
Simple C# Tutorial

C# Tutorial
• Introducing the .NET framework
• Comparing C# to C++ and Java
• Getting Started
• Variable Types
• Arrays
• Operators
• Flow Control • Flow Control
• Introducing Classes, Structs and Namespaces
• Class Declaration
• Introducing Methods
• Polymorphism (Inherited Methods)
• Constants, Fields, Properties and Indexers
• Delegates and Events
• Exceptions
• Code Documentation

Introducing the Microsoft .NET Framework

• .NET (dot-net) is the name Microsoft gives to its general
vision of the future of computing, the view being of a
world in which many applications run in a distributed
manner across the Internet.

• We can identify a number of different motivations
driving this vision. driving this vision.
– Object-oriented programming
– Compiled once and run everywhere.
– Service-oriented application

• .NET is Microsoft JVM?
• .NET has been built upon open standard technologies like

XML and SOAP and is towards more open standards
rather than Microsoft its proprietary tendencies.

Introducing the Microsoft .NET Framework
• At the development end of the .NET vision is the .NET

Framework (Microsoft JDK?) that contains:
– The Common Language Runtime,
– The .NET Framework Classes, and
– higher-level features like ASP.NET and WinForms for

developing desktop applications. developing desktop applications.

• The Common Language Runtime (CLR) (Microsoft
JRE?) manages the execution of code compiled for the
.NET platform. The CLR has two features:
– Its specification has been opened up so that it can be ported to

non-Windows platforms.
– Any number of different languages can be used to manipulate

the .NET framework classes, and the CLR will support them.

C#
• Not all of the supported languages fit entirely neatly into

the .NET framework, but the one language that is
guaranteed to fit in perfectly is C#.

• C# (C Sharp), a successor to C++, has been released in
conjunction with the .NET framework.

• C# design goals:• C# design goals:
– Be comfortable for C++ programmer
– Fit cleanly into the .NET Common Language Runtime (CLR)
– Simplify the C++ model
– Provide the right amount of flexibility
– Support component-centric development

C# versus Java (Similarity)
• C# and Java are both languages descended from C and C++.
• Each includes advanced features, like garbage collection, which

remove some of the low level maintenance tasks from the
programmer. In a lot of areas they are syntactically similar.

• Both C# and Java compile initially to an intermediate language:
– C# to Microsoft Intermediate Language (MSIL), and Java to

Java bytecode. Java bytecode.
– In each case the intermediate language can be run - by

interpretation or just-in-time compilation - on an appropriate
virtual machine. In C#, however, more support is given for the
further compilation of the intermediate language code into
native code.

• Like Java, C# gives up on multiple class inheritance in favor of a
single inheritance model. C# supports the multiple inheritance of
interfaces.

C# versus Java (Differences)
• C# contains more primitive data types than Java, and also

allows more extension to the value types.
– For example, C# supports enumerations, type-safe value types

which are limited to a defined set of constant variables, and
structs, which are user-defined value types .

– Java doesn't have enumerations, but can specify a class to
emulate them .

• Unlike Java, C# has the useful feature that we can • Unlike Java, C# has the useful feature that we can
overload various operators.

• However, polymorphism is handled in a more
complicated fashion, with derived class methods either
overriding or hiding super class methods.

• In Java, multi-dimensional arrays are implemented solely
with single-dimensional arrays where arrays can be
members of other arrays. In addition to jagged arrays,
however, C# also implements genuine rectangular arrays.

C# versus C++ (Differences)
• C# uses delegates - type-safe method pointers. These are

used to implement event-handling.
• Although it has some elements derived from Visual Basic

and Java, C++ is C#'s closest relative.
• In an important change from C++, C# code does not

require header files. All code is written inline.
• The .NET runtime in which C# runs performs memory • The .NET runtime in which C# runs performs memory

management takes care of tasks like garbage collection.
Because of this, the use of pointers in C# is much less
important than in C++.

• Pointers can be used in C#, where the code is marked as
unsafe, but they are only really useful in situations where
performance gains are at an absolute premium.

• Generally speaking, all C# types is ultimately derived
from the object type.

C# versus C++ (Differences)
• There are also specific differences in the way that certain

common types can be used. For instance, C# arrays are
bounds checked unlike in C++, and it is therefore not
possible to write past the end of a C# array.

• C# statements are quite similar to C++ statements. To
note just one example of a difference: the 'switch'
statements has been changed so that 'fall-through' statements has been changed so that 'fall-through'
behavior is disallowed.

• As mentioned above, C# gives up on the idea of multiple
class inheritance. Other differences relating to the use of
classes are: there is support for class 'properties' of the
kind found in Visual Basic, and class methods are called
using the . operator rather than the :: operator.

Getting Started – Hello World!
• In order to use C# and the .NET framework classes, first

install the .NET framework SDK.
• Write the C# code.
using System;
public class HelloWorld {

public static void Main() {
// This is a single line comment.
/*/*
* This is a multiple line comment.
*/
Console.WriteLine("Hello World!");

}
}

• To compile the program on Mono, use the command:
mcs HelloWorld.cs (csc HelloWorld.cs in .NET
framework SDK)

• To run the program on Mono: mono HelloWorld.exe

Variable Types
• C# is a type-safe language. Variables are declared as

being of a particular type, and each variable is
constrained to hold only values of its declared type.

• Variables can hold either value types or reference types,
or they can be pointers.

• A variable of value types directly contains only an object • A variable of value types directly contains only an object
with the value.

• A variable of reference type directly contains a reference
to an object. Another variable many contain a reference
to the same object.

• It is possible in C# to define your own value types by
declaring enumerations or structs.

C# Pre-defined Value Types
C# Type .Net Framework Type Signed Bytes Possible Values

sbyte System.sbyte Yes 1 -128 to 127

short System.Int16 Yes 2 -32768 to 32767

int System.Int32 Yes 4 231 to 231 - 1

long System.Int64 Yes 8 263 to 263 - 1

byte System.Byte No 1 0 to 255

ushort System.Uint16 No 2 0 to 65535ushort System.Uint16 No 2 0 to 65535

uint System.Uint32 No 4 0 to 232 - 1

ulong System.Uint64 No 8 0 to 264 - 1

float System.Single Yes 4 ±1.5 x 10-45 to ±3.4 x 1038 with 7
significant figures

double System.Double Yes 8 ±5.0 x 10-324 to ±1.7 x 10308 with 15 or
16 significant figures

decimal System.Decimal Yes 12 ±1.0 x 10-28 to ±7.9 x 1028 with 28 or 29
significant figures

char System.Char N/A 2 Any Unicode character

bool System.Boolean N/A 1/2 true or false

Value Types
• Value Types: int x = 10;
• Reference Types: New reference types can be defined using 'class',

'interface', and 'delegate' declarations
object.

object x = new object();
x.myValue = 10;

• Escape Sequences and Verbatim Strings• Escape Sequences and Verbatim Strings
string a = "\"Hello World\nHow are you\"";

• Boxing: C# allows you convert any value type to a corresponding
reference type, and to convert the resultant 'boxed' type back again.
int i = 123;
object box = i;
if (box is int)

{Console.Write("Box contains an int");} // this line is printed

Pointers
• A pointer is a variable that holds the memory address of

another type. In C#, pointers can only be declared to
hold the memory addresses of value types.

• Pointers are declared implicitly, using the dereferencer
symbol *. The operator & returns the memory address
of the variable it prefixes.

• Example: What is the value of i?• Example: What is the value of i?
int i = 5;
int *p;
p = &i;
*p = 10;

• The use of pointers is restricted to code which is marked
as unsafe (memory access).

Pointers
• To address the problem of garbage collection, one can

declare a pointer within a fixed expression.
• Any value types declared within unsafe code are

automatically fixed, and will generate compile-time
errors if used within fixed expressions. The same is not
true for reference types.

• Although pointers usually can only be used with value • Although pointers usually can only be used with value
types, an exception to this involves arrays.

• A pointer can be declared in relation to an array, as in the
following:
int[] a = {4, 5};
int *b = a;
What happens in this case is that the memory location
held by b is the location of the first type held by a.

Arrays
• Single-dimensional arrays have a single dimension

int[] i = new int[100];

• C# supports two types of multidimensional arrays:
rectangular and jagged.
– A rectangular array is a multidimensional array that has the

fixed dimensions' sizes.
int[,] squareArray = new int[2,3];
int[,] squareArray = {{1, 2, 3}, {4, 5, 6}};

– A jagged arrays is a multidimensional array that has the
irregular dimensions’ sizes.

int[][] jag = new int[2][];
jag[0] = new int [4];
jag[1] = new int [6];
int[][] jag = new int[][] {new int[] {1, 2, 3, 4}, new int[] {5, 6, 7, 8, 9, 10}};

Enumerations
• An enumeration is a special kind of value type limited

to a restricted and unchangeable set of numerical values.
• When we define an enumeration we provide literals

which are then used as constants for their corresponding
values. The following code shows an example of such a
definition:

public enum DAYS { Monday, Tuesday, Wednesday, public enum DAYS { Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday};
enum byteEnum : byte {A, B};

• Instead, the numerical values are set up according to the
following two rules:
– For the first literal: if it is unassigned, set its value to 0.
– For any other literal: if it is unassigned, then set its value to

one greater than the value of the preceding literal.

Enumerations
using System;
public class EnumTest {

public enum DAYS: byte
{Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday};

public static void Main() {public static void Main() {
Array dayArray =
Enum.GetValues(typeof(EnumTest.DAYS));

foreach (DAYS day in dayArray)
Console.WriteLine("Number {1} of EnumTest.DAYS is {0}",

day, day.ToString("d"));
}

}

Enumerations
• Console.WriteLine("Number {1} of EnumTest.DAYS is {0}",

day, day.ToString("d"))
is equivalent to:

Console.WriteLine(String.Format("Number {1} of
EnumTest.DAYS is {0}", day, day.ToString("d")));

• And what the String.Format method does is to take
textual representations of the objects it is passed as
parameters, and slots them into the appropriate places parameters, and slots them into the appropriate places
within the format string it is passed. So this line of code
is basically equivalent to:
Console.WriteLine("Number " + day.ToString("d").ToString()
+ " of EnumTest.DAYS is " + day.ToString());

• The ToString method can take a single
IFormatProvider parameter which indicates how the
string conversion should be conducted. Values for this
parameter can include things like g, d, x, f, etc.

Operators
• C# has a number of standard operators, taken from C,

C++ and Java. Most of these should be quite familiar to
programmers.

• To overload an operator in a class, one defines a method
using the operator keyword. For instance, the following
code overloads the equality operator. code overloads the equality operator.

public static bool operator == (Value a, Value b) {

return a.Int == b.Int

}

Where an operator is one of a logical pair, both operators
should be overwritten if any one is.

Jump and Selection Statements
• The break statement breaks out of the while and for

loops.
• The continue statement can be placed in any loop

structure.
• The goto statement is used to make a jump to a

particular labeled part of the program code. particular labeled part of the program code.
• If-else statements are used to run blocks of code

conditionally upon a boolean expression evaluating to
true.

• Switch statements provide a clean way of writing
multiple if - else statements.

Loop Statements
• while loops

while (expression) statement[s]
• do-while loops

do statement[s] while (expression)
• for loops • for loops

for (statement1; expression; statement2) statement[s]3
• foreach loops

foreach (variable1 in variable2) statement[s]
int[] a = new int[]{1,2,3};
foreach (int b in a)

System.Console.WriteLine(b);

Classes and Structs
• Classes provide templates from which objects –

instances of those classes, can be generated. A class
specifies a type and the constitutive elements (type
members) of that type.

• A class can specify two main kinds of type members:
– A class can specify other types – both value and reference. – A class can specify other types – both value and reference.

Types can contain other types, that is known as containment,
or else aggregation.

– A class can specify methods – functions designed for reading
and manipulating the value and reference types an instance
contains.

• C# classes can inherit from a single base class or from
any number of interfaces.

Namespaces
• Namespaces can be thought of as collections of classes;

they provide unique identifiers for types by placing them
in an hierarchical structure.

• To use the
����������	
�����
�
���
�
����������
������
�����class,
specify it in the following statement:
using System.Security.Cryptography;using System.Security.Cryptography;

• An alias for the namespace can be specified as using
myAlias = System.Security.Cryptography;

• For instance, the following code states that the class
Adder is in the namespace fred.math.

namespace fred {
namespace math {
public class Adder { // insert code here }

}
}

Class Declaration
• Class declarations can have up to four different parts,

surrounding the class keyword:
attributes class-modifiers class class-base class-body

• The class-body element specifies type members. The
following is an example of a class declaration:
public class Shape {public class Shape {

// class-body
}

• Attributes can be posted at the front of a class
declaration. These comprise user-defined meta-data
about the class; information which can be brought out at
runtime.

Class Declaration
• There are seven different - optional - class modifiers.

Four of these – public, internal, protected, and private
– are used to specify the access levels of the types
defined by the classes.
– The public keyword identifies a type as fully accessible to all

other types.
– If a class is declared as internal, the type it defines is – If a class is declared as internal, the type it defines is

accessible only to types within the same assembly (a self-
contained 'unit of packaging' containing code, metadata etc.).

– If a class is declared as protected, its type is accessible by a
containing type and any type that inherits from this containing
type.

– Where a class is declared as private, access to the type it
defines is limited to a containing type only.

Class Declaration
• The permissions allowed by protected internal are

those allowed by the protected level plus those
allowed by the internal level.

• The new keyword can be used for nested classes.
• A class declared as abstract cannot itself be instanced -

it is designed only to be a base class for inheritance. it is designed only to be a base class for inheritance.
• A class declared as sealed cannot be inherited from.

Class Declaration
• The class base part of the class declaration specifies the

name of the class and any classes that it inherits from.
• The following line declares a public class called

DrawingRectangle which inherits from the base class
Rectangle and the interface Drawing:
public class DrawingRectangle : Rectangle, Drawingpublic class DrawingRectangle : Rectangle, Drawing

• Interfaces are declared in much the same way as
standard classes, except that they use the keyword
interface in place of the keyword class. For instance:
public interface Drawing

Methods
• Methods are operations associated with types.

int sum = Arithmetic.addTwoIntegers(4, 7);
• A method declaration, specified within a class

declaration, comprises a method-head and a method-
body.

• The method-head is made up of the following elements • The method-head is made up of the following elements
(square brackets enclose those which are optional).
[attributes] [method-modifiers] return-type method-

name ([formal-parameter-list])
• Method attributes work in a similar way to those for

classes.

Methods
• There are ten method modifiers that can be used. Four

of these are the access modifiers that can be used in class
declarations. These four work analogously to the way
they work in class declarations. The others are the
following:
– Abstract: A method without specifying its body. Such

methods are themselves termed abstract. A class contains an methods are themselves termed abstract. A class contains an
abstract method it cannot be instantiated.

– The static modifier declares a method to be a class method (a
method that can be invoked without an instance).

• Namespaces (Packages in Java) can be thought of as
collections of classes; they provide unique identifiers for
types by placing them in an hierarchical structure.

Polymorphism (Inherited Methods)
• C# supports two different ways of method overwriting -

hiding or overriding. Note that the term 'overwrite' is a
term we have devised to cover both hiding and
overriding.

• Method overwriting makes use of the following three
method-head keywords: method-head keywords:
new, virtual, override

• The main difference between hiding and overriding
relates to the choice of which method to call where the
declared class of a variable is different to the run-time
class of the object it references.

Constants, Fields, Properties and Indexers
• Fields are variables associated with either classes or

instances of classes.
• There are seven modifiers which can be used in their

declarations. These include the four access modifiers
public, protected, internal and private and the new
keyword. keyword.

• The two remaining modifiers are:
– Static: By default, fields are associated with class instances.

Use of the static keyword, however, associates a field with a
class itself, so there will only ever be one such field per class,
regardless of the number of the class instances.

– Readonly: Where a field is readonly, its value can be set only
once.

Constants, Fields, Properties and Indexers
• Constants are unchanging types, associated with classes,

that are accessible at compile time. Because of this latter
fact, constants can only be value types rather than
reference types.
public const int area = 4;

• Properties can be thought of as virtual fields. From the • Properties can be thought of as virtual fields. From the
outside, a class' property looks just like a field. But from
the inside, the property is generated using the actual class
fields.

• If properties are virtual fields, indexers are more like
virtual arrays. They allow a class to emulate an array,
where the elements of this array are actually dynamically
generated by function calls.

Classes, Objects, and Methods
class StackClass
{
string myString;
private int [] stack_ref;
private int max_len, top_index;
public StackClass() { // A constructor
stack_ref = new int [100];
max_len = 99;
top_index = -1;

}}
public void push (int number) {
if (top_index == max_len) Console.WriteLine("Error in push-stack is full");
else stack_ref[++top_index] = number;

}
public void pop () {
if (top_index == -1) Console.WriteLine("Error in push-stack is empty");
else --top_index;

}
public int top () {return (stack_ref[top_index]);}
public bool empty () {return (top_index == -1);}

}

Classes, Objects, and Methods
class StockExample
{
public static void Main (string[] args) {

StackClass myStack = new StackClass();
myStack.push(42);
myStack.push(29);myStack.push(29);
Console.WriteLine("29 is: {0}", myStack.top());
myStack.pop();
Console.WriteLine("42 is: {0}", myStack.top());
myStack.pop();
myStack.pop(); // Produces an error message

}
}

Delegates and Events
• Delegates are reference types which allow indirect calls

to methods.
– A delegate instance holds references to some number of

methods, and by invoking the delegate one causes all of these
methods to be called.

– The usefulness of delegates lies in the fact that the functions – The usefulness of delegates lies in the fact that the functions
which invoke them are blind to the underlying methods.

• It can be seen that delegates are functionally rather
similar to C++'s function pointers. However, it is
important to bear in mind two main differences.
– Firstly, delegates are reference types rather than value types.
– Secondly, some single delegates can reference multiple

methods.

Delegates and Events
• Delegates can be specified on their own in a namespace,

or else can be specified within another class. In each
case, the declaration specifies a new class, which inherits
from System.MulticastDelegate.

• Each delegate is limited to referencing methods of a
particular kind only. particular kind only.
– The type is indicated by the delegate declaration – the input

parameters and return type given in the delegate declaration
must be shared by the methods its delegate instances reference.

• To illustrate this: a delegate specified as below can be
used to refer only to methods which have a single String
input and no return value.

Delegates and Events
• public delegate void Print (String s);
• Suppose, for instance, that a class contains the following

method:

public void realMethod (String myString) {
// method code// method code

}
• Another method in this class could then instantiate the

Print delegate in the following way, so that it holds a
reference to realMethod;
Print delegateVariable = new Print(realMethod);

Delegates and Events
• We can note two important points about this example.

Firstly, the unqualified method passed to the delegate
constructor is implicitly recognized as a method of the
instance passing it. That is, the code is equivalent to:
Print delegateVariable = new Print(this.realMethod);

• We can, however, in the same way pass to the delegate
constructor the methods of other class instances, or even

• We can, however, in the same way pass to the delegate
constructor the methods of other class instances, or even
static class methods. In the case of the former, the
instance must exist at the time the method reference is
passed. In the case of the latter (exemplified below), the
class need never be instantiated.
Print delegateVariable = new
Print(ExampleClass.exampleMethod);

Delegates and Events
• The second thing to note about the example is that all

delegates can be constructed in this fashion, to create a
delegate instance which refers to a single method.

• However, as we noted before, some delegates – termed
multicast delegates – can simultaneously reference
multiple methods. These delegates must - like our Print
delegate – specify a void return type. delegate – specify a void return type.

• The method invocation is termed an event, and the
running of the method is the handling of the event. An
typical example of an event is a user's selection of a
button on a graphical user interface; this action may
trigger a number of methods to handle it.

• The event keyword is used to declare a particular
multicast delegate.

Delegates
using System;
using System.Threading;

public class Ticker
{
private int i = 0;
public void Tick(Object obj)
{
Console.WriteLine("tick " + ++i);

}}
}
public class DelegateExample
{
static void Main(string[] args)
{
Ticker ticker = new Ticker();
TimerCallback tickDelegate = new TimerCallback(ticker.Tick);
new Timer(tickDelegate, null, 0, 500);

Thread.Sleep(5000); // The main thread will now sleep for 5 seconds:
}

}

Input/Output
using System;
using System.IO;

class DisplayFile
{
static void Main(string[] args)
{

StreamReader r = new StreamReader(args[0]);
string line;

Console.Write("Out File Name: ");
StreamWriter w = new StreamWriter(Console.ReadLine());

while((line = r.ReadLine()) != null) {
Console.WriteLine(line);
w.WriteLine(line);

}
r.Close();
w.Close();

}
}

Exceptions
• The exception handling in C#, and Java is quite similar.

However, C# follows C++ in allowing the author to
ignore more of the exceptions that might be thrown (an
exception which is thrown but not caught will halt the
program and may throw up a dialogue box).

• To catch a particular type of exception in a piece of code, • To catch a particular type of exception in a piece of code,
you have to first wrap it in a try block and then specify a
catch block matching that type of exception.

• When an exception occurs in code within the try block,
the code execution moves to the end of the try box and
looks for an appropriate exception handler.

Exceptions
• For instance, the following piece of code demonstrates

catching an exception specifically generated by division
by zero:

try {
res = (num / 0);
catch (System.DivideByZeroException e) {catch (System.DivideByZeroException e) {

Console.WriteLine("Error: an attempt to divide by zero");
}

}
• You can specify multiple catch blocks (following each

other), to catch different types of exception. A program
can throw exceptions - including customized exceptions.

Exceptions
using System;
public class ExceptionDemo {

public static void Main () {
try {
getException();

} catch (Exception e) {
Console.WriteLine("We got an exception");

}}
finally {
Console.WriteLine("The end of the program");

}
}
public static void getException() {
throw new Exception();

}
}

Using the C# Compiler
• As we have noted earlier, C# classes are compiled in the

first place to the Common Language Runtime
Intermediate Language (IL).
csc file.cs (mcs file.cs in mono)

• Where the required classes are held in more than one file,
these should be listed, separated by spaces, as in:these should be listed, separated by spaces, as in:
csc file1.cs file2.cs

• Broadly speaking, one can compile C# classes into either
executable files or dynamic link library - DLL - files with
the /t switch.

• Preprocessor directives tags included within class
specifications; they are used to give the compiler
additional information about regions of code.

Code Documentation
• The C# compiler supports the automatic creation of class

documentation.
– Where the equivalent functionality for Java produces HTML,

the C# documenter produces XML.
– This means that the C# documentation is not as immediately

ready to use as the Java documentation.
– However, it does allow there to be different applications which – However, it does allow there to be different applications which

can import and use the C# documentation in different ways.
(Note: using Visual Studio you can also create HTML
documentation, but we will not be covering this here).

• To document any element in a C# script, you precede the element
with XML elements. Each of the lines comprising this
documentary code should be marked off as comments using the
following special comment indicator (you can compare this with
the standard comment indicators).

Code Documentation
• The following code gives an example of how one can

provide overview information about a class.
/// <summary>
/// The myClass class represents an arbitrary class
/// </summary>
public class myClass

• Generating C# Documentation• Generating C# Documentation
– You tell the compiler to produce documentation when

compiling by invoking it with the switch: /doc:file
– In this switch, file represents the name of the file that you want

the documentation written to. As the documentation is
generated in xml format, the file should have the extension
.xml. So, for instance, to produce the documentation for a
program in sys.cs file in a file named my.xml, we would use
the command: csc sys.cs /doc:my.xml

Socket Programming (TCP)
• The C# API provides TCP streams by the following

classes:
– TcpListener - This class listens for connections from TCP

network clients.
– TcpClient - This class Provides client connections for TCP

network services.
– Socket- implements the Berkeley sockets interface. – Socket- implements the Berkeley sockets interface.

• TcpListener(IPAddress, Port):
– AcceptTcpClient - a blocking method that returns a

TcpClient you can use to send and receive data. Start - Starts
listening for incoming connection requests.

– AcceptSocket - a blocking method that returns a Socket you
can use to send and receive data.

– Close - Closes the listener.

Socket Programming (TCP)
• TcpClient (string hostname, int port); :

– GetStream - returns the NetworkStream used to
send and receive data.

– Close: Closes the TCP connection and releases all
resources associated with the TcpClient. resources associated with the TcpClient.

• NetworkStream
– int Read (byte[] buffer, int offset, int size) - Reads

data from the NetworkStream.
– Write (byte[] buffer, int offset, int size) - Writes data

to the NetworkStream.
– Close - Closes the NetworkStream.

Socket Programming (UDP)
• The C# API provides UDP streams by the following

classes:
– UdpClient - This class Provides User Datagram Protocol

(UDP) network services.
• UdpClient Constructor:

– public UdpClient(AddressFamily family);
– public UdpClient(int port);– public UdpClient(int port);
– public UdpClient(IPEndPoint localEP);
– public UdpClient(int port, AddressFamily family);
– public UdpClient(string hostname, int port);

• IPEndPoint: Initializes a new instance of the IPEndPoint class.
– public IPEndPoint(long address, int port)
– public IPEndPoint(IPAddress address, int port);

Socket Programming (UDP)
• UdpClient:

– public byte[] Receive(ref IPEndPoint remoteEP): Returns a
UDP datagram that was sent by a remote host.

– Send: Sends a UDP datagram to a remote host.
• public int Send(byte[] dgram, int bytes)
• public int Send(byte[] dgram, int bytes, IPEndPoint • public int Send(byte[] dgram, int bytes, IPEndPoint

endPoint);
• public int Send(byte[] dgram, int bytes, string hostname,

int port);
– Closes the UDP connection.

