

Antoni Batchelli
Staff Software Engineer
Citrix Online
Santa Barbara, CA

11/27/2006

A Brief Introduction to
J2EE

Outline

N-Tier Model and Containers
What is J2EE?
What Makes Up J2EE?
Architecture
Development and Deployment of Applications
Business Tier: EJBs
Enterprise Integration: Distributed Messaging,
JMS and MDB
Presentation Tier: Servlets and JSP
Data Tier: JDBC

The Three-Tier Model

Browser
handles
presentation
logic
Browser talks
Web server via
HTTP protocol

Database

SQL request

SQL responseHTML response

WEB
ServerHTML request

Business logic
and data model
are handled by
dynamically by
the middle tier

Data is stored in
Databases and
other
repositories

The Three Tier Model: Pros & Cons

Pros:
– Thin clients deployed everywhere
– Zero client management
– Support various client devices

• i.e. Web browsers, phones, handhelds, etc...

Cons:
– Complexity is moved from the client into the middle-tier

still but it still needs to be addressed

Middle Tier Issues
Complexity moved into the middle tier
New problems arise (scalability, concurrency,
availability)
Enhanced system services need to be provided for the
middle tier applications to be manageable
– Concurrency control, Transactions
– Load-balancing, Security
– Resource management, Connection pooling

Component-Container Model

Developers program components that “live” inside a container.
The container provides services for scalability, load balancing,
security, etc..

What does a container usually provide?

Component Life Cycle
Session Life Cycle
Distribution Support
Cluster Support
Distributed Transaction Support
Authentication and Authorization
Management

Component Lifecycle

Create or reuse? The CGI way

CGI

Executable-1

Executable-2

Executable-N

Request-1 Spawn

Spawn

Spawn

Request-2

Request-N

N Concurrent requests ==> N concurrent processes

What if N → ∞ ?

Component Lifecycle (2)

Create or reuse?

Servlet Container

Servlet
Controller

Servlet Instance-1
(worker)

Server Instance-2
(worker)

Request-1 Spawn

SpawnRequest-2

Request-N

7

4
3 Dispatch

Concurrent Requests >> # Workers >> # Processes

Dispatch
 E

nq
ue

ue

Session Lifecycle

What about stateful services?

Servlet Container

Servlet
Controller

Servlet Instance-1
(worker)

Server Instance-2
(worker)

http://.../hello.jsp Spawn

Spawnhttp://.../home.jsp?
sessionid=234234

Dispatch

Concurrent Sessions >> # Workers >> # Processes

Session id = 234234
NAME=John

Create DispatchLookup

Distribution/Cluster Support

What about stateful services?
Node-1

Servlet
Container

http://.../hello.jsp

http://.../home.jsp?
sessionid=234234

State synchronization is taken care of by the container

Session id = 234234
NAME=John

Lo
ad

 B
al

an
ce

r

http://.../hello.jsp

Node-2

Servlet
Container

Session id = 234234
NAME=John

http://.../home.jsp?
sessionid=234234

Copy

Distribution/Cluster Support

Load Balancing and Distribution

Node-1

Servlet
Container

http://.../hello.jsp

Distribution and Load Balancing are taken care of
by the Container

Node-2

Component
A

Component
B

Node-3

Component
A

Component
C

Lo
ad

 B
al

an
ce

r

Servlet --> Comp A
Comp A --> Comp B
Comp B --> Comp C

High Availability

What about stateful services?

Node-1

Servlet
Container

Re-routing and session replication
 is taken care of by the container

Node-2

Component
A

Component
B

Node-3

Component
A

Component
B

Lo
ad

 B
al

an
ce

r Session id = 234234
NAME=John

Session id = 234234
NAME=John

Copy

Outline

N-Tier Model and Containers
What is J2EE?
What Makes Up J2EE?
Architecture
Development and Deployment of Applications
Business Tier: EJBs
Enterprise Integration: Distributed Messaging,
JMS and MDB
Presentation Tier: Servlets and JSP
Data Tier: JDBC

What Is the J2EE?

Open and standard based platform for
developing, deploying and
managing n-tier, Web-enabled,
server-centric, and component-based
enterprise applications

J2EE: An Open and Standard Solution

A component and container model in which
container provides system services through a
set of well-defined and industry standard
services
J2EE provides code portability; an application
written for a particular brand of J2EE application
server will work on any other implementation of
a J2EE application server.

What's In It For Developers?

Developers can use any J2EE implementation for
development and deployment
– Use a small scale J2EE server for development
– Use high-end commercial J2EE server for scalability

and fault-tolerance in production
There is a vast amount of J2EE community
resources
– Books, articles, tutorials, source code, best practice

guidelines, design patterns etc.
Can use off-the-shelf 3rd-party business
components

What's in it for Vendors?

Vendors work together on specifications (JSR)
and then compete in implementations:

More standards --> more users
More users --> more momentum
More momentum --> more sales

Do not have create/maintain their own
proprietary APIs

What's In It For Business Customers?

Application portability
Many implementation choices are possible
based on various requirements
– Price, scalability (single CPU to clustered model),

reliability, performance, tools, and more
– Best of breed of applications and platforms
Large developer pool :)

Outline

N-Tier Model and Containers
What is J2EE?
What Makes Up J2EE?
Architecture
Development and Deployment of Applications
Business Tier: EJBs
Enterprise Integration: Distributed Messaging,
JMS and MDB
Presentation Tier: Servlets and JSP
Data Tier: JDBC

What Makes Up J2EE?

A set of APIs and Technology
specifications
A Development and Deployment
Platform
A Standard and production-quality
reference implementation
A Compatibility Test Suite (CTS)
Extensive documentation:
– J2EE Blueprints
– Sample source code

J2EE APIs and Technologies

J2SE
JAX-RPC
Web Services for J2EE
J2EE Management
J2EE Deployment
JMX 1.1
JMS 1.1
JTA 1.0

Servlet 2.4
JSP 2.0
EJB 2.1
JAXR
Connector 1.5
JACC
JAXP 1.2
JavaMail 1.3
JAF 1.0

What are Servlets?

Java™ objects which extend the functionality of a
HTTP server
Dynamic content generation
Better alternative to CGI, NSAPI, ISAPI, etc.
– Efficient
– Platform and server independent
– Session management
– Java-based

What is JSP Technology?

Enables separation of business logic from
presentation
– Presentation is in the form of HTML or XML/XSLT
– Business logic is implemented as Java Beans or

custom tags
– Better maintainability, reusability
Extensible via custom tags
Builds on Servlet technology

What is EJB Technology?

A server-side component technology
Easy development and deployment of Java
technology-based application that are:
– Transactional, distributed, multi-tier, portable,

scalable, secure, …

Java Message Service (JMS)

Messaging systems provide
– De-coupled communication
– Asynchronous communication
– Plays a role of centralized post office
Benefits of Messaging systems
– Flexible, Reliable, Scalable communication systems
Point-to-Point, Publish and Subscribe
JMS defines standard Java APIs to messaging
systems

JNDI

Java Naming and Directory Interface
Utilized by J2EE applications to locate
resources and objects in portable fashion
– Applications use symbolic names to find object

references to resources via JNDI
– The symbolic names and object references have to

be configured by system administrator when the
application is deployed.

JDBC

Provides standard Java programming API to
relational database (via SQL)
Vendors provide JDBC compliant driver which

can be invoked via standard Java programming
API
A separate API provides pooling of JDBC

connections

Standard Implementation

Under J2EE 1.4 SDK, it is Sun Java Application
Server Platform Edition 8
Production-quality J2EE 1.4 compliant app
server
Free to develop and free to deploy
Seamless upgrade path to Sun Java Application
Server Enterprise Edition

Compatibility Test Suite (CTS)

Ultimate Java™ technology mission:
– Write Once, Run Anywhere™

– My Java-based application runs on any compatible
Java virtual machines

– My J2EE based technology-based application will
run on any J2EE based Compatible platforms

Outline

N-Tier Model and Containers
What is J2EE?
What Makes Up J2EE?
Architecture
Development and Deployment of Applications
Business Tier: EJBs
Enterprise Integration: Distributed Messaging,
JMS and MDB
Presentation Tier: Servlets and JSP
Data Tier: JDBC

The J2EE Platform Architecture

Application Server

Client

Client

Client

Client

Client

Client
Tier

Enterprise
Information

Tier
Middle

Tier

Enterprise
Information

Systems (EIS):
Relational
Database,
Legacy

Applications,
ERP Systems

Enterprise
JavaBeans™

Enterprise
JavaBeans

Other Services:
JNDI, JMS,
JavaMail™

J2EE
Application

Server

Web Server
JSP,

Servlets

Firewall

J2EE is End-to-End Solution

HTML/XML

N-tier J2EE Architecture

Web Tier EJB Tier

JN
D

I

J2SE

JM
S

R
M

I/I
IO

P

JD
B

C

Database

App
Client

App Client Container

HTTP/
HTTPS

J2SE

RMI

J2SE

JN
D

I

JM
S

R
M

I/I
IO

P

JD
B

C

JT
A JavaMail

JAF JN
D

I

JM
S

R
M

I/I
IO

P

JD
B

C

JT
A

JavaMail

JAF

HTTP/
HTTPS

Applet Container

Applet JSP Servlet EJB

Web Container EJB Container

RMI

J2SE

J2EE Containers & Components

Containers and Components

 Concurrency
 Security
 Availability
 Scalability
 Persistence
 Transaction
 Life-cycle

management
 Management

 Presentation
 Business Logic

Containers
Handle

Components
Handle

Containers & Components

Containers do their work invisibly
No complicated APIs
They control by interposition

Containers implement J2EE
Look the same to components
Vendors making the containers have great freedom
to innovate

Outline

N-Tier Model and Containers
What is J2EE?
What Makes Up J2EE?
Architecture
Development and Deployment of
Applications
Business Tier: EJBs
Enterprise Integration: Distributed Messaging,
JMS and MDB
Presentation Tier: Servlets and JSP
Data Tier: JDBC

J2EE Application Development Lifecycle

Write and compile component code
– Servlet, JSP, EJB
Write deployment descriptors for components
Assemble components into ready-to-deployable
package
Deploy the package on a server

Creation Assembly Deployment

Created by
Component
Developer

Assembled
and Augmented
by Application

Assembler

Processed
by Deployer

Deploy

Enterprise
Components

J2EE Container

J2EE APPJ2EE Modules

Life-cycle Illustration

The Deployment Descriptor

Gives the container instructions on how to manage
and control behaviors of the J2EE components
– Transaction
– Security
– Persistence
Allows declarative customization (as opposed to
programming customization)
– XML file
Enables portability of code

Outline

N-Tier Model and Containers
What is J2EE?
What Makes Up J2EE?
Architecture
Development and Deployment of Applications
Business Tier: EJBs
Enterprise Integration: Distributed Messaging,
JMS and MDB
Presentation Tier: Servlets and JSP
Data Tier: JDBC

Where are Enterprise Java Beans?

Web Tier EJB Tier

Why EJB Technology?

Leverages the benefits of component-model on
the server side
Separates business logic from system code
– Container provides system services
Provides framework for portable components
– Over different J2EE-compliant servers
– Over different operational environments
Enables deployment-time configuration
– Deployment descriptor

Types of Beans

Session Beans
Stateful session beans
Stateless session beans

Entity Beans
Bean Managed Persistence (BMP)
Container Managed Persistence (CMP)

Message Driven Beans
JMS (Java Message Service)
JAXM (Java API for XML Messaging), SMTP

EJB Architecture

Session Beans

Does work on behalf of a single client
life typically is that of its client

Is not persistent and hence relatively short lived
Is gone when the EJB™ server crashes

Does not represent data in data store, although
can access/update such data
Can be transaction aware

Can perform transaction demarcation

2 Types of Session Beans

Stateless: execute a request and return a result
without saving any client specific state
information

transient
temporary piece of business logic needed by a
specific client for a limited time span

Stateful: maintains client specific state

Examples of Stateless Session Bean

Catalog
No client specific state needs to be preserved
Common catalog data for all clients

The data can be retrieved from database the first time it is
accessed

Interest calculator
No client specific state needs to be preserved
Common business logic for all clients

Examples of Stateful Session Bean

Shopping cart
Client specific state needs to be preserved for each
client

Items that a user wants to buy
State will be lost when the server crashes

Travel ticket purchasing
Client specific state needs to be preserved for each
client

Tickets to purchase and then confirm/cancel

Reusability of Stateless Session Bean
Instances

Container transparently reuses bean instances
to serve different clients

Pool of bean instances are created by container at
appropriate time (ex: at the time of system boot or
when the size of pool becomes too small)
Bean instances are then recycled
Smaller number of bean instances (pool of bean
instances) can serve larger number of clients at a
single time – Improves scalability of the system

clients can be idle between calls

Resource usage of Stateless Session
Beans

Load-balancing & Failover (between EJB
servers) is easier since no state needs to be
preserved

Any bean instance in any EJB server can serve any
 client call

High scalability since a client call can be served
by any EJB server in a clustered architecture

In order to handle increased number of clients, just
add more memory or more EJB servers

Usage Model of Stateless Session Bean

Use it when no client specific state needs to be
preserved between calls
If stateless session bean has to deal with client
specific request

Client then has to pass any needed information as
parameters to the business methods
But may require the client to maintain state
information on the client side which can mean more
complex client code

Failover of Stateful Session Bean

State is not preserved when a server crashes
High-end commercial servers can maintain
session state even at the time of server failure
by

maintaining server state in persistent storage
maintaining the same state in multiple servers

Interaction between Client, Bean instance,
Container for Stateless Session Bean

Client Home
Object

EJB
Object

Bean
instance

1.create(...)

3.1. new
3.2. setSessionContext()
3.3. ejbCreate()4. method calls

6. remove()

source: Applied Enterprise JavaBeans

Pool
Manager

2. allocate
instance

 if needed

5. method
calls

7. release instance

3.4. instance

Interaction between Client, Bean instance,
Container for Stateful Session Bean

Client
Home
Object

EJB
Object

Bean
instance

1.create(...)

2. new
3. setSessionContext()

4. ejbCreate()
5. new

6. method calls

7. method calls8. remove()

source: Applied Enterprise JavaBeans

Atm Interface Business Methods

public class AtmBean implements SessionBean {
 // implement atm interface business methods
 public void transfer(

int fromAcctId,
int toAcctId,
double amount)

throws ... {
try {

fromAccount = accountHome.findByPrimaryKey(
new Integer(fromAcctId));

toAccount = accountHome.findByPrimaryKey(
new Integer(toAcctId));

fromAccount.withdraw(amount);
toAccount.deposit(amount);

} catch(...) {
 ...

}
}

ATM Client Code

// create an initial context (starting point in name tree)
javax.naming.Context ic =new

javax.naming.InitialContext();
// lookup jndi name (set by deployer in deployment
// descriptor)
java.lang.Object objref = ic.lookup("Atm");
AtmHome home = (AtmHome)PortableRemoteObject.narrow(
objref, AtmHome.class);
//call AtmHome Create method to get Atm interface
Atm atm = home.create();
// call Atm business methods
atm.transfer(41476633, 4443332121, 100000);

Enterprise JavaBeans

Enterprise JavaBeans

Entity Bean Message-Driven Bean

Synchronous communication Asynchronous communication

Stateless Stateful

Bean managed
Persistence

(BMP)

Container managed
Persistence

(CMP)

Session Bean

Outline

N-Tier Model and Containers
What is J2EE?
What Makes Up J2EE?
Architecture
Development and Deployment of Applications
Business Tier: EJBs
Enterprise Integration: Distributed
Messaging, JMS and MDB
Presentation Tier: Servlets and JSP
Data Tier: JDBC

Messaging System Concepts

De-coupled (Loosely-coupled) communication
Asynchronous communication
Messages are the means of communication
between applications.
Underlying messaging software provides
necessary support
– MOM (Message Oriented Middleware), Messaging

system, Messaging server, Messaging provider, JMS
provider: they all mean this underlying messaging
software

Messaging System Features

Support of two messaging models
– Point-to-point
– Publish/Subscribe
Reliability
Transactional operations
Distributed messaging
Security

Additional Features

Some Messaging System vendors support
– Guaranteed real-time delivery
– Secure transactions
– Auditing
– Metering
– Load balancing

Point-to-Point

A message is consumed by a single consumer
"Destination" of a message is a named queue
First in, first out (at the same priority level)
Sender (producer) sends a message to
a named queue (with a priority level)
Receiver (consumer) extracts a message from
the queue

Point-to-Point

Queue
Client

Senders Sends
Consumes

Acknowledges

Client
Receiver

Receives messages on the Receives messages on the
queuequeue

Posts messages to the Posts messages to the
queuequeue

Publish/Subscribe (Pub/Sub)

A message is consumed by multiple consumers
"Destination" of a message is a named topic
Producers “publish” to topic
Consumers “subscribe” to topic

Publish-and-Subscribe

Client
Sender Sends

Consumes

Acknowledges

Client
Receiver

Client
Publisher Publishes

Delivers

Subscribes

Topic

Subscribes
Client

subscriber

Delivers

Client
subscriber

Client
Publisher Topic

Client
subscriber

Client
subscriber

Publishes

Subscribes

Delivers

Subscribes

Subject of communicationSubject of communication
Available to registered Available to registered

participantsparticipants

DeliversPosts messages to the topic

Receives messages
on the topic

When to use Pub/Sub?

Use it when a message you send need to be
processed by multiple consumers
Example: HR application
– Create “new hire” topic
– Many applications (“facilities”, “payroll”, etc.) subscribe

“new hire” topic

Transactional Operations

Transactional production
– Sender groups a series of messages into a

transaction
– Either all messages are enqueued successfully or

none are
Transactional consumption
– Consumer retrieves a group of messages as a

transaction
– Unless all messages are retrieved successfully, the

messages remain in a queue or topic

Transactional Scope

Client-to-Messaging system scope
– Transaction encompasses the interaction between

each messaging client (applications) and the
messaging system

– JMS supports this
Client-to-Client scope
– Transaction encompasses both clients
– JMS does not support this

Client-to-Messaging System
Transactional Scope

Application 1 Queue Application 2

Messaging
system

source: Applied Enterprise
JavaBeans[1]

Client-to-Client
Transactional Scope

Application 1 Queue Application 2

Messaging
system

source: Applied Enterprise
JavaBeans[1]

What is JMS?

JMS is a set of Java interfaces and associated
semantics (APIs) that define how a JMS client
accesses the facilities of a messaging system
Supports message production, distribution,
delivery
Supported message delivery semantics
– Synchronous or Asynchronous
– transacted
– Guaranteed
– Durable

What is JMS? (Continued)

Supports existing messaging models
– Point-to-Point (reliable queue)
– Publish/Subscribe

Message selectors (on the receiver side)
5 Message types

JMS and J2EE

JMSJMS

 Allows Java Developers to access
 the power of messaging systems
 Part of the J2EE Enterprise Suite

JMS is an API

Java™ Application

JMS API

JMS
Provider

IBM
MQSeries

JMS
Provider

Progress
SonicMq

JMS
Provider

Fiorano

JMS
Provider

JMS
Provider

BEA SUN MQ

Steps for Building a JMS Sender
Application

1.Get ConnectionFactory and Destination object (Topic
or Queue) through JNDI

2.Create a Connection
3.Create a Session to send/receive messages
4.Create a MessageProducer (TopicPublisher or

QueueSender)
5.Start Connection
6.Send (publish) messages
7.Close Session and Connection

Locate ConnectionFactory and Destination
objects via JNDI

// Get JNDI InitialContext object
Context jndiContext = new InitialContext();

// Locate ConnectionFactory object via JNDI
TopicConnectionFactory factory =
 (TopicConnectionFactory) jndiContext.lookup(
 "MyTopicConnectionFactory");

// Locate Destination object (Topic or Queue)
// through JNDI
Topic weatherTopic =
 (Topic) jndiContext.lookup("WeatherData");

Create Connection Object, Session and
Publisher
// Create a Connection object from ConnectionFactory object
TopicConnection topicConnection =
 factory.createTopicConnection();

// Create a Session from Connection object.
// 1st parameter controls transaction
// 2nd parameter specifies acknowledgment type
TopicSession session =
 topicConnection.createTopicSession (false,
 Session.CLIENT_ACKNOWLEDGE);

// Create MessageProducer from Session object
// TopicPublisher for Pub/Sub
// QueueSender for Point-to-Point
TopicPublisher publisher =

session.createPublisher(weatherTopic);

Start Connection and Publish Message

// Until Connection gets started, message flow
// is inhibited: Connection must be started
// before messages will be transmitted.
topicConnection.start();

// Create a Message
TextMessage message = session.createMessage();
message.setText("text:35 degrees");

// Publish the message
publisher.publish(message);

Steps for Building a JMS Receiver
Application (non-blocking mode)

1.Get ConnectionFactory and Destination object (Topic
or Queue) through JNDI

2.Create a Connection
3.Create a Session to send/receive messages
4.Create a MessageConsumer (TopicSubscriber or

QueueReceiver)
5.Register MessageListener for non-blocking mode
6.Start Connection
7.Close Session and Connection

Create Message Subscriber, non-blocking
listener and

// Create Subscriber from Session object
TopicSubscriber subscriber =

session.createSubscriber(weatherTopic);

// Create MessageListener object
WeatherListener myListener
 = new WeatherListener();

// Register MessageListener with
// TopicSubscriber object
subscriber.setMessageListener(myListener);

JMS and MDB

JMS Provider EJB Container

Destin-
ation

Consumer

Instances

Msg-driven
Bean Class

MDB Example

Order
Bean

Inventory
Management

Bean

Mail

MessageDrivenBean

JMS Topics

Publish/subscribe

Process
Order

Procure
Inventory

<Entity EJB>

<Entity EJB>

Outline

N-Tier Model and Containers
What is J2EE?
What Makes Up J2EE?
Architecture
Development and Deployment of Applications
Business Tier: EJBs
Enterprise Integration: Distributed Messaging,
JMS and MDB
Presentation Tier: Servlets and JSP
Data Tier: JDBC

Where are Servlet and JSP?

Web Tier EJB Tier

What is Servlet?

Java™ objects which are based on servlet
framework and APIs and extend the functionality
of a HTTP server.
Mapped to URLs and managed by container
with a simple architecture
Available and running on all major
web servers and app servers
Platform and server independent

Servlet Request and Response Model

Servlet

Response

Request

Browser
HTTP

WebWeb
ServerServer

Servlet Container

Response

Request

First Servlet Code

Public class HelloServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response){
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<title>Hello World!</title>");
 }
 ...
}

Advantages of Servlet

No CGI limitations
Abundant third-party tools and Web servers
supporting Servlet
Access to entire family of Java APIs
Reliable, better performance and scalability
Platform and server independent
Secure
Most servers allow automatic reloading of Servlet's
by administrative action

What is JSP Technology?

Enables separation of business logic from
presentation
– Presentation is in the form of HTML or XML/XSLT
– Business logic is implemented as Java Beans or

custom tags
– Better maintainability, reusability
Extensible via custom tags
Builds on Servlet technology

What is JSP page?

A text-based document capable of returning
dynamic content to a client browser
Contains both static and dynamic content
– Static content: HTML, XML
– Dynamic content: programming code, and JavaBeans,

custom tags

JSP Sample Code

<html>
 Hello World!

<jsp:useBean id="clock"
 class=“calendar.JspCalendar” />
 Today is

Day of month: <%= clock.getDayOfMonth() %>
Year: <%= clock.getYear() %>

</html>

Should I Use Servlet or JSP?

In practice, servlet and JSP are used together
– via MVC (Model, View, Controller) architecture
– Servlet handles Controller
– JSP handles View

Servlet Life-Cycle

Http request

Http response

Load Invoke

Client Server

Servlet NOT Loaded

Servlet Container

Run
Servlet

Servlet Loaded

doGet() and doPost() Methods

Request

Service()

Response

Server HttpServlet subclass

Key: Implemented by subclass

 doGet()

 doPost()

Things You Do in doGet() & doPost()

Extract client-sent information (HTTP parameter) from
HTTP request
Set (Save) and get (read) attributes to/from Scope
objects
Perform some business logic or access database

EJB
JDBC

Optionally forward the request to other Web
components (Servlet or JSP)
Populate HTTP response message and send it to client

Scope Objects

Enables sharing information among
collaborating web components via attributes
maintained in Scope objects
– Attributes are name/object pairs
Attributes maintained in the Scope objects are
accessed with
– getAttribute() & setAttribute()
4 Scope objects are defined
– Web context, session, request, page

Four Scope Objects: Accessibility

Web context (ServletConext)
– Accessible from Web components within a Web

context
Session
– Accessible from Web components handling a

request that belongs to the session
Request
– Accessible from Web components handling the

request
Page
– Accessible from JSP page that creates the object

What is ServletContext For?

Used by servlets to
– Set and get context-wide (application-wide) object-

valued attributes
– Get request dispatcher

• To forward to or include web component

– Access Web context-wide initialization parameters
set in the web.xml file

– Access Web resources associated with the Web
context

– Log
– Access other misc. information

Why HttpSession?

Need a mechanism to maintain client state
across a series of requests from a same user (or
originating from the same browser) over some
period of time
– Example: Online shopping cart
Yet, HTTP is stateless
HttpSession maintains client state
– Used by Servlets to set and get the values of

session scope attributes

What is Servlet Request?

Contains data passed from client to servlet
All servlet requests implement ServletRequest
interface which defines methods for accessing
– Client sent parameters
– Object-valued attributes
– Locales
– Client and server
– Input stream
– Protocol information
– Content type
– If request is made over secure channel (HTTPS)

HTTP Request URL: [request path]

http://[host]:[port]/[request path]?[query string]
[request path] is made of
– Context: /<context of web app>
– Servlet name: /<component alias>
– Path information: the rest of it
Examples
– http://localhost:8080/hello1/greeting
– http://localhost:8080/hello1/greeting.jsp
– http://daydreamer/catalog/lawn/index.html

What is Servlet Response?

Contains data passed from servlet to client
All servlet responses implement
ServletResponse interface
– Retrieve an output stream
– Indicate content type
– Indicate whether to buffer output
– Set localization information
HttpServletResponse extends ServletResponse
– HTTP response status code
– Cookies

Outline

N-Tier Model and Containers
What is J2EE?
What Makes Up J2EE?
Architecture
Development and Deployment of Applications
Business Tier: EJBs
Enterprise Integration: Distributed Messaging,
JMS and MDB
Presentation Tier: Servlets and JSP
Data Tier: JDBC

What is JDBC?

Standard Java API for accessing relational
database
– Hides database specific details from application

Part of J2SE

JDBC API

Defines a set of Java Interfaces, which are
implemented by vendor-specific JDBC Drivers
– Applications use this set of Java interfaces for performing

database operations
Majority of JDBC API is located in java.sql package
– DriverManager, Connection, ResultSet, DatabaseMetaData,

ResultSetMetaData, PreparedStatement, CallableStatement
and Types

Other advanced functionality exists in the javax.sql
package
– DataSource

JDBC Driver

Database specific implemention of JDBC
interfaces
– Every database server has corresponding JDBC

driver(s)
http://industry.java.sun.com/products/jdbc/driver
s

Database URL

Used to make a connection to the database
– Can contain server, port, protocol etc…

● jdbc:subprotocol_name:driver_dependant_databasename
– Oracle thin driver

1.jdbc:oracle:thin:@machinename:1521:dbname
– Pointbase

• jdbc:pointbase:server://localhost/sample

Steps of Using JDBC

1.Load DB-specific JDBC driver
2.Get a Connection object
3.Get a Statement object
4.Execute queries and/or updates
5.Read results
6.Read Meta-data (optional step)
7.Close Statement and Connection objects

JNDI Registration of a DataSource (JDBC
Resource) Object

The JNDI name of a JDBC resource is expected in
the java:comp/env/jdbc subcontext
– For example, the JNDI name for the resource of a

BookDB database could be java:comp/env/jdbc/BookDB
Because all resource JNDI names are in the
java:comp/env subcontext, when you specify the
JNDI name of a JDBC resource enter only
jdbc/name. For example, for a payroll database,
specify jdbc/BookDB

Why Connection Pooling?

Database connection is an expensive and
limited resource
– Using connection pooling, a smaller number of

connections are shared by a larger number of clients
Creating and destroying database connections
are expensive operations
– Using connection pooling, a set of connections are pre-

created and are available as needed basis cutting down
on the overhead of creating and destroying database
connections

Connection Pooling & DataSource

● DataSource objects that implement connection
pooling also produce a connection to the
particular data source that the DataSource class
represents

● The connection object that the getConnection
method returns is a handle to a
PooledConnection object rather than being a
physical connection
– The application code works the same way

Retrieval and Usage of a DataSource
Object

Application perform JNDI lookup operation to retrieve
DataSource object
DataSource object is then used to retrieve a
Connection object
In the application's web.xml, information on external
resource, DataSource object in this case, is provided
For Sun Java System App server, the mapping of
external resource and JNDI name is provided
– This provides further flexibility

Example: Retrieval of DataSource Object
via JNDI

BookDBAO.java in bookstore1 application
public class BookDBAO {
 private ArrayList books;
 Connection con;
 private boolean conFree = true;
 public BookDBAO() throws Exception {
 try {
 Context initCtx = new InitialContext();
 Context envCtx = (Context) initCtx.lookup(

"java:comp/env");
 DataSource ds = (DataSource) envCtx.lookup(

"jdbc/BookDB");
 con = ds.getConnection();
 } catch (Exception ex) {
 ...
 }
 }

Transaction

One of the main benefits to using a PreparedStatement
is executing the statements in a transactional manner
The committing of each statement when it is first
executed is very time consuming
By setting AutoCommit to false, the developer can
update the database more then once and then commit
the entire transaction as a whole
Also, if each statement is dependant on the other, the
entire transaction can be rolled back and the user
notified.

JDBC Transaction Methods

setAutoCommit()
– If set true, every executed statement is committed

immediately
commit()
– Relevant only if setAutoCommit(false)
– Commit operations performed since the opening of a

Connection or last commit() or rollback() calls
rollback()
– Relevant only if setAutoCommit(false)
– Cancels all operations performed

Transactions Example

Connection connection = null;
try {

connection = DriverManager.getConnection
("jdbc:oracle:thin:@machinename:1521:dbname",
"username","password");

connection.setAutoCommit(false);
PreparedStatement updateQty =

connection.prepareStatement(
 "UPDATE STORE_SALES SET QTY = ?”
 +” WHERE ITEM_CODE = ? ");

int [][] arrValueToUpdate = { {123, 500} , {124, 250},
 {125, 10}, {126, 350} };

Transaction Example cont.

int iRecordsUpdate = 0;
for (int items=0 ; items < arrValueToUpdate.length ;
items++) {
int itemCode = arrValueToUpdate[items][0];
int qty = arrValueToUpdate[items][1];
updateQty.setInt(1,qty);
updateQty.setInt(2,itemCode);
iRecordsUpdate += updateQty.executeUpdate();

}
connection.commit();
System.out.println(iRecordsUpdate + " record(s) have
been updated");

Transaction Example cont.

try {
connection.rollback();

} catch(SQLException sqleRollback) {
System.out.println("" + sqleRollback);

} finally {
try {

connection.close();
} catch(SQLException sqleClose) {

System.out.println("" + sqleClose);
}

}

Resources

Partially based on Shang Shin's Java Passion
Slides

http://www.javapassion.com/j2ee/
J2EE Home page

java.sun.com/j2ee
J2EE 1.4 SDK

java.sun.com/j2ee/1.4/download.html#appserv
J2EE 1.4 Tutorial

java.sun.com/j2ee/1.4/download.html#appserv
J2EE Blueprints

java.sun.com/blueprints/enterprise/index.html

A Brief Introduction to J2EE

Thank You

