indirect access to the 
adaptee class. Thus, an adapter can be used to make classes work together that 
could not otherwise because of incompatible interfaces. 

The term  interface used in the discussion above: 
 

Does not refer to the concept of an interface in Java programming language, 
though a class’s interface may be declared using a Java interface. 
Does not refer to the user interface of a typical GUI application consisting 
of windows and GUI controls. 
Does refer to the programming interface that a class exposes, which is 
meant to be used by other classes. As an example, when a class is designed 
as an abstract class or a Java interface, the set of methods declared in it 
makes up the class’s interface. 

 
 
 
 
 
 
 

 

75



 
 
 

CLASS  ADAPTERS  VERSUS OBJECT  ADAPTERS  
 

Adapters can be classified broadly into two categories — class adapters and object 
adapters — based on the way a given adapter is designed. 
 
 

Class Adapter  
 

A class adapter is designed by subclassing the adaptee class. In addition, a class 
adapter implements the interface expected by the client object. When a client 
object invokes a class adapter method, the adapter inter nally  calls an adaptee 
method that it inherited. 
 
 

Object Adapter  
 

An object adapter contains a  reference to an adaptee object. Similar to a class 
adapter, an object adapter also implements the interface, which the client expects. 
When a client object calls an object adapter method, the object adapter invokes 
an appropriate method on the adaptee instance whose reference it contains. Table 
9.1 lists the differences between class and object adapters in detail. 
 
 

 
 

 
 
 
 

 

76



 
 

 
 

Table 9.1  Class  Adapters versus Object  Adapters  
 

Class Adapters Object Adapters 
 

Based on the concept of inheritance. Uses object composition. 
Can be used to adapt the interface of 
the adaptee only. Cannot adapt the 
interfaces of its subclasses, as the 
adapter is statically linked with the 
adaptee when it is created. 

Because the adapter is designed as a 
subclass of the adaptee, it is possible 
to override some of the adaptee’s 
behavior. 

Note:  In Java, a subclass cannot override a 
method that is declared as final in its 
parent class. 

The client will have some knowledge of 
the adatee’s interface as the full public 
interface of the adaptee is visible to 
the client. 

In Java applications: 
Suitable when the expected interface is 
available in the form of a Java interface 
and not as an abstract or concrete class. 
This is because the Java programming 
language allows only single inheritance. 
Since a class adapter is designed as a 
subclass of the adaptee class, it will not 
be able to subclass the interface class 
(representing the expected interface) 
also, if the expected interface is available 
in the form of an abstract or concrete 
class. 

In Java applications: 
Can adapt methods with protected access 
specifier. 

 
 

Can be used to adapt the interface of the 
adaptee and all of its subclasses. 

 

 
 
 
Cannot override adaptee methods. 
Note:  Literally, cannot “override” simply 
because there is no inheritance. But 
wrapper functions provided by the 
adapter can change the behavior as 
required. 
 
The client and the adaptee are completely 
decoupled. Only the adapter is aware of 
the adaptee’s interface. 

 
In Java applications: 
Suitable even when the interface that a 
client object expects is available in the 
form of an abstract class. 

Can also be used if the expected interface 
is available in the form of a Java interface. 
Or 
When there is a need to adapt the interface 
of the adaptee and also all of its 
subclasses. 

 
 
 
 
In Java applications: 
Cannot adapt methods with protected 
access specifier, unless the adapter and 
the adaptee are designed to be part of the 
same package. 

 

 
 
 
 
 

 

77



10 
 
 
 
 

CHAIN OF RESPONSIBILITY  
 
 
 
 
 
 
 

DESCRIPTION 
 

The Chain of Responsibility pattern (CoR) recommends a low degree of coupling 
between an object that sends out a request and the set of potential request handler 
objects. 

When there is more than one object that can handle or fulfill a client request, 
the CoR pattern recommends giving each of these objects a chance to process 
the request in some sequential order. Applying the CoR pattern in such a case, 
each of these potential handler objects can be arranged in the form of a chain, 
with each object having a pointer to the next object in the chain. The first object 
in the chain receives the request and decides either to handle the request or to 
pass it on to the next object in the chain. The request flows through all objects 
in the chain one after the other until the request is handled by one of the handlers 
in the chain or the request reaches the end of the chain without getting processed. 
As an example, if A  ∅ B  ∅ C are objects capable of handling the request, in 
this order, then A should handle the request or pass on to B without determining 
whether B can fulfill the request. Upon receiving the request, B should either 
handle it or pass on to C. When C receives the request, it should either handle 
the request or the request falls off the chain without getting processed. In other 
words, a request submitted to the chain of handlers may not be fulfilled even 

after reaching the end of the chain. 
The following are some of the important characteristics of the CoR pattern: 

The set of potential request handler objects and the order in which these 
objects form the chain can be decided dynamically at runtime by the client 
depending on the current state of the application. 

A client can have different sets of handler objects for different types of 
requests depending on its current state. Also, a given handler object may 
need to pass on an incoming request to different other handler objects 
depending on the request type and the state of the client application. For 
these communications to be simple, all potential handler objects should 
provide a consistent interface. In Java this can be accomplished by having 

 

 
 
 
 
 

 

78



g 
 
 

different handlers implement a common interface or be subclasses of a 
common abstract parent class. 
The client object that initiates the request or any of the potential handler 
objects that forward the request do not have to know about the capabilities 
of the object receiving the request. This means that neither the client object 
nor any of the handler objects in the chain need to know which object 
will actually fulfill the request. 
Request handling is not guaranteed. This means that the request may reach 
the end of the chain without being fulfilled. The following example presents 
a scenario where a purchase request submitted to a chain of handlers is 
not approved even after reaching the end of the chain. 

 
 

 
 

79



11 
 
 
 
 

FAÇADE  
 
 
 
 
 
 
 

DESCRIPTION 
 

The Façade pattern deals with a subsystem of classes. A  subsystem is a set of 
classes that work in conjunction with each other for the purpose of providing a 
set of related features (functionality). For example, an Account  class,  Address 
class and  CreditCard  class working together, as part of a subsystem, provide 
features of an online customer. 

In  real world applications, a subsystem could consist of a large number of 
classes. Clients of a subsystem may need to interact with a number of subsystem 
classes for their needs. This kind of direct interaction of clients with subsystem 
classes leads to a high degree of coupling between the client objects and the 
subsystem (Figure 11.1). Whenever a subsystem class under goes a change, 
such as a change in its inter face, all of its dependent client classes may get 
affected. 
The Façade pattern is useful in such situations. The Façade pattern provides a 

higher level, simplified interface for a subsystem resulting in reduced complexity 
and  dependency.  This  in  turn  makes  the  subsystem  usage  easier  and  mor e 
manageable. 
A façade is a class that provides this simplified interface for a subsystem to 

be used by clients. With a  Façade  object in place, clients interact with the 
Façade  object instead of interacting directly with subsystem classes. The Façade 
object takes up the responsibility of interacting with the subsystem classes. In 
effect, clients interface with the façade to deal with the subsystem. Thus the 
Façade pattern promotes a weak coupling between a subsystem and its clients 

(Figure 11.2). 
From Figure 11.2, we can see that the  Façade  object decouples and shields 

clients from subsystem objects. When a subsystem class undergoes a change, 
clients do not get affected as before. 
Even though clients use the simplified interface provided by the façade, when 

needed, a client will be able to access subsystem components directly through the 
lower level interfaces of the subsystem as if the Façade object does not exist. In 
this case, they will still have the same dependency/coupling issue as earlier. 

 

 
 
 
 
 

 

80



g 
 
 
 
 

SubSystem  
Classes  

 
 
 
 

Client A  
 
 
 
 

Client B  
 
 
 
 
 
 
 
 
 
 
 
 

Figur e 11.1 Client Inter action with Subsystem Classes before  Applying the F açade Pattern  
 
 
 
 
 

SubSystem Classes  
 
 
 
 
 

Client A  
 
 
 
 

Client B  

 

 
 
Facade  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figur e 11.2 Client Inter action with Subsystem Classes after  Applying the F açade Pattern  
 
 
 
 
 
 
 

 

81



12 
 
 
 
 

PROXY 
 
 
 
 
 
 
 

DESCRIPTION 
 
Let us consider the following code sample: 

 
//Client 

class Customer{ 

public void someMethod(){ 

//Create the Service Provider Instance 

FileUtil futilObj=new FileUtil(); 

//Access the Service 

futilObj.writeToFile(“Some Data”); 

} 

} 

 
As part of its implementation, the  Customer  class creates an instance of the 

FileUtil  class and directly accesses its services. In other words, for a client 
object, the way of accessing a  FileUtil object is fairly straightforward. From 
the implementation it seems to be the most commonly used way for a client 
object to access a service provider object. In contrast, sometimes a client object 
may not be able to access a service provider object (also referred to as a target 
object) by normal means. This could happen for a variety of reasons depending on: 

 
The location of the target object — The target object may be present in a 
different address space in the same or a different computer. 
The state of existence of the target object —The target object may not exist 
until it is actually needed to render a service or the object may be in a 
compressed form. 
Special Behavior —The target object may offer or deny services based on 
the access privileges of its client objects. Some service provider objects 
may need special consideration when used in a multithreaded environment. 

 

 
 
 
 
 
 

 

82



 
 
 

In such cases, instead of having client objects to deal with the special require- 
ments for accessing the target object, the Proxy pattern suggests using a separate 
object referred to as a  proxy to provide a means for different client objects to 
access the target object in a normal, straightforward manner. 

The  Proxy  object offers the same interface as the target object. The  Proxy 
object interacts with the target object on behalf of a client object and takes care 
of the specific details of communicating with the target object. As a result, client 
objects are no longer needed to deal with the special requirements for accessing 
the services of the target object. A client can call the  Proxy  object through its 
interface and the  Proxy  object in turn forwards those calls to the target object. 
Client objects need not even know that they ar e dealing with  Proxy  for the 
original object. The  Proxy  object hides the fact that a client object is dealing 
with an object that is either remote, unknown whether instantiated or not, or 
needs special authentication. In other words, a  Proxy  object serves as a trans- 
parent bridge between the client and an inaccessible remote object or an object 
whose instantiation may have been deferred. 

Proxy objects are used in different scenarios leading to different types of 
proxies. Let us take a quick look at some of the proxies and their purpose. 
Note:  Table 12.1 lists different types of  Proxy  objects. In this chapter, only 

the remote proxy is discussed in detail. Some of the other proxy types are discussed 
as separate patterns later in this book. 
 
 

PROXY VERSUS OTHER PATTERNS 
 

From the discussion of different Proxy  objects, it can be observed that there are 
two main characteristics of a  Proxy  object: 

 
It is an intermediary between a client object and the target object. 
It receives calls from a client object and forwards them to the target object. 

In this context, it looks very similar to some of the other patter ns discussed 
earlier in this book. Let us see in detail the similarities and differences 

between 

the Proxy pattern and some of the other similar patterns. 
 
 

Proxy v ersus Decor ator  
 

Proxy 
–   The client object cannot access the target object directly. 
–   A proxy  object provides access control to the target object (in the case 
of the protection proxy). 

–   A  proxy  object does not add any additional functionality. 
Decorator 
–   The client object does have the ability to access the target object directly, 
if needed. 

–   A  Decorator  object does not control access to the target object. 
–   A  Decorator  adds additional functionality to an object. 

 

 
 
 
 
 

 

83



 
 

 
 

Table 12.1  List of Differ ent Pro xy  Types  
 

Proxy Type Purpose 
 

Remote Proxy To provide access to an object located in a different 
address space. 

Virtual Proxy To provide the required functionality to allow the on- 
demand creation of a memory intensive object (until 
required). 

Cache Proxy/Server Proxy To provide the functionality required to store the results 
of most frequently used target operations. The proxy 
object stores these results in some kind of a repository. 
When a client object requests the same operation, the 
proxy returns the operation results from the storage area 
without actually accessing the target object. 

Firewall Proxy The primary use of a firewall proxy is to protect target 
objects from bad clients. 

A firewall proxy can also be used to provide the 
functionality required to prevent clients from accessing 
harmful targets. 

Protection Proxy To provide the functionality required for allowing 
different clients to access the target object at different 
levels. 

A set of permissions is defined at the time of creation of 
the proxy. Subsequently, those permissions are used to 
restrict access to specific parts of the proxy (in turn of 
the target object). A client object is not allowed to access 
a particular method if it does not have a specific right to 
execute the method. 

Synchronization Proxy To provide the required functionality to allow safe 
concurrent accesses to a target object by different client 
objects. 

Smart Reference Proxy To provide the functionality to prevent the accidental 
disposal/deletion of the target object when there are 
clients currently with references to it. 

To accomplish this, the proxy keeps a count of the 
number of references to the target object. The proxy 
deletes the target object if and when there are no 
references to it. 

Counting Proxy To provide some kind of audit mechanism before 
executing a method on the target object. 

 

 
 
 

Proxy v ersus F açade  
 

Proxy 
–   A  Proxy  object represents a single object. 
–   The client object cannot access the target object directly. 
–   A  Proxy  object provides access control to the single target object. 

 

 
 
 
 
 

 

84



 
 
 

Façade 
–   A  Façade  object represents a subsystem of objects. 
–   The client object does have the ability to access the subsystem objects 
directly, if needed. 

–   A  Façade   object  provides  a  simplified  higher  level  interface  to  a 
subsystem of components. 

 
 

Proxy v ersus Chain of Responsibility  
 

Proxy 
–   A  Proxy object represents a single object. 
–   Client requests are first received by the  Proxy  object, but are never 
processed directly by the  Proxy  object. 

–   Client requests are always forwarded to the target object. 
–   Response to the request is guaranteed, provided the communication 
between the client and the server locations is working. 

Chain of Responsibility 
–   Chain can contain many objects. 
–   The object that receives the client request first could process the request. 
–   Client requests are forwarded to the next object in the chain only if the 
current receiver cannot process the request. 

–   Response to the request is not guaranteed. It means that the request 
may  end  up  reaching  the  end  of  the  chain  and  still  might  not  be 
processed. 

 
In Java, the concept of Remote Method Invocation (RMI) makes extensive use 

of the Remote Proxy pattern. Let us take a quick look at the concept of RMI and 
different components that facilitate the RMI communication process. 
 
 

RMI: A QUICK OVERVIEW 
 

RMI enables a client object to access remote objects and invoke methods on them 
as if they are local objects (Figure 12.1). 
 
 

RMI Components  
 
The following different components working together provide the stated RMI 
functionality: 

 
Remote Interface —  A remote object must implement a remote interface 
(one that extends  java.rmi.Remote ). A remote interface declares the 

 

 
Client Remote Object 

 
 
 

Figur e 12.1 Client’ s View of Its Communication with a Remote Object Using  RMI 
 
 
 
 
 

 

85



 
 
 

methods in the remote object that can be accessed by its clients. In other 
words, the remote interface can be seen as the client’s view of the remote 
object. 

Requirements: 
–   Extend the  java.rmi.Remote  interface. 
–   All  methods  in  the  r emote  interface  must  be  declared  to  throw 

java.rmi.RemoteException  exception. 
Remote Object —  A remote object is responsible for implementing the 
methods declared in the associated remote interface. 

Requirements: 
–   Must provide implementation for a remote interface. 
–   Must extend  java.rmi.server.UnicastRemoteObject . 
–   Must have a constructor with no arguments. 
–   Must be associated with a server. The server creates an instance of the 
remote object by invoking its zero argument constructor. 

RMI Registry — RMI registry provides the storage area for holding different 
remote objects. 
–   A remote object needs to be stored in the RMI registry along with a 
name reference to it for a client object to be able to access it. 

–   Only one object can be stored with a given name reference. 
Client — Client is an application object attempting to use the remote object. 
–   Must be aware of the interface implemented by the remote object. 
–   Can search for a remote object using a name reference in the RMI 
Registry.  Once  the  remote  object  reference  is  found,  it  can  invoke 
methods on this object reference. 

RMIC:  Java  RMI  Stub  Compiler  —  Once  a  remote  object  is  compiled 
successfully, RMIC, the Java RMI stub compiler can be used to generate 
stub and skeleton class files for the remote object. Stub and skeleton classes 
are generated from the compiled remote object class. These stub and 
skeleton classes make it possible for a client object to access the remote 
object in a seamless manner. 

 
The following section describes how the actual communication takes place 

between a client and a remote object. 
 
 

RMI Communication Mec hanism  
 

In general, a client object cannot directly access a remote object by normal means. 
In order to make it possible for a client object to access the services of a remote 
object as if it is a local object, the RMIC-generated stub of the remote object class 
and the remote interface need to be copied to the client computer. 

The stub acts as a (Remote) proxy for the remote object and is responsible for 
forwarding method invocations on the remote object to the server where the 
actual remote object implementation resides. Whenever a client references the 
remote object, the reference is, in fact, made to a local stub. That means, when a 
client makes a method call on the remote object, it is first received by the local 
stub instance. The stub forwards this call to the remote server. On the server the 
RMIC generated skeleton of the remote object receives this call. 
 
 
 
 

 

86



 
 

 
 
 

Client  

 
 
 
Remote Object  

 
 
 
 

Stub  

 
 
 
 
Skeleton  

 

 
 
 

Remote Reference  
Mechanism  

 

 
 
 
Remote Reference  

Mechanism  
 
 
 

Network Communication  
Layer  

 

 
 

Figur e 12.2 The Actual RMI Communication Pr ocess  
 

 
The skeleton is a server side object and it  does not need to be copied to the 

client computer. The  skeleton is responsible for dispatching calls to the actual 
remote object implementation. Once the remote object executes the method, 
results are sent back to the client in the reverse direction. 

Figure 12.2 shows the actual RMI communication process. 
For more information on the Java RMI technology, I recommend reading the 

RMI tutorial at  java.sun.com. 
 
 

RMI AND PROXY PATTERN 
 

It can be seen from the RMI communication discussion that the stub class, acting 
as a remote proxy for the remote object, makes it possible for a client to treat a 
remote object as if it is available locally. Thus, any application that uses RMI 
contains an implicit implementation of the Proxy pattern. 
 
 
 
 
 
 
 
 
 

 

87



13 
 
 
 
 

BRIDGE 
 
 
 
 
 
 
 

DESCRIPTION 
 

The Bridge pattern promotes the separation of an abstraction’s  interface from its 
implementation. In general, the term abstraction refers to the process of identifying 
the set of attributes and behavior of an object that is specific to a particular usage. 
This specific view of an object can be designed as a separate object omitting 
irrelevant attributes and behavior. The resulting object itself can be referred to as 
an  abstraction. Note that a given object can have mor e than one associated 
abstraction, each with a distinct usage. 

A given abstraction may have one or more implementations for its methods 
(behavior). In terms of implementation, an abstraction can be designed as an 
interface with one or more concrete implementers (Figure 13.1). 
 

 
<<interface>> 

Abstraction  
 

 
method_1()  
method_2()  

 

 
 
 
 

Implementer_1  

 

 
 
 
 
Implementer_2  

 
 

method_1()  
method_2()  

 
 
method_1()  
method_2()  

 
 
 

Figur e 13.1 Abstr action as an Interface with a Set of Concrete Imple menters  
 
 
 
 
 
 
 
 

 

88



g 
 
 

In  the  class  hierarchy  shown  in  Figure  13.1,  the  Abstraction   interface 
declares a set of methods that represent the result of abstracting common features 
from different objects. Both  Implementer_1  and  Implementer_2  represent 
the set of Abstraction  implementers. This approach suffers from the following 
two limitations: 

 
1.  When there is a need to subclass the hierarchy for some other reason, it 
could lead to an exponential number of subclasses and soon we will have 
an exploding class hierarchy. 

2.  Both the  abstraction  interface and its implementation are closely tied 
together and hence they cannot be independently varied without affecting 
each other. 

 
Using  the  Bridge  pattern,  a  more  efficient  and  manageable  design  of  an 

abstraction can be achieved. The design of an abstraction using the Bridge pattern 
separates its interfaces from implementations. Applying the Bridge pattern, both 
the interfaces and the implementations of an abstraction can be put into separate 
class hierarchies as in Figure 13.2. 
From the class diagram in Figure 13.2, it can be seen that the Abstraction 

maintains an object reference of the Implementer  type. A client application can 
 

 
 

Client 
 
 
 

Interface class  
hierarchy  Implementation class 

hierarchy  

<<interface>> 
Abstraction 

 
impl:Implementer 

 

 
method_1() 
method_2() 

 

<<interface>> 
Implementer 

 
 
methodImpl_1() 
methodImpl_2() 
 

 
 
 
 
 
 

AbstractionType_1 

 
 
 
 
 
 
AbstractionType_2 

 

 
 
 
 
 
Implementer_1 

 

 
method_1() 
method_2() 
someOtherMethod_1() 

 

 
method_1() 
method_2() 
someOtherMethod_2() 

 

 
methodImpl_1() 
methodImpl_2() 
someNewMethod() 

 

 
 
 

Figur e 13.2 Interface and Implementations in  Two Separate Class Hier archies  
 
 
 
 
 

 

89



 
 
 
choose a desired abstraction type from the  Abstraction class hierarchy. The 
abstraction object can then be configured with an instance of an appropriate 
implementer from the  Implementer  class hierarchy. This ability to combine 
abstractions and implementations dynamically can be very useful in ter ms of 
extending the functionality without subclassing. When a client object invokes a 
method on the  Abstraction  object, it forwards the call to the  Implementer 
object it contains. The Abstraction  object may offer some amount of processing 
before forwarding the call to the  Implementer  object. 
This type of class arrangement completely decouples the inter face and the 

implementation of an abstraction and allows the classes in the interface and the 
implementation hierarchy to vary without affecting each other. 
 
 

BRIDGE PATTERN VERSUS ADAPTER PATTERN 
 

Similarities: 
Both the Adapter pattern and the Bridge pattern are similar in that they 
both work towards concealing the details of the underlying implementation 
from the client. 

Differences: 
The Adapter pattern aims at making classes work together that could not 
otherwise because of incompatible interfaces. An Adapter is meant to 
change the interface of an  existing object. As we have seen during our 
discussion on the Adapter pattern, an Adapter requires an (existing) adap- 
tee class, indicating that the Adapter pattern is more suitable for needs 
after the initial system design. 
The Bridge pattern is more of a design time pattern. It is used when the 
designer has control over the classes in the system. It is applied before a 
system has been implemented to allow both abstraction interfaces and its 
implementations to be varied independently without affecting each other. 
In the context of the Bridge pattern, the issue of incompatible interfaces 
does not exist. Client objects always use the inter face exposed by the 
abstraction interface classes. Thus both the Bridge pattern and the Adapter 
pattern are used to solve different design issues. 

 

90



IV 
 

 
 
 

BEHAVIORAL PATTERNS 
 
 
 
 
 
 
Behavioral Patterns mainly: 

 
Deal with the details of assigning responsibilities between different objects 
Describe the communication mechanism between objects 
Define the mechanism for choosing different algorithms by different objects 
at runtime 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

91



Chapter Pattern Name Description 
 

14 Command Allows a request to be encapsulated into an object 
giving control over request queuing, sequencing and 
undoing. 

15 Mediator Encapsulates the direct object-to-object communication 
details among a set of objects in a separate (mediator) 
object. This eliminates the need for these objects to 
interact with each other directly. 

16 Memento Allows the state of an object to be captured and stored. 
The object can be put back to this (previous) state, 
when needed. 

17 Observer Promotes a publisher–subscriber communication model 
when there is a one-to-many dependency between 
objects so that when one object changes state, all of 
its dependents are notified so they can update their 
state. 

18 Interpreter Useful when the objective is to provide a client program 
or a user the ability to specify operations in a simple 
language. Helps in interpreting operations specified 
using a language, using its grammar. 

More suitable for languages with simple grammar. 
19 State Allows the state-specific behavior of an object to be 

encapsulated in the form of a set of state objects. With 
each state-specific behavior mapped onto a specific 
state object, the object can change its behavior by 
configuring itself with an appropriate state object. 

20 Strategy Allows each of a family of related algorithms to be 
encapsulated into a set of different subclasses (strategy 
objects) of a common superclass. 

For an object to use an algorithm, the object needs to 
be configured with the corresponding strategy object. 
With this arrangement, algorithm implementation can 
vary without affecting its clients. 

21 Null Object Provides a way of encapsulating the (usually do nothing) 
behavior of a given object type into a separate null 
object. This object can be used to provide the default 
behavior when no object of the specific type is 
available. 

 

 
(continued) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

92



Chapter Pattern Name Description 
 

 Template Method When there is an algorithm that could be implemented in multiple 
ways, the template pattern enables keeping the outline of the 
algorithm in a separate method 
(Template Method) inside a class (Template Class), leaving 
out the specific implementations of this algorithm to 
different subclasses. 

In other words, the Template Method pattern is used to keep 
the invariant part of the functionality in one place and allow 
the subclasses to provide the implementation of the variant 
part. 

 Object 
Authenticator 

 
 
 
 
 
 
 Common Attribute 

Registry 

Useful when access to an application object is restricted and 
requires a client object to furnish proper authentication 
credentials. 

Uses a separate object with the responsibility of verifying the 
access privileges of different client objects instead of keeping 
this responsibility on the application object. 

 

Provides a way of designing a repository to store the common 
transient state of an application. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

93



14 
 
 
 
 

COMMAND 
 
 
 
 
 

DESCRIPTION 
 

In general, an object-oriented application consists of a set of interacting objects 
each offering limited, focused functionality. In response to user interaction, the 
application carries out some kind of processing. For this purpose, the application 
makes use of the services of different objects for the processing requirement. In 
terms of implementation, the application may depend on a designated object that 
invokes methods on these objects by passing the r equired data as arguments 
(Figure 14.1). This designated object can be referred to as an invoker as it invokes 
operations on different objects. The invoker may be treated as part of the client 
application. The set of objects that actually contain the implementation to offer 
the services required for the request processing can be referred to as  Receiver 
objects. 

 

 
 

Client  Invoker  Receiver  
 

 
 
 
 

Figur e 14.1 Object Inter action: Befor e Applying the Command P attern  
 
 

In this design, the application that forwards the r equest and the set of 
Receiver  objects that offer the services required to process the request are 
closely tied to each other in that they interact with each other dir ectly. This 
could result in a set of conditional  if statements in the implementation of the 
invoker. 

 
… 

if (RequestType=TypeA){ 

//do something 

} 
if (RequestType=TypeB){ 

//do something 

} 

… 
 
 
 

 

94



 
 

When a new type of feature is to be added to the application, the existing 
code needs to be modified and it violates the basic object-oriented open-closed 
principle. 

 
… 

if (RequestType=TypeA){ 

//do something 

} 

… 

if (RequestType=NewType){ 

//do something 

} 

… 
 
 

The open-closed principle states that a software module should  be: 
 

Open for extension — It should be possible to alter the behavior of a module or add 
new features to the module functionality. 

Closed for modification — Such a module should not allow its code to be modified. 
 

In a nutshell, the open-closed principle helps in designing software modules whose 

functionality can be extended without having to modify the existing code. 
 
 

Using the Command pattern, the invoker that issues a request on behalf of 
the client and the set of service-rendering Receiver objects can be decoupled. 
The Command pattern suggests creating an abstraction for the processing to be 
carried out or the action to be taken in response to client requests. 
This abstraction can be designed to declare a common interface to be imple- 

mented by different concrete implementers referred to as Command objects. Each 
Command object represents a different type of client request and the correspond- 
ing processing. In Figure 14.2, the Command interface represents the abstraction. 
It declares an execute  method, which is implemented by two of its implementer 

(command) classes —  ConcreteCommand_1 and  ConcreteCommand_2 . 
A given  Command object is responsible for offering the functionality required 

to process the request it represents, but it does not contain the actual implemen- 
tation of the functionality.  Command objects make use of  Receiver  objects in 
offering this functionality (Figure 14.3). 
When the client application needs to offer a service in response to user (or 

other application) interaction: 
 

1.  It creates the necessary  Receiver  objects. 
2.  It  creates  an  appropriate   Command  object  and  configures  it  with  the 

Receiver  objects created in Step 1. 
3.  It creates an instance of the invoker and configures it with the  Command 
object created in Step 2. 

4.  The invoker invokes the  execute()  method on the Command object. 
5.  As part of its implementation of the execute  method, a typical Command 
object invokes necessary methods on the  Receiver objects it contains 
to provide the required service to its caller. 

 
 

 

95



<<interface>> 
Command 

 

 
execute()  

 
 
 
 
 

ConcreteCommand_1  

 
 
 
 
 
ConcreteCommand_2  

 

 
execute()  

 

 
execute()  

 
 
 

Figur e 14.2 Command Object Hier archy 
 
 
 

Invoker 
 

 

 
 
<<interface>> 

Command 

 
execute() 

 
ConcreteCommand_1 

 

 
 
0..*  

 
execute() 

 

 
 
 
 
 
 

<<creates>>  

 
 
 
 

1..*  
 
Receiver 
 

 
 
 
 
 
 
    <<uses>>   ConcreteCommand_2 

Client 1..*  0..*  
 

 
<<creates>>  

 
execute() 
 

 
Figur e 14.3 Class  Association:  After the Command Pattern Is  Applied  

 
 

In the new design: 
 

The client/invoker does not directly interact with  Receiver  objects and 
therefore, they are completely decoupled from each other. 
When the application needs to offer a new feature, a new Command object 
can be added. This does not require any changes to the code of the 
invoker. Hence the new design conforms to the open-closed principle. 
Because the request is designed in the form of an object, it opens up a 
whole new set of possibilities such as: 

–   Storing a  Command object to persistent media: 
–  To be executed later. 
–  To apply reverse processing to support the undo feature. 

–   Grouping together different Command objects to be executed as a single 
unit. 

 
 

96



 
 
 

EXAMPLE  
 

Let us build an application to manage items in a library item database. T ypical 
library items include books, CDs, videos and DVDs. These items are grouped into 
categories and a given item can belong to one or more categories. For example, a 
new movie video may belong to both the  Video  category and the  NewRe- 
leases  category. 
Let us define two classes — Item  and Category  — (Listing 14.3) representing 

a typical library item and a category of items, respectively (Figure 14.6). 
From the design and the implementation of the  Item  and the  Category 

classes, it can be seen that a  Category  object maintains a list of its current 
member items. Similarly, an Item  object maintains the list of all categories which 
it is part of. For simplicity, let us suppose that the library item management 
application deals only with adding and deleting items. Applying the Command 
pattern, the action to be taken to process  add item and  delete  item requests can 
be designed as implementers of a common CommandInterface interface. The 
CommandInterface  provides an abstraction for the processing to be carried 
out in response to a typical library item management request such as add or 
delete  item.  The   CommandInterface   implementers  —   AddCommand and 
DeleteCommand  — in Figure 14.7 represent the add and the delete item request, 
respectively. 

Let us further define an invoker  ItemManager  class. 
 

public class ItemManager { 

CommandInterface command; 

public void setCommand(CommandInterface c) { 

command = c; 

} 

public void process() { 

command.execute(); 

} 

} 
 

 
The  ItemManager : 

 
Contains a  Command object within 
Invokes the  Command object’s  execute  method as part of its  process 
method implementation 
Provides a  setCommand method to allow client objects to configure it 
with a  Command object 

 
The client CommandTest uses the invoker ItemManager  to get its add item 

and  delete item requests processed. 
 
 

Application Flo w 
 

To add or delete an item, the client  CommandTest (Listing 14.4): 
 
 
 
 

 

97



1.  Creates the necessary  Item and  Category  objects. These objects act as 
receivers. 

2.  Creates an appropriate  Command object that corresponds to its current 
request. The set of  Receiver  objects created in Step 1 is passed to the 
Command object at the time of its creation. 

3.  Creates  an  instance  of  the   ItemManager   and  configures  it  with  the 
Command object created in Step 2. 

4.  Invokes the  process()  method of the  ItemManager . The  ItemMan- 
ager  invokes the execute method on the Command object. The Command 
object in turn invokes necessary Receiver  object methods. Different Item 
and Category Receiver objects perform the actual request processing. 
To keep the example simple, no database access logic is implemented. 
Both  Item and  Category  objects are implemented to simply display a 
message. 

 
When the client program is run, the following output is displayed: 

 
Item 'A Beautiful Mind' has been added to the 'CD' Category 

Item 'Duet' has been added to the 'CD' Category 

Item 'Duet' has been added to the 'New Releases' Ca tegory 
Item 'Duet' has been deleted from the 'New Releases ' 
Category 

 

 
The class diagram in  Figure 14.8 depicts the overall class association. 
The sequence diagram in Figure 14.9 shows the message flow when the client 

CommandTest uses a  Command object to add an item. 
 
 
 
 
 
 
 
 
 
 
 

 

98



 
 
 

Listing 14.3  Item and Categor y Classes  
 

public class Item { 

private HashMap categories; 

private String desc; 

public Item(String s) { 

desc = s; 

categories = new HashMap(); 

} 

public String getDesc() { 

return desc; 

} 

public void add(Category cat) { 

categories.put(cat.getDesc(), cat); 

} 

public void delete(Category cat) { 

categories.remove(cat.getDesc()); 

} 

} 

public class Category { 

private HashMap items; 

private String desc; 

public Category(String s) { 

desc = s; 

items = new HashMap(); 

} 

public String getDesc() { 

return desc; 

} 

public void add(Item i) { 

items.put(i.getDesc(), i); 

System.out.println("Item '" + i.getDesc() + 

"' has been added to the '" + 

getDesc() + "' Category "); 

} 
public void delete(Item i) { 

items.remove(i.getDesc()); 

System.out.println("Item '" + i.getDesc() + 

"' has been deleted from the '" + 

getDesc() + "' Category "); 

} 

} 
 

99



 
 
 
 
 

Item  

 
 
 
 
 
Category  

 
categories:HashMap 
desc:String  

 
getDesc():String 
add(cat:Category) 
delete(cat:Category)  

 
0..*  
 
 
 
 
 
 

 
1..*  
 
 
 
 
 
 

 
items:HashMap 
desc:String  
 
getDesc():String 
add(i:Item) 
delete(i:Item)  

 

 
 
 

Figur e 14.6 Item-Categor y Association  
 
 

<<interface>> 
CommandInterface  

 

 
execute()  

 
 
 
 
 

AddCommand 

 
 
 
 
 
DeleteCommand  

 

 
execute()  

 

 
execute()  

 
 
 

Figur e 14.7 Command Object Hier archy 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

100



 
 
 

Listing 14.4  Client  CommandTest Class  
 

public class CommandTest { 

public static void main(String[] args) { 

//Add an item to the CD category 

//create Receiver objects 

Item CD = new Item("A Beautiful Mind"); 

Category catCD = new Category("CD"); 

//create the command object 

CommandInterface command = new AddCommand(CD, catCD ); 

//create the invoker 

ItemManager manager = new ItemManager(); 

//configure the invoker 

//with the command object 

manager.setCommand(command); 

manager.process(); 

//Add an item to the CD category 

CD = new Item("Duet"); 

catCD = new Category("CD"); 

command = new AddCommand(CD, catCD); 

manager.setCommand(command); 

manager.process(); 

//Add an item to the New Releases category 

CD = new Item("Duet"); 

catCD = new Category("New Releases"); 

command = new AddCommand(CD, catCD); 

  manager.setCommand(command); 

  manager.process(); 

//Delete an item from the New Releases category 

command = new DeleteCommand(CD, catCD); 

manager.setCommand(command); 

manager.process(); 

} 

} 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

101



ItemManager 
 

cmd:Command 
 

process() 
setCommand(cmd:Command) 

<<interface>> 
Command 

 
execute() 

 
 
 

AddCommand 
 
 

execute() 
 

0..*  

 

 
 
 
 
 
0..*  
 
 
 
 

 

 
 
 

<<uses>>  
 

<<uses>>  

 
 
 
1 

 

 
 
 
0..*  

 
 
0..*  

 
 

 
 
 
 
DeleteCommand 

 
 
execute() 
 

 
 
 
 

CommandTest 

1 

 
<<creates>>  

 

 
Item 
 
 

 
1       1  
 
Category 

 

<<creates>>  

 
<<creates>>  

 
 

Figur e 14.8 Class Association  
 

 
 
 

CommandTest ItemManager  AddCommand Item  Category  
 
 
 

create(desc:String)  

 
create(desc:String)  

 
 
 

create(i:Item, c:Category)  
 
 
 

create()  
 
 
 

setCommand(cmd:Command)  

 
process()  

 
execute()  

 
add(c:Category)  

 
 
 

add(i:Item)  
 
 
 
 

Figur e 14.9 Message Flow When an Item Is  Added to a Categor y 
 

102



 
15 

 
 
 

MEDIATOR 
 
 
 
 
 
 
 

DESCRIPTION 
 

In general, object-oriented applications consist of a set of objects that interact 
with each other for the purpose of providing a service. This interaction can be 
direct (point-to-point) as long as the number of objects referring to each other 
directly is very low. Figure 15.1 depicts this type of direct interaction where 
ObjectA  and  ObjectB  refer to each other directly. 
As the number of objects increases, this type of direct interaction can lead to a 

complex maze of references among objects (Figure 15.2), which affects the 
maintainability of the application. Also, having an object directly referring to other 
objects greatly reduces the scope for reusing these objects because of higher 
coupling. 
 

 
ObjectA  

 
 
ObjectB  

 
 

Figur e 15.1 Point-to-P oint Communication in the Case of  Two Objects  
 
 
 

ObjectA  

 
 
 
ObjectB  

 
 
 
 
 
 
 
 
 

ObjectC  

 
 
 
 
 
 
 
 
 
ObjectD  

 
 
 

Figur e 15.2 Point-to-Point Communication: Incr eased Number of Objects  
 

 

103



ObjectA  ObjectB  
 
 
 
 

Mediator  
 
 
 
 

ObjectC  

 
 
 
 
ObjectD  

 
 
 

Figur e 15.3 Object Inter action:  Mediator   as a Communication Hub  
 
 

In  such  cases,  the  Mediator  patter n  can  be  used  to  design  a  contr olled, 
coordinated communication model for a group of objects, eliminating the need 
for objects to refer to each other directly (Figure 15.3). 
The Mediator pattern suggests abstracting all object interaction details into a 

separate class, referred to as a  Mediator, with knowledge about the interacting 
group of objects. Every object in the group is still responsible for offering the 
service it is designed for, but objects do not interact with each other directly for 
this purpose. The interaction between any two different objects is routed through 
the Mediator  class. All objects send their messages to the mediator. The mediator 
then sends messages to the appropriate objects as per the application’s require- 
ments. The resulting design has the following major advantages: 

 

 

With all the object interaction behavior moved into a separate (mediator) 
object, it becomes easier to alter the behavior of object interrelationships, 
by replacing the mediator with one of its subclasses with extended or 
altered functionality. 
Moving  interobject  dependencies  out  of  individual  objects  r esults  in 
enhanced object reusability. 
Because objects do not need to refer to each other directly, objects can 
be unit tested more easily. 
The  resulting  low  degree  of  coupling  allows  individual  classes  to  be 
modified without affecting other classes. 

 
 

MEDIATOR VERSUS FAÇADE  
 

In some aspects the Mediator pattern looks similar to the Façade pattern discussed 
earlier.  Table 15.1 lists the similarities and differences between the two. 
During the discussion of the Command pattern, we built two example appli- 

cations. Let us revisit these applications and see how the direct object-to-object 
interaction can be avoided by applying the Mediator pattern. 
 
 
 
 
 
 

 
 

104



Table 15.1  Mediator  versus  Façade  
 

Mediator Façade 
 

A Mediator is used to abstract the 
necessary functionality of a group of 
objects with the aim of simplifying the 
object interaction. 

All objects interact with each other 
through the Mediator. The group of 
objects knows the existence of the 
Mediator. 

Because the Mediator and all the 
objects that are registered with it can 
communicate with each other, the 
communication is bidirectional. 

A Mediator can be assumed to stay in 
the middle of a group of interacting 
objects. 

Using a Mediator allows the 
implementation of any of the 
interacting objects to be changed 
without any impact on the other 
objects that interact with it only 
through the Mediator. 

By subclassing the Mediator, the 
behavior of the object 
interrelationships can be extended. 

 

A Façade is used to abstract the required 
functionality of a subsystem of 
components, with the aim of providing a 
simplified, higher level interface. 

Clients use the Façade to interact with 
subsystem components. The existence of 
the Façade is not known to the subsystem 
components. 

Clients can send messages (through the 
Façade) to the subsystem but not vice versa, 
making the communication unidirectional. 

 
A Façade lies in between a client object and 
the subsystem. 

 
Using a Façade allows the implementation of 
the subsystem to be changed completely 
without any impact on its clients, provided 
the clients are not 
given direct access to the subsystem’s 
classes. 

By subclassing the Façade, the 
implementation of the higher level 
interface can be changed. 

105



 
 

16 
 
 
 
 

MEMENTO 
 
 
 
 
 
 

DESCRIPTION 
 

The state of an object can be defined as the values of its properties or attributes 
at  any  given  point  of  time.  The  Memento  patter n  is  useful  for  designing  a 
mechanism to capture and store the state of an object so that subsequently, when 
needed, the object can be put back to this (previous) state. This is more like an 
undo operation. The Memento pattern can be used to accomplish this without 
exposing  the  object’s  internal  structure.  The  object  whose  state  needs  to  be 
captured is referred to as the  originator. When a client wants to save the state 
of the originator, it requests the current state from the originator. The originator 
stores all those attributes that are required for restoring its state in a separate 
object referred to as a Memento and returns it to the client. Thus a Memento can 
be viewed as an object that contains the inter nal state of another object, at a 
given point of time. A  Memento object must hide the originator variable values 
from all objects except the originator. In other words, it should protect its internal 
state against access by objects other than the originator. Towards this end, a 
Memento should be designed to provide restricted access to other objects while 
the originator is allowed to access its internal state. 
When the client wants to restore the originator back to its previous state, it 

simply passes the memento back to the originator. The originator uses the state 
information contained in the memento and puts itself back to the state stored in 
the  Memento object. 
 
 
 
 
 
 
 

 

106



 
 
 

 

17 
 
 
 
 

OBSERVER 
 
 
 
 

DESCRIPTION 
 

The Observer pattern is useful for designing a consistent communication model 
between a set of dependent objects and an object that they are dependent on. 
This allows the dependent objects to have their state synchronized with the object 
that they are dependent on. The set of dependent objects ar e referred to as 
observers and the object that they are dependent on is referred to as the  subject. 
In order to accomplish this, the Observer pattern suggests a  publisher-subscriber 
model leading to a clear boundary between the set of  Observer objects and 
the  Subject object. 
A typical observer is an object with interest or dependency in the state of the 

subject. A subject can have more than one such observer. Each of these observers 
needs to know when the subject undergoes a change in its state. 
The subject cannot maintain a static list of such observers as the list of observers 

for a given subject could change dynamically. Hence any object with interest in 
the state of the subject needs to explicitly register itself as an observer with the 
subject. Whenever the subject undergoes a change in its state, it notifies all of its 
registered observers. Upon receiving notification from the subject, each of the 
observers queries the subject to synchronize its state with that of the subject’s. 
Thus  a  subject  behaves  as  a  publisher  by  publishing  messages  to  all  of  its 
subscribing observers. 
In other words, the scenario contains a one-to-many relationship between a 

subject and the set of its observers. Whenever the subject instance undergoes a 
state change, all of its dependent observers are notified and they can update 
themselves. Each of the observer objects has to register itself with the subject to 
get notified when there is a change in the subject’s state. An observer can register 
or subscribe with multiple subjects. Whenever an observer does not wish to be 
notified any further, it unregisters itself with the subject. 

For this mechanism to work: 
 

The subject should provide an interface for registering and unregistering 
for change notifications. 

 

 
 
 
 
 

 

107



g 
 
 

One of the following two must be true: 
–   In the pull model — The subject should provide an interface that enables 
observers to query the subject for the  r equired state information to 
update their state. 

–   In the push model — The subject should send the state information that 
the observers may be interested in. 

Observers should provide an interface for receiving notifications from the 
subject. 

 
The class diagram in Figure 17.1 describes the structure of different classes 

and their association, catering to the above list of  requirements. 
From this class diagram it can be seen that: 

 
All subjects are expected to provide implementation for an interface similar 
to the  Observable  interface. 

All observers are expected to have an interface similar to the  Observer 
interface. 

 
Several variations can be thought of while applying the Observer pattern, leading 

to different types of subject-observers such as observers that are interested only in 
specific types of changes in the subject. 
 
 

ADDING NEW OBSERVERS 
 

After applying the Observer pattern, different observers can be added dynamically 
without requiring any changes to the Subject  class. Similarly, observers remain 
unaffected when the state change logic of the subject changes. 

 

 
 

<<interface>> 
Observable 

 

 
register(obs:Observer) 
unRegister(obs:Observer) 
notify() 

 
 
 
 
 

<<notifies>>  
 

1..*  
 
 
 

 
 
 
 
 
 
1..*  
 
 
 

 

 
 

<<interface>> 
Observer 

 
 
synchronizeState() 
 
 

 

 
 
 
 

Subject 
 
 

getState() 

 
 
 
 
 
 
 
1..*  
 

 

 
 
 
 
<<retrieves 
state info>>  
 
 

 
 
 
 
 
 
 
1..*  
 

 

 
 
 
 

ConcreteObserver 
 
 
synchronizeState() 

 
 
 
Figu re 17.1 Generic Class  Association  When the Obser ver Pattern Is  Applied  
 
 

108



18 
 
 
 
 

INTERPRETER 
 
 
 
 
 
This pattern was previously described in GoF95. 
 
 

DESCRIPTION 
 

In general, languages are made up of a set of grammar rules. Different sentences 
can be constructed by following these grammar rules. Sometimes an application 
may need to process repeated occurrences of similar requests that are a combi- 
nation of a set of grammar rules. These requests are distinct but are similar in 
the sense that they are all composed using the same set of rules. A simple example 
of this sort would be the set of different arithmetic expressions submitted to a 
calculator program. Though each such expression is different, they are all con- 
structed using the basic rules that make up the grammar for the language of 
arithmetic expressions. 
In such cases, instead of treating every distinct combination of rules as a 

separate case, it may be beneficial for the application to have the ability to interpret 
a generic combination of rules. The Interpreter pattern can be used to design this 
ability in an application so that other applications and users can specify operations 
using a simple language defined by a set of grammar rules. 

Applying the Interpreter pattern: 
 

A class hierarchy can be designed to represent the set of grammar rules 
with every class in the hierarchy representing a separate grammar rule. An  
Interpreter  module can be designed to interpret the sentences 
constructed using the class hierarchy designed above and carry out the 
necessary operations. 

 
Because a different class represents every grammar rule, the number of classes 

increases with the number of grammar rules. A language with extensive, complex 
grammar rules requires a large number of classes. The Interpreter pattern works 
best when the grammar is simple. Having a simple grammar avoids the need to 
have many classes corresponding to the complex set of rules involved, which are 
hard to manage and maintain. 
 
 
 
 
 
 
 
 

 

109



 
 
 

EXAMPLE  
 

Let us build a calculator application that evaluates a given arithmetic expression. 
For simplicity, let us consider only add, multiply and subtract operations. Instead 
of designing a custom algorithm for evaluating each arithmetic expression, the 
application could benefit from interpreting a generic arithmetic expression. The 
Interpreter pattern can be used to design the ability to understand a generic 
arithmetic expression and evaluate it. 

The Interpreter pattern can be applied in two stages: 
 

1.  Define a representation for the set of rules that make up the grammar for 
arithmetic expressions. 

2.  Design an interpreter that makes use of the classes that represent different 
arithmetic grammar rules to understand and evaluate a given arithmetic 
expression. 

 
The set of rules in Table 18.1 constitutes the grammar for arithmetic expressions. 

 
 

Table 18.1  Grammar Rules for  Arithmetic Expr essions  
 

Arithmetic Expressions – Grammar 
ArithmeticExpression::= ConstantExpression | AddExp ression | 
MultiplyExpression | SubtractExpression 
ConstantExpression::= Integer/Double Value 

AddExpression::= ArithmeticExpression ‘+’ 
ArithmeticExpression 

MultiplyExpression::= ArithmeticExpression ‘*’ 
ArithmeticExpression 

SubtractExpression::= ArithmeticExpression ‘-’ 
ArithmeticExpression 

 
 
 

From Table 18.1, it can be observed that arithmetic expressions are of two 
types — individual (e.g.,  ConstantExpression ) or composite (e.g.,  AddEx- 
pression ). These expressions can be arranged in the form of a tree structure, 
with composite expressions as nonterminal nodes and individual expressions as 
terminal nodes of the tree. 
Let us define a class hierarchy as Figure 18.1 to represent the set of arithmetic 

grammar rules. 

Each  of  the  classes  representing  different  rules  implements  the  common 
Expression  interface and provides implementation for the evaluate method 
(Listing 18.1 through Listing 18.5). 

The  Context  is a common information repository that stores the values of 
different variables (Listing 18.6). For simplicity, values are hard-coded for variables 
in this example. 
While each of the NonTerminalExpression  classes performs the arithmetic 

operation it represents, the  TerminalExpression  class simply looks up the 
value of the variable it represents from the  Context . 
 
 
 

 
 

110



 
 
 

TerminalExpression  

 
 
 
SubtractExpression  

 

 
evaluate(c:context):int  

 

 
evaluate(c:context)  

 
 
 

<<interface>> 
Expression  

 
evaluate(c:context):int  

 
 
 
 
 
<<consists 

 of>> 

 
 
 
 

NonTerminalExpression  
 
leftNote:Expression  

 
 

<<evaluates>> 

 
 

 
1..* 

 
1 

 

rightnote:Expression 2         1  

setLeftNote(node:Expression) 
setRightNote(node:Expression) 
getLeftNote():Expression 
getRightNote():Expression  

Calculator  evaluate(c:context)  
 
 

1 

<<uses>> 
 

1 
 

Context  
 
AddExpression  

 
MultiplyExpression  

 

 
assign(var:String,value:int)  
getValue(var:String):int  

 
evaluate(c:context)  
 

 

 
evaluate(c:context)  
 

 
 
 

Figur e 18.1 Class Hier archy Representing Grammar Rules for  Arithmetic Expr essions  
 
 

Listing 18.1  Expression  Interface  
 

public interface Expression { 

public int evaluate(Context c); 

} 
 
 

public class TerminalExpression implements Expressi on { 

private String var; 

public TerminalExpression(String v) { 

var = v; 

} 

public int evaluate(Context c) { 

return c.getValue(var); 

} 

} 

 
The application design can evaluate any expression. But for simplicity, the 

main  Calculator  (Listing 18.7) object uses a hard-coded arithmetic expression 

(a + b) * (c – d) as the expression to be interpreted and evaluated. 
 

 
 
 
 
 

 

111



 
 
 

Listing 18.2  NonTerminalExpression  Class  
 

public abstract class NonTerminalExpression 

implements Expression { 

private Expression leftNode; 

private Expression rightNode; 

public NonTerminalExpression(Expression l, Expressi on r) { 

setLeftNode(l); 

setRightNode(r); 

} 

public void setLeftNode(Expression node) { 

leftNode = node; 

} 

public void setRightNode(Expression node) { 

rightNode = node; 

} 

public Expression getLeftNode() { 

return leftNode; 

} 

public Expression getRightNode() { 

return rightNode; 

} 

}//NonTerminalExpression 
 

 
 
 
 

Listing 18.3  AddExpression  Class  
 

class AddExpression extends NonTerminalExpression {  

public int evaluate(Context c) { 

return getLeftNode().evaluate(c) + 

getRightNode().evaluate(c); 

} 

public AddExpression(Expression l, Expression r) { 

super(l, r); 

} 

}//AddExpression 
 
 
 

 
The  Calculator  object carries out the interpretation and evaluation of the 

input expression in three stages: 
 
 
 
 
 

 

112



 
 
 

Listing 18.4  SubtractExpression  Class  
 

class SubtractExpression extends NonTerminalExpress ion { 

public int evaluate(Context c) { 

return getLeftNode().evaluate(c) - 

getRightNode().evaluate(c); 

} 

public SubtractExpression(Expression l, Expression r) { 

super(l, r); 

} 

}//SubtractExpression 
 
 
 
 
 

Listing 18.5  MultiplyExpression  Class  
 

class MultiplyExpression extends NonTerminalExpress ion { 

public int evaluate(Context c) { 

return getLeftNode().evaluate(c) * 

getRightNode().evaluate(c); 

} 

public MultiplyExpression(Expression l, Expression r) { 

super(l, r); 

} 

}//MultiplyExpression 
 
 
 

 
1.  Infix-to-postfix conversion —  The input infix expression is first translated 
into an equivalent postfix expression. 

2.  Construction of the tree structure — The postfix expression is then scanned 
to build a tree structure. 

3.  Postorder traversal of the tree —  The tree is then postorder traversed for 
evaluating the expression. 

 
public class Calculator { 

… 

… 

public int evaluate() { 

//infix to Postfix 

String pfExpr = infixToPostFix(expression); 
 
 
 
 
 
 
 

 

113



 
 
 

Listing 18.6  Context  Class  
 

class Context { 

private HashMap varList = new HashMap(); 

public void assign(String var, int value) { 

varList.put(var, new Integer(value)); 

} 

public int getValue(String var) { 

Integer objInt = (Integer) varList.get(var); 

return objInt.intValue(); 

} 

public Context() { 

initialize(); 

} 

//Values are hardcoded to keep the example simple 

private void initialize() { 

assign("a”,20); 

assign("b”,40); 

assign("c”,30); 

assign("d”,10); 

} 

} 
 
 
 
 

//build the Binary Tree 

Expression rootNode = buildTree(pfExpr); 

//Evaluate the tree 

return rootNode.evaluate(ctx); 

} 

… 

… 

}//End of class 
 
 

Infix-to-P ostfix Conv ersion (Listing 18.8)  
 
An expression in the standard form is an infix expression. 

 
Example: (a + b) * (c – d) 

 
An infix expression is more easily understood by humans but is not suitable for 

evaluating expressions by computers. The usage of precedence rules and parentheses in 
the case of complex expressions makes it difficult for computer evaluation of 
 
 
 
 

 
 

114



 
 
 

Listing 18.7  Calculator  Class  
 

public class Calculator { 

private String expression; 

private HashMap operators; 

private Context ctx; 

public static void main(String[] args) { 

Calculator calc = new Calculator(); 

//instantiate the context 

Context ctx = new Context(); 

//set the expression to evaluate 

calc.setExpression("(a+b)*(c-d)"); 

//configure the calculator with the 

//Context 

calc.setContext(ctx); 

//Display the result 

System.out.println(" Variable Values: " + 

"a=" + ctx.getValue("a") + 

”, b=" + ctx.getValue("b") + 

”, c=" + ctx.getValue("c") + 

”, d=" + ctx.getValue("d")); 

System.out.println(" Expression = (a+b)*(c-d)"); 

System.out.println(" Result = " + calc.evaluate());  

} 

public Calculator() { 

operators = new HashMap(); 

operators.put("+”,"1"); 

operators.put("-”,"1"); 

operators.put("/”,"2"); 

operators.put("*”,"2"); 

operators.put("(”,"0"); 

} 

… 

… 

}//End of class 
 
 
 
these expressions. A postfix expression does not contain parentheses, does not 
involve precedence rules and is more suitable for evaluation by computers. 

The postfix equivalent of the example expression above is  ab+cd–*. 
A detailed description of the process of converting an infix expression to its 

postfix form is provided in the Additional Notes section. 
 

 
 
 
 

 

115



 
 
 

Listing 18.8  Calculator  Class Performing the Infi x-to-Postfix Conv ersion  
 

public class Calculator { 

… 

… 

private String infixToPostFix(String str) { 

Stack s = new Stack(); 

String pfExpr = ""; 

String tempStr = ""; 

String expr = str.trim(); 

for (int i = 0; i < str.length(); i++) { 

String currChar = str.substring(i, i + 1); 

if ((isOperator(currChar) == false) && 

(!currChar.equals("(")) && 

(!currChar.equals(")"))) { 

pfExpr = pfExpr + currChar; 

} 

if (currChar.equals("(")) { 

s.push(currChar); 

} 

//for ')' pop all stack contents until '(' 

if (currChar.equals(")")) { 

tempStr = (String) s.pop(); 

while (!tempStr.equals("(")) { 

pfExpr = pfExpr + tempStr; 

tempStr = (String) s.pop(); 

} 

tempStr = ""; 

} 

//if the current character is an 

//operator 

if (isOperator(currChar)) { 

if (s.isEmpty() == false) { 

tempStr = (String) s.pop(); 

String strVal1 = 

 
 (continued) 

 
 
 
 
 
 
 
 
 
 
 
 

 

116



 
 
 

Listing 18.8  Calculator  Class Performing the Infi x-to-Postfix Conv ersion  
(Continued)  

 
(String) operators.get(tempStr); 

int val1 = new Integer(strVal1).intValue(); 

String strVal2 = 

(String) operators.get(currChar); 

int val2 = new Integer(strVal2).intValue(); 

while ((val1 >= val2)) { 

pfExpr = pfExpr + tempStr; 

val1 = -100; 

if (s.isEmpty() == false) { 

tempStr = (String) s.pop(); 

strVal1 = (String) operators.get( 

tempStr); 

val1 = new Integer(strVal1).intValue(); 

} 

} 

if ((val1 < val2) && (val1 != -100)) 

s.push(tempStr); 

} 

s.push(currChar); 

}//if 

}//for 

while (s.isEmpty() == false) { 

tempStr = (String) s.pop(); 

pfExpr = pfExpr + tempStr; 

} 

return pfExpr; 

} 

… 

… 

}//End of class 
 

 
 
 
 

Construction of the  Tree Structure (Listing 18.9)  
 

The postfix equivalent of the input infix expression is scanned from left to right 
and a tree structure is built using the following algorithm: 

 
1.  Initialize an empty stack. 
2.  Scan the postfix string from left to right. 

 

 
 
 
 

 

117



 
 
 

Listing 18.9  Calculator    Class Building a  Tree with Oper ators as Nonterminal Nodes  
and Oper ands as  Terminal Nodes  

 
public class Calculator { 

… 

… 

public void setContext(Context c) { 

ctx = c; 

} 

public void setExpression(String expr) { 

expression = expr; 

} 

… 

… 

private Expression buildTree(String expr) { 

Stack s = new Stack(); 

for (int i = 0; i < expr.length(); i++) { 

String currChar = expr.substring(i, i + 1); 

if (isOperator(currChar) == false) { 

Expression e = new TerminalExpression(currChar); 

s.push(e); 

} else { 

Expression r = (Expression) s.pop(); 

Expression l = (Expression) s.pop(); 

Expression n = 

getNonTerminalExpression(currChar, l, r); 

s.push(n); 

} 

}//for 

return (Expression) s.pop(); 

} 

… 

… 

}//End of class 
 
 
 
 

3.  If the scanned character is an operand: 
a.  Create an instance of the  TerminalExpression  class by passing the 
scanned character as an argument. 

b. Push the  TerminalExpression  object to the stack. 
 
 
 
 
 
 
 

 

118



 
 
 

4.  If the scanned character is an operator: 
a.  Pop two top elements from the stack. 
b. Create an instance of an appropriate  NonTerminalExpression  sub- 

class by passing the two stack elements retrieved above as arguments. 

5.  Repeat Step 3 and Step 4 for all characters in the postfix string. 
6.  The only remaining element in the stack is the root of the tree structure. 

 
The example postfix expression ab+cd–* results in the following tree structure 

as in Figure 18.2. 
 
 

*  
 

 
 

+ -  
 
 

ba  c  d 
 
 
 

Figur e 18.2 Example Expr ession:  Tree Structur e 
 
 

Postor der  Traversal of the  Tree 
 

The Calculator  traverses the tree structure and evaluates different Expression 
objects in its postorder traversal path. There are four major tree traversal tech- 
niques. These techniques are discussed as part of the Additional Notes section. 
Because the binary tree in the current example is a representation of a postfix 
expression,  the  postorder  traversal  technique  is  followed  for  the  expr ession 
evaluation. The  Calculator object makes use of a helper  Context  object to 
share information with different Expression  objects constituting the tree struc- 
ture. In general, a  Context  object is used as a global repository of information. 
In the current example, the  Calculator  object stores the values of different 
variables in the  Context , which are used by each of different  Expression 
objects in evaluating the part of the expression it represents. 
The  postorder  traversal  of  the  tree  structure  in  Figure  18.2  results  in  the 

evaluation of the leftmost subtree in a recursive manner, followed by the rightmost 
subtree, then the  NonTerminalExpression  node representing an operator. 
 
 

ADDITIONAL NOTES  
 

Infix-to-P ostfix Conv ersion  
 

Infix Expr ession  
 
An expression in the standard form is an infix expression. 

 
Example: a * b + c/d 

 
Sometimes, an infix expression is also referred to as an in-order expression. 

 
 
 
 

 
 

119



 
 
 

Postfix Expr ession  
 

The postfix (postorder) form equivalent of the above example expression is 
ab*cd/+. 

 
 

Conversion Algorithm  
 
See Table 18.2 for the conversion algorithm. 

 

 
Table 18.2  Conversion Algorithm  

 
1. Define operator precedence rules — In general arithmetic, the descending order 

of precedence is as shown in the rules below: 
 

 
Precedence Rules 

*, / Same 
precedence 

+, – Same 
precedence 

Expressions are evaluated 
from left to right. 

 

 
2. Initialize an empty stack. 
3. Initialize an empty postfix expression. 
4. Scan the infix string from left to right. 
5. If the scanned character is an operand, add it to the postfix string. 
6. If the scanned character is a left parenthesis, push it to the stack. 
7. If the scanned character is a right parenthesis: 

a. Pop elements from the stack and add to the postfix string until the stack 
element is a left parenthesis. 

b.   Discard both the left and the right parenthesis characters. 
8. If the scanned character is an operator: 

a. If the stack is empty, push the character to the stack. 
b.   If the stack is not empty: 

i. If the element on top of the stack is an operator: 
A. Compare the precedence of the character with the precedence of 

the element on top of the stack. 
B. If top element has higher or equal precedence over the scanned 

character, pop the stack element and add it to the Postfix string. 
Repeat this step as long as the stack is not empty and the element 
on top of the stack has equal or higher precedence over the 
scanned character. 

C. Push the scanned character to stack. 
ii. If the element on top of the stack is a left parenthesis, push the scanned 

character to the stack. 
9. Repeat Steps 5 through 8 above until all the characters are scanned. 

1. After all characters are scanned, continue to pop elements from the stack and 
add to the postfix string until the stack is empty. 

2. Return the postfix string. 
 
 
 
 
 

 

120



 
 
 

Example  
 

As an example, consider the infix expression (A + B) * (C – D). Let us apply the 
algorithm described above to convert this expression into its postfix form. 
Initially the stack is empty and the postfix string has no characters. Table 18.3 

shows the contents of the stack and the r esulting postfix expression as each 
character in the input infix expression is processed. 

 
 

Table 18.3  Infix-to-P ostfix Conv ersion  Algorithm  Tracing  
 

Infix Expression 
Character Observation and Action to Be Taken Stack    Postfix String 

 
( Push to the stack. ( 
A Operand. Add to the postfix string. ( A 
+ Operator. The element on top of the stack is a 

left parenthesis and hence push + to the stack. 
(+ A 
 
 

B Operand. Add to the postfix string. (+ AB 
) Right parenthesis. Pop elements from the stack 

until a left parenthesis is found. 
Add these stack elements to the postfix string. 
Discard both left and right parentheses. 

* Operator. The element on top of the stack is +. 
The precedence of + is less than the precedence 
of *. 
Push the operator to the stack. 

AB+ 
 
 
 
 
* AB+ 
 
 
 

( Push to the stack. *(  AB+ 
C Operand. Add to the postfix string. *( AB + C 
– Operator. The element on top of the stack is a 

left parenthesis and hence push + to the stack. 
*(– AB + C 
 
 

D Operand. Add to the Postfix string. *(– AB + CD 
) Right parenthesis. Pop elements from the stack 

until a left parenthesis is found. 
Add these stack elements to the postfix string. 
Discard both left and right parentheses. 

* AB + CD– 
 
 
 

All characters in 
the infix 
expression are 
scanned 

Add all remaining stack elements to the postfix 
string. 

 
 

AB + CD–* 
 
 
 

 
 
 
 

Binary T ree Traversal Tec hniques  
 

There are four different tree traversal techniques — Preorder, In-Order, Postorder 
and Level-Order. Let us discuss each of these techniques by using the following 
binary tree in  Figure 18.3 as an example. 

 
 
 
 
 

 
 

121



 
 
 
 

K 
 
 
 

D S 
 
 

GA M U 
 
 

F P 
 

 
 

Figur e 18.3 Example Sorted  Tree Structur e 
 
 

Preorder (Node-Left-Right)  
 
Start with the root node and follow the algorithm as follows: 
 

Visit the node first. 
Traverse the left subtree in preorder. 
Traverse the right subtree in preorder. 

 

A preorder traversal of the above sorted tree structure to print the contents of 
the nodes constituting the tree results in the following display: 
 

KDAGFSMPU 
 
 
In-Order (Left-Node-Right)  

 
Start with the root node and follow the algorithm as follows: 
 

Traverse the left subtree in in-order. 
Visit the node. 

Traverse the right subtree in in-order. 
 

An in-order traversal of the above sorted tree structure to print the contents 
of the nodes constituting the tree results in the following display: 
 

ADFGKMPSU 
 
 

Postor der (Left-Right-Node)  
 
Start with the root node and follow the algorithm as follows: 
 

Traverse the left subtree in in-order. 
Traverse the right subtree in in-order. 
Visit the node. 

 
A postorder traversal of the above sorted tree structure to print the contents 

of the nodes constituting the tree results in the following display: 
 
 
 

 
 

122



 
 
 

AFGDPMUSK 
 
 

Level-Order  
 

Start with the root node level and follow the algorithm as follows: 
Traverse different levels of the tree structure from top to bottom. 
Visit nodes from left to right with in each level. 

 
A level-order traversal of the above sorted tree structure to print the contents 

of the nodes constituting the tree results in the following display: 

 
KDSAGMUFP 

 
 
 
 
 
 
 
 
 

 

123



19 
 
 
 
 

STATE 
 
 

DESCRIPTION 
 

The state of an object can be defined as its exact condition at any given point 
of time, depending on the values of its properties or attributes. The set of methods 
implemented by a class constitutes the behavior of its instances. Whenever there 
is a change in the values of its attributes, we say that the state of an object has 
changed. 
A simple example of this would be the case of a user selecting a specific font 

style or color in an HTML editor. When a user selects a different font style or 
color, the properties of the editor object change. This can be  considered as a 
change in its internal state. 
The State pattern is useful in designing an efficient structure  for a class, a 

typical instance of which can exist in many different states and exhibit different 
behavior depending on the state it is in. In other words, in the case of an object 
of such a class, some or all of its behavior is completely influenced by its current 
state. In the State design pattern terminology, such a class is referred to as a 
Context class. A  Context object can alter its behavior when there is a change 
in its internal state and is also referred as a  Stateful object. 
 
 

STATEFUL OBJECT:  AN EXAMPLE  
 

Most of the HTML editors available today offer different views of an HTML page 
at the time of creation. Let us consider one such editor that offers three views of 
a given Web page as follows: 

 
1.  Design view — In this view, a user is allowed to visually create a Web page 
without having to know about the internal HTML commands. 

2.  HTML view — This view offers a user the basic structure of the Web page 
in terms of the HTML tags and lets a user customize the Web page with 
additional HTML code. 

3.  Quick page view — This view provides a preview of the Web page being 
created. 

When a user selects one of these views (change in the state of the  Editor 
object), the behavior of the  Editor  object changes in terms of the way the 
current Web page is displayed. 
The  State  pattern  suggests  moving  the  state-specific  behavior  out  of  the 

Context  class into a set of separate classes referred to as  State classes. 
Each of the many different states that a Context  object can exist in can 
be mapped into a separate  State class. The implementation of a  
State  class contains the context behavior that is specific to a given state, 
not the overall behavior of the context itself.

124



 
 
 

The context acts as a client to the set of  State  objects in the sense that it 
makes use of different State  objects to offer the necessary state-specific behavior 
to an application object that uses the context in a seamless manner. 
In the absence of such a design, each method of the context would contain 

complex, inelegant conditional statements to implement the overall context behav- 
ior in it. For example, 

 
public Context{ 

… 

… 

someMethod(){ 

if (state_1){ 

//do something 

}else if (state_2){ 

//do something else 

} 

… 

… 

} 

… 

… 

} 

 
By encapsulating the state-specific behavior in separate classes, the context 

implementation becomes simpler to read: free of too many conditional statements 
such as if-else or switch-case constructs. When a Context object is first created, 
it initializes itself with its initial  State  object. This  State  object becomes the 
current State  object for the context. By replacing the current State  object with 
a new State  object, the context transitions to a new state. The client application 
using the context is not responsible for specifying the current  State  object for 
the context, but instead, each of the  State classes representing specific states 
are expected to provide the necessary implementation to transition the context 
into other states. 
When an application object makes a call to a  Context  method (behavior), 

it forwards the method call to its current  State  object. 
 
 

public Context{ 

… 

… 

someMethod(){ 

objCurrentState.someMethod(); 

} 

… 

… 

} 

125



 
 

20 
 
 
 
 

STRATEGY 
 
 
 
 

DESCRIPTION 
 

The Strategy pattern is useful when there is a set of related algorithms and a 
client object needs to be able to dynamically pick and choose an algorithm from 
this set that suits its current need. 
The  Strategy  pattern  suggests  keeping  the  implementation  of  each  of  the 

algorithms in a separate class. Each such algorithm encapsulated in a separate 
class is referred to as a  strategy. An object that uses a  Strategy  object is often 
referred to as a  context object. 

With different Strategy  objects in place, changing the behavior of a Context 
object  is  simply  a  matter  of  changing  its   Strategy   object  to  the  one  that 
implements the required algorithm. 

To enable a  Context object to access different  Strategy  objects in a 
seamless manner, all  Strategy objects must be designed to offer the same 
interface. In the Java programming language, this can be accomplished by design- 
ing each  Strategy  object either as an implementer of a common interface or 
as a subclass of a common abstract class that declar es the required common 
interface. 
Once the group of related algorithms is encapsulated in a set of  Strategy 

classes in a class hierarchy, a client can choose from among these algorithms by 
selecting and instantiating an appropriate Strategy class. To alter the behavior 
of the context, a client object needs to configure the context with the selected 
strategy instance. This type of arrangement completely separates the implemen- 
tation of an algorithm from the context that uses it. As a result, when an existing 
algorithm implementation is changed or a new algorithm is added to the group, 
both the context and the client object (that uses the context) remain unaffected. 
 
 

STRATEGIES VERSUS OTHER ALTERNATIVES 
 

Implementing different algorithms in the form of a method using conditional 
statements violates the basic object-oriented, open-closed principle. Designing 
each algorithm as a different class is a more elegant approach  than designing all 
different algorithms as part of a method in the form of a conditional statement. 
Because each algorithm is contained in a separate class, it becomes simpler and 
easier to add, change or remove an algorithm. 

 

 
 

126



 
 
 

Another approach would be to subclass the context itself and implement 
different algorithms in different subclasses of the context. This type of design 
binds the behavior to a context subclass and the behavior executed by a context 
subclass becomes static. With this design, to change the behavior of the context, a 
client object needs to create an instance of a different subclass of the context 
and replace the current  Context  object with it. 
Having different algorithms encapsulated in different Strategy  classes decou- 

ples the context behavior from the Context  object itself. With different Strat- 
egy  objects available, a client object can use the same  Context  object and 
change its behavior by configuring it with different  Strategy  objects. This is a 
more flexible approach than subclassing. 
Also, sometimes subclassing can lead to a bloated class hierarchy. We have 

seen an example of this during the discussion of the Decorator pattern. Designing 
algorithms as different  Strategy  classes keeps the class growth linear. 
 
 

STRATEGY VERSUS STATE 
 

From the discussion above, the Strategy pattern looks very similar to the State 
pattern discussed earlier. One of the differences between the two patterns is that 
the Strategy pattern deals with a set of related algorithms, which are more similar 
in what they do as opposed to different state-specific behavior encapsulated in 
different  State objects in the State pattern. 

Table 20.1 provides a detailed list of similarities and differences between the 
State and the Strategy patterns. 
 
 
 

 
 
 
 
 
 

 

127



 
 

 
 

Table 20.1  State v ersus Str ategy  
 

State Pattern Strategy Pattern 
 

Different types of possible behavior of an 
object are implemented in the form of a 
group of separate objects (State  objects). 

 
The behavior contained in each State  object 
is specific to a given state of the associated 
object. 

 
 

An object that uses a State  object to change 
its behavior is referred to as a Context 
object. 

A Context  object needs to change its 
current State  object to change its 
behavior. 

 
Often, when an instance of the context is first 
created, it is associated with one of the 
default State  objects. 

A given State  object itself can put the 
context into a new state. This makes a new 
State  object as the current State  object of 
the context, changing the behavior of the 
Context  object. 

 
The choice of a State object is dependent 
on the state of the Context  object. 

 
A given Context  object undergoes state 
changes. The order of transition among 
states is well defined. These are the 
characteristics of an application where the 
State pattern could be applied. 

Example:  A bank account behaves differently 
depending on the state it is in when a 
transaction to withdraw money is attempted. 

When the minimum balance is maintained — 
no transaction fee is charged. 

When the minimum balance is not 
maintained — transaction fee is charged. 

When the account is overdrawn — the 
transaction is not allowed. 

 

Similar to the State pattern, specific 
behaviors are modeled in the form 
of separate classes (Strategy 
objects). 

The behavior contained in each 
Strategy  object is a different 
algorithm (from a set of related 
algorithms) to provide a given 
functionality. 

An object that uses a Strategy  object 
to alter its behavior is referred to as a 
Context  object. 

Similar to the State pattern, for a 
Context  object to behave differently, 
it needs to be configured with a 
different Strategy  object. 

Similarly, a context is associated with a 
default Strategy  object that 
implements the default algorithm. 

A client application using the context 
needs to explicitly assign a strategy 
to the context. A Strategy  object 
cannot cause the context to be 
configured with a different 
Strategy object. 

The choice of a Strategy  object is 
based on the application need. Not on 
the state of the Context  object. 

A given Context  object does not 
undergo state changes. 

Example:  An application that needs to 
encrypt and save the input data to a 
file. Different encryption algorithms 
can be used to encrypt the data. 
These algorithms can be designed 
as Strategy  objects. The client 
application can choose a strategy 
that implements the required 
algorithm. 

 

128



 

21 
 
 
 
 

NULL OBJECT  
 
 
 
 

DESCRIPTION 
 

The term  null  is used in most computer programming languages to refer to a 
nonexisting object. The Null Object pattern is applicable when a client expects 
to use different subclasses of a class hierarchy to execute different behavior and 
refers these subclasses as objects of the parent class type. At times, it may be 
possible that a subclass instance may not be available when the client expects 
one. In such cases, what a client object receives is a nonexisting object or null. 
When a null is returned, the client cannot invoke methods as it would if a real 
object is returned. Hence the client needs to check to make sure that the object is 
not null before invoking any of its methods. In the case of a null, the client can 
either provide some default behavior or do nothing. 
Applying the Null Object pattern in such cases eliminates the need for a client 

to check if an object is null every time the object is used. 
The Null Object pattern recommends encapsulating the default (or usually the 

do nothing) behavior into a separate class referred to as a Null Object. This class 
can be designed as one of the subclasses in the class hierarchy. Thus the Null 
Object provides the same set of methods as other subclasses do, but with the 
default (or do nothing) implementation for its methods. With the Null Object in 
place, when no subclass with real implementation is available, the Null Object is 
made available to the client. This type of arrangement eliminates the possibility 
of a client receiving a nonexisting object and hence the client does not need to 
check if the object it received is null (or nonexisting). Because the Null Object 
offers the same interface as other subclass objects, the client can treat them all 
in a uniform manner. 
The following example shows how the Null Object pattern can be used to 

address a special case requirement of the message logging utility we built as an 
example of the Factory Method pattern. 
 
 
 
 
 
 
 
 

129




