Example: Romania

- Problem: On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest. Find a short route to drive to Bucharest.
- Formulate problem:
- states: various cities
- actions: drive between cities
- solution: sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

Artificial Intelligence

Problem Solving and Search

Readings: Chapter 3 of Russell \& Norvig.

Problem types

- Deterministic, fully observable \Longrightarrow single-state problem
- Agent knows exactly which state it will be in; solution is a sequence
- Non-observable \Longrightarrow conformant problem
- Agent may have no idea where it is; solution (if any) is a sequence
- Nondeterministic and/or partially observable \Longrightarrow contingency problem
- percepts provide new information about current state
- solution is a tree or policy
- often interleave search, execution
- Unknown state space \Longrightarrow exploration problem ("online")

Example: Romania

Example: Vacuum World

Single-state, start in \#5.
Solution??

Example: Vacuum World

Example: Vacuum World

Single-state, start in \#5.
Solution?? [Right, Suck]
Conformant, start in
$\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$.

Solution??
[Right, Suck, Left, Suck]

Problem Solving

We will start by considering the simpler cases in which the following holds.

- The agent's world (environment) is representable by a discrete set of states.
- The agent's actions are representable by a discrete set of operators.
- The world is static and deterministic.

Single-state, start in \#5.

Solution?? [Right, Suck]
Conformant, start in $\{1,2,3,4,5,6,7,8\}$ e.g., Right goes to $\{2,4,6,8\}$.
Solution??

Single-state problem formulation

- A problem is defined by four items:
- initial state e.g., "at Arad"
- successor function $S(x)=$ set of action-state pairs e.g., $S($ Arad $)=\{\langle$ Arad \rightarrow Zerind, Zerind $\rangle, \ldots\}$
- goal test, can be explicit, e.g., $x=$ "at Bucharest" implicit, e.g., NoDirt(x)
- path cost (additive) e.g., sum of distances, number of actions executed, etc. Usually given as $c(x, a, y)$, the step cost from x to y by action a, assumed to be ≥ 0.
- A solution is a sequence of actions leading from the initial state to a goal state

Example: Vacuum World

Single-state, start in \#5.
 Solution?? [Right, Suck]

Conformant, start in
$\{1,2,3,4,5,6,7,8\}$
e.g., Right goes to $\{2,4,6,8\}$.

Solution??
[Right, Suck, Left, Suck]
Contingency, start in \#5

State space graph of vacuum world

Selecting a State Space

states??
actions??
goal test??
path cost??

- Real world is absurdly complex \Rightarrow state space must be abstracted for problem solving
- (Abstract) state = set of real states
- (Abstract) action = complex combination of real actions e.g., "Arad \rightarrow Zerind" represents a complex set of possible routes, detours, rest stops, etc.
- For guaranteed realizability, any real state "in Arad" must get to some real state "in Zerind".
- Each abstract action should be "easier" than the original problem!
- (Abstract) solution = set of real paths that are solutions in the real world

Formulating Problem as a Graph

In the graph

- each node represents a possible state;
- a node is designated as the initial state;
- one or more nodes represent goal states, states in which the agent's goal is considered accomplished.
- each edge represents a state transition caused by a specific agent action;
- associated to each edge is the cost of performing that transition.

State space graph of vacuum world

states??: integer dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck, NoOp goal test??: no dirt
path cost??: 1 per action (0 for $N o O p$)

Problem Solving as Search

Search space: set of states reachable from an initial state S_{0} via a (possibly empty/finite/infinite) sequence of state transitions.

To achieve the problem's goal

- search the space for a (possibly optimal) sequence of transitions starting from S_{0} and leading to a goal state;
- execute (in order) the actions associated to each transition in the identified sequence.

Depending on the features of the agent's world the two steps above can be interleaved.

Search Graph

How do we reach a goal state?

There may be several possible ways. Or none!
Factors to consider:

- cost of finding a path;
- cost of traversing a path.

Example: The 8-puzzle

It can be generalized to 15 -puzzle, 24 -puzzle, or ($n^{2}-1$)-puzzle for $n \geq 6$.

Problem Solving as Search

- Reduce the original problem to a search problem.
- A solution for the search problem is a path initial state-goal state.
- The solution for the original problem is either
. the sequence of actions associated with the path or
- the description of the goal state.

Example: The 8-puzzle

States: configurations of tiles
Operators: move one tile Up/Down/Left/Right

- There are 9 ! $=362,880$ possible states (all permutations of $\{\square, 1,2,3,4,5,6,7,8\}$).
- There are 16 ! possible states for 15 -puzzle.
- Not all states are directly reachable from a given state. (In fact, exactly half of them are reachable from a given state.)

How can an artificial agent represent the states and the state space for this problem?

Example: The 8-puzzle
Go from state S to state G.

2	8	3				
1	6	4				
7		5	\rightarrow	1	2	3
:---	:---	:---				
8		4				
7	6	5				

(S)
(G)

Formulating the 8-puzzle Problem

States: each represented by a 3×3 array of numbers in $[0 \ldots 8]$, where value 0 is for the empty cell.

$$
\text { becomes } \quad A=\begin{array}{lll}
1 & 6 & 4 \\
7 & 0 & 5
\end{array}
$$

Problem Formulation

1. Choose an appropriate data structure to represent the world states.
2. Define each operator as a precondition/effects pair where the

- precondition holds exactly in the states the operator applies to,
- effects describe how a state changes into a successor state by the application of the operator.

3. Specify an initial state.
4. Provide a description of the goal (used to check if a reached state is a goal state).

Formulating the 8-puzzle Problem

- Operators: 24 operators of the form $O p_{(r, c, d)}$ where $r, c \in\{1,2,3\}, d \in\{L, R, U, D\}$.
- $O p_{(r, c, d)}$ moves the empty space at position (r, c) in the direction d.

2	8	3
1	6	4
7	0	5

1 \& 6 \& 4

0 \& 7 \& 5\end{array}\right.\)

A Better Formulation

Operators: 4 operators of the form $O p_{d}$ where $d \in\{L, R, U, D\}$.
$O p_{d}$ moves the empty space in the direction d.

2	8	3				
1	6	4				
7	0	5	$\quad \xlongequal{O p_{L}} \quad$	2	8	3
:---	:---	:---				
1	6	4				
0	7	5				

A Better Formulation

States: each represented by a pair $(A,(i, j))$ where:

- A is a 3×3 array of numbers in [0 ..8]
- (i, j) is the position of the empty space (0) in the array.

$$
\begin{array}{|l|l|l|l|}
\hline 2 & 8 & 3 \\
\hline 1 & 6 & 4 \\
\hline 7 & & 5 \\
\hline
\end{array}
$$

$$
\text { becomes } \begin{array}{rrr}
2 & 8 & 3 \\
(1 & 6 & 4
\end{array}
$$

Half states are not reachable?

Can this be done?
$\$ 1,000$ award for anyone who can do it!

Preconditions and Effects

Example: $O p_{L}$

$$
\left(\begin{array}{lll}
2 & 8 & 3 \\
1 & 6 & 4 \\
7 & 0 & 5
\end{array},(3,2)\right) \stackrel{O}{\xlongequal{p_{L}}}\left(\begin{array}{lll}
2 & 8 & 3 \\
1 & 6 & 4 \\
0 & 7 & 5
\end{array}(3,1)\right)
$$

Let $\left(r_{0}, c_{0}\right)$ be the position of 0 in A.
Preconditions: $\quad c_{0}>1$

Effects: $\quad \begin{cases}A\left[r_{0}, c_{0}\right] & \leftarrow A\left[r_{0}, c_{0}-1\right] \\ A\left[r_{0}, c_{0}-1\right] & \leftarrow 0 \\ \left(r_{0}, c_{0}\right) & \leftarrow\left(r_{0}, c_{0}-1\right)\end{cases}$

The Water Jugs Problem

Get exactly 2 gallons of water into the 4 gl jug.

Half states are not reachable?

a_{1}	a_{2}	a_{3}
a_{4}	a_{5}	a_{6}
a_{7}	a_{8}	a_{9}

Let the 8-puzzle be represented by ($a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{9}$). We say $\left(a_{i}, a_{j}\right)$ is an inversion if neither a_{i} nor a_{j} is blank, $i<j$ and $a_{i}>a_{j}$.

1	2	3
4	5	6
7	8	

1	2	3
4	5	6
8	7	

The first one has 0 inversions and the second has 1.

Claim: \# of inversions modulo two remains the same after each move

The Water Jugs Problem: Operators

F4: fill jug4 from the pump.

precond: $J_{4}<4$

effect: $J_{4}^{\prime}=4$
E4: empty jug4 on the ground.

$$
\text { precond: } J_{4}>0 \quad \text { effect: } J_{4}^{\prime}=0
$$

E4-3: pour water from jug4 into jug3 until jug3 is full.
precond: $J_{3}<3$,
effect: $\quad J_{3}^{\prime}=3$,

$$
J_{4} \geq 3-J_{3}
$$

$$
J_{4}^{\prime}=J_{4}-\left(3-J_{3}\right)
$$

P3-4: pour water from jug3 into jug4 until jug4 is full.
precond: $J_{4}<4$,
effect: $\quad J_{4}^{\prime}=4$,
$J_{3} \geq 4-J_{4}$
$J_{3}^{\prime}=J_{3}-\left(4-J_{4}\right)$

E3-4: pour water from jug3 into jug4 until jug3 is empty.
precond: $\quad J_{3}+J_{4}<4$,
$J_{3}>0$
effect: $\begin{aligned} & J_{4}^{\prime}=J_{3}+J_{4}, \\ & J_{3}^{\prime}\end{aligned}$
$J_{3}^{\prime}=0$

The Water Jugs Problem

States: Determined by the amount of water in each jug.
State Representation: Two real-valued variables, J_{3}, J_{4}, indicating the amount of water in the two jugs, with the constraints:

$$
0 \leq J_{3} \leq 3, \quad 0 \leq J_{4} \leq 4
$$

Initial State Description

$$
J_{3}=0, \quad J_{4}=0
$$

Goal State Description:

$$
J_{4}=2 \Leftarrow \text { non exhaustive description }
$$

Real-World Search Problems

- Route Finding (computer networks, airline travel planning system, ...)
- Travelling Salesman Optimization Problem (package delivery, automatic drills, ...)
- Layout Problems (VLSI layout, furniture layout, packaging, ...)
- Assembly Sequencing (assembly of electric motors, ...)
- Task Scheduling (manufacturing, timetables, ...)

The Water Jugs Problem

More on Graphs

A graph is a set of notes and edges (arcs) between them.

A graph is directed if an edge can be traversed only in a specified direction.

When an edge is directed from n_{i} to n_{j}

- it is univocally identified by the pair $\left(n_{i}, n_{j}\right)$
- n_{i} is a parent (or predecessor) of n_{j}
- n_{j} is a child (or successor) of n_{i}
- Problems whose solution is a description of how to reach a goal state from the initial state:
- n-puzzle
- route-finding problem
- assembly sequencing
- Problems whose solution is simply a description of the goal state itself:
- 8-queen problem
- scheduling problems
- layout problems

From Search Graphs to Search Trees

The set of all possible paths of a graph can be represented as a tree.

- A tree is a directed acyclic graph all of whose nodes have at most one parent.
- A root of a tree is a node with no parents.
- A leaf is a node with no children.
- The branching factor of a node is the number of its children.

Graphs can be turned into trees by duplicating nodes and breaking cyclic paths, if any.

Directed Graphs

A path, of length $k \geq 0$, is a sequence
$\left\langle\left(n_{1}, n_{2}\right),\left(n_{2}, n_{3}\right), \ldots,\left(n_{k}, n_{k+1}\right)\right\rangle$ of k successive edges. « $E x:\langle \rangle,\langle(S, D)\rangle,\langle(S, D),(D, E),(E, B)\rangle$

For $1 \leq i<j \leq k+1$,

- N_{i} is a ancestor of $N_{j} ; N_{j}$ is a descendant of N_{i}.

A graph is cyclic if it has a path starting from and ending into the same node. Ex: $\langle(A, D),(D, E),(E, A)\rangle$
${ }^{a}$ Note that a path of length $k>0$ contains $k+1$ nodes.

From Graphs to Trees

To unravel a graph into a tree choose a root node and trace every path from that node until you reach a leaf node or a node already in that path.

- must remember which nodes have been visited
- a node may get duplicated several times in the tree
- the tree has infinite paths only if the graph has infinite non-cyclic paths.

Tree search example

Tree Search Example

Implementation: states vs. nodes

A state is a (representation of) a physical configuration A node is a data structure constituting part of a search tree includes parent, children, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!
parent, action

State

The Expand function creates new nodes, filling in the various fields and using the Successorfn of the problem to create the corresponding states.

Tree Search Example

Uninformed Search Strategies

Uninformed strategies use only the information available in the problem definition

- Breadth-first search
- Uniform-cost search
- Depth-first search
- Depth-limited search
- Iterative deepening search

Search Strategies

- A strategy is defined by picking the order of node expansion. Strategies are evaluated along the following dimensions:
- completeness-does it always find a solution if one exists?
- time complexity-number of nodes generated/expanded
- space complexity-maximum number of nodes in memory
- optimality-does it always find a least-cost solution?
- Time and space complexity are measured in terms of
- b-maximum branching factor of the search tree
. d-depth of the least-cost solution
- m-maximum depth of the state space (may be ∞)

Breadth-First Search

Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e., new successors go at end

Breadth-First Search

Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e., new successors go at end

Breadth-First Search

Breadth-First Search

Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e., new successors go at end

Expand shallowest unexpanded node Implementation: fringe is a FIFO queue, i.e., new successors go at end

Properties of Breadth-First Search

Complete?? Yes (if b is finite)
Time??

Properties of Breadth-First Search

Complete??

Properties of Breadth-First Search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory) Optimal??

Properties of Breadth-First Search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space??

Properties of Breadth-First Search

Complete?? Yes (if b is finite)
Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general Space?? It is the big problem; can easily generate nodes at $\overline{10 \mathrm{MB}} / \mathrm{sec}$ so $24 \mathrm{hrs}=860 \mathrm{~GB}$.

Properties of Breadth-First Search

Complete?? Yes (if b is finite)

Time?? $1+b+b^{2}+b^{3}+\ldots+b^{d}+b\left(b^{d}-1\right)=O\left(b^{d+1}\right)$, i.e., exp. in d
Space?? $O\left(b^{d+1}\right)$ (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general Space??

Depth-First Search

Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at front

Depth-First Search

Uniform-Cost Search

Expand least-cost unexpanded node
Implementation: fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete?? Yes, if step cost $\geq \epsilon$
Time?? \# of nodes with $g \leq$ cost of optimal solution,
$O\left(b^{\left[C^{*} / \epsilon\right]}\right)$ where C^{*} is the cost of the optimal solution
Space?? \# of nodes with $g \leq$ cost of optimal solution,
$O\left(b^{\left[C^{*} / \epsilon\right]}\right)$
Optimal?? Yes—nodes expanded in increasing order of $g(n)$

Depth-First Search

Implementation: fringe = LIFO queue, i.e., put successors at front

Depth-First Search

Expand deepest unexpanded node Implementation: fringe = LIFO queue, i.e., put successors at front

Depth-First Search

Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front
\square

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at front

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at front

Depth-First Search

Expand deepest unexpanded node

Implementation: fringe = LIFO queue, i.e., put successors at front

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at front

Depth-First Search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at front

Properties of depth-first search

Expand deepest unexpanded node
Implementation: fringe = LIFO queue, i.e., put successors at front

Depth-First Search

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces
Time??

Properties of depth-first search

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first Space?? $O(b m)$, i.e., linear space!
Optimal?? No

Complete?? No: fails in infinite-depth spaces, spaces with loops Modify to avoid repeated states along path \Rightarrow complete in finite spaces
Time?? $O\left(b^{m}\right)$: terrible if m is much larger than d but if solutions are dense, may be much faster than breadth-first Space?? $O(b m)$, i.e., linear space!
Optimal??

Iterative Deepening Search

```
function Iterative-Deepening-Search (problem) return soln
    for depth from O to MAX-INT do
            result := Depth-Limited-Search(problem, depth)
            if (result != cutoff) then return result
        end for
end function
```


Depth-Limited Search

$=$ depth-first search with depth limit l, i.e., nodes at depth l have no successors
function Depth-Limited-Search (problem, limit) return soln/fail/cutoff
return Recursive-DLS (Make-Node (Initial-State (problem)), problem, limit) end function
function Recursive-DLS (node, problem, limit) return soln/fail/cutoff cutoff-occurred := false;
if (Goal-State(problem, State(node))) then return node;
else if (Depth(node) == limit) then return cutoff;
else for each successor in Expand(node, problem) do
result := Recursive-DLS(successor, problem, limit)
if (result == cutoff) then cutoff-occurred := true;
else if (result ! $=$ fail) then return result;
end for
if (cutoff-occurred) then return cutoff; else return fail;

Iterative deepening search $l=1$
Iterative deepening search $l=0$

Iterative deepening search $l=3$

Iterative deepening search $l=2$

Properties of iterative deepening search
Complete?? Yes
Time??

Properties of iterative deepening search
Complete??

Properties of iterative deepening search

```
Complete?? Yes
Time?? }(d+1)\mp@subsup{b}{}{0}+d\mp@subsup{b}{}{1}+(d-1)\mp@subsup{b}{}{2}+\ldots+\mp@subsup{b}{}{d}=O(\mp@subsup{b}{}{d}
Space?? O(bd)
Optimal??
```


Properties of iterative deepening search

Complete?? Yes
Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$ Space??

Summary of Algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening
Complete?	Yes *	Yes* *	No	Yes, if $l \geq d$	Yes
Time	b^{d+1}	$b^{\left[C^{*} / \epsilon\right]}$	b^{m}	b^{l}	b^{d}
Space	b^{d+1}	$b^{\left[C^{*} / \epsilon\right]}$	$b m$	$b l$	$b d$
Optimal?	Yes* *	Yes*	No	No	Yes

Properties of iterative deepening search

Complete?? Yes
Time?? $(d+1) b^{0}+d b^{1}+(d-1) b^{2}+\ldots+b^{d}=O\left(b^{d}\right)$
Space?? O(bd)
Optimal?? Yes, if step cost = 1 Can be modified to explore uniform-cost tree

Numerical comparison for $b=10$ and $d=5$, solution at far right:

$$
\begin{aligned}
N(\mathrm{IDS}) & =50+400+3,000+20,000+100,000=123,450 \\
N(\mathrm{BFS}) & =10+100+1,000+10,000+100,000+999,990=1,111,100
\end{aligned}
$$

Summary

- Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored
- Variety of uninformed search strategies
- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms

Failure to detect repeated states can turn a linear problem into an exponential one!
Coser

Example: Romania

For a given strategy, what is the order of nodes to be generated (or stored), and expanded? With or without checking duplicated nodes?

- Breadth-first
- Depth-first
- Uniform-cost
- Depth-limited
- Iterative-deepening

