

Build Your Own Database Driven Website
Using PHP and MySQL, 3rd Edition
(First 4 Chapters)

Thank you for downloading the first four chapters of Kevin
Yank’s Build Your Own Database Driven Website Using PHP and
MySQL, 3rd Edition.

This excerpt encapsulates the Summary of Contents, Information
about the Author and SitePoint, Table of Contents, Introduction,
and the first four chapters of the book.

We hope you find this information useful in evaluating the book.

For more information, visit sitepoint.com

Summary of Contents of this Excerpt
Preface ..ix

1. Installation ... 1

2. Getting Started with MySQL .. 29

3. Getting Started with PHP ... 43

4. Publishing MySQL Data on the Web................................... 67

Index... 345

Summary of Additional Book Contents
5. Relational Database Design... 85

6. A Content Management System ... 101

7. Content Formatting and Submission 143

8. MySQL Administration ... 165

9. Advanced SQL Queries.. 183

10. Binary Data.. 199

11. Cookies and Sessions in PHP.. 221

12. Structured PHP Programming... 235

A. MySQL Syntax .. 277

B. MySQL Functions ... 301

C. MySQL Column Types ... 321

D. PHP Functions for Working with MySQL 331

Build Your Own Database
Driven Website Using PHP &

MySQL
by Kevin Yank

Build Your Own Database Driven Website Using PHP &
MySQL
by Kevin Yank

Copyright © 2004 SitePoint Pty. Ltd.

Index Editor: Bill JohncocksEditor: Georgina Laidlaw

Cover Design: Julian CarrollManaging Editor: Simon Mackie

Printing History:

First Edition: August 2001

Second Edition: February 2003

Third Edition: October 2004

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted

in any form or by any means, without the prior written permission of the publisher, except in the

case of brief quotations embodied in critical articles or reviews.

Notice of Liability

The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors will be held liable for any

damages to be caused either directly or indirectly by the instructions contained in this book, or by

the software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names

only in an editorial fashion and to the benefit of the trademark owner with no intention of infringe-

ment of the trademark.

Published by SitePoint Pty. Ltd.

424 Smith Street Collingwood

VIC Australia 3066.

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 0–9752402–1–8

Printed and bound in the United States of America

About the Author

As Technical Director for SitePoint, Kevin Yank oversees all of its technical publica-

tions—books, articles, newsletters and blogs. He has written over 50 articles for SitePoint

on technologies including PHP, XML, ASP.NET, Java, JavaScript and CSS. He writes The
SitePoint Tech Times, SitePoint’s biweekly technical newsletter for Web developers, which

has over 75,000 readers worldwide.

When he’s not discovering new technologies, editing books, or catching up on sleep,

Kevin can be found helping other up-and-coming Web developers in the SitePoint Forums.

Kevin lives in Melbourne, Australia, with several potted plants. In his spare time he enjoys

flying light aircraft and learning the fine art of improvised acting. Go you big red fire engine!

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for Web

professionals. Visit http://www.sitepoint.com/ to access our books, newsletters, articles

and community forums.

To my parents, Cheryl and
Richard, for making all this

possible.

ii

Table of Contents
Preface ... ix

Who Should Read This Book ... x

What’s In This Book .. x

The Book’s Website .. xiii

The Code Archive .. xiii

Updates and Errata ... xiii

The SitePoint Forums .. xiv

The SitePoint Newsletters .. xiv

Your Feedback ... xiv

1. Installation .. 1
Windows Installation ... 2

Installing MySQL .. 2

Installing PHP ... 6

Linux Installation ... 12

Removing Packaged Software ... 13

Installing MySQL .. 14

Installing PHP ... 17

Mac OS X Installation ... 20

Installing MySQL .. 20

Installing PHP ... 22

Mac OS X and Linux ... 22

Post-Installation Setup Tasks ... 22

If Your Web Host Provides PHP and MySQL 25

Your First PHP Script .. 26

Summary ... 28

2. Getting Started with MySQL ... 29
An Introduction to Databases .. 29

Logging On to MySQL ... 31

So, What’s SQL? ... 34

Creating a Database ... 34

Creating a Table .. 35

Inserting Data into a Table .. 37

Viewing Stored Data .. 38

Modifying Stored Data .. 40

Deleting Stored Data ... 41

Summary .. 41

3. Getting Started with PHP ... 43
Introducing PHP .. 43

Basic Syntax and Commands ... 45

Variables and Operators ... 47

Arrays .. 48

User Interaction and Forms .. 50

Control Structures ... 56

Multipurpose Pages .. 61

Summary ... 66

4. Publishing MySQL Data on the Web ... 67
A Look Back at First Principles ... 67

Connecting to MySQL with PHP ... 69

Sending SQL Queries with PHP ... 71

Handling SELECT Result Sets ... 72

Inserting Data into the Database .. 75

A Challenge ... 80

Summary ... 80

“Homework” Solution .. 80

5. Relational Database Design ... 85
Giving Credit where Credit is Due .. 85

Rule of Thumb: Keep Things Separate .. 87

Dealing with Multiple Tables ... 90

Simple Relationships .. 94

Many-to-Many Relationships ... 96

Summary ... 99

6. A Content Management System ... 101
The Front Page .. 102

Managing Authors ... 105

Deleting Authors .. 107

Adding Authors .. 110

Editing Authors .. 112

Magic Quotes ... 115

Managing Categories .. 117

Managing Jokes .. 123

Searching for Jokes ... 123

Adding Jokes .. 129

Editing and Deleting Jokes ... 137

Summary ... 142

Order this 350 page hard-copy PHP/MySQL book now!iv

Build Your Own Database Driven Website Using PHP & MySQL

7. Content Formatting and Submission ... 143
Out with the Old ... 144

Regular Expressions .. 145

String Replacement with Regular Expressions 148

Boldface and Italic Text ... 149

Paragraphs ... 149

Hyperlinks ... 150

Matching Tags ... 152

Splitting Text into Pages .. 155

Putting it all Together .. 157

Automatic Content Submission .. 162

Summary ... 163

8. MySQL Administration ... 165
Backing up MySQL Databases ... 166

Database Backups using mysqldump .. 167

Incremental Backups using Update Logs 168

MySQL Access Control .. 170

Using GRANT ... 171

Using REVOKE ... 174

Access Control Tips ... 174

Locked Out? .. 177

Checking and Repairing MySQL Data Files 178

Summary ... 181

9. Advanced SQL Queries ... 183
Sorting SELECT Query Results .. 183

Setting LIMITs .. 186

LOCKing TABLES ... 187

Column and Table Name Aliases .. 189

GROUPing SELECT Results .. 192

LEFT JOINs ... 194

Limiting Results with HAVING ... 197

Summary ... 198

10. Binary Data ... 199
Semi-Dynamic Pages .. 199

Handling File Uploads ... 204

Assigning Unique File Names ... 206

Recording Uploaded Files in the Database .. 208

Binary Column Types .. 209

Storing Files ... 210

Viewing Stored Files .. 212

vOrder this 350 page hard-copy PHP/MySQL book now!

The Complete Script .. 215

Large File Considerations ... 220

MySQL Packet Size ... 220

PHP Script Timeout .. 220

Summary ... 220

11. Cookies and Sessions in PHP .. 221
Cookies .. 221

PHP Sessions ... 225

A Simple Shopping Cart ... 228

Summary ... 234

12. Structured PHP Programming ... 235
What is Structured Code? .. 235

The Need for Structured Code ... 236

Include Files .. 238

Types of Includes ... 242

Including HTML Content .. 244

Locating Include Files .. 246

Returning from Includes ... 249

Custom Functions and Function Libraries .. 253

Variable Scope and Global Access ... 257

Optional and Unlimited Arguments .. 261

Constants .. 263

Structure In Practice: Access Control .. 265

Summary ... 274

A. MySQL Syntax ... 277
ALTER TABLE .. 277

ANALYZE TABLE ... 280

CREATE DATABASE .. 280

CREATE INDEX ... 281

CREATE TABLE .. 281

DELETE .. 283

DESCRIBE .. 284

DROP DATABASE .. 285

DROP INDEX ... 285

DROP TABLE ... 285

EXPLAIN .. 285

GRANT ... 286

INSERT ... 286

LOAD DATA INFILE .. 287

LOCK/UNLOCK TABLES ... 288

Order this 350 page hard-copy PHP/MySQL book now!vi

Build Your Own Database Driven Website Using PHP & MySQL

OPTIMIZE TABLE .. 289

RENAME TABLE .. 289

REPLACE .. 290

REVOKE ... 290

SELECT .. 291

Joins .. 295

Unions ... 297

SET ... 297

SHOW .. 298

UNLOCK TABLES .. 299

UPDATE ... 299

USE ... 300

B. MySQL Functions ... 301
Control Flow Functions .. 301

Mathematical Functions ... 301

String Functions .. 305

Date and Time Functions ... 309

Miscellaneous Functions .. 315

Functions for Use with GROUP BY Clauses 318

C. MySQL Column Types .. 321
Numerical Types .. 322

Character Types ... 324

Date/Time Types ... 327

D. PHP Functions for Working with MySQL ... 331
mysql_affected_rows .. 331

mysql_client_encoding ... 331

mysql_close .. 332

mysql_connect ... 332

mysql_create_db .. 333

mysql_data_seek .. 333

mysql_db_name ... 333

mysql_db_query ... 333

mysql_drop_db .. 334

mysql_errno ... 334

mysql_error .. 334

mysql_escape_string ... 334

mysql_fetch_array .. 335

mysql_fetch_assoc .. 335

mysql_fetch_field ... 335

mysql_fetch_lengths ... 336

viiOrder this 350 page hard-copy PHP/MySQL book now!

mysql_fetch_object ... 336

mysql_fetch_row .. 337

mysql_field_flags .. 337

mysql_field_len .. 337

mysql_field_name .. 337

mysql_field_seek .. 337

mysql_field_table ... 338

mysql_field_type .. 338

mysql_free_result ... 338

mysql_get_client_info ... 338

mysql_get_host_info ... 339

mysql_get_proto_info ... 339

mysql_get_server_info .. 339

mysql_info ... 339

mysql_insert_id .. 339

mysql_list_dbs .. 340

mysql_list_fields ... 340

mysql_list_processes ... 340

mysql_list_tables .. 340

mysql_num_fields .. 341

mysql_num_rows ... 341

mysql_pconnect ... 341

mysql_ping .. 341

mysql_query .. 342

mysql_real_escape_string .. 342

mysql_result ... 342

mysql_select_db ... 343

mysql_stat ... 343

mysql_tablename ... 343

mysql_thread_id ... 343

mysql_unbuffered_query .. 343

Index ... 345

Order this 350 page hard-copy PHP/MySQL book now!viii

Build Your Own Database Driven Website Using PHP & MySQL

Preface
“Content is king.” Cliché, yes; but it has never been more true. Once you’ve

mastered HTML and learned a few neat tricks in JavaScript and Dynamic HTML,

you can probably design a pretty impressive-looking Website. But your next task

must be to fill that fancy page layout with some real information. Any site that

successfully attracts repeat visitors has to have fresh and constantly updated

content. In the world of traditional site building, that means HTML files—and

lots of ’em.

The problem is that, more often than not, the people who provide the content

for a site are not the same people who handle its design. Frequently, the content

provider doesn’t even know HTML. How, then, is the content to get from the

provider onto the Website? Not every company can afford to staff a full-time

Webmaster, and most Webmasters have better things to do than copying Word

files into HTML templates, anyway.

Maintenance of a content-driven site can be a real pain, too. Many sites (perhaps

yours?) feel locked into a dry, outdated design because rewriting those hundreds

of HTML files to reflect a new look would take forever. Server-side includes

(SSIs) can help alleviate the burden a little, but you still end up with hundreds

of files that need to be maintained should you wish to make a fundamental change

to your site.

The solution to these headaches is database-driven site design. By achieving

complete separation between your site’s design and the content you want to

present, you can work with each without disturbing the other. Instead of writing

an HTML file for every page of your site, you need only to write a page for each

kind of information you want to be able to present. Instead of endlessly pasting

new content into your tired page layouts, create a simple content management

system that allows the writers to post new content themselves without a lick of

HTML!

In this book, I’ll provide you with a hands-on look at what’s involved in building

a database-driven Website. We’ll use two tools for this, both of which may be

new to you: the PHP scripting language and the MySQL relational database

management system. If your Web host provides PHP and MySQL support, you’re

in great shape. If not, we’ll be looking at the setup procedures under Linux,

Windows, and Mac OS X, so don’t sweat it.

Who Should Read This Book
This book is aimed at intermediate and advanced Web designers looking to make

the leap into server-side programming. You’ll be expected to be comfortable with

simple HTML, as I’ll make use of it without much in the way of explanation. No

knowledge of JavaScript is assumed or required, but if you do know JavaScript,

you’ll find it will make learning PHP a breeze, since the languages are quite

similar.

By the end of this book, you can expect to have a grasp of what’s involved in

setting up and building a database-driven Website. If you follow the examples,

you’ll also learn the basics of PHP (a server-side scripting language that gives you

easy access to a database, and a lot more) and Structured Query Language

(SQL—the standard language for interacting with relational databases) as suppor-

ted by MySQL, one of the most popular free database engines available today.

Most importantly, you’ll come away with everything you need to get started on

your very own database-driven site!

What’s In This Book
This book comprises the following 12 chapters. Read them in order from beginning

to end to gain a complete understanding of the subject, or skip around if you

need a refresher on a particular topic.

Chapter 1: Installation
Before you can start building your database-driven Web presence, you must

first ensure that you have the right tools for the job. In this first chapter, I’ll

tell you where to obtain the two essential components you’ll need: the PHP

scripting language and the MySQL database management system. I’ll step

you through the setup procedures on Windows, Linux, and Mac OS X, and

show you how to test that PHP is operational on your Web server.

Chapter 2: Getting Started with MySQL
Although I’m sure you’ll be anxious to get started building dynamic Web

pages, I’ll begin with an introduction to databases in general, and the MySQL

relational database management system in particular. If you’ve never worked

with a relational database before, this should definitely be an enlightening

chapter that will whet your appetite for things to come! In the process, we’ll

build up a simple database to be used in later chapters.

Order this 350 page hard-copy PHP/MySQL book now!x

Preface

Chapter 3: Getting Started with PHP
Here’s where the fun really starts. In this chapter, I’ll introduce you to the

PHP scripting language, which can easily be used to build dynamic Web

pages that present up-to-the-moment information to your visitors. Readers

with previous programming experience will probably be able to get away with

a quick skim of this chapter, as I explain the essentials of the language from

the ground up. This is a must-read chapter for beginners, however, as the

rest of this book relies heavily on the basic concepts presented here.

Chapter 4: Publishing MySQL Data on the Web
In this chapter we bring together PHP and MySQL, which you’ll have seen

separately in the previous chapters, to create some of your first database-

driven Web pages. We’ll explore the basic techniques of using PHP to retrieve

information from a database and display it on the Web in real time. I’ll also

show you how to use PHP to create Web-based forms for adding new entries

to, and modifying existing information in, a MySQL database on-the-fly.

Chapter 5: Relational Database Design
Although we’ll have worked with a very simple sample database in the previous

chapters, most database-driven Websites require the storage of more complex

forms of data than we’ll have dealt with so far. Far too many database-driven

Website designs are abandoned midstream, or are forced to start again from

the beginning, because of mistakes made early on, during the design of the

database structure. In this critical chapter, I’ll teach the essential principles

of good database design, emphasizing the importance of data normalization.

If you don’t know what that means, then this is definitely an important

chapter for you to read!

Chapter 6: A Content Management System
In many ways the climax of the book, this chapter is the big payoff for all

you frustrated site builders who are tired of updating hundreds of pages

whenever you need to make a change to a site’s design. I’ll walk you through

the code for a basic content management system that allows you to manage

a database of jokes, their categories, and their authors. A system like this can

be used to manage simple content on your Website; just a few modifications,

and you’ll have a Web administration system that will have your content

providers submitting content for publication on your site in no time—all

without having to know a shred of HTML!

Chapter 7: Content Formatting and Submission
Just because you’re implementing a nice, easy tool to allow site administrators

to add content to your site without their knowing HTML, doesn’t mean you

xiOrder this 350 page hard-copy PHP/MySQL book now!

What’s In This Book

have to restrict that content to plain, unformatted text. In this chapter, I’ll

show you some neat tweaks you can make to the page that displays the con-

tents of your database—tweaks that allow it to incorporate simple formatting

such as bold or italicized text, among other things. I’ll also show you a simple

way safely to make a content submission form directly available to your

content providers, so that they can submit new content directly into your

system for publication, pending an administrator’s approval.

Chapter 8: MySQL Administration
While MySQL is a good, simple database solution for those who don’t need

many frills, it does have some complexities of its own that you’ll need to

understand if you’re going to rely on a MySQL database to store your content.

In this section, I’ll teach you how to perform backups of, and manage access

to, your MySQL database. In addition to a couple of inside tricks (like what

to do if you forget your MySQL password), I’ll explain how to repair a MySQL

database that has become damaged in a server crash.

Chapter 9: Advanced SQL Queries
In Chapter 5 we saw what was involved in modelling complex relationships

between pieces of information in a relational database like MySQL. Although

the theory was quite sound, putting these concepts into practice requires that

you learn a few more tricks of Structured Query Language. In this chapter,

I’ll cover some of the more advanced features of this language to get you

juggling complex data like a pro.

Chapter 10: Binary Data
Some of the most interesting applications of database-driven Web design

include some juggling of binary files. Online file storage services like the now-

defunct iDrive are prime examples, but even a system as simple as a personal

photo gallery can benefit from storing binary files (e.g. pictures) in a database

for retrieval and management on the fly. In this chapter, I’ll demonstrate

how to speed up your Website by creating static copies of dynamic pages as

regular intervals—using PHP, of course! With these basic file-juggling skills

in hand, we’ll go on to develop a simple online file storage and viewing system

and learn the ins and outs of working with binary data in MySQL.

Chapter 11: Cookies and Sessions in PHP
One of the most hyped new features in PHP 4.0 was built-in support for

sessions. But what are sessions? How are they related to cookies, a long-suf-

fering technology for preserving stored data on the Web? What makes per-

sistent data so important in current ecommerce systems and other Web ap-

plications? This chapter answers all those questions by explaining how PHP

Order this 350 page hard-copy PHP/MySQL book now!xii

Preface

supports both cookies and sessions, and exploring the link between the two.

At the end of this chapter, we’ll develop a simple shopping cart system to

demonstrate their use.

Chapter 12: Structured PHP Programming
Techniques to better structure your code are useful in all but the simplest of

PHP projects. The PHP language offers many facilities to help you do this,

and in this chapter, I’ll explore some of the simple techniques that exist to

keep your code manageable and maintainable. You’ll learn to use include

files to avoid having to write the same code more than once when it’s needed

by many pages of your site; I’ll show you how to write your own functions

to extend the built-in capabilities of PHP and to streamline the code that

appears within your Web pages; we’ll also dabble in the art of defining con-

stants that control aspects of your Web applications’ functionality. We’ll

then put all these pieces together to build an access control system for your

Website. Its sophisticated structure will ensure that it can be used and reused

on just about any site you decide to build.

The Book’s Website
Located at http://www.sitepoint.com/books/phpmysql1/, the Website supporting

this book will give you access to the following facilities:

The Code Archive
As you progress through the text, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains complete code for all

the examples presented in this book.

Updates and Errata
No book is perfect, and even though this is a third edition, I expect that watchful

readers will be able to spot at least one or two mistakes before its end. Also, PHP

and MySQL (and even the Web in general) are moving targets, constantly under-

going changes with each new release. The Errata page on the book’s Website will

always have the latest information about known typographical and code errors,

and necessary updates for changes to PHP and MySQL.

xiiiOrder this 350 page hard-copy PHP/MySQL book now!

The Book’s Website

The SitePoint Forums
While I’ve made every attempt to anticipate any questions you may have, and

answer them in this book, there is no way that any book could cover everything

there is to know about PHP and MySQL. If you have a question about anything

in this book, the best place to go for a quick answer is

http://www.sitepoint.com/forums/. Not only will you find a vibrant and know-

ledgeable PHP community, but you’ll occasionally even find me, the author,

there in my spare hours.

The SitePoint Newsletters
In addition to books like this one, I write a free, biweekly (that’s every two weeks)

email newsletter called The SitePoint Tech Times. In it, I write about the latest

news, product releases, trends, tips, and techniques for all technical aspects of

Web development. If nothing else, you’ll get useful PHP articles and tips, but if

you’re interested in learning other languages, you’ll find it especially useful.

SitePoint also publishes a number of other newsletters. The long-running SitePoint
Tribune is a biweekly digest of the business and moneymaking aspects of the Web.

Whether you’re a freelance developer looking for tips to score that dream contract,

or a marketing major striving to keep abreast of changes to the major search en-

gines, this is the newsletter for you. The SitePoint Design View is a monthly com-

pilation of the best in Web design. From new CSS layout methods to subtle

PhotoShop techniques, SitePoint’s chief designer shares his years of experience

in its pages.

Browse the archives or sign up to any of SitePoint’s free newsletters at

http://www.sitepoint.com/newsletter/.

Your Feedback
If you can’t find your answer through the forums, or you wish to contact me for

any other reason, the best place to write is <books@sitepoint.com>. We have a

well-manned email support system set up to track your inquiries, and if our

support staff is unable to answer your question, they send it straight to me.

Suggestions for improvement as well as notices of any mistakes you may find are

especially welcome.

And now, without further ado, let’s get started!

Order this 350 page hard-copy PHP/MySQL book now!xiv

Preface

Installation1
Over the course of this book, it will be my job to guide you as you take your first

steps beyond the HTML world of client-side site design. Together, we’ll explore

what it takes to develop the kind of large, content-driven sites that are so success-

ful today, but which can be a real headache to maintain if they aren’t built right.

Before we get started, you need to gather together the tools you’ll need for the

job. In this first chapter, I’ll guide you as you download and set up the two soft-

ware packages you’ll need: PHP and MySQL.

PHP is a server-side scripting language. You can think of it as a “plug-in” for your

Web server that will allow it to do more than just send plain Web pages when

browsers request them. With PHP installed, your Web server will be able to read

a new kind of file (called a PHP script) that can do things like retrieve up-to-

the-minute information from a database and insert it into a Web page before

sending it to the browser that requested it. PHP is completely free to download

and use.

To retrieve information from a database, you first need to have a database. That’s

where MySQL comes in. MySQL is a relational database management system,

or RDBMS. We’ll get into the exact role it plays and how it works later, but ba-

sically it’s a software package that is very good at the organization and manage-

ment of large amounts of information. MySQL also makes that information really

easy to access with server-side scripting languages like PHP. MySQL is released

under the GNU General Public License (GPL), and is thus free for most uses on

all of the platforms it supports. This includes most Unix-based platforms, like

Linux and even Mac OS X, as well as Windows.

If you’re lucky, your current Web host may already have installed MySQL and

PHP on your Web server. If that’s the case, much of this chapter will not apply

to you, and you can skip straight to the section called “If Your Web Host Provides

PHP and MySQL” to make sure your setup is shipshape.

Everything we’ll discuss in this book may be carried out on a Windows- or Unix-

based1 server. The installation procedure will differ in accordance with the type

of server you have at your disposal. The next few sections deal with installation

on a Windows-based Web server, installation under Linux, and installation on

Mac OS X. Unless you’re especially curious, you need only read the section that

applies to you.

Windows Installation

Installing MySQL
As I mentioned above, MySQL may be downloaded free of charge. Simply proceed

to http://dev.mysql.com/downloads/ and choose the recommended stable release

(as of this writing, it is MySQL 4.0). On the MySQL 4.0 download page, under

the heading Windows downloads, select and download the release that includes

the installer. After downloading the file (it’s about 21MB as of this writing), unzip

it and run the setup.exe program contained therein.

Once installed, MySQL is ready to roll (barring a couple of configuration tasks

that we’ll look at shortly), except for one minor issue that only affects you if

you’re running Windows NT, 2000, XP, or Server 2003. If you use any of those

operating systems, you need to create a file called my.cnf in the root of your C:
drive to indicate where you have installed MySQL.

To create this file, simply open Notepad and type these three lines:

[mysqld]
basedir = c:/mysql/
datadir = c:/mysql/data/

1From this point forward, I’ll refer to all Unix-style platforms supported by PHP and MySQL, such

as Linux, FreeBSD, and Mac OS X, with the collective name ‘Linux’.

Order this 350 page hard-copy PHP/MySQL book now!2

Chapter 1: Installation

If you installed MySQL into a directory other than C:\mysql, replace both occur-

rences of c:/mysql in the above with the path to which you installed. Notice the

use of forward slashes (/) instead of the usual backslashes (\) in the paths. For

instance, on my system I edited the file to read as follows:

[mysqld]
basedir = d:/Program Files/MySQL/
datadir = d:/Program Files/MySQL/data/

Save the file as my.cnf in the root directory of C: drive.

Notepad and File Name Extensions

Notepad is designed to edit text files, which normally have a file name exten-

sion of .txt. When you try to save a file with a different extension (e.g.

my.cnf), Notepad will normally add a .txt extension to the end of the file

name (my.cnf.txt) so that Windows will treat it as a text file.

To prevent this, simply put double quotes around the file name as you enter

it in the Save As dialog box, as shown in Figure 1.1.

Figure 1.1. Save the File As .cnf in Notepad

If you don’t like the idea of a MySQL configuration file sitting in the root of

your C: drive, instead, you can name it my.ini and put it in your Windows dir-

ectory (e.g. C:\WINDOWS or C:\WINNT if Windows is installed on drive C:).

MySQL will now run on your Windows NT, 2000, XP, or Server 2003 system!

If you’re using Windows 95, 98, or ME, this step is not necessary—MySQL will

run just fine as installed.

3Order this 350 page hard-copy PHP/MySQL book now!

Installing MySQL

Working with .cnf files in Windows

It just so happens that files ending in .cnf have a special meaning to Windows, so, even

if you have Windows configured to show file extensions, the my.cnf file you created will

still appear as simply my with a special icon. Windows actually expects these files to contain

SpeedDial links for Microsoft NetMeeting.

Assuming you don’t use NetMeeting (or at least, that you don’t use its SpeedDial facility)

you can remove this file type from your system, enabling you to work with these files

normally:

1. Open the Windows Registry Editor (in Windows NT, 2000, XP, or Server 2003, click

Start, Run…, and then type regedt32.exe to launch the editor; in Windows 9x/ME

run regedit.exe instead).

2. Navigate to the HKEY_LOCAL_MACHINE\SOFTWARE\Classes branch of the registry,

where you’ll find a list of all the registered file types on the system.

3. Select the .cnf key and choose Edit, Delete from the menu to remove it.

4. Log out and log back in, or restart Windows for the change to take effect.

If you prefer not to mess with the file types on your system, you should still be able to

open the file in Notepad to edit it as needed.

Just like your Web server, MySQL is a program that should be run in the back-

ground so that it may respond to requests for information at any time. The

server program may be found in the bin subfolder of the folder into which you

installed MySQL. However, to complicate matters, several versions of the MySQL

server are available:

mysqld.exe This is the basic version of MySQL if you run Win-

dows 95, 98, or ME. It includes support for all the

advanced features, and includes debug code to provide

additional information in the case of a crash (if your

system is set up to debug programs). As a result of this

code, however, the server might run a little slow, and

generally I’ve found that MySQL is so stable that

crashes aren’t really a concern.

mysqld-opt.exe This version of the server lacks a few of the advanced

features of the basic server, and does not include the

debug code. It’s optimized to run quickly on today’s

processors. For beginners, the advanced features are

Order this 350 page hard-copy PHP/MySQL book now!4

Chapter 1: Installation

not a big concern. You certainly won’t be using them

while you complete the tasks in this book. This is the

version of choice for beginners running Windows 95,

98, or ME.

mysqld-nt.exe This version of the server is compiled and optimized

like mysqld-opt, but is designed to run under Win-

dows NT, 2000, XP, or Server 2003 as a service. If

you’re using any of those operating systems, this is

probably the server for you.

mysqld-max.exe This version is like mysqld-opt.exe, but contains ad-

vanced features that support transactions. You won’t

need these features in this book.

mysqld-max-nt.exe This version’s similar to mysqld-nt.exe, in that it will

run as a Windows service, but it has the same ad-

vanced features as mysqld-max.exe.

All these versions were installed for you in the bin directory. If you’re running

on Win9x/ME, I recommend you stick with mysql-opt for now—move to mysqld-
max if you ever need the advanced features. On WinNT/2000/XP/2003, mysqld-
nt is my recommendation. Upgrade to mysqld-max-nt when you need more ad-

vanced features.

Starting MySQL is also a little different under WinNT/2000/XP/2003, but this

time let’s begin with the procedure for Win9x/ME. Open an MS-DOS Command

Prompt,2 proceed to the MySQL bin directory, and run your chosen server pro-

gram:

C:\mysql\bin>mysqld-opt

Don’t be surprised when you receive another command prompt. This command

launches the server program so that it runs in the background, even after you

close the command prompt. If you press Ctrl-Alt-Del to pull up the task list, you

should see the MySQL server listed as one of the tasks that’s active on your sys-

tem.

2If you’re unfamiliar with the workings of the Command Prompt, check out my article Kev’s Command

Prompt Cheat Sheet [http://www.sitepoint.com/article/846] to get familiar with how it works before

you proceed further.

5Order this 350 page hard-copy PHP/MySQL book now!

Installing MySQL

To ensure that the server is started whenever Windows starts, you might want

to create a shortcut to the program and put it in your Startup folder. This is just

like creating a shortcut to any other program on your system.

On WinNT/2000/XP/2003, you must install MySQL as a system service. Fortu-

nately, this is very easy to do. Simply open a Command Prompt (under Accessories
in the Start Menu) and run your chosen server program with the --install op-

tion:

C:\mysql\bin>mysqld-nt --install
Service successfully installed.

This will install MySQL as a service that will be started the next time you reboot

Windows. To start MySQL manually without having to reboot, just type this

command (which can be run from any directory):

C:\>net start mysql
The MySQL service is starting.
The MySQL service was started successfully.

To verify that the MySQL server is running properly, press Ctrl-Alt-Del and

open the Task List. If all is well, the server program should be listed on the Processes
tab.

Installing PHP
The next step is to install PHP. At the time of this writing, PHP 5.0 has just been

released, with numerous improvements over the previous version; however, PHP

4.3 has become well-established as the version of choice due to its track record

of stability and performance. The procedures for installing these two versions are

nearly identical. Although I’ll focus primarily on installing PHP 5.0 in these pages,

I’ll note any significant differences if you happen to be working with PHP 4.3.

All of the code in this book will work with both versions of PHP.

Download PHP for free from http://www.php.net/downloads.php. You’ll want

the PHP 5.x zip package under Windows Binaries; avoid the installer version if you

can.

PHP was designed to run as a plug-in for existing Web server software such as

Internet Information Services, Apache, Sambar or OmniHTTPD. To test dynamic

Web pages with PHP, you’ll need to equip your own computer with Web server

software, so that PHP has something to plug into.

Order this 350 page hard-copy PHP/MySQL book now!6

Chapter 1: Installation

If you have Windows 2000, XP Professional3, or Server 2003, then install IIS

(if it’s not already on your system): open Control Panel > Add/Remove Programs
> Add/Remove Windows Components, and select Internet Information Services (IIS)
from the list of components. If you’re not lucky enough to have IIS at your dis-

posal,4 you can use a free, third-party Web server like Apache instead. I’ll give

instructions for both options in detail.

First, whether or not you have IIS, complete these steps:

1. Unzip the file you downloaded from the PHP Website into a directory of

your choice. I recommend C:\PHP and will refer to this directory from this

point onward, but feel free to choose another directory if you like.

2. Find the file called php5ts.dll in the PHP folder and copy it to the system32
subfolder of your Windows folder (e.g. C:\WINDOWS\system32).

PHP 4.3

The file is called php4ts.dll for PHP 4.3.

3. Find the file called php.ini-dist in the PHP folder and copy it to your

Windows folder. Once it’s there, rename it php.ini.

4. Open the php.ini file in your favorite text editor (use WordPad if Notepad

doesn’t display the file properly). It’s a large file with a lot of confusing op-

tions, but look for a line that begins with extension_dir, and set it so that

it points to the ext subfolder of your PHP folder:

extension_dir = "C:\PHP\ext"

A little further down, you’ll see a bunch of lines beginning with ;extension=.

These are optional extensions, disabled by default. We want to enable the

MySQL extension so that PHP can communicate with MySQL. To do this,

remove the semicolon from the start of the php_mysql.dll line:

extension=php_mysql.dll

3Windows XP Home Edition does not come with IIS.
4A feature-limited edition of IIS called “Personal Web Server” (PWS) was distributed on the Windows

98 Second Edition CD, and was available for earlier editions of Windows as well. While, technically,

PHP can run on PWS, this Web server is somewhat unstable and has a great many known security

holes. For these reasons, I highly recommend using Apache if an up-to-date version of IIS is not

available for your Windows operating system.

7Order this 350 page hard-copy PHP/MySQL book now!

Installing PHP

Even further down, look for a line that starts with session.save_path and

set it to your Windows TEMP folder:

session.save_path = "C:\WINDOWS\Temp"

Save the changes you made and close your text editor.

Now, if you have IIS, follow these instructions:

1. In the Windows Control Panel, open Administrative Tools > Internet Information
Services.

2. In the tree view, expand the entry labelled local computer, then under Web
Sites look for Default Web Site (unless you have virtual hosts set up, in which

case, choose the site to which you want to add PHP support). Right-click on

the site and choose Properties.

3. Click the ISAPI Filters tab, and click Add…. In the Filter Name field, type PHP,

and in the Executable field, browse for the file called php5isapi.dll in the

PHP folder. Click OK.

PHP 4.3

For PHP 4.3, the file is called php4isapi.dll, and is located in the

sapi subfolder of your PHP folder.

Can’t click OK?

In older versions of Windows, the OK button may remain disabled even

after you have used the Browse… button to fill in the Executable field.

Simply make a small change to the value of the field using the keyboard

and then reverse it to enable the button.

4. Click the Home Directory tab, and click the Configuration… button. On the

Mappings tab, click Add. Again choose your php5isapi.dll file as the execut-

able (note that the file type filter in the dialog is set to show .exe files only

by default) and type .php in the extension box (including the .). Leave

everything else unchanged and click OK. If you want your Web server to

treat other file extensions as PHP files (.php3, .php4, and .phtml are common

choices), repeat this step for each extension. Click OK to close the Application
Configuration window.

Order this 350 page hard-copy PHP/MySQL book now!8

Chapter 1: Installation

5. Click the Documents tab, and click the Add… button. Type index.php as

the Default Document Name and click OK. This will ensure that a file called

index.php will be displayed as the default document in a given folder on

your site. You may also want to add entries for index.php3 and index.phtml.

6. Click OK to close the Web Site Properties window. Close the Internet Informa-
tion Services window.

7. Again, in the Control Panel under Administrative Tools, open Services. Look

for the World Wide Web Publishing service near the bottom of the list. Right-

click on it and choose Restart to restart IIS with the new configuration op-

tions. Close the Services window.

8. You’re done! PHP is installed!

If you don’t have IIS, you’ll first need to install some other Web server. For our

purposes, I’ll assume you have downloaded and installed Apache server from

http://httpd.apache.org/; however, PHP can also be installed on Sambar Server[5],

OmniHTTPD[6], and others. I recommend Apache 1.3 for now, but if you want

to use Apache 2.0, be sure to read the following sidebar.

[5] http://www.sambar.com/

[6] http://www.omnicron.ca/httpd/

9Order this 350 page hard-copy PHP/MySQL book now!

Installing PHP

PHP and Apache 2.0 in Windows

As of this writing, the PHP team continues to insist that support for PHP on Apache 2.0

is experimental only. There are a number of bugs that arise within PHP when it is run on

an Apache 2.0 server and, on Windows especially, installation can be problematic. That

said, many people (myself included!) are running PHP on Apache 2.0 quite successfully,

and the bugs that do exist probably won’t affect you if you’re just setting up a low-traffic

testing server.

The instructions below apply to both Apache 1.3 and Apache 2.0; however, it is possible

that after configuring Apache 2.0 to use PHP, the server will fail to start. It is also possible

that it will start, but that it will fail to process PHP scripts. In both cases, an error message

should appear when you start Apache and/or in the Apache error log file.

This problem is caused by the fact that Apache 2.0 is a server still very much under devel-

opment. With each minor release they put out, they tend to break compatibility with all

server plug-in modules (such as PHP) that were compiled to work with the previous version.

On Linux, this isn’t such a big deal because people tend to compile PHP for themselves,

so they simply recompile PHP at the same time they’re compiling the new release of

Apache and PHP adapts accordingly. Unfortunately, on Windows, where people are used

to simply downloading precompiled files, the situation is different.

The php4apache2.dll file that is distributed with PHP will only work on versions of

Apache 2.0 up to the one that was current at the time that version of PHP was released.

So if you run into problems, the version of PHP you’re using is probably older than the

version of Apache you’re using. This problem can often be fixed by downloading the very

latest version of PHP; however, every time a new release of Apache 2.0 comes out, the

current release of PHP will be incompatible until they get around to updating it.

Should you ever install a later version of Apache and break compatibility with the latest

PHP build, you should be able to download a ‘work-in-progress’ version of PHP and grab

only the files you need (those responsible for the PHP-Apache interface). Information

about doing this can be found in the PHP bug database[7].

Once you’ve downloaded and installed Apache according to the instructions in-

cluded with it, open http://localhost/ in your Web browser, to make sure it works

properly. If you don’t see a Web page explaining that Apache was successfully

installed, then either you haven’t yet run Apache, or your installation is faulty.

Check the documentation and make sure Apache is running properly before you

install PHP.

If you’ve made sure Apache is up and running, you can add PHP support:

[7] http://bugs.php.net/bug.php?id=17826

Order this 350 page hard-copy PHP/MySQL book now!10

Chapter 1: Installation

1. On your Start Menu, choose Programs > Apache HTTP Server > Configure
Apache Server > Edit the Apache httpd.conf Configuration File. This will open

the httpd.conf file (choose Notepad if you don’t have a text editor con-

figured to edit .conf files).

2. All of the options in this long and intimidating configuration file should have

been set up correctly by the Apache install program. All you need to do is

add the following lines to the very bottom of the file:

LoadModule php5_module c:/php/php5apache.dll
AddModule mod_php5.c
AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

Make sure the LoadModule line points to the appropriate file in the PHP

installation directory on your system, and note the use of forward slashes

(/) instead of backslashes (\).

Apache 2.0

If you’re using Apache 2.0 or later, the LoadModule line needs to point

to php5apache2.dll instead of php5apache.dll, and you must re-

move the AddModule line entirely.

PHP 4.3

For PHP 4.3, the file in the LoadModule line is called php4apache.dll
(php4apache2.dll for Apache 2.0) and is located in the sapi sub-

folder of your PHP folder.

3. Next, look for the line that begins with DirectoryIndex. This line tells

Apache which file names to use when it looks for the default page for a given

directory. You’ll see the usual index.html and so forth, but you need to add

index.php to that list if it’s not there already:

DirectoryIndex index.html ... index.php

4. Save your changes and close Notepad.

5. Restart Apache by restarting the Apache service in Control Panel > Adminis-
trative Tools > Services. If all is well, Apache will start up again without

complaint.

11Order this 350 page hard-copy PHP/MySQL book now!

Installing PHP

6. You’re done! PHP is installed!

With MySQL and PHP installed, you’re ready to proceed to the section called

“Post-Installation Setup Tasks”.

Linux Installation
This section covers the procedure for installing PHP and MySQL under most

current distributions of Linux. These instructions were tested under Fedora Core

2; however, they should work on other distributions such as Debian, SUSE, and

Mandrake without much trouble. The steps involved will be very similar, if not

identical.

As a user of one of the handful of Linux distributions available, you may be

tempted to download and install packaged distributions of PHP and MySQL.

Debian users will be used to installing software using the apt-get utility, while

distributions like Fedora Core tend to rely on RPM packages. These prepackaged

versions of software are really easy to install; unfortunately, they also limit the

software configuration options available to you. If you already have MySQL and

PHP installed in packaged form, feel free to proceed with those versions, and

skip forward to the section called “Post-Installation Setup Tasks”. If you encounter

any problems, you can always return here to uninstall the packaged versions and

reinstall PHP and MySQL by hand.

This section will assume that you have the Apache Web server installed on your

machine already. If you don’t, chances are that your distribution offers an easy

way to install it (I have no objection to your using the packaged distributions of

Apache). I recommend Apache 1.3 over Apache 2.0, as support for Apache 2.0

in PHP is still experimental, but I’ll provide instructions for both versions here.

Building Apache yourself

If you want to compile and install Apache by hand, the necessary downloads

and ample installation instructions may be found at the Apache Website[9].

To support the PHP installation instructions provided below, you will have

to build Apache with shared module support. When you configure your copy

of Apache prior to compiling it, make sure you include the --enable-
module=so option.

[9] http://httpd.apache.org/

Order this 350 page hard-copy PHP/MySQL book now!12

Chapter 1: Installation

Removing Packaged Software
Since many Linux distributions will automatically install PHP and MySQL for

you, your first step should be to remove any old packaged versions of PHP and

MySQL from your system. If one exists, use your distribution’s graphical software

manager to remove all packages with php or mysql in their names.

If your distribution doesn’t have a graphical software manager, or if you didn’t

install a graphical user interface for your server, you can remove these packages

from the command prompt. You’ll need to be logged in as the root user to issue

the commands to do this. Note that in the following commands, shell# represents

the shell prompt, and shouldn’t be typed in.

In Fedora Core, RedHat, or Mandrake, you can use the rpm command-line utility:

shell#rpm -e mysql
shell#rpm -e php

In Debian, you can use apt-get to remove the relevant packages:

shell#apt-get remove mysql-server
shell#apt-get remove mysql-client
shell#apt-get remove php4
shell#apt-get remove php5

If any of these commands tell you that the package in question is not installed,

don’t worry about it unless you know for a fact that it is. In such cases, it will be

necessary for you to remove the offending item by hand. Seek help from an ex-

perienced user if you don’t know how.

If the command(s) for removing PHP completed successfully (i.e. no error message

was displayed), then you have just removed PHP from your Web server, and you

should check that you haven’t broken it in the process. To make sure Apache is

still in working order, you should restart it without the PHP plug-in:

shell#apachectl graceful

If Apache fails to start up, you’ll need to have a look through its configuration

file, which is usually called httpd.conf and may be found in /etc/apache or

/etc/httpd. Look for leftover commands that may be trying to load the PHP

plug-in that you have just removed from the system. The Apache error log files

may be of assistance in tracking these down if you can’t find them. When you’re

finished, try restarting Apache again.

13Order this 350 page hard-copy PHP/MySQL book now!

Removing Packaged Software

With everything neat and tidy, you’re ready to download and install MySQL

and PHP.

Installing MySQL
MySQL is freely available for Linux from http://dev.mysql.com/downloads/.

Download the recommended stable release (4.0 as of this writing). You should

grab the Standard version under Linux (x86, libc6) in the Linux downloads section.

Once you’ve downloaded the program (it was about 15MB as of this writing),

you should make sure you’re logged in as root before proceeding with the install-

ation, unless you want to install MySQL only in your own home directory. To

begin, move to /usr/local (unless you want to install MySQL elsewhere for

some reason) and unpack the downloaded file to create the MySQL directory

(replace version with the full version of your MySQL download to match the

downloaded file name on your system):

shell#cd /usr/local
shell#tar xfz mysql-version.tar.gz

Next, create a symbolic link to the mysql-version directory with the name mysql
to make accessing the directory easier, then enter the directory:

shell#ln -s mysql-version mysql
shell#cd mysql

While you can run the server as the root user, or even as yourself (if, for example,

you installed the server in your own home directory), the best idea is to set up

on the system a special user whose sole purpose is to run the MySQL server. This

will remove any possibility of someone using the MySQL server as a way to break

into the rest of your system. To create a special MySQL user, you’ll need to log

in as root and type the following commands:

shell#groupadd mysql
shell#useradd -g mysql mysql

MySQL is now installed, but before it can do anything useful, its database files

need to be installed, too. In the new mysql directory, type the following command:

shell#scripts/mysql_install_db --user=mysql

By default, MySQL stores all database information in the data subdirectory of

the directory to which it was installed. We want to ensure that nobody can access

Order this 350 page hard-copy PHP/MySQL book now!14

Chapter 1: Installation

that directory except our new MySQL user. Assuming you installed MySQL to

the /usr/local/mysql directory, you can use these commands:

shell#cd /usr/local/mysql
shell#chown -R root .
shell#chown -R mysql data
shell#chgrp -R mysql .

Now everything’s set for you to launch the MySQL server for the first time. From

the MySQL directory, type the following command:

shell#bin/mysqld_safe --user=mysql &

safe_mysqld

Prior to MySQL 4.0, the mysqld_safe script was called safe_mysqld. If

you happen to be installing an old version of MySQL, you’ll have to use that

file name instead.

If you see the message mysql daemon ended, then the MySQL server was preven-

ted from starting. The error message should have been written to a file called

hostname.err (where hostname is your machine’s host name) in MySQL’s data
directory. You’ll usually find that this happens because another MySQL server

is already running on your computer.

If the MySQL server was launched without complaint, the server will run (just

like your Web or FTP server) until your computer is shut down. To test that the

server is running properly, type the following command:

shell#bin/mysqladmin -u root status

A little blurb with some statistics about the MySQL server should be displayed.

If you receive an error message, something has gone wrong. Again, check the

hostname.err file to see if the MySQL server output an error message while

starting up. If you retrace your steps to make sure you followed the process de-

scribed above, and this doesn’t solve the problem, a post to the SitePoint For-

ums[11] will help you pin it down in no time.

If you want your MySQL server to run automatically whenever the system is

running (just like your Web server probably does), you’ll have to set it up to do

so. In the support-files subdirectory of the MySQL directory, you’ll find a

[11] http://www.sitepoint.com/forums/

15Order this 350 page hard-copy PHP/MySQL book now!

Installing MySQL

script called mysql.server that can be added to your system startup routines to

do this. Let me show you how.

First of all, assuming you’ve set up a special MySQL user to run the MySQL

server, you’ll need to tell the MySQL server to start as that user by default. To

do this, create in your system’s /etc directory a file called my.cnf that contains

these two lines:

[mysqld]
user=mysql

Now, when you run safe_mysqld or mysql.server to start the MySQL server,

it will launch as user mysql automatically. You can test this by stopping MySQL,

then running mysql.server with the start argument:

shell#bin/mysqladmin -u root shutdown
shell#support-files/mysql.server start

Request the server’s status using mysqladmin as before, to make sure it’s running

correctly.

All that’s left to do is to set up your system to run mysql.server automatically

at startup (to launch the server) and at shutdown (to terminate the server). This

is a highly operating system-dependant task. If you’re not sure how to do it, you’d

be best to ask someone who is. The following commands, however, will do the

trick for most versions of Linux:

shell#cp /usr/local/mysql/support-files/mysql.server /etc/init.d/
shell#cd /etc/rc2.d
shell#ln -s ../init.d/mysql.server S99mysql
shell#cd /etc/rc3.d
shell#ln -s ../init.d/mysql.server S99mysql
shell#cd /etc/rc5.d
shell#ln -s ../init.d/mysql.server S99mysql
shell#cd /etc/rc0.d
shell#ln -s ../init.d/mysql.server K01mysql

That’s it! To test that this works, reboot your system and request the status of

the server as before.

One final thing you might like to do for the sake of convenience is to place the

MySQL client programs, which you’ll use to administer your MySQL server later

on, in the system path. To this end, you can place symbolic links to mysql,

mysqladmin, and mysqldump in your /usr/local/bin directory:

Order this 350 page hard-copy PHP/MySQL book now!16

Chapter 1: Installation

shell#ln -s /usr/local/mysql/bin/mysql /usr/local/bin/mysql
shell#ln -s /usr/local/mysql/bin/mysqladmin
/usr/local/bin/mysqladmin
shell#ln -s /usr/local/mysql/bin/mysqldump
/usr/local/bin/mysqldump

Installing PHP
As mentioned above, PHP is not really a program in and of itself. Instead, it’s a

plug-in module for your Web server (probably Apache). There are actually three

ways to install the PHP plug-in for Apache:

� As a CGI program that Apache runs every time it needs to process a PHP-

enhanced Web page

� As an Apache module compiled right into the Apache program

� As an Apache module loaded by Apache each time it starts up

The first option is the easiest to install and set up, but it requires Apache to

launch PHP as a program on your computer every time a PHP page is requested.

This activity can really slow down the response time of your Web server, especially

if more than one request needs to be processed at a time.

The second and third options are almost identical in terms of performance, but

since you’re likely to have Apache installed already, you’d probably prefer to

avoid having to download, recompile, and reinstall it from scratch. For this reason,

we’ll use the third option.

To start, download the PHP Complete Source Code package from

http://www.php.net/downloads.php. At the time of this writing, PHP 4 has become

well-established as the version of choice; however, the newly released PHP 5 is

gaining ground quickly. I’ll be covering the installation of PHP 5.0 here, but the

same steps should work just as well with PHP 4.

The file you downloaded should be called php-version.tar.gz. To begin, we’ll

extract the files it contains (the shell% prompt is included to represent that you

can run these steps without being logged in as root):

shell%tar xfz php-version.tar.gz
shell%cd php-version

17Order this 350 page hard-copy PHP/MySQL book now!

Installing PHP

To install PHP as a loadable Apache module, you’ll need the Apache apxs pro-

gram. This comes with most versions of Apache (both versions 1.3 and 2.0), but

if you’re using the copy that was installed with your distribution of Linux, you

may need to install the “Apache development” package to access Apache apxs.

You should be able to install this package by the means provided by your software

distribution. For example, on Debian Linux, you can use apt-get to install it as

follows (you’ll have to log in as root first):

shell#apt-get install apache-dev

By default, Fedora Core, RedHat, and Mandrake will install the program as

/usr/sbin/apxs, so if you see this file, you know it’s installed. If you’ve installed

Apache by hand, it will probably be /usr/local/apache/bin/apxs.

For the rest of the install procedure, you’ll need to be logged in as the root user

so you can make changes to the Apache configuration files.

The next step is to configure the PHP installation program by telling it which

options you want to enable, and where it should find the programs it needs to

know about (such as Apache and MySQL). Unless you know exactly what you’re

doing, simply type the command like this (all on one line):

shell#./configure --prefix=/usr/local/php
--with-apxs=/usr/sbin/apxs

 --with-mysql=/usr/local/mysql
 --enable-magic-quotes

Replace /usr/sbin/apxs and /usr/local/mysql with the location of your apxs
program and the base directory of your MySQL installation, respectively.

Apache 2.0

If you’re using Apache 2.0 or later, you need to type --with-apxs2=… in-

stead of --with-apxs=… to enable support for Apache 2.0. As of this writing,

this support is still experimental and is not recommended for production

sites. As a result of the ongoing work on this front, you may need to download

the latest pre-release (unstable) version of PHP to get it working with the

latest release of Apache 2.0, but it’s worth trying the stable release version

first.

For full instructions on how to download the latest pre-release version of

PHP, see http://www.php.net/anoncvs.php.

Again, check for any error messages and install any files it identifies as missing.

On Mandrake 8.0, for example, it complained that the lex command wasn’t

Order this 350 page hard-copy PHP/MySQL book now!18

Chapter 1: Installation

found. I searched for “lex” in the Mandrake package list and it came up with

flex, which it described as a program for matching patterns of text used in many

programs’ build processes. Once that was installed, the configuration process

went without a hitch. After you watch several screens of tests scroll by, you’ll be

returned to the command prompt. The following two commands will compile

and then install PHP. Take a coffee break: this will take some time.

shell#make
shell#make install

Upon completion of make install, PHP is installed in /usr/local/php (unless

you specified a different directory with the --prefix option of the configure
script above), with one important exception—its configuration file, php.ini.

PHP comes with two sample php.ini files called php.ini-dist and php.ini-
recommended. Copy these files from your installation work directory to the

/usr/local/php/lib directory, then make a copy of the php.ini-dist file and

call it php.ini:

shell#cp php.ini* /usr/local/php/lib/
shell#cd /usr/local/php/lib
shell#cp php.ini-dist php.ini

You may now delete the directory from which you compiled PHP—it’s no longer

needed.

We’ll worry about fine-tuning php.ini shortly. For now, we need to tweak

Apache’s configuration to make it more PHP-friendly. Open your Apache ht-
tpd.conf configuration file (usually under /etc/apache/ or /etc/httpd/ if

you’re using your Linux distribution’s copy of Apache) in your favorite text editor.

Next, look for the line that begins with DirectoryIndex. In certain distributions,

this may be in a separate file called commonhttpd.conf. This line tells Apache

which file names to use when it looks for the default page for a given directory.

You’ll see the usual index.html, but you need to add index.php to the list if it’s

not there already:

DirectoryIndex index.html index.php

Finally, go right to the bottom of the file (again, this should go in commonht-
tpd.conf if you have such a file) and add these lines to tell Apache which file

extensions should be seen as PHP files:

AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

19Order this 350 page hard-copy PHP/MySQL book now!

Installing PHP

That should do it! Save your changes and restart your Apache server. If all things

go according to plan, Apache should start up without any error messages. If you

run into any trouble, the helpful folks in the SitePoint Forums[14] (myself in-

cluded) will be happy to help.

Mac OS X Installation
As of version 10.2 (Jaguar), Mac OS X distinguishes itself by being the only

consumer OS to install both Apache and PHP as components of every standard

installation. That said, the version of PHP provided is a little out-of-date, and

you’ll need to install the MySQL database as well.

In this section, I’ll briefly cover what’s involved in setting up up-to-date versions

of PHP and MySQL on Mac OS X. Before doing that, however, I’ll ask you to

make sure that the Apache Web server built into your Mac OS X installation is

enabled.

1. Click to pull down the Apple menu.

2. Choose System Preferences from the menu.

3. Select Sharing from the System Preferences panel.

4. If the Sharing preference panel says Web Sharing Off, click the Start button

to launch the Apache Web server.

5. Exit the System Preferences program.

With this procedure complete, Apache will automatically be run at startup on

your system from now on. You’re now ready to enhance this server by installing

PHP and MySQL!

Installing MySQL
Apple maintains a fairly comprehensive guide to installing MySQL on Mac OS

X on its Mac OS X Internet Developer site[15] if you want to get your hands

dirty and compile MySQL yourself. It is much easier, however, to obtain the

precompiled binary version directly from the MySQL Website, and follow the

installation instructions in the MySQL manual. In this section, I’ll attempt to

[14] http://www.sitepoint.com/forums/

[15] http://developer.apple.com/internet/macosx/osdb.html

Order this 350 page hard-copy PHP/MySQL book now!20

Chapter 1: Installation

boil down this information to the essentials to help you get started as quickly as

possible.

First of all, if you happen to be running Mac OS X Server, MySQL is already

installed for you. You can run Applications/Utilities/MySQL Manager to access

it. More likely, however, you are using the client version of Mac OS X.

To install MySQL on the client version of Mac OS X, begin by going to

http://dev.mysql.com/downloads/ and selecting the latest production release of

MySQL (4.0 as of this writing). Scroll down to the Mac OS X downloads section,

then select and download the Installer package version for your operating system.

You’ll have a choice of the Standard, Max, and Debug releases; choose the Standard
release unless you have a special reason for choosing one of the others.

Once you’ve downloaded the mysql-standard-version-apple-darwinver-
sion-powerpc.dmg file, double-click it to mount the disk image if your browser

hasn’t already done this for you. Inside it, you’ll find the installer in .pkg format,

as well as a MySQLStartupItem.pkg file. Double-click the installer, which will

guide you through the installation of MySQL.

Once MySQL is installed, you can launch the MySQL server by opening a Ter-

minal window and typing this command:

shell%sudo /usr/local/mysql/bin/mysqld_safe

Enter the administrator password if prompted. Once MySQL is running, you can

switch it to background execution by typing Ctrl-Z to suspend it, and typing this

command:

shell%bg

You can then close the Terminal window and MySQL will continue to run as a

server on your system.

Presumably, you’ll want your system automatically to launch the MySQL server

at startup so that you don’t have to repeat the above process whenever you restart

your system. To do this, simply double-click the MySQLStartupItem.pkg file and

follow the instructions.

When you’re done, you can safely drag the mounted drive for the MySQL install-

ation package to the trash, then delete the .dmg file.

21Order this 350 page hard-copy PHP/MySQL book now!

Installing MySQL

Installing PHP
As with MySQL, a Mac OS X version of PHP is not available from the official

Website, but from a third party. Again, Apple also maintains a Web page detailing

the installation procedure[17], although in this case it is somewhat out of date.

A better source of information is http://www.entropy.ch/software/macosx/php/,

where you can download an installer package in the form of a disk image.

The latest version of PHP available for Mac OS X 10.2 is PHP 4.3.4. More recent

versions of PHP (up to 5.0.1 as of this writing) are available for Mac OS X 10.3

or later only. Select the version that is right for your system and download it.

If your browser doesn’t do it for you, mount the disk image by double-clicking

the Entropy-PHP-version.dmg file, then double-click the installer .pkg file it

contains. Simply follow the instructions, and PHP will be installed on your

server. That’s all there is to it!

Mac OS X and Linux
Because Mac OS X is based on the BSD operating system, much of its internals

work just like any other Unix-like OS (e.g. Linux). From this point forward,

owners of Mac OS X servers can follow the instructions provided for Unix/Linux

systems unless otherwise indicated. No separate instructions are provided for

Mac OS X unless they differ from those for other Unix-like systems.

Post-Installation Setup Tasks
No matter which operating system you’re running, once PHP is installed and the

MySQL server is in operation, the very first thing you need to do is assign a root

password for MySQL. MySQL allows authorized users only to view and manip-

ulate the information stored in its databases, so you’ll need to tell MySQL who

is an authorized user, and who isn’t. When MySQL is first installed, it’s configured

with a user named root that has access to do pretty much anything without even

entering a password. Your first task should be to assign a password to the root
user so that unauthorized users can’t tamper with your databases.

[17] http://developer.apple.com/internet/macosx/php.html

Order this 350 page hard-copy PHP/MySQL book now!22

Chapter 1: Installation

Why should I bother?

It’s important to realize that MySQL, just like a Web server or an FTP

server, can be accessed from any computer on the same network. If you’re

working on a computer connected to the Internet, then, depending on your

security measures, that means anyone in the world could try to connect to

your MySQL server! The need to pick a hard-to-guess password should be

immediately obvious!

To set a root password for MySQL, open a command prompt (or Terminal win-

dow) and type the following command in the bin directory of your MySQL in-

stallation:

mysql -u root mysql

This command connects you to your newly-installed MySQL server as the root
user, and chooses the mysql database. After a few lines of introductory text, you

should see the MySQL command prompt (mysql>). To assign a password to the

root user, type the following two commands (pressing Enter after each one):

mysql>UPDATE mysql.user SET Password=PASSWORD("new password")
 ->WHERE User="root";
Query OK, 2 rows affected (0.12 sec)
Rows matched: 2 Changed: 2 Warnings: 0
mysql>FLUSH PRIVILEGES;
Query OK, 0 rows affected (0.24 sec)

Be sure to replace new password with the password you want to assign to your

root user.

With that done, disconnect from MySQL with the quit command:

mysql>quit
Bye

Now, to try out your new password, request that the MySQL server tell you its

current status at the system command prompt:

mysqladmin -u root -p status

Enter your new password when prompted. You should see a brief message that

provides information about the server and its current status. The -u root argu-

ment tells the program that you want to be identified as the MySQL user called

root. The -p argument tells the program to prompt you for your password before

23Order this 350 page hard-copy PHP/MySQL book now!

Post-Installation Setup Tasks

it tries to connect. The status argument just tells it that you’re interested in

viewing the system status.

If at any time you want to shut down the MySQL server, you can use the com-

mand below. Notice the same -u root and -p arguments as before:

mysqladmin -u root -p shutdown

With your MySQL database system safe from intrusion, all that’s left is to con-

figure PHP. To do this, we’ll use a text file called php.ini. If you installed PHP

under Windows, you should already have copied php.ini into your Windows

directory. If you installed PHP under Linux using the instructions above, you

should already have copied php.ini into the PHP lib folder (/usr/loc-
al/php/lib), or wherever you chose to put it. The Mac OS X installation program

will have placed the file in /usr/local/php/lib for you automatically.

Open php.ini in your favorite text editor and have a glance through it. Most of

the settings are fairly well explained, and most of the default settings are fine for

our purposes. Just check to make sure that your settings match these:

register_globals = Off

magic_quotes_gpc = On5

extension_dir = the directory where you installed PHP6

Save the changes to php.ini, and then restart your Web server. To restart Apache

under Linux (or Mac OS X), log in as root and type this command:

shell#apachectl graceful

You’re done! Now, you just need to test to make sure everything’s working (see

the section called “Your First PHP Script”).

5PHP experts may tell you that you’ll achieve better performance with it set to Off, but that setting

 exposes you to hackers attempting SQL injection attacks on your Website if you are not very careful

 to write scripts that protect themselves from such malicious behavior. Until you fully understand

PHP and the types of security issues that scripts must combat, leave this setting On.
6Usually c:\php on Windows, and /usr/local/php on Linux.

Order this 350 page hard-copy PHP/MySQL book now!24

Chapter 1: Installation

If Your Web Host Provides PHP and
MySQL

If the host that provides you with Web space has already installed and set up

MySQL and PHP for you, and you just want to learn how to use them, there

really isn’t a lot you need to do. Now would be a good time to get in touch with

your host and request any information you may need to access these services.

Specifically, you’ll need a user name and password to access the MySQL server

they’ve set up for you. They’ll probably also have provided an empty database

for your use, which prevents you from interfering with the databases of other

users who share the same MySQL server, and you’ll want to know the name of

your database.

There are two ways you can access the MySQL server directly. Firstly, you can

use telnet or secure shell (SSH) to log in to the host. You can then use the MySQL

client programs (mysql, mysqladmin, mysqldump) installed there to interact with

the MySQL server directly. The second method is to install those client programs

onto your own computer, and have them connect to your host’s MySQL server.

Your Web host may support one, both, or neither of these methods, so you’ll

need to ask.

If your host allows you to log in by telnet or SSH to do your work, you’ll need

a user name and password for the login, in addition to those you’ll use to access

the MySQL server (they can be different). Be sure to ask for both sets of inform-

ation.

If they support direct access to the MySQL server, you’ll want to download a

program that lets you connect to, and interact with, the server. This book assumes

you’ve downloaded from http://www.mysql.com/ a binary distribution of MySQL

that includes the three client programs (mysql, mysqladmin, and mysqldump).

Free packages are available for Windows, Linux and other operating systems.

Installation basically consists of finding the three programs and putting them in

a convenient place. The rest of the package, which includes the MySQL server,

can be freely discarded. If you prefer a more graphical interface, download

something like MySQL Control Center[20]. I’d recommend getting comfortable

with the basic client programs first, though, as the commands you use with them

[20] http://www.mysql.com/products/mysqlcc/

25Order this 350 page hard-copy PHP/MySQL book now!

If Your Web Host Provides PHP and MySQL

will be similar to those you’ll include in your PHP scripts to access MySQL

databases.

Many less expensive Web hosts support neither telnet/SSH access, nor direct

access to their MySQL servers. Instead, they normally provide a management

console that allows you to browse and edit your database through your Web

browser (though some actually expect you to install one yourself, which I’ll cover

briefly in Chapter 2). Although this is a fairly convenient and not overly restrictive

solution, it doesn’t help you learn. Instead, I’d recommend you install a MySQL

server on your own system for experimentation, especially in the next chapter.

Once you’re comfortable working with your learning server, you can start using

the server provided by your Web host with the Web-based management console.

See the previous sections for instructions on installing MySQL under Windows,

Linux, and Mac OS X.

Your First PHP Script
It would be unfair of me to help you get everything installed and not even give

you a taste of what a PHP-driven Web page looks like until Chapter 3, so here’s

a little something to whet your appetite.

Open your favorite text or HTML editor and create a new file called today.php.

Windows users should note that, to save a file with a .php extension in Notepad,

you’ll need to either select All Files as the file type, or surround the file name

with quotes in the Save As dialogue; otherwise, Notepad will helpfully save the

file as today.php.txt, which won’t work (see the note earlier in this chapter for

more information). Mac OS users are advised not to use TextEdit to edit .php
files, as it saves them in Rich Text Format with an invisible .rtf file name exten-

sion. Learn to use the vi editor in a Terminal window or obtain an editor that

can save .php files as plain text.

Whichever editor you use, type this into the file:

File: today.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Today's Date</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>

Order this 350 page hard-copy PHP/MySQL book now!26

Chapter 1: Installation

<body>
<p>Today's Date (according to this Web server) is
<?php

echo date('l, F dS Y.');

?></p>
</body>
</html>

If you prefer, you can download this file, which, along with the rest of the code

in this book, is contained in the code archive. See the Preface for details on how

to download the archive.

Save the file, and place it on your Website as you would any regular HTML file,

then view it in your browser. Note that if you view the file on your own machine,

you cannot use the File > Open… feature of your browser, because your Web

server must intervene to interpret the PHP code in the file. Instead, you must

move the file into the root document folder of your Web server software (e.g.

C:\inetpub\wwwroot\ in IIS, or C:\Program Files\Apache
Group\Apache\htdocs\ in Apache for Windows), then load it into your browser

by typing http://localhost/today.php. This process allows the Web server to run

the PHP code in the file and replace it with the date before it’s sent to the Web

browser. Figure 1.2 shows what the output should look like.

Figure 1.2. See your first PHP script in action!

Pretty neat, huh? If you use the View Source feature in your browser, all you’ll

see is a regular HTML file with the date in it. The PHP code (everything between

27Order this 350 page hard-copy PHP/MySQL book now!

Your First PHP Script

<?php and ?> in the code above) was interpreted by the Web server and converted

to normal text before it was sent to your browser. The beauty of PHP, and other

server-side scripting languages, is that the Web browser doesn’t have to know

anything about it — the Web server does all the work!

Don’t worry too much about the exact code I used in this example. Before too

long you’ll know it like the back of your hand.

If you don’t see the date, then something is wrong with the PHP support on your

Web server. Use View Source in your browser to look at the code of the page.

You’ll probably see the PHP code there in the page. Since the browser doesn’t

understand PHP, it just sees <?php … ?> as one long, invalid HTML tag, which

it ignores. Make sure that PHP support has been properly installed on your Web

server, either in accordance with the instructions provided in previous sections

of this chapter, or by your Web host.

Summary
You should now have everything you need to install MySQL and PHP on your

Web Server. If the little example above didn’t work (for example, if the raw PHP

code appeared instead of the date), something went wrong with your setup pro-

cedure. Drop by the SitePoint Forums[22] and we’ll be glad to help you figure

out the problem!

In Chapter 2, you’ll learn the basics of relational databases and get started

working with MySQL. If you’ve never even touched a database before, I promise

you it’ll be a real eye-opener!

[22] http://www.sitepoint.com/forums/

Order this 350 page hard-copy PHP/MySQL book now!28

Chapter 1: Installation

Getting Started with MySQL2
In Chapter 1, we installed and set up two software programs: PHP and MySQL.

In this chapter, we’ll learn how to work with MySQL databases using Structured

Query Language (SQL).

An Introduction to Databases
As I’ve already explained, PHP is a server-side scripting language that lets you

insert into your Web pages instructions that your Web server software (be it

Apache, IIS, or whatever) will execute before it sends those pages to browsers

that request them. In a brief example, I showed how it was possible to insert the

current date into a Web page every time it was requested.

Now, that’s all well and good, but things really get interesting when a database

is added to the mix. A database server (in our case, MySQL) is a program that

can store large amounts of information in an organized format that’s easily ac-

cessible through scripting languages like PHP. For example, you could tell PHP

to look in the database for a list of jokes that you’d like to appear on your Web-

site.

In this example, the jokes would be stored entirely in the database. The advantages

of this approach would be twofold. First, instead of having to write an HTML

file for each of your jokes, you could write a single PHP file that was designed to

fetch any joke from the database and display it. Second, adding a joke to your

Website would be a simple matter of inserting the joke into the database. The

PHP code would take care of the rest, automatically displaying the new joke

along with the others when it fetched the list from the database.

Let’s run with this example as we look at how data is stored in a database. A

database is composed of one or more tables, each of which contains a list of

things. For our joke database, we’d probably start with a table called joke that

would contain a list of jokes. Each table in a database has one or more columns,

or fields. Each column holds a certain piece of information about each item in

the table. In our example, our joke table might have one column for the text of

the jokes, and another for the dates on which the jokes were added to the data-

base. Each joke stored in this way would then be said to be a row in the table.

These rows and columns form a table that looks like Figure 2.1.

Figure 2.1. The structure of a typical database table includes rows
and columns.

Notice that, in addition to columns for the joke text (joketext) and the date of

the joke (jokedate), I included a column named id. As a matter of good design,

a database table should always provide a means by which we can identify each

of its rows uniquely. Since it’s possible that a single joke could be entered more

than once on the same date, the joketext and jokedate columns can’t be relied

upon to tell all the jokes apart. The function of the id column, therefore, is to

assign a unique number to each joke so that we have an easy way to refer to them

and to keep track of which joke is which. Such database design issues will be

covered in greater depth in Chapter 5.

So, to review, the above is a three-column table with two rows, or entries. Each

row in the table contains three fields, one for each column in the table: the joke’s

Order this 350 page hard-copy PHP/MySQL book now!30

Chapter 2: Getting Started with MySQL

ID, its text, and the date of the joke. With this basic terminology under our belts,

we’re ready to get started with MySQL.

Logging On to MySQL
The standard interface for working with MySQL databases is to connect to the

MySQL server software (which you set up in Chapter 1) and type commands

one at a time. To make this connection to the server, you’ll need the MySQL

client program. If you installed the MySQL server software yourself, either under

Windows or some brand of UNIX, this program will have been installed in the

same location as the server program. Under Linux, for example, the program is

called mysql and is located by default in the /usr/local/mysql/bin directory.

Under Windows, the program is called mysql.exe and is located by default in

the C:\mysql\bin directory.

If you didn’t set up the MySQL server yourself (if, for example, you’re working

on your Web host’s MySQL server), there are two ways to connect to the MySQL

server. The first is to use Telnet or a Secure Shell (SSH) connection to log into

your Web host’s server, then run mysql from there. The second is to download

the MySQL client software from http://www.mysql.com/ (available free for Win-

dows and Linux), install it on your own computer, and use it to connect to the

MySQL server over the Internet. Both methods work well, and your Web host

may support one, the other, or both—you’ll need to ask.

No shell? No direct connection? No problem!

Many Web hosts do not allow direct access to their MySQL servers over the

Internet for security reasons. If your host has adopted this policy (you’ll have

to ask them if you’re not sure), installing the MySQL client software on your

own computer won’t do you any good. Instead, you’ll need to install a Web-

based MySQL administration script onto your site. phpMyAdmin[2] is the

most popular script available; indeed, many Web hosts will configure your

account with a copy of phpMyAdmin.

While Web-based MySQL administration systems provide a convenient,

graphical interface for working with your MySQL databases, it is still import-

ant to learn the basics of MySQL’s command-line interface. The commands

you use in this interface are the very same commands you’ll have to include

in your PHP code later in this book. I therefore recommend going back to

Chapter 1 and installing MySQL on your own computer so you can complete

[2] http://www.phpmyadmin.net/

31Order this 350 page hard-copy PHP/MySQL book now!

Logging On to MySQL

the exercises in this chapter before you get comfortable with your Web-based

administration interface.

Whichever method and operating system you use, you’ll end up at a command

prompt, ready to run the MySQL client program and connect to your MySQL

server. Here’s what you should type:

mysql -h hostname –u username -p

You need to replace hostname with the host name or IP address of the computer

on which the MySQL server is running. If the client program is run on the same

computer as the server, you would use -h localhost or –h 127.0.0.1, but in

this special case you can actually leave off this part of the command entirely.

username should be your MySQL user name. If you installed the MySQL server

yourself, this will just be root. If you’re using your Web host’s MySQL server,

this should be the MySQL user name the host assigned you.

The -p argument tells the program to prompt you for your password, which it

should do as soon as you enter the command above. If you set up the MySQL

server yourself, this password is the root password you chose in Chapter 1. If

you’re using your Web host’s MySQL server, this should be the MySQL password

the host gave you.

If you typed everything correctly, the MySQL client program will introduce itself

and dump you on the MySQL command prompt:

mysql>

The MySQL server can actually keep track of more than one database. This allows

a Web host to set up a single MySQL server for use by several of its subscribers,

for example. So, your next step should be to choose a database with which to

work. First, let’s retrieve a list of databases on the current server. Type this

command (don’t forget the semicolon!) and press Enter.

mysql>SHOW DATABASES;

MySQL will show you a list of the databases on the server. If you’re working on

a brand new server (i.e. if you installed the server yourself in Chapter 1), the list

should look like this:

+----------+
| Database |
+----------+
| mysql |
| test |

Order this 350 page hard-copy PHP/MySQL book now!32

Chapter 2: Getting Started with MySQL

+----------+
2 rows in set (0.11 sec)

The MySQL server uses the first database, named mysql, to keep track of users,

their passwords, and what they’re allowed to do. We’ll steer clear of this database

for now, though we will revisit it in Chapter 8, when we discuss MySQL Admin-

istration. The second database, named test, is a sample database. You can actually

get rid of this database. I won’t be referring to it in this book, and we’ll create

our own example database momentarily. Deleting something in MySQL is called

“dropping” it, and the command for doing so is appropriately named:

mysql>DROP DATABASE test;

If you type this command and press Enter, MySQL will obediently delete the

database, displaying “Query OK” in confirmation. Notice that you’re not

prompted with any kind of “Are you sure?” message. You have to be very careful

to type your commands correctly in MySQL because, as this example shows, you

can obliterate your entire database—along with all the information it con-

tains—with a single command!

Before we go any further, let’s learn a couple of things about the MySQL com-

mand prompt. As you may have noticed, all commands in MySQL are terminated

by a semicolon (;). If you forget the semicolon, MySQL will think you haven’t

finished typing your command, and will let you continue to type on another line:

mysql>SHOW
 ->DATABASES;

MySQL shows that it’s waiting for you to type more of your command by chan-

ging the prompt from mysql> to ->. This handy functionality allows you to spread

long commands over several lines.

If you get halfway through a command and realize that you made a mistake early

on, you may want to cancel the current command entirely and start over from

scratch. To do this, type \c and press Enter:

mysql>DROP DATABASE\c
mysql>

MySQL will ignore completely the command you had begun to type and will re-

turn to the prompt to await another command.

33Order this 350 page hard-copy PHP/MySQL book now!

Logging On to MySQL

Finally, if at any time you want to exit the MySQL client program, just type quit
or exit (either will work). This is the only command that doesn’t need a semi-

colon, but you can use one if you want to.

mysql>quit
Bye

So, What’s SQL?
The set of commands we’ll use to direct MySQL throughout the rest of this book

is part of a standard called Structured Query Language, or SQL (pronounced

either “sequel” or “ess-cue-ell”—take your pick). Commands in SQL are also re-

ferred to as queries (I’ll use these two terms interchangeably).

SQL is the standard language for interacting with most databases, so, even if you

move from MySQL to a database like Microsoft SQL Server in the future, you’ll

find that most of the commands are identical. It’s important that you understand

the distinction between SQL and MySQL. MySQL is the database server software

that you’re using. SQL is the language that you use to interact with that database.

Creating a Database
Those who are working on their Web host’s MySQL server are likely already to

have been assigned a database with which to work. Sit tight; we’ll get back to

you in a moment. If you’re running a MySQL server that you installed yourself,

however, you’ll need to create your own database. It’s just as easy to create a

database as it is to delete one:

mysql>CREATE DATABASE ijdb;

I chose to name the database ijdb, for Internet Joke Database, because that fits

with the example we’re using. Feel free to give the database any name you like,

though. Those of you working on your Web host’s MySQL server will probably

have no choice in what to name your database, as it will probably already have

been created for you.

Now that we have a database, we need to tell MySQL that we want to use it.

Again, the command isn’t difficult to remember:

mysql>USE ijdb;

Order this 350 page hard-copy PHP/MySQL book now!34

Chapter 2: Getting Started with MySQL

You’re now ready to use your database. Since a database is empty until you add

some tables to it, our first order of business will be to create a table that will hold

our jokes.

Creating a Table
The SQL commands we’ve encountered so far have been reasonably simple, but

as tables are so flexible, it takes a more complicated command to create them.

The basic form of the command is as follows:

mysql>CREATE TABLE table_name (
 -> column_1_name column_1_type column_1_details,
 -> column_2_name column_2_type column_2_details,
 -> ...
 ->);

Let’s return to our example joke table. Recall that it had three columns: id (a

number), joketext (the text of the joke), and jokedate (the date on which the

joke was entered). The command to create this table is as follows:

mysql>CREATE TABLE joke (
 -> id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> joketext TEXT,
 -> jokedate DATE NOT NULL
 ->);

It looks pretty scary, huh? Let’s break it down:

� The first line is fairly simple; it says that we want to create a new table named

joke.

� The second line says that we want a column called id that will contain an

integer (INT), that is, a whole number. The rest of this line deals with special

details for the column. First, this column is not allowed to be left blank (NOT
NULL). Next, if we don’t specify any value in particular when we add a new

entry to the table, we want MySQL to pick a value that is one more than the

highest value in the table so far (AUTO_INCREMENT). Finally, this column is to

act as a unique identifier for the entries in the table, so all values in this column

must be unique (PRIMARY KEY).

� The third line is super-simple; it says that we want a column called joketext,

which will contain text (TEXT).

35Order this 350 page hard-copy PHP/MySQL book now!

Creating a Table

� The fourth line defines our last column, called jokedate, which will contain

data of type DATE, and which cannot be left blank (NOT NULL).

Note that, while you’re free to type your SQL commands in upper– or lowercase,

a MySQL server running on a UNIX-based system will be case-sensitive when it

comes to database and table names, as these correspond to directories and files

in the MySQL data directory. Otherwise, MySQL is completely case-insensitive,

but for one exception: table, column, and other names must be spelled exactly

the same when they’re used more than once in the same command.

Note also that we assigned a specific type of data to each column we created. id
will contain integers, joketext will contain text, and jokedate will contain dates.

MySQL requires you to specify in advance a data type for each column. Not only

does this help keep your data organized, but it allows you to compare the values

within a column in powerful ways, as we’ll see later. For a complete list of suppor-

ted MySQL data types, see Appendix C.

Now, if you typed the above command correctly, MySQL will respond with Query
OK, and your first table will be created. If you made a typing mistake, MySQL

will tell you there was a problem with the query you typed, and will try to indicate

where it had trouble understanding what you meant.

For such a complicated command, Query OK is a pretty boring response. Let’s

have a look at your new table to make sure it was created properly. Type the

following command:

mysql>SHOW TABLES;

The response should look like this:

+----------------+
| Tables in ijdb |
+----------------+
| joke |
+----------------+
1 row in set

This is a list of all the tables in our database (which I named ijdb above). The

list contains only one table: the joke table we just created. So far, everything

seems fine. Let’s take a closer look at the joke table itself:

mysql>DESCRIBE joke;
+----------+---------+------+-----+------------+----------------+
| Field | Type | Null | Key | Default | Extra |

Order this 350 page hard-copy PHP/MySQL book now!36

Chapter 2: Getting Started with MySQL

+----------+---------+------+-----+------------+----------------+
id	int(11)		PRI	NULL	auto_increment
joketext	text	YES		NULL	
jokedate	date			0000-00-00	
+----------+---------+------+-----+------------+----------------+
3 rows in set

As you can see, there are three columns (or fields) in this table, which appear as

the three rows in this table of results. The details are somewhat cryptic, but if

you look at them closely, you should be able to figure out what they mean. Don’t

worry about it too much, though. We’ve got better things to do, like adding some

jokes to our table!

We need to look at just one more thing before we get to that, though: deleting

a table. This task is as frighteningly easy as deleting a database. In fact, the

command is almost identical:

mysql>DROP TABLE tableName;

Inserting Data into a Table
Our database is created and our table is built; all that’s left is to put some actual

jokes into the database. The command that inserts data into a database is called,

appropriately enough, INSERT. This command takes two basic forms:

mysql>INSERT INTO table_name SET
 -> columnName1 = value1,
 -> columnName2 = value2,
 -> ...
 ->;

mysql>INSERT INTO table_name
 -> (columnName1, columnName2, ...)
 -> VALUES (value1, value2, ...);

So, to add a joke to our table, we can use either of these commands:

mysql>INSERT INTO joke SET
 ->joketext = "Why did the chicken cross the road? To get to
 "> the other side!",
 ->jokedate = "2004-04-01";

mysql>INSERT INTO joke
 ->(joketext, jokedate) VALUES (
 ->"Why did the chicken cross the road? To get to the other

37Order this 350 page hard-copy PHP/MySQL book now!

Inserting Data into a Table

 "> side!",
 ->"2004-04-01"
 ->);

Note that in the second form of the INSERT command, the order in which you

list the columns must match the order in which you list the values. Otherwise,

the order of the columns doesn’t matter, as long as you provide values for all re-

quired fields. Now that you know how to add entries to a table, let’s see how we

can view those entries.

Viewing Stored Data
The command we use to view data stored in database tables, SELECT, is the most

complicated command in the SQL language. The reason for this complexity is

that the chief strength of a database is its flexibility in data retrieval and

presentation. At this early point in our experience with databases we need only

fairly simple lists of results, so we’ll just consider the simpler forms of the SELECT
command here. This command will list everything that’s stored in the joke table:

mysql>SELECT * FROM joke;

Read aloud, this command says “select everything from joke.” If you try this

command, your results will resemble the following:

+----+---
------------+------------+
| id | joketext
 | jokedate |
+----+---
------------+------------+
| 1 | Why did the chicken cross the road? To get to the
other side! | 2004-04-01 |
+----+---
------------+------------+
1 row in set (0.05 sec)

The results look a little disorganized because the text in the joketext column is

so long that the table can’t fit on the screen properly. For this reason, you might

want to tell MySQL to leave out the joketext column. The command for doing

this is as follows:

mysql>SELECT id, jokedate FROM joke;

Order this 350 page hard-copy PHP/MySQL book now!38

Chapter 2: Getting Started with MySQL

This time, instead of telling it to “select everything,” we told it precisely which

columns we wanted to see. The results look like this:

+----+------------+
| id | jokedate |
+----+------------+
| 1 | 2004-04-01 |
+----+------------+
1 row in set (0.00 sec)

Not bad, but we’d like to see at least some of the joke text, wouldn’t we? As well

as being able to name specific columns that we want the SELECT command to

show us, we can use functions to modify each column’s display. One function,

called LEFT, lets us tell MySQL to display a column’s contents up to a specified

maximum number of characters. For example, let’s say we wanted to see only the

first 20 characters of the joketext column. Here’s the command we’d use:

mysql>SELECT ID, LEFT(joketext, 20), jokedate FROM joke;
+----+----------------------+------------+
| id | LEFT(joketext, 20) | jokedate |
+----+----------------------+------------+
| 1 | Why did the chicken | 2004-04-01 |
+----+----------------------+------------+
1 row in set (0.05 sec)

See how that worked? Another useful function is COUNT, which lets us count the

number of results returned. If, for example, we wanted to find out how many

jokes were stored in our table, we could use the following command:

mysql>SELECT COUNT(*) FROM joke;
+----------+
| COUNT(*) |
+----------+
| 1 |
+----------+
1 row in set (0.06 sec)

As you can see, we have just one joke in our table and, so far, all the examples

have fetched all the entries in our table. However, we can limit our results to in-

clude only those database entries that have the specific attributes we want. We

set these restrictions by adding what’s called a WHERE clause to the SELECT
command. Consider this example:

mysql>SELECT COUNT(*) FROM joke WHERE jokedate >= "2004-01-01";

39Order this 350 page hard-copy PHP/MySQL book now!

Viewing Stored Data

This query will count the number of jokes that have dates greater than or equal

to January 1, 2004. In the case of dates, “greater than or equal to” means “on or

after.” Another variation on this theme lets you search for entries that contain a

certain piece of text. Check out this query:

mysql>SELECT joketext FROM joke WHERE joketext LIKE "%chicken%";

The above query displays the text of all jokes that contain the word “chicken”

in their joketext column. The LIKE keyword tells MySQL that the named column

must match the given pattern. In this case, the pattern we’ve used is "%chicken%".

The % signs indicate that the word “chicken” may be preceded and/or followed

by any string of text.

Additional conditions may also be combined in the WHERE clause to further restrict

results. For example, to display knock-knock jokes from April 2004 only, we

could use the following query:

mysql>SELECT joketext FROM joke WHERE
 ->joketext LIKE "%knock%" AND
 ->jokedate >= "2004-04-01" AND
 ->jokedate < "2004-05-01";

Enter a few more jokes into the table and experiment with SELECT statements.

A good familiarity with the SELECT statement will come in handy later in this

book.

You can do a lot with the SELECT statement. We’ll look at some of its more ad-

vanced features later, when we need them.

Modifying Stored Data
Having entered your data into a database table, you might like to change it.

Whether you want to correct a spelling mistake, or change the date attached to

a joke, such alterations are made using the UPDATE command. This command

contains elements of the INSERT command that set column values, and elements

of the SELECT command that pick out entries for modification. The general form

of the UPDATE command is as follows:

mysql>UPDATE table_name SET
 -> col_name = new_value, ...
 ->WHERE conditions;

Order this 350 page hard-copy PHP/MySQL book now!40

Chapter 2: Getting Started with MySQL

So, for example, if we wanted to change the date on the joke we entered above,

we’d use the following command:

mysql>UPDATE joke SET jokedate="1994-04-01" WHERE id=1;

Here’s where that id column comes in handy: it allows us to easily single out a

joke for changes. The WHERE clause used here works just as it did in the SELECT
command. This next command, for example, changes the date of all entries that

contain the word “chicken:”

mysql>UPDATE joke SET jokedate="1994-04-01"
 ->WHERE joketext LIKE "%chicken%";

Deleting Stored Data
The deletion of entries in SQL is dangerously easy, which, if you haven’t noticed

yet, is a recurring theme. Here’s the command syntax:

mysql>DELETE FROM table_name WHERE conditions;

To delete all chicken jokes from your table, you’d use the following query:

mysql>DELETE FROM joke WHERE joketext LIKE "%chicken%";

One thing to note is that the WHERE clause is actually optional. You should be

very careful, however, if you leave it out, as the DELETE command will then apply

to all entries in the table. This command will empty the joke table in one fell

swoop:

mysql>DELETE FROM joke;

Scary, huh?

Summary
There’s a lot more to the MySQL database system and the SQL language than

the few basic commands we’ve discussed here, but these commands are by far

the most commonly used. To date, we’ve only worked with a single table, but to

realize the true power of a relational database, we’ll also need to learn how to

use multiple tables together to represent potentially complex relationships between

database entities.

41Order this 350 page hard-copy PHP/MySQL book now!

Deleting Stored Data

We’ll cover all this and more in Chapter 5, where we’ll discuss database design

principles and look at some more advanced examples. For now, though, we’ve

accomplished our objective, and you can comfortably interact with MySQL using

the command line interface. In Chapter 3, the fun continues as we delve into the

PHP server-side scripting language, and use it to create dynamic Web pages. If

you like, you can practice with MySQL a little before you move on by creating

a decent-sized joke table. This knowledge will come in handy in Chapter 4.

Order this 350 page hard-copy PHP/MySQL book now!42

Chapter 2: Getting Started with MySQL

Getting Started with PHP3
In Chapter 2, we learned how to use the MySQL database engine to store a list

of jokes in a simple database (composed of a single table named joke). To do so,

we used the MySQL command-line client to enter SQL commands (queries). In

this chapter, we’ll introduce the PHP server-side scripting language. In addition

to the basic features we’ll explore here, this language has full support for commu-

nication with MySQL databases.

Introducing PHP
As we’ve discussed previously, PHP is a server-side scripting language. This concept

is not obvious, especially if you’re used to designing pages with just HTML and

JavaScript. A server-side scripting language is similar to JavaScript in that it allows

you to embed little programs (scripts) into the HTML of a Web page. When

executed, such scripts allow you to control what appears in the browser window

more flexibly than straight HTML.

The key difference between JavaScript and PHP is simple. JavaScript is interpreted

by the Web browser once the Web page that contains the script has been

downloaded. Conversely, server-side scripting languages such as PHP are inter-

preted by the Web server before the page is even sent to the browser. And, once

it’s interpreted, the results of the script replace the PHP code in the Web page

itself—all the browser sees is a standard HTML file. The script is processed entirely

by the server, hence the designation: server-side scripting language.

Let’s look back at the today.php example presented in Chapter 1:

File: today.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Today's Date</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<p>Today's Date (according to this Web server) is
<?php

echo date('l, F dS Y.');

?></p>
</body>
</html>

Most of this is plain HTML; however, the line between <?php and ?> is written

in PHP. <?php means “begin PHP code,” and ?> means “end PHP code.” The

Web server is asked to interpret everything between these two delimiters, and

to convert it to regular HTML code before it sends the Web page to the requesting

browser. The browser is presented with something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Today's Date</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<p>Today's Date (according to this Web server) is
Sunday, May 16th 2004.</p>
</body>
</html>

Order this 350 page hard-copy PHP/MySQL book now!44

Chapter 3: Getting Started with PHP

Notice that all signs of the PHP code have disappeared. In its place, the output

of the script has appeared, and it looks just like standard HTML. This example

demonstrates several advantages of server-side scripting:

No browser compatibility issues

PHP scripts are interpreted by the Web server alone, so you don’t have to

worry about whether the language you’re using is supported by visitors’

browsers.

Access to server-side resources

In the above example, we placed the date, according to the Web server, into

the Web page. If we had inserted the date using JavaScript, we would only

be able to display the date according to the computer on which the Web

browser was running. Now, while this isn’t an especially impressive example

of the exploitation of server-side resources, we could just as easily have inserted

some other information that would be available only to a script running on

the Web server. An example might be information stored in a MySQL data-

base that runs on the Web server computer.

Reduced load on the client

JavaScript can slow significantly the display of a Web page on slower com-

puters, as the browser must run the script before it can display the Web page.

With server-side scripting, this burden is passed to the Web server machine.

Basic Syntax and Commands
PHP syntax will be very familiar to anyone with an understanding of C, C++,

C#, Java, JavaScript, Perl, or any other C-derived language. A PHP script consists

of a series of commands, or statements. Each statement is an instruction that

must be followed the Web server before it can proceed to the next. PHP state-

ments, like those in the above-mentioned languages, are always terminated by a

semicolon (;).

This is a typical PHP statement:

echo 'This is a test!';

This is an echo statement, which is used to send output to the browser. An echo
statement simply takes the text it’s given, and places it into the page’s HTML

code at the current location.

45Order this 350 page hard-copy PHP/MySQL book now!

Basic Syntax and Commands

In this case, we have supplied a string of text to be output: 'This is a
test!'. Notice that the string of text contains HTML tags (and

), which is perfectly acceptable. So, if we take this statement and put it into

a complete PHP script (echo.php in the code archive), here’s the code we get:

File: echo.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Simple PHP Example</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<p><?php echo 'This is a test!'; ?></p>
</body>
</html>

If you place this file on your Web server, a browser that views the page will see

this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Simple PHP Example</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<p>This is a test!</p>
</body>
</html>

Our today.php example contained a slightly more complex echo statement:

File: today.php (excerpt)

echo date('l, F dS Y.');

Instead of giving echo a simple string of text to output, this statement invokes

a built-in function called date and passes it a string of text: 'l, F ds Y.'.

Built-in functions can be thought of as things that PHP knows how to do without

our needing to spell out the details. PHP has many built-in functions that let us

do everything from sending email, to working with information stored in various

Order this 350 page hard-copy PHP/MySQL book now!46

Chapter 3: Getting Started with PHP

types of databases. In this case, the date function produces a text representation

of the current date, using the string it is given to determine the format.

You may wonder why we need to surround the string of text with both parentheses

(()) and single quotes (''). Quotes are used to mark the beginning and end of

strings of text in PHP, so their presence is fully justified. The parentheses serve

two purposes. First, they indicate that date is a function that you want to call.

Second, they mark the beginning and end of a list of parameters that you wish

to provide, in order to tell the function what to do. In the case of the date
function, you need to provide a string of text that describes the format in which

you want the date to appear.1 Later on, we’ll look at functions that take more

than one parameter, and we’ll separate those parameters with commas. We’ll

also consider functions that take no parameters at all. These functions will still

need the parentheses, though we won’t type anything between them.

Variables and Operators
Variables in PHP are identical to variables in most other programming languages.

For the uninitiated, a variable can be thought of as a name that’s given to an

imaginary box into which any value may be placed. The following statement

creates a variable called $testvariable (all variable names in PHP begin with a

dollar sign) and assigns it a value of 3:

$testvariable = 3;

PHP is a loosely typed language. This means that a single variable may contain

any type of data, be it a number, a string of text, or some other kind of value,

and may change types over its lifetime. So the following statement, if it appears

after the statement above, assigns a new value to our existing $testvariable.

In the process, the variable changes type: where it used to contain a number, it

now contains a string of text:

$testvariable = "Three";

The equals sign we used in the last two statements is called the assignment op-

erator, as it is used to assign values to variables. Other operators may be used

to perform various mathematical operations on values:

$testvariable = 1 + 1; // Assigns a value of 2
$testvariable = 1 - 1; // Assigns a value of 0

1A full reference is available in the online documentation for the date function

[http://www.php.net/date].

47Order this 350 page hard-copy PHP/MySQL book now!

Variables and Operators

$testvariable = 2 * 2; // Assigns a value of 4
$testvariable = 2 / 2; // Assigns a value of 1

Each of the lines above ends with a comment. Comments are a way to describe

what your code is doing—they insert explanatory text into your code, and tell

the PHP interpreter to ignore it. Comments begin with // and they finish at the

end of the same line. You might be familiar with the /* */ style of comment

used in other languages—these work in PHP as well. I’ll be using comments

throughout the rest of this book to help explain the code I present.

Now, let’s get back to the four statements above. The operators we used are called

the arithmetic operators, and allow you to add, subtract, multiply, and divide

numbers. Among others, there is an operator that sticks strings of text together,

called the concatenation operator:

$testvariable = "Hi " . "there!";
 // Assigns a value of "Hi there!"

Variables may be used almost anywhere that you use an actual value. Consider

these examples:

$var1 = 'PHP'; // Assigns a value of 'PHP' to $var1
$var2 = 5; // Assigns a value of 5 to $var2
$var3 = $var2 + 1; // Assigns a value of 6 to $var3
$var2 = $var1; // Assigns a value of 'PHP' to $var2
echo $var1; // Outputs 'PHP'
echo $var2; // Outputs 'PHP'
echo $var3; // Outputs '6'
echo $var1 . ' rules!'; // Outputs 'PHP rules!'
echo "$var1 rules!"; // Outputs 'PHP rules!'
echo '$var1 rules!'; // Outputs '$var1 rules!'

Notice the last two lines in particular. You can include the name of a variable

right inside a text string, and have the value inserted in its place if you surround

the string with double quotes instead of single quotes. This process of converting

variable names to their values is known as variable interpolation. However, as

the last line demonstrates, a string surrounded with single quotes will not inter-

polate the variable names it contains.

Arrays
An array is a special kind of variable that contains multiple values. If you think

of a variable as a box that contains a value, then an array can be thought of as a

Order this 350 page hard-copy PHP/MySQL book now!48

Chapter 3: Getting Started with PHP

box with compartments, where each compartment is able to store an individual

value.

The simplest way to create an array in PHP is to use the built-in array function:

$myarray = array('one', 2, '3');

This code creates an array called $myarray that contains three values: 'one', 2,

and 'three'. Just like an ordinary variable, each space in an array can contain

any type of value. In this case, the first and third spaces contain strings, while

the second contains a number.

To get at a value stored in an array, you need to know its index. Typically, arrays

use numbers, starting with zero, as indices to point to the values they contain.

That is, the first value (or element) of an array has index 0, the second has index

1, the third has index 2, and so on. In general, therefore, the index of the nth

element of an array is n–1. Once you know the index of the value you’re interested

in, you can get that value by placing that index in square brackets after the array

variable name:

echo $myarray[0]; // Outputs 'one'
echo $myarray[1]; // Outputs '2'
echo $myarray[2]; // Outputs '3'

You can also use the index in square brackets to create new elements, or assign

new values to existing array elements:

$myarray[1] = 'two'; // Assign a new value
$myarray[3] = 'four'; // Create a new element

You can add elements to the end of an array using the assignment operator as

usual, but leaving empty the square brackets that follow the variable name:

$myarray[] = 'the fifth element';
echo $myarray[4]; // Outputs 'the fifth element'

Array indices don’t always have to be numbers; that’s just the most common

choice. You can also use strings as indices to create what is called an associative

array. This type of array is called associative because it associates values with

meaningful indices. In this example, we associate a date with each of three names:

$birthdays['Kevin'] = '1978-04-12';
$birthdays['Stephanie'] = '1980-05-16';
$birthdays['David'] = '1983-09-09';

49Order this 350 page hard-copy PHP/MySQL book now!

Arrays

The array function also lets you create associative arrays, if you prefer that

method. Here’s how we’d use it to create the $birthdays array:

$birthdays = array('Kevin' => '1978-04-12', 'Stephanie' =>
 '1980-05-16', 'David' => '1983-09-09');

Now, if we want to know Kevin’s birthday, we look it up using the name as the

index:

echo 'My birthday is: ' . $birthdays['Kevin'];

This type of array is especially important when it comes to user interaction in

PHP, as we’ll see in the next section. I’ll demonstrate other uses of arrays

throughout this book.

User Interaction and Forms
The ability to interact with users who view a Web page is essential for many ap-

plications of PHP. Veterans of JavaScript tend to think in terms of event handlers,

which let you react directly to the actions of the user—for example, the movement

of the cursor over a link on the page. Server-side scripting languages such as PHP

have a more limited scope when it comes to user interaction. As PHP code is ac-

tivated when a page is requested from the server, user interaction can occur only

in a back-and-forth fashion: the user sends requests to the server, and the server

replies with dynamically generated pages.

The key to creating interactivity with PHP is to understand the techniques we

can use to send information about a user’s interaction along with his or her request

for a new Web page. PHP makes this fairly easy, as we’ll now see.

The simplest method we can use to send information along with a page request

uses the URL query string. If you’ve ever seen a URL in which a question mark

followed the file name, you’ve witnessed this technique in use. Let’s look at an

easy example. Create a regular HTML file called welcome1.html (no .php file

extension is required, since there will be no PHP code in this file) and insert this

link:

File: welcome.html (excerpt)

Hi, I'm Kevin!

This is a link to a file called welcome1.php, but as well as linking to the file, we’re

also passing a variable along with the page request. The variable is passed as part

of the query string, which is the portion of the URL that follows the question

Order this 350 page hard-copy PHP/MySQL book now!50

Chapter 3: Getting Started with PHP

mark. The variable is called name and its value is Kevin. To restate, we have cre-

ated a link that loads welcome1.php, and informs the PHP code contained in the

file that name equals Kevin.

To really understand the results of this process, we need to look at welcome1.php.

Create it as a new HTML file, but, this time, note the .php extension—this tells

the Web server that it can expect to interpret some PHP code in the file. In the

body of this new file, type the following:

File: welcome1.php (excerpt)

<?php
$name = $_GET['name'];
echo "Welcome to our Website, $name!";
?>

Now, if you use the link in the first file to load this second file, you’ll see that

the page says “Welcome to our Website, Kevin!” This is illustrated in Figure 3.1.

Figure 3.1. Greet users with a personalized welcome message.

PHP creates automatically an array variable called $_GET that contains any values

passed in the query string. $_GET is an associative array, so the value of the name
variable passed in the query string can be accessed as $_GET['name']. Our script

assigns this value to an ordinary PHP variable ($name), then displays it as part

of a text string using an echo statement.

51Order this 350 page hard-copy PHP/MySQL book now!

User Interaction and Forms

register_globals before PHP 4.2

In versions of PHP prior to 4.2, the register_globals setting in php.ini was set to

On by default. This setting tells PHP to create ordinary variables for all the values supplied

in the request automatically. In the previous example, the $name = $_GET['name'];
line would be completely unnecessary if the register_globals setting were set to On,

since PHP would do it automatically. Although the convenience of this feature was one

aspect that helped to make PHP such a popular language in the first place, novice de-

velopers could easily leave security holes in sensitive scripts with it enabled.

For a full discussion of the issues surrounding register_globals, see my article

Write Secure Scripts with PHP 4.2![2] at sitepoint.com.

You can pass more than one value in the query string. Let’s look at a slightly

more complex version of the same example. Change the link in the HTML file

to read as follows:

File: welcome2.html (excerpt)

Hi,
I'm Kevin Yank!

This time, we’ll pass two variables: firstname and lastname. The variables are

separated in the query string by an ampersand (&, which is encoded as & as

it is a special character in HTML). You can pass even more variables by separating

each name=value pair from the next with an ampersand.

As before, we can use the two variable values in our welcome2.php file:

File: welcome2.php (excerpt)

<?php
$firstname = $_GET['firstname'];
$lastname = $_GET['lastname'];
echo "Welcome to my Website, $firstname $lastname!";
?>

The result is shown in Figure 3.2.

[2] http://www.sitepoint.com/article.php/758

Order this 350 page hard-copy PHP/MySQL book now!52

Chapter 3: Getting Started with PHP

Figure 3.2. Create an even more personalized welcome message.

This is all well and good, but we still have yet to achieve our goal of true user

interaction, where the user can enter arbitrary information and have it processed

by PHP. To continue with our example of a personalized welcome message, we’d

like to allow the user to type his or her name and have it appear in the message.

To allow the user to type in a value, we’ll need to use an HTML form.

Here’s the code:

File: welcome3.html (excerpt)

<form action="welcome3.php" method="get">
<label>First Name: <input type="text" name="firstname" />
 </label>

<label>Last Name: <input type="text" name="lastname" />
 </label>

<input type="submit" value="GO" />
</form>

Self-closing tags

Don’t be alarmed at the slashes that appear in some of these tags (e.g.
). The XHTML standard for coding Web pages calls for slashes to be used

in any tag that does not have a closing tag, which includes input and br
tags, among others. Current browsers do not require you to use the slashes,

of course, but for the sake of standards-compliance, the HTML code in this

book will observe this recommendation.

The form this code produces is shown in Figure 3.3.

53Order this 350 page hard-copy PHP/MySQL book now!

User Interaction and Forms

Figure 3.3. Make your own welcome message.

This form has the exact same effect as the second link we looked at (with

firstname=Kevin&lastname=Yank in the query string), except that you can

now enter whatever names you like. When you click the submit button (which

is labelled GO), the browser will load welcome3.php and add the variables and

their values to the query string for you automatically. It retrieves the names of

the variables from the name attributes of the input type="text" tags, and obtains

the values from the information the user typed into the text fields.

The method attribute of the form tag is used to tell the browser how to send the

variables and their values along with the request. A value of get (as used above)

causes them to be passed in the query string (and appear in PHP’s $_GET array),

but there is an alternative. It’s not always desirable—or even technically feas-

ible—to have the values appear in the query string. What if we included a tex-
tarea tag in the form, to let the user enter a large amount of text? A URL whose

query string contained several paragraphs of text would be ridiculously long, and

would possibly exceed the maximum length for a URL in today’s browsers. The

alternative is for the browser to pass the information invisibly, behind the scenes.

The code for this looks exactly the same, but where we set the form method to

get in the last example, here we set it to post:

File: welcome4.html (excerpt)

<form action="welcome4.php" method="post">
<label>First Name:
 <input type="text" name="firstname" /></label>

<label>Last Name:
 <input type="text" name="lastname" /></label>

Order this 350 page hard-copy PHP/MySQL book now!54

Chapter 3: Getting Started with PHP

<input type="submit" value="GO" />
</form>

As we’re no longer sending the variables as part of the query string, they no longer

appear in PHP’s $_GET array. Instead, they are placed in another array reserved

especially for ‘posted’ form variables: $_POST. We must therefore modify wel-
come4.php to retrieve the values from this new array:

File: welcome4.php (excerpt)

<?php
$firstname = $_POST['firstname'];
$lastname = $_POST['lastname'];
echo "Welcome to my Website, $firstname $lastname!";
?>

Figure 3.4 shows what the resulting page looks like once this new form is submit-

ted.

Figure 3.4. This personalized welcome is achieved without a query
string.

The form is functionally identical to the previous one; the only difference is that

the URL of the page that’s loaded when the user clicks the GO button will not

have a query string. On the one hand, this lets you include large values, or sens-

itive values (like passwords), in the data that’s submitted by the form, without

their appearing in the query string. On the other hand, if the user bookmarks

the page that results from the form’s submission, that bookmark will be useless,

as it doesn’t contain the submitted values. This, incidentally, is the main reason

that search engines use the query string to submit search terms. If you bookmark

55Order this 350 page hard-copy PHP/MySQL book now!

User Interaction and Forms

a search results page on Google[3] or AltaVista[4], you can use that bookmark

to perform the same search again later, because the search terms are contained

in the URL.

Sometimes, you want access to a variable without having to worry about whether

it was sent as part of the query string or a form post. In cases like these, the

special $_REQUEST array comes in handy. It contains all the variables that appear

in both $_GET and $_POST. With this variable, we can modify our form processing

script one more time so that it can receive the first and last names of the user

from either source:

File: welcome5.php (excerpt)

<?php
$firstname = $_REQUEST['firstname'];
$lastname = $_REQUEST['lastname'];
echo "Welcome to my Website, $firstname $lastname!";
?>

That covers the basics of using forms to produce rudimentary user interaction

with PHP. I’ll cover more advanced issues and techniques in later examples.

Control Structures
All the examples of PHP code we’ve seen so far have been either simple, one-

statement scripts that output a string of text to the Web page, or series of state-

ments that were to be executed one after the other in order. If you’ve ever written

programs in other languages (JavaScript, C, or BASIC) you already know that

practical programs are rarely so simple.

PHP, just like any other programming language, provides facilities that allow us

to affect the flow of control in a script. That is, the language contains special

statements that permit you to deviate from the one-after-another execution order

that has dominated our examples so far. Such statements are called control

structures. Don’t get it? Don’t worry! A few examples will illustrate perfectly.

The most basic, and most often-used, control structure is the if-else statement.

Here’s what it looks like:

if (condition) {
 // Statement(s) to be executed if

[3] http://www.google.com/

[4] http://www.altavista.com/

Order this 350 page hard-copy PHP/MySQL book now!56

Chapter 3: Getting Started with PHP

 // condition is true.
} else {
 // (Optional) Statement(s) to be
 // executed if condition is false.
}

This control structure lets us tell PHP to execute one set of statements or another,

depending on whether some condition is true or false. If you’ll indulge my vanity

for a moment, here’s an example that shows a twist on the personalized welcome

page example we created earlier:

File: welcome6.php (excerpt)

$name = $_REQUEST['name'];
if ($name == 'Kevin') {
 echo 'Welcome, oh glorious leader!';
} else {
 echo "Welcome to our Website, $name!";
}

Now, if the name variable passed to the page has a value of Kevin, a special mes-

sage will be displayed. Otherwise, the normal message will be displayed and will

contain the name that the user entered. The result in the former case is shown

in Figure 3.5.

Figure 3.5. It’s good to be the king.

As indicated in the code structure above, the else clause (that part of the if-
else statement that says what to do if the condition is false) is optional. Let’s

say you wanted to display the special message above only if the appropriate name

57Order this 350 page hard-copy PHP/MySQL book now!

Control Structures

was entered; otherwise, you didn’t want to display any message. Here’s how the

code would look:

$name = $_REQUEST['name'];
if ($name == 'Kevin') {
 echo 'Welcome, oh glorious leader!';
}

The == used in the condition above is the PHP equal-to operator that’s used to

compare two values to see whether they’re equal.

Double Trouble

Remember to type the double-equals, because if you were to use a single

equals sign you’d be using the assignment operator discussed above. So, in-

stead of comparing the variable to the designated value, instead, you’d assign

a new value to the variable—an operation that evaluates as true as long as

the new value isn’t zero, false, or an empty string. This would not only cause

the condition always to be true, but would also change the value in the

variable you’re checking, which could cause all sorts of problems later in the

script.

Conditions can be more complex than a single comparison for equality. Recall

that our form examples above would receive a first and last name. If we wanted

to display a special message only for a particular person, we’d have to check the

values of both names:

File: welcome7.php (excerpt)

$firstname = $_REQUEST['firstname'];
$lastname = $_REQUEST['lastname'];
if ($firstname == 'Kevin' and $lastname == 'Yank') {
 echo 'Welcome, oh glorious leader!';
} else {
 echo "Welcome to my Website, $firstname $lastname!";
}

This condition will be true if and only if $firstname has a value of Kevin and

$lastname has a value of Yank. The word and in the above condition makes the

whole condition true only if both of the comparisons evaluate to true. Another

such operator is or, which makes the whole condition true if one or both of two

simple conditions are true. If you’re more familiar with the JavaScript or C forms

of these operators (&& and || for and and or respectively), that’s fine—they work

in PHP as well.

Order this 350 page hard-copy PHP/MySQL book now!58

Chapter 3: Getting Started with PHP

Figure 3.6 shows that getting only one of the names right in this example doesn’t

cut the mustard.

Figure 3.6. Frankly, my dear…

We’ll look at more complicated conditions as the need arises. For the time being,

a general familiarity with the if-else statement is sufficient.

Another often-used PHP control structure is the while loop. Where the if-else
statement allowed us to choose whether or not to execute a set of statements

depending on some condition, the while loop allows us to use a condition to

determine how many times we’ll execute a set of statements repeatedly. Here’s

what a while loop looks like:

while (condition) {
 // statement(s) to execute over
 // and over as long as condition
 // remains true
}

The while loop works very similarly to an if-else statement without an else
clause. The difference arises when the condition is true and the statement(s) are

executed. Instead of continuing the execution with the statement that follows

the closing brace (}), the condition is checked again. If the condition is still true,

then the statement(s) are executed a second time, and a third, and will continue

to be executed as long as the condition remains true. The first time the condition

evaluates false (whether it’s the first time it’s checked, or the one-hundred-and-

first), execution jumps immediately to the statement that follows the while loop,

after the closing brace.

59Order this 350 page hard-copy PHP/MySQL book now!

Control Structures

Loops like these come in handy whenever you’re working with long lists of things

(such as jokes stored in a database… hint, hint!), but for now we’ll illustrate with

a trivial example: counting to ten.

File: count10.php (excerpt)

$count = 1;
while ($count <= 10) {
 echo "$count ";
 ++$count;
}

It looks a bit frightening, I know, but let me talk you through it line by line. The

first line creates a variable called $count and assigns it a value of 1. The second

line is the start of a while loop, the condition for which is that the value of $count
is less than or equal (<=) to 10. The third and fourth lines make up the body of

the while loop, and will be executed over and over, as long as that condition

holds true. The third line simply outputs the value of $count, followed by a space.

The fourth line adds one to the value of $count (++$count is a short cut for

$count = $count + 1—both will work).

So here’s what happens when this piece of code is executed. The first time the

condition is checked, the value of $count is 1, so the condition is definitely true.

The value of $count (1) is output, and $count is given a new value of 2. The

condition is still true the second time it is checked, so the value (2) is output and

a new value (3) is assigned. This process continues, outputting the values 3, 4,

5, 6, 7, 8, 9, and 10. Finally, $count is given a value of 11, and the condition is

false, which ends the loop. The net result of the code is shown in Figure 3.7.

Figure 3.7. PHP demonstrates kindergarten-level math skills.

Order this 350 page hard-copy PHP/MySQL book now!60

Chapter 3: Getting Started with PHP

The condition in this example used a new operator: <= (less than or equal).

Other numerical comparison operators of this type include >= (greater than or

equal), < (less than), > (greater than), and != (not equal). That last one also

works when comparing text strings, by the way.

Another type of loop that is designed specifically to handle examples like that

above, in which we’re counting through a series of values until some condition

is met, is called a for loop. Here’s what it looks like:

for (initialize; condition; update) {
 // statement(s) to execute over
 // and over as long as condition
 // remains true after each update
}

The initialize statement is executed once at the start of the loop; the condition
statement is checked each time through the loop, before the statements in the

body are executed; the update statement is executed each time through the loop,

but after the statements in the body.

Here’s what the “counting to 10” example looks like when implemented with a

for loop:

File: count10–for.php (excerpt)

for ($count = 1; $count <= 10; ++$count) {
 echo "$count ";
}

As you can see, the statements that initialize and increment the $count variable

join the condition on the first line of the for loop. Although, at first glance, the

code seems a little more difficult to read, putting all the code that deals with

controlling the loop in the same place actually makes it easier to understand once

you’re used to the syntax. Many of the examples in this book will use for loops,

so you’ll have plenty of opportunity to practice reading them.

Multipurpose Pages
Let’s say you wanted to construct your site so that it showed the visitor’s name

at the top of every page. With our custom welcome message example above, we’re

halfway there already. Here are the problems we’ll need to overcome to extend

the example:

� We need the name on every page of the site, not just one.

61Order this 350 page hard-copy PHP/MySQL book now!

Multipurpose Pages

� We have no control over which page of our site users will view first.

The first problem isn’t too hard to overcome. Once we have the user’s name in

a variable on one page, we can pass it with any request to another page by adding

the name to the query string of all links:2

<a href="newpage.php?name=<?php echo urlencode($_GET['name']);?>">
A link

Notice that we’ve embedded PHP code right in the middle of an HTML tag. This

is perfectly legal, and will work just fine.

You’re familiar with echo statements, but the urlencode function is probably

new to you. This function takes special characters in the string (for example,

spaces) and converts them into the special codes they need to be in order to appear

in the query string. For example, if the $name variable had a value of 'Kevin
Yank', then, as spaces are not allowed in the query string, the output of urlencode
(and thus, the string output by echo) would be 'Kevin+Yank'. PHP would then

convert it back automatically when it created the $_GET variable in newpage.php.

Okay, so the user’s name will be passed with every link in our site. Now all we

need is to get that name in the first place. In our welcome message example, we

had a special HTML page containing a form that prompted the user for his or

her name. The problem with this (identified by the second point above) is that

we couldn’t—nor would we wish to—force the user to enter our Website by that

page every time he or she visited our site.

The solution is to have every page of our site check to see if a name has been

specified, and prompt the user for a name if necessary.3 This means that every

page of our site will either display its content, or prompt the user to enter a name,

depending on whether the $name variable is found to have a value. If you think

this is beginning to sound like a good place for an if-else statement, you’re a

quick study!

We’ll refer to pages that can decide whether to display one thing or another as

multipurpose pages. The code of a multipurpose page looks something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

2If this sounds like a lot of work to you, it is. Don’t worry; we’ll learn much more practical methods

for sharing variables between pages in Chapter 11.
3Again, if you’re dreading the thought of adding PHP code to prompt the user for a name to every

page of your site, don’t fret; we’ll cover a more practical way to do this later.

Order this 350 page hard-copy PHP/MySQL book now!62

Chapter 3: Getting Started with PHP

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Multipurpose Page Outline</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>

<?php if (condition) { ?>

<!-- HTML content to display if condition is true -->

<?php } else { ?>

<!-- HTML content to display if condition is false -->

<?php } ?>

</body>
</html>

This code may confuse you at first, but, in fact, this is just a normal if-else
statement with HTML code sections that depend on the condition, instead of

PHP statements. This example illustrates one of the big selling points of PHP:

that you can switch in and out of “PHP mode” whenever you like. If you think

of <?php as the command to switch into “PHP mode”, and ?> as the command

to go back into “normal HTML mode,” the above example should make perfect

sense.

There’s an alternate form of the if-else statement that can make your code

more readable in situations like this. Here’s the outline for a multipurpose page

using the alternate if-else form:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Multipurpose Page Outline</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>

<?php if (condition): ?>

63Order this 350 page hard-copy PHP/MySQL book now!

Multipurpose Pages

<!-- HTML content to display if condition is true -->

<?php else: ?>

<!-- HTML content to display if condition is false -->

<?php endif; ?>

</body>
</html>

Okay, now that we have all the tools we need in hand, let’s look at a sample page

of our site:

File: samplepage.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Sample Page</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>

<?php if (!isset($_GET['name'])): ?>

<!-- No name has been provided, so we
prompt the user for one. -->

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="get">
 <label>Please enter your name:
 <input type="text" name="name" /></label>
 <input type="submit" value="GO" />
 </form>

<?php else: ?>

 <p>Your name: <?php echo $_GET['name']; ?></p>

 <p>This paragraph contains a
 <a href="newpage.php?name=<?php echo urlencode($_GET['name']);
 ?>">link that passes the name variable on to the next
 document.</p>

<?php endif; ?>

Order this 350 page hard-copy PHP/MySQL book now!64

Chapter 3: Getting Started with PHP

</body>
</html>

There are two new tricks in the above code, but overall you should be fairly

comfortable with the way it works. First of all, we’re using a new function called

isset in the condition. This function returns (outputs) a value of true if the

variable it is given has been assigned a value (i.e. if a name has been provided in

this example), and false if the variable does not exist (i.e. if a name has not yet

been provided). The exclamation mark (also known as the negation operator,

or the not operator), which appears before the name of the function, reverses

the returned value from true to false, or vice-versa. Thus, the form is displayed

when the $_GET['name'] variable is not set.

The second new trick is the use of the variable $_SERVER['PHP_SELF'] to specify

the action attribute of the <form> tag. Like $_GET, $_POST, and $_REQUEST,

$_SERVER is an array variable that is automatically created by PHP. $_SERVER
contains a whole bunch of information supplied by your Web server. In particular,

$_SERVER['PHP_SELF'] will always be set to the URL of the current page. This

gives us an easy way to create a form that, when submitted, will load the very

same page, but this time with the $name variable specified.

Figure 3.8. Kicking butt and taking names.

If we structure all the pages on our site in this way, visitors will be prompted for

their name by the first page they attempt to view, whichever page this happens

to be, as shown in Figure 3.8. Once they enter their names and click GO, they’ll

be presented with the exact page they requested. As shown in the status bar of

65Order this 350 page hard-copy PHP/MySQL book now!

Multipurpose Pages

Figure 3.9, the entered name is then passed in the query string of every link from

that point onward, ensuring that the user is prompted only once.

Figure 3.9. We know who you are.

Summary
In this chapter, we’ve seen the PHP server-side scripting language in action as

we’ve explored all the basic language features: statements, variables, operators,

and control structures. The sample applications we’ve seen have been reasonably

simple, but don’t let that dissuade you. The real power of PHP is in its hundreds

of built-in functions that let you access data in a MySQL database, send email,

dynamically generate images, and even create Adobe Acrobat PDF files on the

fly.

In Chapter 4, we’ll delve into the MySQL functions in PHP, and see how to

publish the joke database we created in Chapter 2 to the Web. This chapter will

set the scene for the ultimate goal of this book—creating a complete content

management system for your Website in PHP and MySQL.

Order this 350 page hard-copy PHP/MySQL book now!66

Chapter 3: Getting Started with PHP

Publishing MySQL Data on the
Web4

This is it—the stuff you signed up for! In this chapter, you’ll learn how to take

information stored in a database and display it on a Web page for all to see. So

far, you’ve installed and learned the basics of MySQL, a relational database engine,

and PHP, a server-side scripting language. Now you’ll see how to use these two

new tools together to create a true database-driven Website!

A Look Back at First Principles
Before we leap forward, it’s worth a brief look back to remind you of our ultimate

goal. We have two powerful tools at our disposal: the PHP scripting language,

and the MySQL database engine. It’s important to understand how these will fit

together.

The whole idea of a database-driven Website is to allow the content of the site

to reside in a database, and for that content to be pulled from the database dy-

namically to create Web pages for people to view with a regular Web browser.

So, on one end of the system you have a visitor to your site who uses a Web

browser to request a page, and expects to receive a standard HTML document.

On the other end you have the content of your site, which sits in one or more

tables in a MySQL database that understands only how to respond to SQL

queries (commands).

Figure 4.1. PHP retrieves MySQL data to produce Web pages.

As shown in Figure 4.1, the PHP scripting language is the go-between that speaks

both languages. It processes the page request and fetches the data from the

MySQL database, then spits it out dynamically as the nicely-formatted HTML

page that the browser expects. With PHP, you can write the presentation aspects

of your site (the fancy graphics and page layouts) as “templates” in regular HTML.

At the points at which content belongs in those templates, you use some PHP

code to connect to the MySQL database and—using SQL queries just like those

you used to create a table of jokes in Chapter 2—retrieve and display some content

in its place.

Just so it’s clear and fresh in your mind, this is what will happen when someone

visits a page on your database-driven Website:

1. The visitor’s Web browser requests the Web page using a standard URL.

2. The Web server software (Apache, IIS, or whatever) recognizes that the re-

quested file is a PHP script, so the server interprets the file using its PHP

plug-in before responding to the page request.

3. Certain PHP commands (which you have yet to learn) connect to the MySQL

database and request the content that belongs in the Web page.

4. The MySQL database responds by sending the requested content to the PHP

script.

5. The PHP script stores the content into one or more PHP variables, then uses

the now-familiar echo statement to output the content as part of the Web

page.

Order this 350 page hard-copy PHP/MySQL book now!68

Chapter 4: Publishing MySQL Data on the Web

6. The PHP plug-in finishes up by handing a copy of the HTML it has created

to the Web server.

7. The Web server sends the HTML to the Web browser as it would a plain

HTML file, except that instead of coming directly from an HTML file, the

page is the output provided by the PHP plug-in.

Connecting to MySQL with PHP
Before you can get content out of your MySQL database for inclusion in a Web

page, you must know how to establish a connection to MySQL from inside a

PHP script. Back in Chapter 2, you used a program called mysql that allowed

you to make such a connection from the command prompt. PHP has no need of

any special program, however; support for connecting to MySQL is built right

into the language. The built-in function mysql_connect establishes the connection:

mysql_connect(address, username, password)

Here, address is the IP address or host name of the computer on which the

MySQL server software is running ('localhost' if it’s running on the same

computer as the Web server software), and username and password are the same

MySQL user name and password you used to connect to the MySQL server in

Chapter 2.

You may remember that functions in PHP usually return (output) a value when

they’re called. Don’t worry if this doesn’t ring any bells for you—it’s a detail that

I glossed over when I first discussed functions in Chapter 3. In addition to doing

something useful when they are called, most functions output a value; that value

may be stored in a variable for later use. The mysql_connect function shown

above, for example, returns a number that identifies the connection that has been

established. Since we intend to make use of the connection, we should hold onto

this value. Here’s an example of how we might connect to our MySQL server.

$dbcnx = mysql_connect('localhost', 'root', 'mypasswd');

As described above, the values of the three function parameters may differ for

your MySQL server. What’s important to see here is that the value returned by

mysql_connect (which we’ll call a connection identifier) is stored in a variable

named $dbcnx.

As the MySQL server is a completely separate piece of software, we must consider

the possibility that the server may be unavailable or inaccessible due to a network

69Order this 350 page hard-copy PHP/MySQL book now!

Connecting to MySQL with PHP

outage, or because the user name/password combination you provided is not ac-

cepted by the server. In such cases, the mysql_connect function doesn’t return

a connection identifier, as no connection is established; instead, it returns false.

This allows us to react to such failures using an if statement:

$dbcnx = @mysql_connect('localhost', 'root', 'mypasswd');
if (!$dbcnx) {
 echo '<p>Unable to connect to the ' .
 'database server at this time.</p>');
 exit();
}

There are three new tricks in the above code fragment. First, we have placed an

@ symbol in front of the mysql_connect function. Many functions, including

mysql_connect, automatically display ugly error messages when they fail. Placing

the @ symbol (also known as the error suppression operator) in front of the

function name tells the function to fail silently, and allows us to display our own,

friendlier error message.

Next, we put an exclamation mark (!) in front of the $dbcnx variable in the

condition of the if statement. The exclamation mark is the PHP negation oper-

ator, which basically flips a false value to true, or a true value to false. Thus, if

the connection fails and mysql_connect returns false, !$dbcnx will evaluate to

true, and cause the statements in the body of our if statement to be executed.

Alternatively, if a connection was made, the connection identifier stored in $dbcnx
will evaluate to true (any number other than zero is considered “true” in PHP),

so !$dbcnx will evaluate to false, and the statements in the if statement will not

be executed.

The last new trick is the exit function, which is the first example that we’ve en-

countered of a function that can be called with no parameters. When called this

way, all this function does is cause PHP to stop reading the page at this point.

This is a good response to a failed database connection because in most cases the

page will be unable to display any useful information without that connection.

As in Chapter 2, once a connection is established, the next step is to select the

database with which you want to work. Let’s say we want to work with the joke

database we created in Chapter 2. The database we created was called ijdb. Se-

lecting that database in PHP is just a matter of another function call:

mysql_select_db('ijdb', $dbcnx);

Notice we use the $dbcnx variable that contains the database connection identi-

fier to tell the function which database connection to use. This parameter is ac-

Order this 350 page hard-copy PHP/MySQL book now!70

Chapter 4: Publishing MySQL Data on the Web

tually optional. When it’s omitted, the function will automatically use the link

identifier for the last connection opened. This function returns true when it’s

successful and false if an error occurs. Once again, it’s prudent to use an if
statement to handle errors:

if (!@mysql_select_db('ijdb')) {
 exit('<p>Unable to locate the joke ' .
 'database at this time.</p>');
}

Note that this time, instead of assigning the result of the function to a variable

and then checking if the variable is true or false, I have simply used the function

call itself as the condition. This may look a little strange, but it’s a very commonly

used shortcut. To check whether the condition is true or false, PHP executes the

function and then checks its return value—exactly what we need to happen.

Another short cut I’ve used here is to call exit with a string parameter. When

called with a parameter, exit works just like an echo statement, except that the

script exits after the string is output. So, calling exit this way is equivalent to

an echo statement followed by a call to exit with no parameters, which is what

we used for mysql_connect above.

With a connection established and a database selected, we’re ready to begin using

the data stored in the database.

Sending SQL Queries with PHP
In Chapter 2, we connected to the MySQL database server using a program called

mysql that allowed us to type SQL queries (commands) and view the results of

those queries immediately. In PHP, a similar mechanism exists: the mysql_query
function.

mysql_query(query[, connection_id])

Here query is a string that contains the SQL command we want to execute. As

with mysql_select_db, the connection identifier parameter is optional.

What this function returns will depend on the type of query being sent. For most

SQL commands, mysql_query returns either true or false to indicate success or

failure respectively. Consider the following example, which attempts to create

the joke table we created in Chapter 2:

71Order this 350 page hard-copy PHP/MySQL book now!

Sending SQL Queries with PHP

$sql = 'CREATE TABLE joke (
 id INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joketext TEXT,
 jokedate DATE NOT NULL
)';
if (@mysql_query($sql)) {
 echo '<p>joke table successfully created!</p>';
} else {
 exit('<p>Error creating joke table: ' .
 mysql_error() . '</p>');
}

Again, we use the @ trick to suppress any error messages produced by mysql_query,

and instead print out a friendlier error message of our own. The mysql_error
function used here returns a string of text that describes the last error message

that was sent by the MySQL server.

For DELETE, INSERT, and UPDATE queries (which serve to modify stored data),

MySQL also keeps track of the number of table rows (entries) that were affected

by the query. Consider the SQL command below, which we used in Chapter 2

to set the dates of all jokes that contained the word “chicken”:

$sql = "UPDATE joke SET jokedate='1994-04-01'
 WHERE joketext LIKE '%chicken%'";

When we execute this query, we can use the mysql_affected_rows function to

view the number of rows that were affected by this update:

if (@mysql_query($sql)) {
 echo '<p>Update affected ' . mysql_affected_rows() .
 ' rows.</p>';
} else {
 exit('<p>Error performing update: ' . mysql_error() .
 '</p>');
}

SELECT queries are treated a little differently, as they can retrieve a lot of data,

and PHP must provide ways to handle that information.

Handling SELECT Result Sets
For most SQL queries, the mysql_query function returns either true (success) or

false (failure). For SELECT queries, this just isn’t enough. You’ll recall that SELECT
queries are used to view stored data in the database. In addition to indicating

Order this 350 page hard-copy PHP/MySQL book now!72

Chapter 4: Publishing MySQL Data on the Web

whether the query succeeded or failed, PHP must also receive the results of the

query. Thus, when it processes a SELECT query, mysql_query returns a number

that identifies a result set, which contains a list of all the rows (entries) returned

from the query. False is still returned if the query fails for any reason.

$result = @mysql_query('SELECT JokeText FROM Jokes');
if (!$result) {
 exit('<p>Error performing query: ' . mysql_error() .
 '</p>');
}

Provided that no error was encountered in processing the query, the above code

will place a number into the variable $result. This number corresponds to a

result set that contains the text of all the jokes stored in the joke table. As there’s

no practical limit on the number of jokes in the database, that result set can be

pretty big.

We mentioned before that the while loop is a useful control structure for dealing

with large amounts of data. Here’s an outline of the code that will process the

rows in a result set one at a time:

while ($row = mysql_fetch_array($result)) {
 // process the row...
}

The condition for the while loop probably doesn’t resemble the conditions you’re

used to, so let me explain how it works. Consider the condition as a statement

all by itself:

$row = mysql_fetch_array($result);

The mysql_fetch_array function accepts a result set number as a parameter

(stored in the $result variable in this case), and returns the next row in the

result set as an array (see Chapter 3 for a discussion of arrays). When there are

no more rows in the result set, mysql_fetch_array instead returns false.

Now, the above statement assigns a value to the $row variable, but, at the same

time, the whole statement itself takes on that same value. This is what lets you

use the statement as a condition in the while loop. Since a while loop will keep

looping until its condition evaluates to false, this loop will occur as many times

as there are rows in the result set, with $row taking on the value of the next row

each time the loop executes. All that’s left to figure out is how to get the values

out of the $row variable each time the loop runs.

73Order this 350 page hard-copy PHP/MySQL book now!

Handling SELECT Result Sets

Rows of a result set returned by mysql_fetch_array are represented as associative

arrays. The indices are named after the table columns in the result set. If $row is

a row in our result set, then $row['joketext'] is the value in the joketext
column of that row. So here’s what our while loop should look like if we want

to print the text of all the jokes in our database:

while ($row = mysql_fetch_array($result)) {
 echo '<p>' . $row['joketext'] . '</p>';
}

To summarize, here’s the complete code of a PHP Web page that will connect

to our database, fetch the text of all the jokes in the database, and display them

in HTML paragraphs:

File: jokelist.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Our List of Jokes</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<?php

// Connect to the database server
$dbcnx = @mysql_connect('localhost', 'root', 'mypasswd');
if (!$dbcnx) {
 exit('<p>Unable to connect to the ' .
 'database server at this time.</p>');
}

// Select the jokes database
if (!@mysql_select_db('ijdb')) {
 exit('<p>Unable to locate the joke ' .
 'database at this time.</p>');
}

?>
<p>Here are all the jokes in our database:</p>
<blockquote>
<?php

// Request the text of all the jokes

Order this 350 page hard-copy PHP/MySQL book now!74

Chapter 4: Publishing MySQL Data on the Web

$result = @mysql_query('SELECT joketext FROM joke');
if (!$result) {
 exit('<p>Error performing query: ' . mysql_error() . '</p>');
}

// Display the text of each joke in a paragraph
while ($row = mysql_fetch_array($result)) {
 echo '<p>' . $row['joketext'] . '</p>';
}

?>
</blockquote>
</body>
</html>

Figure 4.2 shows what this page looks like once you’ve added a couple of jokes

to the database.

Figure 4.2. All my best material—in one place!

Inserting Data into the Database
In this section, we’ll see how we can use the tools at our disposal to allow site

visitors to add their own jokes to the database. If you enjoy a challenge, you

might want to try to figure this out on your own before you read any further.

There is little new material in this section, but it’s mostly just a sample application

that incorporates everything we’ve learned so far.

75Order this 350 page hard-copy PHP/MySQL book now!

Inserting Data into the Database

If you want to let visitors to your site type in new jokes, you’ll obviously need a

form. Here’s the code for a form that will fit the bill:

File: jokes.php (excerpt)

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">
<label>Type your joke here:

<textarea name="joketext" rows="10" cols="40">
</textarea></label>

<input type="submit" value="SUBMIT" />
</form>

Figure 4.3 shows what this form looks like in a browser.

Figure 4.3. Another nugget of comic genius is added to the
database.

As we’ve seen before, when submitted, this form will load the very same page

(because we used the $_SERVER['PHP_SELF'] variable for the form’s action at-

tribute) with one difference: a variable will be attached to the request. The vari-

able, joketext, will contain the text of the joke as typed into the text area, and

will appear in the $_POST and $_REQUEST arrays created by PHP.

Order this 350 page hard-copy PHP/MySQL book now!76

Chapter 4: Publishing MySQL Data on the Web

To insert the submitted joke into the database, we use mysql_query to run an

INSERT query, using the value stored in $_POST['joketext'] to fill in the joke-
text column in the query:

File: jokes.php (excerpt)

 if (isset($_POST['joketext'])) {
 $joketext = $_POST['joketext'];
 $sql = "INSERT INTO joke SET
 joketext='$joketext',
 jokedate=CURDATE()";
 if (@mysql_query($sql)) {
 echo '<p>Your joke has been added.</p>';
 } else {
 echo '<p>Error adding submitted joke: ' .
 mysql_error() . '</p>';
 }
 }

The one new trick in this example is shown in bold. The MySQL function

CURDATE() is used here to assign the current date as the value of the jokedate
column. MySQL actually has dozens of these functions, but we’ll introduce them

only as required. For a complete MySQL function reference, refer to Appendix B.

We now have the code that will allow a user to type a joke and add it to our

database. All that remains is to slot it into our existing joke viewing page in a

useful fashion. As most users will only want to view jokes, we don’t want to mar

our page with a big, ugly form unless the user expresses an interest in adding a

new joke. For this reason, our application is well suited for implementation as a

multipurpose page. Here’s the full code:

File: jokes.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>The Internet Joke Database</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>

<?php if (isset($_GET['addjoke'])): // User wants to add a joke
?>

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">

77Order this 350 page hard-copy PHP/MySQL book now!

Inserting Data into the Database

<label>Type your joke here:

<textarea name="joketext" rows="10" cols="40">
</textarea></label>

<input type="submit" value="SUBMIT" />
</form>

<?php else: // Default page display

 // Connect to the database server
 $dbcnx = @mysql_connect('localhost', 'root', 'mypasswd');
 if (!$dbcnx) {
 exit('<p>Unable to connect to the ' .
 'database server at this time.</p>');
 }

 // Select the jokes database
 if (!@mysql_select_db('ijdb')) {
 exit('<p>Unable to locate the joke ' .
 'database at this time.</p>');
 }

 // If a joke has been submitted,
 // add it to the database.
 if (isset($_POST['joketext'])) {
 $joketext = $_POST['joketext'];
 $sql = "INSERT INTO joke SET
 joketext='$joketext',
 jokedate=CURDATE()";
 if (@mysql_query($sql)) {
 echo '<p>Your joke has been added.</p>';
 } else {
 echo '<p>Error adding submitted joke: ' .
 mysql_error() . '</p>';
 }
 }

 echo '<p>Here are all the jokes in our database:</p>';

 // Request the text of all the jokes
 $result = @mysql_query('SELECT joketext FROM joke');
 if (!$result) {
 exit('<p>Error performing query: ' .
 mysql_error() . '</p>');
 }

 // Display the text of each joke in a paragraph

Order this 350 page hard-copy PHP/MySQL book now!78

Chapter 4: Publishing MySQL Data on the Web

 while ($row = mysql_fetch_array($result)) {
 echo '<p>' . $row['joketext'] . '</p>';
 }

 // When clicked, this link will load this page
 // with the joke submission form displayed.
 echo '<p><a href="' . $_SERVER['PHP_SELF'] .
 '?addjoke=1">Add a Joke!</p>';

endif;
?>
</body>
</html>

Load this up and add a new joke or two to the database via your browser. The

resulting page should look like Figure 4.4.

Figure 4.4. Look, Ma! No SQL!

There we go! With a single file that contains a little PHP code, we’re able to view

existing jokes in, and add new jokes to, our MySQL database.

79Order this 350 page hard-copy PHP/MySQL book now!

Inserting Data into the Database

A Challenge
As “homework”, see if you can figure out how to place next to each joke on the

page a link labelled Delete this joke that, when clicked, will remove that joke from

the database and display the updated joke list. Here are a few hints to get you

started:

� You’ll still be able to do it all in a single multipurpose page.

� You’ll need to use the SQL DELETE command, which we learned about in

Chapter 2.

� This is the tough one: to delete a particular joke, you’ll need to be able to

identify it uniquely. The id column in the joke table was designed to serve

this purpose. You’re going to have to pass the ID of the joke to be deleted

with the request to delete a joke. The query string of the Delete this joke link

is a perfect place to put this value.

If you think you have the answer, or if you’d just like to see the solution, turn

the page. Good luck!

Summary
In this chapter, you learned some new PHP functions that allow you to interface

with a MySQL database server. Using these functions, you built your first data-

base-driven Website, which published the ijdb database online, and allowed

visitors to add jokes to it.

In Chapter 5, we go back to the MySQL command line. We’ll learn how to use

relational database principles and advanced SQL queries to represent more

complex types of information, and give our visitors credit for the jokes they add!

“Homework” Solution
Here’s the solution to the “homework” challenge posed above. These changes

were required to insert a Delete this joke link next to each joke:

� Previously, we passed an addjoke variable with our Add a Joke! link at the

bottom of the page to signal that our script should display the joke entry form,

instead of the usual list of jokes. In a similar fashion, we pass a deletejoke

Order this 350 page hard-copy PHP/MySQL book now!80

Chapter 4: Publishing MySQL Data on the Web

variable with our Delete this joke link to indicate our desire to have a joke

deleted.

� For each joke, we fetch the id column from the database, along with the

joketext column, so that we know which ID is associated with each joke in

the database.

� We set the value of the $_GET['deletejoke'] variable to the ID of the joke

that we’re deleting. To do this, we insert the ID value fetched from the data-

base into the HTML code for the Delete this joke link of each joke.

� Using an if statement, we watch to see if $_GET['deletejoke'] is set to a

particular value (through the isset function) when the page loads. If it is,

we use the value to which it is set (the ID of the joke to be deleted) in an SQL

DELETE statement that deletes the joke in question.

Here’s the complete code. If you have any questions, don’t hesitate to post them

in the SitePoint Forums[1]!

File: challenge.php

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>The Internet Joke Database</title>
<meta http-equiv="content-type"
 content="text/html; charset=iso-8859-1" />
</head>
<body>
<?php if (isset($_GET['addjoke'])): // User wants to add a joke
?>

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">
<label>Type your joke here:

<textarea name="joketext" rows="10" cols="40">
</textarea></label>

<input type="submit" value="SUBMIT" />
</form>

<?php else: // Default page display

 // Connect to the database server
 $dbcnx = @mysql_connect('localhost', 'root', 'mypasswd');

[1] http://www.sitepoint.com/forums/

81Order this 350 page hard-copy PHP/MySQL book now!

“Homework” Solution

 if (!$dbcnx) {
 exit('<p>Unable to connect to the ' .
 'database server at this time.</p>');
 }

 // Select the jokes database
 if (!@mysql_select_db('ijdb')) {
 exit('<p>Unable to locate the joke ' .
 'database at this time.</p>');
 }

 // If a joke has been submitted,
 // add it to the database.
 if (isset($_POST['joketext'])) {
 $joketext = $_POST['joketext'];
 $sql = "INSERT INTO joke SET
 joketext='$joketext',
 jokedate=CURDATE()";
 if (@mysql_query($sql)) {
 echo '<p>Your joke has been added.</p>';
 } else {
 echo '<p>Error adding submitted joke: ' .
 mysql_error() . '</p>';
 }
 }

 // If a joke has been deleted,
 // remove it from the database.
 if (isset($_GET['deletejoke'])) {
 $jokeid = $_GET['deletejoke'];
 $sql = "DELETE FROM joke
 WHERE id=$jokeid";
 if (@mysql_query($sql)) {
 echo '<p>The joke has been deleted.</p>';
 } else {
 echo '<p>Error deleting joke: ' .
 mysql_error() . '</p>';
 }
 }

 echo '<p> Here are all the jokes in our database: </p>';

 // Request the ID and text of all the jokes
 $result = @mysql_query('SELECT id, joketext FROM joke');
 if (!$result) {
 exit('<p>Error performing query: ' .

Order this 350 page hard-copy PHP/MySQL book now!82

Chapter 4: Publishing MySQL Data on the Web

 mysql_error() . '</p>');
 }

 // Display the text of each joke in a paragraph
 // with a "Delete this joke" link next to each.
 while ($row = mysql_fetch_array($result)) {
 $jokeid = $row['id'];
 $joketext = $row['joketext'];
 echo '<p>' . $joketext .
 ' <a href="' . $_SERVER['PHP_SELF'] .
 '?deletejoke=' . $jokeid . '">' .
 'Delete this joke</p>';
 }

 // When clicked, this link will load this page
 // with the joke submission form displayed.
 echo '<p><a href="' . $_SERVER['PHP_SELF'] .
 '?addjoke=1">Add a Joke!</p>';

endif;
?>
</body>
</html>

83Order this 350 page hard-copy PHP/MySQL book now!

“Homework” Solution

84

What’s Next?
If you’ve enjoyed the sample chapters from Build Your Own
Database Driven Website Using PHP & MySQL, 3rd Edition, why not
order yourself a copy?

You’ll learn how to speed up site re-designs drastically, how to
install and administer PHP & MySQL on Windows, Linux or
Mac OS X, and apply working code examples from the book to
your Website instantly. You’ll also gain access to our
downloadable code archive—no retyping necessary!

In the next 8 chapters, you’ll learn how to

 Build a working Content Management System (CMS)

 Build an ecommerce shopping cart

 Automatically send email in response to user requests

 Build a Web-based file repository or photo gallery

 Utilize sessions and cookies to track site visitors

 Structure your code to ease maintenance and reuse

 And a whole lot more…

You can’t afford to be without this practical, step-by-step book!

Order Now and Get it Delivered Anywhere in the World!

“I like the book, and am going to recommend it to the students in my New
Media class at Penn State. It is not often that I will stay up most of
Saturday night reading a book on programming – but this book is both
useful and clear.”

— Gerry Santoro, PhD

Index
Symbols
!, negation operator, PHP, 65, 70

!=, inequality operator, PHP, 61

$

(see also variables, PHP)

prefix identifying PHP variables, 47

use in regular expressions, 146

%

modulus operator, MySQL, 302

wild card for LIKE operator, 40

wild card in hostnames, 172–173

&&, and operator, PHP, 58

&, query string variable separator, 52

()

calling PHP functions, 47

in regular expressions, 148

*

in regular expressions, 147

multiplication operator, PHP, 48

wild card in myisamchk, 179

+

addition operator, PHP, 47

in regular expressions, 147

++, signifying increment by one, 60

.

concatenation operator, PHP, 48

in regular expressions, 148

referring to the current directory,

248

.=, append operator, PHP, 127

/

division operator, PHP, 48

file path separator, 208

// and /* */, comment indicators, PHP,

48

;

on the MySQL command prompt,

33

terminating PHP statements, 45

<, less than, PHP, 61

<=, less than or equal to, PHP, 61

<?php ?> code delimiters, 44, 63

=, assignment operator, PHP, 47

==, equality operator, PHP, 58

>(=), greater than (or equal to), PHP,

61

?

in regular expressions, 147

introducing a query string, 50

@, error suppression operator, PHP,

70, 202

\ (see backslashes)

\c, on the MySQL command prompt,

33

\n, line feed character, PHP, 124

\r, carriage return character, PHP, 125

\t, tab character, PHP, 125

^, in regular expressions, 146

| in regular expressions, 148

||, or operator, PHP, 58

A
absolute paths, include file location,

246

access control example, 265

structured version, 270–271

unstructured version, 266

access control, MySQL, 170

anonymous user problem, 175

further resource, 170

tips, 174

unrestricted access, 177

access privileges

GRANT command and, 171

level of application, 172

REVOKE command and, 174

addition operator, PHP, 47

addslashes function, PHP, 115

mysql_escape_string and, 335, 342

administration area security, 266

administration interface

content management systems as, 101

managing authors example, 107

administrator options example, 249

airline booking system example, 189

aliasing

columns and tables, 189–192

summary function results, 193

ALL privilege, GRANT command, 172

ALTER TABLE command, 86, 277–280

adding indexes using, 185

dropping columns, 89

ampersand, query string variable separ-

ator, 52

ANALYZE TABLE command, 280

and operator, PHP, 58

anonymous users, MySQL access con-

trol, 175

Apache Web server

Apache 2.0 compatibility with PHP,

10, 18

building by hand, 12

built into Mac OS X, 20

directory-specific include paths, 249

installing PHP as a loadable module,

17

root document folder, 27

Windows PHP installation, 7, 9

append operator, PHP, 127

apxs program, 18

areas of rectangles, example calculation,

241

using a custom function, 253

using a return statement, 252

using optional arguments, 261

arguments

(see also parameters)

calculate sum example, 262

optional and unlimited, 261

arithmetic operators, 48

array function, PHP, 49, 134, 229

array_map function, PHP, 117

arrays, 48

(see also variables, PHP)

associative, 49, 74

empty arrays, 134

looping through elements, 134–136,

230, 263

processing when submitted, 132

split function and, 155

submitting in a form, 130

super-global arrays, 259

use with checkboxes, 130

AS keyword, SELECT queries, 191

use with summary functions, 193

assignment operator, PHP, 47

associative arrays, 49

rows in result sets, 74

asterisk wild card in myisamchk, 179

authentication, access control example,

266

AUTO_INCREMENT columns, 35

obtaining last assigned value, 133

automatic content submission, 162

automatic link adjustment, 231

B
backslashes

avoiding in path notation, 3, 208,

246

escaping special characters, 116,

147, 149–150

backups, MySQL

importance of, 165

inadequacy of standard file backups,

166

update logs and incremental

backups, 168

using mysqldump, 167

BINARY attribute, MySQL, 322

Order this 350 page hard-copy PHP/MySQL book now!346

Index

binary data files, 199–220

MySQL column types tabulated, 210

BLOB (Binary Large Object) column

types, 208–209, 326

boldface text, 149, 152

bookmarking queries, 55

braces, use in custom functions, 254

brackets (see parentheses; square

brackets)

browsers

identification, with HT-

TP_USER_AGENT, 214

limits on cookies, 225

views of PHP files, 27

bug database, PHP, 10

built-in functions, PHP, 46, 253, 331–

344

(see also custom functions)

array function, 49

array_map, 117

define, 265

get_magic_quotes_gpc, 117

mysql_connect, 69

number_format, 230

str_ireplace, 154–155

strlen, 212

strpos, 214

C
cancelling a query, 33

caret, use in regular expressions, 146

carriage returns, platform-specific is-

sues, 150

case-sensitivity

eregi function and, 146

eregi_replace function and, 149

function names, 254

in SQL queries, 36

TEXT and BLOB column types, 209

categories

assigning to CMS items with PHP,

123

database design and, 97

managing with PHP, 117

CGI (Common Gateway Interface), 247

character column types, MySQL, 324–

327

character entities, HTML, 112

characters, escaping (see special charac-

ters)

checkboxes

passing values to variables, 133

selecting multiple categories, 130

checking and repairing files, 178

CMS (see content management systems)

.cnf files, 4

(see also my.cnf file)

code archive, downloading, xiii

code delimiters, PHP, 44, 63

code maintainability (see structured

programming)

column attributes, MySQL column

tyes, 321

column types, MySQL

binary data storage, 208–209

character types, 324

date/time types, 327

ENUM, 163

full listing, 321–329

INT, 35

numerical types, 322

TEXT, 35

TEXT vs. BLOB types, 209

columns, 30

(see also fields)

access privileges on, 173

adding, 86

renaming, using aliases, 189

setting data types, 36

command line utilities, Linux, 13

347Order this 350 page hard-copy PHP/MySQL book now!

command prompt, Windows, 5

commands, MySQL (see queries)

comments, PHP, 48

structured code and, 237

Common Gateway Interface (CGI), 247

commonhttpd.conf file, 19

concatenation operators, 48

concurrent operations, locking tables,

187

conditional structures, PHP (see control

structures)

configuration files, creating update logs,

169

connecting to MySQL, 69

using global variables, 258

using include files, 238, 240

using include_once, 243

connection identifiers, 69

constants, 263

access control example, 271

constraints

checking, search engine example, 127

foreign key constraints, 108

NOT NULL constraints, 35

content formatting, 143

index page, 159

content management system example

adding authors, 110

deleting authors, 107

editing authors, 112

formatting stage, 144

index page, 102

managing authors, 105

managing categories, 117

managing jokes, 123–141

update semi-dynamic pages link, 203

content management systems, 101–142

content submission by visitors, 162

content-disposition header, HTTP,

213–214

content-length header, HTTP, 212

content-type header, HTTP, 212

control flow functions, MySQL, 301

control structures, PHP, 56

for loops, 61

if-else statements, 56, 63

looping through arrays, 135

short-circuit evaluation, 208

while loops, 59

cookies, 221–225

browser-enforced limits, 225

session alternative to, 226, 231

setting and deleting, 223

copy function, 201, 208

copyright notices, 244

corrupted data recovery, 178, 180

COUNT function, MySQL, 39, 192,

318

omitting NULLs, 196

count function, PHP, 134, 230

links to next page, 156

CREATE DATABASE command, 34,

280

alternative to mysql_create_db, 333

CREATE INDEX command, 185, 281

CREATE TABLE command, 35, 281

binary file details, 209

nondestructive alternative, 89

cron utility

managing update logs, 169

updating semi-dynamic pages, 203

CURDATE function, MySQL, 77

currency information display, 230

custom functions, 253–263

accessing global variables, 258

difference from include files, 257

function libraries and, 255

naming, 254

optional and unlimited arguments,

261

unlimited arguments, 262

variable scope, 257

custom markup languages, 149

Order this 350 page hard-copy PHP/MySQL book now!348

Index

D
data relationships (see relationships)

data types

(see also column types, MySQL)

PHP as a loosely-typed language, 47

database administration, 165–180

database design, 85–100

delete anomalies, 87

further resources on, 85

relationships, 94

update anomalies, 87

database servers, 29

database-driven Websites

role of content management systems,

101

role of scripting languages, 68

semi-dynamic pages and perform-

ance, 199

databases, 29, 69

(see also MySQL)

adding items with PHP, 110

binary data storage, 208

creating, 34

inserting data using PHP, 75

listing available, 32

management using a CMS, 101

mysql and test databases, 33

selection, in PHP, 70

storing Website content in, 29, 67

using, 34

date and time functions, MySQL, 309–

315

CURDATE function, 77, 314

DATE_FORMAT symbols, 314

interval types for date addition/sub-

traction, 312

modes for week calculation, 310

date function, PHP, 46

date/time column types, MySQL, 327–

329

default values, optional arguments, 261

define function, PHP, 265

delete anomalies, 87

DELETE command, 41, 283

challenge exercise, 80

DELETE queries

confirmation page, 109

deleteauthor.php example, 109

deletecat.php example, 119

rows affected by, 41, 72

deleting items with PHP, 80, 107

DESCRIBE command, 36, 86, 284

directory listing in include paths, 247

directory-specific include paths, 249

DISTINCT keyword, 87

division operator, PHP, 48

“do nothing” WHERE clauses, 126

document root tracking, include files,

247

documentation and structured code,

237

dollar sign

PHP variable prefix, 47

use in regular expressions, 146

double equals sign, 58

DROP DATABASE command, 33, 285

DROP INDEX command, 285

DROP TABLE command, 37, 285

recovering from unintentional, 168

drop-down lists and checkboxes, 130

duplication

avoiding, by refreshing pages, 215

avoiding, using DISTINCT, 87

avoiding, using include files, 238

avoiding, using structured program-

ming, 236

E
echo statement, PHP, 45

example, 46

exit function compared to, 71

parentheses and, 241

349Order this 350 page hard-copy PHP/MySQL book now!

editing items with PHP, 112

else clause (see if-else statements)

empty arrays, 134

enctype attribute, form tag, 204

ENUM column type, 163, 326

equality operator, PHP, 58

equals sign, as PHP assignment operat-

or, 47

ereg function, PHP, 146

ereg_replace function, PHP, 148, 150

str_replace and, 153

eregi function, 146

eregi_replace function, 148, 150

example using, 149

error checking

include files and, 238

using myisamchk, 179

error messages

require statement and, 243

simple join example, 92

error suppression operator, PHP, 70,

202

escaping special characters (see special

characters)

exclamation mark, as PHP negation

operator, 65

exit command, MySQL, 34

exit function, PHP, 70

calling with a parameter, 71

include file example, 238

expiry time, cookies, 223

EXPLAIN command, 285

explode function, PHP, 155

F
fclose function, 200, 202

fcopy function, 203

fields

(see also columns)

as database components, 30

inadvisability of multiple values, 94,

97

file extensions

potential problems with Notepad, 3

potential problems with Notepad

and TextEdit, 26

Windows .cnf files, 4

file sizes

problems with large files, 220

uploading files and, 206

files

assigning unique names, 206

downloading stored files, 213

file access functions in PHP, 200

storing in MySQL, 210

uploading, 204–209

viewing stored files, 212

flow of control (see control structures)

fopen function, 200, 202

for loops, 61

argument sum example, 263

creating tables, 230

looping through arrays, 135

forced rows, 195

foreach loops, 136

argument sum example, 263

foreign key constraints, 108

form tags and file uploads, 204

formatting content, 143

forms submission methods, 54

forward slash path separator, 3, 208,

246

fread function, 200, 202

front pages (see index pages)

func_get_arg function, 262

func_get_args function, 263

func_num_args function, 262

function calls used as conditions, 71

function keyword, PHP, 254

function libraries, PHP, 255

function scoped variables, 257

Order this 350 page hard-copy PHP/MySQL book now!350

Index

static variables and, 260

functions, MySQL

COUNT function, 39, 192, 318

LEFT function, 39

listed by type, 301–319

functions, PHP

(see also built-in functions)

custom functions, 253–263

parameters, 47

return values, 69

session management functions, 227

working with MySQL, reference,

331–344

fwrite function, 201, 203

G
global variables, 257–258

GRANT command, 171, 286

examples of use, 173

“greedy” special characters, 153

GROUP BY clause, SELECT queries,

193, 294

group-by functions (see summary func-

tions)

H
HAVING clause, SELECT command,

197, 294

header function, PHP, 212, 215

hidden form fields, 112

MAX_FILE_SIZE, 206

.htaccess file

protecting directories with, 102

setting include paths, 249

HTML

embedding in PHP output text, 45

embedding PHP code in markup, 62

forms, user interaction with, 53

include files containing, 244

PHP code conversion to, 44

static pages from URL requests, 202

stripping out of content, 144

tags, PHP code to match, 152

“HTML Safe” content, 144

htmlspecialchars function, PHP, 112,

144

authors.php example, 106

search engine example, 125

HTTP headers

cookie, 222

header function and, 215

sending file details, 212

set-cookie, 222

HTTP methods (see variables, $_GET;
variables, $_POST)

httpd.conf file, 11, 13, 19

hyperlinks within content, 150

I
ID columns, 30, 35

(see also primary keys)

if statements, error handling, 70–71

if-else statements, 56

alternative form, 63

IGNORE keyword, 136

IIS (Internet Information Services), 7–

8, 27

importing global variables, 258

include files, 238–252, 255

(see also function libraries)

access control example, 270–271

access to variables, 241

containing HTML, 244

custom functions, 271

database connection example, 240

difference from custom functions,

257

locating, 246

naming, 240

PHP statements usable with, 242

return statement and, 251

returning from includes, 249

351Order this 350 page hard-copy PHP/MySQL book now!

include paths, 247

directory-specific, 249

include statement, PHP, 241

require statement and, 243

include_once statement, PHP, 243, 256

incrementing values by one, 60, 186

index pages

as semi-dynamic pages, 200

configuring as default pages, 9, 11,

19

indexes

adding and removing, 185

further resources on, 186

regenerating after corruption, 180

sorting and, 185

InnoDB tables, 108, 189

INSERT command, 286

IGNORE keyword, 136

REPLACE command compared to,

290

TIMESTAMP columns and, 328

two forms of, 37

INSERT function, MySQL, 307

INSERT queries, 77

newauthor.php example, 110

newcat.php example, 120

rows affected by, 72

storing uploaded files, 211

INT MySQL column type, 35, 322

INTO clause, SELECT queries, 293

is_uploaded_file function, 207, 211

isset function, 65

italic text, 149, 152

J
JavaScript and server-side languages,

43

joins, 91–93, 295–296

airline booking system example, 190

inner joins, 295

left joins, 194–197, 296

MySQL supported types, 295–296

natural joins, 296

outer joins, 296

self joins, 191

K
killing servers, 177

L
LEFT function, MySQL, 39, 306

left joins, 194–197

LIKE operator, SQL, 40, 127

LIMIT clause, SELECT queries, 186

line breaks as platform-specific issues,

150

line feed character, PHP, 124

links within content, 150

Linux

installation of MySQL, 14

installation of MySQL and PHP, 12

installation of PHP, 17

Mac OS X similarity, 22

LOAD DATA INFILE command, 287

localhost access privileges, 174–176

location header, HTTP, 215

LOCK TABLES command, 188, 288

locking functions, MySQL, 317

login credentials, access control ex-

ample, 266

lookup tables, 97

queries using, 99

loops (see control structures)

M
Mac OS X

installation, 20

MySQL installation, 20

PHP installation, 22

TextEdit and .php files, 26

treatment as Unix/Linux, 22

magic quotes feature, 115–117

Order this 350 page hard-copy PHP/MySQL book now!352

Index

mysql_escape_string and, 335, 342

security and, 24

many-to-many relationships, 96

many-to-one relationships, 94

markup languages

(see also HTML)

custom markup languages, 149

mathematical functions, MySQL, 301–

304

max_allowed_packet option,

my.cnf/my.ini, 220

MAX_FILE_SIZE field, 206

MEDIUMTEXT and MEDIUMBLOB

column types, 209

menu options, include file example, 249

method attribute, form tag, 54

MIME type checking, uploadable files,

205

modifying data (see UPDATE com-

mand)

multiplication operator, PHP, 48

multipurpose pages, 61

delete confirmation prompt, 109

deleting data, 80

example, 62

inserting data, 77

my.cnf file, 169

Linux installation, 16

max_allowed_packet option, 220

Windows installation and, 2

my.ini file, 169

max_allowed_packet option, 220

renaming my.cnf as, 3

MyISAM table format, 108

myisamchk utility, 178

MySQL

administration, 165–180

as RDBMS, 1

assigning a root password, 22

backing up data, 166, 168

command-line client, mysql.exe, 31,

170

connecting to, from PHP, 69

using global variables, 258

using include files, 238, 240

using include_once, 243

controlling access to, 170

data directory structure, 178

getting started with, 29–41

killing server process, 177

logging on to, 31

lost password recovery, 177

mysql and test databases, 33

password prompts, 23, 32

repairing corrupt data files, 178, 180

restoring backed up data, 167, 170

running automatically at start-up, 6,

15

syntax, 277–300

transaction support, 189

user names, 32

MySQL client programs, 25

MySQL column types (see column

types, MySQL)

MySQL Control Center, 25

mysql database

access control and, 170

assigning root passwords, 23

function in MySQL, 33

MySQL functions (see functions,

MySQL)

MySQL installation

in Linux, 14

in Windows, 2

on Mac OS X, 20

post-installation setup, 22

removing packaged versions, 13

server versions, 4

servers provided by Web hosts, 25

as a system service, 6

353Order this 350 page hard-copy PHP/MySQL book now!

MySQL queries (see queries, MySQL)

MySQL syntax, 277–300

mysql.exe program, 31

restoring the database using, 170

mysql.server script, 16

mysql_* functions, PHP, listed, 331–

344

mysql_affected_rows function, 72, 331

mysql_connect function, 69, 332

mysql_error function, 72, 334

mysql_fetch_array function, 73, 335

mysql_insert_id function, 133, 287,

339

mysql_install_db script, 14

mysql_num_rows function, 145, 341

mysql_query function, 71, 342

insert queries, 77

using result sets from, 72

mysql_select_db function, 70, 343

mysqld.exe file and server versions, 4

mysqld_safe script, 15

mysqldump utility, 167

N
naming conventions

custom functions, 254

include files, 240

negation operator, PHP, 65, 70

nested tags, 153

new line characters

in PHP, 124

platform-specific issues, 150

NOT NULL column constraint, 35,

163

not operator, PHP, 65

Notepad editor

treatment of file extensions, 3, 26

NULL values and LEFT JOINs, 195

number_format function, PHP, 230

numerical column types, MySQL, 322–

324

O
ON keyword, 195

one-to-many relationships, 94

one-to-one relationships, 94

OOP (object oriented programming),

235, 275

operators, PHP, 47–48

append operator, 127

comparative and inequality operat-

ors, 61

equality and logical operators, 58

error suppression operator, 70, 202

negation operator, 65, 70

OPTIMIZE TABLE command, 289

optional arguments, PHP functions,

261

optional parameters, MySQL column

types, 321

or operator, PHP, 58

ORDER BY clause, SELECT queries,

184, 294

P
packaged distributions, 12

removing, 13

packet size, MySQL, 220

paging result sets, 155, 187

paragraph tags, custom markup lan-

guage, 149

parameters

(see also arguments)

in PHP functions, 47, 254

MySQL column types, 321

parentheses

in PHP functions, 47, 254

in PHP statements, 241

in regular expressions, 148, 150

passwords

changing, using GRANT, 173

instructing MySQL to prompt for,

23, 32

Order this 350 page hard-copy PHP/MySQL book now!354

Index

MySQL root passwords, 22

page protection in access control ex-

ample, 274

recovery from losing, 177

specifying using GRANT, 172

PEAR (PHP Extension and Application

Repository), 248

perimeters of rectangles, calculation,

255

period

concatenation operator, PHP, 48

in regular expressions, 148

referring to the current directory,

248

Perl Compatible Regular Expressions

(PCRE), 145, 153

personalized welcome messages, 51, 53

with special messages, 57

without query strings, 55

PHP

(see also functions, PHP; PHP install-

ation)

as Web server plug-in, 1

basic syntax, 45

code delimiters, 44, 63

editors for .php files, 26

getting started with, 43–66

object oriented features, 235, 275

PHP 5 new features

object orientation, 275

str_ireplace function, 154–155

PHP Extension and Application Repos-

itory (PEAR), 248

PHP functions (see functions, PHP)

PHP installation

in Linux, 17

in Windows, 6

in Windows with Apache , 9

on Mac OS X, 22

PHP provided by Web hosts, 25

post-installation setup, 24

removing packaged versions, 13

with IIS, 8

php.exe file, 203

php.ini file

configuring PHP, 24

effects of disabling errors, 243

installing PHP in Windows, 7

php.ini-dist and, 19

post_max_size setting, 206

session setup, 226

setting include_path, 248

upload_max_filesize setting, 206

upload_tmp_dir setting, 205

php4apache(2).dll and

php5apache(2).dll files, 11

php4apache2.dll file, 10

php4isapi.dll and php5isapi.dll files, 8

php4ts.dll and php5ts.dll files, 7

phpMyAdmin script, 31

pipe character, in regular expressions,

148

POSIX regular expressions, 145, 153

post_max_size setting, php.ini file, 206

primary keys, 98

product catalogue, shopping cart ex-

ample, 229

Q
queries, MySQL, 34

advanced SQL, 183

cancelling, 33

case sensitivity, 36

depending on lookup tables, 99

search engine example, 128

semicolon terminator, 33

sending, using PHP, 71

query strings, 50

passing variables in, 62, 80, 250

question marks, introducing query

strings, 50

quit command, MySQL, 34

355Order this 350 page hard-copy PHP/MySQL book now!

quotes

double, as PHP string delimiter, 48

replacing with character entities, 112

single, around PHP strings, 47

single, around strings in PHP, 48

single, escaping, 152

R
read locks, 188

readability of structured code, 237

rectangles

calculate area example, 241

using a custom function, 253

using a return statement, 252

using optional arguments, 261

calculate perimeter example, 255

redirection to the same page, 215

referential integrity, 108

refreshing pages and duplicating ac-

tions, 215

register_globals setting, 52

regular expressions, 145–162

capturing matched text, 150

matching hyperinks, 151

matching paired tags, 152

string replacement with, 148

tutorial on, 146

two forms of, 145

validating MIME types, 205

relationships

example, 88

many-to-many relationships, 96

preserving referential integrity, 108

relationship types, 94

RENAME TABLE command, 289

REPLACE command, 290

require statement, PHP

access control example, 271

include statement and, 243

require_once statement, PHP, 243, 256

required columns (see NOT NULL)

restoring MySQL databases

from mysqldump backups, 167

using update logs, 170

result sets, 73

paging, 155, 187

processing order in MySQL, 197

restricting the size of, 186, 197

sorting, 183

return statement, PHP, 249, 251

return values, PHP functions, 69

REVOKE command, 174, 290

root document folder, 27

root passwords, 22

rows, 30

affected by deetes and updates, 72

counting, in MySQL, 39

deleting, 41

updating, 40

S
safe_mysqld script, 15

script timeouts, PHP, 220

scripting languages, role, 68

scripts, UNIX, for managing update

logs, 169

search engine example, 123

security

access control example, 266

creating a special MySQL user in

Linux, 14

escaping special characters and, 117

include file location and, 247

MySQL root passwords, 22

register_globals setting and, 52

upload_max_filesize setting, 206

using is_uploaded_file, 207

SELECT command, 38, 72, 291–297

(see also SELECT queries)

DISTINCT keyword, 87

GROUP BY clause, 294

Order this 350 page hard-copy PHP/MySQL book now!356

Index

HAVING clause, 294

INTO clause, 293

LIKE operator, 40, 127

ORDER BY clause, 294

WHERE clauses, 39, 293

“do nothing” WHERE clauses,

126

select multiple tag, 131

SELECT queries

aliases in, 191

authors.php example, 106

building dynamically with PHP, 126

cats.php example, 118

from multiple tables, 93

grouping results, 192–194

limiting number of results, 186, 197

search engine example, 125

sorting results, 183

sub-selects, 283

table joins and, 91

using LEFT JOINs, 195

using result sets from, 72

with multiple tables, 90

self-closing tags, 53

semicolon

PHP statement terminator, 45

semicolon, on the MySQL command

prompt, 33

semi-dynamic pages, 199–204

server restarts

update log flushing, 168

with unrestricted access, 177

server-side languages, 43

advantages, 45

session management functions, PHP,

227

session_destroy function, PHP, 227

session_start function, PHP, 227, 230

sessions, 225–227

shopping cart example, 228–234

SET command, 297

set_time_limit function, PHP, 220

setcookie function, PHP, 222–223

position, 224

shopping cart example, 228–234

buy link, 230

product catalog, 229

viewing link, 231

short-circuit evaluation, 208

SHOW DATABASES command, 32

SHOW queries, 298–299

SHOW TABLES command, 36

sorting result sets, 183

special characters, 112

escaping single quotes, 152

escaping, in regular expressions,

147, 149, 151

escaping, with addslashes, 116

PHP codes, 125

split and spliti functions, PHP, 155

SQL

advanced queries, 183

MySQL and, 34

MySQL command syntax, 277–300

SQL injection, 24

square brackets

array indices, 49

use in regular expressions, 147

SSIs (Server-Side Includes), 244

state preservation (see cookies)

statements, PHP, 45

static includes, 244

static or semi-dynamic pages, 200

static variables, 259

str_ireplace function, 154–155

str_replace function, PHP, 153

string functions, MySQL, 305–309

stripslashes function, PHP, 116

strlen function, PHP, 212

strpos function, PHP, 214

structured programming, 235–274

access control example, 265, 270–

271

book about, 236

357Order this 350 page hard-copy PHP/MySQL book now!

problems avoided by using, 236

Structured Query Language (see SQL)

sub-selects, 283

subtraction operator, PHP, 47

sum of arguments example, 262

summary functions, MySQL, 192, 318–

319

super-global variables

constants as, 265

super-global arrays, 259

T
table formats, 108

table joins (see joins)

tables

as database components, 30

checking with myisamchk, 179

counting number of entries, 39

creating, 35

deleting, 37

deleting entries, 41

inserting data, 37

listing, 36

locking, 188

recovery after corruption, 178, 180

relationships between (see relation-

ships)

renaming, using aliases, 189

repairing damaged tables, 179

separating data with, 87

structural overview, 30

temporary, 281

updating entries, 40

viewing entries, 38

Task Scheduler, Windows, 203

managing update logs, 169

updating semi-dynamic pages, 203

test database, in MySQL, 33

text formatting, 143, 155

(see also paging result sets)

string replacement with regular ex-

pressions, 148

stripping out HTML, 144

TEXT MySQL column types, 326

TEXT type, 35

TextEdit, problems with .php files, 26

time function, PHP

constructing unique names, 207

cookie expiry and, 223

time functions, MySQL (see date and

time functions)

top ten jokes, using constants, 263

transactions, 189

U
underscore character, 242

unions, 297

unique file names, 206

UNIX

(see also Linux)

update log script, 169

unlimited arguments, 262

unlink function, 201, 203

UNLOCK TABLES command, 188,

288

unset function, PHP, 227, 233

UNSIGNED attribute, MySQL, 321

update anomalies, 87

UPDATE command, 40, 299

TIMESTAMP columns and, 328

WHERE clause, 41

update logs, 168

managing, 169

UPDATE queries

editauthor.php example, 112

editcat.php example, 121

rows affected by, 72, 299

upload_max_filesize setting, php.ini file,

206

upload_tmp_dir setting, php.ini file,

205

Order this 350 page hard-copy PHP/MySQL book now!358

Index

uploading files, 204–209

unique file names, 206

urlencode function, 62

USAGE privilege, GRANT command,

172–173

USE command, 34, 300

user accounts, restricting access, 170

user interaction in PHP, 50

prompting only once, 66

user names, MySQL, 32

user privileges

granting, 171

revoking, 174

users

removing, 174

specifying in GRANT commands,

172, 174

utility programs, MySQL, 167

V
variable interpolation, 48

variable scope, 257

static variables, 259

variables, PHP, 47–48, 265

(see also arrays; constants)

$_COOKIE, 222

$_FILES array, 204, 210

$_GET and query strings, 51

$_POST array, 55, 268

$_REQUEST array, 56

$_SERVER array, 65

access control example, 271

DOCUMENT_ROOT, 247

HTTP_USER_AGENT, 214

PHP_SELF, 215

$_SESSION array, 227, 230–231,

233, 268

$GLOBALS array, 259

created outside include files, 252

custom function declarations, 254

embedding in text strings, 48

identifying as local, 242

include file access, 241–242

incrementing by one, 60

passing in query strings, 62

returning from include files, 251

super-global arrays, 259

W
Web servers

(see also Apache Web server; IIS)

restricting access to administration

pages, 102

supporting PHP, 6

Web-based management consoles, 26

welcome pages, personalizing, 50

WHERE clauses

“do nothing” WHERE clauses, 126

SELECT command, 39, 293

simple joins, 91

UPDATE command, 41

while loops, 59

looping through arrays, 135

processing result sets, 73

wild cards

control problems from, 175

for LIKE operator, 40

in hostnames, 172–173

myisamchk utility, 179

Windows

MySQL installation, 2

PHP installation, 6

Windows Task Scheduler, 169, 203

WITH GRANT OPTION clause, 172

write locks, 188

X
XHTML (Extensible HTML), 53

Z
ZEROFILL attribute, MySQL, 321

359Order this 350 page hard-copy PHP/MySQL book now!

	Title Page

	Table of Contents
	Preface
	Who Should Read This Book
	What’s In This Book
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Forums
	The SitePoint Newsletters
	Your Feedback

	1.
Installation
	Windows Installation
	Installing MySQL
	Installing PHP

	Linux Installation
	Removing Packaged Software
	Installing MySQL
	Installing PHP

	Mac OS X Installation
	Installing MySQL
	Installing PHP
	Mac OS X and Linux

	Post-Installation Setup Tasks
	If Your Web Host Provides PHP and MySQL
	Your First PHP Script
	Summary

	2.
Getting Started with MySQL
	An Introduction to Databases
	Logging On to MySQL
	So, What’s SQL?
	Creating a Database
	Creating a Table
	Inserting Data into a Table
	Viewing Stored Data
	Modifying Stored Data
	Deleting Stored Data
	Summary

	3.
Getting Started with PHP
	Introducing PHP
	Basic Syntax and Commands
	Variables and Operators
	Arrays
	User Interaction and Forms
	Control Structures
	Multipurpose Pages
	Summary

	4.
Publishing MySQL Data on the Web
	A Look Back at First Principles
	Connecting to MySQL with PHP
	Sending SQL Queries with PHP
	Handling SELECT Result Sets
	Inserting Data into the Database
	A Challenge
	Summary
	“Homework” Solution

	Index

