Example: Romania
| N

Problem: On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest. Find a short
route to drive to Bucharest.

® Formulate problem:

» states: various cities
s actions: drive between cities

» solution: sequence of cities, e.g., Arad, Sibiu,
Fagaras, Bucharest

L]

Artificial Intelligence — p.2/89

Artificial Intelligence

Problem Solving and Search

Readings: Chapter 3 of Russell & Norvig.

]

Artificial Intelligence — p.1/89

Problem types
| N

Deterministic, fully observable —> single-state problem
s Agent knows exactly which state it will be in; solution
iS a sequence
Non-observable = conformant problem
s Agent may have no idea where it is; solution (if any)
iS a sequence

Nondeterministic and/or partially observable —
contingency problem

s percepts provide new information about current state
s solution is a tree or policy
s often interleave search, execution

L # Unknown state space — exploration problem (“online”)J

Artificial Intelligence — p.4/89

Example: Romania

[JHirsova

Eforie

|

]

Artificial Intelligence — p.3/89

Example: Vacuum World

Single-state,
start in #5.
Solution??

SRS NS

A [ER] [A] [Bh

]

Artificial Intelligence — p.6/89

fW

Problem Solving

following holds.

discrete set of states.

operators.

e will start by considering the simpler cases in which the

The world is static and deterministic.

|

The agent’s world (environment) is representable by a

The agent’s actions are representable by a discrete set of

]

Artificial Intelligence — p.5/89

Example: Vacuum World

Single-state, start in #5.
Solution?? [Right, Suck]

Conformant, start in
{1,2,3,4,5,6,7,8}

e.g., Right goes to {2,4,6,8}.

Solution??
[Right, Suck, Le ft, Suck]

Contingency, start in #5

|

SRS NS

A [EK] [A] [Bh

]

Artificial Intelligence — p.8/89

L

Example: Vacuum World

Single-state, start in #5.
Solution?? [Right, Suck]

Conformant, start in
{1,2,3,4,5,6,7,8}
e.g., Right goes to
{2,4,6,8}.
Solutlon’?’?

|

SRS NS

A [EK] [A [Bh

]

Artificial Intelligence — p.7/89

Single-state problem formulation Example: Vacuum World
HinnE N

A problem is defined by four items: 1

—

s Iinitial state e.g., “at Arad”
s successor function S(x) = set of action—state pairs 3
e.g., S(Arad) = {(Arad — Zerind, Zerind), ...}
s goal test, can be explicit, e.g., z = “at Bucharest” 5
implicit, e.g., NoDirt(x)
s path cost (additive) e.g., sum of distances, number of 7

actions executed, etc. Usually given as ¢(z, a,y), the Single-state, start in #5.
step cost from x to y by action a, assumed to be > 0. Solution?? [Right, Suck]

k| (1] [*R 2
m%
) [(1) [

A solution is a sequence of actions leading from the Conformant, start in
initial state to a goal state {1,2,3,4,5,6,7,8}
e.g., Right goes to {2,4,6,8}.
L J Solution?? J

[Right, Suck, Le ft, Suck]

Artificial Intelligence — p.10/89 Artificial Intelligence — p.9/89

Contingency, start in #5

State space graph of vacuum world Selecting a State Space
f Ggg| [:l |AQD T f # Real world is absurdly complex = state space must be T
e abstracted for problem solving
R B # (Abstract) state = set of real states

FLITED (L (ostrach sta - .

onk - - TS # (Abstract) action = complex combination of real actions

’ f ’ e.g., “Arad — Zerind” represents a complex set of
‘= L1 = possible routes, detours, rest stops, etc.
& & s For guaranteed realizability, any real state “in Arad”

sta_tes?? must get to some real state “in Zerind”.
actions?? s Each abstract action should be “easier” than the
goal test?? original problem!

27
path cost?” # (Abstract) solution = set of real paths that are solutions

in the real world

L |]

Artificial Intelligence — p.12/89 Artificial Intelligence — p.11/89

Formulating Problem as a Graph

| B

n the graph
each node represents a possible state;
anode is designated as the initial state;

one or more nodes represent goal states, states in which
the agent’s goal is considered accomplished.

each edge represents a state transition caused by a
specific agent action;

associated to each edge is the cost of performing that
transition.

L]

Artificial Intelligence — p.14/89

State space graph of vacuum world

- (Fla] 1= :

(Pl L TED U | Te 90
LC]dg [i'] AQDR
SR
states??: integer dirt and robot locations (ignore dirt

amounts)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

L]

Artificial Intelligence — p.13/89

Problem Solving as Search
N -

Search space: set of states reachable from an initial state S
via a (possibly empty/finite/infinite) sequence of state
transitions.

To achieve the problem’s goal

search the space for a (possibly optimal) sequence of
transitions starting from S, and leading to a goal state;

execute (in order) the actions associated to each
transition in the identified sequence.

Depending on the features of the agent’s world the two steps

above can be interleaved.

L]

Artificial Intelligence — p.16/89

Search Graph
—

How do we reach a goal state?

|

initial state

goal states

There may be several possible ways. Or nonel!
Factors to consider:

cost of finding a path;
cost of traversing a path.

L]

Artificial Intelligence — p.15/89

Example: The 8-puzzle Problem Solving as Search
N N N

Reduce the original problem to a search problem.

f M , , _—
—e——— # A solution for the search problem is a path initial
2 8 3 state—goal state.
S » The solution for the original problem is either
[1 A 6/\ 4) s the sequence of actions associated with the path or
) C) _—
7 5 s the description of the goal state.
_ Z \ J
- J

It can be generalized to 15-puzzle, 24-puzzle, or
(n? — 1)-puzzle for n > 6.

L |]

Artificial Intelligence — p.18/89 Artificial Intelligence — p.17/89

Example: The 8-puzzle Example: The 8-puzzle
f States: configurations of tiles T fGO from state S to state G. T
Operators: move one tile Up/Down/Left/Right 288 e

(S ©)
There are 9! = 362, 880 possible states (all permutations

of {0,1,2,3,4,5,6,7,8}). i g 2

There are 16! possible states for 15-puzzle. 7| |5 L
R

Not all states are directly reachable from a given state. 1 DL Y -

(In fact, exactly half of them are reachable from a given 2813 2(83 21813

state.) 1]6[4 1 |a 1]6/4

7[5 r 17]6]5 L 715
D u { D' u R D U
How can an artificial agent represent the states and the state 288 88 28 1288 (2183
J L 1]7|5 7165 7165 716|5 7154 J

space for this problem?

Artificial Intelligence — p.20/89 Artificial Intelligence — p.19/89

Formulating the 8-puzzle Problem Problem Formulation
N s -

States: each represented by a 3 x 3 array of numbers in 1. Choose an appropriate data structure to represent the
[0...8], where value O is for the empty cell. world states.
() 2. Define each operator as a precondition/effects pair
where the
precondition holds exactly in the states the operator
applies to,
2 .83 # effects describe how a state changes into a
: / becomes A= 1 6 4 successor state by the application of the operator.
70 5

3. Specify an initial state.

4. Provide a description of the goal (used to check if a
reached state is a goal state).

L |]

Artificial Intelligence — p.22/89 Artificial Intelligence — p.21/89

Preconditions and Effects Formulating the 8-puzzle Problem
. N -

xample: Ops 9 p)

® Operators: 24 operators of the form Op(m’d)
where r,c € {1,2,3}, d € {L,R,U, D}.

r Op(r ¢,d) moves the empty space at position (r,¢) in
the direction d.

Preconditions: A[3,2] =0

Effects: Al3,2] — A3, 3] 2 8 3 2 8 3
Al3.3] = 0 16 o4 Pezn g gy
70 5 075

We have 24 operators in this problem formulation . ..

LZO too many! J L J

Artificial Intelligence — p.24/89 Artificial Intelligence — p.23/89

A Better Formulation
N |

Operators: 4 operators of the form Op ; where
de {L,R,U D}.

Opd moves the empty space in the direction d.

283 283
164 2 16 4
705 075

Artificial Intelligence — p.26/89

A Better Formulation
N |

States: each represented by a pair (A4, (i, 7)) where:
® Aisa3x3array of numbersin [0...§]
® (i,j) Is the position of the empty space (0) in the array.

Vs
A\

becomes (1 6 4,(3,2))
70 5

Half states are not reachable?
—

Can this be done?

|

1123 1123
11506 "L 4516
718 8|7

$1,000 award for anyone who can do it!

Artificial Intelligence — p.28/89

Preconditions and Effects
fE

xample: Op;
2 8 3 o 2 8 3
(16 4,(32) = (1 6 4(3,1)
7 5 0 5

Let (rg, co) be the position of 0 in A.

Preconditions: ¢p > 1

Alro, co — Alrg,co — 1]
A[T(),C()—l] — 0

r0,C «— (rg,cop—1
| (r0, o) (ro,co — 1) B

Artificial Intelligence — p.27/89

Effects:

The Water Jugs Problem

3l [49&

Get exactly 2 gallons of water into the 4qgl jug.

L]

Artificial Intelligence — p.30/89

Half states are not reachable?
N |

ay | a2 | a3

G4 | G5 | G

ar | ag | ag

Let the 8-puzzle be represented by (a1, as, as, as, as, as, az, as, ag). We say
(a;,a;) is an inversion if neither a; nor a; is blank, ¢ < j and a; > a;.

1123 1123
415|6 4156
7|8 8|7

The first one has 0 inversions and the second has 1.

L]

Claim: # of inversions modulo two remains the same after each move

"Artificial Intelligence — p.29/89

The Water Jugs Problem: Operators
N N

F4: fill jug4 from the pump.
precond: Jy < 4 effect: J; =4
E4: empty jug4 on the ground.
precond: Jy >0 effect: J; =0

E4-3: pour water from jug4 into jug3 until jug3 is full.

precond: J3 < 3, effect: J§ =3,
Jy>3—Js Jy=Jys—(3—J3)
P3-4: pour water from jug3 into jug4 until jug4 is full.
precond: Jy < 4, effect: Jy =4,
J3 >4 —Jy Jh=J3—(4—Jy)

E3-4: pour water from jug3 into jug4 until jug3 is empty.
precond: J3+ Jy < 4, effect: Jy = J3 + Ju,

L J3 >0 Jy=0 J

Artificial Intelligence — p.32/89

The Water Jugs Problem

- B

States: Determined by the amount of water in each jug.

State Representation: Two real-valued variables, J3, Jy,
indicating the amount of water in the two jugs, with the
constraints:

0<J3<3, 0<J,<4

Initial State Description
J3=0, J;=0

Goal State Description:

L J4:2

< non exhaustive description J

Artificial Intelligence — p.31/89

Real-World Search Problems
|]

Route Finding
(computer networks, airline travel planning system, ...)

Travelling Salesman Optimization Problem
(package delivery, automatic drills, . ..)

Layout Problems
(VLSI layout, furniture layout, packaging, ...)

Assembly Sequencing
(assembly of electric motors, ...)

Task Scheduling
L (manufacturing, timetables, ...) J

Artificial Intelligence — p.34/89

The Water Jugs Problem

Problem

J3=0| o
J4a=0| — = |J4=2

Search Graph

Artificial Intelligence — p.33/89

More on Graphs
—

A graph is a set of notes and edges (arcs) between them.

|

A graph is directed if an edge can be traversed only in a
specified direction.

When an edge is directed from n; to n;
itis univocally identified by the pair (n;, n;)
® n;is a parent (or predecessor) of n;

L

® n;is achild (or successor) of n; J

Artificial Intelligence — p.36/89

—

Problem Solution
]

Problems whose solution is a description of how to
reach a goal state from the initial state:
s n-puzzle
s route-finding problem
s assembly sequencing
Problems whose solution is simply a description of the
goal state itself:
s 8-queen problem
s scheduling problems
s layout problems

]

Artificial Intelligence — p.35/89

From Search Graphs to Search Trees Directed Graphs
N N N

The set of all possible paths of a graph can be represented
as a tree.

Atree is a directed acyclic graph all of whose nodes
have at most one parent.

Aroot of a tree is a node with no parents. A path, of length & > 0, is a sequence

® A leaf is a node with no children. ((n1,n2), (n2,n3),...,(ng, nry1)) of k successive edges. 1

The branching factor of a node is the number of its Ex: .{(8, D)), (3, D), (D, E), (E, B))

children. Forl1<i<j<k+1,

. L # N;is aancestor of N;; N, is a descendant of N;.
Graphs can be turned into trees by duplicating nodes and ! Jr !

Lbreaking cyclic paths, if any.] . Agraphis cyclic if it has a path starting from and ending |
into the same node. Ex: ((A, D), (D, E),(E,A))

@ Note that a path of length k& > 0 contains k& + 1 nodes.

Artificial Intelligence — p.38/89 Artificial Intelligence — p.37/89

Tree Search Algorithms From Graphs to Trees
D

fB o unravel a graph into a tree choose a root node and trace j

asic idea: offline, simulated exploration of state space by generating

successors of already-explored states (a.k.a. expanding states) every path from that node until you reach a leaf node or a
function TREE-SEARCH(problem, strategy) returns a solution, or failure node already in that path.
initialize the search tree using the initial state of problem JOI depth 0

& W

loop do
if there are no candidates for expansion then return failure G{ ®/ \
choose a leaf node for expansion according to strategy < VAN -
if the node contains a goal state then return the solution <’§ © é ® _© ams
else expand the node and add the resulting nodes to the search tree ng ~ v zﬁ E@

depth 4

end

® must remember which nodes have been visited

® anode may get duplicated several times in the tree

® the tree has infinite paths only if the graph has infinite non-cyclic paths.

L |]

Artificial Intelligence — p.40/89 Artificial Intelligence — p.39/89

Tree search example

L]

Artificial Intelligence — p.42/89

Tree Search Example

]

Artificial Intelligence — p.41/89

Implementation: states vs. nodes
—

A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(z)

States do not have parents, children, depth, or path cost!
parent, action

|

State E Node depth =6
g=6

0

o

The Expanp function creates new nodes, filling in the various
fields and using the successorFn of the problem to create

Lthe corresponding states. J

Artificial Intelligence — p.44/89

Tree Search Example

]

Artificial Intelligence — p.43/89

Uninformed Search Strategies
N -

Uninformed strategies use only the information available
in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

o o o o @

Iterative deepening search

L]

Artificial Intelligence — p.46/89

Search Strategies
N -

A strategy is defined by picking the order of node
expansion. Strategies are evaluated along the following

dimensions:

» completeness—does it always find a solution if one
exists?

s time complexity—number of nodes
generated/expanded

s space complexity—maximum number of nodes in
memory

s optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
s b—maximum branching factor of the search tree
L » d—depth of the least-cost solution J
s m—maximum depth of the state space (may be ~o)

Artificial Intelligence — p.45/89

Breadth-First Search
|]

Expand shallowest unexpanded node
Implementation: fringe is a FIFO queue, i.e., new
successors go at end

(A)
> ©

L]

Artificial Intelligence — p.48/89

Breadth-First Search
|]

Expand shallowest unexpanded node
Implementation: fringe is a FIFO queue, i.e., new
successors go at end

>®

L]

Artificial Intelligence — p.47/89

Breadth-First Search
N |

Expand shallowest unexpanded node
Implementation: fringe is a FIFO queue, i.e., new
successors go at end

(A)
(B) ©
>O G® G® G

Breadth-First Search
N |

Expand shallowest unexpanded node
Implementation: fringe is a FIFO queue, i.e., new
successors go at end

L _ _
Properties of Breadth-First Search Properties of Breadth-First Search
f T fComplete’?? T
Complete?? Yes (if b is finite) -
Time??
L I _

Artificial Intelligence — p.52/89

Artificial Intelligence — p.51/89

Properties of Breadth-First Search
| N

Complete?? Yes (if b is finite)

Time?? 1+b+ b2+ 0% + ...+ 0% +b(b% — 1) = O(b4*1), i.e.,
exp. ind

Space?? O(b**+1) (keeps every node in memory)
Optimal??

L]

Artificial Intelligence — p.54/89

Properties of Breadth-First Search
| N

Complete?? Yes (if b is finite)

Time?? 1+ b+ + 0% + ...+ 0 +b(b% — 1) = O(b4H1), ie.,
exp. ind

Space??

L]

Artificial Intelligence — p.53/89

Properties of Breadth-First Search
| N

Complete?? Yes (if b is finite)

Time?? 1+b+ 0>+ 4+ ...+ + (0% — 1) = O(b*H1), ie.,
exp. ind

Space?? O(b**+1) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general
Space?? Itis the big problem; can easily generate nodes at
10MB/sec so 24hrs = 860GB.

Artificial Intelligence — p.56/89

Properties of Breadth-First Search
| N

Complete?? Yes (if b is finite)

Time?? 1+b+ 0>+ 4+ ...+ + (0% — 1) = O(b*H1), ie.,
exp. ind

Space?? O(b**+1) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Space??

Artificial Intelligence — p.55/89

Depth-First Search

- B

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at

front
>®

]

Artificial Intelligence — p.58/89

Uniform-Cost Search
-

Expand least-cost unexpanded node

Implementation: fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost > ¢

Time?? # of nodes with ¢ < cost of optimal solution,

O(bl€ /<) where C* is the cost of the optimal solution
Space?? # of nodes with ¢ < cost of optimal solution,
O(blC/ely

Optimal?? Yes—nodes expanded in increasing order of g(n)

L

]

Artificial Intelligence — p.57/89

Depth-First Search
—

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

]

Artificial Intelligence — p.60/89

Depth-First Search
—

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at

front
(A)

>(B) ©

Artificial Intelligence

|

]

- p.59/89

Depth-First Search
N N

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

Depth-First Search
—

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

|

Depth-First Search
N N

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

Depth-First Search
—

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

Depth-First Search
N N

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at

front
(A)
20

Depth-First Search
—

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

|

Depth-First Search
N N

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

Depth-First Search
—

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

Properties of depth-first search
| N

Complete??

Depth-First Search
N N

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

Artificial Intelligence — p.69/89

Properties of depth-first search
—

Complete?? No: fails in infinite-depth spaces, spaces with
loops Modify to avoid repeated states along path =
complete in finite spaces

Time?? O(b™): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first
Space??

Artificial Intelligence — p.72/89

Properties of depth-first search

- B

Complete?? No: fails in infinite-depth spaces, spaces with
loops Modify to avoid repeated states along path =

complete in finite spaces
Time??

Artificial Intelligence — p.71/89

Properties of depth-first search
—

Complete?? No: fails in infinite-depth spaces, spaces with
loops Modify to avoid repeated states along path =
complete in finite spaces

Time?? O(b™): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first
Space?? O(bm), i.e., linear space!

Optimal?? No

|

L]

Artificial Intelligence — p.74/89

—

Properties of depth-first search
N

Complete?? No: fails in infinite-depth spaces, spaces with
loops Modify to avoid repeated states along path =
complete in finite spaces

Time?? O(b™): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first
Space?? O(bm), i.e., linear space!

Optimal??

L]

Artificial Intelligence — p.73/89

Iterative Deepening Search
N -

function Iterative-Deepening-Search (problem return soln
for depth fromO to MAX-INT do

result := Depth-Limted-Search(problem depth)
if (result != cutoff) then return result
end for

end function

L]

Artificial Intelligence — p.76/89

|

Depth-Limited Search
N

= depth-first search with depth limit /, i.e., nodes at depth [
have no successors

function Depth-Limted-Search (problem limt) return soln/fail/cutoff
return Recursive-DLS(Make-Node(Ilnitial-State(problem)), problem limt)
end function

function Recursive-DLS (node, problem limt) return soln/fail/cutoff
cutof f-occurred := fal se;
if (CGoal -State(problem State(node))) then return node;
else if (Depth(node) == linmt) then return cutoff;
el se for each successor in Expand(node, problem do
result := Recursive-DLS(successor, problem limt)
if (result == cutoff) then cutoff-occurred := true;
else if (result !=fail) then return result;
end for
if (cutoff-occurred) then return cutoff; else return fail;

end function

Artificial Intelligence — p.75/89

Iterative deepening search = 1 lterative deepening search = 0
N N

L I
lterative deepening search = 3 lterative deepening search = 2
N N

xi\
- n

ﬁ\ R
i

Properties of iterative deepening searct

fComplete’?? Yes T
Time??
L _

Properties of iterative deepening searct

Properties of iterative deepening searct
N N

Complete?? Yes

Time?? (d+ 1) +db' + (d —)b + ... + b2 = O(bv?)
Space?? O(bd)

Optimal??

fComplete’?? T
L |
Properties of iterative deepening searct
fComplete’?? Yes T
Time?? (d+ 1)b° +db' + (d — 1)b> + ... +b? = O(b?)
Space??
L |

Summary of Algorithms

Properties of iterative deepening searct
| N

omplete?? Yes

Criterion Breadth- Uniform- Depth- Depth- Iterative Time?? (d+ 1)b° +db' + (d — 1)b> + ... + b = O(b%)
First Cost First Limited Deepening Space?? O(bd)
Complete? | Yes* Yes* No Yes,ifl>d Yes Optlmal?? Yes, if step cost = 1 Can be modified to explore
Time bi+1 plC™ /el pm bl b uniform-cost tree
Space i+t plC /el bm bl bd
Optimal? Yes* Yes* No No Yes Numerical comparison for b = 10 and d = 5, solution at far right:
N(IDS) = 50+ 400 + 3,000 + 20,000 + 100,000 = 123,450
N(BFS) = 10+ 100 + 1,000 4 10,000 + 100,000 + 999,990 = 1,111, 100
Summary Repeated states

—

|

Problem formulation usually requires abstracting away
real-world details to define a state space that can
feasibly be explored

Variety of uninformed search strategies

lterative deepening search uses only linear space and
not much more time than other uninformed algorithms

]

Artificial Intelligence — p.88/89

- B

Failure to detect repeated states can turn a linear problem
into an exponential one!

Artificial Intelligence — p.87/89

Example: Romania

For a given strategy, what is the order of nodes to be generated (or stored), and expanded?
With or without checking duplicated nodes?

oo 00 b

Breadth-first
Depth-first
Uniform-cost
Depth-limited

Iterative-deepening

Eforie

]

Artificial Intelligence — p.89/89

	Artificial Intelligence
	{Example: Romania}
	{Example: Romania}
	{Problem types}
	Problem Solving
	{Example: Vacuum World}
	{Example: Vacuum World}
	{Example: Vacuum World}
	{Example: Vacuum World}
	{Single-state problem formulation}
	{Selecting a State Space}
	{State space graph of vacuum world}
	{State space graph of vacuum world}
	Formulating Problem as a Graph
	Search Graph
	Problem Solving as Search
	Problem Solving as Search
	Example: The 8-puzzle
	{Example: The 8-puzzle}
	Example: The 8-puzzle
	Problem Formulation
	Formulating the 8-puzzle Problem
	Formulating the 8-puzzle Problem
	Preconditions and Effects
	A Better Formulation
	A Better Formulation
	Preconditions and Effects
	Half states are not reachable?
	Half states are not reachable?
	The Water Jugs Problem
	The Water Jugs Problem
	The Water Jugs Problem: Operators
	The Water Jugs Problem
	Real-World Search Problems
	Problem Solution
	More on Graphs
	Directed Graphs
	From Search Graphs to Search Trees
	From Graphs to Trees
	{Tree Search Algorithms}
	{Tree Search Example}
	{Tree search example}
	{Tree Search Example}
	{Implementation: states vs.~nodes}
	{Search Strategies}
	{Uninformed Search Strategies}
	{Breadth-First Search}
	{Breadth-First Search}
	{Breadth-First Search}
	{Breadth-First Search}
	{Properties of Breadth-First Search}
	{Properties of Breadth-First Search}
	{Properties of Breadth-First Search}
	{Properties of Breadth-First Search}
	{Properties of Breadth-First Search}
	{Properties of Breadth-First Search}
	{Uniform-Cost Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Properties of depth-first search}
	{Properties of depth-first search}
	{Properties of depth-first search}
	{Properties of depth-first search}
	{Properties of depth-first search}
	{Depth-Limited Search}
	{Iterative Deepening Search}
	{Iterative deepening search $l=0$}
	{Iterative deepening search $l=1$}
	{Iterative deepening search $l=2$}
	{Iterative deepening search $l=3$}
	{Properties of iterative deepening search}
	{Properties of iterative deepening search}
	{Properties of iterative deepening search}
	{Properties of iterative deepening search}
	{Properties of iterative deepening search}
	{Summary of Algorithms}
	{Repeated states}
	{Summary}
	{Example: Romania}

