
Making Cool QuickDraw 3D
Applications!

By
Brian Greenstone

Apple Computer, Inc.

1

Introduction

QuickDraw 3D is perhaps the best-designed API that Apple Computer
has ever created. It provides a way for the average programmer
who is not well versed in 3D programming to create complex 3D
scenes in very little time with very little effort. The API is so robust
that even beginner programmers should have no problem diving into
this otherwise convoluted and unstandardized technology we all
know as “3D Graphics”. A recent survey of 25 QuickDraw 3D
developers showed that the average developer gave the QuickDraw
3D API an 8.8 out of 10 where 0 was awful, 5 was average and 10
was great.

At first glance QuickDraw 3D may seem overwhelming (the
QuickDraw 3D 1.5 Technical Reference is almost 1400 pages long!),
but keep in mind that you’ll probably never use 70% of what’s in the
book. The reality of the situation is that to use QuickDraw 3D and to
use it well, you only need to be familiar with a small subset of the
functions that QuickDraw 3D provides.

This document is going to focus on that small subset of API functions
which are needed to create fast and efficient 3D worlds. We will not
be discussing the slow and difficult to use geometries such as NURBS,
but rather we will focus mainly on one geometry in particular: the
TriMesh. This is the data structure which is the easiest to work with
and also provides the maximum rendering performance, especially
with 3D accelerator hardware.

There are many QuickDraw 3D applications available today, but very
few of the programmers who wrote them knew how to write the
code in such a way as to achieve maximum performance. I’ve seen
some 3DMF geometry files created by these applications which
render up to 13 times faster after they have been reoptimized with
the techniques discussed in this book. It’s not that these weren’t
good programmers, it’s just that there is very little information
available to developers to teach them what works best in QuickDraw
3D.

2

Many people have asked me if I really think QuickDraw 3D is “fast.”
Well, yes, it’s “fast”, but “fast” is a relative term. QuickDraw 3D will
never be as fast as a custom 3D engine which you might write for a
specific task such as a game or a modeling application. No general
purpose API is ever as fast as an engine built for a specific task, but
QuickDraw 3D can come very, very close. I believe that QuickDraw
3D can come to 90-95% the speed of a custom 3D engine in most
cases. I’ve thought about writing my own 3D engine for several
years now, but as QuickDraw 3D has gotten better and better, I’ve
found that it’s simply not worth the expense of writing such an
engine when QuickDraw 3D does everything I’d ever need and it only
costs me a small percentage of relative speed.

This document is not meant to be a 3D tutorial, nor a tutorial on
QuickDraw 3D. I am going to assume that you already have a basic
understanding of how 3D and QuickDraw 3D work. This will save
hundreds of pages which would only duplicate information found in
dozens of other 3D programming books found at any book store.
Instead, this book will teach you how to code QuickDraw 3D such that
you get the maximum possible performance out of your applications.
It will also show you how to perform various 3D tasks such as
calculating splines, doing rudimentary collision detection, and
creating QuickTime movies with 3D tracks. By the time you finish
reading this documentation you will know all there is to know about
writing super-fast QuickDraw 3D applications.

1

Topic 1:

The TriMesh Geometry
WHAT IS THE TRIMESH?

TriMesh is your friend. If your primary concern is speed you will
want to use TriMesh geometries since they will render fast. The
TriMesh geometry type is a very low-level geometry which was
introduced in QuickDraw 3D 1.5. Before TriMesh existed, we used
less optimized geometry types like Mesh or TriGrid to build our 3D
models. These other geometry types are easier and more flexible to
work with than TriMesh, but generally do not give you as much
performance as the TriMesh. In addition, 3DMF files containing Mesh
geometries take a lot longer to load than 3DMF files containing
TriMeshes.

TriMesh geometry is very streamlined and the data can be passed to
hardware accelerators in whole without being broken down into its
individual triangles. Most 3D accelerators can process TriMeshes
around two times faster than they can a stream of individual
triangles.

The TriMesh Data Structures

TQ3TriMeshData

Simply put, a TriMesh is just a bunch of parallel arrays which define
all of the points and attributes in a model. The main data structure
looks like this:

2

typedef struct TQ3TriMeshData
{

TQ3AttributeSet triMeshAttributeSet;

unsigned long numTriangles;
TQ3TriMeshTriangleData *triangles;

unsigned long numTriangleAttributeTypes;
TQ3TriMeshAttributeData *triangleAttributeTypes;

unsigned long numEdges;
TQ3TriMeshEdgeData *edges;

unsigned long numEdgeAttributeTypes;
TQ3TriMeshAttributeData *edgeAttributeTypes;

unsigned long numPoints;
TQ3Point3D *points;

unsigned long numVertexAttributeTypes;
TQ3TriMeshAttributeData *vertexAttributeTypes;

TQ3BoundingBox bBox;
} TQ3TriMeshData;

Unlike most of the other geometries in QuickDraw 3D, there are no
support functions which help you add faces, vertices, or attributes to
a TriMesh. You get to build all of the data by hand, therefore, it is
important to really understand the TQ3TriMeshData structure.

The first record, triMeshAttributeSet, is simply a reference to a
regular QuickDraw 3D Attribute Set object. This attribute set will
contain all of the attributes to apply to the entire TriMesh such as its
color or texture map.

numTriangles determines how many triangles are in the TriMesh,
and triangles points to an array of triangle definitions (see below)
which you supply.

numTriangleAttributeTypes determines how many types of
attributes the triangles have, and triangleAttributeTypes points to
an array which contains all of the attribute data. All of the triangles
in a TriMesh have the same types and quantities of attributes, but
the value of each attribute can differ from triangle to triangle. In
other words, if one triangle has a face normal attribute, then they all
have face normal attributes. Actually, the only triangle attribute

3

which we will ever want to include in our TriMeshes is a face normal
attribute. I’ll go into more detail about triangle and vertex attributes
later, but suffice to say that you will never want to assign anything
but face normals to the triangles.

numEdges is used for defining edges on your TriMesh. This is only
needed if the fill style you’re using to render is set to
kQ3FillStyleEdges. Since you’re probably not going to use edge
rendering for a fast, interactive, 3D application, we’ll always leave
numEdges and numEdgeAttributeTypes set to 0. Also be sure to set
the edges and edgeAttributeTypes pointers to nil.

numPoints is the number of vertices in the TriMesh, and points
points to an array of 3D points (TQ3Point3D) containing the
coordinates of all the vertices.

numVertexAttributeTypes and vertexAttributeTypes are like their
counterparts numTriangleAttributeTypes and
triangleAttributeTypes. These records define the attributes you
wish to assign to each vertex. The only attributes we’ll need to apply
to our vertices are vertex normals and texture uv coordinates.

bBox is the bounding box encapsulating all of the points in the
TriMesh. QuickDraw 3D provides a utility function called
Q3BoundingBox_SetFromPoints3D which can be used to calculate the
correct bounding box based on the points in the points array.

It is critical that you calculate this correctly! Do not even
consider setting bBox.isEmpty to true! This may result in a
serious performance hit. Also, make sure to never ever create
a bounding box smaller than what it should be. If there are
vertices which lie outside of the bounding box then your
application is destined to eventually crash. Be very diligent
about generating a correct bounding box for each TriMesh.

4

Triangles

As described above, triangles points to an array of triangle
definitions. A triangle definition is a simple data structure which
looks like this:

typedef struct TQ3TriMeshTriangleData
{

unsigned long pointIndices[3];
} TQ3TriMeshTriangleData;

Since the points are kept in the points array, all that is needed to
define a triangle are three indices into the points list. So, suppose
we have following geometry:

Figure 1.0

0

1 2
3

4

A

B C

A geometry made of 3 triangles (A, B, anc C) and 5
points (0..4)

The triangles are thus built in the TriMesh as:

TQ3TriMeshData myTriMesh;
TQ3TriMeshTriangleData triangles[3] =
{

1,0,4, // triangle A
1,4,2, // triangle B
2,4,3 // triangle C

};

myTriMesh.numTriangles = 3;
myTriMesh.triangles = &triangles[0];

5

Figure 1.1

Point List

0

1

2

3

4

Triangle List

A

B

C

Graphical representation of the relation between
triangles and the point list.

TriMesh Attribute Arrays

Setting up attribute arrays for faces and vertices is a little strange at
first because it doesn’t work like anything else in QuickDraw 3D. It’s
actually a bit messy, but it makes sense.

Remember that numTriangleAttributeTypes determines how many
types of attributes we need for the faces of the TriMesh. Since the
only face attribute we will ever want to apply to a TriMesh is a face
normal, we can set this value to 1. The pointer
triangleAttributeTypes simply points to a single
TQ3TriMeshAttributeData structure which has the following form:

typedef struct TQ3TriMeshAttributeData
{

TQ3AttributeType attributeType;
void *data;
char *attributeUseArray;

} TQ3TriMeshAttributeData;

The attributeType parameter is set to kQ3AttributeTypeNormal since
we want to assign normals to the faces.

6

data points to an array of values for the specified attribute type.
Since our attribute type is kQ3AttributeTypeNormal this data pointer
points to an array of vectors (TQ3Vector3D).

There must be exactly as many vectors in the array as there
are triangles in the model. This way there is exactly 1 vector
for each triangle - no more, no less.

attributeUseArray is used for custom attributes so always set this to
nil since we don’t want to mess with those.

The code to set up these attributes might look like the following:

TQ3TriMeshData myTriMesh;
TQ3TriMeshAttributeData attribData;
TQ3Vector3D vectorArray[NUM_TRIANGLES];

/* SET MAIN TRIMESH STRUCT */

myTriMesh.numTriangles = NUM_TRIANGLES;

myTriMesh.numTriangleAttributeTypes = 1;
 myTriMesh.triangleAttributeTypes = &attribData;

/* SET ATTRIBUTE STRUCT */

attribData.attributeType = kQ3AttributeTypeNormal;
attribData.data = &vectorArray[0];
attribData.attributeUseArray = nil;

Setting normals for each of the vertices is almost completely identical
to the above code, but very often we will also need to apply UV
texture mapping coordinates to each vertex. As with the faces, there
must be a 1:1 correlation between the number of points and the
number of attribute values for each attribute type, therefore, the
normal and uv arrays must have as many entries as there are points
in the model.

7

Figure 1.2

Point List

0

1

2

3

4

Normals UV Coords

Diagram showing the parallel correlations among
the point list, normal list, and UV list.

The following code shows how to setup the normal and uv attributes
for the vertices in a TriMesh:

TQ3TriMeshData myTriMesh;
TQ3TriMeshAttributeData attribData[2];
TQ3Vector3D vectorArray[NUM_VERTICES];
TQ3Param2D uvArray[NUM_VERTICES];

/* SET MAIN TRIMESH STRUCT */

myTriMesh.numPoints = NUM_ VERTICES;

myTriMesh.numVertexAttributeTypes = 2;
 myTriMesh.vertexAttributeTypes = &attribData;

/* SET ATTRIBUTE STRUCT */

attribData[0].attributeType = kQ3AttributeTypeNormal;
attribData[0].data = &vectorArray[0];
attribData[0].attributeUseArray = nil;

attribData[1].attributeType = kQ3AttributeTypeSurfaceUV;
attribData[1].data = &uvArray [0];
attribData[1].attributeUseArray = nil;

Building the Whole TriMesh

Now let’s see how to build the TriMesh shown in Figure 1.0.

8

/*************** BUILD MY TRIMESH ****************/
//
// INPUT: textureAttrib = reference to attribute set containing
// the texture shader to apply to the
// TriMesh.
//
// OUTPUT: a reference to the new TriMesh geometry object
//

TQ3GeometryObject BuildMyTriMesh(TQ3AttributeSet *textureAttrib)
{
TQ3TriMeshData myTriMeshData;
TQ3TriMeshAttributeData vertexAttribs[2],faceAttribs;
TQ3GeometryObject myTriMeshObject;

TQ3Vector3D vertexNormals[5] =
{

x0,y0,z0,
x1,y1,z1,
x2,y2,z2,
x3,y3,z3,
x4,y4,z4

};

TQ3Vector3D faceNormals[3] =
{

x0,y0,z0,
x1,y1,z1,
x2,y2,z2

};

TQ3Param2D uvArray[5] =
{

u0,v0,
u1,v1,
u2,v2,
u3,v3,
u4,v4

};

TQ3Point3D points[5] =
{

x0,y0,z0,
x1,y1,z1,
x2,y2,z2,
x3,y3,z3,
x4,y4,z4

};

TQ3TriMeshTriangleData triangles[3] =
{

1,0,4, // triangle A
1,4,2, // triangle B
2,4,3 // triangle C

};

9

/* BUILD MAIN TRIMESH DATA STRUCTURE */

myTriMeshData.triMeshAttributeSet = textureAttrib;

myTriMeshData.numTriangles = 3;
myTriMeshData.triangles = &triangles[0];

myTriMeshData.numTriangleAttributeTypes = 1;
myTriMeshData.triangleAttributeTypes = &faceAttribs;

myTriMeshData.numEdges = 0;
myTriMeshData.edges = nil;
myTriMeshData.numEdgeAttributeTypes = 0;
myTriMeshData.edgeAttributeTypes = nil;

myTriMeshData.numPoints = 5;
myTriMeshData.points = &points[0];

myTriMeshData.numVertexAttributeTypes = 2;
 myTriMeshData.vertexAttributeTypes = &vertexAttribs[0];

/* CALCULATE BOUNDING BOX */

Q3BoundingBox_SetFromPoints3D(&myTriMeshData.bBox, &points[0],
 5, sizeof(TQ3Point3D));

/* CREATE FACE ATTRIBUTES */

faceAttribs.attributeType = kQ3AttributeTypeNormal;
faceAttribs.data = &faceNormals[0];
faceAttribs.attributeUseArray = nil;

/* CREATE VERTEX ATTRIBUTES */

vertexAttribs[0].attributeType = kQ3AttributeTypeNormal;
vertexAttribs[0].data = &vertexNormals[0];
vertexAttribs[0].attributeUseArray = nil;

vertexAttribs[1].attributeType = kQ3AttributeTypeSurfaceUV;
vertexAttribs[1].data = &uvArray[0];
vertexAttribs[1].attributeUseArray = nil;

/* MAKE THE TRIMESH GEOMETRY OBJECT */

myTriMeshObject = Q3TriMesh_New(&myTriMeshData);
if (myTriMeshObject == nil)

DoError("\pQ3TriMesh_New failed!");

return(myTriMeshObject);
}

10

When Q3TriMesh_New is called all of the data in the various TriMesh
data structures and arrays gets copied into QuickDraw 3D’s internal
structures. Any further modifications to myTriMeshData or the
attribute structures will have no effect on the new TriMesh object we
have created. The only way to change the settings of this TriMesh is
to call Q3TriMesh_SetData which will update the object with the
latest values contained in the data structures.

Object References & Memory

When the TriMesh object is created, the reference count of the
triMeshAttributeSet is increased by 1 since that attribute object is
now included in the new TriMesh. Making a call to
Q3TriMesh_GetData to get all of the data in a TriMesh object will
increase the reference count of the attribute set again. Because of
this action, it is very important that you properly dispose of TriMesh
data obtained from a call to Q3TriMesh_GetData. Calling
Q3TriMesh_Empty data will properly decrement the attribute set’s
reference count and will dispose of all other memory allocated by
Q3TriMesh_GetData.

It is important to realize that Q3TriMesh_GetData allocates memory
and copies the TriMesh’s data into that memory. The pointers
contained in the main TriMesh data structure do not point to data
actually being used by QuickDraw 3D to represent the TriMesh. The
pointers point to copies of that data, therefore, modifying the data
will have no effect until Q3TriMesh_SetData is called to update the
TriMesh.

Failure to call Q3TriMesh_Empty will result in memory leaks and
incorrect reference counts to any assigned attribute sets.

MAKING EFFICIENT TRIMESHES

Just because you can build a TriMesh doesn’t mean that your 3D
application will run fast. I’ve seen a lot of people who create
arbitrary TriMeshes and expect them to be blazingly fast, but this is
not how it works. To make QuickDraw 3D burn rubber and scream

11

like a demon, you need to build TriMeshes in a particular way by
following some basic rules and principles:

One Material Per TriMesh

The most important rule to making fast and efficient TriMeshes is to
only apply one “material” per TriMesh. In QuickDraw 3D there is no
such thing as a “material” per se, but for our purposes a material is a
combination of attributes which define how a surface looks. These
attributes include texture shaders, colors, specular and diffuse
values, etc. So, when we create a TriMesh object, we never ever
want to have more than one material assigned to that TriMesh.
Never build a single TriMesh with multiple textures or multiple
colors. This will kill any performance you ever hoped to gain by
using TriMeshes.

You may be wondering “How do I build my airplane model which has
six different texture maps if I’m being told to only apply one
material per TriMesh?” The answer is that you must build your
airplane model from six different TriMeshes - one for each texture
map. The reason for doing this is because QuickDraw 3D, RAVE, and
the 3D accelerator cards function much faster when they are given
large streams of triangles which all have common attributes. If you
assign a texture shader attribute to each individual triangle in a
TriMesh, don’t expect to get very good rendering performance at all.
You should only apply a texture shader or color attribute to the
TriMesh’s main attribute set, but never ever to the individual
triangles or vertices.

Earlier, I told you that the only attribute you will ever want to apply
to a triangle is a face normal. Never waver from this rule because a
face normal is the only attribute you can assign to a triangle in a
TriMesh which will not hinder performance. The same goes for
vertex attributes. Only vertex normals and vertex u/v texture
mapping coordinates should be used in a TriMesh. As long as you
stick to the “one material per TriMesh rule” you’ll be in good shape.

12

Watch out for Duplicate Data

For as much as I have praised the wonderful TriMesh, it is not
without flaws. It does have one fundamental flaw which can cause
performance problems and there is no good way around it. The best
way to explain the issue is to use a simple example. Suppose we
want to model a cube:

Figure 1.3

A cube constructed from 12 triangles and 8 points

This cube is made up of 12 triangles, 8 points, and 6 normals, right?
Wrong! There is no way to represent this cube in such a way using
the TriMesh, and here’s why:

1. Face and Vertex attributes cannot be shared in any way,
therefore, we end up with two independent arrays of normals:
one for the triangles and one for the vertices. QuickDraw 3D
must transform both lists of normals independently even
though they contain identical values.

2. Because TriMeshes are based on the concept of parallel arrays
of data, we end up with even more duplicate data per vertex
and per triangle. For example, the two front faces on the cube
have the same face normal, but because the attribute array is
parallel to the triangle array, each triangle has to have it’s own
copy of the normal. Same goes for the vertices of each triangle.

13

The three vertices of a triangle in the cube should share the
same normal, but the parallel arrays of attributes makes this
impossible, thus we end up with three copies of the same
normal.

Figure 1.4

Triangle A

Triangle B

Identical face normals, but cannot be shared

Triangle A and B have identical face normals which
cannot be shared, so two copies are needed.

3. The same problem applies to vertex u/v coordinates. Even
though a triangle on the left of the cube may share a vertex
coordinate with a triangle on the front, the u/v coordinates for
that vertex will probably be different for each triangle, thus
the point cannot be shared by the two triangles. The result is a
duplicate copy of the point.

Suppose each face of the cube has a different texture assigned
to it (say we’re making a model of a die). Remember that you
should only have one material per TriMesh. This means that
each side of the cube needs to be a separate TriMesh, therefore,
it would take six different TriMeshes to represent this model.
Even if we broke the one material per TriMesh rule, we’d still
have the problem of vertices having different u/v coordinates
depending on which triangle was using it.

14

Figure 1.5

Triangle A

Triangle B

Shared point, but not shared u/v

Vertices cannot share common points if the u/v
values are not identical.

The result of this inability to share duplicate data is that it takes 24
points, 12 face normals, and 24 vertex normals to build this TriMesh.
Not a very efficient way to represent a simple cube, eh?

Working Around The Restrictions

When I was first told about the above problems with TriMeshes I
figured that was the final nail in the coffin for TriMesh. I couldn’t
understand how I was supposed to build anything under those kinds
of conditions. Luckily, I found that just about anything in the
universe has a work-around and even though there’s no “perfect”
solution to these problems, there are “acceptable” solutions.
Additionally, the cube is a sort of worst-case example. Most real-
world models don’t suffer this severity of the problem.

15

Merging Texture Maps

If you have an airplane model which uses 4 different texture maps,
there’s no need to create 4 different TriMeshes to build it. It makes
much more sense to try to merge all 4 textures into one bigger
texture map. The simple way to do this is shown in Figure 1.6.

Figure 1.6

Combine 4 separate textures into one big texture to
that a single TriMesh can be built

The more complex way to do this is to fill in the “black” space in a
texture with other sub-textures. For example, the following single
texture map actually contains multiple textures which we’ve wedged
into what was the black space in the largest of the original textures:

16

Figure 1.7

We put the wing, wheel, and windshield texture in
the “black-space” of the body texture.

These solutions have their problems, but if maximum speed is your
top concern then these problems will seem trivial. The first problem
is that a large map may have a more difficult time fitting into VRAM
if VRAM is running low on your 3D accelerator card. Secondly, if you
are using Bi-Linear or Tri-Linear texture mapping then you may get
texture bleeding. This occurs at the edges of a texture map where
the pixels are smoothed with the pixels adjacent to it. If the adjacent
pixels are from another texture map, then you may get some bleed
through. To avoid this, just keep a margin in between your merged
textures.

Smoothing Models

If the above cube model was smoothed such that the vertex normals
were identical for each triangle using that vertex, then vertices could
be shared.

17

Figure 1.8

When triangles share vertices, the normals get
averaged.

The cube no longer has the “hard” edges that we wanted, but it does
share common vertices with common points and normals which
improves performance dramatically. Now we can build the TriMesh
from 8 points & vertex normals, and 12 face normals.

Figure 1.9

The cube on the left shows the inefficient TriMesh
with lots of duplicate data. The cube on the right

18

doesn’t have the hard edges, but it’s much more
efficient.

So, the simple rule here is to avoid having hard edges in your
models. Hard edges equate to duplicate vertices which slow down
performance.

You may think that this really sucks, but realize that for rendering
organic models, this works great. The dinosaur models in Nanosaur
have no hard edges and use one gigantic texture map. They form
incredibly optimal TriMeshes and looked great!

Figure 1.10

This model is entirely smooth shaded and is made
from a single, highly optmized TriMesh.

If you absolutely must create models with hard edges then just be
aware that you may get less performance that you expect. Always
make the best attempt to share vertices in a model to get the best
performance.

19

Form*Z & 3DMF Optimizer

Exporting 3DMF Files from Form*Z

For building highly efficient 3DMF models, I like to use Form*Z. In
addition to being a fantastic 3D modeling application for creating low
polygon count geometries, Form*Z output’s fairly clean 3DMF files.
Its output is a little buggy at times, but if you use the right export
settings it works great! The following images show what settings you
should use in Form*Z when exporting a 3DMF file:

20

These settings work great about 99% of the time, but occasionally the
exported model will have inverted faces. It seems that the solution
to this is to just “tweak” the texture mapping coordinates of any
objects whose faces are flipped and then re-export the 3DMF file.
Usually, this will cause the bad faces to magically correct themselves.

You’ll note that I recommend you export the geometry as Mesh and
not TriMesh. I’ve had problems with the TriMesh export in Form*Z
and I’ve found Mesh to be much more reliable. Not to worry,
however, because 3DMF Optimizer takes care of converting those
meshes into TriMeshes.

21

Also note that I turn “off” the Flip X option and turn “on” the Flip Y
option. For some reason, Form*Z always defaults to the wrong
settings. If you use their defaults, your object will be inverted along
the z-axis when you view it in a QuickDraw 3D application, therefore,
make sure you remember to change these checkboxes when you
export your models.

One other problem you may have with Form*Z are the vertex
normals. If you have a model with some smoothed geometry and
some non-smoothed geometry, you’re out of luck. Seems that when
you go to export the model to 3DMF, Form*Z either smoothes the
entire thing or none of it. If you have the Fix Smooth Shading option
activated then you get non-smoothed models, otherwise, the entire
model will be smoothed whether you wanted it to be or not.

Form*Z does export transparency attributes on transparent
geometry, but it does not use the transparency value in the material
you have assigned to it. Rather, it uses the Transparency on/off
value which you can apply to a model on an object by object basis.
The transparency value applied is 50% and unfortunately there is no
way to modify that.

Using 3DMF Optimizer

Once you have a 3DMF file which you created in Form*Z or any of the
other 3D modelers, you should always process it with 3DMF
Optimizer. This tool parses a 3DMF file, optimizes its contents, and
converts all geometry into TriMeshes. The 3DMF file output by 3DMF
Optimizer is as optimal as you can possibly make it.

In general, 3DMF Optimizer speeds up rendering of a model by 2 to
3x and it decreases file sizes and load times by 4-10x. Some of the
more “offensive” 3DMF files get speed-ups in the range of 5-13x!!!

3DMF Optimizer has a nice Options dialog which lets you determine
many aspects of the optimizing process. In general, I recommend
that you keep the settings as they are in the following figure unless
you have a specific need to change them:

22

These settings will generate the fastest and smallest 3DMF file
possible. This tool can do a lot of great things with 3DMF files and it
is constantly being updated. A demo is available on the Pangea
Software web site at http://www.realtime.net/~pangea.

STRIPS & FANS OPTIMIZATIONS

There is one more TriMesh optimization which may speed up your
application: Strips and Fans. Be warned that as of this writing, this
optimization actually has no effect. RAVE directly supports Strips
and Fans, but QuickDraw 3D does not. QuickDraw 3D does, however,
support the TriMesh (obviously), and if a smart 3D accelerator card
driver checks arbitrary TriMeshes for Strips and Fans, then this
optimization will work for you. Unfortunately, I do not believe that

23

any of the 3D card drivers currently make such a test. Also note that
the strip and fan optimization really does only apply to 3D
accelerator cards.

It is unlikely that QuickDraw 3D will ever directly support Strips and
Fans, but you never know. This section is going to talk about Strips
and Fans in the off chance that it eventually is added to QuickDraw
3D’s internal workings, but keep in mind that currently the only way
to make use of Strips and Fans is to write code directly to RAVE
instead of QuickDraw 3D.

Strips

A “strip” or “fan” simply refers to the way in which triangles and
vertices are ordered in a TriMesh. The idea is to be able to represent
a triangle by only 1 vertex instead of 3. “How can this be done?” you
ask. Look at the following mesh:

Figure 2.11

0

1

2

3

4

5

6

A
B

C

D

E

A TriMesh which is “stripped”

As this TriMesh is processed, we work from triangle A through
triangle E. When it passes triangle A to the 3D hardware, it needs to
pass vertices 0, 1, and 2.

Next, we do triangle B, but because vertices 1 and 2 were already
sent to the hardware for triangle A, we only need to send vertex 3 to

24

define triangle B. When this happens, the 3D hardware assumes that
you want to use the last two vertices from the previous triangle plus
the one new vertex to define the new triangle. So, to draw triangle C,
QuickDraw 3D only needs to send vertex 4 to the hardware because
the hardware automatically knows to use vertex 2 and 3 from the
previous triangle. Following this pattern you can see that triangle D
only needs to send vertex 5 and so on and so on.

Fans

Fans are very similar to Strips, but they revolve around a central
vertex as shown here:

Figure 2.12

0

1 2

3

4
5

A

B

C
D

Here, triangle A is drawn by passing vertices 0, 1, and 2 to the 3D
hardware. Next, to draw triangle B, only vertex 3 needs to be passed
since the hardware will use vertices 0 and 2 from the previous
triangle.

Triangle C will now use vertices 0 and 3 from triangle B, and triangle
D will use vertices 0 and 4 from triangle C, and so on.

25

Don’t Get Too Excited

Don’t get too excited about using Strips and Fans to build your
TriMesh. Writing an algorithm to efficiently generate long streams of
triangles like this is very difficult. Not only do you have to submit
adjacent triangles one after another, but the vertex list being used
for these triangles must be linearly incremental. In other words, the
submitted vertices must be in order such as 0,1,2,3,4, etc. or
104,105,106, etc. Taking an arbitrary 3D model and getting the data
into this kind of order is extremely difficult and often impossible to
do with any degree of efficiency.

Like I said earlier, the current version of QuickDraw 3D does not
even recognize strips or fans. The only benefit you will get from
strips and fans is if you are writing directly to RAVE in which case
you can pass your data to the hardware as strips or fans and get a
substantial speedup. There is a higher chance that some 3D
accelerator drivers will automatically detect Strip and Fan patterns
in a TriMesh than the chance of having direct Strip and Fan support
in QuickDraw 3D. Note that if a 3D driver recognizes a Strip or Fan in
a TriMesh that the vertices do not need to be sequentially ordered.
The driver will simply check if the first two vertices of the new
triangle match the last two vertices of the previous triangle, and if
so, it knows that it is a Strip.

Should QuickDraw 3D ever support strips and fans, you should also
note that the vertex ordering of every other triangle switches
direction. In figure 2.11 the first triangle’s vertices are ordered
clockwise (0,1, and 2), but the second triangle is ordered counter-
clockwise (1,2 and 3). Then the third triangle is clock wise again (2,3
and 4). If you have backface removal turned on in QuickDraw 3D,
then you’ll need to make sure that your face normals also alternate
to cancel out the changes in vertex ordering. Otherwise, your
TriMesh will be drawn with every other triangle removed via
backface removal.

26

EDGE GENERATION

As mentioned earlier in this chapter, you should set numEdges to 0 in
the TriMeshData structure because this information is not needed for
rendering triangles. Having this data only increases the file size and
memory usage. However, there are many times where edge
rendering comes in very useful. If there are edges assigned to your
TriMesh, the Wireframe renderer will use those edges to display the
model. Otherwise, the Wireframe renderer shows a true wireframe
of every edge of every triangle in the model – not a very nice thing
to look at. Rendering with edges usually displays a much cleaner
image, and I use edge mode extensively in many of my 3D tools.

The easy (and incorrect) way to generate edges is just to assume that
each side of a triangle is an edge. Don’t do this! An edge is a side of
a triangle which is not adjacent to any other co-planar triangles.
Correctly generating edges for a TriMesh is a fairly easy process
which consists of parsing the triangle data and looking for adjacent
triangles whose face normals are not identical.

The following code generates edge data for the input TriMesh object:

#define kMaxEdges 2000

/****************** CALC TRIMESH EDGES *********************/

void CalcTriMeshEdges(TQ3GeometryObject theTriMesh)
{
TQ3TriMeshData triMeshData;
unsigned long faceA,numFaces,faceB,m;
long inda[3],indb[3];
TQ3Vector3D faceNormalA,faceNormalB,v1,v2;
TQ3Status status;
TQ3Point3D *pointList,a[3], b[3],pa1,pa2,pb1,pb2;
TQ3TriMeshEdgeData edgeData[kMaxEdges];
short numEdges = 0,e1,e2;
Boolean edgeOnSpace[3];
TQ3TriMeshTriangleData *faceList;

/* GET TRIMESH DATA */

status = Q3TriMesh_GetData(theTriMesh, &triMeshData);
if (status == kQ3Failure)

DoError("\pCalcTriMeshEdges: Q3TriMesh_GetData failed!");

numFaces = triMeshData.numTriangles; // get # faces
faceList = triMeshData.triangles; // point to face list

27

pointList = triMeshData.points; // point to points

/****************************/
/* SCAN EACH FACE FOR EDGES */
/****************************/

for (faceA = 0; faceA < numFaces; faceA++)
{

/* GET 3 VERTS OF THIS FACE */

inda[0] = faceList[faceA].pointIndices[0];
inda[1] = faceList[faceA].pointIndices[1];
inda[2] = faceList[faceA].pointIndices[2];

a[0] = pointList[inda[0]];
a[1] = pointList[inda[1]];
a[2] = pointList[inda[2]];

edgeOnSpace[0] = true; // assume nothing adjacent on this edge
edgeOnSpace[1] = true;
edgeOnSpace[2] = true;

/* CALC FACE NORMAL */

v1.x = a[0].x - a[1].x;
v1.y = a[0].y - a[1].y;
v1.z = a[0].z - a[1].z;
v2.x = a[2].x - a[1].x;
v2.y = a[2].y - a[1].y;
v2.z = a[2].z - a[1].z;
Q3Vector3D_Cross(&v1, &v2, &faceNormalA);

/* CHECK EACH FACE AGAINST ALL OTHERS */

for (faceB = 0; faceB < numFaces; faceB++)
{

if (faceB == faceA) // dont compare against self
continue;

/* GET 3 VERTS FOR OTHER FACE */

indb[0] = faceList[faceB].pointIndices[0];
indb[1] = faceList[faceB].pointIndices[1];
indb[2] = faceList[faceB].pointIndices[2];

b[0] = pointList[indb[0]];
b[1] = pointList[indb[1]];
b[2] = pointList[indb[2]];

/* CALC FACE NORMAL */

v1.x = b[0].x - b[1].x;
v1.y = b[0].y - b[1].y;
v1.z = b[0].z - b[1].z;
v2.x = b[2].x - b[1].x;

28

v2.y = b[2].y - b[1].y;
v2.z = b[2].z - b[1].z;
Q3Vector3D_Cross(&v1, &v2, &faceNormalB);

/**************************/
/* SCAN 3 EDGES FOR MATCH */
/**************************/

for (e1 = 0; e1 < 3; e1++)
{

pa1 = a[e1]; // get 2 points of edge
if (e1 == 2)

pa2 = a[0];
else

pa2 = a[e1+1];

for (e2 = 0; e2 < 3; e2++)
{

pb1 = b[e2]; // get 2 points of edge
if (e2 == 2)

pb2 = b[0];
else

pb2 = b[e2+1];

/* COMPARE BOTH ENDPOINTS FOR MATCH */

if ((ComparePoints(&pa1,&pb1,0.01) &&
ComparePoints(&pa2,&pb2,0.01)) ||
ComparePoints(&pa1,&pb2,0.01) &&
ComparePoints(&pa2,&pb1,0.01))

{
/***************/
/* GOT A MATCH */
/***************/
//
// we check face normals here (and not earlier)
// b/c we still want to know if a face has an
// adjacent match since empty space indicates an edge.
//

edgeOnSpace[e1] = false;

/* CHECK IF THIS EDGE PREVIOUSLY DETECTED */

if (faceB >= faceA)
continue;

/* IF FACE NORMALS MATCH (OR CLOSE ENOUGH), THEN SKIP */

if (CompareVectors(&faceNormalA, &faceNormalB, 0.01))
continue;

/* ADD EDGE TO LIST */

edgeData[numEdges].pointIndices[0] = inda[e1];

29

if (e1 == 2)
edgeData[numEdges].pointIndices[1] = inda[0];

else
edgeData[numEdges].pointIndices[1] = inda[e1+1];

edgeData[numEdges].triangleIndices[0] = faceA;
edgeData[numEdges].triangleIndices[1] = faceB;

numEdges++;

if (numEdges >= kMaxEdges)
DoError("\pCalcTriMeshEdges: numEdges >= kMaxEdges ");

}
} // e2

} // e1
} // face2

/**************************************/
/* NOW CHECK FOR EDGES ON EMPTY SPACE */
/**************************************/

for (m = 0; m < 3; m++)
{

if (edgeOnSpace[m])
{

edgeData[numEdges].pointIndices[0] = inda[m];
if (m == 2)

edgeData[numEdges].pointIndices[1] = inda[0];
else

edgeData[numEdges].pointIndices[1] = inda[m+1];

edgeData[numEdges].triangleIndices[0] = faceA;
edgeData[numEdges].triangleIndices[1] = faceA;
numEdges++;
if (numEdges >= 2000)

DoFatalAlert("\pCalcTriMeshEdges: m-numEdges >= 2000");
}

}
} // face1

/* UPDATE TRIMESH DATA */

if (numEdges > 0)
{

triMeshData.numEdges = numEdges;
triMeshData.edges = &edgeData[0];

Q3TriMesh_SetData(theTriMesh,&triMeshData);
}

/* CLEANUP */

Q3TriMesh_Empty(&triMeshData);
}

30

/************* COMPARE POINTS ******************/
//
// Returns true if input points are close enough based
// on tolerance value.
//

Boolean ComparePoints(TQ3Point3D *p1, TQ3Point3D *p2,
float tolerance)

{
float dx,dy,dz;

dx = fabs(p1->x - p2->x);
dy = fabs(p1->y - p2->y);
dz = fabs(p1->z - p2->z);

if ((dx <= tolerance) && (dy <= tolerance) && (dz <= tolerance))
return(true);

return(false);
}

/********** COMPARE VECTORS *********************/
//
// Returns true if input vectors are close enough based
// on tolerance value.
//

Boolean CompareVectors(TQ3Vector3D *p1, TQ3Vector3D *p2,
float tolerance)

{
float dx,dy,dz;

dx = fabs(p1->x - p2->x);
dy = fabs(p1->y - p2->y);
dz = fabs(p1->z - p2->z);

if ((dx <= tolerance) && (dy <= tolerance) && (dz <= tolerance))
return(true);

return(false);
}

The code is a little complex because of the multiple nested loops, but
the logic is simple. We compare each triangle against all other
triangles. If two triangles share a common side then we see if the
face normals are the same. If the face normals are different, then we
assume that the shared side is a visible edge and we generate edge
data for it. When no triangle shares a side with the current triangle,
then this side also becomes an edge which we want displayed.

31

The two utility functions ComparePoints and CompareVectors
determines if the input data are “close enough” to be considered a
match.

SUBMITTING TRIMESHES

There is one additional trick you can do with TriMeshes to get a little
more performance:

When submitting your TriMeshes and if you are
using the QuickDraw 3D Interactive Renderer, try
to submit your largest TriMesh first.

The reason for this lies in the way that the Interactive Renderer
manages memory. When a TriMesh is submitted for rendering, the
Interactive Renderer allocates enough temporary memory to work
with that TriMesh. If the next submitted TriMesh in the same
rendering loop is larger than the previous TriMesh, then the
Interactive Renderer has to reallocate a larger block of temporary
memory to work with.

So, if you submit the largest TriMesh first, then all subsequent
smaller TriMeshes will already have enough temporary memory to
work with and the Interactive Renderer will not need to do any new
memory allocation. Depending on your specific circumstances, you
may see up to a 3-5% speed boost if you use this optimization.

SUMMARY

In this chapter we learned about the TriMesh geometry type which
is new to QuickDraw 3D 1.5. TriMesh is the preferred geometry type
if you want the maximum speed in your 3D applications.

To make sure your TriMesh geometries are built for maximum
performance, follow these rules:

32

1. Only use one material per TriMesh.
2. Apply only face normal attributes to triangles.
3. Apply only vertex normals and vertex u/v coordinate

attributes to points.
4. Smooth your models so that vertices will be shared.
5. If possible, attempt to construct Strips and Fans in your

TriMeshes so that hardware acceleration will be improved.
6. Try to submit your largest TriMesh first to improve the

Interactive Renderer’s memory management.

1

Topic 2:

QuickDraw 3D
Optimizations

WHY WE NEED OPTIMIZATIONS

There is a lot going on under QuickDraw 3D’s hood and much of what
goes on can bring your processor to its knees if you’re not careful.
This chapter is going to discuss a long list of optimizations, which you
should use in your QuickDraw 3D code to get the ultimate in
performance. In the previous chapter I talked about the TriMesh
geometry whose use is required in order to get great rendering
performance. That was just the start. Now we get into some meaty
stuff.

OBJECT CULLING

Object culling is the process of eliminating entire geometries from the
rendering pipeline since they are known to be completely out of
camera view. QuickDraw 3D performs object culling on each TriMesh
submitted. Most 3D applications can improve upon this culling
scheme since the “nature” of the geometries is known to the
application. In other words, knowing information about the model
can help us cull more efficiently than QuickDraw 3D can since
QuickDraw 3D knows very little about the functionality of our
application.

2

QUICKDRAW 3D’S CULLING SCHEME

There are two reasons why QuickDraw 3D does not cull objects very
efficiently for most applications.

1. QuickDraw 3D uses bounding boxes to perform culling tests,
and bounding boxes require 8 transforms to do this.

2. A model of an airplane which is made of 5 separate TriMeshes
will require 5 separate culling tests (each test requiring 8
transforms). This would be a total of 40 transforms to cull-test
the object.

Remember, however, that even though this scheme may seem
inefficient, it is the only practical way to perform culling in an
arbitrary 3D engine like QuickDraw 3D. This scheme works in all
situations and makes it difficult for the programmer to screw it up.

HOW WE CAN DO BETTER

With a little optimization I’m about to show you, we can cull the
above-described airplane in only 2 transforms instead of 40. Even if
we have a very complex airplane made up of 100 different
TriMeshes, we can still cull the model with only 2 transforms; not the
800 that QuickDraw 3D would require. When I was writing Weekend
Warrior for Bungie Software, I got a 22% speed boost when I wrote
my own model culling function which was much more efficient than
QuickDraw 3D at removing models outside of the camera’s view.
Other projects of mine have seen a 35% speedup when manual
culling is implemented.

What makes my method of culling so efficient is that I cull entire
models, not individual TriMeshes. We don’t want to cull-test each
wing and fin of the airplane, but rather the entire airplane all at
once. Secondly, we are going to use bounding sphere culling instead
of bounding box culling. Rather than having 8 points to represent a
bound box, we only need an origin and a radius to define a bounding
sphere.

3

Spherical Culling

The idea behind spherical culling is simple. This diagram shows how
it works.

Figure 2.0

yon plane

hither plane

viewing frustum

A top view of our world which shows the placement
of several airplanes, the camera, viewing frustum,

and hither and yon planes.

What needs to be determined is whether a model’s bounding sphere
is outside of the viewing frustum or inside it. Models which are
outside of the viewing frustum are culled since they cannot be seen.
The steps to determine this are as follows:

1. Transform the bounding sphere’s origin to view-space
coordinates.

2. If the front of the bounding sphere is beyond the yon plane
then cull the model.

3. If the back of the bounding sphere is in front of the hither
plane then cull the model.

4

4. Transform the bounding sphere’s origin and radius by the view
to frustum matrix.

5. If the bounding sphere’s right side is off the left edge of the
viewing frustum then cull the model.

6. If the bounding sphere’s left side is off the right edge of the
viewing frustum then cull the model.

7. If you’ve made it this far the model is visible.

Spherical Culling Code

First, we need a function which will calculate the two matrices
needed to do the culling. This function needs to be called every time
the position or orientation of the camera changes.

TQ3Matrix4x4 gCameraWorldToViewMatrix;
TQ3Matrix4x4 gCameraViewToFrustumMatrix;

/**************** GET CAMERA MATRIX INFO *******************/
//
// Gets a copy of the World->View and View->Frustum matricies
// for the current camera.
//

void GetCameraMatrixInfo(TQ3CameraObject theCamera)
{

Q3Camera_GetWorldToView(theCamera, &gCameraWorldToViewMatrix);
Q3Camera_GetViewToFrustum(theCamera, &gCameraViewToFrustumMatrix);

}

Next is the code which does the culling:

/**************** CULL BOUNDING SPHERE *******************/
//
// Returns true if bounding sphere is not in camera's cone of vision.
//
// INPUT: origin = world coords of the origin of the bounding sphere
// radius = radius of the bounding sphere.
//

Boolean CullBoundingSphere(TQ3Point3D *origin, float radius)
{
float radius,w1,w2;
float rx,ry,px,py;

5

TQ3Point3D points[2]; // [0] = point, [1] = radius
TQ3RationalPoint4D outPoint4D[2];

/* TRANSFORM ORIGIN TO VIEW SPACE */

Q3Point3D_Transform(origin, &gCameraWorldToViewMatrix, &points[0]);

/* SEE IF ORIGIN IS BEHIND CAMERA */

if (points[0].z >= -HITHER_DISTANCE)
{

/* SEE IF ENTIRELY BEHIND CAMERA */

if ((points[0].z - radius) > -HITHER_DISTANCE)
return(true);

/* PARTIALLY BEHIND, SO MOVE IN FRONT OF HITHER PLANE */

points[0].z -= radius;
}
else
{

/* SEE IF BEYOND YON PLANE */

if ((points[0].z + radius) < (-YON_DISTANCE))
return(true);

}

/*************************/
/* SEE IF WITHIN FRUSTUM */
/*************************/

/* TRANSFORM ORIGIN & RADIUS BY FRUSTUM MATRIX */

points[1].x = points[1].y = radius;
points[1].z = points[0].z;

Q3Point3D_To4DTransformArray(&points[0],&gCameraViewToFrustumMatrix,
&outPoint4D[0], 2, sizeof(TQ3Point3D),
sizeof(TQ3RationalPoint4D));

/* SEE IF LEFT & RIGHT SIDES ARE IN FRUSTUM */

w1 = outPoint4D[0].w;
w2 = outPoint4D[1].w;

px = w1*outPoint4D[0].x;
py = w1*outPoint4D[0].y;
rx = w2*outPoint4D[1].x;
ry = w2*outPoint4D[1].y;

if ((px + rx) < -1.0f) // see if off left side of frustum
return(true);

if ((px - rx) > 1.0f) // see if off right side of frustum
return(true);

6

if ((py + ry) < -1.0f) // see if off bottom side of frustum
return(true);

if ((py - ry) > 1.0f) // see if off bottom side of frustum
return(true);

/* IT’S VISIBLE, SO DONT CULL IT */

return(false);
}

Over 50% of the models in an average scene will be culled in the first
part of the above function. Statistically speaking, 50% of the models
in a scene are in front of the camera and 50% are in back of the
camera, therefore, our initial check to see if the object is behind the
camera or too far in front to be visible should quickly cull over half
of the models in the scene. In cases where the universe is very large
and your hither/yon values are relatively small, this part of the
function could cull 80-90% of the models.

Now we need to determine if the models are off the top, bottom, left,
or right sides of the viewing frustum, so we transform the origin and
radius into frustum-space. If the model’s bounding sphere is
completely out of the viewing frustum then we don’t draw the model
because it isn’t visible by the camera.

The above code works but it could be faster. To really get the
maximum performance out of a culling function like this, you should
do all of the culling in a single loop rather than one model at a time
(like the above code did). This way you can preload the matrices
into registers and process all of the individual models quickly using
custom transform code rather than QuickDraw 3D’s functions.

Here is some highly optimized code showing how to cull-test all of
the models in a linked list pointed to by gFirstNodePtr.

/************ CULL MODELS IN LINKED LIST ************/
//
// Checks every model in a linked list to see if it
// is in the viewing frustum
//

void CullModelsInLinkedList(void)
{

7

float radius,w,w2;
float rx,ry,px,py,pz;
ObjNode *theNode; // ObjNode is linked list node type
register float n00,n01,n02;
register float n10,n11,n12;
register float n20,n21,n22;
register float n30,n31,n32;
float m00,m01,m02,m03;
float m10,m11,m12,m13;
float m20,m21,m22,m23;
float m30,m31,m32,m33;
float worldX,worldY,worldZ;
float hither,yon;

theNode = gFirstNodePtr; // get & verify 1st node in list
if (theNode == nil)

return;

/* PRELOAD WORLD -> VIEW MATRIX */

n00 = gCameraWorldToViewMatrix.value[0][0];
n01 = gCameraWorldToViewMatrix.value[0][1];
n02 = gCameraWorldToViewMatrix.value[0][2];
n10 = gCameraWorldToViewMatrix.value[1][0];
n11 = gCameraWorldToViewMatrix.value[1][1];
n12 = gCameraWorldToViewMatrix.value[1][2];
n20 = gCameraWorldToViewMatrix.value[2][0];
n21 = gCameraWorldToViewMatrix.value[2][1];
n22 = gCameraWorldToViewMatrix.value[2][2];
n30 = gCameraWorldToViewMatrix.value[3][0];
n31 = gCameraWorldToViewMatrix.value[3][1];
n32 = gCameraWorldToViewMatrix.value[3][2];

/* PRELOAD VIEW -> FRUSTUM MATRIX */

m00 = gCameraViewToFrustumMatrix.value[0][0];
m01 = gCameraViewToFrustumMatrix.value[0][1];
m02 = gCameraViewToFrustumMatrix.value[0][2];
m03 = gCameraViewToFrustumMatrix.value[0][3];
m10 = gCameraViewToFrustumMatrix.value[1][0];
m11 = gCameraViewToFrustumMatrix.value[1][1];
m12 = gCameraViewToFrustumMatrix.value[1][2];
m13 = gCameraViewToFrustumMatrix.value[1][3];
m20 = gCameraViewToFrustumMatrix.value[2][0];
m21 = gCameraViewToFrustumMatrix.value[2][1];
m22 = gCameraViewToFrustumMatrix.value[2][2];
m23 = gCameraViewToFrustumMatrix.value[2][3];
m30 = gCameraViewToFrustumMatrix.value[3][0];
m31 = gCameraViewToFrustumMatrix.value[3][1];
m32 = gCameraViewToFrustumMatrix.value[3][2];
m33 = gCameraViewToFrustumMatrix.value[3][3];

hither = -HITHER_DISTANCE; // preload into registers
yon = -YON_DISTANCE;

8

/* PROCESS EACH NODE/MODEL IN LINKED LIST */

do
{

radius = theNode->Radius; // get radius of model

/**********************************/
/* TRANSFORM ORIGIN TO VIEW-SPACE */
/**********************************/

/* CALC WORLD Z */

px = theNode->Coord.x; // get coord
py = theNode->Coord.y;
pz = theNode->Coord.z;
worldZ = (n02*px) + (n12*py) + // transform to view-space

 (n22*pz) + n32;

/* SEE IF BEHIND CAMERA */

if (worldZ >= hither)
{

if ((worldZ - radius) > hither) // entirely behind camera?
goto draw_off;

/* ONLY PARTIALLY BEHIND */

worldZ -= radius; // move edge over hither plane
}
else
{

/* SEE IF BEYOND YON PLANE */

if ((worldZ + radius) < yon) // too far away?
goto draw_off;

}

/* CALC VIEW X & Y COORDS */

worldX = (n00*px) + (n10*py) + (n20*pz) + n30;
worldY = (n01*px) + (n11*py) + (n21*pz) + n31;

/*************************/
/* SEE IF WITHIN FRUSTUM */
/*************************/

/* TRANSFORM VIEW COORD & RADIUS TO FRUSTUM-SPACE */

w = (m03*worldX) + (m13*worldY) + // transform origin x
 (m23*worldZ) + m33;

px = ((m00*worldX) + (m10*worldY) +
(m20*worldZ) + m30) * w;

w2 = (m03*radius) + (m13*radius) + // transform radius x
 (m23*worldZ) + m33;

9

rx = ((m00*radius) + (m10*radius) +
(m20*worldZ) + m30) * w2;

if ((px + rx) < -1.0f) // is off left?
goto draw_off;

if ((px - rx) > 1.0f) // is off right?
goto draw_off;

py = ((m01*worldX) + (m11*worldY) + // transform origin y
 (m21*worldZ) + m31) * w;

ry = ((m01*radius) + (m11*radius) + // transform radius y
(m21*worldZ) + m31) * w2;

if ((py + ry) < -1.0f) // is off bottom?
goto draw_off;

if ((py - ry) > 1.0f) // is off top?
goto draw_off;

/* IT’S IN THE FRUSTUM */

theNode->CanDraw = true
goto next;

/* IT’S NOT IN THE FRUSTUM */

theNode->CanDraw = false;

/* NEXT NODE IN LINKED LIST */
next:

theNode = theNode->NextNode;
}
while (theNode != nil);

}

It Ain’t Quite Perfect

I guarantee that manually culling models with bounding spheres will
give you incredible speed boosts in your 3D applications. I got a 22-
30% speed boost in Weekend Warrior and Nanosaur when I adopted
this method. There are, however, a few issues to be aware of. The
reason QuickDraw 3D uses bounding boxes rather than bounding
spheres is because you can apply a transform to a bounding box to
change it’s shape, but you cannot easily do the same to a bounding
sphere.

Suppose your model is being scaled on the y-axis. This scaling effect
will cause the bounding box to also scale equally. A bounding sphere
cannot stretch along any particular axis - it must scale uniformly.

10

Recalculating the bounding sphere radius when you arbitrarily scale
a model can be tricky and lessens the accuracy of the bounding
sphere. If, however, you are applying uniform scaling to an object
(meaning the same scale on the x, y, and z axes), then you can simply
multiply the bounding sphere’s radius by that scale amount. Since
QuickDraw 3D is a general purpose API and it has to assume that you
might apply non-uniform scaling or even shearing to a model, it must
use bounding boxes to perform its object culling.

The other problem is that even though we are able to cull ~80% of
the models in the scene using our spherical culling function, the
remaining 20% are going to get re-culled by QuickDraw 3D.
Unfortunately, there is no way to tell QuickDraw 3D that we have
already performed the culling tests and that these models are visible.
Also, QuickDraw 3D uses its culling test to determine whether a
model’s triangles need to be clipped or not. If a model is entirely
within the viewing frustum then there’s no need to clip any triangles,
but if the model straddling the edge of the viewing frustum then
some of the triangles will probably need to be clipped.

You may remember from earlier that I said that you should always
break up complex TriMeshes into separate TriMeshes such that there
is only one material per TriMesh. This is still true, however, realize
that creating additional TriMeshes causes more culling tests to be
performed in QuickDraw 3D. Nonetheless, it is still more efficient to
have lots of separate TriMeshes.

So, the bottom line is that we can substantially increase our
QuickDraw 3D application’s performance by doing our own object
culling, but we will always be subject to at least some of the
overhead caused by QuickDraw 3D doing it’s own culling on any
models which remain. Luckily, however, we can cull entire groups of
objects whereas QuickDraw 3D culls on a TriMesh by TriMesh basis.

11

TEXTURE OPTIMIZATIONS

Texture mapped triangles take longer to transform and render than
colored triangles. Uploading a texture to VRAM takes time, drawing
a textured triangle takes time, clipping a triangle’s u/v coordinates
and filling out larger data structures takes time. Being careful about
how you use textures in a TriMeshes can make a big difference in the
performance of your 3D application.

SIZE MATTERS

The first thing to know about texture maps is that size does matter,
and it matters in several different ways:

Powers of 2

Almost all 3D accelerator cards require that texture maps be a power
of 2 in dimension. This means that a texture may be 16x16, 32x128,
256x64, etc. QuickDraw 3D, on the other hand, does not force you to
use textures of this size; you can use whatever size textures you
want. The problem is that QuickDraw 3D has to shrink your texture
map down to the nearest power of 2 before it can upload it to the 3D
accelerator card. This obviously takes time, especially if it is a large
texture, but it also mangles your texture. You are far better off
shrinking your textures to powers of 2 in PhotoShop than you are
letting QuickDraw 3D shrink them for you on-the-fly.

There are a few 3D cards which require square powers of 2 which
means that the textures must be square, not rectangular. Luckily,
these cards are rare and personally I wouldn’t worry about them.

Bit-Depth

When you create your texture maps in PhotoShop, Painter, or some
other application, you’re probably working with 32-bit pixels. That’s

12

great, but make sure you knock the textures down to 16-bit pixels
before you apply them to a QuickDraw 3D model. In a 3D scene with
light sources, trilinear mipmapping, etc., you can hardly ever tell the
difference between a 32-bit and 16-bit texture map. The only
difference you might see is that things run faster with a 16-bit
texture.

A 32-bit texture uses more VRAM than a 16-bit texture, and
anything that’s bigger means slower. The more memory that gets
touched by the hardware, the slower it runs. That general rule can
be applied to anything in your code.

The only excuse for using a 32-bit texture in QuickDraw 3D is that
you need the 8 bits of alpha in the alpha channel of the texture. A
16-bit texture only has 1 bit of alpha which may not be sufficient for
your particular application. In Nanosaur, there is only one 32-bit
texture: the shadow. I used a 32-bit texture to do nice alpha
blending of the shadow and the ground, but that’s the only one –
everything else is 16-bit.

MIPMAPS VS. PIXMAPS

In case you don’t know what a mipmap is, here’s the gist of it. A
mipmap is a shrunken copy of a texture map which is used when a
model is far away from the camera. A texture can have several
mipmaps which get smaller and smaller. As the model gets farther
away from the camera, the smaller mipmaps get used. This can
sometimes create a nice blurring effect as the object moves farther
away, but other times it just looks muddy.

13

Figure 2.1

Original Texture

mipmap 1 mipmap 2
mipmap3

Mipmaps are smaller copies of the original texture
map

Ready for something completely confusing? Good, now get this:
Before QuickDraw 3D 1.5, textures were always stored as Pixmaps
(TQ3Pixmap). Pixmaps always generated mipmaps of the texture and
you had no choice but to see your models rendered with mipmaps.
As of QuickDraw 3D 1.5, we can now encase our textures in Mipmaps
(TQ3Mipmap). Whenever we don’t want our model to be rendered
with mipmaps, we use the Mipmap instead of the Pixmap. Sounds
completely backward, doesn’t it? Use a Mipmap if we don’t want
mipmaps? Well, it may seem completely confusing at first, but
there’s a very valid reason for this confusion.

The new Mipmap structure lets you, the programmer, create your
own mipmaps to use when rendering the model. The old Pixmaps
told QuickDraw 3D to generate the mipmaps automatically. The nice
thing about Mipmaps is that in addition to being able to assign your
own mipmapped textures, you can also choose how many mipmaps
to use. If you don’t want any mipmaps at all, just the original
texture, then you only apply one mipmap to the Mipmap object: the
original texture. See, it really does make sense after all!

The following function shows how we can take the image in a GWorld
and turn it into a Mipmap which contains only one texture:

/******************** GWORLD TO MIPMAP ********************/
//

14

// Creates a mipmap from an existing GWorld
//
// NOTE: Assumes that GWorld is 16bit!!!!
//
// INPUT: pGWorld = pointer to the gworld
// mipmap = pointer to Mipmap structure to fill out.
//
// OUTPUT: mipmap = new mipmap holding texture image
//

void MyGWorldToMipmap(GWorldPtr pGWorld, TQ3Mipmap *mipmap)
{
unsigned long pictMapAddr;
PixMapHandle hPixMap;
unsigned long pictRowBytes;
long width, height;
short depth;

/* GET GWORLD INFO */

hPixMap = GetGWorldPixMap(pGWorld);
depth = (**hPixMap).pixelSize;

pictMapAddr = (unsigned long)GetPixBaseAddr(hPixMap);
pictRowBytes = (unsigned long)(**hPixMap).rowBytes & 0x3fff;
width = ((**hPixMap).bounds.right - (**hPixMap).bounds.left);
height = ((**hPixMap).bounds.bottom - (**hPixMap).bounds.top);

/* MAKE MIPMAP */

mipmap->image = Q3MemoryStorage_New((unsigned char *) pictMapAddr,
 pictRowBytes * height);

if (mipmap->image == nil)
DoError("\pQ3MemoryStorage_New Failed!");

mipmap->useMipmapping = kQ3False;
if (depth == 16)

mipmap->pixelType = kQ3PixelTypeRGB16;
else

mipmap->pixelType = kQ3PixelTypeRGB32;

mipmap->bitOrder = kQ3EndianBig;
mipmap->byteOrder = kQ3EndianBig;
mipmap->reserved = nil;
mipmap->mipmaps[0].width = width;
mipmap->mipmaps[0].height = height;
mipmap->mipmaps[0].rowBytes = pictRowBytes;
mipmap->mipmaps[0].offset = 0;

}

In the above code, we are really just filling out the TQ3Mipmap data
structure with the needed information. Note that there is a
parameter called useMipmapping. Make sure you set this to false if
you don’t really want to use mipmaps. The last few lines effectively
setup mipmap #0 which is the only texture map in this Mipmap.

15

It’s fairly simple stuff and it’s not really much different than setting
up an old Pixmap structure. The difference is that your textures will
now use only half as much VRAM, usually look better, and put less
computing burden on QuickDraw 3D.

There is, however, one thing going for using multiple mipmaps in a
texture. Smaller textures render faster - we learned that a few
pages ago. Having mipmaps in certain cases will increase the
performance of the 3D hardware. This really only applies to large
textures. If you have a 256x256 texture map, but your object is so
far away that its only 50 pixels wide on the screen, then you really
should be using mipmaps because the hardware will be able to draw
the triangles a little faster when the texture is smaller.

TEXTURE QUALITY

Also new in QuickDraw 3D 1.5 is the ability to set the texture
rendering quality. Actually, the function call exists, but doesn’t
actually work yet. Nonetheless, the next version of QuickDraw 3D
will fix the problem, therefore, we should discuss it.

The function which is supposed to let you set the texture quality is:

TQ3Status Q3InteractiveRenderer_SetRAVETextureFilter(TQ3RendererObject,
RAVEtextureFilterValue);

You simply pass in a reference to the current renderer object and a
texture filtering value which is defined in Rave.h:

#define kQATextureFilter_Fast 0
#define kQATextureFilter_Mid 1
#define kQATextureFilter_Best 2

The meanings of these values is up to your particular 3D hardware to
decide, but the general rule is that kQATextureFilter_Fast means
that no filtering is done to the texture for maximum performance,
kQATextureFilter_Mid means that bi-linear or tri-linear filtering is

16

performed on the texture when the texture is close to the camera,
and kQATextureFilter_Best means that bi-linear or tri-linear
filtering is always performed on the textures.

Needless to say, the better the quality, the longer it takes to render.
For maximum performance, always set the filter mode to
kQATextureFilter_Fast, but kQATextureFilter_Mid will give you
much nicer looking images.

DRAW CONTEXT OPTIMIZATIONS

Rendering speed is dictated mainly by what you are rendering, but it
is also affected by where you are rendering.

BIT-DEPTH

Once again, bit-depth comes into play. This is so obvious that it’s
hardly worth mentioning, but here goes... Rendering performance
will be substantially increased if your monitor is set to 16-bits per
pixel (thousands of colors) versus having it set to 32-bits (millions of
colors).

ALIGNMENT & WIDTH

For optimal performance with 3D accelerators, it’s best to be
rendering into a window which is on a 32 byte boundary (the size of
a PowerPC cache line) and is some multiple of 32 bytes wide. If you
are rendering into a window which the user can arbitrarily move
around and resize, then you really don’t have any control over this,
but if your application takes over the entire screen or has static
windows, then try to adhere to the 32-byte rule. It’ll improve
rendering performance by some small, probably unnoticeable
amount.

Note that if you are rendering in 16-bits per pixel video mode then
32-bytes is only 16 pixels, therefore, you should place your 3D

17

window on 16 pixel boundaries and make them multiples of 16
pixels wide.

If your application cannot guarantee 32 byte alignment, then you
should at least attempt 8-byte alignment and width. Keeping the
view bounds at an 8-byte boundary will ensure that blitting from
the back-buffer to the front buffer will be aligned such that the
PowerPC can use its floating point double registers to copy the pixels.
This is generally 2x faster than using other methods to copy the
pixels.

OPTIMIZING GROUPS

Group Objects are great! They make organizing geometries,
transforms, and attributes really easy. The only problem with
groups is that they are a hierarchical system which has performance
issues to be aware of.

HIERARCHIES & STATE INFORMATION

Each time QuickDraw 3D encounters a group object, it pushes a lot of
“state information” onto a stack before traversing into that group.
When the objects inside the group have been processed (including
any sub-groups), QuickDraw 3D must pop that state information back
off the stack.

The state information which QuickDraw 3D pushes onto the stack can
consist of anything from geometry attributes, to rendering
information, to the currently active matrix. The amount of data
needed to be pushed and popped is significant and you really want
to avoid it whenever possible.

For example, see what happens when the following group hierarchy
is submitted to QuickDraw 3D:

18

Figure 2.2

GROUP A

Transform Object

Attribute Object

Group B

TriMesh Geometry
TriMesh Geometry

TriMesh Geometry

1. QuickDraw 3D sees that it has encountered a group object
(Group A), so it saves all of the current state information on the
stack.

2. The Transform and Attribute objects are processed which
effectively change the current “state”.

3. Group B is encountered which once again causes the current
state information to be pushed onto the stack.

4. Each TriMesh inside Group B is processed.

5. Group B is done, so we pop the state information off of the
stack.

6. Group A is also done, so we pop the state information off the
stack again.

7. We have now traversed through Group A’s hierarchy and the
all of QuickDraw 3D’s state information has been preserved.

19

OPTIMIZING THE HIERARCHY

As you can see from the above example, having hierarchical group
objects can be expensive, therefore, you should avoid them
whenever possible. We should remove the TriMeshes from the
unnecessary Group B and leave them at the end of Group A:

Figure 2.3

GROUP A

Transform Object

Attribute Object

TriMesh Geometry

TriMesh Geometry

TriMesh Geometry

When submitted for rendering, this single non-hierarchical group
object will look exactly the same as the more complex version in
Figure 3.1, but it will require less CPU overhead to accomplish it.

Sometimes, however, you may want to use a group simply for the
sake of organizing data. In Figure 2.2, we had all of the TriMeshes
grouped into Group B. This served no purpose other than to organize
the data nicely. Luckily, the QuickDraw 3D designers realized this
and they have given us the ability to set a group as “inline.” Making
a group inline simply means that QuickDraw 3D will not push and
pop the state information when it enters and exits a group. It allows
you to organize data in groups while avoiding the unnecessary
overhead of saving and restoring the state information.

To set a Display Group as inline all you need to do is change the
group’s “state bits”:

TQ3DisplayGroupState theState;

Q3DisplayGroup_GetState(theGroup, &theState);

20

theState |= kQ3DisplayGroupStateMaskIsInline;
Q3DisplayGroup_SetState(theGroup, theState);

The above code first gets the group’s current state bits by calling
Q3DisplayGroup_GetState. We then activate the inline bit by ORing
in kQ3DisplayGroupStateMaskIsInline. Finally, to update the group’s
state bits, we simply call Q3DisplayGroup_SetState.

It is still more optimal to not have any unnecessary groups in your
hierarchy, but if you really need them then try to make as many of
them inline as possible to improve performance. Just remember that
an inline group does not preserve any state information, so
transforms and attributes can get mangled in your hierarchy if you
are not careful.

If we were to define Group A as inline we would be in big trouble.
Since group A contains a transform object, the active transformation
matrix would be set to some arbitrary value upon exiting the group.
This can cause all further objects and groups to be transformed
incorrectly. As a rule of thumb, only inline groups which contain
nothing but geometry objects. Avoid inlining groups containing
attributes and/or transforms.

MATHEMATICAL OPTIMIZATIONS

Earlier I showed how it was better to write your own transform
function rather than to call one of QuickDraw 3D’s built in math
functions. In general, you will always want to write your own matrix
multiples, vector transforms, etc. Writing your own functions will
usually result in faster code since matrices do not need to be
reloaded each time you use them, and a compiler can generate better
code when functions are inlined rather than called with branches.
Also, many of the QuickDraw 3D mathematical functions have error
checking overhead which can really eat into the performance.

The only downside to not calling QuickDraw 3D’s mathematical
functions is that future version of QuickDraw 3D may make use of
new hardware capabilities for doing faster calculations. Despite this,

21

my philosophy is “write it your way and if the technology changes,
update it.”

EXTENDED FLOATING POINT

All of the PowerPC chips except the 601 have the extended floating
point opcodes which can make doing certain calculations much faster.
Some of these extended opcodes work well in doing 3D computations
and are described as follows.

Reciprocal Square Root & Newton-Raphson
Refinement

When normalizing a vector we have to calculate a reciprocal square
root. The usual way to do this is with code like the following:

number = 1.0/sqrt(temp);

This is rather slow. The sqrt function call takes between 50-100
cycles to execute and the divide takes another 18 cycles. On the
PowerPC, we can do the same calculation in 15 cycles using an
extended floating point opcode called frsqrte.

Actually, frsqrte takes 4 cycles to execute, but it only returns an
“estimate” of the result (frsqrte = floating-point reciprocal
square root estimate). This estimate only has an accuracy of a few
bits which is not accurate enough for a 3D engine in most cases.
Luckily, there is something known as Newton-Raphson refinement
which can take this reciprocal square root estimate and refine it to a
very accurate value in just a few instructions.

The code for Newton-Raphson refinement looks like this:

float isqrt,temp1,temp2,result;

isqrt = __frsqrte(num);

22

temp1 = num * -.5f;
temp2 = isqrt * isqrt;
temp1 *= isqrt;
isqrt *= 1.5f;
result = temp1 * temp2 + isqrt;

I’m not going to even bother trying to explain how the Newton-
Raphson refinement works because I honestly don’t know how it
works. It’s one of those things you find deep in a math book where
no sane person should ever venture. Just be happy that it works and
don’t ask why.

Reciprocal Estimate

Another nice opcode which exists in the extended floating point
instruction set is the reciprocal estimate (fres). This opcode, like the
reciprocal square root estimate opcode, also returns an estimate
value, but this estimate is accurate to one part in 256 which is not
accurate enough to launch the Space Shuttle, but in many cases it’s
accurate for a 3D engine.

There’s a catch, however. On the PowerPC 603’s and 604’s, the fres
opcode takes just as long as a floating point divide - 18 cycles. All it
saves you is the cost of getting the 1.0 floating point value into a
register to do the divide. On the new PowerPC chips starting with
the PowerPC 750 (the “G3”), however, the fres opcode only takes 10
cycles and is therefore significantly faster than a floating point
divide. It’s unlikely that you will gain much performance by using
fres to calculate reciprocals since only brand new machines will
benefit from it, so use it sparingly.

Code to use fres looks like this:

float myReciprocal;
myReciprocal = __fres(someFloat);

23

SUMMARY

In this chapter we learned how to perform several optimization
tricks to QuickDraw 3D applications:

• The single most important thing learned in this chapter
was manual object culling. This will give most 3D
applications a huge speed boost!

• Paying attention to texture size will help improve
performance since powers of 2 are preferred by all 3D
hardware accelerators.

• Being careful how you construct hierarchical groups will
also improve performance.

• Never construct multiple layers of groups unless it’s
absolutely necessary, and try to use inline groups
whenever possible.

• Using the extended floating point opcodes will speed up
some mathematical calculations such as reciprocals and
square roots.

1

Topic 3:

Cool Algorithms
QuickDraw 3D does everything needed to create and render 3D
scenes, but it does not have functions to do a lot of application-
specific stuff like collision detection and special effects. This chapter
contains many different algorithms which I have found to be very
useful in the QuickDraw 3D applications I have written.

LINE INTERSECT PLANE

When doing 3D collision detection it is often necessary to calculate
the intersection of a line and a plane, or to determine if a line
segment intersects a plane. QuickDraw 3D does not have a built-in
function for doing this, so we need to do a little extra coding on our
own.

THE PLANE EQUATION OF A TRIANGLE

Once again, I’m going to avoid getting into the mathematics of a
function here in this document, but suffice to say that the plane
equation of a triangle is just a face normal and a constant. These
four values are all that is needed to represent the plane of a triangle
in mathematical terms.

The following code will calculate the plane equation of the input
triangle:

/************** CALC PLANE EQUATION OF TRIANGLE ***************/
//

2

// INPUT: plane = pointer to structure to store plane equation into.
// p3..p1 = pointers to the 3 points in a triangle (clockwise)
//

void CalcPlaneEquationOfTriangle(TQ3PlaneEquation *plane,
TQ3Point3D *p3,
TQ3Point3D *p2,
TQ3Point3D *p1)

{
float pq_x,pq_y,pq_z;
float pr_x,pr_y,pr_z;
float p1x,p1y,p1z;

/* CALC 2 EDGE VECTORS */

p1x = p1->x; // get point #1
p1y = p1->y;
p1z = p1->z;

pq_x = p1x - p2->x; // calc vector pq
pq_y = p1y - p2->y;
pq_z = p1z - p2->z;

pr_x = p1->x - p3->x; // calc vector pr
pr_y = p1->y - p3->y;
pr_z = p1->z - p3->z;

/* CALC CROSS PRODUCT FOR THE FACE'S NORMAL */

plane->normal.x = (pq_y * pr_z) - (pq_z * pr_y);
plane->normal.y = ((pq_z * pr_x) - (pq_x * pr_z));
plane->normal.z = (pq_x * pr_y) - (pq_y * pr_x);

/* MAKE SURE FACE NORMAL IS NORMALIZED */

Q3Vector3D_Normalize(&plane->normal,&plane->normal);

/* CALC DOT PRODUCT FOR PLANE CONSTANT */

plane->constant = ((plane->normal.x * p1x) +
(plane->normal.y * p1y) +
(plane->normal.z * p1z));

}

Most of the above code is simply calculating the face normal of the
triangle. If you already have the face normal of the triangle, then
you don’t need to recalculate it and you only need to calculate the
plane constant at the end of the function.

3

TESTING THE INTERSECTION

Determining the intersection coordinate of a line segment and a plane
is fairly simple and occurs in two basic steps:

1. If both endpoints of the line segment are on the same side of
the plane, then no intersection could have occurred.

2. Calculate the intersection coordinate.

The code to do this is as follows:

/************ INTERSECT PLANE & LINE SEGMENT ***************/
//
// Returns TRUE if the input line segment intersects the plane.
//
// INPUT: plane = pointer to plane equation
// v1x/y/z = coords of line segment endpoint #1
// v2x/y/z = coords of line segment endpoint #2
//
// OUTPUT: outPoint = pointer to point to receive data
//

Boolean IntersectionOfLineSegAndPlane(TQ3PlaneEquation *plane,
float v1x, float v1y, float v1z,
float v2x, float v2y, float v2z,
TQ3Point3D *outPoint)

{
int a,b;
float r;
float nx,ny,nz,planeConst;
float vBAx, vBAy, vBAz, dot, lam;

/**/
/* SEE IF LINE SEGMENT CROSSES PLANE AT ALL */
/**/

/* GET PLANE EQUATION DATA */

nx = plane->normal.x;
ny = plane->normal.y;
nz = plane->normal.z;
planeConst = plane->constant;

/* DETERMINE SIDENESS OF VERT1 */

r = -planeConst;
r += (nx * v1x) + (ny * v1y) + (nz * v1z);
a = (r < 0.0f) ? 1 : 0;

4

/* DETERMINE SIDENESS OF VERT2 */

r = -planeConst;
r += (nx * v2x) + (ny * v2y) + (nz * v2z);
b = (r < 0.0f) ? 1 : 0;

/* SEE IF LINE CROSSES PLANE (INTERSECTS) */

if (a == b)
return(false);

/**/
/* LINE INTERSECTS, SO CALCULATE INTERSECTION POINT */
/**/

/* CALC LINE SEGMENT VECTOR BA */

vBAx = v2x - v1x;
vBAy = v2y - v1y;
vBAz = v2z - v1z;

/* DOT PRODUCT OF PLANE NORMAL & LINE SEGMENT VECTOR */

dot = (nx * vBAx) + (ny * vBAy) + (nz * vBAz);

/* IF VALID, CALC INTERSECTION POINT */

if (dot != 0.0f)
{

lam = planeConst;

// calc dot product of plane normal & 1st vertex
lam -= (nx * v1x) + (ny * v1y) + (nz * v1z);

// divide by previous dot for scaling factor
lam /= dot;

// calc intersect point
outPoint->x = v1x + (lam * vBAx);
outPoint->y = v1y + (lam * vBAy);
outPoint->z = v1z + (lam * vBAz);
return(true);

}

/* DOT == 0, THUS LINE IS PARALLEL TO PLANE SO NO INTERSECTION */

else
return(false);

}

5

REFLECTION MAPPING

Reflection mapping is often referred to as Environment mapping. In
case you are unfamiliar with the term, it is a method of putting
environmental reflections onto 3D models. For example, if you have
a chrome ball floating in outer space, you would probably want the
reflections of the stars and planets visible on the chrome sphere. Or
if you have a shiny spoon on a table in a room, you’d probably want
a reflected image of the room mapped onto the spoon.

In a high-end rendering package, reflections like this would be
calculated via raytracing or some other complex algorithm. Since
doing real-time raytracing for reflections is out of the question with
today’s technology, we have to resort to a much faster, yet much less
accurate method for generating reflections.

There are basically two types of reflection mapping. The first type of
reflection mapping uses six different environment texture maps, one
for each “side” of a scene (front, back, top, bottom, left, and right).
The second type only requires one texture map to represent the
scene, and the calculations are very simple and can easily be done in
real-time with QuickDraw 3D.

GENERATING THE REFLECTION MAP

The first step to performing reflection mapping is to generate an
actual texture map to use. This is by far the most difficult part of the
process. Writing the code to do the mapping is much easier than
building a good texture.

Textures for reflection maps are not simple photographs of an ocean,
room, or space. The textures we need to use are the reflections of a
simple photograph on the surface of a chrome ball. In other words,
an environment/reflection map of an ocean does not look like this....

6

Figure 3.0

A typical image of the ocean

... rather, it looks like this...

Figure 3.1

The same image converted into a reflection map

7

The texture map is the image of a chrome sphere which is reflecting
our source image.

If you really want to generate an image like this correctly, the best
way to do it is to find yourself a gigantic chrome ball which you can
aim a camera at and take a picture of. I’ve seen some strange
roadside art stores which sell large chrome Christmas ornaments
about two feet in diameter - these will work well. Just take the
chrome ball and hang it from a string inside a room, stand back,
zoom into the ball and take a picture. This should generate a perfect
reflection map of the room. The only hitch is that you might see you
and your camera in the image unless you’ve camouflaged yourself.

Figure 3.2

Take a close-up picture of a chrome ball hanging
froma string makes perfect reflection maps.

For those of us who don’t have the luxury of owning a giant chrome
ball, we must find other ways to make our reflection maps. The only
other way I’ve found to generate these is to actually model a chrome
ball in a 3D rendering package and render it. Unfortunately, most 3D
packages seem to have difficulty in correctly calculating the
reflection of an environment on a chrome sphere. Taking a 2D image
and treating it like a 3D environment is something of a mathematical
hack and as a result, it is very difficult to correctly render a chrome
sphere. 3D renderers will generate a chrome sphere which “looks”
correct, but is actually very wrong.

8

Personally, I like to use Infini-D to render my chrome spheres. I’ve
found it to be a very accurate renderer for such things. If you are
using a different renderer you should be careful. If your reflection
mapped models don’t look right in QuickDraw 3D, it’s probably
because your renderer didn’t generate a very accurate reflection
map.

Once your map has been created, make sure that you crop out any
black space around the edges. The edge of the chrome sphere must
make contact with the edges of the texture map. Also make sure
that the background around the sphere is black.

Figure 3.3

A completed reflection map with edges cropped.

Even Infini-D doesn’t do a perfect job of rendering our sphere.
Notice the “pinching” of the texture at the top-center of the sphere.
You wouldn’t see this on a real chrome ball, but that artifacting is
what happens when we try to build a chrome ball with a 3D modeler.
Other renderers pinch much worse or distort the image
unrealistically.

9

REFLECTION CODE

Like I said before, generating the reflection map is the hardest part.
Now that we’re past that, let’s move on to the code.

The algorithm is simple:

• Calculate a vector from the camera to a vertex
• Reflect the vector off of that vertex
• Use the normalized reflected vector’s x and y values as u

and v texture coordinates.

10

Figure 3.4

Reflecting vectors off of the model.

Here is code which shows how this is done:

/***************** CALC REFLECTION UV COORDS **************/
//
// INPUT: numVertices = # vertices to process
// points = pointer to vertex point list
// normals = pointer to vertex normals list
// uvs = pointer to uv coordinate list to store data
//

void CalcReflectionUVs(int numVertices, TQ3Point3D *points,
 TQ3Vector3D *normals, TQ3Param2D *uvs)

{
float camX,camY,camZ;
float eyeVectorX,eyeVectorY,eyeVectorZ;
int vertNum;

/* GET CURRENT CAMERA COORDINATES */

11

camX = gCamCoord.x;
camY = gCamCoord.y;
camZ = gCamCoord.z;

/* CALC UV COORDINATE FOR EACH VERTEX */

for (vertNum = 0; vertNum < numVertecies; vertNum++)
{

/* CALC VECTOR FROM CAMERA TO VERTEX */

eyeVectorX = points[vertNum].x - camX;
eyeVectorY = points[vertNum].y - camY;
eyeVectorZ = points[vertNum].z - camZ;

/* REFLECT VECTOR AROUND VERTEX NORMAL */

ReflectVector(eyeVectorX, eyeVectorY, eyeVectorZ,
&normals[vertNum],&reflectedVector);

/* CALC UV FROM REFLECTION VECTOR */

uvs[vertNum].u = (reflectedVector.x * .5f) + .5f;
uvs[vertNum].v = (-reflectedVector.y * .5f) + .5f;

}
}

/*********************** REFLECT VECTOR *************************/
//
// Given a view vector and a vertex normal vector, this function
// returns the reflected vector.
//
// INPUT: viewX/Y/Z = view vector from camera to vertex
// normal = pointer to vertex normal
// out = pointer where to store reflected vector.
//
//

void ReflectVector(float viewX, float viewY, float viewZ,
TQ3Vector3D *normal, TQ3Vector3D *out)

{
float dotProduct
TQ3Vector3D *reflected;

/* COMPUTE DOT PRODUCT OF VERTEX NORMAL AND VIEW VECTOR */
//
// this calculates the angle between the two vectors
//

dotProduct = normal->x * viewX;
dotProduct += normal->y * viewY;
dotProduct += normal->z * viewZ;

12

/* DOUBLE THE ANGLE TO CAUSE IT TO REFLECT AROUND VERTEX NORMAL */

dotProduct += dotProduct;

/* COMPUTE THE REFLECTED VECTOR & NORMALIZE */

reflected.x = normal->x * dotProduct - viewX;
reflected.y = normal->y * dotProduct - viewY;
reflected.z = normal->z * dotProduct - viewZ;

Q3Vector3D_Normalize(&reflected.x, out);
}

Most of the work is done by the ReflectVector function. This
function takes care of reflecting the view vector around the vertex
normal. The reflected vector has x and y values between -1.0 and
1.0 which does not match the valid uv coordinate range of 0.0 to 1.0,
therefore, we adjust the x and y values to fit in 0.0 to 1.0 with this
code in CalcReflectionUVs.

uvs[vertNum].u = (reflectedVector.x * .5f) + .5f;
uvs[vertNum].v = (-reflectedVector.y * .5f) + .5f;

REFLECTION MAPPING TRIMESHES

You now have the basic algorithm for reflection mapping vertices,
but now I’d like to present the code for reflection mapping an actual
TriMesh.

We cannot use retained mode for submitting these TriMeshes for
rendering. In order to correctly calculate the reflection mapping we
need to know the world space coordinates of all of the vertices. The
only way to get these values is to transform the object by hand.

The following code takes any QuickDraw 3D object and processes any
data contained in it:

/****************** REFLECTION MAP MY OBJECT *******************/

TQ3Matrix4x4 gWorkMatrix;

13

void ReflectionMapMyObject(TQ3Object obj)
{

/* INIT WORK MATRIX TO IDENTITY MATRIX */

Q3Matrix4x4_SetIdentity(&gWorkMatrix);

/* PROCESS EVERYTHING INSIDE THIS OBJECT */

CalcEnvMap_Recurse(thisNodePtr->BaseGroup);
}

/****************** CALC ENV MAP_RECURSE *********************/
//
// Recusively parses the input object looking for
// important data to process.
//
// INPUT: obj = some QD3D object
//

static void CalcEnvMap_Recurse(TQ3Object obj)
{
TQ3Matrix4x4 transform;
TQ3GroupPosition position;
TQ3Object object,baseGroup;
TQ3Matrix4x4 stashMatrix;

/*******************************/
/* SEE IF ACCUMULATE TRANSFORM */
/*******************************/

if (Q3Object_IsType(obj,kQ3ShapeTypeTransform))
{

 Q3Transform_GetMatrix(obj,&transform);
 Q3Matrix4x4_Multiply(&transform,&gWorkMatrix,&gWorkMatrix);
 }

/*********************************/
/* SEE IF FOUND TRIMESH GEOMETRY */
/*********************************/

else
if (Q3Object_IsType(obj,kQ3ShapeTypeGeometry))
{

if (Q3Geometry_GetType(obj) == kQ3GeometryTypeTriMesh)
EnvironmentMapTriMesh(obj);

}

/****************************/
/* SEE IF RECURSE SUB-GROUP */
/****************************/

else
if (Q3Object_IsType(obj,kQ3ShapeTypeGroup))

 {
 baseGroup = obj;
 stashMatrix = gWorkMatrix; // push matrix

14

 Q3Group_GetFirstPosition(obj, &position);
 while(position != nil) // scan all objects in group
 {

/* GET OBJECT REFERENCE FROM GROUP */

 Q3Group_GetPositionObject (obj, position, &object);
if (object != nil)

 {
/* RECURSE THIS OBJ */

CalcEnvMap_Recurse(object);

/* DISPOSE OF OUR REFERENCE TO THIS SUB-GROUP */

 Q3Object_Dispose(object);
 }

/* GET NEXT OBJECT IN THE GROUP */

 Q3Group_GetNextPosition(obj, &position);
 }
 gWorkMatrix = stashMatrix; // pop matrix

}
}

The above code starts by initializing an identity matrix. Since we’re
going to be transforming the geometry by hand, we need to
accumulate a transform matrix to use. The recursive code, parses
through any groups and when a transform object is encountered the
work matrix is updated. When a TriMesh is encountered, it calls a
function which applies reflection mapping to it:

/************* ENVIRONMENT MAP TRIMESH ***********/
//
// Transforms the TriMesh by the current transform matrix
// and then applies reflection mapping to the uv texture
// coordinates before submitting it for rendering.
//

static void EnvironmentMapTriMesh(TQ3Object theTriMesh)
{
TQ3Status status;
unsigned long numVertecies,vertNum, numFaces, faceNum;
TQ3Point3D *vertexList;
TQ3TriMeshData triMeshData;
TQ3TriMeshAttributeData *attribList,*faceAttribList;
short numVertAttribTypes,a, numFaceAttribTypes;
TQ3Vector3D *normals,reflectedVector;
TQ3Param2D *uvList;
float camX,camY,camZ;
float eyeVectorX,eyeVectorY,eyeVectorZ;
float M00, M01, M02;

15

float M10, M11, M12;
float M20, M21, M22;
float x,y,z;
TQ3Matrix4x4 tempm,invTranspose;

/********************/
/* GET TRIMESH INFO */
/********************/

Q3TriMesh_GetData(theTriMesh, &triMeshData);
numVertecies = triMeshData.numPoints;
numFaces = triMeshData.numTriangles;
vertexList = triMeshData.points;
numVertAttribTypes = triMeshData.numVertexAttributeTypes;
attribList = triMeshData.vertexAttributeTypes;
numFaceAttribTypes = triMeshData.numTriangleAttributeTypes;
faceAttribList = triMeshData.triangleAttributeTypes;

/* FIND UV ATTRIBUTE LIST */

for (a = 0; a < numVertAttribTypes; a++)
{

if ((attribList[a].attributeType == kQ3AttributeTypeSurfaceUV) ||
(attribList[a].attributeType == kQ3AttributeTypeShadingUV))

{
uvList = attribList[a].data; // point to list of normals
goto got_uv;

}
}
DoError(“\pThis TriMesh doesnt have a texture map!”);

got_uv:

/******************************/
/* TRANSFORM THE BOUNDING BOX */
/******************************/

Q3Point3D_To3DTransformArray(&triMeshData.bBox.min, &gWorkMatrix,
&triMeshData.bBox.min, 2,

 sizeof(TQ3Point3D), sizeof(TQ3Point3D));

/***************************/
/* TRANSFORM VERTEX COORDS */
/***************************/

Q3Point3D_To3DTransformArray(vertexList, &gWorkMatrix, vertexList,
numVertecies, sizeof(TQ3Point3D),
sizeof(TQ3Point3D));

/****************************/
/* TRANSFORM VERTEX NORMALS */
/****************************/

/* CALC INVERSE-TRANSPOSE MATRIX */

16

Q3Matrix4x4_Invert(&gWorkMatrix, &tempm);
Q3Matrix4x4_Transpose(&tempm,&invTranspose);

/* LOAD MATRIX INTO REGISTERS */

M00 = invTranspose.value[0][0];
M01 = invTranspose.value[0][1];
M02 = invTranspose.value[0][2];
M10 = invTranspose.value[1][0];
M11 = invTranspose.value[1][1];
M12 = invTranspose.value[1][2];
M20 = invTranspose.value[2][0];
M21 = invTranspose.value[2][1];
M22 = invTranspose.value[2][2];

/* FIND THE VERTEX NORMALS ATTRIBS */

for (a = 0; a < numVertAttribTypes; a++)
{

if (attribList[a].attributeType == kQ3AttributeTypeNormal)
{

normals = attribList[a].data;

/* TRANSFORM & NORMALIZE ALL NORMALS */

for (vertNum = 0; vertNum < numVertecies; vertNum++)
{

x = normals[vertNum].x;
y = normals[vertNum].y;
z = normals[vertNum].z;

normals[vertNum].x = x * M00 + y * M10 + z * M20;
normals[vertNum].y = x * M01 + y * M11 + z * M21;
normals[vertNum].z = x * M02 + y * M12 + z * M22;

Q3Vector3D_Normalize(&normals[vertNum],&normals[vertNum]);
}
break;

}
}

/**************************/
/* TRANSFORM FACE NORMALS */
/**************************/

/* FIND FACE NORMAL ATTRIBS */

for (a = 0; a < numFaceAttribTypes; a++)
{

if (faceAttribList[a].attributeType == kQ3AttributeTypeNormal)
{

normals2 = faceAttribList[a].data;

/* TRANSFORM ALL FACE NORMALS */

17

for (faceNum = 0; faceNum < numFaces; faceNum++)
{

x = normals2[faceNum].x;
y = normals2[faceNum].y;
z = normals2[faceNum].z;

normals2[faceNum].x = x * M00 + y * M10 + z * M20;
normals2[faceNum].y = x * M01 + y * M11 + z * M21;
normals2[faceNum].z = x * M02 + y * M12 + z * M22;
Q3Vector3D_Normalize(&normals2[vertNum],&normals2[vertNum]);

}
break;

}
}

/****************************/
/* CALC UVS FOR EACH VERTEX */
/****************************/

CalcReflectionUVs(numVertices, &vertexList[0],
&normals[0],&uvList[0]);

/*********************************/
/* SUBMIT TRIMESH FOR RENDERING */
/*********************************/

Q3TriMesh_Submit(&triMeshData, gMyViewObject);
}

This code does essentially what QuickDraw 3D does internally when a
TriMesh is submitted for rendering. It applies the current transform
matrix to the bounding box, points, and normals. Once we have the
world-space coordinates for the vertices, we calculate the vertex uv’s
for the reflection mapping using code we discussed earlier.

Note that I used the QuickDraw 3D function
Q3Point3D_To3DTransformArray to transform the TriMesh’s points,
but I wrote my own function to transform the vertex and face
normals. I had to do this because for some reason QuickDraw 3D
does not have a Vector3D transform array function. Luckily,
however, QuickDraw 3D does supply functions for calculating the
inverse-transform of a matrix. You must calculate the inverse
transform of a matrix before transforming normals because the
original matrix may contain scaling and translating information
which you do not want to apply to a vector transform. The inverse-
transform of a matrix will yield a matrix which only rotates - the
scale and translate information has been cancelled out.

18

That’s pretty much it. You now know how to quickly reflection map
a TriMesh geometry in QuickDraw 3D.

“OVERLAYS”

For the purpose of this discussion, an overlay is considered to be an
image which appears at the same place on the screen regardless of
the camera’s orientation. An example of an overlay is the health bar
in Weekend Warrior or the overhead-map in Nanosaur:

Figure 3.5

A screenshot from Nanosaur which shows the map
overlay.

Normally, putting such things on the screen would be trivial if you
were using a custom 3D engine or RAVE directly. You would simply
draw the polygons to the screen coordinates you specify. With

19

QuickDraw 3D, however, this is impossible. You cannot tell
QuickDraw 3D to draw geometry in screen coordinates, only in world
coordinates. So, to make this work we need to know the world-space
coordinates to place an object such that it will be drawn at the
desired screen coordinate.

Calculating the world-space coordinate to put an overlay is a
straightforward task. Here are the steps:

1. Calculate the inverse of the camera’s world->view matrix which
gives you a view->world matrix.

2. Place the overlay at the desired view-space coordinate.

3. Transform the overlay to world space with the view->world
matrix you calculated in step 1.

View space is the closest thing to screen space that we can use
because there is no way to calculate a frustum->world matrix from
the camera’s world->frustum matrix. That matrix simply can’t be
inverted correctly, but luckily the world->view matrix can be
inverted just fine. You’ll need to do some trial and error to get the
right view space coordinates for your overlays. Your z value should
be just a tiny bit less than your camera’s hither value because we
want the overlays to be as close to the camera lens as possible. The x
and y values will vary depending on where on the screen you want
your overlay to appear, and the camera’s fov will cause the x, y
values to vary.

20

Figure 3.6

-z

-x +x

+z

VIEW-SPACE

SCREEN-SPACE

The relation between view-space and screen-space.

/******** CALC OVERLAY TRANSFORM MATRIX **********/

void CalcOverlayTransformMatrix(TQ3Point3D *viewSpaceCoord,
TQ3Matrix4x4 *outMatrix)

{

21

TQ3Matrix4x4 matrix;
TQ3Matrix4x4 worldToView,viewToWorld;

/* CALCULATE VIEW->WORLD MATRIX */

Q3Camera_GetWorldToView(viewPtr->cameraObject, &worldToView);
Q3Matrix4x4_Invert(&worldToView, &viewToWorld)

/* PUT OVERLAY AT DESIRED VIEW-SPACE COORDS */

Q3Matrix4x4_SetTranslate(&matrix,
viewSpaceCoord->x,
viewSpaceCoord->y,
viewSpaceCoord->z);

/* TRANSFORM TO WORLD-SPACE COORDINATES */

Q3Matrix4x4_Multiply(&matrix,&viewToWorld, outMatrix);
}

As you can see, the code is very simple. The only tough part about
doing overlays is figuring out what view-space coordinates to use,
but that’s just a matter of hacking at it to find values that work.
When I do this, I usually start at x = 0, y = 0, z = HITHER-1.0 which
should put the overlay in the middle of the screen. Then I gradually
adjust the x and y values until the overlay is where I want it to be.
Increasing x moves it right, decreasing x moves it left. Increasing y
moves it up, decreasing y moves it down. In general, the x and y
values will go from about -10 to +10 with 0 being the center of the
screen. These values will vary depending on your camera’s fov and
the z coordinate you have assigned to the overlay.

You may also want to apply scaling and/or rotation to you overlays.
The map overlay in Nanosaur used rotation to spin the map around.
The following is a modified version of the above code which shows
how to also apply scaling and rotation to your overlay.

/******** CALC OVERLAY TRANSFORM MATRIX 2 **********/

void CalcOverlayTransformMatrix2(TQ3Point3D *viewSpaceCoord,
TQ3Vector3D *scale,
TQ3Vector3D *rotation,
TQ3Matrix4x4 *outMatrix)

{
TQ3Matrix4x4 matrix,matrix2,matrix3;
TQ3Matrix4x4 worldToView,viewToWorld;

22

/* CALCULATE VIEW->WORLD MATRIX */

Q3Camera_GetWorldToView(viewPtr->cameraObject, &worldToView);
Q3Matrix4x4_Invert(&worldToView,& viewToWorld)

/* APPLY SCALE */

Q3Matrix4x4_SetScale(&matrix, scale->.x, scale->y, scale->.z);

/* APPLY ROTATION */

Q3Matrix4x4_SetRotate_XYZ(&matrix2, rotation->x, rotation->y,
rotation->z);

Q3Matrix4x4_Multiply(&matrix,&matrix2,&matrix3);

/* TRANSLATE TO DESIRED VIEW-SPACE COORD */

Q3Matrix4x4_SetTranslate(&matrix2, viewSpaceCoord->x,
viewSpaceCoord->y, viewSpaceCoord->z);

Q3Matrix4x4_Multiply(&matrix3,&matrix2,&matrix);

/* TRANSFORM TO WORLD-SPACE COORDINATES */

Q3Matrix4x4_Multiply(&matrix,&viewToWorld, outMatrix);
}

SPLINES

The number one technical question I’ve been asked by QuickDraw 3D
developers is “how did you do the track in Gerbils?” The answer is
splines. Splines are a wonderful thing and are very easy to generate.
They’re good for generating rollercoaster track as in Gerbils, but
they’re also good for creating smooth animation paths which you can
move objects or the camera along.

SPLINE TYPES

There have been several books written only about splines. These
books are very mathematically oriented and I’ve never been able to
understand a single page of them. I don’t know why mathematicians
always need to take something simple and make it incomprehensible.

23

For our purposes, there are two types of splines: b-splines and cubic
splines. B-splines are faster to generate than cubic splines, but b-
splines do not pass through their control points whereas cubic splines
do.

Figure 3.7

A cubic spline passes through it’s control points

24

Figure 3.8

A b-spline does not pass through it’s control points

A spline is just a series of points along a curve which are calculated
based on the coordinates of “control points”. I’m not going to explain
the math behind these calculations since it’s really not important
how it works. The important thing is that it does work.

CALCULATING A B-SPLINE

To build a spline all you need is an array of control points and a
function to interpolate the curve points between them. The following
code shows how to generate a b-spline for the input array of control
points:

#define kMaxSplinePoints 5000

/*********************** CALC SPLINE CURVE **********************/
//
// INPUT: numControlPoints = # control points to build spline from
// controlPoints = ptr to list of control points
// numSubDivs = num spline points to calculate between each
// pair of control points
//
// OUTPUT: numSplinePoints = total # spline points generated
// theSpline = pointer to array holding all of

25

// the spline points
//

void CalcSplineCurve(int numControlPoints, TQ3Point3D *controlPoints,
float numSubDivs, int *numSplinePoints,
TQ3Point3D **theSpline)

{
float t,tSquared,tCubed,a,b,c,d,incVal;
long subCount;

/* ALLOC MEMORY FOR SPLINE DATA */

*theSpline = (TQ3Point3D *)NewPtr(sizeof(TQ3Point3D) *
kMaxSplinePoints);

if (theSpline == nil)
DoError("\pCant allocate spline memory");

*numSplinePoints = 0; // start # points at zero

incVal = 1.0/numSubDivs; // calc fractional increment value

/****************************/
/* SCAN THRU CONTROL POINTS */
/****************************/
//
// Start on 2nd control point and end on 3rd to last.
//

for (cp=1; cp < (numControlPoints-2); cp++)
{

for (t=0, subCount=0; subCount < numSubDivs; t+=incVal,subCount++)
{

/* MAKE SURE WE DON'T OVERFLOW SPLINE ARRAY */

if (*numSplinePoints >= kMaxSplinePoints)
DoError("\pToo many spline points! Overflowed array!");

/* DO MAGICAL CALCULATIONS */

tSquared = t*t;
tCubed = tSquared*t;
a = (-0.166*tCubed) + (0.5*tSquared) - (0.5*t) + 0.166;
b = (0.5*tCubed) - tSquared + 0.666;
c = (-0.5*tCubed) + (0.5*tSquared) + (0.5*t+0.166);
d = 0.166*tCubed;

/* INTERPOLATE A POINT ON THE SPLINE */

(*theSpline)[*numSplinePoints].x = // calc x
(a * controlPoints[cp-1].x) +
(b * controlPoints[cp].x) +
(c * controlPoints[cp+1].x) +
(d * controlPoints[cp+2].x);

26

(*theSpline)[*numSplinePoints].y = // calc y
(a * controlPoints[cp-1].y) +
(b * controlPoints[cp].y) +
(c * controlPoints[cp+1].y) +
(d * controlPoints[cp+2].y);

(*theSpline)[*numSplinePoints].z = // calc z
(a * controlPoints[cp-1].z) +
(b * controlPoints[cp].z) +
(c * controlPoints[cp+1].z) +
(d * controlPoints[cp+2].z);

*numSplinePoints++; // inc size of spline
}

}
}

We start by allocating memory to hold the gigantic array of
interpolated spline points. The input value numSubDivs determines
how many spline points we want to calculate between control points.
The more subdivisions, the finer resolution the spline will be.

To calculate the actual spline, we simply process through the control
points and perform the necessary calculations. Note that the first
and last two control points are only used to start and end the
curvature of the spline, but no spline points are interpolated for
them.

Figure 3.9

There is no spline data generated for the first and
last two control points

27

CALCULATING A CUBIC SPLINE

The code to build a cubic spline is much more complex than the code
for b-splines, but the benefit of the cubic spline is that the curve will
pass through each control point which makes it much easier to
predict the shape of the curve. Additionally, cubic splines don’t
require three “extra” control points like b-splines do; all of the
control points in a cubic spline will be part of the final spline.

/**************** CALCULATE CUBIC SPLINE *********************/
//
// INPUT: numControlPoints = # control points to build spline
// controlPoints = array of control points
// numSubDivs = # of spline points to interpolate
// between two control points
//
// OUTPUT: outNumPoints = # points in spline
// outPoints = ptr to array of spline points
//

void CalculateCubicSpline(int numControlPoints,
TQ3Point3D *controlPoints, int numSubDivs
int *outNumPoints, TQ3Point3D **outPoints)

{
TQ3Point3D **space;
TQ3Point3D *a, *b, *c, *d;
TQ3Point3D *h0, *h1, *h2, *h3, *hi_a;
short imax;
float t, dt;
TQ3Point3D *v,*splinePoints;
long i,i1,numSplinePoints;
OSErr iErr;
long bufferSize;

/* MUST BE AT LEAST 4 CONTROL POINTS */

if (numControlPoints < 4)
{

*outNumPoints = 0;
*outPoints = nil;
return;

}

/* MAKE SURE ARRAY IS LARGE ENOUGH FOR DATA */

bufferSize = (numControlPoints * numSubDivs) + numControlPoints;
*outPoints = splinePoints = NewPointer(bufferSize *

sizeof(TQ3Point3D));
if (splinePoints == nil)

DoError("\pCannot allocate spline memory");

28

/* ALLOCATE 2D ARRAY FOR CALCULATIONS */

space = (TQ3Point3D **) AllocPtr(8 * sizeof(TQ3Point3D *));
space[0] = (TQ3Point3D *) AllocPtr(8 * numControlPoints *

sizeof(TQ3Point3D));
for (i = 1; i < 8; i++)

space[i] = space[i-1] + numControlPoints;

/***/
/* DO MAGICAL SPLINE CALCULATIONS ON CONTROL PTS */
/***/

h0 = space[0];
h1 = space[1];
h2 = space[2];
h3 = space[3];

a = space[4];
b = space[5];
c = space[6];
d = space[7];

for (i = 0; i < numControlPoints; i++) // copy control pts into array
d[i] = controlPoints[i];

for (i = 0, imax = numControlPoints - 2; i < imax; i++)
{

h2[i].x = h2[i].y = h2[i].z = 1;
h3[i].x = 3 *(d[i+ 2].x - 2 * d[i+ 1].x + d[i].x);
h3[i].y = 3 *(d[i+ 2].y - 2 * d[i+ 1].y + d[i].y);
h3[i].z = 3 *(d[i+ 2].z - 2 * d[i+ 1].z + d[i].z);

}
 h2[numControlPoints - 3].x =
 h2[numControlPoints - 3].y =
 h2[numControlPoints - 3].z = 0;

a[0].x = a[0].y = a[0].z = 4;
h1[0].x = h3[0].x / a[0].x;
h1[0].y = h3[0].y / a[0].y;
h1[0].z = h3[0].z / a[0].z;
for (i = 1, i1 = 0, imax = numControlPoints - 2; i < imax; i++, i1++)
{

h0[i1].x = h2[i1].x / a[i1].x;
a[i].x = 4 - h0[i1].x;
h1[i].x = (h3[i].x - h1[i1].x) / a[i].x;

h0[i1].y = h2[i1].y / a[i1].y;
a[i].y = 4 - h0[i1].y;
h1[i].y = (h3[i].y - h1[i1].y) / a[i].y;

h0[i1].z = h2[i1].z / a[i1].z;
a[i].z = 4 - h0[i1].z;
h1[i].z = (h3[i].z - h1[i1].z) / a[i].z;

}

29

b[numControlPoints - 3] = h1[numControlPoints - 3];

for (i = numControlPoints - 4; i >= 0; i--)
{

 b[i].x = h1[i].x - h0[i].x * b[i+ 1].x;
 b[i].y = h1[i].y - h0[i].y * b[i+ 1].y;
 b[i].z = h1[i].z - h0[i].z * b[i+ 1].z;
 }

for (i = numControlPoints - 2; i >= 1; i--)
b[i] = b[i - 1];

b[0].x = b[numControlPoints - 1].x =
b[0].y = b[numControlPoints - 1].y =
b[0].z = b[numControlPoints - 1].z = 0;
hi_a = a + numControlPoints - 1;

for (; a < hi_a; a++, b++, c++, d++)
{

c->x = ((d+1)->x - d->x) -(2 * b->x + (b+1)->x) / 3;
a->x = ((b+1)->x - b->x) / 3;

c->y = ((d+1)->y - d->y) -(2 * b->y + (b+1)->y) / 3;
a->y = ((b+1)->y - b->y) / 3;

c->z = ((d+1)->z - d->z) -(2 * b->z + (b+1)->z) / 3;
a->z = ((b+1)->z - b->z) / 3;

}

/***********************************/
/* NOW CALCULATE THE SPLINE POINTS */
/***********************************/

a = space[4];
b = space[5];
c = space[6];
d = space[7];

 v = splinePoints;

 numSplinePoints = 0;

for (; a < hi_a; a++, b++, c++, d++)
{

dt = 1.0 / numSubDivs;
for (t = 0; t < 1; t += dt)
{

/* SAVE SPLINE POINT */

 v->x = ((a->x * t + b->x) * t + c->x) * t + d->x;
 v->y = ((a->y * t + b->y) * t + c->y) * t + d->y;
 v->z = ((a->z * t + b->z) * t + c->z) * t + d->z;
 v++;

numSplinePoints++; // inc # points
 }

}
*v++ = *d; // add final point
numSplinePoints++;

30

/************/
/* ALL DONE */
/************/

*outNumPoints = numSplinePoints; // pass back # points in spline

DisposePtr((Ptr)space[0]); // dispose of the 2D array
DisposePtr((Ptr)space);

}

As you can see, the code for generating a cubic-spline is significantly
more complex. If 20% of the above code makes sense to you then
you’re doing better than most people. I’ve said it before and I’ll say
it again: it’s not important that you understand why this code works,
just be happy that it does and know how to use it. Knowing how to
use a tool is much more important than knowing how the tool works.

GENERATING A ROLLERCOASTER TRACK

So, we come back to the question of how I built the rollercoaster
tracks in Gerbils. Gerbils actually has a hidden “Part Editor” built
into the application. This part editor will let you create your own
sections of track and playing with this editor will help you
understand the explanation that is to follow. To activate the hidden
Part Editor in Gerbils, simply add Menu resource ID 128 to the MBAR
resource. That’s it! The Part Editor menu will appear when you run
Gerbils and you will be able to see how it works.

31

Figure 3.10

The Gerbils “Part Editor”

Technically, the track was a single spline in 3D space, but a spline is
just a line - it isn’t a “track”. How do you know which way is up on a
line? You can’t, that’s why it actually takes two splines to represent
the rollercoaster track: a base spline and a “head” spline. The base
spline is the spline that is the track, and the head spline is the spline
where the rider’s head would be. These two splines run in parallel
along the course of the track.

Figure 3.11

The track is made of the base and head splines.

The head spline is necessary so that we know which way is up. This
allows us to correctly do corkscrews and loops which would be
impossible to represent with just a single spline.

32

Figure 3.12

Two figures showing how the head spline controls
the orientation of the rollercoaster for a loop and a

corkscrew

The crossbars and rails on the track are easily generated by taking
the cross product of the up-vector and the forward vector along
these two splines. This will give us a vector from the base spline to
the right rail. By negating this vector we get a vector to the left rail.
Then it’s just a matter of creating the geometry for the track.

33

Figure 4.13

The rails are found by taking the cross-product of
the up and forward vectors.

This is the basic principle behind generating the rollercoaster track,
and the only other thing you need to know is how to align the
rollercoaster cart (or Gerbil) to the track as it moves down it.

For starters, all the cart is doing is following the base spline. There’s
no math involved here, it’s just a matter of indexing into the gigantic
array of spline points. The more spline points you have interpolated,
the smoother the cart will move down the track. In Gerbils, there
were tens of thousands of interpolated points making up the spline,
thus movement along the track was very smooth. The only tricky
thing is keep thing the cart aimed correctly.

Luckily, there is a neat little matrix trick which lets us align the cart
without hardly any effort at all. Using an up vector and a forward
vector, we can just plug our vector values directly into a matrix.
Using this matrix to transform the cart geometry will cause it to align
to the direction of the track.

The following code shows how to build a matrix to align the cart to
the track direction. This code comes in very useful in other 3D
functions where you need to align geometry to an arbitrary vector.

34

/************ BUILD ALIGNMENT MATRIX ***************/

void BuildAlignmentMatrix(TQ3Vector3D *up, TQ3Vector3D *forward,
TQ3Point3D *coord, TQ3Matrix4x4 *theMatrix)

{
TQ3Vector3D theXAxis;

/* SET THE TRANSLATE VALUES */

theMatrix->value[3][0] = coord->x;
theMatrix->value[3][1] = coord->y;
theMatrix->value[3][2] = coord->z;

/* SET FORWARD VECTOR */

Q3Vector3D_Normalize(forward, forward);
theMatrix->value[2][0] = forward->x;
theMatrix->value[2][1] = forward->y;
theMatrix->value[2][2] = forward->z;

/* SET UP VECTOR */

Q3Vector3D_Normalize(up, up);
theMatrix->value[1][0] = up->x;
theMatrix->value[1][1] = up->y;
theMatrix->value[1][2] = up->z;

/* CALC & SET THE X-AXIS VECTOR */
//
// Cross product of up & forward vector gives us
// the X-axis vector
//

Q3Vector3D_Cross(up, forward, &theXAxis);
Q3Vector3D_Normalize(&theXAxis,&theXAxis);

theMatrix->value[0][0] = theXAxis.x;
theMatrix->value[0][1] = theXAxis.y;
theMatrix->value[0][2] = theXAxis.z;

/* SET REMAINING CELLS */

theMatrix->value[0][3] =
theMatrix->value[1][3] =
theMatrix->value[2][3] = 0;
theMatrix->value[3][3] = 1;

}

35

We directly plug the forward-vector into the 3rd row of the matrix.
The up-vector gets plugged into the 2nd row of the matrix, and the
x-axis vector gets plugged into the 1st row. The x-axis vector is the
only thing that we have to calculate, but it’s pretty simple. We just
need a vector which is perpendicular to the plane of the forward and
up vectors, and a simple cross product calculation gives us this.

SUMMARY

This chapter discussed some algorithms which can improve the
“coolness” of your QuickDraw 3D applications.

• The algorithm for finding the intersection of a line and a
plane is useful for doing certain types of collision
detection.

• Reflection / Environment mapping is a very cool effect
for applying a chrome texture map onto an object.

• Overlays are trivial to do in a custom 3D engine, but with
QuickDraw 3D they require a little bit of hacking to get
them to work. They will allow you to position geometry
relative to the camera such that it always appears at the
same place on the screen regardless of the camera’s
orientation.

• Splines are lots of fun and this chapter discussed how to
generate both b-splines and cubic splines. Building a 3D
rollercoaster track is rudimentary once you know how to
build a 3D spline.

1

Topic 4:

3D QuickTime Movies
3D ON THE WEB

3D on the Web these days is usually done by pre-rendering
animating gif’s or QuickTime movies, and VRML really hasn’t taken
off mainly because it’s too difficult to create VRML data and no one
can seem to get VRML viewers to install and remain stable. But if all
you want to do is put a 3D model on a web site and apply some basic
animation to it, then QuickTime and QuickDraw 3D is definitely the
way to go. It’s stable, everyone has it (especially with QuickTime 3.0
which comes with QuickDraw 3D by default), and creating the data is
very simple. Unlike VRML, however, 3D models in a QuickTime
movie are not interactive... yet. The QuickTime movie simply plays
back a pre-recorded sequence. Nonetheless, this is still better than
pre-rendering a 3D animation because there is no image quality loss
when you enlarge the playback window, plus the files are much
smaller and faster to download from a web site.

I’m not going to turn this chapter into a QuickTime tutorial, but I will
cover the basic information you need to know in order to create
QuickTime movies which contain animating 3D models. QuickTime
movies let you create many different types of media tracks, and one
of those track types is a 3D Track. Another type of track is the
“tween” track. A tween track is essentially the animation track, and
it let’s you interpolate the orientation of a 3D model over a period of
time.

Unfortunately, creating a 3D movie is a fairly complex process with a
lot of steps. I’ll try to explain what each step is doing, but if you
don’t understand everything, don’t worry about it. As long as you

2

can use the code, it isn’t completely critical that you understand why
it works.

STEP 1: WRITING A 3DMF FILE

The 3D data contained in a QuickTime movie is actually a 3DMF file.
Your movie can either reference an actual 3DMF file to use (an alias
to the file) or you can embed the 3DMF file binary data in the
QuickTime movie. For our purposes, we will want to embed the data
in the movie so that it is all self-contained.

First we are going to write a function called Make3DMovie. This is the
function to which you pass the QuickDraw 3D geometry you want in
the QuickTime movie:

/***************** MAKE 3D MOVIE ******************/
//
// INPUT: myModel = reference to 3D data we want to put
// in the QT movie.
// myView = reference to a View object to use
// for various things.
//

void Make3DMovie(TQ3Object myModel, TQ3ViewObject myView)
{
FSSpec spec;
short tempFolderVRefNum;
long tempFolderDirID;
TQ3ViewHintsObject viewHintsObj;

/*************************/
/* INITIALIZE SOME STUFF */
/*************************/

/* CREATE A VIEW HINTS OBJECT BASED ON THIS VIEW */

viewHintsObj = Q3ViewHints_New(myView);

/****************/
/* SAVE TO 3DMF */
/****************/

/* WE’RE GOING TO PUT TEMPORARY 3DMF FILE INTO TEMP FOLDER */

FindFolder(kOnSystemDisk,kTemporaryFolderType,kCreateFolder,
&tempFolderVRefNum,&tempFolderDirID);

3

/* CREATE FSSPEC FOR TEMP 3DMF FILE */

FSMakeFSSpec(tempFolderVRefNum, tempFolderDirID, "\ptemp.3dmf",
&spec);

/* SAVE THE 3DMF FILE */

SaveMy3DMFModel(myModel, viewHintsObj, myView, &spec);

/*************************/
/* BUILD QUICKTIME MOVIE */
/*************************/

RecordMyMovie(&spec);

/***********/
/* CLEANUP */
/***********/

Q3Object_Dispose(viewHintsObj); // nuke the view hints object
FSpDelete(&spec); // nuke the temp 3dmf file

}

The first thing this code does is create a View Hints object. This is
critical since this object will tell QuickTime where to put the camera,
what background color to use, etc. Without a view hints object, you
will probably get a big, blank QuickTime movie.

Next, we go ahead and write the 3DMF file to a temporary file in the
Temporary Files folder in the System folder. This 3DMF file is only
used while creating the QuickTime movie, thus, we delete it at the
end when we are done.

In case you are not familiar with the process of saving a 3DMF file,
here is the code for SaveMy3DMFModel:

/*************** SAVE MY 3DMF MODEL **************/
//
// INPUT: theModel = ref to model to save to file
// viewHintsObj = ref to view hints object to put in file
// myView = ref to View object
// myFSSpec = fsspec of file to save to.
//

void Save3DMFModel(TQ3Object theModel, TQ3ViewHintsObject viewHintsObj,
TQ3ViewObject myView, FSSPec myFSSpec)

4

{
TQ3FileObject fileObj;
TQ3Object theModel;
TQ3Status myStatus;
TQ3ViewStatus myViewStatus;
OSErr iErr;
TQ3StorageObject myStorageObj;

/****************************/
/* CREATE THE NEW 3DMF FILE */
/****************************/

FSpDelete(&myFSSpec); // delete any old one
iErr = FSpCreate(&myFSSpec, 'ttxt', '3DMF', smSystemScript);
if (iErr)

DoError(“\pFSpCreate failed!”);

/************************/
/* CREATE A FILE OBJECT */
/************************/

/* CREATE NEW STORAGE OBJECT WHICH IS THE 3DMF FILE */

myStorageObj = Q3FSSpecStorage_New(myFSSpec);
if (myStorageObj == nil)

DoError(“\pQ3FSSpecStorage failed!”);

/* CREATE NEW FILE OBJECT */

fileObj = Q3File_New();
if (fileObj == nil)

DoError(“\pQ3File_New failed!”);

/* SET THE STORAGE FOR THE FILE OBJECT */

if (Q3File_SetStorage(fileObj, myStorageObj) == kQ3Failure)
DoError(“\pQ3File_SetStorage failed!”);

Q3Object_Dispose(myStorageObj);

/******************************/
/* OPEN 3DMF FILE FOR WRITING */
/******************************/

myStatus = Q3File_OpenWrite(fileObj, kQ3FileModeNormal);
if (myStatus != kQ3Success)

DoError(“\pQ3File_OpenWrite failed!”);

/***********************/
/* WRITE THE 3DMF FILE */
/***********************/

/* START WRITING PROCESS */

5

myStatus = Q3View_StartWriting(myView,fileObj);
if (myStatus != kQ3Success)

DoError(“\pQ3View_StartWriting failed!”);

/* SUBMIT LOOP */
do
{

Q3Object_Submit(viewHintsObj, myView);
Q3Geometry_Submit(theModel, myView);
myViewStatus = Q3View_EndWriting(myView);

} while (myViewStatus == kQ3ViewStatusRetraverse);

/***********/
/* CLEANUP */
/***********/

Q3File_Close(fileObj);
Q3Object_Dispose(fileObj);

}

STEP 2: CREATING THE MOVIE FILE

After saving the 3DMF file to the Temporary Items folder, we call
RecordMyMovie to actually create a QuickTime movie from the 3D
data:

/********************* RECORD MY MOVIE ***************************/
//
// INPUT: fsSpec = 3DMF file to include in movie.
//

void RecordMyMovie(FSSpec *fsSpec)
{
Movie theMovie,movie2;
short resRefNum ;
short resId = 0;
OSErr iErr;
StandardFileReply reply;
FSSpec *specPtr,tempSpec;
Handle tempH;
short tempFolderVRefNum;
long tempFolderDirID;

/*******************************/
/* LET USER SET FILE SAVE INFO */
/*******************************/

StandardPutFile("\pSave Movie As...",”\pMy3DMovie.mov”,&reply);
if (!reply.sfGood)

return;
specPtr = &reply.sfFile;

6

/*********************************/
/* CREATE NEW SCRATCH MOVIE FILE */
/*********************************/

/* ONCE AGAIN, WE’LL SAVE THIS TO THE TEMP FOLDER */

FindFolder(kOnSystemDisk,kTemporaryFolderType,kCreateFolder,
&tempFolderVRefNum,&tempFolderDirID);

FSMakeFSSpec(tempFolderVRefNum, tempFolderDirID, "\ptemp.mov",
&tempSpec);

/* CREATE THE SCRATCH MOVIE */

iErr = CreateMovieFile (&tempSpec,
'TVOD',

 smCurrentScript,
 createMovieFileDeleteCurFile,
 &resRefNum,

 &theMovie);
if (iErr)

DoError("\pCreateMovieFile failed!");

/*********************/
/* SET MOVIE TO LOOP */
/*********************/

tempH = NewHandleClear(sizeof(long));
AddUserData(GetMovieUserData(theMovie), tempH, 'LOOP');
DisposeHandle(tempH);

/********************************/
/* ADD THE 3D DATA TO THE MOVIE */
/********************************/

CreateMyMovie3DTrack(theMovie, fsSpec);

/**/
/* NOW TURN SCRATCH MOVIE INTO REAL MOVIE */
/**/

movie2 = FlattenMovieData(theMovie, flattenAddMovieToDataFork,
specPtr, 'TVOD', smCurrentScript,

 createMovieFileDeleteCurFile);
if (movie2 == nil)

DoError("\pFlattenMovieData failed!");

/**************************/
/* CLOSE THE SCRATCH FILE */
/**************************/

7

iErr = CloseMovieFile(resRefNum);
if (iErr)

DoFatalAlert("\pRecordNewMovie: CloseMovieFile failed!");

/***********/
/* CLEANUP */
/***********/

DisposeMovie(movie2);
DisposeMovie(theMovie);
DeleteMovieFile(&tempSpec);

}

This function outlines the basic process of creating the QuickTime
movie. We need to build our movie, so we create a scratch file in the
Temporary Items folder to work with. The function
CreateMyMovie3DTrack will add the 3D data to the movie and is listed
below. Once our scratch movie is created, we call FlattenMovieData
which essentially merges the QuickTime data with the 3DMF data
and allows us to create a new movie which has the 3D data
embedded in it.

Once we’ve flattened the movie, the final movie file has been created.
All we do from here is close a few files, dispose of the movie data,
and delete the scratch movie file.

STEP 3: THE 3D & TWEEN TRACKS

So, the easy part is over. Let the fun begin! Creating the 3DMF file
and the movie file was easy, but adding the 3D and animation data to
the movie is a very messy process. It all makes sense, but it’s
cumbersome so take it slow.

#define kMovieWidth 300 // dimensions of the movie to make
#define kMovieHeight 300

#define kMovieTimeScale 100 // # samples per second in movie

#define kStartScale 1.0 // scale from start to end value
#define kEndScale 2.0

#define kStartRotY 0.0 // rot on y-axis from start to end
#define kEndRotY (kQ3Pi * 2)

#define kStartX 0.0 // move from start to end coords

8

#define kStartY 0.0
#define kStartZ -300.0
#define kEndX 0.0
#define kEndY 0.0
#define kEndZ 300.0

#define kDataCompressorType zlibDataCompressorSubType

enum // enums to help me out
{

TRANS_ID_SCALE = 1,
TRANS_ID_ROTY,
TRANS_ID_MOVE

};

/************** CREATE MY MOVIE 3D TRACK ***************/
//
// Creates the movie video track and adds our animation to it.
//

void CreateMyMovie3DTrack(Movie theMovie, FSSpec *the3DMFFile)
{
Track theTrack,tweenTrack;
Media theMedia,tweenMedia;
OSErr iErr;
ThreeDeeDescriptionHandle sampleDescription = nil;
long eof;
short fref;
TQ3Vector3D tweenTranslate;
long referenceIndex1, referenceIndex2, referenceIndex3;
QTAtomContainer inputMap;
QTAtomContainer tweenSample;
TQ3Vector3D tweenScale;
TQ3RotateTransformData tweenRotate;
Handle the3DMFData,compressed3DMFData = nil,dataToUse;

/********************************/
/* READ IN THE 3DMF BINARY DATA */
/********************************/

FSpOpenDF(the3DMFFile, fsRdPerm, &fref); // open 3DMF file
GetEOF(fref, &eof); // get size of file
the3DMFData = NewHandleClear(eof); // get mem for it
HLock(the3DMFData);
FSRead(fref, &eof, *the3DMFData); // read the data
FSClose(fref); // close the file

/**/
/* MAKE A SAMPLE DESCRIPTION FOR THE 3D MEDIA */
/**/

sampleDescription = (ThreeDeeDescriptionHandle)NewHandleClear(
sizeof(ThreeDeeDescription));

(**sampleDescription).descSize = sizeof(ThreeDeeDescription);

/***********************/

9

/* CREATE THE 3D TRACK */
/***********************/

theTrack = NewMovieTrack (theMovie,
 FixRatio(kMovieWidth,1),

FixRatio(kMovieHeight,1),
kNoVolume);

if (theTrack == nil)
DoError("\pNewMovieTrack failed!");

/**************************/
/* CREATE THE TRACK MEDIA */
/**************************/

theMedia = NewTrackMedia (theTrack,
ThreeDeeMediaType,

 kMovieTimeScale,
 0,nil);

if (theMedia == nil)
DoError("\pNewTrackMedia failed!");

/************************/
 /* COMPRESS THE 3D DATA */

/************************/

iErr = CompressMyHandle(the3DMFData, &compressed3DMFData);
if (iErr)

dataToUse = the3DMFData;
else
{

(**sampleDescription).decompressorType = kDataCompressorType;
dataToUse = compressed3DMFData;

}

/******************************/
 /* ADD THE 3DMF DATA AS MEDIA */

/******************************/

iErr = BeginMediaEdits(theMedia);
if (iErr)

DoError("\pBeginMediaEdits failed!");

iErr = AddMediaSample(theMedia,
 dataToUse,
 0,
 GetHandleSize(dataToUse),
 kMovieTimeScale*5,
 (SampleDescriptionHandle)sampleDescription,
 1, // one sample
 0, // self-contained samples
 nil);

if (iErr)
DoError("\pAddMediaSample failed!");

EndMediaEdits(theMedia);

10

 /*********************************/
 /* ADD THE 3D MEDIA TO THE TRACK */

/*********************************/

InsertMediaIntoTrack(theTrack, 0, 0, GetMediaDuration(theMedia),
kFix1);

DisposeHandle((Handle)sampleDescription);

 /******************/
 /* DO TWEEN TRACK */
 /******************/

 /* MAKE TWEEN TRACK */

tweenTrack = NewMovieTrack(theMovie, 0, 0, 0);

/* NEW TWEEN MEDIA */

tweenMedia = NewTrackMedia(tweenTrack, TweenMediaType,
gMovieTimeScale, nil, 0);

/* MAKE EMPTY TWEEN SAMPLE */

iErr = QTNewAtomContainer(&tweenSample);
if (iErr)

DoError("\pQTNewAtomContainer failed!");

/**************************/
/* ADD TWEEN ENTRY: SCALE */
/**************************/

/* SET ENDING SCALE VALUE */

tweenScale.x =
tweenScale.y =
tweenScale.z = kEndScale;
AddMyTweenEntryToSample(tweenSample, TRANS_ID_SCALE,

kTweenType3dScale, &tweenScale,
sizeof(tweenScale));

/* SET INITIAL SCALE VALUE */

tweenScale.x =
tweenScale.y =
tweenScale.z = kStartScale;
SetMyTweenEntryInitialConditions(tweenSample, TRANS_ID_SCALE,

&tweenScale, sizeof(tweenScale));

/*****************************/
/* ADD TWEEN ENTRY: ROTATE-Y */
/*****************************/

11

/* SET ENDING ROTATE VALUE */

tweenRotate.axis = kQ3AxisY;
tweenRotate.radians = kEndRotY;
addTweenEntryToSample(tweenSample, TRANS_ID_ROTY, kTweenType3dRotate,

&tweenRotate, sizeof(tweenRotate));

/* SET STARTING ROTATE VALUE */

tweenRotate.axis = kQ3AxisY;
tweenRotate.radians = kStartRotY;
setTweenEntryInitialConditions(tweenSample, TRANS_ID_ROTY,

&tweenRotate, sizeof(tweenRotate));

/******************************/
/* ADD TWEEN ENTRY: TRANSLATE */
/******************************/

/* SET ENDING COORDINATE */

tweenTranslate.x = kEndX;
tweenTranslate.y = kEndY;
tweenTranslate.z = kEndZ;
addTweenEntryToSample(tweenSample, TRANS_ID_MOVE,

kTweenType3dTranslate, &tweenTranslate,
sizeof(tweenTranslate));

/* SET STARTING COORDINATE */

tweenTranslate.x = kStartX;
tweenTranslate.y = kStartY;
tweenTranslate.z = kStartZ;
setTweenEntryInitialConditions(tweenSample, TRANS_ID_MOVE,

&tweenTranslate, sizeof(tweenTranslate));

/*********************************/
 /* MAKE TWEEN SAMPLE DESCRIPTION */

/*********************************/

sampleDescription = (ThreeDeeDescriptionHandle)NewHandleClear(
sizeof(SampleDescription));

(**sampleDescription).descSize = sizeof(SampleDescription);

/***************************************/
/* ADD TWEEN SAMPLE TO THE TWEEN MEDIA */
/***************************************/

BeginMediaEdits(tweenMedia);

iErr = AddMediaSample(tweenMedia, tweenSample, 0,
GetHandleSize(tweenSample), kMovieTimeScale*5,

 (SampleDescriptionHandle)sampleDescription, 1,

12

0, nil);
if (iErr)

DoError("\pAddMediaSample failed!");

EndMediaEdits(tweenMedia);

/**********************************/
/* ADD TWEEN MEDIA INTO THE TRACK */
/**********************************/

InsertMediaIntoTrack(tweenTrack, 0, 0, GetMediaDuration(tweenMedia),
kFix1);

QTDisposeAtomContainer(tweenSample); // throw away a few things
DisposeHandle((Handle)sampleDescription);

/***/
/* CREATE REFERENCES BETWEEN 3D AND TWEEN TRACKS */
/***/

AddTrackReference(theTrack, tweenTrack, kTrackModifierReference,
&referenceIndex1);

AddTrackReference(theTrack, tweenTrack, kTrackModifierReference,
&referenceIndex2);

AddTrackReference(theTrack, tweenTrack, kTrackModifierReference,
&referenceIndex3);

/*************************************/
/* CREATE INPUT MAP FOR THE 3D TRACK */
/*************************************/

QTNewAtomContainer(&inputMap);

/* ADD ENTRIES TO INPUT MAP */
//
// NOTE: This order seems to determine how transforms
// are applied. Do transform *then* rotate to get
// a rot->trans concatenation. In other words,
// do in reverse order that you want transforms
// applied.
//

AddMyTweenEntryToInputMapEntry(inputMap, referenceIndex1,
TRANS_ID_MOVE, kTrackModifierType3d4x4Matrix,
nil);

AddMyTweenEntryToInputMapEntry (inputMap, referenceIndex2,
TRANS_ID_ROTY, kTrackModifierType3d4x4Matrix,
nil);

AddMyTweenEntryToInputMapEntry (inputMap, referenceIndex3,
TRANS_ID_SCALE, kTrackModifierType3d4x4Matrix,
nil);

13

/* ATTACH INPUT MAP TO 3D MEDIA HANDLER */

SetMediaInputMap(theMedia, inputMap);

/***********/
/* CLEANUP */
/***********/

QTDisposeAtomContainer(inputMap);
DisposeHandle(the3DMFData);
if (compressed3DMFData != nil)

DisposeHandle(compressed3DMFData);
}

Okay, the above function is a monster, I know. The general flow of
events goes like this:

1. Load the 3DMF file’s binary data into memory.

2. Create the 3D track & 3D media

3. Compress the 3D data.

4. Assign the 3D data to the media.

5. Assign the media to the track.

6. Create the Tween track & media.

7. Create a tween “sample”.

8. Add scale, rotate, and translate information to the sample.

9. Add the sample to the tween media.

10. Add the tween media to the tween track.

11. Create references between the 3D and Tween tracks.

12. Cleanup

When you look at it broken down like this, it starts to make a little
more sense. You can get more information on creating tween tracks

14

by downloading the “Tween Media Handler” documentation off of the
QuickTime web site at www.quicktime.apple.com.

The code above added a scale, y-axis rotate, and a translate tween to
the movie, but we are not limited to this. We could have done just a
rotate, or just a translate tween. We could have also added x and z-
axis rotates as well. The header file Movies.h contains enums for all
of the possible tween types. There are quite a few of them and if
you really get into it, you can make your 3D QuickTime movies do
some really cool stuff!

ADDING TWEEN ENTRIES

There are still three functions to write which are needed by the
CreateMyMovie3DTrack function above. These functions are
responsible for actually adding tween data to samples.

/************** ADD MY TWEEN ENTRY TO SAMPLE ****************/
//
// Adds a tween to the sample.
//

OSErr AddMyTweenEntryToSample(QTAtomContainer tweenSample, long tweenID,
long tweenType, void *tweenData,
long tweenDataSize)

{
OSErr err;
QTAtom tweenAtom;

/* CREATE ENTRY FOR THIS TWEEN IN THE SAMPLE */

err = QTInsertChild(tweenSample, kParentAtomIsContainer, kTweenEntry,
tweenID, 0, 0, nil, &tweenAtom);

if (err)
return(err);

/* DEFINE THE TYPE OF IT */

err = QTInsertChild(tweenSample, tweenAtom, kTweenType, 1, 0,
sizeof(tweenType), &tweenType, nil);

if (err)
return(err);

/* DEFINE THE DATA FOR IT */

15

err = QTInsertChild(tweenSample, tweenAtom, kTweenData, 1, 0,
tweenDataSize, tweenData, nil);

return(err);
}

/********* SET TWEEN ENTRY INITIAL CONDITIONS ***********/
//
// Sets the 1st tween value in the sample.
//

OSErr SetMyTweenEntryInitialConditions(QTAtomContainer tweenSample,
long tweenID, void *initialData,
long initialDataSize)

{
QTAtom tweenAtom;

/* LOOK-UP THE TWEEN ENTRY */

tweenAtom = QTFindChildByID(tweenSample, kParentAtomIsContainer,
kTweenEntry, tweenID, nil);

if (!tweenAtom)
return(paramErr);

/* ADD THE INITIAL DATA OFFSET */

return(QTInsertChild(tweenSample, tweenAtom, 'icnd', 1, 0,
initialDataSize, initialData, nil));

}

/*********** ADD TWEEN ENTRY TO INPUT MAP ENTRY ************/

OSErr AddMyTweenEntryToInputMapEntry(QTAtomContainer inputMap,
long referenceIndex,
long tweenID, long tweenType,
char *name)

{
OSErr err;
QTAtom inputAtom;

/* ADD AN INPUT ENTRY TO THE INPUT MAP */

err = QTInsertChild(inputMap, kParentAtomIsContainer,
kTrackModifierInput, referenceIndex, 0, 0,
nil, &inputAtom);

if (err)
return(err);

/* SET THE TYPE OF THE MODIFIER INPUT */

16

//
// note: for 3D, this is almost always
// kTrackModifierType3d4x4Matrix
//

err = QTInsertChild(inputMap, inputAtom, kTrackModifierType, 1, 0,
sizeof(tweenType), &tweenType, nil);

if (err)
return(err);

/* SET THE SUB INPUT ID (ID OF THE TWEEN ENTRY) */

err = QTInsertChild(inputMap, inputAtom, kInputMapSubInputID, 1, 0,
sizeof(tweenID), &tweenID, nil);

if (err)
return(err);

/* DEFINE THE NAME */

if (name)
{

long nameLen = 1;
Ptr p = name;

while (*p++)
nameLen++;

err = QTInsertChild(inputMap, inputAtom, kTrackModifierInputName,
1, 0, nameLen, name, nil);

if (err)
return(err);

}
return(noErr);

}

The complexity of this code may seem a bit overwhelming at first,
but once you start working with it you will begin to understand how
it works. Soon you’ll be able to modify it to do all sorts of complex
animations by adding multiple tweens in the tween track. You can
make a model fly in, turn around and fly away. Or you can make a
model spin like mad while rapidly scaling in and out.

COMPRESSING THE 3D DATA

In the function CreateMyMovie3DTrack we called another function
named CompressMyHandle which took our 3DMF binary data and
compressed it. This feature is only available in QuickTime 3.0 or
newer, therefore, do not compress 3D data for QuickTime movies
which need to playback correctly with older versions of QuickTime.

17

QuickTime 3.0 has several compressors and decompressors built into
it, including data compressors for compressing any arbitrary block of
data. Technically we’re using the Component Manager to do this, but
the functionality is by way of QuickTime 3.0.

Here is the code which does the compression:

/*************** COMPRESS MY HANDLE *****************/
//
// INPUT: srcHandle = handle to source data to compress
// OUTPUT: compressedSrcData = handle to compressed data
//

OSErr CompressMyHandle(Handle srcHandle, Handle *compressedSrcData)
{
OSErr err = noErr;
ComponentInstance dataCompressor = nil;
unsigned long srcSize = GetHandleSize(srcHandle);
unsigned long compressSize;
unsigned long whoCares;

/* INIT HANDLE IN CASE WE CAN’T DO COMPRESSION */

*compressedSrcData = nil;

/* OPEN THE COMPRESSOR COMPONENT */

err = OpenADefaultComponent(DataCompressorComponentType,
kDataCompressorType, &dataCompressor);

if (err)
goto bail;

/***/
/* GET SIZE OF COMPRESSION BUFFER & ALLOCATE ONE */
/***/

err = DataCodecGetCompressBufferSize(dataCompressor, srcSize,
&compressSize);

if (err)
goto bail;

*compressedSrcData = NewHandle(compressSize + sizeof(long));
if (err = MemError())

goto bail;

HLockHi(srcHandle);
HLockHi(*compressedSrcData);

18

/**********************/
/* DO THE COMPRESSION */
/**********************/

err = DataCodecCompress(dataCompressor, *srcHandle, srcSize,
**compressedSrcData + sizeof(long),

 compressSize - sizeof(long), &compressSize,
&whoCares);

if (err)
goto bail;

/* PUT SIZE INTO 1ST LONG OF DATA */

***(long ***)compressedSrcData = EndianS32_NtoB(srcSize);

/***********/
/* CLEANUP */
/***********/

HUnlock(*compressedSrcData);
HUnlock(srcHandle);

/* RESIZE HANDLE TO FIT EXACTLY RIGHT */

SetHandleSize(*compressedSrcData, compressSize + sizeof(long));

bail:
if (dataCompressor)

CloseComponent(dataCompressor);

return err;
}

The compressor type values are found in QuickTimeComponents.h and
you should generally use zlibDataCompressorSubType with 3D data.

SUMMARY

Creating a QuickTime movie with a 3D track is a fairly complex thing
to do (relative to doing other things with QuickDraw 3D), but once
you get used to it, you’ll find that you can create some really cool
QuickTime movies.

It’s safe to say that QuickDraw 3D with QuickTime is the easiest way
to get 3D content onto the web.

Think different.http://www.apple.com/developer

Interactive Media Resources
Whether looking for technical guides from
industry experts or for market and industry
research reports to help make critical
business decisions, you’ll find them on the
Interactive Media Resources page.

Apple Developer Connection
Programs and Products
ADC programs and products
offer easy access to technical
and business resources for
anyone interested in devel-
oping for Apple platform s
worldwide. Apple offers three
levels of program participation
serving developer needs .

Membership Programs

Online Program—Developers gain
access to the latest technical
documentation for Apple technologies as
well as business resources and information
through the Apple Developer Connection
web site.

Select Program—Offers developers the
convenience of technical and business
information and resources on monthly
CDs, provides access to prerelease
sof tware, and bundles two technical
support incidents.

Premier Program—Meets the needs of
developers who desire the most complete
suite of products and services from Apple,
including eight technical support incidents

and discounts on Apple hardware.

Standalone Products

Apple offers many standalone products
that allow developers to choose their own
level of support from Apple or enhance
their Select or Premier Program
membership. Choose from the following

products and begin enjoying
the benefits today.

Developer Connection
Mailing—Subscribe to the
Apple Developer Connection
Mailing for the latest in
development tools, system
software, and more.

Technical Support—Pur-
chase technical support and work directly
with Apple’s Worldwide Developer Tech-
nical Support engineers.

Apple Developer Connection News—
Stay connected to Apple and developer-
specific news by subscribing to our free
weekly e-mail newsletter, Apple Developer
Connection News. Each newsletter contains
up-to-date information on topics such as
Mac OS, Interactive Media, Hardware, Apple
News and Comarketing Opportunities.

Macintosh Products Guide
The most complete guide for Macintosh
products! Be sure to list your hardware and
software products in our free online database
at http://www.macsoftware.apple.com

Interactive Media
Resources Include:

Interactive Media
Guidebooks

Market Research Reports

Survival Guides—
Technical “How To”
Guides

Comarketing
Opportunities

Special Discounts

As Apple technologies such as QuickTime, ColorSync, and AppleScript
continue to expand Macintosh as the tool of choice for content creators
and interactive media authors, the Apple Developer Connection continues
its commitment to provide creative professionals with the latest technical
and marketing information and tools.

http://developer.apple.com/media
The ultimate source for creative professionals.
© 1998 Apple Computer, Inc. All rights reserved. Apple, the Apple logo, AppleScript, ColorSync, QuickTime, Macintosh and Mac OS are registered
trademarks of Apple computer, Inc. This ad was created using Macintosh personal computers.

Apple
Developer
Connection

Make the
Connection
Join ADC today!

http://developer.apple.com/

Dev.Ad.8/98.B 9/5/98 4:33 PM Page 1

	Making Cool QuickDraw 3DApplications!
	Introduction
	Triangles
	TriMesh Attribute Arrays
	Building the Whole TriMesh
	Object References & Memory

	MAKING EFFICIENT TRIMESHES
	One Material Per TriMesh
	Watch out for Duplicate Data
	Working Around The Restrictions
	Merging Texture Maps
	Smoothing Models

	Form*Z & 3DMF Optimizer
	Exporting 3DMF Files from Form*Z
	Using 3DMF Optimizer

	STRIPS & FANS OPTIMIZATIONS
	Strips
	Fans
	Don’t Get Too Excited

	EDGE GENERATION
	SUBMITTING TRIMESHES
	SUMMARY

	QuickDraw 3D Optimizations
	WHY WE NEED OPTIMIZATIONS
	OBJECT CULLING
	QUICKDRAW 3D’S CULLING SCHEME
	HOW WE CAN DO BETTER
	Spherical Culling
	Spherical Culling Code
	It Ain’t Quite Perfect

	TEXTURE OPTIMIZATIONS
	SIZE MATTERS
	Powers of 2
	Bit-Depth

	MIPMAPS VS. PIXMAPS
	TEXTURE QUALITY
	DRAW CONTEXT OPTIMIZATIONS
	BIT-DEPTH
	ALIGNMENT & WIDTH

	OPTIMIZING GROUPS
	HIERARCHIES & STATE INFORMATION

	OPTIMIZING THE HIERARCHY
	MATHEMATICAL OPTIMIZATIONS
	EXTENDED FLOATING POINT
	Reciprocal Square Root & Newton-RaphsonRefinement
	Reciprocal Estimate

	SUMMARY

	Cool Algorithms
	LINE INTERSECT PLANE
	THE PLANE EQUATION OF A TRIANGLE
	TESTING THE INTERSECTION

	REFLECTION MAPPING
	GENERATING THE REFLECTION MAP
	REFLECTION CODE
	REFLECTION MAPPING TRIMESHES

	“OVERLAYS”
	SPLINES
	SPLINE TYPES
	CALCULATING A B-SPLINE
	CALCULATING A CUBIC SPLINE
	GENERATING A ROLLERCOASTER TRACK

	SUMMARY

	3D QuickTime Movies
	STEP 1: WRITING A 3DMF FILE
	STEP 2: CREATING THE MOVIE FILE
	STEP 3: THE 3D & TWEEN TRACKS
	ADDING TWEEN ENTRIES

	COMPRESSING THE 3D DATA
	SUMMARY

