Dissecting a C# Application

Inside SharpDevelop

Christian Holm
Mike Kriiger
Bernhard Spuida

Dissecting a C# Application

Inside SharpDevelop

© 2004 Apress

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical articles or reviews.

The authors and publisher have made every effort in the preparation of this book to ensure the
accuracy of the information. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, Apress, nor its dealers or
distributors, will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

First Printed February 2003.

Published by Apress L.P.
2560 Ninth Street, Suite 219,
Berkeley, CA 94710
ISBN 1-86100-817-1

Trademark Acknowledgments

We has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, we cannot guarantee the
accuracy of this information.

Credits

Authors Lead Technical Reviewer
Christian Holm Christoph Wille
Mike Kriiger
Bernhard Spuida Technical Reviewers

Natalia Bortniker

Commissioning Editor Jeroen Frijters

Dan Kent Gavin McKay
Markus Palme

Technical Editors David Schultz
Arun Nair Erick Sgarbi
Veena Nair Jon Shute

Gavin Smyth

Managing Editor Poul Staugaard
Louay Fatoohi Helmut Watson

Project Manager Production Coordinator
Charlotte Smith Neil Lote

Indexer Production Assistant
Andrew Criddle Paul Grove

Proofreader Cover

Chris Smith Natalie O' Donnell

What You Need to Use This Book

The following is the recommended system requirements for compiling and running SharpDevelop:

O Windows 2000 Professional or later
Q The .NET Framework SDK (Freely available from Microsoft)

In addition, this book assumes the following knowledge:

O Sound knowledge of .NET Framework fundamentals

O A good understanding of the C# Language

Summary of Contents

Introduction

Chapter 1:
Chapter 2:
Chapter 3:
Chapter 4:
Chapter 5:
Chapter 6:
Chapter 7:
Chapter 8:
Chapter 9:

Chapter 10:
Chapter 11:
Chapter 12:
Chapter 13:
Chapter 14:
Chapter 15:
Chapter 16:
Chapter 17:

Index

Features at a Glance

Designing the Architecture
Implementing the Core

Building the Application with Add-ins
Providing Functionality with Workspace Services
The User Interface
Internationalization

Document Management

Syntax Highlighting

Search and Replace

Writing the Editor Control

Writing the Parser

Code Completion and Method Insight

Navigating Code with the Class Scout and the Assembly Scout

The Designer Infrastructure
mplementing a Windows Forms Designer
Code Generation

23

51

81
107
135
169
189
219
235
263
291
329
369
413
437
465
499

Table of Contents

Introduction 1

The Code in This Book 2
Conventions 2
Customer Support 3
How to Download the Sample Code for the Book 3
Chapter 1: Features at a Glance 7
The idea behind SharpDevelop
SharpDevelop Software Requirements
SharpDevelop's Panels and Views
Limitations 12
Customizing SharpDevelop 12
Internationalization 12
Defining the Appearance 13
Customizations for Coding 14
Getting Started with Templates 14
Changing Syntax Highlighting 14
Code Completion and Method Insight 15
Bookmarks 16
Search and Replace Functionality 16
Compiling the Code 17
Managing Projects 17
Combines and Projects — What's in a Name? 17
Navigating the Project 17
The Project and Class Views of the World 18
Creating Windows Forms 18
Adding Controls to Windows Forms 19
Properties and Formatting of Controls 20

Summary 20

Table of Contents

Chapter 2: Designing the Architecture 23
History of Architectural Design Decisions 23
The Early Stages 23
Building SharpDevelop with SharpDevelop 24
Correcting Bad Design Decisions 26
The Design Decisions 27
Designing Component-Exchangeability 29
Best Practices 30
Design Patterns 30
Singleton 31
Factory 31
Decorator 33
Strategy 35
Memento 36

Proxy 37
Coding Style Guideline 39
Defect Tracking and Testing 39
Bug Tracker 39

Unit Tests 40
Refactor Frequently 41
Design and Refactoring 42
Summary 48
Chapter 3: Implementing the Core 51
The Addin Tree 52
Advantages of Using the AddIn Tree 53
The AddIn Tree Superstructure 56
Add-in Definition 57
From Tree Node to Running Object 60
Codon Creation 62
Conditions 64
AddIn Management 66
Property Management in SharpDevelop 70
The Idea behind the IXmIConvertable Interface 71
Overview of the IProperties Interface 71
The Default Implementation 72
Properties at Work 75
Property Persistence 76
Summary 79

Table of Contents

Chapter 4: Building the Application with Add-ins 81
Working with Codons 82
The ICommand Interface 82
Making Menus Work 85
Codon Overview 93
Wiring up Add-ins with Conditions 96
Condition Structure 97
Defining Conditions 98
Overview of Available Conditions 100
Summary 104
Chapter 5: Providing Functionality with Workspace Services 107
Implementation Considerations 107
Requirements for Services 108
The ServiceManager 109
Defining Services 111
Common Services at your Service 112
File Utility Service 113
Property Service 119
Resource Service 119
String Parser Service 119
Ambience Service 121
Class Browser Icons Service 123
File Service 124
Project Service 126
Parser Service 131
Other Services 133
Summary 133
Chapter 6: The User Interface 135
Display Management 136
The Workbench Window 136
Views 137
Pads 139
Views and Pads Applied — An Integrated HTML Help Viewer 141
The HTML View 142
Navigating the Help File 148
Layout Managers 153
The Current and Future Implementation 166
Summary 167

Table of Contents

Chapter 7: Internationalization 169
Handling Internationalization in SharpDevelop 171
Redrawing with Events 173
Accessing Resources 176
Managing Translations 180
The Translation Web Application 181
Localization Implications 182
Compiling to Resource Files 182
Generating Resource Files from XML 182
Generating Resource Files from the Database 184
Summary 186
Chapter 8: Document Management 189
Text Representation 190
Basic Sequence Data Structures 190
Arrays 190

Linked Lists 192

The Gap Buffer Approach 192
Theory of the Gap Buffer 193

The Gap Buffer in Practice 194

The Future — The Piece Table 197
Composite Sequence Data Structures 198
Representing Lines 199
Caret and Selection Management 206
The Text Model 210
Putting It All Together 212
Summary 216
Chapter 9: Syntax Highlighting 219
Syntax Highlighting Definitions 220
Increasing Ease of Use with XML 220
Implementing Syntax Highlighting 226
Validation of the Syntax Highlighting Definition File 226

The Sequence of Events from the Opening of a File to the Highlighting of the Text Editor Window 231
Summary 233

Table of Contents

Chapter 10: Search and Replace 235
The Search Strategy 235
Inside Search and Replace 249

Basic Find and Replace Implementation 249
Using Algorithms 252
The Brute Force Algorithm 254

The Knuth-Morris-Pratt (KMP) Algorithm 256
Wildcard Search Strategy 257
Summary 260

Chapter 11: Writing the Editor Control 263
Introduction to the Editor 263
The TextArea Control 265

Theory 265
Getting Started 266
Event Handling 272
Updating 277
The TextAreaPainter 279
Mouse Management 285
Folding 286
SharpPad 287
Summary 289

Chapter 12: Writing the Parser 291
Need for a Parser 291
Parser and Language Theory 292

Basic Definitions and Theory 292
Grammar 292
Parsing 295
Technical Requirements 296

The SharpDevelop Parser 297

Design Decisions 297

Implementation 298
The Big Picture 298
Reflection Parsing for Assemblies 299
Persistent Parsing for the Framework Class Library 304
The C# Parser for the Editor 309
The Abstract Parser 316
Putting It All Together in the Parser Service 318

Summary 326

\

Table of Contents

Chapter 13: Code Completion and Method Insight 329
Resolving Matters 329
Code Completion 340
Method Insight 357
Summary 366

Chapter 14: Navigating Code with the Class Scout and the Assembly Scout 369
The Class Scout 369

Implementing the Class Scout 370
The Assembly Scout 383
Browsing References with an Assembly Scout 383
Writing the Assembly Scout 385
Summary 411

Chapter 15: The Designer Infrastructure 413

Forms Designer Overview 413
Implementation Considerations 414
Design Overview 415

The .NET Component Model 416
The Service Interfaces 418
.NET Designers 419
The Root Designer 420

Designer Host Implementation 421
Designer Host Services 431

The ComponentChangeService 431

The Name Creation Service 432

The Design Panel 433
Summary 434

Vi

Table of Contents

Chapter 16: Implementing a Windows Forms Designer 437
Designer Services 437
Toolbox Service 438

Menu Command Service 442
Executing the Standard Commands 446
Implementing a Key Event Handler 447

Selection Service 450
Additional Important Services 454
Designer Option Service 455

Dictionary Service 457

Ul Service 457

Type Descriptor Filter Service 460
Unimplemented Services 462
Summary 462
Chapter 17: Code Generation 465
Making Components Persistent 465
The XML Forms Persistence Format 466
Generating the XML 467
Loading the XML 470

The Designer Serialization Service 474
Generating C#/VB.NET Code 475
Round-tripping 484
Summary 496
Index 499

Table of Contents

viii

About the Authors

Christian Holm

Christian started his writing career in mid-2000, writing technical articles for AspHeute.com,
which has grown to the largest German-centric developer platform for Active Server Pages and
Microsoft .NET-related technology. His focus shifted from classic ASP to .NET when he was
introduced to Microsoft’s NET vision shortly after it was introduced to the public at the
Professional Developers Conference 2000 in Orlando.

Since that time he has eagerly adapted the rich features of the .NET technology for his business
and additionally revealed the attained .NET experience to the developers reading his articles at
AspHeute.com. In 2001 he got in touch with Wrox Press to write his first chapter for the
Professional .NET Framework book. Since then he has worked for Wrox on freelance basis as a
technical editor.

I would like to thank everybody involved in this project at Wrox, especially Charlotte Smith
and Daniel Kent, for their great support on this book project and the technical editors,
especially Arun Nair, for their valuable comments on my drafis. I would also like to thank
all the project managers, who gave me the opportunity to review their projects.

Mike Kruger

Mike Kriiger currently studies computer science at the Freie Universitit-Berlin Germany. He has
over 10 years of software development experience ranging from C64 assembly/basic language
development to object-oriented systems written in C#, C++, or Java.

Currently, Mike focuses 100% of his efforts on the development of SharpDevelop. He enjoys the
development in C# very much as it is his first C# and Windows project. He has also written
software for the Linux operating system before he started with SharpDevelop.

Mike lives in Berlin, Germany with his girlfriend, Andrea. He loves playing computer games,
watching science fiction TV series and reading books. You can contact Mike at
mike @icsharpcode.net.

First, I would like to thank my girlfriend, Andrea, who had the idea of starting the
SharpDevelop project. She helped me a lot in the development with ideas and source code
(she wrote the C¥# parser without much help). I love you!

I would also like to thank all the people who helped to develop SharpDevelop. It is a
community effort. We have translators, people who write add-ins and bug fixes, and many
people who help with their feedback to make each new release much better than the former
one. I would thank especially Christoph Wille who believed in the project almost from its
beginnings and without whom SharpDevelop wouldn't be as sophisticated as it now is.

Bernhard Spuida

Bernhard Spuida works for AGS — Applied Geo-systems technology — as developer and
researcher in geophysical data acquisition, processing, and visualization. He has been
programming for 20 years, having worked in fields ranging from 3D graphics to databases and
real-time data acquisition on platforms ranging from VAX to PCs and SUNs.

Currently, he works on remote operation of geophysical equipment, in situ pre-processing of
data, and processing workflow management. He sees .NET as a technology holding great
potential in his current fields of work. He writes and translates articles for the German-language
ASPHeute programmer’s forum and its English language section.

He also is member of the SharpDevelop core team, where he mostly manages documentation and -
due to his extensive knowledge of human languages — is deeply involved in the localization effort.

Bernhard shares his time between Leoben, Austria where works, Pfronten, Germany where his
family lives, and field work in places too numerous to mention. When not working, you will

quite probably catch him reading a book on some strange topic, golfing or refereeing an ASP golf
tournament. You can contact him either at bernhard @icsharpcode.net or at bspuida @ags-
geosys.com.

1 would like to thank Veronika and little Chiara for just being. You always are with me, no
matter where I may be.

Further thanks go to the great folk in the Perl and ASP golf communities. You always surprise
me with wonderful things that can be done with code of which I am sure the inventors of the
languages never thought. And I thought that afier so many years I knew all the tricks...

And of course, my family: my parents for taking me to see the world so early in my life. You
gave me my love for travel, languages, learning, and books. I hope my teaching you golf can

repay this in at least a small way. And my nephew Karim who at three years of age makes

me rediscover the world whenever I play with him.

Introduction

The SharpDevelop project started as a "one man show" in September of 2000, just a few months after
Microsoft released an Alpha of what was to become .NET 1.0 in early 2002. SharpDevelop is Mike
Kruger's brainchild, and he got started because he was disappointed with current programming
languages, and did want to try out the new programming language C#. As there was no really good
programming editor aside from betas of Visual Studio .NET — which he didn't have access to - he just
started to program what he needed.

The SharpDevelop core team — who wrote this book — consists of programmers who came aboard
during the Beta of .NET because they wanted to see how "real" Microsoft's new platform was and how
good or bad an experience it would be to program with it. Your best bet to learn a new platform is to
test it with an ambitious "proof of concept™ project, and that is what SharpDevelop initially was:
pounding .NET and C# to see if it is viable in real-world applications.

Today, SharpDevelop is a full-featured Integrated Development Environment that leverages the features
of C# and .NET, and we can say that both met or exceeded our expectations for building powerful real-
world applications.

Over the course of more than two years of development, we learned a lot about this platform. This book
is about sharing our experience in building real applications using .NET and C#. You will learn about
design issues and decisions made, techniques and technologies used, as well as background information
on features of SharpDevelop that you won't usually find in everyday applications.

SharpDevelop is an evolving open-source application, with new features being added over time that are
not covered in this book. The code accompanying this book is available on the Apress web site.

You can always get the latest C# source code from http://www.icsharpcode.net/, compare it with the
code for this book and learn how code evolves and how we and our contributors implement new features.

The SharpDevelop team

Introduction

The Code in This Book

All of the code in this book is taken from the 0.92 beta release of SharpDevelop.

We have tried to present the code in a form similar to the actual source files. Sometimes, because of our
desire to fit as much information into the book as possible, we have had to reformat the code slightly to
make it more concise.

Some things that we have done to make code more concise are:

Removing lengthy comments
Replacing XML comments with standard comments
Removing whitespace

Collapsing multiple closing braces onto single lines

0O 0 0 o O

Placing long lists of parameters onto single lines

We encourage you to look at the original source files in the code download for a true view of the coding
style used in the SharpDevelop project.

Conventions

We've used a number of different styles of text and layout in this book to help differentiate between different
kinds of information. Here are examples of the styles we used and an explanation of what they mean.

Code has several styles. If it's a word that we're talking about in the text — for example, when discussing
a for (...) loop, it's in this font. If it's a block of code that can be typed as a program and run, then
it's also in a gray box:

if (categoryTable == null)
Sometimes we'll see code in a mixture of styles, like this:

if (categoryTable == null)
{
categoryTable = GetChildCategories(-1);
System.Web.HttpContext.Current.Cache["categories"] = categoryTable;
}

In cases like this, the code with a white background is code we are already familiar with; the line
highlighted in gray is a new addition to the code since we last looked at it.

Advice, hints, and background information come in this type of font.

Important pieces of information come in boxes like this.

Introduction

Bullets appear indented, with each new bullet marked as follows:

Important Words are in a bold type font.

Words that appear on the screen, or in menus like the Open or Close, are in a similar font to
the one you would see on a Windows desktop.

O Keys that you press on the keyboard, like Ctrl and Enter, are in italics.

Customer Support

We always value hearing from our readers, and we want to know what you think about this book: what
you liked, what you didn't like, and what you think we can do better next time. You can send us your
comments by e-mail to feedback@apress.com. Please be sure to mention the book title in

your message.

How to Download the Sample Code for the Book

When you visit the Apress web site, www.apress.com, follow the Downloads link and then the link to old
Wrox downloads. Select 'Dissecting a C# Application; Inside SharpDevelop' from the drop-down menu.

The files that are available for download from our site have been archived using WinZip. When you've
saved the archives to a folder on your hard drive, you need to extract the files using a decompression
program such as WinZip or PKUnzip. When you extract the files, the code will be extracted into

separate folders for each chapter of this book, so ensure your extraction utility is set to use folder names.

Introduction

Introduction

Features at a Glance

Before we start looking at the code that implements SharpDevelop, we need to have a clear idea about
what features Sharp Develop provides. The aim of this chapter is to run through the key features that we
will be looking at later in the book.

Although SharpDevelop is free of charge and free for you to adapt as per your needs, it sports all the
features of its full-blown commercial counterparts such as Delphi/Kylix or Visual Studio. When writing
code in SharpDevelop, we get syntax highlighting, code completion, method insight, XML based
project management, and we can even design Windows Forms!

In the course of our discussions, we will be covering the following topics:

Customizing SharpDevelop
Customization for Coding using various languages

Managing Projects

0o 0 0 O

Creating Windows Forms

Before we start looking at goodies such as syntax highlighting or project management, we will discuss
the customization of SharpDevelop's user interface to fit our personal requirements. The next section,
Customizations for Coding, will then introduce us to using templates and wizards, which saves us from
having to write most of the general code structures encountered in daily practice. We will also talk
about other desirable features, such as code completion, method insight, a powerful search and replace,
and so on.

Another important feature of a full-featured IDE is project management. We will be discussing project
management in SharpDevelop. Last, but not least, we will be covering the Windows Forms designer that
helps us to easily create Windows Forms.

Chapter 1

The idea behind SharpDevelop

Yet another IDE? You might well ask this. Our answer is: Why not? Some time ago, Microsoft proposed
a new software architecture called "Windows Next Generation Services', which then became .NET. It
looked like a good idea from the start. So once we got wind of this new architecture, we were curious
and wanted to see what could actually be done with this platform as soon as we could get hold of one of
the early betas. These betas only contained command-line tools, so doing our own proper development
tool seemed like a good idea. Mike decided try doing just that. After a modest start, implementing
something akin to Notepad, things took off.

With Free/Open Source implementations of the Microsoft .NET architecture on which SharpDevelop
runs and on which we developed it happening as this book is written, there will some day be one IDE
for multiple platforms — OS and hardware-wise. The Eclipse project is aimed towards this goal too, but
the approach taken is different as it is based on Java integrating other languages into the IDE. We aim
to use .NET and its free implementations as a platform for integrating development, including
non-.NET platforms such as Java or the GNU Compiler Collection. If you have a programming
language you want to use and a compiler/interpreter for it, you can 'plug it in' and develop using
SharpDevelop!

Chapter 2 has a discussion of the history of SharpDevelop in terms of design decisions. If you are
interested in seeing a full evolutionary tree of the SharpDevelop IDE please refer either to the Change
Log (Help | About and then click on the Changelog tab) or online at
http://www.icsharpcode.net/OpenSource/SD/Changes.asp.

SharpDevelop Software Requirements

As a developer, you are strongly advised to run SharpDevelop either on Microsoft Windows 2000 or
Microsoft Windows XP. Other Windows platforms such as Microsoft Windows NT4 or Microsoft
Windows 9x are not recommended, as the .NET Runtime offers only limited support. For example, if
you intend to develop ASP.NET applications and use Windows NT4, you need the Windows NT
Option Pack. Developing ASP.NET applications on Windows 9x is not possible, as the .NET Runtime
and/or other Windows components do not offer full support.

Since SharpDevelop relies on the Microsoft NET Runtime you have to install the free downloadable
.NET package. Therefore, either the redistributable .NET Runtime or the .NET Framework Software
Development Kit must be installed prior running the SharpDevelop IDE. As the .NET Framework SDK
installation has several benefits compared to the redistributable package, (for example, it has
comprehensive documentation for developers) the NET Framework SDK installation is recommended.

You might now ask what the hardware requirements are. SharpDevelop will run on slower PCs, but if
you want to use resource-consuming features such as Code Completion and hate lags, you should be
equipped with a modern CPU, enough RAM (more than 128 MB), and for best viewing experience, a
resolution of 1024x768 pixels is recommended.

Now, it's time to present the features of the SharpDevelop IDE. The next section of this chapter
provides you with a brief tour to get you acquainted with the most important features of the IDE.

Features at a Glance

SharpDevelop's Panels and Views

After SharpDevelop has launched you will see several panels. If SharpDevelop was started for the first
time, the panels are in their default alignment:

ﬁﬁ SharpDevelop ; o 5 IEllll
File Edit Wiew Run Search Tools window Help - X
P HE S 2B XM %R B

| Projects R x| startPage| 4 b % |Help of x|

- SharpDevelop

.. SharpDevelop | i @ #ziis

L 4 S‘ttl l-t -
|Properties oRx
A= A
Recent Projects if Zv |
I armne |
[output a

kil I
[@ Proje... % Class... |a Files |5f Tools | E" Task List @ Cutput
|Feady I H:I A

On the left-hand side at the botom you can see a tabbed panel that includes Project Scout (Projects tab),
and the tabs of the Class Scout (Classes tab), File Scout (Files tab) and the Tool Scout (Tools tab). The
Project Scout displays the contents of a Combine (a collection of linked projects) or project. Using the
context menu, you can set the properties of the Combine or projects. The Class Scout lists all classes
and class members of a project hierarchically. The Class Scout makes navigation through your project's
class members very easy, as double clicking on a member jumps to the location where it was declared.

The Project Scout and the Class Scout are discussed later in this chapter and at source code level in
Chapter 13. The File Scout lists directories and files, and opens files as you double-click them. In other
words, it is a simple file manager. The Tool Scout contains several handy tools, which are accessed by
clicking on the appropriate tab. Clicking on a tab reveals a list view of contained items. For instance, if
you click on the Clipboard ring tab, you can easily paste previously copied code snippets into your
source code. However, there's more. The Tool Scout offers an ASCII table, C# documentation tags, and
license headers that can be inserted into your files:

Chapter 1

ﬂ SharpDevelop - [EmpLy ;IQILI
File Edit Wew Run Search Tools Window Help -0 X
At S 1, A7
PEEH@| R X @ 4% % % 8
|TDD|S 2 x | EmptyC#file1* | 40X
ASCII Table 1/ one line to give the program's name and an idea of what 4
C# Documentation bags 2 /S Copyright (C) vvyy name of author
Licenses Sy
E 4 Jf/ This program is free software; you can redistribute it ¢
e 5 /Y modify it under the terms of the GNU General Public Lice
E GPL header 6 /S as published by the Free Software Foundation; either veil
B LiPL header % T S of the License, or (a3t yvour option) any later version.
B arL 5
9 /) This program is distributed in the hope that it will he
B Lep 10 // but WITHOUT ANY WARRANTY: without even the implied warr:
11 // MERCHANTABILITY opr FITNESS FORE A PARTICULAE PURDOSE. 5S¢
12 /7 GNU General Public License for more details. b
gz A
14 /S You should have received a copy of the GNU General Publs
15 // along with this program’ if not, write to the Free Softr
General 16 // Foundation, Inc., §9 Temple Place — Suite 330, Boston, 1
Clipboard Ring 17
- = -
L@ij...l% Cla... | E3 Files &Tools 4 | | _DIJ
|Ready |[In17 ol ch1 |[Ns]

If a Windows Forms project is opened and you are in the design view, you see the Forms tab in the
Tool Scout. The Forms tab lists all Windows Form Controls that can be dragged and dropped into the

design view. The design view itself is described later in this section.

If you need help, you can access SharpDevelop's built-in help either by choosing one of the entries of
the help menu or clicking on the entries of the help pad. Help pad's default location is on the right-hand

side of SharpDevelop's main window. You can expand the topics by clicking on the plus sign and
double-click on the entry. The page is opened in SharpDevelop's main window:

ﬂi SimpleFrom - SharpDevelop - [Welcome to SharpDevelop!] - |EI|1|
File Edit Wew Project Run Search Tools Window Help -0 X
Ded@ B XM %% A

Welcome to SharpDevelop! |

9

0
AN
7
-

ASCII Tab ;I = [lg SharpDevelop -
C# Docu @

Licenses m 1, Gatting Sy

| @ 1. Introduction
m @ 2. SharpDevelop IDE
Clipboard '

+ @ 3, C# and SharpDevelo
- 4. YB.MET and SharpDe ¥
»

4

|Pr0perties [m e |
BT
B Misc o
Buildaction Compile =
Thank you for choosing SharpDevelop as your development environment Name
for \MET. SharpDevelop is a state of the art development enviroment,
] qeﬂ— yvritteq from scratch Hsin.g noﬂﬂing bt ..I'I\IET itse.llf.—lugven Eﬂe le source code =l
|Ready [In17 ol chi |[Ins] 4

10

Features at a Glance

The Properties pad's default location is at the right-hand side below the Help pad (see previous
screenshot). The properties pad contains a list of the properties of the currently opened item. For

example, if a file is currently visible in the main window, the pad lists the respective properties of the
file or if a Windows Form Control is selected you can edit the control's properties:

ﬁ winform - SharpDevelop - [C:%Documents and Setking:] 4

File Edit Wiew Project Run Search Format Tools Window Help - X
DEEHG % B2EX M 6% % % e
[Todls 2 % | MainForm.cs* |

ASCIT Table

C-# Dacumentation tags Enabled Trus o
Licenses Tablndex 0

General Tabskop True

Clipboard Ring Visible True

Farms El Data

* o ;I (DataBindings)
A Label - - Tag

Design
LinkLabe!

A binLo|
b Button Locked False
=M ListBox El Focus
[abl TextBosx Causesyalidatiol True b
% RadioButton {(Name)

7 CheckBox ;l 4| The wariable used ko refer to this

F . component in source code.

@ [*gclear B Source Design P
|Ready [In17 coll chi |[INs] 4

The Task List pad and the Output pad contain a listing of build errors and compiler messages, respectively.

These two pads' default location is at the bottom:

ﬁ winform - SharpDevelop - [C:Documents and Setting: : - IEI|5|
File Edit Wiew Projeck Run Search Format Tools window — Help - X
DS G| RE X a0 6% % % B
MainForm.cs| 4 b % |Properties 7 x|
10 public MainForm|] af] B4
121 =] i InitializeC . Accessibl - |
nitializeComponents () ; j
i3) i J Accessibl
143 Accessibl Default
15 4 This method is used in the ¢ B Appearance
16 A4 Change this method on you owr BackColo [] Contrel = I
17/E pid InitializeComponents () { Backoron[1 froned
15 s » || | {Name)
1 | | » The wwariable used ta refer
3 to this component in ...
Source I DBS'Q”I
[Task List 7 x|
| | Line I Description | File I Path |
8 17 The type or namespace name 'oid' could not be found {are v... MainFor...
B Task List | curput
|Ready [ln26 colt6 ch7 || INS| .

11

Chapter 1

Li

This was just a glance at the pads in SharpDevelop. For more in-depth information on pads please refer
to Chapter 13.

Before we move on to the next section, a few words on the Editor view and the Design view. The Editor
view is the standard view where you write your source code. The Design view is accessible when
working on a Windows Forms project and let's you drag and drop controls from the Tool Scout to a
Windows Form.

mitations

SharpDevelop comes with a broad range of features. However, some might ask what features are not
included in the IDE. The following list contains some common IDE features that are not
currently provided:

Debugging support
Windows Installer projects to build .msi files

Database and business process modeling tools

o 0 U o

Application stress test tools

Customizing SharpDevelop

Before we start writing code we want to customize the UI to our needs and preferences, as this allows us
to get the maximum benefit. SharpDevelop allows several customizations to fit our needs. We won't be
discussing the entire range of the customisation options, like changing screen layout, changing the tool
bar, and so on. Rather, we will focus our attention to customizing some of the more important features
of SharpDevelop.

Internationalization

12

Any competitive application needs to implement internationalization support; SharpDevelop was built
with this design aspect in mind. The default language that SharpDevelop starts up with is English
(represented as International English). However, apart from English, SharpDevelop supports many
other languages, as well. These include French, German, Japanese, and others.

SharpDevelop also supports non-Latin languages like Japanese, Russian, Korean, and so on. If our
operating system is configured to use non-Latin character sets, then SharpDevelop will automatically
display these character sets correctly. For instance, if you prefer Japanese as your UI language your
customized SharpDevelop will look something like this:

Features at a Glance

'%SharpDevelup B _IEIIﬂ
TrOAE | REE FETW RTR BRI oD v P -

HHRTERW) i R oy
[Bw© 3

Chrl+C :I

¥
N
-
AR
=
)

L 30 4 Chrl+Shift+0

FrINEBRARR ColtU (- #ziplib

B L£&:FEs Ctrl+s
BE & 7T < RTE... T

g 7 RED Chrl4+-Shift+5 FRATAT ofx

]

& FRIR Chrl+p 2= 4

[& FRIY L e a—R)
Ri(Z 57 7 1 L(E) . L
BiFfEafTavyzs bR b [T 7 x|

|»

K FFUFb—2armifTE

-

3

21
Bra [Ptz Be-n| B razuat D FaETe b

BREa ar=21As i1 aMEEs I[i

Support for internationalization is a daunting task that must not be underestimated. This feature affects
the application's core and, hence, has to be integrated into the application's structure from beginning.
Although, to some extent, internationalization design aspects are discussed in the Microsoft NET
Framework SDK documentation, (search for "Internationalization" and/or "Satellite Assemblies"), there
are sometimes good reasons to reconsider these suggestions and fit the design to the application.

In Chapter 7, we will be getting an in-depth view on planning internationalization support for an
application, and about implementing this feature programmatically.

The next entry in the Option panel is Visual Style; this settings dialog deals with the visual appearance
of the SharpDevelop IDE.

Defining the Appearance

Different programmers — different preferences! As we know, in any document-based application there
are two possible ways to work with documents. On the one hand, there is the Multiple-Document
Interface (MDI), on the other there is Single-Document Interface (SDI).

Under MDI, every document resides in the same instance of the application and is accessed by clicking
on the appropriate tab of the document interface. Thus, an MDI application has a main window

containing multiple MDI child windows inside it.

The SDI interface starts a new instance of the application for each document, so that there is only one
window, which contains the respective document.

From the Visual Style option, we can select either the Multiple Document Layout Manager or the
Single Document Layout Manager. The choice is purely a matter of personal preference.

These two distinct styles are managed by the LayoutManager, which is described in greater detail
in Chapter 6.

13

Chapter 1

Customizations for Coding

Writing code is hard work. We therefore expect a bit of support for easing repetitive tasks, such as
completing and/or inserting chunks of code, highlighting keywords, and so on. Programmers favor less
typing and using shortcuts over retyping commonly used code constructs. SharpDevelop offers a wide
range of features for making the coding process more efficient and easier.

Getting Started with Templates

In this section, we will cover code templates and wizards. These utilities help us to reduce the amount of
effort involved in writing recurring snippets of code. As the results of these utilities provide the basic
constructs, all that is left to do is to fill in the gaps.

Assuming we have a C# file open, we just have to type in the shortcut for the desired template. For
instance, typing forb and then pressing the space key will provide us with a basic skeleton of the for
statement. This skeleton would look like:

for (; ;) {
}

The only task left for the programmer, as mentioned before, is to fill the gaps of the skeleton with
meaningful values.

If we are not sure of a template's shortcut text, we can type Ctrl4/, when the caret (the keyboard cursor)
is active in the edit view. This will pop up a listbox containing the complete list of template constructs
available to us. From within this list, we can then select the desired template.

The templates are not hard-coded. If necessary we can edit, add, or remove these templates.
Object-oriented programming languages require classes. As classes tend to get complex, an easy way of
safely defining them is always appreciated. SharpDevelop provides us with a class wizard that offers

several options to save us from having to write standard code.

The class wizard is available from the File Wizard panel; under this panel it is listed as New Class
Wizard. To bring up the File Wizard panel click on File | New | File... menu.

In this screen, we can define the base class and its access modifiers, add it to a project, and of course set
its name.

The pages that follow allow implemented interfaces to be selected along with formatting options, license
text, and more.

Changing Syntax Highlighting

Black and white code listings are harder to read and understand than code listings in which the key
words are highlighted. SharpDevelop offers us several modes for highlighting our code.

14

Features at a Glance

Syntax highlighting is applied in the editor view (the area where you write your code). SharpDevelop
comes with several built-in modes of syntax highlighting for different languages.

Chapter 9 will explain the highlighting strategy in detail.

Code Completion and Method Insight

As we write code, we make use of class members, such as methods or properties. It would be quite
helpful if we have a list of the available class members handy. This avoids typing mistakes and in cases
where a large number of classes and their members are involved (for example, the .NET Base Class
Library) code completion makes coding a lot easier.

A simple example is writing code to display some text to the console. When we finish writing Console
and type the dot operator '.', a list pops up with all available members of the Console class:

36 Parserparse = new Parser|),
37 CompilationUnit unit = (CompilationUnit Yparse Parse|filename),
33
33 =2 foreach (IClase ¢ in umt. Classes) {
40 Console, WriteL]
41 £ OpenStandardOutput & I
42 B Oyt
43 “@Fead
i “®Readline
4 |

=5t ror
Cubput “@5etn

=@ Seiut

“Wiyjiie

EW static void Wwiiteline(]

- ||<para> Writes the curent line terminatar to the standard output stream.

1 = L<parar

The help bubble, next to the listbox, offers a short description of the active element of the list. To read
more about code completion refer to Chapter 13. The engine used to obtain the completion data is
described in Chapter 12.

Method insight allows us to view the parameter list of methods of the BCL as well as for the methods in
the user-defined classes. This helps to maintain the correct parameter order and thus avoids
introduction of manual errors. The following screenshot shows a simple example of method insight:

dhconn.cs"‘| 4k x
13 A
14E
15| class DEConnection
16E i
17 public static void Maini(string[] args)
15E= i
19 string strConn ="Initial Catalog=Northwind;Data Sour
20 string striecuritySetting = "Integrated Security=321
21 int nTimeout = 10;
22 DEConn MyDhConn = new DBConm () ;
23 MyDbConn. Connector (strCDnn,strl
24 ¥ |vn\d DEConn. Conneckor (string DhConn, string SecuritySetting, int TimeOut)l
25 N
28
27 =
LT _>I_I

The help bubble next to the code completion list displays the return type of the Connector method
plus its parameter list. You can read more about method insight and its implementation in Chapter 13.

15

Chapter 1

Bookmarks

SharpDevelop's bookmark management allows us to easily manage bookmarks in our source code.
Bookmarks can be toggled by:

Q Clicking on the Toggle Bookmark option available from the Search menu
QO Clicking on the flag button located on the standard toolbar

Q Pressing Ctrl+F2 after placing the caret at the desired line

A dark green background represents a bookmarked line. Moving back and forth between the
bookmarks is made possible by the navigational keys or buttons respectively. In Chapter 10, we will
cover the bookmarking feature in detail.

Search and Replace Functionality

SharpDevelop's search and replace functionality comprises various features, ranging from the usual
searching of strings to the use of Regular expressions or Wildcard search. The design strategy behind
the search functionality is covered in detail in Chapter 10.

The Find dialog is accessed from the Search menu, through the binocular button of the standard
toolbar, or through its shortcut, Ctri+F:

4 x|
Find what: |StringEoIIectinn j | Fitid riext |
Caze sensitive : Fark Al
Search in:
[Whole word only current file j Close

current file
O Use: IWiIdcards Fﬁ_
whole project

The Mark All button highlights all the results found for the designated search target. The search target
offers the option to search in the current file, all open files, or the whole project.

The Replace dialog box offers, as the name suggests, the option to replace the findings with a
new string.

16

Features at a Glance

Compiling the Code

After writing the code, the next logical step is to compile it. In SharpDevelop, we can compile a
combine, a project, or just a single file. We will be talking about combines in a minute. To start

compilation, we can use the commands available in the Run menu or click on the buttons shown in the

following screenshot:

&% SharpDevelop - [C:, TEMP} dbconnection.cs]

File Edit ‘iew Run Search Tools Window Help

e ™,
DS EHG@ $ @XMt 6% 0w e)
B S

Projects o dhcnnnectiun.cs|

4k x

During compilation, if any errors occurred then the Task List (the output window) will display these

errors. By simply clicking on the error listing, we can jump to the line of our code concerned.

Managing Projects

A feature that makes an IDE complete is the facility for managing our projects. SharpDevelop offers

several features to achieve this goal.

Combines and Projects — What's in a Name?

A combine can contain one or more projects, thus it can be thought of as an 'uberproject', the mother of
all projects. This name was chosen to avoid any conflicts with existing trademarks. The contents of a
combine (or project) are displayed in the Project Scout. An overview of the Project Scout is given in the

Navigating the Project section of this chapter.

Navigating the Project

Navigating through a project is as easy as using the Windows file explorer. The tree view of the Project

Scout displays the content of a project and the Class Scout lists all the classes of the currently

opened project.

17

Chapter 1

The Project and Class Views of the World

Typical views of the Project Scout and Class Scout will be similar to these screenshots:

EE _D:lmhine "SharpDevelop' [7 entries) = E‘E SharpDevelop

L:_Ii?“:l Core Ei;a Core

| v

=-£5 Resource filles =-{} ICSharpCode
StringR esources. resources =-{} sharpDevelop
e lconResources. resources Eag SplashScreenFarm
i3] References - SplashsScreenFormi)
Azzemblylnfo.cs 4‘; SharpDevelopMain
SharpDevelopt ain. oz =} Care
B0 Adding f
#~(_7] Properties
-] Services &-{} SharpDevelop
[—]ﬁ Baze =-{} Care
{27 Resource files Ela; PriorityQuee
#-[55] References -7 Pair
[:| Internal L R =% PriorityQueuel)
L] Gui @ PriarityQuensiint)

(L] Services

=8 IEnumerator GetEnumerator
Agzemblyinfoce {0 P b ey & % void UpHeaptint)

-] Commands 4L & % oid DownHeaplint)
#-G8| ICSharpCode. TemtEditer || | 1 @ void Insert{IComparable, obj
#-gdl DefautEdter || - “® obiect Remove()
=R FormE ditor | I I IR S S B int Count

-f7) Resourcefiles | 0 e 2% arvaylist elements
(53] References =1} sharpDevelop

Sxzemblylnfo.cz — =-{} M3jogren

(£ FormDesigrer I':'Iip':l ICsharpCode, TextEditor

|:| Commands = o B4} ICsharpCode -
4] | 4 Jd { B

The Project Scout allows easy navigation and assignment of various settings of its items by right-clicking
on the entry — a file, project, or combine.

The class view is also displayed as a tree view. A typical view of the Class Scout is as shown above.

The Class Scout gives us a detailed overview of the various classes involved in our project. To find out
more about this feature implementation please refer to Chapter 14.

Creating Windows Forms

SharpDevelop features a built-in Windows Forms designer. Using this designer we can easily add controls
to a Windows Form, edit their properties, and even format them. Everything starts with a new project or,
as mentioned before, we can create a single file without a project. As the implementation of a Forms
designer is no trivial task, the final three chapters of the book are devoted to this interesting topic.

18

Features at a Glance

Adding Controls to Windows Forms

Let's assume that we want to create a new C# project, for this click on File | New | Combine.... The

New Project dialog box pops up - select the Windows forms project entry under the C# node, then
provide a name for the project and click on OK. When the new Windows Form project is loaded, two
new tabs appear below the editor view — the Source tab and the Design tab. Clicking on the Source tab
shows the source code view of a general Windows form structure.

As we are interested in the Designer, click on the Design tab located next to the Source tab.

Additionally, click on the Tools tab to access the available Windows Form Controls. We should now see
a window that looks something like this:

File Edit Miew Project

ﬁ SimpleFrom - SharpDevelop - [C:Documents and Settings' chriski

Run Search Format

Help

o [=[4
g B

e 1P o3 BEto| | B Tasklst B output

[Tacls # 3| Formi.cs| 4b %
A5CIT Table || | =@ Sharpbevel
C# Documentation tags -8 #ziplb
Licenses

General

Clipboard Ring

Forms

|k Poiniter |]
At
A LinkLabel = T

ab| Button EE% %‘ |
ListEiox ?f;t Meo =
[abl TextBox iy =
¥ RadioButton Text

[V CheckBox 1 The e

m A MMI contained in ...
PictureBiox [Cutput x|
[} Panel R BN]

|F|ead_l,l

||In'|

col 1

T,

The Tool Scout, selected by the Tools tab, allows us to click and drag Windows Form Controls onto the

previously created blank form. After we have some Controls on the form, we will need to edit

their properties.

19

Chapter 1

Properties and Formatting of Controls

To format a Control, right-click on the Control and we will see the Control's formatting options. The
context menu allows aligning Controls, setting the tab order, and so on:

Forml.cs"‘| 4 b x |Properties 7 x|
Al B2 &)
RightToleft Mo -
Text button
Textalign MiddlaCentar
[eshavior
s e . Delete rop False
"""""""""""" Copy tMenu (none)
October, 2002 | & cut esult Mone
Mo Tue “Wed Thu Fri Selectal g True o
o123 4 £ . . e 1
7 8 9 10 N AlignToGrid p True
14 15 16 17 dW CenterHorizontally True
o 218 gg gg g? 215 Centervertically =
W 4 e o = o [l SeeToGrid G
4| '-I_:‘a contained in the contral,
EringTaFronk
Source Design I m s :T ik
endToBac
|OUtDUt Showirid il |
4 »
—_LI— SnapTodGrid i
B TaskList S Output = ot |
& LockConkrols T A

The Control's properties are located on the left on the default setting. Of course, we can rearrange the
panels as SharpDevelop supports Window docking. The property panel allows us to edit the Controls in
a very intuitive way.

Summary

In this chapter we breezed through the major and most prominent features of the SharpDevelop IDE.
As this was just an overview, this chapter presented no source code at all. The following chapters will
explain the presented features in far more detail, and will discuss the design decisions and technical
aspects involved, by revealing and stepping through the source code.

20

Features at a Glance

21

Chapter 1

22

2

—

Designing the Architecture

In this chapter, we will be looking at the history of SharpDevelop and its basic design concepts. Also, we
will be discussing the practices used in the SharpDevelop development process. Some of our practices and
methods might seem unusual, but we want to tell the truth about our development process; at some places
it's quite contrary to the procedures prescribed for an ideal development process but we will explain why
this is. This chapter lays the foundation for understanding the succeeding chapters and, in any case, it's
good to know how a technology was developed. We will be presenting some complex structures in this
book, so understanding the thinking behind the processes at work is necessary.

History of Architectural Design Decisions

In this section, we will step backward in time to the early days of SharpDevelop. This will be helpful to
us in understanding the current design of SharpDevelop. Miguel de Icaza (the founder of Gnome and
the Mono project) once said that, "One day you have to tell the whole story." Now that day has come

for SharpDevelop.

Mono is a cross platform .NET implementation, refer to www.go-mono.com for more information

The Early Stages

It all began in September 2000 when Mike Kriiger came across the PDC version of the NET framework
Microsoft just had released. He had some experience in programming under Linux but had never

written a Windows application before. When he saw C#, he thought that C# was a better language than
Java and decided to write an IDE for it since at that time a good, free IDE was missing for this language.

The unofficial version is that he had just too much time (which has since dramatically changed) and was
looking for a bigger programming project to spend this time on.

Chapter 2

The initial programming of SharpDevelop began with a Windows text editor, which was customized for
C# highlighting. After a short design phase (1-2 days) the development of SharpDevelop began.

Initially, there was just a main MDI window with a .NET rich textbox, which was able to open text files.
It could load and save the text and run the csc.exe (the C# compiler) over the file and then execute
the output file it generated.

It didn't take long to realize that the limits of this rich textbox weren't acceptable for an IDE project;
therefore, the next step was to write an integrated editor, with facility for syntax highlighting. It took
two weeks to complete a simple editor and a basic project management tool with a tree view showing all
project files, and to make the whole system stable enough to develop SharpDevelop using
SharpDevelop itself.

Building SharpDevelop with SharpDevelop

24

The first editor was relative simple. Text was represented as a simple ArrayList that contained strings.
Each string was a line of text. The lines were generated using the System. I0.StreamReader class.

Before this data structure was chosen, other data structures, such as storing the lines in a list, were
considered. The list-based structure would solve the line insertion penalty. If a line is inserted into an
ArrayList, all other elements have to be moved back one element to make room for the element to be
inserted. This wouldn't be a problem with list-based data structure where a line insertion operation
consumes constant time.

However, the list-based structure suffers in other areas, such as getting the correct line object from a line
number or offset. To get the real line, it would have taken linear time (the same time as line insertion in
an array). A decision was made to have the 'slow' part happening during insertion, as we thought it was
more important to get a specific line fast than making the insertion of lines efficient. Therefore, it
seemed natural for us to work with the ArrayList structure.

We didn't want to optimize the editor for large files — we only wanted to have a source code editor
capable of working on files having less than 10,000 lines. Another approach would have been to store
the text in a linear data structure that handled lines by itself. Other editors have taken this approach and
we were aware of it, but we didn't find any good literature to help us with this issue.

If we insert a character into a line it shouldn't take much time, because this affects only a single line. But
making the whole buffer linear would have taken too much insertion penalty for every operation. The
array for the buffer is much larger than the array for just lines; hence, it makes an insertion slower.
Therefore, we decided to use the line-based structure.

The first editor split the line into words and these words had colors assigned to them. The words got a
default color (black) and then were compared with the C# keywords. This way, some basic syntax
highlighting was added to the IDE.

One of our earliest considerations was the syntax-highlighting problem. It was clear to us that built-in
syntax highlighting would cause more problems than it solved. Built-in highlighting would not be
customizable without recompiling the whole project. It provides no easy way of extending the syntax
highlighting for new languages other than changing the source code. We chose to define the syntax
highlighting in XML, since this enabled us to move this part out of the IDE; it also enabled us to
support syntax highlighting for other programming languages than C#.

Designing the Architecture

We looked at the implementation of syntax highlighting in other editors and determined the different
features implemented in them. Our first XML definitions were the way it is now. It looks a bit like the
definitions used in JEdit (http://www.jedit.org). In Chapter 9, we will be discussing these definition files
in detail.

In spite of studying other editors, we didn't change the syntax highlighting definitions; only some minor
issues were addressed (like renaming the tags according to our changed XML naming scheme - the first
version had upper case tag names whereas now we use camel casing). But, the overall structure didn't
change much. With this matter of syntax highlighting settled, there was still another major issue left- the
text editor was extremely slow.

The limiting factor for our editor's speed was the drawing routine, which re-drew the entire editor
window whenever the text was scrolled, even if it was by a single line. The text area repainted the whole
text for each scrolling operation. No smart drawing was used. This was sluggish on most machines.

This problem was solved by having the system redraw only those regions that had changed. This was
done by using a control that knew the size of the whole text. This control got moved around on the
panel. The .NET Framework paints only the region that has changed and takes care of fast scrolling.

This speeded up the editor a lot, but in turn created another problem - the control size limit of 32,768
pixels. With the Courier font at 10 points, the editor control was limited to 2,178 lines. The editor could
load more lines, but the control cut them off.

With this limit, SharpDevelop ran for about one and a half years. For the development of SharpDevelop
this was enough; as all SharpDevelop code files are smaller than 2,000 lines this limit of the editor posed
no real problem.

Later, we switched back to self-drawing; the drawing routines are faster in newer .NET versions, but
slower than the old 2178 lines version. The text editor will be discussed in Chapter 11.

However, back to our story, SharpDevelop was first made public in August 2000 through an
announcement in the Microsoft .INET newsgroups. It got a lot of positive feedback and therefore, the
development continued.

The design direction changed a bit away from a C#-only IDE to a more general development
environment. But even now, C# is the best-supported language under the IDE. This is not due to design
decisions, it is just that there are not so many people working on support for the other languages. In
early 2001 an add-in (also known as plug-in) infrastructure was introduced.

The first add-in structure was for menu commands defined in external dynamic link libraries using
XML. This was a very limited solution and add-ins could only be used to plug into a special add-in
menu. Another separate add-in API was implemented to allow the extension of editor commands.

During 2001, SharpDevelop got support for internationalization. The internationalization model has not
changed since then. A key string is used to identify the string in the internationalization database. The
internationalization data is generated out of a database and is written into resource files. There is a
resource handler class that handles the different languages and returns the localized string. Detail on
internationalization in SharpDevelop can be found in Chapter 7.

25

Ch

apter 2

Correcting Bad Design Decisions

26

In December 2001, the editor's data structure was changed from a simple ArrayList with strings to a
linear model. The editor was almost rewritten from scratch and this time the objective was to separate
the editor's code from the IDE's code, more than before. The old editor was a monolithic monster.
Fortunately, large parts of the old editor's code could be reused and translated into the new model.

The decision to switch to the new model was made because by then we had found the literature on text
editor programming; besides, we had also looked at the implementation of text models in other editors.
With this, the problem of having to perform too many copy operations when using a linear model was
also solved.

The old line-based structure had some problems. It copied too many strings and had some complicated
algorithms for insertion/replace and so on, which took too much time. The performance was poor in the
old model. Now, the text editor data structure was turned into a separate layer underneath the control
and the simple ArrayList was dismissed. In Chapter 8, we will delve deeper into the new data structure.

Now, the editor itself keeps track of where a line begins or ends. To find a line from an offset (this is a
common operation as the model is offset based, but the display is not) it takes O(log n) time. (For
example: there are roughly 20 operations for finding a line, if there are one million lines in our list.) The
lines are stored in a sorted list and the search is done using the binary search algorithm. This makes the
operation necessary for finding a line from a given position nearly as fast as in the line-based model. In
this model it was simple, as the line number was equal to the array list position.

In January 2002, we solved one of the biggest issues in the whole development process — the add-in problem.

Our dream was to have add-ins that could be extended by other add-ins. For example, we wanted to
have an add-in that could browse assemblies. This object browser should be in an external assembly
and just plug into SharpDevelop. But it should also be possible for other developers to extend this
object browser. It should be possible to insert a command into the object browser's context menu or do
other similar things.

The AddIn tree solved this problem and much more. The AddIn tree is capable of defining add-ins
using an XML format as glue code, which might be placed almost anywhere using a path model.

Once we started using this structure development sped up. We could safely add new extendable
components, without breaking other parts of the source code. We could throw away bad components
without harming the project.

The XML definition of our AddIn tree was also inspired by Eclipse, it has a similar definition but eclipse
works differently from the way SharpDevelop does. See www.eclipse.org for more details on Eclipse.

We will be discussing the AddIn tree in Chapter 3.
The development of a C# Parser began in 2001 but the development process was quite slow. It took a

lot of time, not because it was too difficult, but because it was done in our spare time (the spare time left
besides the time we sacrificed to SharpDevelop).

Designing the Architecture

We chose not to use the CodeDOM facilities of the .NET Framework because we need to get
information about the position of types, methods, etc. Using CodeDOM would have forced us to extend
each CodeDOM class with custom properties. Our own parser tree layer has proven to be helpful; we
use it for more than just the parser.

The first time code completion worked in SharpDevelop was in Spring 2002.

Unfortunately, we did not think about a general parse tree. We needed a parse tree that was abstracted
from the parser in SharpDevelop. This meant that we had to change the parser output. The parser
wasn't rewritten — a new abstract layer was created, which took the reflection API and our own parser
tree layer as an example of how to develop a .NET class model. Then interfaces were defined for all
.NET class features and an abstract implementation for them was written to make it easier to implement
this layer.

After this, the parser was restructured to fit in with the new structure and it worked quite well, even
though the parser wasn't written with flexibility in mind. After the long development phase, the parser
was relatively stable and capable of parsing source code at a high level.

We will be looking at the parser in Chapter 12.

Now it is even possible to plug-in any sort of parsers and have working code completion and method
insight for the languages that those parsers generate a parse tree for.

The Design Decisions

There were clear design requirements for the application. SharpDevelop should be easy to deploy. Just
copy and run the project. This approach to software deployment is known as 'Xcopy deployment', as is
used with MS .NET technology.

We didn't want to use an installer, nor did we need one. We had a strong Linux background where the
installer concept is perceived as being a bit strange because we were used to simply downloading,
compiling, and running software. Besides, we couldn't find any good open source installers that would
solve our problems. However, now we are using an installer, respecting the Windows traditions, but it is
always an option to just download the . zip file with the source code, build it, and run SharpDevelop
without needing any installer support.

The IDE should not assume that any special drive or directory exists. It should only assume that there is
a SharpDevelop application folder, nothing more. The .NET environment is aware of the location of the
user's application folder and it takes care to see that it exists and is in the right place (with write
permission). All options and other data that are to be written somewhere should be stored in the user's
application data folder, as SharpDevelop should run in a multi-user environment without hassles.
Therefore, every user has an independent copy of the standard option files, which they can change
without affecting any other user.

Another important goal was the 'do not touch the registry' design decision. SharpDevelop should not
create registry keys or assume that some registry keys exist. It should use the registry as a workaround
only if there is no other feasible alternative. This allows easy copy and run installation, and will also
allow easier porting to systems that do not have a registry.

27

Chapter 2

Another important decision was to use XML for every data file, and to move as much data from the
code to XML as possible. XML is a powerful format that allows easy conversion using XSLT. It adds a
lot of extra flexibility to SharpDevelop and is used whenever possible in SharpDevelop development.

Fortunately, the .NET platform makes it extremely easy for us to use XML in our applications. In fact,
the NET platform relies on XML for its applications. More importantly XML helps us in cleaning up
code; often the code is bloated with information that could be easily stored in a separate file. In this
code many properties are being set, and objects are created without doing anything with them. They
just have to be stored somewhere. All these are signs of code that could be written with XML instead.

A good example is the GUI code where buttons, forms, group boxes, and other controls are defined. Each
of these has properties assigned to it, information on where it is, which label it has, and other details. This
code doesn't really add functionality to a program. It just defines the way something looks. XML is a good
way to collect all this data in a file. So we began to use XML to reduce the actual code size.

Currently some panels and dialogs that are defined by Windows Forms depend upon the XML format.
Most forms are still missing; one of our next steps will be to design a better XML format for dialogs and
panels. We plan to use a format that works with Layout management. SharpDevelop should run under a
wide range of operating systems (currently it is only Windows based) with different languages. For the
time being, the dialogs and panels may look a bit strange when big fonts are used or when a
non-standard screen resolution is chosen. Some (human) languages use rather lengthy strings in labels
and these are cut off.

Another important issue is the use of the MVC model in SharpDevelop.

View

EN

Controller < Model

As we can see from the diagram, the controller is between the view and the model and it communicates
with both of them. The view needs to display the data. Therefore, it needs to read the model. It does not
need to make changes to the model so this communication is one-way.

For example, the text editor (in this chapter we won't go into implementation details, but this is a good
example) has a data model called the 'document'. In this model, text is stored, which is broken up into
lines. We use edit actions to change this text and a Control (in Windows Forms terms) to display our text.

The Control that displays the text represents the view in our MVC model. The edit actions correspond
to the controller (even if they are implemented using more than one class) and the model is
implemented by the document layer. The edit actions see to it that the view is updated and even call for
redisplay for some actions. The document layer, however, doesn't know anything about the view. All
these parts are independent of each other. We have tried to apply this model to the whole project.

28

Designing the Architecture

This is especially important if we want to be able to switch the GUI API. History has shown us that GUI
APIs come and go. If you know a bit about Java you may have noticed that Java AWT (the first version
of a Java GUI framework) was replaced by Java Swing, and some time back IBM released SWT (the
most recent Java GUI toolkit from IBM).

This could easily happen with the .NET platform, too. In fact, there is no reason why it shouldn't.
Therefore, in our design we took care to provide for this eventuality. Even if we always use the same
GUI AP, it is a good idea to make the view 'switchable'. In this way, it is possible to change the view, if
so desired, or even to develop several different views for the same data. As a bonus, this model helps to
think in terms of components, thereby, leading to a component-oriented approach.

Designing Component-Exchangeability

SharpDevelop aims to allow configuration changes on the fly, such as switching the user interface
language at run time or altering the layout at run time. This had led to a component-oriented approach
in which the components interact with each other through a common model.

We have designed a model that allows us to change components as we desire. For example, we may
remove the class browser without breaking anything in SharpDevelop. This was done using a
component model that is tree based. All components are loosely coupled, making SharpDevelop
programming a bit like using Lego building blocks.

SharpDevelop Components(=Addins)

Services Display Bindings Language Bindings PADS
StatusBar Text Editor C# ProjectScout
Toolbar HTML View VB.NET ClassBrowser
Language Object Browser Java FileScout
DisplayBinding Resource Editor JScript ToolScout
ClassBrowserlcons Form Editor e TaskView
Ambiences .
Tasks MessageView
. C#
Files PropertyPad
. VB.NET
Project HelpBrowser
LanguageBinding NET
Parser
Dialog Panels Menu Definitions Icons Texteditor
Addins
Options Main Menu Template Icons
Edit Actions
Wixzards Context Menus File Icons
Formatting
Project Icons Strategies
Icons for own use Line Painters

File Filter ProjectScout | | Toolbar
Addins Definition

Node Builders

|

29

Chapter 2

This is a quick overview of the SharpDevelop components. As you can see, we have quite a huge
number of components that form the SharpDevelop project. With our add-in system, we can manage all
these components, and we believe that it is general enough to add all the future components we will
need as well.

Best Practices

During the development of SharpDevelop, we've found some practices that we considered very helpful.
In the following sections we'll step through two of them — pattern oriented design and general coding
guidelines. Our aim is to present information about the design process that you may find useful.

Being aware of the best practices used during a development process helps a lot in ensuring that the
process is smooth and avoids many potential pitfalls.

Design Patterns

In this section we will give a brief overview of the design patterns used in developing SharpDevelop.
We began to use design patterns relatively late in the development process, as we weren't aware of the
benefits they provide for our design process. Design Patterns try to solve the flexibility problem, but not
through inheritance. Inheritance does this at the compile time (it is not possible to change the type of a
class during run time). Using Design Patterns enables us to change the behaviour of an object at run time.

If you have further interest in design patterns and design-pattern-driven design, we recommend you to
look at the book Design Patterns from Gamma, Helm, Johnson and Vlissides (ISBN 0-201-63361-2). Even
though the book does not contain C# examples, the concepts behind patterns are described very well.
However, in this book we have explained the necessary patterns with care, so even if you don't have an
in-depth knowledge of design patterns you can easily understand them.

Design Patterns are neither voodoo nor boring theory. Design Patterns provide a list of common
solutions that are used in real-world applications, and have been proven to be useful in a number of
different projects.

Apart from the better structure and enhanced flexibility that the pattern-oriented approach provides to
SharpDevelop, we found design patterns useful for better understanding of the structure, without having
to use UML. However, note that design patterns do not replace UML. In fact, they complement each
other well. UML is important for understanding complex systems but in case the UML diagrams are
missing, patterns make life a bit easier. Knowledge of patterns is useful and knowing how to apply them
to our projects is a good thing.

The patterns listed here are not exactly same as they are given in the Design Patterns book. Instead, they are
described the way as they are used in SharpDevelop. We do not redefine patterns but it might be possible
to see the same pattern explained a bit differently in other texts. But the concept is always the same.

We will be looking at following patterns:

Q Singleton

Q Factory

30

Designing the Architecture

QO Decorator

Q Strategy

O Memento

Q Proxy
Singleton

The singleton pattern is the pattern-oriented way of creating global variables. The singleton ensures that
there is only one instance of the singleton class during run time. It provides us with a global access point
to it as well. Lately, most singletons in SharpDevelop are being replaced by services, but the service
manager itself follows the singleton pattern, as well as some other classes of minor importance.

We use the singleton pattern when we are sure that we need only one instance of an object during the
run time of our application.

An example of the singleton pattern is as given:

class ExampleSingleton
{
public void PrintHello ()

{
System.Console.WriteLine("Hello World!") ;

}

ExampleSingleton ()
{
}

static ExampleSingleton exampleSingleton = new ExampleSingleton() ;

public static ExampleSingleton Singleton {
get {
return exampleSingleton;

}

Note that, the singleton object has only private constructors. This ensures that an object cannot be
created from our singleton class outside the singleton class; thereby allowing us to ensure that there is
only ever one such object.

Factory

The factory pattern creates an object out of several possible classes. For example, when we are working
with an interface and we have more than one implementation for it, we can use a factory to create an
object that implements the interface; the factory can select the implementation that it returns to us.

A factory is useful when the creation of an object should be abstracted from the end product (for
example, in cases where a constructor won't be good enough):

31

Chapter 2

public interface IHelloPrinter
{
void PrintHello () ;

public class EnglishHelloPrinter : IHelloPrinter
{
public void PrintHello()

{
System.Console.WriteLine("Hello World!") ;
}
}
public class GermanHelloPrinter : IHelloPrinter
{

public void PrintHello()
{
System.Console.WriteLine ("Hallo Welt!");

public class HelloFactory
{
public IHelloPrinter CreateHelloPrinter (string language)
{
switch (language) {
case "de":
return new GermanHelloPrinter () ;
case "en":
return new EnglishHelloPrinter () ;
}

return null;

In this example you need to create an object from HelloFactory and this factory creates a
IHelloPrinter given a language. This adds a bit more flexibility to the design.

HelloFactory <<Interface>>

IHelloPrinter

+CreateHelloPrinter()| 1 * +PrintHello()
EnglishHelloPrinter GermanHelloPrinter

This is the UML diagram for our example. With this pattern, we can easily add new concrete
HelloPrinter classes to our HelloFactory that can be created without letting the users of the

factory know that other implementations are added. The classes that use HelloPrinter classes only
need to know the factory class.

32

Designing the Architecture

Decorator

The decorator pattern adds functionality to an object at run time. The decorator inherits from an
interface; it extends and implements all methods in this interface. It receives an object that implements
this interface in the constructor and delegates all calls that the original interface exposes to the object it
received through the constructor.

The decorator can add a number of functions that the original interface doesn't have. This is useful for
adding functionality on the fly. In SharpDevelop we have classes that convert our internal abstract layer
for classes, methods, etc. into a human readable string. A decorator is used to extend these classes so
that they can return human-readable strings for the NET Framework reflection classes too. Classes that
convert the reflection classes to the SharpDevelop model are implemented separately. This helps us to
reduce the code duplication.

Another approach would have been to implement the reflection conversion decorator as an abstract
base class leaving the conversion methods abstract and have all converters implement them. This
approach, however, forces the conversion classes to inherit from a single base class. Also, this does not
leave much flexibility in the inheritance tree, as .INET supports only single inheritance. The design
pattern approach is superior to this.

Imagine that some of the language converters need some different conversion methods. Then we can simply
write another decorator, which adds these methods without making the inheritance tree more complex.

This example uses the factory example as a base to demonstrate the decorator pattern:

public interface IHelloPrinterDecorator : IHelloPrinter
{
void PrintGoodbye() ;

public abstract class AbstractHelloPrinterDecorator : IHelloPrinterDecorator
{
IHelloPrinter helloPrinter;

public AbstractHelloPrinterDecorator (IHelloPrinter helloPrinter)
{

this.helloPrinter = helloPrinter;

public void PrintHello ()
{
helloPrinter.PrintHello () ;

public abstract void PrintGoodbye () ;

public class EnglishHelloPrinterDecorator : AbstractHelloPrinterDecorator
{

public EnglishHelloPrinterDecorator (IHelloPrinter helloPrinter)

: base(helloPrinter)

33

Chapter 2

public override void PrintGoodbye ()
{
System.Console.WriteLine ("Good bye!") ;

public class GermanHelloPrinterDecorator : AbstractHelloPrinterDecorator
{

public GermanHelloPrinterDecorator (IHelloPrinter helloPrinter)
base (helloPrinter)

public override void PrintGoodbye ()
{

System.Console.WriteLine ("Auf Wiedersehen!");

We let the decorator inherit from an abstract base class too, but the decorator code is more static (in the
sense that it won't change) than the HelloPrinter classes.

The THelloPrinterDecorator adds a PrintGoodbye method to our classes to extend their
functionality. There are two implementations of the decorator, which we can apply to the simple
HelloPrinter classes to give them a new method.

You can use even a German decorator with an English hello printer, but this might cause some
strange effects.

<<Interface>> | 1
IHelloPrinter
+PrintHello()

7~

EnglishHelloPrinter GermanHelloPrinter <<interface>>
IHelloPrinterDecorator
+PrintGoodbye()

/N

<<metaclass>>
AbstractHelloPrinterDecorator

+PrintHello()
+PrintGoodbye()

7N

EnglishHelloPrinterDecorator GermanHelloPrinterDecorator

34

Designing the Architecture

In this diagram, we can see that the real HelloPrinter classes can inherit from another class without
problems. Other decorators can be added to it without problems. The HelloPrinters can change
their decorator at run time and extend their functionality dynamically.

Strategy

The strategy pattern is one of the most frequently used ones in SharpDevelop. With this pattern we can
encapsulate algorithms and change them at run time. For example in our search algorithm, we use a
searching strategy. We have two implementations for normal text search and regular expression search
and we can change the behavior of our search object at run time. This pattern is in contrast to the
decorator where we change the skin; with strategy, we change the guts!

Let's look at an example to demonstrate this:

using System;

public interface IHelloStrategy
{

string GenerateHelloString() ;

public class EnglishHelloStrategy : IHelloStrategy
{

public string GenerateHelloString /()

{

return "Hello World!";

public class GermanHelloStrategy : IHelloStrategy
{

public string GenerateHelloString ()

{

return "Hallo Welt!";

public class HelloPrinter
{
IHelloStrategy helloStrategy;

public IHelloStrategy HelloStrategy {
get {
return helloStrategy;
}
set {
helloStrategy = value;

public void PrintHello()
{
if (helloStrategy != null) {

35

Chapter 2

Console.WriteLine (helloStrategy.GenerateHelloString()) ;

As we can see, it is similar to the factory pattern but the factory pattern alters the object at creation time,
whereas the strategy can be switched on the fly.

<<Interface>> HelloPrinter
IHelloStragegy +HelloStrategy

+GenerateHelloString()

EnglishHelloStrategy GermanHelloStragtegy

In the diagram, we see that the HelloPrinter has a special strategy and that a strategy can be applied
to a number of HelloPrinters to give them the functionality.

The strategy pattern is useful to encapsulate algorithms for which we know a bad but easy-to-implement
solution and a good but difficult to implement solution. We can implement the bad but easy solution
first and test our code with this bad solution. With this pattern we can later implement the better
solution without changing the code calling the algorithm.

Memento

36

A memento simply stores the state of an object to restore it later. For example, we use mementos in
SharpDevelop to store the state of the workbench and to store information about the file (like
highlighting, caret position, or the currently used bookmarks in the document).

Memento's are used in places where the objects should not expose their internal state to the outer world
using public members. Some other good reasons to use mementos would be to allow the user to save the
state of the workbench at run time and to allow them to switch between several former saved states.

Here's an example of implementing a memento:

public class OurObjectMemento
{
int internalState;
string anotherState;

public int InternalState {
get {
return internalState;

}

public string AnotherState {

Designing the Architecture

get {
return anotherState;

public OurObjectMemento (int internalState, string anotherState)
{

this.internalState = internalState;

this.anotherState = anotherState;

public class OurObject
{
int internalState = 0;
string anotherState = "I know nothing";

public OurObjectMemento CreateMemento ()
{

return new OurObjectMemento (internalState, anotherState);

public void RestoreMemento (OurObjectMemento memento)
{
this.internalState = memento.InternalState;
this.anotherState = memento.AnotherState;

public void DoStuff ()
{

internalState

42;
anotherState = "I know the guestion too";

public void PrintState()
{
System.Console.WriteLine ("current state is {0}:{1}",internalState,
anotherState) ;

As we see, the memento itself exposes all internal variables from our OurObject. In SharpDevelop, all
mementos can convert themselves to XML (and back). This makes the object state persistent.

Proxy

The proxy pattern is used when we need to handle objects that take a lot of time to create, are complex,
or take too much memory. The proxy pattern allows us to postpone the creation of the 'big' object until
it is actually used.

In SharpDevelop, proxies are used to represent the classes of the NET runtime. These proxy classes only

have the name of the real classes, take much less memory, and are faster to load. They do not contain
information about the class members; hence, when these are requested, the real class must be loaded.

37

Chapter 2

38

This example uses the factory pattern as well:

public class HelloPrinterProxy : IHelloPrinter
{

string language;

IHelloPrinter printer = null;

public HelloPrinterProxy (string language)
{

this.language = language;

public void PrintHello ()
{

if (printer == null) {
printer = new HelloFactory () .CreateHelloPrinter (language) ;
if (printer == null) {

throw new System.NotSupportedException (language) ;

}
printer.PrintHello() ;
}

This HelloPrinterProxy class creates the actual printer object when the PrintHello method is
called for the first time. If we have a case where we need many objects (in our case from
IHelloPrinter) that would take up many resources and only some of them are actually ever used,
proxies should be used.

Now imagine that the HelloPrinters are remote objects and we store them in a hash table, where the
key is the language that the printer can print. Now imagine the HelloPrinters receiving their strings
from a remote server. Further let's assume that every creation of a HelloPrinter consumes 5 MB of
RAM. In such a scenario it makes sense to store the HelloPrinter proxy classes in the hashtable.
Besides, it is generally the case that only one HelloPrinter is needed in the application:

<<Interface>> 1
IHelloPrinter

+ PrintHello()

EnglishHelloPrinter GermanHelloPrinter HelloPrinterProxy

As we can see from the diagram, the proxy class is just an implementation of the interface that the
actual big class implements. The classes that use HelloPrinters don't know the difference between the
proxy implementation and the real ones.

This concludes our discussions on patterns. In the next section we'll be learning about the
SharpDevelop coding style.

Designing the Architecture

Coding Style Guideline

As is all always the case, we found it quite useful to have strict guidelines regarding the coding style. It
has helped to enhance the readability of the code and in reducing the time required for understanding
complicated parts. All examples in this book are written according to this style guide.

It contains various guidelines for various important aspects like:

File Organization
Indentation
Comments
Declaration
Statements

Whitespace

S T T T N

Naming Conventions

For an in depth coverage of our coding style guideline, you can refer to the CodingStyleGuide.pdf
file. This file is included along with the distribution of SharpDevelop and can be found in the
SharpDevelop\doc directory.

Now let's look at another interesting topic — the tools that we have used for tracking and removing bugs
in SharpDevelop.

Defect Tracking and Testing

For an open source project, it is sometimes forgotten that software should not be released until it has
been reasonably tested and debugged enough to qualify as practical and usable software. There have
been quite a few open source projects out there that seem to have missed out on this principle. What is
even worse is that a large number of the reported bugs get never fixed. This is not because the
programmers are evil; it happens because they do not observe decent bug tracking practices.

Fortunately, times have changed a bit and most projects now use advanced defect tracking and testing
techniques. SharpDevelop does so too.

Bug Tracker

One important tool, which we have used for SharpDevelop, is the bug tracker. It is an online
application to which every team member can submit bugs:

39

Chapter 2

[Tracker - Mozilla : == x|

. File Edit Wew Go Bookmarks Tools Window Help

" @0 @0 @ Q | % http Ao icsharprode. net/Tracker Tracker. asp?page=fir I [Cl.Search] c-;:_go

. 4 Home | FIRookmarks % The Mazilla orga... % Latest Builds

I=3 All Projects -
~3 MNZipLib @
Completed Medium 38b: drag & drop Fehler aus dem Tool Scout Christoph Wille 7402002
=Ea SharpDevelop @ lendlich reprabar
“@ &0Rel Open Medium 8b: Perceived Feformance schlimm bei GG Mike Kriiger [Christoph Wille 7/42002
: elease 47) ropD own
{1 Builds m Open hedium E&b: Deploy Compilation target Mike Kriiger |Christaph Wille 7/<KZ002
i CompletedHigh 2b: MDoe geht nicht Mike Krigar Christoph Wille 74/2002
ocumentation oy
~{ Feature Requests Open Medium [O0Z0717: Datei wird doppelt gedfinet Mike Kriiger |Christoph Wille B//2002
D IDE ELIgS &7 Comp i 20020717 ption bei leerer Combine Mike Kriger Christoph Wille 241/2002
D Intetnal 90 &1 CompletedMeny ZO0Z0717: Selection/Cursor Bug Mike Kriger Christoph Wille 241/2002
: High
{0 Website @ CompletedMedium 20020717 Tool='Options/Code Templates Mike Kriger [Christoph Wille 8i1/2002 || =
Usability
Open ery [2O020717: Project Seout updatet nicht bei Recent |Mike Kriger |Christoph Wille 8172002
High Froject
Completed Medium 20020717 : Outputwerzeichnis existiert nicht Mike Kriger Christoph Wille 241/2002
CompletedHigh 20020814: Compilemwiteh "warnasemor' doesn't Mike Kriger Christian Holm
atk
Open Medium [9: German Special Chars (Umlauts, &) are ignared [Mike Kriger [Christian Halm
and missin
Open High 9: C#AB NET Classfizard throws exception Mike Kriiger [Christian Halm
Qpen Lowy Q: Find - Mak All lssue Mike Krigar Christian Holm el
Open eny 0D20823: "Replace Al causes infinite loop on [Mike Kriger [Christian Holm
High |recurring ch...
Select all] Global Set] Reports; .Summary] Detail workload| |
1]] Tl -
[=2 o 8 e 7] | htip: /A, icshar poode.net/Tracker /Tracker .aspPpage=read_itemaltemID=373 | |<m:4 =3

Whenever we had some spare time, these bugs were then resolved. The bug tracker is a tool that only
team members can access.

Prior to the bug tracker era, the bugs were filed on paper, but paper always tends to get lost. This
application version of bug tracking is much more robust than the paper version. It also takes too much
time to put all submitted bugs on paper. With a bug tracker, one can just cut and copy the submitted
bugs to a centralized database. We can even attach images, and track the bug's history.

Before each release, it is our goal to fix as many bugs from the tracker, as we can manage.

Let's now discuss the testing strategies that we used during the development of SharpDevelop.

Unit Tests

For a GUI application, it is more difficult to apply unit tests, but they too profit from unit testing. One
important lesson we had to learn during the SharpDevelop project was that code should be written with
tests in mind. It is difficult to apply tests to code that was not written with tests in mind.

SharpDevelop is an application that does not have many unit tests. This is due to the fact that it was
necessary to write a new unit test application (#Unit) that can handle loading assemblies from different
directories, as the SharpDevelop assemblies are not all located in one directory. However, even with
these few tests written much time was saved. Bugs were found that would have not been found so easily
otherwise. For example, sometimes, when the text area has changed the change broke a part of the text
area (maybe the line representation) and often these bugs appear only on few cases like an 100% empty
file. The unit tests do check this case and others too. Manual tests can easily overlook one case, but
automatic unit tests don't.

40

Designing the Architecture

% 2Unit GUI 10| x|

Fle Help

P lass View | & Project Yiew | Pazsed test TestDocurmentBug3Test ;I
Paszsed test TestDocurmentBugd Test!
Passed test TestDocurmentBughTest!
SharpDevelopTests.dl | |Running tests in suite FileUtilityTestSuite : Test the FileUtility cIaSJ

DocumentTestSuite Paszsed test TestAbsoluteToRelativeFathTest' : Tests Ab
= Fi|6Uti|ityTeStSuite Passed test TestRelativeToAbsoluteFathTest' : Tests Re

Funning tests in suite CliphoardActionTests © Test the cliphoard ac
TeStAbSOIUteTORela Passed test TuthctionTest'

[F]TestRelativeToAbso Passed test CopyActionTest'
CIipboardActionTeSts _ F'as'_sed tgst PasteActionTest’
71 Caretl effTests Running tests in suite CaretlefiTests - Test the Cursorkeys
" Passed test 'CaretLefiTest1': Caret at start of Dokument
HomeEn KeyTests Passed test 'CaretLefiTest2': Caret at start of Line
[#]uUndoRedoTests Passed test ‘CaretLeftTest3' : Caret behind tab _Iﬂ
| »

< | _>| I Report B cverview |
lTestpngress

Executed : 45 Passed : 45 Failed : 0

Lately, unit tests have been written for the document model and the edit actions. Writing unit tests is a
good way to prevent bugs from being reintroduced, and to make sure that the functions work as specified.

We had wanted to write a unit test for every bug found, but this has proven to be a difficult task, as
many bugs are GUI-related and unit testing for GUI code is generally difficult. For example, the caret
gets incorrectly drawn as it is drawn 3 pixels above the line. Now, this type of bug can only be verified
visually. However, we are trying to extend our unit test suite to make SharpDevelop more robust than it
is now. Besides, this would also gives an extra layer of safety, even if code is restructured.

For the rest of the chapter, we will be discussing restructuring and other SharpDevelop practices. Some
of them are unusual, but keep in mind that the SharpDevelop development team is small. Only one
person has written the majority of the code (and read too much of the design patterns book and about
refactoring practices!).

Refactor Frequently

Refactoring is the most important practice we have used in the development of SharpDevelop. If you
want to read more about refactoring, we recommend you to read Refactoring: Improving the Design of
Existing Code by Martin Fowler and others (ISBN 0-201-48567-2).

Refactoring consists of a list of simple rules that can be applied to a program's source code to enhance
its structure, without having to break the program. These rules range from simple renaming to
redesigning of the object structure.

One day, I was asked if there were some aspects of the design for which we would have preferred to
choose another path. All I can say in answer to this question is, "If there is, we would choose the other
path now." There is nothing wrong in taking an unknown approach. If a project is started with a
development team that hasn't done something similar in nature before, it is natural to make wrong
decisions, or at least some that are not as good as they might be.

41

Chapter 2

During the development of SharpDevelop we had made many bad design decisions, some of them are:

a

Q

Q

We started out by using a 'wrong' data structure for developing the text editor. We had used
an ArrayList of lines, but now we have opted for a linear block model.

Earlier in the process, the text editor was built into SharpDevelop; now it is a component
which can be used in other applications too.

Initially, the overall structure was fragmented, and we had various kinds of XML formats
describing the connections between components; now we have the AddIn tree, which solves
many of our old problems.

I could give many more examples. The point is that, whenever we felt that we had taken the wrong
approach we simply restructured our design, even if it meant we had to restructure a large part of the
project. It is not as much work as it first seems to be and in the long run it helped us a lot and didn't
even hurt anybody (not even Clownfish, which is our mascot).

Sometimes, because of refactoring, we had to remove a feature from SharpDevelop, but it always got
re-implemented again later in much better quality and in less time. Some parts were structured on a
whiteboard; some parts have evolved from first tries. But every part has needed refactoring.

Design and Refactoring

Below I have listed some of our experiences with refactoring. Note that this list isn't a hard guideline
that we used for every case. However, it does give a very good idea about how the program evolved.
Here is a list of our refactoring rules:

Qa

O 0 0O 0o 0 O

If you don't understand a method, break it down into smaller ones and give them proper
relevant names.

Favor readable/understandable code over code with more performance.
Don't design too much today; tomorrow it will be so much easier.

No amount of refactoring is too much.

Use Assertions wherever possible.

Solve each problem at its root.

Last but not least an important rule: Eat your own dog food.

If You Don't Understand a Method, Break it into Smaller Ones

The SharpDevelop project manager always complains that there aren't enough comments in the
SharpDevelop source code. However, the code is commented (but not necessarily in the manner he
wishes). Now you might ask how this contradiction arises.

42

It's quite simple. The interfaces and services that people use are commented in the .NET way with XML
comment tags. But the implementations are not commented very well.

For each method, we attempted to find a good name that explains what the method does. If someone
doesn't understand a method, it is either a sign of a bad name or a too lengthy method, which should be
further broken down.

Designing the Architecture

Commenting is just as important, but it is more important to comment how the methods interact with
each other or how the code works. Giving all methods XML documentation tags results often in just
copying the method name, and gives a bad explanation such as this:

// This method returns back the user name.

string GetUserName ()
{

return userName;

This style of comment is fine when you know that you need this method, or when you write a library
that other people use, or when you only want to provide XML documentation for your project, and you
don't want to write documentation manually.

If a method isn't easy to understand, it should be considered harmful and refactored. C# is a language
that is relatively easy to read. We have had enough experiences, where the methods often got cut off
into different methods or that they ended up being thrown away.

Again, if every method were to have extensive documentation, then the development process would
take much more time than it normally does.

The comments on how the method does things should be done through developer comments (that is,
non-documentation comments). Programmers can refer to these comments when they change something
later on.

More important is general documentation about the infrastructure, how classes interact with each other,
or some UML drawings of the infrastructure. In SharpDevelop, we've used UML drawings only on the

whiteboard and very few actually have seen the outside world. Hopefully, this book will change this by
providing us with a decent documentation on the way things are done in the SharpDevelop project.

Favor Readable Code Over Code with Better Performance

I know some people would love to kill me for saying this, but let me explain myself. When I began
programming (in the late 80s), a good programmer was a programmer who could optimize the code in a
such way that people who learn coding in this century wouldn't have imagined it to be possible. But this
optimization had a cost — maintainability.

We often find that a method isn't quite understandable, because the programmer optimized it for
performance rather than readability. In this case, some performance should be sacrificed to enhance
code maintainability. Let's illustrate this point with an example from the SharpDevelop source code.

The SharpDevelop's SaveFile method can be written like this:

public void SaveFile(string fileName)
{

// some stuff
string lineTerminator = null;

switch (lineTerminatorStyle) {
case LineTerminatorStyle.Windows:

43

Chapter 2

lineTerminator = "\r\n";
break;

case LineTerminatorStyle.Macintosh:
lineTerminator = "\r";
break;

case LineTerminatorStyle.Unix:
lineTerminator = "\n";
break;

foreach (LineSegment line in Document.LineSegmentCollection) {
stream.Write (Document.GetText (line.Offset, line.Length));
stream.Write(lineTerminator) ;

// close stream etc.

In this code listing, concentrate on the part that is responsible for determining the line terminator for
different operating systems. We have an enumeration giving the line terminator style. But we need some
code that gives us the byte representation for the line terminator styles.

At first sight, this approach isn't easily understandable (now try to imagine 100 methods like this, where
we need to read the code twice). If there is a bug in the code that prevents us from getting the correct
line terminator, we can't even write a unit test for this bug. It might accidentally be reintroduced in the
source code. Remember, no code is small enough to be bug free.

A better approach is to put the switch statement into its own method:

string GetLineTerminatorString(LineTerminatorStyle lineTerminatorStyle)
{
switch (lineTerminatorStyle) {
case LineTerminatorStyle.Windows:
return "\r\n";
case LineTerminatorStyle.Macintosh:
return "\r";
case LineTerminatorStyle.Unix:
return "\n";
}

return null;

This enhances readability considerably. We have a self-describing variable for the switch, and have
also encapsulated the switch in a method that can be unit tested. Generally, smaller chunks of code are
more understandable (and writing unit tests for them is easier).

Now, we can set the string with this method, but we create a temporary variable that is only used once
in the code:

string lineTerminator = GetLineTerminatorString(lineTerminatorStyle) ;
foreach (LineSegment line in Document.LineSegmentCollection) {

44

Designing the Architecture

stream.Write (Document.GetText (line.Offset, line.Length));
stream.Write(lineTerminator) ;

Now imagine that we have 5-6 lines of code between the 1ineTerminator = statement and the
foreach statement; this reduces code maintainability (and this can happen when someone does not
take care when inserting some lines in the code). Temporary variables are good in many cases, but they
are often used excessively.

Instead, the SharpDevelop code implements in the following way:

foreach (LineSegment line in Document.LineSegmentCollection) {
stream.Write (Document.GetText (line.Offset, line.Length)) ;
stream.Write (GetLineTerminatorString (lineTerminatorStyle)) ;

Now, we have saved a line but at the cost of performance. Let's look at some practical numbers — I
saved a file with 10,000 lines on my notebook, the optimized version of this code took about the same
amount of time as the readable/less-optimized version. This is an important lesson — don't optimize
when there is no need for it.

If you aren't sure what is faster, try it out and compare the timings. The compiler and the runtime do a
lot of optimization for us, so never assume that you might do it faster. Always be sure to test it using
exemplary test cases. Even if the readable version is not as fast as the optimized version, we should only
optimize it if there is a real need for optimization. In other words, optimize only in critical sections. A
profiler can help us in finding these critical sections.

Don't Design too Much Today; Tomorrow it Will be so Much Easier

This is another practice people won't believe, but for the SharpDevelop project it has worked. Maybe
you know the old Spathi (a race in Star Control II, a computer game from 1992) saying, "Don't let me
die today, tomorrow it would be so much better."

This rule is my version of this saying. It's not because I dislike working on design (in fact I do a lot of
designing), but I also know that requirements will always change. Therefore, we shouldn't try to make
the code much more flexible or general than it needs to be. We also know that programmers learn more
over time, therefore a simple design that works is enough for the moment. If needed, we can always
refactor the code later.

Don't confuse simple design with bad design; simple designs are not bad. A simple design is a design

that solves our needs now; we can always refactor toward a more sophisticated design later on (should
the need arise). But be careful, if you know some reason why your simple design would fail, don't use it.

45

Chapter 2

No Amount of Refactoring is too Much

Often refactoring seems to be impossible or too great a challenge and, therefore, refactoring is avoided.
However impossible it may seem, we can always break the refactoring process into little steps, each of
which can be done separately, without breaking the whole program. Even if refactoring means much
work now, it always means less work later on. More importantly, even if refactoring seems to be a lot of
work, in reality it isn't; often it just seems to be much more work than it actually is.

Of course, the unit tests for the code refactored must be ported over to the new structure too, or new
unit tests must be written. But in many cases this is very easy.

Use Assertions Wherever Possible

Another practice that helped us a lot in the design and implementation is the use of assertions inside the
code. .NET provides an Assert method, which checks whether an expression is true and if not, it will
display an error message box containing the stack trace (the user can decide if the application should
continue or be stopped).

Every time a variable ought to have a specific value or a comment might be useful for reporting the
variable value at this point, an assertion does this better. The Debug.Assert method is only called
when the DEBUG symbol is defined (in the debug build). In the release build, these assertions won't
be called.

Example of an assertion in SharpDevelops open file method :
public void OpenFile(string fileName)

{
Debug.Assert (fileUtilityService.IsValidFileName (fileName)) ;

This example checks whether the filename is valid and if it is not, a message box appears showing the
stack trace and we see the bad code, which gave us an invalid filename. These checks should be done
before the OpenFile method is called. The checks are done in the GUI code to determine whether a
filename is valid or not.

By the way, the function that checks the filename for validity is very valuable. Therefore, it is listed here
under the best practices. It is a good example of being a little finicky about what the user might input or
functions may think is a valid filename:

public bool IsValidFileName (string fileName)

{
if (fileName == null || fileName.Length == 0 || filename.Lengt >= 260) {
return false;

}

// platform independent : check for invalid path chars
foreach (char invalidChar in Path.InvalidPathChars) {
if (fileName.IndexOf (invalidChar) >= 0) {
return false;

46

Designing the Architecture

// platform dependent : Check for invalid file names (DOS)
// this routine checks for follwing bad file names
// CON, PRN, AUX, NUL, COM1-9 and LPT1-9
string nameWithoutExtension =
Path.GetFileNameWithoutExtension (fileName) ;
if (nameWithoutExtension != null) {
nameWithoutExtension = nameWithoutExtension.ToUpper () ;

}

if (nameWithoutExtension == "CON" ||
nameWithoutExtension == "PRN" ||
nameWithoutExtension == "AUX" ||
nameWithoutExtension == "NUL") {
return false;
}
char ch = nameWithoutExtension.Length == 4 ?
nameWithoutExtension[3] : '\0';
return ! ((nameWithoutExtension.StartsWith("CoM") ||
nameWithoutExtension.StartsWith("LPT")) &&

Char.IsDigit(ch));

Assertions and check functions are a valuable practice. Unit tests round out the security issues even
more. It is always good to strive for robust and secure code.

Solve Each Problem at its Root

This is another important practice that most people don't follow. When a bug pops up somewhere, it
might go deeper than just the place where it was first seen. If bugs are fixed at a higher layer and not at
their root, then they will turn up where ever the culprit lower-level layer is being used, and ultimately,
we will be forced to apply a work around to every piece of code that uses this layer. This kind of bug
fixes makes the resulting code hard to understand and every time the buggy code is used, the
developers introduce a bug in the code they are currently writing.

Another interesting point is about implementing features. If a feature needs to be implemented, it might
be better to put it in a new place, because other parts of the application might need this too, and we can
easily share it. The same that is true for bugs, applies to new features as well.

For example, we happened to insert a file watcher into SharpDevelop. The contributor who
implemented the file watcher feature put it into the text area code; and it worked, but only for the text
area. The object browser, resource editor, or other display bindings were unable to make use of it.

A much better place to include it would have been in the abstract base class implemented by a display
binding. If an editor (or viewer) needs the file watcher features, it can just implement this class and turn
it on (or off) and all parts of the application can profit from the file watcher feature. One reason for
doing it in this sloppy way was because the person didn't think about the other display bindings.
Another reason was the lack of proper communication, within the project team

47

Chapter 2

I know that it is hard to post to the mailing list something like, "I'll implement a file watcher and want to
put it in the text area." This is mainly because developers don't want to look dumb. But discussing
technical issues and overall design should not be considered dumb. Developers do this when they are at
the same place. But curiously, this doesn't happen when they work in different places, and have instant
messengers and e-mail to share thoughts. This is the reason why all contributions to the main IDE are
overseen by the main developer, who knows the overall structure better than anyone else.

Eat Your Own Dog Food

SharpDevelop was a good application to develop, because it itself was being used in the development
process for the whole time. It is good to actually use the program that you write. If a program is seen
from the user's point of view, UI glitches and missing features (bugs as well) are more apparent.

SharpDevelop has been used since the very first few weeks to develop SharpDevelop. This helped us a
lot in improving the features and in fine-tuning them, something that we might have otherwise
neglected. This is one practice that makes open source software successful. The programmers who write
the stuff usually are their own users too.

Unfortunately, many programmers out there just change their program's behavior instead of improving
the code. For example, in SharpDevelop one of the all time worst features was Search and Replace. It's
because the developer who developed this feature almost never used it; he did all search and replace
operations with ultra edit, as ultra edit had powerful searching features.

Another feature that frequently broke down in SharpDevelop was the template completion window; this
window comes up when you press Ctrl+/. This happened frequently because the SharpDevelop code
developers do not use templates, and hence it was low on their priority list. Later on, this problem was
solved by using the same completion window that was used for code completion.

In earlier days, when SharpDevelop had no active VB .NET contributor, the VB .NET support group
developed random features too. We have some beta testers, but no tester uses all features of the IDE,
and there are some features that no tester ever uses. Lately, we discovered problems with the New
Class Wizard, because no tester or core developer actively uses this wizard.

All these examples prove that it is important to view the product from the user's perspective. Bug

reports from users are helpful, but we certainly don't want to let all the testing be done by our users. We
want to ship a stable product.

Summary

In this chapter, we have discussed the beginnings of SharpDevelop.

We have seen some major design decisions that were made for SharpDevelop, and which are essential
for the understanding of the whole structure. We have learned about design patterns and what the MVC
model is.

In the Best Practices section, we discussed the coding style and it's importance. We also learned about

refactoring and about defect tracking and testing. With this knowledge, we can now go on to the next
chapter, where we will be discussing the add-in implementation in detail.

48

Designing the Architecture

49

Chapter 2

50

'ﬂ |

Implementing the Core

In this chapter, we will learn about the structure that forms the basis of SharpDevelop. As in most
applications, the core of SharpDevelop is the executable but unlike most apps it provides only a few basic
services in addition to its main task, which is to load and build the so-called AddIn tree. In Chapter 2, we saw
the main idea behind the AddIn tree and its history. Add-ins are also called plug-ins, but for the purposes of
our discussions we will be using the term add-ins.

In this chapter, we will be discussing the AddIn tree structure it's implementation. We will also be learning
about the mechanism of object creation inside the AddIn tree. This chapter is essential for the understanding
of the interaction between SharpDevelop and the AddIn tree. After discussing the AddIn tree, we will also
look at how SharpDevelop manages property persistence.

The core infrastructure is separated from the rest of the code and can be found in the
src\SharpDevelop\Core directory. The whole add-in system is in this folder in the subfolder AddIns
but we encourage you to read the sections about the add-in system before you try to read the source code.

Ch

apter 3

The AddIin Tree

52

The AddIn tree is a simple tree data structure. There is only one AddIn tree for each instance of
SharpDevelop. This is the reason for implementing it by using the singleton design pattern (as seen in
Chapter 2).

Addin Tree

Plugs into
Plugs into

Plugs into
En

This diagram will give us the basic idea of add-ins; add-ins just plug into the tree and the tree contains the
whole system. Physically, an add-in is defined by an XML file and a set of DLLs that are referenced by the
XML. The DLLs provide the code, while the XML defines how and where it plugs into the AddIn tree.

We will now take a closer look at the AddIn tree:

Addin Tree

SubPath1 —(Noded

SubPath2

In the above diagram we have two different objects in the tree: nodes and paths.

Root Pathl

SubNodel)

SunNode2

The AddlIn tree is a tree that "binds them all". The add-ins are the nodes of the AddIn tree (the paths are
not 'really' add-ins because they have no use other than to structure the tree). The IDE changes its
behavior according to what these nodes define. The path to the nodes is structured like a file system. If we
want to access SubNode2 we have to specify the location as /Pathl/SubPathl/Nodel/SubNode2.
We see that Nodel is like a path but we will see the difference between a path and a node later. For now,
we will just say that nodes are paths that contain definitions of behavior.

All SharpDevelop parts that use the AddIn tree must know the path from which they can obtain the required
nodes. For example, the SharpDevelop Options dialog has the path /SharpDevelop/Dialogs/
OptionsDialog. In this path, and its sub-paths, only dialog panels are stored. The dialog now grabs all
panels from this sub-tree and inserts them into a tree view where they are displayed. In other words, the
add-in that defines a particular path also gets to define the (runtime) interface of the nodes that can be
inserted below it:

Implementing the Core

X

[Z] SharpDevelop options

23 Coding Code Generation

Code Templatesz

¢ Code Generation
[C3 Text Editor Start code block an the same line

— Code generation options

[Tool Else on same line as closing bracket
[Insert blank lines bebween members

Use full type names

—Comment generation aptions

Gererate documentation comments

Gererate additional comments

I 1] | | Carncel |

In the left side of the Options panel, in the tree view, we can see our AddIn tree nodes. The folders represent
empty nodes and the other tree-view nodes without the folder icon (for example, Code Generation) are the
nodes that contain panels (in this case all subnodes of this node are ignored). To add new panels, add-ins just
have to insert the correct nodes into the path, and the dialog will show them. All visible elements in
SharpDevelop (and most invisible ones too; for example, keyboard commands in the text editor, like cursor
keys, are implemented as nodes in the add-in tree) are defined by nodes.

Advantages of Using the AddIn Tree

The AddlIn tree has quite a few advantages over the other design approaches:

Q It allows extension of existing add-ins by other add-ins. The main problem when add-ins are
to be extended by add-ins lies in the fact that the existing add-ins have to be informed when
the other add-ins perform an action (like building a context menu). This is required because
the add-in that want to extend the other must extend the 'actions' of the other add-in and
some sort of communication must happen between them. This is the main issue solved with
the add-in structure. Unfortunately, this is the hardest one to explain because most people
have never encountered this problem or they have not thought about this grade of flexibility
(even if they have written an add-in system for their programs).

53

Chapter 3

Another advantage of the AddIn tree is that the assembly files containing the executable
code need not reside in one directory. They can be stored in any location the developer wants
to, and the add-in system will manage the file loading. This makes it easy to implement a
"copy and remove" deployment of add-ins. Just copy the add-in folder, which contains an
XML definition and the required assemblies, to the SharpDevelop AddIns folder and it will
work. Remove the directory and the add-in is taken out! Note that the .NET standard is to put
all the assemblies into one bin directory.

Also with this approach, the add-ins don't have to implement their own add-in structure, as all
the add-ins are based on only one system — The AddIn tree. We can customize just any
functionality via the same narrow interface.

Now, we will take a look at how deeply the add-in is rooted in the application. Let's begin with the method
that runs everything. This method can be found inside the
src\SharpDevelop\Core\SharpDevelopMain.cs file:

54

public class SharpDevelopMain

{

static SplashScreenForm splashScreen = null;
static string[] commandLineArgs = null;

public static SplashScreenForm SplashScreen {

get {
return splashScreen;

public static string[] CommandLineArgs {

get {
return commandLineArgs;

[STAThread ()]
public static void Main(string[] args)

{

commandLineArgs = args;
bool noLogo = false;

foreach (string arg in args) {
if (arg.ToUpper () .EndsWith ("NOLOGO")) {
noLogo = true;

if (!noLogo) {
splashScreen = new SplashScreenForm() ;
splashScreen. Show () ;

ArrayList commands = null;
try {
ServiceManager.Services.

Implementing the Core

InitializeServicesSubsystem("/Workspace/Services") ;

commands = AddInTreeSingleton.AddInTree.GetTreeNode
(" /Workspace/Autostart") .BuildChildItems (null) ;

for (int i = 0; i < commands.Count - 1; ++i) {
((ICommand) commands [1]) .Run() ;
}
} catch (XmlException e) {
MessageBox.Show ("Could not load XML :\n" + e.Message);
return;
} catch (Exception e) {
MessageBox.Show ("Loading error, please reinstall :\n" + e.ToString());
return;
} finally {
if (splashScreen != null) {
splashScreen.Close() ;

}

// run the last autostart command, this must be
// the workbench starting command
if (commands.Count > 0) {

((ICommand) commands [commands.Count - 1]).Run();

}

// unloading services
ServiceManager.Services.UnloadAllServices () ;

First, the Main method initializes the splash screen. This is not overly important, but while we do the real
work, that of building the AddIn tree, the user will at least see something.

The try. . .catch block is rather important. A call is made to the AddIn tree to obtain the tree node
/Workspace/Autostart, and then it builds all child items from this node. Later on we will see how this is done.

After this, the for statement casts these built child items into the ITCommand interface and the Run method is
called (except for the last one).

After the try. . .catch block, the last command is started. We start it separately to ensure that the splash
screen is closed when the last command starts. This last command fires up the workbench form (the main
window) of the IDE and runs the message loop.

Note that, in this code listing, we do not see any Windows . Forms code, or where the tip of the day pop-up
is launched (this pops up when SharpDevelop starts). Nor do we see the code completion wizard startup code
(this wizard is started at the first time SharpDevelop is launched). All of this is done with the help of the
AddIn tree. As per our design principles, SharpDevelop does not embed any GUI layer in the Core, giving a
good extensibility for any further use of other toolkits. The GUI layer is only implemented when is actually
needed by the application.

55

Chapter 3

It is possible to build a completely different application on top of the AddIn tree by just putting other Run
commands in the tree. This application can then benefit from the AddIn tree, just as SharpDevelop does. The
AddIn tree was not part of SharpDevelop from the start. It started its life as a subsystem of SharpCvs
(formerknown as NCvs), and afterwards it was ported over to SharpDevelop and SharpDevelop was
refactored to take advantage of this new add-in system. SharpCvs was part of the SharpDevelop distribution
but now it is no longer part of it because the project was discontinued and no longer maintained.

When the last Run command returns, the application message loop is assumed to have ended and it is time to
clean up; this is achieved through service unloading. We will be taking a detailed look at services in Chapter 5.

Now we will delve deeper into the add-in structure and have a look at the superstructure of the AddIn tree.

The Addin Tree Superstructure

The AddIn tree is defined by an interface that exposes all the functionality that is used by the rest of the
application. To get an overview of the functionality provided by this structure, we will take a look at the
IAddInTree interface. It can be found in src\SharpDevelop\Core\AddIns\IAddInTree.cs.

56

public interface IAddInTree

{

// Returns the default condition factory.
ConditionFactory ConditionFactory {
get;

// Returns the default codon factory.
CodonFactory CodonFactory {
get;

// Returns a collection of all loaded add-ins.
AddInCollection AddIns {
get;

// Returns a TreeNode corresponding to <code>path</code>.
IAddInTreeNode GetTreeNode (string path) ;

// Inserts an AddIn into the AddInTree.
void InsertAddIn (AddIn addIn) ;

// Removes an AddIn from the AddInTree.
void RemoveAddIn (AddIn addIn) ;

// This method does load all codons and conditions in the given assembly.
Assembly LoadAssembly (string assemblyFile) ;

Implementing the Core

At first, the AddIn tree has the ConditionFactory and CodonFactory objects. We will be looking at
codons in detail later on in this chapter. For now, we will just say that these factories create our AddIn tree
node contents. The next property is the AddIns property, which is also discussed later in this chapter.

After the AddIns property, the method that is really important for us is the Get TreeNode method. This is
the only method needed by the add-ins to use the AddIn tree. The other methods (and properties) are
currently only used internally in the core assembly.

The InsertAddIn and RemoveAddIn methods may be useful for implementing an add-in manager in the

IDE; however, currently they are not used. Now that we know about the most important method of the
IAddInTree interface, let's look at the definition of an add-in file.

Add-in Definition

We will begin this section by examining a simple add-in file:

<AddIn name = "Typed Collection Wizard"
author = "Mike Krueger"
copyright = "GPL"
url = "unknown"
description = "Creates a typed collection"
version = "1.0.0">
<Runtime>
<Import assembly="TypedCollectionWizard.dll"/>
</Runtime>
<Extension path = "/SharpDevelop/Templates/File/TypedCollection">
<DialogPanel id = "CollectionGenerator"
label = "Typed Collection"
class = "TypedCollectionGenerator.TypedCollectionWizardPanel" />
</Extension>
</AddIn>

This is a typical SharpDevelop add-in definition, and is written in XML. The root node has attributes about
the add-in, these attributes are not currently used in any code but we use them to carry information about the
add-in.

The <Runtime> node contains information about the assemblies that are required for this add-in to work.
This is usually a list of assemblies that contain the classes used in the definition file. After that, an
<Extension> node is defined, which has a path attribute and one child.

In this case, the child is a dialog panel, which has some attributes. This child will be placed under the
/SharpDevelop/Templates/File/TypedCollection path in the add-in tree. We will call this child a
'codon’. In other words, unlike <Runtime> and <Extension>, the <DialogPanel> node type is not
defined by the AddIn tree. Rather it is defined by a mechanism that we called a codon.

57

Ch

apter 3

58

We chose the name codon, because other terms that we used had misleading meanings and implications. For
example, initially they were called as modules, but this term was misleading and created problems when we
tried to explain the concept. Therefore, we decided to choose another name that isn't used anywhere else in
computing. The <DialogPanel> node produces an instance of an object type that has its attributes defined
by a codon. For reasons of brevity, we sometimes use the term codon to mean the XML node as well.

Objects from this codon class get stored in the tree structure and represent the codon XML nodes at run time
and are also called codons. But this rather liberal usage of the term is not a problem since, from the context of
our discussion, it is quite clear which codon is meant. In cases where this is confusing, we will use the term
'codon XML node' for the XML nodes, 'codon class' for the class representation, and 'codon objects' for the
objects created in the add-in tree at run time.

As we can see, a codon is just an implementation of the ICodon interface, found in the
src\SharpDevelop\Core\AddIns\Codons\ICodon.cs file:

public interface ICodon

{

// returns the add-in in which this codon object was declared
AddIn AddIn {

get;

set;

// returns the name of the xml node of this codon. (it is the same
// for each type of codon (the name of the XML tag inside
// the add-in file))
string Name {
get;

// returns the ID of this codon object.
string ID {
get;

// returns the Class which is used in the action corresponding to
// this codon (may return null, if no action for this codon is
// given)
string Class {
get;

// Insert this codon after all the codons defined in this string
// array
string[] InsertAfter {

get;

set;

// Insert this codon before the codons defined in this string array
string[] InsertBefore {

Implementing the Core

get;
}

// Creates an item (=object) with the specified sub items and

// the current Condition status for this item.

object BuildItem(object owner, ArrayList sublItems,
ConditionFailedAction action) ;

All codons know their AddIn (the object representation for the definition file). Each codon class must have a
unique name. This name is the same as the name of the codon XML node and it must be attached to the
codon class with the custom attribute CodenNameAttribute. It defines the name of the codon XML node.
The AbstractCodon base class (see below) uses CodenNameAttribute to implement the get property
(not shown) as required by interface ICodon.

The ID is the name of the codon object inside the tree (codons are referenced by their ID), therefore no two
codons can have the same ID when they are stored under the same AddIn tree path. This ID comes from the
XML attribute CollectionGenerator of the DialogPanel, which we saw before.

The other attributes are Class, InsertAfter, and InsertBefore. These attributes are not required for a
codon XML node definition but they get used frequently. Not all codon classes use the Class attribute but
InsertAfter/InsertBefore is used to arrange the codons on the same level.

For some codons, such as dialog panels, this may make sense, while for others like display bindings (these
create views for the IDE; we see display bindings in Chapter 6) the arrangement is not important.

The only method that a codon must have is the Bui1dItem method. In our dialog panel codon example, the
codons do not implement the control directly — instead they create new panels. This is done with a call to the
BuildItem method.

Codons can define additional attributes, the values of which they obtain from the XML definition, and can
apply them to the objects that they build. The AddIn tree puts these build codons together so that they can be
used outside the tree structure.

Now we will take a look at the manner in which a codon class flags the add-in system that it has attributes
that need to be read from the codon XML node. One approach would be to use attribute names that are
equal to field names in the object. However, this would not give much flexibility; what to do if some field
names are not set in the XML? Or what about fields that should not be able to be set inside the XML node?
Therefore another approach was chosen - flagging fields by using attributes.

We use the custom attributes feature of C# to define which attributes a codon has, because we need to make
it explicit when a codon has mandatory attributes. For example, all codons must have the ID attribute
defined, so they can be named. Besides the required attribute issue, it is not good if all class fields are treated
as potential XML attributes. To illustrate how this works we will look at the abstract implementation, which
can be found under src\SharpDevelop\Core\AddIns\Codons\AbstractCodon.cs:

public abstract class AbstractCodon : ICodon
{
[XmlMemberAttributeAttribute ("id", IsRequired=true)]

59

Chapter 3

string id = null;

[XmlMemberAttributeAttribute ("class")]
string myClass = null;

[XmlMemberArrayAttribute ("insertafter")]
string[] insertafter = null;

[XmlMemberArrayAttribute ("insertbefore")]
string[] insertbefore = null;

// Canonical get/set properties for all attributes seen above are taken
// out.

// Creates an item with the specified sub items and the current

// Condition status for this item.

public abstract object BuildItem(object owner, ArrayList subItems,
ConditionFailedAction action);

We can see that Xm1MemberAttributeAttribute or XmlMemberArrayAttribute has been defined
before each field in the AbstractCodon class. This attribute has one parameter, which is the attribute name
that a codon XML node may have. The attribute has an IsRequired property and, if it is set to true, all
codon XML nodes that describe an instance of this class must have this attribute or the AddIn class which
loads the codon XML node will throw an exception.

Codons have a class attribute, CodonNameAttribute, applied that has only one parameter — the codon
name. This is the name of the codon XML node. Now that we know about codons in detail, let's look at
object generation.

From Tree Node to Running Object

To understand how objects are created, we need to understand the method that is used most often inside the
add-in tree:

IAddInTreeNode GetTreeNode (string path) ;

As we can see, this method returns an IAddInTreeNode. We will now take a look at this interface. It can be
found under src\SharpDevelop\Core\AddIns\IAddInTree.cs:

public interface IAddInTreeNode
{
// A hash table containing the child nodes.
Hashtable ChildNodes {
get;

// A codon defined in this node
ICodon Codon {
get;

60

Implementing the Core

// All conditions for this TreeNode.
ConditionCollection ConditionCollection ({
get;

// Gets the current ConditionFailedAction
ConditionFailedAction GetCurrentConditionFailedAction (object caller) ;

// Builds all child items of this node using the <code>BuildItem</code>
// method of each codon in the child tree.
ArrayList BuildChildItems (object caller) ;

// Builds one child item of this node using the <code>BuildItem</code>
// method of the codon in the child tree. The sub item with the ID
object BuildChildItem(string childItemID, object caller);

We see that the child nodes are stored in a Hashtable. This means that finding a particular tree node is
fast. The next property is the Codon property. It gives us the name of the codon stored in the node. We will
be looking at conditions later on.

For now, we will discuss the BuildChildItems and BuildChildItem methods.

The BuildChildItems method calls BuildItem on all child codons (if any) and returns them as an
ArrayList. This method is defined in the DefaultAddInTreeNode class, which is located in the file
src\SharpDevelop\Core\AddIns\DefaultAddInTreeNode.cs

public ArrayList BuildChildItems (object caller)
{

ArrayList items = new ArrayList();
IAddInTreeNode[] sortedNodes = GetSubnodesAsSortedArray () ;

foreach (IAddInTreeNode curNode in sortedNodes) {
// don't include excluded children
ConditionFailedAction action =
curNode.GetCurrentConditionFailedAction(caller) ;
if (action != ConditionFailedAction.Exclude) {
ArrayList subItems = curNode.BuildChildItems (caller) ;

object newItem = curNode.Codon.BuildItem(caller, subItems, action);
if (newItem != null) {

items.Add (newItem) ;

}

return items;

61

Chapter 3

First, we obtain the child nodes as a sorted array. The child items get sorted topologically according to the
InsertAfter/InsertBefore properties of the sub-nodes' codons. This might cause strange effects when
we specify that a node should be put before a particular node. Note that by before we mean not directly
before the node, but rather somewhere before that node in general. Often it is necessary to specify the items
between which it should be inserted for the results that are expected. After that, the condition for the child is
checked, and if it is not excluded it will be put into the items ArrayList.

Note that the subItems are created recursively with this method (called on the child) and that the codon
BuildItem method must handle the sub-items itself. Each tree node can have sub-items and during the
object creation these sub-items must be handled.

This is important because what a sub-item is isn't clear on the level of the AddIn tree node.

For example, if it is a menu item then the items must be cast to the menu item class and be put into the items
menu item collection. Unfortunately, the Defaul tAddInTreeNode does not know about the codon
implementation. Only the codon does. Therefore, codons must handle their sub-items by themselves. Note
that not all codons are able to handle sub-items. For example, file filter codons do not handle sub-items, these
just get discarded; but it is up to the codon implementer to decide what happens (throw exception, silently
discard, or do something else).

After this, the new item will be put into the ArrayList and the array list is returned. The
BuildChildItem method does the same thing, except that it only builds one specific child.

Now that we know how objects are created, let's look at look at the creation of codons.

Codon Creation

To properly understand how a codon is created, we first need to look at the codon subsystem:

<<interface>> | 4 1 CondonBuilder 1% CondonFactory
ICodon -
+CreateCondon()
AbstractCodon

We have already seen the ICodon interface in the section on Add-in Definition. Now we will be looking at the
classes responsible for the codon creation. The system allows new codons to be defined by add-ins. This
ensures much more flexibility than defining a static set of codons inside the core assembly. When an
assembly is imported by the add-in subsystem, it is scanned for types that have the CodonNameAttribute
attached and are a subclass of the AbstractCodon class.

62

Implementing the Core

We decided to make the inheritance from the AbstractCodon class mandatory because it is easier to use
this abstract class and it does not introduce any limitations to our current codon implementations. If the
future proves that we were wrong with this assumption we can switch back to make a ICodon
implementation and the CodonNameAttribute sufficient for a codon implementation without

breaking anything.

The AbstractCodon class provides the basic functionality, which every codon must have.

We already know that codons are XML-defined objects. The codon responsible for a specific XML node is
determined by the node name. This node name and the codon name, which is given by the
CodonNameAttribute, must be equal. The core locates the codon that has a CodonNameAttribute,
which matches the XML node name. After that a new CodonBuilder is created for these types, which is
handed over to the CodonFactory.

The codon builder (src\SharpDevelop\Core\AddIns\Codons\CodonBuilder.cs) builds a
codon with:

public ICodon BuildCodon (AddIn addIn)
{

ICodon codon;

try {
// create instance (ignore case)
codon = (ICodon)assembly.CreateInstance(ClassName, true);

// set default values
codon.AddIn = addIn;

} catch (Exception) {
codon = null;

}

return codon;

It gets the assembly and class name in the constructor; that is all that is needed. The CodonBuilder reads
the CodonNameAttribute and makes the attribute value available as a public property. The
CodonFactory that is available under src\ SharpbDevelop\Core\AddIns\Codons\
CodonFactory.cs searches for a given XML node for the correct builder. In other words, the
CreateCodon method of CodonFactory takes an XML node, finds the proper CodonBuilder, and asks
it to build the codon. A reference to the add-in needs to be carried along:

public class CodonFactory

{
Hashtable codonHashtable = new Hashtable();

public void AddCodonBuilder (CodonBuilder builder)
{
if (codonHashtable[builder.CodonName] != null) {
throw new DuplicateCodonException (builder.CodonName) ;
}
codonHashtable [builder.CodonName] = builder;

63

Chapter 3

public ICodon CreateCodon (AddIn addIn, XmlNode codonNode)

{
CodonBuilder builder = codonHashtable[codonNode.Name] as CodonBuilder;

if (builder == null) {
throw new ApplicationException ("unknown condition found");

}

return builder.BuildCondition (addIn) ;

The AddCodonBuilder method just adds a new builder to the factory, and in the CreateCodon method,
the correct builder is taken out of the hash table that contains the CodonBuilder.

Conditions

Now we are ready to move on to conditions. A condition is used in the AddlIn tree to indicate whether a
node is active (that is, if it should be built when BuildItem is called). This is useful for dynamically
changing the AddIn tree. Dynamic changes are used in the menus to make menu items invisible, when they
aren't used or to disable menu items. All this is done using conditions:

< Condition openproject="*" action="Disable">
<!-- Here may follow a menu definition (left out for this chapter) -->
</Condition>

(This is just an example and does not reference to a real file.)

The <Condition> node is a sub-node of an <Extension> node, which have seen. Now we will look at the
<Condition> node; it has an action attribute that is set to Disable. Currently there are only three possible
options for a condition — Nothing, Exclude, and Disable. These actions occur only when the condition
evaluates to false.

Nothing does nothing, if the condition fails. If we choose this, it will be similar to not using a condition. This
is only included for the sake of completeness. If no action attribute is specified, Exclude is the default action.
It merely removes the item virtually from the AddIn tree when the BuildItem method is called. Disable
tries to disable the item. The codon object must handle the disable case by itself. Only the object knows
whether it can be disabled and how this happens. For example, if we disable a menu item the Enabled
property has to be set to false.

64

Implementing the Core

From the coding viewpoint the conditions are similar to the codons:

<<interface>> 1 CondonBuilder
ICondition

ConditionBuilderCollection

AbstractCondition

+GetBuilderForCondition(conditionNode : XmINode) ()

ConditionFactory
+CreateCondon()

The only difference is that the ConditionFactory doesn't have a hash table that contains the condition
builders directly, instead a ConditionBuilderCollection is used that stores all conditions in a
collection and searches in the collection for the right condition. This is done because conditions are not
differentiated by name. Instead, conditions use different attributes for identification. That means that no two
different conditions can expose the same set of required attributes because the implementation must chose
only one condition. This limitation makes sense — if two conditions have the same set of attributes they
should mean the same thing or else more meaningful names should be chosen.

The interface is also different. For example, conditions do not need ID numbers or arrangement information.
The interface definition can be found under src\ SharpDevelop\Core\AddIns\
Conditions\ICondition.cs:

public interface ICondition
{
// Returns the action which occurs, when this condition fails.
ConditionFailedAction Action {
get;
set;

// Returns true, when the condition is valid otherwise false.
bool IsValid(object caller) ;

The condition interface is small, but this is all that's needed. We will be looking at more practical aspects of
conditions and codons in the next chapter. For now, this should be sufficient to introduce the next section on
loading of add-in XML files and construction of the AddIn tree.

65

Chapter 3

Addin Management

The add-in management is done by the AddIn class, which is located under src\SharpDevelop\Core\
AddIns\AddIn.cs. This class is a representation of the XML add-in file format, which we will be seeing in
the next chapter. We will not go through this class in full, because it is similar to what we have seen — a file
gets read and it is inserted into the tree. Nothing unexpected happens.

First we will need to get a short overview of the AddIn class:

Addin
+Name
+Author Extension
+Copyright N
+Url 1 +Path
+Description +Conditions
+Version +CondonCollection
+FileName
+RequiredExtensionsPaths
+RuntimeLibraries
+CreateObject(className:string)()
+Initialize(fileName:string)()

The attributes shown in the diagram above are populated from the add-in XML file that we saw in the Add-in
Definition section. The extensions contained in the add-in XML are stored in a separate class called
Extension that contains all extension paths and contents defined by this add-in. An extension path is just a
shortcut for putting codons in the appropriate path.

For example, / is the root path and when we specify /myPath/subPathl the node myPath is created as
child of the root node and this node gets a child node called subPath. All codons defined in this
extension path are children of the subPathl node. We save this add-in structure to have the option of
removing an add-in at run time.

Now, we will look at how the AddIn class gets loaded and initialized. To understand this let's examine the
Initialize method:

public void Initialize(string fileName)

{

66

this.fileName = fileName;
XmlDocument doc = new XmlDocument () ;
doc.Load (fileName) ;

try {
name = doc.DocumentElement.Attributes["name"].InnerText;
author = doc.DocumentElement.Attributes["author"].InnerText;

copyright = doc.DocumentElement.Attributes["copyright"].InnerText;

url = doc.DocumentElement.Attributes["url"].InnerText;

description = doc.DocumentElement.Attributes|["description"].InnerText;

version = doc.DocumentElement.Attributes["version"].InnerText; }
catch (Exception) {

throw new AddInLoadException("No or malformed 'AddIn' node") ;

Implementing the Core

foreach (object o in doc.DocumentElement.ChildNodes) {
if (o is XmlElement) { // skip comments
XmlElement curEl = (XmlElement)o;

switch (curEl.Name) {

case "Runtime":
AddRuntimeLibraries (Path.GetDirectoryName (fileName), curEl);

break;

case "Extension":
AddExtensions (curEl) ;
break;

First, we obtain all add-in attributes from the root node and store them. After that, the child nodes are parsed
and the helper methods handle them differently:

Q Runtime node
The runtime node contents get loaded into the AddIn tree. The node contains a list of

assemblies that are loaded and scanned for additional codons and conditions, which get
inserted into the AddIn tree factories

Q Extension node
This node is used to place the codons in the tree. The extension node takes a path that will be

used to insert all subnodes that describe codons into the tree under the path given.

We do have the problem of add-in dependencies. This is solved by queuing the add-in load. We try to load
add-ins sequentially; if one loading fails the add-in is placed at the end of the queue and all other XML files
are loaded before the add-in, which failed. If no add-in in the queue can be loaded, then we show the load
errors (the thrown exceptions) that prevent the add-ins from loading.

We will now delve deeper into the AddExtensions method from the AddIn class, which is responsible for
parsing any Extension elements, including the conditional and various codon subnodes:

void AddExtensions (XmlElement el)

{
if (el.Attributes["path"] == null) {
throw new AddInLoadException("One extension node has no path attribute
defined.");

}

Extension e = new Extension(el.Attributes["path"].InnerText) ;
AddCodonsToExtension(e, el, new ConditionCollection()) ;
extensions.Add(e) ;

As you can see, after checking that the extension has a path attribute, this method creates an Extension
object based on the path and calls AddCodonsToExtension to populate it.

67

Chapter 3

Lets look at the AddCodonsToExtension method.

void AddCodonsToExtension (Extension e, XmlElement el, ConditionCollection

conditions)

{
foreach (object o in el.ChildNodes) {

if (! (o is XmlElement)) {
continue;

}

XmlElement curEl = (XmlElement)o;

After setting up a loop through the elements in the Extension element of our XML document, we switch
on the name of each element. Some elements are ignored because their sub-trees do not contain codons and
so we don't need to traverse them.

switch (curEl.Name) {
case "And": // these nodes are silently ignored.
case "Or":
case "Not":
case "Condition":
break;

If the node is a Conditional node, we need to create a new ICondition object. If the Conditional
element does not have the required attributes, we create a condition with a ConditionFailedAction:

case "Conditional™":
ICondition condition = null;

// construct condition
if (curEl.Attributes.Count == || (curEl.Attributes.Count == 1 &&
curEl.Attributes["action"] != null)) {

condition = BuildComplexCondition (curEl) ;
// set condition action manually

if (curEl.Attributes["action"] != null) {
condition.Action = (ConditionFailedAction)
Enum.Parse (typeof (ConditionFailedAction),
curEl.Attributes["action"] .InnerText) ;
}

If the condition is null after calling BuildComplexCondition, we throw an exception, as the condition
must not have been formatted correctly.

if (condition == null) {
throw new AddInTreeFormatException
("empty conditional, but no condition definition found.");

68

Implementing the Core

If the element does have the required attributes, we can go ahead and create the condition from the AddIn tree.

} else {
condition = AddInTreeSingleton.AddInTree.
ConditionFactory.CreateCondition (this, curEl);
AutoInitializeAttributes (condition, curEl);

We then add the condition to the ConditionCollection of conditions to be traversed. After traversing
the collection, we remove the last condition as it has now been traversed.

// put the condition at the end of the condition 'stack'
conditions.Add(condition) ;

// traverse the subtree
AddCodonsToExtension (e, curEl, conditions);

// now we are back to the old level, remove the condition
// that was applied to the subtree.

conditions.RemoveAt (conditions.Count - 1);

break;

There is one more type of element that we need to deal with — codons. As codons do not use a single element
name, we use the default case of our switch statement to handle them. This means that anything that has
not been dealt with previously will be treated as a codon:

default:
ICodon codon = AddInTreeSingleton.AddInTree.
CodonFactory.CreateCodon (this, curEl);
AutoInitializeAttributes (codon, curEl);

Before we add the codon to the CodonCollection of the extension, we need to set its InsertAfter and
InsertBefore properties to ensure that it is added in the correct place.

e.Conditions|[codon.ID] = new ConditionCollection(conditions) ;
if (codon.InsertAfter == null &&
codon.InsertBefore == null && e.CodonCollection.Count > 0) {
codon.InsertAfter = new stringl[] {

((ICodon)e.CodonCollection
[e.CodonCollection.Count - 1]).ID };

}
e.CodonCollection.Add (codon) ;

If the element has child nodes then we need to add an extension for the codon.

if (curEl.ChildNodes.Count > 0) {
Extension newExtension = new Extension(e.Path + '/' + codon.ID);
AddCodonsToExtension (newExtension, curEl, conditions) ;
extensions.Add (newExtension) ;

69

Ch

apter 3

If you want to go on to learn more about the AddIn tree, you can see it in action in the next chapter. For
now, we will take a break from AddIns and look at property management in SharpDevelop.

Property Management in SharpDevelop

70

Property management is the ability to manage, save, and load all 'options' (we call them properties) that the
user has altered while they use the program. Examples of properties are the UI language or recently opened
files. SharpDevelop has a simple common model for this issue. We will look at how this problem was solved
because it may be helpful to you for your projects.

In this section, when we speak of properties we do not mean properties in the sense of C# properties. We
mean a more general concept. Our concept is simple, we have a key and a value, each key has at most
one value.

<<interface>>
IXmICovertable

+FromXmIElement()
+ToXmlElement()

<<interface>>
IProperties

+GetProperty()
+SetProperty()

DefaultProperties

The diagram gives us an overview of the property management system. The IXmlConvertable interface is
the base for the IProperties interface. Currently, there is only one implementation of the IProperties
interface, called DefaultProperties.

We will see how the property system works inside SharpDevelop and how to use it for our own add-ins,
having done that, we will be capable of building a system like this in our other applications too. Finally, we
will discuss how to make properties persistent. The Property system is able to store simple types into
properties as well as whole objects. We will also discuss the reasons for property management being so
difficult and the solutions to reduce the level of complexity.

Implementing the Core

The Idea behind the IXmlIConvertable Interface

SharpDevelop defines an interface called IxmlConvertable to indicate that an object can convert its
contents to XML and restore its state later. Now we look at this interface located in the
src\SharpDevelop\Core\Properties\IXmlConvertable.cs file:

public interface IXmlConvertable
{
object FromXmlElement (XmlElement element) ;

XmlElement ToXmlElement (XmlDocument doc) ;

As we can see the definition is quite simple; there are only two methods. The FromXmlElement method
takes an Xm1Element, and returns a new instance that gets initialized with the content from the element. We
do not want to use .NET serialization because the object may change, but the file format does not. When the
XML format changes, we may consider reading old nodes too and

convert them.

.NET XML serialization was used in the first version of the code completion database (you can find more
about it in Chapter 13) but later on it was replaced by our own routines. The code completion database stores
all information (classes/members and documentation) about the .NET Framework classes into a single file.

The version that used serialization took up 90MB hard disk space and over 15 minutes to build on my
notebook. The routine that was written without serialization takes only around 20MB and builds the database
in 1 minute on the same machine. The hand-made solution is faster and much smaller because the file format
is optimized to avoid overhead.

.NET XML serialization is good when the volume of data is less. Besides, we shouldn't spend too much
time on solving the persistence issue. Now that we have learned about the IXmlConvertable interface,
let's examine the IProperty interface because it extends IXmlConvertable.

Overview of the IProperties Interface

First, we will need to get an overview of the main interface — the IProperties interface. The rest of the
application works with this simple interface; this is all that we need. We have functions for getting and setting
properties. The IProperties interface also defines a method for cloning an IProperties object. The
IProperties interface is located in the src\SharpDevelop\Core\Properties\

IProperties.cs file:

public interface IProperties : IXmlConvertable

{
object GetProperty (string key, object defaultvalue) ;
object GetProperty(string key) ;
int GetProperty (string key, int defaultvalue) ;
bool GetProperty(string key, bool defaultvalue) ;
short GetProperty(string key, short defaultvalue) ;

71

Ch

apter 3

byte GetProperty (string key, byte defaultvalue) ;

string GetProperty(string key, string defaultvalue) ;
System.Enum GetProperty (string key, System.Enum defaultvalue) ;
void SetProperty(string key, object wval);

IProperties Clone() ;

event PropertyEventHandler PropertyChanged;

Let's take a closer look at the various forms of the Get Property methods. The simplest form is:
object GetProperty(string key) ;

This form gets a key and returns an object to us. In SharpDevelop, this method is only used for getting
temporary properties.

A temporary property is simply a property that cannot be written to disk. In this case, the user (we) must
know about the property type and perform all castings. The problem with a persistent object property lies in
converting it into XML and back (this is discussed in the next section).

Another form of this method is:
object GetProperty(string key, object defaultvalue) ;

This form takes an object and uses a default value. The default value is returned when a property with the
key is not found, and the object defaultvalue is inserted under the key. This approach makes it easier to
create a default property file. Otherwise, all properties must be changed to generate a default file. This
method can be used for persistent properties also, but shorthand methods are defined for basic types that
make the usage of properties easier, (basic types are int, bool, short, byte, string, and enum).

These overloaded methods will perform some casting for the user, which makes them more comfortable to
use. These variants are used more often than the object-based one.

In the next section, we will see why the first form of Get Property method is special and how it manages to
store objects into the XML file.

The Default Implementation

72

Now we will look at the default implementation of the IProperties interface. We will be looking at the
important parts only; we won't be seeing the empty default constructor or how an OnEvent method is defined.

This implementation is in the
src\SharpDevelop\Core\Properties\DefaultProperties.cs file:

public class DefaultProperties : IProperties
{
Hashtable properties = new Hashtable() ;

Implementing the Core

As we can see, this class is based on System.Collections.Hashtable, this ensures a decent speed
when a get or set method is used on a property. Let's look at the GetProperty method:

public object GetProperty(string key, object defaultvalue)
{
if (!properties.ContainsKey (key)) {
if (defaultvalue != null) {
properties|[key] = defaultvalue;
}

return defaultvalue;

}
object obj = propertiesl[key];

// stored an XmlElement in properties node >
// set a FromXmlElement of the defaultvalue type at this
// propertyposition.
if (defaultvalue is IXmlConvertable && obj is XmlElement) {
obj = properties[key] = ((IXmlConvertable)defaultvalue).
FromXmlElement ((XmlElement) ((XmlElement)obj) .FirstChild) ;
}

return obj;

The first part is simple; it just says that when the hash table cannot find the key we simply return the default
value. In this case, the key is created, the default value is assigned, and the default value is returned. (But only
the first time; at the second call the key will exist.)

From now on, things get more complicated. We will need to know a bit about the loading routines. The
basic-types just get an XML node that has a value attribute. All other nodes are treated as object nodes and
are not converted when the property file is loaded. Instead, they are converted when the get property method
is first called. We just overwrite the values of the default value and give it back.

In SharpDevelop, when an object is to be obtained from the properties, a call like this is made:
myObj = GetProperty ("MyRequestedKey", new DefaultObject());

As we can see, the default value is not used anywhere else. Therefore we can alter this during the
GetProprety call.

You might ask why it is being done this way. We could have used another approach, by just storing the type
of the IXmlConvertable object and using this type information to create the object with a call to
System.Reflection.Assembly.Createlnstance (string typeName). However, this approach
doesn't work, as we do not know in which assembly the type is defined (although we might save the assembly
name too). More importantly, when the property system is initialized and the property is loaded we do not
want to load all assemblies and create all types because this takes too much time and memory. Therefore,
they will be created on demand. Keep in mind that the property system is initialized before the AddIn tree
gets loaded (because some add-ins may need properties when they load up).

73

Chapter 3

Now, we will skim over the overloaded methods. They all use the basic method that returns an object and
takes a default value to do their job. Even if we promised to omit the boring ones, it might be useful to see
that all basic types have a Parse method defined, which takes a string and outputs the type.

Another method of converting strings to types would have been to use the System.Convert class.
Unfortunately, this class provides no mechanism for converting enumeration types.

Let's now look at the code:

public object GetProperty (string key)

{
return GetProperty (key, (object)null);

public int GetProperty (string key, int defaultvalue)

{
return int.Parse (GetProperty(key, (object)defaultvalue).ToString()) ;

public bool GetProperty(string key, bool defaultvalue)

{
return bool.Parse (GetProperty (key, (object)defaultvalue).ToString()) ;

public short GetProperty(string key, short defaultvalue)

{
return short.Parse (GetProperty (key, (object)defaultvalue) .ToString())

public byte GetProperty(string key, byte defaultvalue)

{
return byte.Parse (GetProperty (key, (object)defaultvalue) .ToString());

public string GetProperty(string key, string defaultvalue)

{
return GetProperty (key, (object)defaultvalue) .ToString() ;

public System.Enum GetProperty (string key, System.Enum defaultvalue)
{
return (System.Enum)Enum.Parse (defaultvalue.GetType(),
GetProperty (key, (object)defaultvalue).ToString());

These are the get methods described by the interface. The Enum version checks whether the property can
be converted to Enum and, if not, it just returns the default value.

We mentioned earlier that it is possible to add a new value to our properties implicitly. Now, we take a look
at our SetProperty method, which sets a property explicitly:

74

Implementing the Core

public void SetProperty(string key, object wval)
{
object oldvalue = propertiesl[key];
if (!val.Equals (oldvalue)) {
properties|[key] = val;
OnPropertyChanged (new PropertyEventArgs (this, key, oldvalue, val));

This method fires the property-changed event by calling the OnPropertyChanged method. This is
important because sometimes it is necessary to carry out an update when a specific property changes. We will
look at such updates in Chapter 7, which deals with updating the IDE when the user switches the UI language.

The SetProperty method is commonly used when the user changes options in the option dialog.
Generally, properties are read and silently inserted into the properties object.

Now we will take a break from wading through the source code, and will stop to investigate some practical
issues with ways properties are used in SharpDevelop.

Properties at Work

One useful feature of our property framework is that the IProperties interface itself extends the
IXmlConvertable interface. This allows for an interesting option - storing IProperties instances
into properties.

This is used in several places, for example, the text editor uses this feature. The text editor has its own
IProperties object, which holds its options (this prevents name clashes). In earlier SharpDevelop versions,
the text editor made a copy of the main properties from SharpDevelop and used the local copy. That allowed
the user to change the font for a single window without touching the font properties of the others. However,
this feature was found unintuitive by our users (they expected that if they change the font all text areas would
get updated) and was easily taken out; the object was simply assigned without calling a copy and it worked.

Without using something like the IProperties concept, it might have taken a lot of time to shift away from
such a working model but with the properties it was extremely easy. Now we look at another part of the IDE
where an IProperties object is used and which has nothing to do with persistence.

We will look at the Project options dialog. It can be found in the
SharpDevelop\src\SharpDevelop\Base\Gui\Dialogs\ProjectOptionsDialog.cs file. This
code snippet is taken from ProjectOptionsDialog constructor:

IProperties properties = new DefaultProperties() ;
properties.SetProperty ("Project", project);
AddNodes (properties, optionsTreeView.Nodes, node.BuildChildItems (this));

First, we define a new IProperties object and then call the AddNodes method, which adds all the project
configuration panels. The next important piece of code is in the foreach statement; in each loop the
Config property is set to the current configuration:

75

Ch

apter 3

configurationTreeNode = new TreeNode ("Configurations") ;
configurationTreeNode.NodeFont = plainFont;

foreach (IConfiguration config in project.Configurations) {
TreeNode newNode = new TreeNode (config.Name) ;
newNode.Tag = config;

if (config == project.ActiveConfiguration) {
newNode.NodeFont = boldFont;
} else {

newNode.NodeFont = plainFont;
}
properties.SetProperty ("Config", config);
AddNodes (properties, newNode.Nodes,
configurationNode.BuildChildItems (this)) ;
configurationTreeNode.Nodes .Add (newNode) ;

The node is then added to the tree view. It is not necessary to create a new IProperties object for each
loop because all project option panels must receive their configuration at startup. In an older version, the
configuration panels just got their configuration and that was all that was needed. But then a contributor
needed a project configuration option that uses a property from the project itself. To implement this, one
possible solution would have been to make sure that the configuration objects knew their parent (the project)
and that the configuration panel just uses this property.

Instead, we chose the present approach. It is used in more places than just in the one we are looking at now.
It's a very good solution since all panels just get one object and new panels can be added that need new
objects without changing the old ones.

To make a property persistent in SharpDevelop we just need to put it in the main IProperties object.
This object is obtained as follows:

PropertyService propertyService = (PropertyService)ServiceManager.Services.
GetService (typeof (PropertyService)) ;

The PropertyService implements the IProperties interface and is defined in the namespace
ICSharpCode.Core. Services. We will be discussing services in Chapter 5. For now it's enough to know

how to get the IProperties object that stores everything.

Next, we will be discussing various aspects of storing and reloading properties.

Property Persistence

76

The default IProperties implementation is able to save its contents to an XML file and read it back. Now
we will take a look at an XML code snippet that was cut out of a SharpDevelop properties XML file. An
entire properties file can be found in your user's application data folder under
.ICSharpCode\SharpDevelop\SharpDevelopProperties.xml (to obtain it, you should have
started SharpDevelop at least once on your system):

<SharpDevelopProperties fileversion="1.1">
<Properties>

Implementing the Core

<Property key="SharpDevelop.UI.CurrentAmbience" value="CSharp" />

<Property
key="ICSharpCode.SharpDevelop.Gui.ProjectBrowser.ShowExtensions"
value="True" />

<Property key="SharpDevelop.CreateBackupCopy" value="False" />

<Property key="ICSharpCode.SharpDevelop.Gui.Dialogs.
NewProjectDialog.DefaultPath" value=" C:\Documents and Settings\Wrox\
My Documents " />

<Property key="SharpDevelop.LineTerminatorStyle" value="Windows" />

<XmlConvertableProperty key="SharpDevelop.Gui.MainWindow.WindowState">
<WINDOWSTATE FULLSCREEN="False"STATE="Maximized">

523]21|640]480

</WINDOWSTATE>

</XmlConvertableProperty>

</Properties>
</SharpDevelopProperties>

The root node contains a version number, which is used to indicate the version. This helps to avoid version
mismatch when the XML file is loaded and has a format different from the current one. SharpDevelop
currently discards a file with a version number other than 1.1. If the format is changed again, we may build in
a converter for old files. Generally, this is the way with the XML data files; old files are easily converted on
the fly to the new format.

The next node is the <Properties> node, which contains all the properties. In future, beside the
<Properties> node, we might need to add other nodes to the root node; therefore, it was done this way.
This is a good tip when designing XML file formats — always allow for future extensibility by nesting
collections of related elements under higher-level elements. Let's now examine the <Property> nodes.

All <Property> nodes have a primitive key-value pair (these are the 'basic-types'). The last node, however,
is different: it is called Xm1ConvertableProperty and it contains a single <WINDOWSTATE> node. This
node does not follow the current naming guidelines (it is all capitals, rather than being in camel casing) and
contains other information than key-value pairs. This property is an IXmlConvertable object made
persistent in this XML. It is from the type WorkbenchMemento and the implementation can be found under
src\SharpDevelop\Base\Gui\Workbench\WorkbenchMemento.cs.

It saves the state of the workbench and is used to restore the state of the IDE on the next SharpDevelop startup.
The type of the object that is made persistent is not saved with the file (we have discussed this issue already).

Now that we know what the format looks like, we will look at the source code that is responsible for reading
this XML format. The SetXm1Element method from the DefaultProperties class is given the
<Properties> node from the XML definition above and this is how it parses it:

protected void SetXmlElement (XmlElement element)
{
XmlNodeList nodes = element.ChildNodes;
foreach (XmlElement el in nodes) {
if (el.Name == "Property") {
properties[el.Attributes["key"].InnerText] =

77

Chapter 3

el.Attributes["value"] .InnerText;
} else if (el.Name == "XmlConvertableProperty") {
properties[el.Attributes["key"].InnerText] = el;
} else {

throw new UnknownPropertyNodeException (el.Name) ;

public virtual object FromXmlElement (XmlElement element)

{
DefaultProperties defaultProperties = new DefaultProperties() ;
defaultProperties.SetXmlElement (element) ;
return defaultProperties;

As we can see, the XmlConvertableProperty nodes are handled differently. The Xm1Element is stored
into the properties hash table. Simple properties get the value assigned directly.

The write routine that handles it must write back an unchanged Xm1Element node because during run time
it might happen that the property that contains the Xm1Element is never read:

public virtual XmlElement ToXmlElement (XmlDocument doc)
{

XmlElement propertiesnode = doc.CreateElement ("Properties") ;

foreach (DictionaryEntry entry in properties) {
if (entry.Value != null) {
if (entry.Value is XmlElement) { // write unchanged XmlElement back
propertiesnode.AppendChild

(doc.ImportNode ((XmlElement)entry.Value, true)) ;

} else if (entry.Value is IXmlConvertable) ({

XmlElement convertableNode =

doc.CreateElement ("XmlConvertableProperty") ;

XmlAttribute key = doc.CreateAttribute ("key");
key.InnerText = entry.Key.ToString() ;
convertableNode.Attributes.Append (key) ;

convertableNode.AppendChild(((IXmlConvertable)entry.Value) .
ToXmlElement (doc)) ;

propertiesnode.AppendChild (convertableNode) ;
} else {
XmlElement el = doc.CreateElement ("Property");

XmlAttribute key = doc.CreateAttribute ("key");

key.InnerText = entry.Key.ToString();
el.Attributes.Append (key) ;

78

Implementing the Core

XmlAttribute val = doc.CreateAttribute ("value") ;
val.InnerText = entry.Value.ToString() ;
el .Attributes.Append(val) ;

propertiesnode.AppendChild(el) ;

}
}

return propertiesnode;

We have now seen how the DefaultProperties implementation works, and why it works this way and
no other.

Summary

In this chapter, we have learned what the AddIn tree is and what it does. We have also discussed codons and
got an introduction to conditions. In the next chapter, we will discuss, in detail, how to define our own
codons and conditions. We will also see some practical aspects of the AddIn tree, which was discussed,
mostly theoretically, in this chapter.

We also saw how objects are created from the AddIn tree and learned about the loading and storing of the

add-in files into the AddIn tree. Besides the AddIn tree, we have seen how the property management in
SharpDevelop works and how to define our own properties inside the IDE.

79

Chapter 3

80

Y. |
'l
—_7
Building the Application with

Add-ins

This chapter focuses on the way SharpDevelop application is built by using add-ins. We are already
familiar with codons (we came across them in the last chapter). In this chapter we will go through all the
codons and conditions that are currently defined in SharpDevelop. The outline for this chapter is:

0 Working with Codons
Q The ICommand interface
Q Making Menus Work
Q Codon Overview
O Wiring up Add-ins with Conditions
Q Condition Structure
Q Defining Conditions
Q Overview of Available Conditions

In the course of our discussion, we will be discussing the creation of codons and conditions and then we
will look into the creation of menus, as it is one of the most complex usages of the Addin tree.

Unless noted, all the add-in examples, in this chapter, are taken from the add-in definition for
SharpDevelop, which can be found in the src\AddIn directory of the distribution. All the add-in files
have the .addin extension, which is mandatory as SharpDevelop scans the AddIn directory and all the
sub-directories for * . addin files.

Ch

apter 4

Working with Codons

In this section we will look at all the codons defined in SharpDevelop. But before that, we need to have
a little knowledge of the add-in definition for defining sub-items. We have already seen in the From Tree
Node to Running Object section of the last chapter how sub-items should be handled from the coding
viewpoint but we haven't seen the XML format nor did we consider how to define sub-items in XML.
So now, let's look at a sub-item definition:

<Extension path = "/ExampleMenu">
<MenulItem id = "AddMenu" label = "Add">
<MenulItem id = "AddItem" label = "Add item" class ="MyAddItem">
<Menultem id = "AddFolder" label = "Add folder" class ="MyAddFolder">
</MenuIltem>
</Extension>

(Note that this snippet isn't taken from any of SharpDevelop's actual add-in files.)

The code snippet that we have just seen, is a short form of this longer version:

<Extension path = "/ExampleMenu">
<MenulItem id = "AddMenu" label = "Add"/>
</Extension>
<Extension path = "/ExampleMenu/AddMenu">
<MenulItem id = "AddItem" label = "Add item" class ="MyAddItem">
<MenulItem id = "AddFolder" label = "Add folder" class ="MyAddFolder">
</Extension>

In SharpDevelop's add-in files, the first version is the most commonly used version, as it makes the
XML files more maintainable. However, we should never forget the meaning of this abbreviated style
and how a sub-menu is added explicitly. Each codon is a path in the AddIn tree too, with the ID being
the path name. Therefore, it doesn't make sense to have two codons in the same path that have the same ID.

Now we will go on to see how the menu items work.

The ICommand Interface

82

Recall what we saw of the SharpDevelop Main () method in the section on Advantages of Using the Addin
Tree in the last chapter. This method retrieved the ICommand objects from the AddIn tree and called a
Run () method on them. Let's take a look at this interface, which can be found in the
src\SharpDevelop\Core\AddIns\Codons\ICommand.cs file:

public interface ICommand
{
object Owner {
get;
set;

}

void Run() ;

Building the Application with Add-ins

This interface is used as the base interface for menu items too. Menu items are just commands, which
implement the Run () method. The Owner property is used for callback purposes. As we have already
seen in the last chapter, the BuildItem() method that creates objects obtains an Owner object, which
is usually the object that requests the items to be built.

For example, the open file tab context menu items receive their tab parent that has information such as
the currently selected window in this manner. The currently selected window from the open file tab
does not necessarily need to be the current active window from the IDE.

Now let's look at a typical command. In the last chapter we saw the Main () method of SharpDevelop
and wondered why no Application.Run or window creation was defined. Let's consider the
StartWorkbenchCommand () method, which starts the SharpDevelop workbench. It is defined under
src\SharpDevelop\Base\Commands\AutostartCommands.cs:

public class StartWorkbenchCommand : AbstractCommand

{

const string workbenchMemento = "SharpDevelop.Workbench.WorkbenchMemento";

EventHandler idleEventHandler;
bool isCalled = false;

void ShowTipOfTheDay (object sender, EventArgs e)
{
if (isCalled) {
Application.Idle -= idleEventHandler;
return;
}
isCalled = true;
// show tip of the day
PropertyService propertyService =
(PropertyService) ServiceManager.
Services.GetService (typeof (PropertyService)) ;

if (propertyService.GetProperty ("ICSharpCode.SharpDevelop.Gui.Dialog.
TipOfTheDayView.ShowTipsAtStartup", true)) {
ViewTipOfTheDay dview = new ViewTipOfTheDay () ;
dview.Run() ;

You may have noticed that the ShowTipOfTheDay method has some code to ensure that it is only
called once. You may also be wondering why the method uses the following line of code to remove an
event handler from Application.Idle:

Application.Idle -= idleEventHandler;

We need to do this because when the tip of the day view is closed, the main window looses the focus.
We need to start the tip of the day while the application is running and this dirty little hack does just
that for us. It is really troublesome to get the tip of the day view running because Windows . Forms
exhibits different behavior under Windows 2000 and under Windows XP and sometimes bugs will occur
only under one of these operating systems. (In this case, the bug only occurred under Windows 2000.)

83

Chapter 4

The next method we see starts the SharpDevelop workbench. Notice that a ShowTipOfTheDay event
handler is added to Application.Idle. The ShowTipOfTheDay method will be put as the event
handler in the idle event and will run only once because it removes itself from the event handler queue.

If SharpDevelop gets ported to other operating systems (or another API than Windows Forms) this start
method is one part that must be rewritten because it depends on Windows . Forms.

public override void Run()

{
Form f = (Form)WorkbenchSingleton.Workbench;
f.Show() ;
idleEventHandler = new EventHandler (ShowTipOfTheDay) ;
Application.Idle += idleEventHandler;

if (SharpDevelopMain.CommandLineArgs != null) {
foreach (string file in SharpDevelopMain.CommandLineArgs) {
switch (System.IO.Path.GetExtension(file) .ToUpper()) {

case ".CMBX":
case ".PRJX":
try {

IProjectService projectService = (IProjectService)
ICSharpCode.Core. Services.ServiceManager.
Services.GetService (typeof (IProjectService)) ;

projectService.OpenCombine (file) ;

} catch (Exception e) {
Console.WriteLine
("unable to open project/combine {0} exception was :\n{l}",
file, e.ToString());
}
break;
default:
try {
IFileService fileService = (IFileService)
ICSharpCode.Core. Services.ServiceManager.
Services.GetService (typeof (IFileService)) ;
fileService.OpenFile(file) ;
} catch (Exception e) {

Console.WriteLine

("unable to open file {0} exception was :\n{l1l}",
file, e.ToString());

}

break;

f.Focus(); // windows.forms focus workaround

// start the parser thread

DefaultParserService parserService = (DefaultParserService)
ServiceManager.Services.GetService (typeof (DefaultParserService)) ;

parserService.StartParserThread() ;

84

Building the Application with Add-ins

// finally run the workbench window ...
Application.Run(f) ;

// save the workbench memento in the ide properties

PropertyService propertyService = (PropertyService)
ServiceManager.Services.GetService (typeof (PropertyService)) ;

propertyService.SetProperty (workbenchMemento,
WorkbenchSingleton.Workbench.CreateMemento ()) ;

Let's now move on to see how menus work.

Making Menus Work

A menu item from the add-in implementer's point of view doesn't have much to do with implementing a
menu item (that is, with putting a .NET event handler in the Click event). Instead, a command is
implemented that has a Run () method. However, the basic ICommand interface is not used because we
need some more features from the menu item commands. To get an overview of these features, we will
look at the IMenuCommand interface, which can be found in the file
src\SharpDevelop\Base\Internal\Codons\MenuItems\IMenuCommand.cCs.

This interface must be implemented by all SharpDevelop menu commands:

public interface IMenuCommand : ICommand

{
bool IsEnabled {
get;
set;

bool IsChecked {
get;
set;

The IMenuCommand extends the ICommand interface, which we have seen in the section The ICommand
Interface. It extends this interface with two properties:

0 IsEnabled
This is used for enabling/disabling menu commands. Disabled menu commands are generally

shown grayed out.

0 IsChecked
If IsChecked is true, then a checkmark is drawn in front of the menu command.

An abstract implementation, AbstractMenuCommand, which is commonly used can be found under
src\SharpDevelop\Base\Internal\Codons\Menultems\AbstractMenuCommand.cs.

This abstract implementation is the trivial implementation of the interface above; therefore, we will not
be looking at it.

85

Chapter 4

Now that we know what the add-in implementer must provide, let's have a look at the other side - the
MenuItem codon. This is what SharpDevelop provides to the add-in authors.

It is defined under:
src\SharpDevelop\Base\Internal\Codons\Menultems\MenultemCodon.cs.

This codon creates the menu items out of the menu commands. We will look at the codon
implementation step by step. First comes the class definition with the CodonNameAttribute giving the
name MenuItem to the codon:

[CodonName ("MenuItem")]
public class MenultemCodon : AbstractCodon
{

Note that MenuItemCodon subclasses the AbstractCodon class (which we saw in Chapter 3). It
inherits some basic attributes from the AbstractCodon class; shortly, we will see a table of all
attributes regardless of how they are defined in this class or inherited from AbstractCodon. On top of
the class definition are the MenuItemCodon-specific attributes:

[XmlMemberAttribute ("label", IsRequired=true)]
string label = null;

[XmlMemberAttribute ("description")]
string description = null;

[XmlMemberAttribute ("shortcut")]
string shortcut = null;

[XmlMemberAttribute ("icon")]
string icon = null;

[XmlMemberAttribute ("1link")]
string link = null;

// Canonical properties for all fields above

The Xm1lMemberAttribute defines the XML attribute name, which is automatically stored in the
fields. Let's look at each attribute and what it means:

Name Require Purpose
d
label yes The label is shown as the menu text.
Class no The action or menu item builder for the menu codon. This

attribute is inherited from the AbstractCodon class.

description no Sets a description, which describes the menu item. It is only used
for the main menu items (because that is the standard in most
applications) and the description is shown in the status bar when
the item is selected. (If not set, the description will not be shown.)

86

Building the Application with Add-ins

Name Required Purpose

Shortcut no The shortcut key. When this key is pressed the menu
command runs (even if the menu is not opened).

Icon no The name of the menu item's icon. Note that this name is not
the file name. Instead, it is the resource name of the icon that
which should be used (for more details refer to Chapter 7).

Link no A URL that is used for web sites. This is the shortcut for
creating web links in a menu.

1d yes The ID of the menu item. (Inherited from AbstractCodon.)

insertbefore no A list (separated by commas) of menu item IDs that must be

displayed before this menu item. (Inherited from
AbstractCodon.)

insertafter no A list (separated by commas) of menu item IDs that get
displayed after this menu item. (Inherited from
AbstractCodon.)

If any of the attributes are not specified, default values will be used (usually empty or null). In the
source code, the author of the codon class has given the default values of the attributes as the default
values of the fields.

For example, for all attributes of the menu item codon, the default value is null. Only the required
attributes must be specified, otherwise SharpDevelop will not load. Instead, it will point out the error in
the add-in definition XML file and stop.

No add-in error is tolerated in SharpDevelop and there are no plans to change this. This is because
during the startup phase the impact of the error can't be determined; for example, if a core definition
part has an error it might result in unexpected behavior and errors elsewhere. To avoid these problems,
we have designed SharpDevelop in such a way that after encountering an error the loading process itself
will fail.

Now we will continue with our analysis of the source code by looking at the BuildItem() method of
the menu item codon:

public override object BuildItem(object owner, ArrayList subltems,
ConditionFailedAction action)
{
SdMenuCommand newItem = null;
StringParserService stringParserService = (StringParserService)
ServiceManager.Services.GetService (typeof (StringParserService)) ;

This part of the code gets the StringParserService. This service is used for parsing ${..} style tags,
which are used for internationalization (see Chapter 7). All attributes that are displayed in the user
interface get parsed by the StringParserService.

This part of the code checks whether the link attribute was specified and sets a menu item with an event
handler according to the link attribute specified:

87

Chapter 4

if (Link != null) {
newltem = new SdMenuCommand (stringParserService.Parse (Label),
new EventHandler (new MenuEventHandler (owner, Link.StartsWith("http") ?
(IMenuCommand)new GotoWebSite (Link) : new GotoLink (Link)) .Execute)) ;
} else {

If the link points to a web page (that is if it starts with http) then it will be displayed in the internal
browser. Otherwise, it will be opened with a call to Process.Start ().

The SdMenuCommand class is a wrapper for menu items. Currently SharpDevelop uses the Magic
library (http://www.dotnetmagic.com) for drawing menu items. Before Magic was used, SharpDevelop
had to draw the menu items using owner drawn .NET Windows . Forms menu items. Magic, however,
provides a better look and feel and is faster. The Windows . Forms menu items caused re-draws when
the menu is reconstructed and on some other operations. However, these re-draws resulted in flickers.
Magic is much better at handling this issue because it doesn't use the standard main menus; it
implements a menu control itself.

The SdMenuCommand provides a thin abstraction layer on top of the menu items. It just gets a label and
an event handler as constructor argument. Currently the SdMenuCommand merely extends the Magic
menu command and builds on top of its features. In the future, the S@MenuCommand may be enhanced
with our own features depending on which GUI libraries SharpDevelop will be ported to. Because we
use this abstraction layer, it is easy to switch to other menu drawing libraries than magic.

If the menu item is not a link, the event handler of the SdMenuCommand must be created by using the
information from the class attribute to generate an IMenuCommand object:

object o = null;
if (Class != null) {
o = AddIn.CreateObject (Class) ;

What happens next depends on the object o:

if (o != null) {
if (o i1s ISubmenuBuilder) {
return ((ISubmenuBuilder)o) .BuildSubmenu (owner) ;
}
if (o i1s IMenuCommand) {
newItem = new SdMenuCommand (stringParserService.Parse (Label),
new EventHandler (new MenuEventHandler (owner,
(IMenuCommand) o) . Execute)) ;

We have two types of menu commands - standard menu commands and submenu builders. A submenu
builder is a piece of code that creates menu items dynamically. This is useful for the creating the recent
files menu or the list of currently open windows in the window menu. We will see submenu builders a
little later in this chapter.

88

Building the Application with Add-ins

Now only one case is left, the menu item, which has sub-items but not the class attribute:

if (newItem == null) {
newltem = new SdMenuCommand (stringParserService.Parse (Label)) ;
if (subItems != null && subItems.Count > 0) {

foreach (object item in subItems) {
if (item is MenuCommand) {
newltem.MenuCommands .Add ((MenuCommand) item) ;
} else {
newItem.MenuCommands .AddRange ((MenuCommand[])item) ;

}
} } } //closing braces collapsed for brevity

A menu item gets all sub-items (the subItems ArrayList is a parameter for the build method) that are
created from the AddIn tree and adds them to the menu commands from the SAMenuCommand class.

A call to BuildItem may not give a single menu item. Instead, an array might be returned if an
ISubmenuBuilder was called. Therefore, ISubmenuBuilders can't be used at the top level. All top-
level items in SharpDevelops main menu and context menus are folders or menu commands.

Note that menu items that are links or have commands can't have sub-menus. If the add-in implementer
defines sub-items for menu items that have a class or link attribute, the sub-menu items will

be disregarded.

After the creation of the menu item, the icon for this menu is set (if the icon attribute is specified):

Debug.Assert (newlItem != null);

if (Icon != null) {
ImageList imgList = new ImageList();
ResourceService resourceService = (ResourceService)

ServiceManager.Services.GetService (typeof (ResourceService)) ;
imgList.Images.Add (resourceService.GetBitmap (Icon)) ;
newltem.ImageList = imgList;
newltem.ImageIndex = 0;

Next, the description is set:
newlItem.Description = stringParserService.Parse (description) ;

Then the menu shortcut key is applied:

if (Shortcut != null) {
try {
newlItem.Shortcut = (Shortcut)

((System.Windows.Forms.Shortcut.Fl.GetType()) .

InvokeMember (Shortcut, BindingFlags.GetField, null,

System.Windows.Forms.Shortcut.F1l, new object[0]));
} catch (Exception) {

89

Chapter 4

newlItem.Shortcut = System.Windows.Forms.Shortcut.None;

Finally, the enabled/disabled status for this item is determined:

newlItem.Enabled = action != ConditionFailedAction.Disable;
return newltem;

Now we have completed the creation of a menu item in SharpDevelop. We have seen the usage of the
MenuEventHandler class. This class is an internal class of the MenuItemCodon class. It is used to
wrap the IMenuCommand action to a .NET event handler:

class MenuEventHandler
{

IMenuCommand action;

public MenuEventHandler (object owner, IMenuCommand action)
{

this.action action;

this.action.Owner = owner;

public void Execute(object sender, EventArgs e)

{

this.action.Run() ;

In the next section, we will be creating a menu from the AddIn tree.

Creating Menu Items

You might be wondering how the menu items are actually created. To understand this we will look at
the default workbench implementation. It's under the UpdateMenu () method of the
src\SharpDevelop\Base\Gui\Workbench\DefaultWorkbench.cs:

void UpdateMenu (object sender, EventArgs e)
{

TopMenu.Style = (Crownwood.Magic.Common.VisualStyle)

propertyService.GetProperty ("ICSharpCode.SharpDevelop.Gui.VisualStyle",
Crownwood.Magic.Common.VisualStyle.IDE) ;

MenuCommand[] items = (MenuCommand[])
(AddInTreeSingleton.AddInTree.GetTreeNode (mainMenuPath) .
BuildChildItems (this)) .ToArray (typeof (MenuCommand)) ;

TopMenu .MenuCommands .Clear () ;

TopMenu . MenuCommands . AddRange (items) ;

CreateToolBars () ;

920

Building the Application with Add-ins

First the style is updated. SharpDevelop allows switching the menu item style at run time. You can
choose between an Office XP style and an older 3D style. This is a Magic library setting.

After that, the menu commands are created and inserted in the top menu. Note that if it changes, for
example when we open a project or switch a window, the entire menu is re-created. The speed penalty
is minimal. It is much slower to actually switch the current MDI window than to recreate the menu
because the recreation is just a "calculation" operation and the switch of the MDI is a redrawing
operation, which takes much more time. The recreation of the menu will end in a redraw of the menu
control too but magic uses double buffering, which prevents flickers. With the SharpDevelop layout
manager, which does not use MDI child windows, the menu switch will work without the user noticing
any delay.

In the next section, we will look at menu builders — they are the SharpDevelop way of creating
dynamic menus.

Menu Item Builders

Sometimes it is not enough just to store menu items in an XML definition file. The items may need
runtime information for their creation. The AddIn tree is static, as it cannot redefine its own definition
after startup. For creating dynamic menus the ISubmenuBuilder interface was defined, which solves
this problem.

The ISubmenuBuilder interface is simple and can be found under
src\SharpDevelop\Base\Internal\Codons\Menultems\ISubmenuBuilder.cs:

public interface ISubmenuBuilder
{

MenuCommand[] BuildSubmenu (object owner) ;

Objects that implement this interface are used in SharpDevelop for:

Displaying Recent Files / Recent Projects submenu

In the textarea context menu where a builder displays all available syntax highlighting
schemes

The tools in the Tools menu
The current open windows in the Window menu
The tool windows (we call them pads) in the View menu
Now we will look at the menu builder, which creates the View menu. In the next chapter, we will see

how the Recent Files / Recent Projects menus are handled. The menu item builder can be found in
the file src\SharpDevelop\Base\Commands\MenultemBuilders.cs:

public class ViewMenuBuilder : ISubmenuBuilder
{
class MyMenultem : SdMenuCommand
{
IPadContent padContent;

91

Chapter 4

92

bool IsPadvisible {

get {
return WorkbenchSingleton.Workbench.WorkbenchLayout.IsVisible
(padContent) ;
}
}
public MyMenulItem(IPadContent padContent) : base(padContent.Title)

{
this.padContent = padContent;
this.Click += new EventHandler (ClickEvent) ;
Update += new EventHandler (UpdateThisItem) ;

public void UpdateThisItem(object sender, EventArgs e)
{
Checked = IsPadVisible;

void ClickEvent (object sender, EventArgs e)
{
if (IsPadvisible) {
WorkbenchSingleton.Workbench.WorkbenchLayout .HidePad (padContent) ;
} else {
WorkbenchSingleton.Workbench.WorkbenchLayout .ShowPad (padContent) ;

public MenuCommand|[] BuildSubmenu (object owner)
{
ArrayList items = new ArrayList();
foreach (IPadContent padContent in
WorkbenchSingleton.Workbench.PadContentCollection) {
items.Add (new MyMenulItem (padContent)) ;
}

return (MenuCommandl[])items.ToArray (typeof (MenuCommand)) ;

The BuildSubmenu item just creates a MenuCommand array that contains the MyMenuItem class, which
is initialized with IPadContents taken from the workbench window. We will see all about pads, the
workbench, and other GUI-related issues in Chapter 6. For now, this class is a nice example of menu
item builders.

This builder solves the problem of making every tool window inside SharpDevelop hideable in the
so-called View menu, where menu icons should mark a pad (tool window) as visible or not. Instead of
manually providing a separate menu item for each pad that shows/hides the window, these items are
auto-generated by the builder. The implementer of the tool window need not worry about the View
menu. Currently, a pad can't flag that it should not be hideable but we can implement this feature (with
a codon attribute) if the need arises.

Building the Application with Add-ins

Now we will look at the add-in definition of the View menu, which is in the
src\AddIns\SharpDevelopCore.addin file:

<MenulItem id = "View" label = "S${res:XML.MainMenu.ViewMenu}">
<MenulItem id = "ViewBuilder"
label = ""
class = "ICSharpCode.SharpDevelop.Commands.ViewMenuBuilder" />
<MenulItem id = "ViewItemsSeparator" label = "-" />
<MenulItem id = "FullScreen"
label = "S${res:XML.MainMenu.ViewMenu.FullScreen}"
icon = "Icons.1l6x16.FullScreen"
description = "${res:XML.MainMenu.ViewMenu.FullScreen.Description}"
class = "ICSharpCode.SharpDevelop.Commands.ToggleFullscreenCommand" />
</MenuIltem>

The top MenuItem is the View menu. Its first item is the ViewMenuBuilder, which we saw earlier.
This item will be replaced with the contents built by the menu item builder. We have to specify the
label, as it is a required attribute. In this case it is just set empty.

With the introduction of the menu builder, the SharpDevelop menu system was considered 'feature
complete'. The next sections will give us an overview of the different codons used in SharpDevelop. We
will look at each of them, to get a feel of the AddIn tree's usage inside SharpDevelop.

Codon Overview

We have seen the MenuItem codon in detail. In this section, we will discuss all the codons that are
currently defined inside SharpDevelop. From Chapter 3, we already know the codon definition; in this
chapter we will see the attributes of the codon XML node and the location of the codon class.

The Class Codon (class)

The class codon is the basic codon. It just inherits from AbstractCodon. Often this codon is sufficient
to put a class into the path for describing something that just needs a class without any further
properties. For example, it is used to insert workspace services (see Chapter 5 for details on workspace
services) into the AddIn tree.

When new types of classes are inserted into the Addin tree, often the class codon is the first step in
inserting them. This was the case for adding display bindings (for details, refer to Chapter 6) before they
got their own codons because they needed new attributes.

Class location: src\SharpDevelop\Core\AddIns\Codons\ClassCodon.cs

<Extension path = "/Workspace/Autostart">
<Class i1d = "StartWorkbenchCommand"
class = "ICSharpCode.SharpDevelop.Commands.StartWorkbenchCommand" />
</Extension>

93

Chapter 4

We have seen the object creation in the last chapter, but note that the given class must have a public
empty constructor, otherwise an exception will be thrown when the BuildItem() method is called.

The caller must specify which classes or interfaces the objects must have (or implement). This makes the
class attribute flexible.

The File Filter Codon (FileFilter)

The file filter codon is used to place file filters into file open and file save dialogs. Language bindings
usually extend them.

Class location: src\SharpDevelop\Base\Internal\Codons\FileFilterCodon.cs

<Extension path = "/SharpDevelop/Workbench/FileFilter">
<FileFilter id = "CSharp"
insertbefore="AllFiles"
name = "C# Files (*.cs)"
extensions = "*.cs"/>
</Extension>

The file filter codon just builds a string in the BuildItem () method, which contains a standard file
filter. The file filter for our example would be: C# Files (*.cs) | *.cs. Note that the duplicate file
filters won't be filtered out.

The Icon Codon (Icon)

The icon codon is used to extend the icon database of SharpDevelop through add-ins. SharpDevelop
uses a resource file to get icons but add-ins can bring their own icons into SharpDevelop (for example,
to use custom icons for a project file of a specific language).

Class location: src\SharpDevelop\Core\AddIns\Codons\IconCodon.cs

<Extension path = "/Workspace/Icons">
<Icon id = "XmlFileIcon"
location = "icons\XmlFileIcon.png"
extensions=".xml"/>
</Extension>

If we used more than one icon for an extension, the last icon that is inserted will be used. This behavior
can be used to overwrite standard icons with custom ones.

The Dialog Panel Codon (DialogPanel)

The dialog panel codon is used for options dialogs and for wizard dialogs.

Class location: src\SharpDevelop\Base\Internal\Codons\DialogPanelCodon.cs

<Extension path = "/SharpDevelop/CompletionDatabaseWizard">
<DialogPanel id = "SetupPanel"
label = "S${res:Dialog.Wizards.
CodeCompletionDatabaseWizard.SetupPanel .Title}"
class = "ICSharpCode.SharpDevelop.Gui.Dialogs.

94

Building the Application with Add-ins

OptionPanels.CompletionDatabaseWizard. SetupPanel" />
</Extension>

All dialog panel classes must implement the IDialogPanel interface. It is implemented in
src\SharpDevelop\Base\Internal\Codons\IDialogPanel.cs and it has an abstract
implementation in the same directory. The dialog panel simply provides a control and a
ReceiveDialogMessage () method, which returns a Boolean value. For actions like OK, cancel, etc., the
dialog panel receives a message, which can be interrupted when ReceiveDialogMessage returns false.

Wizard panels must extend the IWizardPanel interface
(src\SharpDevelop\Base\Gui\Dialogs\Wizard\IWizardPanel.cs), which extends the
IDialogPanel with wizard-specific functions. Wizard panels can enable/disable the buttons (Ok, Next,
Finish, Cancel) of the wizard dialog and they can tell which panel will come after the current one when

the Next button is pressed. The dialog recalls what the previous dialog panels were and takes care of the
Previous button itself.

The Display Binding Codon (DisplayBinding)
The display binding codon is used to put display bindings (for details refer to Chapter 6) into
SharpDevelop. The display binding path is: /SharpDevelop/Workbench/DisplayBindings

Class location: src\SharpDevelop\Base\Internal\Codons\DisplayBinding
\DisplayBindingCodon.cs

Example:
<Extension path = "/SharpDevelop/Workbench/DisplayBindings">
<DisplayBinding id = "Text"

insertafter = "Browser"
supportedformats = "Text Files, Source Files"
class = "ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor.
TextEditorDisplayBinding" />

</Extension>

This codon inserts the text editor that is used for all source files. It is inserted after the browser codon,
which displays web pages. It is important to insert it after the browser because the text editor display
binding 'wants' to open all files and so it must be asked last about how the file should be opened. All
additional display bindings must be inserted before the Text display binding or they will never run.

The Language Binding Codon (LanguageBinding)

The language binding codon is used to put language bindings into SharpDevelop. The language binding
path is /SharpDevelop/Workbench/LanguageBindings.

Class location: src\SharpDevelop\Base\Internal\Codons\LanguageBinding
\LanguageBindingCodon.cs

95

Chapter 4

<Extension path = "/SharpDevelop/Workbench/LanguageBindings">
<LanguageBinding id = "CSharp"
supportedextensions = ".cs"
class = "CSharpBinding.CSharpLanguageBinding" />
</Extension>

The Toolbar Item Codon (Toolbarltem)

The toolbar item codon is used to define the SharpDevelop toolbar. The SharpDevelop toolbars are
currently defined under /SharpbDevelop/Workbench/ToolBar. The toolbar item codons that are
directly in this path are treated as top items, which represent toolbars. All sub-items from these top
items are toolbar items.

Class location: src\SharpDevelop\Base\Internal\Codons\Toolbars\ToolbarItemCodon.cs

<Extension path = "/SharpDevelop/Workbench/ToolBar">
<ToolbarItem id = "Standard">
<ToolbarItem id = "New"
icon = "Icons.16x16.NewDocumentIcon"
tooltip = "${res:XML.MainMenu.FileMenu.New.File.Description}"
class = "ICSharpCode.SharpDevelop.Commands.CreateNewFile" />
</ToolbarItem>
</Extension>

This example creates a toolbar called Standard, which has one toolbar item (1d="New").

Now that we have seen all the codons, let's move on to conditions — they are the second building block
of the AddIn tree.

Wiring up Add-ins with Conditions

We already know that the AddIn tree definition can't be changed at run time. Theoretically, add-ins and
tree-node paths might be removed but this won't help us if we want to enable/disable menu items. In

the last chapter we have already seen conditions (in the section on Conditions) and gotten an overview of
the system and know what they do in general.

In this section we will learn about:

O The Condition Structure — We will see how conditions are joined and how they get used in an
add-in definition

Defining Conditions — We will see how conditions are defined in the source code

Overview of Available Conditions — We will be looking at all the conditions that are used into
SharpDevelop

Let's start our discussions of Conditions by examining the Condition Structure.

96

Building the Application with Add-ins

Condition Structure

We have already seen conditions in the XML add-in definition. Now we will take a deeper look at what
can be done in the definition.

The standard condition is used as follows:

<Extension path = "[ExtensionPath]">
<Conditional [Attributes] [action="Disable"]>
... (Codons that have the condition applied)
</Conditional>
</Extension>

Often conditions must be joined to form conditions having different options. For example, if we want
both condition A and condition B to be true to validate codons we may do this:

<Extension path = "[ExtensionPath]">
<ConditionalA>
<ConditionalB>
(Codons that have the condition A and B applied)
</ConditionalB>
</ConditionalaA>
</Extension>

When we want either condition A or condition B to be true, we can use:

<Extension path = "[ExtensionPath]">
<ConditionalA>
(Codons that have the condition A applied)
</Conditionala>
<ConditionalB>
(Copy of the codons above (now they have the condition Bapplied)
</ConditionalB>
</Extension>

The problem is that we can't build a codon having condition A and not condition B (thats is, condition
B evaluates to false). Therefore, to build complex conditions a system of joining conditions was
introduced. The following functions can be used for joining conditions:

QO And - n conditions can be joined by logical AND

O Or - n conditions can be joined by logical OR

QO ©Not - One condition can be negated

We refer to these functions as 'condition operators'.
When joining conditions, the syntax in the add-in file looks like this:

<Extension path = "[ExtensionPath]">
<Conditional [action="Disable"]>
<And>

<Condition [Attributes]/>

97

Chapter 4

<Condition [Attributes]/>
<Condition [Attributes]/>
<Or>
<Condition [Attributes]/>
<Condition [Attributes]/>
</0r>
<Not>
<Condition [Attributes]/>
</Not>
</And>
(Codons that have the joined condition applied)
</Conditional>
</Extension>

Note that the Conditional node can only have one condition node applied. Otherwise, the result is
unspecified. This error is currently not detected. Instead, only the first condition block is used.

The main Conditional XML node contains the action to be taken when this joined condition is
applied. The child elements of this Conditional node (that is, the sub-conditions) are called
Condition. This is so because it is valid to use a condition in a Conditional node without condition
operators and we need to see the difference between a condition and an empty Conditional node:

<Extension path = "[ExtensionPath]">
<Conditional [action="Disable"]>
<Condition [Attributes]/>
(Codons that have the joined condition applied)
</Conditional>
</Extension>

We will see a real-world example of a complex condition at the end of this chapter.

Now that we know what conditions look like in the add-in definition, we are going on to look at how
conditions are implemented in the source code.

Defining Conditions

Conditions are defined similarly to codons. Instead of a CodonName attribute, the condition class has a
ConditionAttribute. However, this attribute does not receive a name. As mentioned earlier, instead
of a name, the conditions are differentiated by their required attributes (therefore the set of required
attributes must be unique). It is defined in this particular way because conditions only have the node
name Conditional (or Condition).

Conditions are added to the condition builder of the AddIn tree, in a manner similar to codons. All
runtime libraries that are defined in an add-in are automatically scanned for defined conditions. These
are added to the condition builder and, after that, they can be used by the add-in (or other add-ins). If
there is an attribute clash (two conditions with the same set of required attributes), the add-in
implementation will throw an exception and SharpDevelop won't start. It is designed this way because
the add-in implementor should be forced to write correct add-ins, conditions, and codons.

98

Building the Application with Add-ins

Now we will look at the simplest condition, the compare condition. It is available in the file
src\SharpDevelop\Core\AddIns\Conditions\CompareCondition.cs and is used to compare
two strings. This makes sense because the provided strings get a run through the string parser. With the
${...} tags we can obtain a SharpDevelop property (with ${property:PROPERTYAME}).

Codons can be disabled under special circumstances. For example, in the SharpDevelop window menu
MDI-specific menu items like tile, cascade, and arrange icons are present. They are only enabled when
the current layout manager is set to MDI layout and at least one window is active:

<Conditional action="Disable">
<And>
<Condition activewindow="*" />
<Condition string="${property:SharpDevelop.Workbench.WorkbenchLayout}"
equals="MDI"/>
</And>

</Conditional>
Now we are going to look at the implementation of the compare condition:

[ConditionAttribute()]
public class CompareCondition : AbstractCondition
{
[XmlMemberAttribute ("string", IsRequired=true)]
string sil;

[XmlMemberAttribute ("equals", IsRequired=true)]
string s2;

public string Stringl {
get {
return sl;
}
set {
sl = value;

public string String2 {
get {
return s2;
}
set {
s2 = value;

public override bool IsValid(object owner)
{
StringParserService stringParserService = (StringParserService)
ServiceManager.Services.GetService (typeof (StringParserService)) ;
return stringParserService.Parse(sl) == stringParserService.Parse(s2);

929

Chapter 4

As we can see, the conditions are using the Xml1MemberAttribute; earlier we saw that this attribute
class was called Xml1MemberAttributeAttribute, but .NET allows us to skip the Attribute postfix
when using attributes, therefore we don't need to specify the last "attribute" when using this attribute.
XmlMemberAttributeAttribute looks weird so XmlMemberAttribute is used in the codon and
condition implementations.

The main difference between codons and conditions is that conditions don't build items. Instead, they
have the Isvalid () method, which determines whether the condition is successful or not. Conditions
don't have shared attributes like id, class, insertbefore, or insertafter, because there is
currently no need for them.

Overview of Available Conditions
This section will give us an overview of all the conditions that are currently defined in SharpDevelop.
We will start with the window active condition.

Window Active Condition

This condition checks if a window is active, and if it is active checks the type. With this condition we
can even check if the window contains specific a view-content (a special display binding). If we set the
activewindow attribute to * we could check whether any window is open.

Class location: src\SharpDevelop\Base\Internal\Conditions\WindowActiveCondition.cs

<MenulItem id = "Edit" label = "S${res:XML.MainMenu.EditMenu}">
<Conditional activewindow="*" action="Disable">
<MenulItem id = "Undo"/>
<MenulItem id = "Redo"/>
</Conditional>
</MenuIltem>

To make the condition example snippets easier to understand, we have removed the class, label,
and icon attributes from the menu items. This example activates the Undo / Redo menu items in the
edit menu only if a window is active.

Window Open Condition

This condition checks whether a window is open, and if there is, the type of all open windows is
checked. This can be useful for adding a menu item when a special window is open. With this condition,
we can check if a window contains specific view content. Also, if we set the openwindow attribute to *,
we can check if any window is open. It has one attribute.

Class location: src\SharpDevelop\Base\Internal\Conditions\WindowOpenCondition.cs

<Conditional action="Disable">

<Or>
<Condition
openwindow="ICSharpCode.SharpDevelop.DefaultEditor.Gui.Editor.ITextAreaControlProv
ider"/>
<Condition openproject="*"/>
</0xr>

100

Building the Application with Add-ins

<Menultem id = "Find"/>

<Menultem id = "FindNext"/>

<MenulItem id = "Replace"/>
</Conditional>

This example enables the find menu items only if a text area or project is open. It shouldn't be only
open when the active window is a text area because it is possible to search in all open files. Therefore,
the open window condition is used instead.

Project Active Condition

This condition checks whether a project is selected, and if so, it checks whether any project is of the
given type. (By specifying * as project name it is possible to check if any project is selected). It is
possible to have a project open but no selected project.

If we have a file open, which is contained in an open project, then this project gets automatically
selected. Here is the attribute table for this condition:

Class location:
src\SharpDevelop\Base\Internal\Conditions\ProjectActiveCondition.cs

<Extension path =
" /SharpDevelop/Workbench/ProjectOptions/ConfigurationProperties">
<Conditional activeproject="C#">
<DialogPanel id = "CSharpCodeGenerationPanel"
label = "S{res:Dialog.Options.PrjOptions.
CodeGenerationPanel . PanelName} "
class = "CSharpBinding.CodeGenerationPanel" />
<DialogPanel id = "CSharpOutputOptionsPanel"
label = "S${res:Dialog.Options.PrjOptions.
OutputOptionsPanel .PanelName}"
class = "CSharpBinding.OutputOptionsPanel"/>
<DialogPanel id = "CSharpRuntimeCompilerPanel"
label = "Runtime/Compiler"
class = "CSharpBinding.ChooseRuntimePanel"/>
</Conditional>
</Extension>

In this example, dialog panels are added to the project options configuration dialog only if the active
project is C#. All the language bindings will put their configuration dialogs under
/SharpDevelop/Workbench/ProjectOptions/ConfigurationProperties and use the project
active condition for making the panels available when the correct project is configured (note that only
the active project can be configured).

101

Chapter 4

Project Open Condition

This condition checks if a project is opened (if a project is inside the opened combine). If several
projects are open, it checks all projects for the given project type and returns true when it is found. If *
is specified as the project type, then it checks if any project is open. It returns false if no project

is open.

Class location: src\SharpDevelop\Base\Internal\Conditions\ProjectOpenCondition.cs
We saw an example of this condition in the earlier section on the window open condition.

Combine Open Condition

With this condition you can check if a combine is opened (or not). There is only one condition that
checks if a combine is open. There is no difference between combine types, because a combine in
SharpDevelop is just a container for projects and all projects must be in a combine.

Class location: src\SharpDevelop\Base\Internal\Conditions\CombineOpenCondition.cs

<MenulItem id = "Close">
<Conditional iscombineopen="True" action="Disable">
<Menultem id = "CloseCombine"/>
</Conditional>
</MenuIltem>

This example is taken from the SharpDevelop File menu and the menu item CloseCombine is only
enabled if a combine is open.

Owner State Condition
This condition is used to make the add-in definition a bit shorter for cases where the menu items need
to know something about the object that creates them.

Class location: src\SharpDevelop\Base\Internal\Conditions\OwnerStateCondition.cs

The owner state is an enumeration. The owner must implement the owner state interface, which is in
the same file as the condition. The owner must set this enum according to what it defines as
internal state.

public interface IOwnerState {
System.Enum InternalState {
get;
}

For example the Open File tab uses the following, which is located in the
src\SharpDevelop\Base\Gui\Components\OpenFileTab.cs file:

102

Building the Application with Add-ins

public class OpenFileTab : Crownwood.Magic.Controls.TabControl, IOwnerState
{
readonly static string contextMenuPath =
" /SharpDevelop/Workbench/OpenFileTab/ContextMenu" ;

[Flags]

public enum OpenFileTabState {
Nothing =0,
FileDirty =1,
ClickedWindowIsForm = 2,
FileUntitled =4

OpenFileTabState internalState = OpenFileTabState.Nothing;

public System.Enum InternalState {
get {
return internalState;

}
// ... rest of the OpenFileTab definition

We will skip the complete listing and focus only on the owner state. The internal state is set before the
context menu is created. The OpenFileTabState flags mean the following:

O FileDirty - Set when the selected file is dirty (when the file content has changed since the
last save).

O ClickedWindowIsForm — Set when the clicked window is a System.Windows.Forms.Form;
this is useful for maximize/minimize operations, which only makes sense on forms.

O FileUntitled - Only set when the selected file is untitled. This is only the case for new,

unsaved files.

Now we will look at the context menu definition in the add-in file
(rddIns\SharpDevelopCore.addin):

<Extension path = "/SharpDevelop/Workbench/OpenFileTab/ContextMenu">
<MenulItem id = "Close"/>
<Menultem id = "CloseSeparator" label = "-" />

<Conditional action="Disable">
<And>
<Condition ownerstate="FileDirty"/>
<Not>
<Condition ownerstate="FileUntitled"/>
</Not>
</And>
<MenulItem id = "Save"/>
</Conditional>

103

Chapter 4

<Menultem id = "SaveAs"/>
<Menultem id = "SaveSeparator" label = "-" />

<Conditional action="Disable">

<Not>
<Condition ownerstate="FileUntitled" />
</Not>
<Menultem id = "CopyPathName"/>
</Conditional>

<Conditional ownerstate="ClickedWindowIsForm">

<MenulItem id = "WindowSeparator" label = "-" />
<Menultem id = "Restore"/>
<Menultem id = "Minimize"/>
<MenulItem id = "Maximize"/>
</Conditional>
</Extension>

As we can see, the owner state conditions are used almost everywhere. The Save menu item is disabled
if the file is not dirty or if it is untitled. The CopyPathName item copies the file name to the clipboard;
this makes sense only if the file has a name. The Restore/Minimize/Maximize items are only
enabled when a form is clicked.

Alternatively, we might have defined more than one context menu path, for example
/SharpDevelop/Workbench/OpenFileTab/ContextMenu/ClickedWindowIsForm, and this path
would be taken if the clicked window was a form. However, with this approach we must provide path
names for each combination:

/SharpDevelop/Workbench/OpenFileTab/ContextMenu/ClickedWindowIsFormAndIsUntitl
ed,

/SharpDevelop/Workbench/OpenFileTab/ContextMenu/ClickedWindowIsFormAndIsDirty,

and so on. This would be 2”3=8 path combinations containing mostly the same items with little
variation (like a disabled "Save" item). The owner state approach is much shorter.

Summary

In this chapter, we have discussed the menu item codon in detail. We learned about the menu item builder
and can now extend menus in SharpDevelop with our own items. We got an overview of all the codons
used in SharpDevelop. We also looked into conditions and learned about creating new conditions.

In the next chapter, we will have an overview of the workspace services. Along with the Addin tree,
services are the underpinnings of SharpDevelop.

104

Building the Application with Add-ins

105

Chapter 4

106

Providing Functionality with
Workspace Services

In this chapter we will be discussing the topic of services in SharpDevelop. We will learn what a service
is and how it is defined. Then, we will go on to see the various services that are available to the
programmers in the IDE. After reading this chapter, we will be in a position to appreciate the bonuses
that the service concept delivers in conjunction with the AddIn tree and why we have used services
instead of other alternatives such as singleton classes or static definitions.

Implementation Considerations

Initially, we only had the AddIn tree and SharpDevelop depended on it alone to provide functionality.
However, menu commands and other actions needed classes that provided functions, like OpenFile, or
a place where the compiler output could be written. Sometimes it was necessary to know when some
event takes place (for example an event needs to be defined somewhere to inform other parts of the IDE
when a project is opened).

These functions could be defined in the main window, but then this class would start growing bigger
and bigger with each new event, ultimately becoming impossible to maintain.

We solved this problem by defining classes that only had static members, and which all the other
objects needing their service could access. These classes defined events for their methods too. Other
objects can be informed through the static classes when an event occurs (like the project opening).

But there were too many (over 10) of these static helper classes, and it was difficult to locate them in the
source tree. Another problem with these static helper classes arose — they were hard to replace. Also,
there was no way an add-in could extend one of these helper classes, as they were statically inserted into
the source.

Chapter 5

This problem was solved by introducing a services layer, which builds on the AddIn tree under these
classes. The classes are no longer static, instead they are created once and then can be accessed,
wherever needed, through a singleton helper class.

Now, most of these old static classes have been converted to services. However, there are some
exceptions; classes that are only used in subsystems and which don't seem to have any practical use
outside these subsystems still use the original design.

Let's now look at what a service must provide to fit into the service structure.

Requirements for Services

The main requirement for a service is that it provides support to other parts of the application. They
'serve' as helper classes. Beside that, all services must implement the IService interface, which can be
found under src\SharpDevelop\Core\Services\IService.cs:

public interface IService
{
// Is true when the service did already initialize, false otherwise.
bool IsInitialized {
get;

// This method is called after the services are loaded.
void InitializeService();

// This method is called before the service is unloaded.
void UnloadService() ;

event EventHandler Initialize;
event EventHandler Unload;
The IService interface has only two basic methods and one property:

O 1InitializeService - Instead of the constructor, services should initialize themselves in
this method .

O UnloadService - In this method the service should free all acquired resources.

Q IsInitialized - This flags if the InitializeService method has been called.
For both of the methods, events are defined that fire when these methods are executed.

Like many other interfaces there already exists an abstract implementation of this interface called
AbstractService, which is defined in the same path and namespace.

Next, we will see how services are managed and where the InitializeService and
UnloadService methods get called. We will also see how to access the services in order to use them.

108

Providing Functionality with Workspace Services

The ServiceManager

The ServiceManager class stores all the services that are available at run time, and provides a single
access point to these services. To ensure that there is only a single service manager, it follows the
singleton pattern we discussed in Chapter 2. All objects that require some service must request the
required service from the ServiceManager.

The service manager performs service initialization and unloading too. It is defined in the file
src\SharpDevelop\Core\Services\ServiceManager.cs:

public class ServiceManager

{

ArrayList serviceList = new ArrayList();
Hashtable servicesHashtable = new Hashtable() ;

static ServiceManager defaultServiceManager = new ServiceManager () ;

// Gets the default ServiceManager
public static ServiceManager Services {
get {
return defaultServiceManager;

// Don't create ServiceManager objects, only have ONE per application.
private ServiceManager ()

{

}

// This method initializes the service system to a path inside the
// AddIn tree. This method must be called ONCE.
public void InitializeServicesSubsystem(string servicesPath)
{
// add 'core' services
AddService (new PropertyService()) ;
AddService (new ResourceService()) ;
AddService (new StringParserService()) ;
AddService(new FileUtilityService()) ;

// add AddIn tree services
AddServices ((IService[])AddInTreeSingleton.AddInTree.GetTreeNode
(servicesPath) .BuildChildItems (this) .ToArray (typeof (IService))) ;

// initialize all services
foreach (IService service in serviceList) {
service.InitializeService() ;

// Calls UnloadService on all services.
//This method must be called ONCE.
public void UnloadAllServices()

{

109

Chapter 5

foreach (IService service in serviceList) {
service.UnloadService() ;

protected void AddService(IService service)
{

servicelList.Add (service) ;

protected void AddServices (IService[] services)
{
foreach (IService service in services) {
AddService (service) ;

// Requests a specific service, may return null if this service is not
// found.
public IService GetService (Type serviceType)

{

IService s = (IService)servicesHashtable[serviceTypel;
if (s != null) {
return s;

foreach (IService service in serviceList) {
if (serviceType.IsInstanceOfType (service)) {
servicesHashtable[serviceType] = service;
return service;

}

return null;

The InitializeServicesSubsystem and UnloadAllServices methods will be called in the Main
method of SharpDevelop (for a listing of the main method refer to Chapter 3).

All the services defined in the core are added directly to the service manager, as other services may be
dependent on them. They are usable by all other services. Note that in the current model, some services
may work before the InitializeService method is called (this depends on the service because some
services may not need to be initialized to do their work). To solve the dependency problem we
introduced the Initialize method, which gets called when all services are accessible through the
service manager. However this might not be helpful if the services aren't initialized; in this case you've
to get the service, check if it has been initialized (through the IsInitialized flag) and if not, wait for
this event (using the Initialize event). To avoid this problem, SharpDevelop guarantees that all
'core' services are up and running when other services get loaded.

The services are stored in parallel in an ArrayList and a Hashtable. The ArrayList is used to run
through all available services. This is useful for initialization and unloading.

110

Providing Functionality with Workspace Services

Now a question arises — why isn't the Hashtable used to run through all the services? The answer is
relatively simple. When a service is added to the table, the type under which the service will be
requested is not known. It may be any interface that the service object implements, the type itself, or a
base type of the service object. We can't just initialize the services when they are added because of the
dependency problem (all services must be available to the service initialization).

Assume that instead of iterating through the servicesList we used this loop:

// initialize all services
foreach (IService service in servicesHashtable.Values) {
service.InitializeService();

If a service requests another service under a type that is not stored in the Hashtable, the table will
change and the foreach loop will fail. Alternatively, we could choose to store all subtypes and
interfaces into the hash table, but this was not implemented since it is not necessary to have all the types
available in the Hashtable. There would be many objects under System.Object too and a hash table
operates faster with fewer objects in it (admittedly, this is a weak argument counting the numbers of the
services we have).

Using this method, the service will be put into the hash table the first time it is requested. The services
are allowed to expose several types so this might not be a clean way of doing a service subsystem and
this may change in future versions (but for now it works). One argument against this 'flexibility' is that a
specific service will only be requested under one type in SharpDevelop. The GetService method first
looks into the hash table, and if the service isn't found there it looks in the serviceList. If the service
is still not found, it puts it into the hash table and returns the service object. If it is not found there, it
returns null. The hash table acts as a speed improvement, nothing more.

Now that we know how and where services are requested, let's look at how services are added to the
AddIn tree.

Defining Services

All services are put into the AddIn tree by using a class codon (for details on codons refer to Chapter 4)
under the path /Workspace/Services. Currently the extension node in
AddIns\SharpDevelopCore.addin is:

<Extension path = "/Workspace/Services">

<Class id = "ProjectService"

class = "ICSharpCode.SharpDevelop.Services.DefaultProjectService"/>
<Class id = "FileService"

class = "ICSharpCode.SharpDevelop.Services.DefaultFileService"/>
<Class id = "ParserService"

class = "ICSharpCode.SharpDevelop.Services.DefaultParserService"/>
<Class id = "TaskService"

class = "ICSharpCode.SharpDevelop.Services.TaskService"/>
<Class id = "StatusBarService"

class =

"ICSharpCode.SharpDevelop.Services.DefaultStatusBarService" />

<Class id = "ToolbarService"

111

Chapter 5

class = "ICSharpCode.SharpDevelop.Services.ToolbarService" />
<Class id = "LanguageService"
class = "ICSharpCode.SharpDevelop.Services.LanguageService"/>
<Class id = "ClassBrowserIconsService"
class =
"ICSharpCode.SharpDevelop.Services.ClassBrowserIconsService" />
<Class id = "LanguageBindingService"
class =
"ICSharpCode.SharpDevelop. Services.LanguageBindingService" />
<Class id = "DisplayBindingService"
class = "ICSharpCode.SharpDevelop.Services.DisplayBindingService"/>
<Class id = "AmbienceService"
class = "ICSharpCode.SharpDevelop.Services.AmbienceService"/>
</Extension>

All services must implement the IService interface or else SharpDevelop won't load (we will get an
error message). To add a new service simply implement the IService interface (or extend the abstract
implementation AbstractService, which lies in the same directory) and add a class codon pointing to
the new service class to the services path.

Common Services at your Service

In this section, we will look at all services that are currently defined in SharpDevelop. Note that unless
explicitly mentioned, the default implementation is in the same directory as the service interface, and is
called Defaul txXXService, while the interface is called IXXXService (some services are accessible
through interfaces) .

We will discuss some of the services in detail, but most of them are described briefly as they are either
covered in the other chapters or their implementation isn't interesting enough to discuss them here.

Let's begin with the services defined in the Core project of SharpDevelop (therefore they're called 'core'
services). They're inside the core because they don't have SharpDevelop-specific dependencies.
They include:

Q File Utility Service — For common file operations and providing icons for files

Q Property Service — Service for accessing the global properties of SharpDevelop
0 Resource Service — The localization manager
.

StringParser Service — The service for defining properties inside strings
After the core services we cover the other services (they are inside the base project of SharpDevelop) as well:

O Ambience Service — Formats type and member information to the user preferences and
provides access to the code generation style

QO ClassBrowserlcons Service — The service which makes it easier to get the icons for types
and members

112

Providing Functionality with Workspace Services

Q File Service - Handles SharpDevelop file functions that are too high level for the File Utility
Service (like open/close file inside the IDE)

Project Service — Keeps track of the current open projects and combines

Parser Service — Access layer to the parser, which is used for code completion and the
class browser

File Utility Service

The file utility service is one of the most important services in SharpDevelop. Without it, SharpDevelop
would not be as stable as it is because it provides many file checking functions. It is used for common
file operations and providing icons.

This service contains helper functions for commonly used functionality, that is not present in the
System.IO.Path class, and some other additional file-related functions. It provides the access point to
file and project icons too. The service can be found under src\SharpDevelop\Core\Services\
FileUtilityService\FileUtilityService.cs:

public class FileUtilityService : AbstractService
{
public ImageList ImageList {
get;
}
public Bitmap GetBitmap (string name) ;

public Image GetImageForProjectType (string projectType) ;
public int GetImageIndexForProjectType (string projectType) ;

public Image GetImageForFile(string fileName) ;
public int GetImageIndexForFile (string fileName) ;

The methods above handle the icons. An ImageList containing all icons can be accessed through the
ImageList property. Now let's look at what these methods do:

QO GetBitmap - With this method, SharpDevelop grabs bitmaps out of the bitmap pool. Using
this function bitmaps from the SharpDevelop resource file and from AddIn tree-defined icons
can be accessed because they share the same 'naming system'.

0 GetImageForProjectType - Returns an image for a specific project type. Each project must
have a type that identifies its language. For example all C# projects have the type "C#" (case
sensitive). It returns a generic project file icon if the project type does not have an icon
attached to.

QO GetImageIndexForProjectType — Returns an index in the ImageList property for a
specific project type.

O GetImageForFile - Returns an image for a file. If no icon is found an 'unknown file' icon
will be returned.

0 GetImageIndexForFile - Returns an index in the ImageList property for a specific file.
If no icon is found the index of an 'unknown file' icon will be returned.

113

Chapter 5

After these, some functions are defined that use native calls:

class NativeMethods {

[D11lImport ("kernel32.dl1l", SetLastError=true)]

public static extern int GetVolumeInformation (string volumePath,
StringBuilder volumeNameBuffer,
int volNameBuffSize,
ref int volumeSerNr,
ref int maxComponentLength,
ref int fileSystemFlags,
StringBuilder fileSystemNameBuffer,
int fileSysBuffSize);

[D11Import ("kernel32.d11")]
public static extern DriveType GetDriveType (string driveName) ;
} // end of native methods class

public string VolumeLabel (string volumePath)
{
try {
StringBuilder volumeName = new StringBuilder (128);
int dummyInt = 0;
NativeMethods.GetVolumeInformation (volumePath, volumeName, 128,
ref dummyInt, ref dummyInt, ref dummyInt, null, 0);
return volumeName.ToString () ;
} catch (Exception) {
return String.Empty;

public DriveType GetDriveType (string driveName)
{

return NativeMethods.GetDriveType (driveName) ;

The VolumeLabel and GetDriveType functions are used in the file scout to determine the type and
name of a drive. The DriveType enum is defined in the same file; we won't bother looking at it here.

Now let's look at a method that provides the names of all the files in a directory (and optionally all
subdirectories too) back into a StringCollection. This method is used whenever specific files are to
be loaded, like the *.addin files in the SharpDevelop AddIn directory:

public StringCollection SearchDirectory(string directory,
string filemask, bool searchSubdirectories)

StringCollection collection = new StringCollection() ;
SearchDirectory

(directory, filemask, collection, searchSubdirectories) ;
return collection;

114

Providing Functionality with Workspace Services

public StringCollection SearchDirectory(string directory, string filemask)

{

return SearchDirectory(directory, filemask, true);

void SearchDirectory(string directory, string filemask, StringCollection
collection, bool searchSubdirectories)

{
try {

string[] file = Directory.GetFiles(directory, filemask) ;
foreach (string f in file) {
collection.Add(f) ;

}

if (searchSubdirectories) {
string[] dir = Directory.GetDirectories (directory) ;
foreach (string d in dir) {

}

SearchDirectory(d, filemask, collection, searchSubdirectories) ;

} catch (Exception e) {
MessageBox.Show("Can't access directory " + directory + " reason:\n" +

e.ToString (),
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error) ;

A message box is displayed when the SearchDirectory method cannot access a specific directory.

Next, we will look at the helper methods, which convert relative paths to absolute paths and vice-versa.
These methods are used during project save, where all file names get stored relative to the project

file location:

public

public

string AbsoluteToRelativePath(string baseDirectoryPath,
string absPath) ;

string RelativeToAbsolutePath(string baseDirectoryPath,
string relPath) ;

Then, we have some validation methods defined:

public
public
public
public

bool IsValidFileName (string fileName) ;

bool TestFileExists (string filename) ;

bool IsDirectory(string filename) ;

string GetDirectoryNameWithSeparator (string directoryName) ;

Here's what these methods do:

O IsValidFileName - Returns true if the given file name is valid. We have already seen this
function in Chapter 2. Note that this method is platform dependent.

O TestFileExists — Tests whether a file having the given file name exists, and displays a
warning message box if not. It returns true if the file exists and false otherwise. This method
is used whenever the user has to be informed that a file can't be loaded, as it's nonexistent.

115

Chapter 5

IsDirectory — Returns true if the file given by filename is a directory, otherwise false
is returned.

GetDirectoryNameWithSeparator — This method returns a directory name that has a
separator attached at the end. If the user enters a directory name, they may or may not attach
the path separator. Instead of validating every directory usage for whether it has a separator at
the end this method does the job for us.

Now we will look at the methods that make the SharpDevelop file save routines safe:

public FileOperationResult ObservedSave (SaveFileDelegate saveFile,

string fileName, string message, FileErrorPolicy policy);

This method has overloads that take following arguments:

SaveFileDelegate saveFile, string fileName, FileErrorPolicy policy
SaveFileDelegate saveFile, string fileName
NamedFileOperationDelegate saveFileAs, string fileName, string message,

FileErrorPolicy policy

NamedFileOperationDelegate saveFileAs, string fileName,

FileErrorPolicy policy

NamedFileOperationDelegate saveFileAs, string fileName

Now we look at the ObservedLoad method, which works the same way:

public FileOperationResult ObservedLoad (FileOperationDelegate saveFile,

string fileName,
string message,
FileErrorPolicy policy) ;

This method has overloads that take the following arguments:

FileOperationDelegate saveFile, string fileName, FileErrorPolicy policy
FileOperationDelegate saveFile, string fileName
NamedFileOperationDelegate saveFileAs, string fileName, string message,

FileErrorPolicy policy

NamedFileOperationDelegate saveFileAs, string fileName,

FileErrorPolicy policy

NamedFileOperationDelegate saveFileAs, string fileName) ;

}

All these save/load methods are used to make the save/load methods safer by placing them in a
try...catch block and display an error message if they fail. Every time files are saved or loaded the
following errors can occur:

.
.
.

116

Write Protected — The save operations fails
Not accessible — The save/load operations may fail according to the current user's permissions

Network connection lost — The save/load operations fail after they have started

Providing Functionality with Workspace Services

These errors are gracefully handled with the save/load methods used by SharpDevelop. It is annoying
to wrap a try. . .catch statement around our code whenever a file operation is being performed. The
methods display a message box when an error occurs, containing a standard message (this message can
be replaced with a more sophisticated message). Alternatively, a message box is displayed that allows
the user chose between:

Retry — The save operation is tried again
Ignore — The failed operation is ignored

Choose other location — Allows the user to select another location for saving the file (it is
available only for named file save operations)

O Show Exception — The thrown exception is shown, which helps to understand the reason why
the save operation failed

All save operations inside SharpDevelop are wrapped with an observed save. Save operations that the
user can retry, like a file save, are wrapped with a message box. All other save operations that are
performed in the background, like project file save or property save, are wrapped with a more
sophisticated message box.

We will now move on to look at the enumerations and delegates that are used by the methods that we
discussed above. The delegate that these methods get must point to the function that performs the
file operation:

public enum FileErrorPolicy {
Inform,
ProvideAlternative

}

public enum FileOperationResult {
OK,
Failed,
SavedAlternatively

}

public delegate void FileOperationDelegate() ;

public delegate void NamedFileOperationDelegate(string fileName) ;

The FileOperationDelegate is used for file operations that do not take a file name as argument. In
this case, the Choose location button at the error message box will not be available (for load operations
it is never available). The user can only use retry/ignore and look at the exception that caused the error.

Next, we consider the ObservedSave method that takes a SaveFileAsDelegate in detail. All other
methods work in a similar way:

public SaveFileResult ObservedSave (SaveFileAsDelegate saveFileAs, string fileName,
string message, SaveFilePolicy policy)
{
try {
saveFileAs (fileName) ;

117

Chapter 5

return SaveFileResult.OK;
} catch (Exception e) {
switch (policy) {
case SaveFilePolicy.Inform:

using (SaveErrorInformDialog informDialog = new
SaveErrorInformDialog (fileName, message, e)) {
informDialog.ShowDialog () ;
}
break;
case SaveFilePolicy.ProvideAlternative:
restartlabel:
using (SaveErrorChooseDialog chooseDialog = new
SaveErrorChooseDialog(fileName, message, "Error while saving", e, true)) {
switch (chooseDialog.ShowDialog()) {
case DialogResult.OK:
using (SaveFileDialog fdiag = new SaveFileDialog()) {
fdiag.OverwritePrompt = true;
fdiag.AddExtension = true;
fdiag.CheckFileExists = false;
fdiag.CheckPathExists = true;
fdiag.Title = "Choose alternate file name";
fdiag.FileName = fileName;
if (fdiag.ShowDialog() == DialogResult.OK) {
return ObservedSave
(saveFileAs, fdiag.FileName, message, policy);
} else {
goto restartlabel;
}
}
case DialogResult.Retry:
return ObservedSave (saveFileAs, fileName, message, policy);
case DialogResult.Ignore:
return SaveFileResult.Failed;
}
}
break;

}

return SaveFileResult.Failed;
We have seen the entire file service and now know how file operations are made secure inside
SharpDevelop. These methods are simple and make the program much more robust.

Now we will move on to the next service, which handles the global properties in SharpDevelop.

118

Providing Functionality with Workspace Services

Property Service

The property service is just an IProperties object, like we saw in the Property Management in
SharpDevelop section of Chapter 3. This service is used to access the properties that are global in
SharpDevelop. It is defined under src\SharpDevelop\Core\Services\PropertyService.cs.
This service loads and saves its contents to a property file. Beside that, it has a ConfigDirectory
property defined. This points to the directory in which all SharpDevelop data must be saved. Currently
this is set to:

System.Environment .GetFolderPath (Environment.SpecialFolder.ApplicationData) +
Path.DirectorySeparatorChar+".ICSharpCode"+
Path.DirectorySeparatorChar+"SharpDevelop"+
Path.DirectorySeparatorChar;

This service is used wherever properties must be made persistent (refer to Chapter 3 for more
information on property persistence).

Resource Service

The resource service is used for internationalization (for details, refer to Chapter 7) and icons. Dialogs
set their labels directly using the resource service (except XML defined dialogs, see Chapter 17). Other
than that, bitmaps that are defined in resource files should be got using the FileUtilityService
class instead because the resource service can only access the bitmaps defined in the SharpDevelop
resource files and the FileUtilityService can access these and bitmaps from the AddIn tree too.
The service is defined under src\SharpDevelop\Core\Services\ResourceService.cs:

public class ResourceService : AbstractService
{

public string GetString(string name) ;

public Icon GetIcon(string name) ;

public Bitmap GetBitmap (string name) ;
}

The GetIcon method returns the same image as the GetBitmap method but in another format (as
System.Drawing. Icon class). Icons are used to set the icon of a System.Windows.Forms .Form.

Note that most internationalization is done through the StringParsersService class, which we will be
discussing next.

String Parser Service

The string parser helps us with internationalization and tags in strings. For example, if a message needs
to display a file name the message text may be:

string msg = "Can't load file {0}.";

119

Chapter 5

In addition, with String.Format the message could be displayed with:
DisplayMessage (String.Format (msg, filename)) ;

These solution would work but for each string that is displayed the translators must know what {0},
{1} etc. is and sometimes this can lead to confusion (the original language message contains some clues
to what {x} means but maybe too few to be sure). Therefore, SharpDevelop uses ${. . .} tags (this style
gets used by many other programs too) to clarify this:

string msg = "Can't load file ${FileName}.";

We need some sort of parser to replace the ${. ..} tags with the file name. This parser is implemented
as a service called the string parser service. The StringParserService class is defined under
src\SharpDevelop\Core\Services\StringParserService.cs. We will examine its code in
Chapter 7; for now we will only look at the declarations:

public class StringParserService : AbstractService
{
public PropertyDictionary Properties {
get;
}
public string Parse(string input) ;
public string Parse(string input, string[,] customTags) ;

}

In the Properties dictionary, custom properties can be written and are then available in all following
Parse calls.

Note that all tags are case insensitive ${FileName} is the same as $ {FILENAME} or ${FiLeNaMe}

The Parse method has two variants. One of them takes custom tags that are saved into a stringl,]
array. For example:

string msg = stringParserService.Parse("Can't load file ${FileName}.", new
string[,] {
{"FileName", fileName}

)i

This snippet would set a tag called FileName for the input string. The string parser only replaces the
tags it knows about. If an unknown tag is found in the string, it is copied to the output string untouched.
Custom tags have a higher priority than global properties. The string parser service knows about the
following global tags:

0 Date - Gives back the current date. Almost any string displayed in SharpDevelop is parsed
with the stringparser service. The Date tag is used mostly in file templates, in which the
creation date is inserted.

O Time - returns the current time.

120

Providing Functionality with Workspace Services

0 env:[EnvironmentVariableName] - with this tag, all environment variables
(System.Environment.GetEnvironmentVariables ()) can be accessed. For example,
${env:SystemRoot} would be transformed to C: \WINNT on my system because the
environment variable SystemRoot has this value.

O res:[ResourceName] - used for internationalization. With this tag resource strings can be
loaded out of the resource database (for details refer Chapter 7).

Q property: [PropertyName] — allows global properties, which are all SharpDevelop
options, to be accessed.

The StringParserService is the last service defined in the Core. Now we will move on to the Base
project, which provides higher-level services for the IDE.

In the core are the core services and the AddIn tree so there is no need to limit ourselves to using the
core to develop an IDE. It is possible to do anything else with it. Inside the base project are the
underpinnings of the IDE, there are most commands, the project management system, and so on. This is
the heart of the IDE part in SharpDevelop.

Ambience Service

The ambience service provides some look and feel options for the user. It doesn't provide GUI look and
feel, rather it wraps code generation options or 'ambiences'. We will look at what an ambience is after
we have seen the service implementation. It is available in the file
src\SharpDevelop\Base\Services\AmbienceService\AmbienceService.cs:

public class AmbienceService : AbstractService
{
public IProperties CodeGenerationProperties {
get;
}
public bool GenerateDocumentComments {
get;
}
public bool GenerateAdditionalComments {
get;
}
public bool UseFullyQualifiedTypenames {
get;
}
public AmbienceReflectionDecorator CurrentAmbience {
get;
}
public event EventHandler AmbienceChanged;

The first four properties are used for code generation. The user can chose the preferred code generation
method from the options dialog and the code is formatted using that information. We will look at code
generation options in Chapter 17. For now it is enough to know that the code generation properties are
just put into an IProperties object and that these properties are easy-to-use wrappers.

121

Chapter 5

We should pay attention to the CurrentAmbience property. It returns an
AmbienceReflectionDecorator object, which inherits from IAmbience found under
src\SharpDevelop\Base\Services\AmbienceService\IAmbience.cs.

Ambiences are used to format information about classes and reflection according to the preferred visual
style of the user. Look at the following screenshots to get an impression of what they do:

=% DefaulthddInTree -] =% DefaultAddlnTree -]

..... o DefaultAddinTrea() - DefaultAddinTree()

----- &% void ShowCodorTree (IAddInTreelo: 5% ShowCodorTreeByRef TaddinTreel
----- =& void ShowCodonTree() =@ ShowCodoriTree) As Yoid

----- 5% void AddExtensions(Extension) 5% AddExtensions(ByRef Extension) As *
----- =& void InsertAddingAdding =@ Inserthddin(ByRef Addin) As Yoid

----- =& void RemoveAddin(ddin =@ RemoveAddin(@ByRef AddIn) As Yoid

5% DefaulthddinTresMode CreatePath || || 5% CreatePath(ByRef DefaultAddInTreel

----- =& [AddInTreetode GetTreeNode(string =@ GetTreeNode(ByRef String) As IAddIr
-8 Assembly LoadAssembly (string) 2 - | padAssembly(ByRef String) As Assel
----- 5% void LoadCodonsAndConditions (Asse 5% LoadCodonsAndConditons(ByRef As

----- B ConditionFactory ConditionFactory B8 ConditionFactory As ConditonFactor

----- B CodonFactory CodonFactory B CodonFactory As CodonFactory

----- B pddinCollection Addins B Addins As AddinCollection

----- & sddinCollection addins ¥ addns As AddinCollection

----- &% DefaultiddinTresMode root g® root As DefaultAddInTreeMode

----- &% ConditionFactory conditionFactory - ¥ conditionFactory As ConditionFactor -

-% Classes |@ Help | -% Classes |© Help |

With the C# ambience shown on the left the methods and fields are printed in C# style (type first; look
at the method parameters and return values). The VB.NET ambience shown on the right prints the
names in VB.NET style (name As Type).

Ambiences are used in the object browser and code completion/method insight windows as well. They
provide a look and feel for the user and they have rich formatting options, as we can see in the file
src\SharpDevelop\Base\Services\AmbienceService\IAmbience.cs:

[Flags]
public enum ConversionFlags {
None =0,
ShowParameterNames = i,
UseFullyQualifiedNames = 2,
ShowModifiers = 4,
ShowInheritancelList = 8,
ShowAccessibility = 16,
StandardConversionFlags = ShowParameterNames |
UseFullyQualifiedNames |
ShowModifiers,
All = ShowParameterNames |
ShowAccessibility |

UseFullyQualifiedNames |

122

Providing Functionality with Workspace Services

ShowModifiers
ShowInheritancelList

}

public interface IAmbience
{
ConversionFlags ConversionFlags {
get;
set;
}

string Convert (IClass c);

string Convert (IIndexer c);

string Convert (IField field);
string Convert (IProperty property) ;
string Convert (IEvent e);

string Convert (IMethod m) ;

string Convert (IParameter param) ;

The Convert methods are used to convert a type representation to a printable (human readable)
string. The conversion flags do the following:

0 ShowParameterNames - show the name of the method parameters. If this flag is not set, only
the type will be displayed.

0O UseFullyQualifiedNames - use the fully qualified name instead of a short name. For
example System.Windows.Forms.Button is fully qualified, the short name is Button.

ShowModifiers - show all modifiers, except accessibility modifiers.
ShowInheritanceList — show the base types of a class.
ShowAccessibility - shows all modifiers that change the accessibility.

The IAmbience interface defines converters for all classes that are defined in the abstract parser layer

(refer to Chapter 12). The AmbienceReflectionDecorator class just extends these converters to all
reflection classes; it is used to display reflection information like in the object browser.

Class Browser Icons Service

The class browser icons service is used to get the icons for types and type members. It is implemented
as a service because icons for types and members are used in many locations including:

Q In the class browser
Q In the code completion window
Q In the object browser
To reduce code duplication, the class browser icon service is used in these cases. The class is defined

under src\SharpDevelop\Base\Services\ClassBrowserIcons
\ClassBrowserIconsService.cs:

123

Chapter 5

public class ClassBrowserIconsService : AbstractService

{

public ImageList ImageList { get; }

public
public
public
public
public
public
public
public
public
public
public
public

public
public
public

public
public
public
public
public

public
public
public
public
public

int
int
int
int
int
int
int
int
int
int
int
int

int
int
int

int
int
int
int
int

int
int
int
int
int

CombineIndex { get; }
NamespacelIndex { get; 1}
LiteralIndex { get; }
ClassIndex { get; }
StructIndex { get; }
InterfaceIndex { get; }
EnumIndex { get; }
MethodIndex { get; }
PropertyIndex { get; 1}
FieldIndex { get; }
DelegateIndex { get; }
EventIndex { get; }

InternalModifierOffset { get; }
ProtectedModifierOffset { get; }
PrivateModifierOffset { get; }

GetIcon (IMethod method) ;
GetIcon (IProperty method) ;
GetIcon (IField field);
GetIcon(IEvent evt);
GetIcon(IClass c);

GetIcon (MethodBase methodinfo) ;
GetIcon (PropertyInfo propertyinfo) ;
GetIcon (FieldInfo fieldinfo) ;
GetIcon (EventInfo eventinfo) ;
GetIcon (System.Type type);

As we see, the class browser service exposes the image list containing all icons and the offsets to specific
icons through properties. For all icon indices, except Combine, Namespace, and Literal, icons are
defined that reflect their modifier. Therefore, if an icon for an internal struct should be displayed
the correct icon has the image index StructIndex + InternalModifierOffset. In most cases, the
user of this service just uses the Get Icon methods that give back the correct icon for all abstract parser
layer classes and all reflection classes.

File Service

The file service doesn't have much to do with the file utility service, which we have seen before. The file
service is responsible for:

O Common file operations like open, rename, remove, or create a new file. It is important to use
the service for rename or remove operations as it raises an event for them, and all other
components can update their status. For example, when we rename a file that is open, the
window containing the open file is renamed as well.

QO Storing the RecentOpen object, which contains the recently opened files and projects.

124

Providing Functionality with Workspace Services

The service is defined under src\SharpDevelop\Base\Services\File\IFileService.cs:

public interface IFileService
{
RecentOpen RecentOpen {
get;
}

The RecentOpen class is defined in src\SharpDevelop\Base\Services\File\RecentOpen.cs
and holds all our recently opened projects and files (up to 10 files and 10 projects).

It is stored into the SharpDevelop properties (therefore RecentOpen implements IXmlConvertable)
and the RecentOpen object itself listens to the file service's file open event and the project open event
from the project service. A menu item builder builds recent file/recent project menus out of the
RecentOpen contents.

Now let's look at the main file handling methods:

void OpenFile(string fileName) ;
void NewFile(string defaultName, string language, string content) ;
IWorkbenchiWindow GetOpenFile(string fileName) ;

Q OpenFile - opens the file whose name is given by fileName (i.e, it shows the file in the
workbench window). This method displays an error message if something goes wrong, like file
not found, read error or access denied.

0 NewFile - opens a new file with a given name, language and file content in the work
bench window

O GetOpenFile - gets an opened file by name, returns null, if the file is not open.

Now we will take look at the file operations that are performed using the service:

void RemoveFile(string fileName) ;
void RenameFile(string oldName, string newName) ;

These methods perform the following tasks:

O RemoveFile -removes a file from all open project and physically too.

O RenameFile - renames a file physically (all file names used will be updated too).

These functions simply call these event handlers:

event FileEventHandler FileRenamed;
event FileEventHandler FileRemoved;

125

Chapter 5

The methods RemoveFile and RenameFile first perform the physical operation (remove and rename)
and afterwards fire the appropriate events. (The event handlers will do the remove from/rename in the
project). If the operation fails, a message box with the error will be displayed and the event handler will
not be called. The project service listens to these events and updates the project file information. The
RecentOpen object updates its information too. This ensures that all parts get informed when a file is
renamed or removed inside the IDE.

Now that we know how files are handled through the file service, we will look at how projects and
combines are handled through the project service.

Project Service

SharpDevelop works on combines. As seen in Chapter 1, a combine is a container for projects and
combines. Projects contain source files that are compiled to an assembly.

The project service is responsible for handling the root combine. It compiles projects too and it
provides many events that are used in SharpDevelop. The IProjectService interface is found under
src\SharpDevelop\Base\Services\Project\IProjectService.cs:

public interface IProjectService
{
IProject CurrentSelectedProject {
get;
set;

}

Combine CurrentSelectedCombine {
get;
set;

}

// Gets the root combine, if no combine is open it returns null.
Combine CurrentOpenCombine {

get;
}

These properties provide access to the current combine and make the following properties available:

O CurrentSelectedProject - the project containing the current open file or that file which
is currently selected in the project scout (as seen in Chapter 4)

CurrentSelectedCombine - the combine containing the current selected project

CurrentOpenCombine - this is the root combine, which contains all open projects
and combines

You might wonder why the CurrentSelected* properties can be set. The answer is relatively simple:
the service does not know about them; it just manages them. The project scout sets them and the service
should not communicate with a GUI component because this would make the service depend on a
certain pad (in this case the project scout).

126

Providing Functionality with Workspace Services

Now we will look at the methods and properties used for compilation:

bool NeedsCompiling {
get;
}

This property returns true if an open project is dirty (modified). This indicates that during a compile
run something will be compiled.

void OnStartBuild() ;
void OnEndBuild() ;

The OnStartBuild/OnEndBuild methods fire the associated events to inform the IDE when a build
occurs. The build is usually threaded and therefore it is nice to know when a build has ended. For
example, the IDE will be switched to the task view at the EndBuild event when it contains errors.

Now to the compile methods:

void CompileCombine() ;

void RecompileAll();

void CompileProject (IProject project);
void RecompileProject (IProject project) ;

These methods do the following:

CompileCombine — compiles all dirty projects in the root combine (and sub-combines).

RecompileAll - compiles any project in the root combine and forces recompilation.
Recompilation is done with another method than compilation in the project subsystem, as
there may be some (programming) languages that need to complete some tasks, like removing
the executables or providing a forced overwrite switch to the compiler, before recompilation.

CompileProject — compiles just a given project

RecompileProject — recompiles a given project.

We must know how to set a project as dirty to mark that it is to be compiled in the next compile run.
This is done with the following methods:

void MarkFileDirty (string filename) ;
void MarkProjectDirty (IProject project) ;

Note that all dirty projects will be compiled when the user clicks on compile.
Sometimes it is necessary for us to know the name of the output file produced by a project after the

compile run. If a language produces more than one output file (as Java does) the name of the main file
should be returned.

127

Chapter 5

There are two methods for getting it:

string GetOutputAssemblyName (IProject project) ;
string GetOutputAssemblyName (string fileName) ;

SharpDevelop is capable of compiling files on a per file basis. Therefore, two methods are defined that
do the same — one for a project and one for a file.

Now we will look at the methods that handle combine persistence:

void OpenCombine (string filename) ;
void SaveCombine () ;
void CloseCombine() ;

0 OpenCombine - opens a new root combine. This method closes the old root combine
automatically (if any was open).

O sSaveCombine - saves the whole root combine on disk (all projects and sub-combines are
saved too).

O CloseCombine - closes the active root combine. After this method call all projects are closed.

Now we will examine a special method that saves the preferences from a combine:

void SaveCombinePreferences|() ;

This method saves the whole state of the IDE to restore it the next time the combine is opened. We will
now look at the default implementation, which is taken from
src\SharpDevelop\Base\Services\Project\DefaultProjectService.cs.

It would be nice to have a little understanding of the SharpDevelop GUI layer, but you can understand
this method even without knowledge about the GUI layer:

void SaveCombinePreferences (Combine combine, string combinefilename)
{
PropertyService propertyService =
(PropertyService) ServiceManager.Services.GetService
(typeof (PropertyService)) ;
string directory = propertyService.ConfigDirectory + "CombinePreferences";
if (!Directory.Exists(directory)) {
Directory.CreateDirectory (directory) ;

This first part just creates a CombinePreferences directory in the application data folder in the
.ICSharpCode\SharpDevelop path if it does not exist. In this path the combine preferences are
saved. They are saved independently from the combine file, as it is annoying to have somebody else's
settings open up while using the IDE. This could easily happen in team development when the combine
file is shared among a number of people.

128

Providing Functionality with Workspace Services

Then the root node will be created:

string combinepath = Path.GetDirectoryName (combinefilename) ;

XmlDocument doc = new XmlDocument () ;
doc.LoadXml ("<?xml version=\"1.0\"?>\n<UserCombinePreferences/>") ;

XmlAttribute fileNameAttribute = doc.CreateAttribute("filename") ;
fileNameAttribute.InnerText = combinefilename;
doc.DocumentElement .Attributes.Append (fileNameAttribute) ;

Note that the combine will be identified through its file name, which is stored in the £ilename attribute
of the root node.

Now all files that are currently open are stored:

XmlElement filesnode = doc.CreateElement ("Files");
doc.DocumentElement . AppendChild (filesnode) ;

foreach (IViewContent content in
WorkbenchSingleton.Workbench.ViewContentCollection) {
if (content.ContentName != null) {

XmlElement el = doc.CreateElement ("File");

XmlAttribute attr = doc.CreateAttribute("filename") ;
attr.InnerText = fileUtilityService.AbsoluteToRelativePath (combinepath,

content.ContentName) ;
el .Attributes.Append(attr) ;

filesnode.AppendChild(el) ;

After that, all pads (such as the class browser or project scout) store their mementos (refer the section on
Design Patterns in Chapter 2) into the XML:

XmlElement viewsnode = doc.CreateElement ("Views") ;
doc.DocumentElement . AppendChild (viewsnode) ;

foreach (IPadContent view in WorkbenchSingleton.Workbench.PadContentCollection)

if (view i1s IMementoCapable) {
XmlElement el = doc.CreateElement ("ViewMemento") ;

XmlAttribute attr = doc.CreateAttribute("class");
attr.InnerText = view.GetType().ToString() ;

el.Attributes.Append(attr) ;

el.AppendChild(((IMementoCapable)view) .CreateMemento () . ToXmlElement (doc)) ;

viewsnode.AppendChild(el) ;

129

Chapter 5

Now an IProperties object will be created to store other information that is not stored in it at this
point. Currently only the active window is stored:

IProperties properties = new DefaultProperties();

properties.SetProperty ("ActiveWindow",
WorkbenchSingleton.Workbench.ActiveWorkbenchWwindow == null 2 ""
WorkbenchSingleton.Workbench.ActiveWorkbenchiWindow.ViewContent.ContentName) ;

XmlElement propertynode = doc.CreateElement ("Properties");
doc.DocumentElement . AppendChild (propertynode) ;

propertynode.AppendChild (properties.ToXmlElement (doc)) ;

fileUtilityService.ObservedSave (new NamedFileOperationDelegate (doc.Save),
directory + Path.DirectorySeparatorChar + combine.Name + ".xml",
FileErrorPolicy.ProvideAlternative) ;

}
This completes it. All these values will be loaded and set the next time the combine is opened.

Now we will continue with our project service:

ProjectReference AddReferenceToProject (IProject prj, string filename) ;

ProjectFile AddFileToProject (IProject prj, string filename,
BuildAction action) ;

ProjectFile RetrieveFileInformationForFile(string fileName) ;

These methods are used to make it easier to handle project files and project references:

0 AddrReferenceToProject — adds a reference to a given project. It returns the
ProjectReference object, which will be created and inserted into the project.

0 AddrileToProject — adds a file to the project with a given BuildAction
(Nothing/Compile/EmbedAsResource/Exclude). It returns the ProjectFile object,
which will be created and inserted into the project.

0O RetrieveFileInformationForFile — searches through all open projects for the project
that contains the given file. The ProjectFile object from the project containing this file will
be returned. This method returns null if no project contains the given file.

More information about the ProjectFile and ProjectReference classes can be obtained in the
SharpDevelop source code. The project layer is defined in the directory
src\SharpDevelop\Base\Internal\Project:

void RenameProject (string oldName, string newName) ;
void RemoveFileFromProject (string fileName) ;

RenameProject — renames a project (the project must be open).

RemoveFileFromProject — removes the specified file from its project. The project must be
open (somewhere in the tree of the root combine) otherwise it can't be removed from the
project. If the same file is in more than one open project it will be removed from all of them.
This function will not remove a file physically from disk.

130

Providing Functionality with Workspace Services

Finally, the events that are called by the respective methods are defined:

// Called before a build run
event EventHandler StartBuild;

// Called after a build run
event EventHandler EndBuild;

// Called after a new root combine is opened
event CombineEventHandler CombineOpened;

// Called after a root combine is closed
event CombineEventHandler CombineClosed;

// Called after the current selected project has changed
event ProjectEventHandler CurrentProjectChanged;

// Called after the current selected combine has changed
event CombineEventHandler CurrentSelectedCombineChanged;

// Called after a project got renamed
event ProjectRenameEventHandler ProjectRenamed;

This completes our discussion on project handling in SharpDevelop. Now we will look at projects from
another perspective — the logical structure.

Parser Service

The parser service is important for the class browser and method insight. It manages all the installed
parsers (currently there is only a C# parser implemented for SharpDevelop). It is responsible for
providing the Resolve method, which tells SharpDevelop what type a specific expression has (this is
used for code completion and method insight). We will be discussing parsers and the innermost
workings of this service in Chapter 12.

For now let's take a look at the interface, which is defined under src\SharpDevelop\Base\
Services\ParserService\IParserService.cs.

public interface IParserService

{
IParseInformation ParseFile(string fileName) ;
IParseInformation ParseFile(string fileName, string fileContent) ;
IParseInformation GetParseInformation(string fileName) ;

IParser GetParser (string fileName) ;

// Default Parser Layer dependent functions

IClass GetClass (string typeName) ;

string[] GetNamespaceList (string subNameSpace) ;
ArrayList GetNamespaceContents (string subNameSpace) ;
bool NamespaceExists (string name) ;

131

Chapter 5

// Resolves an expression.

// The caretLineNumber and caretColumn are 1 based.

ResolveResult Resolve(string expression, int caretLineNumber, int caretColumn,
string fileName) ;

void AddReferenceToCompletionLookup (IProject project, ProjectReference
reference) ;
event ParseInformationEventHandler ParseInformationChanged;

The ParseFile functions return an IParseInformation object (the class is defined in the same file).
A parse information contains a dirty compilation unit (a parse tree for a single file) and a valid
compilation unit. Note that if you communicate with the parser all offsets are 1-based. This has
historical reasons (many parsers are 1-based).

The dirty compilation unit is set when the parser returned errors during parsing and the valid
compilation unit is only set when the parsing was successful (therefore the valid compilation unit is error
free). Code completion and method insight must merge this information to get the expected results (for
details refer Chapter 12).

public interface IParseInformation
{
ICompilationUnitBase ValidCompilationUnit {
get;
}
ICompilationUnitBase DirtyCompilationUnit {
get;
}
ICompilationUnitBase BestCompilationUnit {
get;
}
ICompilationUnitBase MostRecentCompilationUnit {
get;

The BestCompilationUnit returns the most error free compilation unit, this is usually the valid
compilation unit (if it exists) otherwise it is the dirty compilation unit.

The MostRecentCompilationUnit property returns the last compilation unit that was compiled.
That is mostly the dirty compilation unit (because a file in progress is seldom error free) but sometimes

(if no dirty compilation unit is set) it returns the valid compilation unit.

Now that we have covered the important services in SharpDevelop, let's briefly discuss the
remaining ones.

132

Providing Functionality with Workspace Services

Other Services

Beside the services we have already discussed in this chapter there are a few other, less important
services defined in SharpDevelop which we will only describe briefly:

Status Bar Service — displays the status bar messages.

Language Service — provides access to all supported natural spoken languages. All the
languages to which the SharpDevelop UI can be switched and the codepage they use are
accessible through this service (for details refer to Chapter 7).

O Task Service - stores the tasks that are displayed in the task window. Common tasks are
compiler errors or search results.

Q Toolbar Service — builds the SharpDevelop tool bars out of the AddIn tree. There are plans to
extend this service so that it can build general toolbars from an AddIn tree path. However,
this must wait until floating toolbars for .NET are available. (The Magic Library,
www.dotnetmagic.com, plans to provide them.)

0 Language Binding Service — makes all of the language bindings (links to external compilers)
accessible through file name (language bindings can compile and 'run' files) or project type
(they compile and run projects too).

Q Display Binding Service - provides an access point to all installed display bindings (refer to
Chapter 6).

Summary

In this chapter, we learned about the service concept in SharpDevelop and how it used in the IDE. We
have seen the service manager, where the services are inserted into the AddIn tree and accessed. We
also got an overview of all the services available inside SharpDevelop.

Now that we have a good understanding of what can be done inside SharpDevelop, let's move on to the
next (and last) part of the basic structure — the GUI layer.

133

Chapter 5

134

(o

The User Interface

In this chapter, we will learn about the way SharpDevelop handles the GUI. As we know,
SharpDevelop uses the MVC (model-view-controller) concept, which means, in the underlying parts,
the GUI is abstracted. With SharpDevelop, we planned in advance to make the GUI abstract to allow
easy switching of GUI APIs (for example, from Windows Forms to GTK# or QT#). This abstraction has
many benefits:

O It provides a clean model for all commands to work with
Q The abstraction layer helps in applying workarounds to some Windows Forms' bugs

Q The abstracted Layout Manager helps provide a new look and feel (like adding floating pads)
to the Workbench IDE without making any major code changes for switching the look and
feel of the IDE

Before we dive into the details, let's look at how the overall interaction takes place in the GUI layer:

Windows.Forms

Workbench V\

Workbench

Views Pads Window

™A Layout Manager

The abstract GUI layer is simple. We have a Workbench that contains views and pads, similar to a
container. The views are windows having editable content, like text. Pads, on the other hand, are tool
windows, like the Project Scout.

Chapter 6

However, note that the Workbench doesn't know how to display the views and pads on the screen. The
views may be stored in an MDI area or a tab control, or be floating around. The Workbench does not
care how the views are displayed. Anything concerned with the GUI API resides in the Layout
Manager. In contrast to the Workbench, the views and pads know how to display their content.

The Layout Manager handles the GUI and provides an implementation of the Workbench window too
(therefore, it is implemented using the GUI Toolkit). A Workbench window contains a view and
handles basic window operations like selecting a window. It doesn't know the positioning of the window
or how it is displayed.

Display Management

In this section, we will look at the source code of the various parts of the abstract GUI layer and how to
use the abstract GUI layer to display HTML inside SharpDevelop. The standard GUI objects we will
look at are:

Q Workbench windows
O Views
Q Pads

Finally, we will look at the integrated HTML Help Viewer, which is a real implementation of views and pads.

The Workbench Window

The Workbench window maps the basic window functions to an interface. To make the GUI work,
SharpDevelop need not know much about a window or how it is implemented. All that is needed for the
GUI actions to work are that the window must:

Have a title
Have a close method

Have a way to be selected

0o 0 o o

Trigger events to indicate a change or a window action

Note that these requirements evolved from the earlier SharpDevelop versions that didn't have an
abstracted GUI layer. In the former implementation, the window had only a few functions that are
now abstracted.

How it is represented and displayed doesn't matter to the Workbench, as this job is done in the Layout
Manager. The interface for the Workbench window is defined in the src\SharpDevelop\Base\Gui\
IWorkbenchWindow. cs file:

// The IWorkbenchWindow is the basic interface to a window, which
// shows a view (represented by the IViewContent object).
public interface IWorkbenchWindow

{

136

The User Interface

// The window title.
string Title {

get;

sett;

// The current view content, which is shown inside this window
IViewContent ViewContent {
get;

// Closes the window

// if force == true it closes the window without asking the user, even
//1f the content is dirty.

void CloseWindow (bool force) ;

// Brings this window to the front and sets the user focus to this
// window.
void SelectWindow () ;

// Is called when the window is selected.
event EventHandler WindowSelected;

// Is called when the window is deselected.
event EventHandler WindowDeselected;

// Is called when the title of this window changes.
event EventHandler TitleChanged;

// Is called after the window closes.
event EventHandler CloseEvent;

As we can see, the interface provides only the basic functionality. Later, in the Layout Managers section,
we will look at an implementation of this interface.

Now, let's take a look at views.

Views

The underlying part of the GUI layer is the views. A view usually contains an editor or a 'viewer' that is
able to edit (or display) a file, for example, the text editor or the resource editor. Basically, it is just a
panel that is displayed in an MDI window or on a tab page. We will begin with a look at the
IViewContent interface, which is the interface that the views expose to the outer world. It can be
found in the src\SharpDevelop\Base\Gui\IViewContent.cs file:

public interface IViewContent : IDisposable
{
Control Control {
get;

137

Chapter 6

The following property has a control (Windows . Forms) as its value. Currently, the interface is based on
Windows Forms. At a later stage, the Control property might return a more generic object or another
abstract representation to get rid of the Windows . Forms dependency, but which one of these cannot
be predicted.

This property returns the Workbench window in which the view is currently displayed:

IWorkbenchWindow WorkbenchWindow {
get;
set;

The WorkbenchWindow has a reference to the view too.

The name untitled is chosen when the IsUntitled property is true:

string UntitledName {
get;
set;

}

string ContentName {
get;
set;

}

bool IsUntitled {
get;

The ContentName usually points to the file or URL that the view displays, but actions should not
generally assume this. For untitled files, the ContentName property is null.

bool IsDirty {
get;
set;

bool IsReadOnly {
get;
}

bool IsViewOnly {
get;
}

These properties achieve the following:

Q IsDirty
If this property is true it indicates that the content needs to be saved (this is a 'dirty' file), and

a "' sign is displayed after the window title to inform the user about the 'dirty' state. When the
file is closed, the window will prompt the user to save the file.

138

The User Interface

Q IsReadOnly
If this property is true, it indicates that the content can't be written into (because it is
write-protected). A '+' sign after the window title is displayed for write-protected files, which
are never dirty.

Q IsViewOnly
This property is a bit like the IsReadOnly property with the exception that no '+' sign is
displayed and that, on views, no load or save operations can occur. This type of view is the
one that we will use to build our HTML help viewer.

The RedrawContent method is called to re-initialize the content, which is more than just repainting,
unlike what the name suggests. It is about refreshing all information that might have changed (for
example, in the case of a user interface switch). The content is not empty but the view should get all
Addin Tree information again. The following listing is an excerpt from this method:

void SaveFile() ;

void SaveFile(string fileName) ;

void LoadFile(string fileName) ;

event EventHandler ContentNameChanged;
event EventHandler DirtyChanged;

The first three methods perform the save and load operations for the view, followed by two events that
signal the change of the ContentName property and the IsDirty flag. The SaveFile method that
doesn't take a parameter should save the file with the filename that was specified during the last load or
save operation.

The AbstractViewContent implements all those and makes it easier to develop views. If a view has
the IsViewOnly flag set, it need not overwrite the SaveFile and LoadFile methods, as they are
never called. Note that, in that case, SaveFile or LoadFile throw a NotImplementedException.

Pads

Pads are tool windows inside SharpDevelop. Tool windows are a bit different from views, as they can
hide themselves and only one tool window of a type can be open, at a time. Tool windows usually don't
show file contents; instead, they help the user do their job.

SharpDevelop currently implements the following pads:

Project Scout — Displays the file structure in all currently open projects
Class Scout — Displays the namespace structure of the currently open combine

Task List — Displays compiler errors and search results, and enables the user to jump to the
error or search result position

QO Property Scout — Used in the forms designer to display (and alter) properties of GUI objects

139

Chapter 6

File Scout — An Explorer-like component for displaying the file structure

Tool Scout — Provides an Outlook-like sidebar used to drag-and-drop code snippets and to put
objects on the forms designer

Output Pad - Displays compiler messages

Help Scout — Displays the SharpDevelop help file and can open help topics using the internal
browser, the implementation of which we will look at in Chapter 7

A pad is similar to a view with some exceptions as follows:

O Pads can't be added by the user at run time. Currently, there is a fixed count of pads attached
to the Workbench (although with the current structure, it would be possible to add or remove
pads at run time, this makes no sense, as the user will want instant access to any pad).

Q Pads are always visible — they can't be closed; only hidden. This reduces the time needed to
pop up the pad when it is made visible.

Q Pads can't be untitled; they always have a unique name. They have an icon that is shown by
the IDE.

Q Pads are not displayed in the Workbench window. The Layout Manager is responsible for
showing the pads. We have used the Magic library to show the pads in a docking
content window.

We will take a closer look at the ITPadContent interface, as any pad must implement this interface. The
definition of the TPadContent interface can be found in the
src\SharpDevelop\Base\Gui\IPadContent.cs file:

// The IPadContent interface is the basic interface to all "tool" windows
// in SharpDevelop.
public interface IPadContent : IDisposable
{

// Returns the title of the pad.

string Title {

get;
}

// Returns the icon of the pad, which may be null if the pad has no
// icon defined.
Bitmap Icon {
get;
}

// Returns the Windows.Control for this pad.
Control Control {
get;

140

The User Interface

// Re-initializes all components of the pad; that is, reloads the
//Addin Tree and localization information, and then redraws the content.

void RedrawContent () ;

// Is called when the title of this pad has changed.
event EventHandler TitleChanged;

// Is called when the icon of this pad has changed.
event EventHandler IconChanged;

Now that we have looked at both views and pads, let's look at an implementation that uses both of them.

Views and Pads Applied — An Integrated HTML Help Viewer

In this section, we will learn how to implement a view and a pad. For the purpose of our discussion, we
will examine the HTML help system in SharpDevelop. We will look at the following topics in detail:

QO The HTML view
We will look at an example of a real IViewContent implementation in action.

O Navigating the help file
We will look at a pad that uses the HTML view content to display information.

The following screenshot shows the HTML help navigator:

#% SharpDevelop - [Welcome to SharpDevelop!] =1& x|
X

Fle Edit Miew Run Search Tools Window Help

»

BeEds2e XAk iiensilE R
Projects 1 % | Welcome to SharpDevelop! |

Em 2. Working with SharpDevelop
‘5] 1. Intraduction
Lij ':Ql 2. Projects
i @ 2.1, Projects
. Creating new projects
. Project Templates
. Project options
. Bullding projects
. Running projects
. Deplaying projects
e @ 2.5, Generating Documentation
- 3, File:
[]--Q 4. Folders
[]--Q 5. References
[
[

- @ 6. Combines
- 7. IDE Options
--[2] 8. Test Libraries o

@ 3. Unit Testing
@

4. Extending SharpDevelap

2
0
0
S
7
-

[
Thark you for choosing SharpDevelop as your developrment [+-
envirohment for JWET. SharpDevelop is a state of the art (- @ 5. Walkthroughs
development enviroment, written from scratch using =@ 6, Samples f
nothing but .NET itself - even the C# source code is 4 |

-@p 2| Cyr|Ber| | available to you, allowing you to see the possibilities offered | Properties 4% Help

B TaskList |
=3] I

141

Chapter 6

The HTML View

The HTML View is an IViewContent implementation. We will look at how the Internet Explorer
control is wrapped to the IViewContent interface and how this view is used to display HTML pages
inside SharpDevelop.

To begin with, we must wrap the SHDocVw ActiveX control to a managed component. Fortunately, this
is an easy task with the aximp utility that is shipped with the .NET SDK. This command-line tool wraps
an ActiveX component to a .NET Windows.Forms class.

At the command prompt, execute the following command:
aximp C:\WINDOWS\system32\shdocvw.dll

This will create two files, SHDocVw.d11 and AxSHDocVw.d1l1l. The AxSHDocVw.d11 contains the
wrapped ActiveX control we need. We need to reference these two files in our project.

Now we have to rename the SHDocVw. d11 file (this assembly contains the wrapped COM interfaces) to
Interop.SHDocVw.dll (or to any other name other than SHDocVw.d11). If we don't, it will produce
strange side effects under .NET when we run our application on Windows 2000. For example, in our
case, the Open file dialog wasn't able to access the My Documents directory. We could not determine
what exactly caused this problem.

Next, we need to wrap the basic ActiveX control to something more useful. In SharpDevelop, the
control may show navigation buttons when used as a normal browser. However, we use this control to
display our help files too, and in Help file view mode, the navigation buttons must disappear.

The control is implemented in the
src\SharpDevelop\Base\Gui\BrowserDisplayBinding\HtmlViewPane. cs file:

public class HtmlViewPane : UserControl
{

AxWebBrowser axWebBrowser = null;

ToolBar toolBar = new ToolBar() ;
TextBox urlTextBox = new TextBox() ;

bool isHandleCreated = false;
string lastUrl null;

public AxWebBrowser AxWebBrowser {
get {
return axWebBrowser;

}

142

The User Interface

The AxWebBrowser is the wrapped ActiveX component that the aximp tool creates. Our HTML view

will look like:

®] Home / Mono v i] |

« =90

|htt|3: Fvneny go-mono. comd

*] mono::

Home
FAQ #*imian announced the
launch of the Mono project,
an effort to create an open
source implementation of
Classes the .MET Development
Gtk# Framewaork,

Class Status
corlib

System

Mono

Runtime

Mono includes: a compiler

for the C#language, a Mono Status

i Self hostin
st St runtime for the Common . g
; ot Language Infrastructure C# on Linux
etem. Data talen rafarad me tha CLB and |Camnilar [Salf hacting

First, we initialize the control with the toolbar and the URL textbox. The constructor has a single
parameter that indicates whether the navigation bar with the buttons and the text field should be

displayed or not:

public HtmlViewPane (bool showNavigation)
{

Dock DockStyle.Fill;

Size = new Size (500, 500);

if (showNavigation) {
for (int i = 0; i < toolBarButtons.Length; ++i) {
ToolBarButton toolBarButton = new ToolBarButton() ;
toolBarButton.ImageIndex = g
toolBar.Buttons.Add (toolBarButton) ;

ResourceService resourceService = (ResourceService)

ServiceManager.Services.GetService (typeof (ResourceService)) ;
toolBar.ImageList = new ImageList();
toolBar.ImageList.Images.Add

(resourceService.GetBitmap ("Icons.16x16.BrowserBefore")) ;
toolBar.ImageList.Images.Add

(resourceService.GetBitmap ("Icons.16x16.BrowserAfter")) ;
toolBar.ImageList.Images.Add

(resourceService.GetBitmap ("Icons.16x16.BrowserCancel")) ;
toolBar.ImageList.Images.Add

(resourceService.GetBitmap ("Icons.16x16.BrowserRefresh")) ;

143

Chapter 6

toolBar.Appearance = ToolBarAppearance.Flat;

toolBar.Dock = DockStyle.Top;

toolBar.ButtonClick += new
ToolBarButtonClickEventHandler (ToolBarClick) ;

Controls.Add(toolBar) ;

urlTextBox.Location = new Point (0, 24);

urlTextBox.Size = new Size (Width, 24);

urlTextBox.KeyPress += new KeyPressEventHandler (KeyPressEvent) ;
urlTextBox.Anchor = AnchorStyles.Left | AnchorStyles.Right |

AnchorStyles.Top;

Controls.Add (urlTextBox) ;

axWebBrowser = new AxWebBrowser () ;
axWebBrowser.BeginInit () ;
if (showNavigation) {

int height = 48;

axWebBrowser.Location = new Point (0, height) ;

axWebBrowser.Size = new Size (Width, Height - height) ;
axWebBrowser .Anchor = AnchorStyles.Left | AnchorStyles.Right |
AnchorStyles.Bottom | AnchorStyles.Top;
} else {
axWebBrowser .Dock = DockStyle.Fill;

}
axWebBrowser .HandleCreated +=

new EventHandler (this.CreatedWebBrowserHandle) ;
axWebBrowser.TitleChange +=

new DWebBrowserEvents2_TitleChangeEventHandler (TitleChange) ;

Controls.Add (axWebBrowser) ;
axWebBrowser .EndInit () ;

Note that the toolbar buttons are handled differently as compared to normal buttons in the .NET
Framework. The toolbar buttons don't have a click or activate event attached to them; instead, the
toolbar control fires an event that has an int value (equal to the button position) when a toolbar button
is clicked.

Therefore, we just initialize these with a for statement. The web browser control is handled like any
other .NET Windows Forms control.

The ToolBarClick event handler delegates all actions to the ActiveX control wrapper:

void ToolBarClick(object sender, ToolBarButtonClickEventArgs e)
{
try {
switch (toolBar.Buttons.IndexOf (e.Button)) {
case 0:
axWebBrowser .GoBack () ;

144

The User Interface

break;

case 1:
axWebBrowser .GoForward () ;
break;

case 2:
axWebBrowser.Stop () ;
break;

case 3:
axWebBrowser.CtlRefresh() ;
break;

}
} catch (Exception) {
// Please ignore any errors (although not a good coding practice)

Now we will look at some more event handling methods:

void TitleChange (object sender, DWebBrowserEvents2_TitleChangeEvent e)
{

urlTextBox.Text = axWebBrowser.LocationURL;

void KeyPressEvent (object sender, KeyPressEventArgs ex)
{
if (ex.KeyChar == '\r') {
Navigate (urlTextBox.Text) ;

Note that pressing the return key in the Windows Forms textbox control is represented as \r instead of
\n. A \n is used as line terminator for any other Windows Forms controls I know about, but the textbox
behaves a little strangely.

public void CreatedWebBrowserHandle (object sender, EventArgs evArgs)
{
isHandleCreated = true;
if (lastUrl != null) {
Navigate (lastUrl) ;
}

We can navigate to an URL page in the AxWebBrowser only after the handle of the Internet Explorer
control is created. Therefore, we need to save the URL that is requested before the handle is created.
The isHandleCreated field indicates the handle creation.

The heart of our control is the Navigate method. It checks whether the handle is created and if not, it

stores the URL into the lastUrl field. After that it puts the URL into the textbox and it wraps the
Navigate method from the AxiWebBrowser object to a friendlier one:

145

Chapter 6

public void Navigate(string name)
{
if (!isHandleCreated) {
lastUrl = name;
return;
}
urlTextBox.Text = name;
object argl = 0;
object arg2 = "";
object arg3 = "";
object argd4 = "";
try {
axWebBrowser .Navigate (name, ref argl, ref arg2, ref arg3, ref arg4);
} catch (Exception e) {
Console.WriteLine(e.ToString()) ;

The Navigate method of the AxWebBrowser takes many command-line arguments but we don't
bother with them.

Now, we must override the Dispose method to ensure the timely disposal of the ActiveX control:

protected override void Dispose (bool disposing)
{
base.Dispose (disposing) ;
if (disposing) {
axWebBrowser .Dispose() ;

Finally, we have a fully functional user control that we can easily wrap to an IViewContent interface
by extending the AbstractViewContent class (which makes the implementation of the interface
much simpler):

public class BrowserPane : AbstractViewContent
{

HtmlViewPane htmlViewPane;

The view implementation just uses the HtmlViewPane. The view needs to implement some properties,
which are defined in the IViewContent interface:

public override Control Control {
get {
return htmlViewPane;

146

The User Interface

public override bool IsDirty {
get {
return false;
}
set {
}

public override bool IsViewOnly {
get {
return true;

Note that the Control property is abstract, and that the IsDirty and IsViewOnly properties are
declared virtual in the AbstractViewContent class. We overwrite the IsDirty and IsViewOnly
properties because we want only a simple view, which is never dirty (giving back false ensures that it
is never marked as dirty).

Now we implement the constructors, one of which flags if the navigation bar should be shown. The
default constructor just shows the navigation bar:

protected BrowserPane (bool showNavigation)
{
htmlViewPane = new HtmlViewPane (showNavigation) ;
htmlViewPane.AxWebBrowser.TitleChange +=
new DWebBrowserEvents2_TitleChangeEventHandler (TitleChange) ;

public BrowserPane () : this(true)
{
}

We need to dispose the HtmlViewPane instance. This is important; otherwise we may produce a
memory leak (remember that the underlying control is a COM component):

public override void Dispose ()
{

htmlViewPane.Dispose () ;

Lastly, we override the LoadFile method, which just navigates the HtmlViewPane to a URL, and the
TitleChange event, which sets the name of the view to the title of the HTML page currently viewed.
This name will be taken as the window title:

public override void LoadFile(string url)
{

htmlViewPane.Navigate (url) ;

147

Chapter 6

void TitleChange (object sender, DWebBrowserEvents2_ TitleChangeEvent e)

{
ContentName = e.text;

The implementation of the BrowserPane view is very straightforward, as all the important work is
done in the HtmlViewPane.

With the HTML view complete, we may concentrate on navigating the HTML help file. You must have
noticed that AbstractViewContent helps us greatly in implementing a view for SharpDevelop. We
have to bother with only some details and most of the coding is straightforward.

Navigating the Help File

How does SharpDevelop display its internal help? We are using the standard . chm format for this task.
However, we have applied a few tricks as well. The . chm format itself is not really useful when we want
to develop a custom help viewer, as we need to get the contents of the help file for displaying them. We
will look at how that is done, in this section.

The browser itself, implemented as a pad, is defined in the
src\SharpDevelop\Base\Gui\Pads\HelpBrowser\HelpBrowser.cs file:

public class HelpBrowser : AbstractPadContent
{
static readonly string helpPath = Application.StartupPath +
Path.DirectorySeparatorChar + ".." +
Path.DirectorySeparatorChar + "doc" +
Path.DirectorySeparatorChar + "help" +
Path.DirectorySeparatorChar;

static readonly string helpFileName = helpPath + "HelpConv.xml";

Panel browserPanel new Panel () ;

TreeView treeView = new TreeView() ;

public override Control Control {
get {
return browserPanel;

public HelpBrowser () : base("S${res:MainWindow.Windows.HelpScoutLabel}",
"Icons.l1l6x16.HelpIcon")

treeView.Dock = DockStyle.Fill;
treeView.ImageList = new ImageList();
ResourceService resourceService = (ResourceService)

ServiceManager.Services.GetService (typeof (ResourceService)) ;

148

The User Interface

treeView.ImageList.Images.Add

(resourceService.GetBitmap ("Icons.16x16.HelpClosedFolder")) ;
treeView.ImageList.Images.Add

(resourceService.GetBitmap ("Icons.16x16.HelpOpenFolder")) ;

treeView.ImageList.Images.Add

(resourceService.GetBitmap ("Icons.16x16.HelpTopic"));
treeView.BeforeExpand += new TreeViewCancelEventHandler (BeforeExpand) ;
treeView.BeforeCollapse +=

new TreeViewCancelEventHandler (BeforeCollapse) ;
treeView.DoubleClick += new EventHandler (DoubleClick) ;
browserPanel .Controls.Add (treeView) ;

LoadHelpfile() ;

This is the initial setup of the tree view. What is more interesting is how we load the help file and
generate that nice tree of help topics:

// Parses the xml tree and generates a TreeNode tree out of it.
void ParseTree (TreeNodeCollection nodeCollection, XmlNode parentNode)
{
foreach (XmlNode node in parentNode.ChildNodes) {
switch (node.Name) {
case "HelpFolder":
TreeNode newFolderNode = new
TreeNode (node.Attributes["name"] . InnerText) ;
newFolderNode.ImageIndex = newFolderNode.SelectedImageIndex = 0;
ParseTree (newFolderNode.Nodes, node) ;
nodeCollection.Add (newFolderNode) ;
break;
case "HelpTopic":
TreeNode newNode = new
TreeNode (node.Attributes["name"] .InnerText) ;
newNode.ImageIndex = newNode.SelectedImageIndex = 2;
newNode.Tag = node.Attributes["link"].InnerText;
nodeCollection.Add (newNode) ;
break;

void LoadHelpfile()
{
XmlDocument doc = new XmlDocument () ;
doc.Load (helpFileName) ;
ParseTree (treeView.Nodes, doc.DocumentElement) ;

The LoadHelpfile method loads the help file, and the ParseTree method recursively parses the
nodes defined in the XML file and generates the TreeNode objects from the XML definition. We will
get back to this interesting XML file shortly.

149

Chapter 6

Let's look at the event-handling methods for displaying a help topic:

HelpBrowserWindow helpBrowserWindow = null;

void HelpBrowserClose (object sender, EventArgs e)
{
helpBrowserWindow = null;

}
void DoubleClick (object sender, EventArgs e)
{
TreeNode node = treeView.SelectedNode;
if (node.Tag !'= null) {
string navigationName = "mk:@MSITStore:" + helpPath +
node.Tag.ToString () ;
if (helpBrowserWindow == null) {

helpBrowserWindow = new HelpBrowserWindow () ;
WorkbenchSingleton.Workbench. ShowView (helpBrowserWindow) ;
helpBrowserWindow.WorkbenchiWindow.CloseEvent +=
new EventHandler (HelpBrowserClose) ;
}

helpBrowserWindow.LoadFile (navigationName) ;

}
void BeforeExpand(object sender, TreeViewCancelEventArgs e)
{
if (e.Node.ImageIndex < 2) {
e.Node.ImageIndex = e.Node.SelectedImageIndex = 1;

void BeforeCollapse (object sender, TreeViewCancelEventArgs e)
{
if (e.Node.ImageIndex < 2) {
e.Node.ImageIndex = e.Node.SelectedImageIndex = 0;

The methods perform the following tasks:

O HelpBrowserClose
This method is called when the help browser view closes. It sets the helpBrowserWindow to
null to indicate that a new help browser window must be created when the next help topic
is selected.

Q DoubleClick
This method opens the help view in the Workbench, and sets its content to point to the new
help topic. If a view is already open, it just sets the new content and reuses the existing view.

0O BeforeExpand and BeforeCollapse
These methods switch the open and close icons for the folders, respectively.

150

The User Interface

The view content that this pad displays is simple. As we already have the BrowserPane, we can just
subclass it and reuse the code we have already written. The only difference is that the help browser view
has no navigation bar, but this can be turned off using the protected constructor from the base class.
The HelpBrowserPane is in the same file as the help browser:

public class HelpBrowserPane : BrowserPane
{
public HelpBrowserPane() : base(false)
{
ContentName = "Help";

We don't use the . hhc format which represents the table of contents (TOC), because the .hhc file is in
HTML format and needs to be tweaked a bit to become a valid XML file that can be parsed by the
.NET XML parser.

The original . chm table of contents file is converted to an XML TOC file by an external utility,
HelpBrowserApp, that is shipped with SharpDevelop. It is available in the
src\Tools\HelpBrowserApp directory. It simply converts the .hhc file into an XML representation.

Here's an example of the XML format used:

<HelpCollection>
<HelpFolder name="SharpDevelop">
<HelpTopic name="Welcome to SharpDevelop!"
link="SharpDevelop.chm::/pr0l.html" />
<HelpFolder name="1. Getting Started with SharpDevelop">
<HelpTopic name="1. Introduction"
link="SharpDevelop.chm::/ch01ls0l.html" />
</HelpFolder>
</HelpFolder>
</HelpCollection>

We use HelpFolder nodes as a folder. A help topic that has a name and a 1ink is passed to the
Navigate method of our HTML view. This help file is the output of the help parser, and we need a
description file that tells our parser which files to convert:

<HelpCollection>
<HelpFile hhc="SharpDevelop.hhc" chm="SharpDevelop.chm"/>
<HelpFolder name="#ziplib">
<HelpFile hhc="031SharpZipLib.hhc" chm="031SharpZipLib.chm" />
</HelpFolder>
</HelpCollection>

The parser converts the HelpFile nodes from this file and loads the .hhc file specified in the hhc
attribute. It generates the tree defined in the .hhc file, from this definition.

The conversion from .hhc is done using regular expressions. We need to add some closing tags with

specific opening tags to convert from HTML to XML. The .chm attribute is needed to construct the
correct link (that is, set the link attributes).

151

Chapter 6

We can look at an .hhc example file in the doc\help folder, named SharpDevelop.hhc:

<HTML>
<HEAD>
</HEAD>
<BODY>
<OBJECT type="text/site properties">
<param name="ImageType" value="Folder">
</OBJECT>

 <OBJECT type="text/sitemap">
<param name="Name" value="SharpDevelop">
<param name="Local" value="index.html">
</OBJECT> <OBJECT type="text/sitemap">
<param name="Name" value="Welcome to SharpDevelop!">
<param name="Local" value="pr0l.html">
</OBJECT> <OBJECT type="text/sitemap">
<param name="Name" value="1. Getting Started with SharpDevelop">
<param name="Local" value="chOl.html">
</OBJECT> <OBJECT type="text/sitemap">
<param name="Name" value="2.1.6. Properties Scout">
<param name="Local" value="ch01s02s01s06.html">
</OBJECT> <OBJECT type="text/sitemap">
<param name="Name" value="2.2. Code Window">
<param name="Local" value="ch01s02s02.html">
</OBJECT>
</BODY>
< /HTML>

This is a sample .hhc file that is not XML compliant. To make it XML compliant, we need to generate
the closing tags. The <param> tags are not closed either. The tool that converts this file to XML
uses the following method to convert files that have this . hhc format:

void MakeXmlCompliant ()
{
StringBuilder strFixup = new StringBuilder (Regex.Replace
(hhcFileContents, " (?'start'<param\\s[*>]%*) (?'end'\"/?>)",
"S{starti\"/>"));

strFixup.Replace("</OBJECT>", "</OBJECT>");
strFixup.Replace ("</OBJECT>", "</OBJECT>");
strFixup.Replace ("</OBJECT>", "</OBJECT>");

hhcFileContents strFixup.ToString() ;

The first Replace method uses a regular expression that closes only the param tags. Closing the
tags is done with the standard Replace method because the .hhc files are auto-generated and the
format is fixed. Now, we have a file that can be loaded correctly with the XML classes of .NET, and we
can generate a well-formed XML document for loading the help tree.

152

The User Interface

Layout Managers

We will now switch gears and discuss the Layout Manager system, which is responsible for displaying
views and pads. They do all the 'dirty' work that needs to be done while using GUI libraries.

Before diving into the code, let's look at the working of the Layout Manager. This will give us an idea of
how it looks. We will look at the MDI Layout Manager, which puts the Workbench windows in an MDI
area where the windows can be maximized, minimized, or arranged:

#5 SharpDevelop
Fle Edt Wiew Run Search Toos Window Help

DSHT A X A% 4% %% EH

CompllationUnit.cs Parameter.zs|ﬁ\ncka.:s | statement.cs | 4 x

sansadoig i

i C:\Program Files\SharpDevel
public override CommentCollection DokuC b writes
s <copyright see="prj:i/fs

get. { .
return lexer.DokuComrents: _I slicense ses="pryi/srde
) <owner name="Andrea Pa:
<version value="§Fversic

’ A </fidlex

public overrids TagCollection TagComment it e

get { "
using System.Collections:
return lexer.TagCOmments; 9 Sy

3

y
ubli 1 P T H
public Token LookUpToken(int i) e
{]
ubl: Paramet:

return tokens.Hext (i) : ‘; e par er ()

¥

public void SetErrorFlagi() ’
{

errorsburingCompile = true:
+

public hool Match(Token t}
<

bool is0k = t.Equals(NextToken):
if (1is0k)§

Ready H\M colT chi |

We also have a Layout Manager for handling SDI layout, which puts the windows into a tab page. We
plan to use a feature of the Magic library that allows docking of the views too, like docking the pads
(but, currently, this is not the top priority task). The new Layout Manager will look like the current SDI
Layout Manager; but in the new tab area, tab pages can be rearranged creating new tab controls, which
can contain other tab pages that share the same area. This simulates MDI features like tiling
horizontally or vertically using tab controls and docking.

As usual, let's look at the interface that must be implemented by all Layout Managers. It is called
IWorkbenchLayout and it is defined in the
src\SharpDevelop\Base\Gui\IWorkbenchLayout.cs file:

public interface IWorkbenchLayout

{

IWorkbenchiWindow ActiveWorkbenchwindow {
get;

153

Chapter 6

One of the important functionalities that a Layout Manager must have is to enable marking one window
as the active Workbench window. This window is the one that contains the user focus.

The Layout Manager is capable of being attached to (or detached from) a Workbench by setting the
Workbench back to the original uninitialized state. The detach operation removes all Workbench
windows attached to the views.

After this call, the views will get new Workbench windows when a new Layout Manager is attached to
their Workbench.

void Attach (IWorkbench Workbench) ;
void Detach() ;

Now we will look at the functions that handle the pads. The ShowPad method will be used the first time
a pad is attached to the Layout Manager. The ActivatePad method makes a pad visible (if necessary)
and puts it to the front. The HidePad method hides a pad (after this call the given pad is invisible but it
does exist and will not be disposed). The IsvVisible method checks if a specific pad is, currently,

not hidden.

void ShowPad (IPadContent content) ;
void ActivatePad (IPadContent content) ;
void HidePad (IPadContent content) ;

bool IsVisible(IPadContent padContent) ;

Despite it's name, the RedrawAllComponents method does not update the display. The Layout
Manager should refresh its Addin Tree information, update its localization data, and then do a redraw.
This has nothing to do with the common repainting operation:

void RedrawAllComponents () ;

The last method shows a new view. This call is used when a new view is created and is made visible.
This method attaches a Workbench window to the view. Lastly, this interface defines an event that is
fired when the ActiveWorkbenchwindow property changes:

IWorkbenchiWindow ShowView (IViewContent content) ;

event EventHandler ActiveWorkbenchWindowChanged;

}

154

The User Interface

The MDI Layout Manager is implemented in the src\SharpDevelop\Base\Gui\Workbench\
Layouts\MdiWorkbenchLayout.cs file:

// This is a Workspace with a single document interface.
public class MdiWorkbenchLayout IWorkbenchLayout
{
static string defaultconfigFile;
static PropertyService propertyService = (PropertyService)
ServiceManager.Services.GetService (typeof (PropertyService)) ;
static string configFile = propertyService.ConfigDirectory +
"MdiLayoutConfig.xml";
Form wbForm;

DockingManager dockManager;
ICSharpCode.SharpDevelop.Gui.Components.OpenFileTab tabControl =
new ICSharpCode.SharpDevelop.Gui.Components.OpenFileTab () ;

static MdiWorkbenchLayout ()
{
PropertyService propertyService = (PropertyService)
ServiceManager.Services.GetService (typeof (PropertyService)) ;
string language =
propertyService.GetProperty ("CoreProperties.UILanguage") .ToString () ;
// Filter out region codes (for example DE-de will be DE,
// we don't support region codes

currently

if (language.IndexOf('-') > 0) {
language = language.Split(new char([] {'-'})[0];
}
defaultconfigFile = Application.StartupPath +
Path.DirectorySeparatorChar + ".." +
Path.DirectorySeparatorChar + "data" +
Path.DirectorySeparatorChar + "options" +
Path.DirectorySeparatorChar + "Layouts" +
Path.DirectorySeparatorChar + language +
Path.DirectorySeparatorChar + "LayoutConfig.xml";
if (!File.Exists(defaultconfigFile)) {
defaultconfigFile = Application.StartupPath +

Path.DirectorySeparatorChar
Path.DirectorySeparatorChar
Path.DirectorySeparatorChar
Path.DirectorySeparatorChar
Path.DirectorySeparatorChar

+ "0+

+ "data" +

+ "options" +

+ "Layouts" +

+ "LayoutConfig.xml";

First, the path of the default configuration file is set. This configuration file is used for setting the
docking state of the pads. It is in XML format and is a feature of the Magic library, which generates a
configuration file for the dockstate of the pads. If the configurations aren't set properly, then the layout
will be garbled (all pads will auto-dock to the left side). This should never happen because the default
config file will be loaded; but if it is missing, it won't disturb the application:

155

Chapter 6

#% sharpDevelop =10 x|

File Edit Wiew Run Search Tools Window Help
P Wl 2 EE X gtk 6% %% %

|Pr0jects 3 x | 4F X

D CRETE A A L

[Ready | |

|

We have to provide a separate configuration file for each language, as Magic identifies the docked
controls by their name. If it is unable to find a language-specific configuration file, a default
configuration file is used, created by us. We just create a layout that we feel is handy, and put our
configuration file for the default layout in the distribution.

Resuming our discussion of the MDI Layout Manager, let's look at the ActiveWorkbenchwindow
property:

public IWorkbenchWindow ActiveWorkbenchwindow {
get {
if (tabControl.SelectedTab == null) {
return null;
}
return (IWorkbenchWindow)tabControl.SelectedTab.Tag;

This property returns the active Workbench window. Only the Layout Manager can determine where it
is and how it is represented.

Now we'll look at the Attach method that attaches the Layout Manager to the Workbench (look at the
diagram at the beginning of this chapter). As we can switch the Layout Manager at run time, this
method is quite interesting. Note that, in this code snippet, the Workbench itself inherits from
System.Windows .Forms.Form:

156

The

User Interface

public void Attach (IWorkbench Workbench)

{

wbForm = (Form)Workbench;
wbForm.Controls.Clear () ;
wbForm.IsMdiContainer = true;

tabControl.Dock = DockStyle.Top;
tabControl.ShrinkPagesToFit = true;
tabControl.Appearance =

Crownwood.Magic.Controls.TabControl .VisualAppearance.MultiDocument;

tabControl.Size = new Size (10, 24);
wbForm.Controls.Add (tabControl) ;

dockManager = new DockingManager (wbForm, VisualStyle.IDE);

Control firstControl = null;

IStatusBarService statusBarService = (IStatusBarService)
ICSharpCode.Core.Services.ServiceManager.Services.GetService

(typeof (IStatusBarService)) ;
wbForm.Controls.Add (statusBarService.Control) ;

foreach (ToolBar toolBar in ((DefaultWorkbench)Workbench).ToolBars) {

if (firstControl == null) {
firstControl = firstControl;

}

wbForm.Controls.Add (toolBar) ;

((DefaultWorkbench)Workbench) . TopMenu.Dock = DockStyle.Top;
wbForm.Controls.Add (((DefaultWorkbench)Workbench) . TopMenu) ;

((DefaultWorkbench)Workbench) . TopMenu.MdiContainer = wbForm;
wbForm.Menu = null;

dockManager . InnerControl = tabControl;

dockManager .OuterControl = statusBarService.Control;

foreach (IViewContent content in Workbench.ViewContentCollection) {

ShowView (content) ;

foreach (IPadContent content in Workbench.PadContentCollection)
ShowPad (content) ;

{

tabControl.SelectionChanged += new EventHandler (ActiveMdiChanged) ;

try {
if (File.Exists(configFile)) {
dockManager .LoadConfigFromFile (configFile) ;
} else if (File.Exists(defaultconfigFile)) {
dockManager .LoadConfigFromFile (defaultconfigFile) ;

157

Chapter 6

} catch (Exception) {
Console.WriteLine
("can't load docking configuration, version clash ?");

}
RedrawAllComponents () ;

When switching the Layout Managers, the Detach method is called first. This method restores the
Workbench window to its former state:

public void Detach()

{
if (dockManager != null) {
dockManager .SaveConfigToFile (configFile) ;

foreach (DefaultWorkspaceWindow f in wbForm.MdiChildren) {
f.TakeOffContent () ;
f.ViewContent = null;
f.Controls.Clear () ;
f.Close();

tabControl.TabPages.Clear () ;
tabControl.Controls.Clear () ;
if (dockManager != null) {

dockManager .Contents.Clear () ;

((DefaultWorkbench)wbForm) . TopMenu.MdiContainer = null;
wbForm.IsMdiContainer = false;
wbForm.Controls.Clear() ;

If our Layout Manager is set to a Workbench, we'll now look into the problem of showing the various pads:

Hashtable contentHash = new Hashtable() ;

public void ShowPad (IPadContent content)

{
if (contentHash[content] == null) {
IProperties properties = (IProperties)
propertyService.GetProperty ("Workspace.ViewMementos", new
DefaultProperties()) ;

content.Control.Dock = DockStyle.None;
Content newContent;
if (content.Icon != null) {
ImageList imgList = new ImageList();
imgList.Images.Add (content.Icon) ;
newContent = dockManager.Contents.Add
(content.Control, content.Title, imgList, 0);

158

The User Interface

} else {
newContent = dockManager.Contents.Add
(content.Control, content.Title);
}

contentHash[content] = newContent;
} else {
Content ¢ = (Content)contentHash[content];

if (¢ !'= null) {
dockManager . ShowContent (c) ;

public bool IsVisible(IPadContent padContent)
{
Content content = (Content)contentHash[padContent];
if (content != null) {
return content.Visible;
}

return false;

public void HidePad (IPadContent padContent)
{
Content content = (Content)contentHash[padContent];
if (content != null) {
dockManager .HideContent (content) ;

public void ActivatePad(IPadContent padContent)
{
Content content = (Content)contentHash[padContent];
if (content != null) {
content.BringToFront () ;

public void RedrawAllComponents ()
{

tabControl.Style = (Crownwood.Magic.Common.VisualStyle)

propertyService.GetProperty
("ICSharpCode.SharpDevelop.Gui.VisualStyle",
Crownwood.Magic.Common.VisualStyle.IDE) ;

These functions handle pads and work with the Magic library's dock controls to handle the pad state.

The RedrawAllComponents method in the Layout Manager must renew all information that might
have possibly changed. The Layout Manager doesn't call Redraw on the views or pads, as this is the
task of the Workbench. We defined the Workbench to implement it this way because there would be
code duplication if all Layout Managers called Redraw on pads and views:

159

Chapter 6

// redraw correct pad content names (language may have changed)
foreach (IPadContent content in
((IWorkbench)wbForm) . PadContentCollection) {
Content ¢ = (Content)contentHash[content];
if (¢ != null) {
c.Title = c.FullTitle = content.Title;

The next method, ShowView, is the equivalent of ShowPad, for views. It shows a view as a
DefaultWorkspaceWindow in the MDI area of the main window (we will look at the
DefaultWorkspaceWindow later in this section):

public IWorkbenchWindow ShowView (IViewContent content)

{
DefaultWorkspaceWindow window = new DefaultWorkspaceWindow (content) ;
content.Control.Visible = true;
if (wbForm.MdiChildren.Length == 0 ||
wbForm.ActiveMdiChild.WindowState == FormWindowState.Maximized) {
((Form)window) .WindowState = FormWindowState.Maximized;
}

window.TabPage = tabControl.AddWindow (window) ;

((Form)window) .MdiParent = wbForm;

((Form)window) . Show () ;

window.Closed += new EventHandler (CloseWindowEvent) ;

return window;

Now we need to do some event handling:

public void CloseWindowEvent (object sender, EventArgs e)

{
DefaultWorkspaceWindow f = (DefaultWorkspaceWindow)sender;
if (f.ViewContent != null) {
((IWorkbench)wbForm) .CloseContent (f.ViewContent) ;
}
}

void ActiveMdiChanged (object sender, EventArgs e)

{
if (ActiveWorkbenchWindowChanged != null) {
ActiveWorkbenchWindowChanged (this, e);

public event EventHandler ActiveWorkbenchWindowChanged;

160

The User Interface

Writing a Layout Manager is an annoying task, and we have often found that bugs break into some of
the Layout Managers. However, we have a single point of failure when something 'strange' is going on
in the GUI. The good thing about Layout Managers is that they are relative simple, small, and help to
improve the design of the other parts (the view or pad model is really nice to program with). Only the
Layout Manager knows about the implementation details of the windows it provides, so each Layout
Manager must provide an implementation of IWorkbenchwindow.

In the past, we have had a floating Layout Manager that used the same workspace window as the MDI
Layout Manager. The floating Layout Manager was discarded because very few users ever used it.

The workspace window is implemented in the
src\SharpDevelop\Base\Gui\Workbench\Layouts\DefaultWorkspaceWindow.cs file:

public class DefaultWorkspaceWindow : Form, IWorkbenchWindow
{

IViewContent content;

EventHandler setTitleEvent = null;
Crownwood.Magic.Controls.TabPage tabPage = null;

public Crownwood.Magic.Controls.TabPage TabPage {
get {
return tabPage;
}
set {
tabPage = value;

public string Title {
get {
return Text;
}
set {
Text = value;
string fileName = content.ContentName;

if (tabPage != null) {
tabPage.Title = value;

}

if (fileName == null) {

fileName = content.UntitledName;
}
if (fileName !'= null) {
FileUtilityService fileUtilityService = (FileUtilityService)
ServiceManager.Services.GetService (typeof (FileUtilityService)) ;
int index = fileUtilityService.GetImageIndexForFile (fileName) ;
this.Icon = System.Drawing.Icon.FromHandle
(((Bitmap) fileUtilityService.ImageList.Images[index]) .GetHicon()) ;
}
OnTitleChanged (null) ;

161

Chapter 6

public IViewContent ViewContent {
get {
return content;
}
set {
content = value;

public DefaultWorkspaceWindow (IViewContent content)
{
this.content = content;
content .WorkbenchiWindow = this;
content.Control.Dock = DockStyle.Fill;
Controls.Add (content.Control) ;

setTitleEvent = new EventHandler (SetTitleEvent) ;
content.ContentNameChanged += setTitleEvent;
content.DirtyChanged += setTitleEvent;
SetTitleEvent (null, null);

The Layout Manager sets the tab page for the window. If a title change occurs, the window sets the
name of the tab too. An alternative would have been to let the tab listen to the TitleChanged event;
but the former approach was a bit easier because it doesn't require us to extend the tab, or to remove
event handlers when a window closes.

The setTitleEvent sets the title of the window. If the content is untitled, this method retrieves the
default untitledname and constructs a name that has the <untitledname>Number form. It searches
through all windows in the Workbench to find the first 'free' number and acquires it:

string myUntitledTitle = null;
public void SetTitleEvent (object sender, EventArgs e)
{
if (content == null) {
return;
}
string newTitle =
if (content.ContentName == null) {
if (myUntitledTitle == null) {
string baseName =
Path.GetFileNameWithoutExtension (content.UntitledName) ;
int number = dg
bool found = true;
while (found) {
found = false;
foreach (IViewContent windowContent in
WorkbenchSingleton.Workbench.ViewContentCollection) {
string title = windowContent.WorkbenchWindow.Title;
if (title.EndsWith("*") || title.EndsWith("+")) {
title = title.Substring(0, title.Length - 1);

wn o,
7

162

The User Interface

if (title == baseName + number) {
found = true;
++number;
break;

}
myUntitledTitle = baseName + number;

}
newTitle = myUntitledTitle;
} else {
newTitle = WindowState == FormWindowState.Minimized ?
Path.GetFileName (content.ContentName) : content.ContentName;

if (content.IsDirty) {

newTitle += "*";

} else if (content.IsReadOnly) {
newTitle += "+";

}

if (newTitle != Title) {

Title = newTitle;

protected override void OnResize (EventArgs e)

{
base.OnResize(e) ;
SetTitleEvent (null, null);

Like the Workbench layout, the window is able to detach the content. After this method call, the
content can be inserted in a new Workbench window:

public void DetachContent ()
{

content.ContentNameChanged -= setTitleEvent;
content.DirtyChanged -= setTitleEvent;

Now, we will look at the closing methods. The window pops up a message box that asks the user if the
window can be safely closed:

protected override void OnClosing (CancelEventArgs e)

{
base.OnClosing (e) ;
if (!forceClose andand ViewContent != null andand ViewContent.IsDirty) ({
ResourceService resourceService = (ResourceService)

ServiceManager.Services.GetService (typeof (ResourceService)) ;
DialogResult dr = MessageBox.Show
(resourceService.GetString ("MainWindow.SaveChangesMessage") ,

163

Chapter 6

resourceService.GetString ("MainWindow.SaveChangesMessageHeader")

" " 4+ Title + " ?", MessageBoxButtons.YesNoCancel,
MessageBoxIcon.Question) ;
switch (dr) {
case DialogResult.Yes:
Activate() ;
if (content.ContentName == null) {
while (true) {
new ICSharpCode.SharpDevelop.Commands.SaveFileAs () .Run() ;
if (ViewContent.IsDirty) {
DialogResult result = MessageBox.Show
("Do you really want to discard your changes ?",
"Question", MessageBoxButtons.YesNo,
MessageBoxIcon.Question,
MessageBoxDefaultButton.Button2) ;

if (result == DialogResult.Yes) {
break;
}
} else {
break;
}
}
} else {
ViewContent.SaveFile() ;
}
break;

case DialogResult.No:
// set view content dirty = false, because I want to prevent
//double checks, if Close() is called twice.
ViewContent.IsDirty = false;

break;

case DialogResult.Cancel:
e.Cancel = true;
return;

protected override void OnClosed (EventArgs e)
{

base.OnClosed(e) ;

OnWindowDeselected (e) ;

OnCloseEvent (null) ;

bool forceClose = false;
public void CloseWindow (bool force)
{

forceClose = force;

Close() ;

164

a4

The User Interface

Another issue that we had to deal with was that of selection. Selection (bringing an MDI window to the
front and making it the focus) is a problem with Windows Forms, and was a hard task to solve. As
Activate and Select do not always work, we didn't find a good scheme, but when we call Focus on
the control that the view gives us, the selection seems to work fine. The current implementation that
focuses on the control that the window contains does work in SharpDevelop:

public void SelectWindow ()
{
if (tabPage != null) {
tabPage.Select () ;

Activate();
Select () ;
content.Control.Focus () ;

protected override void OnGotFocus (EventArgs e)
{

base.OnGotFocus (e) ;

OnWindowSelected (e) ;

protected override void OnDeactivate (EventArgs e)
{

base.OnDeactivate(e) ;

OnWindowDeselected (e) ;

The related events are defined at the bottom of this class, and are the events we must provide because
we implement the IWorkbenchwindow interface:

protected virtual void OnTitleChanged (EventArgs e)
{
if (TitleChanged !'= null) {
TitleChanged(this, e);

protected virtual void OnCloseEvent (EventArgs e)
{
if (CloseEvent != null) {
CloseEvent (this, e);

public virtual void OnWindowSelected (EventArgs e)
{
if (WindowSelected != null) {
WindowSelected(this, e);

165

Chapter 6

public virtual void OnWindowDeselected (EventArgs e)

{

}

if (WindowDeselected != null) {
WindowDeselected (this, e);

}

public event EventHandler WindowSelected;
public event EventHandler WindowDeselected;
public event EventHandler TitleChanged;
public event EventHandler CloseEvent;

Now that we have studied the existing implementation of the user interface, let's take a look at the
potential changes that could be made in the future.

The Current and Future Implementation

Currently, the abstracted GUI layer handles the various requirements well. It allows us to implement much of
the code without having to know about Windows Forms, and this improves the API portability, which was
the goal of the GUI layer. The big GUI layer we have seen here won't change much in the future versions,
but it will be completed with a part that abstracts the GUI on a deeper level - the dialog level.

Currently dialogs are tied to Windows Forms, and are not portable to other APIs. We did port some
dialogs and panels over to XML, but this is only the first step in making them portable. We will discuss
the current XML format in Chapter 17 within the The XML Forms Persistence Format section. We are
planning for a system that has:

a

166

An abstract representation of GUI elements
This will be done through interfaces and an abstract factory that creates the GUI elements.

Layout management for GUI elements

SharpDevelop is a localized application and often we have to deal with the problem that the
labels or buttons are displayed too small. Therefore, the only way to solve this is to use
layout management.

An XML representation for dialogs and panels

XML is more maintainable than source code. It should be possible to use the abstract layer
from source too, but XML dialogs make the source code smaller, easier to debug, and simpler
to make changes to (will not require recompiles too).

A non-GUI implementation of the abstract layer
This will be used for unit testing of the dialogs and panels. Currently, not much code of
SharpDevelop is covered by unit tests. Securing dialogs and panels would be a big step forward.

The User Interface

Summary

In this chapter, we learned about the abstract GUI layer that is used to represent the SharpDevelop
superstructure, and what benefits the GUI layer brings to the application, and how it is implemented.

We looked at the ITViewContent interface, and implemented it to produce an HTML view using the
Internet Explorer ActiveX control.

We implemented the IPadContent interface and examined what a pad is, as opposed to a view. We
learned how the help viewer inside SharpDevelop is implemented.

We learned what a Layout Manager is, and how it manages the views and pads to construct the actual
layout of the IDE. We saw that it was easy to switch a Layout Manager to apply a new SharpDevelop
look and feel on the fly.

We looked at the implementation of a workspace window that the Layout Manager uses. We have
examined how the workspace window is required beside the views, to make the GUI layer work in the

way that we designed it to work.

In the next chapter, we will learn how internationalization is implemented in SharpDevelop.

167

Chapter 6

168

=
&
_

Internationalization

As your software grows popular, you will probably want to offer it in different languages and adapt it to
different culture sets. The core idea of internationalization is to create a persistent look and feel for our
customers, no matter what language they use. Although the .NET Framework offers great support for
localization, we needed to implement it with expandability in mind. The support for internationalization,
or in other words, the attempt to enable porting our software to other languages begins with its
architectural design.

Right since the first stable beta builds, SharpDevelop was designed with internationalization in mind.
Before we investigate how SharpDevelop handles this daunting task, we must first have a general idea of
what design strategy to apply while developing a localizable application.

GUI-driven software is affected by internationalization in two major ways:

Q First, the layout must be capable of resizing menus, dialog boxes, and so on, for fitting the
different character sets and/or special characters

Q Second, localizable resources should never be hard-coded, and the language packs should be
able to easily migrate into the application using localized resource files

The localizable resources comprise of localized resource strings, screen and window positions,
constants, filenames, paths, and even images. The resource strings, especially, deserve an extra
amount of attention, as it is through them that our software communicates with the user. Resource
strings change from language to language leading to several tricky situations; for example the same
sentence may vary in length across two diverse languages, thereby affecting the length parameter of
the resource string.

Why should these kinds of problems bother us? Well, if we define a screen area that is too small, the
translated equivalent text might exceed the limits of the component (for example, a textbox, label, or
similar), and the text may become unreadable, as demonstrated in the following screenshot:

Chapter 7

i
(1 Cpzioni SharpDevelap

(3 Codifica Marcatori e righelli
I-4 Editar del Testa o)
~Marcatori e righelli

Generale

[MostENghEID i
¥ |0 ori e righelli iz le anga -m
[VDstANGneD
wart e

Caratteristiche
1 Strument

Stile linea Messuna _'__.!

nmpmabe v,

Mostra numeri di linea

Softolinea errori O kdostra marcatari EQL
EVIHENZIA COpRIE p

(v pieusgmctive O kdostra spazi

Mostra linee non valide O Mostratabulazioni

The Italian translation contains more words than the English original, hence the truncation of labels.

Another issue, which needs to be mentioned, is string concatenation. Developers often join words

together to form strings (for example, error messages). This may work in the case of one particular
language; but since the word order and the words, in general, can have dissimilar forms (singular,

plural, gender, and so on), it may cause meaningless combinations for other languages.

With localization comes the need to support different character sets. This topic affects both the GUI and
the strings — dialog boxes have to be resized, the read direction may have to be reversed, and the
appropriate character set has to be selected.

For example, if you want to add Western European languages to your application, you should use the
internationally standardized ISO-8859-1 character set (for details, you can refer to
http://www.htmlhelp.com/reference/charset). This character set contains all characters necessary to
type and display Western European languages, and complies with 7-bit devices, which normally ignore
the eighth bit, as it's an 8-bit superset of ASCII. Keep in mind that such 7-bit devices will turn 8-bit
character sets into garbage; so do consider this when coding. However, no modern Windows platform
has these issues.

On the other hand, we can use the 16-bit Unicode (ISO-10646) character set which is an extension of
ISO-8859-1 to wide characters. Due to its capabilities, most of the languages (including Asian) can be
encoded. More importantly, .NET uses Unicode internally and the compilers support it fully. Unicode's
major drawback is that it is not supported by certain operating systems. Some older systems may have
trouble when they encounter Unicode in their software. Keep in mind that these systems are not
supported by .NET.

After this brief overview of design of localized software, you might wonder how SharpDevelop handles
this internationalization task. In this chapter, we will not only show you its implementation in the IDE,

but also demonstrate how easy it is to translate SharpDevelop to your preferred language.

Let's start our discussion by looking at the working of the localization engine, after which we'll explain
the techniques for enabling hassle-free and instant language switching system.

170

Internationalization

To bring SharpDevelop to a global audience, besides English, several languages are already built-in. No
matter what language is used, we intend to ensure usability for the user. Our internationalization
strategy is based on the motivation to encourage native speakers to perform these translations. Hence,
we offer a unified and easy-to-use web application where translators can add new languages and also
build language resource files offline.

Handling Internationalization in SharpDevelop

Depending on your preferred language (or the requirement of your project) you can change the
language settings by navigating the menu to the Ul Language panel. This action will switch the menu
language immediately to the newly selected one, without the need to restart SharpDevelop.

Before we move to the next section, where the redrawing event chain is explained in detail, let us talk
about the flag view (where we get to see the flags of the respective countries). But first, we look at the
code in the

src\SharpDevelop\Base\Services\Language\LanguageService.cs file:

public class LanguageService : AbstractService
{
string languagePath = Application.StartupPath +

Path.DirectorySeparatorChar
Path.DirectorySeparatorChar
Path.DirectorySeparatorChar
Path.DirectorySeparatorChar
Path.DirectorySeparatorChar;

Wy
"data" +
"resources" +

+ o+ o+ o+

"languages" +
ImageList languageImagelList = new ImageList();

ArrayList languages = new ArrayList();

public ImageList LanguageImageList {

get { return languageImageList; }

public ArrayList Languages {
get { return languages; }

public LanguageService ()
{

LanguageImageList.ImageSize = new Size (46, 38);

XmlDocument doc = new XmlDocument () ;
doc.Load (languagePath + "LanguageDefinition.xml") ;

XmlNodeList nodes = doc.DocumentElement.ChildNodes;
foreach (XmlElement el in nodes) {

languages.Add (new Language (el.Attributes["name"].InnerText,
el.Attributes["code"] .InnerText, LanguagelImageList.Images.Count)) ;

171

Chapter 7

LanguageImagelList.Images.Add (new Bitmap (languagePath +
el.Attributes["icon"].InnerText)) ;

We assign the hard-coded path information to a string variable named languagePath. Then we have
to initialize an ImageList (which holds the flag images) and an ArrayList (which holds the
appropriate language name). These variables function as properties and get their values, as assigned in
the constructor of the LanguageService class.

Within the constructor, the LanguageDefinition.xml file (in the \Data\Resources\Languages
directory) is parsed to retrieve the available language information using the path information provided
by the languagePath string variable. The language code, and its representative flag are extracted
according to the structure of the LanguageDefinition.xml file, the language name.

The next listing shows us a snippet of the XML file:

<Languages>
<Languages name="U.S. English"
<Languages name="International English"
<Languages name="German" code="de" page=

code="en-us" page="" icon="usa.png" />
code="en" page="" icon="uk.png" />

"" jcon="germany.png" />

</Languages>

After retrieving the language entries, the ListView box within the Option dialog must be filled up. This
is done by the constructor of the IDEOptionPanel class located in the
src\SharpDevelop\Base\Gui\Dialogs\OptionPanels\IDEOptions\SelectCulturePanel.
cs directory.

The following snippet gives us the relevant lines of code:

public IDEOptionPanel ()
{

LanguageService languageService = (LanguageService)
ServiceManager.Services.GetService (typeof (LanguageService) ;

listView.Location = new Point (8, 8);

listView.Size = new Size (136, 200);
listView.LargeImageList = languageService.LanguageImageList;
listView.ItemActivate += new EventHandler (ChangeCulture) ;

SortOrder.Ascending;
ItemActivation.OneClick;
flat ? BorderStyle.FixedSingle

listView.Sorting E

listvView.Activation =

listView.BorderStyle =
BorderStyle.Fixed3D;

listView.Anchor = (System.Windows.
(System.Windows.
System.Windows.

foreach

language.Code},

Forms.AnchorStyles.Top |
Forms.AnchorStyles.Left |
Forms.AnchorStyles.Right)) ;

(Language language in languageService.Languages) {
listView.Items.Add (new ListViewItem(new stringl]
language.ImageIndex)) ;

{language.Name,

Internationalization

}

this.Controls.Add(listView) ;

Although changing languages is naturally easy, there has to be some mechanism under the hood to
provide such usability. In the next section, we will show an approach for enabling localization support
without compromising on ease of use. This section covers redrawing the GUI, accessing the resource

files and replacing localized strings.

Redrawing with Events

After we have confirmed the choice of language, the whole GUI has to be redrawn as per the new
settings. A chain of events is necessary to redraw all the components involved. Before we step through

this process, let's take a look at the following diagram:

Clicks OK
Option Dialog < User
\
Call ReceiveDialogMessage(OK)
Screen /7 Screen
Update Screen Screen ypdate
Update Update
CulturePanel
Views Pads LayoutManger Menu

Set Property

T~

Property Class

Send Changed Event/Receive Event

Redraw()

Redraw() Redraw()

Redraw()

Workbench

Workbench Singleton

Call RedrawAllComponents()

/'

173

Chapter 7

This simplified flowchart shows us the sequence from the user's click to the redrawn GUL

After the user confirms their selection by pressing the OK button, the AcceptEvent method (located in
the TreeViewOptions.cs file under src\SharpDevelop\Base\Gui\Dialogs) triggers a
DialogResult.OK message. The message is received by the ReceiveDialogMessage method
located in the src\SharpDevelop\Base\Gui\Dialogs\OptionPanels\IDEOptions\
SelectCulturePanel.cs file:

public override bool ReceiveDialogMessage (DialogMessage message)
{
if (message == DialogMessage.OK) {
if (SelectedCulture != null) {
propertyService.SetProperty (uiLanguageProperty, SelectedCulture) ;

}

return true;

If this evaluates to true, the SetProperty method is invoked, which resides in the
src\SharpDevelop\Core\Properties\DefaultProperties.cs. This method triggers the
OnPropertyChanged method and provides the PropertyEventArgs object with the new attributes —
the spoken language and its culture setting. This property change is handled by the
TrackPropertyChanges method of the WorkBenchSingleton class in
src\SharpDevelop\Base\Gui\Workbench\WorkbenchSingleton.cs:

static void TrackPropertyChanges (object sender,
ICSharpCode.Core.Properties.PropertyEventArgs e)
{
if (e.0ldvalue != e.NewValue) {
switch (e.Key) {
case workbenchLayoutProperty:
SetWbLayout () ;
break;

case "SharpDevelop.UI.CurrentAmbience":
case "ICSharpCode.SharpDevelop.Gui.VisualStyle":
case "CoreProperties.UILanguage":
workbench.RedrawAllComponents () ;
break;

When selecting a new language in the Options panel, the current setting (e.0ldvalue) certainly differs
from the new one. Nothing happens if the user clicks on the language already in use. The attribute of
interest here is the CoreProperties.UILanguage property. A change in this property (evaluated by
the switch statement) causes a redraw of the GUL or in other words, it triggers the
RedrawAllComponents method.

174

Internationalization

The workbenchSingleton class inherits the DefaultWorkbench class. Hence, you find the
RedrawAllComponents method in the base class
(src\SharpbDevelop\Base\Gui\Workbench\Defaul tWorkbench.cs):

public void RedrawAllComponents ()
{
UpdateMenu (null, null);

foreach (IViewContent content in workbenchContentCollection) {
content .RedrawContent () ;

}

foreach (IPadContent content in viewContentCollection) {
content .RedrawContent () ;

}

layout .RedrawAllComponents () ;

Now let's look at what happens to the Files tab label. Using the English language, the label reads Files.
If we change it, for example, to German the tab label reads Dateien — how is this achieved?

Within the FileScout class (src\SharpDevelop\Base\Gui\Pads\FileScout.cs) there is a
property named Title, which assigns the tab label according to the selected language. The assignment
is done by means of the ResourceService, which is explained in detail in the next section:

public string Title {
get {
return resourceService.GetString ("MainWindow.Windows.FileScoutLabel") ;

}

But how is the tab label actually changed? As seen before, the DefaultWorkbench class fires the

RedrawContent method. For the FileScout class, the following steps are performed to change the
tab label:

public void RedrawContent ()
{
OnTitleChanged (null) ;
OnIconChanged (null) ;

In the snippet above, the OnTitleChanged method is called, whereas OnIconChanged is a new event
handler. Note that it's the OnTitleChanged handler that actually performs the change:

protected virtual void OnTitleChanged (EventArgs e)
{
if (TitleChanged != null) {
TitleChanged(this, e);
}

175

Chapter 7

Now that we know how to redraw the GUI after changing the language settings, we must access the
appropriate resource file.

Accessing Resources

The Microsoft .NET documentation suggests that we should use Satellite Assemblies for localizing an
application. Following the suggested scheme, the resource files are compiled to assemblies using
Microsoft's Assembly Linker (A1 . exe) tool (refer to the NET Framework SDK documentation for more
information).

This scheme represents the decentralized resource management model and has its drawbacks. Each
language and its additional subcultures should be stored in individual subdirectories. As more languages
are added to an application, the directory tree grows bigger and this also results in an increased number
of .d11 files. To avoid this problem, we chose a centralized resource management system for
SharpDevelop. Although each language is separately stored in a resource file

(stringResources. [Language identifier].resources) located in the \data\resources
path, we do not create a Satellite Assembly for each language, instead we dynamically load the language
strings each time the language settings are changed. The beauty of centralized management is that there
is no redundant code, and add-ins can have their own resources, which are loaded centrally from the
AddIn tree.

Now that we know about these benefits, we must make them accessible to our application. As
SharpDevelop is based on services, we utilize the Resource service that builds on the
ResourceService.cs and the ResourceNotFoundException. cs files. Both files can be found in
the src\SharpDevelop\Core\Services directory.

Let's take a look at the ResourceServices class (under ResourceService.cs) first. This class is
responsible for performing the following tasks:

Changing the settings (ChangeProperty method)

Loading appropriate language strings (LoadLanguageResources method)

Loading new icons (GetIcon method)

Loading new bitmaps (GetBitmap method)

0O 0 0o 0 O

Throwing an exception if a string is not found (GetString method)

As we are more interested in the action performed on switching to a different language, we will look at
the methods that deal with retrieving the language strings. First, the ChangeProperty method
is invoked:

void ChangeProperty (object sender, PropertyEventArgs e)

{
if (e.Key == uilLanguageProperty && e.0ldValue != e.NewValue)

{
LoadLanguageResources () ;
}

176

Internationalization

If there is a valid change in the UI language, the LoadLanguageResources method is called:

void LoadLanguageResources ()
{
PropertyService propertyService = (PropertyService)
ServiceManager.Services.GetService (typeof (PropertyService)) ;
string language = propertyService.GetProperty
(uiLanguageProperty, Thread.CurrentThread.CurrentUICulture.Name) ;

localStrings = Load(stringResources, language) ;

if (localStrings == null && language.IndexOf('-') > 0) {

localStrings =

Load (stringResources, language.Split(new char([] {'-'})[0]);

}
localIcons = Load(imageResources, language) ;
if (localIcons == null && language.IndexOf('-') > 0) {

localIcons = Load(imageResources, language.Split(new char[] {'-'})I[0]);
}

This method loads the strings and localized icons. The loading action is performed by the Load method:

Hashtable Load(string name, string language)
{
string fname = resourceDirectory + Path.DirectorySeparatorChar +
name + "." + language + ".resources";

if (File.Exists(fname)) {
Hashtable resources = new Hashtable() ;
ResourceReader rr = new ResourceReader (fname) ;
foreach (DictionaryEntry entry in rr) {

resources.Add (entry.Key, entry.Value) ;

}
rr.Close() ;
return resources;

}

return null;

These code snippets assume that all strings are loaded properly. However, while coding, translations
under development may remain incomplete. To ensure proper handling of such occurrences,
SharpDevelop first reloads the English language. The beauty of this is that, if there is no appropriate
language string, we can at least read an English entry. In rare cases, where even this routine fails, a
ResourceNotFoundExceptionexcepﬁonisﬂnown:

public string GetString(string name)
{
if (localStrings != null && localStrings|[name] != null) {
return localStrings|[name].ToString() ;

177

Chapter 7

string s = strings.GetString (name) ;

if (s == null) {
throw new ResourceNotFoundException("string >" + name + "<");

return s;

The ResourceNotFoundException class conveys the error message in its constructor, and is found in
src\SharpDevelop\Core\Services\ResourceNotFoundException.cs:

public class ResourceNotFoundException : Exception

{
public ResourceNotFoundException(string resource) : base("Resource not
found : " + resource) {

}

Now, we will look at the process of replacing the old language strings with the chosen ones, performed
by a service named StringParserService. You can access the source code of this service by
navigating to the Src\SharpDevelop\Core\Services\StringParserService.cs file.

To give you an idea what the replaceable strings look like, we will take a peek at the C# template file.
Full coverage of this topic is given in Chapter 3 and Chapter 5. This XML file contains information
about an empty C# file. Among lots of other information we find two localized strings — the template
Name and its Description:

<?xml version="1.0" ?>
<Template Originator="Mike Krueger" Language="C#" Created="3/09/2001"
LastModified="3/09/2001">
<TemplateConfiguration>
<Name>$ {res:Templates.File.C#.EmptyC#File.Name}</Name>
<Icon>C#.File.CSFileIcon</Icon>
<Category>C#</Category>
<LanguageName>C#</LanguageName>
<Description>S${res:Templates.File.C#.EmptyC#File.Description}</Description>
</TemplateConfiguration>
<TemplateFiles>
<File DefaultExtension=".cs" DefaultName="EmptyC#file">
<! [CDATA[// created on ${Date} at ${Time}]]>
</File>
</TemplateFiles>
<FileOptions />
</Template>

Depending on the selected language, the appropriate string is filled in; for example, in case of English, it
will look like:

<Name>Empty C# File</Name>
<Description>creates an empty C# file</Description>

178

Internationalization

If we had selected German, this would be:

<Name>Leere C# Datei</Name>
<Description>erzeugt eine leere C# Datei</Description>

You might wonder what makes the CDATA section of the XML template file necessary. Actually, this
section is replaced by the StringParser service, and resembles a timestamp. The service replaces the
${Date} and ${Time} section with the current date and time values, resulting in the line:

// created on 04/09/2002 at 15:15

The service parses the current strings and replaces them if the appropriate string match is found. The
Parse method takes a string variable named input and a string array named custom_tags as
parameters. By means of regular expressions, and if and switch constructs, the input string data is
evaluated. The return value is the new translated language string:

public string Parse(string input, stringl[,] custom_tags)
{
string output = input;
if (input != null) {
const string pattern = @"\S\{(["\}1*)\}";
foreach (Match m in Regex.Matches (input, pattern)) {
if (m.Length > 0) {
string token = m.ToString() ;
string propertyName = m.Groups[l].Captures[0].Value;
string propertyValue = null;
switch (propertyName.ToUpper()) {
case "DATE": // current date
propertyValue = DateTime.Today.ToShortDateString() ;
break;
case "TIME": // current time
propertyValue = DateTime.Now.ToShortTimeString() ;
break;
default:
propertyValue = null;
if (custom_tags != null) {
for (int j = 0; j < custom_tags.GetLength(0); ++3j) {
if (propertyName.ToUpper () == custom_tags[j, 0].ToUpper()) {
propertyValue = custom_tags[j, 11;
break;

}
if (propertyValue == null) {
propertyValue = properties[propertyName.ToUpper ()];
}
if (propertyValue == null) {
int k = propertyName.IndexOf (':");
if (k > 0) {

switch (propertyName.Substring (0, k) .ToUpper()) {
case "RES":
ResourceService resourceService = (ResourceService)

179

Chapter 7

ServiceManager.Services.GetService
(typeof (ResourceService)) ;
propertyValue = Parse(resourceService.GetString

(propertyName. Substring(k + 1)), custom_tags) ;
break;
case "PROPERTY":
PropertyService propertyService = (PropertyService)

ServiceManager.Services.GetService
(typeof (PropertyService)) ;
propertyValue = propertyService.GetProperty
(propertyName. Substring(k + 1)) .ToString() ;
break;

}
break;
}
if (propertyValue != null) {
output = output.Replace (token, propertyValue) ;

}

return output;

But what if your native language is not among these, or you want to add a new language? The rest of the

chapter comprises utilities for translators and developers, who may want to import or export their own
language resources or compile resource files, and gives a fundamental idea of how to build an easily
manageable, collaborative solution in accordance with the motto "Translations — anytime, anywhere".

Managing Translations

This section presents a classic ASP (Active Server Pages) web application accessible only to
SharpDevelop's translators, which manages all the SharpDevelop transactions. As it is a proprietary
application, only code snippets are provided, which will give the reader an idea of how to implement
such a service.

For those who ask why no ASP.NET example application is provided in this book, the answer is that an
ASP.NET application ready for deployment was still under development. This application allows
translators to enter translations in two ways:

Q Online Mode
In this mode, translation is done with a common list and forming views into the translations

Q Offline Mode
Here, translation is done by downloading an XML file, and then uploading it after the
translations have been performed

180

Internationalization

Both methods share one commonality — the translator can download an XML file and create a resource
file from it using the translation builder utility found in the
src\tools\translationbuilder\tbuilder.cs file.

In this way, the translators can test their translations by integrating them with the running application
anytime, without requiring a SharpDevelop team member to build the entire resource file collection
from the database (refer to the Generating Resource Files from the Database section for a description of this
process).

Lets look at the online translation application used by the translators and the generation of resource
files, and then move on to discuss the ways in which the team can build the resource files from the
translation database.

The Translation Web Application

This section will give us an idea of the design of the online translation component. The web application
uses ASP and features logon security, easy user and translation management with statistics, and the
ability to download or upload language files. As our motto is "Translations — anytime, anywhere", there
are three basic requirements that influence the design process:

Q Online mode - The online mode part presents an example of a web application that uses ASP
to deliver maximum performance and usability.

Q Offline mode - If a translator does not have an Internet connection as an option, the offline
mode section rounds up the 'Anywhere, anyplace' motto. This section covers prerequisites to
be able to work offline and introduces a little gadget, the tbuilder utility. The tbuilder
utility is the missing link to compile the XML file containing the language strings into resource
files, after which these strings are used by the application. A detailed example of use of the
tbuilder tool is provided in the Generating Resource Files from XML section.

QO Localization implication — Lastly, there is the character set issue for foreign languages. Some
languages, such as Japanese or Russian, use non-Latin character sets. If our web application is
not able to handle these, then we will run into trouble. Handling these foreign characters just
like Latin ones results in displaying garbage. A peek under the hood of the ASP web
application shows us how to take care of foreign characters.

The application is accessed at the entry point (Home), where the translator chooses the language they
wish to edit. A translator has privileges only to edit their assigned language and can only view other
languages. After the language selection, they list the localizable strings at the List Translation page. This
page accesses the database and retrieves the appropriate strings.

The translator is able to add or modify the language strings in the List Translation page. If the translator
wishes to work offline, they can download the XML file (at the XML Download page) to their local
machine. The XML file contains everything that they need to translate the original English strings to the
desired language. After translation work is complete, they navigate to the Offline Translating page and
paste the modified XML source into an input field. The submission process will upload the content of
the input field and merge it with the database.

181

Chapter 7

Localization Implications

Internationalization also means that the application, in this case — the web-based front-end, can handle
non-Latin character sets and code pages, without which the user will see a garbage output in the
application's windows.

Windows 2000 and applications of the same generation can handle 16-bit Unicode; but if you happen to
use older systems like the Windows 9x generation, you are out of luck and will have to upgrade to the
2000 version. To enable Unicode compliance in your dynamic web pages, you have to perform the
following steps (some seem redundant while using ASP; but when you have to support many browsers,
you start to get a bit wary):

Use @CODEPAGE and Session.CodePage to interpret localized (latin, non-latin) strings.

Use the ADO Stream Object to retrieve Unicode formatted strings from an SQL 2000 or
Access 2000 database.

Use the HTML <META HTTP-EQUIV> tag to set the appropriate code page.
Write XML documents as Unicode formatted

If you use the FileSystemObject, you must set the appropriate attribute for the file stream
to Unicode.

We are now ready to retrieve Unicode data from our database, or display Unicode languages correctly.

Compiling to Resource Files

In the offline mode, there are two ways to generate resource files:

Q From XML by translators

Q From the database by the team

Generating Resource Files from XML

To achieve platform independence, we chose XML to store the native language strings. A translator can
download the XML file from the web application:

The downloaded file will be saved as a file named resources.xml. It will look like the following
snippet (this string is in German):

<?xml version="1.0" encoding="windows-1252" ?>
<translation language="de">
<resource name="_Internal.Bogus.Translation.Test">
<! [CDATA[Das ist ein Test]]l>
</resource>

<resource name="CompilerResultView.DescriptionText">

<! [CDATA[Beschreibung]]>
</resource>

182

Internationalization

<resource name="CompilerResultView.FileText">
<! [CDATA[Dateil]]>
</resource>

<resource name="CompilerResultView.LineText">
<! [CDATA[Zeile]]>
</resource>

<resource name="Dialog.About.DialogName">
<! [CDATA[Uber SharpDevelop]]>
</resource>

After we have downloaded the XML file from the web application, we have to compile it to a resource
file. The tbuilder utility (located in the \bin directory) generates a valid language resource file
with the filename StringResources.<language code>.resources.

All that is left for us to do is to copy this file to the \data\resources directory (while SharpDevelop
is not active, because the availability check of resource files is done during SharpDevelop's
loading procedure).

The generation is performed by using the ResourceWriter class of the System.Resources

namespace. Let's take a peek into the payload of the TranslationBuilder class of the tbuilder
utility. The point of interest here is the Assemble method:

static void Assemble(string pattern)

{
string[] files = Directory.GetFiles (Directory.GetCurrentDirectory (),
pattern) ;
foreach (string file in files) {
if (Path.GetExtension(file) .ToUpper() == ".XML") {
try {
XmlDocument doc = new XmlDocument () ;
doc.Load(file) ;
string resfilename = "StringResources." +
doc.DocumentElement .Attributes["language"] .InnerText +
" .resources";
ResourceWriter rw = new ResourceWriter (resfilename) ;
foreach (XmlElement el in doc.DocumentElement.ChildNodes) {
rw.AddResource (el .Attributes["name"] .InnerText, el.InnerText);
}
rw.Generate () ;
rw.Close() ;
}
catch (Exception e) {
Console.WriteLine ("Error while processing " + file + " :");
Console.WriteLine(e.ToString()) ;
}
} ol

183

Chapter 7

After we load the XML from the web application into the XML.LDocument object named simply doc, we
have to assign an appropriate name for the generated resource file. As the resource file takes the form
StringResources.<language code>.resources, where the abbreviation for the language is
extracted from the language attribute of the XML file.

This filename combination is then assigned to a string variable named resfilename and a new
Resourceliriter object (rw) is instantiated.

As we have seen in the code listing, our Resourcelriter object takes the filename of the resource file
as parameter. As our source file has an XML format, we iterate through it using a foreach statement.
Resource entries are defined as name and value pairs, similar to the entries in a hash table. The
AddResource method of the ResourceWriter class adds entries to the resource file and must be
called at least once to successfully generate a valid resource file. After adding to the ResourceWriter
object all the entries found, the Generate method is called to write the entries into a file stream.

The next section covers an all-in-one solution to extract a language XML file from a database and
output a resource file.

Generating Resource Files from the Database

Lastly, there's the Assemble utility, which creates resources out of a database. This utility can be found
in \src\Tools\Assemble. As the OLE DB .NET Data Providers are flexible, we get high performance
support for Microsoft SQL databases, JET compatible databases, and even Oracle databases.

Now let's get to the core and look at the application's MainClass (in Main.cs). The MainClass has
two methods besides its entry point. In all, it has the Main method, the Open method, and the
ConvertIllegalChars method.

The Open method's functionality is solely to open a connection to a database, using a suitable .NET
Data Provider. The following lines of code are straightforward and refer to an MS Access database:

static void Open()
{
string connection = "Provider=Microsoft.Jet.OLEDB.4.0;Data Source=" +
Application.StartupPath + Path.DirectorySeparatorChar +
"LocalizeDb.mdb;
myConnection = new OleDbConnection (connection) ;
myConnection.Open/() ;

}

The ConvertIllegalChars method masks escape sequences such as a newline (\n), carriage return
(\r), and so on, to well formed resource-file-compatible characters:

static string ConvertIllegalChars (string str)

{
StringBuilder newString = new StringBuilder () ;
for (int i = 0; i < str.Length; ++i) {

switch (str[i]) {
case '\r':
break;
case '\n':

184

Internationalization

newString.Append ("\\n") ;
break;

case '"':
newString.Append ("\\\"") ;
break;

case '"\\':
newString.Append ("\\\\") ;
break;

default:
newString.Append(str[il);
break;

}

return newString.ToString() ;

Using the StringBuilder class makes string operations simple. In the Main method we handle
parameter input and retrieve the language from the database:

public static void Main(stringl[] args)
{
Open () ;
string lang = "PrimaryResLangValue";
StreamWriter writer = null;

foreach (string param in args) {
string par = param;
if (par.StartswWith("/F:")) {
par = par.Substring(3) ;
writer = new StreamWriter (par, false, new UTF8Encoding()) ;

}

if (par.StartswWith("/T:")) {
par = par.Substring(3) ;
lang = par;

}

OleDbCommand myOleDbCommand =
new OleDbCommand ("SELECT * FROM Localization", myConnection) ;
OleDbDataReader reader = myOleDbCommand.ExecuteReader () ;
while (reader.Read()) {
string val = ConvertIllegalChars (reader[lang].ToString()) .Trim() ;
if (val.Length > 0) {
string str = reader["ResourceName"].ToString() + " = \"" + val + "\"";
if (writer == null) {
Console.WriteLine(str) ;
} else {
writer.WriteLine (str);

}
reader.Close() ;
if (writer != null) {

185

Chapter 7

writer.Close() ;
}
myConnection.Close() ;

The Assemble utility accepts two parameters /F and /T.

The /F switch assigns the filename of the resource file and the /T switch refers to the translation
language to extract. After assigning these we can extract the language string from the database, using an
01eDB command. The 01eDB command executes a SQL select statement against the database. In this
case, we only need to fetch the data for read-only purposes, so we use the OleDBDataReader, a
read-only and forward-only data reader, to retrieve the data.

For example, to retrieve the German language version from the database, issue the following command
at the command prompt:

assemble /T:lang-de /F:StringResources.de.res
This command generates a StringResources.de.res file shown in the following snippet:

CompilerResultView.DescriptionText = "Beschreibung"
CompilerResultView.FileText = "Datei"

CompilerResultView.LineText = "Zeile"

Dialog.About.DialogName = "Uber SharpDevelop"

Dialog.About.labellText = "Version"

Dialog.About.label2Text = "Build"

Dialog.About.label3Text = "Autoren"
Dialog.Componnents.RichMenulItem.LoadFileDescription = "Lade Datei ${File}"
Dialog.Componnents.RichMenuItem.LoadProjectDescription = "Lade Projekt S${Project}"
Dialog.Componnents.RichMenuItem.NoRecentFilesString = "letzte Dateien"
Dialog.Componnents.RichMenulItem.NoRecentProjectsString = "letzte Projekte"
Dialog.DirtyFiles.DialogName = "Ungespeicherte Dateien speichern 2"
Dialog.DirtyFiles.DirtyFiles = "Ungespeicherte Dateien"
Dialog.DirtyFiles.DiscardAllButton = "Alle &Verwerfen"
Dialog.DirtyFiles.Files = "Dateien"

Dialog.DirtyFiles.SaveAllButton = "&Alle speichern"

Summary

This chapter taught us the dos and don'ts for making an application available to a global community.
We learned how SharpDevelop handles the built-in internationalization support. Our discussion
included pointers on resource management aspects, managing localized resources within an application,
and accessing them programmatically.

Then we examined the issues involved in building an online/offline solution for internationalization,
that supports Unicode and thus non-Latin characters anywhere and anytime.

In Chapter 8, we will discuss the document management features of SharpDevelop and their
implementation, focussing on the internal representation of editable text.

186

Internationalization

187

Chapter 7

188

e

Nl

Document Management

In this chapter, we will look at the various issues concerned with managing documents in the
SharpDevelop IDE. In this chapter's context, the term 'document management' means handling the
internal representation of the text to be edited. The efficient management of text is important to ensure
that the users can use the IDE conveniently. A bad text representation will slow down the editor's user
interface and alienate the users.

In this chapter, we will discuss:

Text representation
Representing lines
Caret and selection management

Text model

0O 0 0O o O

And finally, how to put it all together

During the design phase, we decided to decouple the document model from the actual editor control, as
this would give us more flexibility in implementing the editor and adapting it to specific needs. Being
able to add to the SharpDevelop AddIn tree to extend the editor, and even use the editor control in the
standalone configuration, exemplifies the flexibility of SharpDevelop.

Chapter 8

Text Representation

Any text that we work with has to be represented in some manner in the memory, before it is edited.
There are only a few alternative representations used in editors, which are divided into two categories:

QO Basic sequence data structures
These are the simplest possible data structures for representing text.

Q0 Composite sequence data structures
These are made from compositely nested or, more commonly, linked basic data structures.
The terminology used here is introduced in C.S. Crowley's paper on data structures for text
representation (refer to http://www.cs.unm.edu/~crowley/papers/sds/sds.html) — who,
however, thinks that the composite data structures should be termed recursive. This is, of
course, the more flexible approach. Yet for the time being, we have decided to go with a type
of the basic sequence data structure named the gap buffer.

Let's look at basic sequence data structures in detail.

Basic Sequence Data Structures

To justify our choice of the gap buffer structure for the editor, first we will discuss all basic data
structures used in editors and then discuss their pros and cons.

As we discussed in Chapter 2, choosing the appropriate data structure for text representation in the
editor was a major issue in the history of SharpDevelop. First, we will look at the basic data structures
that we use now.

Arrays

The simplest data structure capable of representing an editable text is an array or a string, which looks
at memory as a single contiguous block containing the text to edit.

Obviously, this approach is not good from a performance point of view, as when we insert text, we
increase the size of the buffer. If we consider a text buffer for a typical source code file with, for
example, 500 to 1,000 lines and a maximum line length of 80 characters in one huge string, inserting or
deleting even a single character requires moving every character to the right of the insertion point by
one. If this happens at a point close to the beginning of the string, we have to move almost the entire
string. If we type in a completely new sequence at this insertion point, this has to be repeated for every
character typed.

Replacement might be a different matter though, as the string does not need to move. However, this
would require a clever bit of code that tries to figure out whether we are first deleting and then
inserting, or first inserting and then deleting — both of which are equivalent to a replace operation. Also,
replacing a highlighted character would be a simple replace operation without any shifting.

You can experiment with this approach yourself with the following implementation that has been
included for debugging and demonstration purposes in
src\SharpDevelop\ICSharpCode.TextEditor\Document\TextBufferStrategy\StringText
BufferStrategy.cs:

190

Document Management

using System;
using ICSharpCode.Core.Properties;
using ICSharpCode.SharpDevelop.Internal.Undo;

namespace ICSharpCode.TextEditor.Document {
// Simple implementation of the ITextBuffer interface implemented using a
// string.

// Only for fallback purposes.

// Set up the StringTextBuffer using a string and an offset into it to
// mark the caret position; then define basic operations

public class StringTextBufferStrategy : ITextBufferStrategy
{

string storedText = "";

public int Length {

get { return storedText.Length; }

public void Insert(int offset, string text)

{
if (text != null) {
storedText = storedText.Insert (offset, text);
}
}
public void Remove (int offset, int length)
{
storedText = storedText.Remove (offset, length);
}
public void Replace(int offset, int length, string text)
{
Remove (offset, length);
Insert (offset, text);
}
public string GetText (int offset, int length)
{
if (length == 0) {
return "";
}
return storedText.
Substring (offset, Math.Min(length, storedText.Length - offset));
}
public char GetCharAt (int offset)
{
if (offset == Length) {
return '\0';
}

return storedText[offset];

191

Chapter 8

}

public void SetContent (string text)
{
storedText = text;

}

The text in the buffer consists of a single string manipulated using the .NET string functions.
Replacement is done by the Insert and Remove methods at the corresponding position, implemented
as an independent method instead of just calling the two methods, as these two methods can use
different buffer strategies (implementing replacement in different ways). The position at which the
manipulation takes place is given using an offset from the string's start.

Although the code is simple, the performance penalty is hidden. One may say that the .NET Framework
handles moving characters around and we are not directly concerned with it; however, this isn't exactly
true. .NET does not move characters around, as string objects are fixed once they have been created.
Each editing action requires a new string object containing the new string to be created. The
performance penalty due to this will be extremely high, as object creation uses precious resources. If
you dare, you can try this out for yourself.

Linked Lists

Another of the basic sequence data structures is a linked list. This approach assigns an individual block
to each character in the edit buffer and then links these blocks. Insert and delete operations, of course,
are easy to implement with this approach as we just need to adjust links, and in the case of insert, assign
a value to the new block.

Replacing is simpler still, done by just assigning a new value to the block. If this approach makes
handling an edit buffer so easy, then why did we decide against using it in SharpDevelop? The key here
is memory requirements, as on one hand, we need a lot of information about the sequence of characters
in the buffer, and on the other, the buffer memory will become increasingly fragmented. This will
degrade performance, as iterating to a given point takes increasingly longer times and the 'subjective
speed' a user experiences is what makes an editor pleasant to work with.

The Gap Buffer Approach

For SharpDevelop, we decided to settle on the gap-buffer approach, as it is an efficient tradeoff between
an array and a linked list. A gap buffer is a data structure where any two stretches of contiguous text in
an array are separated by an empty stretch of array invisible to the user. This representation is also
known as the buffer-gap, split-block, or two-span approach.

192

Document Management

Theory of the Gap Buffer

The following figure illustrates the layout of a gap buffer containing the Formatting text with the caret
sitting between the second t and the i:

| Gap |
[|
0 1 2 S 4 5/ 6 7 8 9 10
[rfel o dmfefefe] | [[| | [[[+]n]cs]
0 1 2 S 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Gap Edit Position Caret Position

The numbers above the boxes are the user co-ordinates, as they represent the user's view of the edit
buffer, and the ones below are the gap co-ordinates used internally in handling the buffer. Both
co-ordinate systems refer to the locations between the characters in the buffer. The user and the caret
see the user co-ordinates only, which are used in our implementation independent of the internal state
of the gap.

Note that when an editing action occurs the gap is always to the left of the caret, but editing is done at
the left end of the gap. Let's assume that we want to delete the t. The result is shown in the figure:

Gap

Gap Edit Position Caret Position

The gap has grown as a result of our deletion, with the total buffer size constant in memory. Both
minimum and maximum sizes of the gap are usually given based on programmer's decisions. Only
when the gap needs to be 'regrown' from minimum do we need to allocate additional memory and thus,
increase the buffer size.

Next, we will try inserting characters, resulting in the string Formatstring being displayed:

Gap

Gap Edit Position Caret Position

193

Chapter 8

Now the gap has shrunk. A gap-buffer implementation always checks for the minimum and maximum
sizes the gap can have and adjusts it accordingly if it violates the size constraint, while inserting more
text than fits into the gap or deleting spans of text longer than the maximum gap size. The total buffer
size will change in this case. As the minimum and maximum sizes of the gap are based on the
programmer's decisions about the buffer's purpose and its expected size, fixing it is a matter of
experience, so we will not give recommendations.

One of the advantages of the gap-buffer representation is that the gap needs to be moved only when
editing takes place in a position different from the current gap position. This means that caret
movements from line to line or paging up and down can be performed without updating the internal
representation of the edit buffer, since moving the buffer every time the caret position changes would be
too expensive. This is why we use different co-ordinate systems internally and externally.

The Gap Buffer in Practice

The implementation of the gap buffer in SharpDevelop can be found in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\TextBufferStrategy\GapTextBuf
ferStrategy.cs file:

using System;
using System.Text;

namespace ICSharpCode.TextEditor.Document {

// Setting up the buffer and gap
public class GapTextBufferStrategy : ITextBufferStrategy
{

char[] buffer = new char[0];

// Gap administration gets set up
int gapBeginOffset = 0;

int gapEndOffset = 0;
int minGapLength = 32;
int maxGapLength = 256;

public int Length {
get { return buffer.Length - GapLength; }

int GapLength {
get { return gapEndOffset - gapBeginOffset; }

// Setting content for the buffer including handling of empty case
public void SetContent (string text)
{
if (text == null) {
text = String.Empty;
}
buffer = text.ToCharArray() ;
gapBeginOffset = gapEndOffset = 0;

194

Document Management

public char GetCharAt (int offset)
{
return offset < gapBeginOffset ? buffer[offset] : buffer[offset +
GapLength] ;

public string GetText (int offset, int length)
{
int end = offset + length;

if (end < gapBeginOffset) {
return new string(buffer, offset, length);

if (gapBeginOffset < offset) {
return new string(buffer, offset + GapLength, length);

StringBuilder buf = new StringBuilder () ;

buf.Append (buffer, offset, gapBeginOffset - offset);
buf.Append (buffer, gapkEndOffset, end - gapBeginOffset) ;
return buf.ToString() ;

// Edit actions are done using calls of the Replace method defined below
public void Insert(int offset, string text)
{
Replace(offset, 0, text);

public void Remove (int offset, int length)
{
Replace(offset, length, String.Empty);

public void Replace(int offset, int length, string text)
{

// The function body is discussed in detail later in this section

void PlaceGap (int offset, int length)
{

// The function body is discussed in detail later in this section

Initialization of the buffer is simple. We assign space for the text to be buffered plus the size of the gap.
In this case, the size decisions are based on experience. The Insert and Remove routines are treated as

special cases of replace operations — replacing 'nothing' when inserting and replacing the text with
'nothing' when deleting.

195

Chapter 8

Things get interesting as soon as we get to the Replace part, which is not as simple as first deleting and
then inserting, as in the StringTextBuffer code:

public void Replace(int offset, int length, string text)
{
if (text == null) {
text = String.Empty;

PlaceGap (offset + length, Math.Max(0, text.Length - length));
text.CopyTo (0, buffer, offset, Math.Min(text.Length, length));

if (text.Length < length) {
gapBeginOffset -= length - text.Length;
} else if (text.Length > length) {
int deltalength = text.Length - length;
gapBeginOffset += deltaLength;
text.CopyTo (length, buffer, offset + length, text.Length - length);

After checking for an empty buffer, we place the gap where the edit action is to take place.

Then we work with the gap and text. copy, first copying the text into the gap, and then resizing the
gap accordingly. We need to take into account the limitations on gap size to readjust it when necessary.
This is done with the if statement at the end of the routine.

The movement of the buffer according to where it is supposed to go (before or after the current
position), and whether the gap has to be resized, is the interesting part. All of this happens in the
PlaceGap routine, which we called in the above code:

void PlaceGap (int offset, int length)
{

int oldLength = GapLength;

int newLength = maxGapLength + length;
int newGapEndOffset = offset + newLength;
char[] newBuffer = new char [buffer.Length +

newLength - oldLength];

if (oldLength == 0) {
Array.Copy (buffer, 0, newBuffer, 0, offset);
Array.Copy (buffer, offset, newBuffer, newGapEndOffset,
newBuffer.Length - newGapEndOffset) ;
} else if (offset < gapBeginOffset) {
int delta = gapBeginOffset - offset;
Array.Copy (buffer, 0, newBuffer, 0, offset);
Array.Copy (buffer, offset, newBuffer, newGapEndOffset, delta);
Array.Copy (buffer, gapEndOffset, newBuffer, newGapEndOffset + delta,
buffer.Length - gapEndOffset) ;
} else {

196

Document Management

int delta = offset - gapBeginOffset;

Array.Copy (buffer, 0, newBuffer, 0, gapBeginOffset) ;

Array.Copy (buffer, gapEndOffset, newBuffer, gapBeginOffset, delta);
Array.Copy (buffer, gapEndOffset + delta, newBuffer, newGapEndOffset,

newBuffer.Length - newGapEndOffset) ;

buffer = newBuffer;
gapBeginOffset = offset;
gapEndOffset = newGapEndOffset;

Dynamic resizing of arrays is handled by our code for the gap-buffer text representation. By using the
Array.Copy method, performance is enhanced, when compared to moving buffer elements ourselves,
as hand written movement of the buffer elements would incur a much higher number of memory
operations at the lower level, with the corresponding overheads. This follows from a simple rule that
every programmer should keep in mind - don't reinvent the wheel when it has been done and works well.

The interface for our text representation is defined in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\TextBufferStrategy\ITextBuffe
rStrategy.cs file. Here is a short excerpt to give you an idea of this:

using ICSharpCode.Core.Properties;
using ICSharpCode.SharpDevelop.Internal.Undo;

namespace ICSharpCode.TextEditor.Document {

// Interface to describe a sequence of characters that can be edited.
public interface ITextBufferStrategy
{

// Returns the current length of the editable character sequence.
int Length {

get;
}

// Inserts a string of characters into the sequence.
void Insert(int offset, string text);

It is a good idea to name the pattern used in an interface so that the developers using this interface
know what to expect. The implementation of the methods in the text buffer follow the Strategy pattern
discussed in detail in Chapter 2.

The Future — The Piece Table

For the time being, this representation works well; however, it might become necessary to switch to a
different text representation in the future. After discussing the various basic data sequences, we have the
composite sequence data structures left to evaluate.

197

Chapter 8

Composite Sequence Data Structures

There are three types of composite sequence data structures:

Q The line span data structure
Q Fixed size buffers

Q The piece table
Now let's look at each of them.

Line Span Method

The line span data structure consists of a buffer holding a description of the blocks containing individual
lines, which makes displaying the buffer content quite easy. However, editing operations can be
cumbersome to handle, as operations concerning lines and characters in lines have to be handled
separately. Avoiding problems with performance and memory with this approach requires extra
implementation effort.

Fixed Size Buffers

The use of fixed size buffers avoids some of these problems, but it is inefficient in terms of memory
usage, as most of the individual buffers (usually corresponding to lines of fixed length) are rarely fully
used. Fortunately, fixed size buffers are more or less an obsolete approach, as dynamic memory
management is no longer a problem in modern programming languages.

The Piece Table

Leaving aside possible new composite data representation structures, the most attractive of the
composite approaches seems to be the piece table, which can be seen as a combination of the two
approaches given. It has neither fixed size buffers nor buffers for individual lines. Instead, the buffer is
split into pieces as needed, with a table giving the relationships between the pieces of the buffer — hence
the name 'piece table'.

In this approach, we start with a single contiguous block containing the file read from the disk. While
editing, the file is broken up into pieces, with the edited text set up in a new append-only block. Any
appending is performed at its end, outside the read-only block, ensuring that the original text can
always stay in read-only blocks. The offset and length information regarding the individual blocks is
kept in the piece table. The individual blocks stay in place as long as the file is open, as any edit action
only appends to the append-only block, turning the formerly active segment into a read-only one.

The main advantages a piece table provides are that other components of the software can easily access
the buffers, as they always stay in place, and that unlimited undo and redo is easy to implement as all
the necessary information resides in the translation table. Access to the buffer is done by looking up the
piece table.

Implementing unlimited undo and redo operations directly in the text buffer is not an issue for the time

being. We also implemented our own undo functionality, as undoing operations also occur outside the
text editor.

198

Document Management

Representing Lines

Text representation by a gap buffer implies that all lines are represented by the contents of two
contiguous blocks of data, which we then have to divide into chunks representing lines. This task is
handled by the Line Manager. Up to SharpDevelop release 0.88b, a Line Tracker Strategy handled this
task. This pattern-based approach was abandoned because it proved to be too inflexible for the
demands of the SharpDevelop editor. The Strategy pattern is discussed in Chapter 2.

Dividing the contents of the edit buffer into lines serves three purposes — housekeeping of lines, syntax
highlighting, and folding administration (keeping a record of which lines are visible and which ones
have been 'folded away' from sight). Syntax highlighting has been presented in Chapter 1 and will be
discussed in Chapter 9. We will take a look at folding in Chapter 10 and Chapter 11. Beyond these
tasks, events are raised when the number of lines changes, as it is important for the proper functioning
of some other SharpDevelop features, such as bookmarking. This plethora of functions served by the
Line Manager obviously goes far beyond the goals of a single Strategy pattern, as each function of the
Line Manager might be represented by a strategy.

The task of breaking the edit buffer into discrete lines and keeping track of them is accomplished by the
use of collections. The Line Manager is a complex piece of software, as we will see when we will look at
the interfaces defined in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager\ILineManager.cs
file:

namespace ICSharpCode.TextEditor.Document {

// The line tracker keeps track of all lines in a document.
public interface ILineManager
{
// Get a collection of all line segments
LineSegmentCollection LineSegmentCollection {
get;
}

// get LineSegmentCollection.Count
int TotalNumberOfLines {

get;
}

IHighlightingStrategy HighlightingStrategy {
get;
set;

}
int GetLineNumberForOffset (int offset);

LineSegment GetLineSegmentForOffset (int offset);
LineSegment GetLineSegment (int lineNumber) ;

void Insert(int offset, string text);

void Remove (int offset, int length);
void Replace(int offset, int length, string text);

199

Chapter 8

void SetContent (string text);

int GetLogicalLine (int lineNumber) ;
int GetVisibleLine (int lineNumber) ;

int GetNextVisibleLineAbove (int lineNumber, int lineCount) ;
int GetNextVisibleLineBelow (int lineNumber, int lineCount) ;

event LineManagerEventHandler LineCountChanged;

We can see that there are interfaces for all the functionalities, like administration tasks, handling
line-related events, and referring to the lines in the edit buffer. We can refer to the text either by offset
or by line number. Furthermore, the terms logical line and visible line need to be explained. A logical
line exists in the edit buffer but can be invisible. Visible lines are a subset of logical lines, as we need to
distinguish between the total number of lines and the number of lines visible in a buffer for handling
bookmarks and other features.

We will see in Chapter 9, that there is a Strategy pattern - HighlightingStrategy. As far as syntax
highlighting goes, performing the actual highlighting is not the task of the Line Manager. It just informs
the highlighting routines about which lines need to be updated.

Also, we find that there are functions for converting offset co-ordinates to lines or line segments. Offset
co-ordinates are more natural for buffer-related operations, whereas the line co-ordinate system is better
suited for preparing lines for display. The actual work of converting the edit buffer into lines is done in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager\LineSegment.cs
file.

This class has a number of functions that go beyond the conversion from buffer to line, such as
syntax highlighting:

using System;
using System.Collections;
using System.Text;

namespace ICSharpCode.TextEditor.Document {

public class LineSegment : ISegment
{

int offset;

int length;

int delimiterLength;

int foldLevel = 0;

bool isVisible = true;

ArrayList words = null;
Stack highlightSpanStack = null;

public bool IsVisible {
get {return isVisible; }

200

Document Management

set {isVisible = value; }

public int Offset {
get { return offset; }
set { offset = value; }

public int Length {
get { return length - delimiterLength; }

public int TotalLength {
get { return length; }
set { length = value; }

public int DelimiterLength {
get { return delimiterLength;}
set { delimiterLength = value;}

public int FoldLevel {
get { return foldLevel; }
set { foldLevel = value;}

// highlighting information
public ArrayList Words {
get { return words;}
set {words = value;}

}
public HighlightColor GetColorForPosition(int x)
{
int xPos = 0;
foreach (TextWord word in Words) {
if (x < xPos + word.Length) {
return word.SyntaxColor;
}
xPos += word.Length;
}
return null;
}
public Stack HighlightSpanStack {
get {
return highlightSpanStack;
}
set {
highlightSpanStack = value;
}

201

Chapter 8

public LineSegment (int offset, int end, int delimiterLength)

this.offset = offset;
this.length = end - offset + 1;
this.delimiterLength = delimiterLength;

public LineSegment (int offset, int length)

this.offset = offset;
this.length = length;
this.delimiterLength = 0;

}

public override string ToString()

{

return "[LineSegment: Offset = "+ offset +", Length = " + length + ",
DelimiterLength = " + delimiterLength + ",
FoldLevel = " + FoldLevel + "]";

This is mostly self-explanatory. The use of three variables to handle line length calls for some attention
- Length, DelimiterLength, and TotalLength. Most of the code that uses the functionality
supplied by the Line Manager references Length, which is the length of the line excluding the
delimiting characters. However, for the work done inside the Line Manager, the total length of the lines
must be known, as delimiters are also counted as characters in the offset view of the buffer. Now you
may think a delimiter is a simple newline character, this may not necessarily be true.

In SharpDevelop, we are free to choose between Unix-style, DOS-style, and Macintosh-style line-end
delimiters, which means that cr, 1£, or both may be used, and each corresponds to one character in the
buffer. Therefore, we need to take this variation of delimiter length into account, especially in the light
of the fact that the user can choose which delimiters to use, and that SharpDevelop should handle all of
these delimiter types, even when the user opens files imported from operating systems using delimiters
that are not DOS-style. This happens while developing web-based applications (ASP.NET web services)
and is the first small step in preparing SharpDevelop to port to other .NET-compatible platforms.

Another interesting element is FoldLevel, as SharpDevelop allows nested folding.

The one bit of code that you will have noticed as being a bit unusual is:

public override string ToString()

{

return "[LineSegment: Offset = "+ offset +", Length = " + length + ",
DelimiterLength = " + delimiterLength + ",
FoldLevel = " + FoldLevel + "1";

This overload of the ToString method is used for writing the output to the console window for easy
debugging, as SharpDevelop does not include a debugger, yet. This is not exactly elegant, but gets the
job done. You will find such code in many places in SharpDevelop. Now you know what it is for.

202

Document Management

For syntax highlighting, not only should the lines be provided but they must also be broken into
segments corresponding to individual syntactical elements, for correct highlighting. We will discuss
syntax highlighting in Chapter 9.

After the actual work of breaking the buffer into lines and line segments is done by LineSegment.cs,
the LineSegmentCollection. cs file generates a collection of files. It can be found in the
src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager directory.

This LineSegmentCollection.cs file is generated automatically by using the SharpDevelop's Typed
C# Collection Wizard found under File | New | File | C#, as one of the available file types.

The resulting code looks like this excerpt:

using System;
using System.Collections;

namespace ICSharpCode.TextEditor.Document {

// A collection that stores.Line objects.
[Serializable()]
public class LineSegmentCollection : CollectionBase {

// Initializes a new instance of LineCollection
public LineSegmentCollection() {
}

// Initializes a new instance of LineCollection based on another

public LineSegmentCollection (LineSegmentCollection value) {
this.AddRange (value) ;

// Initializes a new instance of LineCollection containing any array
// of Line objects.
public LineSegmentCollection (LineSegment[] value) {
this.AddRange (value) ;
}

// Represents the entry at the specified index of the Line
public LineSegment this[int index] {
get {
return ((LineSegment) (List[index]));
}
set {
List[index] = value;

We decided to use collections here and in the management of selections for two reasons - first, we can
avoid casts, thus acquiring performance hits and making the code easier to read, secondly, collections
are also checked at compile time to avoid errors due to adding inappropriate data. This collection is
used by the DefaultLineManager and few other pieces of code (mostly in highlighting functions).

203

Chapter 8

There is a minor quirk in this particular collection. We have an entry for every line, ending in a line
delimiter, including the last line of the edit buffer. The quirk is that after a line end, a newline must
follow, giving us an extra empty entry. If we forget to take this into consideration, we may have a
problem in our new code. Therefore, it is strongly advised that accessing this collection should always
go through the routines provided by the DefaultLineManager. These routines know about the empty
entry and take care of it.

The file containing the code for the DefaultLineManager is located in
src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager\
DefaultLineManager.cs. Here's a snippet from this file:

public int GetLineNumberForOffset (int offset)
{
if (offset < 0 || offset > textLength) ({
throw new ArgumentOutOfRangeException("offset", offset,
"should be between 0 and " +
textLength) ;
}
if (offset == textLength) {
if (lineCollection.Count == 0) {
return 0;
}
// We need to substract 1 from the lineCollection.Count value to get
// rid of the empty 'phantom'line. Especially when we are on the
// last line.

LineSegment lastLine = lineCollection[lineCollection.Count - 1];
return lastLine.DelimiterLength > 0 ?
lineCollection.Count : lineCollection.Count - 1;

return FindLineNumber (offset) ;

}

// This returns segments of lines for highlighting etc.

public LineSegment GetLineSegmentForOffset (int offset)
{
if (offset < 0 || offset > textLength) ({
throw new ArgumentOutOfRangeException("offset", offset,
"should be between 0 and " +
textLength) ;
}
if (offset == textLength) {
if (lineCollection.Count =
return new LineSegment (0,
}
LineSegment lastLine = lineCollection[lineCollection.Count - 1];
return lastLine.DelimiterLength > 0 ?
new LineSegment (textLength, 0): lastLine;

) |

0
0);

}

return GetLineSegment (FindLineNumber (offset)) ;

204

Document Management

The correct number of lines used is obtained by testing for the existence of that mysterious empty last
line, as seen in the two methods listed.

We can also see that exception handling is important for staying within the buffer limits. In this listing,
we just see the exception throwing code and the catching is handled the 'SharpDevelop way', which is,
passing the exception up to the highest possible level before handling it. This gives a detailed trace of
the dependencies in the code, so that bug fixes are made easier. Another important aspect of managing
the lines in the buffer is handling events. Events are necessary for correctly handling line-related
functionality outside the text management subsystem, for example, the bookmarks for a file must be
adjusted automatically when the number of lines changes, otherwise they will point to the wrong place.

This is handled by the code in
src\SharpDevelop\ICSharpCode.TextEditor\Document\LineManager\
LineManagerEventArgs.cs:

using System;
namespace ICSharpCode.TextEditor.Document {

public delegate void LineManagerEventHandler (object sender,
LineManagerEventArgs e) ;
public class LineManagerEventArgs : EventArgs
{
IDocumentAggregator document;
int start;
int moved;

// Always a valid Document which is related to the Event.
public IDocumentAggregator Document {
get { return document; }

// -1 if no offset was specified for this event
public int LineStart {
get { return start; }

// -1 if no length was specified for this event
public int LinesMoved {
get { return moved; }

public LineManagerEventArgs (IDocumentAggregator document,
int lineStart, int linesMoved)
this.document = document;

this.start = lineStart;
this.moved = linesMoved;

205

Chapter 8

The events occur when we either insert a newline (1ineStart property), or move one or more lines
(linesMoved property). This code illustrates the standard mechanism for event handling in C#.

Caret and Selection Management

We considered the administration of the buffer from the program's point of view. Now we will look at
how the user's actions, like text and caret selections, are handled.

The caret is displayed as the cursor on screen. Selections are blocks of text marked by th