
Dissecting a C# Application

Inside SharpDevelop

Christian Holm
Mike Krüger

Bernhard Spuida

Dissecting a C# Application

Inside SharpDevelop

© 2004 Apress

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embodied in critical articles or reviews.

The authors and publisher have made every effort in the preparation of this book to ensure the
accuracy of the information. However, the information contained in this book is sold without

warranty, either express or implied. Neither the authors, Apress, nor its dealers or
distributors, will be held liable for any damages caused or alleged to be caused either directly or

indirectly by this book.

First Printed February 2003.

 Published by Apress L.P.
 2560 Ninth Street, Suite 219,

 Berkeley, CA 94710
ISBN 1-86100-817-1

Trademark Acknowledgments

We has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, we cannot guarantee the

accuracy of this information.

Credits

Authors Lead Technical Reviewer
Christian Holm Christoph Wille
Mike Krüger
Bernhard Spuida Technical Reviewers

Natalia Bortniker
Commissioning Editor Jeroen Frijters

Dan Kent Gavin McKay
Markus Palme

Technical Editors David Schultz
Arun Nair Erick Sgarbi
Veena Nair Jon Shute

Gavin Smyth
Managing Editor Poul Staugaard

Louay Fatoohi Helmut Watson

Project Manager Production Coordinator
Charlotte Smith Neil Lote

Indexer Production Assistant
Andrew Criddle Paul Grove

Proofreader Cover
Chris Smith Natalie O' Donnell

What You Need to Use This Book
The following is the recommended system requirements for compiling and running SharpDevelop:

❑ Windows 2000 Professional or later

❑ The .NET Framework SDK (Freely available from Microsoft)

In addition, this book assumes the following knowledge:

❑ Sound knowledge of .NET Framework fundamentals

❑ A good understanding of the C# Language

Summary of Contents
Introduction 1
Chapter 1: Features at a Glance 7
Chapter 2: Designing the Architecture 23
Chapter 3: Implementing the Core 51
Chapter 4: Building the Application with Add-ins 81
Chapter 5: Providing Functionality with Workspace Services 107
Chapter 6: The User Interface 135
Chapter 7: Internationalization 169
Chapter 8: Document Management 189
Chapter 9: Syntax Highlighting 219
Chapter 10: Search and Replace 235
Chapter 11: Writing the Editor Control 263
Chapter 12: Writing the Parser 291
Chapter 13: Code Completion and Method Insight 329
Chapter 14: Navigating Code with the Class Scout and the Assembly Scout 369
Chapter 15: The Designer Infrastructure 413
Chapter 16: mplementing a Windows Forms Designer 437
Chapter 17: Code Generation 465
Index 499

Table of Contents

Introduction 1

The Code in This Book 2

Conventions 2

Customer Support 3
How to Download the Sample Code for the Book 3

Chapter 1: Features at a Glance 7

The idea behind SharpDevelop 8

SharpDevelop Software Requirements 8

SharpDevelop's Panels and Views 9

Limitations 12

Customizing SharpDevelop 12
Internationalization 12
Defining the Appearance 13

Customizations for Coding 14
Getting Started with Templates 14
Changing Syntax Highlighting 14
Code Completion and Method Insight 15
Bookmarks 16
Search and Replace Functionality 16
Compiling the Code 17

Managing Projects 17
Combines and Projects – What's in a Name? 17
Navigating the Project 17

The Project and Class Views of the World 18

Creating Windows Forms 18
Adding Controls to Windows Forms 19
Properties and Formatting of Controls 20

Summary 20

Table of Contents

ii

Chapter 2: Designing the Architecture 23

History of Architectural Design Decisions 23
The Early Stages 23
Building SharpDevelop with SharpDevelop 24
Correcting Bad Design Decisions 26

The Design Decisions 27
Designing Component-Exchangeability 29

Best Practices 30
Design Patterns 30

Singleton 31
Factory 31

Decorator 33
Strategy 35

Memento 36
Proxy 37

Coding Style Guideline 39
Defect Tracking and Testing 39

Bug Tracker 39
Unit Tests 40

Refactor Frequently 41
Design and Refactoring 42

Summary 48

Chapter 3: Implementing the Core 51

The AddIn Tree 52
Advantages of Using the AddIn Tree 53
The AddIn Tree Superstructure 56
Add-in Definition 57
From Tree Node to Running Object 60
Codon Creation 62
Conditions 64

AddIn Management 66

Property Management in SharpDevelop 70
The Idea behind the IXmlConvertable Interface 71
Overview of the IProperties Interface 71
The Default Implementation 72
Properties at Work 75
Property Persistence 76

Summary 79

Table of Contents

iii

Chapter 4: Building the Application with Add-ins 81

Working with Codons 82
The ICommand Interface 82
Making Menus Work 85
Codon Overview 93

Wiring up Add-ins with Conditions 96
Condition Structure 97
Defining Conditions 98
Overview of Available Conditions 100

Summary 104

Chapter 5: Providing Functionality with Workspace Services 107

Implementation Considerations 107
Requirements for Services 108
The ServiceManager 109
Defining Services 111

Common Services at your Service 112
File Utility Service 113
Property Service 119
Resource Service 119
String Parser Service 119
Ambience Service 121
Class Browser Icons Service 123
File Service 124
Project Service 126
Parser Service 131
Other Services 133

Summary 133

Chapter 6: The User Interface 135

Display Management 136
The Workbench Window 136
Views 137
Pads 139
Views and Pads Applied – An Integrated HTML Help Viewer 141

The HTML View 142

Navigating the Help File 148
Layout Managers 153

The Current and Future Implementation 166

Summary 167

Table of Contents

iv

Chapter 7: Internationalization 169

Handling Internationalization in SharpDevelop 171
Redrawing with Events 173
Accessing Resources 176

Managing Translations 180
The Translation Web Application 181

Localization Implications 182
Compiling to Resource Files 182

Generating Resource Files from XML 182
Generating Resource Files from the Database 184

Summary 186

Chapter 8: Document Management 189

Text Representation 190
Basic Sequence Data Structures 190

Arrays 190

Linked Lists 192
The Gap Buffer Approach 192

Theory of the Gap Buffer 193
The Gap Buffer in Practice 194

The Future – The Piece Table 197
Composite Sequence Data Structures 198

Representing Lines 199

Caret and Selection Management 206

The Text Model 210

Putting It All Together 212

Summary 216

Chapter 9: Syntax Highlighting 219

Syntax Highlighting Definitions 220
Increasing Ease of Use with XML 220
Implementing Syntax Highlighting 226

Validation of the Syntax Highlighting Definition File 226
The Sequence of Events from the Opening of a File to the Highlighting of the Text Editor Window 231

Summary 233

Table of Contents

v

Chapter 10: Search and Replace 235

The Search Strategy 235

Inside Search and Replace 249
Basic Find and Replace Implementation 249
Using Algorithms 252

The Brute Force Algorithm 254

The Knuth-Morris-Pratt (KMP) Algorithm 256
Wildcard Search Strategy 257

Summary 260

Chapter 11: Writing the Editor Control 263

Introduction to the Editor 263

The TextArea Control 265
Theory 265
Getting Started 266
Event Handling 272
Updating 277

The TextAreaPainter 279

Mouse Management 285

Folding 286

SharpPad 287

Summary 289

Chapter 12: Writing the Parser 291

Need for a Parser 291

Parser and Language Theory 292
Basic Definitions and Theory 292

Grammar 292

Parsing 295
Technical Requirements 296

The SharpDevelop Parser 297
Design Decisions 297
Implementation 298

The Big Picture 298
Reflection Parsing for Assemblies 299

Persistent Parsing for the Framework Class Library 304
The C# Parser for the Editor 309

The Abstract Parser 316
Putting It All Together in the Parser Service 318

Summary 326

Table of Contents

vi

Chapter 13: Code Completion and Method Insight 329

Resolving Matters 329

Code Completion 340

Method Insight 357

Summary 366

Chapter 14: Navigating Code with the Class Scout and the Assembly Scout 369

The Class Scout 369
Implementing the Class Scout 370

The Assembly Scout 383
Browsing References with an Assembly Scout 383
Writing the Assembly Scout 385

Summary 411

Chapter 15: The Designer Infrastructure 413

Forms Designer Overview 413
Implementation Considerations 414
Design Overview 415

The .NET Component Model 416
The Service Interfaces 418
.NET Designers 419
The Root Designer 420

Designer Host Implementation 421
Designer Host Services 431

The ComponentChangeService 431

The Name Creation Service 432
The Design Panel 433

Summary 434

Table of Contents

vii

Chapter 16: Implementing a Windows Forms Designer 437

Designer Services 437
Toolbox Service 438
Menu Command Service 442

Executing the Standard Commands 446

Implementing a Key Event Handler 447
Selection Service 450
Additional Important Services 454

Designer Option Service 455

Dictionary Service 457

UI Service 457
Type Descriptor Filter Service 460

Unimplemented Services 462

Summary 462

Chapter 17: Code Generation 465

Making Components Persistent 465
The XML Forms Persistence Format 466
Generating the XML 467
Loading the XML 470
The Designer Serialization Service 474

Generating C#/VB.NET Code 475

Round-tripping 484

Summary 496

Index 499

Table of Contents

viii

About the Authors

Christian Holm

Christian started his writing career in mid-2000, writing technical articles for AspHeute.com,
which has grown to the largest German-centric developer platform for Active Server Pages and
Microsoft .NET-related technology. His focus shifted from classic ASP to .NET when he was
introduced to Microsoft’s .NET vision shortly after it was introduced to the public at the
Professional Developers Conference 2000 in Orlando.

Since that time he has eagerly adapted the rich features of the .NET technology for his business
and additionally revealed the attained .NET experience to the developers reading his articles at
AspHeute.com. In 2001 he got in touch with Wrox Press to write his first chapter for the
Professional .NET Framework book. Since then he has worked for Wrox on freelance basis as a
technical editor.

I would like to thank everybody involved in this project at Wrox, especially Charlotte Smith
and Daniel Kent, for their great support on this book project and the technical editors,
especially Arun Nair, for their valuable comments on my drafts. I would also like to thank
all the project managers, who gave me the opportunity to review their projects.

Mike Krüger
Mike Krüger currently studies computer science at the Freie Universität-Berlin Germany. He has
over 10 years of software development experience ranging from C64 assembly/basic language
development to object-oriented systems written in C#, C++, or Java.

Currently, Mike focuses 100% of his efforts on the development of SharpDevelop. He enjoys the
development in C# very much as it is his first C# and Windows project. He has also written
software for the Linux operating system before he started with SharpDevelop.

Mike lives in Berlin, Germany with his girlfriend, Andrea. He loves playing computer games,
watching science fiction TV series and reading books. You can contact Mike at
mike@icsharpcode.net.

First, I would like to thank my girlfriend, Andrea, who had the idea of starting the
SharpDevelop project. She helped me a lot in the development with ideas and source code
(she wrote the C# parser without much help). I love you!

I would also like to thank all the people who helped to develop SharpDevelop. It is a
community effort. We have translators, people who write add-ins and bug fixes, and many
people who help with their feedback to make each new release much better than the former
one. I would thank especially Christoph Wille who believed in the project almost from its
beginnings and without whom SharpDevelop wouldn't be as sophisticated as it now is.

Bernhard Spuida
Bernhard Spuida works for AGS – Applied Geo-systems technology – as developer and
researcher in geophysical data acquisition, processing, and visualization. He has been
programming for 20 years, having worked in fields ranging from 3D graphics to databases and
real-time data acquisition on platforms ranging from VAX to PCs and SUNs.

Currently, he works on remote operation of geophysical equipment, in situ pre-processing of
data, and processing workflow management. He sees .NET as a technology holding great
potential in his current fields of work. He writes and translates articles for the German-language
ASPHeute programmer’s forum and its English language section.

He also is member of the SharpDevelop core team, where he mostly manages documentation and –
due to his extensive knowledge of human languages – is deeply involved in the localization effort.

Bernhard shares his time between Leoben, Austria where works, Pfronten, Germany where his
family lives, and field work in places too numerous to mention. When not working, you will
quite probably catch him reading a book on some strange topic, golfing or refereeing an ASP golf
tournament. You can contact him either at bernhard@icsharpcode.net or at bspuida@ags-
geosys.com.

I would like to thank Veronika and little Chiara for just being. You always are with me, no
matter where I may be.

Further thanks go to the great folk in the Perl and ASP golf communities. You always surprise
me with wonderful things that can be done with code of which I am sure the inventors of the
languages never thought. And I thought that after so many years I knew all the tricks…

And of course, my family: my parents for taking me to see the world so early in my life. You
gave me my love for travel, languages, learning, and books. I hope my teaching you golf can
repay this in at least a small way. And my nephew Karim who at three years of age makes
me rediscover the world whenever I play with him.

Introduction

The SharpDevelop project started as a "one man show" in September of 2000, just a few months after
Microsoft released an Alpha of what was to become .NET 1.0 in early 2002. SharpDevelop is Mike
Krüger's brainchild, and he got started because he was disappointed with current programming
languages, and did want to try out the new programming language C#. As there was no really good
programming editor aside from betas of Visual Studio .NET – which he didn't have access to – he just
started to program what he needed.

The SharpDevelop core team – who wrote this book – consists of programmers who came aboard
during the Beta of .NET because they wanted to see how "real" Microsoft's new platform was and how
good or bad an experience it would be to program with it. Your best bet to learn a new platform is to
test it with an ambitious "proof of concept" project, and that is what SharpDevelop initially was:
pounding .NET and C# to see if it is viable in real-world applications.

Today, SharpDevelop is a full-featured Integrated Development Environment that leverages the features
of C# and .NET, and we can say that both met or exceeded our expectations for building powerful real-
world applications.

Over the course of more than two years of development, we learned a lot about this platform. This book
is about sharing our experience in building real applications using .NET and C#. You will learn about
design issues and decisions made, techniques and technologies used, as well as background information
on features of SharpDevelop that you won't usually find in everyday applications.

SharpDevelop is an evolving open-source application, with new features being added over time that are
not covered in this book. The code accompanying this book is available on the Apress web site.
You can always get the latest C# source code from http://www.icsharpcode.net/, compare it with the
code for this book and learn how code evolves and how we and our contributors implement new features.

The SharpDevelop team

Introduction

2

The Code in This Book
All of the code in this book is taken from the 0.92 beta release of SharpDevelop.

We have tried to present the code in a form similar to the actual source files. Sometimes, because of our
desire to fit as much information into the book as possible, we have had to reformat the code slightly to
make it more concise.

Some things that we have done to make code more concise are:

❑ Removing lengthy comments

❑ Replacing XML comments with standard comments

❑ Removing whitespace

❑ Collapsing multiple closing braces onto single lines

❑ Placing long lists of parameters onto single lines

We encourage you to look at the original source files in the code download for a true view of the coding
style used in the SharpDevelop project.

Conventions
We've used a number of different styles of text and layout in this book to help differentiate between different
kinds of information. Here are examples of the styles we used and an explanation of what they mean.

Code has several styles. If it's a word that we're talking about in the text – for example, when discussing
a for (...) loop, it's in this font. If it's a block of code that can be typed as a program and run, then
it's also in a gray box:

 if (categoryTable == null)

Sometimes we'll see code in a mixture of styles, like this:

 if (categoryTable == null)
 {
 categoryTable = GetChildCategories(-1);
 System.Web.HttpContext.Current.Cache["categories"] = categoryTable;
 }

In cases like this, the code with a white background is code we are already familiar with; the line
highlighted in gray is a new addition to the code since we last looked at it.

Advice, hints, and background information come in this type of font.

Important pieces of information come in boxes like this.

Introduction

3

Bullets appear indented, with each new bullet marked as follows:

❑ Important Words are in a bold type font.

❑ Words that appear on the screen, or in menus like the Open or Close, are in a similar font to
the one you would see on a Windows desktop.

❑ Keys that you press on the keyboard, like Ctrl and Enter, are in italics.

Customer Support
We always value hearing from our readers, and we want to know what you think about this book: what
you liked, what you didn't like, and what you think we can do better next time. You can send us your
comments by e-mail to feedback@apress.com. Please be sure to mention the book title in
your message.

How to Download the Sample Code for the Book
When you visit the Apress web site, www.apress.com, follow the Downloads link and then the link to old
Wrox downloads. Select 'Dissecting a C# Application; Inside SharpDevelop' from the drop-down menu.

The files that are available for download from our site have been archived using WinZip. When you've
saved the archives to a folder on your hard drive, you need to extract the files using a decompression
program such as WinZip or PKUnzip. When you extract the files, the code will be extracted into
separate folders for each chapter of this book, so ensure your extraction utility is set to use folder names.

Introduction

5

Introduction

6

Features at a Glance

Before we start looking at the code that implements SharpDevelop, we need to have a clear idea about
what features Sharp Develop provides. The aim of this chapter is to run through the key features that we
will be looking at later in the book.

Although SharpDevelop is free of charge and free for you to adapt as per your needs, it sports all the
features of its full-blown commercial counterparts such as Delphi/Kylix or Visual Studio. When writing
code in SharpDevelop, we get syntax highlighting, code completion, method insight, XML based
project management, and we can even design Windows Forms!

In the course of our discussions, we will be covering the following topics:

❑ Customizing SharpDevelop

❑ Customization for Coding using various languages

❑ Managing Projects

❑ Creating Windows Forms

Before we start looking at goodies such as syntax highlighting or project management, we will discuss
the customization of SharpDevelop's user interface to fit our personal requirements. The next section,
Customizations for Coding, will then introduce us to using templates and wizards, which saves us from
having to write most of the general code structures encountered in daily practice. We will also talk
about other desirable features, such as code completion, method insight, a powerful search and replace,
and so on.

Another important feature of a full-featured IDE is project management. We will be discussing project
management in SharpDevelop. Last, but not least, we will be covering the Windows Forms designer that
helps us to easily create Windows Forms.

1

Chapter 1

8

The idea behind SharpDevelop
Yet another IDE? You might well ask this. Our answer is: Why not? Some time ago, Microsoft proposed
a new software architecture called 'Windows Next Generation Services', which then became .NET. It
looked like a good idea from the start. So once we got wind of this new architecture, we were curious
and wanted to see what could actually be done with this platform as soon as we could get hold of one of
the early betas. These betas only contained command-line tools, so doing our own proper development
tool seemed like a good idea. Mike decided try doing just that. After a modest start, implementing
something akin to Notepad, things took off.

With Free/Open Source implementations of the Microsoft .NET architecture on which SharpDevelop
runs and on which we developed it happening as this book is written, there will some day be one IDE
for multiple platforms – OS and hardware-wise. The Eclipse project is aimed towards this goal too, but
the approach taken is different as it is based on Java integrating other languages into the IDE. We aim
to use .NET and its free implementations as a platform for integrating development, including
non-.NET platforms such as Java or the GNU Compiler Collection. If you have a programming
language you want to use and a compiler/interpreter for it, you can 'plug it in' and develop using
SharpDevelop!

Chapter 2 has a discussion of the history of SharpDevelop in terms of design decisions. If you are
interested in seeing a full evolutionary tree of the SharpDevelop IDE please refer either to the Change
Log (Help | About and then click on the ChangeLog tab) or online at
http://www.icsharpcode.net/OpenSource/SD/Changes.asp.

SharpDevelop Software Requirements
As a developer, you are strongly advised to run SharpDevelop either on Microsoft Windows 2000 or
Microsoft Windows XP. Other Windows platforms such as Microsoft Windows NT4 or Microsoft
Windows 9x are not recommended, as the .NET Runtime offers only limited support. For example, if
you intend to develop ASP.NET applications and use Windows NT4, you need the Windows NT
Option Pack. Developing ASP.NET applications on Windows 9x is not possible, as the .NET Runtime
and/or other Windows components do not offer full support.

Since SharpDevelop relies on the Microsoft .NET Runtime you have to install the free downloadable
.NET package. Therefore, either the redistributable .NET Runtime or the .NET Framework Software
Development Kit must be installed prior running the SharpDevelop IDE. As the .NET Framework SDK
installation has several benefits compared to the redistributable package, (for example, it has
comprehensive documentation for developers) the .NET Framework SDK installation is recommended.

You might now ask what the hardware requirements are. SharpDevelop will run on slower PCs, but if
you want to use resource-consuming features such as Code Completion and hate lags, you should be
equipped with a modern CPU, enough RAM (more than 128 MB), and for best viewing experience, a
resolution of 1024x768 pixels is recommended.

Now, it's time to present the features of the SharpDevelop IDE. The next section of this chapter
provides you with a brief tour to get you acquainted with the most important features of the IDE.

Features at a Glance

9

SharpDevelop's Panels and Views
After SharpDevelop has launched you will see several panels. If SharpDevelop was started for the first
time, the panels are in their default alignment:

On the left-hand side at the botom you can see a tabbed panel that includes Project Scout (Projects tab),
and the tabs of the Class Scout (Classes tab), File Scout (Files tab) and the Tool Scout (Tools tab). The
Project Scout displays the contents of a Combine (a collection of linked projects) or project. Using the
context menu, you can set the properties of the Combine or projects. The Class Scout lists all classes
and class members of a project hierarchically. The Class Scout makes navigation through your project's
class members very easy, as double clicking on a member jumps to the location where it was declared.

The Project Scout and the Class Scout are discussed later in this chapter and at source code level in
Chapter 13. The File Scout lists directories and files, and opens files as you double-click them. In other
words, it is a simple file manager. The Tool Scout contains several handy tools, which are accessed by
clicking on the appropriate tab. Clicking on a tab reveals a list view of contained items. For instance, if
you click on the Clipboard ring tab, you can easily paste previously copied code snippets into your
source code. However, there's more. The Tool Scout offers an ASCII table, C# documentation tags, and
license headers that can be inserted into your files:

Chapter 1

10

If a Windows Forms project is opened and you are in the design view, you see the Forms tab in the
Tool Scout. The Forms tab lists all Windows Form Controls that can be dragged and dropped into the
design view. The design view itself is described later in this section.

If you need help, you can access SharpDevelop's built-in help either by choosing one of the entries of
the help menu or clicking on the entries of the help pad. Help pad's default location is on the right-hand
side of SharpDevelop's main window. You can expand the topics by clicking on the plus sign and
double-click on the entry. The page is opened in SharpDevelop's main window:

Features at a Glance

11

The Properties pad's default location is at the right-hand side below the Help pad (see previous
screenshot). The properties pad contains a list of the properties of the currently opened item. For
example, if a file is currently visible in the main window, the pad lists the respective properties of the
file or if a Windows Form Control is selected you can edit the control's properties:

The Task List pad and the Output pad contain a listing of build errors and compiler messages, respectively.

These two pads' default location is at the bottom:

Chapter 1

12

This was just a glance at the pads in SharpDevelop. For more in-depth information on pads please refer
to Chapter 13.

Before we move on to the next section, a few words on the Editor view and the Design view. The Editor
view is the standard view where you write your source code. The Design view is accessible when
working on a Windows Forms project and let's you drag and drop controls from the Tool Scout to a
Windows Form.

Limitations
SharpDevelop comes with a broad range of features. However, some might ask what features are not
included in the IDE. The following list contains some common IDE features that are not
currently provided:

❑ Debugging support

❑ Windows Installer projects to build .msi files

❑ Database and business process modeling tools

❑ Application stress test tools

Customizing SharpDevelop
Before we start writing code we want to customize the UI to our needs and preferences, as this allows us
to get the maximum benefit. SharpDevelop allows several customizations to fit our needs. We won't be
discussing the entire range of the customisation options, like changing screen layout, changing the tool
bar, and so on. Rather, we will focus our attention to customizing some of the more important features
of SharpDevelop.

Internationalization
Any competitive application needs to implement internationalization support; SharpDevelop was built
with this design aspect in mind. The default language that SharpDevelop starts up with is English
(represented as International English). However, apart from English, SharpDevelop supports many
other languages, as well. These include French, German, Japanese, and others.

SharpDevelop also supports non-Latin languages like Japanese, Russian, Korean, and so on. If our
operating system is configured to use non-Latin character sets, then SharpDevelop will automatically
display these character sets correctly. For instance, if you prefer Japanese as your UI language your
customized SharpDevelop will look something like this:

Features at a Glance

13

Support for internationalization is a daunting task that must not be underestimated. This feature affects
the application's core and, hence, has to be integrated into the application's structure from beginning.
Although, to some extent, internationalization design aspects are discussed in the Microsoft .NET
Framework SDK documentation, (search for "Internationalization" and/or "Satellite Assemblies"), there
are sometimes good reasons to reconsider these suggestions and fit the design to the application.

In Chapter 7, we will be getting an in-depth view on planning internationalization support for an
application, and about implementing this feature programmatically.

The next entry in the Option panel is Visual Style; this settings dialog deals with the visual appearance
of the SharpDevelop IDE.

Defining the Appearance
Different programmers – different preferences! As we know, in any document-based application there
are two possible ways to work with documents. On the one hand, there is the Multiple-Document
Interface (MDI), on the other there is Single-Document Interface (SDI).

Under MDI, every document resides in the same instance of the application and is accessed by clicking
on the appropriate tab of the document interface. Thus, an MDI application has a main window
containing multiple MDI child windows inside it.

The SDI interface starts a new instance of the application for each document, so that there is only one
window, which contains the respective document.

From the Visual Style option, we can select either the Multiple Document Layout Manager or the
Single Document Layout Manager. The choice is purely a matter of personal preference.

These two distinct styles are managed by the LayoutManager, which is described in greater detail
in Chapter 6.

Chapter 1

14

Customizations for Coding
Writing code is hard work. We therefore expect a bit of support for easing repetitive tasks, such as
completing and/or inserting chunks of code, highlighting keywords, and so on. Programmers favor less
typing and using shortcuts over retyping commonly used code constructs. SharpDevelop offers a wide
range of features for making the coding process more efficient and easier.

Getting Started with Templates
In this section, we will cover code templates and wizards. These utilities help us to reduce the amount of
effort involved in writing recurring snippets of code. As the results of these utilities provide the basic
constructs, all that is left to do is to fill in the gaps.

Assuming we have a C# file open, we just have to type in the shortcut for the desired template. For
instance, typing forb and then pressing the space key will provide us with a basic skeleton of the for
statement. This skeleton would look like:

for (; ;) {
}

The only task left for the programmer, as mentioned before, is to fill the gaps of the skeleton with
meaningful values.

If we are not sure of a template's shortcut text, we can type Ctrl+J, when the caret (the keyboard cursor)
is active in the edit view. This will pop up a listbox containing the complete list of template constructs
available to us. From within this list, we can then select the desired template.

The templates are not hard-coded. If necessary we can edit, add, or remove these templates.

Object-oriented programming languages require classes. As classes tend to get complex, an easy way of
safely defining them is always appreciated. SharpDevelop provides us with a class wizard that offers
several options to save us from having to write standard code.

The class wizard is available from the File Wizard panel; under this panel it is listed as New Class
Wizard. To bring up the File Wizard panel click on File | New | File… menu.

In this screen, we can define the base class and its access modifiers, add it to a project, and of course set
its name.

The pages that follow allow implemented interfaces to be selected along with formatting options, license
text, and more.

Changing Syntax Highlighting
Black and white code listings are harder to read and understand than code listings in which the key
words are highlighted. SharpDevelop offers us several modes for highlighting our code.

Features at a Glance

15

Syntax highlighting is applied in the editor view (the area where you write your code). SharpDevelop
comes with several built-in modes of syntax highlighting for different languages.

Chapter 9 will explain the highlighting strategy in detail.

Code Completion and Method Insight
As we write code, we make use of class members, such as methods or properties. It would be quite
helpful if we have a list of the available class members handy. This avoids typing mistakes and in cases
where a large number of classes and their members are involved (for example, the .NET Base Class
Library) code completion makes coding a lot easier.

A simple example is writing code to display some text to the console. When we finish writing Console
and type the dot operator '.', a list pops up with all available members of the Console class:

The help bubble, next to the listbox, offers a short description of the active element of the list. To read
more about code completion refer to Chapter 13. The engine used to obtain the completion data is
described in Chapter 12.

Method insight allows us to view the parameter list of methods of the BCL as well as for the methods in
the user-defined classes. This helps to maintain the correct parameter order and thus avoids
introduction of manual errors. The following screenshot shows a simple example of method insight:

The help bubble next to the code completion list displays the return type of the Connector method
plus its parameter list. You can read more about method insight and its implementation in Chapter 13.

Chapter 1

16

Bookmarks
SharpDevelop's bookmark management allows us to easily manage bookmarks in our source code.
Bookmarks can be toggled by:

❑ Clicking on the Toggle Bookmark option available from the Search menu

❑ Clicking on the flag button located on the standard toolbar

❑ Pressing Ctrl+F2 after placing the caret at the desired line

A dark green background represents a bookmarked line. Moving back and forth between the
bookmarks is made possible by the navigational keys or buttons respectively. In Chapter 10, we will
cover the bookmarking feature in detail.

Search and Replace Functionality
SharpDevelop's search and replace functionality comprises various features, ranging from the usual
searching of strings to the use of Regular expressions or Wildcard search. The design strategy behind
the search functionality is covered in detail in Chapter 10.

The Find dialog is accessed from the Search menu, through the binocular button of the standard
toolbar, or through its shortcut, Ctrl+F:

The Mark All button highlights all the results found for the designated search target. The search target
offers the option to search in the current file, all open files, or the whole project.

The Replace dialog box offers, as the name suggests, the option to replace the findings with a
new string.

Features at a Glance

17

Compiling the Code
After writing the code, the next logical step is to compile it. In SharpDevelop, we can compile a
combine, a project, or just a single file. We will be talking about combines in a minute. To start
compilation, we can use the commands available in the Run menu or click on the buttons shown in the
following screenshot:

During compilation, if any errors occurred then the Task List (the output window) will display these
errors. By simply clicking on the error listing, we can jump to the line of our code concerned.

Managing Projects
A feature that makes an IDE complete is the facility for managing our projects. SharpDevelop offers
several features to achieve this goal.

Combines and Projects – What's in a Name?
A combine can contain one or more projects, thus it can be thought of as an 'uberproject', the mother of
all projects. This name was chosen to avoid any conflicts with existing trademarks. The contents of a
combine (or project) are displayed in the Project Scout. An overview of the Project Scout is given in the
Navigating the Project section of this chapter.

Navigating the Project
Navigating through a project is as easy as using the Windows file explorer. The tree view of the Project
Scout displays the content of a project and the Class Scout lists all the classes of the currently
opened project.

Chapter 1

18

The Project and Class Views of the World
Typical views of the Project Scout and Class Scout will be similar to these screenshots:

The Project Scout allows easy navigation and assignment of various settings of its items by right-clicking
on the entry – a file, project, or combine.

The class view is also displayed as a tree view. A typical view of the Class Scout is as shown above.

The Class Scout gives us a detailed overview of the various classes involved in our project. To find out
more about this feature implementation please refer to Chapter 14.

Creating Windows Forms
SharpDevelop features a built-in Windows Forms designer. Using this designer we can easily add controls
to a Windows Form, edit their properties, and even format them. Everything starts with a new project or,
as mentioned before, we can create a single file without a project. As the implementation of a Forms
designer is no trivial task, the final three chapters of the book are devoted to this interesting topic.

Features at a Glance

19

Adding Controls to Windows Forms
Let's assume that we want to create a new C# project, for this click on File | New | Combine…. The
New Project dialog box pops up – select the Windows forms project entry under the C# node, then
provide a name for the project and click on OK. When the new Windows Form project is loaded, two
new tabs appear below the editor view – the Source tab and the Design tab. Clicking on the Source tab
shows the source code view of a general Windows form structure.

As we are interested in the Designer, click on the Design tab located next to the Source tab.
Additionally, click on the Tools tab to access the available Windows Form Controls. We should now see
a window that looks something like this:

The Tool Scout, selected by the Tools tab, allows us to click and drag Windows Form Controls onto the
previously created blank form. After we have some Controls on the form, we will need to edit
their properties.

Chapter 1

20

Properties and Formatting of Controls
To format a Control, right-click on the Control and we will see the Control's formatting options. The
context menu allows aligning Controls, setting the tab order, and so on:

The Control's properties are located on the left on the default setting. Of course, we can rearrange the
panels as SharpDevelop supports Window docking. The property panel allows us to edit the Controls in
a very intuitive way.

Summary
In this chapter we breezed through the major and most prominent features of the SharpDevelop IDE.
As this was just an overview, this chapter presented no source code at all. The following chapters will
explain the presented features in far more detail, and will discuss the design decisions and technical
aspects involved, by revealing and stepping through the source code.

Features at a Glance

21

Chapter 1

22

Designing the Architecture

In this chapter, we will be looking at the history of SharpDevelop and its basic design concepts. Also, we
will be discussing the practices used in the SharpDevelop development process. Some of our practices and
methods might seem unusual, but we want to tell the truth about our development process; at some places
it's quite contrary to the procedures prescribed for an ideal development process but we will explain why
this is. This chapter lays the foundation for understanding the succeeding chapters and, in any case, it's
good to know how a technology was developed. We will be presenting some complex structures in this
book, so understanding the thinking behind the processes at work is necessary.

History of Architectural Design Decisions
In this section, we will step backward in time to the early days of SharpDevelop. This will be helpful to
us in understanding the current design of SharpDevelop. Miguel de Icaza (the founder of Gnome and
the Mono project) once said that, "One day you have to tell the whole story." Now that day has come
for SharpDevelop.

Mono is a cross platform .NET implementation; refer to www.go-mono.com for more information

The Early Stages
It all began in September 2000 when Mike Krüger came across the PDC version of the .NET framework
Microsoft just had released. He had some experience in programming under Linux but had never
written a Windows application before. When he saw C#, he thought that C# was a better language than
Java and decided to write an IDE for it since at that time a good, free IDE was missing for this language.

The unofficial version is that he had just too much time (which has since dramatically changed) and was
looking for a bigger programming project to spend this time on.

2

Chapter 2

24

The initial programming of SharpDevelop began with a Windows text editor, which was customized for
C# highlighting. After a short design phase (1-2 days) the development of SharpDevelop began.

Initially, there was just a main MDI window with a .NET rich textbox, which was able to open text files.
It could load and save the text and run the csc.exe (the C# compiler) over the file and then execute
the output file it generated.

It didn't take long to realize that the limits of this rich textbox weren't acceptable for an IDE project;
therefore, the next step was to write an integrated editor, with facility for syntax highlighting. It took
two weeks to complete a simple editor and a basic project management tool with a tree view showing all
project files, and to make the whole system stable enough to develop SharpDevelop using
SharpDevelop itself.

Building SharpDevelop with SharpDevelop
The first editor was relative simple. Text was represented as a simple ArrayList that contained strings.
Each string was a line of text. The lines were generated using the System.IO.StreamReader class.

Before this data structure was chosen, other data structures, such as storing the lines in a list, were
considered. The list-based structure would solve the line insertion penalty. If a line is inserted into an
ArrayList, all other elements have to be moved back one element to make room for the element to be
inserted. This wouldn't be a problem with list-based data structure where a line insertion operation
consumes constant time.

However, the list-based structure suffers in other areas, such as getting the correct line object from a line
number or offset. To get the real line, it would have taken linear time (the same time as line insertion in
an array). A decision was made to have the 'slow' part happening during insertion, as we thought it was
more important to get a specific line fast than making the insertion of lines efficient. Therefore, it
seemed natural for us to work with the ArrayList structure.

We didn't want to optimize the editor for large files – we only wanted to have a source code editor
capable of working on files having less than 10,000 lines. Another approach would have been to store
the text in a linear data structure that handled lines by itself. Other editors have taken this approach and
we were aware of it, but we didn't find any good literature to help us with this issue.

If we insert a character into a line it shouldn't take much time, because this affects only a single line. But
making the whole buffer linear would have taken too much insertion penalty for every operation. The
array for the buffer is much larger than the array for just lines; hence, it makes an insertion slower.
Therefore, we decided to use the line-based structure.

The first editor split the line into words and these words had colors assigned to them. The words got a
default color (black) and then were compared with the C# keywords. This way, some basic syntax
highlighting was added to the IDE.

One of our earliest considerations was the syntax-highlighting problem. It was clear to us that built-in
syntax highlighting would cause more problems than it solved. Built-in highlighting would not be
customizable without recompiling the whole project. It provides no easy way of extending the syntax
highlighting for new languages other than changing the source code. We chose to define the syntax
highlighting in XML, since this enabled us to move this part out of the IDE; it also enabled us to
support syntax highlighting for other programming languages than C#.

Designing the Architecture

25

We looked at the implementation of syntax highlighting in other editors and determined the different
features implemented in them. Our first XML definitions were the way it is now. It looks a bit like the
definitions used in JEdit (http://www.jedit.org). In Chapter 9, we will be discussing these definition files
in detail.

In spite of studying other editors, we didn't change the syntax highlighting definitions; only some minor
issues were addressed (like renaming the tags according to our changed XML naming scheme – the first
version had upper case tag names whereas now we use camel casing). But, the overall structure didn't
change much. With this matter of syntax highlighting settled, there was still another major issue left– the
text editor was extremely slow.

The limiting factor for our editor's speed was the drawing routine, which re-drew the entire editor
window whenever the text was scrolled, even if it was by a single line. The text area repainted the whole
text for each scrolling operation. No smart drawing was used. This was sluggish on most machines.

This problem was solved by having the system redraw only those regions that had changed. This was
done by using a control that knew the size of the whole text. This control got moved around on the
panel. The .NET Framework paints only the region that has changed and takes care of fast scrolling.

This speeded up the editor a lot, but in turn created another problem – the control size limit of 32,768
pixels. With the Courier font at 10 points, the editor control was limited to 2,178 lines. The editor could
load more lines, but the control cut them off.

With this limit, SharpDevelop ran for about one and a half years. For the development of SharpDevelop
this was enough; as all SharpDevelop code files are smaller than 2,000 lines this limit of the editor posed
no real problem.

Later, we switched back to self-drawing; the drawing routines are faster in newer .NET versions, but
slower than the old 2178 lines version. The text editor will be discussed in Chapter 11.

However, back to our story, SharpDevelop was first made public in August 2000 through an
announcement in the Microsoft .NET newsgroups. It got a lot of positive feedback and therefore, the
development continued.

The design direction changed a bit away from a C#-only IDE to a more general development
environment. But even now, C# is the best-supported language under the IDE. This is not due to design
decisions, it is just that there are not so many people working on support for the other languages. In
early 2001 an add-in (also known as plug-in) infrastructure was introduced.

The first add-in structure was for menu commands defined in external dynamic link libraries using
XML. This was a very limited solution and add-ins could only be used to plug into a special add-in
menu. Another separate add-in API was implemented to allow the extension of editor commands.

During 2001, SharpDevelop got support for internationalization. The internationalization model has not
changed since then. A key string is used to identify the string in the internationalization database. The
internationalization data is generated out of a database and is written into resource files. There is a
resource handler class that handles the different languages and returns the localized string. Detail on
internationalization in SharpDevelop can be found in Chapter 7.

Chapter 2

26

Correcting Bad Design Decisions
In December 2001, the editor's data structure was changed from a simple ArrayList with strings to a
linear model. The editor was almost rewritten from scratch and this time the objective was to separate
the editor's code from the IDE's code, more than before. The old editor was a monolithic monster.
Fortunately, large parts of the old editor's code could be reused and translated into the new model.

The decision to switch to the new model was made because by then we had found the literature on text
editor programming; besides, we had also looked at the implementation of text models in other editors.
With this, the problem of having to perform too many copy operations when using a linear model was
also solved.

The old line-based structure had some problems. It copied too many strings and had some complicated
algorithms for insertion/replace and so on, which took too much time. The performance was poor in the
old model. Now, the text editor data structure was turned into a separate layer underneath the control
and the simple ArrayList was dismissed. In Chapter 8, we will delve deeper into the new data structure.

Now, the editor itself keeps track of where a line begins or ends. To find a line from an offset (this is a
common operation as the model is offset based, but the display is not) it takes O(log n) time. (For
example: there are roughly 20 operations for finding a line, if there are one million lines in our list.) The
lines are stored in a sorted list and the search is done using the binary search algorithm. This makes the
operation necessary for finding a line from a given position nearly as fast as in the line-based model. In
this model it was simple, as the line number was equal to the array list position.

In January 2002, we solved one of the biggest issues in the whole development process – the add-in problem.

Our dream was to have add-ins that could be extended by other add-ins. For example, we wanted to
have an add-in that could browse assemblies. This object browser should be in an external assembly
and just plug into SharpDevelop. But it should also be possible for other developers to extend this
object browser. It should be possible to insert a command into the object browser's context menu or do
other similar things.

The AddIn tree solved this problem and much more. The AddIn tree is capable of defining add-ins
using an XML format as glue code, which might be placed almost anywhere using a path model.

Once we started using this structure development sped up. We could safely add new extendable
components, without breaking other parts of the source code. We could throw away bad components
without harming the project.

The XML definition of our AddIn tree was also inspired by Eclipse, it has a similar definition but eclipse
works differently from the way SharpDevelop does. See www.eclipse.org for more details on Eclipse.

We will be discussing the AddIn tree in Chapter 3.

The development of a C# Parser began in 2001 but the development process was quite slow. It took a
lot of time, not because it was too difficult, but because it was done in our spare time (the spare time left
besides the time we sacrificed to SharpDevelop).

Designing the Architecture

27

We chose not to use the CodeDOM facilities of the .NET Framework because we need to get
information about the position of types, methods, etc. Using CodeDOM would have forced us to extend
each CodeDOM class with custom properties. Our own parser tree layer has proven to be helpful; we
use it for more than just the parser.

The first time code completion worked in SharpDevelop was in Spring 2002.

Unfortunately, we did not think about a general parse tree. We needed a parse tree that was abstracted
from the parser in SharpDevelop. This meant that we had to change the parser output. The parser
wasn't rewritten – a new abstract layer was created, which took the reflection API and our own parser
tree layer as an example of how to develop a .NET class model. Then interfaces were defined for all
.NET class features and an abstract implementation for them was written to make it easier to implement
this layer.

After this, the parser was restructured to fit in with the new structure and it worked quite well, even
though the parser wasn't written with flexibility in mind. After the long development phase, the parser
was relatively stable and capable of parsing source code at a high level.

We will be looking at the parser in Chapter 12.

Now it is even possible to plug-in any sort of parsers and have working code completion and method
insight for the languages that those parsers generate a parse tree for.

The Design Decisions
There were clear design requirements for the application. SharpDevelop should be easy to deploy. Just
copy and run the project. This approach to software deployment is known as 'Xcopy deployment', as is
used with MS .NET technology.

We didn't want to use an installer, nor did we need one. We had a strong Linux background where the
installer concept is perceived as being a bit strange because we were used to simply downloading,
compiling, and running software. Besides, we couldn't find any good open source installers that would
solve our problems. However, now we are using an installer, respecting the Windows traditions, but it is
always an option to just download the .zip file with the source code, build it, and run SharpDevelop
without needing any installer support.

The IDE should not assume that any special drive or directory exists. It should only assume that there is
a SharpDevelop application folder, nothing more. The .NET environment is aware of the location of the
user's application folder and it takes care to see that it exists and is in the right place (with write
permission). All options and other data that are to be written somewhere should be stored in the user's
application data folder, as SharpDevelop should run in a multi-user environment without hassles.
Therefore, every user has an independent copy of the standard option files, which they can change
without affecting any other user.

Another important goal was the 'do not touch the registry' design decision. SharpDevelop should not
create registry keys or assume that some registry keys exist. It should use the registry as a workaround
only if there is no other feasible alternative. This allows easy copy and run installation, and will also
allow easier porting to systems that do not have a registry.

Chapter 2

28

Another important decision was to use XML for every data file, and to move as much data from the
code to XML as possible. XML is a powerful format that allows easy conversion using XSLT. It adds a
lot of extra flexibility to SharpDevelop and is used whenever possible in SharpDevelop development.

Fortunately, the .NET platform makes it extremely easy for us to use XML in our applications. In fact,
the NET platform relies on XML for its applications. More importantly XML helps us in cleaning up
code; often the code is bloated with information that could be easily stored in a separate file. In this
code many properties are being set, and objects are created without doing anything with them. They
just have to be stored somewhere. All these are signs of code that could be written with XML instead.

A good example is the GUI code where buttons, forms, group boxes, and other controls are defined. Each
of these has properties assigned to it, information on where it is, which label it has, and other details. This
code doesn't really add functionality to a program. It just defines the way something looks. XML is a good
way to collect all this data in a file. So we began to use XML to reduce the actual code size.

Currently some panels and dialogs that are defined by Windows Forms depend upon the XML format.
Most forms are still missing; one of our next steps will be to design a better XML format for dialogs and
panels. We plan to use a format that works with Layout management. SharpDevelop should run under a
wide range of operating systems (currently it is only Windows based) with different languages. For the
time being, the dialogs and panels may look a bit strange when big fonts are used or when a
non-standard screen resolution is chosen. Some (human) languages use rather lengthy strings in labels
and these are cut off.

Another important issue is the use of the MVC model in SharpDevelop.

View

Controller Model

As we can see from the diagram, the controller is between the view and the model and it communicates
with both of them. The view needs to display the data. Therefore, it needs to read the model. It does not
need to make changes to the model so this communication is one-way.

For example, the text editor (in this chapter we won't go into implementation details, but this is a good
example) has a data model called the 'document'. In this model, text is stored, which is broken up into
lines. We use edit actions to change this text and a Control (in Windows Forms terms) to display our text.

The Control that displays the text represents the view in our MVC model. The edit actions correspond
to the controller (even if they are implemented using more than one class) and the model is
implemented by the document layer. The edit actions see to it that the view is updated and even call for
redisplay for some actions. The document layer, however, doesn't know anything about the view. All
these parts are independent of each other. We have tried to apply this model to the whole project.

Designing the Architecture

29

This is especially important if we want to be able to switch the GUI API. History has shown us that GUI
APIs come and go. If you know a bit about Java you may have noticed that Java AWT (the first version
of a Java GUI framework) was replaced by Java Swing, and some time back IBM released SWT (the
most recent Java GUI toolkit from IBM).

This could easily happen with the .NET platform, too. In fact, there is no reason why it shouldn't.
Therefore, in our design we took care to provide for this eventuality. Even if we always use the same
GUI API, it is a good idea to make the view 'switchable'. In this way, it is possible to change the view, if
so desired, or even to develop several different views for the same data. As a bonus, this model helps to
think in terms of components, thereby, leading to a component-oriented approach.

Designing Component-Exchangeability
SharpDevelop aims to allow configuration changes on the fly, such as switching the user interface
language at run time or altering the layout at run time. This had led to a component-oriented approach
in which the components interact with each other through a common model.

We have designed a model that allows us to change components as we desire. For example, we may
remove the class browser without breaking anything in SharpDevelop. This was done using a
component model that is tree based. All components are loosely coupled, making SharpDevelop
programming a bit like using Lego building blocks.

SharpDevelop Components(=AddIns)

PADS

ProjectScout

ClassBrowser

FileScout

ToolScout

TaskView

MessageView

PropertyPad

HelpBrowser

Texteditor
AddIns

Edit Actions

Formatting
Strategies

Line Painters

Services

StatusBar

Toolbar

Language

DisplayBinding

ClassBrowserIcons

Tasks

Files

Project

LanguageBinding

Parser

Dialog Panels

Options

Wixzards

File Filter

Display Bindings

Text Editor

HTML View

Object Browser

Resource Editor

Form Editor

Menu Definitions

Main Menu

Context Menus

ProjectScout
AddIns

Node Builders

Ambiences

C#

VB.NET

.NET

Icons

Template Icons

File Icons

Project Icons

Icons for own use

Language Bindings

C#

VB.NET

Java

JScript

Toolbar
Definition

Chapter 2

30

This is a quick overview of the SharpDevelop components. As you can see, we have quite a huge
number of components that form the SharpDevelop project. With our add-in system, we can manage all
these components, and we believe that it is general enough to add all the future components we will
need as well.

Best Practices
During the development of SharpDevelop, we've found some practices that we considered very helpful.
In the following sections we'll step through two of them – pattern oriented design and general coding
guidelines. Our aim is to present information about the design process that you may find useful.

Being aware of the best practices used during a development process helps a lot in ensuring that the
process is smooth and avoids many potential pitfalls.

Design Patterns
In this section we will give a brief overview of the design patterns used in developing SharpDevelop.
We began to use design patterns relatively late in the development process, as we weren't aware of the
benefits they provide for our design process. Design Patterns try to solve the flexibility problem, but not
through inheritance. Inheritance does this at the compile time (it is not possible to change the type of a
class during run time). Using Design Patterns enables us to change the behaviour of an object at run time.

If you have further interest in design patterns and design-pattern-driven design, we recommend you to
look at the book Design Patterns from Gamma, Helm, Johnson and Vlissides (ISBN 0-201-63361-2). Even
though the book does not contain C# examples, the concepts behind patterns are described very well.
However, in this book we have explained the necessary patterns with care, so even if you don't have an
in-depth knowledge of design patterns you can easily understand them.

Design Patterns are neither voodoo nor boring theory. Design Patterns provide a list of common
solutions that are used in real-world applications, and have been proven to be useful in a number of
different projects.

Apart from the better structure and enhanced flexibility that the pattern-oriented approach provides to
SharpDevelop, we found design patterns useful for better understanding of the structure, without having
to use UML. However, note that design patterns do not replace UML. In fact, they complement each
other well. UML is important for understanding complex systems but in case the UML diagrams are
missing, patterns make life a bit easier. Knowledge of patterns is useful and knowing how to apply them
to our projects is a good thing.

The patterns listed here are not exactly same as they are given in the Design Patterns book. Instead, they are
described the way as they are used in SharpDevelop. We do not redefine patterns but it might be possible
to see the same pattern explained a bit differently in other texts. But the concept is always the same.

We will be looking at following patterns:

❑ Singleton

❑ Factory

Designing the Architecture

31

❑ Decorator

❑ Strategy

❑ Memento

❑ Proxy

Singleton
The singleton pattern is the pattern-oriented way of creating global variables. The singleton ensures that
there is only one instance of the singleton class during run time. It provides us with a global access point
to it as well. Lately, most singletons in SharpDevelop are being replaced by services, but the service
manager itself follows the singleton pattern, as well as some other classes of minor importance.

We use the singleton pattern when we are sure that we need only one instance of an object during the
run time of our application.

An example of the singleton pattern is as given:

class ExampleSingleton
{
 public void PrintHello()
 {
 System.Console.WriteLine("Hello World!");
 }

 ExampleSingleton()
 {
 }

 static ExampleSingleton exampleSingleton = new ExampleSingleton();

 public static ExampleSingleton Singleton {
 get {
 return exampleSingleton;
 }
 }
}

Note that, the singleton object has only private constructors. This ensures that an object cannot be
created from our singleton class outside the singleton class; thereby allowing us to ensure that there is
only ever one such object.

Factory
The factory pattern creates an object out of several possible classes. For example, when we are working
with an interface and we have more than one implementation for it, we can use a factory to create an
object that implements the interface; the factory can select the implementation that it returns to us.

A factory is useful when the creation of an object should be abstracted from the end product (for
example, in cases where a constructor won't be good enough):

Chapter 2

32

public interface IHelloPrinter
{
 void PrintHello();
}

public class EnglishHelloPrinter : IHelloPrinter
{
 public void PrintHello()
 {
 System.Console.WriteLine("Hello World!");
 }
}

public class GermanHelloPrinter : IHelloPrinter
{
 public void PrintHello()
 {
 System.Console.WriteLine("Hallo Welt!");
 }
}

public class HelloFactory
{
 public IHelloPrinter CreateHelloPrinter(string language)
 {
 switch (language) {
 case "de":
 return new GermanHelloPrinter();
 case "en":
 return new EnglishHelloPrinter();
 }
 return null;
 }
}

In this example you need to create an object from HelloFactory and this factory creates a
IHelloPrinter given a language. This adds a bit more flexibility to the design.

HelloFactory

+CreateHelloPrinter()

<<Interface>>
IHelloPrinter
+PrintHello()1 *

EnglishHelloPrinter GermanHelloPrinter

This is the UML diagram for our example. With this pattern, we can easily add new concrete
HelloPrinter classes to our HelloFactory that can be created without letting the users of the
factory know that other implementations are added. The classes that use HelloPrinter classes only
need to know the factory class.

Designing the Architecture

33

Decorator
The decorator pattern adds functionality to an object at run time. The decorator inherits from an
interface; it extends and implements all methods in this interface. It receives an object that implements
this interface in the constructor and delegates all calls that the original interface exposes to the object it
received through the constructor.

The decorator can add a number of functions that the original interface doesn't have. This is useful for
adding functionality on the fly. In SharpDevelop we have classes that convert our internal abstract layer
for classes, methods, etc. into a human readable string. A decorator is used to extend these classes so
that they can return human-readable strings for the .NET Framework reflection classes too. Classes that
convert the reflection classes to the SharpDevelop model are implemented separately. This helps us to
reduce the code duplication.

Another approach would have been to implement the reflection conversion decorator as an abstract
base class leaving the conversion methods abstract and have all converters implement them. This
approach, however, forces the conversion classes to inherit from a single base class. Also, this does not
leave much flexibility in the inheritance tree, as .NET supports only single inheritance. The design
pattern approach is superior to this.

Imagine that some of the language converters need some different conversion methods. Then we can simply
write another decorator, which adds these methods without making the inheritance tree more complex.

This example uses the factory example as a base to demonstrate the decorator pattern:

public interface IHelloPrinterDecorator : IHelloPrinter
{
 void PrintGoodbye();
}

public abstract class AbstractHelloPrinterDecorator : IHelloPrinterDecorator
{
 IHelloPrinter helloPrinter;

 public AbstractHelloPrinterDecorator(IHelloPrinter helloPrinter)
 {
 this.helloPrinter = helloPrinter;
 }

 public void PrintHello()
 {
 helloPrinter.PrintHello();
 }

 public abstract void PrintGoodbye();
}

public class EnglishHelloPrinterDecorator : AbstractHelloPrinterDecorator
{
 public EnglishHelloPrinterDecorator(IHelloPrinter helloPrinter)
 : base(helloPrinter)
 {
 }

Chapter 2

34

 public override void PrintGoodbye()
 {
 System.Console.WriteLine("Good bye!");
 }
}

public class GermanHelloPrinterDecorator : AbstractHelloPrinterDecorator
{
 public GermanHelloPrinterDecorator(IHelloPrinter helloPrinter)
 : base(helloPrinter)
 {
 }

 public override void PrintGoodbye()
 {
 System.Console.WriteLine("Auf Wiedersehen!");
 }
}

We let the decorator inherit from an abstract base class too, but the decorator code is more static (in the
sense that it won't change) than the HelloPrinter classes.

The IHelloPrinterDecorator adds a PrintGoodbye method to our classes to extend their
functionality. There are two implementations of the decorator, which we can apply to the simple
HelloPrinter classes to give them a new method.

You can use even a German decorator with an English hello printer, but this might cause some
strange effects.

<<Interface>>
IHelloPrinter
+PrintHello()

<<interface>>
IHelloPrinterDecorator

EnglishHelloPrinter GermanHelloPrinter

+PrintGoodbye()

<<metaclass>>
AbstractHelloPrinterDecorator

+PrintHello()
+PrintGoodbye()

GermanHelloPrinterDecoratorEnglishHelloPrinterDecorator

1

*

Designing the Architecture

35

In this diagram, we can see that the real HelloPrinter classes can inherit from another class without
problems. Other decorators can be added to it without problems. The HelloPrinters can change
their decorator at run time and extend their functionality dynamically.

Strategy
The strategy pattern is one of the most frequently used ones in SharpDevelop. With this pattern we can
encapsulate algorithms and change them at run time. For example in our search algorithm, we use a
searching strategy. We have two implementations for normal text search and regular expression search
and we can change the behavior of our search object at run time. This pattern is in contrast to the
decorator where we change the skin; with strategy, we change the guts!

Let's look at an example to demonstrate this:

using System;

public interface IHelloStrategy
{
 string GenerateHelloString();
}

public class EnglishHelloStrategy : IHelloStrategy
{
 public string GenerateHelloString()
 {
 return "Hello World!";
 }
}

public class GermanHelloStrategy : IHelloStrategy
{
 public string GenerateHelloString()
 {
 return "Hallo Welt!";
 }
}

public class HelloPrinter
{
 IHelloStrategy helloStrategy;

 public IHelloStrategy HelloStrategy {
 get {
 return helloStrategy;
 }
 set {
 helloStrategy = value;
 }
 }

 public void PrintHello()
 {
 if (helloStrategy != null) {

Chapter 2

36

 Console.WriteLine(helloStrategy.GenerateHelloString());
 }
 }
}

As we can see, it is similar to the factory pattern but the factory pattern alters the object at creation time,
whereas the strategy can be switched on the fly.

<<Interface>>
IHelloStragegy

+GenerateHelloString() 1 *

HelloPrinter
+HelloStrategy

GermanHelloStragtegyEnglishHelloStrategy

In the diagram, we see that the HelloPrinter has a special strategy and that a strategy can be applied
to a number of HelloPrinters to give them the functionality.

The strategy pattern is useful to encapsulate algorithms for which we know a bad but easy-to-implement
solution and a good but difficult to implement solution. We can implement the bad but easy solution
first and test our code with this bad solution. With this pattern we can later implement the better
solution without changing the code calling the algorithm.

Memento
A memento simply stores the state of an object to restore it later. For example, we use mementos in
SharpDevelop to store the state of the workbench and to store information about the file (like
highlighting, caret position, or the currently used bookmarks in the document).

Memento's are used in places where the objects should not expose their internal state to the outer world
using public members. Some other good reasons to use mementos would be to allow the user to save the
state of the workbench at run time and to allow them to switch between several former saved states.

Here's an example of implementing a memento:

public class OurObjectMemento
{
 int internalState;
 string anotherState;

 public int InternalState {
 get {
 return internalState;
 }
 }

 public string AnotherState {

Designing the Architecture

37

 get {
 return anotherState;
 }
 }

 public OurObjectMemento(int internalState, string anotherState)
 {
 this.internalState = internalState;
 this.anotherState = anotherState;
 }
}

public class OurObject
{
 int internalState = 0;
 string anotherState = "I know nothing";

 public OurObjectMemento CreateMemento()
 {
 return new OurObjectMemento(internalState, anotherState);
 }

 public void RestoreMemento(OurObjectMemento memento)
 {
 this.internalState = memento.InternalState;
 this.anotherState = memento.AnotherState;
 }

 public void DoStuff()
 {
 internalState = 42;
 anotherState = "I know the question too";
 }

 public void PrintState()
 {
 System.Console.WriteLine("current state is {0}:{1}",internalState,
 anotherState);
 }
}

As we see, the memento itself exposes all internal variables from our OurObject. In SharpDevelop, all
mementos can convert themselves to XML (and back). This makes the object state persistent.

Proxy
The proxy pattern is used when we need to handle objects that take a lot of time to create, are complex,
or take too much memory. The proxy pattern allows us to postpone the creation of the 'big' object until
it is actually used.

In SharpDevelop, proxies are used to represent the classes of the .NET runtime. These proxy classes only
have the name of the real classes, take much less memory, and are faster to load. They do not contain
information about the class members; hence, when these are requested, the real class must be loaded.

Chapter 2

38

This example uses the factory pattern as well:

public class HelloPrinterProxy : IHelloPrinter
{
 string language;
 IHelloPrinter printer = null;

 public HelloPrinterProxy(string language)
 {
 this.language = language;
 }

 public void PrintHello()
 {
 if (printer == null) {
 printer = new HelloFactory().CreateHelloPrinter(language);
 if (printer == null) {
 throw new System.NotSupportedException(language);
 }
 }
 printer.PrintHello();
 }
}

This HelloPrinterProxy class creates the actual printer object when the PrintHello method is
called for the first time. If we have a case where we need many objects (in our case from
IHelloPrinter) that would take up many resources and only some of them are actually ever used,
proxies should be used.

Now imagine that the HelloPrinters are remote objects and we store them in a hash table, where the
key is the language that the printer can print. Now imagine the HelloPrinters receiving their strings
from a remote server. Further let's assume that every creation of a HelloPrinter consumes 5 MB of
RAM. In such a scenario it makes sense to store the HelloPrinter proxy classes in the hashtable.
Besides, it is generally the case that only one HelloPrinter is needed in the application:

<<Interface>>
IHelloPrinter

+ PrintHello()

EnglishHelloPrinter HelloPrinterProxyGermanHelloPrinter

1

1

As we can see from the diagram, the proxy class is just an implementation of the interface that the
actual big class implements. The classes that use HelloPrinters don't know the difference between the
proxy implementation and the real ones.

This concludes our discussions on patterns. In the next section we'll be learning about the
SharpDevelop coding style.

Designing the Architecture

39

Coding Style Guideline
As is all always the case, we found it quite useful to have strict guidelines regarding the coding style. It
has helped to enhance the readability of the code and in reducing the time required for understanding
complicated parts. All examples in this book are written according to this style guide.

It contains various guidelines for various important aspects like:

❑ File Organization

❑ Indentation

❑ Comments

❑ Declaration

❑ Statements

❑ Whitespace

❑ Naming Conventions

For an in depth coverage of our coding style guideline, you can refer to the CodingStyleGuide.pdf
file. This file is included along with the distribution of SharpDevelop and can be found in the
SharpDevelop\doc directory.

Now let's look at another interesting topic – the tools that we have used for tracking and removing bugs
in SharpDevelop.

Defect Tracking and Testing
For an open source project, it is sometimes forgotten that software should not be released until it has
been reasonably tested and debugged enough to qualify as practical and usable software. There have
been quite a few open source projects out there that seem to have missed out on this principle. What is
even worse is that a large number of the reported bugs get never fixed. This is not because the
programmers are evil; it happens because they do not observe decent bug tracking practices.

Fortunately, times have changed a bit and most projects now use advanced defect tracking and testing
techniques. SharpDevelop does so too.

Bug Tracker
One important tool, which we have used for SharpDevelop, is the bug tracker. It is an online
application to which every team member can submit bugs:

Chapter 2

40

Whenever we had some spare time, these bugs were then resolved. The bug tracker is a tool that only
team members can access.

Prior to the bug tracker era, the bugs were filed on paper, but paper always tends to get lost. This
application version of bug tracking is much more robust than the paper version. It also takes too much
time to put all submitted bugs on paper. With a bug tracker, one can just cut and copy the submitted
bugs to a centralized database. We can even attach images, and track the bug's history.

Before each release, it is our goal to fix as many bugs from the tracker, as we can manage.

Let's now discuss the testing strategies that we used during the development of SharpDevelop.

Unit Tests
For a GUI application, it is more difficult to apply unit tests, but they too profit from unit testing. One
important lesson we had to learn during the SharpDevelop project was that code should be written with
tests in mind. It is difficult to apply tests to code that was not written with tests in mind.

SharpDevelop is an application that does not have many unit tests. This is due to the fact that it was
necessary to write a new unit test application (#Unit) that can handle loading assemblies from different
directories, as the SharpDevelop assemblies are not all located in one directory. However, even with
these few tests written much time was saved. Bugs were found that would have not been found so easily
otherwise. For example, sometimes, when the text area has changed the change broke a part of the text
area (maybe the line representation) and often these bugs appear only on few cases like an 100% empty
file. The unit tests do check this case and others too. Manual tests can easily overlook one case, but
automatic unit tests don't.

Designing the Architecture

41

Lately, unit tests have been written for the document model and the edit actions. Writing unit tests is a
good way to prevent bugs from being reintroduced, and to make sure that the functions work as specified.

We had wanted to write a unit test for every bug found, but this has proven to be a difficult task, as
many bugs are GUI-related and unit testing for GUI code is generally difficult. For example, the caret
gets incorrectly drawn as it is drawn 3 pixels above the line. Now, this type of bug can only be verified
visually. However, we are trying to extend our unit test suite to make SharpDevelop more robust than it
is now. Besides, this would also gives an extra layer of safety, even if code is restructured.

For the rest of the chapter, we will be discussing restructuring and other SharpDevelop practices. Some
of them are unusual, but keep in mind that the SharpDevelop development team is small. Only one
person has written the majority of the code (and read too much of the design patterns book and about
refactoring practices!).

Refactor Frequently
Refactoring is the most important practice we have used in the development of SharpDevelop. If you
want to read more about refactoring, we recommend you to read Refactoring: Improving the Design of
Existing Code by Martin Fowler and others (ISBN 0-201-48567-2).

Refactoring consists of a list of simple rules that can be applied to a program's source code to enhance
its structure, without having to break the program. These rules range from simple renaming to
redesigning of the object structure.

One day, I was asked if there were some aspects of the design for which we would have preferred to
choose another path. All I can say in answer to this question is, "If there is, we would choose the other
path now." There is nothing wrong in taking an unknown approach. If a project is started with a
development team that hasn't done something similar in nature before, it is natural to make wrong
decisions, or at least some that are not as good as they might be.

Chapter 2

42

During the development of SharpDevelop we had made many bad design decisions, some of them are:

❑ We started out by using a 'wrong' data structure for developing the text editor. We had used
an ArrayList of lines, but now we have opted for a linear block model.

❑ Earlier in the process, the text editor was built into SharpDevelop; now it is a component
which can be used in other applications too.

❑ Initially, the overall structure was fragmented, and we had various kinds of XML formats
describing the connections between components; now we have the AddIn tree, which solves
many of our old problems.

I could give many more examples. The point is that, whenever we felt that we had taken the wrong
approach we simply restructured our design, even if it meant we had to restructure a large part of the
project. It is not as much work as it first seems to be and in the long run it helped us a lot and didn't
even hurt anybody (not even Clownfish, which is our mascot).

Sometimes, because of refactoring, we had to remove a feature from SharpDevelop, but it always got
re-implemented again later in much better quality and in less time. Some parts were structured on a
whiteboard; some parts have evolved from first tries. But every part has needed refactoring.

Design and Refactoring
Below I have listed some of our experiences with refactoring. Note that this list isn't a hard guideline
that we used for every case. However, it does give a very good idea about how the program evolved.
Here is a list of our refactoring rules:

❑ If you don't understand a method, break it down into smaller ones and give them proper
relevant names.

❑ Favor readable/understandable code over code with more performance.

❑ Don't design too much today; tomorrow it will be so much easier.

❑ No amount of refactoring is too much.

❑ Use Assertions wherever possible.

❑ Solve each problem at its root.

❑ Last but not least an important rule: Eat your own dog food.

If You Don't Understand a Method, Break it into Smaller Ones

The SharpDevelop project manager always complains that there aren't enough comments in the
SharpDevelop source code. However, the code is commented (but not necessarily in the manner he
wishes). Now you might ask how this contradiction arises.

It's quite simple. The interfaces and services that people use are commented in the .NET way with XML
comment tags. But the implementations are not commented very well.

For each method, we attempted to find a good name that explains what the method does. If someone
doesn't understand a method, it is either a sign of a bad name or a too lengthy method, which should be
further broken down.

Designing the Architecture

43

Commenting is just as important, but it is more important to comment how the methods interact with
each other or how the code works. Giving all methods XML documentation tags results often in just
copying the method name, and gives a bad explanation such as this:

// This method returns back the user name.

string GetUserName()
{
 return userName;
}

This style of comment is fine when you know that you need this method, or when you write a library
that other people use, or when you only want to provide XML documentation for your project, and you
don't want to write documentation manually.

If a method isn't easy to understand, it should be considered harmful and refactored. C# is a language
that is relatively easy to read. We have had enough experiences, where the methods often got cut off
into different methods or that they ended up being thrown away.

Again, if every method were to have extensive documentation, then the development process would
take much more time than it normally does.

The comments on how the method does things should be done through developer comments (that is,
non-documentation comments). Programmers can refer to these comments when they change something
later on.

More important is general documentation about the infrastructure, how classes interact with each other,
or some UML drawings of the infrastructure. In SharpDevelop, we've used UML drawings only on the
whiteboard and very few actually have seen the outside world. Hopefully, this book will change this by
providing us with a decent documentation on the way things are done in the SharpDevelop project.

Favor Readable Code Over Code with Better Performance

I know some people would love to kill me for saying this, but let me explain myself. When I began
programming (in the late 80s), a good programmer was a programmer who could optimize the code in a
such way that people who learn coding in this century wouldn't have imagined it to be possible. But this
optimization had a cost – maintainability.

We often find that a method isn't quite understandable, because the programmer optimized it for
performance rather than readability. In this case, some performance should be sacrificed to enhance
code maintainability. Let's illustrate this point with an example from the SharpDevelop source code.

The SharpDevelop's SaveFile method can be written like this:

public void SaveFile(string fileName)
{
 ... // some stuff

 string lineTerminator = null;
 switch (lineTerminatorStyle) {
 case LineTerminatorStyle.Windows:

Chapter 2

44

 lineTerminator = "\r\n";
 break;
 case LineTerminatorStyle.Macintosh:
 lineTerminator = "\r";
 break;
 case LineTerminatorStyle.Unix:
 lineTerminator = "\n";
 break;
 }

 foreach (LineSegment line in Document.LineSegmentCollection) {
 stream.Write(Document.GetText(line.Offset, line.Length));
 stream.Write(lineTerminator);
 }

 ... // close stream etc.
}

In this code listing, concentrate on the part that is responsible for determining the line terminator for
different operating systems. We have an enumeration giving the line terminator style. But we need some
code that gives us the byte representation for the line terminator styles.

At first sight, this approach isn't easily understandable (now try to imagine 100 methods like this, where
we need to read the code twice). If there is a bug in the code that prevents us from getting the correct
line terminator, we can't even write a unit test for this bug. It might accidentally be reintroduced in the
source code. Remember, no code is small enough to be bug free.

A better approach is to put the switch statement into its own method:

string GetLineTerminatorString(LineTerminatorStyle lineTerminatorStyle)
{
 switch (lineTerminatorStyle) {
 case LineTerminatorStyle.Windows:
 return "\r\n";
 case LineTerminatorStyle.Macintosh:
 return "\r";
 case LineTerminatorStyle.Unix:
 return "\n";
 }
 return null;
}

This enhances readability considerably. We have a self-describing variable for the switch, and have
also encapsulated the switch in a method that can be unit tested. Generally, smaller chunks of code are
more understandable (and writing unit tests for them is easier).

Now, we can set the string with this method, but we create a temporary variable that is only used once
in the code:

 string lineTerminator = GetLineTerminatorString(lineTerminatorStyle);
 foreach (LineSegment line in Document.LineSegmentCollection) {

Designing the Architecture

45

 stream.Write(Document.GetText(line.Offset, line.Length));
 stream.Write(lineTerminator);
 }

Now imagine that we have 5-6 lines of code between the lineTerminator = statement and the
foreach statement; this reduces code maintainability (and this can happen when someone does not
take care when inserting some lines in the code). Temporary variables are good in many cases, but they
are often used excessively.

Instead, the SharpDevelop code implements in the following way:

 foreach (LineSegment line in Document.LineSegmentCollection) {
 stream.Write(Document.GetText(line.Offset, line.Length));
 stream.Write(GetLineTerminatorString(lineTerminatorStyle));
 }

Now, we have saved a line but at the cost of performance. Let's look at some practical numbers – I
saved a file with 10,000 lines on my notebook, the optimized version of this code took about the same
amount of time as the readable/less-optimized version. This is an important lesson – don't optimize
when there is no need for it.

If you aren't sure what is faster, try it out and compare the timings. The compiler and the runtime do a
lot of optimization for us, so never assume that you might do it faster. Always be sure to test it using
exemplary test cases. Even if the readable version is not as fast as the optimized version, we should only
optimize it if there is a real need for optimization. In other words, optimize only in critical sections. A
profiler can help us in finding these critical sections.

Don't Design too Much Today; Tomorrow it Will be so Much Easier

This is another practice people won't believe, but for the SharpDevelop project it has worked. Maybe
you know the old Spathi (a race in Star Control II, a computer game from 1992) saying, "Don't let me
die today, tomorrow it would be so much better."

This rule is my version of this saying. It's not because I dislike working on design (in fact I do a lot of
designing), but I also know that requirements will always change. Therefore, we shouldn't try to make
the code much more flexible or general than it needs to be. We also know that programmers learn more
over time, therefore a simple design that works is enough for the moment. If needed, we can always
refactor the code later.

Don't confuse simple design with bad design; simple designs are not bad. A simple design is a design
that solves our needs now; we can always refactor toward a more sophisticated design later on (should
the need arise). But be careful, if you know some reason why your simple design would fail, don't use it.

Chapter 2

46

No Amount of Refactoring is too Much

Often refactoring seems to be impossible or too great a challenge and, therefore, refactoring is avoided.
However impossible it may seem, we can always break the refactoring process into little steps, each of
which can be done separately, without breaking the whole program. Even if refactoring means much
work now, it always means less work later on. More importantly, even if refactoring seems to be a lot of
work, in reality it isn't; often it just seems to be much more work than it actually is.
Of course, the unit tests for the code refactored must be ported over to the new structure too, or new
unit tests must be written. But in many cases this is very easy.

Use Assertions Wherever Possible

Another practice that helped us a lot in the design and implementation is the use of assertions inside the
code. .NET provides an Assert method, which checks whether an expression is true and if not, it will
display an error message box containing the stack trace (the user can decide if the application should
continue or be stopped).

Every time a variable ought to have a specific value or a comment might be useful for reporting the
variable value at this point, an assertion does this better. The Debug.Assert method is only called
when the DEBUG symbol is defined (in the debug build). In the release build, these assertions won't
be called.

Example of an assertion in SharpDevelops open file method :
public void OpenFile(string fileName)
{
 Debug.Assert(fileUtilityService.IsValidFileName(fileName));
 …
}

This example checks whether the filename is valid and if it is not, a message box appears showing the
stack trace and we see the bad code, which gave us an invalid filename. These checks should be done
before the OpenFile method is called. The checks are done in the GUI code to determine whether a
filename is valid or not.

By the way, the function that checks the filename for validity is very valuable. Therefore, it is listed here
under the best practices. It is a good example of being a little finicky about what the user might input or
functions may think is a valid filename:

public bool IsValidFileName(string fileName)
{
 if (fileName == null || fileName.Length == 0 || filename.Lengt >= 260) {
 return false;
 }

 // platform independent : check for invalid path chars
 foreach (char invalidChar in Path.InvalidPathChars) {
 if (fileName.IndexOf(invalidChar) >= 0) {
 return false;
 }
 }

Designing the Architecture

47

 // platform dependent : Check for invalid file names (DOS)
 // this routine checks for follwing bad file names :
 // CON, PRN, AUX, NUL, COM1-9 and LPT1-9
 string nameWithoutExtension =
 Path.GetFileNameWithoutExtension(fileName);
 if (nameWithoutExtension != null) {
 nameWithoutExtension = nameWithoutExtension.ToUpper();
 }
 if (nameWithoutExtension == "CON" ||
 nameWithoutExtension == "PRN" ||
 nameWithoutExtension == "AUX" ||
 nameWithoutExtension == "NUL") {
 return false;
 }

 char ch = nameWithoutExtension.Length == 4 ?
 nameWithoutExtension[3] : '\0';

 return !((nameWithoutExtension.StartsWith("COM") ||
 nameWithoutExtension.StartsWith("LPT")) &&
 Char.IsDigit(ch));
}

Assertions and check functions are a valuable practice. Unit tests round out the security issues even
more. It is always good to strive for robust and secure code.

Solve Each Problem at its Root

This is another important practice that most people don't follow. When a bug pops up somewhere, it
might go deeper than just the place where it was first seen. If bugs are fixed at a higher layer and not at
their root, then they will turn up where ever the culprit lower-level layer is being used, and ultimately,
we will be forced to apply a work around to every piece of code that uses this layer. This kind of bug
fixes makes the resulting code hard to understand and every time the buggy code is used, the
developers introduce a bug in the code they are currently writing.

Another interesting point is about implementing features. If a feature needs to be implemented, it might
be better to put it in a new place, because other parts of the application might need this too, and we can
easily share it. The same that is true for bugs, applies to new features as well.

For example, we happened to insert a file watcher into SharpDevelop. The contributor who
implemented the file watcher feature put it into the text area code; and it worked, but only for the text
area. The object browser, resource editor, or other display bindings were unable to make use of it.

A much better place to include it would have been in the abstract base class implemented by a display
binding. If an editor (or viewer) needs the file watcher features, it can just implement this class and turn
it on (or off) and all parts of the application can profit from the file watcher feature. One reason for
doing it in this sloppy way was because the person didn't think about the other display bindings.
Another reason was the lack of proper communication, within the project team

Chapter 2

48

I know that it is hard to post to the mailing list something like, "I'll implement a file watcher and want to
put it in the text area." This is mainly because developers don't want to look dumb. But discussing
technical issues and overall design should not be considered dumb. Developers do this when they are at
the same place. But curiously, this doesn't happen when they work in different places, and have instant
messengers and e-mail to share thoughts. This is the reason why all contributions to the main IDE are
overseen by the main developer, who knows the overall structure better than anyone else.

Eat Your Own Dog Food

SharpDevelop was a good application to develop, because it itself was being used in the development
process for the whole time. It is good to actually use the program that you write. If a program is seen
from the user's point of view, UI glitches and missing features (bugs as well) are more apparent.

SharpDevelop has been used since the very first few weeks to develop SharpDevelop. This helped us a
lot in improving the features and in fine-tuning them, something that we might have otherwise
neglected. This is one practice that makes open source software successful. The programmers who write
the stuff usually are their own users too.

Unfortunately, many programmers out there just change their program's behavior instead of improving
the code. For example, in SharpDevelop one of the all time worst features was Search and Replace. It's
because the developer who developed this feature almost never used it; he did all search and replace
operations with ultra edit, as ultra edit had powerful searching features.

Another feature that frequently broke down in SharpDevelop was the template completion window; this
window comes up when you press Ctrl+J. This happened frequently because the SharpDevelop code
developers do not use templates, and hence it was low on their priority list. Later on, this problem was
solved by using the same completion window that was used for code completion.

In earlier days, when SharpDevelop had no active VB .NET contributor, the VB .NET support group
developed random features too. We have some beta testers, but no tester uses all features of the IDE,
and there are some features that no tester ever uses. Lately, we discovered problems with the New
Class Wizard, because no tester or core developer actively uses this wizard.

All these examples prove that it is important to view the product from the user's perspective. Bug
reports from users are helpful, but we certainly don't want to let all the testing be done by our users. We
want to ship a stable product.

Summary
In this chapter, we have discussed the beginnings of SharpDevelop.

We have seen some major design decisions that were made for SharpDevelop, and which are essential
for the understanding of the whole structure. We have learned about design patterns and what the MVC
model is.

In the Best Practices section, we discussed the coding style and it's importance. We also learned about
refactoring and about defect tracking and testing. With this knowledge, we can now go on to the next
chapter, where we will be discussing the add-in implementation in detail.

Designing the Architecture

49

Chapter 2

50

Implementing the Core

In this chapter, we will learn about the structure that forms the basis of SharpDevelop. As in most
applications, the core of SharpDevelop is the executable but unlike most apps it provides only a few basic
services in addition to its main task, which is to load and build the so-called AddIn tree. In Chapter 2, we saw
the main idea behind the AddIn tree and its history. Add-ins are also called plug-ins, but for the purposes of
our discussions we will be using the term add-ins.

In this chapter, we will be discussing the AddIn tree structure it's implementation. We will also be learning
about the mechanism of object creation inside the AddIn tree. This chapter is essential for the understanding
of the interaction between SharpDevelop and the AddIn tree. After discussing the AddIn tree, we will also
look at how SharpDevelop manages property persistence.

The core infrastructure is separated from the rest of the code and can be found in the
src\SharpDevelop\Core directory. The whole add-in system is in this folder in the subfolder AddIns
but we encourage you to read the sections about the add-in system before you try to read the source code.

3

Chapter 3

52

The AddIn Tree
The AddIn tree is a simple tree data structure. There is only one AddIn tree for each instance of
SharpDevelop. This is the reason for implementing it by using the singleton design pattern (as seen in
Chapter 2).

AddIn Tree

add-in

add-in
add-in

Plugs into
Plugs into

Plugs into

This diagram will give us the basic idea of add-ins; add-ins just plug into the tree and the tree contains the
whole system. Physically, an add-in is defined by an XML file and a set of DLLs that are referenced by the
XML. The DLLs provide the code, while the XML defines how and where it plugs into the AddIn tree.

We will now take a closer look at the AddIn tree:

AddIn Tree

SubPath2

Root Path1 SubPath1 Node1 SubNode1

SunNode2

Path2 Node2

Node3

In the above diagram we have two different objects in the tree: nodes and paths.

The AddIn tree is a tree that "binds them all". The add-ins are the nodes of the AddIn tree (the paths are
not 'really' add-ins because they have no use other than to structure the tree). The IDE changes its
behavior according to what these nodes define. The path to the nodes is structured like a file system. If we
want to access SubNode2 we have to specify the location as /Path1/SubPath1/Node1/SubNode2.
We see that Node1 is like a path but we will see the difference between a path and a node later. For now,
we will just say that nodes are paths that contain definitions of behavior.

All SharpDevelop parts that use the AddIn tree must know the path from which they can obtain the required
nodes. For example, the SharpDevelop Options dialog has the path /SharpDevelop/Dialogs/
OptionsDialog. In this path, and its sub-paths, only dialog panels are stored. The dialog now grabs all
panels from this sub-tree and inserts them into a tree view where they are displayed. In other words, the
add-in that defines a particular path also gets to define the (runtime) interface of the nodes that can be
inserted below it:

Implementing the Core

53

In the left side of the Options panel, in the tree view, we can see our AddIn tree nodes. The folders represent
empty nodes and the other tree-view nodes without the folder icon (for example, Code Generation) are the
nodes that contain panels (in this case all subnodes of this node are ignored). To add new panels, add-ins just
have to insert the correct nodes into the path, and the dialog will show them. All visible elements in
SharpDevelop (and most invisible ones too; for example, keyboard commands in the text editor, like cursor
keys, are implemented as nodes in the add-in tree) are defined by nodes.

Advantages of Using the AddIn Tree
The AddIn tree has quite a few advantages over the other design approaches:

❑ It allows extension of existing add-ins by other add-ins. The main problem when add-ins are
to be extended by add-ins lies in the fact that the existing add-ins have to be informed when
the other add-ins perform an action (like building a context menu). This is required because
the add-in that want to extend the other must extend the 'actions' of the other add-in and
some sort of communication must happen between them. This is the main issue solved with
the add-in structure. Unfortunately, this is the hardest one to explain because most people
have never encountered this problem or they have not thought about this grade of flexibility
(even if they have written an add-in system for their programs).

Chapter 3

54

❑ Another advantage of the AddIn tree is that the assembly files containing the executable
code need not reside in one directory. They can be stored in any location the developer wants
to, and the add-in system will manage the file loading. This makes it easy to implement a
"copy and remove" deployment of add-ins. Just copy the add-in folder, which contains an
XML definition and the required assemblies, to the SharpDevelop AddIns folder and it will
work. Remove the directory and the add-in is taken out! Note that the .NET standard is to put
all the assemblies into one bin directory.

❑ Also with this approach, the add-ins don't have to implement their own add-in structure, as all
the add-ins are based on only one system – The AddIn tree. We can customize just any
functionality via the same narrow interface.

Now, we will take a look at how deeply the add-in is rooted in the application. Let's begin with the method
that runs everything. This method can be found inside the
src\SharpDevelop\Core\SharpDevelopMain.cs file:

public class SharpDevelopMain
{
 static SplashScreenForm splashScreen = null;
 static string[] commandLineArgs = null;

 public static SplashScreenForm SplashScreen {
 get {
 return splashScreen;
 }
 }

 public static string[] CommandLineArgs {
 get {
 return commandLineArgs;
 }
 }

 [STAThread()]
 public static void Main(string[] args)
 {
 commandLineArgs = args;
 bool noLogo = false;

 foreach (string arg in args) {
 if (arg.ToUpper().EndsWith("NOLOGO")) {
 noLogo = true;
 }
 }

 if (!noLogo) {
 splashScreen = new SplashScreenForm();
 splashScreen.Show();
 }

 ArrayList commands = null;
 try {
 ServiceManager.Services.

Implementing the Core

55

 InitializeServicesSubsystem("/Workspace/Services");

 commands = AddInTreeSingleton.AddInTree.GetTreeNode
 ("/Workspace/Autostart").BuildChildItems(null);

 for (int i = 0; i < commands.Count - 1; ++i) {
 ((ICommand)commands[i]).Run();
 }
 } catch (XmlException e) {
 MessageBox.Show("Could not load XML :\n" + e.Message);
 return;
 } catch (Exception e) {
 MessageBox.Show("Loading error, please reinstall :\n" + e.ToString());
 return;
 } finally {
 if (splashScreen != null) {
 splashScreen.Close();

 }
 }

 // run the last autostart command, this must be
 // the workbench starting command
 if (commands.Count > 0) {
 ((ICommand)commands[commands.Count - 1]).Run();
 }

 // unloading services
 ServiceManager.Services.UnloadAllServices();
 }
}

First, the Main method initializes the splash screen. This is not overly important, but while we do the real
work, that of building the AddIn tree, the user will at least see something.

The try...catch block is rather important. A call is made to the AddIn tree to obtain the tree node
/Workspace/Autostart, and then it builds all child items from this node. Later on we will see how this is done.

After this, the for statement casts these built child items into the ICommand interface and the Run method is
called (except for the last one).

After the try...catch block, the last command is started. We start it separately to ensure that the splash
screen is closed when the last command starts. This last command fires up the workbench form (the main
window) of the IDE and runs the message loop.

Note that, in this code listing, we do not see any Windows.Forms code, or where the tip of the day pop-up
is launched (this pops up when SharpDevelop starts). Nor do we see the code completion wizard startup code
(this wizard is started at the first time SharpDevelop is launched). All of this is done with the help of the
AddIn tree. As per our design principles, SharpDevelop does not embed any GUI layer in the Core, giving a
good extensibility for any further use of other toolkits. The GUI layer is only implemented when is actually
needed by the application.

Chapter 3

56

It is possible to build a completely different application on top of the AddIn tree by just putting other Run
commands in the tree. This application can then benefit from the AddIn tree, just as SharpDevelop does. The
AddIn tree was not part of SharpDevelop from the start. It started its life as a subsystem of SharpCvs
(formerknown as NCvs), and afterwards it was ported over to SharpDevelop and SharpDevelop was
refactored to take advantage of this new add-in system. SharpCvs was part of the SharpDevelop distribution
but now it is no longer part of it because the project was discontinued and no longer maintained.

When the last Run command returns, the application message loop is assumed to have ended and it is time to
clean up; this is achieved through service unloading. We will be taking a detailed look at services in Chapter 5.

Now we will delve deeper into the add-in structure and have a look at the superstructure of the AddIn tree.

The AddIn Tree Superstructure
The AddIn tree is defined by an interface that exposes all the functionality that is used by the rest of the
application. To get an overview of the functionality provided by this structure, we will take a look at the
IAddInTree interface. It can be found in src\SharpDevelop\Core\AddIns\IAddInTree.cs.

public interface IAddInTree
{
 // Returns the default condition factory.
 ConditionFactory ConditionFactory {
 get;
 }

 // Returns the default codon factory.
 CodonFactory CodonFactory {
 get;
 }

 // Returns a collection of all loaded add-ins.
 AddInCollection AddIns {
 get;
 }

 // Returns a TreeNode corresponding to <code>path</code>.
 IAddInTreeNode GetTreeNode(string path);

 // Inserts an AddIn into the AddInTree.
 void InsertAddIn(AddIn addIn);

 // Removes an AddIn from the AddInTree.
 void RemoveAddIn(AddIn addIn);

 // This method does load all codons and conditions in the given assembly.
 Assembly LoadAssembly(string assemblyFile);
}

Implementing the Core

57

At first, the AddIn tree has the ConditionFactory and CodonFactory objects. We will be looking at
codons in detail later on in this chapter. For now, we will just say that these factories create our AddIn tree
node contents. The next property is the AddIns property, which is also discussed later in this chapter.

After the AddIns property, the method that is really important for us is the GetTreeNode method. This is
the only method needed by the add-ins to use the AddIn tree. The other methods (and properties) are
currently only used internally in the core assembly.

The InsertAddIn and RemoveAddIn methods may be useful for implementing an add-in manager in the
IDE; however, currently they are not used. Now that we know about the most important method of the
IAddInTree interface, let's look at the definition of an add-in file.

Add-in Definition
We will begin this section by examining a simple add-in file:

<AddIn name = "Typed Collection Wizard"
 author = "Mike Krueger"
 copyright = "GPL"
 url = "unknown"
 description = "Creates a typed collection"
 version = "1.0.0">

 <Runtime>
 <Import assembly="TypedCollectionWizard.dll"/>
 </Runtime>

 <Extension path = "/SharpDevelop/Templates/File/TypedCollection">
 <DialogPanel id = "CollectionGenerator"
 label = "Typed Collection"
 class = "TypedCollectionGenerator.TypedCollectionWizardPanel"/>
 </Extension>
</AddIn>

This is a typical SharpDevelop add-in definition, and is written in XML. The root node has attributes about
the add-in, these attributes are not currently used in any code but we use them to carry information about the
add-in.

The <Runtime> node contains information about the assemblies that are required for this add-in to work.
This is usually a list of assemblies that contain the classes used in the definition file. After that, an
<Extension> node is defined, which has a path attribute and one child.

In this case, the child is a dialog panel, which has some attributes. This child will be placed under the
/SharpDevelop/Templates/File/TypedCollection path in the add-in tree. We will call this child a
'codon'. In other words, unlike <Runtime> and <Extension>, the <DialogPanel> node type is not
defined by the AddIn tree. Rather it is defined by a mechanism that we called a codon.

Chapter 3

58

We chose the name codon, because other terms that we used had misleading meanings and implications. For
example, initially they were called as modules, but this term was misleading and created problems when we
tried to explain the concept. Therefore, we decided to choose another name that isn't used anywhere else in
computing. The <DialogPanel> node produces an instance of an object type that has its attributes defined
by a codon. For reasons of brevity, we sometimes use the term codon to mean the XML node as well.

Objects from this codon class get stored in the tree structure and represent the codon XML nodes at run time
and are also called codons. But this rather liberal usage of the term is not a problem since, from the context of
our discussion, it is quite clear which codon is meant. In cases where this is confusing, we will use the term
'codon XML node' for the XML nodes, 'codon class' for the class representation, and 'codon objects' for the
objects created in the add-in tree at run time.

As we can see, a codon is just an implementation of the ICodon interface, found in the
src\SharpDevelop\Core\AddIns\Codons\ICodon.cs file:

public interface ICodon
{

 // returns the add-in in which this codon object was declared
 AddIn AddIn {
 get;
 set;
 }

 // returns the name of the xml node of this codon. (it is the same
 // for each type of codon (the name of the XML tag inside
 // the add-in file))
 string Name {
 get;
 }

 // returns the ID of this codon object.
 string ID {
 get;
 }

 // returns the Class which is used in the action corresponding to
 // this codon (may return null, if no action for this codon is
 // given)
 string Class {
 get;
 }

 // Insert this codon after all the codons defined in this string
 // array
 string[] InsertAfter {
 get;
 set;
 }

 // Insert this codon before the codons defined in this string array
 string[] InsertBefore {

Implementing the Core

59

 get;
 }

 // Creates an item (=object) with the specified sub items and
 // the current Condition status for this item.
 object BuildItem(object owner, ArrayList subItems,
 ConditionFailedAction action);
}

All codons know their AddIn (the object representation for the definition file). Each codon class must have a
unique name. This name is the same as the name of the codon XML node and it must be attached to the
codon class with the custom attribute CodenNameAttribute. It defines the name of the codon XML node.
The AbstractCodon base class (see below) uses CodenNameAttribute to implement the get property
(not shown) as required by interface ICodon.

The ID is the name of the codon object inside the tree (codons are referenced by their ID), therefore no two
codons can have the same ID when they are stored under the same AddIn tree path. This ID comes from the
XML attribute CollectionGenerator of the DialogPanel, which we saw before.

The other attributes are Class, InsertAfter, and InsertBefore. These attributes are not required for a
codon XML node definition but they get used frequently. Not all codon classes use the Class attribute but
InsertAfter/InsertBefore is used to arrange the codons on the same level.

For some codons, such as dialog panels, this may make sense, while for others like display bindings (these
create views for the IDE; we see display bindings in Chapter 6) the arrangement is not important.

The only method that a codon must have is the BuildItem method. In our dialog panel codon example, the
codons do not implement the control directly – instead they create new panels. This is done with a call to the
BuildItem method.

Codons can define additional attributes, the values of which they obtain from the XML definition, and can
apply them to the objects that they build. The AddIn tree puts these build codons together so that they can be
used outside the tree structure.

Now we will take a look at the manner in which a codon class flags the add-in system that it has attributes
that need to be read from the codon XML node. One approach would be to use attribute names that are
equal to field names in the object. However, this would not give much flexibility; what to do if some field
names are not set in the XML? Or what about fields that should not be able to be set inside the XML node?
Therefore another approach was chosen – flagging fields by using attributes.

We use the custom attributes feature of C# to define which attributes a codon has, because we need to make
it explicit when a codon has mandatory attributes. For example, all codons must have the ID attribute
defined, so they can be named. Besides the required attribute issue, it is not good if all class fields are treated
as potential XML attributes. To illustrate how this works we will look at the abstract implementation, which
can be found under src\SharpDevelop\Core\AddIns\Codons\AbstractCodon.cs:

public abstract class AbstractCodon : ICodon
{
 [XmlMemberAttributeAttribute("id", IsRequired=true)]

Chapter 3

60

 string id = null;

 [XmlMemberAttributeAttribute("class")]
 string myClass = null;

 [XmlMemberArrayAttribute("insertafter")]
 string[] insertafter = null;

 [XmlMemberArrayAttribute("insertbefore")]
 string[] insertbefore = null;

 // Canonical get/set properties for all attributes seen above are taken
 // out.

 // Creates an item with the specified sub items and the current
 // Condition status for this item.
 public abstract object BuildItem(object owner, ArrayList subItems,
 ConditionFailedAction action);
}

We can see that XmlMemberAttributeAttribute or XmlMemberArrayAttribute has been defined
before each field in the AbstractCodon class. This attribute has one parameter, which is the attribute name
that a codon XML node may have. The attribute has an IsRequired property and, if it is set to true, all
codon XML nodes that describe an instance of this class must have this attribute or the AddIn class which
loads the codon XML node will throw an exception.

Codons have a class attribute, CodonNameAttribute, applied that has only one parameter – the codon
name. This is the name of the codon XML node. Now that we know about codons in detail, let's look at
object generation.

From Tree Node to Running Object
To understand how objects are created, we need to understand the method that is used most often inside the
add-in tree:

IAddInTreeNode GetTreeNode(string path);

As we can see, this method returns an IAddInTreeNode. We will now take a look at this interface. It can be
found under src\SharpDevelop\Core\AddIns\IAddInTree.cs:

public interface IAddInTreeNode
{
 // A hash table containing the child nodes.
 Hashtable ChildNodes {
 get;
 }

 // A codon defined in this node
 ICodon Codon {
 get;

Implementing the Core

61

 }

 // All conditions for this TreeNode.
 ConditionCollection ConditionCollection {
 get;
 }

 // Gets the current ConditionFailedAction
 ConditionFailedAction GetCurrentConditionFailedAction(object caller);

 // Builds all child items of this node using the <code>BuildItem</code>
 // method of each codon in the child tree.
 ArrayList BuildChildItems(object caller);

 // Builds one child item of this node using the <code>BuildItem</code>
 // method of the codon in the child tree. The sub item with the ID
 object BuildChildItem(string childItemID, object caller);
}

We see that the child nodes are stored in a Hashtable. This means that finding a particular tree node is
fast. The next property is the Codon property. It gives us the name of the codon stored in the node. We will
be looking at conditions later on.

For now, we will discuss the BuildChildItems and BuildChildItem methods.

The BuildChildItems method calls BuildItem on all child codons (if any) and returns them as an
ArrayList. This method is defined in the DefaultAddInTreeNode class, which is located in the file
src\SharpDevelop\Core\AddIns\DefaultAddInTreeNode.cs:

public ArrayList BuildChildItems(object caller)
{
 ArrayList items = new ArrayList();

 IAddInTreeNode[] sortedNodes = GetSubnodesAsSortedArray();

 foreach (IAddInTreeNode curNode in sortedNodes) {
 // don't include excluded children
 ConditionFailedAction action =
 curNode.GetCurrentConditionFailedAction(caller);
 if (action != ConditionFailedAction.Exclude) {
 ArrayList subItems = curNode.BuildChildItems(caller);

 object newItem = curNode.Codon.BuildItem(caller, subItems, action);

 if (newItem != null) {
 items.Add(newItem);
 }
 }
 }
 return items;
}

Chapter 3

62

First, we obtain the child nodes as a sorted array. The child items get sorted topologically according to the
InsertAfter/InsertBefore properties of the sub-nodes' codons. This might cause strange effects when
we specify that a node should be put before a particular node. Note that by before we mean not directly
before the node, but rather somewhere before that node in general. Often it is necessary to specify the items
between which it should be inserted for the results that are expected. After that, the condition for the child is
checked, and if it is not excluded it will be put into the items ArrayList.

Note that the subItems are created recursively with this method (called on the child) and that the codon
BuildItem method must handle the sub-items itself. Each tree node can have sub-items and during the
object creation these sub-items must be handled.

This is important because what a sub-item is isn't clear on the level of the AddIn tree node.

For example, if it is a menu item then the items must be cast to the menu item class and be put into the items
menu item collection. Unfortunately, the DefaultAddInTreeNode does not know about the codon
implementation. Only the codon does. Therefore, codons must handle their sub-items by themselves. Note
that not all codons are able to handle sub-items. For example, file filter codons do not handle sub-items, these
just get discarded; but it is up to the codon implementer to decide what happens (throw exception, silently
discard, or do something else).

After this, the new item will be put into the ArrayList and the array list is returned. The
BuildChildItem method does the same thing, except that it only builds one specific child.

Now that we know how objects are created, let's look at look at the creation of codons.

Codon Creation
To properly understand how a codon is created, we first need to look at the codon subsystem:

1 1

AbstractCodon

CondonBuilder<<interface>>
ICodon

CondonFactory

+CreateCondon()

1..*

We have already seen the ICodon interface in the section on Add-in Definition. Now we will be looking at the
classes responsible for the codon creation. The system allows new codons to be defined by add-ins. This
ensures much more flexibility than defining a static set of codons inside the core assembly. When an
assembly is imported by the add-in subsystem, it is scanned for types that have the CodonNameAttribute
attached and are a subclass of the AbstractCodon class.

Implementing the Core

63

We decided to make the inheritance from the AbstractCodon class mandatory because it is easier to use
this abstract class and it does not introduce any limitations to our current codon implementations. If the
future proves that we were wrong with this assumption we can switch back to make a ICodon
implementation and the CodonNameAttribute sufficient for a codon implementation without
breaking anything.

The AbstractCodon class provides the basic functionality, which every codon must have.
We already know that codons are XML-defined objects. The codon responsible for a specific XML node is
determined by the node name. This node name and the codon name, which is given by the
CodonNameAttribute, must be equal. The core locates the codon that has a CodonNameAttribute,
which matches the XML node name. After that a new CodonBuilder is created for these types, which is
handed over to the CodonFactory.

The codon builder (src\SharpDevelop\Core\AddIns\Codons\CodonBuilder.cs) builds a
codon with:

public ICodon BuildCodon(AddIn addIn)
{
 ICodon codon;
 try {
 // create instance (ignore case)
 codon = (ICodon)assembly.CreateInstance(ClassName, true);

 // set default values
 codon.AddIn = addIn;
 } catch (Exception) {
 codon = null;
 }
 return codon;
}

It gets the assembly and class name in the constructor; that is all that is needed. The CodonBuilder reads
the CodonNameAttribute and makes the attribute value available as a public property. The
CodonFactory that is available under src\SharpDevelop\Core\AddIns\Codons\
CodonFactory.cs searches for a given XML node for the correct builder. In other words, the
CreateCodon method of CodonFactory takes an XML node, finds the proper CodonBuilder, and asks
it to build the codon. A reference to the add-in needs to be carried along:

public class CodonFactory
{
 Hashtable codonHashtable = new Hashtable();

 public void AddCodonBuilder(CodonBuilder builder)
 {
 if (codonHashtable[builder.CodonName] != null) {
 throw new DuplicateCodonException(builder.CodonName);
 }
 codonHashtable[builder.CodonName] = builder;
 }

Chapter 3

64

 public ICodon CreateCodon(AddIn addIn, XmlNode codonNode)
 {
 CodonBuilder builder = codonHashtable[codonNode.Name] as CodonBuilder;

 if (builder == null) {
 throw new ApplicationException("unknown condition found");
 }

 return builder.BuildCondition(addIn);
 }
}

The AddCodonBuilder method just adds a new builder to the factory, and in the CreateCodon method,
the correct builder is taken out of the hash table that contains the CodonBuilder.

Conditions
Now we are ready to move on to conditions. A condition is used in the AddIn tree to indicate whether a
node is active (that is, if it should be built when BuildItem is called). This is useful for dynamically
changing the AddIn tree. Dynamic changes are used in the menus to make menu items invisible, when they
aren't used or to disable menu items. All this is done using conditions:

< Condition openproject="*" action="Disable">
 <!-- Here may follow a menu definition (left out for this chapter) -->
</Condition>

(This is just an example and does not reference to a real file.)

The <Condition> node is a sub-node of an <Extension> node, which have seen. Now we will look at the
<Condition> node; it has an action attribute that is set to Disable. Currently there are only three possible
options for a condition – Nothing, Exclude, and Disable. These actions occur only when the condition
evaluates to false.

Nothing does nothing, if the condition fails. If we choose this, it will be similar to not using a condition. This
is only included for the sake of completeness. If no action attribute is specified, Exclude is the default action.
It merely removes the item virtually from the AddIn tree when the BuildItem method is called. Disable
tries to disable the item. The codon object must handle the disable case by itself. Only the object knows
whether it can be disabled and how this happens. For example, if we disable a menu item the Enabled
property has to be set to false.

Implementing the Core

65

From the coding viewpoint the conditions are similar to the codons:

1 1

AbstractCondition

CondonBuilder<<interface>>
ICondition

ConditionBuilderCollection

+GetBuilderForCondition(conditionNode : XmlNode) ()

1..*

ConditionFactory

+CreateCondon()

The only difference is that the ConditionFactory doesn't have a hash table that contains the condition
builders directly, instead a ConditionBuilderCollection is used that stores all conditions in a
collection and searches in the collection for the right condition. This is done because conditions are not
differentiated by name. Instead, conditions use different attributes for identification. That means that no two
different conditions can expose the same set of required attributes because the implementation must chose
only one condition. This limitation makes sense – if two conditions have the same set of attributes they
should mean the same thing or else more meaningful names should be chosen.

The interface is also different. For example, conditions do not need ID numbers or arrangement information.
The interface definition can be found under src\SharpDevelop\Core\AddIns\
Conditions\ICondition.cs:

public interface ICondition
{
 // Returns the action which occurs, when this condition fails.
 ConditionFailedAction Action {
 get;
 set;
 }

 // Returns true, when the condition is valid otherwise false.
 bool IsValid(object caller);
}

The condition interface is small, but this is all that's needed. We will be looking at more practical aspects of
conditions and codons in the next chapter. For now, this should be sufficient to introduce the next section on
loading of add-in XML files and construction of the AddIn tree.

Chapter 3

66

AddIn Management
The add-in management is done by the AddIn class, which is located under src\SharpDevelop\Core\
AddIns\AddIn.cs. This class is a representation of the XML add-in file format, which we will be seeing in
the next chapter. We will not go through this class in full, because it is similar to what we have seen – a file
gets read and it is inserted into the tree. Nothing unexpected happens.

First we will need to get a short overview of the AddIn class:

1 *

AddIn

+Name
+Author
+Copyright
+Url
+Description
+Version
+FileName
+RequiredExtensionsPaths
+RuntimeLibraries

+CreateObject(className:string)()
+Initialize(fileName:string)()

Extension

+Path
+Conditions
+CondonCollection

The attributes shown in the diagram above are populated from the add-in XML file that we saw in the Add-in
Definition section. The extensions contained in the add-in XML are stored in a separate class called
Extension that contains all extension paths and contents defined by this add-in. An extension path is just a
shortcut for putting codons in the appropriate path.

For example, / is the root path and when we specify /myPath/subPath1 the node myPath is created as
child of the root node and this node gets a child node called subPath. All codons defined in this
extension path are children of the subPath1 node. We save this add-in structure to have the option of
removing an add-in at run time.

Now, we will look at how the AddIn class gets loaded and initialized. To understand this let's examine the
Initialize method:

public void Initialize(string fileName)
{
 this.fileName = fileName;
 XmlDocument doc = new XmlDocument();
 doc.Load(fileName);

 try {
 name = doc.DocumentElement.Attributes["name"].InnerText;
 author = doc.DocumentElement.Attributes["author"].InnerText;
 copyright = doc.DocumentElement.Attributes["copyright"].InnerText;
 url = doc.DocumentElement.Attributes["url"].InnerText;
 description = doc.DocumentElement.Attributes["description"].InnerText;
 version = doc.DocumentElement.Attributes["version"].InnerText; }
 catch (Exception) {
 throw new AddInLoadException("No or malformed 'AddIn' node");

Implementing the Core

67

 }

 foreach (object o in doc.DocumentElement.ChildNodes) {
 if (o is XmlElement) { // skip comments
 XmlElement curEl = (XmlElement)o;

 switch (curEl.Name) {
 case "Runtime":
 AddRuntimeLibraries(Path.GetDirectoryName(fileName), curEl);
 break;
 case "Extension":
 AddExtensions(curEl);
 break;
 }
 }
 }
}

First, we obtain all add-in attributes from the root node and store them. After that, the child nodes are parsed
and the helper methods handle them differently:

❑ Runtime node
The runtime node contents get loaded into the AddIn tree. The node contains a list of
assemblies that are loaded and scanned for additional codons and conditions, which get
inserted into the AddIn tree factories

❑ Extension node
This node is used to place the codons in the tree. The extension node takes a path that will be
used to insert all subnodes that describe codons into the tree under the path given.

We do have the problem of add-in dependencies. This is solved by queuing the add-in load. We try to load
add-ins sequentially; if one loading fails the add-in is placed at the end of the queue and all other XML files
are loaded before the add-in, which failed. If no add-in in the queue can be loaded, then we show the load
errors (the thrown exceptions) that prevent the add-ins from loading.

We will now delve deeper into the AddExtensions method from the AddIn class, which is responsible for
parsing any Extension elements, including the conditional and various codon subnodes:

void AddExtensions(XmlElement el)
{
 if (el.Attributes["path"] == null) {
 throw new AddInLoadException("One extension node has no path attribute
 defined.");
 }
 Extension e = new Extension(el.Attributes["path"].InnerText);
 AddCodonsToExtension(e, el, new ConditionCollection());
 extensions.Add(e);
}

As you can see, after checking that the extension has a path attribute, this method creates an Extension
object based on the path and calls AddCodonsToExtension to populate it.

Chapter 3

68

Lets look at the AddCodonsToExtension method.

void AddCodonsToExtension(Extension e, XmlElement el, ConditionCollection
conditions)
{
 foreach (object o in el.ChildNodes) {
 if (!(o is XmlElement)) {
 continue;
 }
 XmlElement curEl = (XmlElement)o;

After setting up a loop through the elements in the Extension element of our XML document, we switch
on the name of each element. Some elements are ignored because their sub-trees do not contain codons and
so we don't need to traverse them.

 switch (curEl.Name) {
 case "And": // these nodes are silently ignored.
 case "Or":
 case "Not":
 case "Condition":
 break;

If the node is a Conditional node, we need to create a new ICondition object. If the Conditional
element does not have the required attributes, we create a condition with a ConditionFailedAction:

 case "Conditional":
 ICondition condition = null;

 // construct condition
 if (curEl.Attributes.Count == 0 || (curEl.Attributes.Count == 1 &&
 curEl.Attributes["action"] != null)) {

 condition = BuildComplexCondition(curEl);
 // set condition action manually
 if (curEl.Attributes["action"] != null) {
 condition.Action = (ConditionFailedAction)
 Enum.Parse(typeof(ConditionFailedAction),
 curEl.Attributes["action"].InnerText);
 }

If the condition is null after calling BuildComplexCondition, we throw an exception, as the condition
must not have been formatted correctly.

 if (condition == null) {
 throw new AddInTreeFormatException
 ("empty conditional, but no condition definition found.");
 }

Implementing the Core

69

If the element does have the required attributes, we can go ahead and create the condition from the AddIn tree.

 } else {
 condition = AddInTreeSingleton.AddInTree.
 ConditionFactory.CreateCondition(this, curEl);
 AutoInitializeAttributes(condition, curEl);
 }

We then add the condition to the ConditionCollection of conditions to be traversed. After traversing
the collection, we remove the last condition as it has now been traversed.

 // put the condition at the end of the condition 'stack'
 conditions.Add(condition);

 // traverse the subtree
 AddCodonsToExtension(e, curEl, conditions);

 // now we are back to the old level, remove the condition
 // that was applied to the subtree.
 conditions.RemoveAt(conditions.Count - 1);
 break;

There is one more type of element that we need to deal with – codons. As codons do not use a single element
name, we use the default case of our switch statement to handle them. This means that anything that has
not been dealt with previously will be treated as a codon:

 default:
 ICodon codon = AddInTreeSingleton.AddInTree.
 CodonFactory.CreateCodon(this, curEl);
 AutoInitializeAttributes(codon, curEl);

Before we add the codon to the CodonCollection of the extension, we need to set its InsertAfter and
InsertBefore properties to ensure that it is added in the correct place.

 e.Conditions[codon.ID] = new ConditionCollection(conditions);
 if (codon.InsertAfter == null &&
 codon.InsertBefore == null && e.CodonCollection.Count > 0) {
 codon.InsertAfter = new string[] {
 ((ICodon)e.CodonCollection
 [e.CodonCollection.Count - 1]).ID };
 }
 e.CodonCollection.Add(codon);

If the element has child nodes then we need to add an extension for the codon.

 if (curEl.ChildNodes.Count > 0) {
 Extension newExtension = new Extension(e.Path + '/' + codon.ID);
 AddCodonsToExtension(newExtension, curEl, conditions);
 extensions.Add(newExtension);

Chapter 3

70

 }
 break;
 }
 }
}

If you want to go on to learn more about the AddIn tree, you can see it in action in the next chapter. For
now, we will take a break from AddIns and look at property management in SharpDevelop.

Property Management in SharpDevelop
Property management is the ability to manage, save, and load all 'options' (we call them properties) that the
user has altered while they use the program. Examples of properties are the UI language or recently opened
files. SharpDevelop has a simple common model for this issue. We will look at how this problem was solved
because it may be helpful to you for your projects.

In this section, when we speak of properties we do not mean properties in the sense of C# properties. We
mean a more general concept. Our concept is simple, we have a key and a value, each key has at most
one value.

<<interface>>
IXmlCovertable

+FromXmlElement()
+ToXmlElement()

<<interface>>
IProperties

+GetProperty()
+SetProperty()

DefaultProperties

The diagram gives us an overview of the property management system. The IXmlConvertable interface is
the base for the IProperties interface. Currently, there is only one implementation of the IProperties
interface, called DefaultProperties.

We will see how the property system works inside SharpDevelop and how to use it for our own add-ins,
having done that, we will be capable of building a system like this in our other applications too. Finally, we
will discuss how to make properties persistent. The Property system is able to store simple types into
properties as well as whole objects. We will also discuss the reasons for property management being so
difficult and the solutions to reduce the level of complexity.

Implementing the Core

71

The Idea behind the IXmlConvertable Interface
SharpDevelop defines an interface called IXmlConvertable to indicate that an object can convert its
contents to XML and restore its state later. Now we look at this interface located in the
src\SharpDevelop\Core\Properties\IXmlConvertable.cs file:

public interface IXmlConvertable
{
 object FromXmlElement(XmlElement element);

 XmlElement ToXmlElement(XmlDocument doc);
}

As we can see the definition is quite simple; there are only two methods. The FromXmlElement method
takes an XmlElement, and returns a new instance that gets initialized with the content from the element. We
do not want to use .NET serialization because the object may change, but the file format does not. When the
XML format changes, we may consider reading old nodes too and
convert them.

.NET XML serialization was used in the first version of the code completion database (you can find more
about it in Chapter 13) but later on it was replaced by our own routines. The code completion database stores
all information (classes/members and documentation) about the .NET Framework classes into a single file.

The version that used serialization took up 90MB hard disk space and over 15 minutes to build on my
notebook. The routine that was written without serialization takes only around 20MB and builds the database
in 1 minute on the same machine. The hand-made solution is faster and much smaller because the file format
is optimized to avoid overhead.

.NET XML serialization is good when the volume of data is less. Besides, we shouldn't spend too much
time on solving the persistence issue. Now that we have learned about the IXmlConvertable interface,
let's examine the IProperty interface because it extends IXmlConvertable.

Overview of the IProperties Interface
First, we will need to get an overview of the main interface – the IProperties interface. The rest of the
application works with this simple interface; this is all that we need. We have functions for getting and setting
properties. The IProperties interface also defines a method for cloning an IProperties object. The
IProperties interface is located in the src\SharpDevelop\Core\Properties\
IProperties.cs file:

public interface IProperties : IXmlConvertable
{
 object GetProperty(string key, object defaultvalue);
 object GetProperty(string key);
 int GetProperty(string key, int defaultvalue);
 bool GetProperty(string key, bool defaultvalue);
 short GetProperty(string key, short defaultvalue);

Chapter 3

72

 byte GetProperty(string key, byte defaultvalue);
 string GetProperty(string key, string defaultvalue);
 System.Enum GetProperty(string key, System.Enum defaultvalue);

 void SetProperty(string key, object val);

 IProperties Clone();

 event PropertyEventHandler PropertyChanged;
}

Let's take a closer look at the various forms of the GetProperty methods. The simplest form is:

object GetProperty(string key);

This form gets a key and returns an object to us. In SharpDevelop, this method is only used for getting
temporary properties.

A temporary property is simply a property that cannot be written to disk. In this case, the user (we) must
know about the property type and perform all castings. The problem with a persistent object property lies in
converting it into XML and back (this is discussed in the next section).

Another form of this method is:

object GetProperty(string key, object defaultvalue);

This form takes an object and uses a default value. The default value is returned when a property with the
key is not found, and the object defaultvalue is inserted under the key. This approach makes it easier to
create a default property file. Otherwise, all properties must be changed to generate a default file. This
method can be used for persistent properties also, but shorthand methods are defined for basic types that
make the usage of properties easier, (basic types are int, bool, short, byte, string, and enum).

These overloaded methods will perform some casting for the user, which makes them more comfortable to
use. These variants are used more often than the object-based one.

In the next section, we will see why the first form of GetProperty method is special and how it manages to
store objects into the XML file.

The Default Implementation
Now we will look at the default implementation of the IProperties interface. We will be looking at the
important parts only; we won't be seeing the empty default constructor or how an OnEvent method is defined.

This implementation is in the
src\SharpDevelop\Core\Properties\DefaultProperties.cs file:

public class DefaultProperties : IProperties
{
 Hashtable properties = new Hashtable();

Implementing the Core

73

As we can see, this class is based on System.Collections.Hashtable, this ensures a decent speed
when a get or set method is used on a property. Let's look at the GetProperty method:

 public object GetProperty(string key, object defaultvalue)
 {
 if (!properties.ContainsKey(key)) {
 if (defaultvalue != null) {
 properties[key] = defaultvalue;
 }
 return defaultvalue;
 }

 object obj = properties[key];

 // stored an XmlElement in properties node >
 // set a FromXmlElement of the defaultvalue type at this
 // propertyposition.
 if (defaultvalue is IXmlConvertable && obj is XmlElement) {
 obj = properties[key] = ((IXmlConvertable)defaultvalue).
 FromXmlElement((XmlElement)((XmlElement)obj).FirstChild);
 }
 return obj;
 }

The first part is simple; it just says that when the hash table cannot find the key we simply return the default
value. In this case, the key is created, the default value is assigned, and the default value is returned. (But only
the first time; at the second call the key will exist.)

From now on, things get more complicated. We will need to know a bit about the loading routines. The
basic-types just get an XML node that has a value attribute. All other nodes are treated as object nodes and
are not converted when the property file is loaded. Instead, they are converted when the get property method
is first called. We just overwrite the values of the default value and give it back.

In SharpDevelop, when an object is to be obtained from the properties, a call like this is made:

myObj = GetProperty("MyRequestedKey", new DefaultObject());

As we can see, the default value is not used anywhere else. Therefore we can alter this during the
GetProprety call.

You might ask why it is being done this way. We could have used another approach, by just storing the type
of the IXmlConvertable object and using this type information to create the object with a call to
System.Reflection.Assembly.CreateInstance(string typeName). However, this approach
doesn't work, as we do not know in which assembly the type is defined (although we might save the assembly
name too). More importantly, when the property system is initialized and the property is loaded we do not
want to load all assemblies and create all types because this takes too much time and memory. Therefore,
they will be created on demand. Keep in mind that the property system is initialized before the AddIn tree
gets loaded (because some add-ins may need properties when they load up).

Chapter 3

74

Now, we will skim over the overloaded methods. They all use the basic method that returns an object and
takes a default value to do their job. Even if we promised to omit the boring ones, it might be useful to see
that all basic types have a Parse method defined, which takes a string and outputs the type.

Another method of converting strings to types would have been to use the System.Convert class.
Unfortunately, this class provides no mechanism for converting enumeration types.

Let's now look at the code:

 public object GetProperty(string key)
 {
 return GetProperty(key, (object)null);
 }

 public int GetProperty(string key, int defaultvalue)
 {
 return int.Parse(GetProperty(key, (object)defaultvalue).ToString());
 }

 public bool GetProperty(string key, bool defaultvalue)
 {
 return bool.Parse(GetProperty(key, (object)defaultvalue).ToString());
 }

 public short GetProperty(string key, short defaultvalue)
 {
 return short.Parse(GetProperty(key, (object)defaultvalue).ToString());
 }

 public byte GetProperty(string key, byte defaultvalue)
 {
 return byte.Parse(GetProperty(key, (object)defaultvalue).ToString());
 }

 public string GetProperty(string key, string defaultvalue)
 {
 return GetProperty(key, (object)defaultvalue).ToString();
 }

 public System.Enum GetProperty(string key, System.Enum defaultvalue)
 {
 return (System.Enum)Enum.Parse(defaultvalue.GetType(),
 GetProperty(key, (object)defaultvalue).ToString());
 }

These are the get methods described by the interface. The Enum version checks whether the property can
be converted to Enum and, if not, it just returns the default value.

We mentioned earlier that it is possible to add a new value to our properties implicitly. Now, we take a look
at our SetProperty method, which sets a property explicitly:

Implementing the Core

75

 public void SetProperty(string key, object val)
 {
 object oldValue = properties[key];
 if (!val.Equals(oldValue)) {
 properties[key] = val;
 OnPropertyChanged(new PropertyEventArgs(this, key, oldValue, val));
 }
 }

This method fires the property-changed event by calling the OnPropertyChanged method. This is
important because sometimes it is necessary to carry out an update when a specific property changes. We will
look at such updates in Chapter 7, which deals with updating the IDE when the user switches the UI language.

The SetProperty method is commonly used when the user changes options in the option dialog.
Generally, properties are read and silently inserted into the properties object.

Now we will take a break from wading through the source code, and will stop to investigate some practical
issues with ways properties are used in SharpDevelop.

Properties at Work
One useful feature of our property framework is that the IProperties interface itself extends the
IXmlConvertable interface. This allows for an interesting option – storing IProperties instances
into properties.

This is used in several places, for example, the text editor uses this feature. The text editor has its own
IProperties object, which holds its options (this prevents name clashes). In earlier SharpDevelop versions,
the text editor made a copy of the main properties from SharpDevelop and used the local copy. That allowed
the user to change the font for a single window without touching the font properties of the others. However,
this feature was found unintuitive by our users (they expected that if they change the font all text areas would
get updated) and was easily taken out; the object was simply assigned without calling a copy and it worked.

Without using something like the IProperties concept, it might have taken a lot of time to shift away from
such a working model but with the properties it was extremely easy. Now we look at another part of the IDE
where an IProperties object is used and which has nothing to do with persistence.

We will look at the Project options dialog. It can be found in the
SharpDevelop\src\SharpDevelop\Base\Gui\Dialogs\ProjectOptionsDialog.cs file. This
code snippet is taken from ProjectOptionsDialog constructor:

 IProperties properties = new DefaultProperties();
 properties.SetProperty("Project", project);
 AddNodes(properties, optionsTreeView.Nodes, node.BuildChildItems(this));

First, we define a new IProperties object and then call the AddNodes method, which adds all the project
configuration panels. The next important piece of code is in the foreach statement; in each loop the
Config property is set to the current configuration:

Chapter 3

76

 configurationTreeNode = new TreeNode("Configurations");
 configurationTreeNode.NodeFont = plainFont;

 foreach (IConfiguration config in project.Configurations) {
 TreeNode newNode = new TreeNode(config.Name);
 newNode.Tag = config;
 if (config == project.ActiveConfiguration) {
 newNode.NodeFont = boldFont;
 } else {
 newNode.NodeFont = plainFont;
 }
 properties.SetProperty("Config", config);
 AddNodes(properties, newNode.Nodes,
 configurationNode.BuildChildItems(this));
 configurationTreeNode.Nodes.Add(newNode);
 }

The node is then added to the tree view. It is not necessary to create a new IProperties object for each
loop because all project option panels must receive their configuration at startup. In an older version, the
configuration panels just got their configuration and that was all that was needed. But then a contributor
needed a project configuration option that uses a property from the project itself. To implement this, one
possible solution would have been to make sure that the configuration objects knew their parent (the project)
and that the configuration panel just uses this property.

Instead, we chose the present approach. It is used in more places than just in the one we are looking at now.
It's a very good solution since all panels just get one object and new panels can be added that need new
objects without changing the old ones.

To make a property persistent in SharpDevelop we just need to put it in the main IProperties object.
This object is obtained as follows:

PropertyService propertyService = (PropertyService)ServiceManager.Services.
 GetService(typeof(PropertyService));

The PropertyService implements the IProperties interface and is defined in the namespace
ICSharpCode.Core.Services. We will be discussing services in Chapter 5. For now it's enough to know
how to get the IProperties object that stores everything.

Next, we will be discussing various aspects of storing and reloading properties.

Property Persistence
The default IProperties implementation is able to save its contents to an XML file and read it back. Now
we will take a look at an XML code snippet that was cut out of a SharpDevelop properties XML file. An
entire properties file can be found in your user's application data folder under
.ICSharpCode\SharpDevelop\SharpDevelopProperties.xml (to obtain it, you should have
started SharpDevelop at least once on your system):

<SharpDevelopProperties fileversion="1.1">
 <Properties>

Implementing the Core

77

 <Property key="SharpDevelop.UI.CurrentAmbience" value="CSharp" />
 <Property
 key="ICSharpCode.SharpDevelop.Gui.ProjectBrowser.ShowExtensions"
 value="True" />
 <Property key="SharpDevelop.CreateBackupCopy" value="False" />
 <Property key="ICSharpCode.SharpDevelop.Gui.Dialogs.
 NewProjectDialog.DefaultPath" value=" C:\Documents and Settings\Wrox\
 My Documents " />
 <Property key="SharpDevelop.LineTerminatorStyle" value="Windows" />
 <XmlConvertableProperty key="SharpDevelop.Gui.MainWindow.WindowState">
 <WINDOWSTATE FULLSCREEN="False"STATE="Maximized">
 523|21|640|480
 </WINDOWSTATE>
 </XmlConvertableProperty>
 </Properties>
</SharpDevelopProperties>

The root node contains a version number, which is used to indicate the version. This helps to avoid version
mismatch when the XML file is loaded and has a format different from the current one. SharpDevelop
currently discards a file with a version number other than 1.1. If the format is changed again, we may build in
a converter for old files. Generally, this is the way with the XML data files; old files are easily converted on
the fly to the new format.

The next node is the <Properties> node, which contains all the properties. In future, beside the
<Properties> node, we might need to add other nodes to the root node; therefore, it was done this way.
This is a good tip when designing XML file formats – always allow for future extensibility by nesting
collections of related elements under higher-level elements. Let's now examine the <Property> nodes.

All <Property> nodes have a primitive key-value pair (these are the 'basic-types'). The last node, however,
is different: it is called XmlConvertableProperty and it contains a single <WINDOWSTATE> node. This
node does not follow the current naming guidelines (it is all capitals, rather than being in camel casing) and
contains other information than key-value pairs. This property is an IXmlConvertable object made
persistent in this XML. It is from the type WorkbenchMemento and the implementation can be found under
 src\SharpDevelop\Base\Gui\Workbench\WorkbenchMemento.cs.

It saves the state of the workbench and is used to restore the state of the IDE on the next SharpDevelop startup.
The type of the object that is made persistent is not saved with the file (we have discussed this issue already).

Now that we know what the format looks like, we will look at the source code that is responsible for reading
this XML format. The SetXmlElement method from the DefaultProperties class is given the
<Properties> node from the XML definition above and this is how it parses it:

 protected void SetXmlElement(XmlElement element)
 {
 XmlNodeList nodes = element.ChildNodes;
 foreach (XmlElement el in nodes) {
 if (el.Name == "Property") {
 properties[el.Attributes["key"].InnerText] =

Chapter 3

78

 el.Attributes["value"].InnerText;
 } else if (el.Name == "XmlConvertableProperty") {
 properties[el.Attributes["key"].InnerText] = el;
 } else {
 throw new UnknownPropertyNodeException(el.Name);
 }
 }
 }

 public virtual object FromXmlElement(XmlElement element)
 {
 DefaultProperties defaultProperties = new DefaultProperties();
 defaultProperties.SetXmlElement(element);
 return defaultProperties;
 }

As we can see, the XmlConvertableProperty nodes are handled differently. The XmlElement is stored
into the properties hash table. Simple properties get the value assigned directly.

The write routine that handles it must write back an unchanged XmlElement node because during run time
it might happen that the property that contains the XmlElement is never read:

 public virtual XmlElement ToXmlElement(XmlDocument doc)
 {
 XmlElement propertiesnode = doc.CreateElement("Properties");

 foreach (DictionaryEntry entry in properties) {
 if (entry.Value != null) {
 if (entry.Value is XmlElement) { // write unchanged XmlElement back
 propertiesnode.AppendChild
 (doc.ImportNode((XmlElement)entry.Value, true));
 } else if (entry.Value is IXmlConvertable) {
 XmlElement convertableNode =
 doc.CreateElement("XmlConvertableProperty");

 XmlAttribute key = doc.CreateAttribute("key");
 key.InnerText = entry.Key.ToString();
 convertableNode.Attributes.Append(key);

 convertableNode.AppendChild(((IXmlConvertable)entry.Value).
 ToXmlElement(doc));

 propertiesnode.AppendChild(convertableNode);
 } else {
 XmlElement el = doc.CreateElement("Property");

 XmlAttribute key = doc.CreateAttribute("key");
 key.InnerText = entry.Key.ToString();
 el.Attributes.Append(key);

Implementing the Core

79

 XmlAttribute val = doc.CreateAttribute("value");
 val.InnerText = entry.Value.ToString();
 el.Attributes.Append(val);

 propertiesnode.AppendChild(el);
 }
 }
 }
 return propertiesnode;
 }

We have now seen how the DefaultProperties implementation works, and why it works this way and
no other.

Summary
In this chapter, we have learned what the AddIn tree is and what it does. We have also discussed codons and
got an introduction to conditions. In the next chapter, we will discuss, in detail, how to define our own
codons and conditions. We will also see some practical aspects of the AddIn tree, which was discussed,
mostly theoretically, in this chapter.

We also saw how objects are created from the AddIn tree and learned about the loading and storing of the
add-in files into the AddIn tree. Besides the AddIn tree, we have seen how the property management in
SharpDevelop works and how to define our own properties inside the IDE.

Chapter 3

80

Building the Application with
Add-ins

This chapter focuses on the way SharpDevelop application is built by using add-ins. We are already
familiar with codons (we came across them in the last chapter). In this chapter we will go through all the
codons and conditions that are currently defined in SharpDevelop. The outline for this chapter is:

❑ Working with Codons

� The ICommand interface

� Making Menus Work

� Codon Overview

❑ Wiring up Add-ins with Conditions

� Condition Structure

� Defining Conditions

� Overview of Available Conditions

In the course of our discussion, we will be discussing the creation of codons and conditions and then we
will look into the creation of menus, as it is one of the most complex usages of the Addin tree.

Unless noted, all the add-in examples, in this chapter, are taken from the add-in definition for
SharpDevelop, which can be found in the src\AddIn directory of the distribution. All the add-in files
have the .addin extension, which is mandatory as SharpDevelop scans the AddIn directory and all the
sub-directories for *.addin files.

4

Chapter 4

82

Working with Codons
In this section we will look at all the codons defined in SharpDevelop. But before that, we need to have
a little knowledge of the add-in definition for defining sub-items. We have already seen in the From Tree
Node to Running Object section of the last chapter how sub-items should be handled from the coding
viewpoint but we haven't seen the XML format nor did we consider how to define sub-items in XML.
So now, let's look at a sub-item definition:

<Extension path = "/ExampleMenu">
 <MenuItem id = "AddMenu" label = "Add">
 <MenuItem id = "AddItem" label = "Add item" class ="MyAddItem">
 <MenuItem id = "AddFolder" label = "Add folder" class ="MyAddFolder">
 </MenuItem>
</Extension>

(Note that this snippet isn't taken from any of SharpDevelop's actual add-in files.)

The code snippet that we have just seen, is a short form of this longer version:

<Extension path = "/ExampleMenu">
 <MenuItem id = "AddMenu" label = "Add"/>
</Extension>
<Extension path = "/ExampleMenu/AddMenu">
 <MenuItem id = "AddItem" label = "Add item" class ="MyAddItem">
 <MenuItem id = "AddFolder" label = "Add folder" class ="MyAddFolder">
</Extension>

In SharpDevelop's add-in files, the first version is the most commonly used version, as it makes the
XML files more maintainable. However, we should never forget the meaning of this abbreviated style
and how a sub-menu is added explicitly. Each codon is a path in the AddIn tree too, with the ID being
the path name. Therefore, it doesn't make sense to have two codons in the same path that have the same ID.

Now we will go on to see how the menu items work.

The ICommand Interface
Recall what we saw of the SharpDevelop Main() method in the section on Advantages of Using the Addin
Tree in the last chapter. This method retrieved the ICommand objects from the AddIn tree and called a
Run() method on them. Let's take a look at this interface, which can be found in the
src\SharpDevelop\Core\AddIns\Codons\ICommand.cs file:

public interface ICommand
{
 object Owner {
 get;
 set;
 }

 void Run();
}

Building the Application with Add-ins

83

This interface is used as the base interface for menu items too. Menu items are just commands, which
implement the Run() method. The Owner property is used for callback purposes. As we have already
seen in the last chapter, the BuildItem() method that creates objects obtains an Owner object, which
is usually the object that requests the items to be built.

For example, the open file tab context menu items receive their tab parent that has information such as
the currently selected window in this manner. The currently selected window from the open file tab
does not necessarily need to be the current active window from the IDE.

Now let's look at a typical command. In the last chapter we saw the Main() method of SharpDevelop
and wondered why no Application.Run or window creation was defined. Let's consider the
StartWorkbenchCommand() method, which starts the SharpDevelop workbench. It is defined under
src\SharpDevelop\Base\Commands\AutostartCommands.cs:

public class StartWorkbenchCommand : AbstractCommand
{
 const string workbenchMemento = "SharpDevelop.Workbench.WorkbenchMemento";

 EventHandler idleEventHandler;
 bool isCalled = false;

 void ShowTipOfTheDay(object sender, EventArgs e)
 {
 if (isCalled) {
 Application.Idle -= idleEventHandler;
 return;
 }
 isCalled = true;
 // show tip of the day
 PropertyService propertyService =
 (PropertyService)ServiceManager.
 Services.GetService(typeof(PropertyService));

 if (propertyService.GetProperty("ICSharpCode.SharpDevelop.Gui.Dialog.
 TipOfTheDayView.ShowTipsAtStartup", true)) {
 ViewTipOfTheDay dview = new ViewTipOfTheDay();
 dview.Run();
 }
 }

You may have noticed that the ShowTipOfTheDay method has some code to ensure that it is only
called once. You may also be wondering why the method uses the following line of code to remove an
event handler from Application.Idle:

 Application.Idle -= idleEventHandler;

We need to do this because when the tip of the day view is closed, the main window looses the focus.
We need to start the tip of the day while the application is running and this dirty little hack does just
that for us. It is really troublesome to get the tip of the day view running because Windows.Forms
exhibits different behavior under Windows 2000 and under Windows XP and sometimes bugs will occur
only under one of these operating systems. (In this case, the bug only occurred under Windows 2000.)

Chapter 4

84

The next method we see starts the SharpDevelop workbench. Notice that a ShowTipOfTheDay event
handler is added to Application.Idle. The ShowTipOfTheDay method will be put as the event
handler in the idle event and will run only once because it removes itself from the event handler queue.

If SharpDevelop gets ported to other operating systems (or another API than Windows Forms) this start
method is one part that must be rewritten because it depends on Windows.Forms.

 public override void Run()
 {
 Form f = (Form)WorkbenchSingleton.Workbench;
 f.Show();
 idleEventHandler = new EventHandler(ShowTipOfTheDay);
 Application.Idle += idleEventHandler;

 if (SharpDevelopMain.CommandLineArgs != null) {
 foreach (string file in SharpDevelopMain.CommandLineArgs) {
 switch (System.IO.Path.GetExtension(file).ToUpper()) {
 case ".CMBX":
 case ".PRJX":
 try {
 IProjectService projectService = (IProjectService)
 ICSharpCode.Core.Services.ServiceManager.
 Services.GetService(typeof(IProjectService));
 projectService.OpenCombine(file);
 } catch (Exception e) {
 Console.WriteLine
 ("unable to open project/combine {0} exception was :\n{1}",
 file, e.ToString());
 }
 break;
 default:
 try {
 IFileService fileService = (IFileService)
 ICSharpCode.Core.Services.ServiceManager.
 Services.GetService(typeof(IFileService));
 fileService.OpenFile(file);
 } catch (Exception e) {
 Console.WriteLine
 ("unable to open file {0} exception was :\n{1}",
 file, e.ToString());
 }
 break;
 }
 }
 }

 f.Focus(); // windows.forms focus workaround

 // start the parser thread
 DefaultParserService parserService = (DefaultParserService)
 ServiceManager.Services.GetService(typeof(DefaultParserService));
 parserService.StartParserThread();

Building the Application with Add-ins

85

 // finally run the workbench window ...
 Application.Run(f);

 // save the workbench memento in the ide properties
 PropertyService propertyService = (PropertyService)
 ServiceManager.Services.GetService(typeof(PropertyService));
 propertyService.SetProperty(workbenchMemento,
 WorkbenchSingleton.Workbench.CreateMemento());
 }
}

Let's now move on to see how menus work.

Making Menus Work
A menu item from the add-in implementer's point of view doesn't have much to do with implementing a
menu item (that is, with putting a .NET event handler in the Click event). Instead, a command is
implemented that has a Run() method. However, the basic ICommand interface is not used because we
need some more features from the menu item commands. To get an overview of these features, we will
look at the IMenuCommand interface, which can be found in the file
src\SharpDevelop\Base\Internal\Codons\MenuItems\IMenuCommand.cs.

This interface must be implemented by all SharpDevelop menu commands:

public interface IMenuCommand : ICommand
{
 bool IsEnabled {
 get;
 set;
 }

 bool IsChecked {
 get;
 set;
 }
}

The IMenuCommand extends the ICommand interface, which we have seen in the section The ICommand
Interface. It extends this interface with two properties:

❑ IsEnabled
This is used for enabling/disabling menu commands. Disabled menu commands are generally
shown grayed out.

❑ IsChecked
If IsChecked is true, then a checkmark is drawn in front of the menu command.

An abstract implementation, AbstractMenuCommand, which is commonly used can be found under
src\SharpDevelop\Base\Internal\Codons\MenuItems\AbstractMenuCommand.cs.

This abstract implementation is the trivial implementation of the interface above; therefore, we will not
be looking at it.

Chapter 4

86

Now that we know what the add-in implementer must provide, let's have a look at the other side – the
MenuItem codon. This is what SharpDevelop provides to the add-in authors.

It is defined under:
src\SharpDevelop\Base\Internal\Codons\MenuItems\MenuItemCodon.cs.

This codon creates the menu items out of the menu commands. We will look at the codon
implementation step by step. First comes the class definition with the CodonNameAttribute giving the
name MenuItem to the codon:

[CodonName("MenuItem")]
public class MenuItemCodon : AbstractCodon
{

Note that MenuItemCodon subclasses the AbstractCodon class (which we saw in Chapter 3). It
inherits some basic attributes from the AbstractCodon class; shortly, we will see a table of all
attributes regardless of how they are defined in this class or inherited from AbstractCodon. On top of
the class definition are the MenuItemCodon-specific attributes:

 [XmlMemberAttribute("label", IsRequired=true)]
 string label = null;

 [XmlMemberAttribute("description")]
 string description = null;

 [XmlMemberAttribute("shortcut")]
 string shortcut = null;

 [XmlMemberAttribute("icon")]
 string icon = null;

 [XmlMemberAttribute("link")]
 string link = null;

 // Canonical properties for all fields above

The XmlMemberAttribute defines the XML attribute name, which is automatically stored in the
fields. Let's look at each attribute and what it means:

Name Require
d

Purpose

label yes The label is shown as the menu text.

Class no The action or menu item builder for the menu codon. This
attribute is inherited from the AbstractCodon class.

description no Sets a description, which describes the menu item. It is only used
for the main menu items (because that is the standard in most
applications) and the description is shown in the status bar when
the item is selected. (If not set, the description will not be shown.)

Building the Application with Add-ins

87

Name Required Purpose

Shortcut no The shortcut key. When this key is pressed the menu
command runs (even if the menu is not opened).

Icon no The name of the menu item's icon. Note that this name is not
the file name. Instead, it is the resource name of the icon that
which should be used (for more details refer to Chapter 7).

Link no A URL that is used for web sites. This is the shortcut for
creating web links in a menu.

Id yes The ID of the menu item. (Inherited from AbstractCodon.)

insertbefore no A list (separated by commas) of menu item IDs that must be
displayed before this menu item. (Inherited from
AbstractCodon.)

insertafter no A list (separated by commas) of menu item IDs that get
displayed after this menu item. (Inherited from
AbstractCodon.)

If any of the attributes are not specified, default values will be used (usually empty or null). In the
source code, the author of the codon class has given the default values of the attributes as the default
values of the fields.

For example, for all attributes of the menu item codon, the default value is null. Only the required
attributes must be specified, otherwise SharpDevelop will not load. Instead, it will point out the error in
the add-in definition XML file and stop.

No add-in error is tolerated in SharpDevelop and there are no plans to change this. This is because
during the startup phase the impact of the error can't be determined; for example, if a core definition
part has an error it might result in unexpected behavior and errors elsewhere. To avoid these problems,
we have designed SharpDevelop in such a way that after encountering an error the loading process itself
will fail.

Now we will continue with our analysis of the source code by looking at the BuildItem() method of
the menu item codon:

 public override object BuildItem(object owner, ArrayList subItems,
 ConditionFailedAction action)
 {
 SdMenuCommand newItem = null;
 StringParserService stringParserService = (StringParserService)
 ServiceManager.Services.GetService(typeof(StringParserService));

This part of the code gets the StringParserService. This service is used for parsing ${…} style tags,
which are used for internationalization (see Chapter 7). All attributes that are displayed in the user
interface get parsed by the StringParserService.

This part of the code checks whether the link attribute was specified and sets a menu item with an event
handler according to the link attribute specified:

Chapter 4

88

 if (Link != null) {
 newItem = new SdMenuCommand(stringParserService.Parse(Label),
 new EventHandler(new MenuEventHandler(owner, Link.StartsWith("http") ?
 (IMenuCommand)new GotoWebSite(Link) : new GotoLink(Link)).Execute));
} else {

If the link points to a web page (that is if it starts with http) then it will be displayed in the internal
browser. Otherwise, it will be opened with a call to Process.Start().

The SdMenuCommand class is a wrapper for menu items. Currently SharpDevelop uses the Magic
library (http://www.dotnetmagic.com) for drawing menu items. Before Magic was used, SharpDevelop
had to draw the menu items using owner drawn .NET Windows.Forms menu items. Magic, however,
provides a better look and feel and is faster. The Windows.Forms menu items caused re-draws when
the menu is reconstructed and on some other operations. However, these re-draws resulted in flickers.
Magic is much better at handling this issue because it doesn't use the standard main menu; it
implements a menu control itself.

The SdMenuCommand provides a thin abstraction layer on top of the menu items. It just gets a label and
an event handler as constructor argument. Currently the SdMenuCommand merely extends the Magic
menu command and builds on top of its features. In the future, the SdMenuCommand may be enhanced
with our own features depending on which GUI libraries SharpDevelop will be ported to. Because we
use this abstraction layer, it is easy to switch to other menu drawing libraries than magic.

If the menu item is not a link, the event handler of the SdMenuCommand must be created by using the
information from the class attribute to generate an IMenuCommand object:

 object o = null;
 if (Class != null) {
 o = AddIn.CreateObject(Class);
 }

What happens next depends on the object o:

 if (o != null) {
 if (o is ISubmenuBuilder) {
 return ((ISubmenuBuilder)o).BuildSubmenu(owner);
 }
 if (o is IMenuCommand) {
 newItem = new SdMenuCommand(stringParserService.Parse(Label),
 new EventHandler(new MenuEventHandler(owner,
 (IMenuCommand)o).Execute));
 }
 }
 }

We have two types of menu commands – standard menu commands and submenu builders. A submenu
builder is a piece of code that creates menu items dynamically. This is useful for the creating the recent
files menu or the list of currently open windows in the window menu. We will see submenu builders a
little later in this chapter.

Building the Application with Add-ins

89

Now only one case is left, the menu item, which has sub-items but not the class attribute:

 if (newItem == null) {
 newItem = new SdMenuCommand(stringParserService.Parse(Label));
 if (subItems != null && subItems.Count > 0) {
 foreach (object item in subItems) {
 if (item is MenuCommand) {
 newItem.MenuCommands.Add((MenuCommand)item);
 } else {
 newItem.MenuCommands.AddRange((MenuCommand[])item);
 }
 } } } //closing braces collapsed for brevity

A menu item gets all sub-items (the subItems ArrayList is a parameter for the build method) that are
created from the AddIn tree and adds them to the menu commands from the SdMenuCommand class.

A call to BuildItem may not give a single menu item. Instead, an array might be returned if an
ISubmenuBuilder was called. Therefore, ISubmenuBuilders can't be used at the top level. All top-
level items in SharpDevelops main menu and context menus are folders or menu commands.

Note that menu items that are links or have commands can't have sub-menus. If the add-in implementer
defines sub-items for menu items that have a class or link attribute, the sub-menu items will
be disregarded.

After the creation of the menu item, the icon for this menu is set (if the icon attribute is specified):

 Debug.Assert(newItem != null);

 if (Icon != null) {
 ImageList imgList = new ImageList();
 ResourceService resourceService = (ResourceService)
 ServiceManager.Services.GetService(typeof(ResourceService));
 imgList.Images.Add(resourceService.GetBitmap(Icon));
 newItem.ImageList = imgList;
 newItem.ImageIndex = 0;
 }

Next, the description is set:

 newItem.Description = stringParserService.Parse(description);

Then the menu shortcut key is applied:

 if (Shortcut != null) {
 try {
 newItem.Shortcut = (Shortcut)
 ((System.Windows.Forms.Shortcut.F1.GetType()).
 InvokeMember(Shortcut, BindingFlags.GetField, null,
 System.Windows.Forms.Shortcut.F1, new object[0]));
 } catch (Exception) {

Chapter 4

90

 newItem.Shortcut = System.Windows.Forms.Shortcut.None;
 }
 }

Finally, the enabled/disabled status for this item is determined:

 newItem.Enabled = action != ConditionFailedAction.Disable;
 return newItem;
 }

Now we have completed the creation of a menu item in SharpDevelop. We have seen the usage of the
MenuEventHandler class. This class is an internal class of the MenuItemCodon class. It is used to
wrap the IMenuCommand action to a .NET event handler:

 class MenuEventHandler
 {
 IMenuCommand action;

 public MenuEventHandler(object owner, IMenuCommand action)
 {
 this.action = action;
 this.action.Owner = owner;
 }

 public void Execute(object sender, EventArgs e)
 {
 this.action.Run();
 }
 }
}

In the next section, we will be creating a menu from the AddIn tree.

Creating Menu Items

You might be wondering how the menu items are actually created. To understand this we will look at
the default workbench implementation. It's under the UpdateMenu() method of the
src\SharpDevelop\Base\Gui\Workbench\DefaultWorkbench.cs:

void UpdateMenu(object sender, EventArgs e)
{
 TopMenu.Style = (Crownwood.Magic.Common.VisualStyle)
 propertyService.GetProperty("ICSharpCode.SharpDevelop.Gui.VisualStyle",
 Crownwood.Magic.Common.VisualStyle.IDE);
 MenuCommand[] items = (MenuCommand[])
 (AddInTreeSingleton.AddInTree.GetTreeNode(mainMenuPath).
 BuildChildItems(this)).ToArray(typeof(MenuCommand));
 TopMenu.MenuCommands.Clear();
 TopMenu.MenuCommands.AddRange(items);

 CreateToolBars();
}

Building the Application with Add-ins

91

First the style is updated. SharpDevelop allows switching the menu item style at run time. You can
choose between an Office XP style and an older 3D style. This is a Magic library setting.

After that, the menu commands are created and inserted in the top menu. Note that if it changes, for
example when we open a project or switch a window, the entire menu is re-created. The speed penalty
is minimal. It is much slower to actually switch the current MDI window than to recreate the menu
because the recreation is just a "calculation" operation and the switch of the MDI is a redrawing
operation, which takes much more time. The recreation of the menu will end in a redraw of the menu
control too but magic uses double buffering, which prevents flickers. With the SharpDevelop layout
manager, which does not use MDI child windows, the menu switch will work without the user noticing
any delay.

In the next section, we will look at menu builders – they are the SharpDevelop way of creating
dynamic menus.

Menu Item Builders

Sometimes it is not enough just to store menu items in an XML definition file. The items may need
runtime information for their creation. The AddIn tree is static, as it cannot redefine its own definition
after startup. For creating dynamic menus the ISubmenuBuilder interface was defined, which solves
this problem.

The ISubmenuBuilder interface is simple and can be found under
src\SharpDevelop\Base\Internal\Codons\MenuItems\ISubmenuBuilder.cs:

public interface ISubmenuBuilder
{
 MenuCommand[] BuildSubmenu(object owner);
}

Objects that implement this interface are used in SharpDevelop for:

❑ Displaying Recent Files / Recent Projects submenu

❑ In the textarea context menu where a builder displays all available syntax highlighting
schemes

❑ The tools in the Tools menu

❑ The current open windows in the Window menu

❑ The tool windows (we call them pads) in the View menu

Now we will look at the menu builder, which creates the View menu. In the next chapter, we will see
how the Recent Files / Recent Projects menus are handled. The menu item builder can be found in
the file src\SharpDevelop\Base\Commands\MenuItemBuilders.cs:

public class ViewMenuBuilder : ISubmenuBuilder
{
 class MyMenuItem : SdMenuCommand
 {
 IPadContent padContent;

Chapter 4

92

 bool IsPadVisible {
 get {
 return WorkbenchSingleton.Workbench.WorkbenchLayout.IsVisible
 (padContent);
 }
 }

 public MyMenuItem(IPadContent padContent) : base(padContent.Title)
 {
 this.padContent = padContent;
 this.Click += new EventHandler(ClickEvent);
 Update += new EventHandler(UpdateThisItem);
 }

 public void UpdateThisItem(object sender, EventArgs e)
 {
 Checked = IsPadVisible;
 }

 void ClickEvent(object sender, EventArgs e)
 {
 if (IsPadVisible) {
 WorkbenchSingleton.Workbench.WorkbenchLayout.HidePad(padContent);
 } else {
 WorkbenchSingleton.Workbench.WorkbenchLayout.ShowPad(padContent);
 }
 }
 }

 public MenuCommand[] BuildSubmenu(object owner)
 {
 ArrayList items = new ArrayList();
 foreach (IPadContent padContent in
 WorkbenchSingleton.Workbench.PadContentCollection) {
 items.Add(new MyMenuItem(padContent));
 }
 return (MenuCommand[])items.ToArray(typeof(MenuCommand));
 }
}

The BuildSubmenu item just creates a MenuCommand array that contains the MyMenuItem class, which
is initialized with IPadContents taken from the workbench window. We will see all about pads, the
workbench, and other GUI-related issues in Chapter 6. For now, this class is a nice example of menu
item builders.

This builder solves the problem of making every tool window inside SharpDevelop hideable in the
so-called View menu, where menu icons should mark a pad (tool window) as visible or not. Instead of
manually providing a separate menu item for each pad that shows/hides the window, these items are
auto-generated by the builder. The implementer of the tool window need not worry about the View
menu. Currently, a pad can't flag that it should not be hideable but we can implement this feature (with
a codon attribute) if the need arises.

Building the Application with Add-ins

93

Now we will look at the add-in definition of the View menu, which is in the
src\AddIns\SharpDevelopCore.addin file:

<MenuItem id = "View" label = "${res:XML.MainMenu.ViewMenu}">
 <MenuItem id = "ViewBuilder"
 label = ""
 class = "ICSharpCode.SharpDevelop.Commands.ViewMenuBuilder" />
 <MenuItem id = "ViewItemsSeparator" label = "-" />
 <MenuItem id = "FullScreen"
 label = "${res:XML.MainMenu.ViewMenu.FullScreen}"
 icon = "Icons.16x16.FullScreen"
 description = "${res:XML.MainMenu.ViewMenu.FullScreen.Description}"
 class = "ICSharpCode.SharpDevelop.Commands.ToggleFullscreenCommand" />
</MenuItem>

The top MenuItem is the View menu. Its first item is the ViewMenuBuilder, which we saw earlier.
This item will be replaced with the contents built by the menu item builder. We have to specify the
label, as it is a required attribute. In this case it is just set empty.

With the introduction of the menu builder, the SharpDevelop menu system was considered 'feature
complete'. The next sections will give us an overview of the different codons used in SharpDevelop. We
will look at each of them, to get a feel of the AddIn tree's usage inside SharpDevelop.

Codon Overview
We have seen the MenuItem codon in detail. In this section, we will discuss all the codons that are
currently defined inside SharpDevelop. From Chapter 3, we already know the codon definition; in this
chapter we will see the attributes of the codon XML node and the location of the codon class.

The Class Codon (class)

The class codon is the basic codon. It just inherits from AbstractCodon. Often this codon is sufficient
to put a class into the path for describing something that just needs a class without any further
properties. For example, it is used to insert workspace services (see Chapter 5 for details on workspace
services) into the AddIn tree.

When new types of classes are inserted into the Addin tree, often the class codon is the first step in
inserting them. This was the case for adding display bindings (for details, refer to Chapter 6) before they
got their own codons because they needed new attributes.
Class location: src\SharpDevelop\Core\AddIns\Codons\ClassCodon.cs

<Extension path = "/Workspace/Autostart">
 <Class id = "StartWorkbenchCommand"
 class = "ICSharpCode.SharpDevelop.Commands.StartWorkbenchCommand"/>
</Extension>

Chapter 4

94

We have seen the object creation in the last chapter, but note that the given class must have a public
empty constructor, otherwise an exception will be thrown when the BuildItem() method is called.
The caller must specify which classes or interfaces the objects must have (or implement). This makes the
class attribute flexible.

The File Filter Codon (FileFilter)

The file filter codon is used to place file filters into file open and file save dialogs. Language bindings
usually extend them.

Class location: src\SharpDevelop\Base\Internal\Codons\FileFilterCodon.cs

<Extension path = "/SharpDevelop/Workbench/FileFilter">
 <FileFilter id = "CSharp"
 insertbefore="AllFiles"
 name = "C# Files (*.cs)"
 extensions = "*.cs"/>
</Extension>

The file filter codon just builds a string in the BuildItem() method, which contains a standard file
filter. The file filter for our example would be: C# Files (*.cs)|*.cs. Note that the duplicate file
filters won't be filtered out.

The Icon Codon (Icon)

The icon codon is used to extend the icon database of SharpDevelop through add-ins. SharpDevelop
uses a resource file to get icons but add-ins can bring their own icons into SharpDevelop (for example,
to use custom icons for a project file of a specific language).

Class location: src\SharpDevelop\Core\AddIns\Codons\IconCodon.cs

<Extension path = "/Workspace/Icons">
 <Icon id = "XmlFileIcon"
 location = "icons\XmlFileIcon.png"
 extensions=".xml"/>
</Extension>

If we used more than one icon for an extension, the last icon that is inserted will be used. This behavior
can be used to overwrite standard icons with custom ones.

The Dialog Panel Codon (DialogPanel)

The dialog panel codon is used for options dialogs and for wizard dialogs.

Class location: src\SharpDevelop\Base\Internal\Codons\DialogPanelCodon.cs

<Extension path = "/SharpDevelop/CompletionDatabaseWizard">
 <DialogPanel id = "SetupPanel"
 label = "${res:Dialog.Wizards.
 CodeCompletionDatabaseWizard.SetupPanel.Title}"
 class = "ICSharpCode.SharpDevelop.Gui.Dialogs.

Building the Application with Add-ins

95

 OptionPanels.CompletionDatabaseWizard.SetupPanel"/>
</Extension>

All dialog panel classes must implement the IDialogPanel interface. It is implemented in
src\SharpDevelop\Base\Internal\Codons\IDialogPanel.cs and it has an abstract
implementation in the same directory. The dialog panel simply provides a control and a
ReceiveDialogMessage() method, which returns a Boolean value. For actions like OK, cancel, etc., the
dialog panel receives a message, which can be interrupted when ReceiveDialogMessage returns false.

Wizard panels must extend the IWizardPanel interface
(src\SharpDevelop\Base\Gui\Dialogs\Wizard\IWizardPanel.cs), which extends the
IDialogPanel with wizard-specific functions. Wizard panels can enable/disable the buttons (Ok, Next,
Finish, Cancel) of the wizard dialog and they can tell which panel will come after the current one when
the Next button is pressed. The dialog recalls what the previous dialog panels were and takes care of the
Previous button itself.

The Display Binding Codon (DisplayBinding)

The display binding codon is used to put display bindings (for details refer to Chapter 6) into
SharpDevelop. The display binding path is: /SharpDevelop/Workbench/DisplayBindings

Class location: src\SharpDevelop\Base\Internal\Codons\DisplayBinding
\DisplayBindingCodon.cs

Example:

<Extension path = "/SharpDevelop/Workbench/DisplayBindings">
 <DisplayBinding id = "Text"
 insertafter = "Browser"
 supportedformats = "Text Files, Source Files"
 class = "ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor.
 TextEditorDisplayBinding"/>
</Extension>

This codon inserts the text editor that is used for all source files. It is inserted after the browser codon,
which displays web pages. It is important to insert it after the browser because the text editor display
binding 'wants' to open all files and so it must be asked last about how the file should be opened. All
additional display bindings must be inserted before the Text display binding or they will never run.

The Language Binding Codon (LanguageBinding)

The language binding codon is used to put language bindings into SharpDevelop. The language binding
path is /SharpDevelop/Workbench/LanguageBindings.

Class location: src\SharpDevelop\Base\Internal\Codons\LanguageBinding
\LanguageBindingCodon.cs

Chapter 4

96

<Extension path = "/SharpDevelop/Workbench/LanguageBindings">
 <LanguageBinding id = "CSharp"
 supportedextensions = ".cs"
 class = "CSharpBinding.CSharpLanguageBinding" />
</Extension>

The Toolbar Item Codon (ToolbarItem)

The toolbar item codon is used to define the SharpDevelop toolbar. The SharpDevelop toolbars are
currently defined under /SharpDevelop/Workbench/ToolBar. The toolbar item codons that are
directly in this path are treated as top items, which represent toolbars. All sub-items from these top
items are toolbar items.

Class location: src\SharpDevelop\Base\Internal\Codons\Toolbars\ToolbarItemCodon.cs

<Extension path = "/SharpDevelop/Workbench/ToolBar">
 <ToolbarItem id = "Standard">
 <ToolbarItem id = "New"
 icon = "Icons.16x16.NewDocumentIcon"
 tooltip = "${res:XML.MainMenu.FileMenu.New.File.Description}"
 class = "ICSharpCode.SharpDevelop.Commands.CreateNewFile"/>
 </ToolbarItem>
</Extension>

This example creates a toolbar called Standard, which has one toolbar item (id="New").

Now that we have seen all the codons, let's move on to conditions – they are the second building block
of the AddIn tree.

Wiring up Add-ins with Conditions
We already know that the AddIn tree definition can't be changed at run time. Theoretically, add-ins and
tree-node paths might be removed but this won't help us if we want to enable/disable menu items. In
the last chapter we have already seen conditions (in the section on Conditions) and gotten an overview of
the system and know what they do in general.

In this section we will learn about:

❑ The Condition Structure – We will see how conditions are joined and how they get used in an
add-in definition

❑ Defining Conditions – We will see how conditions are defined in the source code

❑ Overview of Available Conditions – We will be looking at all the conditions that are used into
SharpDevelop

Let's start our discussions of Conditions by examining the Condition Structure.

Building the Application with Add-ins

97

Condition Structure
We have already seen conditions in the XML add-in definition. Now we will take a deeper look at what
can be done in the definition.

The standard condition is used as follows:

<Extension path = "[ExtensionPath]">
 <Conditional [Attributes] [action="Disable"]>
 ...(Codons that have the condition applied)
 </Conditional>
</Extension>

Often conditions must be joined to form conditions having different options. For example, if we want
both condition A and condition B to be true to validate codons we may do this:

<Extension path = "[ExtensionPath]">
 <ConditionalA>
 <ConditionalB>
 ... (Codons that have the condition A and B applied)
 </ConditionalB>
 </ConditionalA>
</Extension>

When we want either condition A or condition B to be true, we can use:

<Extension path = "[ExtensionPath]">
 <ConditionalA>
 ... (Codons that have the condition A applied)
 </ConditionalA>
 <ConditionalB>
... (Copy of the codons above (now they have the condition Bapplied)
 </ConditionalB>
</Extension>

The problem is that we can't build a codon having condition A and not condition B (thats is, condition
B evaluates to false). Therefore, to build complex conditions a system of joining conditions was
introduced. The following functions can be used for joining conditions:

❑ And – n conditions can be joined by logical AND

❑ Or – n conditions can be joined by logical OR

❑ Not – One condition can be negated

We refer to these functions as 'condition operators'.
When joining conditions, the syntax in the add-in file looks like this:

<Extension path = "[ExtensionPath]">
 <Conditional [action="Disable"]>
 <And>
 <Condition [Attributes]/>

Chapter 4

98

 <Condition [Attributes]/>
 <Condition [Attributes]/>
 <Or>
 <Condition [Attributes]/>
 <Condition [Attributes]/>
 </Or>
 <Not>
 <Condition [Attributes]/>
 </Not>
 </And>
 ... (Codons that have the joined condition applied)
 </Conditional>
</Extension>

Note that the Conditional node can only have one condition node applied. Otherwise, the result is
unspecified. This error is currently not detected. Instead, only the first condition block is used.

The main Conditional XML node contains the action to be taken when this joined condition is
applied. The child elements of this Conditional node (that is, the sub-conditions) are called
Condition. This is so because it is valid to use a condition in a Conditional node without condition
operators and we need to see the difference between a condition and an empty Conditional node:

<Extension path = "[ExtensionPath]">
 <Conditional [action="Disable"]>
 <Condition [Attributes]/>
 ... (Codons that have the joined condition applied)
 </Conditional>
</Extension>

We will see a real-world example of a complex condition at the end of this chapter.

Now that we know what conditions look like in the add-in definition, we are going on to look at how
conditions are implemented in the source code.

Defining Conditions
Conditions are defined similarly to codons. Instead of a CodonName attribute, the condition class has a
ConditionAttribute. However, this attribute does not receive a name. As mentioned earlier, instead
of a name, the conditions are differentiated by their required attributes (therefore the set of required
attributes must be unique). It is defined in this particular way because conditions only have the node
name Conditional (or Condition).

Conditions are added to the condition builder of the AddIn tree, in a manner similar to codons. All
runtime libraries that are defined in an add-in are automatically scanned for defined conditions. These
are added to the condition builder and, after that, they can be used by the add-in (or other add-ins). If
there is an attribute clash (two conditions with the same set of required attributes), the add-in
implementation will throw an exception and SharpDevelop won't start. It is designed this way because
the add-in implementor should be forced to write correct add-ins, conditions, and codons.

Building the Application with Add-ins

99

Now we will look at the simplest condition, the compare condition. It is available in the file
src\SharpDevelop\Core\AddIns\Conditions\CompareCondition.cs and is used to compare
two strings. This makes sense because the provided strings get a run through the string parser. With the
${...} tags we can obtain a SharpDevelop property (with ${property:PROPERTYAME}).

Codons can be disabled under special circumstances. For example, in the SharpDevelop window menu
MDI-specific menu items like tile, cascade, and arrange icons are present. They are only enabled when
the current layout manager is set to MDI layout and at least one window is active:

<Conditional action="Disable">
 <And>
 <Condition activewindow="*" />
 <Condition string="${property:SharpDevelop.Workbench.WorkbenchLayout}"
 equals="MDI"/>
 </And>
 ...
</Conditional>

Now we are going to look at the implementation of the compare condition:

[ConditionAttribute()]
public class CompareCondition : AbstractCondition
{
 [XmlMemberAttribute("string", IsRequired=true)]
 string s1;

 [XmlMemberAttribute("equals", IsRequired=true)]
 string s2;

 public string String1 {
 get {
 return s1;
 }
 set {
 s1 = value;
 }
 }

 public string String2 {
 get {
 return s2;
 }
 set {
 s2 = value;
 }
 }

 public override bool IsValid(object owner)
 {
 StringParserService stringParserService = (StringParserService)
 ServiceManager.Services.GetService(typeof(StringParserService));
 return stringParserService.Parse(s1) == stringParserService.Parse(s2);
 }
}

Chapter 4

100

As we can see, the conditions are using the XmlMemberAttribute; earlier we saw that this attribute
class was called XmlMemberAttributeAttribute, but .NET allows us to skip the Attribute postfix
when using attributes, therefore we don't need to specify the last "Attribute" when using this attribute.
XmlMemberAttributeAttribute looks weird so XmlMemberAttribute is used in the codon and
condition implementations.

The main difference between codons and conditions is that conditions don't build items. Instead, they
have the IsValid() method, which determines whether the condition is successful or not. Conditions
don't have shared attributes like id, class, insertbefore, or insertafter, because there is
currently no need for them.

Overview of Available Conditions
This section will give us an overview of all the conditions that are currently defined in SharpDevelop.
We will start with the window active condition.

Window Active Condition

This condition checks if a window is active, and if it is active checks the type. With this condition we
can even check if the window contains specific a view-content (a special display binding). If we set the
activewindow attribute to * we could check whether any window is open.

Class location: src\SharpDevelop\Base\Internal\Conditions\WindowActiveCondition.cs

<MenuItem id = "Edit" label = "${res:XML.MainMenu.EditMenu}">
 <Conditional activewindow="*" action="Disable">
 <MenuItem id = "Undo"/>
 <MenuItem id = "Redo"/>
 </Conditional>
</MenuItem>

To make the condition example snippets easier to understand, we have removed the class, label,
and icon attributes from the menu items. This example activates the Undo / Redo menu items in the
edit menu only if a window is active.

Window Open Condition

This condition checks whether a window is open, and if there is, the type of all open windows is
checked. This can be useful for adding a menu item when a special window is open. With this condition,
we can check if a window contains specific view content. Also, if we set the openwindow attribute to *,
we can check if any window is open. It has one attribute.

Class location: src\SharpDevelop\Base\Internal\Conditions\WindowOpenCondition.cs

<Conditional action="Disable">
 <Or>
 <Condition
openwindow="ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor.ITextAreaControlProv
ider"/>
 <Condition openproject="*"/>
 </Or>

Building the Application with Add-ins

101

 <MenuItem id = "Find"/>
 <MenuItem id = "FindNext"/>
 <MenuItem id = "Replace"/>
</Conditional>

This example enables the find menu items only if a text area or project is open. It shouldn't be only
open when the active window is a text area because it is possible to search in all open files. Therefore,
the open window condition is used instead.

Project Active Condition

This condition checks whether a project is selected, and if so, it checks whether any project is of the
given type. (By specifying * as project name it is possible to check if any project is selected). It is
possible to have a project open but no selected project.

If we have a file open, which is contained in an open project, then this project gets automatically
selected. Here is the attribute table for this condition:

Class location:
src\SharpDevelop\Base\Internal\Conditions\ProjectActiveCondition.cs

<Extension path =
"/SharpDevelop/Workbench/ProjectOptions/ConfigurationProperties">
 <Conditional activeproject="C#">
 <DialogPanel id = "CSharpCodeGenerationPanel"
 label = "${res:Dialog.Options.PrjOptions.
 CodeGenerationPanel.PanelName}"
 class = "CSharpBinding.CodeGenerationPanel"/>
 <DialogPanel id = "CSharpOutputOptionsPanel"
 label = "${res:Dialog.Options.PrjOptions.
 OutputOptionsPanel.PanelName}"
 class = "CSharpBinding.OutputOptionsPanel"/>
 <DialogPanel id = "CSharpRuntimeCompilerPanel"
 label = "Runtime/Compiler"
 class = "CSharpBinding.ChooseRuntimePanel"/>
 </Conditional>
</Extension>

In this example, dialog panels are added to the project options configuration dialog only if the active
project is C#. All the language bindings will put their configuration dialogs under
/SharpDevelop/Workbench/ProjectOptions/ConfigurationProperties and use the project
active condition for making the panels available when the correct project is configured (note that only
the active project can be configured).

Chapter 4

102

Project Open Condition

This condition checks if a project is opened (if a project is inside the opened combine). If several
projects are open, it checks all projects for the given project type and returns true when it is found. If *
is specified as the project type, then it checks if any project is open. It returns false if no project
is open.

Class location: src\SharpDevelop\Base\Internal\Conditions\ProjectOpenCondition.cs

We saw an example of this condition in the earlier section on the window open condition.

Combine Open Condition

With this condition you can check if a combine is opened (or not). There is only one condition that
checks if a combine is open. There is no difference between combine types, because a combine in
SharpDevelop is just a container for projects and all projects must be in a combine.

Class location: src\SharpDevelop\Base\Internal\Conditions\CombineOpenCondition.cs

<MenuItem id = "Close">
 <Conditional iscombineopen="True" action="Disable">
 <MenuItem id = "CloseCombine"/>
 </Conditional>
</MenuItem>

This example is taken from the SharpDevelop File menu and the menu item CloseCombine is only
enabled if a combine is open.

Owner State Condition

This condition is used to make the add-in definition a bit shorter for cases where the menu items need
to know something about the object that creates them.

Class location: src\SharpDevelop\Base\Internal\Conditions\OwnerStateCondition.cs

The owner state is an enumeration. The owner must implement the owner state interface, which is in
the same file as the condition. The owner must set this enum according to what it defines as
internal state.

public interface IOwnerState {
 System.Enum InternalState {
 get;
 }
}

For example the Open File tab uses the following, which is located in the
src\SharpDevelop\Base\Gui\Components\OpenFileTab.cs file:

Building the Application with Add-ins

103

public class OpenFileTab : Crownwood.Magic.Controls.TabControl, IOwnerState
{
 readonly static string contextMenuPath =
 "/SharpDevelop/Workbench/OpenFileTab/ContextMenu";

 [Flags]
 public enum OpenFileTabState {
 Nothing = 0,
 FileDirty = 1,
 ClickedWindowIsForm = 2,
 FileUntitled = 4
 }

 OpenFileTabState internalState = OpenFileTabState.Nothing;

 public System.Enum InternalState {
 get {
 return internalState;
 }
 }
 // ... rest of the OpenFileTab definition

We will skip the complete listing and focus only on the owner state. The internal state is set before the
context menu is created. The OpenFileTabState flags mean the following:

❑ FileDirty – Set when the selected file is dirty (when the file content has changed since the
last save).

❑ ClickedWindowIsForm – Set when the clicked window is a System.Windows.Forms.Form;
this is useful for maximize/minimize operations, which only makes sense on forms.

❑ FileUntitled – Only set when the selected file is untitled. This is only the case for new,
unsaved files.

Now we will look at the context menu definition in the add-in file
(AddIns\SharpDevelopCore.addin):

<Extension path = "/SharpDevelop/Workbench/OpenFileTab/ContextMenu">
 <MenuItem id = "Close"/>
 <MenuItem id = "CloseSeparator" label = "-" />

 <Conditional action="Disable">
 <And>
 <Condition ownerstate="FileDirty"/>
 <Not>
 <Condition ownerstate="FileUntitled"/>
 </Not>
 </And>
 <MenuItem id = "Save"/>
 </Conditional>

Chapter 4

104

 <MenuItem id = "SaveAs"/>
 <MenuItem id = "SaveSeparator" label = "-" />

 <Conditional action="Disable">
 <Not>
 <Condition ownerstate="FileUntitled" />
 </Not>
 <MenuItem id = "CopyPathName"/>
 </Conditional>

 <Conditional ownerstate="ClickedWindowIsForm">
 <MenuItem id = "WindowSeparator" label = "-" />
 <MenuItem id = "Restore"/>
 <MenuItem id = "Minimize"/>
 <MenuItem id = "Maximize"/>
 </Conditional>
</Extension>

As we can see, the owner state conditions are used almost everywhere. The Save menu item is disabled
if the file is not dirty or if it is untitled. The CopyPathName item copies the file name to the clipboard;
this makes sense only if the file has a name. The Restore/Minimize/Maximize items are only
enabled when a form is clicked.

Alternatively, we might have defined more than one context menu path, for example
/SharpDevelop/Workbench/OpenFileTab/ContextMenu/ClickedWindowIsForm, and this path
would be taken if the clicked window was a form. However, with this approach we must provide path
names for each combination:

/SharpDevelop/Workbench/OpenFileTab/ContextMenu/ClickedWindowIsFormAndIsUntitl
ed,

/SharpDevelop/Workbench/OpenFileTab/ContextMenu/ClickedWindowIsFormAndIsDirty,

and so on. This would be 2^3=8 path combinations containing mostly the same items with little
variation (like a disabled "Save" item). The owner state approach is much shorter.

Summary
In this chapter, we have discussed the menu item codon in detail. We learned about the menu item builder
and can now extend menus in SharpDevelop with our own items. We got an overview of all the codons
used in SharpDevelop. We also looked into conditions and learned about creating new conditions.

In the next chapter, we will have an overview of the workspace services. Along with the Addin tree,
services are the underpinnings of SharpDevelop.

Building the Application with Add-ins

105

Chapter 4

106

Providing Functionality with
Workspace Services

In this chapter we will be discussing the topic of services in SharpDevelop. We will learn what a service
is and how it is defined. Then, we will go on to see the various services that are available to the
programmers in the IDE. After reading this chapter, we will be in a position to appreciate the bonuses
that the service concept delivers in conjunction with the AddIn tree and why we have used services
instead of other alternatives such as singleton classes or static definitions.

Implementation Considerations
Initially, we only had the AddIn tree and SharpDevelop depended on it alone to provide functionality.
However, menu commands and other actions needed classes that provided functions, like OpenFile, or
a place where the compiler output could be written. Sometimes it was necessary to know when some
event takes place (for example an event needs to be defined somewhere to inform other parts of the IDE
when a project is opened).

These functions could be defined in the main window, but then this class would start growing bigger
and bigger with each new event, ultimately becoming impossible to maintain.

We solved this problem by defining classes that only had static members, and which all the other
objects needing their service could access. These classes defined events for their methods too. Other
objects can be informed through the static classes when an event occurs (like the project opening).

But there were too many (over 10) of these static helper classes, and it was difficult to locate them in the
source tree. Another problem with these static helper classes arose – they were hard to replace. Also,
there was no way an add-in could extend one of these helper classes, as they were statically inserted into
the source.

5

Chapter 5

108

This problem was solved by introducing a services layer, which builds on the AddIn tree under these
classes. The classes are no longer static, instead they are created once and then can be accessed,
wherever needed, through a singleton helper class.

Now, most of these old static classes have been converted to services. However, there are some
exceptions; classes that are only used in subsystems and which don't seem to have any practical use
outside these subsystems still use the original design.

Let's now look at what a service must provide to fit into the service structure.

Requirements for Services
The main requirement for a service is that it provides support to other parts of the application. They
'serve' as helper classes. Beside that, all services must implement the IService interface, which can be
found under src\SharpDevelop\Core\Services\IService.cs:

public interface IService
{
 // Is true when the service did already initialize, false otherwise.
 bool IsInitialized {
 get;
 }

 // This method is called after the services are loaded.
 void InitializeService();

 // This method is called before the service is unloaded.
 void UnloadService();

 event EventHandler Initialize;
 event EventHandler Unload;
}

The IService interface has only two basic methods and one property:

❑ InitializeService – Instead of the constructor, services should initialize themselves in
this method .

❑ UnloadService – In this method the service should free all acquired resources.

❑ IsInitialized – This flags if the InitializeService method has been called.

For both of the methods, events are defined that fire when these methods are executed.

Like many other interfaces there already exists an abstract implementation of this interface called
AbstractService, which is defined in the same path and namespace.

Next, we will see how services are managed and where the InitializeService and
UnloadService methods get called. We will also see how to access the services in order to use them.

Providing Functionality with Workspace Services

109

The ServiceManager
The ServiceManager class stores all the services that are available at run time, and provides a single
access point to these services. To ensure that there is only a single service manager, it follows the
singleton pattern we discussed in Chapter 2. All objects that require some service must request the
required service from the ServiceManager.

The service manager performs service initialization and unloading too. It is defined in the file
src\SharpDevelop\Core\Services\ServiceManager.cs:

public class ServiceManager
{
 ArrayList serviceList = new ArrayList();
 Hashtable servicesHashtable = new Hashtable();

 static ServiceManager defaultServiceManager = new ServiceManager();

 // Gets the default ServiceManager
 public static ServiceManager Services {
 get {
 return defaultServiceManager;
 }
 }

 // Don't create ServiceManager objects, only have ONE per application.
 private ServiceManager()
 {
 }

 // This method initializes the service system to a path inside the
 // AddIn tree. This method must be called ONCE.
 public void InitializeServicesSubsystem(string servicesPath)
 {
 // add 'core' services
 AddService(new PropertyService());
 AddService(new ResourceService());
 AddService(new StringParserService());
 AddService(new FileUtilityService());

 // add AddIn tree services
 AddServices((IService[])AddInTreeSingleton.AddInTree.GetTreeNode
 (servicesPath).BuildChildItems(this).ToArray(typeof(IService)));

 // initialize all services
 foreach (IService service in serviceList) {
 service.InitializeService();
 }
 }

 // Calls UnloadService on all services.
 //This method must be called ONCE.
 public void UnloadAllServices()
 {

Chapter 5

110

 foreach (IService service in serviceList) {
 service.UnloadService();
 }
 }

 protected void AddService(IService service)
 {
 serviceList.Add(service);
 }

 protected void AddServices(IService[] services)
 {
 foreach (IService service in services) {
 AddService(service);
 }
 }

 // Requests a specific service, may return null if this service is not
 // found.
 public IService GetService(Type serviceType)
 {
 IService s = (IService)servicesHashtable[serviceType];
 if (s != null) {
 return s;
 }

 foreach (IService service in serviceList) {
 if (serviceType.IsInstanceOfType(service)) {
 servicesHashtable[serviceType] = service;
 return service;
 }
 }
 return null;
 }
}

The InitializeServicesSubsystem and UnloadAllServices methods will be called in the Main
method of SharpDevelop (for a listing of the main method refer to Chapter 3).

All the services defined in the core are added directly to the service manager, as other services may be
dependent on them. They are usable by all other services. Note that in the current model, some services
may work before the InitializeService method is called (this depends on the service because some
services may not need to be initialized to do their work). To solve the dependency problem we
introduced the Initialize method, which gets called when all services are accessible through the
service manager. However this might not be helpful if the services aren't initialized; in this case you've
to get the service, check if it has been initialized (through the IsInitialized flag) and if not, wait for
this event (using the Initialize event). To avoid this problem, SharpDevelop guarantees that all
'core' services are up and running when other services get loaded.

The services are stored in parallel in an ArrayList and a Hashtable. The ArrayList is used to run
through all available services. This is useful for initialization and unloading.

Providing Functionality with Workspace Services

111

Now a question arises – why isn't the Hashtable used to run through all the services? The answer is
relatively simple. When a service is added to the table, the type under which the service will be
requested is not known. It may be any interface that the service object implements, the type itself, or a
base type of the service object. We can't just initialize the services when they are added because of the
dependency problem (all services must be available to the service initialization).

Assume that instead of iterating through the servicesList we used this loop:

// initialize all services
foreach (IService service in servicesHashtable.Values) {
 service.InitializeService();
}

If a service requests another service under a type that is not stored in the Hashtable, the table will
change and the foreach loop will fail. Alternatively, we could choose to store all subtypes and
interfaces into the hash table, but this was not implemented since it is not necessary to have all the types
available in the Hashtable. There would be many objects under System.Object too and a hash table
operates faster with fewer objects in it (admittedly, this is a weak argument counting the numbers of the
services we have).

Using this method, the service will be put into the hash table the first time it is requested. The services
are allowed to expose several types so this might not be a clean way of doing a service subsystem and
this may change in future versions (but for now it works). One argument against this 'flexibility' is that a
specific service will only be requested under one type in SharpDevelop. The GetService method first
looks into the hash table, and if the service isn't found there it looks in the serviceList. If the service
is still not found, it puts it into the hash table and returns the service object. If it is not found there, it
returns null. The hash table acts as a speed improvement, nothing more.

Now that we know how and where services are requested, let's look at how services are added to the
AddIn tree.

Defining Services
All services are put into the AddIn tree by using a class codon (for details on codons refer to Chapter 4)
under the path /Workspace/Services. Currently the extension node in
AddIns\SharpDevelopCore.addin is:

<Extension path = "/Workspace/Services">
 <Class id = "ProjectService"
 class = "ICSharpCode.SharpDevelop.Services.DefaultProjectService"/>
 <Class id = "FileService"
 class = "ICSharpCode.SharpDevelop.Services.DefaultFileService"/>
 <Class id = "ParserService"
 class = "ICSharpCode.SharpDevelop.Services.DefaultParserService"/>
 <Class id = "TaskService"
 class = "ICSharpCode.SharpDevelop.Services.TaskService"/>
 <Class id = "StatusBarService"
 class =
 "ICSharpCode.SharpDevelop.Services.DefaultStatusBarService"/>
 <Class id = "ToolbarService"

Chapter 5

112

 class = "ICSharpCode.SharpDevelop.Services.ToolbarService"/>
 <Class id = "LanguageService"
 class = "ICSharpCode.SharpDevelop.Services.LanguageService"/>
 <Class id = "ClassBrowserIconsService"
 class =
 "ICSharpCode.SharpDevelop.Services.ClassBrowserIconsService"/>
 <Class id = "LanguageBindingService"
 class =
 "ICSharpCode.SharpDevelop.Services.LanguageBindingService"/>
 <Class id = "DisplayBindingService"
 class = "ICSharpCode.SharpDevelop.Services.DisplayBindingService"/>
 <Class id = "AmbienceService"
 class = "ICSharpCode.SharpDevelop.Services.AmbienceService"/>
</Extension>

All services must implement the IService interface or else SharpDevelop won't load (we will get an
error message). To add a new service simply implement the IService interface (or extend the abstract
implementation AbstractService, which lies in the same directory) and add a class codon pointing to
the new service class to the services path.

Common Services at your Service
In this section, we will look at all services that are currently defined in SharpDevelop. Note that unless
explicitly mentioned, the default implementation is in the same directory as the service interface, and is
called DefaultXXXService, while the interface is called IXXXService(some services are accessible
through interfaces).

We will discuss some of the services in detail, but most of them are described briefly as they are either
covered in the other chapters or their implementation isn't interesting enough to discuss them here.

Let's begin with the services defined in the Core project of SharpDevelop (therefore they're called 'core'
services). They're inside the core because they don't have SharpDevelop-specific dependencies.
They include:

❑ File Utility Service – For common file operations and providing icons for files

❑ Property Service – Service for accessing the global properties of SharpDevelop

❑ Resource Service – The localization manager

❑ StringParser Service – The service for defining properties inside strings

After the core services we cover the other services (they are inside the base project of SharpDevelop) as well:

❑ Ambience Service – Formats type and member information to the user preferences and
provides access to the code generation style

❑ ClassBrowserIcons Service – The service which makes it easier to get the icons for types
and members

Providing Functionality with Workspace Services

113

❑ File Service – Handles SharpDevelop file functions that are too high level for the File Utility
Service (like open/close file inside the IDE)

❑ Project Service – Keeps track of the current open projects and combines

❑ Parser Service – Access layer to the parser, which is used for code completion and the
class browser

File Utility Service
The file utility service is one of the most important services in SharpDevelop. Without it, SharpDevelop
would not be as stable as it is because it provides many file checking functions. It is used for common
file operations and providing icons.

This service contains helper functions for commonly used functionality, that is not present in the
System.IO.Path class, and some other additional file-related functions. It provides the access point to
file and project icons too. The service can be found under src\SharpDevelop\Core\Services\
FileUtilityService\FileUtilityService.cs:

public class FileUtilityService : AbstractService
{
 public ImageList ImageList {
 get;
 }
 public Bitmap GetBitmap(string name);

 public Image GetImageForProjectType(string projectType);
 public int GetImageIndexForProjectType(string projectType);

 public Image GetImageForFile(string fileName);
 public int GetImageIndexForFile(string fileName);

The methods above handle the icons. An ImageList containing all icons can be accessed through the
ImageList property. Now let's look at what these methods do:

❑ GetBitmap - With this method, SharpDevelop grabs bitmaps out of the bitmap pool. Using
this function bitmaps from the SharpDevelop resource file and from AddIn tree-defined icons
can be accessed because they share the same 'naming system'.

❑ GetImageForProjectType - Returns an image for a specific project type. Each project must
have a type that identifies its language. For example all C# projects have the type "C#" (case
sensitive). It returns a generic project file icon if the project type does not have an icon
attached to.

❑ GetImageIndexForProjectType – Returns an index in the ImageList property for a
specific project type.

❑ GetImageForFile – Returns an image for a file. If no icon is found an 'unknown file' icon
will be returned.

❑ GetImageIndexForFile – Returns an index in the ImageList property for a specific file.
If no icon is found the index of an 'unknown file' icon will be returned.

Chapter 5

114

After these, some functions are defined that use native calls:

class NativeMethods {
 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern int GetVolumeInformation(string volumePath,
 StringBuilder volumeNameBuffer,
 int volNameBuffSize,
 ref int volumeSerNr,
 ref int maxComponentLength,
 ref int fileSystemFlags,
 StringBuilder fileSystemNameBuffer,
 int fileSysBuffSize);

 [DllImport("kernel32.dll")]
 public static extern DriveType GetDriveType(string driveName);
} // end of native methods class

public string VolumeLabel(string volumePath)
{
 try {
 StringBuilder volumeName = new StringBuilder(128);
 int dummyInt = 0;
 NativeMethods.GetVolumeInformation(volumePath, volumeName, 128,
 ref dummyInt, ref dummyInt, ref dummyInt, null, 0);
 return volumeName.ToString();
 } catch (Exception) {
 return String.Empty;
 }
}

public DriveType GetDriveType(string driveName)
{
 return NativeMethods.GetDriveType(driveName);
}

The VolumeLabel and GetDriveType functions are used in the file scout to determine the type and
name of a drive. The DriveType enum is defined in the same file; we won't bother looking at it here.

Now let's look at a method that provides the names of all the files in a directory (and optionally all
subdirectories too) back into a StringCollection. This method is used whenever specific files are to
be loaded, like the *.addin files in the SharpDevelop AddIn directory:

public StringCollection SearchDirectory(string directory,
 string filemask, bool searchSubdirectories)
{

StringCollection collection = new StringCollection();
SearchDirectory

 (directory, filemask, collection, searchSubdirectories);
return collection;

}

Providing Functionality with Workspace Services

115

public StringCollection SearchDirectory(string directory, string filemask)
{

return SearchDirectory(directory, filemask, true);
}

void SearchDirectory(string directory, string filemask, StringCollection
collection, bool searchSubdirectories)
{
 try {
 string[] file = Directory.GetFiles(directory, filemask);
 foreach (string f in file) {
 collection.Add(f);
 }
 if (searchSubdirectories) {
 string[] dir = Directory.GetDirectories(directory);
 foreach (string d in dir) {
 SearchDirectory(d, filemask, collection, searchSubdirectories);
 }
 }
 } catch (Exception e) {
 MessageBox.Show("Can't access directory " + directory + " reason:\n" +
 e.ToString(),
 "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
 }
}

A message box is displayed when the SearchDirectory method cannot access a specific directory.

Next, we will look at the helper methods, which convert relative paths to absolute paths and vice-versa.
These methods are used during project save, where all file names get stored relative to the project
file location:

 public string AbsoluteToRelativePath(string baseDirectoryPath,
 string absPath);
 public string RelativeToAbsolutePath(string baseDirectoryPath,
 string relPath);

Then, we have some validation methods defined:

 public bool IsValidFileName(string fileName);
 public bool TestFileExists(string filename);
 public bool IsDirectory(string filename);
 public string GetDirectoryNameWithSeparator(string directoryName);

Here's what these methods do:

❑ IsValidFileName – Returns true if the given file name is valid. We have already seen this
function in Chapter 2. Note that this method is platform dependent.

❑ TestFileExists – Tests whether a file having the given file name exists, and displays a
warning message box if not. It returns true if the file exists and false otherwise. This method
is used whenever the user has to be informed that a file can't be loaded, as it's nonexistent.

Chapter 5

116

❑ IsDirectory – Returns true if the file given by filename is a directory, otherwise false
is returned.

❑ GetDirectoryNameWithSeparator – This method returns a directory name that has a
separator attached at the end. If the user enters a directory name, they may or may not attach
the path separator. Instead of validating every directory usage for whether it has a separator at
the end this method does the job for us.

Now we will look at the methods that make the SharpDevelop file save routines safe:

 public FileOperationResult ObservedSave(SaveFileDelegate saveFile,
 string fileName, string message, FileErrorPolicy policy);

This method has overloads that take following arguments:

SaveFileDelegate saveFile, string fileName, FileErrorPolicy policy
SaveFileDelegate saveFile, string fileName
NamedFileOperationDelegate saveFileAs, string fileName, string message,
 FileErrorPolicy policy
NamedFileOperationDelegate saveFileAs, string fileName,
 FileErrorPolicy policy
NamedFileOperationDelegate saveFileAs, string fileName

Now we look at the ObservedLoad method, which works the same way:

 public FileOperationResult ObservedLoad(FileOperationDelegate saveFile,
 string fileName,
 string message,
 FileErrorPolicy policy);

This method has overloads that take the following arguments:

FileOperationDelegate saveFile, string fileName, FileErrorPolicy policy
FileOperationDelegate saveFile, string fileName
NamedFileOperationDelegate saveFileAs, string fileName, string message,
 FileErrorPolicy policy
NamedFileOperationDelegate saveFileAs, string fileName,
 FileErrorPolicy policy
NamedFileOperationDelegate saveFileAs, string fileName);
}

All these save/load methods are used to make the save/load methods safer by placing them in a
try...catch block and display an error message if they fail. Every time files are saved or loaded the
following errors can occur:

❑ Write Protected – The save operations fails

❑ Not accessible – The save/load operations may fail according to the current user's permissions

❑ Network connection lost – The save/load operations fail after they have started

Providing Functionality with Workspace Services

117

These errors are gracefully handled with the save/load methods used by SharpDevelop. It is annoying
to wrap a try...catch statement around our code whenever a file operation is being performed. The
methods display a message box when an error occurs, containing a standard message (this message can
be replaced with a more sophisticated message). Alternatively, a message box is displayed that allows
the user chose between:

❑ Retry – The save operation is tried again

❑ Ignore – The failed operation is ignored

❑ Choose other location – Allows the user to select another location for saving the file (it is
available only for named file save operations)

❑ Show Exception – The thrown exception is shown, which helps to understand the reason why
the save operation failed

All save operations inside SharpDevelop are wrapped with an observed save. Save operations that the
user can retry, like a file save, are wrapped with a message box. All other save operations that are
performed in the background, like project file save or property save, are wrapped with a more
sophisticated message box.

We will now move on to look at the enumerations and delegates that are used by the methods that we
discussed above. The delegate that these methods get must point to the function that performs the
file operation:

public enum FileErrorPolicy {
 Inform,
 ProvideAlternative
}

public enum FileOperationResult {
 OK,
 Failed,
 SavedAlternatively
}

public delegate void FileOperationDelegate();

public delegate void NamedFileOperationDelegate(string fileName);

The FileOperationDelegate is used for file operations that do not take a file name as argument. In
this case, the Choose location button at the error message box will not be available (for load operations
it is never available). The user can only use retry/ignore and look at the exception that caused the error.

Next, we consider the ObservedSave method that takes a SaveFileAsDelegate in detail. All other
methods work in a similar way:

public SaveFileResult ObservedSave(SaveFileAsDelegate saveFileAs, string fileName,
string message, SaveFilePolicy policy)
{
 try {
 saveFileAs(fileName);

Chapter 5

118

 return SaveFileResult.OK;
 } catch (Exception e) {
 switch (policy) {
 case SaveFilePolicy.Inform:
 using (SaveErrorInformDialog informDialog = new
SaveErrorInformDialog(fileName, message, e)) {
 informDialog.ShowDialog();
 }
 break;
 case SaveFilePolicy.ProvideAlternative:
 restartlabel:
 using (SaveErrorChooseDialog chooseDialog = new
SaveErrorChooseDialog(fileName, message, "Error while saving", e, true)) {
 switch (chooseDialog.ShowDialog()) {
 case DialogResult.OK:
 using (SaveFileDialog fdiag = new SaveFileDialog()) {
 fdiag.OverwritePrompt = true;
 fdiag.AddExtension = true;
 fdiag.CheckFileExists = false;
 fdiag.CheckPathExists = true;
 fdiag.Title = "Choose alternate file name";
 fdiag.FileName = fileName;
 if (fdiag.ShowDialog() == DialogResult.OK) {
 return ObservedSave
 (saveFileAs, fdiag.FileName, message, policy);
 } else {
 goto restartlabel;
 }
 }
 case DialogResult.Retry:
 return ObservedSave(saveFileAs, fileName, message, policy);
 case DialogResult.Ignore:
 return SaveFileResult.Failed;
 }
 }
 break;
 }
 }
 return SaveFileResult.Failed;
}

We have seen the entire file service and now know how file operations are made secure inside
SharpDevelop. These methods are simple and make the program much more robust.

Now we will move on to the next service, which handles the global properties in SharpDevelop.

Providing Functionality with Workspace Services

119

Property Service
The property service is just an IProperties object, like we saw in the Property Management in
SharpDevelop section of Chapter 3. This service is used to access the properties that are global in
SharpDevelop. It is defined under src\SharpDevelop\Core\Services\PropertyService.cs.
This service loads and saves its contents to a property file. Beside that, it has a ConfigDirectory
property defined. This points to the directory in which all SharpDevelop data must be saved. Currently
this is set to:

System.Environment.GetFolderPath(Environment.SpecialFolder.ApplicationData)+
 Path.DirectorySeparatorChar+".ICSharpCode"+
 Path.DirectorySeparatorChar+"SharpDevelop"+
 Path.DirectorySeparatorChar;

This service is used wherever properties must be made persistent (refer to Chapter 3 for more
information on property persistence).

Resource Service
The resource service is used for internationalization (for details, refer to Chapter 7) and icons. Dialogs
set their labels directly using the resource service (except XML defined dialogs, see Chapter 17). Other
than that, bitmaps that are defined in resource files should be got using the FileUtilityService
class instead because the resource service can only access the bitmaps defined in the SharpDevelop
resource files and the FileUtilityService can access these and bitmaps from the AddIn tree too.
The service is defined under src\SharpDevelop\Core\Services\ResourceService.cs:

public class ResourceService : AbstractService
{
 public string GetString(string name);

 public Icon GetIcon(string name);
 public Bitmap GetBitmap(string name);
}

The GetIcon method returns the same image as the GetBitmap method but in another format (as
System.Drawing.Icon class). Icons are used to set the icon of a System.Windows.Forms.Form.

Note that most internationalization is done through the StringParserService class, which we will be
discussing next.

String Parser Service
The string parser helps us with internationalization and tags in strings. For example, if a message needs
to display a file name the message text may be:

string msg = "Can't load file {0}.";

Chapter 5

120

In addition, with String.Format the message could be displayed with:

DisplayMessage(String.Format(msg, filename));

These solution would work but for each string that is displayed the translators must know what {0},
{1} etc. is and sometimes this can lead to confusion (the original language message contains some clues
to what {x} means but maybe too few to be sure). Therefore, SharpDevelop uses ${...} tags (this style
gets used by many other programs too) to clarify this:

string msg = "Can't load file ${FileName}.";

We need some sort of parser to replace the ${...} tags with the file name. This parser is implemented
as a service called the string parser service. The StringParserService class is defined under
src\SharpDevelop\Core\Services\StringParserService.cs. We will examine its code in
Chapter 7; for now we will only look at the declarations:

public class StringParserService : AbstractService
{
 public PropertyDictionary Properties {
 get;
 }
 public string Parse(string input);
 public string Parse(string input, string[,] customTags);
}

In the Properties dictionary, custom properties can be written and are then available in all following
Parse calls.

Note that all tags are case insensitive ${FileName} is the same as ${FILENAME} or ${FiLeNaMe}

The Parse method has two variants. One of them takes custom tags that are saved into a string[,]
array. For example:

string msg = stringParserService.Parse("Can't load file ${FileName}.", new
string[,] {
 {"FileName", fileName}
});

This snippet would set a tag called FileName for the input string. The string parser only replaces the
tags it knows about. If an unknown tag is found in the string, it is copied to the output string untouched.
Custom tags have a higher priority than global properties. The string parser service knows about the
following global tags:

❑ Date – Gives back the current date. Almost any string displayed in SharpDevelop is parsed
with the stringparser service. The Date tag is used mostly in file templates, in which the
creation date is inserted.

❑ Time – returns the current time.

Providing Functionality with Workspace Services

121

❑ env:[EnvironmentVariableName]- with this tag, all environment variables
(System.Environment.GetEnvironmentVariables()) can be accessed. For example,
${env:SystemRoot} would be transformed to C:\WINNT on my system because the
environment variable SystemRoot has this value.

❑ res:[ResourceName] – used for internationalization. With this tag resource strings can be
loaded out of the resource database (for details refer Chapter 7).

❑ property:[PropertyName] – allows global properties, which are all SharpDevelop
options, to be accessed.

The StringParserService is the last service defined in the Core. Now we will move on to the Base
project, which provides higher-level services for the IDE.

In the core are the core services and the AddIn tree so there is no need to limit ourselves to using the
core to develop an IDE. It is possible to do anything else with it. Inside the base project are the
underpinnings of the IDE, there are most commands, the project management system, and so on. This is
the heart of the IDE part in SharpDevelop.

Ambience Service
The ambience service provides some look and feel options for the user. It doesn't provide GUI look and
feel, rather it wraps code generation options or 'ambiences'. We will look at what an ambience is after
we have seen the service implementation. It is available in the file
src\SharpDevelop\Base\Services\AmbienceService\AmbienceService.cs:

public class AmbienceService : AbstractService
{
 public IProperties CodeGenerationProperties {
 get;
 }
 public bool GenerateDocumentComments {
 get;
 }
 public bool GenerateAdditionalComments {
 get;
 }
 public bool UseFullyQualifiedTypenames {
 get;
 }
 public AmbienceReflectionDecorator CurrentAmbience {
 get;
 }
 public event EventHandler AmbienceChanged;
}

The first four properties are used for code generation. The user can chose the preferred code generation
method from the options dialog and the code is formatted using that information. We will look at code
generation options in Chapter 17. For now it is enough to know that the code generation properties are
just put into an IProperties object and that these properties are easy-to-use wrappers.

Chapter 5

122

We should pay attention to the CurrentAmbience property. It returns an
AmbienceReflectionDecorator object, which inherits from IAmbience found under
src\SharpDevelop\Base\Services\AmbienceService\IAmbience.cs.

Ambiences are used to format information about classes and reflection according to the preferred visual
style of the user. Look at the following screenshots to get an impression of what they do:

With the C# ambience shown on the left the methods and fields are printed in C# style (type first; look
at the method parameters and return values). The VB.NET ambience shown on the right prints the
names in VB.NET style (name As Type).

Ambiences are used in the object browser and code completion/method insight windows as well. They
provide a look and feel for the user and they have rich formatting options, as we can see in the file
src\SharpDevelop\Base\Services\AmbienceService\IAmbience.cs:

[Flags]
public enum ConversionFlags {
 None = 0,
 ShowParameterNames = 1,
 UseFullyQualifiedNames = 2,
 ShowModifiers = 4,
 ShowInheritanceList = 8,
 ShowAccessibility = 16,

 StandardConversionFlags = ShowParameterNames |
 UseFullyQualifiedNames |
 ShowModifiers,
 All = ShowParameterNames |
 ShowAccessibility |
 UseFullyQualifiedNames |

Providing Functionality with Workspace Services

123

 ShowModifiers |
 ShowInheritanceList
}

public interface IAmbience
{
 ConversionFlags ConversionFlags {
 get;
 set;
 }

 string Convert(IClass c);
 string Convert(IIndexer c);
 string Convert(IField field);
 string Convert(IProperty property);
 string Convert(IEvent e);
 string Convert(IMethod m);
 string Convert(IParameter param);
}

The Convert methods are used to convert a type representation to a printable (human readable)
string. The conversion flags do the following:

❑ ShowParameterNames – show the name of the method parameters. If this flag is not set, only
the type will be displayed.

❑ UseFullyQualifiedNames – use the fully qualified name instead of a short name. For
example System.Windows.Forms.Button is fully qualified, the short name is Button.

❑ ShowModifiers – show all modifiers, except accessibility modifiers.

❑ ShowInheritanceList – show the base types of a class.

❑ ShowAccessibility – shows all modifiers that change the accessibility.

The IAmbience interface defines converters for all classes that are defined in the abstract parser layer
(refer to Chapter 12). The AmbienceReflectionDecorator class just extends these converters to all
reflection classes; it is used to display reflection information like in the object browser.

Class Browser Icons Service
The class browser icons service is used to get the icons for types and type members. It is implemented
as a service because icons for types and members are used in many locations including:

❑ In the class browser

❑ In the code completion window

❑ In the object browser

To reduce code duplication, the class browser icon service is used in these cases. The class is defined
under src\SharpDevelop\Base\Services\ClassBrowserIcons
\ClassBrowserIconsService.cs:

Chapter 5

124

public class ClassBrowserIconsService : AbstractService
{
 public ImageList ImageList { get; }

 public int CombineIndex { get; }
 public int NamespaceIndex { get; }
 public int LiteralIndex { get; }
 public int ClassIndex { get; }
 public int StructIndex { get; }
 public int InterfaceIndex { get; }
 public int EnumIndex { get; }
 public int MethodIndex { get; }
 public int PropertyIndex { get; }
 public int FieldIndex { get; }
 public int DelegateIndex { get; }
 public int EventIndex { get; }

 public int InternalModifierOffset { get; }
 public int ProtectedModifierOffset { get; }
 public int PrivateModifierOffset { get; }

 public int GetIcon(IMethod method);
 public int GetIcon(IProperty method);
 public int GetIcon(IField field);
 public int GetIcon(IEvent evt);
 public int GetIcon(IClass c);

 public int GetIcon(MethodBase methodinfo);
 public int GetIcon(PropertyInfo propertyinfo);
 public int GetIcon(FieldInfo fieldinfo);
 public int GetIcon(EventInfo eventinfo);
 public int GetIcon(System.Type type);
}

As we see, the class browser service exposes the image list containing all icons and the offsets to specific
icons through properties. For all icon indices, except Combine, Namespace, and Literal, icons are
defined that reflect their modifier. Therefore, if an icon for an internal struct should be displayed
the correct icon has the image index StructIndex + InternalModifierOffset. In most cases, the
user of this service just uses the GetIcon methods that give back the correct icon for all abstract parser
layer classes and all reflection classes.

File Service
The file service doesn't have much to do with the file utility service, which we have seen before. The file
service is responsible for:

❑ Common file operations like open, rename, remove, or create a new file. It is important to use
the service for rename or remove operations as it raises an event for them, and all other
components can update their status. For example, when we rename a file that is open, the
window containing the open file is renamed as well.

❑ Storing the RecentOpen object, which contains the recently opened files and projects.

Providing Functionality with Workspace Services

125

The service is defined under src\SharpDevelop\Base\Services\File\IFileService.cs:

public interface IFileService
{
 RecentOpen RecentOpen {
 get;
 }

The RecentOpen class is defined in src\SharpDevelop\Base\Services\File\RecentOpen.cs
and holds all our recently opened projects and files (up to 10 files and 10 projects).

It is stored into the SharpDevelop properties (therefore RecentOpen implements IXmlConvertable)
and the RecentOpen object itself listens to the file service's file open event and the project open event
from the project service. A menu item builder builds recent file/recent project menus out of the
RecentOpen contents.

Now let's look at the main file handling methods:

 void OpenFile(string fileName);
 void NewFile(string defaultName, string language, string content);
 IWorkbenchWindow GetOpenFile(string fileName);

❑ OpenFile – opens the file whose name is given by fileName (i.e, it shows the file in the
workbench window). This method displays an error message if something goes wrong, like file
not found, read error or access denied.

❑ NewFile – opens a new file with a given name, language and file content in the work
bench window

❑ GetOpenFile – gets an opened file by name, returns null, if the file is not open.

Now we will take look at the file operations that are performed using the service:

 void RemoveFile(string fileName);
 void RenameFile(string oldName, string newName);

These methods perform the following tasks:

❑ RemoveFile – removes a file from all open project and physically too.

❑ RenameFile – renames a file physically (all file names used will be updated too).

These functions simply call these event handlers:

 event FileEventHandler FileRenamed;
 event FileEventHandler FileRemoved;

Chapter 5

126

The methods RemoveFile and RenameFile first perform the physical operation (remove and rename)
and afterwards fire the appropriate events. (The event handlers will do the remove from/rename in the
project). If the operation fails, a message box with the error will be displayed and the event handler will
not be called. The project service listens to these events and updates the project file information. The
RecentOpen object updates its information too. This ensures that all parts get informed when a file is
renamed or removed inside the IDE.

Now that we know how files are handled through the file service, we will look at how projects and
combines are handled through the project service.

Project Service
SharpDevelop works on combines. As seen in Chapter 1, a combine is a container for projects and
combines. Projects contain source files that are compiled to an assembly.

The project service is responsible for handling the root combine. It compiles projects too and it
provides many events that are used in SharpDevelop. The IProjectService interface is found under
src\SharpDevelop\Base\Services\Project\IProjectService.cs:

public interface IProjectService
{
 IProject CurrentSelectedProject {
 get;
 set;
 }

 Combine CurrentSelectedCombine {
 get;
 set;
 }

 // Gets the root combine, if no combine is open it returns null.
 Combine CurrentOpenCombine {
 get;
 }

These properties provide access to the current combine and make the following properties available:

❑ CurrentSelectedProject - the project containing the current open file or that file which
is currently selected in the project scout (as seen in Chapter 4)

❑ CurrentSelectedCombine – the combine containing the current selected project

❑ CurrentOpenCombine – this is the root combine, which contains all open projects
and combines

You might wonder why the CurrentSelected* properties can be set. The answer is relatively simple:
the service does not know about them; it just manages them. The project scout sets them and the service
should not communicate with a GUI component because this would make the service depend on a
certain pad (in this case the project scout).

Providing Functionality with Workspace Services

127

Now we will look at the methods and properties used for compilation:

 bool NeedsCompiling {
 get;
 }

This property returns true if an open project is dirty (modified). This indicates that during a compile
run something will be compiled.

 void OnStartBuild();
 void OnEndBuild();

The OnStartBuild/OnEndBuild methods fire the associated events to inform the IDE when a build
occurs. The build is usually threaded and therefore it is nice to know when a build has ended. For
example, the IDE will be switched to the task view at the EndBuild event when it contains errors.

Now to the compile methods:

 void CompileCombine();
 void RecompileAll();
 void CompileProject(IProject project);
 void RecompileProject(IProject project);

These methods do the following:

❑ CompileCombine – compiles all dirty projects in the root combine (and sub-combines).

❑ RecompileAll – compiles any project in the root combine and forces recompilation.
Recompilation is done with another method than compilation in the project subsystem, as
there may be some (programming) languages that need to complete some tasks, like removing
the executables or providing a forced overwrite switch to the compiler, before recompilation.

❑ CompileProject – compiles just a given project

❑ RecompileProject – recompiles a given project.

We must know how to set a project as dirty to mark that it is to be compiled in the next compile run.
This is done with the following methods:

 void MarkFileDirty(string filename);
 void MarkProjectDirty(IProject project);

Note that all dirty projects will be compiled when the user clicks on compile.

Sometimes it is necessary for us to know the name of the output file produced by a project after the
compile run. If a language produces more than one output file (as Java does) the name of the main file
should be returned.

Chapter 5

128

There are two methods for getting it:

 string GetOutputAssemblyName(IProject project);
 string GetOutputAssemblyName(string fileName);

SharpDevelop is capable of compiling files on a per file basis. Therefore, two methods are defined that
do the same – one for a project and one for a file.

Now we will look at the methods that handle combine persistence:

 void OpenCombine(string filename);
 void SaveCombine();
 void CloseCombine();

❑ OpenCombine – opens a new root combine. This method closes the old root combine
automatically (if any was open).

❑ SaveCombine – saves the whole root combine on disk (all projects and sub-combines are
saved too).

❑ CloseCombine – closes the active root combine. After this method call all projects are closed.

Now we will examine a special method that saves the preferences from a combine:

 void SaveCombinePreferences();

This method saves the whole state of the IDE to restore it the next time the combine is opened. We will
now look at the default implementation, which is taken from
src\SharpDevelop\Base\Services\Project\DefaultProjectService.cs.

It would be nice to have a little understanding of the SharpDevelop GUI layer, but you can understand
this method even without knowledge about the GUI layer:

void SaveCombinePreferences(Combine combine, string combinefilename)
{
 PropertyService propertyService =
 (PropertyService)ServiceManager.Services.GetService
 (typeof(PropertyService));
 string directory = propertyService.ConfigDirectory + "CombinePreferences";
 if (!Directory.Exists(directory)) {
 Directory.CreateDirectory(directory);
 }

This first part just creates a CombinePreferences directory in the application data folder in the
.ICSharpCode\SharpDevelop path if it does not exist. In this path the combine preferences are
saved. They are saved independently from the combine file, as it is annoying to have somebody else's
settings open up while using the IDE. This could easily happen in team development when the combine
file is shared among a number of people.

Providing Functionality with Workspace Services

129

Then the root node will be created:

 string combinepath = Path.GetDirectoryName(combinefilename);
 XmlDocument doc = new XmlDocument();
 doc.LoadXml("<?xml version=\"1.0\"?>\n<UserCombinePreferences/>");

 XmlAttribute fileNameAttribute = doc.CreateAttribute("filename");
 fileNameAttribute.InnerText = combinefilename;
 doc.DocumentElement.Attributes.Append(fileNameAttribute);

Note that the combine will be identified through its file name, which is stored in the filename attribute
of the root node.

Now all files that are currently open are stored:

 XmlElement filesnode = doc.CreateElement("Files");
 doc.DocumentElement.AppendChild(filesnode);

 foreach (IViewContent content in
WorkbenchSingleton.Workbench.ViewContentCollection) {
 if (content.ContentName != null) {
 XmlElement el = doc.CreateElement("File");

 XmlAttribute attr = doc.CreateAttribute("filename");
 attr.InnerText = fileUtilityService.AbsoluteToRelativePath(combinepath,
content.ContentName);
 el.Attributes.Append(attr);

 filesnode.AppendChild(el);
 }
 }

After that, all pads (such as the class browser or project scout) store their mementos (refer the section on
Design Patterns in Chapter 2) into the XML:

 XmlElement viewsnode = doc.CreateElement("Views");
 doc.DocumentElement.AppendChild(viewsnode);

 foreach (IPadContent view in WorkbenchSingleton.Workbench.PadContentCollection)
{
 if (view is IMementoCapable) {
 XmlElement el = doc.CreateElement("ViewMemento");

 XmlAttribute attr = doc.CreateAttribute("class");
 attr.InnerText = view.GetType().ToString();
 el.Attributes.Append(attr);

el.AppendChild(((IMementoCapable)view).CreateMemento().ToXmlElement(doc));

 viewsnode.AppendChild(el);
 }
 }

Chapter 5

130

Now an IProperties object will be created to store other information that is not stored in it at this
point. Currently only the active window is stored:

 IProperties properties = new DefaultProperties();
 properties.SetProperty("ActiveWindow",
WorkbenchSingleton.Workbench.ActiveWorkbenchWindow == null ? "" :
WorkbenchSingleton.Workbench.ActiveWorkbenchWindow.ViewContent.ContentName);

 XmlElement propertynode = doc.CreateElement("Properties");
 doc.DocumentElement.AppendChild(propertynode);

 propertynode.AppendChild(properties.ToXmlElement(doc));

 fileUtilityService.ObservedSave(new NamedFileOperationDelegate(doc.Save),
directory + Path.DirectorySeparatorChar + combine.Name + ".xml",
FileErrorPolicy.ProvideAlternative);
}

This completes it. All these values will be loaded and set the next time the combine is opened.

Now we will continue with our project service:

 ProjectReference AddReferenceToProject(IProject prj, string filename);
 ProjectFile AddFileToProject(IProject prj, string filename,
 BuildAction action);
 ProjectFile RetrieveFileInformationForFile(string fileName);

These methods are used to make it easier to handle project files and project references:

❑ AddReferenceToProject – adds a reference to a given project. It returns the
ProjectReference object, which will be created and inserted into the project.

❑ AddFileToProject – adds a file to the project with a given BuildAction
(Nothing/Compile/EmbedAsResource/Exclude). It returns the ProjectFile object,
which will be created and inserted into the project.

❑ RetrieveFileInformationForFile – searches through all open projects for the project
that contains the given file. The ProjectFile object from the project containing this file will
be returned. This method returns null if no project contains the given file.

More information about the ProjectFile and ProjectReference classes can be obtained in the
SharpDevelop source code. The project layer is defined in the directory
src\SharpDevelop\Base\Internal\Project:

 void RenameProject(string oldName, string newName);
 void RemoveFileFromProject(string fileName);

❑ RenameProject – renames a project (the project must be open).

❑ RemoveFileFromProject – removes the specified file from its project. The project must be
open (somewhere in the tree of the root combine) otherwise it can't be removed from the
project. If the same file is in more than one open project it will be removed from all of them.
This function will not remove a file physically from disk.

Providing Functionality with Workspace Services

131

Finally, the events that are called by the respective methods are defined:

 // Called before a build run
 event EventHandler StartBuild;

 // Called after a build run
 event EventHandler EndBuild;

 // Called after a new root combine is opened
 event CombineEventHandler CombineOpened;

 // Called after a root combine is closed
 event CombineEventHandler CombineClosed;

 // Called after the current selected project has changed
 event ProjectEventHandler CurrentProjectChanged;

 // Called after the current selected combine has changed
 event CombineEventHandler CurrentSelectedCombineChanged;

 // Called after a project got renamed
 event ProjectRenameEventHandler ProjectRenamed;
}

This completes our discussion on project handling in SharpDevelop. Now we will look at projects from
another perspective – the logical structure.

Parser Service
The parser service is important for the class browser and method insight. It manages all the installed
parsers (currently there is only a C# parser implemented for SharpDevelop). It is responsible for
providing the Resolve method, which tells SharpDevelop what type a specific expression has (this is
used for code completion and method insight). We will be discussing parsers and the innermost
workings of this service in Chapter 12.

For now let's take a look at the interface, which is defined under src\SharpDevelop\Base\
Services\ParserService\IParserService.cs.

public interface IParserService
{
 IParseInformation ParseFile(string fileName);
 IParseInformation ParseFile(string fileName, string fileContent);

 IParseInformation GetParseInformation(string fileName);

 IParser GetParser(string fileName);

 // Default Parser Layer dependent functions
 IClass GetClass(string typeName);
 string[] GetNamespaceList(string subNameSpace);
 ArrayList GetNamespaceContents(string subNameSpace);
 bool NamespaceExists(string name);

Chapter 5

132

 // Resolves an expression.
 // The caretLineNumber and caretColumn are 1 based.
 ResolveResult Resolve(string expression, int caretLineNumber, int caretColumn,
string fileName);

 void AddReferenceToCompletionLookup(IProject project, ProjectReference
reference);
 event ParseInformationEventHandler ParseInformationChanged;
}

The ParseFile functions return an IParseInformation object (the class is defined in the same file).
A parse information contains a dirty compilation unit (a parse tree for a single file) and a valid
compilation unit. Note that if you communicate with the parser all offsets are 1-based. This has
historical reasons (many parsers are 1-based).

The dirty compilation unit is set when the parser returned errors during parsing and the valid
compilation unit is only set when the parsing was successful (therefore the valid compilation unit is error
free). Code completion and method insight must merge this information to get the expected results (for
details refer Chapter 12).

public interface IParseInformation
{
 ICompilationUnitBase ValidCompilationUnit {
 get;
 }
 ICompilationUnitBase DirtyCompilationUnit {
 get;
 }
 ICompilationUnitBase BestCompilationUnit {
 get;
 }
 ICompilationUnitBase MostRecentCompilationUnit {
 get;
 }
}

The BestCompilationUnit returns the most error free compilation unit, this is usually the valid
compilation unit (if it exists) otherwise it is the dirty compilation unit.

The MostRecentCompilationUnit property returns the last compilation unit that was compiled.
That is mostly the dirty compilation unit (because a file in progress is seldom error free) but sometimes
(if no dirty compilation unit is set) it returns the valid compilation unit.

Now that we have covered the important services in SharpDevelop, let's briefly discuss the
remaining ones.

Providing Functionality with Workspace Services

133

Other Services
Beside the services we have already discussed in this chapter there are a few other, less important
services defined in SharpDevelop which we will only describe briefly:

❑ Status Bar Service – displays the status bar messages.

❑ Language Service – provides access to all supported natural spoken languages. All the
languages to which the SharpDevelop UI can be switched and the codepage they use are
accessible through this service (for details refer to Chapter 7).

❑ Task Service – stores the tasks that are displayed in the task window. Common tasks are
compiler errors or search results.

❑ Toolbar Service – builds the SharpDevelop tool bars out of the AddIn tree. There are plans to
extend this service so that it can build general toolbars from an AddIn tree path. However,
this must wait until floating toolbars for .NET are available. (The Magic Library,
www.dotnetmagic.com, plans to provide them.)

❑ Language Binding Service – makes all of the language bindings (links to external compilers)
accessible through file name (language bindings can compile and 'run' files) or project type
(they compile and run projects too).

❑ Display Binding Service – provides an access point to all installed display bindings (refer to
Chapter 6).

Summary
In this chapter, we learned about the service concept in SharpDevelop and how it used in the IDE. We
have seen the service manager, where the services are inserted into the AddIn tree and accessed. We
also got an overview of all the services available inside SharpDevelop.

Now that we have a good understanding of what can be done inside SharpDevelop, let's move on to the
next (and last) part of the basic structure – the GUI layer.

Chapter 5

134

The User Interface

In this chapter, we will learn about the way SharpDevelop handles the GUI. As we know,
SharpDevelop uses the MVC (model-view-controller) concept, which means, in the underlying parts,
the GUI is abstracted. With SharpDevelop, we planned in advance to make the GUI abstract to allow
easy switching of GUI APIs (for example, from Windows Forms to GTK# or QT#). This abstraction has
many benefits:

❑ It provides a clean model for all commands to work with

❑ The abstraction layer helps in applying workarounds to some Windows Forms' bugs

❑ The abstracted Layout Manager helps provide a new look and feel (like adding floating pads)
to the Workbench IDE without making any major code changes for switching the look and
feel of the IDE

Before we dive into the details, let's look at how the overall interaction takes place in the GUI layer:

Windows.Forms

Layout Manager

Workbench
WindowPadsViews

Workbench

The abstract GUI layer is simple. We have a Workbench that contains views and pads, similar to a
container. The views are windows having editable content, like text. Pads, on the other hand, are tool
windows, like the Project Scout.

6

Chapter 6

136

However, note that the Workbench doesn't know how to display the views and pads on the screen. The
views may be stored in an MDI area or a tab control, or be floating around. The Workbench does not
care how the views are displayed. Anything concerned with the GUI API resides in the Layout
Manager. In contrast to the Workbench, the views and pads know how to display their content.

The Layout Manager handles the GUI and provides an implementation of the Workbench window too
(therefore, it is implemented using the GUI Toolkit). A Workbench window contains a view and
handles basic window operations like selecting a window. It doesn't know the positioning of the window
or how it is displayed.

Display Management
In this section, we will look at the source code of the various parts of the abstract GUI layer and how to
use the abstract GUI layer to display HTML inside SharpDevelop. The standard GUI objects we will
look at are:

❑ Workbench windows

❑ Views

❑ Pads

Finally, we will look at the integrated HTML Help Viewer, which is a real implementation of views and pads.

The Workbench Window
The Workbench window maps the basic window functions to an interface. To make the GUI work,
SharpDevelop need not know much about a window or how it is implemented. All that is needed for the
GUI actions to work are that the window must:

❑ Have a title

❑ Have a close method

❑ Have a way to be selected

❑ Trigger events to indicate a change or a window action

Note that these requirements evolved from the earlier SharpDevelop versions that didn't have an
abstracted GUI layer. In the former implementation, the window had only a few functions that are
now abstracted.

How it is represented and displayed doesn't matter to the Workbench, as this job is done in the Layout
Manager. The interface for the Workbench window is defined in the src\SharpDevelop\Base\Gui\
IWorkbenchWindow.cs file:

// The IWorkbenchWindow is the basic interface to a window, which
// shows a view (represented by the IViewContent object).
public interface IWorkbenchWindow
{

The User Interface

137

 // The window title.
 string Title {
 get;
 set;
 }

 // The current view content, which is shown inside this window
 IViewContent ViewContent {
 get;
 }

 // Closes the window
 // if force == true it closes the window without asking the user, even
 //if the content is dirty.
 void CloseWindow(bool force);

 // Brings this window to the front and sets the user focus to this
 // window.
 void SelectWindow();

 // Is called when the window is selected.
 event EventHandler WindowSelected;

 // Is called when the window is deselected.
 event EventHandler WindowDeselected;

 // Is called when the title of this window changes.
 event EventHandler TitleChanged;

 // Is called after the window closes.
 event EventHandler CloseEvent;
}

As we can see, the interface provides only the basic functionality. Later, in the Layout Managers section,
we will look at an implementation of this interface.

Now, let's take a look at views.

Views
The underlying part of the GUI layer is the views. A view usually contains an editor or a 'viewer' that is
able to edit (or display) a file, for example, the text editor or the resource editor. Basically, it is just a
panel that is displayed in an MDI window or on a tab page. We will begin with a look at the
IViewContent interface, which is the interface that the views expose to the outer world. It can be
found in the src\SharpDevelop\Base\Gui\IViewContent.cs file:

public interface IViewContent : IDisposable
{
 Control Control {
 get;
 }

Chapter 6

138

The following property has a control (Windows.Forms) as its value. Currently, the interface is based on
Windows Forms. At a later stage, the Control property might return a more generic object or another
abstract representation to get rid of the Windows.Forms dependency, but which one of these cannot
be predicted.

This property returns the Workbench window in which the view is currently displayed:

 IWorkbenchWindow WorkbenchWindow {
 get;
 set;
 }

The WorkbenchWindow has a reference to the view too.

The name untitled is chosen when the IsUntitled property is true:

 string UntitledName {
 get;
 set;
 }

 string ContentName {
 get;
 set;
 }
 bool IsUntitled {
 get;
 }

The ContentName usually points to the file or URL that the view displays, but actions should not
generally assume this. For untitled files, the ContentName property is null.

 bool IsDirty {
 get;
 set;
 }

 bool IsReadOnly {
 get;
 }

 bool IsViewOnly {
 get;
 }

These properties achieve the following:

❑ IsDirty
If this property is true it indicates that the content needs to be saved (this is a 'dirty' file), and
a '*' sign is displayed after the window title to inform the user about the 'dirty' state. When the
file is closed, the window will prompt the user to save the file.

The User Interface

139

❑ IsReadOnly
If this property is true, it indicates that the content can't be written into (because it is
write-protected). A '+' sign after the window title is displayed for write-protected files, which
are never dirty.

❑ IsViewOnly
This property is a bit like the IsReadOnly property with the exception that no '+' sign is
displayed and that, on views, no load or save operations can occur. This type of view is the
one that we will use to build our HTML help viewer.

The RedrawContent method is called to re-initialize the content, which is more than just repainting,
unlike what the name suggests. It is about refreshing all information that might have changed (for
example, in the case of a user interface switch). The content is not empty but the view should get all
Addin Tree information again. The following listing is an excerpt from this method:

 void SaveFile();
 void SaveFile(string fileName);
 void LoadFile(string fileName);
 event EventHandler ContentNameChanged;
 event EventHandler DirtyChanged;
}

The first three methods perform the save and load operations for the view, followed by two events that
signal the change of the ContentName property and the IsDirty flag. The SaveFile method that
doesn't take a parameter should save the file with the filename that was specified during the last load or
save operation.

The AbstractViewContent implements all those and makes it easier to develop views. If a view has
the IsViewOnly flag set, it need not overwrite the SaveFile and LoadFile methods, as they are
never called. Note that, in that case, SaveFile or LoadFile throw a NotImplementedException.

Pads
Pads are tool windows inside SharpDevelop. Tool windows are a bit different from views, as they can
hide themselves and only one tool window of a type can be open, at a time. Tool windows usually don't
show file contents; instead, they help the user do their job.

SharpDevelop currently implements the following pads:

❑ Project Scout – Displays the file structure in all currently open projects

❑ Class Scout – Displays the namespace structure of the currently open combine

❑ Task List – Displays compiler errors and search results, and enables the user to jump to the
error or search result position

❑ Property Scout – Used in the forms designer to display (and alter) properties of GUI objects

Chapter 6

140

❑ File Scout – An Explorer-like component for displaying the file structure

❑ Tool Scout – Provides an Outlook-like sidebar used to drag-and-drop code snippets and to put
objects on the forms designer

❑ Output Pad – Displays compiler messages

❑ Help Scout – Displays the SharpDevelop help file and can open help topics using the internal
browser, the implementation of which we will look at in Chapter 7

A pad is similar to a view with some exceptions as follows:

❑ Pads can't be added by the user at run time. Currently, there is a fixed count of pads attached
to the Workbench (although with the current structure, it would be possible to add or remove
pads at run time, this makes no sense, as the user will want instant access to any pad).

❑ Pads are always visible – they can't be closed; only hidden. This reduces the time needed to
pop up the pad when it is made visible.

❑ Pads can't be untitled; they always have a unique name. They have an icon that is shown by
the IDE.

❑ Pads are not displayed in the Workbench window. The Layout Manager is responsible for
showing the pads. We have used the Magic library to show the pads in a docking
content window.

We will take a closer look at the IPadContent interface, as any pad must implement this interface. The
definition of the IPadContent interface can be found in the
src\SharpDevelop\Base\Gui\IPadContent.cs file:

// The IPadContent interface is the basic interface to all "tool" windows
// in SharpDevelop.
public interface IPadContent : IDisposable
{
 // Returns the title of the pad.
 string Title {
 get;
 }

 // Returns the icon of the pad, which may be null if the pad has no
 // icon defined.
 Bitmap Icon {
 get;
 }

 // Returns the Windows.Control for this pad.
 Control Control {
 get;
 }

The User Interface

141

 // Re-initializes all components of the pad; that is, reloads the
 //Addin Tree and localization information, and then redraws the content.
 void RedrawContent();

 // Is called when the title of this pad has changed.
 event EventHandler TitleChanged;

 // Is called when the icon of this pad has changed.
 event EventHandler IconChanged;
}

Now that we have looked at both views and pads, let's look at an implementation that uses both of them.

Views and Pads Applied – An Integrated HTML Help Viewer
In this section, we will learn how to implement a view and a pad. For the purpose of our discussion, we
will examine the HTML help system in SharpDevelop. We will look at the following topics in detail:

❑ The HTML view
We will look at an example of a real IViewContent implementation in action.

❑ Navigating the help file
We will look at a pad that uses the HTML view content to display information.

The following screenshot shows the HTML help navigator:

Chapter 6

142

The HTML View
The HTML View is an IViewContent implementation. We will look at how the Internet Explorer
control is wrapped to the IViewContent interface and how this view is used to display HTML pages
inside SharpDevelop.

To begin with, we must wrap the SHDocVw ActiveX control to a managed component. Fortunately, this
is an easy task with the aximp utility that is shipped with the .NET SDK. This command-line tool wraps
an ActiveX component to a .NET Windows.Forms class.

At the command prompt, execute the following command:

aximp C:\WINDOWS\system32\shdocvw.dll

This will create two files, SHDocVw.dll and AxSHDocVw.dll. The AxSHDocVw.dll contains the
wrapped ActiveX control we need. We need to reference these two files in our project.

Now we have to rename the SHDocVw.dll file (this assembly contains the wrapped COM interfaces) to
Interop.SHDocVw.dll (or to any other name other than SHDocVw.dll). If we don't, it will produce
strange side effects under .NET when we run our application on Windows 2000. For example, in our
case, the Open file dialog wasn't able to access the My Documents directory. We could not determine
what exactly caused this problem.

Next, we need to wrap the basic ActiveX control to something more useful. In SharpDevelop, the
control may show navigation buttons when used as a normal browser. However, we use this control to
display our help files too, and in Help file view mode, the navigation buttons must disappear.

The control is implemented in the
src\SharpDevelop\Base\Gui\BrowserDisplayBinding\HtmlViewPane.cs file:

public class HtmlViewPane : UserControl
{
 AxWebBrowser axWebBrowser = null;

 ToolBar toolBar = new ToolBar();
 TextBox urlTextBox = new TextBox();

 bool isHandleCreated = false;
 string lastUrl = null;

 public AxWebBrowser AxWebBrowser {
 get {
 return axWebBrowser;
 }
 }

The User Interface

143

The AxWebBrowser is the wrapped ActiveX component that the aximp tool creates. Our HTML view
will look like:

First, we initialize the control with the toolbar and the URL textbox. The constructor has a single
parameter that indicates whether the navigation bar with the buttons and the text field should be
displayed or not:

 public HtmlViewPane(bool showNavigation)
 {
 Dock = DockStyle.Fill;
 Size = new Size(500, 500);

 if (showNavigation) {
 for (int i = 0; i < toolBarButtons.Length; ++i) {
 ToolBarButton toolBarButton = new ToolBarButton();
 toolBarButton.ImageIndex = i;
 toolBar.Buttons.Add(toolBarButton);
 }

 ResourceService resourceService = (ResourceService)
 ServiceManager.Services.GetService(typeof(ResourceService));
 toolBar.ImageList = new ImageList();
 toolBar.ImageList.Images.Add
 (resourceService.GetBitmap("Icons.16x16.BrowserBefore"));
 toolBar.ImageList.Images.Add
 (resourceService.GetBitmap("Icons.16x16.BrowserAfter"));
 toolBar.ImageList.Images.Add
 (resourceService.GetBitmap("Icons.16x16.BrowserCancel"));
 toolBar.ImageList.Images.Add
 (resourceService.GetBitmap("Icons.16x16.BrowserRefresh"));

Chapter 6

144

 toolBar.Appearance = ToolBarAppearance.Flat;
 toolBar.Dock = DockStyle.Top;
 toolBar.ButtonClick += new
 ToolBarButtonClickEventHandler(ToolBarClick);

 Controls.Add(toolBar);

 urlTextBox.Location = new Point(0, 24);
 urlTextBox.Size = new Size(Width, 24);
 urlTextBox.KeyPress += new KeyPressEventHandler(KeyPressEvent);
 urlTextBox.Anchor = AnchorStyles.Left | AnchorStyles.Right |
 AnchorStyles.Top;

 Controls.Add(urlTextBox);
 }

 axWebBrowser = new AxWebBrowser();
 axWebBrowser.BeginInit();
 if (showNavigation) {
 int height = 48;
 axWebBrowser.Location = new Point(0, height);
 axWebBrowser.Size = new Size(Width, Height - height);
 axWebBrowser.Anchor = AnchorStyles.Left | AnchorStyles.Right |
 AnchorStyles.Bottom | AnchorStyles.Top;
 } else {
 axWebBrowser.Dock = DockStyle.Fill;
 }
 axWebBrowser.HandleCreated +=
 new EventHandler(this.CreatedWebBrowserHandle);
 axWebBrowser.TitleChange +=
 new DWebBrowserEvents2_TitleChangeEventHandler(TitleChange);

 Controls.Add(axWebBrowser);
 axWebBrowser.EndInit();
 }

Note that the toolbar buttons are handled differently as compared to normal buttons in the .NET
Framework. The toolbar buttons don't have a click or activate event attached to them; instead, the
toolbar control fires an event that has an int value (equal to the button position) when a toolbar button
is clicked.

Therefore, we just initialize these with a for statement. The web browser control is handled like any
other .NET Windows Forms control.

The ToolBarClick event handler delegates all actions to the ActiveX control wrapper:

 void ToolBarClick(object sender, ToolBarButtonClickEventArgs e)
 {
 try {
 switch(toolBar.Buttons.IndexOf(e.Button)) {
 case 0:
 axWebBrowser.GoBack();

The User Interface

145

 break;
 case 1:
 axWebBrowser.GoForward();
 break;
 case 2:
 axWebBrowser.Stop();
 break;
 case 3:
 axWebBrowser.CtlRefresh();
 break;
 }
 } catch (Exception) {
 // Please ignore any errors (although not a good coding practice)
 }
 }

Now we will look at some more event handling methods:

 void TitleChange(object sender, DWebBrowserEvents2_TitleChangeEvent e)
 {
 urlTextBox.Text = axWebBrowser.LocationURL;
 }

 void KeyPressEvent(object sender, KeyPressEventArgs ex)
 {
 if (ex.KeyChar == '\r') {
 Navigate(urlTextBox.Text);
 }
 }

Note that pressing the return key in the Windows Forms textbox control is represented as \r instead of
\n. A \n is used as line terminator for any other Windows Forms controls I know about, but the textbox
behaves a little strangely.

 public void CreatedWebBrowserHandle(object sender, EventArgs evArgs)
 {
 isHandleCreated = true;
 if (lastUrl != null) {
 Navigate(lastUrl);
 }
 }

We can navigate to an URL page in the AxWebBrowser only after the handle of the Internet Explorer
control is created. Therefore, we need to save the URL that is requested before the handle is created.
The isHandleCreated field indicates the handle creation.

The heart of our control is the Navigate method. It checks whether the handle is created and if not, it
stores the URL into the lastUrl field. After that it puts the URL into the textbox and it wraps the
Navigate method from the AxWebBrowser object to a friendlier one:

Chapter 6

146

 public void Navigate(string name)
 {
 if (!isHandleCreated) {
 lastUrl = name;
 return;
 }
 urlTextBox.Text = name;
 object arg1 = 0;
 object arg2 = "";
 object arg3 = "";
 object arg4 = "";
 try {
 axWebBrowser.Navigate(name, ref arg1, ref arg2, ref arg3, ref arg4);
 } catch (Exception e) {
 Console.WriteLine(e.ToString());
 }
 }

The Navigate method of the AxWebBrowser takes many command-line arguments but we don't
bother with them.

Now, we must override the Dispose method to ensure the timely disposal of the ActiveX control:

 protected override void Dispose(bool disposing)
 {
 base.Dispose(disposing);
 if (disposing) {
 axWebBrowser.Dispose();
 }
 }

}

Finally, we have a fully functional user control that we can easily wrap to an IViewContent interface
by extending the AbstractViewContent class (which makes the implementation of the interface
much simpler):

public class BrowserPane : AbstractViewContent
{
 HtmlViewPane htmlViewPane;

The view implementation just uses the HtmlViewPane. The view needs to implement some properties,
which are defined in the IViewContent interface:

 public override Control Control {
 get {
 return htmlViewPane;
 }
 }

The User Interface

147

 public override bool IsDirty {
 get {
 return false;
 }
 set {
 }
 }

 public override bool IsViewOnly {
 get {
 return true;
 }
 }

Note that the Control property is abstract, and that the IsDirty and IsViewOnly properties are
declared virtual in the AbstractViewContent class. We overwrite the IsDirty and IsViewOnly
properties because we want only a simple view, which is never dirty (giving back false ensures that it
is never marked as dirty).

Now we implement the constructors, one of which flags if the navigation bar should be shown. The
default constructor just shows the navigation bar:

 protected BrowserPane(bool showNavigation)
 {
 htmlViewPane = new HtmlViewPane(showNavigation);
 htmlViewPane.AxWebBrowser.TitleChange +=
 new DWebBrowserEvents2_TitleChangeEventHandler(TitleChange);
 }

 public BrowserPane() : this(true)
 {
 }

We need to dispose the HtmlViewPane instance. This is important; otherwise we may produce a
memory leak (remember that the underlying control is a COM component):

 public override void Dispose()
 {
 htmlViewPane.Dispose();
 }

Lastly, we override the LoadFile method, which just navigates the HtmlViewPane to a URL, and the
TitleChange event, which sets the name of the view to the title of the HTML page currently viewed.
This name will be taken as the window title:

 public override void LoadFile(string url)
 {
 htmlViewPane.Navigate(url);
 }

Chapter 6

148

 void TitleChange(object sender, DWebBrowserEvents2_TitleChangeEvent e)
 {
 ContentName = e.text;
 }
}

The implementation of the BrowserPane view is very straightforward, as all the important work is
done in the HtmlViewPane.

With the HTML view complete, we may concentrate on navigating the HTML help file. You must have
noticed that AbstractViewContent helps us greatly in implementing a view for SharpDevelop. We
have to bother with only some details and most of the coding is straightforward.

Navigating the Help File
How does SharpDevelop display its internal help? We are using the standard .chm format for this task.
However, we have applied a few tricks as well. The .chm format itself is not really useful when we want
to develop a custom help viewer, as we need to get the contents of the help file for displaying them. We
will look at how that is done, in this section.

The browser itself, implemented as a pad, is defined in the
src\SharpDevelop\Base\Gui\Pads\HelpBrowser\HelpBrowser.cs file:

public class HelpBrowser : AbstractPadContent
{
 static readonly string helpPath = Application.StartupPath +
 Path.DirectorySeparatorChar + ".." +
 Path.DirectorySeparatorChar + "doc" +
 Path.DirectorySeparatorChar + "help" +
 Path.DirectorySeparatorChar;

 static readonly string helpFileName = helpPath + "HelpConv.xml";

 Panel browserPanel = new Panel();
 TreeView treeView = new TreeView();

 public override Control Control {
 get {
 return browserPanel;
 }
 }

 public HelpBrowser() : base("${res:MainWindow.Windows.HelpScoutLabel}",
 "Icons.16x16.HelpIcon")
 {
 treeView.Dock = DockStyle.Fill;
 treeView.ImageList = new ImageList();
 ResourceService resourceService = (ResourceService)
 ServiceManager.Services.GetService(typeof(ResourceService));

The User Interface

149

 treeView.ImageList.Images.Add
 (resourceService.GetBitmap("Icons.16x16.HelpClosedFolder"));
 treeView.ImageList.Images.Add
 (resourceService.GetBitmap("Icons.16x16.HelpOpenFolder"));

 treeView.ImageList.Images.Add
 (resourceService.GetBitmap("Icons.16x16.HelpTopic"));
 treeView.BeforeExpand += new TreeViewCancelEventHandler(BeforeExpand);
 treeView.BeforeCollapse +=
 new TreeViewCancelEventHandler(BeforeCollapse);
 treeView.DoubleClick += new EventHandler(DoubleClick);
 browserPanel.Controls.Add(treeView);

 LoadHelpfile();
 }

This is the initial setup of the tree view. What is more interesting is how we load the help file and
generate that nice tree of help topics:

 // Parses the xml tree and generates a TreeNode tree out of it.
 void ParseTree(TreeNodeCollection nodeCollection, XmlNode parentNode)
 {
 foreach (XmlNode node in parentNode.ChildNodes) {
 switch (node.Name) {
 case "HelpFolder":
 TreeNode newFolderNode = new
 TreeNode(node.Attributes["name"].InnerText);
 newFolderNode.ImageIndex = newFolderNode.SelectedImageIndex = 0;
 ParseTree(newFolderNode.Nodes, node);
 nodeCollection.Add(newFolderNode);
 break;
 case "HelpTopic":
 TreeNode newNode = new
 TreeNode(node.Attributes["name"].InnerText);
 newNode.ImageIndex = newNode.SelectedImageIndex = 2;
 newNode.Tag = node.Attributes["link"].InnerText;
 nodeCollection.Add(newNode);
 break;
 }
 }
 }

 void LoadHelpfile()
 {
 XmlDocument doc = new XmlDocument();
 doc.Load(helpFileName);
 ParseTree(treeView.Nodes, doc.DocumentElement);
 }

The LoadHelpfile method loads the help file, and the ParseTree method recursively parses the
nodes defined in the XML file and generates the TreeNode objects from the XML definition. We will
get back to this interesting XML file shortly.

Chapter 6

150

Let's look at the event-handling methods for displaying a help topic:

 HelpBrowserWindow helpBrowserWindow = null;

 void HelpBrowserClose(object sender, EventArgs e)
 {
 helpBrowserWindow = null;
 }

 void DoubleClick(object sender, EventArgs e)
 {
 TreeNode node = treeView.SelectedNode;
 if (node.Tag != null) {
 string navigationName = "mk:@MSITStore:" + helpPath +
 node.Tag.ToString();
 if (helpBrowserWindow == null) {
 helpBrowserWindow = new HelpBrowserWindow();
 WorkbenchSingleton.Workbench.ShowView(helpBrowserWindow);
 helpBrowserWindow.WorkbenchWindow.CloseEvent +=
 new EventHandler(HelpBrowserClose);
 }
 helpBrowserWindow.LoadFile(navigationName);
 }
 }
 void BeforeExpand(object sender, TreeViewCancelEventArgs e)
 {
 if (e.Node.ImageIndex < 2) {
 e.Node.ImageIndex = e.Node.SelectedImageIndex = 1;
 }
 }

 void BeforeCollapse(object sender, TreeViewCancelEventArgs e)
 {
 if (e.Node.ImageIndex < 2) {
 e.Node.ImageIndex = e.Node.SelectedImageIndex = 0;
 }
 }
}

The methods perform the following tasks:

❑ HelpBrowserClose
This method is called when the help browser view closes. It sets the helpBrowserWindow to
null to indicate that a new help browser window must be created when the next help topic
is selected.

❑ DoubleClick
This method opens the help view in the Workbench, and sets its content to point to the new
help topic. If a view is already open, it just sets the new content and reuses the existing view.

❑ BeforeExpand and BeforeCollapse
These methods switch the open and close icons for the folders, respectively.

The User Interface

151

The view content that this pad displays is simple. As we already have the BrowserPane, we can just
subclass it and reuse the code we have already written. The only difference is that the help browser view
has no navigation bar, but this can be turned off using the protected constructor from the base class.
The HelpBrowserPane is in the same file as the help browser:

public class HelpBrowserPane : BrowserPane
{
 public HelpBrowserPane() : base(false)
 {
 ContentName = "Help";
 }
}

We don't use the .hhc format which represents the table of contents (TOC), because the .hhc file is in
HTML format and needs to be tweaked a bit to become a valid XML file that can be parsed by the
.NET XML parser.

The original .chm table of contents file is converted to an XML TOC file by an external utility,
HelpBrowserApp, that is shipped with SharpDevelop. It is available in the
src\Tools\HelpBrowserApp directory. It simply converts the .hhc file into an XML representation.

Here's an example of the XML format used:

<HelpCollection>
 <HelpFolder name="SharpDevelop">
 <HelpTopic name="Welcome to SharpDevelop!"
 link="SharpDevelop.chm::/pr01.html" />
 <HelpFolder name="1. Getting Started with SharpDevelop">
 <HelpTopic name="1. Introduction"
 link="SharpDevelop.chm::/ch01s01.html" />
 </HelpFolder>
 </HelpFolder>
</HelpCollection>

We use HelpFolder nodes as a folder. A help topic that has a name and a link is passed to the
Navigate method of our HTML view. This help file is the output of the help parser, and we need a
description file that tells our parser which files to convert:

<HelpCollection>
 <HelpFile hhc="SharpDevelop.hhc" chm="SharpDevelop.chm"/>
 <HelpFolder name="#ziplib">
 <HelpFile hhc="031SharpZipLib.hhc" chm="031SharpZipLib.chm" />
 </HelpFolder>
</HelpCollection>

The parser converts the HelpFile nodes from this file and loads the .hhc file specified in the hhc
attribute. It generates the tree defined in the .hhc file, from this definition.

The conversion from .hhc is done using regular expressions. We need to add some closing tags with
specific opening tags to convert from HTML to XML. The .chm attribute is needed to construct the
correct link (that is, set the link attributes).

Chapter 6

152

We can look at an .hhc example file in the doc\help folder, named SharpDevelop.hhc:

<HTML>
<HEAD>
</HEAD>
 <BODY>
<OBJECT type="text/site properties">
 <param name="ImageType" value="Folder">
</OBJECT>

 <OBJECT type="text/sitemap">
 <param name="Name" value="SharpDevelop">
 <param name="Local" value="index.html">
 </OBJECT> <OBJECT type="text/sitemap">
 <param name="Name" value="Welcome to SharpDevelop!">
 <param name="Local" value="pr01.html">
 </OBJECT> <OBJECT type="text/sitemap">
 <param name="Name" value="1. Getting Started with SharpDevelop">
 <param name="Local" value="ch01.html">
 </OBJECT> <OBJECT type="text/sitemap">
 <param name="Name" value="2.1.6. Properties Scout">
 <param name="Local" value="ch01s02s01s06.html">
 </OBJECT> <OBJECT type="text/sitemap">
 <param name="Name" value="2.2. Code Window">
 <param name="Local" value="ch01s02s02.html">
 </OBJECT>
</BODY>
</HTML>

This is a sample .hhc file that is not XML compliant. To make it XML compliant, we need to generate
the closing tags. The <param> tags are not closed either. The tool that converts this file to XML
uses the following method to convert files that have this .hhc format:

void MakeXmlCompliant()
{
 StringBuilder strFixup = new StringBuilder(Regex.Replace
 (hhcFileContents, "(?'start'<param\\s[^>]*)(?'end'\"/?>)",
 "${start}\"/>"));

 strFixup.Replace("</OBJECT>", "</OBJECT>");
 strFixup.Replace("</OBJECT>", "</OBJECT>");
 strFixup.Replace("</OBJECT>", "</OBJECT>");
 hhcFileContents = strFixup.ToString();
}

The first Replace method uses a regular expression that closes only the param tags. Closing the
tags is done with the standard Replace method because the .hhc files are auto-generated and the
format is fixed. Now, we have a file that can be loaded correctly with the XML classes of .NET, and we
can generate a well-formed XML document for loading the help tree.

The User Interface

153

Layout Managers
We will now switch gears and discuss the Layout Manager system, which is responsible for displaying
views and pads. They do all the 'dirty' work that needs to be done while using GUI libraries.

Before diving into the code, let's look at the working of the Layout Manager. This will give us an idea of
how it looks. We will look at the MDI Layout Manager, which puts the Workbench windows in an MDI
area where the windows can be maximized, minimized, or arranged:

We also have a Layout Manager for handling SDI layout, which puts the windows into a tab page. We
plan to use a feature of the Magic library that allows docking of the views too, like docking the pads
(but, currently, this is not the top priority task). The new Layout Manager will look like the current SDI
Layout Manager; but in the new tab area, tab pages can be rearranged creating new tab controls, which
can contain other tab pages that share the same area. This simulates MDI features like tiling
horizontally or vertically using tab controls and docking.

As usual, let's look at the interface that must be implemented by all Layout Managers. It is called
IWorkbenchLayout and it is defined in the
src\SharpDevelop\Base\Gui\IWorkbenchLayout.cs file:

public interface IWorkbenchLayout
{
 IWorkbenchWindow ActiveWorkbenchwindow {
 get;
 }

Chapter 6

154

One of the important functionalities that a Layout Manager must have is to enable marking one window
as the active Workbench window. This window is the one that contains the user focus.

The Layout Manager is capable of being attached to (or detached from) a Workbench by setting the
Workbench back to the original uninitialized state. The detach operation removes all Workbench
windows attached to the views.

After this call, the views will get new Workbench windows when a new Layout Manager is attached to
their Workbench.

 void Attach(IWorkbench Workbench);
 void Detach();

Now we will look at the functions that handle the pads. The ShowPad method will be used the first time
a pad is attached to the Layout Manager. The ActivatePad method makes a pad visible (if necessary)
and puts it to the front. The HidePad method hides a pad (after this call the given pad is invisible but it
does exist and will not be disposed). The IsVisible method checks if a specific pad is, currently,
not hidden.

 void ShowPad(IPadContent content);

 void ActivatePad(IPadContent content);

 void HidePad(IPadContent content);

 bool IsVisible(IPadContent padContent);

Despite it's name, the RedrawAllComponents method does not update the display. The Layout
Manager should refresh its Addin Tree information, update its localization data, and then do a redraw.
This has nothing to do with the common repainting operation:

 void RedrawAllComponents();

The last method shows a new view. This call is used when a new view is created and is made visible.
This method attaches a Workbench window to the view. Lastly, this interface defines an event that is
fired when the ActiveWorkbenchwindow property changes:

 IWorkbenchWindow ShowView(IViewContent content);

 event EventHandler ActiveWorkbenchWindowChanged;
}

The User Interface

155

The MDI Layout Manager is implemented in the src\SharpDevelop\Base\Gui\Workbench\
Layouts\MdiWorkbenchLayout.cs file:

// This is a Workspace with a single document interface.
public class MdiWorkbenchLayout : IWorkbenchLayout
{
 static string defaultconfigFile;
 static PropertyService propertyService = (PropertyService)
 ServiceManager.Services.GetService(typeof(PropertyService));
 static string configFile = propertyService.ConfigDirectory +
 "MdiLayoutConfig.xml";
 Form wbForm;

 DockingManager dockManager;
 ICSharpCode.SharpDevelop.Gui.Components.OpenFileTab tabControl =
 new ICSharpCode.SharpDevelop.Gui.Components.OpenFileTab();

 static MdiWorkbenchLayout()
 {
 PropertyService propertyService = (PropertyService)
 ServiceManager.Services.GetService(typeof(PropertyService));
 string language =
 propertyService.GetProperty("CoreProperties.UILanguage").ToString();
 // Filter out region codes (for example DE-de will be DE, currently
 // we don't support region codes
 if (language.IndexOf('-') > 0) {
 language = language.Split(new char[] {'-'})[0];
 }

 defaultconfigFile = Application.StartupPath +
 Path.DirectorySeparatorChar + ".." +
 Path.DirectorySeparatorChar + "data" +
 Path.DirectorySeparatorChar + "options" +
 Path.DirectorySeparatorChar + "Layouts" +
 Path.DirectorySeparatorChar + language +
 Path.DirectorySeparatorChar + "LayoutConfig.xml";

 if (!File.Exists(defaultconfigFile)) {
 defaultconfigFile = Application.StartupPath +
 Path.DirectorySeparatorChar + ".." +
 Path.DirectorySeparatorChar + "data" +
 Path.DirectorySeparatorChar + "options" +
 Path.DirectorySeparatorChar + "Layouts" +
 Path.DirectorySeparatorChar + "LayoutConfig.xml";
 }
 }

First, the path of the default configuration file is set. This configuration file is used for setting the
docking state of the pads. It is in XML format and is a feature of the Magic library, which generates a
configuration file for the dockstate of the pads. If the configurations aren't set properly, then the layout
will be garbled (all pads will auto-dock to the left side). This should never happen because the default
config file will be loaded; but if it is missing, it won't disturb the application:

Chapter 6

156

We have to provide a separate configuration file for each language, as Magic identifies the docked
controls by their name. If it is unable to find a language-specific configuration file, a default
configuration file is used, created by us. We just create a layout that we feel is handy, and put our
configuration file for the default layout in the distribution.

Resuming our discussion of the MDI Layout Manager, let's look at the ActiveWorkbenchwindow
property:

 public IWorkbenchWindow ActiveWorkbenchwindow {
 get {
 if (tabControl.SelectedTab == null) {
 return null;
 }
 return (IWorkbenchWindow)tabControl.SelectedTab.Tag;
 }
 }

This property returns the active Workbench window. Only the Layout Manager can determine where it
is and how it is represented.

Now we'll look at the Attach method that attaches the Layout Manager to the Workbench (look at the
diagram at the beginning of this chapter). As we can switch the Layout Manager at run time, this
method is quite interesting. Note that, in this code snippet, the Workbench itself inherits from
System.Windows.Forms.Form:

The User Interface

157

 public void Attach(IWorkbench Workbench)
 {
 wbForm = (Form)Workbench;
 wbForm.Controls.Clear();
 wbForm.IsMdiContainer = true;

 tabControl.Dock = DockStyle.Top;
 tabControl.ShrinkPagesToFit = true;
 tabControl.Appearance =
 Crownwood.Magic.Controls.TabControl.VisualAppearance.MultiDocument;
 tabControl.Size = new Size(10, 24);
 wbForm.Controls.Add(tabControl);

 dockManager = new DockingManager(wbForm, VisualStyle.IDE);

 Control firstControl = null;

 IStatusBarService statusBarService = (IStatusBarService)
 ICSharpCode.Core.Services.ServiceManager.Services.GetService
 (typeof(IStatusBarService));
 wbForm.Controls.Add(statusBarService.Control);

 foreach (ToolBar toolBar in ((DefaultWorkbench)Workbench).ToolBars) {
 if (firstControl == null) {
 firstControl = firstControl;
 }
 wbForm.Controls.Add(toolBar);
 }

 ((DefaultWorkbench)Workbench).TopMenu.Dock = DockStyle.Top;
 wbForm.Controls.Add(((DefaultWorkbench)Workbench).TopMenu);

 ((DefaultWorkbench)Workbench).TopMenu.MdiContainer = wbForm;
 wbForm.Menu = null;
 dockManager.InnerControl = tabControl;
 dockManager.OuterControl = statusBarService.Control;

 foreach (IViewContent content in Workbench.ViewContentCollection) {
 ShowView(content);
 }

 foreach (IPadContent content in Workbench.PadContentCollection) {
 ShowPad(content);
 }

 tabControl.SelectionChanged += new EventHandler(ActiveMdiChanged);

 try {
 if (File.Exists(configFile)) {
 dockManager.LoadConfigFromFile(configFile);
 } else if (File.Exists(defaultconfigFile)) {
 dockManager.LoadConfigFromFile(defaultconfigFile);
 }

Chapter 6

158

 } catch (Exception) {
 Console.WriteLine
 ("can't load docking configuration, version clash ?");
 }
 RedrawAllComponents();
 }

When switching the Layout Managers, the Detach method is called first. This method restores the
Workbench window to its former state:

 public void Detach()
 {
 if (dockManager != null) {
 dockManager.SaveConfigToFile(configFile);
 }

 foreach (DefaultWorkspaceWindow f in wbForm.MdiChildren) {
 f.TakeOffContent();
 f.ViewContent = null;
 f.Controls.Clear();
 f.Close();
 }

 tabControl.TabPages.Clear();
 tabControl.Controls.Clear();

 if (dockManager != null) {
 dockManager.Contents.Clear();
 }

 ((DefaultWorkbench)wbForm).TopMenu.MdiContainer = null;
 wbForm.IsMdiContainer = false;
 wbForm.Controls.Clear();
 }

If our Layout Manager is set to a Workbench, we'll now look into the problem of showing the various pads:

 Hashtable contentHash = new Hashtable();

 public void ShowPad(IPadContent content)
 {
 if (contentHash[content] == null) {
 IProperties properties = (IProperties)
 propertyService.GetProperty("Workspace.ViewMementos", new
 DefaultProperties());
 content.Control.Dock = DockStyle.None;
 Content newContent;
 if (content.Icon != null) {
 ImageList imgList = new ImageList();
 imgList.Images.Add(content.Icon);
 newContent = dockManager.Contents.Add
 (content.Control, content.Title, imgList, 0);

The User Interface

159

 } else {
 newContent = dockManager.Contents.Add
 (content.Control, content.Title);
 }
 contentHash[content] = newContent;
 } else {
 Content c = (Content)contentHash[content];
 if (c != null) {
 dockManager.ShowContent(c);
 }
 }
 }

 public bool IsVisible(IPadContent padContent)
 {
 Content content = (Content)contentHash[padContent];
 if (content != null) {
 return content.Visible;
 }
 return false;
 }

 public void HidePad(IPadContent padContent)
 {
 Content content = (Content)contentHash[padContent];
 if (content != null) {
 dockManager.HideContent(content);
 }
 }

 public void ActivatePad(IPadContent padContent)
 {
 Content content = (Content)contentHash[padContent];
 if (content != null) {
 content.BringToFront();
 }
 }

These functions handle pads and work with the Magic library's dock controls to handle the pad state.

The RedrawAllComponents method in the Layout Manager must renew all information that might
have possibly changed. The Layout Manager doesn't call Redraw on the views or pads, as this is the
task of the Workbench. We defined the Workbench to implement it this way because there would be
code duplication if all Layout Managers called Redraw on pads and views:

 public void RedrawAllComponents()
 {
 tabControl.Style = (Crownwood.Magic.Common.VisualStyle)
 propertyService.GetProperty
 ("ICSharpCode.SharpDevelop.Gui.VisualStyle",
 Crownwood.Magic.Common.VisualStyle.IDE);

Chapter 6

160

 // redraw correct pad content names (language may have changed)
 foreach (IPadContent content in
 ((IWorkbench)wbForm).PadContentCollection) {
 Content c = (Content)contentHash[content];
 if (c != null) {
 c.Title = c.FullTitle = content.Title;
 }
 }
 }

The next method, ShowView, is the equivalent of ShowPad, for views. It shows a view as a
DefaultWorkspaceWindow in the MDI area of the main window (we will look at the
DefaultWorkspaceWindow later in this section):

 public IWorkbenchWindow ShowView(IViewContent content)
 {
 DefaultWorkspaceWindow window = new DefaultWorkspaceWindow(content);

 content.Control.Visible = true;

 if (wbForm.MdiChildren.Length == 0 ||
 wbForm.ActiveMdiChild.WindowState == FormWindowState.Maximized) {
 ((Form)window).WindowState = FormWindowState.Maximized;
 }
 window.TabPage = tabControl.AddWindow(window);
 ((Form)window).MdiParent = wbForm;
 ((Form)window).Show();
 window.Closed += new EventHandler(CloseWindowEvent);

 return window;
 }

Now we need to do some event handling:

 public void CloseWindowEvent(object sender, EventArgs e)
 {
 DefaultWorkspaceWindow f = (DefaultWorkspaceWindow)sender;
 if (f.ViewContent != null) {
 ((IWorkbench)wbForm).CloseContent(f.ViewContent);
 }
 }

 void ActiveMdiChanged(object sender, EventArgs e)
 {
 if (ActiveWorkbenchWindowChanged != null) {
 ActiveWorkbenchWindowChanged(this, e);
 }
 }

 public event EventHandler ActiveWorkbenchWindowChanged;
}

The User Interface

161

Writing a Layout Manager is an annoying task, and we have often found that bugs break into some of
the Layout Managers. However, we have a single point of failure when something 'strange' is going on
in the GUI. The good thing about Layout Managers is that they are relative simple, small, and help to
improve the design of the other parts (the view or pad model is really nice to program with). Only the
Layout Manager knows about the implementation details of the windows it provides, so each Layout
Manager must provide an implementation of IWorkbenchWindow.

In the past, we have had a floating Layout Manager that used the same workspace window as the MDI
Layout Manager. The floating Layout Manager was discarded because very few users ever used it.

The workspace window is implemented in the
src\SharpDevelop\Base\Gui\Workbench\Layouts\DefaultWorkspaceWindow.cs file:

public class DefaultWorkspaceWindow : Form, IWorkbenchWindow
{
 IViewContent content;

 EventHandler setTitleEvent = null;
 Crownwood.Magic.Controls.TabPage tabPage = null;

 public Crownwood.Magic.Controls.TabPage TabPage {
 get {
 return tabPage;
 }
 set {
 tabPage = value;
 }
 }

 public string Title {
 get {
 return Text;
 }
 set {
 Text = value;
 string fileName = content.ContentName;
 if (tabPage != null) {
 tabPage.Title = value;
 }
 if (fileName == null) {
 fileName = content.UntitledName;
 }
 if (fileName != null) {
 FileUtilityService fileUtilityService = (FileUtilityService)
 ServiceManager.Services.GetService(typeof(FileUtilityService));
 int index = fileUtilityService.GetImageIndexForFile(fileName);
 this.Icon = System.Drawing.Icon.FromHandle
 (((Bitmap)fileUtilityService.ImageList.Images[index]).GetHicon());
 }
 OnTitleChanged(null);
 }
 }

Chapter 6

162

 public IViewContent ViewContent {
 get {
 return content;
 }
 set {
 content = value;
 }
 }

 public DefaultWorkspaceWindow(IViewContent content)
 {
 this.content = content;
 content.WorkbenchWindow = this;
 content.Control.Dock = DockStyle.Fill;
 Controls.Add(content.Control);

 setTitleEvent = new EventHandler(SetTitleEvent);
 content.ContentNameChanged += setTitleEvent;
 content.DirtyChanged += setTitleEvent;
 SetTitleEvent(null, null);
 }

The Layout Manager sets the tab page for the window. If a title change occurs, the window sets the
name of the tab too. An alternative would have been to let the tab listen to the TitleChanged event;
but the former approach was a bit easier because it doesn't require us to extend the tab, or to remove
event handlers when a window closes.

The SetTitleEvent sets the title of the window. If the content is untitled, this method retrieves the
default untitledname and constructs a name that has the <untitledname>Number form. It searches
through all windows in the Workbench to find the first 'free' number and acquires it:

 string myUntitledTitle = null;
 public void SetTitleEvent(object sender, EventArgs e)
 {
 if (content == null) {
 return;
 }
 string newTitle = "";
 if (content.ContentName == null) {
 if (myUntitledTitle == null) {
 string baseName =
 Path.GetFileNameWithoutExtension(content.UntitledName);
 int number = 1;
 bool found = true;
 while (found) {
 found = false;
 foreach (IViewContent windowContent in
 WorkbenchSingleton.Workbench.ViewContentCollection) {
 string title = windowContent.WorkbenchWindow.Title;
 if (title.EndsWith("*") || title.EndsWith("+")) {
 title = title.Substring(0, title.Length - 1);
 }

The User Interface

163

 if (title == baseName + number) {
 found = true;
 ++number;
 break;
 }
 }
 }
 myUntitledTitle = baseName + number;
 }
 newTitle = myUntitledTitle;
 } else {
 newTitle = WindowState == FormWindowState.Minimized ?
 Path.GetFileName(content.ContentName) : content.ContentName;
 }

 if (content.IsDirty) {
 newTitle += "*";
 } else if (content.IsReadOnly) {
 newTitle += "+";
 }

 if (newTitle != Title) {
 Title = newTitle;
 }
 }

 protected override void OnResize(EventArgs e)
 {
 base.OnResize(e);
 SetTitleEvent(null, null);
 }

Like the Workbench layout, the window is able to detach the content. After this method call, the
content can be inserted in a new Workbench window:

 public void DetachContent ()
 {
 content.ContentNameChanged -= setTitleEvent;
 content.DirtyChanged -= setTitleEvent;
 }

Now, we will look at the closing methods. The window pops up a message box that asks the user if the
window can be safely closed:

 protected override void OnClosing(CancelEventArgs e)
 {
 base.OnClosing(e);
 if (!forceClose andand ViewContent != null andand ViewContent.IsDirty) {
 ResourceService resourceService = (ResourceService)
 ServiceManager.Services.GetService(typeof(ResourceService));
 DialogResult dr = MessageBox.Show
 (resourceService.GetString("MainWindow.SaveChangesMessage"),

Chapter 6

164

 resourceService.GetString("MainWindow.SaveChangesMessageHeader") +
 " " + Title + " ?", MessageBoxButtons.YesNoCancel,
 MessageBoxIcon.Question);
 switch (dr) {
 case DialogResult.Yes:
 Activate();
 if (content.ContentName == null) {
 while (true) {
 new ICSharpCode.SharpDevelop.Commands.SaveFileAs().Run();
 if (ViewContent.IsDirty) {
 DialogResult result = MessageBox.Show
 ("Do you really want to discard your changes ?",
 "Question", MessageBoxButtons.YesNo,
 MessageBoxIcon.Question,
 MessageBoxDefaultButton.Button2);
 if (result == DialogResult.Yes) {
 break;
 }
 } else {
 break;
 }
 }
 } else {
 ViewContent.SaveFile();
 }
 break;
 case DialogResult.No:
 // set view content dirty = false, because I want to prevent
 //double checks, if Close() is called twice.
 ViewContent.IsDirty = false;
 break;
 case DialogResult.Cancel:
 e.Cancel = true;
 return;
 }
 }
 }

 protected override void OnClosed(EventArgs e)
 {
 base.OnClosed(e);
 OnWindowDeselected(e);
 OnCloseEvent(null);
 }

 bool forceClose = false;
 public void CloseWindow(bool force)
 {
 forceClose = force;
 Close();
 }

The User Interface

165

Another issue that we had to deal with was that of selection. Selection (bringing an MDI window to the
front and making it the focus) is a problem with Windows Forms, and was a hard task to solve. As
Activate and Select do not always work, we didn't find a good scheme, but when we call Focus on
the control that the view gives us, the selection seems to work fine. The current implementation that
focuses on the control that the window contains does work in SharpDevelop:

 public void SelectWindow()
 {
 if (tabPage != null) {
 tabPage.Select();
 }

 Activate();
 Select();
 content.Control.Focus();
 }

 protected override void OnGotFocus(EventArgs e)
 {
 base.OnGotFocus(e);
 OnWindowSelected(e);
 }

 protected override void OnDeactivate(EventArgs e)
 {
 base.OnDeactivate(e);
 OnWindowDeselected(e);
 }

The related events are defined at the bottom of this class, and are the events we must provide because
we implement the IWorkbenchWindow interface:

 protected virtual void OnTitleChanged(EventArgs e)
 {
 if (TitleChanged != null) {
 TitleChanged(this, e);
 }
 }

 protected virtual void OnCloseEvent(EventArgs e)
 {
 if (CloseEvent != null) {
 CloseEvent(this, e);
 }
 }

 public virtual void OnWindowSelected(EventArgs e)
 {
 if (WindowSelected != null) {
 WindowSelected(this, e);
 }
 }

Chapter 6

166

 public virtual void OnWindowDeselected(EventArgs e)
 {
 if (WindowDeselected != null) {
 WindowDeselected(this, e);
 }
 }

 public event EventHandler WindowSelected;
 public event EventHandler WindowDeselected;
 public event EventHandler TitleChanged;
 public event EventHandler CloseEvent;
}

Now that we have studied the existing implementation of the user interface, let's take a look at the
potential changes that could be made in the future.

The Current and Future Implementation
Currently, the abstracted GUI layer handles the various requirements well. It allows us to implement much of
the code without having to know about Windows Forms, and this improves the API portability, which was
the goal of the GUI layer. The big GUI layer we have seen here won't change much in the future versions,
but it will be completed with a part that abstracts the GUI on a deeper level – the dialog level.

Currently dialogs are tied to Windows Forms, and are not portable to other APIs. We did port some
dialogs and panels over to XML, but this is only the first step in making them portable. We will discuss
the current XML format in Chapter 17 within the The XML Forms Persistence Format section. We are
planning for a system that has:

❑ An abstract representation of GUI elements
This will be done through interfaces and an abstract factory that creates the GUI elements.

❑ Layout management for GUI elements
SharpDevelop is a localized application and often we have to deal with the problem that the
labels or buttons are displayed too small. Therefore, the only way to solve this is to use
layout management.

❑ An XML representation for dialogs and panels
XML is more maintainable than source code. It should be possible to use the abstract layer
from source too, but XML dialogs make the source code smaller, easier to debug, and simpler
to make changes to (will not require recompiles too).

❑ A non-GUI implementation of the abstract layer
This will be used for unit testing of the dialogs and panels. Currently, not much code of
SharpDevelop is covered by unit tests. Securing dialogs and panels would be a big step forward.

The User Interface

167

Summary
In this chapter, we learned about the abstract GUI layer that is used to represent the SharpDevelop
superstructure, and what benefits the GUI layer brings to the application, and how it is implemented.

We looked at the IViewContent interface, and implemented it to produce an HTML view using the
Internet Explorer ActiveX control.

We implemented the IPadContent interface and examined what a pad is, as opposed to a view. We
learned how the help viewer inside SharpDevelop is implemented.

We learned what a Layout Manager is, and how it manages the views and pads to construct the actual
layout of the IDE. We saw that it was easy to switch a Layout Manager to apply a new SharpDevelop
look and feel on the fly.

We looked at the implementation of a workspace window that the Layout Manager uses. We have
examined how the workspace window is required beside the views, to make the GUI layer work in the
way that we designed it to work.

In the next chapter, we will learn how internationalization is implemented in SharpDevelop.

Chapter 6

168

Internationalization

As your software grows popular, you will probably want to offer it in different languages and adapt it to
different culture sets. The core idea of internationalization is to create a persistent look and feel for our
customers, no matter what language they use. Although the .NET Framework offers great support for
localization, we needed to implement it with expandability in mind. The support for internationalization,
or in other words, the attempt to enable porting our software to other languages begins with its
architectural design.

Right since the first stable beta builds, SharpDevelop was designed with internationalization in mind.
Before we investigate how SharpDevelop handles this daunting task, we must first have a general idea of
what design strategy to apply while developing a localizable application.

GUI-driven software is affected by internationalization in two major ways:

❑ First, the layout must be capable of resizing menus, dialog boxes, and so on, for fitting the
different character sets and/or special characters

❑ Second, localizable resources should never be hard-coded, and the language packs should be
able to easily migrate into the application using localized resource files

The localizable resources comprise of localized resource strings, screen and window positions,
constants, filenames, paths, and even images. The resource strings, especially, deserve an extra
amount of attention, as it is through them that our software communicates with the user. Resource
strings change from language to language leading to several tricky situations; for example the same
sentence may vary in length across two diverse languages, thereby affecting the length parameter of
the resource string.

Why should these kinds of problems bother us? Well, if we define a screen area that is too small, the
translated equivalent text might exceed the limits of the component (for example, a textbox, label, or
similar), and the text may become unreadable, as demonstrated in the following screenshot:

7

Chapter 7

170

The Italian translation contains more words than the English original, hence the truncation of labels.

Another issue, which needs to be mentioned, is string concatenation. Developers often join words
together to form strings (for example, error messages). This may work in the case of one particular
language; but since the word order and the words, in general, can have dissimilar forms (singular,
plural, gender, and so on), it may cause meaningless combinations for other languages.

With localization comes the need to support different character sets. This topic affects both the GUI and
the strings – dialog boxes have to be resized, the read direction may have to be reversed, and the
appropriate character set has to be selected.

For example, if you want to add Western European languages to your application, you should use the
internationally standardized ISO-8859-1 character set (for details, you can refer to
http://www.htmlhelp.com/reference/charset). This character set contains all characters necessary to
type and display Western European languages, and complies with 7-bit devices, which normally ignore
the eighth bit, as it's an 8-bit superset of ASCII. Keep in mind that such 7-bit devices will turn 8-bit
character sets into garbage; so do consider this when coding. However, no modern Windows platform
has these issues.

On the other hand, we can use the 16-bit Unicode (ISO-10646) character set which is an extension of
ISO-8859-1 to wide characters. Due to its capabilities, most of the languages (including Asian) can be
encoded. More importantly, .NET uses Unicode internally and the compilers support it fully. Unicode's
major drawback is that it is not supported by certain operating systems. Some older systems may have
trouble when they encounter Unicode in their software. Keep in mind that these systems are not
supported by .NET.

After this brief overview of design of localized software, you might wonder how SharpDevelop handles
this internationalization task. In this chapter, we will not only show you its implementation in the IDE,
but also demonstrate how easy it is to translate SharpDevelop to your preferred language.

Let's start our discussion by looking at the working of the localization engine, after which we'll explain
the techniques for enabling hassle-free and instant language switching system.

Internationalization

171

To bring SharpDevelop to a global audience, besides English, several languages are already built-in. No
matter what language is used, we intend to ensure usability for the user. Our internationalization
strategy is based on the motivation to encourage native speakers to perform these translations. Hence,
we offer a unified and easy-to-use web application where translators can add new languages and also
build language resource files offline.

Handling Internationalization in SharpDevelop
Depending on your preferred language (or the requirement of your project) you can change the
language settings by navigating the menu to the UI Language panel. This action will switch the menu
language immediately to the newly selected one, without the need to restart SharpDevelop.

Before we move to the next section, where the redrawing event chain is explained in detail, let us talk
about the flag view (where we get to see the flags of the respective countries). But first, we look at the
code in the
src\SharpDevelop\Base\Services\Language\LanguageService.cs file:

public class LanguageService : AbstractService
{
 string languagePath = Application.StartupPath +
 Path.DirectorySeparatorChar + ".." +
 Path.DirectorySeparatorChar + "data" +
 Path.DirectorySeparatorChar + "resources" +
 Path.DirectorySeparatorChar + "languages" +
 Path.DirectorySeparatorChar;

 ImageList languageImageList = new ImageList();
 ArrayList languages = new ArrayList();

 public ImageList LanguageImageList {
 get { return languageImageList; }
}

public ArrayList Languages {
 get { return languages; }
}

public LanguageService()
{
 LanguageImageList.ImageSize = new Size(46, 38);

 XmlDocument doc = new XmlDocument();
 doc.Load(languagePath + "LanguageDefinition.xml");

 XmlNodeList nodes = doc.DocumentElement.ChildNodes;

 foreach (XmlElement el in nodes) {
 languages.Add(new Language(el.Attributes["name"].InnerText,
 el.Attributes["code"].InnerText, LanguageImageList.Images.Count));

Chapter 7

172

 LanguageImageList.Images.Add(new Bitmap(languagePath +
 el.Attributes["icon"].InnerText));
 }
}

We assign the hard-coded path information to a string variable named languagePath. Then we have
to initialize an ImageList (which holds the flag images) and an ArrayList (which holds the
appropriate language name). These variables function as properties and get their values, as assigned in
the constructor of the LanguageService class.

Within the constructor, the LanguageDefinition.xml file (in the \Data\Resources\Languages
directory) is parsed to retrieve the available language information using the path information provided
by the languagePath string variable. The language code, and its representative flag are extracted
according to the structure of the LanguageDefinition.xml file, the language name.

The next listing shows us a snippet of the XML file:

<Languages>
 <Languages name="U.S. English" code="en-us" page="" icon="usa.png" />
 <Languages name="International English" code="en" page="" icon="uk.png" />
 <Languages name="German" code="de" page="" icon="germany.png" />
...
</Languages>

After retrieving the language entries, the ListView box within the Option dialog must be filled up. This
is done by the constructor of the IDEOptionPanel class located in the
src\SharpDevelop\Base\Gui\Dialogs\OptionPanels\IDEOptions\SelectCulturePanel.
cs directory.

The following snippet gives us the relevant lines of code:

public IDEOptionPanel()
{

 LanguageService languageService = (LanguageService)
 ServiceManager.Services.GetService(typeof(LanguageService);
 listView.Location = new Point(8, 8);
 listView.Size = new Size(136, 200);
 listView.LargeImageList = languageService.LanguageImageList;
 listView.ItemActivate += new EventHandler(ChangeCulture);
 listView.Sorting = SortOrder.Ascending;
 listView.Activation = ItemActivation.OneClick;
 listView.BorderStyle = flat ? BorderStyle.FixedSingle :
 BorderStyle.Fixed3D;
 listView.Anchor = (System.Windows.Forms.AnchorStyles.Top |
 (System.Windows.Forms.AnchorStyles.Left |
 System.Windows.Forms.AnchorStyles.Right));

 foreach (Language language in languageService.Languages) {
 listView.Items.Add(new ListViewItem(new string[] {language.Name,
 language.Code}, language.ImageIndex));

Internationalization

173

 }

 this.Controls.Add(listView);
..
}

Although changing languages is naturally easy, there has to be some mechanism under the hood to
provide such usability. In the next section, we will show an approach for enabling localization support
without compromising on ease of use. This section covers redrawing the GUI, accessing the resource
files and replacing localized strings.

Redrawing with Events
After we have confirmed the choice of language, the whole GUI has to be redrawn as per the new
settings. A chain of events is necessary to redraw all the components involved. Before we step through
this process, let's take a look at the following diagram:

Clicks OK

CulturePanel

Property Class

User

Call ReceiveDialogMessage(OK)

Option Dialog

Set Property

Screen
Update

Views Pads LayoutManger Menu

Screen
Update

Screen
Update

Screen
Update

Redraw()Redraw()Redraw()Redraw()

Workbench

Call RedrawAllComponents()

Workbench Singleton

Send Changed Event/Receive Event

Chapter 7

174

This simplified flowchart shows us the sequence from the user's click to the redrawn GUI.
After the user confirms their selection by pressing the OK button, the AcceptEvent method (located in
the TreeViewOptions.cs file under src\SharpDevelop\Base\Gui\Dialogs) triggers a
DialogResult.OK message. The message is received by the ReceiveDialogMessage method
located in the src\SharpDevelop\Base\Gui\Dialogs\OptionPanels\IDEOptions\
SelectCulturePanel.cs file:

public override bool ReceiveDialogMessage(DialogMessage message)
{
 if (message == DialogMessage.OK) {
 if (SelectedCulture != null) {
 propertyService.SetProperty(uiLanguageProperty, SelectedCulture);
 }
 }
 return true;
}

If this evaluates to true, the SetProperty method is invoked, which resides in the
src\SharpDevelop\Core\Properties\DefaultProperties.cs. This method triggers the
OnPropertyChanged method and provides the PropertyEventArgs object with the new attributes –
the spoken language and its culture setting. This property change is handled by the
TrackPropertyChanges method of the WorkBenchSingleton class in
src\SharpDevelop\Base\Gui\Workbench\WorkbenchSingleton.cs:

static void TrackPropertyChanges(object sender,
ICSharpCode.Core.Properties.PropertyEventArgs e)
{
 if (e.OldValue != e.NewValue) {
 switch (e.Key) {
 case workbenchLayoutProperty:
 SetWbLayout();
 break;

 case "SharpDevelop.UI.CurrentAmbience":
 case "ICSharpCode.SharpDevelop.Gui.VisualStyle":
 case "CoreProperties.UILanguage":
 workbench.RedrawAllComponents();
 break;
 }
 }
}

When selecting a new language in the Options panel, the current setting (e.OldValue) certainly differs
from the new one. Nothing happens if the user clicks on the language already in use. The attribute of
interest here is the CoreProperties.UILanguage property. A change in this property (evaluated by
the switch statement) causes a redraw of the GUI, or in other words, it triggers the
RedrawAllComponents method.

Internationalization

175

The WorkbenchSingleton class inherits the DefaultWorkbench class. Hence, you find the
RedrawAllComponents method in the base class
(src\SharpDevelop\Base\Gui\Workbench\DefaultWorkbench.cs):

public void RedrawAllComponents()
{
 UpdateMenu(null, null);

 foreach (IViewContent content in workbenchContentCollection) {
 content.RedrawContent();
 }

 foreach (IPadContent content in viewContentCollection) {
 content.RedrawContent();
 }

 layout.RedrawAllComponents();
}

Now let's look at what happens to the Files tab label. Using the English language, the label reads Files.
If we change it, for example, to German the tab label reads Dateien – how is this achieved?

Within the FileScout class (src\SharpDevelop\Base\Gui\Pads\FileScout.cs) there is a
property named Title, which assigns the tab label according to the selected language. The assignment
is done by means of the ResourceService, which is explained in detail in the next section:

public string Title {
get {
 return resourceService.GetString("MainWindow.Windows.FileScoutLabel");
 }
}

But how is the tab label actually changed? As seen before, the DefaultWorkbench class fires the
RedrawContent method. For the FileScout class, the following steps are performed to change the
tab label:

public void RedrawContent()
{
 OnTitleChanged(null);
 OnIconChanged(null);
}

In the snippet above, the OnTitleChanged method is called, whereas OnIconChanged is a new event
handler. Note that it's the OnTitleChanged handler that actually performs the change:

protected virtual void OnTitleChanged(EventArgs e)
{
 if (TitleChanged != null) {
 TitleChanged(this, e);
 }
}

Chapter 7

176

Now that we know how to redraw the GUI after changing the language settings, we must access the
appropriate resource file.

Accessing Resources
The Microsoft .NET documentation suggests that we should use Satellite Assemblies for localizing an
application. Following the suggested scheme, the resource files are compiled to assemblies using
Microsoft's Assembly Linker (Al.exe) tool (refer to the .NET Framework SDK documentation for more
information).

This scheme represents the decentralized resource management model and has its drawbacks. Each
language and its additional subcultures should be stored in individual subdirectories. As more languages
are added to an application, the directory tree grows bigger and this also results in an increased number
of .dll files. To avoid this problem, we chose a centralized resource management system for
SharpDevelop. Although each language is separately stored in a resource file
(StringResources.[Language identifier].resources) located in the \data\resources
path, we do not create a Satellite Assembly for each language, instead we dynamically load the language
strings each time the language settings are changed. The beauty of centralized management is that there
is no redundant code, and add-ins can have their own resources, which are loaded centrally from the
AddIn tree.

Now that we know about these benefits, we must make them accessible to our application. As
SharpDevelop is based on services, we utilize the Resource service that builds on the
ResourceService.cs and the ResourceNotFoundException.cs files. Both files can be found in
the src\SharpDevelop\Core\Services directory.

Let's take a look at the ResourceServices class (under ResourceService.cs) first. This class is
responsible for performing the following tasks:

❑ Changing the settings (ChangeProperty method)

❑ Loading appropriate language strings (LoadLanguageResources method)

❑ Loading new icons (GetIcon method)

❑ Loading new bitmaps (GetBitmap method)

❑ Throwing an exception if a string is not found (GetString method)

As we are more interested in the action performed on switching to a different language, we will look at
the methods that deal with retrieving the language strings. First, the ChangeProperty method
is invoked:

void ChangeProperty(object sender, PropertyEventArgs e)
{
 if (e.Key == uiLanguageProperty && e.OldValue != e.NewValue)
 {
 LoadLanguageResources();
 }
}

Internationalization

177

If there is a valid change in the UI language, the LoadLanguageResources method is called:

void LoadLanguageResources()
{
 PropertyService propertyService = (PropertyService)
 ServiceManager.Services.GetService(typeof(PropertyService));
 string language = propertyService.GetProperty
 (uiLanguageProperty, Thread.CurrentThread.CurrentUICulture.Name);

 localStrings = Load(stringResources, language);
 if (localStrings == null && language.IndexOf('-') > 0) {
 localStrings =
 Load(stringResources, language.Split(new char[] {'-'})[0]);
 }

 localIcons = Load(imageResources, language);
 if (localIcons == null && language.IndexOf('-') > 0) {
 localIcons = Load(imageResources, language.Split(new char[] {'-'})[0]);
 }
}

This method loads the strings and localized icons. The loading action is performed by the Load method:

Hashtable Load(string name, string language)
{
 string fname = resourceDirectory + Path.DirectorySeparatorChar +
 name + "." + language + ".resources";

 if (File.Exists(fname)) {
 Hashtable resources = new Hashtable();
 ResourceReader rr = new ResourceReader(fname);
 foreach (DictionaryEntry entry in rr) {
 resources.Add(entry.Key, entry.Value);
 }
 rr.Close();
 return resources;
 }
 return null;
}

These code snippets assume that all strings are loaded properly. However, while coding, translations
under development may remain incomplete. To ensure proper handling of such occurrences,
SharpDevelop first reloads the English language. The beauty of this is that, if there is no appropriate
language string, we can at least read an English entry. In rare cases, where even this routine fails, a
ResourceNotFoundException exception is thrown:

public string GetString(string name)
{
 if (localStrings != null && localStrings[name] != null) {
 return localStrings[name].ToString();
 }

Chapter 7

178

 string s = strings.GetString(name);

 if (s == null) {
 throw new ResourceNotFoundException("string >" + name + "<");
 }

 return s;
}

The ResourceNotFoundException class conveys the error message in its constructor, and is found in
src\SharpDevelop\Core\Services\ResourceNotFoundException.cs:

public class ResourceNotFoundException : Exception
{
 public ResourceNotFoundException(string resource) : base("Resource not
 found : " + resource) {
 }
}

Now, we will look at the process of replacing the old language strings with the chosen ones, performed
by a service named StringParserService. You can access the source code of this service by
navigating to the Src\SharpDevelop\Core\Services\StringParserService.cs file.

To give you an idea what the replaceable strings look like, we will take a peek at the C# template file.
Full coverage of this topic is given in Chapter 3 and Chapter 5. This XML file contains information
about an empty C# file. Among lots of other information we find two localized strings – the template
Name and its Description:

<?xml version="1.0" ?>
<Template Originator="Mike Krueger" Language="C#" Created="3/09/2001"
LastModified="3/09/2001">
 <TemplateConfiguration>
 <Name>${res:Templates.File.C#.EmptyC#File.Name}</Name>
 <Icon>C#.File.CSFileIcon</Icon>
 <Category>C#</Category>
 <LanguageName>C#</LanguageName>
 <Description>${res:Templates.File.C#.EmptyC#File.Description}</Description>
 </TemplateConfiguration>
 <TemplateFiles>
 <File DefaultExtension=".cs" DefaultName="EmptyC#file">
 <![CDATA[// created on ${Date} at ${Time}]]>
 </File>
 </TemplateFiles>
 <FileOptions />
</Template>

Depending on the selected language, the appropriate string is filled in; for example, in case of English, it
will look like:

<Name>Empty C# File</Name>
<Description>creates an empty C# file</Description>

Internationalization

179

If we had selected German, this would be:

<Name>Leere C# Datei</Name>
<Description>erzeugt eine leere C# Datei</Description>

You might wonder what makes the CDATA section of the XML template file necessary. Actually, this
section is replaced by the StringParser service, and resembles a timestamp. The service replaces the
${Date} and ${Time} section with the current date and time values, resulting in the line:

// created on 04/09/2002 at 15:15

The service parses the current strings and replaces them if the appropriate string match is found. The
Parse method takes a string variable named input and a string array named custom_tags as
parameters. By means of regular expressions, and if and switch constructs, the input string data is
evaluated. The return value is the new translated language string:

public string Parse(string input, string[,] custom_tags)
{
 string output = input;
 if (input != null) {
 const string pattern = @"\$\{([^\}]*)\}";
 foreach (Match m in Regex.Matches(input, pattern)) {
 if (m.Length > 0) {
 string token = m.ToString();
 string propertyName = m.Groups[1].Captures[0].Value;
 string propertyValue = null;
 switch (propertyName.ToUpper()) {
 case "DATE": // current date
 propertyValue = DateTime.Today.ToShortDateString();
 break;
 case "TIME": // current time
 propertyValue = DateTime.Now.ToShortTimeString();
 break;
 default:
 propertyValue = null;
 if (custom_tags != null) {
 for (int j = 0; j < custom_tags.GetLength(0); ++j) {
 if (propertyName.ToUpper() == custom_tags[j, 0].ToUpper()) {
 propertyValue = custom_tags[j, 1];
 break;
 }
 }
 }
 if (propertyValue == null) {
 propertyValue = properties[propertyName.ToUpper()];
 }
 if (propertyValue == null) {
 int k = propertyName.IndexOf(':');
 if (k > 0) {
 switch (propertyName.Substring(0, k).ToUpper()) {
 case "RES":
 ResourceService resourceService = (ResourceService)

Chapter 7

180

 ServiceManager.Services.GetService
 (typeof(ResourceService));
 propertyValue = Parse(resourceService.GetString
 (propertyName.Substring(k + 1)), custom_tags);
 break;
 case "PROPERTY":
 PropertyService propertyService = (PropertyService)
 ServiceManager.Services.GetService
 (typeof(PropertyService));
 propertyValue = propertyService.GetProperty
 (propertyName.Substring(k + 1)).ToString();
 break;
 }
 }
 }
 break;
 }
 if (propertyValue != null) {
 output = output.Replace(token, propertyValue);
 }
 }
 }
 }
 return output;
 }
}

But what if your native language is not among these, or you want to add a new language? The rest of the
chapter comprises utilities for translators and developers, who may want to import or export their own
language resources or compile resource files, and gives a fundamental idea of how to build an easily
manageable, collaborative solution in accordance with the motto "Translations – anytime, anywhere".

Managing Translations
This section presents a classic ASP (Active Server Pages) web application accessible only to
SharpDevelop's translators, which manages all the SharpDevelop transactions. As it is a proprietary
application, only code snippets are provided, which will give the reader an idea of how to implement
such a service.

For those who ask why no ASP.NET example application is provided in this book, the answer is that an
ASP.NET application ready for deployment was still under development. This application allows
translators to enter translations in two ways:

❑ Online Mode
In this mode, translation is done with a common list and forming views into the translations

❑ Offline Mode
Here, translation is done by downloading an XML file, and then uploading it after the
translations have been performed

Internationalization

181

Both methods share one commonality – the translator can download an XML file and create a resource
file from it using the translation builder utility found in the
src\tools\translationbuilder\tbuilder.cs file.

In this way, the translators can test their translations by integrating them with the running application
anytime, without requiring a SharpDevelop team member to build the entire resource file collection
from the database (refer to the Generating Resource Files from the Database section for a description of this
process).

Lets look at the online translation application used by the translators and the generation of resource
files, and then move on to discuss the ways in which the team can build the resource files from the
translation database.

The Translation Web Application
This section will give us an idea of the design of the online translation component. The web application
uses ASP and features logon security, easy user and translation management with statistics, and the
ability to download or upload language files. As our motto is "Translations – anytime, anywhere", there
are three basic requirements that influence the design process:

❑ Online mode – The online mode part presents an example of a web application that uses ASP
to deliver maximum performance and usability.

❑ Offline mode – If a translator does not have an Internet connection as an option, the offline
mode section rounds up the 'Anywhere, anyplace' motto. This section covers prerequisites to
be able to work offline and introduces a little gadget, the tbuilder utility. The tbuilder
utility is the missing link to compile the XML file containing the language strings into resource
files, after which these strings are used by the application. A detailed example of use of the
tbuilder tool is provided in the Generating Resource Files from XML section.

❑ Localization implication – Lastly, there is the character set issue for foreign languages. Some
languages, such as Japanese or Russian, use non-Latin character sets. If our web application is
not able to handle these, then we will run into trouble. Handling these foreign characters just
like Latin ones results in displaying garbage. A peek under the hood of the ASP web
application shows us how to take care of foreign characters.

The application is accessed at the entry point (Home), where the translator chooses the language they
wish to edit. A translator has privileges only to edit their assigned language and can only view other
languages. After the language selection, they list the localizable strings at the List Translation page. This
page accesses the database and retrieves the appropriate strings.

The translator is able to add or modify the language strings in the List Translation page. If the translator
wishes to work offline, they can download the XML file (at the XML Download page) to their local
machine. The XML file contains everything that they need to translate the original English strings to the
desired language. After translation work is complete, they navigate to the Offline Translating page and
paste the modified XML source into an input field. The submission process will upload the content of
the input field and merge it with the database.

Chapter 7

182

Localization Implications
Internationalization also means that the application, in this case – the web-based front-end, can handle
non-Latin character sets and code pages, without which the user will see a garbage output in the
application's windows.

Windows 2000 and applications of the same generation can handle 16-bit Unicode; but if you happen to
use older systems like the Windows 9x generation, you are out of luck and will have to upgrade to the
2000 version. To enable Unicode compliance in your dynamic web pages, you have to perform the
following steps (some seem redundant while using ASP; but when you have to support many browsers,
you start to get a bit wary):

❑ Use @CODEPAGE and Session.CodePage to interpret localized (latin, non-latin) strings.

❑ Use the ADO Stream Object to retrieve Unicode formatted strings from an SQL 2000 or
Access 2000 database.

❑ Use the HTML <META HTTP-EQUIV> tag to set the appropriate code page.

❑ Write XML documents as Unicode formatted

❑ If you use the FileSystemObject, you must set the appropriate attribute for the file stream
to Unicode.

We are now ready to retrieve Unicode data from our database, or display Unicode languages correctly.

Compiling to Resource Files
In the offline mode, there are two ways to generate resource files:

❑ From XML by translators

❑ From the database by the team

Generating Resource Files from XML
To achieve platform independence, we chose XML to store the native language strings. A translator can
download the XML file from the web application:

The downloaded file will be saved as a file named resources.xml. It will look like the following
snippet (this string is in German):

<?xml version="1.0" encoding="windows-1252" ?>
<translation language="de">
 <resource name="_Internal.Bogus.Translation.Test">
 <![CDATA[Das ist ein Test]]>
 </resource>

 <resource name="CompilerResultView.DescriptionText">
 <![CDATA[Beschreibung]]>
 </resource>

Internationalization

183

 <resource name="CompilerResultView.FileText">
 <![CDATA[Datei]]>
 </resource>

 <resource name="CompilerResultView.LineText">
 <![CDATA[Zeile]]>
 </resource>

 <resource name="Dialog.About.DialogName">
 <![CDATA[Über SharpDevelop]]>
 </resource>

After we have downloaded the XML file from the web application, we have to compile it to a resource
file. The tbuilder utility (located in the \bin directory) generates a valid language resource file
with the filename StringResources.<language code>.resources.

All that is left for us to do is to copy this file to the \data\resources directory (while SharpDevelop
is not active, because the availability check of resource files is done during SharpDevelop's
loading procedure).

The generation is performed by using the ResourceWriter class of the System.Resources
namespace. Let's take a peek into the payload of the TranslationBuilder class of the tbuilder
utility. The point of interest here is the Assemble method:

static void Assemble(string pattern)
{
 string[] files = Directory.GetFiles(Directory.GetCurrentDirectory(),
 pattern);

 foreach (string file in files) {
 if (Path.GetExtension(file).ToUpper() == ".XML") {
 try {
 XmlDocument doc = new XmlDocument();
 doc.Load(file);
 string resfilename = "StringResources." +
 doc.DocumentElement.Attributes["language"].InnerText +
 ".resources";
 ResourceWriter rw = new ResourceWriter(resfilename);

 foreach (XmlElement el in doc.DocumentElement.ChildNodes) {
 rw.AddResource(el.Attributes["name"].InnerText, el.InnerText);
 }

 rw.Generate();
 rw.Close();
 }
 catch (Exception e) {
 Console.WriteLine("Error while processing " + file + " :");
 Console.WriteLine(e.ToString());
 }
} } }

Chapter 7

184

After we load the XML from the web application into the XMLDocument object named simply doc, we
have to assign an appropriate name for the generated resource file. As the resource file takes the form
StringResources.<language code>.resources, where the abbreviation for the language is
extracted from the language attribute of the XML file.

This filename combination is then assigned to a string variable named resfilename and a new
ResourceWriter object (rw) is instantiated.

As we have seen in the code listing, our ResourceWriter object takes the filename of the resource file
as parameter. As our source file has an XML format, we iterate through it using a foreach statement.
Resource entries are defined as name and value pairs, similar to the entries in a hash table. The
AddResource method of the ResourceWriter class adds entries to the resource file and must be
called at least once to successfully generate a valid resource file. After adding to the ResourceWriter
object all the entries found, the Generate method is called to write the entries into a file stream.

The next section covers an all-in-one solution to extract a language XML file from a database and
output a resource file.

Generating Resource Files from the Database
Lastly, there's the Assemble utility, which creates resources out of a database. This utility can be found
in \src\Tools\Assemble. As the OLE DB .NET Data Providers are flexible, we get high performance
support for Microsoft SQL databases, JET compatible databases, and even Oracle databases.

Now let's get to the core and look at the application's MainClass (in Main.cs). The MainClass has
two methods besides its entry point. In all, it has the Main method, the Open method, and the
ConvertIllegalChars method.

The Open method's functionality is solely to open a connection to a database, using a suitable .NET
Data Provider. The following lines of code are straightforward and refer to an MS Access database:

static void Open()
{
 string connection = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" +
 Application.StartupPath + Path.DirectorySeparatorChar +
 "LocalizeDb.mdb;
 myConnection = new OleDbConnection(connection);
 myConnection.Open();
}

The ConvertIllegalChars method masks escape sequences such as a newline (\n), carriage return
(\r), and so on, to well formed resource-file-compatible characters:

static string ConvertIllegalChars(string str)
{
 StringBuilder newString = new StringBuilder();
 for (int i = 0; i < str.Length; ++i) {
 switch (str[i]) {
 case '\r':
 break;
 case '\n':

Internationalization

185

 newString.Append("\\n");
 break;
 case '"':
 newString.Append("\\\"");
 break;
 case '\\':
 newString.Append("\\\\");
 break;
 default:
 newString.Append(str[i]);
 break;
 }
 }
 return newString.ToString();
}

Using the StringBuilder class makes string operations simple. In the Main method we handle
parameter input and retrieve the language from the database:

public static void Main(string[] args)
{
 Open();
 string lang = "PrimaryResLangValue";
 StreamWriter writer = null;

 foreach (string param in args) {
 string par = param;
 if (par.StartsWith("/F:")) {
 par = par.Substring(3);
 writer = new StreamWriter(par, false, new UTF8Encoding());
 }
 if (par.StartsWith("/T:")) {
 par = par.Substring(3);
 lang = par;
 }
 }

 OleDbCommand myOleDbCommand =
 new OleDbCommand("SELECT * FROM Localization", myConnection);
 OleDbDataReader reader = myOleDbCommand.ExecuteReader();
 while (reader.Read()) {
 string val = ConvertIllegalChars(reader[lang].ToString()).Trim();
 if (val.Length > 0) {
 string str = reader["ResourceName"].ToString() + " = \"" + val + "\"";
 if (writer == null) {
 Console.WriteLine(str);
 } else {
 writer.WriteLine(str);
 }
 }
 }
 reader.Close();
 if (writer != null) {

Chapter 7

186

 writer.Close();
 }
 myConnection.Close();
}

The Assemble utility accepts two parameters /F and /T.

The /F switch assigns the filename of the resource file and the /T switch refers to the translation
language to extract. After assigning these we can extract the language string from the database, using an
OleDB command. The OleDB command executes a SQL select statement against the database. In this
case, we only need to fetch the data for read-only purposes, so we use the OleDBDataReader, a
read-only and forward-only data reader, to retrieve the data.

For example, to retrieve the German language version from the database, issue the following command
at the command prompt:

assemble /T:lang-de /F:StringResources.de.res

This command generates a StringResources.de.res file shown in the following snippet:

CompilerResultView.DescriptionText = "Beschreibung"
CompilerResultView.FileText = "Datei"
CompilerResultView.LineText = "Zeile"
Dialog.About.DialogName = "Über SharpDevelop"
Dialog.About.label1Text = "Version"
Dialog.About.label2Text = "Build"
Dialog.About.label3Text = "Autoren"
Dialog.Componnents.RichMenuItem.LoadFileDescription = "Lade Datei ${File}"
Dialog.Componnents.RichMenuItem.LoadProjectDescription = "Lade Projekt ${Project}"
Dialog.Componnents.RichMenuItem.NoRecentFilesString = "letzte Dateien"
Dialog.Componnents.RichMenuItem.NoRecentProjectsString = "letzte Projekte"
Dialog.DirtyFiles.DialogName = "Ungespeicherte Dateien speichern ?"
Dialog.DirtyFiles.DirtyFiles = "Ungespeicherte Dateien"
Dialog.DirtyFiles.DiscardAllButton = "Alle &Verwerfen"
Dialog.DirtyFiles.Files = "Dateien"
Dialog.DirtyFiles.SaveAllButton = "&Alle speichern"

Summary
This chapter taught us the dos and don'ts for making an application available to a global community.
We learned how SharpDevelop handles the built-in internationalization support. Our discussion
included pointers on resource management aspects, managing localized resources within an application,
and accessing them programmatically.

Then we examined the issues involved in building an online/offline solution for internationalization,
that supports Unicode and thus non-Latin characters anywhere and anytime.

In Chapter 8, we will discuss the document management features of SharpDevelop and their
implementation, focussing on the internal representation of editable text.

Internationalization

187

Chapter 7

188

Document Management

In this chapter, we will look at the various issues concerned with managing documents in the
SharpDevelop IDE. In this chapter's context, the term 'document management' means handling the
internal representation of the text to be edited. The efficient management of text is important to ensure
that the users can use the IDE conveniently. A bad text representation will slow down the editor's user
interface and alienate the users.

In this chapter, we will discuss:

❑ Text representation

❑ Representing lines

❑ Caret and selection management

❑ Text model

❑ And finally, how to put it all together

During the design phase, we decided to decouple the document model from the actual editor control, as
this would give us more flexibility in implementing the editor and adapting it to specific needs. Being
able to add to the SharpDevelop AddIn tree to extend the editor, and even use the editor control in the
standalone configuration, exemplifies the flexibility of SharpDevelop.

8

Chapter 8

190

Text Representation
Any text that we work with has to be represented in some manner in the memory, before it is edited.
There are only a few alternative representations used in editors, which are divided into two categories:

❑ Basic sequence data structures
These are the simplest possible data structures for representing text.

❑ Composite sequence data structures
These are made from compositely nested or, more commonly, linked basic data structures.
The terminology used here is introduced in C.S. Crowley's paper on data structures for text
representation (refer to http://www.cs.unm.edu/~crowley/papers/sds/sds.html) – who,
however, thinks that the composite data structures should be termed recursive. This is, of
course, the more flexible approach. Yet for the time being, we have decided to go with a type
of the basic sequence data structure named the gap buffer.

Let's look at basic sequence data structures in detail.

Basic Sequence Data Structures
To justify our choice of the gap buffer structure for the editor, first we will discuss all basic data
structures used in editors and then discuss their pros and cons.

As we discussed in Chapter 2, choosing the appropriate data structure for text representation in the
editor was a major issue in the history of SharpDevelop. First, we will look at the basic data structures
that we use now.

Arrays
The simplest data structure capable of representing an editable text is an array or a string, which looks
at memory as a single contiguous block containing the text to edit.

Obviously, this approach is not good from a performance point of view, as when we insert text, we
increase the size of the buffer. If we consider a text buffer for a typical source code file with, for
example, 500 to 1,000 lines and a maximum line length of 80 characters in one huge string, inserting or
deleting even a single character requires moving every character to the right of the insertion point by
one. If this happens at a point close to the beginning of the string, we have to move almost the entire
string. If we type in a completely new sequence at this insertion point, this has to be repeated for every
character typed.

Replacement might be a different matter though, as the string does not need to move. However, this
would require a clever bit of code that tries to figure out whether we are first deleting and then
inserting, or first inserting and then deleting – both of which are equivalent to a replace operation. Also,
replacing a highlighted character would be a simple replace operation without any shifting.

You can experiment with this approach yourself with the following implementation that has been
included for debugging and demonstration purposes in
src\SharpDevelop\ICSharpCode.TextEditor\Document\TextBufferStrategy\StringText
BufferStrategy.cs:

Document Management

191

using System;
using ICSharpCode.Core.Properties;
using ICSharpCode.SharpDevelop.Internal.Undo;

namespace ICSharpCode.TextEditor.Document {

 // Simple implementation of the ITextBuffer interface implemented using a
 // string.
 // Only for fallback purposes.

 // Set up the StringTextBuffer using a string and an offset into it to
 // mark the caret position; then define basic operations

 public class StringTextBufferStrategy : ITextBufferStrategy
 {
 string storedText = "";

 public int Length {
 get { return storedText.Length; }
 }

 public void Insert(int offset, string text)
 {
 if (text != null) {
 storedText = storedText.Insert(offset, text);
 }
 }

 public void Remove(int offset, int length)
 {
 storedText = storedText.Remove(offset, length);
 }

 public void Replace(int offset, int length, string text)
 {
 Remove(offset, length);
 Insert(offset, text);
 }

 public string GetText(int offset, int length)
 {
 if (length == 0) {
 return "";
 }
 return storedText.
 Substring(offset, Math.Min(length,storedText.Length - offset));
 }

 public char GetCharAt(int offset)
 {
 if (offset == Length) {
 return '\0';
 }
 return storedText[offset];

Chapter 8

192

 }

 public void SetContent(string text)
 {
 storedText = text;
 }
 }
}

The text in the buffer consists of a single string manipulated using the .NET string functions.
Replacement is done by the Insert and Remove methods at the corresponding position, implemented
as an independent method instead of just calling the two methods, as these two methods can use
different buffer strategies (implementing replacement in different ways). The position at which the
manipulation takes place is given using an offset from the string's start.

Although the code is simple, the performance penalty is hidden. One may say that the .NET Framework
handles moving characters around and we are not directly concerned with it; however, this isn't exactly
true. .NET does not move characters around, as string objects are fixed once they have been created.
Each editing action requires a new string object containing the new string to be created. The
performance penalty due to this will be extremely high, as object creation uses precious resources. If
you dare, you can try this out for yourself.

Linked Lists
Another of the basic sequence data structures is a linked list. This approach assigns an individual block
to each character in the edit buffer and then links these blocks. Insert and delete operations, of course,
are easy to implement with this approach as we just need to adjust links, and in the case of insert, assign
a value to the new block.

Replacing is simpler still, done by just assigning a new value to the block. If this approach makes
handling an edit buffer so easy, then why did we decide against using it in SharpDevelop? The key here
is memory requirements, as on one hand, we need a lot of information about the sequence of characters
in the buffer, and on the other, the buffer memory will become increasingly fragmented. This will
degrade performance, as iterating to a given point takes increasingly longer times and the 'subjective
speed' a user experiences is what makes an editor pleasant to work with.

The Gap Buffer Approach
For SharpDevelop, we decided to settle on the gap-buffer approach, as it is an efficient tradeoff between
an array and a linked list. A gap buffer is a data structure where any two stretches of contiguous text in
an array are separated by an empty stretch of array invisible to the user. This representation is also
known as the buffer-gap, split-block, or two-span approach.

Document Management

193

Theory of the Gap Buffer
The following figure illustrates the layout of a gap buffer containing the Formatting text with the caret
sitting between the second t and the i:

F o r m a t t n gi

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Gap Edit Position Caret Position

Gap

8 9 10

The numbers above the boxes are the user co-ordinates, as they represent the user's view of the edit
buffer, and the ones below are the gap co-ordinates used internally in handling the buffer. Both
co-ordinate systems refer to the locations between the characters in the buffer. The user and the caret
see the user co-ordinates only, which are used in our implementation independent of the internal state
of the gap.

Note that when an editing action occurs the gap is always to the left of the caret, but editing is done at
the left end of the gap. Let's assume that we want to delete the t. The result is shown in the figure:

F o r m a t n gi

0 1 2 3 4 5 6

Caret Position

Gap

7 8 9

Gap Edit Position

The gap has grown as a result of our deletion, with the total buffer size constant in memory. Both
minimum and maximum sizes of the gap are usually given based on programmer's decisions. Only
when the gap needs to be 'regrown' from minimum do we need to allocate additional memory and thus,
increase the buffer size.

Next, we will try inserting characters, resulting in the string Formatstring being displayed:

F o r m a t n gi

0 1 2 3 4 5 6 7 8 9

Caret Position

Gap

10 11 12

Gap Edit Position

s t r

Chapter 8

194

Now the gap has shrunk. A gap-buffer implementation always checks for the minimum and maximum
sizes the gap can have and adjusts it accordingly if it violates the size constraint, while inserting more
text than fits into the gap or deleting spans of text longer than the maximum gap size. The total buffer
size will change in this case. As the minimum and maximum sizes of the gap are based on the
programmer's decisions about the buffer's purpose and its expected size, fixing it is a matter of
experience, so we will not give recommendations.

One of the advantages of the gap-buffer representation is that the gap needs to be moved only when
editing takes place in a position different from the current gap position. This means that caret
movements from line to line or paging up and down can be performed without updating the internal
representation of the edit buffer, since moving the buffer every time the caret position changes would be
too expensive. This is why we use different co-ordinate systems internally and externally.

The Gap Buffer in Practice
The implementation of the gap buffer in SharpDevelop can be found in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\TextBufferStrategy\GapTextBuf
ferStrategy.cs file:

using System;
using System.Text;

namespace ICSharpCode.TextEditor.Document {

// Setting up the buffer and gap
 public class GapTextBufferStrategy : ITextBufferStrategy
 {
 char[] buffer = new char[0];

// Gap administration gets set up
 int gapBeginOffset = 0;
 int gapEndOffset = 0;

 int minGapLength = 32;
 int maxGapLength = 256;

 public int Length {
 get { return buffer.Length - GapLength; }
 }

 int GapLength {
 get { return gapEndOffset - gapBeginOffset; }
 }

// Setting content for the buffer including handling of empty case
 public void SetContent(string text)
 {
 if (text == null) {
 text = String.Empty;
 }
 buffer = text.ToCharArray();
 gapBeginOffset = gapEndOffset = 0;
 }

Document Management

195

 public char GetCharAt(int offset)
 {
 return offset < gapBeginOffset ? buffer[offset] : buffer[offset +
 GapLength];
 }

 public string GetText(int offset, int length)
 {
 int end = offset + length;

 if (end < gapBeginOffset) {
 return new string(buffer, offset, length);
 }

 if (gapBeginOffset < offset) {
 return new string(buffer, offset + GapLength, length);
 }

 StringBuilder buf = new StringBuilder();
 buf.Append(buffer, offset, gapBeginOffset - offset);
 buf.Append(buffer, gapEndOffset, end - gapBeginOffset);
 return buf.ToString();
 }

// Edit actions are done using calls of the Replace method defined below
 public void Insert(int offset, string text)
 {
 Replace(offset, 0, text);
 }

 public void Remove(int offset, int length)
 {
 Replace(offset, length, String.Empty);
 }

 public void Replace(int offset, int length, string text)
 {
 // The function body is discussed in detail later in this section
 }

 void PlaceGap(int offset, int length)
 {
 // The function body is discussed in detail later in this section
 }
 }
}

Initialization of the buffer is simple. We assign space for the text to be buffered plus the size of the gap.
In this case, the size decisions are based on experience. The Insert and Remove routines are treated as
special cases of replace operations – replacing 'nothing' when inserting and replacing the text with
'nothing' when deleting.

Chapter 8

196

Things get interesting as soon as we get to the Replace part, which is not as simple as first deleting and
then inserting, as in the StringTextBuffer code:

public void Replace(int offset, int length, string text)
 {
 if (text == null) {
 text = String.Empty;
 }

 PlaceGap(offset + length, Math.Max(0, text.Length - length));

 text.CopyTo(0, buffer, offset, Math.Min(text.Length, length));

 if (text.Length < length) {
 gapBeginOffset -= length - text.Length;
 } else if (text.Length > length) {
 int deltaLength = text.Length - length;
 gapBeginOffset += deltaLength;
 text.CopyTo(length, buffer, offset + length, text.Length - length);
 }
 }

After checking for an empty buffer, we place the gap where the edit action is to take place.
Then we work with the gap and text.copy, first copying the text into the gap, and then resizing the
gap accordingly. We need to take into account the limitations on gap size to readjust it when necessary.
This is done with the if statement at the end of the routine.

The movement of the buffer according to where it is supposed to go (before or after the current
position), and whether the gap has to be resized, is the interesting part. All of this happens in the
PlaceGap routine, which we called in the above code:

 void PlaceGap(int offset, int length)
 {

 int oldLength = GapLength;

 int newLength = maxGapLength + length;
 int newGapEndOffset = offset + newLength;
 char[] newBuffer = new char[buffer.Length +
 newLength - oldLength];

 if (oldLength == 0) {
 Array.Copy(buffer, 0, newBuffer, 0, offset);
 Array.Copy(buffer, offset, newBuffer, newGapEndOffset,
 newBuffer.Length - newGapEndOffset);
 } else if (offset < gapBeginOffset) {
 int delta = gapBeginOffset - offset;
 Array.Copy(buffer, 0, newBuffer, 0, offset);
 Array.Copy(buffer, offset, newBuffer, newGapEndOffset, delta);
 Array.Copy(buffer, gapEndOffset, newBuffer, newGapEndOffset + delta,
 buffer.Length - gapEndOffset);
 } else {

Document Management

197

 int delta = offset - gapBeginOffset;
 Array.Copy(buffer, 0, newBuffer, 0, gapBeginOffset);
 Array.Copy(buffer, gapEndOffset, newBuffer, gapBeginOffset, delta);
 Array.Copy(buffer, gapEndOffset + delta, newBuffer, newGapEndOffset,
 newBuffer.Length - newGapEndOffset);
 }

 buffer = newBuffer;
 gapBeginOffset = offset;
 gapEndOffset = newGapEndOffset;
 }

Dynamic resizing of arrays is handled by our code for the gap-buffer text representation. By using the
Array.Copy method, performance is enhanced, when compared to moving buffer elements ourselves,
as hand written movement of the buffer elements would incur a much higher number of memory
operations at the lower level, with the corresponding overheads. This follows from a simple rule that
every programmer should keep in mind – don't reinvent the wheel when it has been done and works well.

The interface for our text representation is defined in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\TextBufferStrategy\ITextBuffe
rStrategy.cs file. Here is a short excerpt to give you an idea of this:

using ICSharpCode.Core.Properties;
using ICSharpCode.SharpDevelop.Internal.Undo;

namespace ICSharpCode.TextEditor.Document {

 // Interface to describe a sequence of characters that can be edited.
 public interface ITextBufferStrategy
 {
 // Returns the current length of the editable character sequence.
 int Length {
 get;
 }
 // Inserts a string of characters into the sequence.
 void Insert(int offset, string text);
 }
}

It is a good idea to name the pattern used in an interface so that the developers using this interface
know what to expect. The implementation of the methods in the text buffer follow the Strategy pattern
discussed in detail in Chapter 2.

The Future – The Piece Table
For the time being, this representation works well; however, it might become necessary to switch to a
different text representation in the future. After discussing the various basic data sequences, we have the
composite sequence data structures left to evaluate.

Chapter 8

198

Composite Sequence Data Structures
There are three types of composite sequence data structures:

❑ The line span data structure

❑ Fixed size buffers

❑ The piece table

Now let's look at each of them.

Line Span Method

The line span data structure consists of a buffer holding a description of the blocks containing individual
lines, which makes displaying the buffer content quite easy. However, editing operations can be
cumbersome to handle, as operations concerning lines and characters in lines have to be handled
separately. Avoiding problems with performance and memory with this approach requires extra
implementation effort.

Fixed Size Buffers

The use of fixed size buffers avoids some of these problems, but it is inefficient in terms of memory
usage, as most of the individual buffers (usually corresponding to lines of fixed length) are rarely fully
used. Fortunately, fixed size buffers are more or less an obsolete approach, as dynamic memory
management is no longer a problem in modern programming languages.

The Piece Table

Leaving aside possible new composite data representation structures, the most attractive of the
composite approaches seems to be the piece table, which can be seen as a combination of the two
approaches given. It has neither fixed size buffers nor buffers for individual lines. Instead, the buffer is
split into pieces as needed, with a table giving the relationships between the pieces of the buffer – hence
the name 'piece table'.

In this approach, we start with a single contiguous block containing the file read from the disk. While
editing, the file is broken up into pieces, with the edited text set up in a new append-only block. Any
appending is performed at its end, outside the read-only block, ensuring that the original text can
always stay in read-only blocks. The offset and length information regarding the individual blocks is
kept in the piece table. The individual blocks stay in place as long as the file is open, as any edit action
only appends to the append-only block, turning the formerly active segment into a read-only one.

The main advantages a piece table provides are that other components of the software can easily access
the buffers, as they always stay in place, and that unlimited undo and redo is easy to implement as all
the necessary information resides in the translation table. Access to the buffer is done by looking up the
piece table.

Implementing unlimited undo and redo operations directly in the text buffer is not an issue for the time
being. We also implemented our own undo functionality, as undoing operations also occur outside the
text editor.

Document Management

199

Representing Lines
Text representation by a gap buffer implies that all lines are represented by the contents of two
contiguous blocks of data, which we then have to divide into chunks representing lines. This task is
handled by the Line Manager. Up to SharpDevelop release 0.88b, a Line Tracker Strategy handled this
task. This pattern-based approach was abandoned because it proved to be too inflexible for the
demands of the SharpDevelop editor. The Strategy pattern is discussed in Chapter 2.

Dividing the contents of the edit buffer into lines serves three purposes – housekeeping of lines, syntax
highlighting, and folding administration (keeping a record of which lines are visible and which ones
have been 'folded away' from sight). Syntax highlighting has been presented in Chapter 1 and will be
discussed in Chapter 9. We will take a look at folding in Chapter 10 and Chapter 11. Beyond these
tasks, events are raised when the number of lines changes, as it is important for the proper functioning
of some other SharpDevelop features, such as bookmarking. This plethora of functions served by the
Line Manager obviously goes far beyond the goals of a single Strategy pattern, as each function of the
Line Manager might be represented by a strategy.

The task of breaking the edit buffer into discrete lines and keeping track of them is accomplished by the
use of collections. The Line Manager is a complex piece of software, as we will see when we will look at
the interfaces defined in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager\ILineManager.cs
file:

namespace ICSharpCode.TextEditor.Document {

 // The line tracker keeps track of all lines in a document.
 public interface ILineManager
 {
 // Get a collection of all line segments
 LineSegmentCollection LineSegmentCollection {
 get;
 }

 // get LineSegmentCollection.Count
 int TotalNumberOfLines {
 get;
 }

 IHighlightingStrategy HighlightingStrategy {
 get;
 set;
 }

 int GetLineNumberForOffset(int offset);

 LineSegment GetLineSegmentForOffset(int offset);
 LineSegment GetLineSegment(int lineNumber);

 void Insert(int offset, string text);
 void Remove(int offset, int length);
 void Replace(int offset, int length, string text);

Chapter 8

200

 void SetContent(string text);

 int GetLogicalLine(int lineNumber);
 int GetVisibleLine(int lineNumber);

 int GetNextVisibleLineAbove(int lineNumber, int lineCount);
 int GetNextVisibleLineBelow(int lineNumber, int lineCount);

 event LineManagerEventHandler LineCountChanged;
 }
}

We can see that there are interfaces for all the functionalities, like administration tasks, handling
line-related events, and referring to the lines in the edit buffer. We can refer to the text either by offset
or by line number. Furthermore, the terms logical line and visible line need to be explained. A logical
line exists in the edit buffer but can be invisible. Visible lines are a subset of logical lines, as we need to
distinguish between the total number of lines and the number of lines visible in a buffer for handling
bookmarks and other features.

We will see in Chapter 9, that there is a Strategy pattern – HighlightingStrategy. As far as syntax
highlighting goes, performing the actual highlighting is not the task of the Line Manager. It just informs
the highlighting routines about which lines need to be updated.

Also, we find that there are functions for converting offset co-ordinates to lines or line segments. Offset
co-ordinates are more natural for buffer-related operations, whereas the line co-ordinate system is better
suited for preparing lines for display. The actual work of converting the edit buffer into lines is done in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager\LineSegment.cs
file.

This class has a number of functions that go beyond the conversion from buffer to line, such as
syntax highlighting:

using System;
using System.Collections;
using System.Text;

namespace ICSharpCode.TextEditor.Document {

 public class LineSegment : ISegment
 {
 int offset;
 int length;
 int delimiterLength;
 int foldLevel = 0;

 bool isVisible = true;

 ArrayList words = null;
 Stack highlightSpanStack = null;

 public bool IsVisible {
 get {return isVisible; }

Document Management

201

 set {isVisible = value; }
 }

 public int Offset {
 get { return offset; }
 set { offset = value; }
 }

 public int Length {
 get { return length - delimiterLength; }
 }

 public int TotalLength {
 get { return length; }
 set { length = value; }
 }

 public int DelimiterLength {
 get { return delimiterLength;}
 set { delimiterLength = value;}
 }

 public int FoldLevel {
 get { return foldLevel; }
 set { foldLevel = value;}
 }

 // highlighting information
 public ArrayList Words {
 get { return words;}
 set {words = value;}
 }

 public HighlightColor GetColorForPosition(int x)
 {
 int xPos = 0;
 foreach (TextWord word in Words) {
 if (x < xPos + word.Length) {
 return word.SyntaxColor;
 }
 xPos += word.Length;
 }
 return null;
 }

 public Stack HighlightSpanStack {
 get {
 return highlightSpanStack;
 }
 set {
 highlightSpanStack = value;
 }
 }

Chapter 8

202

 public LineSegment(int offset, int end, int delimiterLength)
 {
 this.offset = offset;
 this.length = end - offset + 1;
 this.delimiterLength = delimiterLength;
 }

 public LineSegment(int offset, int length)
 {
 this.offset = offset;
 this.length = length;
 this.delimiterLength = 0;
 }

 public override string ToString()
 {
 return "[LineSegment: Offset = "+ offset +", Length = " + length + ",
 DelimiterLength = " + delimiterLength + ",
 FoldLevel = " + FoldLevel + "]";
 }

This is mostly self-explanatory. The use of three variables to handle line length calls for some attention
– Length, DelimiterLength, and TotalLength. Most of the code that uses the functionality
supplied by the Line Manager references Length, which is the length of the line excluding the
delimiting characters. However, for the work done inside the Line Manager, the total length of the lines
must be known, as delimiters are also counted as characters in the offset view of the buffer. Now you
may think a delimiter is a simple newline character, this may not necessarily be true.

In SharpDevelop, we are free to choose between Unix-style, DOS-style, and Macintosh-style line-end
delimiters, which means that cr, lf, or both may be used, and each corresponds to one character in the
buffer. Therefore, we need to take this variation of delimiter length into account, especially in the light
of the fact that the user can choose which delimiters to use, and that SharpDevelop should handle all of
these delimiter types, even when the user opens files imported from operating systems using delimiters
that are not DOS-style. This happens while developing web-based applications (ASP.NET web services)
and is the first small step in preparing SharpDevelop to port to other .NET-compatible platforms.

Another interesting element is FoldLevel, as SharpDevelop allows nested folding.

The one bit of code that you will have noticed as being a bit unusual is:

public override string ToString()
 {
 return "[LineSegment: Offset = "+ offset +", Length = " + length + ",
 DelimiterLength = " + delimiterLength + ",
 FoldLevel = " + FoldLevel + "]";
 }

This overload of the ToString method is used for writing the output to the console window for easy
debugging, as SharpDevelop does not include a debugger, yet. This is not exactly elegant, but gets the
job done. You will find such code in many places in SharpDevelop. Now you know what it is for.

Document Management

203

For syntax highlighting, not only should the lines be provided but they must also be broken into
segments corresponding to individual syntactical elements, for correct highlighting. We will discuss
syntax highlighting in Chapter 9.

After the actual work of breaking the buffer into lines and line segments is done by LineSegment.cs,
the LineSegmentCollection.cs file generates a collection of files. It can be found in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager directory.

This LineSegmentCollection.cs file is generated automatically by using the SharpDevelop's Typed
C# Collection Wizard found under File | New | File | C#, as one of the available file types.

The resulting code looks like this excerpt:

using System;
using System.Collections;

namespace ICSharpCode.TextEditor.Document {

 // A collection that stores.Line objects.
 [Serializable()]
 public class LineSegmentCollection : CollectionBase {

 // Initializes a new instance of LineCollection
 public LineSegmentCollection() {
 }
 // Initializes a new instance of LineCollection based on another

 public LineSegmentCollection(LineSegmentCollection value) {
 this.AddRange(value);
 }

 // Initializes a new instance of LineCollection containing any array
 // of Line objects.
 public LineSegmentCollection(LineSegment[] value) {
 this.AddRange(value);
 }
 // Represents the entry at the specified index of the Line
 public LineSegment this[int index] {
 get {
 return ((LineSegment)(List[index]));
 }
 set {
 List[index] = value;
 }
 }

We decided to use collections here and in the management of selections for two reasons – first, we can
avoid casts, thus acquiring performance hits and making the code easier to read, secondly, collections
are also checked at compile time to avoid errors due to adding inappropriate data. This collection is
used by the DefaultLineManager and few other pieces of code (mostly in highlighting functions).

Chapter 8

204

There is a minor quirk in this particular collection. We have an entry for every line, ending in a line
delimiter, including the last line of the edit buffer. The quirk is that after a line end, a newline must
follow, giving us an extra empty entry. If we forget to take this into consideration, we may have a
problem in our new code. Therefore, it is strongly advised that accessing this collection should always
go through the routines provided by the DefaultLineManager. These routines know about the empty
entry and take care of it.

The file containing the code for the DefaultLineManager is located in
src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager\
DefaultLineManager.cs. Here's a snippet from this file:

 public int GetLineNumberForOffset(int offset)
 {
 if (offset < 0 || offset > textLength) {
 throw new ArgumentOutOfRangeException("offset", offset,
 "should be between 0 and " +
 textLength);
 }
 if (offset == textLength) {
 if (lineCollection.Count == 0) {
 return 0;
 }
 // We need to substract 1 from the lineCollection.Count value to get
 // rid of the empty 'phantom'line. Especially when we are on the
 // last line.

 LineSegment lastLine = lineCollection[lineCollection.Count - 1];
 return lastLine.DelimiterLength > 0 ?
 lineCollection.Count : lineCollection.Count - 1;
 }

 return FindLineNumber(offset);
 }
 // This returns segments of lines for highlighting etc.

 public LineSegment GetLineSegmentForOffset(int offset)
 {
 if (offset < 0 || offset > textLength) {
 throw new ArgumentOutOfRangeException("offset", offset,
 "should be between 0 and " +
 textLength);
 }
 if (offset == textLength) {
 if (lineCollection.Count == 0) {
 return new LineSegment(0, 0);
 }
 LineSegment lastLine = lineCollection[lineCollection.Count - 1];
 return lastLine.DelimiterLength > 0 ?
 new LineSegment(textLength, 0): lastLine;
 }
 return GetLineSegment(FindLineNumber(offset));
 }

Document Management

205

The correct number of lines used is obtained by testing for the existence of that mysterious empty last
line, as seen in the two methods listed.

We can also see that exception handling is important for staying within the buffer limits. In this listing,
we just see the exception throwing code and the catching is handled the 'SharpDevelop way', which is,
passing the exception up to the highest possible level before handling it. This gives a detailed trace of
the dependencies in the code, so that bug fixes are made easier. Another important aspect of managing
the lines in the buffer is handling events. Events are necessary for correctly handling line-related
functionality outside the text management subsystem, for example, the bookmarks for a file must be
adjusted automatically when the number of lines changes, otherwise they will point to the wrong place.

This is handled by the code in
src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager\
LineManagerEventArgs.cs:

using System;

namespace ICSharpCode.TextEditor.Document {

 public delegate void LineManagerEventHandler(object sender,
 LineManagerEventArgs e);
 public class LineManagerEventArgs : EventArgs
 {
 IDocumentAggregator document;
 int start;
 int moved;

 // Always a valid Document which is related to the Event.
 public IDocumentAggregator Document {
 get { return document; }
 }

 // -1 if no offset was specified for this event
 public int LineStart {
 get { return start; }
 }

 // -1 if no length was specified for this event
 public int LinesMoved {
 get { return moved; }
 }

 public LineManagerEventArgs(IDocumentAggregator document,
 int lineStart, int linesMoved)
 {
 this.document = document;
 this.start = lineStart;
 this.moved = linesMoved;
 }
 }
}

Chapter 8

206

The events occur when we either insert a newline (lineStart property), or move one or more lines
(linesMoved property). This code illustrates the standard mechanism for event handling in C#.

Caret and Selection Management
We considered the administration of the buffer from the program's point of view. Now we will look at
how the user's actions, like text and caret selections, are handled.

The caret is displayed as the cursor on screen. Selections are blocks of text marked by the user for some
action to be performed on them. These interactions with the edit buffer are handled in the same way as
the internal housekeeping.

The caret is handled through the interfaces defined in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\Caret\ICaret.cs
file. They are listed below:

using System;
using System.Drawing;
using System.Diagnostics;
using ICSharpCode.TextEditor.Document;
using System.Text;

namespace ICSharpCode.TextEditor.Document {

 // In this enumeration all caret modes are listed.
 public enum CaretMode {
 InsertMode,
 OverwriteMode
 }

 // The basic interface for the caret.
 public interface ICaret
 {
 // The current offset where the caret points to.
 int Offset {
 get;
 set;
 }

 // The 'preferred' column in which the caret moves, when it is moved
 // up/down.
 int DesiredColumn {
 get;
 set;
 }

 // The current caret mode.
 CaretMode CaretMode {
 get;
 set;
 }

Document Management

207

 // Sets the caret visibility.
 bool Visible {
 get;
 set;
 }

 // Is called each time the caret is moved.
 event CaretEventHandler OffsetChanged;

 // Is called each time the CaretMode has changed.
 event CaretEventHandler CaretModeChanged;
 }
}

The caret in SharpDevelop has two modes – insert and overwrite, and a Boolean value for visibility, which
is responsible for the blinking of the caret. Events are raised when the caret moves to a new position.

The structure of the code for handling caret issues is quite similar to the code we looked at when we
discussed line management. (Remember the offsets? They also point to a co-ordinate in the buffer, just
as a caret does.) We will not go into details here to avoid tiresome repetitions.

The two files we need to handle the caret are
src\SharpDevelop\ICSharpCode.TextEditor\Document\Caret\DefaultCaret.cs and
src\SharpDevelop\ICSharpCode.TextEditor\Document\Caret\CaretEventArgs.cs.

Note that we have also overloaded the default ToString method for the same reason as in the Line
Manager, which is debugging.

The handling of selections is done using the interface defined in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\Selection\ISelection.cs file.
The following definitions are contained in this file:

using ICSharpCode.Core.Properties;
using ICSharpCode.SharpDevelop.Internal.Undo;

namespace ICSharpCode.TextEditor.Document {

 // An interface representing a portion of the current selection.
 public interface ISelection
 {
 // Returns the start offset of this selection.
 int Offset {
 get;
 set;
 }

 // Returns the length of this selection.
 int Length {
 get;
 set;
 }

Chapter 8

208

 // Returns the starting line number of this selection.
 int StartLine {
 get;
 }

 // Returns the ending line number of this selection.
 int EndLine {
 get;
 }

 // Returns true, if the selection is rectangular.
 bool IsRectangularSelection {
 get;
 }

 // Returns the text which is selected by this selection.
 string SelectedText {
 get;
 }
 }
}

The functionality provided is understandable, only the Boolean variable IsRectangularSelection,
which is meant for future versions of SharpDevelop, may need some explanation. We have planned to
include a feature allowing us to select rectangular screen sections regardless of line lengths, as in
terminal emulator programs, which will be useful for quite a few purposes, for example, copying two
columns of a table to some other location. However, currently this property isn't used.

The selection(s) is/are handled by a collection, using the code generated by the Typed C# Collection
Wizard. As the code is very similar to that for the LineSegmentCollection that we saw earlier, we
shall not list it again.

Note that we have included the possibility of selections on purpose, as the future of SharpDevelop
might also support a multi-selection feature.

The code for the collection is contained in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\Selection\SelectionCollection
.cs file.

The implementation of selection handling is to be found in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\Selection\DefaultSelection.cs
file:

using System;

namespace ICSharpCode.TextEditor.Document {

 // Default implementation of ICSharpCode.TextEditor.Document.ISelection
 // interface.
 public class DefaultSelection : ISelection, ISegment
 {
 int offset = -1;

Document Management

209

 int length = -1;
 IDocumentAggregator document = null;
 bool isRectangularSelection = false;

 // simple properties for Offset and Length omitted for brevity

 public int StartLine {
 get { return document.GetLineNumberForOffset(offset); }
 }

 public int EndLine {
 get { return document.GetLineNumberForOffset(offset + Length); }
 }

 public bool IsEmpty {
 get { return offset < 0 || length <= 0; }
 }

 // TODO Implement rectangular selections
 public bool IsRectangularSelection {
 get { return isRectangularSelection; }
 set { isRectangularSelection = value; }
 }

 public string SelectedText {
 get {
 if (document != null) {
 return document.GetText(offset, length);
 }
 return null;
 }
 }

 public DefaultSelection(IDocumentAggregator document,
 int offset, int length)
 {
 this.document = document;
 this.offset = offset;
 this.length = length;
 }

 public override string ToString()
 {
 return "[Selection : Offset = " + Offset + ", Length = " +
 Length + "]";
 }
 }
}

We can see that, in this listing, the rectangular selections have been mentioned already, but commented
out, for the future implementation of this feature. Also, note that, we have again overloaded the
ToString method for debugging purposes. Selections are working on the line segment collection using
the LineSegment interface that we discussed earlier in the Representing Lines section.

Chapter 8

210

By now, we have a lot of functionality assembled for handling the document internally. Before we can
assemble this, we need a way to hand over the buffer contents to the outside world, for use by display
routines. As we will see, we need to abstract the representation of the data for this purpose. This will
also facilitate an eventual transition to a piece table representation.

The Text Model
Before we explain the text model, we need to know a bit about co-ordinate systems. They refer either to
positions of characters in a buffer or to the positions between characters in a buffer. Gap co-ordinates
and user co-ordinates are based on the indices of the borders between characters and not on the indices
of the characters themselves, since a line or selection begins and ends either before or after a character,
never in it. Yet both are linear offset co-ordinates and are not fit for immediate display in the
X-Y co-ordinate system of a screen. By linear offset, we refer to a co-ordinate system that uses only one
co-ordinate. Simply put, we number the characters or the borders between characters, starting with zero
at the start ('leftmost') position and count up. In X-Y systems, we address a character by the row and the
column at which it is displayed.

The text model, which we will now discuss, is a mapping of the linear offset co-ordinates onto the
X-Y co-ordinates.

The interface is defined in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\TextModel\ITextModel.cs file:

using System.Drawing;

using ICSharpCode.Core.Properties;
using ICSharpCode.SharpDevelop.Internal.Undo;

namespace ICSharpCode.TextEditor.Document {

 public interface ITextModel
 {
 int GetViewXPos(LineSegment line, int logicalXPos);
 int GetLogicalXPos(LineSegment line, int viewXPos);

 Point OffsetToView(int offset);
 int ViewToOffset(Point p);
 }
}

Note that we deal only with X co-ordinates and since each line is one character high, we can use the
line numbers as Y co-ordinates.

In this interface, we also encounter definitions for dealing with logical and view positions, when
handling character-based screen co-ordinates (X-Y co-ordinates). For buffer co-ordinates, we provide
offset handling.

Document Management

211

The implementation of the text model, however, is more interesting than we would expect from the
interface. The implementation is in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\TextModel\DefaultTextModel.cs
file:

using ICSharpCode.Core.Properties;
using ICSharpCode.SharpDevelop.Internal.Undo;

namespace ICSharpCode.TextEditor.Document {

 public class DefaultTextModel : ITextModel
 {
 static Encoding encoding = null;

 static DefaultTextModel()
 {
 try {
 encoding = Encoding.GetEncoding(Thread.CurrentThread.CurrentCulture.
 TextInfo.ANSICodePage);
 } catch (Exception) {
 }
 }

 IDocumentAggregator document;

 public DefaultTextModel(IDocumentAggregator document)
 {
 this.document = document;
 }

 public int GetLogicalXPos(LineSegment line, int viewXPos)
 {
 string text = "";
 if (line.Length > 0) {
 text = document.GetText(line.Offset, line.Length);
 }

 int max = viewXPos;
 int xpos = 0;
 int logicalPos = 0;

 while (logicalPos < text.Length) {
 if (xpos >= viewXPos) {
 break;
 }

 if (text[logicalPos] == '\t') {
 xpos += document.Properties.GetProperty("TabIndent", 4);
 xpos = (xpos / document.Properties.GetProperty("TabIndent", 4)) *
 document.Properties.GetProperty("TabIndent", 4);
 } else {
 if (encoding != null) {
 xpos += encoding.GetByteCount(text[logicalPos].ToString());
 } else {

Chapter 8

212

 ++xpos;
 }
 }
 ++logicalPos;
 }
 return logicalPos;
 }

For successfully converting the document into a character-based co-ordinate system, we need to know
about the widths of characters on screen. The most common example of a single character spanning
several character widths on screen is the tabulator. This type of 'wide' characters is common in Asian
languages.

The following code snippet, taken out of the above listing, shows us how this problem is solved:

if (encoding != null) {
 xpos += encoding.GetByteCount(text[logicalPos].ToString());
} else {
 ++xpos;
 }

Tabs are handled in a similar manner, but need special treatment as they may have different widths
depending on the user's preference. Refer to the coding style guide (see Chapter 2) for our stance on
tabs as an exclusive means of indenting. Tab width is a property we need to take into account:

if (text[logicalPos] == '\t') {
 xpos += document.Properties.GetProperty("TabIndent", 4);
 xpos = (xpos / document.Properties.GetProperty("TabIndent", 4)) *
 document.Properties.GetProperty("TabIndent", 4);
 }

Now, let's finally assemble all the pieces together.

Putting It All Together
Now we are finally done with all the pieces needed to put together a practical document management
subsystem. They come together in the DocumentAggregator, which serves as a container for the
functionality of the document management subsystem and provides this functionality to external code.
It is made up along the usual lines with an interface definition file, a default implementation file, event
code, and a factory.

The interface is defined in
src\SharpDevelop\ICSharpCode.TextEditor\Document\IDocumentAggregator.cs.

For easier understanding, we will split the file up:

Document Management

213

using ICSharpCode.Core.Properties;
using ICSharpCode.SharpDevelop.Internal.Undo;

namespace ICSharpCode.TextEditor.Document {

 // This interface represents a container which holds a text sequence and
 // all necessary information about it. It is used as the base for a text
 // editor.
 public interface IDocumentAggregator
 {
 IProperties Properties {
 get;
 set;
 }

 UndoStack UndoStack {
 get;
 }

 bool ReadOnly {
 get;
 set;
 }

 bool UpdateDocumentRequested {
 get;
 set;
 }

 bool UpdateCaretLineRequested {
 get;
 set;
 }

The other properties defined in this file should look familiar by now. Skipping over a few more property
definitions, we come to:

 // Caret Stuff
 void SetDesiredColumn();
 void SetCaretToDesiredColumn(LineSegment line);

 //LineManager stuff
 int TotalNumberOfLines {
 get;
 }

 int GetLineNumberForOffset(int offset);
 LineSegment GetLineSegmentForOffset(int offset);
 LineSegment GetLineSegment(int lineNumber);

 // functions that are used for folding

Chapter 8

214

 // Get the logical line for a given visible line and visible line for a
 // given logical line.
 // example : lineNumber == 100 foldings are in the linetracker
 // between 0..1 (2 folded, invisible lines) this method returns 102
 // the 'logical' line number and 98 the 'visible' line number

 int GetLogicalLine(int lineNumber);
 int GetVisibleLine(int lineNumber);

 int GetNextVisibleLineAbove(int lineNumber, int lineCount);
 int GetNextVisibleLineBelow(int lineNumber, int lineCount);

 // TextStore Interface
 string TextContent {
 get;
 set;
 }

 int TextLength {
 get;
 }

 void Insert(int offset, string text);
 void Remove(int offset, int length);
 void Replace(int offset, int length, string text);
 char GetCharAt(int offset);
 string GetText(int offset, int length);

 // TextModel interface
 Point OffsetToView(int offset);
 int ViewToOffset(Point p);
 int GetViewXPos(LineSegment line, int logicalXPos);
 int GetLogicalXPos(LineSegment line, int viewXPos);

 event DocumentAggregatorEventHandler DocumentAboutToBeChanged;
 event DocumentAggregatorEventHandler DocumentChanged;
 }
}

Most of this code is simple, as we just interface with all the routines providing information about our
document by using the DocumentAggregatorFactory, which is an implementation of the factory
pattern discussed in Chapter 2 in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\DocumentAggregatorFactory.cs
file. In this file, we find an interesting bit of code, which provides for building a standalone editor
outside SharpDevelop:

using ICSharpCode.Core.Properties;
using ICSharpCode.Core.Services;
using ICSharpCode.SharpDevelop.Internal.Undo;

namespace ICSharpCode.TextEditor.Document {

Document Management

215

 // This interface represents a container which holds a text sequence and
 // all necessary information about it.
 public class DocumentAggregatorFactory
 {
 public IDocumentAggregator CreateDocument()
 {
 DefaultDocumentAggregator doc = new DefaultDocumentAggregator();
#if !BuildAsStandalone
 PropertyService propertyService =
 (PropertyService)ServiceManager.Services.GetService
 (typeof(PropertyService));
 if (propertyService == null) {
 doc.Properties = new DefaultProperties();
 } else {
 doc.Properties =
 ((IProperties)propertyService.
 GetProperty("ICSharpCode.TextEditor.Document.Document.
 DefaultDocumentAggregatorProperties",
 new DefaultProperties()));
 }
#else
 doc.Properties = new DefaultProperties();
#endif
 doc.UndoStack = new UndoStack();
// doc.TextBufferStrategy = new StringTextBufferStrategy();
 doc.TextBufferStrategy = new GapTextBufferStrategy();
 doc.Caret = new DefaultCaret(doc);
 doc.FormattingStrategy = new DefaultFormattingStrategy();
 doc.FoldingStrategy = new IndentFoldingStrategy();
 doc.FormattingStrategy.Document = doc;

 doc.LineManager = new DefaultLineManager(doc, null);
 doc.BookmarkManager = new BookmarkManager(doc.LineManager);
 doc.TextModel = new DefaultTextModel(doc);
 return doc;
 }

The interesting part is contained in the #if – #else – #endif block. The properties have to be
assigned values, which is no problem inside SharpDevelop, as internal defaults are provided for the case
when no values are assigned. If no property value is returned by the SharpDevelop options, this default
value comes into play. When we use the standalone version, this infrastructure does not exist, as it is
part of SharpDevelop, which is why we have to use the #ifdef construct.

If you want to use the StringTextBufferStrategy for experimenting with the performance of this
buffer model relative to the gap buffer model, you need only uncomment the line above
GapTextBufferStrategy and comment out the GapTextBufferStrategy line instead.

Creating the DocumentAggregator for a file is easy:

 public IDocumentAggregator CreateFromFile(string fileName)
 {
 IDocumentAggregator document = CreateDocument();
 StreamReader stream = File.OpenText(fileName);

Chapter 8

216

 document.TextContent = stream.ReadToEnd();
 stream.Close();
 return document;
 }
 }
}

That is all there is to it. Now the document is in an internal representation, fit for editing.

If you are interested in reading further about the issues involved in writing editors, we recommend
that you visit http://www.finseth.com/~fin/craft/. This is the online version of the The Craft of
Text Editing book, which is currently out of print.

Summary
In this chapter, we looked at all the components necessary for the internal representation and efficient
handling of a document.

Presently, SharpDevelop uses the gap-buffer approach like most other modern editors, as it can be
easily implemented, while a piece table might be an option for future versions of SharpDevelop.

We looked at how to break up a text buffer into lines and segments for purposes such as syntax
highlighting and line folding, and examined the distinction between logical and visible lines. We also
examined the pitfalls inherent in the possible variation of delimiter length and found that typed
collections are a good way to handle line segments. Next, we looked at the handling of the caret and
selections, which we found similar to handling line segments

Then we concerned ourselves with the transition from the internal model to a model suitable for
handling an external system responsible for rendering the buffer contents on screen. We found that we
have to adjust co-ordinates and have to take into account the varying width of certain characters when
displayed on screen.

Lastly, we looked at how we can put these components together so that the actual editor can easily
access the data buffer. For this purpose, we introduced the DocumentAggregator, which acts as a
container for our components and can be used for building editors outside the SharpDevelop environment.

Now that we know how to manage text in an editor, we can examine syntax highlighting.

Document Management

217

Chapter 8

218

Syntax Highlighting

When asked what features besides Code Completion and Solution Management we expect from an
Integrated Development Environment (IDE), we will probably ask for syntax highlighting.

Sophisticated code listings can have hundreds, or even thousands of lines of code. Depending on the
developer, source code varies in how well it is structured. Generally, source code displayed as simple
black letters on white background, is more difficult to understand than code that is color-coded
according to the function of each part.

This chapter provides guidelines for writing or extending existing syntax definition files for
SharpDevelop and integrating them into the IDE. It has two major parts:

❑ Syntax Highlighting Definitions
In this section, we will examine the structure of SharpDevelop's syntax definition files and the
underpinnings needed to create or extend a syntax definition file. We will also understand how
to create definition files for our purposes, using the built-in definition file for the C# language.

❑ Applying Syntax Highlighting
Here, we will use the definition we create (in the Syntax Highlighting Definitions section), add it to
SharpDevelop's repository and look into the highlighting process, and see how SharpDevelop
validates the file and makes this feature available using the Highlighting Strategy.

9

Chapter 9

220

Syntax Highlighting Definitions
Before we probe into source code, let us discuss the idea behind SharpDevelop's syntax highlighting
functionality and why XML is used here. As we write our code, syntax highlighting displays recognized
keywords in different colors, based on comparison of the user's code to 'predefined keywords'. These
predefined keywords usually reside in a dictionary, or more precisely, in a resource file. We used the
term 'dictionary' here, because the keywords should be hierarchically structured to accelerate the
matching process, and hence we need a data format like XML, that offers such possibilities.
Additionally, it is easy to validate and parse XML nodes, as the .NET Framework supports XML
validation (XMLValidationReader class in the System.XML namespace).

Hence, SharpDevelop's syntax definition files are XML formatted, and have the .xshd (XML syntax
highlighting definition) extension. In addition, they are human-readable and can be created or extended
easily using any editor. To handle validation, we may either use an XML validating editor for the
creation of the definition file or decide to let SharpDevelop handle the process. The latter approach
should be the last resort, as it is inconvenient to program.

Without further ado, we start with the structure of the .xshd files.

Increasing Ease of Use with XML
We can create our own syntax definition for any language. A simple .xshd file is shown in the listing
(attribute values are just placeholders in this example):

<?XML version="1.0" ?>
<!-- barebone structure of a syntaxdefinition file-->
<SyntaxDefinition name="Name" extensions="Extension">
 <Environment>
 <!-- Refer to the next code listing for the body-->
 </Environment>
 <Digits name="Name" bold="true|false" italic=" true|false"
 color="Color" />
 <RuleSets>
 <!-- Body explained later in detail-->
 </RuleSets>
</SyntaxDefinition>

Do not worry about all these different node attributes, as they are explained in the next few lines.

Assume that, we use the C# language as an example. The root element of an .xshd file is
<SyntaxDefinition> with two attributes – name and extensions. The name attribute represents
the label of the entry, in the context menu. SharpDevelop allows users to switch syntax definitions
(right-click in the code window and select File mode):

Syntax Highlighting

221

The extensions attribute assigns the appropriate file extensions to the definition file. Files with this
attribute specified are automatically displayed using the appropriate definition file.

The next child element, called <Environment>, sets the appearance of the editor view (where we write
the source code), with respect to colors of the line numbers, selections, bookmarks, and so on. Before
looking at the elements contained in this node, let us see what happens if we choose the C64C# file
mode, for example:

Chapter 9

222

As mentioned before, we use the nodes of the <Environment> element to set the appearance of the
editor view to our needs. This snippet is taken from the standard C# definition:

<Environment>
 <Default color = "Black" bgcolor="White"/>
 <VRuler color = "Blue"/>
 <Selection bgcolor = "LightBlue"/>
 <Cursor color = "DarkBlue"/>
 <LineNumbers color = "Black" bgcolor = "WhiteSmoke"/>
 <InvalidLines color = "Red"/>
 <EOLMarkers color = "DarkCyan"/>
 <SpaceMarkers color = "DarkCyan"/>
 <TabMarkers color = "DarkCyan"/>
 <CaretMarker color = "Yellow"/>
 <BookMarks color = "Black" bgcolor = "#FF408080"/>
 <FoldLine color = "#808080" bgcolor="Black"/>
 <FoldMarker color = "#808080" bgcolor="White"/>
</Environment>

The setting of <Default> node causes the editor view to appear in a white background with black text.
As the other child nodes of the <Environment> element have straightforward names, we skip their
detailed explanations.

The next element – <Digits> sets the font used for numbers:

<Digits name = "Digits" bold = "false" italic = "false"
 color = "DarkBlue"/>

After the <Digits> element, the next one is <RuleSets>. The child nodes of the <RuleSets>
element define the appearance of the language used. Here, we can define spans, keywords, or even add
RuleSets (for example C#) to the default one, without modifying its core structure, the advantages of
which we will see later in this section.

Now, we discuss node inspection. The first node we encounter is the <RuleSet>, which allows us to set
case-sensitivity by applying the suitable value to the ignorecase attribute. In the C# example, the
value of the ignorecase attribute is set to false, as the C# language is case-sensitive.

Next, the Delimiters separate highlighted words from each other, for syntax highlighting. Any
character specified within this element acts as a marking separator. The following snippet contains most
delimiters valid for the C# language:

<Delimiters>&<>~!@%^*()-+=|\#/{}[]:;"' ,
 .?</Delimiters>

Note that characters such as <, >, and &, being syntax elements of XML, have to be represented by their
escape encoding; else they will cause problems with the XML parser.

Syntax Highlighting

223

Some portions of code, such as comments and pre-processor directives, need a different highlighting
style. These lines are highlighted using a single color throughout, and are just like regions, as they often
span more than one line. Therefore, we have the element, which accepts additional
highlighting rules and text formats, and is defined with the <Begin> and <End> elements (markers).
Take the block comment example:

<Span name = "BLOCKCOMMENT" rule = "TestSet" bold = "false"
 italic = "true" color = "SlateGray" stopateol = "false">
 <Begin>/*</Begin>
 <End>*/</End>

 elements are identified by their name attribute, which is BLOCKCOMMENT, in this case. This is
common in XML, as it preserves uniqueness in a human-readable kind of way. The rule attribute
indicates that there is an additional set of formatting rules somewhere outside this group. We'll discuss it
later in this section. In the element, bold, italic, and color attributes refer, as their names
suggest, to the font representation of the block comment.

Stopateol refers to the fact that at the end of the line (EOL), the highlighting continues until the stated
end is reached. If Stopateol is set to true, highlighting will automatically stop at the end of a line;
else the start and end points have to be defined by the <Begin> and <End> marker elements,
respectively. For example, block comments start with /* and end with */.

Let's discuss the rule attribute, as I mentioned earlier in this section. The TestSet rule set has its own
group and embeds additional keyword highlighting information:

<RuleSet name = "TestSet" ignorecase = "true">
 <Delimiters><>~!@%^*()-+=|\#/{}[]:;"', .?</Delimiters>
 <KeyWords name = "ErrorWords" bold="true" italic="true"
 color="Red">
 <Key word = "TODO" />
 <Key word = "FIXME" />
 </KeyWords>
 <KeyWords name = "WarningWords" bold="true" italic="true"
 color="#EEE0E000">
 <Key word = "HACK" />
 <Key word = "UNDONE" />
 </KeyWords>
</RuleSet>

This rule set is not case-sensitive, as it makes no sense to restrict the embedded keywords (TODO and
FIXME) to a particular case. As a rule set has the same capabilities as the default set, we can define our
rules, as necessary. The <KeyWords> group will be explained later in this section.

The highlighting of methods is performed by the <MarkPrevious> tag:

<MarkPrevious bold = "true" italic = "false"
 color = "MidnightBlue">
 (
</MarkPrevious>

Chapter 9

224

This entry colors every single word before an opening parenthesis in the stated color.

<KeyWords> element holds all the reserved keywords of a programming language. A basic
<KeyWords> group will look like the following example:

<KeyWords name = "ReferenceTypes" bold="false" italic="false"
 color="Red">
 <Key word = "class" />
 <Key word = "interface" />
</KeyWords>

First, we have to state its name and all the text formatting attributes, and then list all keywords that
belonging to this group, by embedding them in the <Key> element. The <Key> element has an
attribute called word, which refers to the actual reserved keyword – class and interface, in our
case. These words are reference types for the C# language.

For the complete listing of the C# definition file, refer to the data\modes\CSharp-Mode.xshd file. It
looks like this:

<?XML version="1.0"?>
<!-- syntaxdefinition for C# (c)2000 by Mike Krueger -->

<SyntaxDefinition name = "C#" extensions = ".cs">

 <Environment>
 <!-- this code is listed earlier in this section -->
 </Environment>

 <Digits name = "Digits" bold = "false" italic = "false"
 color = "DarkBlue"/>

The first section defines the basic look and feel of a C# code listing. Different colors are assigned to
default font and text background (<Default>), the gutter or the vertical ruler (<VRuler>), the selected
text (<Selection>), and so on.

After setting the defaults, we start with our groups of rule sets:

 <RuleSets>
 <RuleSet ignorecase="false">
 <Delimiters>
 &<>~!@%^*()-+=|\#/{}[]:;"' ,.?
 </Delimiters>
 <Span name = "PreprocessorDirectives" bold="false"
 italic="false" color="Green" stopateol = "true">
 <Begin>#</Begin>

 <!-- The code for line comments, block comments,
 strings and so on, is similar.-->
 <MarkPrevious bold = "true" italic = "false"
 color = "MidnightBlue">
 (
 </MarkPrevious>

Syntax Highlighting

225

This listing sets the styles and highlighting definitions for various parts of the code listing. The
hierarchical structure is less error prone and can be easily extended, since we will most likely add our
extensions to the correct group by creating our own group, rather than making additions directly to the
default group. This increases manageability and makes it easier to perform a rollback (as we only need
to remove our new group).

<KeyWords name = "Punctuation" bold = "false" italic = "false"
 color = "DarkGreen">
 <Key word = "?" />
 <Key word = "," />
 <Key word = "." />
...
</KeyWords>
 <!--The code for other keywords like operators, iteration
 statements, and so on, is similar-->
...
</RuleSet>

This listing represents the default rule set. As mentioned before, we are free to define our own rule set
in order to extend the basic highlighting styles; for example, in the source code we find extensions for
the comment style (explained earlier in this section) and XML formatting. For the full code listing, refer
the source mentioned earlier in this section.

...
<RuleSet name = "XMLDocuSet" ignorecase = "false">
 <Delimiters><>~!@%^*()-+=|\#/{}[]:;"',.?</Delimiters>
 <Span name = "STRING" bold = "true" italic = "true" color =
 "Silver" stopateol = "true">
 <Begin>"</Begin>
 <End>"</End>

 <KeyWords name = "Punctuation" bold = "true" italic = "true"
 color = "Gray">
 <Key word = "/" />
 <Key word = "|" />
 <Key word = "=" />
 </KeyWords>

 <KeyWords name = "SpecialComment" bold="true" italic="true"
 color="Gray">
 <Key word = "c" />
 <Key word = "code" />
...
 </KeyWords>
</RuleSet>
</RuleSets>
</SyntaxDefinition>

This listing provides an understanding of how syntax highlighting definition files are structured. The
remaining section of this chapter will help us understand how these definitions are applied.

Chapter 9

226

Implementing Syntax Highlighting
We will start our explanation with a sequence diagram showing the process flow from the opening of a
specified file to the HighlightingManager, and then study the code, where the validation of the
syntax definition file (.xshd) and the actual syntax highlighting process is performed:

FileService DisplayBindingService TextEditorDisplayBinding HighlightingStrategyFactory HighlightingManager

GetBindingPerFileName

DisplayBinding

CreateHighlightingStrategyForFile

IHighlightingStrategy

FindHighlighterForFile

IHighlightingStrategy

CreateContentForFile

IViewContent

When a file is opened, the OpenFile method is invoked, and this action triggers the whole process.
This method calls the GetBindingPerFileName method to get the correct display binding or
programming language association. The CreateContentForFile method is called to determine
whether the display binding is able to create an IViewContent for the language whose name is passed
to it. If true is returned by this method, a new highlighting strategy is applied to the file, which
retrieves the appropriate highlighting definition set, and applies the colors included in the
<environment> element. The MarkTokens method in the IHighLightingStrategy interface
applies the appropriate color to keywords, and updates the document container.

We presented an overview of the highlighting process, and now, we will drill down to see how it is
coded. We deal with two parts:

❑ Validation of the syntax highlighting definition file (.xshd)

❑ The sequence of events from the opening of a file to the highlighting of the text editor window

Validation of the Syntax Highlighting Definition File
Before a syntax highlighting definition file can be used, it must be validated in the
\data\modes\Modes.xsd file, which contains the definition of the XML schema for the syntax
definition for SharpDevelop's mode files (extension .xshd), which means that all valid attributes are
stated in this .xsd file.

The validation process is instantiated by the HighlightingManager
(src\SharpDevelop\ICSharpCode.TextEditor\Document\HighlightingStrategy\Highlig
htingManager.cs), which tells the HighlightingParser to load the Modes.xsd schema definition
and the mode file to be validated. Before the validation process is triggered, we must do some
initialization, by defining a read-only string (syntaxHighlightingPath) that acts as the path variable:

Syntax Highlighting

227

public class HighlightingManager
{
 static readonly string syntaxHighlightingPath =
 Application.StartupPath +
 Path.DirectorySeparatorChar + ".." +
 Path.DirectorySeparatorChar + "data" +
 Path.DirectorySeparatorChar + "modes";

 static HighlightingManager highlightingManager;
 Hashtable highlightingDefinitions;

Then we declare a new highlightingManager object and a HashTable to hold the
highlightingDefinitions. Then, we declare two constructors, one to load the highlighting
definitions (LoadDefinitions method), and another to instantiate a new highlightingManager
object. The static constructor is loaded once for each class, when the class is loaded. The other
constructor will be used for each instance of the class that is created:

 public HighlightingManager()
 {
 highlightingDefinitions = new Hashtable();
 LoadDefinitions();
 }

 static HighlightingManager()
 {
 highlightingManager = new HighlightingManager();
 highlightingManager.ResolveReferences();
 }

The defaultHighlightingStrategy object is created when either the validation of the
SharpDevelop mode file (.xshd) fails, or the mode file is not found in the specified directory path
(syntaxHighlightingPath):

 IHighlightingStrategy CreateDefaultHighlightingStrategy()
 {
 DefaultHighlightingStrategy defaultHighlightingStrategy =
 new DefaultHighlightingStrategy();
 defaultHighlightingStrategy.Extensions = new string[] {};
 defaultHighlightingStrategy.Rules.Add
 (new HighlightRuleSet());
 return defaultHighlightingStrategy;
 }

The LoadDefinitions method first checks if the directory path is valid. If the specified directory does
not exist, a defaultHighlightingStrategy is created:

 void LoadDefinitions()
 {
 if (!Directory.Exists(syntaxHighlightingPath)) {
 highlightingDefinitions["Default"] =
 CreateDefaultHighlightingStrategy();

Chapter 9

228

 return;
 }

 FileUtilityService fileUtilityService =
 (FileUtilityService) ServiceManager.Services.GetService
 (typeof(FileUtilityService));
 StringCollection files = fileUtilityService.SearchDirectory
 (syntaxHighlightingPath, "*.xshd");

The FileUtilityService method just listed
(src\SharpDevelop\Core\Services\FileUtilityService\FileUtilityService.cs)
retrieves the available SharpDevelop mode files, and the Parse method (refer to
src\SharpDevelop\Core\Services\StringParserServices.cs) within the
src\SharpDevelop\ICSharpCode.TextEditor\Document\HighlightingStrategy\Highligh
tingDefinitionParser.cs file validates each mode file found in the files collection:

 foreach(string aFile in files) {
 try {
 DefaultHighlightingStrategy highlighter =
 HighlightingDefinitionParser.Parse(aFile);
 if (highlighter != null) {
 highlightingDefinitions[highlighter.Name] =
 highlighter;
 }
 }
 catch (Exception e) {
 throw new ApplicationException
 ("can't load XML syntax definition file " +
 aFile + "\n" + e.ToString());
 }

If any errors occur during the validation process, we throw a new ApplicationException.

Let's examine the Parse method of the HighlightingDefinitionParser class. We move on to the
source code of the HighlightingParser
(src\SharpDevelop\ICSharpCode.TextEditor\Document\HighlightingStrategy\Highlig
htingDefinitionParser.cs), invoked by the HighlightingManager (discussed earlier in this
section). The HighlightingParser utilizes the XMLValidatingReader of the .NET Framework to
validate the XML Mode.xsd file for well-formedness. This XMLValidatingReader provides XML
validation and support for data/typed XML. Let's look at the source code
(src\SharpDevelop\ICSharpCode.TextEditor\Document\HighlightingStrategy\Highlig
htingDefinitionParser.cs):

static string[] environmentColors = {"VRuler", "Selection",
 "Cursor" , "LineNumbers", "InvalidLines", "EOLMarkers",
 "SpaceMarkers", "TabMarkers", "CaretMarker", "BookMarks",
 "FoldLine", "FoldMarker"};
static ArrayList errors = null;

Syntax Highlighting

229

First, in this file, the string array environmentColors is used to parse the color settings of the
<environment> settings of the IDE, and errors stores details of errors that occurred. As we do not
know the exact number of errors that occurred, we use an ArrayList, so that we can add elements
(errors) dynamically without degrading performance.

internal static DefaultHighlightingStrategy Parse(string aFileName)
{
 try {
 string schemaFileName = aFileName.Substring
 (0,aFileName.LastIndexOf(Path.DirectorySeparatorChar) +
 1) + "Mode.xsd";
 XMLValidatingReader validatingReader =
 new XMLValidatingReader(new XMLTextReader(aFileName));
 validatingReader.Schemas.Add("", schemaFileName);
 validatingReader.ValidationType = ValidationType.Schema;
 validatingReader.ValidationEventHandler +=
 new ValidationEventHandler (ValidationHandler);

First, we locate the Mode.xsd file and store the path information in the string variable named
schemaFileName. The XMLValidatingReader takes an XMLTextReader as an input. We pass the
file to be validated as an instance of the XMLTextReader and add our schema definition file
(Modes.xsd). Then the syntax highlighting definition file is validated against the schema definition:

XMLDocument doc = new XMLDocument();
doc.Load(validatingReader);

 DefaultHighlightingStrategy highlighter =
 new DefaultHighlightingStrategy
 (doc.DocumentElement.Attributes["name"].InnerText);

 if (doc.DocumentElement.Attributes["extensions"]!= null) {
 highlighter.Extensions =
 doc.DocumentElement.Attributes["extensions"].
 InnerText.Split(new char[] {'|'});

 XMLElement environment = doc.DocumentElement["Environment"];

 highlighter.SetDefaultColor
 (new HighlightBackground(environment["Default"]));
 foreach (string aColorName in environmentColors) {
 highlighter.SetColorFor(aColorName,
 new HighlightColor(environment[aColorName]));
 }

 if (doc.DocumentElement["Digits"]!= null) {
 highlighter.SetColorFor("Digits",
 new HighlightColor(doc.DocumentElement["Digits"]));
 }

 XMLNodeList nodes =
 doc.DocumentElement.GetElementsByTagName("RuleSet");

Chapter 9

230

 foreach (XMLElement element in nodes) {
 highlighter.AddRuleSet(new HighlightRuleSet(element));
 }

If errors is not empty (if errors occurred during XML validation), the ReportErrors method
processes the information. Remember that the XMLValidatingReader provides error information via
the ValidationEventHandler:

 if(errors!=null) {
 ReportErrors(aFileName);
 errors = null;
 return null;
 } else {
 return highlighter;
 }
}
catch (Exception e) {
 MessageBox.Show("Could not load mode definition file.
 Reason:\n\n" + e.Message, "SharpDevelop",
 MessageBoxButtons.OK, MessageBoxIcon.Warning);
 return null;
}

The ValidationHandler method is listed:

private static void ValidationHandler(object sender, ValidationEventArgs args)
{
 if (errors==null) {
 errors=new ArrayList();
 }
 errors.Add(args);
}

The ReportErrors method is listed:

private static void ReportErrors(string fileName)
{
 StringBuilder msg = new StringBuilder();
 msg.Append("Could not load mode definition file.
 Reason:\n\n");

 foreach(ValidationEventArgs args in errors) {
 msg.Append(args.Message);
 msg.Append(Console.Out.NewLine);
 }

 MessageBox.Show(msg.ToString(), "SharpDevelop",
 MessageBoxButtons.OK, MessageBoxIcon.Warning);
}

After the highlighting definition file is successfully validated, we use the information it contains.

Syntax Highlighting

231

The Sequence of Events from the Opening of a File to the Highlighting of
the Text Editor Window

The DocumentAggregator (refer to Chapter 8) contains the user's source code document. When the
document is completely loaded, or when new characters are added to the document and the
LineManager (src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager\
DefaultLineManager.cs) the RunHighlighter method is called:

void RunHighlighter()
 {
 DateTime time = DateTime.Now;
 foreach (LineSegment line in markLines) {
 line.FoldLevel =
 document.FoldingStrategy.CalculateFoldLevel(document,
 GetLineNumberForOffset(line.Offset));
 }
 if (highlightingStrategy != null) {
 highlightingStrategy.MarkTokens(document, markLines);
 }
 markLines.Clear();
 }

This method calls the MarkTokens method of the IHighlightingStrategy interface
(src\SharpDevelop\ICSharpCode.TextEditor\Document\HighlightingStrategy\IHighli
ghtingStrategy.cs), which is implemented by the DefaultHighlightingStrategy class
(src\SharpDevelop\ICSharpCode.TextEditor\Document\HighlightingStrategy\Default
HighlightingStrategy.cs):

public interface IHighlightingStrategy
{
 string Name {
 get;
 }

 string[] Extensions {
 set;
 get;
 }

 HighlightColor GetColorFor(string name);
 HighlightRuleSet GetRuleSet(Span span);
 HighlightColor GetColor(IDocumentAggregator document,
 LineSegment keyWord, int index, int length);

 void MarkTokens(IDocumentAggregator document,
 LineSegmentCollection lines);

 void MarkTokens(IDocumentAggregator document);
 }
}

Chapter 9

232

Here, the environment colors (like background, selection color, and so on) are set, and the user's source
code is passed from the DocumentAggregator to the MarkTokens method (in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\HighlightingStrategy\DefaultH
ighlightingStrategy.cs file):

public void MarkTokens(IDocumentAggregator document, LineSegmentCollection
inputLines)
{
 if (Rules.Count == 0) {
 return;
 }

 Hashtable processedLines = new Hashtable();

 bool spanChanged = false;

Now we iterate through each line and detect if there has been a change (by the user):

 foreach (LineSegment lineToProcess in inputLines) {
 if (processedLines[lineToProcess] == null) {
 int lineNumber =
 document.GetLineNumberForOffset(lineToProcess.Offset);
 bool processNextLine = true;

 if (lineNumber != -1) {
 while (processNextLine && lineNumber <
 document.TotalNumberOfLines) {
 if (lineNumber >=
 document.LineSegmentCollection.Count) {
 break;
 }

 processedLines[currentLine] = String.Empty;

 processNextLine = MarkTokensInLine (document,
 lineNumber, ref spanChanged);
 ++lineNumber;
 }
 }
 }
 }

The MarkTokensInLine method is used for the line management. If a change has occurred, we
request an update to the DocumentAggregator. For more information on this topic, please refer to
Chapter 8.

 if (spanChanged) {
 document.UpdateDocumentRequested = true;
 } else {
 document.UpdateCaretLineRequested = true;
 }
}

Syntax Highlighting

233

The actual coloring of keywords is done by comparing the definitions contained in the SharpDevelop
definition files (.xshd) to the user's source code. This process requires a lengthy code (more than 700
lines). When a match is found, the coloring information is assigned by the GetColor method of the
DefaultHighlightingStrategy class (in the src\SharpDevelop\ICSharpCode.TextEditor\
Document\HighlightingStrategy\DefaultHighlightingStrategy.cs file):

HighlightColor GetColor(HighlightRuleSet ruleSet, IDocumentAggregator document,
LineSegment
currentSegment, int currentOffset, int currentLength)
{
 if (ruleSet != null) {
 if (ruleSet.Reference != null) {
 return ruleSet.Highlighter.GetColor(document,
 currentSegment, currentOffset, currentLength);
 }
 else {
 return (HighlightColor)ruleSet.KeyWords[document,
 currentSegment, currentOffset, currentLength];
 }
 }
 return null;
}

This HighlightColor class (in the src\SharpDevelop\ICSharpCode.TextEditor\
Document\HighlightingStrategy\HighlightColor.cs file) sets the colors and font properties
according to SharpDevelop's mode file.

Summary
Syntax highlighting should be one of the basic features of an IDE. It makes the programmer's life much
easier as the developer's source code gets clearer. This chapter gave us a basic idea of syntax
highlighting, covered the creation of syntax definition files, and dealt with how syntax highlighting is
applied to the user's data. We also examined the SharpDevelop syntax highlighting strategy.

The next chapter covers advanced document features, which are necessary for an IDE, such as Search
and Replace, and bookmark management.

Chapter 9

234

Search and Replace

This chapter provides an inside view of the Search and Replace feature. Search and Replace is
important for an IDE, as it facilitates the process of editing our project or code. You have probably used
search and replace more than a thousand times, but maybe you never thought about what is happening
inside an application offering this feature. Finding a pattern given by user input can be more difficult
that it seems.

We will look at:

❑ The search and replace manager

❑ Iterators for stepping through documents (and collections of documents)

❑ Search Algorithms

❑ Searching with wildcards

The Search Strategy
The structure of the search functionality comprises several different parts. As well as a string search
algorithm it also comprises a document iterator, a text iterator, and a manager that handles the items
selected in the dialog window. Based on the user's input, the manager triggers the appropriate iterator
and the selected action. As mentioned in Chapter 1, several tasks can be performed using either the
Find or Replace dialog. You can search for and/or replace strings, mark results, define the search
region, and even set a different search algorithm instead of the default one.

Before we probe deeper into string search algorithms we deal with the implementation of the
SearchReplaceManager
(src\SharpDevelop\SDDefaultEditor\Search\SearchReplaceManager.cs) to get a peek
inside the functionalities it provides. Due to the fact that other methods such as the Replace or
ReplaceAll, which are explained in greater detail later in this chapter, rely on the
SearchReplaceManager class, read the following section carefully.

10

Chapter 10

236

As we are talking about a SearchReplaceManager, don't expect to see any basic find or replace
functionality here. The SearchReplaceManager uses such functionality to perform tasks according to
the settings. The SearchReplaceManager reads property values and access interfaces that provide the
find or replace functionality.

public enum DocumentIteratorType {
 None,
 CurrentDocument,
 AllOpenFiles,
 WholeCombine,
 Directory
}

public enum SearchStrategyType {
 None,
 Normal,
 RegEx,
 Wildcard
}

These two enumerations, DocumentIteratorType and SearchStrategyType, define the search
region (for instance current file, all open files, and so on) and the selected search algorithm respectively.

public class SearchReplaceManager
{
 public static ReplaceDialog ReplaceDialog = null;
 static IFind find = new DefaultFind();

The listing above includes the IFind interface and a new object instance DefaultFind. Let's have a
look at the IFind interface, which defines the properties and methods which our code for performing
the search must provide. Using an interface in this way will make it easy to change our search class for
a different one.

(src\SharpDevelop\SDDefaultEditor\Search\IFind.cs).

public interface IFind
{
 ISearchStrategy SearchStrategy {
 get;
 set;
 }

 ProvidedDocumentInformation CurrentDocumentInformation {
 get;
 }

 IDocumentIterator DocumentIterator {
 get;
 set;
 }

Search and Replace

237

 ITextIteratorBuilder TextIteratorBuilder {
 get;
 set;
 }

 void Replace(int offset, int length, string pattern);

 ISearchResult FindNext(SearchOptions options);
 void Reset();
}

We can see that the interface includes properties for the search strategy (the actual algorithm to use), the
document information, and the iterators to use (we will look at iterators in depth later). It also requires
methods for replacing a particular part of the document and for finding the next instance of some text
based on a SearchOptions object (more on search options later)

We will be looking at the DefaultFind implementation of this interface later in the chapter.

We can continue with the implementation of the SearchReplaceManager class:

static SearchOptions searchOptions = new
 SearchOptions("SharpDevelop.SearchAndReplace.
 SearchAndReplaceProperties");

We instantiate a new SearchOptions object based on the user-selected properties and below the
SearchOptions property containing the search options (where to search and what search method
should be used):

 public static SearchOptions SearchOptions {
 get {
 return searchOptions;
 }
 }

 static SearchReplaceManager()
 {
 find.TextIteratorBuilder = new
 ForwardTextIteratorBuilder();

A new instance of ForwardTextIteratorBuilder class (src\SharpDevelop\SDDefaultEditor\
Search\TextIterator\ForwardTextIteratorBuilder.cs) is created. This iterator steps through
the text buffer from top to bottom. Now we have to create new event handlers for the search strategy
and for the Document iterator:

 searchOptions.SearchStrategyTypeChanged += new
 EventHandler(InitializeSearchStrategy);
 searchOptions.DocumentIteratorTypeChanged += new
 EventHandler(InitializeDocumentIterator);

 InitializeDocumentIterator(null, null);
 InitializeSearchStrategy(null, null);

Chapter 10

238

 }

 static void InitializeSearchStrategy(object sender,
 EventArgs e)
 {
 find.SearchStrategy =
 SearchReplaceUtilities.CreateSearchStrategy(
 SearchOptions.SearchStrategyType);

 }

 static void InitializeDocumentIterator(object sender,
 EventArgs e)
 {
 find.DocumentIterator = SearchReplaceUtilities.
 CreateDocumentIterator(SearchOptions.
 DocumentIteratorType);
 }

These events are used to identify a change based on the user's selection. Next we initialize the correct
search strategy and the correct iterator. The search strategies themselves are explained in detail in the
Inside Search and Replace section, later in this chapter.

The following source code shows the method bodies for the search and replace pattern-marking tasks.
The pattern-marking tasks simply comprise the selection of found occurrences of the search phrase.
These methods – Replace and FindNext – rely on the Find method implementation and are not
bound to an algorithm. The Replace method simply replaces the found pattern with the string found in
SearchOptions.ReplacePattern at the indicated integer offset (received from the
textarea.Document.SelectionCollection[0].Offset property). Example: If a user enters a
search phrase into either the Find dialog or the Replace dialog these two methods are executed. The
implementation of the Replace method follows first:

public static void Replace()
 {
 if (WorkbenchSingleton.Workbench.ActiveWorkbenchWindow !=
 null) {
 TextAreaControl textarea = (TextAreaControl)
 WorkbenchSingleton.Workbench.ActiveWorkbenchWindow.
 ViewContent.Control;

 string text = textarea.GetSelectedText();
 if (text == SearchOptions.SearchPattern) {
 int offset = textarea.Document.SelectionCollection[0].
 Offset;

 textarea.BeginUpdate();
 textarea.RemoveSelectedText();
 textarea.Document.Insert(offset, SearchOptions.
 ReplacePattern);
 textarea.Document.Caret.Offset = offset +
 SearchOptions.
 ReplacePattern.Length;

Search and Replace

239

 textarea.EndUpdate();
 }
 }
 FindNext();
}

The BeginUpdate and EndUpdate methods are used to enhance performance. The BeginUpdate
method is used to prevent the TextAreaControl object from repainting before EndUpdate is called.

The FindNext method is used to continue with the iteration process, which means replacing the next
item if one is found. This happens when the user clicks on the Replace button again. The FindNext
method checks if there is another occurrence of the search pattern in the selected region:

public static void FindNext()
{
 if (find == null ||
 searchOptions.SearchPattern == null ||
 searchOptions.SearchPattern.Length == 0) {
 return;
 }

 find.SearchStrategy.CompilePattern(searchOptions);
 ISearchResult result = find.FindNext(searchOptions);
 if (result == null) {
 ResourceService resourceService =
 (ResourceService)ServiceManager.Services.
 GetService(typeof(ResourceService));

 MessageBox.Show((Form)WorkbenchSingleton.Workbench,
 resourceService.GetString("Dialog.NewProject.
 SearchReplace.SearchStringNotFound"), "Not Found",
 MessageBoxButtons.OK, MessageBoxIcon.Information);

 find.Reset();
 } else {
 TextAreaControl textArea = OpenTextArea(result.FileName);
 if (lastResult != null &&
 lastResult.FileName == result.FileName &&
 textArea.Document.Caret.Offset != lastResult.Offset +
 lastResult.Length) {
 find.Reset();
 }

 textArea.Document.Caret.Offset = result.Offset +
 result.Length;

 textArea.SetSelection(new DefaultSelection(textArea.
 Document, result.Offset,result. Length));
 }
 lastResult = result;
}

Chapter 10

240

The ReplaceAll method is quite similar to the Replace method, with the exception that the iteration
through the selected region is done until the current iteration position is reached again. Hence, if you
don't want to confirm each and every string found you click on the Replace all button, which triggers
this method:

public static void ReplaceAll()
{
 TextAreaControl textArea = null;
 if (WorkbenchSingleton.Workbench.ActiveWorkbenchWindow !=
 null) {
 textArea = (TextAreaControl)WorkbenchSingleton.
 Workbench.ActiveWorkbenchWindow.ViewContent.Control;

 textArea.ClearSelection();
 }

 find.Reset();
 find.SearchStrategy.CompilePattern(searchOptions);

 while (true) {
 ISearchResult result = SearchReplaceManager.find.
 FindNext(SearchReplaceManager.searchOptions);

 if (result == null) {
 MessageBox.Show((Form)WorkbenchSingleton.Workbench,
 "Replace all done", "Finished");

 find.Reset();
 return;
 } else {
 textArea = OpenTextArea(result.FileName);
 textArea.BeginUpdate();
 textArea.Document.SelectionCollection.Clear();

 string transformedPattern = result.
 TransformReplacePattern (SearchOptions.
 ReplacePattern);

 find.Replace(result.Offset, result.Length,
 transformedPattern);
 textArea.EndUpdate();
 textArea.Invalidate(true);
 }
 }
}

The MarkAll method, which also relies on Find, highlights occurrences of the search pattern found:

public static void MarkAll()
{
 TextAreaControl textArea = null;
 if (WorkbenchSingleton.Workbench.ActiveWorkbenchWindow !=
 null) {

Search and Replace

241

 textArea = (TextAreaControl)WorkbenchSingleton.Workbench.
 ActiveWorkbenchWindow.ViewContent.Control;

 textArea.ClearSelection();
 }
 find.Reset();
 find.SearchStrategy.CompilePattern(searchOptions);
 while (true) {
 ISearchResult result = SearchReplaceManager.find.
 FindNext(searchOptions);

 if (result == null) {
 MessageBox.Show((Form)WorkbenchSingleton.Workbench,
 "Mark all done", "Finished");

 find.Reset();
 return;
 } else {
 textArea = OpenTextArea(result.FileName);
 textArea.Document.Caret.Offset = result.Offset;
 int lineNr = textArea.Document.
 GetLineNumberForOffset(result.Offset);

 if (!textArea.Document.BookmarkManager.
 IsMarked(lineNr)) {
 textArea.Document.BookmarkManager.
 ToggleMarkAt(lineNr);
 }
 }
 }
}

As the postfix "All" of the MarkAll method suggests, highlighting is done till the initial caret position is
reached again. You might have noticed that this code uses a method called OpenTextArea. This
method opens the files that are required by the search tasks.

static TextAreaControl OpenTextArea(string fileName)
{
 if (fileName != null) {
 IFileService fileService = (IFileService)ICSharpCode.
 Core.Services.ServiceManager.Services.
 GetService(typeof(IFileService));
 fileService.OpenFile(fileName);
 }

 return (TextAreaControl)WorkbenchSingleton.Workbench.
 ActiveWorkbenchWindow.ViewContent.Control;
}

As we saw in Chapter 5, the service that uses the IFileService interface provides us basic file
management and handling, such as file creation, opening, and deletion.

Chapter 10

242

The word 'iterator' is mentioned here quite often, so before we move on to the next section a let's take a
brief look at iterators. The iterator offers the ability to step through (iterate) the contained data, while
storing the position of the caret and comparing it to a previously stored one. This prevents infinite loops
when clicking, for example, on the Replace all button, where the iteration is done automatically.
Iterators can contain different types of data, which depend on the actual implementation of the iterator.
The version of SharpDevelop covered in this book has three different iterators:

❑ The WholeProjectDocument iterator retrieves data itself

❑ The AllOpenDocument iterator retrieves the data from the WorkBenchServices

❑ The ForwardTextIterator gets the data from the text buffer

The source code necessary to achieve this goal is pretty straightforward. Assuming we want to replace a
string in a single file only, the ForwardTextIterator class is used.

The TextIterator is built on the Deterministic Finite Automaton (DFA) principle, and for that reason
it has states. Before we step through the code listing from top to bottom of the ForwardTextIterator
class let us take a look at the used ITextIterator interface. This iterator is used on the text
buffer strategy:

 public interface ITextIterator
 {
 ITextBufferStrategy TextBuffer {
 get;
 }

 //Get the current character from the buffer:
 char Current {
 get;
 }

 //Get the current character position from the buffer:
 int Position {
 get;
 set;
 }
 // Get the relative character position from the buffer:
 char GetCharRelative(int offset);

 //This method moves the iterator by the passed number:
 bool MoveAhead(int numChars);

 //Reset the iterator when work is finished:
 void Reset();
 void InformReplace(int offset, int length, int
 newLength);
 }

The find object calls the InformReplace method to inform the text iterator
about the replace operation on the text buffer. The text iterator must update
all internal offsets to the new offsets:

Search and Replace

243

Now the listing of the ForwardTextIterator class:

public class ForwardTextIterator : ITextIterator
{
 enum TextIteratorState {
 Reseted,
 Iterating,
 Done,
 }

 TextIteratorState state;

 ITextBufferStrategy textBuffer;
 int currentOffset;
 int endOffset;
 int oldOffset = -1;

After initializing integer variables that track the caret position changes, we get the text data from the
active text buffer and the Current property the character:

 public ITextBufferStrategy TextBuffer {
 get {
 return textBuffer;
 }
 }

 public char Current {
 get {
 switch (state) {
 case TextIteratorState.Resetted:
 throw new System.InvalidOperationException
 ("Call moveAhead first");
 case TextIteratorState.Iterating:
 return textBuffer.GetCharAt(currentOffset);
 case TextIteratorState.Done:
 throw new System.InvalidOperationException
 ("TextIterator is at the end");
 default:
 throw new System.InvalidOperationException
 ("unknown text iterator state");
 }
 }
 }

 public int Position {
 get {
 return currentOffset;
 }
 set {
 currentOffset = value;
 }
 }

Chapter 10

244

 public ForwardTextIterator(ITextBufferStrategy textBuffer,
 int endOffset)
 {
 Debug.Assert(textBuffer != null);
 Debug.Assert(endOffset >= 0 && endOffset <
 textBuffer.Length);

 this.textBuffer = textBuffer;
 this.endOffset = endOffset;
 Reset();
 }

In the code just listed we evaluate the relative iterator position and move it one step further only if the
process is in the state Iterating:

public char GetCharRelative(int offset)
{
 if (state != TextIteratorState.Iterating) {
 throw new System.InvalidOperationException();
 }

 int realOffset = (currentOffset + (1 + Math.Abs(offset) /
 textBuffer.Length) * textBuffer.Length + offset) %
 textBuffer.Length;

 return textBuffer.GetCharAt(realOffset);
}

public bool MoveAhead(int numChars)
{
 Debug.Assert(numChars > 0);

 switch (state) {
 case TextIteratorState.Resetted:
 currentOffset = endOffset;
 state = TextIteratorState.Iterating;
 return true;
 case TextIteratorState.Done:
 return false;
 case TextIteratorState.Iterating:
 currentOffset = (currentOffset + numChars) %
 textBuffer.Length;
 bool finish = oldOffset != -1 && (oldOffset >
 currentOffset || oldOffset < endOffset) &&
 currentOffset >= endOffset;

 oldOffset = currentOffset;
 if (finish) {
 state = TextIteratorState.Done;
 return false;
 }
 return true;
 default:

Search and Replace

245

 throw new Exception("Unknown text iterator
 state");
 }
}

If text was replaced before the iterator position, the position has to be adapted to ensure that we are still
in the same text section:

public void InformReplace(int offset, int length, int
 newLength)
{
 if (offset <= endOffset) {
 endOffset = endOffset - length + newLength;
 }

 if (offset <= currentOffset) {
 currentOffset = currentOffset - length + newLength;
 }

 if (offset <= oldOffset) {
 oldOffset = oldOffset - length + newLength;
 }
}

public void Reset()
{
 state = TextIteratorState.Reseted;
 currentOffset = endOffset;
 oldOffset = -1;
}

The document iterator works similarly to the text iterator. While the purpose remains the same, this
iterator is capable of holding more complex data than just a text buffer (for example one or more files).
This kind of data is defined in its implementation. There are three possible regions to search: the
current document, all open documents, and the entire project.

The WholeProjectDocumentIterator implements the public interface named
IDocumentIterator interface (src\SharpDevelop\SDDefaultEditor\Search\
DocumentIterator\IDocumentIterator.cs). Thus before we list the iterator's code we take a
look at the interface:

public interface IDocumentIterator
{
 ProvidedDocumentInformation Current {
 get;
 }

 string CurrentFileName {
 get;
 }

Chapter 10

246

 bool MoveForward();

 bool MoveBackward();

 void Reset();
}

The Reset method resets the iterator to the start position, and the MoveForward and MoveBackward
methods simply move the iterator one step forward or backward respectively.

All three document iterators serve basically the same purpose and differ only in their search regions.
Hence the listing of the WholeProjectDocumentIterator (src\SharpDevelop\
SDDefaultEditor\Search\DocumentIterator\WholeProjectDocumentIterator.cs) should
be sufficient to illustrate the principle. The files that are to be iterated through, are contained in the
ArrayList called files:

public class WholeProjectDocumentIterator : IDocumentIterator
{
 ArrayList files = new ArrayList();
 int curIndex = -1;

 public WholeProjectDocumentIterator()
 {
 Reset();
 }

The constructor of the WholeProjectDocumentIterator class listed above initializes the object with
"clean" attribute values, as the Reset method is called. Now we get the names of the files that are
contained in the ArrayList files:

 public string CurrentFileName {
 get {
 if (curIndex < 0 || curIndex >= files.Count) {
 return null;
 }
 return files[curIndex].ToString();
 }

Now we retrieve document information from each of the contained files of the ArrayList:

 public ProvidedDocumentInformation Current {
 get {
 if (curIndex < 0 || curIndex >= files.Count) {
 return null;
 }
 if (!File.Exists(files[curIndex].ToString())) {
 ++curIndex;
 return Current;
 }
 IDocumentAggregator document;
 string fileName = files[curIndex].ToString();

Search and Replace

247

 foreach (IViewContent content in
 WorkbenchSingleton.Workbench.ViewContentCollection) {
 if (content.ContentName == fileName) {
 document = ((TextAreaControl)content.Control).
 Document;

 return new ProvidedDocumentInformation(
 document, fileName);
 }
 }
 return new ProvidedDocumentInformation
 (StringTextBufferStrategy.CreateText
 BufferFromFile(fileName), fileName, 0);
 }
 }

The MoveForward method actually iterates through the files of the ArrayList:

 public bool MoveForward()
 {
 return ++curIndex < files.Count;
 }

 public bool MoveBackward()
 {
 if (curIndex == -1) {
 curIndex = files.Count - 1;
 return true;
 }
 return --curIndex >= -1;
 }

 void AddFiles(IProject project)
 {
 foreach (ProjectFile file in project.ProjectFiles) {
 if (file.BuildAction == BuildAction.Compile &&
 file.Subtype == Subtype.Code) {
 files.Add(file.Name);
 }
 }
 }

 void AddFiles(Combine combine)
 {
 foreach (CombineEntry entry in combine.Entries) {
 if (entry is ProjectCombineEntry) {
 AddFiles(((ProjectCombineEntry)entry).Project);
 } else {
 AddFiles(((CombineCombineEntry)entry).Combine);
 }
 }
 }

Chapter 10

248

 public void Reset()
 {
 files.Clear();
 IProjectService projectService = (IProjectService)
 ICSharpCode.Core.Services.ServiceManager.Services.
 GetService(typeof(IProjectService));

 if (projectService.CurrentOpenCombine != null) {
 AddFilesIn(projectService.CurrentOpenCombine);
 }
 curIndex = -1;
 }
}

Each document iterator has its own class definition file so that modularity of the code is upheld.
Therefore, we have to create a new object instance upon usage. This is done in the
SearchReplaceUtilities class
(src\SharpDevelop\SDDefaultEditor\Search\SearchReplaceUtilities.cs):

public static IDocumentIterator CreateDocumentIterator(DocumentIteratorType type)
{
 switch (type) {
 case DocumentIteratorType.None:
 return null;
 case DocumentIteratorType.CurrentDocument:
 return new CurrentDocumentIterator();
 case DocumentIteratorType.Directory:
 return new DirectoryDocumentIterator
 (SearchReplaceInFilesManager.SearchOptions.
 SearchDirectory, SearchReplaceInFilesManager.
 SearchOptions.FileMask,
 SearchReplaceInFilesManager
 .SearchOptions.SearchSubdirectories);
 case DocumentIteratorType.AllOpenFiles:
 return new AllOpenDocumentIterator();
 case DocumentIteratorType.WholeCombine:
 return new WholeProjectDocumentIterator();
 default:
 throw new System.NotImplementedException
 ("CreateDocumentIterator for type " + type);
 }
}

Depending on the selected option, an object instance for the respective kind of document iterator is
created here after evaluating the expression of the switch statement.

Now that we have finished the underpinnings section, get ready for an inside view of Search
and Replace.

Search and Replace

249

Inside Search and Replace
This section provides in-depth coverage of the implementation of the search and replace functionality.
As the search is slightly more complex than just replacing a found search pattern, the part dealing with
search implementation and its algorithms consumes most of this section. First, we will look at how
SharpDevelop manages the user's selected options and how the Find and replace method interacts with
these options. Then the algorithms are discussed and their pros and cons are pointed out. Lastly, you get
a glimpse of the search strategy using wildcards.

Basic Find and Replace Implementation
Before we compare the algorithms to each other, note that there is more to this than just a method call
to find and replace strings. Taking the layout of the Find or Replace dialog depicted in Chapter 1 into
consideration, there are some options to choose from, before hitting the Find button. These selectable
options are represented as properties at the code level. These properties are defined in the
SearchOptions.cs file (src\SharpDevelop\SDDefaultEditor\Search):

public class SearchOptions
{
 static PropertyService propertyService = (PropertyService)
 ServiceManager.Services.GetService(typeof
 (PropertyService));
 IProperties properties;

 public bool IgnoreCase {
 get {
 return properties.GetProperty("IgnoreCase", false);
 }
 set {
 properties.SetProperty("IgnoreCase", value);
 }
 }

// simple properties omitted for brevity
public event EventHandler DocumentIteratorTypeChanged;
public event EventHandler SearchStrategyTypeChanged;

The SearchReplaceManager that was presented earlier calls the constructor of the SearchOptions
class, and the property values are passed to it.

Now it is time to probe into the FindNext and Replace method.

The actual implementation of the FindNext, Replace, and Reset methods can be found in the
DefaultFind class (src\SharpDevelop\SDDefaultEditor\Search\DefaultFind.cs).

At the beginning we declare the necessary properties that hold settable options of the Find/Replace dialog:

public class DefaultFind : IFind
{
 ISearchStrategy searchStrategy = null;

Chapter 10

250

 IDocumentIterator documentIterator = null;
 ITextIterator textIterator = null;
 ITextIteratorBuilder textIteratorBuilder = null;
 ProvidedDocumentInformation info = null;

 public ProvidedDocumentInformation
 CurrentDocumentInformation {
 get { return info; }
 }

 public ITextIteratorBuilder TextIteratorBuilder {
 get { return textIteratorBuilder; }
 set { textIteratorBuilder = value;}
 }

 public ITextIterator TextIterator {
 get { return textIterator; }
 }

 public ISearchStrategy SearchStrategy {
 get { return searchStrategy; }
 set { searchStrategy = value; }
 }

 public IDocumentIterator DocumentIterator {
 get { return documentIterator; }
 set { documentIterator = value; }
 }

Next is the interface definition for returning data found at a specific position:

 ISearchResult CreateNamedSearchResult(ISearchResult pos)
 {
 if (info == null || pos == null) {
 return null;
 }
 pos.ProvidedDocumentInformation = info;
 return pos;
 }

Now, we begin the method implementations of the DefaultFind class. The Reset method resets the
state of the respective iterator (document or text iterator). Iterators and their states are explained in the
section The Search Strategy of this chapter.

public void Reset()
{
 documentIterator.Reset();
 textIterator = null;
}

As the Replace method is always used in conjunction with the FindNext method, its payload includes
only code for replacing patterns of given data including position, string pattern length, and pattern data:

Search and Replace

251

public void Replace(int offset, int length, string pattern)
{
 if (CurrentDocumentInformation != null &&
 TextIterator != null) {
 CurrentDocumentInformation.Replace(offset, length,
 pattern);
 CurrentDocumentInformation.SaveBuffer();
 TextIterator.InformReplace(offset, length, pattern.Length);
 }
}

The next item of the listing is the FindNext method. This method takes an object named options as
input parameter. The options object contains all necessary information, such as case sensitivity, and
the search or replace pattern. For more information about the SearchOptions class, refer to the
section The Search Strategy.

public ISearchResult FindNext(SearchOptions options)
{
 Debug.Assert(searchStrategy != null);
 Debug.Assert(documentIterator != null);
 Debug.Assert(textIteratorBuilder != null);
 Debug.Assert(options != null);

 if (info != null && textIterator != null &&
 documentIterator.CurrentFileName != null) {
 if (info.FileName !=
 documentIterator.CurrentFileName) {
 // create new iterator, if document changed
 info = documentIterator.Current;
 textIterator =
 textIteratorBuilder.BuildTextIterator(info);
 } else {
 // old document -> initialize iterator position to caret
 // pos
 textIterator.Position = info.CurrentOffset;
 }

 ISearchResult result =
 CreateNamedSearchResult(searchStrategy.FindNext
 (textIterator, options));

 if (result != null) {
 info.CurrentOffset = textIterator.Position;
 return result;
 }
 }

 // not found or first start -> move forward to the next
 //document
 if (documentIterator.MoveForward()) {
 info = documentIterator.Current;
 // document is valid for searching -> set iterator
 //& fileName

Chapter 10

252

 if (info != null) {
 textIterator = textIteratorBuilder.
 BuildTextIterator(info);
 } else {
 textIterator = null;
 }

 return FindNext(options);
 }
 return null;
}

Along with some mandatory checks against 'no data' (the worst case), we are stepping through the data
by means of an iterator.

This code still remains useless without a string pattern search algorithm. In the next section we look at
the Brute Force approach and discuss the problems encountered when using more sophisticated algorithms.

Using Algorithms
We know that every solvable mathematical or logical problem is solvable with an algorithm. Here we
want to find out how many times a search pattern is contained in a string. These strings contain
symbols, in this case letters, that are defined by a character map and characters of the well-known
alphabet. The size of the character map is a major parameter in determining the design and speed of the
algorithm that does the matching.

This section looks at an approach of the Brute Force algorithm and a possible improvement, the Knuth-
Morris-Pratt (KMP) algorithm.

An algorithm is implemented as a strategy, which keeps the code easily manageable.

Every search strategy implements the ISearchStrategy interface, which is very simple:

public interface ISearchStrategy
{
 //Cause search strategy to update the pattern
 void CompilePattern(SearchOptions options);

 //search the next occurrence of the pattern in the text
 //using the textIterator and options.
 ISearchResult FindNext(ITextIterator textIterator,
 SearchOptions options);
}

The ISearchResult interface defines the information that a search strategy must return:

 public interface ISearchResult
 {
 string FileName { get; }
 ProvidedDocumentInformation ProvidedDocumentInformation {

Search and Replace

253

 set;
 }
 int Offset { get; }
 int Length { get; }
 IDocumentAggregator CreateDocument();
 string TransformReplacePattern(string pattern);
 }

This is all pretty self-explanatory. The TransformReplacePattern is used to actually do the replace
part of a find and replace.

To use a strategy for searching, we have to create a new object instance. This is done, among other
things, in the sealed SearchReplaceUtilities class
(src\SharpDevelop\SDDefaultEditor\Search\SearchReplaceUtilities.cs):

public static ISearchStrategy CreateSearchStrategy(SearchStrategyType type)
{
 switch (type) {
 case SearchStrategyType.None:
 return null;
 case SearchStrategyType.Normal:
 return new BruteForceSearchStrategy();
 // new KMPSearchStrategy();
 case SearchStrategyType.RegEx:
 return new RegExSearchStrategy();
 case SearchStrategyType.Wildcard:
 return new WildcardSearchStrategy();
 default:
 throw new System.NotImplementedException("
 CreateSearchStrategy for type " + type);
 }
}

The Brute Force algorithm, which is explained in detail later, lacks performance under certain
circumstances. Therefore, it might be replaced with the KMP algorithm in later releases of
SharpDevelop as the default search strategy. Now let us move on to a brief overview of the algorithms.

Most literature dealing with string search algorithms use a standardized variable naming scheme. Hence
we also stick to this convention in this section:

Variable Description

T Source text

S String, the search pattern

n Length of text

m Length of search pattern

O() Function of n and/or m; returns the number of steps required to complete the
search. Important for (worst case) performance analysis

Chapter 10

254

The Brute Force Algorithm
The Brute Force algorithm, as the name suggests, is the most exhaustive search. Basically the search
operation comprises the following tasks:

❑ Compare the entire search pattern from the beginning of the text and move from left to right

❑ If there is no match, the entire pattern is moved one step further

❑ This is repeated until the entire source text is done

This results in an average complexity of O(n), but in the worst case, O(nm). Although the algorithm's
implementation is rather simple, depending on the search pattern, performance lags can occur as it
iterates step-by-step (for instance, for strings that repeat themselves). Consider the following figure to get
the picture:

Fail, move
to next

Fail, move
to next

Fail, move
to next

Source text

Search pattern

Moving pattern

Steps to complete search

a b b a a b

b a

Pattern found

1 2 3 4 5 6

SharpDevelops implementation of this strategy looks as follows (src\SharpDevelop\
SDDefaultEditor\Search\SearchStrategy\BruteForceSearchStrategy.cs):

public class BruteForceSearchStrategy : ISearchStrategy
{
 string searchPattern;

 bool MatchCaseSensitive(ITextBufferStrategy document,
 int offset, string pattern)
 {
 for (int i = 0; i < pattern.Length; ++i) {
 if (offset + i >= document.Length ||
 document.GetCharAt(offset + i) != pattern[i]) {
 return false;
 }
 }
 return true;
 }

 bool MatchCaseInsensitive(ITextBufferStrategy document, int
 offset, string pattern)

Search and Replace

255

 {
 for (int i = 0; i < pattern.Length; ++i) {
 if (offset + i >= document.Length ||
 Char.ToUpper(document.GetCharAt(offset + i)) !=
 pattern[i]) {
 return false;
 }
 }
 return true;
 }

The previous two methods match a pattern against a block from the document at a particular offset.

Next we have a method that determines whether a particular block of the document is a complete word
(has whitespace, the document start or the document end on either side of it):

 bool IsWholeWordAt(ITextBufferStrategy document, int
 offset, int length)
 {
 return (offset - 1 < 0 || Char.IsWhiteSpace(document.
 GetCharAt(offset - 1))) && (offset + length + 1 >=
 document.Length || Char.IsWhiteSpace(document.
 GetCharAt(offset + length)));
 }

Now we have the method that actually uses the previous methods to find the next instance of the search
pattern in the document. We don't want to expose this method as the FindNext method required by
the ISearchStrategy method, so it is called InternalFindNext.

 int InternalFindNext(ITextIterator textIterator,
 SearchOptions options)
 {
 while (textIterator.MoveAhead(1)) {
 if (options.IgnoreCase ?
 MatchCaseInsensitive(textIterator.
 TextBuffer, textIterator.Position, searchPattern) :
 MatchCaseSensitive(textIterator.TextBuffer,
 textIterator.Position, searchPattern)) {
 if (!options.SearchWholeWordOnly ||
 IsWholeWordAt(textIterator.TextBuffer,
 textIterator.Position, searchPattern.Length)) {
 return textIterator.Position;
 }
 }
 }
 return -1;
 }

Chapter 10

256

public void CompilePattern(SearchOptions options)
 {
 searchPattern = options.IgnoreCase ? options.
 SearchPattern.ToUpper() : options.SearchPattern;
 }

 public ISearchResult FindNext(ITextIterator textIterator,
 SearchOptions options)
 {
 int offset = InternalFindNext(textIterator, options);
 return offset >= 0 ? new DefaultSearchResult(offset,
 searchPattern.Length) : null;
 }
}

The listing above is quite lengthy but quite simple.

An improvement over the Brute Force is the Knuth-Morris-Pratt (KMP) algorithm.

The Knuth-Morris-Pratt (KMP) Algorithm
This algorithm doesn't iterate through the source text position-by-position, but jumps to the next
position that hasn't been compared yet using a pre-generated string matching table:

String
exhasuted

Source text

Search pattern

Moving pattern

Steps to complete search

a b b a a b

b a

Pattern found

1 2 3 4 5 6

Fail, jump
Jump to

next
Fail

The search pattern is pre-processed to generate a string table. This table is created by comparing the
search string against itself. If you do not get a match at the current position, the string table informs us
which character should be compared next to the current text character. The usage of the matching table
significantly decreases the steps needed to complete the comparison vastly. Hence, the worst case
function O is reduced to O(m+n).

Although this is an improvement over the exhaustive search of the BruteForce algorithm, the KMP
implementation in SharpDevelop is still under development.

There, are of course, many other algorithms. The drawback of many of these algorithms is that they
require initialization of the character set prior to comparison. As SharpDevelop is an IDE with Unicode
support, this would mean having to initialize 65,536 characters. You could limit the number of
characters to the letters of the alphabet, but this would narrow the overall search capabilities.

Search and Replace

257

This section was just a brief overview to get a grasp on the situation; for further details, please refer to
Introduction to Algorithms, 2nd Edition by Thomas H. Cormen, and others MIT Press (ISBN 02-62-53196-8)
to get more in-depth information about this topic.

In the next section we will discuss the implementation of the wildcard strategy, which is based on
automaton principles.

Wildcard Search Strategy
Wildcards can take the form of '#' for any digits, '*' for any character sequence or '?' for any single
character. The wildcard search pattern can take any form varying from a single character to a character
sequence. Therefore, wildcards have to be combined with distinctive characters to narrow the
search pattern.

The wildcard strategy is an automaton implementation. An automaton is an abstract object that moves
between a certain number of states according to rules (hence they are often known as a Finite State
Machines). Having finite states eases the programming effort. Using an automaton for the process eases
the monitoring of the current state of the task. This is important because algorithms can have side effects
such as infinite loops.

The search operation is based on the pre-compilation of commands. These commands contain the
wildcards. Before we commence our regular FindNext method we must compile our commands
(src\SharpDevelop\SDDefaultEditor\Search\SearchStrategy\WildcardSearchStrategy
.cs).

Here we implement an enumeration to represent the possible generic command types:

public class WildcardSearchStrategy : ISearchStrategy
{
 enum CommandType {
 Match,
 AnyZeroOrMore,
 AnySingle,
 AnyDigit,
 AnyInList,
 NoneInList
 }

The internal Command class is used by the CompilePattern method when it pre-compiles the
commands for the search pattern program and stores them in an ArrayList (patternProgram):

 class Command {
 public CommandType CommandType = CommandType.Match;
 public char SingleChar = '\0';
 public string CharList = String.Empty;
 }

 ArrayList patternProgram = null;
 int curMatchEndOffset = -1;

Chapter 10

258

The CompilePattern method steps through the pattern and creates appropriate Command objects
based on the symbols that it finds:

 void CompilePattern(string pattern, bool ignoreCase)
 {
 patternProgram = new ArrayList();
 for (int i = 0; i < pattern.Length; ++i) {
 Command newCommand = new Command();
 switch (pattern[i]) {
 case '#':
 newCommand.CommandType = CommandType.AnyDigit;
 break;
 case '*':
 newCommand.CommandType = CommandType.AnyZeroOrMore;
 break;
 case '?':
 newCommand.CommandType = CommandType.AnySingle;
 break;

The code for the [character is slightly more complex, as we need to build a command that allows any
of the characters with the [and] characters. If a ! is found at the start of this set of characters, we need
to allow none of the characters that follow it.

 case '[':
 int index = pattern.IndexOf(']', i);
 if (index > 0) {
 newCommand.CommandType = CommandType.AnyInList;
 string list = pattern.Substring(i + 1, index -
 i - 1);
 if (list[0] == '!') {
 newCommand.CommandType = CommandType.NoneInList;
 list = list.Substring(1);
 }
 newCommand.CharList = ignoreCase ? list.ToUpper() :
 list;
 i = index;
 } else {
 goto default;
 }
 break;

If the character is not any of the special symbols then we simply assume that a single character should
be matched:

 default:
 newCommand.CommandType = CommandType.Match;
 newCommand.SingleChar = ignoreCase ?
 Char.ToUpper(pattern[i]) : pattern[i];
 break;
 }
 patternProgram.Add(newCommand);
 }
 }

Search and Replace

259

Now that we have defined our pattern expressions for the wildcards, we can continue with the matching
operations in the Match method:

bool Match(ITextBufferStrategy document, int offset,
 bool ignoreCase, int programStart)
{
 int curOffset = offset;
 curMatchEndOffset = -1;

 for (int pc = programStart; pc < patternProgram.Count;
 ++pc) {
 if (curOffset >= document.Length) {
 return false;
 }
 char ch = ignoreCase ?
 Char.ToUpper(document.GetCharAt(curOffset)) :
 document.GetCharAt(curOffset);
 Command cmd = (Command)patternProgram[pc];

 switch (cmd.CommandType) {
 case CommandType.Match:
 if (ch != cmd.SingleChar) {
 return false;
 }
 break;
 case CommandType.AnyZeroOrMore:
 return Match(document, curOffset, ignoreCase, pc +
 1) || Match(document, curOffset + 1, ignoreCase,
 pc);
 case CommandType.AnySingle:
 break;
 case CommandType.AnyDigit:
 if (Char.IsDigit(ch)) {
 return false;
 }
 break;
 case CommandType.AnyInList:
 if (cmd.CharList.IndexOf(ch) < 0) {
 return false;
 }
 break;
 case CommandType.NoneInList:
 if (cmd.CharList.IndexOf(ch) >= 0) {
 return false;
 }
 break;
 }
 ++curOffset;
 }
 curMatchEndOffset = curOffset;
 return true;
}

Chapter 10

260

bool IsWholeWordAt(ITextBufferStrategy document, int
 offset, int length)
{
 return (offset - 1 < 0 ||
 Char.IsWhiteSpace(document.GetCharAt(offset - 1))) &&
 (offset + length + 1 >= document.Length ||
 Char.IsWhiteSpace(document.GetCharAt(offset +
 length)));
}

The iteration through the text buffer is implemented as follows:

int InternalFindNext(ITextIterator textIterator, SearchOptions options)
{
 while (textIterator.MoveAhead(1)) {
 if (Match(textIterator.TextBuffer, textIterator.Position,
 options.IgnoreCase, 0)) {
 if (!options.SearchWholeWordOnly ||
 IsWholeWordAt(textIterator.TextBuffer,
 textIterator.Position, curMatchEndOffset -
 textIterator.Position)) {
 return textIterator.Position;
 }
 }
 }
 return -1;
}

The public FindNext method uses the internal method that we just saw:

public ISearchResult FindNext(ITextIterator textIterator,
 SearchOptions options)
{
 int offset = InternalFindNext(textIterator, options);
 return offset >= 0 ? new DefaultSearchResult(offset,
 curMatchEndOffset - offset) : null;
}

Summary
We talked about the search and replace functionality, which is one of the most desired features for an
IDE. Along with two different kinds of iterators, we briefly discussed various string search algorithms
that build on pattern matching.

The next chapter will give you an inside view of how to handle edit action and how to utilize the
TextAreaPainter.

Search and Replace

261

Chapter 10

262

Writing the Editor Control

In this chapter, we will integrate the topics covered in Chapters 8, 9, and 10 into one central control,
thus providing full editing functionality for SharpDevelop, and for use in external standalone editors, as
well. We will discuss the MVC model again, looking at how it is applied to representing the editor
control. We will look at the control itself that provides the interface for this functionality, and then we
will investigate the methods in the TextAreaPainter used for rendering the text to the screen,
including highlighting. We will then go on to take a peek at the auxiliary methods necessary for making
a text editor work as the user expects, such as rulers, the gutter, and handling mouse events.

Finally, we will look at a standalone implementation of an editor using the SharpDevelop document
editor control called SharpPad, which is a simple replacement for the Windows Notepad. This sample
application is a part of the SharpDevelop distribution, so you can use it as a base for developing your
own editor.

Introduction to the Editor
As we have only talked about the inner workings of our editor so far, we now have to define a few
technical terms so that we can talk about the UI. First, we will look at two screenshots, showing parts of
the editor window of SharpDevelop, and look at the components they contain:

11

Chapter 11

264

In the screenshot, we can see a number of items. At the left-hand edge of the window we have an
element called a gutter, which contains the line numbers and a folding indicator (the little square with a
minus sign in it; the minus sign means that this code block is unfolded).

The top left-hand corner sports a tab containing the file name. This is used for switching between the
open files, should there be more than one. This tab also has a context menu, accessible by right-clicking
the tab. In this menu we find commands, like Save or Close, useful for manipulating the file. One item
of interest is Copy file path/name. The purpose of this command is to copy the filename and path to the
clipboard, so that instead of retyping this usually lengthy string we can reuse it by inserting it from the
clipboard. This feature comes in handy when writing a book, such as this, or when referring to the
particular file in another file using the fully qualified filename.

Below the top frame of the editor window we find the horizontal ruler, which by default is turned off.
To turn this ruler on, use the Tools menu's Option dialog. Go to the Text Editor section of the dialog
and choose the Markers and Rulers pane. This ruler gives us only a rough indication of the number of
characters, as character width in TrueType fonts is variable – there are varying character widths in
proportional fonts, and as we saw in Chapter 8, there are wide characters (especially when going beyond
Latin based character sets), which can mess up the display considerably when not taken into account.
The implications of variable glyph (character) width will be discussed later in the TextAreaPainter section.

In the main area of the window, the text is rendered into the TextArea. In the section concerned with
the TextAreaPainter, we will look at the methods handling this. The text itself is highlighted
according to the highlighting scheme defined for the file type being edited. In this case, it is C#:

Writing the Editor Control

265

This screenshot shows the right edge of the SharpDevelop editor window. The horizontal ruler is visible
in this screenshot; the window management buttons are exactly what they are supposed to be and are
rendered in the .NET (Visual Studio) visual style. The vertical scrollbar is self explanatory, too. The one
item that is noteworthy is the so-called column ruler; it is the thin blue line running through the text
vertically. It indicates the position of a column of characters at a given position. By default it is set to 80
characters. This ruler is used for checking the length of lines, which may be necessary due to project
requirements. Again, the position is only approximate.

In this chapter, we will look at parts of the code implementing the functionality needed for the
SharpDevelop editor, and a standalone replacement for the Windows Notepad that is based on this
control. As the editor is the central part of an IDE, if not the heart, a lot of complex code is involved.
Another factor contributing to the complexity of the editor control is the attractiveness of the editor for
contributors. This is because an editor is never good enough for one's taste and in Open Source
software, this can be fixed by adding your own functionality. We, as the core team, want to thank all of
our contributors who have helped us make this editor as good as it is.

The TextArea Control
This piece of code is the very heart of the editor built into SharpDevelop. For this very reason, it is also
one of the biggest files in the entire project, weighing in at more than 1,200 lines. Therefore, it is not
feasible for us to go through the entire code listing. Unless noted otherwise, all the code listed in this
section is taken from the \src\SharpDevelop\ICSharpCode.TextEditor\
TextAreaControl.cs file.

As can be guessed from the file's name, the TextArea is the central part of the editor control, and all
other features, such as the rulers or the gutter, are more or less 'tacked on'. Later on, we will look at
some of the code for such features.

Theory
The basic design of the TextArea control follows the MVC model, presented in Chapter 2. As we
learned in that chapter, the architecture of our program can be broken down into a 'model', 'view', and
'controller'. In the case of the editor control, this model is mapped as shown:

View
Editor Control

Model
Text Representation

Controller
Edit Actions, Mouse

The model stands for the data to be presented to the user, the view corresponds to what the user of the
program gets to see, and the controller influences both the state of the model and the view, acting as
intermediary for the user's actions.

Chapter 11

266

Now, we are certain that some of our readers will ask – "But where does syntax highlighting, and other
such features fit in?" Actually, it does not fit in fully; syntax highlighting, just as code completion, are
done outside the editor control. Therefore, they might be considered as services that are consumed by
the editor control. Highlighting is handled by dedicated code, which returns instructions to the
TextAreaPainter for rendering on screen, but that is just rendering, nothing more. Also, functionality
such as syntax highlighting may not be needed in a standalone editor based on this control, so it is not
tightly coupled in.

Getting Started
Now, let's get into the code, and take a look at the namespaces we import:

using ICSharpCode.SharpDevelop.Gui;
using ICSharpCode.Core.Services;
using ICSharpCode.Core.Properties;
using ICSharpCode.TextEditor.Document;
using ICSharpCode.SharpDevelop.Internal.Undo;
using ICSharpCode.TextEditor.Actions;
using ICSharpCode.SharpDevelop.Gui.Dialogs.OptionPanels;

These namespaces are relevant only for the functionality provided by SharpDevelop, itself; the .NET
Framework namespaces have been omitted here. Refer to the full source of TextAreaControl.cs
for them.

Here, we again encounter the ICSharpCode.TextEditor.Document namespace that we set up in
Chapter 8. This namespace provides access to the text representation through the
IDocumentAggregator. Next, we find the namespace for our undo and redo functions. These
functions are implemented independently of the text representation. Only if SharpDevelop should, at
some point in the future, be switched over to the piece table representation, will the undo and redo code
be closely coupled with the text representation, as the structure of piece tables makes implementing
infinite undo levels easy. The text model behind piece tables has been discussed in Chapter 8.

Then, we go on to import the ICSharpCode.TextEditor.Actions namespace, which implements
the actual edit actions working on the text representation. Finally, we need the
ICSharpCode.SharpDevelop.Gui.Dialogs.OptionPanels namespace for the
LineTerminatorStyle enum, as SharpDevelop can handle line termination in UNIX, DOS, and Mac
styles. The panels, as such, set the options.

Now, we are ready to set up the editor control:

namespace ICSharpCode.TextEditor {

 public class TextAreaControl : UserControl,
 IEditActionHandler, IPositionable, IPrintable, IEditable

 // Set up the text area and its features
 {
 Ruler ruler = null;
 Panel rowpanel = new Panel();
 VScrollBar vscrollbar = new VScrollBar();

Writing the Editor Control

267

 HScrollBar hscrollbar = new HScrollBar();

 TextAreaMouseHandler mouseeventhandler = null;
 TextAreaPainter textarea;
 Gutter gutter = null;
 IClipboardHandler clipboardhandler = null;

 Thread caretthread;

 int maxVisibleChar;
 int maxVisibleLine;

 bool caretchanged = false;
 bool autoClearSelection = false;
 int oldCaretOffset = 0;
 int oldCaretLineNr = 0;

 protected Hashtable editactions = new Hashtable();
 ArrayList lastDrawnBookmarks;

 // it is possible to define your own dialog key processor if you
 // want to handle keys on your own

 public delegate bool DialogKeyProcessor(Keys keyData);
 public DialogKeyProcessor ProcessDialogKeyProcessor;

This completes the basic initialization of the control. We can also use our own customized key handling,
should we choose to do so for a standalone editor or for some other reason. Then, we handle the file to edit:

 string currentFileName = null;

 public string FileName {
 get {
 return currentFileName;
 }
 set {
 if (currentFileName != value) {
 currentFileName = value;
 OnFileNameChanged(EventArgs.Empty);
 }
 }
 }

 public bool AutoClearSelection {
 get {
 return autoClearSelection;
 }
 set {
 autoClearSelection = value;
 }
 }
//code removed for listing

Chapter 11

268

 public int MaxVisibleChar {
 get {
 return maxVisibleChar;
 }
 }
//code removed for listing

// This is needed for editor windows where code can't be
// changed. For example, generated code.

 public bool IsReadOnly {
 get {
 return Document.ReadOnly;
 }
 set {
 Document.ReadOnly = value;
 }
 }

This above listing is quite easy to understand – we basically just initialize variables, add properties, and so on.

 // The next properties handle the things we need to refer to
 // externally.

 public TextAreaPainter TextAreaPainter {
 get {
 return textarea;
 }
 }

//code removed for listing

 public string TextContent {
 get {
 return Document.TextContent;
 }
 set {
 Document.TextContent = value;
 }
....}
...
 }
...
}

In the following code snippet, an interesting observation is the fact that we are setting up a hash table
for the edit actions.

void GenerateDefaultActions()
{
 editactions[Keys.Left] = new CaretLeft();

Writing the Editor Control

269

 editactions[Keys.Left | Keys.Shift] =
 new ShiftCaretLeft();
 editactions[Keys.Left | Keys.Control] = new WordLeft();
 editactions[Keys.Left | Keys.Control | Keys.Shift] =
 new ShiftWordLeft();
//Code omitted for listing
}

This goes on for quite a bit more and is pretty uninteresting. Much more interesting is the 'why' of this
hash table. When we revert back to Chapter 3, we cannot help but think that this (initialization) is
exactly what the AddIn tree was designed for. So why don't we use it in this case? The answer lies in the
fact that we can also use this control in a standalone editor. In such a case, we will not have the
SharpDevelop core at hand to provide an AddIn tree. Therefore, we must handle the initialization of
the default edit actions inside the control itself. Besides, this is quite a good idea, as we can decouple the
basic edit actions from the program we use the editor in.

The DefaultEditor used in SharpDevelop imports additional edit actions from the AddIn tree. In
independent uses of the control, you may do something analogous for your own purposes. Another
reason behind the use of a hash table is to speed up the key look-ups.

Speaking of building a standalone editor, such as SharpPad – which is provided with SharpDevelop –
the inclusion of some additional code is necessary:

public TextAreaControl() : this(new
 DocumentAggregatorFactory().CreateDocument())
{
}

public TextAreaControl(IDocumentAggregator document)
{
 textarea = new TextAreaPainter(this, document);
 gutter = new Gutter(textarea);

 clipboardhandler = new TextAreaClipboardHandler(this);
 mouseeventhandler = new TextAreaMouseHandler(this);

 Controls.Add(textarea);
 Controls.Add(rowpanel);
 Controls.Add(gutter);
 Controls.Add(vscrollbar);
 Controls.Add(hscrollbar);

 vscrollbar.ValueChanged +=
 new EventHandler(ScrollVScrollBar);
 hscrollbar.ValueChanged +=
 new EventHandler(ScrollHScrollBar);

 Resize += new System.EventHandler(ResizePanelEvent);
 gutter.Location = new Point(0, 0);

Chapter 11

270

 textarea.Location = new Point(gutter.Width, 0);
 textarea.Resize +=
 new System.EventHandler(CalculateNewWindowBounds);

 Document.DocumentChanged +=
 new DocumentAggregatorEventHandler(BufferChange);
 Document.DocumentChanged +=
 new DocumentAggregatorEventHandler(DirtyChangedEvent);

 textarea.KeyPress += new KeyPressEventHandler(KeyPressed);
 document.Caret.OffsetChanged += new CaretEventHandler(NewCaretPos);

#if BuildAsStandalone
 //initialize the document properly
 document.HighlightingStrategy =
 HighlightingStrategyFactory.CreateHighlightingStrategy();
#endif
 ResizeRedraw = false;

 ruler = new Ruler(textarea);
 rowpanel.Controls.Add(ruler);

 Document.BookmarkManager.BeforeChanged +=
 new EventHandler(OnBeforeChangedBookMarks);
 Document.BookmarkManager.Changed += new EventHandler(OnChangedBookMarks);

 mouseeventhandler.Attach(this);
 caretthread = new Thread(new ThreadStart(CaretThreadMethod));
 caretthread.IsBackground = true;
 caretthread.Start();
 BufferChange(null, null);
 OptionsChanged();
 GenerateDefaultActions();
}

Note that, in the editor, the caret is moved off into a separate thread because we cannot make it blink
when it is inside the editor thread – the editor is busy looking at what we type. Having the caret in the
same thread would slow down the editor in the user's subjective experience and prevent the caret from
blinking regularly. The more the user typed, the slower the caret would blink – another factor in making
the editor look slow.

The code for building a standalone editor is enclosed in the #if / #endif block. We also defined a
number of properties of the editor earlier. We will only show a few of these here to give an idea of
which properties are concerned. Again for the full code, refer to the SharpDevelop distribution.

// C# properties for some of the Editor Properties
// These allow someone to use the control and set some of
// the properties without knowing anything about SharpDevelop
public bool ShowSpaces
{
 get {
 return Properties.GetProperty("ShowSpaces", false);
 }

Writing the Editor Control

271

 set {
 Properties.SetProperty("ShowSpaces", value);
 }
}

public bool ShowTabs
{
 get {
 return Properties.GetProperty("ShowTabs", false);
 }
 set {
 Properties.SetProperty("ShowTabs", value);
 }
}

public bool ShowEOLMarkers
{
 get {
 return Properties.GetProperty("ShowEOLMarkers", false);
 }
 set {
 Properties.SetProperty("ShowEOLMarkers", value);
 }
}

The listing above is quite essential for a standalone build. Now, let us look at the calculation of the
width of the gutter to be displayed:

int CalculateGutterWidth()
{
 bool showLineNumbers = Properties.GetProperty("ShowLineNumbers", true);
 bool folding = Properties.GetProperty("EnableFolding", true);

 int lineSize = (folding ? 0 : 8) +
 (int) ((Math.Max(3, (int) (Math.Log10(Document.TotalNumberOfLines) +
 1))) * textarea.FontWidth);

 int foldingSize = 15; // Arbitrary, but works for now
 return (int)((folding ? foldingSize : 0) +
 (showLineNumbers ? lineSize : 0));
 }
}

Calculating the width of the gutter is important, as it depends on how many digits we need in the line
numbers. A gutter with a fixed width of, for example, three characters would probably be sufficient in
most cases but provisions have to be made for longer files (having more than 999 lines). Here, we also
see that we need to take folding into account when dealing with line numbers, as the numbers displayed
should refer to lines in the file and not lines on the screen (remember the logical and visible of lines in
Chapter 8?).

Chapter 11

272

Folding the code block from the first figure of this chapter makes the display look like:

The square with the minus sign at line 448 has changed to a plus sign, indicating that the code block is
folded away and the line numbers for the folded block are skipped.

A short historical note – up to and including version 0.89, the gutter was known as LineNumberView. It
was renamed as the term 'view' has come to have a specific meaning in SharpDevelop. Refer to Chapter
6, for a definition of views in SharpDevelop.

Event Handling
Now, let's look at an example of event handling done in the editor – changing the options. The options
are set by using three different panels, in the SharpDevelop options dialog. They are grouped into:

❑ General
This contains the settings for code completion, folding, and screen font

❑ Rulers and marker
For controlling the visibility of the rulers and markers

❑ Behavior
For setting the tab width, indentation, and mouse wheel behavior

Writing the Editor Control

273

All these panels look quite similar:

The settings from these dialogs are then passed on to our code by means of an event:

public void OptionsChanged()
{
 textarea.CalculateFontSize();
 rowpanel.Visible = Properties.GetProperty("ShowVRuler", false);

 gutter.Width = CalculateGutterWidth();

 ResizePanelEvent(null, null);
 CalculateNewWindowBounds(null, null);
 Refresh();
}

Here, we already get a hint that the font and font size selected for our editor window are important for
correct rendering of the TextArea. Gutter width and column ruler also have to be updated, and then
after resizing the panel, we can force a refresh.

Now, we have looked at quite a number of things that go on behind the scenes in our editor control.
Next, we will consider how to handle editing. For this, we will use the task of inserting code. As we
mentioned in Chapter 8, we have to differentiate between two different cases of insertion:

❑ Inserting a single character at the caret position

❑ Inserting a string at the caret position

Chapter 11

274

These two cases are necessary, as sometimes entire strings need to be inserted into the code. A case
when this occurs is when we perform a template insertion. The entire template string is inserted at once,
instead of one character at a time:

public void InsertChar(char ch)
{
 BeginUpdate();
 if ((DocumentSelectionMode) Properties.GetProperty("SelectionMode",
 DocumentSelectionMode.Normal) == DocumentSelectionMode.Normal &&
 Document.SelectionCollection.Count > 0) {

 Document.Caret.Offset = Document.SelectionCollection[0].Offset;
 RemoveSelectedText();
 }

 Document.Insert(Document.Caret.Offset, ch.ToString());
 EndUpdate();

 int lineNr = Document.GetLineNumberForOffset(Document.Caret.Offset);
 UpdateLineToEnd(lineNr, Document.Caret.Offset -
 Document.GetLineSegment(lineNr).Offset);
 ++Document.Caret.Offset;

// Obsolete code below commented out – left in should we need a
// fall back
// ++Document.Caret.DesiredColumn;
}

public void InsertString(string str)
{
 BeginUpdate();
 if ((DocumentSelectionMode)Properties.GetProperty(
 "SelectionMode", DocumentSelectionMode.Normal) ==
 DocumentSelectionMode.Normal &&
 Document.SelectionCollection.Count > 0) {

 Document.Caret.Offset = Document.SelectionCollection[0].Offset;
 RemoveSelectedText();
 }

 Document.Insert(Document.Caret.Offset, str);
 EndUpdate();

 int lineNr = Document.GetLineNumberForOffset(Document.Caret.Offset);
 UpdateLineToEnd(lineNr, Document.Caret.Offset -
 Document.GetLineSegment(lineNr).Offset);
 Document.Caret.Offset += str.Length;
// Obsolete code below, commented out – left in should we need
// a fallback.
// Document.Caret.DesiredColumn += str.Length;
}

Writing the Editor Control

275

The main difference between these two methods is that for individual characters we use:

Document.Insert(Document.Caret.Offset, ch.ToString());

While, in case of string insertion we use:

Document.Insert(Document.Caret.Offset, str);

Please note that, both methods check for text selections made by the user, which are then deleted before
inserting the input. After insertion, the line is updated and, when necessary, the line number will be
adjusted. The caret position is updated last, so it will be redrawn in the appropriate position. This
position is given in offset coordinates.

After inserting text, the number and length of lines may have changed, so we need to update the counts
for these, as well as the size of the text buffer so that we know where we are in the buffer. For a single
character insertion, we merely increase the offset by one:

++Document.Caret.Offset;

For a string, we add the string length to the caret offset:

Document.Caret.Offset += str.Length;

The other editing functions are similar in concept. Of course, all the editing actions depend on handling
the keys pressed. This is done by the following code, for editing by insertion or replacement:

public void KeyPressed(object sender, KeyPressEventArgs e)
{
 if (Document.ReadOnly) {
 return;
 }

 char ch = e.KeyChar;
 if (ch < ' ') {
 return;
 }
 // This switch statement is here for later expansion. For now,
 // the default case is enough.
 switch (ch) {
 default: // INSERT char
 if (!HandleKeyPress(ch)) {
 switch (Document.Caret.CaretMode) {
 case CaretMode.InsertMode:
 InsertChar(ch);
 break;
 case CaretMode.OverwriteMode:
 ReplaceChar(ch);
 break;
 default:
 Debug.Assert(false, "Unknown caret mode " +

Chapter 11

276

 Document.Caret.CaretMode);
 break;
 }
 }
 break;
 }

The behavior of the method is determined by looking at the caret mode. Next, we will look at handling
dialog keys:

// This method executes a dialog key
public bool ExecuteDialogKey(Keys keyData)
{
 // Hack : two different '/' key codes !?!
 // really ugly stuff: two key codes for a slash depending on
 // where they come from. Possible .NET bug.
 if ((int)keyData == 131263) {
 keyData = Keys.Divide | Keys.Control;
 }

 // try, if a dialog key processor was set to use this
 if (ProcessDialogKeyProcessor != null &&
 ProcessDialogKeyProcessor(keyData)) {
 return true;
 }

 // if not (or the process was 'silent', use the standard
 // edit actions
 object action = editactions[keyData];
 autoClearSelection = true;
 if (action != null) {
 lock (Document) {
 ((IEditAction)action).Execute(this);
 if (HasSomethingSelected && autoClearSelection && caretchanged) {
 if ((DocumentSelectionMode)Properties. GetProperty(
 "SelectionMode", DocumentSelectionMode.Normal) ==
 DocumentSelectionMode.Normal) {
 ClearSelection();
 }
 }
 }
 return true;
 }
 return false;
}

Writing the Editor Control

277

Updating
Now that we have seen editing, we will look at the update methods. We need to distinguish between the
different update types that are necessary for various update scenarios:

❑ UpdateLine

❑ UpdateLines

❑ UpdateToEnd

❑ UpdateLineToEnd

❑ BufferChange

It is quite clear what each of these updates does. The most important point to note is that
BufferChange is of higher priority than the lesser updates concerning lines or line segments. It uses a
separate document update flag for this purpose. The doUpdate flag for these minor updates is set using
BeginUpdate and EndUpDate, so that the flag's status is always correct, considering what we just said
about priority of updates:

bool doUpdate = false;
public void BeginUpdate()
{
 doUpdate = true;
}
public void EndUpdate()
{
 doUpdate = false;
 if (caretchanged) {
 NewCaretPos(null, null);
 }
}

If necessary, EndUpdate also readjusts the caret. Let's now look at one of the update methods:

public void UpdateLine(int line)
{
 UpdateLines(0, line, line);
}
public void UpdateLines(int xPos, int lineBegin, int lineEnd)
{
 //Do local copies of the vars, so we won't corrupt them.
 lineBegin = lineBegin;
 lineEnd = lineEnd;
 InvalidateLines((int)(xPos * textarea.FontWidth), lineBegin, lineEnd);
}

This code calls the InvalidateLines method, given below, which is overloaded; it marks the lines
that are in need of being updated on the next redraw:

public void InvalidateLines(int xPos, int lineBegin, int lineEnd)
{
 if (doUpdate) {

Chapter 11

278

 return;
 }
 int firstLine = vscrollbar.Value;
 lineBegin =
 Math.Max(Document.GetLogicalLine(lineBegin), vscrollbar.Value);

 lineEnd = Math.Min(lineEnd, vscrollbar.Value + maxVisibleLine);
 int y = Math.Max(0, (int)(lineBegin * textarea.FontHeight));

 int height = Math.Min(textarea.Height,
 (int)((1 + lineEnd - lineBegin) * (textarea.FontHeight + 1)));
 int xScreen = xPos - textarea.ScreenVirtualLeft;

 textarea.Invalidate(new Rectangle(xScreen,
 y - 1 - textarea.ScreenVirtualTop, textarea.Width - xScreen,
 height + 3));
}

public void InvalidateLines(int from, int length, int lineBegin,
 int lineEnd)
{
 if (doUpdate) {
 return;
 }
 int firstLine = vscrollbar.Value;
 lineBegin = Math.Max(lineBegin, vscrollbar.Value);
 lineEnd = Math.Min(lineEnd, vscrollbar.Value + maxVisibleLine);
 int y = Math.Max(0, (int)(lineBegin * textarea.FontHeight));
 int height = Math.Min(textarea.Height,
 (int) ((1 + lineEnd - lineBegin) * (textarea.FontHeight + 1)));

 textarea.Invalidate(new Rectangle((int)
 (textarea.FontWidth * from) - textarea.ScreenVirtualLeft,
 y - 1 - textarea.ScreenVirtualTop, (int)(textarea.FontWidth * length),
 height + 3));
}

This code uses functionality from the TextAreaPainter, to display the contents of the text buffer on
the screen.

Now, let's take a quick look at selections:

public void SetSelection(ISelection selection)
{
 autoClearSelection = false;
 ClearSelection();

 if (selection != null) {
 Document.SelectionCollection.Add(selection);
 UpdateLines(selection.StartLine, selection.EndLine);
 }
}

Writing the Editor Control

279

public void ClearSelection()
{
 while (Document.SelectionCollection.Count > 0) {
 ISelection s = Document.SelectionCollection[Document.
 SelectionCollection.Count - 1];

 Document.SelectionCollection.RemoveAt(Document.
 SelectionCollection.Count - 1);
 UpdateLines(s.StartLine, s.EndLine);
 }
}
public string GetSelectedText()
{
 StringBuilder builder = new StringBuilder();
 PriorityQueue queue = new PriorityQueue();
 foreach (ISelection s in Document.SelectionCollection) {
 queue.Insert(-s.Offset, s);
 }
 while (queue.Count > 0) {
 ISelection s = ((ISelection)queue.Remove());
 builder.Append(s.SelectedText);
 }
 return builder.ToString();
}

In this code segment, we add (or remove) the selection being made from a collection of selections, as
multiple selections will be supported in the future. By planning ahead, we can minimize refactoring
requirements in future. Next, we need to update the lines selected. Not so hard to do after all, isn't it?

The GetSelectedText method, in the above snippet, actually obtains the text selected and makes it
available as a string. To this end, we build a queue into which we insert all the text contained in the
collection made up from the line segments selected and then concatenate them into a string, removing
the items concatenated from the queue.

Now let us move on to another central part of our editor control, the TextAreaPainter.

The TextAreaPainter
By now, we know almost everything that we need for implementing our editor in full. There's one
exception – how do we get the text onto the screen? The user's perception about the responsiveness of
an editor depends very much on the implementation of the screen rendering. What use are clever text
models and efficient editing routines when the display of typed text lags noticeably behind typing speed?

Let's go back to the 'dark ages' of SharpDevelop – the earliest versions of the editor were integrated into
SharpDevelop itself. This proved to be a bad idea, as it made maintenance of the code quite hard. We
found that being able to implement different editors would be a better option. Later on, we decoupled
the editor, but that was not the end of our problems. With our initial approach we encountered a
massive problem. We used a painter control to display text, which in itself does not sound too bad, but
the problem we encountered was quite interesting – the number of lines we could display was limited,
and worse it varied with font and font size!

Chapter 11

280

This was due to the fact that in vertical direction, the painter control can only handle a certain number
of pixels, 32,768 pixels to be precise. As the pixel height of fonts varies with font size and type, the
number of lines we could display varied as a function of these two parameters. Using the default font
settings in SharpDevelop, this control could not display more than 2,100 lines. On the other hand, using
the control was fast. It was faster than the approach we are using now, but the limit on the number of
lines was annoying. Therefore, when we finally found a way to work around this limit we decided to use
it, even though it involved a slight tradeoff in performance.

The TextAreaPainter contains the code responsible for the actual screen rendering of the text in our
buffer, including all the trappings of formatting and highlighting. At more than 650 lines of code, this is
also a substantial part of SharpDevelop. We cannot go into every single method contained in this file, so
we will only discuss the important ones. Unless otherwise mentioned, the code given in this section is
contained in the \src\SharpDevelop\ICSharpCode.TextEditor\TextAreaPainter.cs file.

We will now look at the trick applied to get around the limitations of the painter control:

// This class paints the textarea.
public class TextAreaPainter : Control
{
 // The TextAreaControl that owns this painter
 TextAreaControl textAreaControl = null;

 int screenVirtualTop = 0;
 int screenVirtualLeft = 0;

 IDocumentAggregator document;
 PrintDocument printdocument;

 StringFormat measureStringFormat = StringFormat.GenericTypographic;

 ToolTip toolTip = new ToolTip();

 float fontWidth;
 float fontHeight;

 bool iHaveTheFocusLock = false;
 bool iHaveTheFocus = false;

 // internationalization support
 Ime ime = null;
 static Encoding encoding = null;

 public ToolTip ToolTip {
 get {
 return toolTip;
 }
 set {
 toolTip = value;
 }
 }

}

Writing the Editor Control

281

Did you spot the trick used in this code snippet? We are using virtual coordinates instead of the real x-y
coordinates of the text buffer. To the painter control we show only a window into our buffer, always
staying safely inside the limitations on size the control imposes, as discussed above. This makes
response a little slower for the user, but then we don't have to limit the size of source code files that we
can edit. Another point, central to correctly painting the TextArea, is the way strings are measured. To
this end, we need to choose the correct measurement model:

StringFormat measureStringFormat = StringFormat.GenericTypographic;

We need to use StringFormat to avoid a problem inherent in TrueType fonts. At lower resolutions
(not screen size, but the size of the pixels), TrueType fonts render badly because they are based on a
vector design, which scales nicely with resolution. On a 600 dpi printer, such a font will be quite close
in appearance to its design, but on a 96 dpi display screen a lot of details, such as serifs, will be lost and
the letter may even be slightly shifted to the left or right. In some cases, the spacing between adjacent
letters will also look irregular.

To some degree, these problems can be alleviated through hinting by the designer; this means that the
designer will include instructions on how to best fit a glyph into given grid sizes. Until the arrival of
.NET, the rendering was done by the GDI, which had problems in some cases. Now rendering is
performed with the new GDI+. This has improved the rendering of fonts, and buffering which is also
one of the background factors influencing perceived editor speed. This is yet another way in which
.NET makes things better without extra effort on our part.

If you want to read more about the issues involved in resolution and font rendering, read the article at
http://www.gotdotnet.com/team/windowsforms/gdiptext.aspx.

Now, we can finally solve the mystery of why we said that the horizontal ruler and the placing of the
column ruler are only approximate. Fonts can use two different approaches for spacing between letters:

❑ Monospaced Letters
All monospaced letters have the same width – the letter 'X' has the same width as the letter
'l' – they are set into a rectangle of space, which is of the same size for any letter in the font.
This is how older typewriter fonts usually work. A line written with such a font always
contains the same number of letters.

❑ Proportional Spacing
Proportional spacing is aesthetically much more pleasing, as the distance between the letters is
kept constant. In other words, the width of the rectangle into which the character is drawn
varies with the character width. Or even worse, from our viewpoint for this section, they can
overlap or intersect. Typographers call this kerning, and it makes for greater ease of reading
but lots of headaches for us.

To see a rather extreme example of kerning, look at the figure overleaf and consider the XML
comments starting with the three slashes, each in lines 472 to 475:

Chapter 11

282

It shows the SharpDevelop editor with the Curlz MT font selected. Even the extreme spacing of such a
font is handled gracefully. However, actually using such a font is not recommended from an ergonomic
point of view.

Lines set in proportionally spaced fonts may contain varying numbers of characters in a given number
of pixels. Furthermore, .NET does not always return proper character widths, even for monospaced
fonts (in TrueType), which means that we can only set the rulers to averaged positions. You can see this
for yourself in the second screenshot of this chapter; pay attention to how the column ruler sometimes
cuts through characters.

Another thing we saw in the source code above, is that we have to handle focus changes. We need to do
this so that we can make the caret invisible when the focus is away from the TextArea and we need to
indicate that no editing can be done at this time. This is necessary, for example, when code completion
is active and the user is supposed to select an item from the drop box.

Now let us get on with our code; here's another snippet:

static TextAreaPainter()
{
 try {
 encoding = Encoding.GetEncoding(Thread.CurrentThread.
 CurrentCulture.TextInfo.ANSICodePage);
 } catch (Exception) {
 }
}

When initializing our TextAreaPainter, we need to set the correct code page for the culture selected
by the user, so that the text gets handled properly. The issues involved in internationalization were
discussed in Chapter 7.

Writing the Editor Control

283

Now let's look at the code for painting a line:

// This Method paints the characters on the screen
void PaintTextLine(Graphics g, int lineNumber, RectangleF rect, PointF pos,
 int virtualLeft, int virtualTop)
{
 int logicalXPosition = (int)(pos.X / fontWidth);
 bool lineIsBookmark = Document.BookmarkManager.IsMarked(lineNumber);

// Set up Syntax Highlighting and get the virtual code window ready.
 HighlightColor defaultColor =
 document.HighlightingStrategy.GetColorFor("DefaultColor");

 double drawingXPos = -virtualLeft;
 if (lineNumber >= Document.TotalNumberOfLines) {
 PaintInvalidTextLine(g, (int)(pos.X - virtualLeft),
 (int)(pos.Y - virtualTop));
 } else {
 LineSegment line = document.GetLineSegment(lineNumber);

 if (line.Words == null) {
 string text = document.GetText(line.Offset, line.Length);
 float xPos = 0;

 for (int i = 0; i < text.Length; ++i) {
 // Get tabs set. Hard coded for the moment, but see below.
 if (text[i] == '\t') {
 g.DrawString(" ", defaultColor.Font,
 new SolidBrush(defaultColor.Color), xPos - virtualLeft,
 pos.Y - virtualTop);

 xPos += g.MeasureString(" ", defaultColor.Font, 100,
 measureStringFormat).Width;
 } else {
 g.DrawString(text[i].ToString(), defaultColor.Font,
 new SolidBrush(defaultColor.Color), xPos - virtualLeft,
 pos.Y - virtualTop);

 xPos += g.MeasureString(text[i].ToString(),defaultColor.Font, 100,
 measureStringFormat).Width;
 }
 }

After handling the default text case, we move on to special cases in highlighting, such as spaces, tabs,
bookmarks, and so on:

 } else {
 HighlightColor spaceMarkerColor =
 document.HighlightingStrategy.GetColorFor("SpaceMarker");

 HighlightColor tabMarkerColor=
 document.HighlightingStrategy.GetColorFor("TabMarker");
 HighlightColor bookmarkColor =
 document.HighlightingStrategy. GetColorFor("Bookmark");

Chapter 11

284

 for (int i = 0; i < line.Words.Count; ++i) {
 switch (((TextWord)line.Words[i]).Type) {
 case TextWordType.Space:
 if (Properties.GetProperty("ShowSpaces", false) &&
 pos.X < rect.X + rect.Width) {
 g.DrawString("\u00B7", spaceMarkerColor.Font,
 new SolidBrush(spaceMarkerColor.Color),
 (int)drawingXPos, pos.Y - virtualTop);
 }
 drawingXPos += g.MeasureString(" ", defaultColor.Font, 2000,
 measureStringFormat).Width;
 ++logicalXPosition;
 break;

 // here tabs get done for real.
 case TextWordType.Tab:
 if (Properties.GetProperty("ShowTabs", false) &&
 pos.X < rect.X + rect.Width) {
 g.DrawString("\u00BB", tabMarkerColor.Font,
 new SolidBrush(tabMarkerColor.Color),
 (int)drawingXPos, pos.Y - virtualTop);
 }
 int oldLogicalXPosition = logicalXPosition;
 logicalXPosition += Properties.GetProperty("TabIndent", 4);
 logicalXPosition =
 (logicalXPosition /Properties.GetProperty("TabIndent", 4)) *
 Properties.GetProperty("TabIndent", 4);

 string measureMe = "";
 for (int j = 0; j < logicalXPosition - oldLogicalXPosition; ++j)
 {
 measureMe += " ";
 }
 drawingXPos += g.MeasureString(measureMe, defaultColor.Font,
 2000, measureStringFormat).Width;
 break;

 case TextWordType.Word:
 g.DrawString(((TextWord)line.Words[i]).Word,
 ((TextWord)line.Words[i]).Font, new SolidBrush(lineIsBookmark
 ? bookmarkColor.Color : ((TextWord)line. Words[i]).Color),
 (int)drawingXPos, pos.Y - virtualTop, measureStringFormat);

 drawingXPos += g.MeasureString(((TextWord)line.Words[i]).Word,
 ((TextWord)line.Words[i]). Font, 2000,
 measureStringFormat).Width;

 if (encoding != null) {
 logicalXPosition += encoding.GetByteCount(((TextWord)
 line.Words[i]).Word);
 } else {
 logicalXPosition += ((TextWord)line.Words[i]).Word.Length;
 }
 break;

Writing the Editor Control

285

 }
 }
 }

 // paint EOL markers, when they are set to visible
 if (Properties.GetProperty("ShowEOLMarkers", false) &&
 pos.X < rect.X + rect.Width) {
 HighlightColor EolMarkerColor =
 document.HighlightingStrategy.GetColorFor("EolMarker");
 g.DrawString("\u00B6", EolMarkerColor.Font,
 new SolidBrush(EolMarkerColor.Color),
 (int)drawingXPos, pos.Y - virtualTop);
 }
 }
}

This code demonstrates how we address the various problems, which we had discussed. We use proper
string measurement for lines and handle our coordinates in the virtual x-y system. Characters of wider
width, as already discussed in Chapter 8, are handled, as are tabs depending on the tab width the user
has specified. To this end, we apply formatting dependent on the TextWordType, which can either be
tab, space, or word. We also have code to handle the optional display of the end-of-line (EOL) markers.

Mouse Management
Mouse management is just a tedious matter of recalculating caret positions depending on the mouse's position
on the screen, highlighting selections when the mouse button stays clicked, and so on. We will look at the
interaction between the mouse and caret, but we won't go into too much of details. The code can be found in
the \src\SharpDevelop\IcSharpCode.TextEditor\TextAreaMouseHandler.cs file.

We will just take a peek at how the caret is placed when the mouse is clicked inside the TextArea:

public void OnMouseClick(object sender, EventArgs e)
{
 if (dodragdrop) {
 return;
 }

 if (clickedOnSelectedText) {
 textarea.ClearSelection();
 Point realmousepos = new Point(0, 0);

 realmousepos.Y = Math.Min(textarea.Document.
 TotalNumberOfLines - 1, Math.Max(0, (
 (int)((mousepos.Y + textarea.TextAreaPainter.ScreenVirtualTop) /
 textarea.TextAreaPainter.FontHeight))));

 LineSegment line = textarea.Document.GetLineSegment(realmousepos.Y);

 realmousepos.X = textarea.TextAreaPainter.GetVirtualPos(line,
 mousepos.X + extarea.TextAreaPainter.ScreenVirtualLeft);

Chapter 11

286

 Point pos = new Point();
 pos.Y =
 Math.Min(textarea.Document.TotalNumberOfLines - 1, realmousepos.Y);
 pos.X = realmousepos.X;

 textarea.Document.Caret.Offset = textarea.Document.ViewToOffset(pos);
 textarea.Document.SetDesiredColumn();
 }
}

Here, we see a nice example of the relationship between the real coordinates of the text buffer and the
virtual coordinates of the painter control. We obtain our virtual coordinates for the position where the
click happened and convert them to buffer coordinates, stored in realmousepos.Y and
realmousepos.X, by adding appropriate offsets. Finally the caret position is updated.

Folding
Now for a quick look at folding. We will only consider the drawing of the fold marker in the gutter, as the
internal representation of folding in the text has been discussed while looking at the text model in Chapter 8.
Basically, the intention of this short section is to demonstrate drawing in the gutter of the editor.

The source code can be found in the \src\SharpDevelop\IcSharpCode.TextEditor\Gutter.cs file.

The function needed for drawing the folding indicator is:

void DrawFoldMarker(Graphics g, RectangleF rectangle, bool isClosed)
{
 HighlightColor foldMarkerColor =
 textarea.Document.HighlightingStrategy.GetColorFor("FoldMarker");

 HighlightColor foldLineColor = textarea.Document.HighlightingStrategy.
 GetColorFor("FoldLine");

 g.FillRectangle(new
 SolidBrush(foldMarkerColor.BackgroundColor), rectangle);

 g.DrawRectangle(new Pen(new SolidBrush(foldMarkerColor.Color)),
 new Rectangle((int)rectangle.X,
 (int)rectangle.Y,(int)rectangle.Width, (int)rectangle.Height));

 g.DrawLine(new Pen(new SolidBrush(foldLineColor.BackgroundColor)),
 rectangle.X + 2, rectangle.Y + rectangle.Height / 2,
 rectangle.X + rectangle.Width - 2, rectangle.Y + rectangle.Height / 2);

 if (isClosed) {
 g.DrawLine(new Pen(new SolidBrush(foldLineColor.BackgroundColor)),
 rectangle.X + rectangle.Width / 2, rectangle.Y + 2,
 rectangle.X + rectangle.Width / 2,
 rectangle.Y + rectangle.Height - 2);
 }
}

Writing the Editor Control

287

Most of this code just calls methods from the System.Drawing namespace. Colors for drawing are
taken from the highlighting strategy applicable for the current file. The marker drawn depends on the
Boolean state of isClosed; if true, the code is folded. We can see that the visualization of such status
markers is quite easy to implement. Perhaps, you can think of other markers to implement, for example,
flagging lines that had errors when the file was last built and so on.

SharpPad
As a freebie, you will find that SharpDevelop comes with a minimalist replacement for the Windows
Notepad. The source code of SharpPad can be found in the
\samples\SharpPad\SharpPad.cs file.

Bryan Livingston, one of our contributors, wrote this editor. Using a little over 400 lines of code, he
implemented an editor by using the SharpDevelop editor control. Let us look at the namespaces that we
need to import:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

using ICSharpCode.TextEditor;

Besides some namespaces from the .NET Framework, we only need to import our text editor! No other
functionality has to be borrowed from SharpDevelop. Now you must have realized why the edit actions
were put into the editor control itself and not into the AddIn tree, as would have be the proper
approach had the control only been designed for use inside SharpDevelop. The editor Bryan wrote is
really quite barebones, as you can see for yourself from the following screenshot. It shows SharpPad
with the authors.txt file for SharpDevelop:

Most of the source code in SharpPad was auto-generated using Visual Studio .NET, so we will skip this part.
We will concern ourselves only with the initializing and cleaning up components and the Main block.

Chapter 11

288

First, we will look at the code for initialization and disposal:

private TextAreaControl FTextArea = new TextAreaControl();

public SharpPad()
{
 InitializeComponent();

 FTextArea.Dock = DockStyle.Fill;
 FTextArea.ShowInvalidLines = false;
 FTextArea.ShowLineNumbers = false;
 FTextArea.EnableFolding = false;
 FTextArea.TabIndent = 3;

 Controls.Add(FTextArea);
}

// Clean up any resources being used.
protected override void Dispose(bool disposing)
{
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
}

It's quite what we would expect, except for some deviations from our coding style guide. But that is
understandable; its author wasn't a member of the core team. The only item worth noting is that of all
the functionality of the control only the tab indent is used; all others are set to false. After all, this is
just to show standalone use of the control. Now let's move on to Main:

// The main entry point for the application.
 [STAThread]

static void Main()
{
 Application.Run(new SharpPad());
}

private void OpenMenuItem_Click(object sender, System.EventArgs e)
{
 if(OpenFileDialog.ShowDialog() == DialogResult.OK)
 FTextArea.LoadFile(OpenFileDialog.FileName);
}

private void SaveAsMenuItem_Click(object sender, System.EventArgs e)
{
 if(SaveFileDialog.ShowDialog() == DialogResult.OK)
 FTextArea.SaveFile(SaveFileDialog.FileName);

Writing the Editor Control

289

}

private void CloseMenuItem_Click(object sender, System.EventArgs e)
{
 Close();
}
}

Apart from the Form code, we do not need more than these few lines to create our own editor by using
the SharpDevelop editor control!

Summary
In this chapter, we looked at the editor control in SharpDevelop, how it fits in with the MVC model,
and the components needed for it. We looked at the segments of code responsible for performing
various tasks, like initialization, handling editing actions, updating the buffer, and selecting text.

We have dealt with the TextAreaPainter and the tradeoffs involved in making this kind of code work
well. Next we concerned ourselves with mouse handling; then, we looked at drawing the folding
markers in the gutter, as an example for working outside the TextArea.

Finally, we took a peek into the standalone implementation of editors, by using the SharpDevelop editor
control. We used SharpPad, which is included with the SharpDevelop distribution, as an example.

Chapter 11

290

Writing the Parser

As the next step in moving SharpDevelop from editor to full-blown IDE, we will now look at writing a
(partial) parser. A parser is an important component in such a piece of software, as it makes the IDE
aware of the kind of text it is handling. Information provided by the parser (parse information) can be
used by the IDE to offer a number of useful features, such as code completion – we will look at uses of
parse information in the two subsequent chapters, 13 and 14.

In this chapter, we will examine the basic concepts behind programming language representation and
the construction of parsers. Then, we will move on to discuss the design decisions regarding the actual
implementation of a parser in SharpDevelop, including the reasons for not implementing a full
(statement-level) parser, and the reasoning behind splitting the parser into an abstract layer and a
language layer.

Finally, we will look at the implementation of our parser, examining how the parse tree is built and
made accessible to the code relying on parser data.

Need for a Parser
At first glance, a parser may seem a strange thing to include in an IDE, as the code is handed over to the
compiler for compilation (and then to the runtime for execution). Compilers include a parser, so you may
well ask why we would need a separate parser at all; especially, because SharpDevelop handles compilation
and execution of the programs by passing them to either the compiler or the runtime as required.

The answer is simple – a number of features in SharpDevelop need to be aware of the structure of the
program at hand. These features are:

❑ Code Completion

❑ Method Insight

❑ The Class Scout

12

Chapter 12

292

Note that syntax highlighting is not on this list, as it has its own, much simpler, mechanism for
determining the nature of code elements (refer to Chapter 9). Syntax highlighting does not need a full
parser, but rather only the lexical analyzer (also called a lexer).

In SharpDevelop, we first introduced syntax highlighting and then developed a mechanism to provide
highlighting for arbitrary programming languages and styles. Only later in the life of our project, did we
implement code completion and find that we needed a different approach, namely a parser.

In the next chapter, we will be looking at the inner workings of Code Completion and Method Insight;
the Class Scout will be the topic of Chapter 14. In this chapter, we will look at how the parse
information is made available, for the use of these features.

Parser and Language Theory
Before delving into the SharpDevelop parser, we need to get acquainted with the basic concepts behind
parsing. Parsing is a huge topic however, we will be restricting our discussion to the most basic topics
and some of the advanced topics, needed for understanding the parser at hand. If you want to obtain
in-depth knowledge about parsing techniques and the issues involved, please refer to the book Parsing
Techniques – A Practical Guide by Dick Grune and Ceriel J.H. Jacobs (ISBN 0-13-651431-6). As this book
is out of print, you can try accessing its online version at http://www.cs.vu.nl/~dick/PTAPG.html.

Basic Definitions and Theory
First, we need to introduce a few definitions so that we have a common ground for our discussion. If
you are familiar with the theory of parsers and the linguistics behind them, then you can safely skip
ahead to the sections dealing with design decisions and implementation.

The text in an editor (or an IDE for that matter) is represented in a buffer (as we learned in Chapter 8).
Even though the actual representation used in SharpDevelop is a gap buffer, we can consider the text as
a contiguous string of characters. For our model, this is obvious when we look at the user coordinates,
which disregard the buffer.

Parsing can be defined as structuring a linear representation of text in accordance with grammar. This
means that we break up the text buffer into its elements according to rules, identifying the elements by
their type. For example, English sentences can be broken up into nouns, verbs, adverbs, and so on.
They may also be divided into different bigger entities called clauses. The types are identified by a
lexer, which determines what type a word belongs to. The relationships between these elements are
then established according to grammatical rules.

Now, let us discuss a bit about grammar. Again, if you know about parsing theory, you may safely skip
this section.

Grammar
Grammar is a set of rules (we might also say a recipe) for producing valid sentences or expressions in a
language. This sounds quite simple, but as we all know from practice, theory put to practice usually is not
quite that simple. The complexity of language varies wildly. There are languages consisting of just a few
letters, such as 'a', 'b', 'c', or even merely '1' and '0', but they are used in very formal contexts, such as
linguistic theory or mathematics. On the other end of the spectrum, we have human languages with very
complex rules, character sets that can include thousands of characters and exceptions to just about any rule.

Writing the Parser

293

Grammars can be classified into a number of types, called Chomsky Grammars. These types are
derived from the top level, by applying restrictions on what can be done inside the scope of the
grammar. We have listed these types in the following table, in descending order of complexity
and power:

Type Name Restriction

Type 0 Phase structure grammar Unrestricted

Type 1 Context-sensitive grammar Only one 'left hand' symbol gets changed by a rule

Type 2 Context-free grammar Only one symbol may be on the left side of the rule

Type 3 Regular grammar On the right side, we may only have either a
termination or a substitution followed by a termination

Type 4 Finite choice grammar Only a termination can occur on the right side

For an in-depth discussion on grammars refer to Chapter 2 (Section 2.3) of the book by Grune
and Jacobs.

Type 0 languages correspond to human languages with complete freedom and possible ambiguities
inherent to them. As we go up, the types become more and more restrictive in what they can express;
ending up with completely predictable statements of the nature '1 + 1 = 2'. Computer languages are
found somewhere between the Type 1 and Type 2, depending on how we look at them.

Context sensitive, that is Type 1, might mean that a statement containing a variable assignment can only
occur after the variable has been declared. If we are looking at the statement without looking at the
entire program it is contained in, we can consider it to be of Type 2. Regular expressions can be seen as
examples of a Type 3 language. Unless you really want to understand language theory fully, don't worry
too much about these types.

In the previous table, we have talked quite a bit about 'left' and 'right' sides; we need some way to
represent such rules, so that these terms will make sense. In the world of parser grammars (and
linguistics), as per convention, the recipient is placed on the left side of the statement.

Now, consider this small fragment of a possible context-free (in short, CF) grammar:

variable -> foo|bar
statement -> (statement, variable)|variable

It means that the grammar element variable may be replaced by either foo or bar, and that the
element statement may be replaced by statement appended with an element variable (either,
foo or bar), or simply with a variable.

This trivial example doesn't do anything useful in itself, but it illustrates our idea of 'left side' and 'right
side' in a grammar. Please keep in mind that, even though there is a superficial resemblance, such rules
cannot be mapped onto assignment statements in programming languages. A sentence, in the
grammatical sense, corresponds to any statement or construct in a programming language, be that an
assignment or a conditional statement.

Chapter 12

294

These rules work together to generate a potentially infinite set of sentences (from a grammatical point of
view). However, not all programs that compile without error, according to the grammar, will do
anything useful.

For the purposes of our discussion, we will only need to understand Type 2 grammars. From now on we
will refer to them as CF grammars. Apart from a few exceptions, such as FORTRAN, most
programming languages fall into this category. However, strictly speaking, almost all programming
languages aren't purely CF, but for our purposes they are, as we look at the program from a low-level
perspective where overall context does not matter. Later on in this chapter, we will look at the
implications of this for our parser.

For CF grammars, we can find two meanings in one and the same word. For example, the sentence
'time flies' can be considered as grammatically correct, if one of the words is taken as a verb.

The statement that C# is a Type 2 grammar is not completely true. There are some context sensitivities
hidden in the language, such as the requirement that variables must be declared before use. However,
this only affects the compiler and is not of interest for our purpose. Since it doesn't concern our parser,
we will not talk about this aspect. It also means that our parser is only a partial parser; whereas, the
compiler's parser is a full parser, understanding the program code at all levels.

There are a number of representations available for representing grammatical expressions. Grammars
are made up of production rules – recipes for creating valid sentences. As far as C# is concerned, the
representation chosen for standardization was eBNF – the extended Backus-Naur Form. Basic BNF
looks somewhat like this:

<statement>S ::= <value> | <line> + <value>
<value> ::= foo | bar | baz
<line>::= <value> - <line> | <value>

In this snippet, the angled brackets represent non-terminations (or placeholders) and the ::= means
'may be replaced by'. The components that go into a sentence are called tokens and are separated by
whitespace. Rules and sentences are terminated by newlines. The subscript s indicates the starting
statement of our rule set. Our example can produce outputs like these:

Foo

foo – baz

foo – baz + bar

foo + foo

bar - baz

We will admit that these outputs aren't really meaningful, but they do give us a fair idea of where CF
grammars can lead us. Now, the remaining part is to introduce short-hand representations for
repetitious bits of grammar. Spelling out things, such as 'one or more of the following', 'zero or more of
something' is tedious work. Thus, abbreviations were invented, such as a superscript '+' for the former
and a superscript '*' for the latter. The actual implementation of the parser was derived from grammar
of this form.

Writing the Parser

295

Now let's move on to parsing.

Parsing
As we mentioned earlier, parsing is the structuring of a linear representation of a text according to a
grammar, or as we will consider it now, the reconstruction of the production tree made up of a set of
production rules applied sequentially to a starting input resulting in a given sentence.

A given grammar can produce an infinite number of valid sentences; not to mention the infinity of
syntactically invalid sentences our parser may face, which were produced outside of its scope and just
thrown at it. Our previous example hints at the fact that a tree can indeed represent the output
produced by a grammar. In other words, when applying a rule we have a number of choices that we can
branch into. For our example, starting with foo, we can obtain the following tree:

Foo

BarFoo Baz

+

Bar Baz

-

-

Foo

+

statement

value

Bar

line

value

Foo

line

value

Baz

+

-

-

Of course, such a tree can be extended down to any arbitrary depth. Building the tree consists of two steps:

❑ Identifying the tokens
This is called lexical analysis (or lexing), and

❑ Identifying the rules that led to them
That is parsing proper

After creating the tree, we can examine such a tree in two distinct ways:

❑ Top-down, and

❑ Bottom-up

Chapter 12

296

Any further subdivision of parsing techniques is a matter of the implementation of the approach chosen.
'Top-down' means that we start at the root, situated at the top of the tree representation, and work down
through the branches, until we finally find the branch representing the statement we want to parse. In
'bottom-up' parsing, we look at the final sentence/output and try to work our way back to the root of the
parse tree.

Next, we need to consider the searching technique for finding the correct sequence of operation to
recreate our sentence. Again, we have two alternative approaches available to us:

❑ Depth-first, and

❑ Breadth-first

In the depth-first approach, our search follows each branch to its end and, if no correct solution is
found, returns to the node and then proceeds on the next un-searched branch. This behavior is called
backtracking. Breadth-first searching looks at all half-finished solutions at a given level of the tree, at
the same time; when no valid solution is found at this level, it moves down to the next level. Obviously,
combinations of approach and searching techniques are possible. However, discussing them and their
possible implementations is beyond the scope of this book.

Another important factor to be taken into account, when choosing such a combination and its
implementation, is the complexity of the algorithm. Here, complexity refers to the number of operations
required to search the tree; this depends on the number of nodes. The number of operations determines
the execution time. Unfortunately, for searching operations the complexity is exponential; this leaves
the reduction of the exponent, as a way to minimizing execution times. Let's illustrate this with numbers.

Commonly, for general parsers (that is, for context-sensitive grammars) the known algorithms can only
reach an exponent of 3; that is, the computational effort is given by a cubic equation. This means that
10 nodes would require 1,000 operations whereas 100 nodes would require 1,000,000 operations!

At first sight, this looks depressing – even a modest increase in the number of nodes increases the
number of required operations by a large amount. Therefore, no such general parsers exist in practice.
By specializing a parser for exactly one context-free language (grammar), we can do significantly better.
Such parsers can reach linear time, which means the relation between the number of nodes and the
operations merely is multiplicative, not exponential. This means that we can create a parser that will
work in real time for SharpDevelop.

Technical Requirements
Before we can start designing our SharpDevelop parser, we have to consider the requirements for
implementing a parser. A parser is made up of two parts – a control unit and an automaton performing
the actual tedious work. The control unit reconstructs the tree from the output of the automaton, while
the automaton corresponds to the lexer. The automaton bears a little further explanation.

This part of the parser is a non-deterministic automaton (NDA). It is an automaton because it performs
its actions in response to encoded rules. As it can often make one of several possible choices, at any
given point of its operation, it is considered to be non-deterministic.

Writing the Parser

297

Now, let's take a look at the information flow in a parser:

Control
Partial
Parse
Trees

Input

Internal
Administration

The general flow of information, in a parser, goes from the input to the partial parse trees, as output. It
affects, and is affected by, the control and internal administration of the automaton. Usually, all the
parts of a parser are affected by each step that is performed.

For example, the result of applying a rule to the input results in a decision being made by the control
part, as to which rule should be used next. Internal administration has to handle the result, inserting it
into the reconstructed statement and comparing it to the input to check whether the input is matched.
The parse tree also changes according to the result of the applied rule.

The good thing about an NDA is that, as long as the input conforms to the grammar, the information in
all parts is consistent. Of course, this cannot prevent the parser from getting stuck or moving in circles
when trying to identify the rule sequence leading to the input at hand, but at least it guarantees that any
parse tree eventually handed over to us is valid for our grammar. This is good to know, as we do not
need to check the tree's validity externally.

We achieve a correct parse tree as soon as the state of the NDA's internal administration, which handles
the reconstructed input, corresponds to the input string we copied for parsing. This is referred to as the
reconstruction of the production tree resulting in a given sentence.

This background should be enough for you to understand how we designed and implemented the
SharpDevelop parser.

The SharpDevelop Parser
We will now move on to discuss the implementation of the SharpDevelop parser.

We will begin by discussing the design decisions we made about the parser. After that, we will go on to
look at the code for the parser and its working.

Design Decisions
When designing a parser, we have a number of important design decisions to make.

Do we need a parser, or will the features of the framework be enough to obtain the information we
need? The answer is – we do, because while the powerful reflection feature of .NET can be used to
extract information from (external) assemblies, it will not help us at all when extracting information
from a text buffer.

Chapter 12

298

What parsing technique should we use? As SharpDevelop provides extensible support for other
programming languages, how should that be handled with regard to parsing? Should we use one general
parser or a number of specific parsers? As experience in the field has shown, using a general parser, or
rather a parser generator, is not practical for our purpose. The performance of general parsers is
terrible, as their time dependency is exponential while language-specific parsers are time linear. Having
a parser that takes four times as long for twice the file size is clearly out of the question.

At the outset, we just had a parser for C#, as that was – and is – the main focus of our development
efforts. SharpDevelop itself is written in C#, so implementing a parser for it seemed natural. As
SharpDevelop grew in popularity, other languages needed support too. So our choice was between
implementing lots of different parsers and adapting the interfaces, with the features using the parsers for
each parser separately, or doing something different. We settled for the latter.

We introduced the concept of an abstract parser. As we will see later on in this chapter, it is not the
same as a general parser. For now, it is enough to say that this concept enables multi-language support,
without changing the interfaces for each language.

Now, let's move on to the practical considerations.

Implementation
We will now deal with the implementation of the parser in SharpDevelop. As mentioned, we have
introduced the concept of an abstract parser into our architecture. Before examining any code, we will
look at it.

The Big Picture
The parser is based on an 'abstract' parser. In other words, all the information returned by the actual
parser(s) is represented in an abstracted manner to the features using this output. At first glance, this
may seem to be a daunting task, but it is not.

The .NET Framework is an example of an abstract architecture. It is based on the concept of compiling
all languages to the same intermediate language (CIL – Common Intermediate Language) and having
all languages use the same runtime (CLR – Common Language Runtime) for execution. This can only
be done when the concepts underlying the implementation of all these languages use the same basic
architecture –object orientation of the same flavor, identical data types, and so on.

This means that once we have identified a piece of code as being a variable, of say type int, we can be
certain that all other languages using the .NET Famework will know the range of acceptable values and
bit size for this variable.

Similarly, we can map any language for which we have a specific parser implementation, onto an
abstract parse tree representation. For convenience, we call this an abstract parser. Its output will be a
uniform internal representation of the code's structure. The users of this representation (like Code
Completion, Method Insight, and Class Scout) won't even need to know what language the element was
written in.

Now, let's move on to look at the general flow of data in our parser architecture. This is illustrated in the
following diagram:

Writing the Parser

299

CodeCompletionClassBrowser M tethodInsigh

ReflectionParser
Implementation

PersistentParser
Implementation

C#Parser
Implementation

.NET Framework
CodeCompletion

database

AbstractParser
Layer

C# sourcefiles
Assemblies/

.NET Framework

We can see that we have three consumers of data, as well as three providers of data; each with its own
specific parser. This is necessary, as we need to know quite a lot for successful parsing of the code. Not
all elements in our code are contained in the specific file that we edit; we use .NET reflection to handle
references to assemblies and the .NET Famework.

Also, any .NET program that we can imagine of makes use of the framework functionality. So we need
to provide parse information for the framework as well and since this is a large quantity of information,
we do not want to repeat this process every time we start up SharpDevelop. Therefore, we make this
information persistent by saving it to disk. Lastly, we will also need to look at our actual source code for
the project, as new classes and members of classes will be added dynamically.

As all of the code is set in the same framework, we can use the same type of representation for the
parsed information, in all three cases.

Now, we will look at the individual components that contribute to the parse tree, as shown in the
previous diagram.

Reflection Parsing for Assemblies
In our programs, information about the referenced (external) assemblies also needs to be included for
successful code completion. If we don't have the source code available, for these assemblies, how can
we obtain this information? Without the source, we cannot parse and extract information – or can we?

We can extract information from assemblies. The .NET Famework provides reflection to do this job for
us. It is as if this .NET feature was included just for our needs!

The source code for this reflection layer is found in the folder
src\SharpDevelop\Base\Internal\Parser\ReflectionLayer.

Chapter 12

300

Now, let's look at the code contained in the ReflectionClass.cs file:

namespace SharpDevelop.Internal.Parser
{
 [Serializable]
 public class ReflectionClass : AbstractClass
 {
 BindingFlags flags = BindingFlags.Instance | BindingFlags.NonPublic |
 BindingFlags.Static | BindingFlags.Public;

 public override ICompilationUnit CompilationUnit {
 get {
 return null;
 }
 }

In the code snippet above, we refer to a CompilationUnit and override it with a null.
Compilation units are used when parsing the editor buffer containing un-compiled source code, and are
not needed here as we only have compiled code to deal with. We will look at compilation units when
we deal with parsing files in the edit buffer. This override is necessary, as all three parser systems share
a common interface that contains compilation units.

Using reflection we will extract the information that we want:

 public static bool IsDelegate(Type type)
 {
 return type.IsSubclassOf(typeof(Delegate))
 && type != typeof(MulticastDelegate);
 }

 public ReflectionClass(Type type, Hashtable xmlComments)
 {
 fullyQualifiedName = type.FullName;

 if (xmlComments != null) {
 XmlNode node = xmlComments["T:" + fullyQualifiedName] as XmlNode;
 if (node != null) {
 documentation = node.InnerXml;
 }
 }

 fullyQualifiedName = fullyQualifiedName.Replace("+", ".");

 // set classtype
 if (IsDelegate(type)) {
 classType = ClassType.Delegate;
 MethodInfo invoke = type.GetMethod("Invoke");
 ReflectionMethod newMethod = new ReflectionMethod(invoke, null);
 methods.Add(newMethod);
 } else if (type.IsInterface) {
 classType = ClassType.Interface;
 } else if (type.IsEnum) {
 classType = ClassType.Enum;

Writing the Parser

301

 } else if (type.IsValueType) {
 classType = ClassType.Struct;
 } else {
 classType = ClassType.Class;
 }

 modifiers = ModifierEnum.None;

 if (type.IsNestedAssembly) {
 modifiers |= ModifierEnum.Internal;
 }

 if (type.IsSealed) {
 modifiers |= ModifierEnum.Sealed;
 }

 if (type.IsNestedPrivate) {

// We assume that private is the most frequently used one, and
// public the least.

As can be seen from the comment above, one little trick to speed up code containing a lot of conditions
that need to be tested, is to sort them according to the expected frequency of each case. This ensures
that evaluation of the conditions is broken off as soon as possible.

 modifiers |= ModifierEnum.Private;
 } else if (type.IsNestedFamily) {
 modifiers |= ModifierEnum.Protected;
 } else if (type.IsNestedPublic || type.IsPublic) {
 modifiers |= ModifierEnum.Public;
 } else if (type.IsNestedFamORAssem) {
 modifiers |= ModifierEnum.ProtectedOrInternal;
 } else if (type.IsNestedFamANDAssem) {
 modifiers |= ModifierEnum.Protected;
 modifiers |= ModifierEnum.Internal;
 }

 // set base classes
 if (type.BaseType != null) { // it's null for System.Object ONLY !!!
 baseTypes.Add(type.BaseType.FullName);
 }

 if (classType != ClassType.Delegate) {
 // add members
 foreach (Type iface in type.GetInterfaces()) {
 baseTypes.Add(iface.FullName);
 }

 foreach (Type nestedType in type.GetNestedTypes(flags)) {
 innerClasses.Add(new ReflectionClass(nestedType, xmlComments));
 }

 foreach (FieldInfo field in type.GetFields(flags)) {

Chapter 12

302

 if (!field.IsSpecialName) {
 IField newField = new ReflectionField(field, xmlComments);
 if (!newField.IsInternal) {
 fields.Add(newField);
 }
 }
 }

 foreach (PropertyInfo propertyInfo in type.GetProperties(flags)) {
 if (!propertyInfo.IsSpecialName) {
 ParameterInfo[] p = null;

 // we may not get the permission to access the index parameters
 try {
 p = propertyInfo.GetIndexParameters();
 } catch (Exception) {}
 if (p == null || p.Length == 0) {
 IProperty newProperty = new ReflectionProperty(propertyInfo,
 xmlComments);
 if (!newProperty.IsInternal) {
 properties.Add(newProperty);
 }
 } else {
 IIndexer newIndexer = new ReflectionIndexer(propertyInfo,
 xmlComments);
 if (!newIndexer.IsInternal) {
 indexer.Add(newIndexer);
 }
 }
 }
 }

Note that the reflection layer does not have a compilation unit, as assemblies are already compiled
code. Therefore, we have to overload the corresponding interface with a dummy. Then, we go on to
extract the information for the class itself, taking care of the XML comments, which are stored in a
hashtable when they are to be extracted.

The XML comments are used as documentation in tool-tips. All other elements of the class being
processed are stored in individual objects derived from objects in the abstract parser, which will
eventually make up a part of our parse tree. You can see a list of all the object collections in the first
listing in the section about the abstract parser, as all three parser subsystems provide data to these
collections. All objects derived this way are put into these collections of the respective types. Since we
are using reflection for this we can access the information for all objects, independent of the language
they were programmed in. For all members of the classes processed by this, we have code similar to the
listing above.

As an example, of this, let us look at the code in the
src\SharpDevelop\Base\Internal\Parser\ReflectionLayer\ReflectionMethod.cs file,
which deals with information specific to methods:

Writing the Parser

303

namespace SharpDevelop.Internal.Parser
{
 [Serializable]
 public class ReflectionMethod : AbstractMethod
 {
 string GetParamList(MethodBase methodInfo)
 {
 StringBuilder propertyName = new StringBuilder("(");
 ParameterInfo[] p = methodInfo.GetParameters();
 if (p.Length == 0) {
 return String.Empty;
 }
 for (int i = 0; i < p.Length; ++i) {
 propertyName.Append(p[i].ParameterType.FullName);
 if (i + 1 < p.Length) {
 propertyName.Append(',');
 }
 }
 propertyName.Append(')');
 return propertyName.ToString();
 }

Here, we obtain the parameters for the method that we are currently handling and construct a string in
parentheses, with parameters separated by commas. Next, we extract the XML comments and
modifiers, again sorting the modifier cases for frequency and thus speed:

 public ReflectionMethod(MethodBase methodInfo, Hashtable xmlComments)
 {
 fullyQualifiedName = String.Concat(methodInfo.DeclaringType.FullName,
 ".", methodInfo.Name);

 XmlNode node = null;

 if (xmlComments != null) {
 node = xmlComments["M:" + fullyQualifiedName +
 GetParamList(methodInfo)] as XmlNode;
 if (node != null) {
 documentation = node.InnerXml;
 }
 }

 if (methodInfo.IsStatic) {
 modifiers |= ModifierEnum.Static;
 }

 if (methodInfo.IsAssembly) {
 modifiers |= ModifierEnum.Internal;
 }

 if (methodInfo.IsPrivate) {
 // We assume that private is the most frequently used one, and
 // public the least.
 modifiers |= ModifierEnum.Private;

Chapter 12

304

 } else if (methodInfo.IsFamily) {
 modifiers |= ModifierEnum.Protected;
 } else if (methodInfo.IsPublic) {
 modifiers |= ModifierEnum.Public;
 } else if (methodInfo.IsFamilyOrAssembly) {
 modifiers |= ModifierEnum.ProtectedOrInternal;
 } else if (methodInfo.IsFamilyAndAssembly) {
 modifiers |= ModifierEnum.Protected;
 modifiers |= ModifierEnum.Internal;
 }

 foreach (ParameterInfo paramInfo in methodInfo.GetParameters()) {
 parameters.Add(new ReflectionParameter(paramInfo, node));
 }
 if (methodInfo is MethodInfo) {
 returnType =
 new ReflectionReturnType(((MethodInfo)methodInfo).ReturnType);
 } else {
 returnType = null;
 }
 }
 }
}

We see that, again we are creating objects for parameters. Other code elements contained in the
assembly are treated in exactly the same way; therefore, we will not look at more of this code. By now,
we have learned that reflection is one of the most powerful features the .NET Framework offers to
ambitious programmers.

Let's move on to the persistent part of the parse tree.

Persistent Parsing for the Framework Class Library
The heart of all C# applications is the .NET Framework base class library (BCL). As the BCL does not
change between SharpDevelop sessions (unless a new release of the .NET Framework has become
available in the meantime), the information for these classes can be persisted between sessions. This
saves a significant amount of overhead for performing parsing-dependent tasks. Of course, should you
have a significant number – a thousand or more – of your own classes that will be included in all your
projects, you may extend this feature to include them. In this section, we will look at making parse
information persistent.

When we start SharpDevelop for the first time, after a clean install, a wizard with the SharpDevelop
mascot, the clownfish Chloë, will pop up and guide us through the process of creating a code-
completion database for the BCL.

The whole secret of creating persistent information for the parsing of the BCL is a persistent database.
In fact, it is a binary file, in a format that we designed ourselves, as a full database wasn't necessary,
besides it would have involved some penalty in overhead. The format of the binary file will be discussed
when we look at the WriteTo method, later on in this section.

Writing the Parser

305

There are two modes available for creating the database. The original wizard only had the slower
creation, which consumed a lot of memory, so we decided to implement the alternative faster one. The
difference between the two methods is not in the information content but in the access method for some
special cases. In fast creation mode, information about the parameters passed is omitted from the
database. This has to be supplied at runtime, resulting in slower code completion.

We will begin by examining the code for classes contained in the src\SharpDevelop\Base\
Internal\Parser\PersistanceLayer\PersistantClass.cs file:

namespace SharpDevelop.Internal.Parser
{
 public sealed class PersistantClass : IClass
 {
 int classProxyIndex;
 ClassProxyCollection classProxyCollection;

 // an int arraylist of base types.
 ArrayList baseTypes = new ArrayList();

 // This collection is only used during creation, if for a basetype no
 // proxy index could be determined. It contains all those names as real
 // name. They should be read to baseTypesStringCollection when the
 // persistant class is read.
 StringCollection notFoundBaseTypes = new StringCollection();

 StringCollection baseTypesStringCollection = new StringCollection();

 ClassCollection innerClasses = new ClassCollection();
 FieldCollection fields = new FieldCollection();
 PropertyCollection properties = new PropertyCollection();
 MethodCollection methods = new MethodCollection();
 EventCollection events = new EventCollection();
 IndexerCollection indexer = new IndexerCollection();

 string fullyQualifiedName;
 string documentation;
 ClassType classType;
 ModifierEnum modifiers;

 public ICompilationUnit CompilationUnit {
 get {
 return null;
 }
 }

Again, we overload the compilation unit with a dummy, as the BCL does not contain compilable code.
Then, we go on to create a binary file to hold the proxy data, which we will need for generating the
actual code-completion database. As we are using proxies, we will have to consider cases where the
proxy will be unavailable, for example, inner classes. To this purpose, when no proxy is available we set
classProxyIndex to -1. Then, we write the full information. In case of any unforeseen problems, this
can also be considered to be a fallback:

Chapter 12

306

 public PersistantClass(BinaryReader reader, ClassProxyCollection
 classProxyCollection)
 {
 this.classProxyCollection = classProxyCollection;
 classProxyIndex = reader.ReadInt32();

 if (classProxyIndex < 0) {
 fullyQualifiedName = reader.ReadString();
 documentation = reader.ReadString();
 modifiers = (ModifierEnum)reader.ReadUInt32();
 classType = (ClassType)reader.ReadInt16();
 }

 uint count = reader.ReadUInt32();
 for (uint i = 0; i < count; ++i) {
 int baseTypeIndex = reader.ReadInt32();
 if (baseTypeIndex < 0) {
 baseTypesStringCollection.Add(reader.ReadString());
 } else {
 baseTypes.Add(baseTypeIndex);
 }
 }

This snippet bears some resemblance to the code for the reflection layer, in the sense that we are
creating objects for the abstract parser. Again, we do not have a compilation unit present, as the BCL is
compiled code. One thing is significantly different here: proxy classes.

The idea behind using proxy classes is that we can be a lot more memory efficient when setting up the
.NET Framework section of the parse tree. We merely need to provide a 'stand-in' for the real class and
provide actual parse information only when the class is used in the code being edited. Proxy classes
reduce the 20 megabytes of parse information needed for the full BCL parse information to a mere 600
kilobytes! This results in a significant reduction of the memory requirements for the parse information.

Now we continue with filling up the proxies:

 count = reader.ReadUInt32();
 for (uint i = 0; i < count; ++i) {
 innerClasses.Add(new PersistantClass(reader, classProxyCollection));
 }

 count = reader.ReadUInt32();
 for (uint i = 0; i < count; ++i) {
 fields.Add(new PersistantField(reader, classProxyCollection));
 }

//code omitted from listing
 }

Now that the proxies have been filled in, we can proceed to write the file. Again, we have to deal with
classes, which don't have proxies. Checking for a value of -1 in the classProxyIndex does this. We
simply write to a binary file, with the format being determined by the sequence of the elements we write
to it. We go over each class and its members in the sequence in which they are found in the respective collections:

Writing the Parser

307

 public void WriteTo(BinaryWriter writer)
 {
 writer.Write(classProxyIndex);

 if (classProxyIndex < 0) {
 writer.Write(fullyQualifiedName);
 writer.Write(documentation);
 writer.Write((uint)modifiers);
 writer.Write((short)classType);
 }

 writer.Write((uint)(baseTypes.Count + notFoundBaseTypes.Count));
 foreach (int baseTypeIdx in baseTypes) {
 writer.Write(baseTypeIdx);
 }

 foreach (string baseType in notFoundBaseTypes) {
 writer.Write((int)-1);
 writer.Write(baseType);
 }

 writer.Write((uint)innerClasses.Count);
 foreach (PersistantClass innerClass in innerClasses) {
 innerClass.WriteTo(writer);
 }

 writer.Write((uint)fields.Count);
 foreach (PersistantField field in fields) {
 field.WriteTo(writer);
 }

 writer.Write((uint)properties.Count);
 foreach (PersistantProperty property in properties) {
 property.WriteTo(writer);
 }

//code omitted for listing
 }

After having seen how the data is written, we will look at obtaining the data. We build up a class proxy
collection and fill in all the information we can obtain about the classes. If the class does not have a
proxy, the index will be set to -1 by the following line:

classProxyIndex = classProxyCollection.IndexOf(c.FullyQualifiedName);

Now, let us look at the full routine, but keep in mind that we have omitted quite a lot of repetitive code.
Basically, we just check each item for the existence of a proxy and return the full information if none is
found, otherwise, the proxy information is returned. We just want to give you an idea of what we need
to do:

Chapter 12

308

 public PersistantClass(ClassProxyCollection classProxyCollection,
 IClass c)
 {
 this.classProxyCollection = classProxyCollection;
 classProxyIndex = classProxyCollection.IndexOf(c.FullyQualifiedName);
 if (classProxyIndex < 0) {
 fullyQualifiedName = c.FullyQualifiedName;
 documentation = c.Documentation;
 modifiers = c.Modifiers;
 classType = c.ClassType;
 }

 foreach (string baseType in c.BaseTypes) {
 int idx = classProxyCollection.IndexOf(baseType);
 if (idx < 0) {
 notFoundBaseTypes.Add(baseType);
 } else {
 baseTypes.Add(idx);
 }
 }

 foreach (IClass innerClass in c.InnerClasses) {
 innerClasses.Add(new PersistantClass(classProxyCollection,
 innerClass));
 }

 foreach (IField field in c.Fields) {
 fields.Add(new PersistantField(classProxyCollection, field));
 }

//code omitted for listing
 }

 public ClassType ClassType {
 get {
 if (classProxyIndex < 0) {
 return classType;
 }
 return classProxyCollection[classProxyIndex].ClassType;
 }
 }
//code omitted for listing

 // regions are currently useless (only assembly classes are
 // made persistent)
 public IRegion Region {
 get {
 return null;
 }
 }

 public StringCollection BaseTypes {
 get {
 // convert base types first time they're requested

Writing the Parser

309

 if (baseTypes.Count > 0) {
 foreach (int index in baseTypes) {
 baseTypesStringCollection.Add
 (classProxyCollection[index].FullyQualifiedName);
 }
 baseTypes.Clear();
 }
 return baseTypesStringCollection;
 }
 }

// code omitted for listing
 }
}

Again, we have abbreviated the code so that it won't be too long. Still there is quite a lot left to look at,
like how things varying from fully qualified names to access modifiers are handled. Refer to the source
code for the complete listing.

The parse information that does not come from the code being edited is complete. Now, we can look at
the actual C# parser that will deal with the code that the user is editing.

The C# Parser for the Editor
Now, we will finally get to the heart of the matter – the parser for the code being edited. For the time
being, we can only parse C#, but a parser for VB.NET is in the works. Other parsers might also be
implemented in our model; as long as they produce their parse information as objects, we can access
them in the abstract parser layer.

Recursive Descent

For the SharpDevelop parser, we decided to use a parsing technique called recursive descent. As the
name implies, it is a top-down method. It is well suited for customizing parsers for specific languages.
Recursive descent is popular and well understood, not least due to its performance potential. Recursive
descent is a depth-first search technique. A detailed explanation of this parsing technique can be found
in the book by Grune and Jacobs.

The Parser Interface

We need to define a parser interface so that the C# parser and other future parsers have a common
interface, which can be accessed by the abstract parser.

The parser interface is defined in the
src\SharpDevelop\Base\Internal\Parser\IParser.cs file:

namespace SharpDevelop.Internal.Parser
{

 [Flags]
 public enum ShowMembers {
 Public = 1,
 Protected = 2,

Chapter 12

310

 Private = 4,
 Static = 8
 }

 public class ResolveResult
 {
 object[] resolveContents;
 ShowMembers showMembers;

 public bool ShowPublic {
 get {
 return (showMembers & ShowMembers.Public) == ShowMembers.Public;
 }
 }

 public bool ShowProtected {
 get {
 return (showMembers & ShowMembers.Protected) ==
 ShowMembers.Protected;
 }
 }

 public bool ShowPrivate {
 get {
 return (showMembers & ShowMembers.Private) == ShowMembers.Private;
 }
 }

 public bool ShowStatic {
 get {
 return (showMembers & ShowMembers.Static) == ShowMembers.Static;
 }
 }

 public object[] ResolveContents {
 get {
 return resolveContents;
 }
 }

 public ShowMembers ShowMembers {
 get {
 return showMembers;
 }
 }

 public ResolveResult(object[] resolveContents, ShowMembers showMembers)
 {
 this.resolveContents = resolveContents;
 this.showMembers = showMembers;
 }
 }

 public interface IParser {

Writing the Parser

311

 string[] LexerTags {
 set;
 }

 ICompilationUnitBase Parse(string fileName);
 ICompilationUnitBase Parse(string fileName, string fileContent);

 // Resolves an expression.
 // The caretLineNumber and caretColumn are 1 based.
 ResolveResult Resolve(IParserService parserService,
 string expression, int caretLineNumber,
 int caretColumn, string fileName);
 }
}

One important notion in this interface is the compilation unit. A compilation unit represents the files of
the project we are currently working on in the editor. We need it when resolving (as was already hinted
at in Chapter 5). Resolving is necessary for each file that we parse, because we have two compilation
units – a valid and a dirty one. By dirty we mean a compilation unit containing parse information
obtained during an aborted parse run. This happens due to compile-time errors. A successful code
completion can be performed only when the information from both units is merged together.

Now, let's look at the Class interface again. This can be found in
src\SharpDevelop\Base\Internal\Parser\IClass.cs.

We will not reproduce it in full, but just enough to give us an idea of how it works:

namespace SharpDevelop.Internal.Parser
{
 public interface IClass : IDecoration
 {
 ICompilationUnit CompilationUnit {
 get;
 }

 string FullyQualifiedName {
 get;
 }

 string Name {
 get;
 }

 string Namespace {
 get;
 }

 ClassType ClassType {
 get;
 }

 IRegion Region {

Chapter 12

312

 get;
 }

 StringCollection BaseTypes {
 get;
 }
// code removed for listing
 }
}

This looks exactly like the class interfaces we encountered earlier, and that is the way it should be, as
information from all three parser parts has to fit together. Now, we will examine the Parser service,
which will be discussed in more detail later on. For now, we just want to see how the parser is called.

The following code snippet can be found in the
src\SharpDevelop\Base\Services\ParserService\DefaultParserService.cs file:

 public IParseInformation ParseFile(string fileName, string fileContent)
 {
 IParser parser = GetParser(fileName);
 if (parser == null) {
 return null;
 }

 parser.LexerTags = new string[] { "HACK", "TODO", "UNDONE", "FIXME" };
 ICompilationUnitBase parserOutput = parser.Parse(fileName,
 fileContent);

 ParseInformation parseInformation = parsings[fileName] as
 ParseInformation;

 if (parseInformation == null) {
 parseInformation = new ParseInformation();
 }

 if (parserOutput.ErrorsDuringCompile) {
 parseInformation.DirtyCompilationUnit = parserOutput;
 } else {
 parseInformation.ValidCompilationUnit = parserOutput;
 parseInformation.DirtyCompilationUnit = null;
 }

 parsings[fileName] = parseInformation;

 // TODO : move this into the compilation unit layer, it is closer to
 // resolver than to the parser.
 if (!parserOutput.ErrorsDuringCompile &&
 parseInformation.BestCompilationUnit is ICompilationUnit) {
 ICompilationUnit cu =
 (ICompilationUnit)parseInformation.BestCompilationUnit;
 foreach (IClass c in cu.Classes) {
 AddClassToNamespaceList(c);
 classes[c.FullyQualifiedName] =

Writing the Parser

313

 new ClasstableEntry(fileName, cu, c);
 }
 }

 OnParseInformationChanged(
 new ParseInformationEventArgs(fileName, parseInformation));
 return parseInformation;
 }

Here, we see how the parser is called; its output is routed either into the valid or dirty compilation unit,
depending on the parser's status. One question still remains: how do we know what to parse? Up to
now, we didn't see anything converting the edit buffer into parseable items. These items are technically
called tokens and are produced by a subsystem called the lexer.

Now, we will have to switch back to a more theoretical discussion, but only for a short while. Before we
can look at the code, we will have to look at the functions performed by a lexer:

❑ Match input characters to tokens by using rules

❑ Search through categories in patterns and return the matching patterns (examples of categories
are literals, keywords, punctuation, and so on)

❑ Discard characters that are not part of tokens (for example, whitespace)

❑ Report lexical errors

The entirety of these actions is called 'lexical analysis', which gives the lexer its name. These tokens
become the input for the parser. Now let's look at parts of the lexer code found in the
src\CSharpParser\Lexer folder.

First, we will look at the lexer itself; it can be found in the Lexer.cs file:

namespace SharpDevelop.Internal.Parser {

 public class Lexer
 {
 public KeyWord keywords;
 IReader reader;
 int col = 1;
 int line = 1;

 CommentCollection miscComments = new CommentCollection();
 CommentCollection dokuComments = new CommentCollection();
 TagCollection tagComments = new TagCollection();
 string[] tags;

 public CommentCollection MiscComments {
 get {
 return miscComments;
 }
 }

 public CommentCollection DokuComments {

Chapter 12

314

 get {
 return dokuComments;
 }
 }

 public TagCollection TagComments {
 get {
 return tagComments;
 }
 }

We start off by defining three different collections for comments, as C# provides comments for different
purposes. Plain comments are preceded by two slashes, while XML comments are preceded by three
slashes. Tag comments are something that we have come up with on our own; they are plain comments
containing either HACK or TODO as a keyword, and are quite useful for coordinating development and
bug fixes.

Now let's move on identifying other tokens (we have truncated this code):

 public string[] Tags {
 get {
 return tags;
 }
 set {
 tags = value;
 }
 }

// code removed for listing

 public Token Next()
 {
 while (!reader.Eos()) {
 char ch = reader.GetNext();
 if (Char.IsWhiteSpace(ch)) {
 ++col;
 if (ch == '\n') {
 ++line;
 col = 1;
 }
 continue;
 }
 if (Char.IsLetter(ch) || ch == '_') {
 int x = col;
 int y = line;
 string s = ReadIdent(ch);
 if (keywords.IsKeyWord(s)) {
 return new
 Token(TokenType.Keyword, keywords.GetKeyWord(s), x, y);
 }
 return new Token(TokenType.Identifier, s, x, y);

Writing the Parser

315

// code removed for listing
 }
 throw new ParserException("Error: Unknown char not read at (" +
 col + "/" + line + ") in Lexer.Next()\nIt was: " + ch, line, col);
 }

 return new Token(TokenType.EOF, null, col, line);
 }

In the opening section of the file, we set up the data types needed for the various types of tokens, and
then moved on to the code for creating tokens based on the chars we present to the lexer.

Next, we will look at distinguishing the identifiers from the keywords. The code for identifying
keywords is found in the KeyWords.cs file:

namespace SharpDevelop.Internal.Parser {

 public enum KeyWordEnum {
 This,
 Base,
...
//code removed for listing
 }

 public class KeyWord
 {
 string[] keywords = {
 "this",
 "base",
...
//Code removed for listing
 };

 Hashtable keyhash = new Hashtable();

 public KeyWord()
 {
 foreach (string keyword in keywords) {
 string newword = Char.ToUpper (keyword[0]) +
 keyword.Substring(1);
 keyhash[keyword] =
 (KeyWordEnum)Enum.Parse(typeof(KeyWordEnum), newword);
 }
 }

 public bool IsKeyWord(string word)
 {
 return keyhash[word] != null;
 }

 public KeyWordEnum GetKeyWord(string word)
 {
 return (KeyWordEnum)keyhash[word];
 }

Chapter 12

316

In this snippet, the tokens identified as keywords are defined in an array of strings and are stored in a
hashtable. Lexing, as we can see, is not one of the most glorious activities.

We will now move on to the next level of our parser – the abstract parser.

The Abstract Parser
In this part of the parser, all the components that we have discussed are joined to form a single unified
structure – the parse tree. They produce objects, which are inherited from the objects defined in this
central piece of code; thus here, we can address them in a coherent manner and make them available to
the consumers of their information.

Let's now examine the code in the
src\SharpDevelop\Base\Internal\Parser\Implementations\AbstractClass.cs file:

namespace SharpDevelop.Internal.Parser
{
 [Serializable]
 public abstract class AbstractClass : AbstractDecoration, IClass
 {
 protected string fullyQualifiedName;

 protected ClassType classType;
 protected IRegion region;

 protected StringCollection baseTypes = new StringCollection();

 protected ClassCollection innerClasses = new ClassCollection();
 protected FieldCollection fields = new FieldCollection();
 protected PropertyCollection properties = new PropertyCollection();
 protected MethodCollection methods = new MethodCollection();
 protected EventCollection events = new EventCollection();
 protected IndexerCollection indexer = new IndexerCollection();

 public abstract ICompilationUnit CompilationUnit {
 get;
 }
// Code omitted for listing

 public virtual string Name {
 get {
 string[] name = fullyQualifiedName.Split(new char[] {'.', '+'});
 return name[name.Length - 1];
 }
 }

 public virtual string Namespace {
 get {
 int index = fullyQualifiedName.LastIndexOf('.');
 return index < 0 ? String.Empty :
 fullyQualifiedName.Substring(0, index);
 }
 }

Writing the Parser

317

 // Code omitted for listing

In the code snippet, we set up the properties we need, as well as all the class and class member
collections into which we collect the parse information provided by our parser subsystems. An
interesting detail in the above code is:

 public virtual string Name {
 get {
 string[] name = fullyQualifiedName.Split(new char[] {'.', '+'});
 return name[name.Length - 1];
 }
 }

We need to split the fully qualified name into two different characters. For this, we use the '.', which we
would expect, and the '+' sign, which is used for the inner classes returned by .NET reflection.

Now, we need a way to handle class inheritance:

 public class ClassInheritanceEnumerator : IEnumerator, IEnumerable
 {
 static IParserService parserService =
 (IParserService)ICSharpCode.Core.Services.
 ServiceManager.Services.GetService(typeof(IParserService));
 IClass topLevelClass;
 IClass currentClass = null;
 Queue baseTypeQueue = new Queue();

 public ClassInheritanceEnumerator(IClass topLevelClass)
 {
 this.topLevelClass = topLevelClass;
 baseTypeQueue.Enqueue(topLevelClass.FullyQualifiedName);
 PutBaseClassesOnStack(topLevelClass);
 baseTypeQueue.Enqueue("System.Object");
 }
 public IEnumerator GetEnumerator()
 {
 return this;
 }

We handle this by using enumerators, which rely on stacks. The stack operations are given below:

 void PutBaseClassesOnStack(IClass c)
 {
 foreach (string baseTypeName in c.BaseTypes) {
 baseTypeQueue.Enqueue(baseTypeName);
 }
 }

//code omitted for listing
 public bool MoveNext()
 {

Chapter 12

318

 if (baseTypeQueue.Count == 0) {
 return false;
 }
 string baseTypeName = baseTypeQueue.Dequeue().ToString();

 IClass baseType = parserService.GetClass(baseTypeName);
 if (baseType == null) {
 ICompilationUnit unit = currentClass == null ? null :
 currentClass.CompilationUnit;
 if (unit != null) {
 foreach (IUsing u in unit.Usings) {
 baseType = u.SearchType(baseTypeName);
 if (baseType != null) {
 break;
 }
 }
 }
 }

 if (baseType != null) {
 currentClass = baseType;
 PutBaseClassesOnStack(currentClass);
 }

 return baseType != null;
 }

 public void Reset()
 {
 baseTypeQueue.Clear();
 baseTypeQueue.Enqueue(topLevelClass.FullyQualifiedName);
 PutBaseClassesOnStack(topLevelClass);
 baseTypeQueue.Enqueue("System.Object");
 }
 }
 }
}

It is important to note that we declare the objects from which all the collections for the objects
corresponding to syntactical units in the code are derived.

Finally, we make this parse information available to SharpDevelop.

Putting It All Together in the Parser Service
As mentioned in Chapter 5, the parser functionality is made available as a service. The definition of the
interface for this service can be found in the
src\SharpDevelop\Base\Services\ParserService\IParserService.cs file.

We will not look at it here, though. If you want to review the listing, please refer back to Chapter 5.
What is important is that we must merge a dirty compilation unit with a valid compilation unit to
provide a full set of parse information to our consumers.

Writing the Parser

319

Let's look at the code from the src\SharpDevelop\Base\Services\ParserService\
DefaultParserService.cs file.

First we will examine the creation of the persistent database. You will remember that in the section on
Persistent Parsing for the Framework Class Library, we said that there are two ways of creating the database.
However, we will only look at creating the fast completing database, as the slow database is just a subset
of it:

 public void GenerateEfficientCodeCompletionDatabase(string createPath,
 IProgressMonitor progressMonitor)
 {
 SetCodeCompletionFileLocation(createPath);

 AssemblyInformation frameworkAssemblyInformation =
 new AssemblyInformation();
 if (progressMonitor != null) {
 progressMonitor.BeginTask("generate code completion database",
 assemblyList.Length * 3);
 }

 // convert all assemblies
 for (int i = 0; i < assemblyList.Length; ++i) {
 try {
 string path =
 Environment.GetFolderPath(Environment.SpecialFolder.System) +
 @"\..\microsoft.net\framework\v1.0.3705\";
 frameworkAssemblyInformation.
 LoadAssembly(String.Concat(path, assemblyList[i], ".dll"));
 if (progressMonitor != null) {
 progressMonitor.Worked(i);
 }
 } catch (Exception e) {
 Console.WriteLine(e.ToString());
 }
 System.GC.Collect();
 }

Note that in the listing above the path is hard-coded. We have a good reason for this – when we install
the .NET Framework SDK, our system path only includes the .NET Framework BCL. However, if we
were to install the re-distributable .NET runtime or Visual Studio 7, it won't be included in the path. In
future releases of SharpDevelop we will have to find a way around this.

Now let us move on to the creation of the class proxies and writing the database to disk:

 // create all class proxies
 for (int i = 0; i < frameworkAssemblyInformation.Classes.Count; ++i) {
 ClassProxy newProxy = new
 ClassProxy(frameworkAssemblyInformation.Classes[i]);
 classProxies.Add(newProxy);
 AddClassToNamespaceList(newProxy);

 if (progressMonitor != null) {

Chapter 12

320

 progressMonitor.Worked(assemblyList.Length +
 (i * assemblyList.Length) /
 frameworkAssemblyInformation.Classes.Count);
 }
 }

 // write all classes and proxies to the disk
 BinaryWriter classWriter =
 new BinaryWriter(new BufferedStream(new
 FileStream(codeCompletionMainFile, FileMode.Create,
 FileAccess.Write, FileShare.None)));
 BinaryWriter proxyWriter =
 new BinaryWriter(new BufferedStream(new
 FileStream(codeCompletionProxyFile, FileMode.Create,
 FileAccess.Write, FileShare.None)));

 for (int i = 0; i < frameworkAssemblyInformation.Classes.Count; ++i)
 {
 IClass newClass = frameworkAssemblyInformation.Classes[i];
 PersistantClass pc = new PersistantClass(classProxies, newClass);
 ClassProxy proxy = classProxies[i];
 proxy.Offset = (uint)classWriter.BaseStream.Position;
 proxy.WriteTo(proxyWriter);
 pc.WriteTo(classWriter);
 if (progressMonitor != null) {
 progressMonitor.Worked(2 * assemblyList.Length +
 (i * assemblyList.Length) /
 frameworkAssemblyInformation.Classes.Count);
 }
 }
 classWriter.Close();
 proxyWriter.Close();
 if (progressMonitor != null) {
 progressMonitor.Done();
 }
 }

This code snippet generates the actual database on the disk. It uses a separate binary writer for the
classes and proxies. We know that not all classes have proxies, so this is necessary. We also calculate the
status of the progress bar (denoted by progressMonitor) in this method, so that the user is informed
of the progress.

Now we will look at setting the location of the completion file:

 void SetCodeCompletionFileLocation(string path)
 {
 FileUtilityService fileUtilityService =
 (FileUtilityService)ServiceManager.Services.
 GetService(typeof(FileUtilityService));
 string codeCompletionTemp =
 fileUtilityService.GetDirectoryNameWithSeparator(path);

 codeCompletionProxyFile = codeCompletionTemp +

Writing the Parser

321

 "CodeCompletionProxyData.bin";
 codeCompletionMainFile = codeCompletionTemp +
 "CodeCompletionMainData.bin";
 }

 void SetDefaultCompletionFileLocation()
 {
 PropertyService propertyService = (PropertyService)ServiceManager.
 Services.GetService(typeof(PropertyService));
 SetCodeCompletionFileLocation(propertyService.
 GetProperty("SharpDevelop.CodeCompletion.DataDirectory",
 String.Empty).ToString());
 }

Note that, we have also provided a default location. Next, we will load the file containing the proxy data
that we generated earlier (in the section on Persistent Parsing for the Framework Class Library):

 void LoadProxyDataFile()
 {
 if (!File.Exists(codeCompletionProxyFile)) {
 return;
 }
 BinaryReader reader =
 new BinaryReader(new BufferedStream(new FileStream
 (codeCompletionProxyFile, FileMode.Open,
 FileAccess.Read, FileShare.Read)));
 while (true) {
 try {
 ClassProxy newProxy = new ClassProxy(reader);
 classProxies.Add(newProxy);
 AddClassToNamespaceList(newProxy);
 } catch (Exception) {
 break;
 }
 }
 reader.Close();
 }

This completes our discussion on database creation. Now, let's start with the parser:

 public override void InitializeService()
 {
 parser =
 (IParser[])(AddInTreeSingleton.AddInTree.GetTreeNode
 ("/Workspace/Parser").BuildChildItems(this)).ToArray(typeof(IParser));

 SetDefaultCompletionFileLocation();

 BinaryFormatter formatter = new BinaryFormatter();

 if (!File.Exists(codeCompletionProxyFile)) {
 RunWizard();
 SetDefaultCompletionFileLocation();

Chapter 12

322

 }
 LoadProxyDataFile();
 IProjectService projectService =
 (IProjectService)ICSharpCode.Core.Services.
 ServiceManager.Services.GetService(typeof(IProjectService));
 projectService.CombineOpened += new CombineEventHandler(OpenCombine);
 }

Every time we start up SharpDevelop, we need to check for the existence of the proxy file. If it's
missing, we create it by using the code from the previous listing.

 public void AddReferenceToCompletionLookup(IProject project,
 ProjectReference reference)
 {
 if (reference.ReferenceType != ReferenceType.Project) {
 string fileName = reference.GetReferencedFileName(project);
 if (fileName == null || fileName.Length == 0 ||
 fileName.IndexOf("System") > 0) {
 return;
 }
 // HACK : Don't load references for non C# projects - can't be
 //parsed yet
 if (project.ProjectType != "C#") {
 return;
 }
 if (File.Exists(fileName)) {
 LoadAssemblyParseInformations(fileName);
 }
 }
 }

 void LoadAssemblyParseInformations(string assemblyFileName)
 {
 if (loadedAssemblies[assemblyFileName] != null) {
 return;
 }
 loadedAssemblies[assemblyFileName] = true;

 AssemblyInformation assemblyInformation = new AssemblyInformation();
 assemblyInformation.LoadAssembly(assemblyFileName);
 foreach (IClass newClass in assemblyInformation.Classes) {
 AddClassToNamespaceList(newClass);
 classes[newClass.FullyQualifiedName] =
 new ClasstableEntry(null, null, newClass);
 }
 }

 public void OpenCombine(object sender, CombineEventArgs e)
 {
 ArrayList projects = Combine.GetAllProjects(e.Combine);
 foreach (ProjectCombineEntry entry in projects) {
 foreach (ProjectReference r in entry.Project.ProjectReferences) {
 AddReferenceToCompletionLookup(entry.Project, r);

Writing the Parser

323

 }
 }
 }

Then, we can move on to starting the actual parser in a separate thread. Running the parser in the same
thread would make SharpDevelop unusable.

 public void StartParserThread()
 {
 Thread t = new Thread(new ThreadStart(ParserUpdateThread));
 t.IsBackground = true;
 t.Priority = ThreadPriority.Lowest;
 t.Start();
 }

 void ParserUpdateThread()
 {
 while (true) {
 Thread.Sleep(1000);
 try {
 if (WorkbenchSingleton.Workbench.ActiveWorkbenchWindow.
 ViewContent != null) {
 IEditable editable = WorkbenchSingleton.Workbench.
 ActiveWorkbenchWindow.ViewContent.Control as IEditable;
 if (editable != null) {
 string fileName = WorkbenchSingleton.Workbench.
 ActiveWorkbenchWindow.ViewContent.ContentName;
 if (!(fileName == null || fileName.Length == 0)) {
 string content = null;
 content = editable.TextContent;
 Thread.Sleep(300);
 lock (parsings) {
 ParseFile(fileName, content);
 }
 }
 }
 }
 } catch (Exception) {}
 }
 }

Now, let's examine the Resolve method, which deals with code resolution:

public ResolveResult Resolve(string expression, int caretLineNumber,
 int caretColumn, string fileName)
 {
 IParser parser = GetParser(fileName);
 if (parser != null) {
 return parser.Resolve(this, expression, caretLineNumber,
 caretColumn, fileName);
 }
 return null;
 }

Chapter 12

324

For now, we will content ourselves with looking at this call, as the resolving code does much more than
just merge the two compilation units. The resolving process is a central part of the code completion
mechanism, so we will look at it in detail in the next chapter. We included this topic here, as the
merging part of the resolving process technically belongs to the parsing part of code completion.

Putting the parse information together into one 'big picture' is done by the following code:

 Hashtable AddClassToNamespaceList(IClass addClass)
 {
 string nSpace = addClass.Namespace;
 if (nSpace == null) {
 nSpace = String.Empty;
 }
 string[] path = nSpace.Split('.');
 Hashtable cur = namespaces;

 for (int i = 0; i < path.Length; ++i) {
 if (cur[path[i]] == null) {
 cur[path[i]] = new Hashtable();
 } else {
 if (!(cur[path[i]] is Hashtable)) {
 return null;
 }
 }
 cur = (Hashtable)cur[path[i]];
 }

 cur[addClass.Name] = new ClassProxy(addClass);

 return cur;
 }

By using hashtables, we add the classes to the namespaces. We need to know which class resides in
which namespace; otherwise, we won't be able to offer correct suggestions in code completion. Of
course, to do this, we need to know the list of contents of the existing namespaces, too:

 public ArrayList GetNamespaceContents(string subNameSpace)
 {
 ArrayList namespaceList = new ArrayList();
 if (subNameSpace == null) {
 return namespaceList;
 }
 string[] path = subNameSpace.Split('.');
 Hashtable cur = namespaces;

 for (int i = 0; i < path.Length; ++i) {
 if (!(cur[path[i]] is Hashtable)) {
 return namespaceList;
 }
 cur = (Hashtable)cur[path[i]];
 }

Writing the Parser

325

 foreach (DictionaryEntry entry in cur) {
 if (entry.Value is Hashtable) {
 namespaceList.Add(entry.Key);
 } else {
 namespaceList.Add(entry.Value);
 }
 }

 return namespaceList;
 }

Naturally, we need to know which namespaces actually exist in our project. How else could we add
them to the list generated above? So we again use the same technique that we used above:

 public bool NamespaceExists(string name)
 {
 if (name == null) {
 return false;
 }
 string[] path = name.Split('.');
 Hashtable cur = namespaces;

 for (int i = 0; i < path.Length; ++i) {
 if (!(cur[path[i]] is Hashtable)) {
 return false;
 }
 cur = (Hashtable)cur[path[i]];
 }
 return true;
 }

 public string[] GetNamespaceList(string subNameSpace)
 {
 Debug.Assert(subNameSpace != null);

 string[] path = subNameSpace.Split('.');
 Hashtable cur = namespaces;

 if (subNameSpace.Length > 0) {
 for (int i = 0; i < path.Length; ++i) {
 if (!(cur[path[i]] is Hashtable)) {
 return null;
 }
 cur = (Hashtable)cur[path[i]];
 }
 }

 ArrayList namespaceList = new ArrayList();
 foreach (DictionaryEntry entry in cur) {
 if (entry.Value is Hashtable && entry.Key.ToString().Length > 0) {
 namespaceList.Add(entry.Key);
 }
 }

Chapter 12

326

 return (string[])namespaceList.ToArray(typeof(string));
 }

The classes are added to a list of namespaces used in the project, so that they are associated with the
proper namespace. We need this for efficient code completion. The use of the various data structures,
such as collections, dictionaries, hash tables, and arrays, provided by the .NET Framework makes this
quite simple to implement.

The code for the collections used to hold the information was generated using the Typed C# Collection
Wizard of SharpDevelop, so it is not particularly interesting to look at. We will just list a snippet from
src\SharpDevelop\Base\Internal\Parser\Collections\ClassCollection.cs.

This should give us an idea of what the class collection generated by the wizard looks like:

namespace SharpDevelop.Internal.Parser
{
 [Serializable()]
 public class ClassCollection : CollectionBase {

 public ClassCollection() {
 }
 public ClassCollection(ClassCollection value) {
 this.AddRange(value);
 }

 public ClassCollection(IClass[] value) {
 this.AddRange(value);
 }

The information from the parser is now available to the features that need to use it.

Summary
In this chapter, we examined the theory of computer languages and their grammars. Then we moved on
to the theoretical possibilities for parser implementations. With the understanding of the issues at hand,
we went on to look at the SharpDevelop parser.

We discussed the design issues involved, and the architecture of the parser that we settled for. We
learned about the advantages of implementing an abstract parser. Such a parser solves the problems of
needing data residing outside the current file – in the assemblies referenced or from the framework – in
an elegant manner. Besides, we can easily parse different languages, by using this abstract parser layer
as a go-between between the code and parse tree users.

Then, we went on to look at the three components contributing to the parse information:

❑ Reflection for assemblies referenced

❑ Persistent parse information for the BCL

❑ Parser for code we work on

Writing the Parser

327

Then, we investigated the implementation of the abstract parser, and finally looked at tying all this
information together, into a single service, for use by the SharpDevelop features that need
parse information.

In the next chapter, we will look at two such features – code completion and method insight.

Chapter 12

328

Code Completion and Method
Insight

In the last chapter, we looked at how the parse information is gathered. We will now look at how we
can use it to help us with software development. In this chapter, we will be discussing Code Completion
and Method Insight.

No programmer can be expected to remember all the classes, properties, and methods needed for the
.NET Framework; let alone all the classes they have written. For example, SharpDevelop itself contains
more than 1600 source files (each usually representing a class), and has over 86,000 lines of code. The
.NET classes can be looked up by switching between the IDE and the .NET reference, while for the
user-defined classes, we have to create documentation before they can be used. These aren't pleasant
tasks; besides they're time consuming.

The solution is to offer interactive suggestions for appropriate completion possibilities of the statement
at hand. Code Completion handles this. This also holds true for method parameters; they are suggested
by our Method Insight feature.

In this chapter, we will look at how the parse information that we obtained using the parser discussed in
Chapter 12 can be used to implement this kind of functionality.

Resolving Matters
In the previous chapter, we had a quick look at the Resolver but postponed the actual discussion until
later. We did this because the Resolver is placed in the Parser project and may use parts of the Parser
infrastructure. It is as language-dependant as the parser itself, even though the Resolver might be
considered as a separate entity.

13

Chapter 13

330

The Resolver not only reconciles the two compilation units that exist for any given file, but also
performs additional tasks related to providing parse information for Code Completion. The Resolver
attempts to identify the type of the expression coming before the dot, so that the type members to be
displayed for completion can be properly selected.

To reiterate, the valid compilation unit represents the parse information obtained during the last run of
the parser that was finished without errors, while the dirty compilation unit contains the parse
information obtained during the last parser run that was aborted due to parser error. This can happen
when a statement is not yet complete. The information in these two compilation units can vary and
needs to be merged, so that Code Completion and Method Insight work properly.

The code implementing the Resolver is found in the src\CSharpParser\Resolver.cs file.

We will now look at the methods implemented in this file:

 public ResolveResult Resolve(IParserService parserService,
 string expression, int caretLineNumber,
 int caretColumn, string fileName)
 {
 this.parserService = parserService;
 this.caretLine = caretLineNumber;
 this.caretColumn = caretColumn;
 parseInformation = parserService.GetParseInformation(fileName);

 if (parseInformation == null || expression == null) {
 return null;
 }
 this.type = expression;
 this.expression = expression;

 ResolveResult res = null;
 cu = parseInformation.DirtyCompilationUnit as ICompilationUnit;
 if (cu != null) {
 callingClass = GetInnermostClass();
 res = Resolve();
 if (res != null && (res.Members != null && res.Members.Count > 0 ||
 res.Namespaces != null && res.Namespaces.Count > 0)) {
 return res;
 }
 }
 cu = parseInformation.ValidCompilationUnit as ICompilationUnit;
 if (cu != null) {
 callingClass = GetInnermostClass();
 res = Resolve();
 }
 return res;
 }

As we can see, we rely on the Parser service of SharpDevelop since this is where all the parse
information comes together. We also need to deal with coordinates for the caret, as this is where the
dot-triggered completion happens. Depending on where we are in the code, we have to offer different
things. For example, in using statements we should only offer namespaces.

Code Completion and Method Insight

331

First, we will handle the resolving process for dirty compilation unit, as this is most probably the
compilation unit containing the recent parse information. Only then, we move on to the valid
compilation unit. Both compilation units are resolved using the Resolve method. Now let's examine
this method:

 ResolveResult Resolve()
 {
 expression = expression.TrimStart(null);

 // expression == null already checked
 System.Diagnostics.Debug.Assert(expression != null);
 if (expression == "") {
 return null;
 }

 int i;

 // the period that causes this Resolve() is not part of the expression
 if (expression[expression.Length - 1] == '.') {
 return null;
 }

 for (i = expression.Length - 1; i >= 0; --i) {
 if (!(Char.IsLetterOrDigit(expression[i]) || expression[i] == '.')) {
 break;
 }
 }
 // no Identifier before the period
 if (i == expression.Length - 1) {
 return null;
 }

 type = expression.Substring(i + 1);

 //hardcoded 'using' below, as this is c# specific
 if (expression.StartsWith("using ")) {
 string[] namespaces = parserService.GetNamespaceList(type);
 if (namespaces == null || namespaces.Length <= 0) {
 return null;
 }
 return new ResolveResult(namespaces);
 }

 bool showStatic = false;
 // try to find Class with name type
 IClass c = StaticLookup(type);
 if (c != null) {
 showStatic = true;
 } else {
 c = StepByStepLookup(type, callingClass);
 }
 if (c == null) {
 // Neither static nor dynamic class found, try if type is namespace
 ArrayList nsContents =

Chapter 13

332

 parserService.GetNamespaceContents(SearchNamespace(type, cu));
 ArrayList classes = new ArrayList();
 if (nsContents != null) {
 // Put the classes in another ArrayList (classes)
 // and remove them from nsContents so that
 // there are only the namespaces left
 for (int j = 0; j < nsContents.Count; ++j) {
 if (nsContents[j] is IClass) {
 if (!((IClass)nsContents[j]).IsProtected ||
 ((IClass)nsContents[j]).IsProtectedOrInternal) {
 classes.Add(nsContents[j]);
 }
 nsContents.RemoveAt(j);
 --j;
 }
 }
 return new
 ResolveResult((string[])nsContents.ToArray(typeof(string)),
 classes);
 }
 return null;
 }
 IClass returnClass = parserService.GetClass(c.FullyQualifiedName);
 if (returnClass == null) {
 returnClass = c;
 }

 return new ResolveResult(returnClass,
 ListMembers(new ArrayList(),returnClass, showStatic));
 }

The snippet we just saw determines whether we are dealing with a namespace or a class, and if it's a
class, whether it's static or dynamic. Then we look for class members. In the following code snippet, we
will consider only static classes:

 ArrayList ListMembers(ArrayList members, IClass curType,
 bool showStatic)
 {
 if (showStatic) {
 foreach (IClass c in curType.InnerClasses) {
 if (IsAccessible(curType, c)) {
 members.Add(c);
 }
 }
 }
 foreach (IProperty p in curType.Properties) {
 if (MustBeShown (curType, p, showStatic)) {
 members.Add(p);
 }
 }
 foreach (IMethod m in curType.Methods) {
 if (MustBeShown(curType, m, showStatic)) {
 members.Add(m);

Code Completion and Method Insight

333

 }
 }
 foreach (IEvent e in curType.Events) {
 if (MustBeShown(curType, e, showStatic)) {
 members.Add(e);
 }
 }
 foreach (IField f in curType.Fields) {
 if (MustBeShown(curType, f, showStatic)) {
 members.Add(f);
 }
 }
 if (curType.ClassType == ClassType.Class) {
 IClass baseClass = BaseClass(curType);
 if (baseClass != null) {
 ListMembers(members, baseClass, showStatic);
 }
 } else if (curType.ClassType == ClassType.Interface) {
 foreach (string s in curType.BaseTypes) {
 IClass baseClass = SearchType(s, curType.CompilationUnit);
 if (baseClass != null &&
 baseClass.ClassType == ClassType.Interface) {
 ListMembers(members, baseClass, showStatic);
 }
 }
 }
 return members;
 }

The foreach statements in the above snippet iterate through the collections of classes, methods, and so
on, and determine which of these are to be displayed in code completion. Here, we have to take the
scope (public, private, and so on) of the elements into consideration, as not all of them should be visible
in our suggestions.

Now we will examine the part dealing with the step-by-step lookup of the class members. By
step-by-step, we mean that we are splitting up the code segments and extracting the information
contained in it (that is, determining the type that the expression or token belongs to):

 IClass StepByStepLookup(string name, IClass curClass)
 {
 if (curClass == null) {
 return null;
 }
 bool showStatic = false;
 string[] typename = name.Split('.');
 string current =
 SearchNamespace(typename[0], curClass.CompilationUnit);
 int i = 1;
 IClass curType = null;
 if (current != null) {
 for (; i < typename.Length; ++i) {
 current += "." + typename[i];
 if (!parserService.NamespaceExists(current)) {

Chapter 13

334

 break;
 }
 }
 ++i;
 curType = parserService.GetClass(current);
 showStatic = true;
 } else if (typename[0] == "this") {
 if (InStatic()) {
 return null;
 }
 curType = curClass;
 } else if (typename[0] == "base") {
 if (InStatic()) {
 return null;
 }
 foreach (string baseClass in curClass.BaseTypes) {
 IClass c = SearchType(baseClass, curClass.CompilationUnit);
 if (c != null && c.ClassType == ClassType.Class) {
 curType = c;
 break;
 }
 }
 } else {
 current = typename[0];
 curType = SearchType(current, curClass.CompilationUnit);
 if (curType == null) {
 curType = DynamicLookup(current);
 } else {
 showStatic = true;
 }
 }
 if (curType == null) {
 return null;
 }
 for (; i < typename.Length; ++i) {
 curType = SearchMember(curType, typename[i], ref showStatic);
 if (curType == null) {
 return null;
 }
 }
 return curType;
 }

Next, we have to determine the Boolean value indicating whether code completion is being used for a
static member. IsAcessible decides whether the indicated member can be accessed from the current
location. The MustBeShown method uses this information and the display state of static members to
decide whether the specified member has to be shown, as a suggestion during code completion:

 bool InStatic()
 {
 IProperty property = GetProperty();
 if (property != null) {
 return property.IsStatic;

Code Completion and Method Insight

335

 }
 IMethod method = GetMethod();
 if (method != null) {
 return method.IsStatic;
 }
 return false;
 }

 bool IsAccessible(IClass c, IDecoration member)
 {
 if ((member.Modifiers & ModifierEnum.Public) == ModifierEnum.Public) {
 return true;
 }
 if ((member.Modifiers & ModifierEnum.Protected) ==
 ModifierEnum.Protected &&
 IsClassInInheritanceTree(c, callingClass)) {
 return true;
 }
 return c.FullyQualifiedName == callingClass.FullyQualifiedName;
 }

 bool MustBeShown(IClass c, IDecoration member, bool showStatic)
 {
 if ((!showStatic && ((member.Modifiers & ModifierEnum.Static) ==
 ModifierEnum.Static))||
 (showStatic && !((member.Modifiers & ModifierEnum.Static) ==
 ModifierEnum.Static))) {
 return false;
 }
 return IsAccessible(c, member);
 }

Now let's examine the dynamic lookups that take care of the names depending on their environment,
such as local variables, method parameters, etc.:

 IClass DynamicLookup(string typeName)
 {
 // check whether a variable named typeName exists
 foreach (Variable v in cu.LookUpTable) {
// Console.WriteLine("Variable: " + v.Name + " Region = " + v.Region);
 if (v.Name == typeName && v.Region.IsInside(caretLine, caretColumn)) {
 if (v.ReturnType.ArrayDimensions != null &&
// Console.WriteLine("variable found");
 v.ReturnType.ArrayDimensions.Length > 0) {
 return parserService.GetClass("System.Array");
 }
 return SearchType(v.ReturnType.FullyQualifiedName,
 callingClass.CompilationUnit);
 }
 }

Chapter 13

336

 if (callingClass == null) {
 return null;
 }

 // try whether typeName is a method parameter
 IClass found = SearchMethodParameter(typeName);
 if (found != null) {
 return found;
 }

 // check if typeName == value in set method of a property
 if (typeName == "value") {
 found = SearchProperty();
 if (found != null) {
 return found;
 }
 }

 // try to determine whether a nonstatic member named typeName exits
 bool showStatic = false;
 found = SearchMember(callingClass, typeName, ref showStatic);
 if (found != null) {
 return found;
 }

 // try whether a static member named typeName exists
 showStatic = true;
 found = SearchMember(callingClass, typeName, ref showStatic);
 if (found != null) {
 return found;
 }

 // test for existence of a static member named typeName
 ClassCollection classes = GetOuterClasses();
 foreach (IClass c in GetOuterClasses()) {
 found = SearchMember(c, typeName, ref showStatic);
 if (found != null) {
 return found;
 }
 }

 return null;
 }

In this code snippet, the diagnostic Console.Writeline() statements (which were removed from the
other snippets in this chapter) are left intact to demonstrate how easily complex code can be modified
for testing purposes. Such a simple approach to code testing is often preferable to extensive debugging
sessions, which should be performed only when serious problems arise.

Another reason we chose this approach to debugging lies in the fact that we do not have a debugger
integrated into SharpDevelop. Switching between an external debugging session and the IDE is
irritating. Of course, choosing this approach is ultimately a matter of personal preference.

Code Completion and Method Insight

337

Now we will look at static lookups:

 IClass StaticLookup(string typeName)
 {
 IClass c = parserService.GetClass(typeName);

 if (c == null) {
 c = SearchType(typeName, cu);
 }
 return c;
 }

 /// use the using statements to find the correct name of a namespace
 string SearchNamespace(string name, ICompilationUnit unit)
 {
 if (parserService.NamespaceExists(name)) {
 return name;
 }
 if (unit == null) {
 return null;
 }
 foreach (IUsing u in unit.Usings) {
 if (u.Region.IsInside(caretLine, caretColumn)) {
 string nameSpace = u.SearchNamespace(name);
 if (nameSpace != null) {
 return nameSpace;
 }
 }
 }
 return null;
 }

We have used the using statements to identify the namespaces that we have to work on for obtaining
the applicable code completion suggestions. Then we move on to identifying the classes, which can be
suggested at the current completion point. This is handled in the foreach statement:

 /// use the using statements to find a class
 IClass SearchType(string name, ICompilationUnit unit)
 {
 IClass c;
 c = parserService.GetClass(name);
 if (c != null) {
 return c;
 }
 if (unit == null) {
 return null;
 }
 foreach (IUsing u in unit.Usings) {
 if (u.Region.IsInside(caretLine, caretColumn)) {
 c = u.SearchType(name);
 if (c != null) {
 return c;
 }

Chapter 13

338

 }
 }
 return null;
 }

Finally, we have to decide whether a protected member should be displayed to the user or not.
Remember that protected members are only accessible from within their own class and from sub-classes
thereof:

 bool IsClassInInheritanceTree(IClass possibleBaseClass, IClass c)
 {
 if (possibleBaseClass == null || c == null) {
 return false;
 }
 if (possibleBaseClass.FullyQualifiedName == c.FullyQualifiedName) {
 return true;
 }
 foreach (string baseClass in c.BaseTypes) {
 if (IsClassInInheritanceTree(possibleBaseClass,
 parserService.GetClass(baseClass))) {
 return true;
 }
 }
 return false;
 }

In order to determine the class code for which completion has occurred, we must discover the
innermost class:

 IClass GetInnermostClass()
 {
 if (cu != null) {
 foreach (IClass c in cu.Classes) {
 if (c.Region.IsInside(caretLine, caretColumn)) {
 return GetInnermostClass(c);
 }
 }
 }
 return null;
 }

 IClass GetInnermostClass(IClass curClass)
 {
 if (curClass == null) {
 return null;
 }
 if (curClass.InnerClasses == null) {
 return curClass;
 }
 foreach (IClass c in curClass.InnerClasses) {
 if (c.Region.IsInside(caretLine, caretColumn)) {

Code Completion and Method Insight

339

 return GetInnermostClass(c);
 }
 }
 return curClass;
 }

 ClassCollection GetOuterClasses()
 {
 ClassCollection classes = new ClassCollection();
 if (cu != null) {
 foreach (IClass c in cu.Classes) {
 if (c.Region.IsInside(caretLine, caretColumn)) {
 if (c != GetInnermostClass()) {
 classes.AddRange(GetOuterClasses(classes, c));
 classes.Add(c);
 }
 break;
 }
 }
 }
 return classes;
 }

 ClassCollection GetOuterClasses(ClassCollection classes,
 IClass curClass)
 {
 if (curClass != null) {
 foreach (IClass c in curClass.InnerClasses) {
 if (c.Region.IsInside(caretLine, caretColumn)) {
 if (c != GetInnermostClass()) {
 classes.AddRange(GetOuterClasses(classes, c));
 classes.Add(c);
 }
 break;
 }
 }
 }
 return classes;
 }
 }
}

Note that in this code snippet we are concerned with the caret position, as the resolution process is
geared towards providing information for code completion.

We will now move on to look at the implementation of Code Completion in SharpDevelop.

Chapter 13

340

Code Completion
As we mentioned in Chapter 1, Code Completion is one of the central features distinguishing a modern
IDE, from a mere plain text editor. Code completion offers us a list of type members that may be used
in the context of the current line. For the completion string currently selected, a tool-tip will offer
additional information.

The diagram given below shows the flow of information needed for Code Completion:

CodeCompletion

CompletionWindow

CodeCompletionDataProvider

GenerateCompletionData

Resolve

Parser

Resolver

This diagram shows why the Resolver can be considered as being outside the scope of the Parser. The
Resolver is elementary for code completion; it provides the base for actually using the parse information
for the file in the edit buffer.

The files implementing code completion are part of the SDDefaultEditor and reside in the
src\SharpDevelop\SDDefaultEditor\Gui\Editor\CompletionWindow directory.

First, let's look at the interface of the CompletionDataProvider that is found in the
ICompletionDataProvider.cs file.

The interface code is:

namespace ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor
{
 public interface ICompletionDataProvider
 {
 ImageList ImageList {
 get;
 }

 ICompletionData[] GenerateCompletionData(string fileName,
 IDocumentAggregator document, char charTyped);
 }
}

Code Completion and Method Insight

341

We only need an ImageList containing the icons, representing the different member types of the
items, for the completion suggestions, and the completion data itself.

The CompletionDataProvider is implemented in CodeCompletionDataProvider.cs:

namespace ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor
{
 public class CodeCompletionDataProvider : ICompletionDataProvider
 {
 static ClassBrowserIconsService classBrowserIconService =
 (ClassBrowserIconsService)ServiceManager.Services.
 GetService(typeof(ClassBrowserIconsService));

 static IParserService parserService =
 (IParserService) ICSharpCode.Core.Services.ServiceManager.Services.
 GetService(typeof(IParserService));

 Hashtable insertedElements = new Hashtable();

 public ImageList ImageList {
 get {
 return classBrowserIconService.ImageList;
 }
 }

 int caretLineNumber;
 int caretColumn;
 string fileName;

 ArrayList completionData = null;

 public ICompletionData[] GenerateCompletionData(string fileName,
 IDocumentAggregator document, char charTyped)
 {
 completionData = new ArrayList();
 this.fileName = fileName;

 // the parser works with 1 based coordinates, so we add 1 to the
 //values
 caretLineNumber =
 document.GetLineNumberForOffset(document.Caret.Offset) + 1;
 caretColumn = document.Caret.Offset -
 document.GetLineSegment(caretLineNumber - 1).Offset + 1;
 string expression = TextUtilities.
 GetExpressionBeforeOffset(document, document.Caret.Offset);
 ResolveResult results;

 if (expression.Length == 0) {
 return null;
 }
 if (charTyped == ' ') {
 if (expression == "using" || expression.EndsWith(" using") ||
 expression.EndsWith("\tusing")|| expression.EndsWith("\nusing")||
 expression.EndsWith("\rusing")) {

Chapter 13

342

 string[] namespaces = parserService.GetNamespaceList("");
 AddResolveResults(new ResolveResult(namespaces));
 }
 }
 } else {

 results = parserService.Resolve(expression, caretLineNumber,
 caretColumn, fileName);

 AddResolveResults(results);
 }
 return
 (ICompletionData[])completionData.ToArray(typeof(ICompletionData));
 }

 void AddResolveResults(ResolveResult results)
 {
 if (results != null) {
 if (results.Namespaces != null && results.Namespaces.Count > 0) {
 foreach (string s in results.Namespaces) {
 completionData.Add(new CodeCompletionData(s,
 classBrowserIconService.NamespaceIndex));
 }
 }
 if (results.Members != null && results.Members.Count > 0) {
 foreach (Object o in results.Members) {
 if (o is IClass) {
 completionData.Add(new CodeCompletionData((IClass)o));
 } else if (o is IProperty) {
 completionData.Add(new CodeCompletionData((IProperty)o));
 } else if (o is IMethod) {
 IMethod method = (IMethod)o;
 if (insertedElements[method.Name] == null &&
 !method.IsConstructor) {
 completionData.Add(new CodeCompletionData(method));
 insertedElements[method.Name] = method;
 }
 } else if (o is IField) {
 completionData.Add(new CodeCompletionData((IField)o));
 } else if (o is IEvent) {
 completionData.Add(new CodeCompletionData((IEvent)o));
 }
 }
 }
 }
 }
 }
}

Here, we set up the ImageList for the icons. The appearance of the icons depends on the ambience
(visual style) selected by the user for the Class Browser.

Code Completion and Method Insight

343

We then move on to assemble the completion data for the file currently being edited. Note that we have
to be aware of the current caret position, as this controls the completion suggestions that are displayed.
The caret position is counted from position 1 and not 0, as might be expected when considering the
index base of arrays. A parser always starts at line 1, character 1.

We then provide namespace information obtained earlier in the step-by-step lookup to enable
completion of using statements, and then we provide the results of the Resolver for code completion.
The completion information is added after removing duplicates, due to overloading of methods,
removal of constructors, and assigning icons to the various members.

The file CodeCompletionData.cs handles this task:

namespace ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor
{
 class CodeCompletionData : ICompletionData
 {
 static ClassBrowserIconsService classBrowserIconService =
 (ClassBrowserIconsService)ServiceManager.Services.
 GetService(typeof(ClassBrowserIconsService));

 static IParserService parserService = (IParserService)ICSharpCode.Core.
 Services.ServiceManager.Services.GetService(typeof(IParserService));
 static AmbienceService ambienceService = (AmbienceService)
 ServiceManager.Services.GetService(typeof(AmbienceService));

 int imageIndex;
 int overloads;
 string text;
 string description;
 string documentation;
 string completionString;
 IClass c;
 bool convertedDocumentation = false;

 public int Overloads {
 get {
 return overloads;
 }
 set {
 overloads = value;
 }
 }

 public int ImageIndex {
 get {
 return imageIndex;
 }
 set {
 imageIndex = value;
 }
 }

Chapter 13

344

 public string[] Text {
 get {
 return new string[] { text };
 }
 set {
 text = value[0];
 }
 }

In this snippet, we define the variables. The variable convertedDocumentation is intended for using
the documentation that can be automatically generated from XML comments, as a source of descriptive
information to be displayed in tool-tips.

Then we generate description texts:

 public string Description {
 get {
 // get correct delegate description (when description is requested).
 // in the classproxies methods aren't saved, therefore delegate
 // methods must be got through the real class
 if (c is ClassProxy && c.ClassType == ClassType.Delegate) {
 description = ambienceService.CurrentAmbience.Convert
 (parserService.GetClass(c.FullyQualifiedName));
 c = null;
 }

 // don't give a description string, if no documentation or
 //description is provided
 if (description.Length + documentation.Length == 0) {
 return null;
 }
 if (!convertedDocumentation) {
 convertedDocumentation = true;
 try {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml("<doc>" + documentation + "</doc>");
 XmlNode root = doc.DocumentElement;
 XmlNode paramDocu = root.SelectSingleNode("summary");
 documentation = paramDocu.InnerXml;
 } catch (Exception e) {
 Console.WriteLine(e.ToString());
 }
 }
 return description +
 (overloads > 0 ? " (+" + overloads + " overloads)" : String.Empty)
 + "\n" + documentation;
 }
 set {
 description = value;
 }
 }

Code Completion and Method Insight

345

Now, we are all set to put together the code completion data that we have generated:

 public CodeCompletionData(string s, int imageIndex)
 {
 description = documentation = String.Empty;
 text = s;
 completionString = s;
 this.imageIndex = imageIndex;
 }

 public CodeCompletionData(IClass c)
 {
 // save class (for the delegate description shortcut
 this.c = c;
 imageIndex = classBrowserIconService.GetIcon(c);
 text = c.Name;
 completionString = c.Name;
 description = ambienceService.CurrentAmbience.Convert(c);
 documentation = c.Documentation;
 }

 public CodeCompletionData(IMethod method)
 {
 imageIndex = classBrowserIconService.GetIcon(method);
 text = method.Name;
 description = ambienceService.CurrentAmbience.Convert(method);
 completionString = method.Name;
 documentation = method.Documentation;
 }

 public CodeCompletionData(IField field)
 {
 imageIndex = classBrowserIconService.GetIcon(field);
 text = field.Name;
 description = ambienceService.CurrentAmbience.Convert(field);
 completionString = field.Name;
 documentation = field.Documentation;
 }

 public CodeCompletionData(IProperty property)
 {
 imageIndex = classBrowserIconService.GetIcon(property);
 text = property.Name;
 description = ambienceService.CurrentAmbience.Convert(property);
 completionString = property.Name;
 documentation = property.Documentation;
 }

 public CodeCompletionData(IEvent e)
 {
 imageIndex = classBrowserIconService.GetIcon(e);
 text = e.Name;
 description = ambienceService.CurrentAmbience.Convert(e);
 completionString = e.Name;

Chapter 13

346

 documentation = e.Documentation;
 }

 public void InsertAction(TextAreaControl control)
 {
 ((SharpDevelopTextAreaControl)control).InsertString(completionString);
 }
 }
}

In this code snippet, we populate the completion data, and add the appropriate icons. We also add the
description strings, where available. They are used later on for the tool-tips. The information for these
descriptions cannot be obtained from the proxy classes, which we use to save memory when building
the code completion database (refer to Chapter 12). Therefore, we have to obtain this data from the real
classes represented by the proxies. At of the time of writing, the XML tags contained in the description
strings haven't been removed. This will change in the next release.

Finally, we define InsertAction for inserting the completionString into the edit buffer.

A special case of Code Completion is Template Completion. Templates are used when a code snippet is
to be inserted by using shorthand, for example, typing cwrl and then ctrl-j will insert
Console.WriteLine at the caret position. This is coded in the
TemplateCompletionDataProvider.cs file:

namespace ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor
{
 public class TemplateCompletionDataProvider : ICompletionDataProvider
 {
 public ImageList ImageList {
 get {
 return null;
 }
 }

 public ICompletionData[] GenerateCompletionData(string fileName,
 IDocumentAggregator document, char charTyped)
 {
 ArrayList completionData = new ArrayList();

 foreach (CodeTemplate template in CodeTemplateLoader.Template) {
 completionData.Add(new TemplateCompletionData(template));
 }

 return
 (ICompletionData[])completionData.ToArray(typeof(ICompletionData));
 }

 class TemplateCompletionData : ICompletionData
 {
 CodeTemplate template;

Code Completion and Method Insight

347

 public int ImageIndex {
 get {
 return 0;
 }
 }

 public string[] Text {
 get {
 return new string[] { template.Shortcut, template.Description };
 }
 }

 public string Description {
 get {
 return template.Text;
 }
 }

 public void InsertAction(TextAreaControl control)
 {
 ((SharpDevelopTextAreaControl)control).InsertTemplate(template);
 }

 public TemplateCompletionData(CodeTemplate template)
 {
 this.template = template;
 }
 }
 }
}

Another case where completion comes handy is comments. One of the features of the C# language is
the XML comment system, which greatly simplifies the task of documenting the interfaces of the code.
These comments consist of specialized XML tags inserted into a special style of single line comment.

Whenever we type an opening pointed bracket (<) in a comment line starting with three slashes, a list of
XML comment tags is displayed. These tags are paired, so that a closing tag can be automatically
inserted when the opening tag is typed in. Comment completion uses data generated by the code in
CommentCompletionDataProvider.cs:

namespace ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor
{
 public class CommentCompletionDataProvider : ICompletionDataProvider
 {
 static ClassBrowserIconsService classBrowserIconService =
 (ClassBrowserIconsService)ServiceManager.Services.
 GetService(typeof(ClassBrowserIconsService));

 static IParserService parserService = (IParserService)
 ICSharpCode.Core.Services.ServiceManager.Services.
 GetService(typeof(IParserService));

Chapter 13

348

 ICompilationUnit cu;

 int caretLineNumber;
 int caretColumn;

 string[][] commentTags = new string[][] {
 new string[] {"c", "marks text as code"},
 new string[] {"code", "marks text as code"},
 new string[] {"example", "A description of the code example\n
 (must have a <code> tag inside)"},
 new string[]
 {"exception cref=\"\"", "description to an exception thrown"},
 new string[] {"list type=\"\"", "A list"},
 new string[] {"listheader", "The header from the list"},
 new string[] {"item", "A list item"},
 new string[] {"term", "A term in a list"},
 new string[] {"description", "A description to a term in a list"},
 new string[] {"param name=\"\"", "A description for a parameter"},
 new string[] {"paramref name\"\"", "A reference to a parameter"},
 new string[] {"permission cref=\"\"", ""},
 new string[] {"remarks", "Gives description for a member"},
 new string[] {"returns", "Gives description for a return value"},
 new string[] {"see cref=\"\"", "A reference to a member"},
 new string[] {"seealso cref=\"\"",
 "A reference to a member in the seealso section"},
 new string[] {"summary", "A summary of the object"},
 new string[] {"value", "A description of a property"}
 };

 public ImageList ImageList {
 get {
 return classBrowserIconService.ImageList;
 }
 }

 // Returns true, if the given coordinates are in the region.
 bool IsBetween(int row, int column, IRegion region)
 {
 return row >= region.BeginLine &&
 (row <= region.EndLine || region.EndLine == -1);
 }

 // Returns the class in which the caret currently is, returns null
 // if the caret is outside the class boundaries.
 IClass GetCurrentClass(IDocumentAggregator document, string fileName)
 {
 if (cu != null) {
 foreach (IClass c in cu.Classes) {
 if (IsBetween(caretLineNumber, caretColumn, c.Region)) {
 return c;
 }
 }
 }

Code Completion and Method Insight

349

 return null;
 }

 public ICompletionData[] GenerateCompletionData(string fileName,
 IDocumentAggregator document, char charTyped)
 {
 caretLineNumber =
 document.GetLineNumberForOffset(document.Caret.Offset) + 1;
 caretColumn = document.Caret.Offset -
 document.GetLineSegment(caretLineNumber - 1).Offset + 1;
 IParseInformation parseInformation =
 parserService.GetParseInformation(fileName);

 if (parseInformation == null) {
 return null;
 }

 cu = parseInformation.MostRecentCompilationUnit as ICompilationUnit;
 if (cu == null) {
 return null;
 }

 IClass callingClass = GetCurrentClass(document, fileName);
 bool inComment = false;
 foreach (Comment comment in cu.DokuComments) {
 if (IsBetween(caretLineNumber, caretColumn, comment.Region)) {
 inComment = true;
 break;
 }
 }

 ArrayList completionData = new ArrayList();

 if (inComment) {
 foreach (string[] tag in commentTags) {
 completionData.Add(new CommentCompletionData(tag[0], tag[1]));
 }
 }

 return (ICompletionData[])
 completionData.ToArray(typeof(ICompletionData));
 }

 class CommentCompletionData : ICompletionData
 {
 string text;
 string description;

 public int ImageIndex {
 get {
 return classBrowserIconService.MethodIndex;
 }
 }

Chapter 13

350

 public string[] Text {
 get {
 return new string[] { text };
 }
 }

 public string Description {
 get {
 return description;
 }
 }

 public void InsertAction(TextAreaControl control)
 {
 ((SharpDevelopTextAreaControl)control).InsertString(text);
 }

 public CommentCompletionData(string text, string description)
 {
 this.text = text;
 this.description = description;
 }
 }
 }
}

Now that we have a full set of code completion data, we will move on to look at Code Completion itself.
The UML diagram, opposite, shows the implementation of Code Completion and Method Insight:

Code Completion and Method Insight

351

The UML diagrams are superficially quite similar, the differences being in the number of data providers
and the additional CompletionData interface for code completion.

Let's see how Code Completion is displayed using the data providers we examined above. The source
code is located in the CompletionWindow.cs file. The first segment looks like this:

namespace ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor
{
 public class CompletionWindow : Form
 {
 ICompletionDataProvider completionDataProvider;
 TextAreaControl control;
 ListView listView = new MyListView();
 DeclarationViewWindow declarationviewwindow =
 new DeclarationViewWindow();

Chapter 13

352

 int insertLength = 0;

 class MyListView : ListView
 {
 protected override bool ProcessDialogKey(Keys keyData)
 {
 if (keyData == Keys.Tab) {
 OnItemActivate(null);
 }
 return base.ProcessDialogKey(keyData);
 }
 }

 string GetTypedString()
 {
 return control.Document.
 GetText(control.Document.Caret.Offset - insertLength, insertLength);
 }

 void DeleteInsertion()
 {
 if (insertLength > 0) {
 control.Document.Remove
 (control.Document.Caret.Offset - insertLength, insertLength);
 control.UpdateLine(control.Document.
 GetLineNumberForOffset(control.Document.Caret.Offset), 0, 0);
 }
 }

 void ListKeypressEvent(object sender, KeyPressEventArgs ex)
 {
 switch (ex.KeyChar) {
 case (char)27: // Escape
 LostFocusListView(null, null);
 return;
 case '\b': //Backspace
 new ICSharpCode.TextEditor.Actions.Backspace().Execute(control);
 if (insertLength > 0) {
 --insertLength;
 } else {
 // no need to delete here (insertLength <= 0)
 LostFocusListView(null, null);
 }
 break;
 default:
 if (ex.KeyChar != '_' && !Char.IsLetterOrDigit(ex.KeyChar)) {
 if (listView.SelectedItems.Count > 0) {
 ActivateItem(null, null);
 } else {
 LostFocusListView(null, null);
 }
 control.KeyPressed(this, ex);
 return;
 } else {

Code Completion and Method Insight

353

 control.InsertChar(ex.KeyChar);
 ++insertLength;
 }
 break;
 }

 // select the current typed word
 int lastSelected = -1;
 int capitalizationIndex = -1;

 string typedString = GetTypedString();
 for (int i = 0; i < listView.Items.Count; ++i) {

 if (listView.Items[i].Text.ToUpper().
 StartsWith(typedString.ToUpper())) {
 int currentCapitalizationIndex = 0;
 for (int j = 0; j < typedString.Length &&
 j < listView.Items[i].Text.Length; ++j) {
 if (typedString[j] == listView.Items[i].Text[j]) {
 ++currentCapitalizationIndex;
 }
 }

 if (currentCapitalizationIndex > capitalizationIndex) {
 lastSelected = i;
 capitalizationIndex = currentCapitalizationIndex;
 }
 }
 }

 listView.SelectedItems.Clear();
 if (lastSelected != -1) {
 listView.Items[lastSelected].Focused = true;
 listView.Items[lastSelected].Selected = true;
 listView.EnsureVisible(lastSelected);
 }
 ex.Handled = true;
 }

Here, we set up things, prior to initializing code completion itself.

Then we create a form, containing a listView, to display the completion strings and their icons, and
set up key handling. Next, we select the currently typed word, as we need to determine what
suggestions for completion to display. Then we go on to initialize the listView and display it:

 void InitializeControls()
 {
 Width = 340;
 Height = 210 - 85;

Chapter 13

354

 StartPosition = FormStartPosition.Manual;
 FormBorderStyle = FormBorderStyle.None;
 TopMost = true;
 ShowInTaskbar = false;

 listView.Dock = DockStyle.Fill;
 listView.View = View.Details;
 listView.AutoArrange = true;
 listView.Alignment = ListViewAlignment.Left;
 listView.HeaderStyle = ColumnHeaderStyle.None;
 listView.Sorting = SortOrder.Ascending;
 listView.MultiSelect = false;
 listView.FullRowSelect = true;
 listView.HideSelection = false;
 listView.SmallImageList = completionDataProvider.ImageList;
 listView.KeyPress += new KeyPressEventHandler(ListKeypressEvent);

 listView.LostFocus += new EventHandler(LostFocusListView);
 listView.ItemActivate += new EventHandler(ActivateItem);
 listView.SelectedIndexChanged +=
 new EventHandler(SelectedIndexChanged);
 this.Controls.Add(listView);
 }

 // Shows the filled completion window; if it has no items it isn't shown
 public void ShowCompletionWindow(char firstChar)
 {
 FillList(true, firstChar);

 if (listView.Items.Count > 0) {
 Rectangle size =
 listView.Items[0].GetBounds(ItemBoundsPortion.Entire);

 ClientSize = new Size(size.Width +
 SystemInformation.VerticalScrollBarWidth + 4,
 size.Height * Math.Min(10, listView.Items.Count));

 declarationviewwindow.Show();
 Show();

 listView.Select();
 listView.Focus();

 listView.Items[0].Focused = listView.Items[0].Selected = true;
 control.TextAreaPainter.IHaveTheFocus = true;
 } else {
 control.Focus();
 }
 }

Code Completion and Method Insight

355

We also need to determine the position where the completion window will be drawn – for this there are
two possible scenarios:

❑ at the caret position

❑ at a predetermined position

The former is used when we would expect it: when we are typing the code. The latter when we have
completion triggered programmatically. For example, this would be the case when the Code
Completion dropdown would extend beyond the SharpDevelop window, like when editing in the last
line of the editor. Then, we will have to open its offset from the caret position. This is done by the
following code snippet:

 string fileName;

 public CompletionWindow(TextAreaControl control, string fileName,
 ICompletionDataProvider completionDataProvider)
 {
 this.fileName = fileName;
 this.completionDataProvider = completionDataProvider;
 this.control = control;

 Point caretPos =
 control.Document.OffsetToView(control.Document.Caret.Offset);

 Point visualPos = new
 Point(control.TextAreaPainter.GetVirtualPos(control.Document.
 GetLineSegmentForOffset(control.Document.Caret.Offset), caretPos.X),
 (int)((1 + caretPos.Y) * control.TextAreaPainter.FontHeight) -
 control.TextAreaPainter.ScreenVirtualTop);

 Location = control.TextAreaPainter.PointToScreen(visualPos);
 InitializeControls();
 }

 // Creates a new Completion window at a given location
 CompletionWindow(TextAreaControl control, Point location,
 ICompletionDataProvider completionDataProvider)
 {
 this.completionDataProvider = completionDataProvider;
 this.control = control;
 Location = location;
 InitializeControls();
 }

We have to handle the selection of a completion suggestion made by the user:

 void SelectedIndexChanged(object sender, EventArgs e)
 {
 if (listView.SelectedItems.Count > 0) {
 ICompletionData data =
 (ICompletionData)listView.SelectedItems[0].Tag;

Chapter 13

356

 if (data.Description != null) {
 listView.EnsureVisible(listView.SelectedIndices[0]);
 Point pos = new Point(Bounds.Right,Bounds.Top +
 listView.GetItemRect(listView.SelectedIndices[0]).Y);
 declarationviewwindow.Location = pos;
 declarationviewwindow.Description = data.Description;
 } else {
 declarationviewwindow.Size = new Size(0, 0);
 }
 }
 }

 void ActivateItem(object sender, EventArgs e)
 {
 control.TextAreaPainter.IHaveTheFocusLock = true;
 if (listView.SelectedItems.Count > 0) {
 ICompletionData data =
 (ICompletionData)listView.SelectedItems[0].Tag;
 DeleteInsertion();
 data.InsertAction(control);
 LostFocusListView(sender, e);
 }
 control.TextAreaPainter.IHaveTheFocusLock = false;
 }

Here, the Boolean control.TextAreaPainter.IHaveTheFocusLock needs special attention. We
need to take care of it, as the caret in the editor window should not be visible when the completion
window, or any other window, takes the focus away from the editor window.

Finally, we have to close the completion window when it loses the focus in its turn, and with
implementing the list called in ShowCompletionWindow:

 void LostFocusListView(object sender, EventArgs e)
 {
 control.Focus();
 declarationviewwindow.Close();
 Close();
 }

 void FillList(bool firstTime, char ch)
 {
 ICompletionData[] completionData = completionDataProvider.
 GenerateCompletionData(fileName, control.Document, ch);
 if (completionData == null || completionData.Length == 0) {
 return;
 }
 if (firstTime && completionData.Length > 0) {
 int columnHeaders = completionData[0].Text.Length;
 for (int i = 0; i < columnHeaders; ++i) {
 ColumnHeader header = new ColumnHeader();
 header.Width = -1;
 listView.Columns.Add(header);
 }

Code Completion and Method Insight

357

 }

 listView.BeginUpdate();
 foreach (ICompletionData data in completionData) {
 ListViewItem newItem = new ListViewItem(data.Text, data.ImageIndex);
 newItem.Tag = data;
 listView.Items.Add(newItem);
 }
 listView.EndUpdate();
 }

That's all we need for Code Completion. Using parse information is quite simple, isn't it? Now let's
examine the implementation of Method Insight in SharpDevelop.

Method Insight
In principle, Method Insight is similar to Code Completion. It offers a tool-tip containing the
parameters required by the method we just typed in. From our UML diagram (refer to the Code
Completion section), we can see that it is similar in basic structure but simpler, as we only have to deal
with one data provider. Also, we don't need an interface to the data, like we had for Code Completion.

The source code is contained in the directory
src\SharpDevelop\SDDefaultEditor\Gui\Editor\InsightWindow.

Let's first look at the data provider. It is implemented in the file InsightDataProvider.cs:

namespace ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor
{
 public class MethodInsightDataProvider : IInsightDataProvider
 {
 ClassBrowserIconsService classBrowserIconService =
 (ClassBrowserIconsService) ServiceManager.Services.
 GetService(typeof(ClassBrowserIconsService));
 IParserService parserService = (IParserService)ServiceManager.
 Services.GetService(typeof(IParserService));
 AmbienceService ambienceService = (AmbienceService)
 ServiceManager.Services.GetService(typeof(AmbienceService));

 string fileName = null;
 IDocumentAggregator document = null;
 MethodCollection methods = new MethodCollection();

 int caretLineNumber;
 int caretColumn;

 public int InsightDataCount {
 get {
 return methods.Count;
 }
 }

Chapter 13

358

 public string GetInsightData(int number)
 {
 IMethod method = methods[number];
 IAmbience conv = ambienceService.CurrentAmbience;
 conv.ConversionFlags = ConversionFlags.StandardConversionFlags;
 return conv.Convert(method) + "\n" + method.Documentation;
 }

Note that, to obtain the method insight data, we have used some of the services discussed in Chapter 5.

Now, we can move on to see where we are in the document, and then retrieve the information for the
method at hand:

 int initialOffset;
 public void SetupDataProvider(string fileName,
 IDocumentAggregator document)
 {
 this.fileName = fileName;
 this.document = document;
 initialOffset = document.Caret.Offset;

 string word = TextUtilities.
 GetExpressionBeforeOffset(document, document.Caret.Offset);
 string methodObject = word;
 string methodName = null;
 int idx = methodObject.LastIndexOf('.');
 if (idx >= 0) {
 methodName = methodObject.Substring(idx + 1);
 methodObject = methodObject.Substring(0, idx);
 } else {
 methodObject = "this";
 methodName = word;
 }

 if (methodName.Length == 0 || methodObject.Length == 0) {
 return;
 }

If the methods are unknown to Method Insight they need to be retrieved and stored; should they be
known but have changed (for example, we have overloaded a method), they need to be updated. The
following code snippet handles this:

 // the parser works with 1 based coordinates,
 //so we add 1 to the indices
 caretLineNumber =
 document.GetLineNumberForOffset(document.Caret.Offset) + 1;
 caretColumn = document.Caret.Offset -
 document.GetLineSegment(caretLineNumber).Offset + 1;

 bool contructorInsight = word.StartsWith("new ");
 if (contructorInsight) {
 methodObject = word.Substring(word.LastIndexOf("new ") + 4);

Code Completion and Method Insight

359

 }

 ResolveResult results = parserService.
 Resolve(methodObject, caretLineNumber, caretColumn, fileName);

 if (results != null && results.Type != null) {
 if (contructorInsight) {
 AddConstructors(results.Type);
 } else {
 foreach (IClass c in results.Type.ClassInheritanceTree) {
 AddMethods(c, methodName, false);
 }
 }
 }
 }

 bool IsAlreadyIncluded(IMethod newMethod)
 {
 foreach (IMethod method in methods) {
 if (method.Name == newMethod.Name) {
 if (newMethod.Parameters.Count != method.Parameters.Count) {
 return false;
 }

 for (int i = 0; i < newMethod.Parameters.Count; ++i) {
 if (newMethod.Parameters[i].ReturnType !=
 method.Parameters[i].ReturnType) {
 return false;
 }
 }

 // take out old method, when it isn't documented.
 if (method.Documentation == null ||
 method.Documentation.Length == 0) {
 methods.Remove(method);
 return false;
 }
 return true;
 }
 }
 return false;
 }

 void AddConstructors(IClass c)
 {
 foreach (IMethod method in c.Methods) {
 if (method.IsConstructor && !method.IsStatic) {
 methods.Add(method);
 }
 }
 }

 void AddMethods(IClass c, string methodName, bool discardPrivate)

Chapter 13

360

 {
 foreach (IMethod method in c.Methods) {
 if (!(method.IsPrivate && discardPrivate) &&
 method.Name == methodName &&
 !IsAlreadyIncluded(method)) {
 methods.Add(method);
 }
 }
 }

Of course, we also have to check for changes in the caret position, to find out whether we need Method
Insight at the new position. After all, we trigger Method Insight only under specific circumstances (when
we find ourselves at the end a method name). The case statement is used to keep track of the paired
and nested elements in our text buffer, such as bracketing:

 public bool CaretOffsetChanged()
 {
 bool closeDataProvider = document.Caret.Offset <= initialOffset;
 int brackets = 0;
 int curlyBrackets = 0;
 if (!closeDataProvider) {
 bool insideChar = false;
 bool insideString = false;
 for (int offset = initialOffset; offset <
 Math.Min(document.Caret.Offset, document.TextLength); ++offset) {
 char ch = document.GetCharAt(offset);
 switch (ch) {
 case '\'':
 insideChar = !insideChar;
 break;
 case '(':
 if (!(insideChar || insideString)) {
 ++brackets;
 }
 break;
 case ')':
 if (!(insideChar || insideString)) {
 --brackets;
 }
 if (brackets <= 0) {
 return true;
 }
 break;
 case '"':
 insideString = !insideString;
 break;
 case '}':
 if (!(insideChar || insideString)) {
 --curlyBrackets;
 }
 if (curlyBrackets < 0) {
 return true;
 }

Code Completion and Method Insight

361

 break;
 case '{':
 if (!(insideChar || insideString)) {
 ++curlyBrackets;
 }
 break;
 case ';':
 if (!(insideChar || insideString)) {
 return true;
 }
 break;
 }
 }
 }

 return closeDataProvider;
 }

 }
}

While comparing Method Insight to Code Completion, a few additional issues need to be addressed.
Constructors must have their own code in order to be handled properly. We also need to count the
curly brackets to ensure they are properly balanced.

As an additional case of our insight provider, we also have a data provider for indexers in the
IndexerInsightDataProvider.cs file. Accessing them is done through a slightly different API, so
we have this separate piece of code:

namespace ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor
{
 public class IndexerInsightDataProvider : IInsightDataProvider
 {
 ClassBrowserIconsService classBrowserIconService =
 (ClassBrowserIconsService) ServiceManager.Services.
 GetService(typeof(ClassBrowserIconsService));
 IParserService parserService = (IParserService)ServiceManager.
 Services.GetService(typeof(IParserService));
 AmbienceService ambienceService = (AmbienceService)ServiceManager.
 Services.GetService(typeof(AmbienceService));

 string fileName = null;
 IDocumentAggregator document = null;
 IndexerCollection methods = new IndexerCollection();

 public int InsightDataCount {
 get {
 return methods.Count;
 }
 }

 public string GetInsightData(int number)
 {

Chapter 13

362

 IIndexer method = methods[number];
 IAmbience conv = ambienceService.CurrentAmbience;
 conv.ConversionFlags = ConversionFlags.StandardConversionFlags;
 return conv.Convert(method) + "\n" + method.Documentation;
 }

 int initialOffset;
 public void SetupDataProvider(string fileName,
 IDocumentAggregator document)
 {
 this.fileName = fileName;
 this.document = document;
 initialOffset = document.Caret.Offset;

 string word = TextUtilities.
 GetExpressionBeforeOffset(document, document.Caret.Offset);
 string methodObject = word;

 // the parser works with 1 based coordinates
 // so we add 1 to the values
 int caretLineNumber =
 document.GetLineNumberForOffset(document.Caret.Offset) + 1;
 int caretColumn = document.Caret.Offset -
 document.GetLineSegment(caretLineNumber - 1).Offset + 1;
 ResolveResult results = parserService.Resolve(methodObject,
 caretLineNumber, caretColumn, fileName);
 if (results != null && results.Type != null) {
 foreach (IClass c in results.Type.ClassInheritanceTree) {
 foreach (IIndexer indexer in c.Indexer) {
 methods.Add(indexer);
 }
 }
 }
 }

 // caret offset handling omitted for listing
 return closeDataProvider;
 }

 public bool CharTyped()
 {
 int offset = document.Caret.Offset - 1;
 if (offset >= 0) {
 return document.GetCharAt(offset) == ']';
 }
 return false;
 }
 }
}

Comparing this to our earlier code snippet (the one we saw while looking at methods), we can see that
the big case statement, which we needed with methods, is omitted. Indexers exist only inside square
brackets, so we need not handle other cases. The code is simpler, as we do not need to look for arbitrary
methods. We know what we are looking for and where.

Code Completion and Method Insight

363

Finally, we have everything needed for displaying the method insight information. The code for this is
given in the InsightWindow.cs file.

Again, we will look at the setup first. Here, we setup a new form containing the method insight
suggestions and get our data providers ready:

namespace ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor
{
 public class InsightWindow : Form
 {
 TextAreaControl control;
 Stack insightDataProviderStack = new Stack();
 CaretEventHandler caretOffsetChangedEventHandler;
 EventHandler focusEventHandler;
 KeyPressEventHandler keyPressEventHandler;
 TextAreaControl.DialogKeyProcessor dialogKeyProcessor;

 class InsightDataProviderStackElement
 {
 public int currentData;
 public IInsightDataProvider dataProvider;

 public InsightDataProviderStackElement(IInsightDataProvider
 dataProvider)
 {
 this.currentData = 0;
 this.dataProvider = dataProvider;
 }
 }

 public void AddInsightDataProvider(IInsightDataProvider provider)
 {
 provider.SetupDataProvider(fileName, control.Document);
 if (provider.InsightDataCount > 0) {
 insightDataProviderStack.
 Push(new InsightDataProviderStackElement(provider));
 }
 }

 int CurrentData {
 get {
 return ((InsightDataProviderStackElement)
 insightDataProviderStack.Peek()).currentData;
 }
 set {
 ((InsightDataProviderStackElement)
 insightDataProviderStack.Peek()).currentData = value;
 }
 }

 IInsightDataProvider DataProvider {
 get {
 if (insightDataProviderStack.Count == 0) {

Chapter 13

364

 return null;
 }
 return ((InsightDataProviderStackElement)
 insightDataProviderStack.Peek()).dataProvider;
 }
 }

 void CloseCurrentDataProvider()
 {
 insightDataProviderStack.Pop();
 if (insightDataProviderStack.Count == 0) {
 Close();
 } else {
 resized = false;
 Refresh();
 }
 }

Then, we will display our method insight information:

 public void ShowInsightWindow()
 {
 if (!Visible) {
 if (insightDataProviderStack.Count > 0) {
 control.TextAreaPainter.IHaveTheFocusLock = true;
 Show();
 dialogKeyProcessor =
 new TextAreaControl.DialogKeyProcessor(ProcessTextAreaKey);
 control.ProcessDialogKeyProcessor += dialogKeyProcessor;
 control.Focus();
 control.TextAreaPainter.IHaveTheFocus = true;
 control.TextAreaPainter.IHaveTheFocusLock = false;
 }
 } else {
 resized = false;
 Refresh();
 }
 }
 string fileName;

 public InsightWindow(TextAreaControl control, string fileName)
 {
 this.control = control;
 this.fileName = fileName;
 Point caretPos =
 control.Document.OffsetToView(control.Document.Caret.Offset);
 Point visualPos = new
 Point(control.TextAreaPainter.GetVirtualPos(control.Document.
 GetLineSegmentForOffset(control.Document.Caret.Offset), caretPos.X),
 (int)((1 + caretPos.Y) * control.TextAreaPainter.FontHeight) -
 control.TextAreaPainter.ScreenVirtualTop);

Code Completion and Method Insight

365

 focusEventHandler = new EventHandler(TextEditorLostFocus);
 caretOffsetChangedEventHandler =
 new CaretEventHandler(CaretOffsetChanged);

 control.TextAreaPainter.IHaveTheFocusChanged += focusEventHandler;
 control.Document.Caret.OffsetChanged +=
 caretOffsetChangedEventHandler;
 keyPressEventHandler = new KeyPressEventHandler(KeyPressEvent);
 control.TextAreaPainter.KeyPress += keyPressEventHandler;

 Location = control.TextAreaPainter.PointToScreen(visualPos);

 StartPosition = FormStartPosition.Manual;
 FormBorderStyle = FormBorderStyle.None;
 TopMost = true;
 ShowInTaskbar = false;
 Size = new Size(0, 0);

 SetStyle(ControlStyles.UserPaint, true);
 SetStyle(ControlStyles.DoubleBuffer, true);
 }

 // Methods that are inserted into the TextArea :
 bool ProcessTextAreaKey(Keys keyData)
 {
 switch (keyData) {
 case Keys.Escape:
 Close();
 return true;
 case Keys.Down:
 if (DataProvider != null && DataProvider.InsightDataCount > 0) {
 CurrentData = (CurrentData + 1) % DataProvider.InsightDataCount;
 resized = false;
 Refresh();
 }
 return true;
 case Keys.Up:
 if (DataProvider != null && DataProvider.InsightDataCount > 0) {
 CurrentData = (CurrentData + DataProvider.InsightDataCount - 1)
 % DataProvider.InsightDataCount;
 resized = false;
 Refresh();
 }
 return true;
 }
 return false;
 }

In the case of Method Insight, we use a TextArea control for display. The rest of the code is similar to
what we discussed earlier for handling user actions and caret changes, so we won't discuss it.

In this chapter, we have seen two powerful uses of the parse information; in the next chapter we will
move on to another very interesting use – code navigation using the Class Scout.

Chapter 13

366

Summary
In this chapter, we discussed the issues involved in helping the user to rapidly write the code without
having to refer to external documentation of classes and their members. We then examined how we can
harness the information provided by SharpDevelop's Parser service to this end.

We learned about the role of the Resolver in providing parse information and looked at how this
information is made available for Code Completion and Method Insight.

We then looked at providing the data needed to the Code Completion system and discussed data
provision for general Code Completion and for Template Completion. We also examined the
implementation of Code Completion, including handling the focus changes between windows.

Finally, we looked at Method Insight, and the differences in its implementation as compared to
Code Completion.

Code Completion and Method Insight

367

Chapter 13

368

Navigating Code with the Class
Scout and the Assembly Scout

The source code for SharpDevelop contains more than 1,600 files, most of them containing a class each.
In such a huge project, is there a way to quickly find the implementation of an individual class and its
members? Besides, what about the references to external assemblies, what do they contain? How can we
access them?

Agreed, files are named according to the class they contain, directories and paths correspond to the
namespaces, but wouldn't it be nice to have a way to see all the classes in a project and open the source
file for that class just by clicking? Even for smaller projects, this sounds like a good idea.

In this chapter, we will look at a way of using the parse information to answer these questions. We will
be examining the Class Scout and Assembly Scout, which make it possible for us to navigate through
the various classes and assemblies involved in our project.

Let's begin our discussion with the Class Scout.

The Class Scout
In programming, finding the source code for a given class in a project is a frequent task, be it for
reference or be it for working on the code of the class. In case of big projects, the task of finding the
appropriate file can be tiresome, if performed manually.

To address this problem, we have implemented a Class Scout in SharpDevelop that allows us to browse
all the classes available to us in our project. As we learned in Chapter 12, the information needed to
identify the classes used by our code is easily available.

14

Chapter 14

370

Implementing the Class Scout
Let's look at a simplified UML diagram showing the implementation of the Class Scout:

<<Interface>>
IClassBrowserNodeBuilder

+CanBuildClass Tree()
+BuildClass TreeNode()
+UpdateClass Tree()

ClassBrowser 1

1

*

*

AbstractClassBrowserNode

-ContextmenuAddinTreePath

The Class Scout provides an interface and defines an Addin tree node for its context menu. It's no big
deal, but the code behind it is quite interesting.

Let's start our discussion by examining the code in ClassScout.cs file, which is located in the
src\SharpDevelop\Base\Gui\Pads\ClassScout directory:

namespace ICSharpCode.SharpDevelop.Gui.Pads
{
 public class ClassScoutTag
 {
 int line;
 string filename;

 public int Line {
 get {
 return line;
 }
 }

 public string FileName {
 get {
 return filename;
 }
 }

 public ClassScout (int line, string filename)
 {
 this.line = line;
 this.filename = filename;
 }
 }

 // This class is the project scout tree view
 public class ClassScout : TreeView, IPadContent
 {

Navigating Code with the Class Scout and the Assembly Scout

371

 Panel contentPanel = new Panel();
 int imageIndexOffset = -1;
 ResourceService resourceService = (ResourceService)
 ServiceManager.Services.GetService(typeof(ResourceService));

 IClassScoutScoutNodeBuilder[] classScoutScoutNodeBuilders =
 new IClassScoutNodeBuilder[] {
 new DefaultDotNetClassScoutNodeBuilder()
 };

 public string Title {
 get {
 return
 resourceService.GetString("MainWindow.Windows.ClassScoutLabel");
 }
 }

 public Bitmap Icon {
 get {
 return resourceService.GetBitmap("Icons.16x16.Class");
 }
 }

 public Control Control {
 get {
 return contentPanel;
 }
 }

In this code snippet, we set up a couple of things:

❑ Class Scout tags These tags are necessary for providing the jump points necessary when
clicking on a class in the class scout. For this functionality, each class member in the tree must
be provided with the filename and line number.

❑ The Class Scout, as a tree view. The tree view of the classes and their members is displayed in
a SharpDevelop pad.

Now, we will move on to the code responsible for setting up the class scout:

 public ClassScout()
 {
 ClassScoutIconsService classScoutIconService =
 (ClassScoutIconsService)ServiceManager.Services.
 GetService(typeof(ClassScoutIconsService));

 this.ImageList = classScoutIconService.ImageList;

 imageIndexOffset = ImageList.Images.Count;
 FileUtilityService fileUtilityService = (FileUtilityService)
 ServiceManager.Services.GetService(typeof(FileUtilityService));

Chapter 14

372

 foreach (Image img in fileUtilityService.ImageList.Images) {
 ImageList.Images.Add(img);
 }

 LabelEdit = false;
 HotTracking = false;
 AllowDrop = true;
 HideSelection = false;
 Dock = DockStyle.Fill;

 IProjectService projectService = (IProjectService)
 ICSharpCode.Core.Services.ServiceManager.Services.
 GetService(typeof(IProjectService));

 projectService.CombineOpened +=
 new CombineEventHandler(OnCombineOpen);
 projectService.CombineClosed +=
 new CombineEventHandler(OnCombineClosed);

 IParserService parserService = (IParserService)ICSharpCode.Core.
 Services.ServiceManager.Services.GetService(typeof(IParserService));

 contentPanel.Controls.Add(this);
 AmbienceService ambienceService = (AmbienceService)
 ServiceManager.Services.GetService(typeof(AmbienceService));
 ambienceService.AmbienceChanged +=
 new EventHandler(AmbienceChangedEvent);
 }

This snippet sets options for the display (of the scout), and the various services and event handlers that
can be connected to the events of other classes, we are interested in.

The next snippet deals with updating the display:

 void AmbienceChangedEvent(object sender, EventArgs e)
 {
 if (parseCombine != null) {
 DoPopulate();
 }
 }

By changing the ambience, the display of classes information can be adapted to the user's preference;
C#, Visual Basic, and .NET styles are available. The Ambience service was discussed in Chapter 5.

Then comes the code for updating the parse information in the tree:

 void UpdateParseInformation(TreeNodeCollection nodes,
 ParseInformationEventArgs e)
 {
 foreach (TreeNode node in nodes) {
 if (node.Tag is IProject) {
 IProject p = (IProject)node.Tag;

Navigating Code with the Class Scout and the Assembly Scout

373

 if (p.IsFileInProject(e.FileName)) {
 foreach (IClassScoutNodeBuilder classScoutNodeBuilder in
 classScoutNodeBuilders) {
 if (classScoutNodeBuilder.CanBuildClassTree(p)) {
 classScoutNodeBuilder.UpdateClassTree(node, e);
 }
 }
 }
 }
 }
 }

Next, we will examine the code needed for opening the file containing the class selected by the user:

protected override void OnDoubleClick(EventArgs e)
 {
 base.OnDoubleClick(e);
 TreeNode node = SelectedNode;
 ClassScoutTag tag = node.Tag as ClassScoutTag;
 if (tag != null) {
 IFileService fileService =
 (IFileService)ICSharpCode.Core.Services.ServiceManager.Services.
 GetService(typeof(IFileService));
 fileService.OpenFile(tag.FileName);

 IViewContent content =
 fileService.GetOpenFile(tag.FileName).ViewContent;
 if (content is IPositionable) {
 if (tag.Line > 0) {
 ((IPositionable)content).JumpTo(new Point(0, tag.Line - 1));
 content.Control.Focus();
 }
 }
 }
 }

Here, we use the ClassScoutTag to retrieve the name of the required file, open it as a content of the
editor window, and finally jump to the appropriate line where the desired class is defined.

The following snippet populates the tree view by making a call to the Populate method (it is explained
later in this section):

 void DoPopulate()
 {
 BeginUpdate();
 Nodes.Clear();
 try {
 Populate(parseCombine, Nodes);
 } catch (Exception e) {
 MessageBox.Show(e.ToString(), "Parse Error", MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 }

Chapter 14

374

 EndUpdate();
 }

If an error occurs while parsing the file, we need to handle it. Such errors can occur when the parser
runs into syntactically incorrect code, or when the file is damaged. The code snippet that we just
examined handles these types of errors.

Parsing is started in a new thread; otherwise, SharpDevelop would be 'blocked' while the file was being
parsed. As Combines in SharpDevelop are made up of Projects, we need to parse the files contained in
both the Projects and sub-projects:

 Combine parseCombine;

 delegate void MyD();

 void StartPopulating()
 {
 StartParser();
 Invoke(new MyD(DoPopulate));
 }

 void StartParser()
 {
 ParseCombine(parseCombine);
 }

 void StartCombineparse(Combine combine)
 {
 parseCombine = combine;

 System.Threading.Thread t =
 new Thread(new ThreadStart(StartPopulating));
 t.IsBackground = true;
 t.Priority = ThreadPriority.Lowest;
 t.Start();
 }

 public void ParseCombine(Combine combine)
 {
 foreach (CombineEntry entry in combine.Entries) {
 if (entry is ProjectCombineEntry) {
 ParseProject(((ProjectCombineEntry)entry).Project);
 } else {
 ParseCombine(((CombineCombineEntry)entry).Combine);
 }
 }
 }

 void ParseProject(IProject p)
 {
 if (p.ProjectType == "C#") {
 foreach (ProjectFile finfo in p.ProjectFiles) {
 if (finfo.BuildAction == BuildAction.Compile) {

Navigating Code with the Class Scout and the Assembly Scout

375

 IParserService parserService =
 (IParserService)ICSharpCode.Core.Services.
 ServiceManager.Services.GetService(typeof(IParserService));
 parserService.ParseFile(finfo.Name);
 }
 }
 }
 }

Currently parsing of C# is supported; there are plans to add support for Visual Basic. NET.

Now that we have successfully parsed our Combine, let's look at the Populate method that populates
the tree:

 void Populate(IProject p, TreeNodeCollection nodes)
 {
 // only C# is currently supported.
 bool builderFound = false;
 foreach (IClassScoutNodeBuilder classScoutNodeBuilder in
 classScoutNodeBuilders) {
 if (classScoutNodeBuilder.CanBuildClassTree(p)) {
 TreeNode prjNode =
 classScoutNodeBuilder.BuildClassTreeNode(p, imageIndexOffset);
 nodes.Add(prjNode);
 prjNode.Tag = p;
 builderFound = true;
 break;
 }
 }

 // no builder found -> create 'dummy' node
 if (!builderFound) {
 TreeNode prjNode = new TreeNode(p.Name);
 FileUtilityService fileUtilityService = (FileUtilityService)
 ServiceManager.Services.GetService(typeof(FileUtilityService));
 prjNode.SelectedImageIndex = prjNode.ImageIndex = imageIndexOffset +
 fileUtilityService.GetImageIndexForProjectType(p.ProjectType);
 prjNode.Nodes.Add(new TreeNode("No class builder found"));
 prjNode.Tag = p;
 nodes.Add(prjNode);

 }
 }

 public void Populate(Combine combine, TreeNodeCollection nodes)
 {
 ClassScoutIconsService classScoutIconService =
 (ClassScoutIconsService)ServiceManager.
 Services.GetService(typeof(ClassScoutIconsService));
 TreeNode combineNode = new TreeNode(combine.Name);
 combineNode.SelectedImageIndex = combineNode.ImageIndex =
 classScoutIconService.CombineIndex;
 foreach (CombineEntry entry in combine.Entries) {

Chapter 14

376

 if (entry is ProjectCombineEntry) {
 Populate(((ProjectCombineEntry)entry).Project, combineNode.Nodes);
 } else {
 Populate(((CombineCombineEntry)entry).Combine, combineNode.Nodes);
 }
 }
 nodes.Add(combineNode);
 }

For populating the tree, we add entries for each class and its members containing the name, an image
corresponding to the type, and the tag. As shown in the code snippet, the Populate method is
recursive, thereby allowing us to handle nestled Combines. In SharpDevelop, for projects beyond a
minimal size nested combines make sense, as this will make the development process more modular, so
nestled Combines are common.

To complete our Class Scout, we have to provide the code for opening and closing the combines, and
also, for navigating the tree view by using the mouse:

 void OnCombineOpen(object sender, CombineEventArgs e)
 {
 Nodes.Clear();
 Nodes.Add(new TreeNode("Loading..."));
 StartCombineparse(e.Combine);
 }

In the above code snippet, we begin to build the tree. We set a temporary node to indicate the process
has begun and then start the real work of parsing the Combine.

Now, we will move on to the other end of the process – closing combines. This is simple, but we also
need to examine the handling of mouse clicks, so that a tree made up of several combines expands and
collapses properly:

 void OnCombineClosed(object sender, CombineEventArgs e)
 {
 Nodes.Clear();
 }

 protected override void OnMouseDown(MouseEventArgs e)
 {
 TreeNode node = (TreeNode)GetNodeAt(e.X, e.Y);

 if (node != null) {
 SelectedNode = node;
 }
 base.OnMouseDown(e);
 }

This snippet sets a node as active when we click on it.

Navigating Code with the Class Scout and the Assembly Scout

377

Next, we need to open up the sub-tree and populate it in case of a left click; if it's a right click then we
have to pop up a context menu:

 protected override void OnMouseUp(MouseEventArgs e)
 {
 if (e.Button == MouseButtons.Right && SelectedNode != null &&
 SelectedNode is AbstractClassScoutNode) {
 AbstractClassScoutNode selectedScoutNode =
 (AbstractClassScoutNode)SelectedNode;
 if (selectedScoutNode.ContextmenuAddinTreePath != null &&
 selectedScoutNode.ContextmenuAddinTreePath.Length > 0) {
 MenuCommand[] contextMenu =
 (MenuCommand[])(AddInTreeSingleton.AddInTree.GetTreeNode
 (selectedScoutNode.ContextmenuAddinTreePath).
 BuildChildItems(this)).ToArray(typeof(MenuCommand));
 if (contextMenu.Length > 0) {
 PopupMenu popup = new PopupMenu();
 PropertyService propertyService = (PropertyService)
 ServiceManager.Services.GetService(typeof(PropertyService));
 popup.Style = (Crownwood.Magic.Common.VisualStyle)
 propertyService.GetProperty
 ("ICSharpCode.SharpDevelop.Gui.VisualStyle",
 Crownwood.Magic.Common.VisualStyle.IDE);
 popup.MenuCommands.AddRange(contextMenu);
 popup.TrackPopup(PointToScreen(new Point(e.X, e.Y)));
 return;
 }
 }
 }
 base.OnMouseUp(e);
 }

If the type of the class member changes, we need to handle display-related events, like changing the
name of the title and associated icon:

 protected virtual void OnTitleChanged(EventArgs e)
 {
 if (TitleChanged != null) {
 TitleChanged(this, e);
 }
 }

 protected virtual void OnIconChanged(EventArgs e)
 {
 if (IconChanged != null) {
 IconChanged(this, e);
 }
 }

 public event EventHandler TitleChanged;
 public event EventHandler IconChanged;
 }

Chapter 14

378

This part of the code is simple, except for one item – the pop up menu. This menu for the Class Scout is
a new feature of SharpDevelop, and provides further functionality by using the class information.

At the time of writing, this menu contains only one item – ExportSignature. This option exports the
signature of a class, interface, or method to the clipboard, from where it can be easily pasted into other
places. This is extremely useful while making the documentation for our classes. One of our motivations
behind this was to make our lives as authors of this book easier.

We have plans to add other features, such as sorting the tree by name or type, exporting the class tree to
XML (for easier documentation), and so on; if you have some good ideas feel free to contact us or even
better, you can contribute them!

Now, let's move on to the actual building of the tree and its nodes. This is done by the code contained
in the file
src\SharpDevelop\Base\Gui\Pads\ClassScout\NodeBuilder\DefaultDotNetClassScoutN
odeBuilder.cs:

namespace ICSharpCode.SharpDevelop.Gui.Pads
{
 public class DefaultDotNetClassScoutNodeBuilder : IClassScoutNodeBuilder
 {
 int imageIndexOffset;
 IAmbience languageConversion;

 public DefaultDotNetClassScoutNodeBuilder()
 {
 }

 public bool CanBuildClassTree(IProject project)
 {
 return true;
 }

 void GetCurrentAmbience ()
 {
 ClassScoutIconsService classScoutIconService =
 (ClassScoutIconsService)ServiceManager.Services.
 GetService(typeof(ClassScoutIconsService));
 AmbienceService ambienceService = (AmbienceService)ServiceManager.
 Services.GetService(typeof(AmbienceService));

 languageConversion = ambienceService.CurrentAmbience;
 languageConversion.ConversionFlags = ConversionFlags.None;
 }

 public TreeNode BuildClassTreeNode(IProject p, int imageIndexOffset)
 {
 GetCurrentAmbience();
 this.imageIndexOffset = imageIndexOffset;
 TreeNode prjNode = new AbstractClassScoutNode(p.Name);
 FileUtilityService fileUtilityService = (FileUtilityService)
 ServiceManager.Services.GetService(typeof(FileUtilityService));
 prjNode.SelectedImageIndex = prjNode.ImageIndex = imageIndexOffset +

Navigating Code with the Class Scout and the Assembly Scout

379

 fileUtilityService.GetImageIndexForProjectType(p.ProjectType);

 foreach (ProjectFile finfo in p.ProjectFiles) {
 if (finfo.BuildAction == BuildAction.Compile) {
 int i = 0;
 IParserService parserService =
 (IParserService)ICSharpCode.Core.Services.ServiceManager.
 Services.GetService(typeof(IParserService));
 if (parserService.GetParser(finfo.Name) == null) {
 continue;
 }
 while (parserService.GetParseInformation(finfo.Name) == null) {
 Thread.Sleep(100);
 if (i++ > 5) {
 break;
 }
 }
 if (parserService.GetParseInformation(finfo.Name) == null) {
 continue;
 }
 IParseInformation parseInformation =
 parserService.GetParseInformation(finfo.Name);
 if (parseInformation != null) {
 ICompilationUnit unit = parseInformation.BestCompilationUnit as
 ICompilationUnit;
 if (unit != null) {
 foreach (IClass c in unit.Classes) {
 TreeNode node = GetPath(c.Namespace, prjNode.Nodes, true);
 if (node == null) {
 node = prjNode;
 }
 Insert(node.Nodes, finfo.Name, c);
 }
 }
 }
 }
 }
 return prjNode;
 }

 TreeNode GetNodeFromCollectionTreeByName(TreeNodeCollection collection,
 string name)
 {
 foreach (TreeNode node in collection) {
 if (node.Text == name) {
 return node;
 }
 }
 return null;
 }

Chapter 14

380

This code snippet sets up the requirements, such as the ambience to be used for the tree, for the build
process and then proceeds to build the nodes. While building, we have to check whether the parser
thread has returned the necessary information, if not, we have to wait until it does so. The following
code snippet handles this (it is a part of the code snippet given above):

while (parserService.GetParseInformation(finfo.Name) == null) {
 Thread.Sleep(100);
 if (i++ > 5) {
 break;
 }
 }
 if (parserService.GetParseInformation(finfo.Name) == null) {
 continue;
 }
 IParseInformation parseInformation =
 parserService.GetParseInformation(finfo.Name);
 if (parseInformation != null) {
 ICompilationUnit unit = parseInformation.BestCompilationUnit as
 ICompilationUnit;
 if (unit != null) {
 foreach (IClass c in unit.Classes) {
 TreeNode node = GetPath(c.Namespace, prjNode.Nodes, true);
 if (node == null) {
 node = prjNode;
 }
 Insert(node.Nodes, finfo.Name, c);
 }
 }

On finding no valid parse information, we either sleep for a predetermined time or try to determine the
compilation unit to be used for populating the tree. Compilation units were discussed in Chapter 8. The
tree nodes are then added to a collection.

 public TreeNode GetPath(string directory, TreeNodeCollection root,
 bool create)
 {
 ClassScoutIconsService classScoutIconService =
 (ClassScoutIconsService) ServiceManager.
 Services.GetService(typeof(ClassScoutIconsService));

 string[] treepath = directory.Split(new char[] { '.' });
 TreeNodeCollection curcollection = root;
 TreeNode curnode = null;

 foreach (string path in treepath) {

 if (path.Length == 0 || path[0] == '.') {
 continue;
 }

 TreeNode node =
 GetNodeFromCollectionTreeByName(curcollection, path);
 if (node == null) {

Navigating Code with the Class Scout and the Assembly Scout

381

 if (create) {
 TreeNode newnode = new AbstractClassScoutNode(path);
 newnode.ImageIndex = newnode.SelectedImageIndex =
 classScoutIconService.NamespaceIndex;

 curcollection.Add(newnode);
 curnode = newnode;
 curcollection = curnode.Nodes;
 continue;
 } else {
 return null;
 }
 }
 curnode = node;
 curcollection = curnode.Nodes;
 }
 return curnode;
 }

Now, all that is left for building the tree is to insert the nodes of the collection into the tree proper:

 void Insert(TreeNodeCollection nodes, string filename, IClass c)
 {
 ClassScoutIconsService classScoutIconService =
 (ClassScoutIconsService)ServiceManager.Services.
 GetService(typeof(ClassScoutIconsService));
 AbstractClassScoutNode cNode = new AbstractClassScoutNode(c.Name);
 cNode.SelectedImageIndex = cNode.ImageIndex =
 classScoutIconService.GetIcon(c);
 cNode.ContextmenuAddinTreePath =
 "/SharpDevelop/Views/ClassScout/ContextMenu/ClassNode";

 cNode.Tag = new ClassScoutTag(c.Region.BeginLine, filename);

 nodes.Add(cNode);
 // don't insert delegate 'members'
 if (c.ClassType == ClassType.Delegate) {
 return;
 }

 TreeNode cbNode;

 foreach (IClass innerClass in c.InnerClasses) {
 if (innerClass.ClassType == ClassType.Delegate) {
 cbNode = new
 AbstractClassScoutNode(languageConversion.Convert(innerClass));
 cbNode.Tag =
 new ClassScoutTag(innerClass.Region.BeginLine, filename);
 cbNode.SelectedImageIndex = cbNode.ImageIndex =
 classScoutIconService.GetIcon(innerClass);
 cNode.Nodes.Add(cbNode);
 } else {
 Insert(cNode.Nodes, filename, innerClass);

Chapter 14

382

 }
 }

 foreach (IMethod method in c.Methods) {
 cbNode =
 new AbstractClassScoutNode(languageConversion.Convert(method));
 cbNode.Tag = new ClassScoutTag(method.Region.BeginLine, filename);
 cbNode.SelectedImageIndex = cbNode.ImageIndex =
 classScoutIconService.GetIcon(method);
 cNode.Nodes.Add(cbNode);
 }

 foreach (IProperty property in c.Properties) {
 cbNode =
 new AbstractClassScoutNode(languageConversion.Convert(property));
 cbNode.Tag = new ClassScoutTag(property.Region.BeginLine, filename);
 cbNode.SelectedImageIndex = cbNode.ImageIndex =
 classScoutIconService.GetIcon(property);
 cNode.Nodes.Add(cbNode);
 }

 foreach (IField field in c.Fields) {
 cbNode =
 new AbstractClassScoutNode(languageConversion.Convert(field));
 cbNode.Tag = new ClassScoutTag(field.Region.BeginLine, filename);

 cbNode.SelectedImageIndex = cbNode.ImageIndex =
 classScoutIconService.GetIcon(field);
 cNode.Nodes.Add(cbNode);
 }

 foreach (IEvent e in c.Events) {
 cbNode = new AbstractClassScoutNode(languageConversion.Convert(e));
 cbNode.Tag = new ClassScoutTag(e.Region.BeginLine, filename);
 cbNode.SelectedImageIndex = cbNode.ImageIndex =
 classScoutIconService.GetIcon(e);
 cNode.Nodes.Add(cbNode);
 }
 }

Here, the images associated with the tree nodes are obtained using classScoutIconService; we
have discussed this service in Chapter 5.

Now, we need a class for displaying the nodes in the Class Scout and we need to make the tree nodes
aware of the context menu. These tasks are handled by the code in
src\SharpDevelop\Base\Gui\Pads\ClassScout\ScoutNode\AbstractClassScoutNode.cs:

namespace ICSharpCode.SharpDevelop.Gui.Pads
{
 public class AbstractClassScoutNode : TreeNode
 {
 protected string contextmenuAddinTreePath = String.Empty;

Navigating Code with the Class Scout and the Assembly Scout

383

 // We choose to return the add-in tree path instead of a popup menu
 // or a menuitem collection, because we don't want to add a
 // Magic library or Windows.Forms dependency.
 public virtual string ContextmenuAddinTreePath {
 get {
 return contextmenuAddinTreePath;
 }
 set {
 contextmenuAddinTreePath = value;
 }
 }

 public AbstractClassScoutNode(string name) : base(name)
 {
 }
 }
}

Note that, this is not really an abstract base class; we call it abstract because we plan to make it abstract
in future, just as we plan to do with BuildClassTreeNode.

We didn't use a popup or menu item collection as we wanted to minimize the number of dependencies
on features specific to a given platform. Furthermore, this makes it easier to switch platforms, should we
need to do so. A possible case where this would be necessary is in porting SharpDevelop to other .Net
implementations, such as DotGNU or Mono on Linux systems. This completes our discussion about the
Class Scout.

Displaying classes and their members is quite useful, but what about references? Assemblies and DLLs,
also, contain information that we might want to look at. The next section will provide us with a solution
for this problem.

The Assembly Scout
The Assembly Scout allows us to investigate assemblies and DLLs that we want to reference in our
projects, or which contain functionality we want to implement ourselves. We will first look at the
features of the scout and then discuss its implementation.

Markus Palme has contributed most of the code for this section.

Browsing References with an Assembly Scout
The Assembly Scout can be accessed in two ways, either by using the File | Open | File menu item to
open an assembly or a DLL, or by navigating to a reference in the current project using the Project
Scout and then double-clicking on the reference. Now, let's take a short tour of the Assembly Scout:

Chapter 14

384

In the screenshot, the Assembly Scout was started by double-clicking a reference in the Project Scout. It
consists of two panels. The first one is a tree view representing classes and members, similar to the Class
Scout, grouped with a Search tab in the left hand pane. The right-hand pane contains information about
the tree node that is highlighted in the left-hand pane. This pane offers three tabs for displaying
information.

Currently, the disassembly information is shown, as this is always available for any reference. Now, we
will switch the tabs to display the source code, as shown:

Navigating Code with the Class Scout and the Assembly Scout

385

Here, we can see the source code for the same DLL file. If the source code isn't available then the pane
will simply display Source view not available. Since we do not have a decompiler available, we can
only see the skeleton of the code. Clicking the XML tab will display the following:

To make documentation tasks easier, the Assembly Scout allows us to export XML data describing the
reference. This way, references can be easily incorporated with other XML documents, to generate
other forms of documentation using XSLT.

Now that we have seen what the Assembly Scout is, let's move on to look at how this is achieved.

Writing the Assembly Scout
The Assembly Scout resides in the src\BackendBindings\ObjectBrowser\src directory.

At first this might seem a little illogical, since most of the back-end bindings that we discussed up to now
were concerned with programming languages and compilers. However, the display bindings (including
the Assembly Scout) are also back-end bindings, as they are not a part of SharpDevelop's Core, but may
be exchanged when necessary.

We will begin by looking at how the Assembly Scout displays its information and then will work our
way down through the code. We will start our discussion with the DisplayInformation.cs file,
which implements the Assembly Scout as a view (that is, as a Display Binding):

namespace AssemblyScout
{
 public class DisplayInformation : IDisplayBinding
 {

Chapter 14

386

 public bool CanCreateContentForFile(string fileName)
 {
 return Path.GetExtension(fileName) == ".dll" ||
 Path.GetExtension(fileName) == ".exe";
 }

 public bool CanCreateContentForLanguage(string language)
 {
 return false;
 }

 public IViewContent CreateContentForFile(string fileName)
 {
 DisplayInformationWrapper wrapper = new DisplayInformationWrapper();
 wrapper.LoadFile(fileName);
 return wrapper;
 }

 public IViewContent CreateContentForLanguage(string language,
 string content)
 {
 return null;
 }
 }

We first check whether we can actually create content for the Scout, depending on whether the
assembly file (a DLL) can be accessed, and whether we can handle the language. If both checks are
successful, we can create the content. Then, we create the view containing our content:

 public class DisplayInformationWrapper : IViewContent
 {
 string filename = "";
 public MagicControls.TabControl tctrl;

 Control control = null;
 ReflectionTree tree = null;
 public Control Control {
 get {
 return control;
 }
 }

 string untitledName = "";
 public string UntitledName {
 get {
 return untitledName;
 }
 set {
 untitledName = value;
 }
 }

Navigating Code with the Class Scout and the Assembly Scout

387

 public string ContentName {
 get {
 return filename;
 }
 set {
 filename = value;
 OnContentNameChanged(null);
 }
 }

 public bool IsUntitled {
 get {
 return ContentName == null;
 }
 }

 public bool IsDirty {
 get {
 return false;
 }
 set {
 }
 }

 public bool IsReadOnly {
 get {
 return false;
 }
 }
 public bool IsViewOnly {
 get {
 return true;
 }
 }

 IWorkbenchWindow workbenchWindow;

 public IWorkbenchWindow WorkbenchWindow {
 get {
 return workbenchWindow;
 }
 set {
 workbenchWindow = value;
 workbenchWindow.Title = filename;
 }
 }

Then, we set up our view by using the tab controls of the Magic Library for navigating the tabs in the
Scout and create a window for the Reflection tree view. Finally, we set up a Workbench window for
displaying the Assembly Scout. We then create the content:

public bool CanCreateContentForFile(string fileName)
 {

Chapter 14

388

 return Path.GetExtension(fileName) == ".dll" ||
 Path.GetExtension(fileName) == ".exe";
 }

 public bool CanCreateContentForLanguage(string language)
 {
 return false;
 }

 public IViewContent CreateContentForFile(string fileName)
 {
 LoadFile(fileName);
 return this;
 }
 public void Undo()
 {
 }
 public void Redo()
 {
 }

 public IViewContent CreateContentForLanguage(string language,
 string content)
 {
 return null;
 }

 public void LoadFile(string filename)
 {
 tree.LoadFile(filename);
 this.filename = filename;
 OnContentNameChanged(null);
 }

 public void SaveFile(string filename)
 {
 }

 public void OnContentNameChanged(EventArgs e)
 {
 if (ContentNameChanged != null) {
 ContentNameChanged(this, e);
 }
 }
 public void OnDirtyChanged(EventArgs e)
 {
 if (DirtyChanged != null) {
 DirtyChanged(this, e);
 }
 }
 public event EventHandler ContentNameChanged;
 public event EventHandler DirtyChanged;

Navigating Code with the Class Scout and the Assembly Scout

389

We can create the content only for a .dll or .exe file. Loading the files is delegated. We also set up
event handling for changes to the information displayed. Now we get to the central routine for setting
up the display:

 public DisplayInformationWrapper()
 {
 Panel panel = new Panel();
 panel.Dock = DockStyle.Fill;

 tctrl = new MagicControls.TabControl();
 tctrl.Dock = DockStyle.Fill;
 tctrl.Dock = DockStyle.Left;
 tctrl.Width = 350;

 MagicControls.TabPage treeviewpage =
 new MagicControls.TabPage("Tree");
 treeviewpage.Icon = resourceService.GetIcon("Icons.16x16.Class");
 ReflectionTree reflectiontree = new ReflectionTree();
 this.tree = reflectiontree;
 treeviewpage.Controls.Add(reflectiontree);
 tctrl.TabPages.Add(treeviewpage);

 MagicControls.TabPage indexviewpage =
 new MagicControls.TabPage("Search");
 indexviewpage.Icon = resourceService.GetIcon("Icons.16x16.FindIcon");
 ReflectionSearchPanel SearchPanel =
 new ReflectionSearchPanel(reflectiontree);
 SearchPanel.ParentDisplayInfo = this;
 indexviewpage.Controls.Add(SearchPanel);
 tctrl.TabPages.Add(indexviewpage);

 Splitter vsplitter = new Splitter();
 vsplitter.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D;

 vsplitter.Location = new System.Drawing.Point(0, 200);
 vsplitter.TabIndex = 5;
 vsplitter.TabStop = false;
 vsplitter.Size = new System.Drawing.Size(3, 273);
 vsplitter.Dock = DockStyle.Left;

 Splitter hsplitter = new Splitter();
//code omitted from listing

 MagicControls.TabControl tctrl2 = new MagicControls.TabControl();
 tctrl2.Dock = DockStyle.Fill;

 MagicControls.TabPage ildasmviewpage =
 new MagicControls.TabPage("Dissassembler");
 ildasmviewpage.Icon = resourceService.GetIcon("Icons.16x16.ILDasm");
 ildasmviewpage.Controls.Add(new ReflectionILDasmView(reflectiontree));
 tctrl2.TabPages.Add(ildasmviewpage);

Chapter 14

390

// code omitted from listing

 panel.Controls.Add(hsplitter);
 panel.Controls.Add(tctrl2);
 panel.Controls.Add(new ReflectionInfoView(reflectiontree));

 panel.Controls.Add(vsplitter);
 panel.Controls.Add(tctrl);

 this.control = panel;
 }
 }

Note that, for the sake of brevity we have omitted repetitive pieces of code. The code segment makes
use of the controls provided by the Magic Library (http://www.dotnetmagic.com) to draw the Assembly
Scout containing the tabbed views that we have seen in the above screenshots. Creating such a complex
form without using a library like Magic would be quite hard.

We will move on to the individual parts of the Scout, starting with the tree view that is at the heart of
the Assembly Scout. The code can be found in ReflectionTree.cs.

As usual, we will start by going through the setup and then load the assembly we are interested in:

namespace SharpDevelop.Gui.Edit.Reflection
{
 public class ReflectionTree : TreeView
 {
 ArrayList assemblies = new ArrayList();

 public event EventHandler Changed;

 public ArrayList Assemblies {
 get {
 return assemblies;
 }
 }

 public PrintDocument PrintDocument {
 get {
 return null;
 }
 }

 public bool WriteProtected {
 get {
 return false;
 }
 set {
 }
 }

Navigating Code with the Class Scout and the Assembly Scout

391

 public void LoadFile(string filename)
 {
 try {
 AddAssembly(Assembly.LoadFrom(filename));
 } catch (Exception e) {
 MessageBox.Show("can't load " + filename+ " invalid format.\n(you
 can only view .NET assemblies)\n " + e.ToString());
 }
 }

 public void SaveFile(string filename)
 {
 }

 public void AddAssembly(Assembly assembly)
 {
 assemblies.Add(assembly);
 TreeNode node =
 new ReflectionFolderNode(Path.GetFileNameWithoutExtension
 (assembly.CodeBase), assembly, ReflectionNodeType.Assembly, 0, 1);
 Nodes.Add(node);
 PopulateTreeView();
 Thread t = new Thread(new ThreadStart(PopulateTreeView));

 t.IsBackground = true;
 t.Start();
 }

While loading the assembly, we have to handle possible exceptions arising from attempts at loading
.NET-incompatible .dll and .exe files. While adding the assembly, we have to insert it into the tree at
a new node and start populating the tree view. This is done in a new thread, so that the user is not
blocked from working in SharpDevelop, till it is completed.

Populating the tree view is done by the following piece of code, which uses recursion to navigate the
tree. Recursion is a very popular technique for such situations:

 public void PopulateTreeView(ReflectionNode parentnode)
 {
 foreach (ReflectionNode node in parentnode.Nodes) {
 if (!node.Populated) {
 node.Populate();
 }
 PopulateTreeView(node);
 }
 }

 public void PopulateTreeView()
 {
 foreach (ReflectionNode node in Nodes) {
 if (!node.Populated)
 node.Populate();
 PopulateTreeView(node);
 }

Chapter 14

392

 }

 internal static AmbienceReflectionDecorator languageConversion;

 public ReflectionTree()
 {
 if (Changed != null) {} // to prevent these pesky compiler warnings

 Dock = DockStyle.Fill;

 ClassScoutIconsService classScoutIconService =
 (ClassScoutIconsService)ServiceManager.Services.
 GetService(typeof(ClassScoutIconsService));
 AmbienceService ambienceService = (AmbienceService)ServiceManager.
 Services.GetService(typeof(AmbienceService));

 languageConversion = ambienceService.CurrentAmbience;
 languageConversion.ConversionFlags =
 languageConversion.ConversionFlags &
 ~(ConversionFlags.UseFullyQualifiedNames |
 ConversionFlags.ShowModifiers |
 ConversionFlags.ShowParameterNames);

 this.ImageList = classScoutIconService.ImageList;

 LabelEdit = false;
 HotTracking = false;
 AllowDrop = true;
 HideSelection = false;
 }

In this code snippet, we set up the appearance of the Reflection tree, as the way tree nodes’ text is
written depends on the selected ambience.

Now, we will handle the individual members and type, generating the actual nodes; we also handle
language conversion:

 public void GoToMember(MemberInfo member, Assembly MemberAssembly)
 {
 foreach (ReflectionNode node in Nodes) {

 Assembly assembly = (Assembly)node.Attribute;
 string pathname = member.DeclaringType.Name;
 string paramtext = "";

 if (member is MethodInfo) {
 paramtext = languageConversion.Convert(member as MethodInfo);
 } else if (member is PropertyInfo) {
 paramtext = " : " +
 languageConversion.Convert(member as PropertyInfo);
 } else if (member is FieldInfo) {
 paramtext = " : " +
 languageConversion.Convert(member as FieldInfo);

Navigating Code with the Class Scout and the Assembly Scout

393

 }

 if (assembly.FullName == MemberAssembly.FullName) {
 ReflectionNode curnode =
 (ReflectionNode)node.GetNodeFromCollection(node.Nodes,
 Path.GetFileName(assembly.CodeBase));
 if (member.DeclaringType.Namespace != null) {
 curnode =
 (ReflectionNode)curnode.GetNodeFromCollection(curnode.Nodes,
 member.DeclaringType.Namespace);
 }

 TreeNode path = curnode;
 TreeNode foundnode =
 node.GetNodeFromCollection(path.Nodes, pathname);

 ReflectionNode classnode = (ReflectionNode)foundnode;

 TreeNode membernode = classnode.GetNodeFromCollection
 (classnode.Nodes, member.Name + paramtext);
 membernode.EnsureVisible();
 SelectedNode = membernode;
 }
 }
 }

 public void GoToType(Type type)
 {
 foreach (ReflectionNode node in Nodes) {
 Assembly assembly = (Assembly)node.Attribute;
 if (type.Assembly.FullName == assembly.FullName) {

 ReflectionNode curnode =
 (ReflectionNode)node.GetNodeFromCollection(node.Nodes,
 Path.GetFileName(assembly.CodeBase));

 //curnode = (ReflectionNode)curnode.GetNodeFromCollection
 (curnode.Nodes, Path.GetFileName(assembly.CodeBase));

 string typename = type.ToString();
 int lastindex = typename.LastIndexOf('.');
 TreeNode path = curnode;
 string nodename = typename;
 if (lastindex != -1) {
 string pathname = typename.Substring(0, lastindex);
 TreeNode tnode =
 node.GetNodeFromCollection(node.Nodes, pathname);
 if (tnode == null) {
 return; // TODO : returns, if the tree isn't up to date.
 } else
 path = tnode;
 nodename = typename.Substring(lastindex + 1);
 }

Chapter 14

394

 TreeNode foundnode =
 node.GetNodeFromCollection(path.Nodes, nodename);
 foundnode.EnsureVisible();
 SelectedNode = foundnode;
 return;
 }
 }
 AddAssembly(type.Assembly);
 GoToType(type);
 }

Again, we use the classBroserIconService and the ambienceService to give the tree nodes their
proper appearance. Then, we add the members of the assembly. In doing so, we need to take care of
language conversion so that the members are properly displayed.

The information for the type is obtained through the use of .NET reflection, which is performed in the
file ReflectionNode.cs (we will discuss it later in this section). Next, we provide a routine for
jumping to a type the user is interested in.

To complete the tree, we have to handle double-clicks and folding:

 protected override void OnDoubleClick(EventArgs e)
 {
 ReflectionNode rn = (ReflectionNode)SelectedNode;
 if (rn == null)
 return;
 switch (rn.Type) {

 case ReflectionNodeType.Link: // clicked on link, jump to link.
 if (rn.Attribute is Type) {
 GoToType((Type)rn.Attribute);
 }
 break;

 case ReflectionNodeType.Reference:
 // clicked on assembly reference, open assembly
 // check if the assembly is open
 AssemblyName name = (AssemblyName)rn.Attribute;
 foreach (ReflectionNode node in Nodes) {
 if (node.Type == ReflectionNodeType.Assembly) {
 if (name.FullName == ((Assembly)node.Attribute).FullName)
 // if yes, return
 return;
 }
 }
 AddAssembly(Assembly.Load(name));
 break;
 }
 }

 protected override void OnBeforeCollapse(TreeViewCancelEventArgs e)
 {
 base.OnBeforeCollapse(e);

Navigating Code with the Class Scout and the Assembly Scout

395

 ((ReflectionNode)e.Node).OnCollapse();
 }

 protected override void OnBeforeExpand(TreeViewCancelEventArgs e)
 {
 base.OnBeforeExpand(e);

 // populate node
 ReflectionNode rn = (ReflectionNode)e.Node;
 if (!rn.Populated)
 rn.Populate();

 ((ReflectionNode)e.Node).OnExpand();
 }
 }

The type of the node determines the double-click's result. In the case of a type, we use the GoToType
method that we defined above, while for a reference we add the assembly in question, if it is not
yet open.

Next, we will look at the code for the right-hand panels. We will start with the code in
ReflectionSourceView.cs file.

This code lists the source code of the assembly (if it is available). First we set up the view:

namespace SharpDevelop.Gui.Edit.Reflection
{
 public class ReflectionSourceView : UserControl
 {
 RichTextBox rtb;
 ReflectionTree tree;

 void CopyEvent(object sender, EventArgs e)
 {
 Clipboard.SetDataObject(new DataObject(DataFormats.Text, rtb.Text));
 }
 public ReflectionSourceView(ReflectionTree tree)
 {
 rtb = new RichTextBox();
 rtb.ReadOnly = true;

 ResourceService resourceService = (ResourceService)ServiceManager.
 Services.GetService(typeof(ResourceService));
 rtb.Font = resourceService.LoadFont("Courier New", 10);

 this.tree = tree;

 Dock = DockStyle.Fill;

 tree.AfterSelect += new TreeViewEventHandler(SelectNode);

Chapter 14

396

 Controls.Add(rtb);
 rtb.Dock = DockStyle.Fill;
 rtb.ContextMenu = new ContextMenu(new MenuItem[] {
 new MenuItem("Copy", new EventHandler(CopyEvent))
 });
 }

We have added handling of events in the tree view, as we have to react to the user selecting the member
to be displayed. Further, we add a new menu item to the context menu. This done, we move on to
populate the source view. As this is a long piece of code, containing sizeable blocks of very similar
conditional statements or enumerations, to avoid repetition we have omitted a great part of these. The
omissions are marked in the listing:

 static string GetTypeString(string type)
 {
 string[,] types = new string[,] {
 {"System.Void", "void"},
 {"System.Object", "object"},
 {"System.Boolean", "bool"},
 {"System.Byte", "byte"},
 {"System.SByte", "sbyte"},
//code omitted from listing
 {"System.Decimal", "decimal"},
 {"System.String", "string"}
 };

 for (int i = 0; i < types.GetLength(0); ++i) {
 type = type.Replace(types[i, 0], types[i, 1]);
 }
 return type;
 }

First, the type is obtained, and then we move on to get the attributes of the objects. The latter part
is tricky, as we can't easily look them up. Instead, we have to assemble the actual string piece-by-piece,
taking care of possible exceptions arising from non-existent items:

 string GetAttributes(int indent, object[] attributes)
 {
 string back = "";
 if (attributes.Length > 0) {
 foreach (object o in attributes) {
 for (int i = 0; i < indent; ++i)
 back += "\t";
 back += "[";
 Type attrtype = o.GetType();
 back += attrtype.FullName + "(";
 try {
 object result = attrtype.InvokeMember ("Value",
 BindingFlags.Default | BindingFlags.GetField |
 BindingFlags.GetProperty, null, o, new object [] {});
 if (result is string) {

Navigating Code with the Class Scout and the Assembly Scout

397

 back += '"' + result.ToString() + '"';
 } else {
 string resultstring = result.ToString();
 if (result.GetType().IsEnum &&
 !Char.IsDigit(resultstring[0]))
 back += result.GetType().FullName + ".";
 back += resultstring;
 }
 } catch (Exception) {
 try {
 object result = attrtype.InvokeMember ("MemberName",
 BindingFlags.Default |BindingFlags.GetField |
 BindingFlags.GetProperty, null, o, new object [] {});
 back += '"' + result.ToString() + '"';
 } catch (Exception) {

 }
 }
 back += ")]\n";
 }
 }
 return back;
 }

Now that the objects have been taken care of, we will do the same for members:

 string GetAttributes(int indent, MemberInfo type)
 {
 return GetAttributes(indent, type.GetCustomAttributes(true));
 }
 void ShowTypeInfo(Type type)
 {
 rtb.Text = "";
 {
 string attr2 =
 GetAttributes(0, type.Assembly.GetCustomAttributes(true));
 rtb.Text += "// assembly attributes\n" + attr2 +
 "\n// declaration\n";
 }
 string attr = GetAttributes(0, type);
 rtb.Text += attr;

 if (type.IsSealed && !type.IsEnum)
 rtb.Text += "sealed ";

 if (type.IsAbstract && !type.IsInterface)
 rtb.Text += "abstract ";

Chapter 14

398

This segment checks for attributes such as public, private, and so on, so we can safely skip these
conditional statements from our listing:

//code omitted for listing
 rtb.Text += type.Name;

 if (!type.IsEnum) {
 Type[] interfaces = type.GetInterfaces();
 if (interfaces.Length > 0) {
 rtb.Text += " : ";
 for (int i = 0; i < interfaces.Length; ++i) {
 rtb.Text += interfaces[i].FullName;
 if (i + 1 <interfaces.Length)
 rtb.Text += ", ";
 }
 }
 }

 rtb.Text += "\n{\n";

Then, we have to figure out the constructor:

 if (!type.IsEnum) {

 ConstructorInfo[] constructorinfos =
 type.GetConstructors(BindingFlags.Public | BindingFlags.NonPublic);
 MethodInfo[] methodinfos = type.GetMethods(BindingFlags.Instance |
 BindingFlags.Static | BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.DeclaredOnly);

 FieldInfo[] fieldinfos = type.GetFields(BindingFlags.Instance |
 BindingFlags.Static | BindingFlags.Public |
 BindingFlags.NonPublic);

 PropertyInfo[] propertyinfos = type.GetProperties
 (BindingFlags.Instance | BindingFlags.Static | BindingFlags.Public
 | BindingFlags.NonPublic | BindingFlags.DeclaredOnly);
 EventInfo[] eventinfos = type.GetEvents(BindingFlags.Instance |
 BindingFlags.Static | BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.DeclaredOnly);

In the above code snippet, we look for all the field information that we can get on the constructor.

 foreach (FieldInfo fieldinfo in fieldinfos) {
 if (fieldinfo.DeclaringType.Equals(type)) {
 rtb.Text += "\t";

 if (fieldinfo.IsPrivate) { // private
 rtb.Text += "private ";
 } else
 if (fieldinfo.IsFamily) { // protected

Navigating Code with the Class Scout and the Assembly Scout

399

 rtb.Text += "protected ";
//code omitted from listing
 }

 rtb.Text += GetTypeString(fieldinfo.FieldType.ToString()) + " "
 + fieldinfo.Name + ";\n\n";
 }
 }

Now, we have to construct the strings for the code to be displayed:

 foreach (ConstructorInfo constructorinfo in constructorinfos) {
 if (constructorinfo.DeclaringType.Equals(type))
 if ((constructorinfo.Attributes & MethodAttributes.SpecialName) ==
 0) {
 attr = GetAttributes(1, constructorinfo);
 rtb.Text += attr;
 rtb.Text += "\t";

 if (!type.IsInterface) {
 if (constructorinfo.IsPrivate) { // private
 rtb.Text += "private ";
 } else
 if (constructorinfo.IsFamily) { // protected
 rtb.Text += "protected ";
//code omitted from listing
 }

 rtb.Text += " " + type.Name +"(";
 ParameterInfo[] pinfo = constructorinfo.GetParameters();
 for (int i = 0; i < pinfo.Length; ++i) {
 string typetxt = pinfo[i].ParameterType.ToString();
 if (typetxt[typetxt.Length-1] == '&') {
 typetxt = "ref " + typetxt.Substring(0, typetxt.Length-1);
 }
 rtb.Text += GetTypeString(typetxt) + " " + pinfo[i].Name +
 ((i < pinfo.Length - 1) ? ", " : "");
 }
 if (type.IsInterface)
 rtb.Text += ");\n\n";
 else {
 rtb.Text += ")\n\t{\n\t\t//TODO\n\t}\n\n";
 }
 }
 }

Even though we can't get all the information for a complete reconstruction of the constructor, at least
now we have a skeleton that we can display.

Chapter 14

400

Let us now move on to examining the methods:

 foreach (MethodInfo methodinfo in methodinfos) {
 if (methodinfo.DeclaringType.Equals(type))
 if ((methodinfo.Attributes & MethodAttributes.SpecialName) == 0) {
 attr = GetAttributes(1, methodinfo);
 rtb.Text += attr;
 rtb.Text += "\t";

 if (!type.IsInterface) {
 if (methodinfo.IsPrivate) { // private
 rtb.Text += "private ";
 } else
 if (methodinfo.IsFamily) { // protected
 rtb.Text += "protected ";
//code omitted from listing
 }
 rtb.Text += GetTypeString(methodinfo.ReturnType.ToString()) +
 " " + methodinfo.Name +"(";
 ParameterInfo[] pinfo = methodinfo.GetParameters();
 for (int i = 0; i < pinfo.Length; ++i) {
 string typetxt = pinfo[i].ParameterType.ToString();
 if (typetxt[typetxt.Length-1] == '&') {
 typetxt = "ref " + typetxt.Substring(0, typetxt.Length-1);
 }
 rtb.Text += GetTypeString(typetxt) + " " + pinfo[i].Name +
 ((i < pinfo.Length - 1) ? ", " : "");
 }

If we are dealing with an interface we will fill the string with a blank; otherwise, it's filled with the string
TODO, which shows that there is no code to display:

 if (type.IsInterface)
 rtb.Text += ");\n\n";
 else {
 rtb.Text += ")\n\t{\n\t\t//TODO\n\t}\n\n";
 }
 }
 }

Then we iterate through the property information, constructing the code to be output in a manner
similar to the previous case:

 foreach (PropertyInfo propertyinfo in propertyinfos) {
 if (propertyinfo.DeclaringType.Equals(type)) {
 attr = GetAttributes(1, propertyinfo);
 rtb.Text += attr;
 rtb.Text += "\t";

 rtb.Text += GetTypeString(propertyinfo.PropertyType.ToString())
 + " " + propertyinfo.Name + " {\n";

Navigating Code with the Class Scout and the Assembly Scout

401

if (propertyinfo.CanRead) {
 rtb.Text += "\t\tget";
 if (type.IsInterface)
 rtb.Text += ";\n";
 else {
 rtb.Text += " {\n\t\t\t//TODO\n\t\t}\n";
 }
 }
 if (propertyinfo.CanWrite) {
 rtb.Text += "\t\tset";
 if (type.IsInterface)
 rtb.Text += ";\n";
 else {
 rtb.Text += " {\n\t\t\t//TODO\n\t\t}\n";
 }
 }
 rtb.Text += "\t}\n\n";
 }
 }

We insert TODO as a placeholder for non-interface properties.

Now, let's move on to events and enumerations:

 foreach (EventInfo eventinfo in eventinfos) {
 if (eventinfo.DeclaringType.Equals(type)) {
 rtb.Text += "\tevent " + eventinfo.EventHandlerType + " " +
 eventinfo.Name + ";\n";
 }
 }
 }

 if (type.IsEnum) {
 FieldInfo[] fieldinfos = type.GetFields();
 object enumobj = type.Assembly.CreateInstance(type.FullName);
 foreach (FieldInfo fieldinfo in fieldinfos) {
 if (fieldinfo.IsLiteral) {
 attr = GetAttributes(1, fieldinfo);
 rtb.Text += attr;
 rtb.Text += "\t" + fieldinfo.Name + " = " +
 (int)fieldinfo.GetValue(enumobj) + ",\n";
 }
 }
 }

 rtb.Text += "}";
 rtb.Refresh();
 }

Chapter 14

402

The code to be displayed is obtained by using the GetTypeString and GetAttributes methods. As
the code is mostly made up of tests for attributes, such as public, private, etc., we have removed
some parts for brevity. The GetAttributes method performs the task of converting the attributes to
attribute definitions. Here, we also try to reconstruct the constructor parameters from the
reflection information.

Although, we are not sure that this approach works all the time, nonetheless, we use it, leaving property
settings out, as they can't be done this way. It seems that we will have to live with this limitation.

To remind the programmer about missing code snippets, we insert TODO into empty sets of curly braces.
This is not a full source code disassembler, as it is not needed to investigate the structure of an
assembly. For our purpose, a code skeleton is good enough. You can see the skeleton with the TODOs
in the screenshot of the source view that we looked at in the beginning of this section.

We also need to decide whether we have some code to display or alternatively display the No source
view available message:

 void SelectNode(object sender, TreeViewEventArgs e)
 {
 ReflectionNode node = (ReflectionNode)e.Node;

 rtb.Text = "";
 if (node is ReflectionTypeNode)
 ShowTypeInfo((Type)node.Attribute);
 else
 switch (node.Type) {
 case ReflectionNodeType.Namespace:
 rtb.Text = "namespace " + node.Text + " {\n}";
 break;
 default:
 rtb.Text = "No source view available";
 break;
 }

 }
 }

Now, we move on to the disassembler view. It uses the Microsoft .NET IL Disassembler tool
(ildasm.exe), supplied with the .NET Framework SDK to decompile the intermediate language code
contained in the assembly to a human readable form. This is done in the ReflectionILDasmView.cs
file.

The code is shown below:

namespace SharpDevelop.Gui.Edit.Reflection
{
 public class ReflectionILDasmView : UserControl
 {
 RichTextBox tb = new RichTextBox();
 ReflectionTree tree;

Navigating Code with the Class Scout and the Assembly Scout

403

 public ReflectionILDasmView(ReflectionTree tree)
 {
 this.tree = tree;

 Dock = DockStyle.Fill;
 tb.Font = new System.Drawing.Font("Courier New", 10);
 tb.Dock = DockStyle.Fill;
 tb.ScrollBars = RichTextBoxScrollBars.Both;

 tb.WordWrap = false;
 tb.ReadOnly = true;
 Controls.Add(tb);

 tree.AfterSelect += new TreeViewEventHandler(SelectNode);
 }

Again, we carry out the setup; this time we use a rich textbox. We also listen to the tree view events.

Then, we select the node that we want to disassemble and work on it:

 void SelectNode(object sender, TreeViewEventArgs e)
 {
 ReflectionNode node = (ReflectionNode)e.Node;

 Assembly assembly = null;
 string item = " /item=";

 if (node.Attribute is Assembly) {
 assembly = (Assembly)node.Attribute;
 } else if (node.Attribute is Type) {
 Type type = (Type)node.Attribute;
 item += type.FullName;
 assembly = type.Module.Assembly;
 } else if (node.Attribute is MethodBase) {
 MethodBase method = (MethodBase) node.Attribute;
 item += method.DeclaringType.FullName + "::" + method.Name;
 assembly = method.DeclaringType.Module.Assembly;
 } else {
 tb.Text = "<NO ILDASM VIEW AVAIBLE>";
 return;
 }
 tb.Text = GetILDASMOutput(assembly, item).Replace("\n", "\r\n");
 }

 private string GetILDASMOutput(Assembly assembly, string item)
 {
 try {
 string args = '"' + assembly.Location + '"' + item +
 " /NOBAR /TEXT";
 ProcessStartInfo psi = new ProcessStartInfo("ildasm.exe", args);

 psi.RedirectStandardError = true;
 psi.RedirectStandardOutput = true;

Chapter 14

404

 psi.RedirectStandardInput = true;
 psi.UseShellExecute = false;
 psi.CreateNoWindow = true;

 Process process = Process.Start(psi);
 string output = process.StandardOutput.ReadToEnd();
 process.WaitForExit();

 int cutpos = output.IndexOf(".namespace");

 if (cutpos != -1) {
 return output.Substring(cutpos);
 }

 cutpos = output.IndexOf(".class");
 if (cutpos != -1) {
 return output.Substring(cutpos);
 }

 cutpos = output.IndexOf(".method");
 if (cutpos != -1) {
 return output.Substring(cutpos);
 }

 return output;
 } catch (Exception) {
 return "ildasm.exe is not installed\n(works only with the SDK)";
 }
 }
 }
}

In this part also, we have to provide for the possibility of not finding the appropriate content. However,
the really interesting bit of code is the one dealing with starting ildasm.exe and catching its output. In
doing so, we have to handle the following issues:

❑ ildasm.exe may not be installed

❑ Capturing the output of ILDasm

The first issue is handled through exception handling, the second by starting ILDasm in a separate
process with redirected input and output. This output is read using:

string output = process.StandardOutput.ReadToEnd();

Note that, for proper formatting we need to convert the line terminators of ILDasm's output from LF to
the CR/LF format, which is the standard line termination format in the SelectNode routine:

tb.Text = GetILDASMOutput(assembly, item).Replace("\n", "\r\n");

Navigating Code with the Class Scout and the Assembly Scout

405

Now let's step down one more level and look at building the nodes of the Reflection tree. The code can
be found in the
src\BackendBindings\AssemblyScout\src\Nodes directory.

Here, we can find the code for the different types of nodes:

❑ General

❑ Type

❑ Member

❑ Folder

We will be examining only two of these, the general nodes and type nodes. The code for the general
nodes can be found in the file ReflectionNode.cs.

We will look at some code snippets taken from this file:

namespace SharpDevelop.Gui.Edit.Reflection
{
 public enum ReflectionNodeType {
 Folder,
 Resource,
 Assembly,
 Library,
 Namespace,
 Type,
 Constructor,
 Method,
 Field,
 Property,
 SubTypes,
 SuperTypes,
 Reference,
 Event,
 Link,
 Module,
 }

 public class ReflectionNode : TreeNode
 {
 protected const int CLASSINDEX = 14;
 protected const int STRUCTINDEX = CLASSINDEX + 1 * 4;
 protected const int INTERFACEINDEX = CLASSINDEX + 2 * 4;
 protected const int ENUMINDEX = CLASSINDEX + 3 * 4;
 protected const int METHODINDEX = CLASSINDEX + 4 * 4;
 protected const int PROPERTYINDEX = CLASSINDEX + 5 * 4;
 protected const int FIELDINDEX = CLASSINDEX + 6 * 4;
 protected const int DELEGATEINDEX = CLASSINDEX + 7 * 4;

 protected ReflectionNodeType type;
 protected string name;
 protected object attribute;

Chapter 14

406

 protected bool populated = false;

 public ReflectionNodeType Type {
 get {
 return type;
 }
 set {
 type = value;
 }
 }

 public object Attribute {
 get {
 return attribute;
 }
 }

 public bool Populated {
 get {
 return populated;
 }
 }

 public string Name {
 get {
 return name;
 }
 set {
 name = value;
 }
 }

We start off by calculating uniquely distinguishable numerical indexes for the node types.

We then move on to actual nodes:

 public ReflectionNode(string name, object attribute,
 ReflectionNodeType type) : base(name)
 {
 this.attribute = attribute;
 this.type = type;
 this.name = name;
 if (type == ReflectionNodeType.Namespace ||
 type == ReflectionNodeType.Assembly ||
 type == ReflectionNodeType.Library ||
 type == ReflectionNodeType.Type) {
 Nodes.Add(new TreeNode(""));
 }
 if (type == ReflectionNodeType.Field) {
 Text =
 ReflectionTree.languageConversion.Convert((FieldInfo)attribute);
 } else
 if (type == ReflectionNodeType.Property) {

Navigating Code with the Class Scout and the Assembly Scout

407

 Text = ReflectionTree.
 languageConversion.Convert((PropertyInfo)attribute);
 }
 SetIcon();
 }

 protected virtual void SetIcon()
 {
 ClassScoutIconsService classScoutIconService =
 (ClassScoutIconsService)ServiceManager.Services.
 GetService(typeof(ClassScoutIconsService));

 switch (type) {
 case ReflectionNodeType.Link:
 break;
 case ReflectionNodeType.Resource:
 ImageIndex = SelectedImageIndex = 11;
 break;

//code omitted from listing

 case ReflectionNodeType.SuperTypes:
 ImageIndex = SelectedImageIndex = 5;
 break;

 case ReflectionNodeType.Event:
 EventInfo eventinfo = (EventInfo)attribute;
 ImageIndex = SelectedImageIndex =
 classScoutIconService.GetIcon(eventinfo);
 MethodInfo add = eventinfo.GetAddMethod();
 MethodInfo raise = eventinfo.GetRaiseMethod();
 MethodInfo remove = eventinfo.GetRemoveMethod();

 if (add != null)
 Nodes.Add(new ReflectionMethodNode(add));
 if (raise != null)
 Nodes.Add(new ReflectionMethodNode(raise));
 if (remove != null)
 Nodes.Add(new ReflectionMethodNode(remove));
 break;

 case ReflectionNodeType.Property:
 PropertyInfo propertyinfo = (PropertyInfo)attribute;
 ImageIndex = SelectedImageIndex =
 classScoutIconService.GetIcon(propertyinfo);

 if (propertyinfo.CanRead) {
 Nodes.Add(new ReflectionMethodNode
 (propertyinfo.GetGetMethod()));
 }
 if (propertyinfo.CanWrite) {
 Nodes.Add(new ReflectionMethodNode
 (propertyinfo.GetSetMethod()));

Chapter 14

408

 }
 break;

 case ReflectionNodeType.Field:
 FieldInfo fieldinfo = (FieldInfo)attribute;
 ImageIndex = SelectedImageIndex =
 classScoutIconService.GetIcon(fieldinfo);
 break;
 default:
 throw new Exception("ReflectionFolderNode.SetIcon : unknown
 ReflectionNodeType " + type.ToString());
 }
 }

In this snippet, we create nodes and assign the appropriate icons. With these nodes, we can now
populate the tree:

 public virtual void Populate()
 {
 switch (type) {
 case ReflectionNodeType.Assembly:
 PopulateAssembly((Assembly)attribute, this);
 break;
 case ReflectionNodeType.Library:
 PopulateLibrary((Assembly)attribute, this);
 break;
 }
 populated = true;
 }

 public TreeNode GetNodeFromCollection(TreeNodeCollection collection,
 string title)
 {
 foreach (TreeNode node in collection)
 if (node.Text == title) {
 return node;
 }
 return null;
 }

 void PopulateLibrary(Assembly assembly, TreeNode parentnode)
 {
 parentnode.Nodes.Clear();
 string[] manifestresourcenames = assembly.GetManifestResourceNames();
 Type[] types = assembly.GetTypes();
 foreach (Type type in types) {
 if(type.ToString().IndexOf("PrivateImplementationDetails") == -1) {
 string typename = type.ToString();
 int lastindex = typename.LastIndexOf('.');
 TreeNode path = parentnode;
 string nodename = typename;

 if (lastindex != -1) {

Navigating Code with the Class Scout and the Assembly Scout

409

 string pathname = typename.Substring(0, lastindex);
 TreeNode node = GetNodeFromCollection(parentnode.Nodes,
 pathname);
 if (node == null) {
 TreeNode newnode = new ReflectionFolderNode(pathname, null,
 ReflectionNodeType.Namespace, 3, 3);
 newnode.Nodes.Clear();
 parentnode.Nodes.Add(newnode);
 path = newnode;
 } else
 path = node;
 nodename = typename.Substring(lastindex + 1);
 }
 path.Nodes.Add(new ReflectionTypeNode(nodename, type));
 }
 }
 }

 void PopulateAssembly(Assembly assembly, TreeNode parentnode)
 {
 parentnode.Nodes.Clear();

 TreeNode node = new ReflectionFolderNode(Path.GetFileName
 (assembly.CodeBase), assembly, ReflectionNodeType.Library, 2, 2);
 parentnode.Nodes.Add(node);

 ReflectionFolderNode resourcefolder = new ReflectionFolderNode
 ("Resources", assembly, ReflectionNodeType.Folder, 6, 7);
 string[] resources = assembly.GetManifestResourceNames();
 foreach (string resource in resources) {
 resourcefolder.Nodes.Add(new
 ReflectionNode(resource, null, ReflectionNodeType.Resource));
 }
 parentnode.Nodes.Add(resourcefolder);

 ReflectionFolderNode referencefolder = new ReflectionFolderNode
 ("References", assembly, ReflectionNodeType.Folder, 9, 10);
 AssemblyName[] references = assembly.GetReferencedAssemblies();
 foreach (AssemblyName name in references) {
 referencefolder.Nodes.Add(new
 ReflectionNode(name.Name, name, ReflectionNodeType.Reference));
 }
 parentnode.Nodes.Add(referencefolder);

 ReflectionFolderNode modulefolder = new ReflectionFolderNode
 ("Modules", assembly, ReflectionNodeType.Folder, 9, 10);
 parentnode.Nodes.Add(modulefolder);
 Module[] modules = assembly.GetModules(true);
 foreach(Module module in modules) {
 modulefolder.Nodes.Add(new ReflectionNode
 (module.Name, null, ReflectionNodeType.Module));
 }
 }

Chapter 14

410

The PopulateLibrary method makes the information from the manifest of the assembly available to
us. This information is then used together with the reflection information, obtained from the assembly,
to populate the tree. Both assembly metadata and reflection information are powerful features of .NET.

Let's look at type nodes, as a representative example of the other node types. The code can be found in
the file ReflectionTypeNode.cs

We will be looking at a shortened version of the code:

namespace SharpDevelop.Gui.Edit.Reflection
{
 public class ReflectionTypeNode : ReflectionNode
 {
 public ReflectionTypeNode(string name, Type type) :
 base (name, type, ReflectionNodeType.Type)
 {
 }

 protected override void SetIcon()
 {
 ClassScoutIconsService classScoutIconService =
 (ClassScoutIconsService)ServiceManager.Services.
 GetService(typeof(ClassScoutIconsService));
 ImageIndex = SelectedImageIndex =
 classScoutIconService.GetIcon((Type)attribute);
 }

 public override void Populate()
 {
 Type type = (Type)attribute;
 Nodes.Clear();

 ConstructorInfo[] constructorinfos = type.GetConstructors
 (BindingFlags.Public | BindingFlags.NonPublic);
 MethodInfo[] methodinfos = type.GetMethods(BindingFlags.Instance |
 BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic |
 BindingFlags.DeclaredOnly);
 FieldInfo[] fieldinfos = type.GetFields(BindingFlags.Instance |
 BindingFlags.Static | BindingFlags.Public | BindingFlags.NonPublic);
//code omitted from listing

 Nodes.Add(supertype);
 if (type.BaseType != null) {
 ReflectionNode basetype = new ReflectionNode(type.BaseType.Name,
 type.BaseType, ReflectionNodeType.Link);
 basetype.ImageIndex = basetype.SelectedImageIndex =
 classScoutIconService.GetIcon(type.BaseType);
 supertype.Nodes.Add(basetype);
 }

 foreach (Type baseinterface in type.GetInterfaces()) {
 ReflectionNode inode = new ReflectionNode(baseinterface.Name,
 baseinterface, ReflectionNodeType.Link);

Navigating Code with the Class Scout and the Assembly Scout

411

 inode.ImageIndex = inode.SelectedImageIndex =
 classScoutIconService.GetIcon(baseinterface);
 supertype.Nodes.Add(inode);
 }

 Nodes.Add(new ReflectionNode("SubTypes", type,
 ReflectionNodeType.SubTypes));

 foreach (ConstructorInfo constructorinfo in constructorinfos) {
 Nodes.Add(new ReflectionMethodNode(constructorinfo));
 }

 foreach (MethodInfo methodinfo in methodinfos) {
 if (methodinfo.DeclaringType.Equals(type))
 if ((methodinfo.Attributes & MethodAttributes.SpecialName) == 0)
 Nodes.Add(new ReflectionMethodNode(methodinfo));
 }
//code omitted from listing
 populated = true;
 }
 }
}

Here, we use the information provided through reflection to sort types in our assemblies into the
appropriate nodes in the tree.

Summary
In this chapter, we have discussed how parse information obtained from the SharpDevelop parser can
be used in facilitating navigation through code by implementing a Class Scout.

We looked at using the Class Scout and how a tree representing classes in a project can be implemented.
We then went on to learn how such a tree can be used to navigate the source code of a project.

We examined how information contained in the assemblies referenced by our project, can be used to
our advantage. For this purpose, we implemented an Assembly Scout that allows us to look at the source
code, wherever possible, and in other cases at the disassembled code.While implementing the assembly
scout, we discussed another use of the powerful reflection feature of .NET and how ILDasm can be used
to investigate references that come without source code.

Now, we have completed our discussion of the source code for writing an IDE, and we are ready to
move on to the visual side of programming – implementing a Forms Designer.

Chapter 14

412

The Designer Infrastructure

In this chapter, we will introduce the Forms Designer infrastructure. We will look at implementing a
forms designer from scratch. We will get acquainted with the .NET component model, and learn about
services in the .NET forms designer infrastructure. Services in the .NET forms designer infrastructure
don't have much to do with services in SharpDevelop, except for their purpose. The services in the
designer infrastructure act as helper classes, providing different functionalities that build the whole system.

In this chapter we will look at:

❑ The forms designer overview – We will learn about the components of the designer that we
have to implement and the support provided by the .NET Framework

❑ The .NET component model – To understand the working of the designer infrastructure we
need to have some insight into the .NET component model

❑ Designer Host Implementation –We will see how to start to write our own forms designer

Forms Designer Overview
The SharpDevelop Forms Designer consists of three main components:

❑ A Toolbox containing controls – From the Toolbox, the user can select the component that is
to be inserted into the Designer area.

❑ The Designer area – In this area the layout can be changed visually by using drag and drop.

❑ A Property grid – The Property grid shows the properties of the currently selected
component. These can be altered and the changes are reflected in the Designer area (given
that the changes pertain to the visible properties).

15

Chapter 15

414

Let's take a look at the following screenshot, to get an idea of what the components look like:

On the left, we can see the Toolbox containing the Windows Forms components, which are identified
by the component name and an icon. At the center of the screen we can find the Designer area, where
the user can design the layout of the form. To the right is the property grid, where properties of the
currently selected component can be altered.

The first item in the Toolbox is the Pointer item. This item is not a Windows Forms component;
instead, it is used to deselect the current item. If another item is selected and then clicked in the
Designer area then the selected item will get added to the Designer area. When the Pointer item is
selected, nothing is added to the Designer area; it gets automatically selected after a component is
inserted, to indicate that the insertion has been completed.

Now we will examine the implementation of such a designer.

Implementation Considerations
Our first few attempts at creating a forms designer failed, as we tried to implement it in .NET. It was
extremely difficult because in .NET it is difficult to program a control to just display, without reacting to
events. This is called design-time behavior; during design time the control should be inactive. The
opposite is called run-time behavior, which is the normal behavior.

For example, when we press a button in the Designer area it should not fire the click event; instead, it
should draw a selection border (this is design-time behavior). Drawing the border isn't a problem but
turning off the control's event handler is hard, we couldn't find a good way of doing it.

The Designer Infrastructure

415

Fortunately, we didn't have to implement the Forms Designer completely from ground up. The .NET
Framework has its own built-in designer. As far as we know, Eddie Sheffield was the first programmer,
outside Microsoft, who figured out how to turn on the internal forms designer in the .NET Framework.
He announced his efforts in the SharpDevelop forum and soon after released the first version of his
designer. SharpDevelop took the forms designer from Eddie Sheffield and extended it to generate code
and to read code changes back.

.NET's built-in designer is poorly documented and Microsoft has never released a designer example to
work with. However, we assume that we can safely rely on it, as it's a part of the .NET Framework. But,
we doubt whether this approach will work in Mono (as it lacks Forms, and I don't think they will have a
root designer for their GTK# components soon) or any other .NET Framework implementation. This
makes the forms designer highly platform dependent.

Design Overview
As mentioned in the last section, only a part of the forms designer needs to be implemented:

SharpDevelop Forms Designer
(explicitly implemented)

ToolBox GUI

Services

Designer Host

PropertyGrid
GUI

.NET Framework Designer
(provided)

Interface
Infrastructure

Implementation of
the GUI designer

Area

Windows Forms
Components

Designer
Implementations

In the figure, to the left are the parts we have to implement, and to the right is what the .NET
Framework provides us. The .NET Framework requires the implementation of services. We will look at
the service system later on, in this chapter; we will examine the service implementation in the next
chapter. We have already discussed SharpDevelop's services in Chapter 5. The services discussed here
have a similar purpose. The Designer is build on top of these services, just as SharpDevelop is built on
top of the SharpDevelop services, but the implementation of the service infrastructure is a bit different.

Services are mostly used in the Designer for:

❑ Managing the Toolbox

❑ Keeping track of the currently selected components

❑ Displaying the context menu and managing menu commands

Now let's look at the Designer Host:

Chapter 15

416

Designer Host Root
Component

Services

Designers

Components Transactions

The Designer Host acts as the service container and service provider. A service container contains
services and the provider gives access to services stored in a container. Besides service management, the
designer performs the following tasks:

❑ Initialization
The host must be activated and deactivated when necessary. The host has an initialization
mechanism that allows host implementations to signal the initialization. This prevents the host
from being used before the initialization is complete.

❑ Components
The host manages components (the definition of component is given in the next section, for
now think of it as an instance); it can create and destroy components and has a special
component called root component. This root component is a component in a forms designer,
which is usually a Form or UserControl. This root component represents the class that will
be generated during code generation.

❑ Transactions
The host manages transactions. Transactions are similar to actions (like add/remove/move
components; anything that would alter the output file created by the designer). The host has a
property indicating whether it is in transaction and another property providing a description
of the current transaction. These are useful for displaying the status of the Designer Host.
Transactions are created for almost all operations, like create, move, or remove.

❑ Designer
The host manages the so-called designers. Each component has a designer attached to it. A
designer inserts menu actions into the context menu of a component at design time. Later on,
in this chapter, we will see how designers are implemented.

We can think of the Designer Host, as a service container and a component creation service. To
understand the Designer Host we need to look at the .NET components.

The .NET Component Model
A component in .NET is a class that implements the System.ComponentModel.IComponent
interface. The idea behind the component model is simple. A component is an object that can be
modified in a visual designer. Now, let's examine the IComponent interface. The interface code was
constructed by referring to the .NET SDK documentation:

The Designer Infrastructure

417

public interface IComponent : IDisposable
{
 ISite Site {
 get;
 set;
 }
 event EventHandler Disposed;
}

All components have the Dispose method defined in the IDisposable interface. The only
functionality added to a component, besides Dispose, is the Site property.

The Site property is set when the component is added to a container. It is reset when the component is
removed from the container. In the SharpDevelop implementation, the container does this setting
and resetting.

The ISite object has three main functions:

❑ By using the DesignMode property, it tells the component that it is in design mode.

❑ It binds the component to a container. Therefore, it is possible to access the container in
which the component is stored, through the component itself.

❑ It holds the name of the component stored in the container. All components in the container
have a unique name identifying them.

Any object of a class implementing ISite is a service provider. All services in the Designer Host are
available to the components that are created by the host, through the ISite property. In addition, the
ISite object is the bridge between the component and the container.
The ISite object has a reference to the container and to the component that is attached to Site.

Now, we will look at the ISite interface definition:

public interface ISite : IServiceProvider
{
 IComponent Component {
 get;
 }
 IContainer Container {
 get;
 }

 bool DesignMode {
 get;
 }

 string Name {
 get;
 set;
 }
}

Chapter 15

418

Given the earlier explanation, the interface does not hold any surprises for us. One thing that is
interesting, though, is the base interface IServiceProvider; we'll dissect it next.

The Service Interfaces
We have seen the ServiceManager class in Chapter 5. It had a GetService method, which accepted
a type and returned the services, in the ServiceManager, having the requested type. The
IServiceProvider interface in the System namespace does exactly this. It has only one method:

public interface IServiceProvider
{
 object GetService(Type serviceType);
}

This interface is the base interface for the ISite interface (as we have seen in the last section) and the
designer host implements it too. Note that, this is similar to SharpDevelop's service system, as a service
is identified through its type rather than through a name or an identification number. The idea behind
these 'types' of services is a bit like that of the singleton model – only one service of each type exists for
a specific task.

Unlike SharpDevelop, each designer host has its own service provider (and service container, which
contains the service). This means that more than one object of a specific type may exist during run time.
The SharpDevelop services are more like singleton objects, as only one service of each type exists at run
time. However, this is due to design decisions. SharpDevelop needs only one instance of 'SharpDevelop'
during run time (in the same process), but it might have more than one Designer (we can have two
design areas open) and the designer services should not interfere with each other.

We have looked at the service provider, but there's one big question still left – where are the services
stored? This is answered by the System.ComponentModel.Design.IServiceContainer interface.

The IServiceContainer extends the IServiceProvider with AddService and RemoveService
methods, in different versions:

public interface IServiceContainer : IServiceProvider
{
 void AddService(Type serviceType, object serviceInstance);
 void AddService(Type serviceType, ServiceCallback callback);
 void AddService(Type serviceType, object serviceInstance, bool promote);
 void AddService(Type serviceType, ServiceCallback callback, bool promote);
 void RemoveService(Type serviceType);
 void RemoveService(Type serviceType, bool promote);
}

Service containers may be contained by other service containers, thereby forming a tree. The root of the
tree is the service container of the designer host. With the promote flag set to false, the request is
handled at the current service container in the tree. If the promote flag is set to true, it indicates that
the add or remove operation (that is, adding/removing from the topmost service container in the tree)
should be handed over to the base container. This allows for a service to be added or removed globally.

The Designer Infrastructure

419

If a service is added to the service container from the component, it is not accessible at the host level (it
is not in the root container; instead, it is in the component container). With the promote flag it can be
made accessible at the host level. The way it is handled depends on the implementation; under the
SharpDevelop Forms Designer implementation, there is only one service container for the host and for
all components.

Some methods do not take the service object directly; instead, they get a ServiceCreatorCallback
object. The ServiceCreatorCallback is a delegate and has the following signature:

public delegate object ServiceCreatorCallback(
 IServiceContainer container,
 Type serviceType
);

The callback method is used to delay the creation of the services object, until the service is requested.
This makes sense for services, which may never be used, to optimize memory consumption and
performance. It exists as a default implementation of this service container. The class is called
System.ComponentModel.Design.ServiceContainer.

Now, we have looked at how services are managed. We have already studied designers and we know
the term Designer Host. Now, we will look at the concept of designers in the .NET component model.

.NET Designers
Generally, a designer for .NET is not a GUI component. When we speak about designers, we refer to an
object that has the following properties:

❑ It is attached to a component at design time. A designer can change the component's behavior
at design time. Each designer has an Initialize method that associates the component with
the designer. In the Initialize method the object can be configured for design time,
if required.

❑ A designer can provide custom services or access the host services for performing various
tasks, like changing the toolbar.

❑ Designers can add menu commands to the context menu of a component at design time.

❑ A designer can implement an action for components that are added to the tray. The tray is the
place for non-visible components and the designer can add an action that is performed when
the user double-clicks on that component.

Now, let's go back to the designer functionality. All functionality is defined in the
System.ComponentModel.Design.IDesigner interface:

public interface IDesigner : IDisposable
{
 IComponent Component {get;}
 DesignerVerbCollection Verbs {get;}

 void DoDefaultAction();
 void Initialize(IComponent component);
}

Chapter 15

420

The DesignerVerbCollection contains objects of the type
System.ComponentModel.Design.DesignerVerb. These are simply menu commands, which are
added to the context menu at design time. The DoDefaultAction method is called for component-tray
components.

The Designer Host instantiates the components that it contains, and in this creation process the
designers for the components are instantiated, too. The designer for a component is available through
the Designer Host.

Now, we know what a designer is, but there are some questions yet to be answered:

❑ How to tell the Designer Host which designer to instantiate for a component

❑ How to implement the designer itself

Telling the designer host which designer to instantiate for a component is easy. Just use the
System.ComponentModel.DesignerAttribute to mark which designer should be used.
For example:

[Designer(typeof(System.Windows.Forms.Design.DocumentDesigner),
 typeof(IRootDesigner))]
public class MyControl : UserControl {
}

Implementation of custom designers is outside the scope of this book (there is plenty of online
documentation available, for example, you can refer to http://www.gotdotnet.com). In our discussion,
we will concentrate on instantiating designers.

We can write a routine that checks for the DesignerAttribute attribute, through the inheritance tree
and then instantiate the specified designer. However, this is easily done with the
System.ComponentModel.TypeDescriptor utility class. This class has a method defined:

public static IDesigner CreateDesigner(IComponent component,
 Type designerBaseType);

This method allows us to instantiate a designer for a given component. It returns null if the designer is
missing (note that Windows Forms controls always have a default designer inherited from Control).
The Designer Host implemented in SharpDevelop uses this method to create designers for each
created component.

Now that we have a clue about the general working of the system, let's see how to display it on the screen.

The Root Designer
The root designer is the designer for the root component (a root component is the component that
contains all other components). But what makes a root designer special is that it provides a view for the
design area. From a root designer, a view (that is, a Windows Forms control) can be requested to display
the Designer area. For example, the root designer of Form and UserControl is the
System.Windows.Forms.Design.DocumentDesigner class, which provides the familiar Designer
area of SharpDevelop (and Visual Studio .NET).

The Designer Infrastructure

421

The IRootDesigner interface looks like this:

public interface IRootDesigner : IDesigner, IDisposable
{
 ViewTechnology[] SupportedTechnologies {
 get;
 }

 object GetView(ViewTechnology technology);
}

The root designer may provide more than one view technology (ViewTechnology is an enumeration).
It is implemented for future extensibility of the designer infrastructure. In time a successor to Windows
Forms may appear, but apparently Microsoft has the option to reuse the current designer infrastructure
when the GUI framework is switched.

Currently there are two view technologies:

❑ ViewTechnology.WindowsForms
If this view technology is supported, the GetView call returns a Control. If a requested view
technology is not supported, the method will throw a System.ArgumentException.

❑ ViewTechnology.Passthrough
If this view technology is supported, the GetView call returns an object, which is passed
through to the development environment. This is used for custom view technologies defined
by the IDE. SharpDevelop currently does not support view technologies other than Windows
Forms. Visual Studio accepts this view technology and the GetView call may return an object
from type IVsWindowPane. Further information about this is available in the Visual Studio
Integration Program (http://msdn.microsoft.com/vstudio/vsip).

Now let's look at the implementation of the Designer Host.

Designer Host Implementation
In this section we will be examining the Designer Host. We will be discussing the various aspects
involved, like:

❑ Setting up the designer host

❑ Implementing component management

❑ Implementing transaction management

The designer host is implemented in
src\SharpDevelop\FormDesigner\FormDesigner\Hosts\DefaultDesignerHost.cs.

Chapter 15

422

First, we will look at the basic designer host implementation. The designer host class starts with:

public class DefaultDesignerHost : DefaultServiceContainer,
 IDesignerLoaderHost
{
 DesignComponentContainer container = null;
 Stack transactions = new Stack();
 DesignerLoader myLoader = new DefaultDesignerLoader();

 public DefaultDesignerHost ()
 {
 container = new DesignComponentContainer(this);
 Reload();
 }

We will see the purpose of the DesignComponentContainer and Stack in the next sections. For
now, we will study the DesignerLoader. The DesignerLoader is used to load a serialized designer
document (document is the root component that may contain other components; this is what is
displayed in the designer area).

The Designer Host inherits from the DefaultServiceContainer class that implements the
ServiceContainer. This class uses the .NET default implementation of the service container.
Inserting a class around the .NET implementation of this container allows us to listen to GetService
requests. We found this useful for figuring out the services requested by the framework and which we,
therefore, needed to implement.

The next part in the class definition is the implementation of the IDesignerLoaderHost and the
IDesignerHost members, which deal with loading and activation:

 public bool Loading {
 get { return myLoader.Loading; }
 }

 public void Activate()
 {
 OnActivated(EventArgs.Empty);
 }

 public void Deactivate()
 {
 OnDeactivated(EventArgs.Empty);
 }

 public void EndLoad(string baseClassName, bool successful,
 ICollection errorCollection)
 {
 OnLoadComplete(EventArgs.Empty);
 }

 public void Reload()
 {
 myLoader.BeginLoad(this);

The Designer Infrastructure

423

 OnLoadComplete(EventArgs.Empty);
 }

 protected virtual void OnActivated(EventArgs e);
 protected virtual void OnDeactivated(EventArgs e);
 protected virtual void OnLoadComplete(EventArgs e);

 public event EventHandler Activated;
 public event EventHandler Deactivated;
 public event EventHandler LoadComplete;

The IDesignerLoaderHost extends the IDesignerHost with two methods – Reload and EndLoad.
As we can see in the code snippet, the EndLoad method does not recognize the parameters it receives.
But again, this code is currently not used; however, we have to implement it, as it's an interface. Only
Activate and Deactivate get called and they trigger the corresponding events; but the Forms
Designer structure also works without calling them. Currently, the Designer Host does nothing during
activation and deactivation.

Now, we look at the component management part of the designer host:

 public IContainer Container {
 get { return container; }
 }

 public IComponent RootComponent {
 get { return container.RootComponent; }
 }

 public string RootComponentClassName {
 get {
 return RootComponent == null ? null :
 RootComponent.GetType().Name;
 }
 }

 public IComponent CreateComponent(Type componentClass)
 {
 INameCreationService nameCreationService =
 (INameCreationService)GetService(typeof(INameCreationService));
 return this.CreateComponent(componentClass,
 nameCreationService.CreateName(container, componentClass));
 }

 public IComponent CreateComponent(Type componentClass, string name)
 {
 IComponent component = Activator.CreateInstance(componentClass) as
 IComponent;
 if (component == null) {
 throw new ArgumentException("The specified Type id not an IComponent",
 "componentClass");
 }

Chapter 15

424

 INameCreationService nameCreationService =
 (INameCreationService)GetService(typeof(INameCreationService));

 if (!nameCreationService.IsValidName(name)) {
 name = nameCreationService.CreateName(container, componentClass);
 }
 container.Add(component, name);

 return component;
 }

 public void DestroyComponent(IComponent component)
 {
 component.Dispose();
 }

 public IDesigner GetDesigner(IComponent component)
 {
 if (component == null) {
 return null;
 }
 return (IDesigner)container.Designers[component];
 }

 public Type GetType(string typeName)
 {
 return Type.GetType(typeName);
 }

The component management part of the designer host delegates most of the functionality to the
DesignComponentContainer class. For creating a valid component name it uses the
INameCreationService. This service (like other services) must be implemented and put into the
Designer Host, for making the above code work.

Note that the Designer Host creates and destroys components. All components that are added to the
Designer area must be created with the CreateComponent of the Designer Host. DestroyComponent
gets called when a component is removed from the Forms Designer area. This is done with a simple
Dispose call. The GetType method just delegates to the Type class.

Now, we will look at the DesignComponentContainer class, which performs the component
handling. It can be found under src\SharpDevelop\FormDesigner\FormDesigner\Hosts\
DesignComponentContainer.cs:

public class DesignComponentContainer : IContainer
{
 DefaultDesignerHost host = null;

 HybridDictionary components = new HybridDictionary();
 HybridDictionary designers = new HybridDictionary();

 IComponent rootComponent = null;

The Designer Infrastructure

425

 int unnamedCount = 0;

 public DesignComponentContainer(DefaultDesignerHost host)
 {
 this.host = host;

 ComponentChangeService componentChangeService = componentChangeService =
 host.GetService(typeof(IComponentChangeService)) as
 ComponentChangeService;
 if (componentChangeService != null) {
 componentChangeService.ComponentRename +=
 new ComponentRenameEventHandler(OnComponentRename);
 }
 }

The ComponentChangeService is the service, which has events indicating component operations, like
adding, removing, or renaming a component. We will examine the ComponentChangeService in this
chapter, after we have finished discussing the Designer Host.

Then, we have some basic properties listed:

 public IDictionary Designers {
 get { return designers; }
 }

 public IComponent RootComponent {
 get { return rootComponent; }
 }

 public ComponentCollection Components {
 get {
 IComponent[] datalist = new IComponent[components.Count];
 components.Values.CopyTo(datalist, 0);
 return new ComponentCollection(datalist);
 }
 }

Note that, instead of merely returning a collection, the Components property generates the
ComponentCollection out of the dictionaries.

The Dispose method calls Dispose on all components in the container:

 public void Dispose()
 {
 foreach (IComponent component in components.Values) {
 component.Dispose();
 }
 components.Clear();
 }
 public bool ContainsName(string name)
 {
 return components.Contains(name);
 }

Chapter 15

426

The ContainsName method just delegates the call to the dictionary.

Now, we will see the Add method, which attaches the Site property to the component and creates
the designer:

 public void Add(IComponent component, string name)
 {
 if (name == null) {
 name = unnamedCount + "_unnamed";
 ++unnamedCount;
 }

 if (ContainsName(name)) {
 throw new ArgumentException("name", "A component named " + name +
 " already exists in this container");
 }

 ISite site = new ComponentSite(this, component);
 site.Name = name;
 component.Site = site;

 ComponentChangeService componentChangeService = host.GetService
 (typeof(IComponentChangeService)) as ComponentChangeService;

 if (componentChangeService != null) {
 componentChangeService.OnComponentAdding(component);
 }

 IDesigner designer = null;

 if (components.Count == 0) {
 // This is the first component. It must be the
 // "root" component and therefore it must offer
 // a root designer
 designer =
 TypeDescriptor.CreateDesigner(component, typeof(IRootDesigner));
 rootComponent = component;
 } else {
 designer =
 TypeDescriptor.CreateDesigner(component, typeof(IDesigner));
 }

 // If we got a designer, initialize it
 if (designer != null) {
 designer.Initialize(component);
 designers[component] = designer;
 }

 components.Add(component.Site.Name, component);
 if (componentChangeService != null) {
 componentChangeService.OnComponentAdded(component);
 }
 }

The Designer Infrastructure

427

 public void Add(IComponent component)
 {
 this.Add(component, null);
 }

Note that the designers are stored in a separate dictionary, and that the componentChangeService
gets informed about the component Add operation.

Now we will examine the Remove method, which does the exact opposite – it removes a Site from the
component. After that, it removes the component from the dictionary, sets the site property to null,
and finally removes the designer attached to the component:

 public void Remove(IComponent component)
 {
 string name = null;
 ISite site = component.Site;

 if (site != null) {
 name = site.Name;
 } else { // if no site is attached search for the name manually
 foreach (string k in components.Keys) {
 IComponent c = components[k] as IComponent;
 if (c == component) {
 name = k;
 break;
 }
 }
 }

 if (name == null || !components.Contains(name)) {
 return;
 }

 components.Remove(name);
 component.Site = null;

 IDesigner designer = designers[component] as IDesigner;

 if (designer != null) {
 designer.Dispose();
 designers.Remove(component);
 }
 }

When a component is renamed, the component is first removed from the dictionary and then
re-inserted with the new name:

 void OnComponentRename(object sender, ComponentRenameEventArgs e)
 {
 components.Remove(e.OldName);
 components.Add(e.NewName, e.Component);
 }

Chapter 15

428

Now we will look at the ISite implementation. Note that, instead, of having a child container for each
component, all GetService calls are delegated to the Designer Host:

 // ISite implementation
 class ComponentSite : ISite
 {
 IComponent component;
 DesignComponentContainer designComponentContainer;
 bool isInDesignMode;
 string name;

 public ComponentSite(DesignComponentContainer designComponentContainer,
 IComponent component)
 {
 this.component = component;
 this.designComponentContainer = designComponentContainer;
 this.isInDesignMode = true;
 }

 public IComponent Component {
 get { return component; }
 }

 public IContainer Container {
 get { return designComponentContainer; }
 }

 public bool DesignMode {
 get { return isInDesignMode; }
 }

 public string Name {
 get {
 return name;
 }
 set {
 Control nameable = component as Control;
 if (nameable != null) {
 nameable.Name = value;
 }
 name = value;
 }
 }

 public object GetService(Type serviceType)
 {
 return designComponentContainer.DesignerHost.GetService(serviceType);
 }
 }
}

The last part of the designer host deals with transaction management. A transaction is an action that
alters the components stored in the service container.

The Designer Infrastructure

429

 public bool InTransaction {
 get { return transactions.Count > 0; }
 }

 public string TransactionDescription {
 get {
 if (InTransaction) {
 DesignerTransaction trans =
 (DesignerTransaction)transactions.Peek();
 return trans.Description;
 }
 return null;
 }
 }

 public DesignerTransaction CreateTransaction()
 {
 return this.CreateTransaction(null);
 }

 public DesignerTransaction CreateTransaction(string description)
 {
 OnTransactionOpening(EventArgs.Empty);

 DesignerTransaction transaction = null;

 if (description == null) {
 transaction = new DefaultDesignerTransaction(this);
 } else {
 transaction = new DefaultDesignerTransaction(this, description);
 }

 transactions.Push(transaction);

 OnTransactionOpened(EventArgs.Empty);

 return transaction;
 }

 internal void FireTransactionClosing(bool commit)
 {
 OnTransactionClosing(new DesignerTransactionCloseEventArgs(commit));
 }

 internal void FireTransactionClosed(bool commit)
 {
 OnTransactionClosed(new DesignerTransactionCloseEventArgs(commit));
 transactions.Pop();
 }

 // canonical event methods
 protected virtual void OnTransactionOpened(EventArgs e);
 protected virtual void OnTransactionOpening (EventArgs e);
 protected virtual void

Chapter 15

430

 OnTransactionClosing(DesignerTransactionCloseEventArgs e);
 protected virtual void
 OnTransactionClosed(DesignerTransactionCloseEventArgs e);

 public event EventHandler TransactionOpened;
 public event EventHandler TransactionOpening;
 public event DesignerTransactionCloseEventHandler TransactionClosed;
 public event DesignerTransactionCloseEventHandler TransactionClosing;
}

Note that transactions are stored on a stack. The transaction that is on top of the stack is the current
transaction (and the first transaction that will be closed).

The designer transaction implementation is defined under src\SharpDevelop\FormDesigner\
FormDesigner\Hosts\DefaultDesignerTransaction.cs:

public class DefaultDesignerTransaction : DesignerTransaction
{
 DefaultDesignerHost host = null;

 public DefaultDesignerTransaction(DefaultDesignerHost host) : base()
 {
 this.host = host;
 }
 public DefaultDesignerTransaction(DefaultDesignerHost host, string desc) :
 base(desc)
 {
 this.host = host;
 }

 protected override void OnCancel()
 {
 host.FireTransactionClosing(false);
 host.FireTransactionClosed(false);
 }

 protected override void OnCommit()
 {
 host.FireTransactionClosing(true);
 host.FireTransactionClosed(true);
 }
}

The Designer Host gets informed about transactions, but the host does not know anything about the
type of the transaction. The transaction has a description, which identifies it but nothing more.

Even the 'requester' of the transaction is unknown. The description may be displayed in the status bar or
something similar. Currently, it not used anywhere inside SharpDevelop but it is implemented because it
was easy and we might use the transactions in a future version. Even parsing the description does not
really make sense, as the description strings are localized to the language of the installed .NET Framework.

The Designer Infrastructure

431

Now let's look at the implementation of the two services that we discussed in this section; the
Component Change Service and the Name Creation Service

Designer Host Services
In this section, we will look at the first few services that we encountered in the Designer Host
implementation. A full list of services, their purpose and implementation will be given in the next chapter.

The ComponentChangeService
The Component Change service is just a container for events that indicate component change operations.
These operations include altering a component property, and adding, removing, or renaming a
component. It is currently not used for anything special, but the implementation of undo and redo needs
to be informed about the add/remove and change events (but it can be used for more than that).

An undo/redo manager must listen to the ComponentChangeService to create the undo for the
operation that was last executed. The ComponentChangeService interface declares events only. The
implementation defines methods that make it easier for the forms designer to fire the events.

The ComponentChangeService is defined under
src\SharpDevelop\FormDesigner\FormDesigner\Services\ComponentChangeService.cs:

public class ComponentChangeService : IComponentChangeService
{
 public void OnComponentChanged(object component, MemberDescriptor member,
 object oldValue, object newValue)
 {
 if (ComponentChanged != null) {
 ComponentChanged(this, new ComponentChangedEventArgs(component,
 member, oldValue, newValue));
 }
 }

Note that, the MemberDescriptor is a framework class, in the System.ComponentModel namespace,
which is used to specify what has changed (for example, which property). We have removed the bodies
from the following OnXYZ operations, as they are similar:

 public void OnComponentChanging(object component, MemberDescriptor member)
 public void OnComponentAdded(IComponent component);
 public void OnComponentAdding(IComponent component);
 public void OnComponentRemoved(IComponent component);
 public void OnComponentRemoving(IComponent component);
 public void OnComponentRename(object component, string oldName,
 string newName)
 public event ComponentEventHandler ComponentAdded;
 public event ComponentEventHandler ComponentAdding;
 public event ComponentChangedEventHandler ComponentChanged;
 public event ComponentChangingEventHandler ComponentChanging;
 public event ComponentEventHandler ComponentRemoved;
 public event ComponentEventHandler ComponentRemoving;
 public event ComponentRenameEventHandler ComponentRename;
}

Chapter 15

432

The ComponentChangeService is easy to understand. Any service that is interested in one of the
events it defines, can listen to the ComponentChangeService to perform this task. For example, we
had mentioned that the component container listens to the ComponentRename event for renaming the
component inside the container component representation.

Now we will look at the service, which is used in the designer host for creating a default name for
a component.

The Name Creation Service
The Name Creation service is not required for making the designer work, but it is part of the .NET
infrastructure and has a use in the Designer Host. Alternatively, the Designer Host may have created
the name on its own. As far as we know, the Framework Designer infrastructure doesn't request this
service but this service is often used inside our structure (think of any name checking operation, adding
a new component, renaming, etc.). Other services also get requested from the infrastructure to perform
specific tasks, but this is an issue addressed in the next chapter.

The Name Creation service is defined under src\SharpDevelop\FormDesigner\FormDesigner\
Services\NameCreationService.cs:

public class NameCreationService : INameCreationService
{
 IDesignerHost host;

 public NameCreationService(IDesignerHost host)
 {
 this.host = host;
 }

 public string CreateName(IContainer container, Type dataType)
 {
 string name = Char.ToLower (dataType.Name[0]) +
 dataType.Name.Substring(1);

 if (container.Components[name] == null) {
 return name;
 }

 int number = 2;
 while (container.Components[name + number.ToString()] != null) {
 ++number;
 }
 return name + number.ToString();
 }

 public bool IsValidName(string name)
 {
 if (name == null || name.Length == 0 || !(Char.IsLetter(name[0]) ||
 name[0] == '_')) {
 return false;
 }

The Designer Infrastructure

433

 foreach (char ch in name) {
 if (!Char.IsLetterOrDigit(ch) && ch != '_') {
 return false;
 }
 }
 return !((DesignComponentContainer)host.Container).ContainsName(name);
 }

 public void ValidateName(string name)
 {
 if (!IsValidName(name)) {
 throw new System.Exception("Invalid name " + name);
 }
 }
}

This class creates a name and validates a given name to determine whether the name can be used. The
name creation is simple. The type of the object is taken as the name (with a lowercase start letter). If it
exists, it tries to find a name that has the form typeName + number. The first free number is used as
valid name.

The IsValidName method checks the name for any invalid characters and whether it's a duplicate
name. The ValidateName method does the same, but it throws an exception on an invalid name
instead of returning a specific value, which is the specified behavior of this method, (as mentioned in the
framework documentation). All methods in this class are defined in the INameCreationService
interface.

In the last section of this chapter, we will look at the Design Panel that is used inside the Forms
Designer as the Design area.

The Design Panel
The Design Panel represents the Design area in the SharpDevelop Forms Designer. It gets a Designer
Host as constructor argument. The panel handles the Windows.Forms issues on its own:

class DesignPanel : Panel
{
 public DesignPanel(IDesignerHost host)
 {
 Debug.Assert(host != null);

 IRootDesigner rootDesigner = host.GetDesigner(host.RootComponent) as
 IRootDesigner;
 if (rootDesigner == null) {
 MessageBox.Show("Can't create root designer for " +
 host.RootComponent, "Error", MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return;
 }

Chapter 15

434

 if (!TechnologySupported(rootDesigner.SupportedTechnologies,
 ViewTechnology.WindowsForms)) {
 MessageBox.Show("Root designer does not support Windows Forms view
 technology.", "Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
 return;
 }

 BackColor = Color.White;
 Control view =
 (Control)rootDesigner.GetView(ViewTechnology.WindowsForms);
 view.Dock = DockStyle.Fill;
 this.Controls.Add(view);
 }

 bool TechnologySupported(ViewTechnology[] technologies,
 ViewTechnology requiredTechnology)
 {
 foreach (ViewTechnology technology in
 rootDesigner.SupportedTechnologies) {
 if (technology == requiredTechnology) {
 return true;
 }
 }
 return false;
 }
}

This class performs some security checks. It is always good to check for as many error cases as possible.
First it gets the root designer for the root component and checks whether it has a root designer attached
to it and if the root designer is able to generate a Windows Forms Control (with the check if the
ViewTechnology.WindowsForms is supported). Finally, the view is generated and placed as a control
on the panel that fills the whole panel.

Summary
In this chapter, we examined the Designer Host. It is the component where all services come together to
form the underlying Forms Designer. We learned that the host stores services and we looked at two of
them, used in the Designer Host implementation itself.

Now, we know that designers are not GUI components; instead they are objects that can change the
GUI behavior. We have looked at how designers are created but not where they get used; we will see
this in the next chapter. We have learned about a special designer called root designer. We have
examined the part of the forms designer code that interacts with this root designer to create the Design
area panel.

In the next chapter, we will look at the services implemented in the SharpDevelop Forms Designer and
their purpose. We will discuss how they interact with the rest of the forms designer infrastructure to
make up a fully functional forms designer.

The Designer Infrastructure

435

Chapter 15

436

Implementing a Windows Forms
Designer

In this chapter, we will examine all the services that are necessary for implementing a Windows Forms
designer. We will look at how they are implemented in SharpDevelop, and how they interact with each
other and the designer framework to support common uses.

We will be looking at:

❑ The services that are required for making the basic forms designer work

❑ Some designer services of minor importance, which are implemented but not required for a
basic forms designer; these provide some useful functionalities.

Designer Services
In this section, we will look at the basic services required for making the Forms designer work, which are:

❑ Toolbox Service
This wraps some toolbox functionality for the designer infrastructure

❑ Menu Command Service
This service displays context menus and is used for calling commands, which affect the
components in the design area

❑ Selection Service
This handles the selection of components and keeps track of the selected components

16

Chapter 16

438

Toolbox Service
The Toolbox service represents the Toolbox in the IDE. The Toolbox contains components that we can
place onto our forms. The interface implemented by this service is the
System.Drawing.Design.IToolboxService interface, which is a part of the .NET Framework.

The main purpose of the Toolbox service is to store ToolBoxItem objects. Toolbox items simply
contain a type, bitmap, and text. The Design area uses the Toolbox service to create new components.
When the Design area is clicked, the type of the component is stored in the ToolBoxItem object.

The following screenshot shows the SharpDevelop Toolbox:

In this Toolbox, the Forms category is active and it contains various components. These items represent
the Toolbox items in the service. Toolbox items have their individual images, which are defined by the
component implementer.

How does the designer know which Toolbox item should be used for creating a component?

The Toolbox service contains the functionality for selecting a component. After a Toolbox item is
selected, clicking on the Design area will create a component of the Toolbox type in the Design area.
The Design area does this automatically and there is not much code to understand.

The service is implemented in the
src\SharpDevelop\FormDesigner\FormDesigner\Services\ToolboxService.cs file.

We will look at the interface to get an understanding of what the service does. We won't go through the
full implementation. As the interface mainly wraps containers, the implementation won't provide us
with any valuable insights. The interface describes just a container for Toolbox items:

public interface IToolboxService
{
 void AddToolboxItem(ToolboxItem toolboxItem, string category);
 void AddToolboxItem(ToolboxItem toolboxItem);

Implementing a Windows Forms Designer

439

 void AddLinkedToolboxItem(ToolboxItem toolboxItem, string category,
 IDesignerHost host);
 void AddLinkedToolboxItem(ToolboxItem toolboxItem, IDesignerHost host);

 void RemoveToolboxItem(ToolboxItem toolboxItem, string category);
 void RemoveToolboxItem(ToolboxItem toolboxItem);

 ToolboxItemCollection GetToolboxItems(string category,
 IDesignerHost host);
 ToolboxItemCollection GetToolboxItems(string category);
 ToolboxItemCollection GetToolboxItems(IDesignerHost host);
 ToolboxItemCollection GetToolboxItems();

A category is a group of Toolbox items. In the current implementation, there is only one global
category, which contains all Toolbox items (it is represented under the Forms group inside the
SharpDevelop Toolbox implementation).

The first part of the interface manages the Toolbox items. Toolbox items may be linked to a designer
host. Currently this functionality is not used in SharpDevelop; when we use it the designer host will
contain the selected item and there will only be one Global Selection service, which handles all designer
areas; however, currently we have a Toolbox service for each designer host.

Now we will look at how to select a Toolbox item:

 void SetSelectedToolboxItem(ToolboxItem toolboxItem);

 ToolboxItem GetSelectedToolboxItem(IDesignerHost host);
 ToolboxItem GetSelectedToolboxItem();

 void SelectedToolboxItemUsed();

The Toolbox implementation of SharpDevelop calls SetSelectedToolboxItem, and the Designer
area calls SelectedToolboxItemUsed when the item is used (when it's placed into the Design area).
After that, we set the selected item to null, otherwise, the Toolbox item remains selected.

The service has functionality to serialize and deserialize Toolbox items:

 object SerializeToolboxItem(ToolboxItem toolboxItem);

 ToolboxItem DeserializeToolboxItem(object serializedObject,
 IDesignerHost host);
 ToolboxItem DeserializeToolboxItem(object serializedObject);

Currently the implementation doesn't make use of serializing Toolbox items; therefore, it is unimplemented.

But how are the items serialized and deserialized? We can put (and remove) custom Toolbox item
creators into the service with these four functions:

 void AddCreator(ToolboxItemCreatorCallback creator, string format,
 IDesignerHost host);
 void AddCreator(ToolboxItemCreatorCallback creator, string format);
 void RemoveCreator(string format, IDesignerHost host);
 void RemoveCreator(string format);

Chapter 16

440

A ToolboxItemCreatorCallback delegate has the following signature:

public delegate ToolboxItem ToolboxItemCreatorCallback(
 object serializedObject,
 string format
);

How are items serialized using a custom method? The answer is that they won't be serialized by this
service, but rather through a registered callback. A user-defined method, which is not part of this
service, serializes them. But, the deserialization can be customized using the
ToolboxItemCreatorCallback.

The SharpDevelop IToolboxService implementation does not implement the serialization
functionality, as currently it is not needed. There are some more helper functions for the serialization
parts (which are not implemented either):

 bool IsToolboxItem(object serializedObject, IDesignerHost host);
 bool IsToolboxItem(object serializedObject);

 bool IsSupported(object serializedObject, ICollection filterAttributes);
 bool IsSupported(object serializedObject, IDesignerHost host);

The SetCursor method changes the current application mouse cursor to a cursor that represents the
selected toolbox item:

 bool SetCursor();

It returns true when the cursor is set to a cursor representing the current selected Toolbox item. It
returns false when no item is selected and the cursor is set to the standard cursor.

The Refresh method redraws the toolbox:

 void Refresh();

In the current implementation, this method does nothing because the service only wraps the real
SharpDevelop toolbar to this interface! Refreshing is done by a mechanism different from this service.

Finally properties that represent the Toolbox categories are listed:

 CategoryNameCollection CategoryNames {
 get;
 }

 string SelectedCategory {
 get;
 set;
 }
}

Implementing a Windows Forms Designer

441

We have finished looking at the entire interface, but we still do not know how the Toolbox is filled with
Toolbox items. For this very purpose there is a method defined in src\SharpDevelop\
FormDesigner\FormDesigner\FormDesignerDisplayBindingBase.cs:

ArrayList BuildToolboxFromAssembly(Assembly assembly)
{
 ArrayList toolBoxItems = new ArrayList();

 Hashtable images = new Hashtable();

 // try to load resource icons
 foreach (string name in assembly.GetManifestResourceNames()) {
 try {
 Bitmap bitmap = newBitmap(Image.
 FromStream(assembly.GetManifestResourceStream(name)));
 images[name] = bitmap;
 } catch {}
 }

 foreach (Module module in assembly.GetModules(false)) {
 foreach (Type type in module.GetTypes()) {
 if (type.IsDefined(typeof(ToolboxItemFilterAttribute), true)) {
 object[] attributes = type.
 GetCustomAttributes(typeof(ToolboxItemFilterAttribute), true);

 // here we should enumerate all attributes ...
 ToolboxItemFilterAttribute attr =
 (ToolboxItemFilterAttribute) attributes[0];

 // get only the components
 //that require 'Windows Forms' toolbox filter
 if (attr.FilterType == ToolboxItemFilterType.Allow &&
 attr.FilterString == "System.Windows.Forms") {
 if (images[type.FullName + ".bmp"] != null) {
 ToolboxItem item = new ToolboxItem(type);
 // filter out UserControl manually
 if (item.DisplayName != "UserControl") {
 toolBoxItems.Add(item);
 } } } } } } //closing braces collapsed for brevity

 toolBoxItems.Sort(new ToolboxItemSorter());
 return toolBoxItems;
}

This method iterates through all types in the assembly and inserts all types having their
ToolboxItemFilterAttribute set to System.Windows.Forms, and an icon defined in the
assembly resources.

With the toolbox filled, we will move on to context menus, which are an important feature in a
modern-day application.

Chapter 16

442

Menu Command Service
The Menu Command service is used to display all context menus in the Design area. When the user
right-clicks in the Design area (which is defined in the .NET Framework), a method from the Menu
Command service is called. Therefore, this service must be implemented to make all context menus work.

Besides displaying menus, the Menu Command service also acts as a command execution service. The
Designer Framework puts MenuCommands into the service. A client can execute the commands using a
CommandID object that identifies a specific command, which is used for making the menu commands in
the IDE. The menu commands simply call the Menu Command service.

There are many commands defined and implemented in the framework infrastructure. We will look at
them at the end of this section.

The service is defined in the src\SharpDevelop\FormDesigner\FormDesigner\Services\
MenuCommandService.cs file:

class MenuCommandService : IMenuCommandService
{
 IDesignerHost host;
 ArrayList commands = new ArrayList();
 ArrayList verbs = new ArrayList();

 public DesignerVerbCollection Verbs {
 get {
 DesignerVerbCollection verbCollection =
 CreateDesignerVerbCollection();
 verbCollection.AddRange((DesignerVerb[])verbs.
 ToArray(typeof(DesignerVerb)));
 return verbCollection;
 }
 }

 public MenuCommandService(IDesignerHost host)
 {
 this.host = host;
 }

 public void AddCommand(MenuCommand command)
 {

 Debug.Assert(command != null);
 Debug.Assert(command.CommandID != null);
 Debug.Assert(!commands.Contains(command));
 this.commands.Add(command);
 }

 public void AddVerb(DesignerVerb verb)
 {
 Debug.Assert(verb != null);
 this.verbs.Add(verb);
 }

Implementing a Windows Forms Designer

443

The Menu Command service contains commands and verbs. The commands are provided by the
framework. verbs are like commands but they are user-defined. Verbs can be added by anyone but
usually the designers of the components define verbs for their components.

The CreateDesignerVerbCollection method creates a verb collection that contains all verbs
defined by the designers that are attached to the selected components (for more information about
designers, refer to Chapter 15). It gets the selected component, and uses the verb collection of its
attached designer to create a verb collection that is specific for this component.

If the selected component is the root component, the default verbs that are stored in the menu
command are attached to the returned collection also. One framework component that has verbs
attached to is the Tab control, which allows us to add or remove Tab pages in the context menu.

 public DesignerVerbCollection CreateDesignerVerbCollection()
 {
 DesignerVerbCollection designerVerbCollection = new
 DesignerVerbCollection();

 ISelectionService selectionService = (ISelectionService)
 host.GetService(typeof(ISelectionService));

 if (selectionService != null && selectionService.SelectionCount == 1) {
 IComponent selectedComponent =
 selectionService.PrimarySelection as Component;
 if (selectedComponent != null) {
 IDesigner designer = host.GetDesigner
 ((IComponent)selectedComponent);
 if (designer != null) {
 designerVerbCollection.AddRange(designer.Verbs);
 }
 }

 if (selectedComponent == host.RootComponent) {
 designerVerbCollection.AddRange(this.verbs);
 }
 }
 return designerVerbCollection;
 }

Also the service allows commands and verbs to be removed:

 public void RemoveCommand(MenuCommand command)
 {
 Debug.Assert(command != null);
 commands.Remove(command.CommandID);

 }

 public void RemoveVerb(DesignerVerb verb)
 {
 Debug.Assert(verb != null);
 verbs.Remove(verb);

 }

Chapter 16

444

Now we will look at the methods used to invoke and find a command:

 public bool GlobalInvoke(CommandID commandID)
 {
 MenuCommand menuCommand = FindCommand(commandID);
 if (menuCommand == null) {
 MessageBox.Show("Can't find command " + commandID, "Error");
 return false;
 }

 menuCommand.Invoke();
 return true;
 }

 public MenuCommand FindCommand(CommandID commandID)
 {
 foreach (MenuCommand menuCommand in commands) {
 if (menuCommand.CommandID == commandID) {
 return menuCommand;
 }
 }

 foreach (DesignerVerb verb in Verbs) {
 if (verb.CommandID == commandID) {
 return verb;
 }
 }
 return null;
 }

Before any kind of invocation can happen, we have to display the menu that contains the commands.
The ShowContextMenu method takes the menu command and verbs and constructs a context menu
using the Magic library, and displays it. It has a CommandID, which specifies the menu ID to be
displayed. The menu ID is different, according to what the user had clicked (for example, the
Component tray has a different menu ID as compared to a button in the root component).
The menu ID is used for displaying context-sensitive menus. It gets the screen position, which
determines where to show the context menu:

 public void ShowContextMenu(CommandID menuID, int x, int y)
 {
 Crownwood.Magic.Menus.PopupMenu popup =
 new Crownwood.Magic.Menus.PopupMenu();

 PropertyService propertyService =
 (PropertyService) ICSharpCode.Core.Services.ServiceManager.Services.
 GetService(typeof(PropertyService));

 popup.Style =
 (Crownwood.Magic.Common.VisualStyle) propertyService.
 GetProperty("ICSharpCode.SharpDevelop.Gui.VisualStyle",
 Crownwood.Magic.Common.VisualStyle.IDE);
 ArrayList menuCommands = new ArrayList();

Implementing a Windows Forms Designer

445

 foreach (MenuCommand command in commands) {
 if (command.Visible && command.Enabled) {
 if (ContextMenuCommand.GetStandardCommandName(command.CommandID) !=
 null) {
 menuCommands.Add(new ContextMenuCommand(command));
 }
 }
 }

 foreach (DesignerVerb verb in Verbs) {
 if (verb.CommandID.Guid == menuID.Guid) {
 menuCommands.Add(new ContextMenuCommand(verb));
 }
 }

 popup.MenuCommands.AddRange((Crownwood.Magic.Menus.MenuCommand[])
 menuCommands.ToArray(typeof(Crownwood.Magic.Menus.MenuCommand)));
 popup.TrackPopup(new Point(x, y));
 }

The ContextMenuCommand class is a wrapper class for the Crownwood.Magic.Menus.MenuCommand
class. We don't look at it here because the implementation of this class will not bring us any new
insights. It just wraps a name (which is displayed) to the menu command using the field name from the
System.ComponentModel.Design.StandardCommands class.

The StandardCommands class contains public static CommandID fields and a method that converts the
CommandID to a screen name. This will be replaced in future versions with SharpDevelop standard
menus, which allow localization and real customization of these menus.

The commands defined by the standard commands class are:

AlignBottom, AlignHorizontalCenters, AlignLeft, AlignRight,
AlignToGrid, AlignTop, AlignVerticalCenters,

ArrangeBottom, ArrangeIcons, ArrangeRight, LineupIcons,

BringForward, BringToFront, SendBackward, SendToBack,

CenterHorizontally, CenterVertically,
SizeToControl, SizeToControlHeight, SizeToControlWidth, SizeToFit,
SizeToGrid, SnapToGrid,

Copy, Cut, Delete, Paste, Replace, SelectAll,

F1Help, Properties, PropertiesWindow, TabOrder, VerbFirst, VerbLast,

Group, Ungroup,

HorizSpaceConcatenate, HorizSpaceDecrease, HorizSpaceIncrease,
HorizSpaceMakeEqual,
VertSpaceConcatenate, VertSpaceDecrease, VertSpaceIncrease, VertSpaceMakeEqual,

Chapter 16

446

MultiLevelRedo, MultiLevelUndo, Redo, Undo,

LockControls, ShowGrid, ShowLargeIcons, ViewGrid

Additional commands are defined in the System.Windows.Forms.Design.MenuCommands class:

DesignerProperties,

KeyCancel, KeyDefaultAction,
KeyMoveDown, KeyMoveLeft, KeyMoveRight, KeyMoveUp,
KeyNudgeDown, KeyNudgeLeft, KeyNudgeRight, KeyNudgeUp,
KeyNudgeHeightDecrease, KeyNudgeHeightIncrease, KeyNudgeWidthDecrease,
KeyNudgeWidthIncrease,

KeyReverseCancel, KeySelectNext, KeySelectPrevious,
KeySizeHeightDecrease, KeySizeHeightIncrease,
KeySizeWidthDecrease, KeySizeWidthIncrease,
KeyTabOrderSelect

The class is called MenuCommands but most commands shown are key actions (they start with the prefix
Key). So why is this class called MenuCommands and not KeyboardCommands?

The MenuCommands class contains IDs for menus. Remember the ShowContextMenu method from the
Menu Command service has a CommandID as a parameter. The correct menu to display can be
determined by comparing the given ID with the IDs from the MenuCommands class.
The MenuCommands class defines the following menus by CommandID:

ComponentTrayMenu, ContainerMenu, SelectionMenu, TraySelectionMenu,

Armed with this knowledge about available commands, let's look at how to execute those stock commands.

Executing the Standard Commands
Executing the standard commands is really simple. All commands that are used inside SharpDevelop
are defined inside the
src\SharpDevelop\FormDesigner\Commands\FormCommands.cs file.

The commands extend this class:

public abstract class AbstractFormDesignerCommand : AbstractMenuCommand
{
 public abstract CommandID CommandID {
 get;
 }

 public override void Run()
 {
 IWorkbenchWindow window =
 WorkbenchSingleton.Workbench.ActiveWorkbenchWindow;
 if (window == null) {

Implementing a Windows Forms Designer

447

 return;
 }

 FormDesignerDisplayBindingBase formDesigner =
 window.ViewContent as FormDesignerDisplayBindingBase;

 if (formDesigner != null) {
 IMenuCommandService menuCommandService =
 (IMenuCommandService)formDesigner.DesignerHost.
 GetService(typeof(IMenuCommandService));
 menuCommandService.GlobalInvoke(CommandID);
 }
} }

The AbstractFormDesignerCommand just gets the Menu Command service and executes the
CommandID, which must be given by a subclass. For example, the bring-to-front command looks like:

public class BringToFront : AbstractFormDesignerCommand
{
 public override CommandID CommandID {
 get {
 return StandardCommands.BringToFront;
 }
 }
}

Many standard commands are used inside the Format menu of SharpDevelop to execute specific tasks.

Now we will look at something a bit more difficult – the execution of keyboard commands.

Implementing a Key Event Handler
The problem with the key handler was that no existing service could be found that can take a key and
perform the appropriate action. Instead, a class was implemented that extended the
System.Windows.Forms.IMessageFilter interface. IMessageFilter objects can be used in
Windows Forms to filter a specific window event.

This interface declares only one method:

bool PreFilterMessage(ref Message m);

If this method returns true, the message will be filtered out and not passed any further in the event
filter chain.

An object of the IMessageFilter class must be put into the message filter queue. This is done with a
call to the System.Windows.Forms.Application.AddMessageFilter method.

The class that is used for the key events, in the forms designer, is implemented in src\SharpDevelop\
FormDesigner\FormDesigner\FormKeyHandler.cs:

Chapter 16

448

public class FormKeyHandler : IMessageFilter
{
 const int keyPressedMessage = 0x100; // WM_KEYDOWN

 Hashtable keyTable = new Hashtable();

The keyPressedMessage is a magic number, which is rooted in the native Windows message system.
It just says that the message, which is sent, is of type 'key pressed'.

A hash table is used for providing a fast, clean, and easy way to map a key to a command. The table is
initialized in the constructor:

 public FormKeyHandler ()
 {
 // normal keys
 keyTable[Keys.Left] = new CommandWrapper(MenuCommands.KeyMoveLeft);
//code omitted for listing

 // shift modified keys
 keyTable[Keys.Left | Keys.Shift] =
 new CommandWrapper(MenuCommands.KeySizeWidthDecrease);
//code omitted for listing

 // ctrl modified keys
 keyTable[Keys.Left | Keys.Control] =
 new CommandWrapper(MenuCommands.KeyNudgeLeft);
//code omitted for listing

 // ctrl + shift modified keys
 keyTable[Keys.Left | Keys.Control | Keys.Shift] =
 new CommandWrapper(MenuCommands.KeyNudgeWidthDecrease);
//code omitted for listing
 }

Now we will look at the filter method, which filters the keyboard events. This method gets all Windows
messages but we only care about the keyboard pressed events; therefore, we use the
keyPressedMessage value that we defined earlier (in this section) to check whether the message refers
to a key being pressed.

 public bool PreFilterMessage(ref Message m)
 {
 if (m.Msg != keyPressedMessage) {
 return false;
 }

 if (WorkbenchSingleton.Workbench.ActiveWorkbenchWindow == null) {
 return false;
 }

 FormDesignerDisplayBindingBase formDesigner =

 WorkbenchSingleton.Workbench.ActiveWorkbenchWindow.ViewContent as

Implementing a Windows Forms Designer

449

 FormDesignerDisplayBindingBase;
 if (formDesigner == null || !formDesigner.IsFormDesignerVisible) {
 return false;
 }

 Keys keyPressed = (Keys)m.WParam.ToInt32() | Control.ModifierKeys;
 CommandWrapper commandWrapper = (CommandWrapper)keyTable[keyPressed];

 if (commandWrapper != null) {
 IMenuCommandService menuCommandService =
 (IMenuCommandService)formDesigner.DesignerHost.
 GetService(typeof(IMenuCommandService));
 ISelectionService selectionService =
 (ISelectionService)formDesigner.DesignerHost.
 GetService(typeof(ISelectionService));
 ICollection components = selectionService.GetSelectedComponents();
 menuCommandService.GlobalInvoke(commandWrapper.CommandID);

 if (commandWrapper.RestoreSelection) {
 selectionService.SetSelectedComponents(components);
 }
 return true;
 }
 return false;
 }

Some commands remove the selection when they are executed when, in fact, they should not, for
example, some resizing commands (remember that we haven't implemented these commands, as we
can't access their source code). For this reason, the selection from the selection manager is saved before
the command is called, and restored after it is executed. This is done for all commands, except the
commands that alter the selection (for example, when the Tab key selects the next component).

A CommandWrapper class is used instead of putting the CommandID object directly into the hash table.
The CommandWrapper provides a RestoreSelection field; if this is set to false it won't restore the
selection afterwards. The CommandWrapper is an internal class.

 class CommandWrapper
 {
 CommandID commandID;
 bool restoreSelection;

 public CommandID CommandID {
 get {
 return commandID;
 }
 }

 public bool RestoreSelection {
 get {
 return restoreSelection;
 }
 }

Chapter 16

450

 public CommandWrapper(CommandID commandID) : this(commandID, true)
 {
 }
 public CommandWrapper(CommandID commandID, bool restoreSelection)
 {
 this.commandID = commandID;
 this.restoreSelection = restoreSelection;
 }
 }

So far we have seen a bit of the Selection service usage; now we will look at it in more detail.

Selection Service
The Selection service holds all selected components. The following screenshot shows what selections
can look like:

Note that the button2 component is surrounded by small black squares, whereas for the other selected
components they are white. This indicates that button2 is a special component, or the primary selection. The
Selection service must have a way to handle the primary selection, as well as the other selected components.

In the Properties window, the common properties are displayed. Common properties are those
properties that all selected components share. For example, you can change the font of all the selected
components throught the Properties window.

How is this implemented? We can find the code in src\SharpDevelop\FormDesigner\
FormDesigner\Services\SelectionService.cs:

public class SelectionService : ISelectionService
{
 IDesignerHost host;
 ArrayList selectedComponents = new ArrayList();

Implementing a Windows Forms Designer

451

The Selection service stores all selected components in an ArrayList. The primary selection is the first
element in this list:

 public object PrimarySelection {
 get {
 if (selectedComponents.Count > 0) {
 return selectedComponents[0];
 }
 return null;
 }
 }
 public int SelectionCount {
 get {
 return selectedComponents.Count;
 }
 }

 public SelectionService(IDesignerHost host)
 {
 Debug.Assert(host != null);
 this.host = host;
 ((IComponentChangeService)host.
 GetService(typeof(IComponentChangeService))).ComponentRemoved +=
 new ComponentEventHandler(ComponentRemovedHandler);
 }

The next listing shows the get methods for the components:

 public bool GetComponentSelected(object component)
 {
 return selectedComponents.Contains(component);
 }

 public ICollection GetSelectedComponents()
 {
 return selectedComponents.ToArray();
 }

The set method is special because it needs to take care of modifier key states. The expected behavior is:

❑ Shift pressed – When more than one component is passed to the method, they should replace
the selection (this is done by other designers; therefore, this behavior is standard). When one
component is passed, it should be added to the selection as a new primary selection. If the
component is already selected it should be removed from the selection.

❑ Control pressed – If one component is passed to the method, the control key behaves like the
shift key. Otherwise the components should be added to the current selection and the new
root component is one of the added components.

❑ No Modifier key – If a selected component is passed to the method, the selected component
should become the new root component. Otherwise, the new component(s) should replace the
current selection.

Chapter 16

452

Now, let's look at the method that handles this behavior:

 public void SetSelectedComponents(ICollection components,
 SelectionTypes selectionType)
 {
 OnSelectionChanging(EventArgs.Empty);
 if (components == null || components.Count == 0) {
 selectedComponents.Clear();
 FireSelectionChange();
 return;
 }

 bool controlPressed = (Control.ModifierKeys & Keys.Control) ==
 Keys.Control;
 bool shiftPressed = (Control.ModifierKeys & Keys.Shift) ==
 Keys.Shift;
 switch (selectionType) {
 case SelectionTypes.Replace:
 ReplaceSelection(components);
 break;
 default:
 if (components.Count == 1 && (controlPressed || shiftPressed)) {
 ToggleSelection(components);
 } else if (controlPressed) {
 AddSelection(components);
 } else if (shiftPressed) {
 ReplaceSelection(components);
 } else {
 NormalSelection(components);
 }
 break;
 }
 selectedComponents.TrimToSize();
 FireSelectionChange();
 }

 public void SetSelectedComponents(ICollection components)
 {
 SetSelectedComponents(components, SelectionTypes.MouseDown);
 }

#region SetSelection helper methods
 void ToggleSelection(ICollection components)
 {
 foreach (object component in components) {
 if (GetComponentSelected(component)) {
 selectedComponents.Remove(component);
 } else {
 selectedComponents.Insert(0, component);
 }
 }
 }

Implementing a Windows Forms Designer

453

 void AddSelection(ICollection components)
 {
 foreach (object component in components) {
 if (!GetComponentSelected(component)) {
 selectedComponents.Insert(0, component);
 }
 }
 }

 void ReplaceSelection(ICollection components)
 {
 selectedComponents.Clear();
 AddSelection(components);
 }

 void NormalSelection(ICollection components)
 {
 if (components.Count == 1) {
 // just getting the first == last element in the components
 object componentToAdd = null;
 foreach (object component in components) {
 componentToAdd = component;
 }

 if (GetComponentSelected(componentToAdd)) {
 selectedComponents.Remove(componentToAdd);
 selectedComponents.Insert(0, componentToAdd);
 return;
 }
 }
 ReplaceSelection(components);
 }
#endregion

As always, there might be someone interested in knowing when a selection changes. Therefore, we have
some events that inform about selection change:

#region Event methods
 void ComponentRemovedHandler(object sender, ComponentEventArgs e)
 {
 if (selectedComponents.Contains(e.Component)) {
 OnSelectionChanging(EventArgs.Empty);
 selectedComponents.Remove(e.Component);
 if (selectedComponents.Count == 0) {
 selectedComponents.Add(host.RootComponent);
 }
 FireSelectionChange();
 }
 }

 void FireSelectionChange()
 {
 OnSelectionChanged(EventArgs.Empty);

Chapter 16

454

 ((DesignerEventService)host.RootComponent.Site.
 GetService(typeof(IDesignerEventService))).FileSelectionChanged();
 }

 protected virtual void OnSelectionChanging(EventArgs e)
 {
 if (SelectionChanging != null) {
 SelectionChanging(this, e);
 }
 }

 protected virtual void OnSelectionChanged(EventArgs e)
 {
 if (SelectionChanged != null) {
 SelectionChanged(this, e);
 }
 }
#endregion
 public event EventHandler SelectionChanging;
 public event EventHandler SelectionChanged;
}

This completes the entire Selection service.

There is one important service left – the IDesignerSerializationService. This service is used for
serializing components. Without it, the Cut, Copy, and Paste commands won't work correctly. It is
discussed in the next chapter as it builds on the XML persistence format, which we will be studying in
that chapter.

The services we have looked at so far are the bare minimum requirement, which must be implemented
to make the .NET Forms Designer work. Now we will look at some of the services that help us with the
Forms Designer.

Additional Important Services
In this section, we will look at some services that are less important but nonetheless worth examing:

❑ Designer Option Service
This service is used for grid options

❑ Dictionary Service
This wraps a HashTable as a service

❑ UI Service
This is used to display message boxes and has some UI properties

❑ Type Descriptor Filter Service
This filters attributes, events, and properties

Implementing a Windows Forms Designer

455

Designer Option Service
The Designer Option service is able to handle specified designer options. Currently, it holds only three
options: GridSize, ShowGrid, and SnapToGrid.

The service is defined under
src\SharpDevelop\FormDesigner\FormDesigner\Services\DesignerOptionService.cs:

public class DesignerOptionService : IDesignerOptionService
{
 public const string GridSize = "GridSize";
 public const string ShowGrid = "ShowGrid";
 public const string SnapToGrid = "SnapToGrid";

 const string GridSizeWidth = "GridSize.Width";
 const string GridSizeHeight = "GridSize.Height";

These constants are the option names, which are pre-defined by the framework infrastructure. Note that
the last two values are not public, as the service is referenced through the interface and the interface
doesn't have these values.

These options are stored into pages. Each page has its own set of options:

 public const string FormsDesignerPageName =
 "SharpDevelop Forms Designer\\General";

 Hashtable pageOptionTable = new Hashtable();

 public DesignerOptionService()
 {
 Hashtable defaultTable = new Hashtable();

 defaultTable[GridSize] = new Size(8, 8);
 defaultTable[ShowGrid] = false;
 defaultTable[SnapToGrid] = false;

 pageOptionTable[FormsDesignerPageName] = defaultTable;
 }

 public object GetOptionValue(string pageName, string valueName)
 {
 Hashtable pageTable = (Hashtable)pageOptionTable[pageName];

 if (pageTable == null) {
 return null;
 }

 switch (valueName) {
 case GridSizeWidth:
 return ((Size)pageTable[GridSize]).Width;
 case GridSizeHeight:
 return ((Size)pageTable[GridSize]).Height;
 default:

Chapter 16

456

 return pageTable[valueName];
 }
 }

 public void SetOptionValue(string pageName, string valueName, object val)
 {
 Hashtable pageTable = (Hashtable)pageOptionTable[pageName];

 if (pageTable == null) {
 pageOptionTable[pageName] = pageTable = new Hashtable();
 }

 switch (valueName) {
 case GridSizeWidth:
 Size size = ((Size)pageTable[GridSize]);
 size.Width = (int)val;
 pageTable[GridSize] = size;
 break;
 case GridSizeHeight:
 size = ((Size)pageTable[GridSize]);
 size.Height = (int)val;
 pageTable[GridSize] = size;
 break;
 default:
 pageTable[valueName] = val;
 break;
 }
 }

One thing that we can learn from this service is how to handle structures. Instead of getting the size,
setting the Width size value, and writing the size back in the hash table, we could have done:

size = ((Size)pageTable[GridSize]);
size.Width = (int)val;
pageTable[GridSize] = size;

You may ask, why can't we simply use:

((Size)pageTable[GridSize]).Width = (int)val;

The reason is simple but can easily be forgotten. Size is not a class; it is a structure. This means that
when it is unboxed with (Size)pageTable[GridSize], a copy is given back, and if the Width
property is updated in the copy, the original structure is not affected.

Therefore, we create a copy, alter the property in the copy, and then write the copy back; thereby,
overwriting the original structure. Unfortunately, just from viewing the source code we can't tell if we
are handling structures or classes. We can only say this if we know about the type that we are using.

Implementing a Windows Forms Designer

457

Dictionary Service
The Dictionary service just wraps a hash table data structure as a service. It is the smallest (and simplest)
of all services. Currently, we aren't sure where it gets used inside the Designer Framework but we have
implemented it, as it is defined and easy to implement according to the framework specification.

The service is implemented under src\SharpDevelop\FormDesigner\FormDesigner\
Services\DictionaryService.cs:

public class DictionaryService : IDictionaryService
{
 Hashtable table = new Hashtable();

 public object GetKey(object val)
 {

 foreach (DictionaryEntry entry in table) {
 if (entry.Value == val) {
 return entry.Key;
 }
 }
 return null;
 }

 public object GetValue(object key)
 {
 return key == null ? null : table[key];
 }

 public void SetValue(object key, object val)
 {
 if (key != null) {
 table[key] = val;
 }
} }

Now we will move on to the UI service.

UI Service
The UI service has several purposes:

❑ It displays messages (error messages and standard messages).

❑ It gives access to the Dialog Owner window. This window is used to set the owner property
correctly for dialogs that pop up.

❑ It defines a dictionary that stores UI styles. Currently two styles are defined:
HighlightColor and DialogFont. The HighlightColor is used as background color of
the Component tray and the DialogFont property specifies the font that is used in the tray
for displaying the component name.

Chapter 16

458

The UI Service is implemented under src\SharpDevelop\FormDesigner\FormDesigner\
Services\UIService.cs:

public class UIService : IUIService
{
 IDictionary styles = new Hashtable();

 public IDictionary Styles {
 get {
 return styles;
 }
 }

 public UIService()
 {
 ResourceService resourceService = (ResourceService)
 ServiceManager.Services.GetService(typeof(ResourceService));
 styles["DialogFont"] = resourceService.LoadFont("Tahoma", 10);
 styles["HighlightColor"] = Color.White;
 }

 public void SetUIDirty()
 {
 // TODO: Fixme!
 }

The SetUIDirty method works a bit like the Redraw methods, inside the SharpDevelop abstract GUI
system. The SetUIDirty method gets called when a component is selected, and then the
implementation may choose to alter the enable state of some menu commands. However, currently,
SharpDevelop has no use for this method.

The UI service is able to show a component editor but this functionality is currently not implemented:

 public bool CanShowComponentEditor(object component)
 {
 return false;
 }

 public bool ShowComponentEditor(object component, IWin32Window parent)
 {
 throw new System.NotImplementedException
 ("Cannot display component editor for " + component);
 }

Now we will look at the method that gets the main window, and the method that shows a dialog:

 public IWin32Window GetDialogOwnerWindow()
 {
 return (IWin32Window)WorkbenchSingleton.Workbench;
 }

 public DialogResult ShowDialog(Form form)

Implementing a Windows Forms Designer

459

 {
 return form.ShowDialog(GetDialogOwnerWindow());
 }

The following methods are used for displaying error messages:

 public void ShowError(Exception ex)
 {
 ShowError(ex, null);
 }

 public void ShowError(string message)
 {
 ShowError(null, message);
 }

 public void ShowError(Exception ex, string message)
 {
 string msg = String.Empty;

 if (ex != null) {
 msg = "Exception occurred: " + ex.ToString() + "\n";
 }

 if (message != null) {
 msg += message;
 }
 ResourceService resourceService = (ResourceService)
 ServiceManager.Services.GetService(typeof(ResourceService));

 MessageBox.Show(GetDialogOwnerWindow(), msg,
 resourceService.GetString("Global.ErrorText"),
 MessageBoxButtons.OK, MessageBoxIcon.Error);
 }

The following three methods show standard messages:

 public void ShowMessage(string message)
 {
 ShowMessage(message, "", MessageBoxButtons.OK);
 }

 public void ShowMessage(string message, string caption)
 {
 ShowMessage(message, caption, MessageBoxButtons.OK);
 }

 public DialogResult ShowMessage(string message, string caption,
 MessageBoxButtons buttons)
 {
 return MessageBox.Show(GetDialogOwnerWindow(), message, caption,
 buttons);
 }

Chapter 16

460

The ShowToolWindow function is currently not implemented. It gets a Guid and displays the specified
Tool window. The Tool window's Guid values are defined in the
System.ComponentModel.Design.StandardToolWindows class.

Tool windows are the pads inside SharpDevelop (for details, refer to the Pads section in Chapter 6), and
this function may be added later during the development process.

However, the designer infrastructure doesn't use this function and the show pad functionality is
implemented differently in SharpDevelop. Therefore, it doesn't really make sense to implement all
functions in the services when they are not used by the designer infrastructure.

 public bool ShowToolWindow(Guid toolWindow)
 {
 return false;
 }
}

Now we will move on to the Type Descriptor Filter service.

Type Descriptor Filter Service
The Type Descriptor Filter service is used for filtering attributes, events, and properties of components.
The designer of a component may implement the IDesignerFilter interface, which allows the
designer implementation to filter unused or unnecessary properties and events.

The service just passes the request it receives over to the IDesignerFilter object. The service is
defined under src\SharpDevelop\FormDesigner\FormDesigner\Services\
TypeDescriptorFilterService.cs:

public class TypeDescriptorFilterService : ITypeDescriptorFilterService
{

The GetDesignerFilter method gets the designer of the component using the Site property. It gets
the designer host, which returns the designer of a component. The designer is cast to
IDesignerFilter and if the designer implements this interface, the object is returned. If it does not
implement this interface, null is returned. Therefore, it is up to the designer implementer to make
sense of filtering attributes, events, or properties.

This method is used internally:

 IDesignerFilter GetDesignerFilter(IComponent component)
 {
 ISite site = component.Site;

 if (site == null) {
 return null;
 }

 IDesignerHost host = site.GetService(typeof(IDesignerHost)) as
 IDesignerHost;

Implementing a Windows Forms Designer

461

 if (host == null) {
 return null;
 }

 IDesigner designer = host.GetDesigner(component);

 return designer as IDesignerFilter;
 }

Now we will look at the filter methods, which just delegate their calls over to the
IDesignerFilter object.

We aren't sure this is the right way of implementing it but it seems to make sense, as the designer filter
has two methods of filtering attributes, events, and properties. These methods are PreFilterXYZ and
PostFilterXYZ (where XYZ stands for attributes, events, or properties). We just call these methods to
get the filtering done:

 public bool FilterAttributes(IComponent component, IDictionary attributes)
 {
 IDesignerFilter designerFilter = GetDesignerFilter(component);
 if (designerFilter != null) {
 designerFilter.PreFilterAttributes(attributes);
 designerFilter.PostFilterAttributes(attributes);
 }
 return false;
 }

 public bool FilterEvents(IComponent component, IDictionary events)
 {
 IDesignerFilter designerFilter = GetDesignerFilter(component);
 if (designerFilter != null) {
 designerFilter.PreFilterEvents(events);
 designerFilter.PostFilterEvents(events);
 }
 return false;
 }

 public bool FilterProperties(IComponent component, IDictionary properties)
 {
 IDesignerFilter designerFilter = GetDesignerFilter(component);
 if (designerFilter != null) {
 designerFilter.PreFilterProperties(properties);
 designerFilter.PostFilterProperties(properties);
 }
 return false;
 }
}

Now let's look at the unimplemented services.

Chapter 16

462

Unimplemented Services
So far, we have looked at the services that are implemented, and have discussed at least the basic
functions that make them work. Some of these services are more important than others, but there are
still some services left that have only skeleton implementations, which do nothing.

These services are not required to make a forms designer work but they will be implemented in the future.
Many of the services that we examined in this chapter began their life as skeleton implementations that
grew useful over time. The skeleton implementations that are currently present are:

❑ IExtenderProviderService
This service adds extender providers, which extend the properties shown in the property grid
of a component.

❑ IEventBindingService
This service exposes events as property objects, and is used to show the events of a method in
a property grid (to make the events 'designable').

❑ ITypeResolutionService
This service should be used to load types at design time. It provides GetAssembly/GetType
methods. Currently all types inside the SharpDevelop designer are loaded from the standard
assemblies. This service will become important when custom controls are supported.

Summary
In this chapter, we have looked at all of the services required to make the Forms Designer work.

We have examined how to handle the Toolbox and notifying that a component is selected for insertion
in the Design area. We now know how Toolbox items are constructed and we have looked at the service
that represents the Toolbox.

We have gone through how the context menu is displayed in the Design area and how the standard
commands work. We examined how to call a pre-defined command and handle keyboard actions inside
the Design area.

We looked at the Selection service, which handles the selected components. We discussed how the
modifier keys change the selection behavior and we looked at how the primary selection is implemented.

In the next chapter, we will learn about making components persistent, by using XML. We will look at
how code is generated and learn how to implement roundtripping.

Implementing a Windows Forms Designer

463

Chapter 16

464

Code Generation

In this chapter, we will learn about making forms persistent (being able to store them to disk and restore
them), and how code is generated (a forms designer should be able to generate executable code from the
graphical representation of a form). We will look at:

❑ The XML form's persistence format – This will give us an idea of how the components are
stored on the disk

❑ The code that generates the XML format – Here we will see how properties are read and
stored as XML

❑ The class that reads the XML format back – We will see what happens when the forms
designer can't read the XML format back

❑ Generating C#/VB.NET code – We will see how to use CodeDOM to produce source code
from of the XML format

❑ Round trip – This deals with reading the code back in the designer

Making Components Persistent
This is important because the form designer is useless unless it can store (and retrieve) files. Here, we will
discuss:

❑ The XML form's persistence

❑ Generating the XML

❑ Loading the XML

❑ Designer Serialization

17

Chapter 17

466

The XML Forms Persistence Format
To introduce the form format, it's best to start with an example form. Take a look at this screenshot of the
form designer:

This Designer area contains four components: the form, textbox, and button, which are the visible ones, and
the openFileDialog (invisible). We need a format that can describe all the properties of the components, and
can recognize the location of the components. For example, the button and textbox are child controls of
the form.

The XML representation of the previous example is:

<Components version="1.0">
 <System.Windows.Forms.Form>
 <Name value="CreatedObject0" />
 <Controls>
 <System.Windows.Forms.RichTextBox>
 <Name value="richTextBox" />
 <TabIndex value="1" />
 <Text value="" />
 <Location value="{X=8,Y=8}" />
 <Size value="{Width=280, Height=224}" />
 </System.Windows.Forms.RichTextBox>
 <System.Windows.Forms.Button>
 <Name value="button" />
 <TabIndex value="0" />
 <Text value="Open" />

Code Generation

467

 <Location value="{X=8,Y=240}" />
 </System.Windows.Forms.Button>
 </Controls>
 <Text value="Open File Test" />
 <DockPadding value="" />
 <SnapToGrid value="True" />
 <DrawGrid value="True" />
 <GridSize value="{Width=8, Height=8}" />
 </System.Windows.Forms.Form>
 <System.Windows.Forms.OpenFileDialog>
 <Name value="openFileDialog" />
 </System.Windows.Forms.OpenFileDialog>
</Components>

The root node of the XML is called <Components>. It is has a mandatory child component, which is the
form or user control (currently supported by SharpDevelop), followed by zero or more invisible components
(for example, tray controls). In the previous example, the OpenFileDialog is outside our
System.Windows.Forms.Form declaration – our XML format specifies that components not contained
within either Windows Forms or user controls go in the Tray. The <Components> XML format is just a
property name and value pair, where the property name is the XML node name and the value is stored in
the value attribute. Collections are an exception (look at the <Controls> node); instead of having
attributes assigned to them, they contain a list of XML components.

With the previous format, we can now store and load XML forms. Let's look at the XML generation.

Generating the XML
To generate the XML for the components we have to solve a couple of problems:

❑ Which properties should be saved to XML – Not all properties need to be stored, for
example, those containing default values can be skipped in the XML file.

❑ How to access the tray components? – The Tray is below the Designer area. We don't have
a Tray service (or something similar) that will provide an easy answer to this question, and
cannot access the component tray directly (as this restriction is imposed by Microsoft in the
.NET architecture).

To answer these questions, let's look at the source code of the XmlFormGenerator given in
src\SharpDevelop\FormDesigner\FormDesigner\Xml\XmlFormGenerator.cs file:

public class XmlFormGenerator
{
 public XmlElement GetElementFor(XmlDocument doc, object o)
 {
 if (doc == null) {
 throw new ArgumentNullException("doc");
 }

 if (o == null) {

Chapter 17

468

 throw new ArgumentNullException("o");
 }

 try {
 XmlElement el = doc.CreateElement(o.GetType().FullName);

After the initial checks, the call to GetType and the creation of the XmlElement from the object type, we
get a PropertyDescriptorCollection using the System.ComponentModel.TypeDescriptor
class. This collection contains PropertyDescriptor objects that tell us whether the property should be
serialized (actual serialization is shown later in this section) or not:

 PropertyDescriptorCollection properties =
 TypeDescriptor.GetProperties(o);

 Control ctrl = o as Control;
 bool nameInserted = false;
 if (ctrl != null) {
 XmlElement childEl = doc.CreateElement("Name");
 XmlAttribute valueAttribute = doc.CreateAttribute("value");
 valueAttribute.InnerText = ctrl.Name;
 childEl.Attributes.Append(valueAttribute);
 el.AppendChild(childEl);
 nameInserted = true;
 }

 // the Controls collection should be generated as the last
 // element because properties like 'anchor' in the child elements
 // must be applied after the size has been set.
 foreach (PropertyDescriptor pd in properties) {
 if (pd.Name == "Name" && nameInserted) {
 continue;
 }
 if (pd.Name == "DataBindings" ||
 // TabControl duplicate TabPages Workaround (TabPages got
 // inserted twice : In Controls and in TabPages)
 (o.GetType().FullName == "System.Windows.Forms.TabControl" &&
 pd.Name == "Controls")) {
 continue;
 }

Here, we get the property value by using the PropertyDescriptor object:

 XmlElement childEl = doc.CreateElement(pd.Name);
 object propertyValue = null;
 try {
 propertyValue = pd.GetValue(o);
 } catch (Exception) {
 continue;
 }

Code Generation

469

We handle collections differently from normal properties. As mentioned earlier, list nodes have elements as
child nodes and all other properties have a value attribute assigned to them:

 // lists are other than normal properties
 if (propertyValue is IList) {
 foreach (object listObject in (IList)propertyValue) {
 XmlElement newEl = GetElementFor(doc, listObject);
 if (newEl != null) {
 childEl.AppendChild(newEl);
 }
 }

 // only insert lists that contain elements (no empty lists!)
 if (childEl.ChildNodes.Count > 0) {
 el.AppendChild(childEl);
 }
 } else if (pd.ShouldSerializeValue(o) && pd.IsBrowsable) {
 XmlAttribute valueAttribute = doc.CreateAttribute("value");
 valueAttribute.InnerText = propertyValue == null ?
 null : propertyValue.ToString();
 childEl.Attributes.Append(valueAttribute);
 el.AppendChild(childEl);
 }
 }

The previous source code answers our first question. The PropertyDescriptor is used for this. It contains
a ShouldSerializeValue method and an IsBrowsable property; both values are used to determine
whether the property should be stored in the XML file or not. In this implementation, only properties
changed by the user (IsBrowsable=changeable) in the property window are stored.

Next, we will handle the special case of collections containing value types. We need to get the value type to
set the values of the collection properties. However, we can't do this normally because most value types don't
have properties that can be read to set the value type. For example, the String is a basic type and there is
no property inside the String type that sets the value of the string.

Currently, these types get a value attribute assigned and the value is used to restore the type. In the code
generation part, we examine whether the element has any child nodes assigned (in this case, it isn't a
value type) and if not, we store the object value in the valueAttribute (using the ToString method):

 // fallback to ToString, if no members can be generated (for example
 // handling System.String)
 if (el.ChildNodes.Count == 0) {
 XmlAttribute valueAttribute = doc.CreateAttribute("value");
 valueAttribute.InnerText = o.ToString();
 el.Attributes.Append(valueAttribute);
 }

 return el;
 } catch (Exception e) {
 Console.WriteLine(e.ToString());
 }
 return null;
 }

Chapter 17

470

Now, let's look at the method used for serializing the components inside a designer host:

 public XmlElement GetElementFor(XmlDocument doc, IDesignerHost host)
 {
 XmlElement componentsElement = doc.CreateElement("Components");

 XmlAttribute versionAttribute = doc.CreateAttribute("version");
 versionAttribute.InnerText = "1.0";
 componentsElement.Attributes.Append(versionAttribute);

 // insert root element
 componentsElement.AppendChild(GetElementFor(doc, host.RootComponent));

 // insert any non QUI (=tray components)
 foreach (IComponent component in host.Container.Components) {
 if (!(component is Control)) {
 componentsElement.AppendChild(GetElementFor(doc, component));
 }
 }
 return componentsElement;
 }
}

This method tells us how tray components are found; we go through the whole component container and
store all components that do not inherit from Control. These components are displayed inside the
component tray because they cannot be added to the Controls collection of a GUI component.

With the saving implemented, we will now turn to loading persisted form definitions.

Loading the XML
Loading the XML file is more difficult than generating it, because many objects are easily transformed (they
transform themselves) to a string by using the ToString method. For example, Color, Size, or
Enumeration objects do this on the fly. But unfortunately, the transformation back is not as easy.

For example, if we want to transform a string to an enumeration, we use:

EnumType enumConverted = (EnumType)Enum.Parse(typeof(EnumType),
 stringToParse);

This makes the implementation more complicated because the transformation back depends on the type.
Therefore, we will look at it in more detail. The XmlFormReader class, which reads back the XML file, is
defined under src\SharpDevelop\FormDesigner\FormDesigner\Xml\XmlFormReader.cs:

public class XmlFormReader
{
 IDesignerHost host;

 public XmlFormReader(IDesignerHost host)
 {
 this.host = host;
 }

Code Generation

471

The CreateObject method just transforms the XML back to an object. This method is used in the
DesignerSerializationService to deserialize an object:

 public object CreateObject(string xmlContent)
 {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(xmlContent);

 return CreateObject(doc.DocumentElement);
 }

The SetUpDesignerHost method sets up a designer host with the components of an XML file:

 public void SetUpDesignerHost(string xmlContent)
 {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml(xmlContent);
 Console.WriteLine(xmlContent);
 if (doc.DocumentElement.Attributes["version"] == null) {
 CreateObject(xmlContent);
 } else {
 foreach (XmlElement el in doc.DocumentElement.ChildNodes) {
 CreateObject(el);
 }
 }
 }

The SetUpObject method sets the properties of an object to the contents of an XmlElement:

 void SetUpObject(object currentObject, XmlElement element)
 {
 foreach (XmlNode subNode in element.ChildNodes) {
 if (subNode is XmlElement){
 XmlElement subElement = (XmlElement)subNode;
 SetAttributes(currentObject, subElement);
 }
 }
 }

Now we will look at the SetAttributes method that sets a single attribute (to property) of an object to
the contents in a XML element, which is either a key and value pair or a collection name with sub-items:

 // Sets all properties in the object o to the xml element el.
 void SetAttributes(object o, XmlElement el)
 {
 if (el.Attributes["value"] != null) {
 string val = el.Attributes["value"].InnerText;
 try {
 SetValue(o, el.Name, val);
 } catch (Exception) {}
 } else {

Chapter 17

472

 PropertyInfo propertyInfo = o.GetType().GetProperty(el.Name);
 object pv = propertyInfo.GetValue(o, null);
 if (pv is IList) {
 foreach (XmlNode subNode in el.ChildNodes) {
 if (subNode is XmlElement){
 XmlElement subElement = (XmlElement)subNode;
 object collectionObject = CreateObject(subElement);

 if (collectionObject != null) {
 try {
 ((IList)pv).Add(collectionObject);
 } catch (Exception e) {
 Console.WriteLine("Exception while adding to a collection:"
 + e.ToString());
 }
 } } } } } } //closing braces collapsed for brevity

The next method sets a single property to a specific value. This method converts the string to the property type:

void SetValue(object o, string propertyName, string val)
{
 Console.WriteLine("Set Property " + propertyName + " to " + val);
 try {
 PropertyInfo propertyInfo = o.GetType().GetProperty(propertyName);
 if (val.StartsWith("{") && val.EndsWith("}")){
 val = val.Substring(1, val.Length - 2);
 object propertyObject = null;
 if (propertyInfo.CanWrite) {
 Type type = host.GetType(propertyInfo.PropertyType.FullName);
 propertyObject = type.Assembly.CreateInstance
 (propertyInfo.PropertyType.FullName);
 } else {
 propertyObject = propertyInfo.GetValue(o, null);
 }

 Regex propertySet =
 new Regex(@"(?<Property>[\w]+)\s*=\s*(?<Value>[\w\d]+)",
 RegexOptions.Compiled);
 Match match = propertySet.Match(val);
 while (true) {
 if (!match.Success) {
 break;
 }
 SetValue(propertyObject, match.Result("${Property}"),
 match.Result("${Value}"));
 match = match.NextMatch();
 }

 if (propertyInfo.CanWrite) {
 propertyInfo.SetValue(o, propertyObject, null);
 }
 } else if (propertyInfo.PropertyType.IsEnum) {

Code Generation

473

 propertyInfo.SetValue(o, Enum.Parse(propertyInfo.PropertyType, val),
 null);
 } else if (propertyInfo.PropertyType == typeof(Color)) {
 string color = val.Substring(val.IndexOf('[') + 1).Replace("]", "");
 string[] argb = color.Split(',', '=');
 if (argb.Length > 1) {
 propertyInfo.SetValue(o, Color.FromArgb(Int32.Parse(argb[1]),
 Int32.Parse(argb[3]), Int32.Parse(argb[5]), Int32.Parse(argb[7])),
 null);
 } else {
 propertyInfo.SetValue(o, Color.FromName(color), null);
 }
 } else if (propertyInfo.PropertyType == typeof(Font)) {
 string[] font = val.Split(',', '=');
 propertyInfo.SetValue(o, new Font(font[1], Int32.Parse(font[3])),
 null);
 } else if (propertyInfo.PropertyType ==
 typeof(System.Windows.Forms.Cursor)) {
 string[] cursor = val.Split('[', ']', ' ', ':');
 PropertyInfo cursorProperty =
 typeof(System.Windows.Forms.Cursors).GetProperty(cursor[3]);
 if (cursorProperty != null) {
 propertyInfo.SetValue(o, cursorProperty.GetValue(null, null), null);
 }

 } else {
 propertyInfo.SetValue(o, Convert.ChangeType
 (val, propertyInfo.PropertyType), null);
 }
 } catch (Exception e) {
 Console.WriteLine(e.ToString());
 throw new ApplicationException("error while setting property " +
 propertyName + " of object "+ o.ToString() + " to value '" + val+
 "'");
 }
}

The last method in this class creates an object based on value property of the XML element details. It uses
the host's GetType method to try to create an object of this type:

 // Creates a new instance of object name. It tries to resolve name in
 // System.Windows.Forms, System.Drawing and System namespace.
 object CreateObject(XmlElement objectElement)
 {
 Type type = host.GetType(objectElement.Name);
 if (type == null) {
 return null;
 }

Now if the XML element has a value attribute assigned, we try to convert the value to the type of the XML
element and the object is given back:

Chapter 17

474

 if (objectElement.Attributes["value"] != null) {
 return System.Convert.ChangeType(objectElement.Attributes["value"].
 InnerText, type);
 }

Otherwise, we try to create an instance and set the name of the object (if the XML element has a name
property assigned). If the type implements IComponent, we have to use the CreateComponent method
from the host to make it designable inside the Design area:

 object newObject = type.Assembly.CreateInstance(type.FullName);

 string componentName = null;
 if (objectElement["Name"] != null &&
 objectElement["Name"].Attributes["value"] != null) {
 componentName = objectElement["Name"].Attributes["value"].InnerText;
 }

 if (newObject is IComponent) {
 newObject = host.CreateComponent(newObject.GetType(), componentName);
 }

 SetUpObject(newObject, objectElement);

 return newObject;
 }
}

Next, we are going to look at the usage of XML serialization and deserialization. SharpDevelop allows us to
load and store the values into the XML format directly, but the XML format gets used in a service too (which
is Cut and Paste), which we will look at it, in the next section.

The Designer Serialization Service
We can now implement the designer serialization service. This service is used by the Cut, Copy, and Paste
actions to store the components on the clipboard.

The service is relatively simple, with only two methods:

❑ Serialize - This method stores components into a collection

❑ Deserialize - This retrieves stored elements out of a collection

This service is defined under src\SharpDevelop\FormDesigner\FormDesigner\
Services\DesignerSerializationService.cs:

public class DesignerSerializationService : IDesignerSerializationService
{
 IDesignerHost host = null;

Code Generation

475

 public DesignerSerializationService(IDesignerHost host)
 {
 this.host = host;
 }

 public ICollection Deserialize(object serializationData)
 {
 ArrayList elements = new ArrayList();
 foreach (string xmlContent in (ArrayList)serializationData) {
 elements.Add
 (new XmlFormReader(host).LoadContentDefinition(xmlContent));
 }
 return elements;
 }

 public object Serialize(ICollection objectCollection)
 {
 ArrayList elements = new ArrayList();
 foreach (object o in objectCollection) {
 StringWriter writer = new StringWriter();
 XmlDocument doc = new XmlDocument();
 doc.LoadXml("<" + o.GetType().FullName + "/>");
 XmlElement el = new XmlFormGenerator().GetElementFor(new
 XmlDocument(), o);
 foreach (XmlNode node in el.ChildNodes) {
 doc.DocumentElement.AppendChild(doc.ImportNode(node, true));
 }
 doc.Save(writer);
 elements.Add(writer.ToString());
 }
 return elements;
 }
}

This snippet shows that the XML persistence layer is more important than just storing the form on disk. We
need a method to store the details of an object copied in the clipboard, in XML format, because it is
serializable, which means that if the original object changes, the copy won't.

If we Cut a component, it is serialized to the clipboard, and the original component is disposed. We can't add
a disposed component, and we can't add the same component twice. Therefore, we have to find a way to
make a copy that can be serialized (although controls can't) and the XML layer does this for us. Generating
working source code from the designed form is more important for the user than storing the designed form in
XML format. The next section deals with this aspect.

Generating C#/VB.NET Code
Source code generation is similar to loading an XML file. The only difference is that objects are not
generated directly. The code is generated, which will generate the objects. However, there is a problem with
code generation – which programming language should we use, as the target language? SharpDevelop tends
to be a multi-language development environment; therefore, we need more back-ends for language creation.

Chapter 17

476

Instead of writing the back-end ourselves we use a .NET API called CodeDOM. CodeDOM's role is to
generate source code from our visual representation of the forms into a language-based format, which tells
the runtime to generate our controls, set properties, and so on. CodeDOM currently generates C#, VB.NET
and JavaScript code, but it can be extended to support other languages too.

To get an overview of our architecture, take a look at the following diagram:

The XML is transformed into CodeDOM data structures by using the code generators (provided by
the framework).

Now, we will take a look at the implementation of the CodeDOMGenerator class (in the
src\SharpDevelop\FormDesigner\FormDesigner\Xml\CodeDOMGenerator.cs file). We will
also learn a bit about CodeDOM here:

public class CodeDOMGenerator
{
 IDesignerHost host;
 AmbienceService ambienceService =
 (AmbienceService)ICSharpCode.Core.Services.ServiceManager.Services.
 GetService(typeof(AmbienceService));

 string acceptButtonName = String.Empty;
 string cancelButtonName = String.Empty;

 int num = 0;
 ICodeGenerator codeGenerator;
 CodeTypeDeclaration codeTypeDeclaration;

 CodeNamespace codeNamespace;
 CodeDOMGeneratorUtility codeDOMGeneratorUtility =
 new CodeDOMGeneratorUtility();

 public CodeDOMGenerator(IDesignerHost host, CodeDomProvider codeProvider)
 {
 this.host = host;
 codeGenerator = codeProvider.CreateGenerator();

Code Generation

477

 codeNamespace = new CodeNamespace("GeneratedForm");

 this.codeDOMGeneratorUtility.AddNamespaceImport("System");
 this.codeDOMGeneratorUtility.AddNamespaceImport("System.Windows.Forms");

 codeNamespace.Comments.Add(new CodeCommentStatement
 ("This file was autogenerated by a tool.", false));
 }

In the constructor, we generate the code generator, which outputs code in the target language. The caller
must provide a CodeDomProvider, which generates the code generator. The CodeDOMGenerator class
does not know about the target language. After that, a namespace called GeneratedForm is set up, which
will contain the generated type.

The next method will generate the type using an XmlDocument that describes the form using the XML
format, as seen in the last section:

 public void ConvertContentDefinition(XmlDocument doc, TextWriter writer)
 {
 XmlElement rootComponent = (XmlElement)
 doc.DocumentElement.ChildNodes[0];

 // create class
 codeTypeDeclaration = new CodeTypeDeclaration
 (rootComponent.SelectSingleNode("Name/@value").Value);
 if (ambienceService.GenerateDocumentComments) {
 codeTypeDeclaration.Comments.Add(new CodeCommentStatement("<summary>",
 true));
 codeTypeDeclaration.Comments.Add(new CodeCommentStatement
 (" Add summary description for " + codeTypeDeclaration.Name,
 true));
 codeTypeDeclaration.Comments.Add(new
 CodeCommentStatement("</summary>", true));
 }
 codeTypeDeclaration.BaseTypes.Add
 (codeDOMGeneratorUtility.GetTypeReference(rootComponent.Name));
 codeNamespace.Types.Add(codeTypeDeclaration);

 // create constructor
 CodeConstructor cc = new CodeConstructor();
 cc.Attributes = MemberAttributes.Public | MemberAttributes.Final;
 if (ambienceService.GenerateAdditionalComments) {
 cc.Statements.Add(new CodeCommentStatement(" Must be called for
 initialization", false));
 }
 cc.Statements.Add(new CodeExpressionStatement(new
 CodeMethodInvokeExpression(new CodeThisReferenceExpression(),
 "InitializeComponents")));
 if (ambienceService.GenerateAdditionalComments) {
 cc.Statements.Add(new CodeCommentStatement("", false));
 cc.Statements.Add(new CodeCommentStatement(" TODO : Add constructor
 code after InitializeComponents", false));
 cc.Statements.Add(new CodeCommentStatement("", false));

Chapter 17

478

 }
 codeTypeDeclaration.Members.Add(cc);

 // create intialize components method
 CodeMemberMethod cm = new CodeMemberMethod();
 if (ambienceService.GenerateDocumentComments) {
 cm.Comments.Add(new CodeCommentStatement("<summary>", true));
 cm.Comments.Add(new CodeCommentStatement(" This method was
 autogenerated - do not change the contents manually", true));
 cm.Comments.Add(new CodeCommentStatement("</summary>", true));
 }

 cm.Name = "InitializeComponents";
 cm.ReturnType = new CodeTypeReference(typeof(void));

 // set up root component
 SetUpObject(cm, null, host.GetType(rootComponent.Name), rootComponent);

 // set up other components
 Console.WriteLine("Node Count " + doc.DocumentElement.ChildNodes.Count);
 for (int i = 1; i < doc.DocumentElement.ChildNodes.Count; ++i) {
 XmlElement el = (XmlElement)doc.DocumentElement.ChildNodes[i];
 SetUpObject(cm, el.SelectSingleNode("Name/@value").Value,
 host.GetType(el.Name), el);
 }

 cm.Statements.Add(new CodeExpressionStatement(new
 CodeMethodInvokeExpression(new CodeThisReferenceExpression(),
 "ResumeLayout", new CodePrimitiveExpression(false))));
 codeTypeDeclaration.Members.Add(cm);

 // finally generate code
 this.codeDOMGeneratorUtility.GenerateNamespaceImports(codeNamespace);
 codeGenerator.GenerateCodeFromNamespace(codeNamespace, writer,
 codeDOMGeneratorUtility.CreateCodeGeneratorOptions);
 }

The next method does the same, but the output is not a stream, but a file:

 public void ConvertContentDefinition(XmlDocument doc, string fileName)
 {
 StreamWriter writer = File.CreateText(fileName);
 ConvertContentDefinition(doc, writer);
 writer.Close();
 }

The SetUpObject method is almost the same as in our XmlFormReader class (see the Loading the XML
section), the only difference is the CodeDOM generation. Its purpose is to set the properties of an object to
the contents of XmlElement:

 void SetUpObject(CodeMemberMethod cm, string name, Type currentType,
 XmlElement element)
 {

Code Generation

479

 bool isThis = name == null || name.Length == 0;

 if (!isThis) {
 cm.Statements.Add(new CodeSnippetStatement(""));
 }
 if (ambienceService.GenerateAdditionalComments) {
 cm.Statements.Add(new CodeCommentStatement("", false));
 cm.Statements.Add(new CodeCommentStatement(" Set up " + (isThis ?
 "generated class " + codeTypeDeclaration.Name : "member " + name),
 false));
 cm.Statements.Add(new CodeCommentStatement("", false));
 }

 // create new member variable
 if (isThis) {
 cm.Statements.Add(new CodeExpressionStatement(new
 CodeMethodInvokeExpression(new CodeThisReferenceExpression(),
 "SuspendLayout")));
 } else {
 codeTypeDeclaration.Members.Add(new
 CodeMemberField(codeDOMGeneratorUtility.GetTypeReference
 (currentType.FullName), name));
 cm.Statements.Add(new CodeAssignStatement(new
 CodeFieldReferenceExpression(null, name), new
 CodeObjectCreateExpression(codeDOMGeneratorUtility.
 GetTypeReference(currentType))));
 }

 foreach (XmlNode subNode in element.ChildNodes) {
 if (subNode is XmlElement) {
 SetAttributes(cm, name, currentType, (XmlElement)subNode);
 }
 }
 }

The SetAttributes method is implemented the same way as in XmlFormReader (see the Loading the
XML section):

 void SetAttributes(CodeMemberMethod cm, string name, Type currentType,
 XmlElement el)
 {
 CodeExpression nameReferenceExpression = name == null || name.Length ==
 0 ? (CodeExpression)new CodeThisReferenceExpression() :
 (CodeExpression)new CodeTypeReferenceExpression(name);
 if (el.Attributes["value"] != null) {
 string val = el.Attributes["value"].InnerText;
 try {
 SetValue(cm, name, currentType, el.Name, val);
 } catch (Exception) {}
 } else {
 PropertyInfo propertyInfo = currentType.GetProperty(el.Name);
 bool isList = false;
 if (propertyInfo != null) {

Chapter 17

480

 Type[] interfaces = propertyInfo.PropertyType.GetInterfaces();
 foreach (Type i in interfaces) {
 if (i == typeof(IList)) {
 isList = true;
 break;
 }
 }
 }
 if (isList) {
 foreach (XmlNode subNode in el.ChildNodes) {
 if (subNode is XmlElement) {
 XmlElement subElement = (XmlElement)subNode;
 Type collectionType = host.GetType(subElement.Name);
 if (collectionType == null) {
 continue;
 }
 string objName = null;
 bool isComponent = false;
 Type[] interfaces = collectionType.GetInterfaces();
 foreach (Type i in interfaces) {
 if (i == typeof(IComponent)) {
 isComponent = true;
 break;
 }
 }

 if (isComponent && subElement["Name"] != null &&
 subElement["Name"].Attributes["value"] != null) {
 objName = subElement["Name"].Attributes["value"].InnerText;
 }

 if (objName == null || objName.Length == 0) {
 objName = "createdObject" + num++;
 }

 SetUpObject(cm, objName, collectionType, subElement);
 cm.Statements.Add(new CodeExpressionStatement(new
 CodeMethodInvokeExpression(new CodePropertyReferenceExpression
 (nameReferenceExpression, el.Name), "Add", new
 CodeFieldReferenceExpression(null, objName))));
 }
} } } }

Now we will examine the SetValue method. This method sets up a property with a given value (as in
the XmlFormReader):

 void SetValue(CodeMemberMethod cm, string name, Type currentType, string
 propertyName, string val)
 {
 CodeExpression nameReferenceExpression = name == null ||
 name.Length == 0 ? (CodeExpression)new CodeThisReferenceExpression()
 : (CodeExpression)new CodeTypeReferenceExpression(name);
 try {

Code Generation

481

 PropertyInfo propertyInfo = currentType.GetProperty(propertyName);

 if (propertyInfo == null) {
 return;
 }

Now we are trying to parse {...} values. When the val string has the form {...} it means that the
content should be treated differently. It has the form – {Property1=value1, Property2=value2,
...}. This is due the fact that we convert some objects to a string using the ToString method. The
ToString method produces strings in the {...} form.

For example, a Size struct can have the value {Width=352, Height=300}, which means that a new
Size struct must be created, and the property Width must set to 352 and Height to 300. We are using
regular expressions to find PROPERTYNAME = VALUE patterns until we assigned all properties:

 if (val.StartsWith("{") && val.EndsWith("}")) {
 val = val.Substring(1, val.Length - 2);
 Type newType =
 host.GetType(propertyInfo.PropertyType.FullName);
 ArrayList parameters = new ArrayList();
 Regex propertySet = new
 Regex(@"(?<Property>[\w]+)\s*=\s*(?<Value>[\w\d]+)",
 RegexOptions.Compiled);
 Match match = propertySet.Match(val);
 while (true) {
 if (!match.Success) {
 break;
 }
 parameters.Add(new CodePropertyReferenceExpression(null,
 match.Result("${Value}")));

 match = match.NextMatch();
 }

 CodeExpression expr = new CodePropertyReferenceExpression
 (nameReferenceExpression, propertyName);
 cm.Statements.Add(new CodeAssignStatement(expr, new
 CodeObjectCreateExpression(codeDOMGeneratorUtility.
 GetTypeReference(propertyInfo.PropertyType.FullName),
 (CodeExpression[])parameters.ToArray
 (typeof(CodeExpression)))));

The next case we have to handle is enumerations. Enumerations are handled specially, because CodeDOM
has way to assign enumerations (remember that an enumeration value can have the form: value1 |
value2. We're using the GetExpressionForEnum helper method to create the expression, which
represents the enum value. We will look at this method after we finish with
this listing.

 } else if (propertyInfo.PropertyType.IsEnum) {
 cm.Statements.Add(new CodeAssignStatement(new
 CodePropertyReferenceExpression(nameReferenceExpression,
 propertyInfo.Name), GetExpressionForEnum

Chapter 17

482

 (propertyInfo.PropertyType, val)));
 } else if (propertyInfo.PropertyType == typeof(Color)) {
 string color = val.Substring(val.IndexOf('[') + 1).Replace("]", "");
 Type colorType = typeof(System.Drawing.Color);
 CodeExpression ce = null;
 if (colorType.GetProperty(color) != null) {
 ce = new CodePropertyReferenceExpression
 (codeDOMGeneratorUtility.GetTypeReferenceExpression(colorType),
 color);

Now we convert Color, Font, and Cursor objects. They do have a slightly different ToString behavior
from other objects. Here we can see a downside of the ToString method (we have to take care of
'special cases'):

 } else if (typeof(KnownColor).GetField(color) != null){
 ce = new CodeMethodInvokeExpression
 (codeDOMGeneratorUtility.GetTypeReferenceExpression(colorType),
 "FromKnownColor", new CodeFieldReferenceExpression(new
 CodeTypeReferenceExpression(typeof(KnownColor)), color));
 } else {
 string[] argb = color.Split(',', '=');
 ce = new CodeMethodInvokeExpression
 (codeDOMGeneratorUtility.GetTypeReferenceExpression(colorType),
 "FromArgb", new CodeArgumentReferenceExpression(argb[1]),
 new CodeArgumentReferenceExpression(argb[3]),
 new CodeArgumentReferenceExpression(argb[5]),
 new CodeArgumentReferenceExpression(argb[7]));
 }
 cm.Statements.Add(new CodeAssignStatement(new
 CodePropertyReferenceExpression(nameReferenceExpression,
 propertyInfo.Name), ce));
 } else if (propertyInfo.PropertyType == typeof(System.Drawing.Font)) {
 // TODO : correct font parameters bold, italic
 string[] font = val.Split(',', '=');
 cm.Statements.Add(new CodeAssignStatement(new
 CodePropertyReferenceExpression(nameReferenceExpression,
 propertyInfo.Name), new CodeObjectCreateExpression
 (codeDOMGeneratorUtility.GetTypeReference
 (typeof(System.Drawing.Font)),
 new CodePrimitiveExpression(font[1]),
 new CodePrimitiveExpression(Int32.Parse(font[3])))));
 } else if (propertyInfo.PropertyType ==
 typeof(System.Windows.Forms.Cursor)) {
 string[] cursor = val.Split('[', ']', ' ', ':');
 cm.Statements.Add(new CodeAssignStatement(new
 CodePropertyReferenceExpression(nameReferenceExpression,
 propertyInfo.Name), new CodePropertyReferenceExpression
 (codeDOMGeneratorUtility.GetTypeReferenceExpression
 (typeof(System.Windows.Forms.Cursors)), cursor[3])));

The last case is the standard one. We just create a primitive assign statement, and use a primitive
CodeDOM expression for creating expressions for primitive types (like int, byte, double, and so on):

Code Generation

483

 } else {
 if (val != null && val.Length > 0) {
 cm.Statements.Add(new CodeAssignStatement(
 new CodePropertyReferenceExpression(nameReferenceExpression,
 propertyInfo.Name), new CodePrimitiveExpression
 (Convert.ChangeType(val, propertyInfo.PropertyType))));
 }
 }
 } catch (Exception e) {
 Console.WriteLine(e.ToString());
 }
 }

Finally, we have some helper methods. CodeDOM has an expression called CodePrimitiveExpression,
which gets an object in its constructor, and represents the value of a primitive data type. Unfortunately, this
method does not support enumerations and no other expression class does. Therefore, these helper methods
were implemented to work around the missing feature:

 CodeExpression GetExpressionForEnum(Type enumType, string val)
 {
 string[] enums = val.Split(',');
 for (int i = 0; i < enums.Length; ++i) {
 enums[i] = enums[i].Trim();
 }
 return GetExpression(enumType.FullName, enums, 0);
 }

The next method will take an array of enumerations, concatenated by an OR operation. This is used for
enumeration flags:

 CodeExpression GetExpression(string enumType, string[] enums, int index)
 {
 CodeExpression curExpression = new CodeFieldReferenceExpression(
 new CodeTypeReferenceExpression(enumType), enums[index]);

 if (index + 1 < enums.Length) {
 return new CodeBinaryOperatorExpression(curExpression,
 CodeBinaryOperatorType.BitwiseOr, GetExpression(enumType, enums,
 index + 1));
 }
 return curExpression;
 }
}

Finally, we look at an example file, which was auto-generated by this class. It is only a plain form with a
button in it, but we get an idea of what the generated code looks like:

// This file was autogenerated by a tool.
namespace GeneratedForm {
 using System;
 using System.Windows.Forms;

Chapter 17

484

 // Add summary description for MyForm
 public class MyForm : System.Windows.Forms.Form {

 private System.Windows.Forms.Button button;

 public MyForm() {
 // Must be called for initialization
 this.InitializeComponents();
 //
 // TODO : Add constructor code after InitializeComponents
 //
 }

 // This method was autogenerated - do not change the contents manually
 private void InitializeComponents() {
 // Set up generated class MyForm
 this.SuspendLayout();
 this.Name = "MyForm";

 // Set up member button
 button = new System.Windows.Forms.Button();
 button.Name = "button";
 button.TabIndex = 0;
 button.Text = "OK";
 button.Size = new System.Drawing.Size(80, 24);
 button.Location = new System.Drawing.Point(160, 104);
 this.Controls.Add(button);
 this.Text = "MyForm";
 this.Size = new System.Drawing.Size(248, 168);
 this.ResumeLayout(false);
 }
 }
}

Now that we have seen how the source code gets generated, it will be nice to examine it the other way
around – reading the source code back, to have a designable form again. We will discuss this problem in the
next section.

Round-tripping
The only thing we need to implement a full designer is to load our source code back to into the visual
designer. This is called round-tripping. We have almost everything for implementing a round trip. The only
thing that's missing is a source code reader. However, it's relatively simple to implement this one, because we
already have a C# parser (it's described in Chapter 12).

Our C# parser does not parse down to the statement level; therefore we need to use a little trick to make the
round trip work. Basically, we need a compiler that will take the source code and translate it into another
form. Unfortunately, we do not have a compiler that outputs our XML format, but we can generate the XML
format from an object. We do have a compiler that can generate executable code to generate objects – it is
delivered with the .NET Framework itself and is called csc.exe. (Currently only C# round-tripping is
supported, but for VB.NET it will work similarly with vbc.exe.)

Code Generation

485

Take a look at the following diagram, showing the round-trip process:

CodeDOM
Generator

Designer
Components

Parser

Stripped
Source

Source
Code

Compiler Assembly

XML
Generator

The parser strips the source code to a stripped-source, which can then be compiled by the compiler. We need
to do this because we don't want to have dependencies on the project's dll files, or other source code from
the project. We only want the 'form' information. The standard compiler makes an assembly, the compiled
object gets instantiated, and the XmlFormGenerator then generates an XML definition that can be loaded
by the designer. The designer creates the source code by using the CodeDOM generator, and this source is
merged back into the starting source code.

First, we have the source code, which is stripped down because the class may depend on custom types. Let's
look at the following class skeleton:

class CustomType : Form
{
 //components type declaration

 CustomType type1;
 //...more member variables

 public CustomType(int a)
 {
 InitializeComponents();
 }
 //...Stuff
 void InitializeComponents()
 {
 //... area of interrest
 }
 // ... more Stuff
}

We only need to know the components (=member types, which are initialized in
InitializeComponents); therefore, the rest of the class is not important. The parser is used to get the
InitializeComponents method and all fields in the class, to generate a class that looks like:

class StrippedClass: Form
{
 //... components type declaration

 public StrippedClass()

Chapter 17

486

 {
 InitializeComponents();
 }

 void InitializeComponents()
 {
 //... area of interrest
 }
}

This class can be compiled because it does not contain references to non-.NET Framework classes, because
our designer currently only designs form components. When external components are to be supported, the
file must be compiled with the reference of the project, which this file owns (all designable components must
be in a referenced assembly).

The compiled file is loaded as an assembly and an object of the StrippedClass type is generated. This
object is taken, and an XML form is generated using the XmlFormGenerator.

We do not take the object directly, because this will require all objects to be generated by the designer host,
and this way it is easier (we are just reusing code that it is already written, and don't write new code). The
XML can be loaded into the designer just like a file.

The only difficult part is to snip out the old InitializeComponents method and field declarations, and to
replace them with the new ones, which are generated by a CodeDOMGenerator object; but for this task, we
need only the parser.

This approach isn't really clean, but it is relatively simple. A better way would have been to let the parser
parse to the statement level, and then traverse through the parse tree to generate the XML. This will be less
error prone. Users do change the InitializeComponents method on their own. They put non-.NET
Framework objects inside it, add event handling manually and even other actions they shouldn't, to access
objects that aren't part of the .NET Framework.

One solution to this problem will be to just lock this method in the text editor, so that it is displayed but not
changeable (some IDEs do that). The best approach is to have an intelligent parser, which tries to read as
much code as it can and then merge the generated code back. Note that even with this approach, it is not
possible to solve this problem completely; but, it is improvable with this method, and if locking is also done,
then the designer should be relatively safe from 'user attacks'.

Now let's go on to the implementation of the round trip. This is done by the
CSharpDesignerDisplayBinding class, which is defined under src\SharpDevelop\
FormDesigner\FormDesigner\CSharpDesignerDisplayBinding.cs.

To understand this part of the source code, we have to know about the tabbed display bindings in
SharpDevelop. The display binding contains a tab page that has a source code view and a designer area on its
tabs. The problem is how the IDE will know what to do when Cut or Undo is clicked on the menu. The
answer is – it won't. The display binding must take care of its contents, and delegate the call to the currently
selected component.

The screenshot shows the designer area to demonstrate the tab page at the bottom:

Code Generation

487

With this information, we will now look at the implementation of the C# round trip:

public class CSharpDesignerDisplayBindingWrapper : FormDesignerDisplayBindingBase,
ITextAreaControlProvider
{
 TabControl tabControl;
 TabPage designerPage;
 IViewContent csharpTextEditor;
 bool failedDesignerInitialize;

 public TextAreaControl TextAreaControl {
 get {
 return (TextAreaControl)csharpTextEditor.Control;
 }
 }

 public override IClipboardHandler ClipboardHandler {
 get {
 if (tabControl.SelectedTab.Controls[0] is IEditable) {
 return ((IEditable)
 tabControl.SelectedTab.Controls[0]).ClipboardHandler;
 }
 return base.ClipboardHandler;
 }
 }

 public override Control Control {
 get {
 return tabControl;
 }
 }

Chapter 17

488

 public override void Undo()
 {
 if (isFormDesignerVisible) {
 base.Undo();
 } else {
 ((IEditable)csharpTextEditor).Undo();
 }
 }

 public override void Redo()
 {
 if (isFormDesignerVisible) {
 base.Redo();
 } else {
 ((IEditable)csharpTextEditor).Redo();
 }
 }

Note that the ClipboardHandler property and Undo and Redo methods delegate to the
selected component.

The round trip needs the parser to work; therefore, we store the class and the InitializeComponents
method as member variables:

 IClass c;
 IMethod initializeComponents;
 string fileName;

 public CSharpDesignerDisplayBindingWrapper(string fileName, IClass c,
 IMethod initializeComponents)
 {
 this.fileName = fileName;
 this.c = c;
 this.initializeComponents = initializeComponents;

 TextEditorDisplayBinding tdb = new TextEditorDisplayBinding();
 csharpTextEditor = tdb.CreateContentForFile(fileName);
 InitializeComponents();
 }

 public CSharpDesignerDisplayBindingWrapper(string fileName, string
 content, IClass c, IMethod initializeComponents)
 {
 this.fileName = fileName;
 this.c = c;
 this.initializeComponents = initializeComponents;

 TextEditorDisplayBinding tdb = new TextEditorDisplayBinding();
 csharpTextEditor = tdb.CreateContentForLanguage("C#", content);
 InitializeComponents();
 }

Code Generation

489

Now we look at the method that executes the round trip. First, it generates the tab control and inserts the
csharpTextEditor in the tab page:

 void InitializeComponents()
 {
 tabControl = new TabControl();
 tabControl.SelectedIndexChanged += new EventHandler(TabIndexChanged);
 tabControl.Alignment = TabAlignment.Bottom;

 TabPage sourcePage = new TabPage("Source");
 csharpTextEditor.Control.Dock = DockStyle.Fill;
 sourcePage.Controls.Add(csharpTextEditor.Control);
 tabControl.TabPages.Add(sourcePage);

Then it compiles the source code:

 string formCode = GenerateClassString(TextAreaControl);
 string sourceFile = Path.GetTempFileName();
 string exeFile = Path.GetTempFileName();
 StreamWriter sw = File.CreateText(sourceFile);
 sw.Write(formCode);
 sw.Close();

 Hashtable options = new Hashtable();
 options["target"] = "library";
 CSharpBindingCompilerManager compilerManager =
 new CSharpBindingCompilerManager();
 CSharpCompilerParameters param = new CSharpCompilerParameters();
 param.OutputAssembly = exeFile;
 param.CompileTarget = CompileTarget.Library;

 ICompilerResult result = compilerManager.CompileFile(sourceFile, param);
 File.Delete(sourceFile);

 failedDesignerInitialize = true;
 StringWriter writer = new StringWriter();

This method is programmed defensively (because errors may pop up almost everywhere). The next step is to
create an instance of our class and the XML definition for it:

 if (result.CompilerResults.Errors.Count > 0) {
 MessageBox.Show("Round trip failed due erros in input file: " +
 result.CompilerResults.Errors[0]);
 } else {
 Control ctrl = null;
 try {
 Assembly asm = Assembly.LoadFrom(exeFile);
 ctrl = (Control)asm.CreateInstance("Unknown");
 } catch (Exception) {}

 if (ctrl == null) {
 MessageBox.Show("Error creating the type for the round trip");
 } else {

Chapter 17

490

 XmlElement el = new XmlFormGenerator().GetElementFor(new
 XmlDocument(), ctrl);
 if (el == null) {
 MessageBox.Show("Error while storing to xml");
 } else {
 try {
 XmlDocument doc = new XmlDocument();
 doc.LoadXml("<" + ExctractBaseClass(c) + "/>");

 foreach (XmlNode node in el.ChildNodes) {
 if (node.Name == "Visible" || node.Name == "Location") {
 continue;
 }
 doc.DocumentElement.AppendChild(doc.ImportNode(node, true));
 }
 doc.Save(writer);
 failedDesignerInitialize = false;
 } catch (Exception e) {
 MessageBox.Show("Failed for unexpected reason :\n" +
 e.ToString());
 }
 }
 }
 }
 if (failedDesignerInitialize) {
 writer.WriteLine("<System.Windows.Forms.Form/>");
 }

Then we initialize the designer with the generated XML:

 InitializeFrom(fileName, writer.ToString());
 designerPage = new TabPage("Design");
 designerPage.Controls.Add(designPanel);
 tabControl.TabPages.Add(designerPage);

 if (failedDesignerInitialize) {
 sourcePage = new TabPage("Generated");
 TextEditorDisplayBinding tdb = new TextEditorDisplayBinding();
 IViewContent newTextEditor = tdb.CreateContentForLanguage("C#",
 formCode);
 newTextEditor.Control.Dock = DockStyle.Fill;
 ((SharpDevelopTextAreaControl)newTextEditor.Control).Document.ReadOnly
 = true;
 sourcePage.Controls.Add(newTextEditor.Control);
 tabControl.TabPages.Add(sourcePage);
 }
 csharpTextEditor.DirtyChanged += new EventHandler(TextAreaIsDirty);
 }

 void TextAreaIsDirty(object sender, EventArgs e)
 {
 base.IsDirty = csharpTextEditor.IsDirty;
 }

Code Generation

491

Note that, when the designer initialization fails (if failedDesignerInitialize is true), an empty form
is displayed, and a new tab is inserted, which shows the stripped source code for debug purposes.

Now we will look at the method, which generates the class string for the class that is compiled by
the compiler:

 string GenerateClassString(TextAreaControl textArea)
 {
 Reparse(fileName, textArea.Document.TextContent);

 StringBuilder builder = new StringBuilder();
 // generate usings
 foreach (IUsing u in c.CompilationUnit.Usings) {
 foreach (string usingString in u.Usings) {
 if (usingString.StartsWith("System")) {
 builder.Append("using " + usingString + ";\n");
 }
 }
 }

 builder.Append("class Unknown : ");
 builder.Append(ExctractBaseClass(c));
 builder.Append(" {\n");
 ArrayList fields = GetUsedFields(textArea.Document, c,
 initializeComponents);
 foreach (IField field in fields) {
 LineSegment fieldLine =
 textArea.Document.GetLineSegment(field.Region.BeginLine - 1);
 builder.Append(textArea.Document.GetText(fieldLine.Offset,
 fieldLine.Length));
 builder.Append("\n");
 }

 builder.Append("\tpublic Unknown() {\n\t\t");
 builder.Append(initializeComponents.Name);
 builder.Append("();\n");
 builder.Append("\t}\n");
 string initializeComponentsString =
 GetInitializeComponentsString(textArea.Document,
 initializeComponents);
 builder.Append(initializeComponentsString);

 builder.Append("}");
 return builder.ToString();
 }

The InitializeComponents method is created by this method:

 string GetInitializeComponentsString(IDocumentAggregator doc, IMethod
 initializeComponents)
 {
 LineSegment beginLine =
 doc.GetLineSegment(initializeComponents.Region.BeginLine - 1);

Chapter 17

492

 LineSegment endLine =
 doc.GetLineSegment(initializeComponents.Region.EndLine - 1);

 int startOffset = beginLine.Offset +
 initializeComponents.Region.BeginColumn - 1;
 int endOffset = endLine.Offset +
 initializeComponents.Region.EndColumn - 1;

 string initializeComponentsString = doc.GetText(startOffset,
 endOffset - startOffset);
 int idx = initializeComponentsString.LastIndexOf('}');
 if (idx > 0) {
 initializeComponentsString = initializeComponentsString.Substring(0,
 idx + 1);
 }
 return initializeComponentsString;
 }

Currently, we only have two base classes, which are supported by the SharpDevelop designer – Form and
UserControl. This method returns the correct base class of a given IClass object:

 string ExctractBaseClass(IClass c)
 {
 foreach (string baseType in c.BaseTypes) {
 if (baseType == "System.Windows.Forms.Form" ||
 baseType == "Form" ||
 baseType == "System.Windows.Forms.UserControl" ||
 baseType == "UserControl") {
 return baseType;
 }
 }
 return String.Empty;
 }

The next method gets all fields from a class that get used inside the initialize components method:

 ArrayList GetUsedFields(IDocumentAggregator doc, IClass c, IMethod
 initializeComponents)
 {
 string InitializeComponentsString = GetInitializeComponentsString(doc,
 initializeComponents);

 ArrayList fields = new ArrayList();
 foreach (IField field in c.Fields) {
 if (field.IsPrivate) {
 if (InitializeComponentsString.IndexOf(field.Name) >= 0) {
 fields.Add(field);
 }
 }
 }
 return fields;
 }

Code Generation

493

The DeleteFormFields method deletes all fields inside the class member field that gets used inside the
class member initialiseComponents IMethod:

 void DeleteFormFields()
 {
 TextAreaControl textArea = TextAreaControl;
 ArrayList fields = GetUsedFields(textArea.Document, c,
 initializeComponents);
 for (int i = fields.Count - 1; i >= 0; --i) {
 IField field = (IField)fields[i];
 LineSegment fieldLine =
 textArea.Document.GetLineSegment(field.Region.BeginLine - 1);
 textArea.Document.Remove(fieldLine.Offset, fieldLine.TotalLength);
 }
 }

The next method is used to merge the form changes back into the source code. It generates the source code
of the Designer area, and puts it in the InitializeComponents method and fields in the source code,
overwriting the old ones with the new:

 void MergeFormChanges()
 {
 IParserService parserService = (IParserService)
 ICSharpCode.Core.Services.ServiceManager.Services.GetService
 (typeof(IParserService));
 // generate file and get initialize components string
 string currentForm = GetDataAs("C#");
 IParseInformation generatedInfo = parserService.ParseFile(fileName ==
 null ? "a.cs" : fileName, currentForm);
 ICompilationUnit cu = (ICompilationUnit)
 generatedInfo.BestCompilationUnit;
 IClass generatedClass = cu.Classes[0];
 IMethod generatedInitializeComponents =
 GetInitializeComponents(cu.Classes[0]);
 IDocumentAggregator newDoc =
 new DocumentAggregatorFactory().CreateDocument();
 newDoc.TextContent = currentForm;
 string newInitializeComponents = GetInitializeComponentsString
 (newDoc, generatedInitializeComponents);

 TextAreaControl textArea = TextAreaControl;
 Reparse(fileName, textArea.Document.TextContent);
 DeleteFormFields();

 // replace the old initialize components method with the new one
 Reparse(fileName, textArea.Document.TextContent);
 LineSegment beginLine = textArea.Document.GetLineSegment
 (initializeComponents.Region.BeginLine - 1);
 int startOffset = beginLine.Offset +
 initializeComponents.Region.BeginColumn - 1;
 textArea.Document.Replace(startOffset,
 GetInitializeComponentsString(textArea.Document,
 initializeComponents).Length, newInitializeComponents);

Chapter 17

494

 Reparse(fileName, textArea.Document.TextContent);

 // insert new fields
 int lineNr = c.Region.BeginLine - 1;
 while (true) {
 if (lineNr >= textArea.Document.TotalNumberOfLines - 2) {
 break;
 }
 LineSegment curLine = textArea.Document.GetLineSegment(lineNr);
 if (textArea.Document.GetText(curLine.Offset,
 curLine.Length).Trim().EndsWith("{")) {
 break;
 }
 ++lineNr;
 }
 beginLine = textArea.Document.GetLineSegment(lineNr + 1);
 int insertOffset = beginLine.Offset;
 foreach (IField field in generatedClass.Fields) {
 LineSegment fieldLine = newDoc.GetLineSegment(field.Region.BeginLine -
 1);
 textArea.Document.Insert(insertOffset,newDoc.GetText(fieldLine.Offset,
 fieldLine.TotalLength));
 }
 }

The Reparse method parses the source file again with the given content. It puts the class and initialize
components method in the IClass and IMethod field of this object:

 void Reparse(string fileName, string content)
 {
 if (fileName == null) {
 fileName = "a.cs";
 }
 // get new initialize components
 IParserService parserService =
 (IParserService)ICSharpCode.Core.Services.ServiceManager.
 Services.GetService(typeof(IParserService));

 IParseInformation info = parserService.ParseFile(fileName, content);
 ICompilationUnit cu = (ICompilationUnit)info.BestCompilationUnit;
 foreach (IClass c in cu.Classes) {
 if (BaseClassIsFormOrControl(c)) {
 initializeComponents = GetInitializeComponents(c);
 if (initializeComponents != null) {
 this.c = c;
 break;
 }
 }
 }
 }
 bool BaseClassIsFormOrControl(IClass c)
 {
 foreach (string baseType in c.BaseTypes) {

Code Generation

495

 if (baseType == "System.Windows.Forms.Form" ||
 baseType == "Form" ||
 baseType == "System.Windows.Forms.UserControl" ||
 baseType == "UserControl") {
 return true;
 }
 }
 return false;
 }

 IMethod GetInitializeComponents(IClass c)
 {
 foreach (IMethod method in c.Methods) {
 if ((method.Name == "InitializeComponents" ||
 method.Name == "InitializeComponent") &&
 method.Parameters.Count == 0) {
 return method;
 }
 }
 return null;
 }

The TabIndexChanged method is used to determine which designer is visible, and to merge the designer
changes back to the source code, when the view is switched from the designer to the source code view:

 void TabIndexChanged(object sender, EventArgs e)
 {
 switch (tabControl.SelectedIndex) {
 case 0:
 if (!failedDesignerInitialize) {
 bool dirty = IsDirty;
 MergeFormChanges();
 IsDirty = dirty;
 TextAreaControl.Refresh();
 }
 break;
 }
 isFormDesignerVisible = tabControl.SelectedIndex == 1;
 }

Note that currently source code changes are not merged back to the designer because the
InitializeComponents method should not be altered (and to make the forms designer faster).

The SaveFile method saves an XML form if the specified file extension of the filename is xfrm.
Otherwise, it stores the source code. If the designer is selected, it needs to merge the form changes to the
source code before writing:

Chapter 17

496

 public override void SaveFile(string fileName)
 {
 ContentName = fileName;
 if (Path.GetExtension(fileName) == ".xfrm") {
 base.SaveFile(fileName);
 return;
 }
 if (tabControl.SelectedIndex == 0 || failedDesignerInitialize) {
 csharpTextEditor.SaveFile(fileName);
 } else {
 MergeFormChanges();
 csharpTextEditor.SaveFile(fileName);
 }
 }
}

Using this approach, the implementation is relatively easy. But one problem remains – invisible components,
which can be obtained by analyzing the InitializeComponents method for the usage of fields that are
initialised, but whose types don't inherit from Control.

With this approach, round trips for other languages besides C# are possible too but still need to
be implemented.

Summary
In this chapter, we examined how to store and restore the designer components using XML. We have
seen the code that stores all components to XML, and have a good understanding of the XML format
used. We now know how to determine the important properties and those that aren't changed, and
therefore, are unnecessary to write to disk. We have seen the loading routine that reads it back and
knows its inner workings.

We have looked at another place where the XML store/restore routines get used – serialization. We know
that it is used as a designer service, which gets called by the clipboard operations.

We have seen how to utilize the CodeDOM API from the .NET Framework to generate executable source
code from the XML format. Finally, we looked at the round trip, which reads the generated source code
back. This is used to store and restore the designer status to executable source code, without letting the user
know that the XML routines are used in background.

Code Generation

497

Chapter 17

498

Index

A Guide to the Index
The index is arranged hierarchically, in alphabetical order, with symbols preceding the letter A. Most
second-level entries and many third-level entries also occur as first-level entries. This is to ensure that
users will find the information they require however they choose to search for it.

.NET Framework
abstraction, 298
built-in designer, 415
CodeDOM API, 476
Components in .NET, 416
csc.exe utility, 484
designers in .NET, 419
persisting parse information

for base classes, 304
reflection, 299

@CODEPAGE directive
Unicode compliance, 182

A
AbsoluteToRelativePath

method
FileUtilityService class, 115

abstract parser, 316
AbstractClass class, 316
class inheritance, 317

ClassInheritance Enumerator
class, 317

handling using
enumerators, 317

AbstractClass class
abstract parser, 316
Name property, 317

AbstractClassScoutNode class
derives from TreeNode

class, 382
implementing Class

Scout, 382
AbstractCodon class, 59

attributes and, 60
extended by ClassCodon

class, 93
extended by MenuItemCodon

class, 86
implements ICodon

interface, 59
abstraction

implementing parser, 298
AbstractMenuCommand class

codons, 85

implements IMenuCommand
interface, 85

AbstractService class
classes extending

AmbienceService class, 121
ClassBrowserIconsService

class, 123
FileUtilityService class, 113
ResourceService class, 119
StringParserService class,

120
implements IService

interface, 108
SharpDevelop services, 108

AbstractViewContent class
BrowserPane class, 146
implements IViewContent

interface, 139
wrapping SHDocVw control to

view, 146
AcceptEvent method

TreeViewOptions class, 174
Action method

ICondition interface, 65
Activate method

DefaultDesignerHost
class, 422

ActivatePad method
IWorkbenchLayout

interface, 154
activewindow attribute

WindowActiveCondition class,
100

ActiveWorkbenchWindow
property
IWorkbenchLayout

interface, 154
MdiWorkbenchLayout

class, 156
Add method

DesignComponent Container
class, 426

AddClassToNamespaceList
method
DefaultParserService

class, 324
AddCodonBuilder method

CodonFactory class, 64

AddCodonsToExtension method
AddIn class, 68
handling different

cases, 68
AddCommand method

IMenuCommandService
interface, 443

AddCreator method
IToolboxService

interface, 439
AddExtensions method

AddIn class, 67
AddFiles method

WholeProjectDocument
iterator, 247

AddFileToProject method
IProjectService

interface, 130
AddIn class

AddCodonsToExtension
method, 68
handling different cases, 68

AddExtensions method, 67
Extension element, 67
Initialize method, 66
management of add-ins, 66
Runtime element, 67

AddIn property
ICodon interface, 59

AddIn tree
see also tree view.
advantages of using, 53
Class Scout, 370
ClassCodon class, 93
codons, 58, 82

inserting services in AddIn
tree, 111

conditions, 64, 98
using add-ins with

conditions, 96
DefaultAddInTreeNode

class, 61
definition file for add-in, 57
description, 52
Extension element, 111
history of SharpDevelop, 26
IAddInTree interface, 56

AddIn tree (continued)

500

AddIn tree (continued)
IAddInTreeNode interface, 60
IconCodon class, 94
implementing

SharpDevelop, 52
coding for AddIn tree, 54

inserting services in AddIn
tree, 111
codons, 111

management of add-ins, 66
AddIn class, 66
Extension class, 66

menu item builders, 91
nodes, 52
singleton pattern, 52
structure, 56
View menu, 93

AddIns property
IAddInTree interface, 57

AddMessageFilter method
Application class, 447

AddReferenceToCompletion
Lookup method
DefaultParserService

class, 322
IParserService interface, 132

AddReferenceToProject method
IProjectService interface, 130

AddResource method
ResourceWriter class, 184

AddService method
IServiceContainer

interface, 418
ServiceManager class, 110

AddServices method
ServiceManager class, 110

AddVerb method
IMenuCommandService

interface, 443
Al.exe tool

resources, accessing for
internationalization, 176

algorithms for search and
replace, 252
Brute Force algorithm, 253
ISearchResult interface, 252
ISearchStrategy

interface, 252
KMP algorithm, 256
SearchReplaceUtilities

class, 253
AllOpenDocument iterator, 242
Ambience Service, 121

AmbienceService class, 121
ConversionFlags

enumeration, 123
IAmbience interface, 122
introduction, 121
SharpDevelop services, 112
using ambiences, 122

AmbienceChangedEvent
method
ClassScout class, 372

AmbienceReflection Decorator
class
implements IAmbience

interface, 122

AmbienceService class, 121
code generation

properties, 121
CurrentAmbience

property, 122
extends AbstractService

class, 121
Application class

AddMessageFilter
method, 447

Idle event, 83
System.Windows.Forms

namespace, 447
ArrayList

compared to Hashtable, 111
storing services in ArrayList

and Hashtable, 110
running through services

using ArrayList, 110
arrays

basic sequence data
structures, 190

deletion operations, 190
implementing arrays, 190

StringTextBufferStrategy
class, 190

insertion operations, 190
performance problems

with, 190
replacement operations, 190

Assemble method
tbuilder utility, 183

Assemble utility
ConvertIllegalChars

method, 184
Open method, 184
parameters, 186
StringBuilder class, 185
translation management, 184

Assembly Linker tool
see Al.exe tool.

Assembly scout
compared to Class

Scout, 384
description, 384
implementing, 385

DisplayInformation class, 385
DisplayInformationWrapper

class, 386
ReflectionILDasmView

class, 402
ReflectionNode class, 406
ReflectionNodeType

enumeration, 405
ReflectionSourceView

class, 395
ReflectionTree class, 390
ReflectionTypeNode, 410

language conversion, 394
navigating SharpDevelop

code, 383
browsing references, 383

obtaining attributes, 396
SharpDevelop Views, 383
tree view, 384

populating tree view using
recursion, 391

using, 384
using ildasm.exe tool, 402

Assert method
Debug class, 46

assertions
refactoring, 46

Attach method
IWorkbenchLayout

interface, 154
MdiWorkbenchLayout

class, 156
attributes

AbstractCodon class and, 60
MenuItemCodon class

and, 86
obtaining using Assembly

scout, 396
Attributes property

XmlElement class, 471,
473, 479

automaton for parser, 296
information flow, 297
NDA, 296

automaton implementation
wildcard search strategy, 257

aximp utility
wrapping SHDocVw control to

managed component, 142

B
backtracking

see depth-first parsing.
BaseClassIsFormOrControl

method
CSharpDesignerDisplay

Binding class, 495
basic sequence data structures

arrays, 190
implementing arrays, 190

gap buffer, 190, 192
implementing gap buffer, 194

linked lists, 192
text representation, 190

BeforeCollapse method
HelpBrowser class, 150

BeforeExpand method
HelpBrowser class, 150

<Begin> element
 element, 223

BeginUpdate method
TextArea control, 239, 277

Behavior panel
options dialog, SharpDevelop,

272
BestCompilationUnit property

IParseInformation
interface, 132

bold attribute
 element, 223

bookmarks
SharpDevelop, 16

bottom-up analysis
parsing, 296

breadth-first parsing, 296

ClassScout class

501

BrowserPane class
extends AbstractViewContent

class, 146
HelpBrowserPane class

extends, 151
wrapping SHDocVw control to

view, 146
Brute Force algorithm

algorithms for search and
replace, 253

BruteForceSearchStrategy
class, 254

compared to KMP
algorithm, 256

description, 254
introduction, 253
performance issues, 253

BruteForceSearchStrategy
class
Brute Force algorithm, 254
CompilePattern method, 256
FindNext method, 256
implements ISearchStrategy

interface, 254
InternalFindNext method, 256
IsWholeWordAt method, 254
MatchCaseInsensitive

method, 254
MatchCaseSensitive

method, 254
bug tracker

advantages of using, 40
compared to paper

version, 40
SharpDevelop tracking and

testing, 39
BuildChildItem method

DefaultAddInTreeNode class,
62

IAddInTreeNode interface, 61
BuildChildItems method

DefaultAddInTreeNode
class, 61

IAddInTreeNode interface, 61
BuildCodon method

CodonBuilder class, 63
BuildItem method

ClassCodon class, 94
FileFilterCodon class, 94
ICodon interface, 59
MenuItemCodon class, 87

BuildSubmenu method
ViewMenuBuilder class, 92

built-in designer, .NET
implementing Windows Forms

Designer, 415

C
C#

C# parser, 309
recursive descent, 309

CF grammars, 294
eBNF, 294
generating source code, 475

CalculateGutterWidth method
TextArea control, 271

CanShowComponentEditor
method
IUIService interface, 458

caret management
CaretEventArgs class, 207
CaretMode enumeration, 206
DefaultCaret class, 207
document management,

SharpDevelop, 206
exception handling, 207
ICaret interface, 206

CaretEventArgs class
caret management, 207

CaretMode enumeration
caret management, 206
InsertMode value, 207
OverwriteMode value, 207

CaretMode property
ICaret interface, 207

CategoryNames property
IToolboxService

interface, 440
centralized resource

management
compared to decentralized

resource management, 176
CF grammars

C#, 294
description, 294
language theory for

parser, 294
ChangeProperty method

ResourceService class, 176
ChangeType method

Convert class, 474
ChildNodes property

IAddInTreeNode interface, 61
XmlElement class, 478

Chomsky Grammars
CF grammars, 294
language theory for

parser, 293
table of grammars, 293

class inheritance
abstract parser, 317

handling using enumerators,
317

ClassInheritanceEnumerator
class, 317

class members
resolving using Resolve

method, 333
code completion, 334
dynamic look ups, 335
protected members, 338
static look ups, 336

Class property
ICodon interface, 59

Class Scout
AddIn tree, 370
compared to Assembly

scout, 384
implementing, 370

AbstractClassScoutNode
class, 382

ClassScout class, 371

ClassScoutTag class, 370
DefaultDotNetClassScout

NodeBuilder class, 378
navigating SharpDevelop

code, 369
navigation of projects, 18
pop-up menu, 378
SharpDevelop Pads, 9, 139
UML diagram, 370
using parser, 292

class wizard, 14
ClassBrowserIcons Service,

123
ClassBrowserIconsService

class, 123
introduction, 123
SharpDevelop services, 112

ClassBrowserIconsService
class, 123
extends AbstractService

class, 123
GetIcon method, 124

ClassCodon class, 93
AddIn tree, 93
BuildItem method, 94
extends AbstractCodon

class, 93
ClassCollection class

creating using Typed C#
Collection Wizard, 326

parser, 326
ClassInheritanceEnumerator

class
abstract parser, 317
GetEnumerator method, 317
implements IEnumerable

interface, 317
implements IEnumerator

interface, 317
MoveNext method, 317
PutBaseClassesOnStack

method, 317
Reset method, 318

ClassScout class
AmbienceChangedEvent

method, 372
derives from TreeView

class, 371
DoPopulate method, 373
implementing Class Scout, 371
implements IPadContent

interface, 371
OnCombineClose method, 376
OnCombineOpen method, 376
OnIconChanged method, 377
OnMouseDown method, 376
OnMouseUp method, 377
OnTitleChanged method, 377
ParseCombine method, 375
ParseProject method, 375
Populate method, 375
StartCombineparse

method, 374
StartParse method, 374
StartPopulating method, 374
UpdateParseInformation

method, 372

ClassScoutTag class

502

ClassScoutTag class
implementing Class

Scout, 370
ClearSelection method

TextArea control, 278
ClickedWindowIsForm flag

OpenFileTab class, 103
ClipboardHandler property

CSharpDesignerDisplay
Binding class, 488

CloseCombine method
IProjectService interface, 128

code completion, 15, 329, 340
CodeCompletionData

class, 343
CodeCompletionData Provider

class, 341
CommentCompletionDataProvi

der class, 347
compared to method

insight, 357
CompletionWindow

class, 351
description, 340
displaying code

completion, 351
closing window, 356
determining window

position, 355
ICompletionDataProvider

interface, 340
ImageList class, 341
resolving class

members, 334
discovering innermost

class, 338
TemplateCompletionData

Provider class, 346
UML diagram, 350
using parser, 292

code generation, 465
AmbienceService class, 121
generating source code, 475

CodeDOM API, 476
CodeDOMGenerator

class, 476
making components

persistent, 465
generating XML, 467
loading XML, 470
persisting XML form, 466
serialization service, 474

round-tripping, 484
CSharpDesignerDisplay

Binding class, 486
Windows Forms

Designer, 465
CodeCompletionData class

code completion, 343
CodeCompletionData Provider

class
code completion, 341

CodeDOM API
CodePrimitiveExpression, 483
generating source code, 476

CodeDOMGenerator
class, 476

CodeDomProvider class, 477

CodeDOMGenerator class
ConvertContentDefinition

method, 477, 478
generated example file, 483
generating source code, 476

enumerations, 481
handling special cases, 481

GetExpression helper
method, 483

GetExpressionForEnum helper
method, 483

round-tripping, 485
generating source code, 486

SetAttributes method, 479
SetUpObject method, 478
SetValue method, 480

CodeDomProvider class
CreateGenerator method, 477
generating source code, 477

CodePage property
Session object, 182

CodePrimitiveExpression
CodeDOM API, 483
limitations, 483

coding, 14
bookmarks, 16
class wizard, 14
code completion, 15,

329, 340
commenting code, 42
compilation of code, 17
guidelines for coding, 39
making code readable, 43
method insight, 15,

329, 357
search and replace, 16
syntax highlighting, 14, 219

Codon property
IAddInTreeNode interface, 61

CodonBuilder class
BuildCodon method, 63
creating codons, 63

CodonFactory class
AddCodonBuilder method, 64
CreateCodon method, 63
creating codons, 63

CodonFactory property
IAddInTree interface, 57

CodonNameAttribute custom
attribute
AddIn tree, 60
MenuItemCodon class, 86

codons
AbstractCodon class, 59
AbstractMenuCommand

class, 85
AddIn tree, 58, 82
building SharpDevelop

applications, 82
ClassCodon class, 93
CodonNameAttribute custom

attribute, 60
compared to conditions,

65, 98
creating codons, 62

CodonBuilder class, 63
CodonFactory class, 63

defining sub-items, 82

description, 93
DialogPanelCodon class, 94
DisplayBindingCodon class, 95
FileFilterCodon class, 94
ICodon interface, 58
ICommand interface, 82
IconCodon class, 94
IMenuCommand interface, 85
inserting services in AddIn

tree, 111
ISubmenuBuilder

interface, 91
LanguageBindingCodon

class, 95
MenuItemCodon class, 86
ToolbarItemCodon class, 96
using add-ins with

conditions, 96
color attribute

 element, 223
CombineOpenCondition

class, 102
combines

Project Service, 126
SharpDevelop project

management, 17
CommandID class

System.ComponentModel.Des
ign namespace, 444

commands
AbstractMenuCommand

class, 85
compared to verbs, 443
executing commands, 442
executing standard

commands, 446
ICommand interface, 83
IMenuCommand interface, 85
Menu Command service,

442, 443
typical commands, 83

CommandType enumeration
wildcard search strategy, 257

CommentCompletionData
Provider class
code completion, 347

commenting code, 42
CompareCondition class

conditions, 99
IsValid method, 100
XmlMemberAttribute custom

attribute, 100
compilation of code, 17
CompilationUnit property

PersistantClass class, 305
ReflectionClass class, 300

CompileCombine method
IProjectService interface, 127

CompilePattern method
BruteForceSearchStrategy

class, 256
ISearchStrategy

interface, 252
WildcardSearchStrategy

class, 259
CompileProject method

IProjectService interface, 127

CSharpDesignerDisplayBinding class

503

CompletionWindow class
closing window, 356
code completion, 351
derives from Form class, 351
determining window

position, 355
displaying code

completion, 351
ListView control, 353

Component Change service
ComponentChangeService

class, 431
Windows Forms

Designer, 431
Component property

IDesigner interface, 420
ISite interface, 417

ComponentChangeService
class
Component Change

service, 431
implements

IComponentChangeService
interface, 431

component-exchangeability
designing SharpDevelop, 29

components
designer host, Windows

Forms Designer, 416
management of components

DefaultDesignerHost
class, 423

<Components> element
persisting XML form, 467

Components in .NET
IComponent interface, 416

Components property
DesignComponentContainer

class, 425
ComponentSite class

implementing designer
host, 428

implements ISite
interface, 428

transactions, 428
composite sequence data

structures
fixed size buffers, 198
line span method, 198
piece table, 198
text representation, 190, 198

Condition element
Disable action, 64
Exclude action, 64
Extension element, 64
joining conditions, 98
Nothing action, 64

condition operators
joining conditions, 97

Conditional element
joining conditions, 98

ConditionFactory property
IAddInTree interface, 57

conditions
AddIn tree, 64, 98
CombineOpenCondition

class, 102

CompareCondition class, 99
compared to codons, 65, 98
Condition element, 64
defining conditions, 98
ICondition interface, 65
OwnerStateCondition

class, 102
ProjectActiveCondition

class, 101
ProjectOpenCondition

class, 102
structure of conditions, 97

joining conditions, 97
using add-ins with

conditions, 96
WindowActiveCondition

class, 100
WindowOpenCondition

class, 100
ConfigDirectory property

PropertyService class, 119
Container property

ISite interface, 417
ContainsName method

DesignComponentContainer
class, 426

ContentName property
IViewContent interface, 138

context menus
Menu Command service, 442
OpenFileTab class context

menu definitions, 103
Control pressed behavior

implementing Selection
service, 451

Control property
CSharpDesignerDisplay

Binding class, 488
IViewContent interface,

138, 147
control unit for parser, 296

information flow, 297
controller

TextArea control, 265
<Controls> element

persisting XML form, 467
controls, adding

creating Windows Forms, 19
controls, formatting

creating Windows Forms, 20
properties of controls, 20

ConversionFlags enumeration
Ambience Service, 123
ShowAccessibility value, 123
ShowInheritanceList

value, 123
ShowModifiers value, 123
ShowParameterNames

value, 123
UseFullyQualifiedNames

value, 123
Convert class

ChangeType method, 474
Convert method

IAmbience interface, 123
ConvertContentDefinition

method

CodeDOMGenerator class,
477, 478

ConvertIllegalChars method
Assemble utility, 184

co-ordinate systems
text model, 210
virtual coordinates, 281

CreateCodon method
CodonFactory class, 63

CreateComponent method
IDesignerHost interface, 474

CreateDefaultHighlighting
Strategy method
HighlightingManager

class, 227
CreateDesigner method

TypeDescriptor class, 420
CreateDocumentIterator

method
SearchReplaceUtilities

class, 248
CreateElement method

XMLDocument class, 468
CreateGenerator method

CodeDomProvider class, 477
CreateName method

INameCreationService
interface, 433

CreateNamedSearchResult
method
DefaultFind class, 250

CreateObject method
XmlFormReader class,

471, 473
CreateSearchStrategy method

SearchReplaceUtilities
class, 253

CreateText method
File class, 478

csc.exe utility
implementing round-

tripping, 484
compiling StrippedClass

class, 486
CSharpDesignerDisplayBinding

class
BaseClassIsFormOrControl

method, 495
ClipboardHandler

property, 488
compiling source code, 489
Control property, 488
CSharpDesignerDisplayBindin

gWrapper method, 488
DeleteFormFields

method, 493
ExtractBaseClass

method, 492
GenerateClassString

method, 491
generating source code, 493
generating XML form, 489
GetInitializeComponents

method, 495
GetInitializeComponentsString

method, 491
GetUsedFields method, 492

CSharpDesignerDisplayBinding class (continued)

504

CSharpDesignerDisplayBinding
class (continued)
InitializeComponents

method, 489
loading generated XML, 490
MergeFormChanges

method, 493
Redo method, 488
Reparse method, 494
round-tripping, 486
SaveFile method, 495
tabbed display bindings,

SharpDevelop, 486
TabIndexChanged

method, 495
TextAreaControl property, 487
TextAreaIsDirty method, 491
Undo method, 488

CSharpDesignerDisplayBinding
Wrapper method
CSharpDesignerDisplay

Binding class, 488
Current property

ForwardTextIterator
iterator, 243

IDocumentIterator
interface, 245

ITextIterator interface, 242
WholeProjectDocument

iterator, 246
CurrentAmbience property

AmbienceService class, 122
CurrentDocumentInformation

property
DefaultFind class, 249
IFind interface, 237

CurrentFileName property
IDocumentIterator

interface, 245
WholeProjectDocument

iterator, 246
CurrentOpenCombine property

IProjectService interface, 126
CurrentSelectedCombine

property
IProjectService interface, 126

CurrentSelectedProject
property
IProjectService interface, 126

customer support, 3
CustomType class

InitializeComponents
method, 485

source code for round-
tripping, 485

D
database structure

persisting parse
information, 304
creating database using

wizard, 305
fast creation of

database, 319

Deactivate method
DefaultDesignerHost

class, 422
Debug class

Assert method, 46
System.Diagnostics

namespace, 46
decentralized resource

management
compared to centralized

resource management, 176
decorator pattern

design patterns for
SharpDevelop, 33

UML diagram, 34
DefaultAddInTreeNode class

BuildChildItem method, 62
BuildChildItems method, 61
implements IAddInTreeNode

interface, 61
DefaultCaret class

caret management, 207
ToString method, 207

DefaultDesignerHost class
Activate method, 422
Deactivate method, 422
EndLoad method, 422
implementing designer

host, 422
Loading method, 422
management of

components, 423
Reload method, 422

DefaultDesignerTransaction
class
derives from

DesignerTransaction
class, 430

implementing designer
host, 430

DefaultDotNetClassScoutNode
Builder class
adding nodes to

collection, 380
building nodes, 380
implementing Class

Scout, 378
inserting nodes into tree, 381

DefaultFind class
CreateNamedSearchResult

method, 250
CurrentDocumentInformation

property, 249
DocumentIterator

property, 250
FindNext method, 251
implements IFind

interface, 249
Replace method, 250
Reset method, 250
search and replace, 249
SearchStrategy property, 250
TextIterator property, 249
TextIteratorBuilder

property, 249

DefaultHighLightingStrategy
class
GetColor method, 233
implements

IHighLightingStrategy
interface, 231

MarkTokens method,
231, 232

MarkTokensInLine
method, 232

DefaultLineManager class
GetLineNumberForOffset

method, 204
GetLineSegmentForOffset

method, 205
Line Manager, 204
RunHighlighter method, 231

DefaultParserService class,
312, 319
AddClassToNamespaceList

method, 324
AddReferenceToCompletionLo

okup method, 322
calling parser, 312
creating persistent

database, 319
creating proxy classes, 319
GenerateEfficientCodeComple

tionDatabase method, 319
GetNamespaceContents

method, 324
GetNamespaceList

method, 325
InitializeService method, 321
LoadAssemblyParse

Informations method, 323
LoadProxyDataFile

method, 321
NamespaceExists

method, 325
OpenCombine method, 323
ParseFile method, 312
ParserUpdateThread

method, 323
Resolve method, 323
SetCodeCompletionFile
Location method, 320
StartParserThread

method, 323
DefaultProjectService class

implements IProjectService
interface, 128

Project Service, 128
SaveCombinePreferences

method, 128
DefaultProperties class

FromXmlElement method, 78
GetProperty method, 73, 74
Hashtable and, 73
implements IProperties

interface, 72
OnPropertyChanged method,

75, 174
SetProperty method, 74, 174
SetXmlElement method, 77
SharpDevelop property

management, 72
ToXmlElement method, 78

document management, SharpDevelop

505

DefaultSelection class
implements ISelection

interface, 208
selection management, 208
ToString method, 209

DefaultTextModel class
implements ITextModel

interface, 211
text model, 211

DefaultWorkbench class
OnIconChanged method, 175
OnTitleChanged method, 175
RedrawAllComponents

method, 175
RedrawContent method, 175
UpdateMenu method, 90
WorkbenchSingleton class

inherits from, 175
DefaultWorkspaceWindow

class
DetachContent method, 163
implementing

IWorkbenchWindow
interface in Layout
Manager, 161
implementing event

handlers, 165
OnClosed method, 165
OnClosing method, 163
OnDeactivate method, 165
OnGotFocus method, 165
SelectWindow method, 165
SetTitleEvent method, 162

definition file for add-in
Extension element, 57
Runtime element, 57

DeleteFormFields method
CSharpDesignerDisplay

Binding class, 493
deletion operations

arrays, 190
gap buffer, 193
linked lists, 192

DelimiterLength property
LineSegment class, 202

<Delimiters> element
syntax definition files, 222

depth-first parsing, 296
Deserialize method

DesignerSerializationServices
class, 475

DeserializeToolboxItem method
IToolboxService

interface, 439
design patterns for

SharpDevelop, 30
decorator pattern, 33
factory pattern, 31
memento pattern, 36
proxy pattern, 37
singleton pattern, 31
strategy pattern, 35

Design view, SharpDevelop, 12
DesignComponentContainer

class
Add method, 426
Components property, 425

ContainsName method, 426
Designers property, 425
Dispose method, 425
implementing designer

host, 424
implements IContainer

interface, 424
OnComponentRename

method, 427
Remove method, 427
RootComponent property, 425

Designer component
DesignPanel class, 433
Windows Forms Designer,

413, 433
designer host, Windows Forms

Designer, 416
components, 416
designers, 416
implementing, 421

ComponentSite class, 428
DefaultDesignerHost class,

422
DefaultDesignerTransaction

class, 430
DesignComponentContainer

class, 424
initialization, 416
transactions, 416

Designer Option service
IDesignerOptionService

interface, 455
Windows Forms

Designer, 455
DesignerAttribute class

System.ComponentModel.
Design namespace, 420

designers
.NET designers, 419

IDesigner interface, 419
Initialize method, 419

designer host, Windows
Forms Designer, 416
instantiating designer, 420
selecting designer, 420

implementing custom
designer, 420

root designer, 420
Designers property

DesignComponentContainer
class, 425

DesignerSerializationServices
class
Deserialize method, 475
serialization service, 474
Serialize method, 475

DesignerTransaction class
DefaultDesignerTransaction

class derives from, 430
System.ComponentModel.

Design namespace, 430
DesignerVerb class

System.ComponentModel.
Design namespace, 420

DesignerVerbCollection class
System.ComponentModel.Des

ign namespace, 420, 443
DesignMode property

ISite interface, 417

DesignPanel class
derives from Panel

control, 433
Windows Forms

Designer, 433
Detach method

IWorkbenchLayout
interface, 154

MdiWorkbenchLayout
class, 158

DetachContent method
DefaultWorkspaceWindow

class, 163
Deterministic Finite Automaton

principle
ForwardTextIterator

iterator, 242
DFA principle

see Deterministic Finite
Automaton principle.

dialog panels
DialogPanelCodon class, 95
IDialogPanel interface, 95

DialogPanelCodon class, 94
dialog panels, 95
wizard panels, 95

Dictionary service
IDictionaryService

interface, 457
Windows Forms

Designer, 457
<Digits> element

syntax definition files, 222
dirty compilation

resolving using Resolve
method, 311, 331

DirtyCompilationUnit property
IParseInformation

interface, 132
Disable action

Condition element, 64
Display Binding Service

SharpDevelop services, 133
DisplayBindingCodon class, 95
DisplayInformation class

implementing Assembly
scout, 385

DisplayInformationWrapper
class
constructor, 389
creating content, 387
implementing Assembly

scout, 386
implements IViewContent

interface, 386
Dispose method

DesignComponentContainer
class, 425

IDisposable interface, 417
implementing SHDocVw

ActiveX control as user
control, 146

document management,
SharpDevelop, 189
caret management, 206
DocumentAggregatorFactory

class, 214

document management, SharpDevelop (continued)

506

document management,
SharpDevelop (continued)
IDocumentAggregator

interface, 212
integrating document

management, 212
introduction, 189
line representation, 199

Line Manager, 199
selection management,

206, 207
text model, 210
text representation, 190

basic sequence data
structures, 190

composite sequence data
structures, 190, 198

DocumentAggregatorFactory
class
document management,

SharpDevelop, 214
factory pattern, 214
using with

GapTextBufferStrategy
class, 215

using with
StringTextBufferStrategy
class, 215

DocumentElement property
XMLDocument class, 477

DocumentIterator property
DefaultFind class, 250
IFind interface, 237

DocumentIteratorType
enumeration
search and replace, 236

DoDefaultAction method
IDesigner interface, 420

DokuComments property
Lexer class, 314

DoPopulate method
ClassScout class, 373

DoubleClick method
HelpBrowser class, 150

DrawFoldMarker method
Gutter class, 286

dynamic look ups
resolving class

members, 335

E
eBNF

C#, 294
production rules, 294

Editor control, 263
building standalone

editor, 269
SharpPad editor control, 287

event handling, 272
changing options, 272

Folding, 286
Gutter class, 286

inserting code, 273
internationalization, 282
introduction, 263

Mouse management, 285
TextAreaMouseHandler

class, 285
rendering text on screen, 279
TextAreaPainter class, 279
update methods, 277

priorities for updates, 277
user interface, 263

description, 264
gutter, 264
rulers, 264
TextArea control, 264, 265

Editor view, SharpDevelop, 12
setting editor view

appearance
<Environment> element, 222

Encoding class
GetByteCount method, 212

<End> element
 element, 223

EndLoad method
DefaultDesignerHost

class, 422
EndUpdate method

TextArea control, 239, 277
enumerations

generating source code for
enumerations, 481

enumerators
handling class inheritance, 317
IEnumerable interface, 317
IEnumerator interface, 317

<Environment> element
list of sub elements, 222
setting editor view

appearance, 222
syntax definition files, 221

event handling
MenuEventHandler class, 90
TextArea control, 272

exception handling
caret management, 207
Line Manager, 205

exceptions
ResourceNotFoundException

class, 178
Exclude action

Condition element, 64
ExecuteDialogKey method

TextArea control, 276
extended Backus-Naur Form

see eBNF.
Extension class

management of add-ins, 66
Extension element

AddIn class, 67
AddIn tree, 111
Condition element, 64
definition file for add-in, 57
inserting services in AddIn

tree, 111
path attribute, 57, 111

extensions attribute
<SyntaxDefinition> element,

220, 221
ExtractBaseClass method

CSharpDesignerDisplayBindin
g class, 492

F
factory pattern

design patterns for
SharpDevelop, 31

DocumentAggregatorFactory
class, 214

UML diagram, 32
feedback, 3
File class

CreateText method, 478
file operation errors

handling using
FileUtilityService class, 117

Network connection lost
error, 116

Not accessible error, 116
Write Protected error, 116

File Scout
SharpDevelop Pads, 9, 140

File Service, 124
compared to File Utility

Service, 124
IFileService interface, 125
introduction, 124
SharpDevelop services, 113

File Utility Service, 113
compared to File Service, 124
compared to Path class, 113
FileErrorPolicy

enumeration, 117
FileOperationDelegate

delegate, 117
FileOperationResult

enumeration, 117
FileUtilityService class, 113
introduction, 113
NamedFileOperationDelegate

delegate, 117
SharpDevelop services, 112

FileDirty flag
OpenFileTab class, 103

FileErrorPolicy enumeration
File Utility Service, 117

FileFilterCodon class, 94
BuildItem method, 94

FileOperationDelegate delegate
File Utility Service, 117

FileOperationResult
enumeration
File Utility Service, 117

FileRemoved event
IFileService interface, 126

FileRenamed event
IFileService interface, 126

FileScout class
Title property, 175

FileSystemObject object
Unicode compliance, 182

FileUntitled flag
OpenFileTab class, 103

FileUtilityService class, 113
AbsoluteToRelativePath

method, 115
extends AbstractService

class, 113

GetInitializeComponentsString method

507

FileUtilityService class
(continued)
GetBitmap method, 113
GetDirectoryNameWithSeparat

or method, 116
GetDriveType method, 114
GetImageForFile method, 113
GetImageForProjectType

method, 113
GetImageIndexForFile

method, 113
GetImageIndexForProjectType

method, 113
handling file operation

errors, 117
ImageList property, 113
IsDirectory method, 116
IsValidFileName method, 115
ObservedLoad method, 116
ObservedSave method,

116, 117
RelativeToAbsolutePath

method, 115
SearchDirectory method,

114, 228
TestFileExists method, 115
VolumeLabel method, 114

FilterAttributes method
ITypeDescriptorFilterService

interface, 461
FilterEvents method

ITypeDescriptorFilterService
interface, 461

FilterProperties method
ITypeDescriptorFilterService

interface, 461
FilterString property

ToolboxItemFilterAttribute
class, 441

Find dialog
search and replace, 16

FindCommand method
IMenuCommandService

interface, 444
FindNext method

BruteForceSearchStrategy
class, 256

DefaultFind class, 251
IFind interface, 237
SearchReplaceManager class,

238, 239
fixed size buffers

composite sequence data
structures, 198

floating Layout Manager, 161
reasons for not using, 161

focus changes
rendering text on screen, 282

folder nodes
node types, 405

Folding
Editor control, 286
Gutter class, 286
System.Drawing

namespace, 287
FoldLevel property

LineSegment class, 202

font rendering
Monospaced Letters, 281
Proportional Spacing, 281

kerning, 281
rendering text on screen, 281

Form class
CompletionWindow class

derives from, 351
InsightWindow class derives

from, 363
supported base classes, 492
System.Windows.Forms

namespace, 351
Format method

String class, 120
Forms Designer

see Windows Forms Designer.
ForwardTextIterator iterator, 242

compared to
WholeProjectDocument
iterator, 245

Current property, 243
Deterministic Finite

Automaton principle, 242
GetCharRelative method, 244
implements ITextIterator

interface, 243
InformReplace method, 245
MoveAhead method, 244
Position property, 244
TextBuffer property, 243

ForwardTextIteratorBuilder class
search and replace, 237

FromXmlElement method
DefaultProperties class, 78
IXmlConvertable interface, 71

G
gap buffer

basic sequence data
structures, 190, 192

deletion operations, 193
implementing gap buffer, 194

GapTextBufferStrategy
class, 194

insertion operations, 193
replacement operations, 196
theory of gap buffer, 193

GapTextBufferStrategy class
implementing gap buffer, 194
Insert method, 195
PlaceGap method, 196
Remove method, 195
Replace method, 196
using with

DocumentAggregatorFactory
class, 215

general nodes
node types, 405

General panel
options dialog, SharpDevelop,

272
general parser

compared to specialized
parsers, 296

GenerateClassString method
CSharpDesignerDisplayBindin

g class, 491
GenerateDefaultActions method

TextArea control, 268
GenerateEfficientCodeCompleti

onDatabase method
DefaultParserService

class, 319
GenericTypographic property

StringFormat class, 281
GetAttributes method

ReflectionSourceView
class, 396

GetBitmap method
FileUtilityService class, 113
ResourceService class, 119

GetByteCount method
Encoding class, 212

GetCharRelative method
ForwardTextIterator

iterator, 244
ITextIterator interface, 242

GetColor method
DefaultHighLightingStrategy

class, 233
GetComponentsSelected method

ISelectionService
interface, 451

GetDialogOwnerWindow method
IUIService interface, 458

GetDirectoryNameWithSeparat
or method
FileUtilityService class, 116

GetDriveType method
FileUtilityService class, 114

GetElementFor method
XmlFormGenerator class,

468, 470
GetEnumerator method

ClassInheritanceEnumerator
class, 317

GetExpression helper method
CodeDOMGenerator class, 483

GetExpressionForEnum helper
method
CodeDOMGenerator class, 483

GetIcon method
ClassBrowserIconsService

class, 124
ResourceService class, 119

GetImageForFile method
FileUtilityService class, 113

GetImageForProjectType method
FileUtilityService class, 113

GetImageIndexForFile method
FileUtilityService class, 113

GetImageIndexForProjectType
method
FileUtilityService class, 113

GetInitializeComponents method
CSharpDesignerDisplayBinding

class, 495
GetInitializeComponentsString

method
CSharpDesignerDisplayBinding

class, 491

GetKey method

508

GetKey method
IDictionaryService

interface, 457
GetKeyWord method

KeyWord class, 316
GetLineNumberForOffset

method
DefaultLineManager

class, 204
GetLineSegmentForOffset

method
DefaultLineManager

class, 205
GetNamespaceContents

method
DefaultParserService

class, 324
GetNamespaceList method

DefaultParserService
class, 325

GetOpenFile method
IFileService interface, 125

GetOptionValue method
IDesignerOptionService

interface, 456
GetOutputAssemblyName

method
IProjectService interface, 128

GetParamList method
ReflectionMethod class, 303

GetParseInformation method
IParserService interface, 132

GetParser method
IParserService interface, 132

GetProperties method
TypeDescriptor class, 468

GetProperty method
DefaultProperties class,

73, 74
IProperties interface, 72

GetSelectedComponents
method
ISelectionService

interface, 451
GetSelectedText method

TextArea control, 279
GetSelectedToolboxItem

method
IToolboxService

interface, 439
GetService method

IServiceProvider
interface, 418

ServiceManager class, 110
GetString method

ResourceService class,
119, 177

GetTreeNode method
IAddInTree interface, 57, 60

GetType method
generating XML, 468
IDesignerHost interface, 473
Type class, 424

GetTypeString method
ReflectionSourceView

class, 396

GetUsedFields method
CSharpDesignerDisplayBinding

class, 492
GetValue method

IDictionaryService
interface, 457

PropertyDescriptor class, 468
GetView method

IRootDesigner interface, 421
GlobalInvoke method

IMenuCommandService
interface, 444

GoToMember method
ReflectionTree class, 392

GoToType method
ReflectionTree class, 394

grammar
Chomsky Grammars, 293

CF grammars, 294
table of grammars, 293

language theory for
parser, 292

production rules, 294
gutter

Editor control user
interface, 264

Gutter class
DrawFoldMarker method, 286
Folding, 286

H
Hashtable

compared to ArrayList, 111
DefaultProperties class

and, 73
IAddInTreeNode interface and,

61
storing services in ArrayList

and Hashtable, 110
Help pad, 148

displaying Help file view
content, 151
HelpBrowserPane class, 151
XML file, 151

HelpBrowser class, 148
tree view, 149

navigating help file, 148
SharpDevelop Pads, 10, 140

HelpBrowser class
BeforeCollapse method, 150
BeforeExpand method, 150
DoubleClick method, 150
Help pad, 148
HelpBrowserClose

method, 150
LoadHelpFile method, 149
ParseTree method, 149
tree view, 149

HelpBrowserClose method
HelpBrowser class, 150

HelpBrowserPane class
displaying Help file view

content, 151
extends BrowserPane

class, 151

HidePad method
IWorkbenchLayout

interface, 154
high performance code

compared to readable
code, 43

HighlightColor class
implementing syntax

highlighting, 233
highlighting syntax

see syntax highlighting.
HighlightingDefinitionParser

class
implementing syntax

highlighting, 228
Parse method, 228, 229
ReportErrors method, 230
ValidationHandler

method, 230
HighlightingManager class

constructors, 227
CreateDefaultHighlightingStrat

egy method, 227
implementing syntax

highlighting, 226
LoadDefinitions method, 227
validation of syntax definition

file, 226
hinting

rendering text on screen, 281
history of SharpDevelop, 23

AddIn tree, 26
early stages, 23
editor design, 24
internationalization, 25
parser, 26
redesigning SharpDevelop, 26
syntax highlighting, 25

HTML View, 142
implements IViewContent

interface, 142
SHDocVw control, 142

wrapping SHDocVw ActiveX
control to view, 146

I
IAddInTree interface, 56

AddIns property, 57
CodonFactory property, 57
ConditionFactory property, 57
GetTreeNode method, 57, 60
InsertAddIn method, 57
RemoveAddIn method, 57

IAddInTreeNode interface, 60
BuildChildItem method, 61
BuildChildItems method, 61
ChildNodes property, 61
Codon property, 61
Hashtable and, 61
implemented by

DefaultAddInTreeNode
class, 61

ildasm.exe tool

509

IAmbience interface
Ambience Service, 122
Convert method, 123
formatting options for

ambiences, 122
implemented by

AmbienceReflection
Decorator class, 122

ICaret interface
caret management, 206
CaretMode property, 207
Visible property, 207

IClass interface
parser, 311

ICodon interface
AddIn property, 59
AddIn tree, 58
BuildItem method, 59
Class property, 59
ID property, 59
implemented by

AbstractCodon class, 59
InsertAfter property, 59, 69
InsertBefore property, 59, 69
Name property, 59

ICommand interface
codons, 82
commands, 83
extended by IMenuCommand

interface, 85
Owner property, 83
Run method, 83

ICompletionDataProvider
interface
code completion, 340

IComponent interface
Components in .NET, 416
inherits from IDisposable

interface, 416
Site property, 417
System.ComponentModel

namespace, 416
IComponentChangeService

interface
implemented by

ComponentChangeService
class, 431

System.ComponentModel.Des
ign namespace, 431

IconCodon class, 94
AddIn tree, 94

ICondition interface
Action method, 65
AddIn tree, 65
IsValid method, 65

IContainer interface
implemented by

DesignComponentContainer
class, 424

ID property
ICodon interface, 59

IDEOptionPanel class
internationalization, 172
ListView control, 172

IDesigner interface
.NET designers, 419
Component property, 420

DoDefaultAction method, 420
inherits from IDisposable

interface, 420
IRootDesigner interface

inherits from, 421
System.ComponentModel.

Design namespace, 419
Verbs property, 420

IDesignerFilter interface
System.ComponentModel.

Design namespace, 460
IDesignerHost interface

CreateComponent
method, 474

GetType method, 473
IDesignerOptionService

interface
GetOptionValue method, 456
implementing Designer Option

service, 455
SetOptionValue method, 456
System.ComponentModel.

Design namespace, 455
IDesignerSerializationService

interface
implementing Selection

service, 454
System.ComponentModel.

Design namespace, 454
IDialogPanel interface

dialog panels, 95
extended by IWizardPanel

interface, 95
ReceiveDialogMessage

method, 95
IDictionaryService interface

GetKey method, 457
GetValue method, 457
implementing Dictionary

service, 457
SetValue method, 457
System.ComponentModel.

Design namespace, 457
IDisposable interface

Dispose method, 417
IComponent interface inherits

from, 416
IDesigner interface inherits

from, 420
IRootDesigner interface

inherits from, 421
IViewContent interface

inherits from, 138
Idle event

Application class, 83
IDocumentAggregator interface

creating DocumentAggregator
instance, 215

document management,
SharpDevelop, 212

implementing syntax
highlighting, 231

IDocumentIterator interface,
245
Current property, 245
CurrentFileName

property, 245

implemented by
WholeProjectDocument
iterator, 245, 246

MoveBackward method, 246
MoveForward method, 246
Reset method, 246

IEnumerable interface
handling class

inheritance, 317
implemented by

ClassInheritanceEnumerator
class, 317

IEnumerator interface
handling class

inheritance, 317
implemented by

ClassInheritanceEnumerator
class, 317

IEventBindingService interface
System.ComponentModel.Des

ign namespace, 462
IExtenderProvider interface

System.ComponentModel.
Design namespace, 462

IFileService interface
File Service, 125
FileRemoved event, 126
FileRenamed event, 126
GetOpenFile method, 125
NewFile method, 125
OpenFile method, 125
RecentOpen class, 125
RemoveFile method, 125
RenameFile method, 125

IFind interface
CurrentDocumentInformation

property, 237
DocumentIterator

property, 237
FindNext method, 237
implemented by DefaultFind

class, 249
Replace method, 237
search and replace, 236
SearchStrategy property, 237
TextIteratorBuilder

property, 237
using in

SearchReplaceManager
class, 238

ignorecase attribute
<RuleSet> element, 222

IgnoreCase property
SearchOptions class, 249

IHighLightingStrategy interface
implemented by

DefaultHighLightingStrategy
class, 231

MarkTokens method,
226, 231

IL Dissassembler tool
see ildasm.exe tool.

ildasm.exe tool
ReflectionILDasmView

class, 402
using with Assembly

scout, 402

ILineManager interface

510

ILineManager interface
Line Manager, 199

ImageList class
code completion, 341
System.Windows.Forms

namespace, 341
ImageList property

FileUtilityService class, 113
IMenuCommand interface, 85

codons, 85
extends ICommand

interface, 85
implemented by

AbstractMenuCommand
class, 85

IsChecked property, 85
IsEnabled property, 85

IMenuCommandService
interface, 442
AddCommand method, 443
AddVerb method, 443
FindCommand method, 444
GlobalInvoke method, 444
RemoveCommand

method, 443
RemoveVerb method, 443
ShowContextMenu

method, 444
System.ComponentModel.

Design namespace, 442
IMessageFilter interface

implementing key event
handler, 447

PreFilterMessage
method, 447

System.Windows.Forms
namespace, 447

INameCreationService interface
CreateName method, 433
implemented by

NameCreationService
class, 432

IsValidName method, 433
System.ComponentModel.

Design.Serialization
namespace, 424

ValidateName method, 433
IndexerInsightDataProvider

class
compared to

MethodInsightDataProvider
class, 362

method insight, 361
InformReplace method

ForwardTextIterator
iterator, 245

ITextIterator interface, 242
initialization

designer host, Windows
Forms Designer, 416

Initialize method
.NET designers, 419
AddIn class, 66

InitializeComponents method
CSharpDesignerDisplayBinding

class, 489
CustomType class, 485

StrippedClass class, 486
InitializeDocumentIterator

method
SearchReplaceManager

class, 238
InitializeSearchStrategy

method
SearchReplaceManager

class, 238
InitializeService method

DefaultParserService
class, 321

IService interface, 108
InitializeServicesSubsystem

method
ServiceManager class, 110

Insert method
GapTextBufferStrategy

class, 195
String class, 192

InsertAddIn method
IAddInTree interface, 57

InsertAfter property
ICodon interface, 59, 69

InsertBefore property
ICodon interface, 59, 69

InsertChar method
compared to InsertString

method, 275
TextArea control, 274

insertion operations
arrays, 190
gap buffer, 193
linked lists, 192

InsertMode value
CaretMode enumeration, 207

InsertString method
compared to InsertChar

method, 275
TextArea control, 274

InsightWindow class
derives from Form class, 363
displaying method insight,

363, 364
method insight, 363
TextArea control, 365

interface appearance, 13
MDI interface, 13
SDI interface, 13

InternalFindNext method
BruteForceSearchStrategy

class, 256
WildcardSearchStrategy

class, 260
InternalState property

IOwnerState interface, 102
internationalization, 12, 169

accessing resources, 176
basic issues, 169
history of SharpDevelop, 25
IDEOptionPanel class, 172
language support in

SharpDevelop, 12, 171
LanguageDefinition.xml

file, 172
LanguageService class, 171
localization, 170

redrawing GUI, 173
Resource Service, 119
SelectCulturePanel

class, 174
StringParser Service, 119
TextAreaPainter class, 282
translation management, 180
UI Language panel, 171

Internet Explorer
SHDocVw control, 142

InvalidateLines method
TextArea control, 277

IOwnerState interface
implemented by OpenFileTab

class, 102
InternalState property, 102
using with

OwnerStateCondition
class, 102

IPadContent interface, 140
implemented by ClassScout

class, 371
IParseInformation interface

BestCompilationUnit
property, 132

DirtyCompilationUnit
property, 132

MostRecentCompilationUnit
property, 132

Parser Service, 132
ValidCompilationUnit

property, 132
IParser interface, 309

Parse method, 311
Resolve method, 311

IParserService interface, 318
AddReferenceToCompletionLo

okup method, 132
GetParseInformation

method, 132
GetParser method, 132
ParseFile method, 132
Parser Service, 131
Resolve method, 132

IProjectService interface
AddFileToProject method, 130
AddReferenceToProject

method, 130
CloseCombine method, 128
CompileCombine

method, 127
CompileProject method, 127
CurrentOpenCombine

property, 126
CurrentSelectedCombine

property, 126
CurrentSelectedProject

property, 126
events for projects and

combines, 131
GetOutputAssemblyName

method, 128
implemented by

DefaultProjectService
class, 128

MarkFileDirty method, 127
MarkProjectDirty method, 127

IToolboxService interface

511

IProjectService interface
(continued)
NeedsCompiling property, 127
OnEndBuild method, 127
OnStartBuild method, 127
OpenCombine method, 128
Project Service, 126
ReCompileAll method, 127
RecompileProject method, 127
RemoveFileFromProject

method, 130
RenameProject method, 130
RetrieveFileInformationForFile

method, 130
SaveCombine method, 128
SaveCombinePreferences

method, 128
IProperties interface

GetProperty method, 72
implemented by

DefaultProperties class, 72
implemented by

PropertyService class,
76, 119

inherits from IXmlConvertable
interface, 71

property persistence, 76
XML, 76

SharpDevelop property
management, 71

storing IProperties objects
into properties, 75
project options dialog, 75
text editor, 75

IRootDesigner interface, 420
GetView method, 421
inherits from IDesigner

interface, 421
inherits from IDisposable

interface, 421
SupportedTechnologies

property, 421
System.ComponentModel.

Design namespace, 420
IsBrowsable property

PropertyDescriptor class, 469
IsChecked property

IMenuCommand interface, 85
IsDelegate method

ReflectionClass class, 300
IsDirectory method

FileUtilityService class, 116
IsDirty property

IViewContent interface,
138, 147

ISearchResult interface
algorithms for search and

replace, 252
TransformReplacePattern

method, 253
ISearchStrategy interface

algorithms for search and
replace, 252

CompilePattern method, 252
implemented by

BruteForceSearchStrategy
class, 254

implemented by
WildcardSearchStrategy
class, 257

ISelection interface
implemented by

DefaultSelection class, 208
IsRectangularSelection

property, 208
selection management, 207

ISelectionService interface
GetComponentsSelected

method, 451
GetSelectedComponents

method, 451
implementing Selection

service, 451
PrimarySelection

property, 451
SelectionCount property, 451
SetSelectedComponents

method, 452
System.ComponentModel.

Design namespace, 451
IsEnabled property

IMenuCommand interface, 85
IService interface

implemented by
AbstractService class, 108

InitializeService method, 108
IsInitialized property, 108
SharpDevelop services, 108
UnloadService method, 108

IServiceContainer interface
AddService method, 418
implemented by

ServiceContainer
class, 419

inherits from IServiceProvider
interface, 418

RemoveService method, 418
System.ComponentModel.

Design namespace, 418
IServiceProvider interface

GetService method, 418
IServiceContainer interface

inherits from, 418
ISite interface inherits

from, 417
IsInitialized property

IService interface, 108
ISite interface

Component property, 417
Container property, 417
DesignMode property, 417
implemented by

ComponentSite class, 428
inherits from IServiceProvider

interface, 417
Name property, 417
System.ComponentModel

namespace, 417
IsKeyWord method

KeyWord class, 316
IsReadOnly property

IViewContent interface, 139
IsRectangularSelection property

ISelection interface, 208

IsSupported method
IToolboxService

interface, 440
IsToolboxItem method

IToolboxService
interface, 440

ISubmenuBuilder interface
codons, 91
implemented by

ViewMenuBuilder class, 91
menu item builders, 91

IsUntitled property
IViewContent interface, 138

IsValid method
CompareCondition class, 100
ICondition interface, 65

IsValidFileName method
FileUtilityService class, 115

IsValidName method
INameCreationService

interface, 433
IsViewOnly property

IViewContent interface,
139, 147

IsVisible method
IWorkbenchLayout

interface, 154
IsWholeWordAt method

BruteForceSearchStrategy
class, 254

italic attribute
 element, 223

iterators
AllOpenDocument, 242
ForwardTextIterator, 242
IDocumentIterator

interface, 245
ITextIterator interface, 242
search and replace, 242
WholeProjectDocument, 242

ITextBufferStrategy interface
text representation, 197

ITextIterator interface, 242
Current property, 242
GetCharRelative method, 242
implemented by

ForwardTextIterator, 243
InformReplace method, 242
MoveAhead method, 242
Position property, 242
Reset method, 242
TextBuffer property, 242

ITextModel interface
implemented by

DefaultTextModel
class, 211

text model, 210
IToolboxService interface, 438

AddCreator method, 439
CategoryNames property, 440
DeserializeToolboxItem

method, 439
GetSelectedToolboxItem

method, 439
implementing Toolbox

service, 438
IsSupported method, 440

IToolboxService interface (continued)

512

IToolboxService interface
(continued)
IsToolboxItem method, 440
Refresh method, 440
RemoveCreator method, 439
SelectedCategory

property, 440
SelectedToolboxItemUsed

method, 439
SerializeToolboxItem

method, 439
SetCursor method, 440
SetSelectedToolboxItem

method, 439
System.Drawing.Design

namespace, 438
ITypeDescriptorFilterService

interface
FilterAttributes method, 461
FilterEvents method, 461
FilterProperties method, 461
implementing Type Descriptor

Filter service, 460
System.ComponentModel.

Design namespace, 460
ITypeResolutionService interface

System.ComponentModel.Des
ign namespace, 462

IUIService interface
CanShowComponentEditor

method, 458
GetDialogOwnerWindow

method, 458
implementing UI service, 458
SetUIDirty method, 458
ShowComponentEditor

method, 458
ShowDialog method, 458
ShowError method, 459
ShowMessage method, 459
ShowToolWindow

method, 460
System.Windows.Forms.Design

namespace, 458
IViewContent interface, 137

ContentName property, 138
Control property, 138, 147
implemented by

AbstractViewContent
class, 139

implemented by
DisplayInformationWrapper
class, 386

implemented by HTML
View, 142

inherits from IDisposable
interface, 138

IsDirty property, 138, 147
IsReadOnly property, 139
IsUntitled property, 138
IsViewOnly property,

139, 147
LoadFile method, 139, 147
RedrawContent method, 139
SaveFile method, 139
UntitledName property, 138
WorkbenchWindow property,

138, 387

wrapping SHDocVw ActiveX
control to view, 146

IWizardPanel interface
extends IDialogPanel

interface, 95
wizard panels, 95

IWorkbenchLayout interface
ActivatePad method, 154
ActiveWorkbenchWindow

property, 154
Attach method, 154
Detach method, 154
HidePad method, 154
implemented by

MdiWorkbenchLayout
class, 155

IsVisible method, 154
Layout Manager, 153
RedrawAllComponents

method, 154
ShowPad method, 154
ShowView method, 154

IWorkbenchWindow interface,
136
implementing in Layout

Manager, 161
DefaultWorkspaceWindow

class, 161
implementing event

handlers, 165
IXmlConvertable interface

FromXmlElement method, 71
IProperties interface inherits

from, 71
SharpDevelop property

management, 71
ToXmlElement method, 71

J
joining conditions

Condition element, 98
condition operators, 97
Conditional element, 98
structure of conditions, 97
syntax, 97

K
kerning

example of using, 281
font rendering, 281

<Key> element
<KeyWords> element, 224
word attribute, 224

key events
implementing key event

handler, 447
KeyPressed method

TextArea control, 275
KeyWord class

GetKeyWord method, 316
identifying keywords, 315
IsKeyWord method, 316
lexer, 315

KeyWordEnum enumeration
identifying keywords, 315
lexer, 315

keywords
identifying keywords, 315

KeyWord class, 315
KeyWordEnum

enumeration, 315
<KeyWords> element

<Key> element, 224
name attribute, 224
syntax definition files, 224

KMP algorithm
algorithms for search and

replace, 256
compared to Brute Force

algorithm, 256
performance, 256

Knuth-Morris-Pratt algorithm
see KMP algorithm.

L
Language Binding Service

SharpDevelop services, 133
language conversion

Assembly scout, 394
Language Service

SharpDevelop services, 133
language support in

SharpDevelop, 12, 171
language theory

grammar, 292
Chomsky Grammars, 293

parser, 292
definitions, 292

LanguageBindingCodon class,
95

LanguageDefinition.xml file
internationalization, 172

LanguageService class
internationalization, 171

Layout Manager
floating Layout Manager, 161
implementing

IWorkbenchWindow
interface, 161
DefaultWorkspaceWindow

class, 161
introduction, 153
IWorkbenchLayout

interface, 153
MDI Layout Manager, 153
SDI Layout Manager, 153
user interface, SharpDevelop,

136, 153
Length property

LineSegment class, 202
lexer

compared to parser, 313
KeyWord class, 315
KeyWordEnum

enumeration, 315
Lexer class, 313
list of functionality, 313
producing tokens, 313

MenuItemCodon class

513

Lexer class, 313
DokuComments property, 314
identifying tokens, 314
MiscComments property, 314
TagComments property, 314

lexical analysis
see lexing.

lexing
compared to parsing, 295

Line Manager
DefaultLineManager

class, 204
document management,

SharpDevelop, 199
exception handling, 205
ILineManager interface, 199
LineManagerEventArgs

class, 205
LineSegment class, 200
LineSegmentCollection

class, 203
syntax highlighting, 200

line representation
document management,

SharpDevelop, 199
Line Manager, 199

line span method
composite sequence data

structures, 198
LineManagerEventArgs class

Line Manager, 205
LinesMoved property, 206
LineStart property, 206

LineSegment class
DelimiterLength property, 202
FoldLevel property, 202
Length property, 202
Line Manager, 200
ToString method, 202
TotalLength property, 202

LineSegmentCollection class
creating with Typed C#

Collection Wizard, 203
Line Manager, 203
reasons for using

collections, 203
LinesMoved property

LineManagerEventArgs
class, 206

LineStart property
LineManagerEventArgs

class, 206
linked lists

basic sequence data
structures, 192

deletion operations, 192
insertion operations, 192
memory requirements, 192
replacement operations, 192

ListView control
CompletionWindow

class, 353
IDEOptionPanel class, 172
SelectedIndexChanged

event, 355
System.Windows.Forms

namespace, 353

Load method
handling errors using

FileUtilityService class, 117
ResourceService class, 177

LoadAssemblyParseInformations
method
DefaultParserService

class, 323
LoadDefinitions method

HighlightingManager class, 227
LoadFile method

IViewContent interface,
139, 147

LoadHelpFile method
HelpBrowser class, 149

Loading method
DefaultDesignerHost class, 422

LoadLanguageResources
method
ResourceService class, 177

LoadProxyDataFile method
DefaultParserService

class, 321
localization

accessing resources, 176
customizing SharpDevelop, 170
redrawing GUI, 173
replaceable strings, 178
translation management, 181

description, 182
Unicode compliance, 182

M
Magic library

drawing menu items, 88
SdMenuCommand class, 88

Mark All button
search and replace, 16

MarkAll method
SearchReplaceManager

class, 240
Markers and Rulers panel

options dialog, SharpDevelop,
272

MarkFileDirty method
IProjectService interface, 127

<MarkPrevious> element
syntax definition files, 223

MarkProjectDirty method
IProjectService interface, 127

MarkTokens method
DefaultHighLightingStrategy

class, 231, 232
IHighLightingStrategy

interface, 226, 231
MarkTokensInLine method

DefaultHighLightingStrategy
class, 232

Match method
WildcardSearchStrategy

class, 259
MatchCaseInsensitive method

BruteForceSearchStrategy
class, 254

MatchCaseSensitive method
BruteForceSearchStrategy

class, 254
MDI interface, 13
MDI Layout Manager

implementing
IWorkbenchWindow
interface, 161
DefaultWorkspaceWindow

class, 161
MdiWorkbenchLayout

class, 155
user interface,

SharpDevelop, 153
MdiWorkbenchLayout class

ActiveWorkbenchWindow
property, 156

Attach method, 156
Detach method, 158
event handling, 160
implements

IWorkbenchLayout
interface, 155

MDI Layout Manager, 155
RedrawAllComponents

method, 159
ShowPad method, 158
ShowView method, 160

member nodes
node types, 405

MemberDescriptor class
System.ComponentModel

namespace, 431
memento pattern

design patterns for
SharpDevelop, 36

Menu Command service
commands, 443

executing commands, 442
executing standard

commands, 446
context menus, 442
IMenuCommandService

interface, 442
implementing key event

handler, 447
verbs, 443
Windows Forms Designer, 442

menu item builders, 91
AddIn tree, 91
ISubmenuBuilder interface, 91
ViewMenuBuilder class, 91

MenuCommands class
description, 446
queries about class name, 446
System.Windows.Forms.Design

namespace, 446
MenuEventHandler class, 90
MenuItemCodon class, 86

BuildItem method, 87
CodonNameAttribute custom

attribute, 86
extends AbstractCodon

class, 86
table of attributes, 86
XmlMemberAttribute custom

attribute, 86

menus

514

menus
AbstractMenuCommand

class, 85
creating menu items, 90
drawing using Magic

library, 88
SdMenuCommand class, 88

IMenuCommand interface, 85
MenuEventHandler class, 90
MenuItemCodon class, 86

MergeFormChanges method
CSharpDesignerDisplayBinding

class, 493
<META HTTP-EQUIV> element

Unicode compliance, 182
method insight, 15, 329, 357

compared to code
completion, 357

description, 357
displaying method insight,

363, 364
IndexerInsightDataProvider

class, 361
InsightWindow class, 363
MethodInsightDataProvider

class, 357
retrieving and storing

methods, 358
UML diagram, 350
updating methods, 358
using parser, 292

MethodInsightDataProvider
class
compared to

IndexerInsightDataProvider
class, 362

method insight, 357
methods

breaking down methods into
subfunctions, 42

MiscComments property
Lexer class, 314

model
TextArea control, 265

Model View Controller
see MVC model.

Monospaced Letters
font rendering, 281

MostRecentCompilationUnit
property
IParseInformation

interface, 132
Mouse management

Editor control, 285
TextAreaMouseHandler

class, 285
using virtual coordinates, 286

MoveAhead method
ForwardTextIterator

iterator, 244
ITextIterator interface, 242

MoveBackward method
IDocumentIterator

interface, 246
WholeProjectDocument

iterator, 247

MoveForward method
IDocumentIterator

interface, 246
WholeProjectDocument

iterator, 247
MoveNext method

ClassInheritanceEnumerator
class, 317

Multiple Document Interface
see MDI interface.

MVC model
advantages of using, 135
designing SharpDevelop, 28
TextArea control, 265
user interface,

SharpDevelop, 135

N
name attribute

<KeyWords> element, 224
 element, 223
<SyntaxDefinition>

element, 220
Name Creation service

NameCreationService
class, 432

Windows Forms
Designer, 432

Name property
AbstractClass class, 317
ICodon interface, 59
ISite interface, 417

NameCreationService class
implements

INameCreationService
interface, 432

Name Creation service, 432
NamedFileOperationDelegate

delegate
File Utility Service, 117

NamespaceExists method
DefaultParserService

class, 325
Navigate method

implementing SHDocVw
ActiveX control as user
control, 145

navigation of projects
Class Scout, 18
Project Scout, 18
SharpDevelop project

management, 17
NDA

advantages, 297
automaton for parser, 296

NeedsCompiling property
IProjectService interface, 127

Network connection lost error
file operation errors, 116

new class wizard, 14
NewFile method

IFileService interface, 125
No Modifier key behavior

implementing Selection
service, 451

node types
folder nodes, 405
general nodes, 405
member nodes, 405
ReflectionNode class, 406
ReflectionNodeType

enumeration, 405
type nodes, 405

nodes
AddIn tree, 52

non-deterministic automaton
see NDA.

Not accessible error
file operation errors, 116

Nothing action
Condition element, 64

O
ObservedLoad method

FileUtilityService class, 116
ObservedSave method

FileUtilityService class,
116, 117

offline mode
translation management,

180, 181
compiling to resource

files, 182
OnClosed method

DefaultWorkspaceWindow
class, 165

OnClosing method
DefaultWorkspaceWindow

class, 163
OnCombineClose method

ClassScout class, 376
OnCombineOpen method

ClassScout class, 376
OnComponentRename method

DesignComponentContainer
class, 427

OnDeactivate method
DefaultWorkspaceWindow

class, 165
OnEndBuild method

IProjectService interface, 127
OnGotFocus method

DefaultWorkspaceWindow
class, 165

OnIconChanged method
ClassScout class, 377
DefaultWorkbench class, 175

online mode
translation management,

180, 181
OnMouseClicked method

TextAreaMouseHandler
class, 285

OnMouseDown method
ClassScout class, 376

OnMouseUp method
ClassScout class, 377

OnPropertyChanged method
DefaultProperties class,

75, 174

Process class

515

OnStartBuild method
IProjectService interface, 127

OnTitleChanged method
ClassScout class, 377
DefaultWorkbench class, 175

Open method
Assemble utility, 184

OpenCombine method
DefaultParserService

class, 323
IProjectService interface, 128

OpenFile method
IFileService interface, 125

OpenFileTab class
ClickedWindowIsForm

flag, 103
context menu definitions, 103
FileDirty flag, 103
FileUntitled flag, 103
implements IOwnerState

interface, 102
OpenTextArea method

SearchReplaceManager
class, 241

openwindow attribute
WindowOpenCondition

class, 100
options dialog, SharpDevelop

Behavior panel, 272
changing options, 272
General panel, 272
Markers and Rulers

panel, 272
OptionsChanged method

TextArea control, 273
Output pad

SharpDevelop Pads, 11, 140
OverwriteMode value

CaretMode enumeration, 207
Owner property

ICommand interface, 83
OwnerStateCondition class,

102
using with IOwnerState

interface, 102

P
Pads, SharpDevelop

Class Scout, 9, 139, 369
compared to Views, 140
File Scout, 9, 140
Help pad, 10, 140, 148
IPadContent interface, 140
Output pad, 11, 140
Project Scout, 9, 139
Properties pad, 11, 139
Task List pad, 11, 139
Tool Scout, 9, 140
user interface,

SharpDevelop, 139
using with Views, 141

PaintTextLine method
handling special cases, 283
TextAreaPainter class, 283

Panel control
DesignPanel class derives

from, 433
Panels, SharpDevelop, 9
Parse method

HighlightingDefinitionParser
class, 228, 229

IParser interface, 311
StringParserService class,

120, 179, 228
ParseCombine method

ClassScout class, 375
ParseFile method

DefaultParserService
class, 312

IParserService interface, 132
ParseProject method

ClassScout class, 375
parser, 291

abstract parser, 316
architecture, 298
C# parser, 309

recursive descent, 309
ClassCollection class, 326
compared to lexer, 313
compared to using syntax

highlighting, 292
DefaultParserService class,

312, 319
designing, 297
general parsers, 296
history of SharpDevelop, 26
IClass interface, 311
implementing, 298

abstraction, 298
implementing round-

tripping, 484
generating StrippedClass

class, 485
initializing parser, 321
introduction, 291
IParser interface, 309
IParserService interface, 318
language theory, 292

definitions, 292
grammar, 292
parsing, 295

persisting parse
information, 304
.NET Framework base

classes, 304
creating database using

wizard, 305
database structure, 304
fast creation of

database, 319
PersistantClass class, 305

reasons for using, 291
Class Scout, 292
code completion, 292
method insight, 292

reflection, 299
ReflectionClass class, 300
ReflectionMethod class, 302

specialized parsers, 296
starting parser, 323
technical requirements, 296

automaton, 296

control unit, 296
information flow, 297

tokens, 313
using with resolver, 330

Parser Service, 131
introduction, 131
IParseInformation

interface, 132
IParserService interface, 131
SharpDevelop services, 113

ParserUpdateThread method
DefaultParserService

class, 323
ParseTree method

HelpBrowser class, 149
parsing

bottom-up analysis, 296
breadth-first parsing, 296
compared to lexing, 295
depth-first parsing, 296
description, 295
language theory for

parser, 295
top-down analysis, 295

PassThrough value
ViewTechnology

enumeration, 421
path attribute

Extension element, 57, 111
Path class

compared to File Utility
Service, 113

System.IO namespace, 113
PersistantClass class

CompilationUnit property, 305
persisting parse

information, 305
returning data, 307
using proxy classes, 305
WriteTo method, 306
writing data to file, 306

piece table
advantages, 198
composite sequence data

structures, 198
PlaceGap method

GapTextBufferStrategy
class, 196

Pointer item
Toolbox component, 414

Populate method
ClassScout class, 375

pop-up menu
Class Scout, 378

Position property
ForwardTextIterator

iterator, 244
ITextIterator interface, 242

PreFilterMessage method
IMessageFilter interface, 447
implementing key event

handler, 448
PrimarySelection property

ISelectionService
interface, 451

Process class
StandardOutput property, 404

production rules

516

production rules, 294
eBNF, 294

project options dialog
storing IProperties objects

into properties, 75
Project Scout

navigation of projects, 18
SharpDevelop Pads, 9, 139

Project Service, 126
combines, 126
DefaultProjectService

class, 128
introduction, 126
IProjectService interface, 126
SharpDevelop services, 113

ProjectActiveCondition
class, 101

ProjectOpenCondition class, 102
projects

SharpDevelop project
management, 17

properties
selecting properties to be

saved to XML, 469
Properties element

property persistence, 77
Properties pad

SharpDevelop Pads, 11, 139
Property element

property persistence, 77
Property Grid component

Windows Forms Designer, 413
Property Service, 119

introduction, 119
PropertyService class, 119
SharpDevelop services, 112

PropertyDescriptor class
Getvalue method, 468
IsBrowsable property, 469
ShouldSerializeValue

method, 469
PropertyService class, 119

ConfigDirectory property, 119
implements IProperties

interface, 76, 119
Proportional Spacing

font rendering, 281
kerning, 281

protected class members
resolving members, 338

proxy classes
creating with

DefaultParserService
class, 319

reasons for using, 306
using with PersistantClass

class, 305
proxy pattern

design patterns for
SharpDevelop, 37

UML diagram, 38
PutBaseClassesOnStack

method
ClassInheritanceEnumerator

class, 317

R
readable code

compared to high
performance code, 43

ReadToEnd method
StreamReader class, 404

ReceiveDialogMessage method
IDialogPanel interface, 95
SelectCulturePanel

class, 174
RecentOpen class

IFileService interface, 125
ReCompileAll method

IProjectService interface, 127
RecompileProject method

IProjectService interface, 127
recursion

populating tree view using
recursion, 391

recursive descent
C# parser, 309

Redo method
CSharpDesignerDisplayBindin

g class, 488
RedrawAllComponents method

DefaultWorkbench class, 175
IWorkbenchLayout

interface, 154
MdiWorkbenchLayout

class, 159
RedrawContent method

DefaultWorkbench class, 175
IViewContent interface, 139

redrawing GUI,
internationalization, 173
event handling, 173

refactoring
assertions, 46
avoiding excessive design, 45
breaking down methods into

subfunctions, 42
definition, 41
importance of using, 46
making code readable, 43
rules for refactoring, 42
SharpDevelop, 41

redesigning
SharpDevelop, 42

using SharpDevelop to
develop itself, 48

solving root of problem, 47
reflection

parser, 299
ReflectionClass class, 300
ReflectionMethod class, 302
sorting conditions according

to expected frequency, 301,
303

XML comments, 302, 303
ReflectionClass class

CompilationUnit property, 300
IsDelegate method, 300
parser, 300
sorting conditions according

to expected frequency, 301
XML comments, 302

ReflectionILDasmView class
ildasm.exe tool, 402
implementing Assembly

scout, 402
RichTextBox control, 403
SelectNode method, 403
user controls, 402

ReflectionMethod class
GetParamList method, 303
parser, 302
sorting conditions according

to expected frequency, 303
XML comments, 303

ReflectionNode class
derives from TreeNode

class, 406
implementing Assembly

scout, 406
node types, 406
populating tree, 408
SetIcon method, 408

ReflectionNodeType
enumeration
implementing Assembly

scout, 405
ReflectionSourceView class

GetAttributes method, 396
GetTypeString method, 396
implementing Assembly

scout, 395
SelectNode method, 402
user controls, 395

ReflectionTree class
completing tree, 394
derives from TreeView

class, 390
GoToMember method, 392
GoToType method, 394
implementing Assembly

scout, 390
language conversion, 394
populating tree view using

recursion, 391
ReflectionTypeNode class

implementing Assembly
scout, 410

populating tree, 410
SetIcon method, 410
type nodes, 410

Refresh method
IToolboxService

interface, 440
regular expressions

displaying Help file view
content, 151
making files XML

compliant, 152
generating source code, 481
parsing replaceable

strings, 179
RelativeToAbsolutePath

method
FileUtilityService class, 115

Reload method
DefaultDesignerHost

class, 422

Schemas property

517

Remove method
DesignComponentContainer

class, 427
GapTextBufferStrategy

class, 195
String class, 192

RemoveAddIn method
IAddInTree interface, 57

RemoveCommand method
IMenuCommandService

interface, 443
RemoveCreator method

IToolboxService
interface, 439

RemoveFile method
IFileService interface, 125

RemoveFileFromProject method
IProjectService interface, 130

RemoveService method
IServiceContainer

interface, 418
RemoveVerb method

IMenuCommandService
interface, 443

RenameFile method
IFileService interface, 125

RenameProject method
IProjectService interface, 130

Reparse method
CSharpDesignerDisplayBindin

g class, 494
Replace dialog

search and replace, 16
Replace method

DefaultFind class, 250
GapTextBufferStrategy

class, 196
IFind interface, 237
SearchReplaceManager

class, 238
replaceable strings

localization, 178
parsing, 179

regular expressions, 179
ReplaceAll method

SearchReplaceManager
class, 240

replacement operations
arrays, 190
gap buffer, 196
linked lists, 192

ReportErrors method
HighlightingDefinitionParser

class, 230
Reset method

ClassInheritanceEnumerator
class, 318

DefaultFind class, 250
IDocumentIterator

interface, 246
ITextIterator interface, 242
WholeProjectDocument

iterator, 248
Resolve method

DefaultParserService
class, 323

dirty compilation, 311, 331

IParser interface, 311
IParserService interface, 132
resolver, 330, 331
static classes, 332

class members, 333
valid compilation, 311, 331

resolver, 329
description, 329
dirty compilation, 331
Resolve method, 330, 331
resolving class

members, 333
code completion, 334
dynamic look ups, 335
static look ups, 336

using with parser, 330
valid compilation, 331

Resource Service, 119
internationalization, 119
introduction, 119
ResourceService class, 119
SharpDevelop services, 112

ResourceNotFoundException
class
resources, accessing for

internationalization, 178
resources, accessing for

internationalization, 176
Al.exe tool, 176
ResourceNotFoundException

class, 178
ResourceService class, 176
StringParserService

class, 178
translation management, 182

ResourceService class, 119
ChangeProperty method, 176
extends AbstractService

class, 119
GetBitmap method, 119
GetIcon method, 119
GetString method, 119, 177
Load method, 177
LoadLanguageResources

method, 177
resources, accessing for

internationalization, 176
ResourceWriter class

AddResource method, 184
compiling to resource

files, 183
System.Resources

namespace, 183
RetrieveFileInformationForFile

method
IProjectService interface, 130

RichTextBox control
ReflectionILDasmView

class, 403
Text property, 405

root designer, 420
IRootDesigner interface, 420

root of problem, solving
refactoring, 47

RootComponent property
DesignComponentContainer

class, 425

round-tripping, 484
CodeDOMGenerator

class, 485
generating source code, 486

CSharpDesignerDisplayBinding
class
compiling source code, 489
generating source code, 493
generating XML form, 489
loading generated XML, 490

definition, 484
flow diagram, 485
implementing using csc.exe

utility, 484
compiling StrippedClass

class, 486
implementing using

parser, 484
generating StrippedClass

class, 485
problems with, 486, 496
source code, 485

CustomType class, 485
XmlFormGenerator class, 485

generating XML form, 486
rule attribute

 element, 223
rulers

Editor control user
interface, 264

<RuleSet> element
ignorecase attribute, 222
syntax definition files, 222

<RuleSets> element
syntax definition files, 222

Run method
ICommand interface, 83
StartWorkbenchCommand

class, 84
RunHighlighter method

DefaultLineManager
class, 231

Runtime element
AddIn class, 67
definition file for add-in, 57

S
sample code

downloading, 3
Save method

handling errors using
FileUtilityService class, 117

SaveCombine method
IProjectService interface, 128

SaveCombinePreferences
method
DefaultProjectService

class, 128
IProjectService interface, 128

SaveFile method
CSharpDesignerDisplayBinding

class, 495
IViewContent interface, 139

Schemas property
XmlValidatingReader

class, 229

SDI interface

518

SDI interface, 13
SDI Layout Manager

user interface,
SharpDevelop, 153

SdMenuCommand class
drawing menu items using

Magic library, 88
search and replace, 16, 235

algorithms for search and
replace, 252

architecture, 235
DefaultFind class, 249
DocumentIteratorType

enumeration, 236
Find dialog, 16
ForwardTextIteratorBuilder

class, 237
IFind interface, 236
implementing, 249
iterators, 242
Mark All button, 16
options for search, 249
Replace dialog, 16
SearchOptions class, 249
SearchReplaceManager

class, 235
SearchReplaceUtilities

class, 248
SearchStrategyType

enumeration, 236
wildcard search strategy, 257

SearchDirectory method
FileUtilityService class,

114, 228
SearchOptions class

IgnoreCase property, 249
search and replace, 249

SearchOptions property
SearchReplaceManager

class, 237
SearchReplaceManager class

FindNext method, 238, 239
InitializeDocumentIterator

method, 238
InitializeSearchStrategy

method, 238
MarkAll method, 240
OpenTextArea method, 241
Replace method, 238
ReplaceAll method, 240
search and replace, 235
SearchOptions property, 237
using IFind interface, 238

SearchReplaceUtilities class
algorithms for search and

replace, 253
CreateDocumentIterator

method, 248
CreateSearchStrategy

method, 253
search and replace, 248

SearchStrategy property
DefaultFind class, 250
IFind interface, 237

SearchStrategyType
enumeration
search and replace, 236

SelectCulturePanel class
internationalization, 174
ReceiveDialogMessage

method, 174
SelectedCategory property

IToolboxService interface, 440
SelectedIndexChanged event

ListView control, 355
SelectedToolboxItemUsed

method
IToolboxService interface, 439

selection management
DefaultSelection class, 208
document management,

SharpDevelop, 206, 207
ISelection interface, 207
SelectionCollection class, 208

Selection service
IDesignerSerializationService

interface, 454
implementing, 450

Control pressed behavior, 451
No Modifier key behavior, 451
Shift pressed behavior, 451

ISelectionService interface, 451
Windows Forms Designer, 450

SelectionCollection class
creating with Typed C#

Collection Wizard, 208
selection management, 208

SelectionCount property
ISelectionService

interface, 451
SelectNode method

ReflectionILDasmView
class, 403

ReflectionSourceView
class, 402

SelectWindow method
DefaultWorkspaceWindow

class, 165
serialization service, Windows

Forms Designer
DesignerSerializationServices

class, 474
making components

persistent, 474
Serialize method

DesignerSerializationServices
class, 475

SerializeToolboxItem method
IToolboxService

interface, 439
ServiceContainer class

implements IServiceContainer
interface, 419

System.ComponentModel.
Design namespace, 419

ServiceCreatorCallback
delegate
System.ComponentModel.

Design namespace, 419
ServiceManager class

AddService method, 110
AddServices method, 110
GetService method, 110

InitializeServicesSubsystem
method, 110

SharpDevelop services, 109
storing services in ArrayList

and Hashtable, 110
UnloadAllServices

method, 110
services, SharpDevelop, 107

AbstractService class, 108
Ambience Service, 112, 121
ClassBrowserIcons Service,

112, 123
compared to static

classes, 108
Display Binding Service, 133
File Service, 113, 124
File Utility Service, 112, 113
implementing services, 107
inserting services in AddIn

tree, 111
codons, 111

IService interface, 108
Language Binding

Service, 133
Language Service, 133
Parser Service, 113, 131
Project Service, 113, 126
Property Service, 112, 119
reasons for using, 108
Resource Service, 112, 119
ServiceManager class, 109
Status Bar Service, 133
storing services in ArrayList

and Hashtable, 110
StringParser Service, 112, 119
Task Service, 133
Toolbar Service, 133

Session object
CodePage property, 182

SetAttributes method
CodeDOMGenerator

class, 479
XmlFormReader class, 471

SetCodeCompletionFileLocatio
n method
DefaultParserService
class, 320

SetCursor method
IToolboxService

interface, 440
SetIcon method

ReflectionNode class, 408
ReflectionTypeNode

class, 410
SetOptionValue method

IDesignerOptionService
interface, 456

SetProperty method
DefaultProperties class,

74, 174
SetSelectedComponents

method
ISelectionService

interface, 452
SetSelectedToolboxItem

method
IToolboxService

interface, 439

StartParserThread method

519

SetSelection method
TextArea control, 278

SetTitleEvent method
DefaultWorkspaceWindow

class, 162
SetUIDirty method

IUIService interface, 458
SetUpDesignerHost method

XmlFormReader class, 471
SetUpObject method

CodeDOMGenerator
class, 478

XmlFormReader class, 471
SetValue method

CodeDOMGenerator
class, 480

handling special cases, 481
IDictionaryService

interface, 457
XmlFormReader class, 472

SetXmlElement method
DefaultProperties class, 77

SharpDevelop
architecture, 23
building SharpDevelop

applications, 81
codons, 82

code generation, 465
customizing, 12

coding customization, 14
interface appearance, 13
internationalization, 12, 169
localization, 170

design patterns, 30
designing, 27

component-
exchangeability, 29

MVC model, 28
xcopy deployment, 27
XML, 28

document management, 189
Editor control, 263
features, 7

Design view, 12
Editor view, 12
Panels and Views, 9

guidelines for coding, 39
history, 23

redesigning SharpDevelop, 26
implementing, 51

AddIn tree, 52
introduction, 7
iterators, 242
limitations, 12
navigating SharpDevelop

code, 369
Assembly scout, 383
Class Scout, 369

Pads, 9
parser, 291
project management, 17

combines, 17
navigation of projects, 17
projects, 17

property management, 70
DefaultProperties class, 72
IProperties interface, 71
IXmlConvertable interface, 71

reasons for developing, 8

refactoring, 41
using SharpDevelop to

develop itself, 48
resolver, 329
search and replace

functionality, 235
services, 107
software requirements, 8
supported base classes, 492

Form class, 492
UserControl class, 492

syntax highlighting, 219
tabbed display bindings, 486
tracking and testing, 39
user interface, 135
Windows Forms Designer,

18, 437
creating Windows Forms, 18

SharpPad editor control, 287
building standalone

editor, 287
disposing of control, 288
importing namespaces, 287
initializing control, 288
main entry point, 288

SHDocVw ActiveX control
HTML View, 142
implementing as user

control, 142
constructor for control, 143
Dispose method, 146
event handlers, 144
Navigate method, 145

Internet Explorer, 142
wrapping to managed

component, 142
aximp utility, 142

wrapping to view, 146
Shift pressed behavior

implementing Selection
service, 451

ShouldSerializeValue method
PropertyDescriptor class, 469

ShowAccessibility value
ConversionFlags

enumeration, 123
ShowComponentEditor method

IUIService interface, 458
ShowContextMenu method

IMenuCommandService
interface, 444

ShowDialog method
IUIService interface, 458

ShowEOLMarkers property
TextArea control, 270

ShowError method
IUIService interface, 459

ShowInheritanceList value
ConversionFlags

enumeration, 123
ShowMessage method

IUIService interface, 459
ShowModifiers value

ConversionFlags
enumeration, 123

ShowPad method
IWorkbenchLayout

interface, 154

MdiWorkbenchLayout
class, 158

ShowParameterNames value
ConversionFlags

enumeration, 123
ShowSpaces property

TextArea control, 270
ShowTabs property

TextArea control, 270
ShowTipOfTheDay method

StartWorkbenchCommand
class, 83

ShowToolWindow method
IUIService interface, 460

ShowView method
IWorkbenchLayout

interface, 154
MdiWorkbenchLayout

class, 160
Single Document Interface

see SDI interface.
singleton pattern

AddIn tree, 52
design patterns for

SharpDevelop, 31
Site property

IComponent interface, 417
Size structure

limitations, 456
System.Drawing

namespace, 456
Width property, 456

 element
<Begin> element, 223
bold attribute, 223
color attribute, 223
<End> element, 223
italic attribute, 223
name attribute, 223
rule attribute, 223
stopateol attribute, 223
syntax definition files, 223

specialized parsers
compared to general

parser, 296
standalone editor

building standalone editor, 269
SharpPad editor control, 287

standard commands
executing standard

commands, 446
StandardCommands class

description, 445
System.ComponentModel.

Design namespace, 445
StandardOutput property

Process class, 404
StandardToolWindows class

System.ComponentModel.
Design namespace, 460

StartCombineparse method
ClassScout class, 374

StartParse method
ClassScout class, 374

StartParserThread method
DefaultParserService

class, 323

StartPopulating method

520

StartPopulating method
ClassScout class, 374

StartWorkbenchCommand
class
Run method, 84
ShowTipOfTheDay method, 83

static classes
compared to services, 108
resolving using Resolve

method, 332
class members, 333
protected members, 338

static look ups
resolving class members, 336

Status Bar Service
SharpDevelop services, 133

stopateol attribute
 element, 223

strategy pattern
design patterns for

SharpDevelop, 35
UML diagram, 36

Stream object
Unicode compliance, 182

StreamReader class
ReadToEnd method, 404

String class
Format method, 120
Insert method, 192
Remove method, 192

StringBuilder class
Assemble utility, 185

StringFormat class
GenericTypographic

property, 281
System.Drawing

namespace, 281
StringParser Service, 119

internationalization, 119
introduction, 119
SharpDevelop services, 112
StringParserService

class, 120
tag handling, 120

StringParserService class, 120
extends AbstractService

class, 120
Parse method, 120,

179, 228
resources, accessing for

internationalization, 178
tag handling, 120

strings and arrays
see arrays.

StringTextBufferStrategy class
implementing arrays, 190
using with

DocumentAggregatorFactory
class, 215

StrippedClass class
compiling for round-tripping

using csc.exe, 486
generating for round-tripping

using parser, 485
InitializeComponents

method, 486

sub-items
defining sub-items, 82

SupportedTechnologies
property
IRootDesigner interface, 421

syntax definition files
complete listing of file, 224
<Delimiters> element, 222
<Digits> element, 222
<Environment> element, 221

list of sub elements, 222
setting editor view

appearance, 222
<KeyWords> element, 224
<MarkPrevious> element, 223
<RuleSet> element, 222
<RuleSets> element, 222
 element, 223
structure of XML files, 220
syntax highlighting, 220
<SyntaxDefinition>

element, 220
validation of syntax definition

file, 226
syntax highlighting, 14, 219

compared to using
parser, 292

history of SharpDevelop, 25
implementing syntax

highlighting, 226
flow diagram, 226
HighlightColor class, 233
HighlightingDefinitionParser

class, 228
HighlightingManager class, 226
IDocumentAggregator

interface, 231
sequence of highlighting

events, 231
validation of syntax definition

file, 226
Line Manager, 200
XML, 220

syntax definition files, 220
<SyntaxDefinition> element

extensions attribute, 220, 221
name attribute, 220
syntax definition files, 220

System.ComponentModel
namespace
IComponent interface, 416
ISite interface, 417
MemberDescriptor class, 431
ToolboxItemFilterAttribute

class, 441
TypeDescriptor class,

420, 468
System.ComponentModel.

Design namespace
CommandID class, 444
DesignerAttribute class, 420
DesignerTransaction class, 430
DesignerVerb class, 420
DesignerVerbCollection class,

420, 443
IComponentChangeService

interface, 431
IDesigner interface, 419
IDesignerFilter interface, 460

IDesignerOptionService
interface, 455

IDesignerSerializationService
interface, 454

IDictionaryService
interface, 457

IEventBindingService
interface, 462

IExtenderProvider
interface, 462

IMenuCommandService
interface, 442

IRootDesigner interface, 420
ISelectionService

interface, 451
IServiceContainer

interface, 418
ITypeDescriptorFilterService

interface, 460
ITypeResolutionService

interface, 462
ServiceContainer class, 419
ServiceCreatorCallback

delegate, 419
StandardCommands

class, 445
StandardToolWindows

class, 460
ViewTechnology

enumeration, 421
System.ComponentModel.
Design.Serialization namespace

INameCreationService
interface, 424

System.Diagnostics namespace
Debug class, 46

System.Drawing namespace
Folding, 287
Size structure, 456
StringFormat class, 281

System.Drawing.Design
namespace
IToolboxService

interface, 438
ToolBoxItem class, 438
ToolBoxItemCreatorCallback

delegate, 440
System.IO namespace

Path class, 113
System.Resources namespace

ResourceWriter class, 183
System.Windows.Forms

namespace
Application class, 447
Form class, 351
ImageList class, 341
IMessageFilter interface, 447
ListView control, 353

System.Windows.Forms.Design
namespace
IUIService interface, 458
MenuCommands class, 446

System.Xml namespace
XmlTextReader class, 229
XmlValidatingReader

class, 220

translation management

521

T
tabbed display bindings,

SharpDevelop
CSharpDesignerDisplayBinding

class, 486
TabIndexChanged method

CSharpDesignerDisplayBinding
class, 495

tag handling
StringParserService

class, 120
TagComments property

Lexer class, 314
Task List pad

SharpDevelop Pads, 11, 139
Task Service

SharpDevelop services, 133
tbuilder utility

Assemble method, 183
translation management, 181

TemplateCompletionDataProvid
er class
code completion, 346

TestFileExists method
FileUtilityService class, 115

text editor
storing IProperties objects

into properties, 75
text model

co-ordinate systems, 210
DefaultTextModel class, 211
document management,

SharpDevelop, 210
ITextModel interface, 210

Text property
RichTextBox control, 405

text representation
basic sequence data

structures, 190
arrays, 190
gap buffer, 192
linked lists, 192

composite sequence data
structures, 190, 198
fixed size buffers, 198
line span method, 198
piece table, 198

document management,
SharpDevelop, 190

ITextBufferStrategy
interface, 197

TextArea control
BeginUpdate method,

239, 277
building standalone

editor, 269
CalculateGutterWidth

method, 271
ClearSelection method, 278
design principles, 265
Editor control user interface,

264, 265
EndUpdate method, 239, 277
event handling, 272

changing options, 272
ExecuteDialogKey

method, 276
file handling, 267
GenerateDefaultActions

method, 268
GetSelectedText method, 279
imported namespaces, 266
initializing control, 267
InsertChar method, 274
InsertString method, 274
InsightWindow class, 365
introduction, 265
InvalidateLines method, 277
KeyPressed method, 275
MVC model, 265
OptionsChanged method, 273
SetSelection method, 278
ShowEOLMarkers

property, 270
ShowSpaces property, 270
ShowTabs property, 270
TextAreaPainter property, 268
TextContent property, 268
UpdateLine method, 277
UpdateLines method, 277
user controls, 266

TextAreaControl property
CSharpDesignerDisplayBinding

class, 487
TextAreaIsDirty method

CSharpDesignerDisplayBinding
class, 491

TextAreaMouseHandler class
Mouse management, 285
OnMouseClicked

method, 285
TextAreaPainter class

Editor control, 279
handling limitations, 280
internationalization, 282
PaintTextLine method, 283

handling special cases, 283
rendering text on screen, 279

focus changes, 282
font rendering, 281
hinting, 281

using virtual coordinates, 281
TextAreaPainter property

TextArea control, 268
TextBuffer property

ForwardTextIterator
iterator, 243

ITextIterator interface, 242
TextContent property

TextArea control, 268
TextIterator property

DefaultFind class, 249
TextIteratorBuilder property

DefaultFind class, 249
IFind interface, 237

Title property
FileScout class, 175

tokens
identifying tokens, 314
parser, 313
produced by lexer, 313

Tool Scout
SharpDevelop Pads, 9, 140

Toolbar Service
SharpDevelop services, 133

ToolbarItemCodon class, 96
Toolbox component

Pointer item, 414
Windows Forms Designer,

413
Toolbox service

implementing, 438
IToolboxService interface,

438
ToolBoxItem class, 438

filling toolbox with Toolbox
items, 441

Windows Forms
Designer, 438

ToolBoxItem class
filling toolbox with Toolbox

items, 441
System.Drawing.Design

namespace, 438
ToolBoxItemCreatorCallback

delegate
System.Drawing.Design

namespace, 440
ToolboxItemFilterAttribute

class
FilterString property, 441
System.ComponentModel

namespace, 441
top-down analysis

parsing, 295
ToString method

DefaultCaret class, 207
DefaultSelection class, 209
generating source code, 481
generating XML, 469
LineSegment class, 202

TotalLength property
LineSegment class, 202

ToXmlElement method
DefaultProperties class, 78
IXmlConvertable interface, 71

tracking and testing,
SharpDevelop, 39
bug tracker, 39
unit tests, 40

TrackPropertyChanges method
WorkbenchSingleton

class, 174
transactions

ComponentSite class, 428
designer host, Windows

Forms Designer, 416
TransformReplacePattern

method
ISearchResult interface, 253

translation management
architecture of

application, 181
compiling to resource

files, 182
Assemble utility, 184
database, 184
ResourceWriter class, 183
XML, 182

internationalization, 180

translation management (continued)

522

translation management
(continued)
localization, 181

description, 182
Unicode compliance, 182

offline mode, 180, 181
online mode, 180, 181
tbuilder utility, 181
XML, 181

compiling to resource
files, 182

tree view
see also AddIn tree.
Assembly scout, 384

populating tree view using
recursion, 391

Help pad, 149
TreeNode class

AbstractClassScoutNode
class derives from, 382

ReflectionNode class derives
from, 406

TreeView class
ClassScout class derives

from, 371
ReflectionTree class derives

from, 390
TreeViewOptions class

AcceptEvent method, 174
Type 2 grammars

see CF grammars.
Type class

GetType method, 424
Type Descriptor Filter service

ITypeDescriptorFilterService
interface, 460

Windows Forms
Designer, 460

type nodes
node types, 405
ReflectionTypeNode

class, 410
Typed C# Collection Wizard

creating ClassCollection
class, 326

creating
LineSegmentCollection
class, 203

creating SelectionCollection
class, 208

TypeDescriptor class
CreateDesigner method, 420
GetProperties method, 468
System.ComponentModel

namespace, 420, 468
types of nodes

see node types.

U
UI Language panel

internationalization, 171
UI service

IUIService interface, 458
Windows Forms

Designer, 457

UML diagram
Class Scout, 370
code completion, 350
decorator pattern, 34
factory pattern, 32
method insight, 350
proxy pattern, 38
strategy pattern, 36

Undo method
CSharpDesignerDisplayBinding

class, 488
Unicode compliance

@CODEPAGE directive, 182
FileSystemObject object, 182
<META HTTP-EQUIV>

element, 182
Stream object, 182
translation management, 182
xcopy deployment, 182

unit tests
advantages of using, 40
difficulties with, 40
SharpDevelop tracking and

testing, 40
UnloadAllServices method

ServiceManager class, 110
UnloadService method

IService interface, 108
UntitledName property

IViewContent interface, 138
UpdateLine method

TextArea control, 277
UpdateLines method

TextArea control, 277
UpdateMenu method

DefaultWorkbench class, 90
UpdateParseInformation

method
ClassScout class, 372

UseFullyQualifiedNames value
ConversionFlags

enumeration, 123
user controls

implementing SHDocVw
ActiveX control, 142
constructor for control, 143
Dispose method, 146
event handlers, 144
Navigate method, 145

ReflectionILDasmView
class, 402

ReflectionSourceView
class, 395

TextArea control, 266
user interface, SharpDevelop,

135
future prospects, 166
Layout Manager, 136, 153

MDI Layout Manager, 153
SDI Layout Manager, 153

MVC model, 135
Pads, 139
Views, 137

IViewContent interface, 137
Workbench, 136

UserControl class
supported base classes, 492

V
valid compilation

resolving using Resolve
method, 311, 331

ValidateName method
INameCreationService

interface, 433
ValidationEventHandler event

XmlValidatingReader class,
229, 230

ValidationHandler method
HighlightingDefinitionParser

class, 230
ValidationType property

XmlValidatingReader
class, 229

ValidCompilationUnit property
IParseInformation

interface, 132
VB.NET

generating source code, 475
verbs

compared to commands, 443
DesignerVerbCollection

class, 443
Menu Command service, 443

Verbs property
IDesigner interface, 420

view
TextArea control, 265

View menu
AddIn tree, 93
creating using

ViewMenuBuilder class, 91
ViewMenuBuilder class

BuildSubmenu method, 92
creating View menu, 91
implements ISubmenuBuilder

interface, 91
menu item builders, 91

Views, SharpDevelop, 9
Assembly scout, 383
compared to Pads, 140
HTML View, 142
IViewContent interface, 137
user interface, 137
using with Pads, 141

ViewTechnology enumeration
PassThrough value, 421
System.ComponentModel.Des

ign namespace, 421
WindowsForms value, 421

virtual coordinates
using in Mouse

management, 286
using in TextAreaPainter

class, 281
Visible property

ICaret interface, 207
VolumeLabel method

FileUtilityService class, 114

XmlValidatingReader class

523

W
WholeProjectDocument

iterator, 242
AddFiles method, 247
compared to

ForwardTextIterator iterator,
245

Current property, 246
CurrentFileName property, 246
implements IDocumentIterator

interface, 245, 246
MoveBackward method, 247
MoveForward method, 247
Reset method, 248

Width property
Size structure, 456

wildcard search strategy
automaton implementation, 257
CommandType

enumeration, 257
search and replace, 257
WildcardSearchStrategy

class, 257
WildcardSearchStrategy class

CompilePattern method, 259
implements ISearchStrategy

interface, 257
InternalFindNext method, 260
Match method, 259
wildcard search strategy, 257

WindowActiveCondition
class, 100
activewindow attribute, 100

WindowOpenCondition class, 100
openwindow attribute, 100

Windows Forms Designer, 413,
437
code generation, 465
components

Designer component,
413, 433

Property Grid component, 413
Toolbox component, 413

creating Windows Forms, 18
adding controls, 19
formatting controls, 20

description, 415
designer host, 416
designer services, 415,

431, 437
Component Change service, 431
Designer Option service, 455
Dictionary service, 457
Menu Command service, 442
Name Creation service, 432
Selection service, 450
Toolbox service, 438
Type Descriptor Filter

service, 460
UI service, 457

generating source code, 475
CodeDOM API, 476
CodeDOMGenerator class, 476

generating XML, 467
accessing tray

components, 470
selecting properties to be

saved to XML, 469
XmlFormGenerator class, 467

implementing, 414, 437
problems with, 414
using .NET built-in

designer, 415
introduction, 413
loading XML, 470

problems with, 470
XmlFormReader class, 470

persisting XML form, 466
<Components> element, 467
<Controls> element, 467

round-tripping, 484
CSharpDesignerDisplayBinding

class, 486
serialization service, 474

DesignerSerializationServices
class, 474

supported base classes, 492
Form class, 492
UserControl class, 492

unimplemented services, 462
WindowsForms value

ViewTechnology
enumeration, 421

WINDOWSTATE element
property persistence, 77

wizard panels
DialogPanelCodon class, 95
IWizardPanel interface, 95

word attribute
<Key> element, 224

Workbench
IWorkbenchWindow

interface, 136
requirements for Workbench

window, 136
user interface,

SharpDevelop, 136
WorkbenchSingleton class

inherits from
DefaultWorkbench
class, 175

TrackPropertyChanges
method, 174

WorkbenchWindow property
IViewContent interface,

138, 387
Write Protected error

file operation errors, 116
WriteTo method

PersistantClass class, 306

X
xcopy deployment

designing SharpDevelop, 27
Unicode compliance, 182

XML
commenting code, 42
designing SharpDevelop, 28
displaying Help file view

content, 151
making files XML

compliant, 152
regular expressions, 151

internationalization
LanguageDefinition.xml file,

172
translation management,

181, 182
persisting XML form, 466

<Components> element, 467
<Controls> element, 467

property persistence, 76
Properties element, 77
Property element, 77
WINDOWSTATE element, 77
XmlConvertableProperty

element, 77
selecting properties to be

saved to XML, 469
syntax highlighting, 220

syntax definition files, 220
validating and parsing

XML, 220
validation of syntax definition

file, 226
XmlValidatingReader class, 220

XML comments
reflection, 302, 303

XmlConvertableProperty
element
property persistence, 77

XMLDocument class
compiling to resource files, 184
CreateElement method, 468
DocumentElement property, 477

XmlElement class
Attributes property, 471,

473, 479
ChildNodes property, 478

XmlFormGenerator class
generating XML, 467
GetElementFor method,

468, 470
round-tripping, 485

generating XML form, 486
XmlFormReader class

CreateObject method,
471, 473

loading XML, 470
SetAttributes method, 471
SetUpDesignerHost

method, 471
SetUpObject method, 471
SetValue method, 472

XmlMemberAttribute custom
attribute
CompareCondition class, 100
MenuItemCodon class, 86

XmlTextReader class
System.Xml namespace, 229
using with XmlValidatingReader

class, 229
XmlValidatingReader class

Schemas property, 229
System.Xml namespace, 220
using with XmlTextReader

class, 229
validating and parsing XML, 220
ValidationEventHandler event,

229, 230
ValidationType property, 229

524

	Summary of Contents
	About the Authors
	Table of Contents
	Introduction
	Chapter 1 - Features at a Glance
	Chapter 2 - Designing the Architecture
	Chapter 3 - Implementing the Core
	Chapter 4 - Building the Application with Add-ins
	Chapter 5 - Providing Functionality with Workspace Services
	Chapter 6 - The User Interface
	Chapter 7 - Internationalization
	Chapter 8 - Document Management
	Chapter 9 - Syntax Highlighting
	Chapter 10 - Search and Replace
	Chapter 11 - Writing the Editor Control
	Chapter 12 - Writing the Parser
	Chapter 13 - Code Completion and Method Insight
	Chapter 14 - Navigating Code with the Class Scout and the Assembly Scout
	Chapter 15 - The Designer Infrastructure
	Chapter 16 - Implementing a Windows Forms Designer
	Chapter 17 - Code Generation
	Index

