
Artificial Intelligence

Problem Solving and Search

Readings: Chapter 3 of Russell & Norvig.

Artificial Intelligence – p.1/89

Example: Romania

Problem: On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest. Find a short
route to drive to Bucharest.

Formulate problem:
states: various cities
actions: drive between cities
solution: sequence of cities, e.g., Arad, Sibiu,
Fagaras, Bucharest

Artificial Intelligence – p.2/89

Example: Romania

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Artificial Intelligence – p.3/89

Problem types

Deterministic, fully observable =⇒ single-state problem
Agent knows exactly which state it will be in; solution
is a sequence

Non-observable =⇒ conformant problem
Agent may have no idea where it is; solution (if any)
is a sequence

Nondeterministic and/or partially observable =⇒
contingency problem

percepts provide new information about current state
solution is a tree or policy
often interleave search, execution

Unknown state space =⇒ exploration problem (“online”)

Artificial Intelligence – p.4/89

Problem Solving

We will start by considering the simpler cases in which the
following holds.

The agent’s world (environment) is representable by a
discrete set of states.

The agent’s actions are representable by a discrete set of
operators.

The world is static and deterministic.

Artificial Intelligence – p.5/89

Example: Vacuum World

Single-state,
start in #5.
Solution??

.

1 2

3 4

5 6

7 8

Artificial Intelligence – p.6/89

Example: Vacuum World

Single-state, start in #5.
Solution?? [Right, Suck]

Conformant, start in
{1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to
{2, 4, 6, 8}.
Solution??

1 2

3 4

5 6

7 8

Artificial Intelligence – p.7/89

Example: Vacuum World

Single-state, start in #5.
Solution?? [Right, Suck]

Conformant, start in
{1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}.
Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: can

1 2

3 4

5 6

7 8

Artificial Intelligence – p.8/89

Example: Vacuum World

Single-state, start in #5.
Solution?? [Right, Suck]

Conformant, start in
{1, 2, 3, 4, 5, 6, 7, 8}
e.g., Right goes to {2, 4, 6, 8}.
Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: can

1 2

3 4

5 6

7 8

Artificial Intelligence – p.9/89

Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Arad”
successor function S(x) = set of action–state pairs
e.g., S(Arad) = {〈Arad→ Zerind, Zerind〉, . . .}

goal test, can be explicit, e.g., x = “at Bucharest”
implicit, e.g., NoDirt(x)

path cost (additive) e.g., sum of distances, number of
actions executed, etc. Usually given as c(x, a, y), the
step cost from x to y by action a, assumed to be ≥ 0.

A solution is a sequence of actions leading from the
initial state to a goal state

Artificial Intelligence – p.10/89

Selecting a State Space

Real world is absurdly complex⇒ state space must be
abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
e.g., “Arad→ Zerind” represents a complex set of
possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad”
must get to some real state “in Zerind”.
Each abstract action should be “easier” than the
original problem!

(Abstract) solution = set of real paths that are solutions
in the real world

Artificial Intelligence – p.11/89

State space graph of vacuum world

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??
actions??
goal test??
path cost??

Artificial Intelligence – p.12/89

State space graph of vacuum world

R

L

S S

S S

R

L

R

L

R

L

S

SS

S

L

L

LL R

R

R

R

states??: integer dirt and robot locations (ignore dirt
amounts)
actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??: 1 per action (0 for NoOp)

Artificial Intelligence – p.13/89

Formulating Problem as a Graph

In the graph

each node represents a possible state;

a node is designated as the initial state;

one or more nodes represent goal states, states in which
the agent’s goal is considered accomplished.

each edge represents a state transition caused by a
specific agent action;

associated to each edge is the cost of performing that
transition.

Artificial Intelligence – p.14/89

Search Graph

How do we reach a goal state?
4

3

3

5

7

4

2

5

4

2

B

F

A

S

G

C

D

initial state

goal states

E

There may be several possible ways. Or none!

Factors to consider:

cost of finding a path;

cost of traversing a path.

Artificial Intelligence – p.15/89

Problem Solving as Search

Search space: set of states reachable from an initial state S0

via a (possibly empty/finite/infinite) sequence of state
transitions.

To achieve the problem’s goal

search the space for a (possibly optimal) sequence of
transitions starting from S0 and leading to a goal state;

execute (in order) the actions associated to each
transition in the identified sequence.

Depending on the features of the agent’s world the two steps

above can be interleaved.

Artificial Intelligence – p.16/89

Problem Solving as Search

Reduce the original problem to a search problem.

A solution for the search problem is a path initial
state–goal state.

The solution for the original problem is either
the sequence of actions associated with the path or
the description of the goal state.

Artificial Intelligence – p.17/89

Example: The 8-puzzle

2
1
7

6
8 3

4
5

It can be generalized to 15-puzzle, 24-puzzle, or
(n2 − 1)-puzzle for n ≥ 6.

Artificial Intelligence – p.18/89

Example: The 8-puzzle

Go from state S to state G.

(G)(S)

2 8 3
1 6 4
7 5

1 2 3

6
4
57

8

R

L

L

R
D U

D U
L

LR

R
DD U U

1 6 4
7 5

2 8 3

8 3
1 6 4

57

8 3
1 4
7 56

8 3
1 6 4
7 5

8 3
1 6
7 5 4

8 3
1
7 56

4
3

1 4
7 56

8
8 3

4
7 56

1
8 3
6 4

571

2

2 2

2 2

222

Artificial Intelligence – p.19/89

Example: The 8-puzzle

States: configurations of tiles
Operators: move one tile Up/Down/Left/Right

There are 9! = 362, 880 possible states (all permutations
of {⊓⊔, 1, 2, 3, 4, 5, 6, 7, 8}).

There are 16! possible states for 15-puzzle.

Not all states are directly reachable from a given state.
(In fact, exactly half of them are reachable from a given
state.)

How can an artificial agent represent the states and the state

space for this problem?
Artificial Intelligence – p.20/89

Problem Formulation

1. Choose an appropriate data structure to represent the
world states.

2. Define each operator as a precondition/effects pair
where the

precondition holds exactly in the states the operator
applies to,
effects describe how a state changes into a
successor state by the application of the operator.

3. Specify an initial state.

4. Provide a description of the goal (used to check if a
reached state is a goal state).

Artificial Intelligence – p.21/89

Formulating the 8-puzzle Problem

States: each represented by a 3× 3 array of numbers in
[0 . . . 8], where value 0 is for the empty cell.

2
1
7

6
8 3

4
5

becomes A =
2 8 3

1 6 4

7 0 5

Artificial Intelligence – p.22/89

Formulating the 8-puzzle Problem

Operators: 24 operators of the form Op(r,c,d)
where r, c ∈ {1, 2, 3}, d ∈ {L,R,U,D}.

Op(r,c,d) moves the empty space at position (r, c) in

the direction d.

2 8 3

1 6 4

7 0 5

Op(3,2,L)
=⇒

2 8 3

1 6 4

0 7 5

Artificial Intelligence – p.23/89

Preconditions and Effects

Example: Op(3,2,R)

2 8 3

1 6 4

7 0 5

Op(3,2,R)
=⇒

2 8 3

1 6 4

7 5 0

Preconditions: A[3, 2] = 0

Effects:

{

A[3, 2] ← A[3, 3]

A[3, 3] ← 0

We have 24 operators in this problem formulation . . .

20 too many!

Artificial Intelligence – p.24/89

A Better Formulation

States: each represented by a pair (A, (i, j)) where:

A is a 3× 3 array of numbers in [0 . . . 8]

(i, j) is the position of the empty space (0) in the array.

2
1
7

6
8 3

4
5

becomes (

2 8 3

1 6 4

7 0 5

, (3, 2))

Artificial Intelligence – p.25/89

A Better Formulation

Operators: 4 operators of the form Opd where
d ∈ {L,R,U,D}.

Opd moves the empty space in the direction d.

2 8 3

1 6 4

7 0 5

OpL=⇒

2 8 3

1 6 4

0 7 5

Artificial Intelligence – p.26/89

Preconditions and Effects

Example: OpL

(

2 8 3

1 6 4

7 0 5

, (3, 2))
OpL=⇒ (

2 8 3

1 6 4

0 7 5

(3, 1))

Let (r0, c0) be the position of 0 in A.

Preconditions: c0 > 1

Effects:

A[r0, c0] ← A[r0, c0 − 1]

A[r0, c0 − 1] ← 0

(r0, c0) ← (r0, c0 − 1)

Artificial Intelligence – p.27/89

Half states are not reachable?

Can this be done?

1 2 3

4 5 6

7 8

any steps
=⇒

1 2 3

4 5 6

8 7

$1,000 award for anyone who can do it!

Artificial Intelligence – p.28/89

Half states are not reachable?

a1 a2 a3

a4 a5 a6

a7 a8 a9

Let the 8-puzzle be represented by (a1, a2, a3, a4, a5, a6, a7, a8, a9). We say
(ai, aj) is an inversion if neither ai nor aj is blank, i < j and ai > aj .

1 2 3

4 5 6

7 8

1 2 3

4 5 6

8 7

The first one has 0 inversions and the second has 1.

Claim: # of inversions modulo two remains the same after each move.
Artificial Intelligence – p.29/89

The Water Jugs Problem

3gl 4gl

Get exactly 2 gallons of water into the 4gl jug.

Artificial Intelligence – p.30/89

The Water Jugs Problem

States: Determined by the amount of water in each jug.

State Representation: Two real-valued variables, J3, J4,
indicating the amount of water in the two jugs, with the
constraints:

0 ≤ J3 ≤ 3, 0 ≤ J4 ≤ 4

Initial State Description

J3 = 0, J4 = 0

Goal State Description:

J4 = 2 ⇐ non exhaustive description

Artificial Intelligence – p.31/89

The Water Jugs Problem: Operators

F4: fill jug4 from the pump.

precond: J4 < 4 effect: J ′
4 = 4

E4: empty jug4 on the ground.

precond: J4 > 0 effect: J ′
4 = 0

E4-3: pour water from jug4 into jug3 until jug3 is full.

precond: J3 < 3, effect: J ′
3 = 3,

J4 ≥ 3− J3 J ′
4 = J4 − (3− J3)

P3-4: pour water from jug3 into jug4 until jug4 is full.

precond: J4 < 4, effect: J ′
4 = 4,

J3 ≥ 4− J4 J ′
3 = J3 − (4− J4)

E3-4: pour water from jug3 into jug4 until jug3 is empty.

precond: J3 + J4 < 4, effect: J ′
4 = J3 + J4,

J3 > 0 J ′
3 = 0

... Artificial Intelligence – p.32/89

The Water Jugs Problem

J_3 = 2
J_4 = 4

J_3 = 2
J_4 = 0

J_3 = 0
J_4 = 2

J_3 = 0
J_4 = 4

J_3 = 3
J_4 = 0

J_3 = 0
J_4 = 0

J_3 = 3
J_4 = 4

J_3 = 0
J_4 = 4

J_3 = 0
J_4 = 3

J_3 = 3
J_4 = 3

J_3 = 3
J_4 = 1

.

. . .

F3

E3-4

F3 P4-3

F4

E3-4F4

F3

P3-4

E4

J_3 = 0
J_4 = 0 J_4 = 2

Problem Search Graph

Artificial Intelligence – p.33/89

Real-World Search Problems

Route Finding
(computer networks, airline travel planning system, . . .)

Travelling Salesman Optimization Problem
(package delivery, automatic drills, . . .)

Layout Problems
(VLSI layout, furniture layout, packaging, . . .)

Assembly Sequencing
(assembly of electric motors, . . .)

Task Scheduling
(manufacturing, timetables, . . .)

Artificial Intelligence – p.34/89

Problem Solution

Problems whose solution is a description of how to
reach a goal state from the initial state:

n-puzzle
route-finding problem
assembly sequencing

Problems whose solution is simply a description of the
goal state itself:

8-queen problem
scheduling problems
layout problems

Artificial Intelligence – p.35/89

More on Graphs

A graph is a set of notes and edges (arcs) between them.
C

S

A

GE

B

D

F

A graph is directed if an edge can be traversed only in a
specified direction.

When an edge is directed from ni to nj

it is univocally identified by the pair (ni, nj)

ni is a parent (or predecessor) of nj

nj is a child (or successor) of ni
Artificial Intelligence – p.36/89

Directed Graphs

C

S

A

GE

B

D

F

A path, of length k ≥ 0, is a sequence
〈(n1, n2), (n2, n3), . . . , (nk, nk+1)〉 of k successive edges. a

Ex: 〈〉, 〈(S,D)〉, 〈(S,D), (D,E), (E,B)〉

For 1 ≤ i < j ≤ k + 1,

Ni is a ancestor of Nj ; Nj is a descendant of Ni.

A graph is cyclic if it has a path starting from and ending
into the same node. Ex: 〈(A,D), (D,E), (E,A)〉

a Note that a path of length k > 0 contains k + 1 nodes.

Artificial Intelligence – p.37/89

From Search Graphs to Search Trees

The set of all possible paths of a graph can be represented
as a tree.

A tree is a directed acyclic graph all of whose nodes
have at most one parent.

A root of a tree is a node with no parents.

A leaf is a node with no children.

The branching factor of a node is the number of its
children.

Graphs can be turned into trees by duplicating nodes and

breaking cyclic paths, if any.

Artificial Intelligence – p.38/89

From Graphs to Trees

To unravel a graph into a tree choose a root node and trace
every path from that node until you reach a leaf node or a
node already in that path.

G

S

A B
D

D

E

F

S

A

B

F CGA

AD

G

E

G

C

ED

. . . depth 4

depth 2

depth 1

depth 0

depth 3

must remember which nodes have been visited

a node may get duplicated several times in the tree

the tree has infinite paths only if the graph has infinite non-cyclic paths.

Artificial Intelligence – p.39/89

Tree Search Algorithms

Basic idea: offline, simulated exploration of state space by generating
successors of already-explored states (a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

if the node contains a goal state then return the solution
else expand the node and add the resulting nodes to the search tree

end

Artificial Intelligence – p.40/89

Tree Search Example

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Artificial Intelligence – p.41/89

Tree search example

Rimnicu Vilcea LugojArad Fagaras Oradea AradArad Oradea

Zerind

Arad

Sibiu Timisoara

Artificial Intelligence – p.42/89

Tree Search Example

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Artificial Intelligence – p.43/89

Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
includes parent, children, depth, path cost g(x)
States do not have parents, children, depth, or path cost!

1

23

45

6

7

81

23

45

6

7

8

State Node depth = 6

g = 6

state

parent, action

The EXPAND function creates new nodes, filling in the various
fields and using the SUCCESSORFN of the problem to create
the corresponding states.

Artificial Intelligence – p.44/89

Search Strategies

A strategy is defined by picking the order of node
expansion. Strategies are evaluated along the following
dimensions:

completeness—does it always find a solution if one
exists?
time complexity—number of nodes
generated/expanded
space complexity—maximum number of nodes in
memory
optimality—does it always find a least-cost solution?

Time and space complexity are measured in terms of
b—maximum branching factor of the search tree
d—depth of the least-cost solution
m—maximum depth of the state space (may be∞)

Artificial Intelligence – p.45/89

Uninformed Search Strategies

Uninformed strategies use only the information available
in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

Artificial Intelligence – p.46/89

Breadth-First Search

Expand shallowest unexpanded node
Implementation: fringe is a FIFO queue, i.e., new
successors go at end

A

B C

D E F G

Artificial Intelligence – p.47/89

Breadth-First Search

Expand shallowest unexpanded node
Implementation: fringe is a FIFO queue, i.e., new
successors go at end

A

B C

D E F G

Artificial Intelligence – p.48/89

Breadth-First Search

Expand shallowest unexpanded node
Implementation: fringe is a FIFO queue, i.e., new
successors go at end

A

B C

D E F G

Artificial Intelligence – p.49/89

Breadth-First Search

Expand shallowest unexpanded node
Implementation: fringe is a FIFO queue, i.e., new
successors go at end

A

B C

D E F G

Artificial Intelligence – p.50/89

Properties of Breadth-First Search

Complete??

Artificial Intelligence – p.51/89

Properties of Breadth-First Search

Complete?? Yes (if b is finite)
Time??

Artificial Intelligence – p.52/89

Properties of Breadth-First Search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e.,
exp. in d

Space??

Artificial Intelligence – p.53/89

Properties of Breadth-First Search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e.,
exp. in d

Space?? O(bd+1) (keeps every node in memory)
Optimal??

Artificial Intelligence – p.54/89

Properties of Breadth-First Search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e.,
exp. in d

Space?? O(bd+1) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Space??

Artificial Intelligence – p.55/89

Properties of Breadth-First Search

Complete?? Yes (if b is finite)

Time?? 1 + b + b2 + b3 + . . . + bd + b(bd − 1) = O(bd+1), i.e.,
exp. in d

Space?? O(bd+1) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general
Space?? It is the big problem; can easily generate nodes at
10MB/sec so 24hrs = 860GB.

Artificial Intelligence – p.56/89

Uniform-Cost Search

Expand least-cost unexpanded node
Implementation: fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost ≥ ǫ

Time?? # of nodes with g ≤ cost of optimal solution,
O(b⌈C

∗/ǫ⌉) where C∗ is the cost of the optimal solution
Space?? # of nodes with g ≤ cost of optimal solution,

O(b⌈C
∗/ǫ⌉)

Optimal?? Yes—nodes expanded in increasing order of g(n)

Artificial Intelligence – p.57/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.58/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.59/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.60/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.61/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.62/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.63/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.64/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.65/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.66/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.67/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.68/89

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at
front

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.69/89

Properties of depth-first search

Complete??

Artificial Intelligence – p.70/89

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with
loops Modify to avoid repeated states along path⇒
complete in finite spaces
Time??

Artificial Intelligence – p.71/89

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with
loops Modify to avoid repeated states along path⇒
complete in finite spaces
Time?? O(bm): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first
Space??

Artificial Intelligence – p.72/89

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with
loops Modify to avoid repeated states along path⇒
complete in finite spaces
Time?? O(bm): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first
Space?? O(bm), i.e., linear space!
Optimal??

Artificial Intelligence – p.73/89

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with
loops Modify to avoid repeated states along path⇒
complete in finite spaces
Time?? O(bm): terrible if m is much larger than d but if
solutions are dense, may be much faster than breadth-first
Space?? O(bm), i.e., linear space!
Optimal?? No

Artificial Intelligence – p.74/89

Depth-Limited Search

= depth-first search with depth limit l, i.e., nodes at depth l
have no successors

function Depth-Limited-Search (problem, limit) return soln/fail/cutoff

return Recursive-DLS(Make-Node(Initial-State(problem)), problem, limit)

end function

function Recursive-DLS (node, problem, limit) return soln/fail/cutoff

cutoff-occurred := false;

if (Goal-State(problem, State(node))) then return node;

else if (Depth(node) == limit) then return cutoff;

else for each successor in Expand(node, problem) do

result := Recursive-DLS(successor, problem, limit)

if (result == cutoff) then cutoff-occurred := true;

else if (result != fail) then return result;

end for

if (cutoff-occurred) then return cutoff; else return fail;

end function

Artificial Intelligence – p.75/89

Iterative Deepening Search

function Iterative-Deepening-Search (problem) return soln

for depth from 0 to MAX-INT do

result := Depth-Limited-Search(problem, depth)

if (result != cutoff) then return result

end for

end function

Artificial Intelligence – p.76/89

Iterative deepening searchl = 0

Limit = 0 A A

Artificial Intelligence – p.77/89

Iterative deepening searchl = 1

Limit = 1 A

B C

A

B C

A

B C

A

B C

Artificial Intelligence – p.78/89

Iterative deepening searchl = 2

Limit = 2 A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

Artificial Intelligence – p.79/89

Iterative deepening searchl = 3

Limit = 3

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H I J K L M N O

A

B C

D E F G

H J K L M N OI

A

B C

D E F G

H I J K L M N O

Artificial Intelligence – p.80/89

Properties of iterative deepening search

Complete??

Artificial Intelligence – p.81/89

Properties of iterative deepening search

Complete?? Yes
Time??

Artificial Intelligence – p.82/89

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)
Space??

Artificial Intelligence – p.83/89

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)
Space?? O(bd)

Optimal??

Artificial Intelligence – p.84/89

Properties of iterative deepening search

Complete?? Yes

Time?? (d + 1)b0 + db1 + (d− 1)b2 + . . . + bd = O(bd)
Space?? O(bd)

Optimal?? Yes, if step cost = 1 Can be modified to explore
uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right:

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 + 999, 990 = 1, 111, 100

Artificial Intelligence – p.85/89

Summary of Algorithms

Criterion Breadth- Uniform- Depth- Depth- Iterative

First Cost First Limited Deepening

Complete? Yes∗ Yes∗ No Yes, if l ≥ d Yes

Time bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Space bd+1 b⌈C
∗/ǫ⌉ bm bl bd

Optimal? Yes∗ Yes∗ No No Yes

Artificial Intelligence – p.86/89

Repeated states

Failure to detect repeated states can turn a linear problem
into an exponential one!

A

B

C

D

A

BB

CCCC

Artificial Intelligence – p.87/89

Summary

Problem formulation usually requires abstracting away
real-world details to define a state space that can
feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and
not much more time than other uninformed algorithms

Artificial Intelligence – p.88/89

Example: Romania

For a given strategy, what is the order of nodes to be generated (or stored), and expanded?
With or without checking duplicated nodes?

Giurgiu

Urziceni
Hirsova

Eforie

Neamt

Oradea

Zerind

Arad

Timisoara

Lugoj

Mehadia

Dobreta
Craiova

Sibiu Fagaras

Pitesti

Vaslui

Iasi

Rimnicu Vilcea

Bucharest

71

75

118

111

70

75

120

151

140

99

80

97

101

211

138

146 85

90

98

142

92

87

86

Breadth-first

Depth-first

Uniform-cost

Depth-limited

Iterative-deepening

Artificial Intelligence – p.89/89

	Artificial Intelligence
	{Example: Romania}
	{Example: Romania}
	{Problem types}
	Problem Solving
	{Example: Vacuum World}
	{Example: Vacuum World}
	{Example: Vacuum World}
	{Example: Vacuum World}
	{Single-state problem formulation}
	{Selecting a State Space}
	{State space graph of vacuum world}
	{State space graph of vacuum world}
	Formulating Problem as a Graph
	Search Graph
	Problem Solving as Search
	Problem Solving as Search
	Example: The 8-puzzle
	{Example: The 8-puzzle}
	Example: The 8-puzzle
	Problem Formulation
	Formulating the 8-puzzle Problem
	Formulating the 8-puzzle Problem
	Preconditions and Effects
	A Better Formulation
	A Better Formulation
	Preconditions and Effects
	Half states are not reachable?
	Half states are not reachable?
	The Water Jugs Problem
	The Water Jugs Problem
	The Water Jugs Problem: Operators
	The Water Jugs Problem
	Real-World Search Problems
	Problem Solution
	More on Graphs
	Directed Graphs
	From Search Graphs to Search Trees
	From Graphs to Trees
	{Tree Search Algorithms}
	{Tree Search Example}
	{Tree search example}
	{Tree Search Example}
	{Implementation: states vs.~nodes}
	{Search Strategies}
	{Uninformed Search Strategies}
	{Breadth-First Search}
	{Breadth-First Search}
	{Breadth-First Search}
	{Breadth-First Search}
	{Properties of Breadth-First Search}
	{Properties of Breadth-First Search}
	{Properties of Breadth-First Search}
	{Properties of Breadth-First Search}
	{Properties of Breadth-First Search}
	{Properties of Breadth-First Search}
	{Uniform-Cost Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Depth-First Search}
	{Properties of depth-first search}
	{Properties of depth-first search}
	{Properties of depth-first search}
	{Properties of depth-first search}
	{Properties of depth-first search}
	{Depth-Limited Search}
	{Iterative Deepening Search}
	{Iterative deepening search $l=0$}
	{Iterative deepening search $l=1$}
	{Iterative deepening search $l=2$}
	{Iterative deepening search $l=3$}
	{Properties of iterative deepening search}
	{Properties of iterative deepening search}
	{Properties of iterative deepening search}
	{Properties of iterative deepening search}
	{Properties of iterative deepening search}
	{Summary of Algorithms}
	{Repeated states}
	{Summary}
	{Example: Romania}

