
GNU Emacs Manual

GNU Emacs Manual

Sixteenth Edition, Updated for Emacs Version 24.1.

Richard Stallman et al.

This is the Sixteenth edition of the GNU Emacs Manual,
updated for Emacs version 24.1.

Copyright c© 1985-1987, 1993-2012 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with the Invariant Sections
being “The GNU Manifesto,” “Distribution” and “GNU GENERAL PUBLIC
LICENSE,” with the Front-Cover texts being “A GNU Manual,” and with the
Back-Cover Texts as in (a) below. A copy of the license is included in the
section entitled “GNU Free Documentation License.”

(a) The FSF’s Back-Cover Text is: “You have the freedom to copy and modify
this GNU manual. Buying copies from the FSF supports it in developing GNU
and promoting software freedom.”

Published by the Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301 USA
ISBN 1-882114-86-8

Cover art by Etienne Suvasa.

i

Short Contents

Preface . 1

Distribution . 2

Introduction . 5

1 The Organization of the Screen . 6

2 Characters, Keys and Commands . 11

3 Entering and Exiting Emacs . 14

4 Basic Editing Commands . 16

5 The Minibuffer . 26

6 Running Commands by Name . 35

7 Help . 36

8 The Mark and the Region . 44

9 Killing and Moving Text . 50

10 Registers . 61

11 Controlling the Display . 65

12 Searching and Replacement . 85

13 Commands for Fixing Typos . 102

14 Keyboard Macros . 107

15 File Handling . 115

16 Using Multiple Buffers . 139

17 Multiple Windows . 147

18 Frames and Graphical Displays . 153

19 International Character Set Support . 167

20 Major and Minor Modes . 189
21 Indentation . 195

22 Commands for Human Languages . 198

23 Editing Programs . 230

24 Compiling and Testing Programs . 250

25 Maintaining Large Programs . 269

26 Abbrevs . 296

27 Dired, the Directory Editor . 302

28 The Calendar and the Diary . 318

29 Sending Mail . 337

30 Reading Mail with Rmail . 345

31 Miscellaneous Commands . 364

32 Emacs Lisp Packages . 394

ii

33 Customization . 398

34 Dealing with Common Problems . 429

A GNU GENERAL PUBLIC LICENSE 444

B GNU Free Documentation License . 455

C Command Line Arguments for Emacs Invocation 463

D X Options and Resources . 478

E Emacs 23 Antinews . 485

F Emacs and Mac OS / GNUstep . 487

G Emacs and Microsoft Windows/MS-DOS 490

The GNU Manifesto . 500

Glossary . 508

Key (Character) Index . 531

Command and Function Index . 540

Variable Index . 553

Concept Index . 560

iii

Table of Contents

Preface . 1

Distribution . 2
Acknowledgments . 2

Introduction . 5

1 The Organization of the Screen 6
1.1 Point . 6
1.2 The Echo Area . 7
1.3 The Mode Line . 8
1.4 The Menu Bar . 9

2 Characters, Keys and Commands 11
2.1 Kinds of User Input . 11
2.2 Keys . 11
2.3 Keys and Commands . 12

3 Entering and Exiting Emacs 14
3.1 Entering Emacs . 14
3.2 Exiting Emacs . 15

4 Basic Editing Commands . 16
4.1 Inserting Text . 16
4.2 Changing the Location of Point . 17
4.3 Erasing Text . 19
4.4 Undoing Changes . 20
4.5 Files . 20
4.6 Help . 21
4.7 Blank Lines . 21
4.8 Continuation Lines . 21
4.9 Cursor Position Information . 22
4.10 Numeric Arguments . 23
4.11 Repeating a Command . 24

iv

5 The Minibuffer . 26
5.1 Minibuffers for File Names . 26
5.2 Editing in the Minibuffer . 27
5.3 Completion . 28

5.3.1 Completion Example . 28
5.3.2 Completion Commands . 29
5.3.3 Completion Exit . 30
5.3.4 How Completion Alternatives Are Chosen 30
5.3.5 Completion Options . 31

5.4 Minibuffer History . 32
5.5 Repeating Minibuffer Commands . 33
5.6 Entering passwords . 34

6 Running Commands by Name 35

7 Help . 36
7.1 Documentation for a Key . 38
7.2 Help by Command or Variable Name . 38
7.3 Apropos . 39
7.4 Help Mode Commands . 40
7.5 Keyword Search for Packages . 41
7.6 Help for International Language Support . 41
7.7 Other Help Commands . 41
7.8 Help Files . 42
7.9 Help on Active Text and Tooltips . 43

8 The Mark and the Region . 44
8.1 Setting the Mark . 44
8.2 Commands to Mark Textual Objects . 45
8.3 Operating on the Region . 46
8.4 The Mark Ring . 47
8.5 The Global Mark Ring . 48
8.6 Shift Selection . 48
8.7 Disabling Transient Mark Mode . 49

9 Killing and Moving Text . 50
9.1 Deletion and Killing . 50

9.1.1 Deletion . 50
9.1.2 Killing by Lines . 51
9.1.3 Other Kill Commands . 52
9.1.4 Options for Killing . 52

9.2 Yanking . 52
9.2.1 The Kill Ring . 53
9.2.2 Yanking Earlier Kills . 53
9.2.3 Appending Kills . 54

9.3 “Cut and Paste” Operations on Graphical Displays 55
9.3.1 Using the Clipboard . 55

v

9.3.2 Cut and Paste with Other Window Applications 56
9.3.3 Secondary Selection . 56

9.4 Accumulating Text . 57
9.5 Rectangles . 58
9.6 CUA Bindings . 59

10 Registers . 61
10.1 Saving Positions in Registers . 61
10.2 Saving Text in Registers . 61
10.3 Saving Rectangles in Registers . 62
10.4 Saving Window Configurations in Registers 62
10.5 Keeping Numbers in Registers . 63
10.6 Keeping File Names in Registers . 63
10.7 Bookmarks . 63

11 Controlling the Display . 65
11.1 Scrolling . 65
11.2 Recentering . 66
11.3 Automatic Scrolling . 67
11.4 Horizontal Scrolling . 68
11.5 Narrowing . 68
11.6 View Mode . 69
11.7 Follow Mode . 70
11.8 Text Faces . 70
11.9 Colors for Faces . 71
11.10 Standard Faces . 71
11.11 Text Scale . 74
11.12 Font Lock mode . 74
11.13 Interactive Highlighting . 75
11.14 Window Fringes . 77
11.15 Displaying Boundaries . 77
11.16 Useless Whitespace . 78
11.17 Selective Display . 79
11.18 Optional Mode Line Features . 79
11.19 How Text Is Displayed . 81
11.20 Displaying the Cursor . 81
11.21 Line Truncation . 82
11.22 Visual Line Mode . 83
11.23 Customization of Display . 83

vi

12 Searching and Replacement 85
12.1 Incremental Search . 85

12.1.1 Basics of Incremental Search . 85
12.1.2 Repeating Incremental Search . 86
12.1.3 Errors in Incremental Search . 86
12.1.4 Special Input for Incremental Search . 87
12.1.5 Isearch Yanking . 88
12.1.6 Scrolling During Incremental Search . 88
12.1.7 Searching the Minibuffer . 89

12.2 Nonincremental Search . 89
12.3 Word Search . 89
12.4 Regular Expression Search . 90
12.5 Syntax of Regular Expressions . 91
12.6 Backslash in Regular Expressions . 94
12.7 Regular Expression Example . 96
12.8 Searching and Case . 96
12.9 Replacement Commands . 96

12.9.1 Unconditional Replacement . 97
12.9.2 Regexp Replacement . 97
12.9.3 Replace Commands and Case . 98
12.9.4 Query Replace . 98

12.10 Other Search-and-Loop Commands . 100

13 Commands for Fixing Typos 102
13.1 Undo . 102
13.2 Transposing Text . 103
13.3 Case Conversion . 104
13.4 Checking and Correcting Spelling . 104

14 Keyboard Macros . 107
14.1 Basic Use . 107
14.2 The Keyboard Macro Ring . 108
14.3 The Keyboard Macro Counter . 109
14.4 Executing Macros with Variations . 111
14.5 Naming and Saving Keyboard Macros . 111
14.6 Editing a Keyboard Macro . 112
14.7 Stepwise Editing a Keyboard Macro . 113

vii

15 File Handling . 115
15.1 File Names . 115
15.2 Visiting Files . 116
15.3 Saving Files . 118

15.3.1 Commands for Saving Files . 119
15.3.2 Backup Files . 120

15.3.2.1 Single or Numbered Backups . 121
15.3.2.2 Automatic Deletion of Backups . 122
15.3.2.3 Copying vs. Renaming . 122

15.3.3 Customizing Saving of Files . 123
15.3.4 Protection against Simultaneous Editing 123
15.3.5 Shadowing Files . 124
15.3.6 Updating Time Stamps Automatically 125

15.4 Reverting a Buffer . 125
15.5 Auto-Saving: Protection Against Disasters 126

15.5.1 Auto-Save Files . 126
15.5.2 Controlling Auto-Saving . 127
15.5.3 Recovering Data from Auto-Saves . 127

15.6 File Name Aliases . 128
15.7 File Directories . 129
15.8 Comparing Files . 130
15.9 Diff Mode . 131
15.10 Miscellaneous File Operations . 132
15.11 Accessing Compressed Files . 134
15.12 File Archives . 134
15.13 Remote Files . 135
15.14 Quoted File Names . 136
15.15 File Name Cache . 136
15.16 Convenience Features for Finding Files . 137
15.17 Filesets . 137

16 Using Multiple Buffers . 139
16.1 Creating and Selecting Buffers . 139
16.2 Listing Existing Buffers . 141
16.3 Miscellaneous Buffer Operations . 141
16.4 Killing Buffers . 142
16.5 Operating on Several Buffers . 143
16.6 Indirect Buffers . 145
16.7 Convenience Features and Customization of Buffer Handling

. 145
16.7.1 Making Buffer Names Unique . 145
16.7.2 Switching Between Buffers using Substrings 146
16.7.3 Customizing Buffer Menus . 146

viii

17 Multiple Windows . 147
17.1 Concepts of Emacs Windows . 147
17.2 Splitting Windows . 147
17.3 Using Other Windows . 148
17.4 Displaying in Another Window . 149
17.5 Deleting and Rearranging Windows . 149
17.6 Displaying a Buffer in a Window . 150

17.6.1 How display-buffer works . 151
17.7 Convenience Features for Window Handling 152

18 Frames and Graphical Displays 153
18.1 Mouse Commands for Editing . 153
18.2 Mouse Commands for Words and Lines . 155
18.3 Following References with the Mouse . 155
18.4 Mouse Clicks for Menus . 156
18.5 Mode Line Mouse Commands . 156
18.6 Creating Frames . 157
18.7 Frame Commands . 158
18.8 Fonts . 158
18.9 Speedbar Frames . 161
18.10 Multiple Displays . 162
18.11 Frame Parameters . 162
18.12 Scroll Bars . 163
18.13 Drag and Drop . 163
18.14 Menu Bars . 163
18.15 Tool Bars . 164
18.16 Using Dialog Boxes . 164
18.17 Tooltips . 165
18.18 Mouse Avoidance . 165
18.19 Non-Window Terminals . 166
18.20 Using a Mouse in Text Terminals . 166

19 International Character Set Support 167
19.1 Introduction to International Character Sets 167
19.2 Disabling Multibyte Characters . 169
19.3 Language Environments . 170
19.4 Input Methods . 171
19.5 Selecting an Input Method . 173
19.6 Coding Systems . 174
19.7 Recognizing Coding Systems . 176
19.8 Specifying a File’s Coding System . 178
19.9 Choosing Coding Systems for Output . 178
19.10 Specifying a Coding System for File Text 179
19.11 Coding Systems for Interprocess Communication 180
19.12 Coding Systems for File Names . 181
19.13 Coding Systems for Terminal I/O . 181
19.14 Fontsets . 182

ix

19.15 Defining fontsets . 183
19.16 Modifying Fontsets . 185
19.17 Undisplayable Characters . 185
19.18 Unibyte Editing Mode . 186
19.19 Charsets . 187
19.20 Bidirectional Editing . 187

20 Major and Minor Modes 189
20.1 Major Modes . 189
20.2 Minor Modes . 190
20.3 Choosing File Modes . 192

21 Indentation . 195
21.1 Indentation Commands . 195
21.2 Tab Stops . 196
21.3 Tabs vs. Spaces . 197
21.4 Convenience Features for Indentation . 197

22 Commands for Human Languages 198
22.1 Words . 198
22.2 Sentences . 199
22.3 Paragraphs . 200
22.4 Pages . 201
22.5 Filling Text . 202

22.5.1 Auto Fill Mode . 202
22.5.2 Explicit Fill Commands . 203
22.5.3 The Fill Prefix . 204
22.5.4 Adaptive Filling . 205

22.6 Case Conversion Commands . 206
22.7 Text Mode . 207
22.8 Outline Mode . 207

22.8.1 Format of Outlines . 208
22.8.2 Outline Motion Commands . 209
22.8.3 Outline Visibility Commands . 209
22.8.4 Viewing One Outline in Multiple Views 211
22.8.5 Folding Editing . 211

22.9 Org Mode . 212
22.9.1 Org as an organizer . 213
22.9.2 Org as an authoring system . 213

22.10 TEX Mode . 214
22.10.1 TEX Editing Commands . 214
22.10.2 LaTEX Editing Commands . 215
22.10.3 TEX Printing Commands . 216
22.10.4 TEX Mode Miscellany . 218

22.11 SGML and HTML Modes . 218
22.12 Nroff Mode . 219
22.13 Enriched Text . 220

x

22.13.1 Enriched Mode . 220
22.13.2 Hard and Soft Newlines . 220
22.13.3 Editing Format Information . 221
22.13.4 Faces in Enriched Text . 221
22.13.5 Indentation in Enriched Text . 222
22.13.6 Justification in Enriched Text . 223
22.13.7 Setting Other Text Properties . 223

22.14 Editing Text-based Tables . 223
22.14.1 What is a Text-based Table? . 224
22.14.2 Creating a Table . 224
22.14.3 Table Recognition . 224
22.14.4 Commands for Table Cells . 225
22.14.5 Cell Justification . 226
22.14.6 Table Rows and Columns . 226
22.14.7 Converting Between Plain Text and Tables 226
22.14.8 Table Miscellany . 227

22.15 Two-Column Editing . 228

23 Editing Programs . 230
23.1 Major Modes for Programming Languages 230
23.2 Top-Level Definitions, or Defuns . 231

23.2.1 Left Margin Convention . 231
23.2.2 Moving by Defuns . 231
23.2.3 Imenu . 232
23.2.4 Which Function Mode . 233

23.3 Indentation for Programs . 233
23.3.1 Basic Program Indentation Commands 233
23.3.2 Indenting Several Lines . 234
23.3.3 Customizing Lisp Indentation . 234
23.3.4 Commands for C Indentation . 235
23.3.5 Customizing C Indentation . 235

23.4 Commands for Editing with Parentheses . 236
23.4.1 Expressions with Balanced Parentheses 237
23.4.2 Moving in the Parenthesis Structure . 238
23.4.3 Matching Parentheses . 238

23.5 Manipulating Comments . 239
23.5.1 Comment Commands . 239
23.5.2 Multiple Lines of Comments . 241
23.5.3 Options Controlling Comments . 241

23.6 Documentation Lookup . 242
23.6.1 Info Documentation Lookup . 242
23.6.2 Man Page Lookup . 242
23.6.3 Emacs Lisp Documentation Lookup . 243

23.7 Hideshow minor mode . 243
23.8 Completion for Symbol Names . 244
23.9 Glasses minor mode . 244
23.10 Semantic . 245
23.11 Other Features Useful for Editing Programs 245

xi

23.12 C and Related Modes . 246
23.12.1 C Mode Motion Commands . 246
23.12.2 Electric C Characters . 247
23.12.3 Hungry Delete Feature in C . 247
23.12.4 Other Commands for C Mode . 248

23.13 Asm Mode . 249

24 Compiling and Testing Programs 250
24.1 Running Compilations under Emacs . 250
24.2 Compilation Mode . 251
24.3 Subshells for Compilation . 253
24.4 Searching with Grep under Emacs . 253
24.5 Finding Syntax Errors On The Fly . 254
24.6 Running Debuggers Under Emacs . 255

24.6.1 Starting GUD . 255
24.6.2 Debugger Operation . 256
24.6.3 Commands of GUD . 256
24.6.4 GUD Customization . 258
24.6.5 GDB Graphical Interface . 259

24.6.5.1 GDB User Interface Layout . 259
24.6.5.2 Source Buffers . 260
24.6.5.3 Breakpoints Buffer . 261
24.6.5.4 Threads Buffer . 261
24.6.5.5 Stack Buffer . 262
24.6.5.6 Other GDB Buffers . 262
24.6.5.7 Watch Expressions . 263
24.6.5.8 Multithreaded Debugging . 263

24.7 Executing Lisp Expressions . 264
24.8 Libraries of Lisp Code for Emacs . 265
24.9 Evaluating Emacs Lisp Expressions . 266
24.10 Lisp Interaction Buffers . 267
24.11 Running an External Lisp . 268

25 Maintaining Large Programs 269
25.1 Version Control . 269

25.1.1 Introduction to Version Control . 269
25.1.1.1 Understanding the problems it addresses 269
25.1.1.2 Supported Version Control Systems 269
25.1.1.3 Concepts of Version Control . 270
25.1.1.4 Merge-based vs lock-based Version Control 271
25.1.1.5 Changeset-based vs File-based Version Control 271
25.1.1.6 Decentralized vs Centralized Repositories 272
25.1.1.7 Types of Log File . 272

25.1.2 Version Control and the Mode Line . 272
25.1.3 Basic Editing under Version Control . 273

25.1.3.1 Basic Version Control with Merging 273
25.1.3.2 Basic Version Control with Locking 274
25.1.3.3 Advanced Control in C-x v v . 275

xii

25.1.4 Features of the Log Entry Buffer . 275
25.1.5 Registering a File for Version Control 276
25.1.6 Examining And Comparing Old Revisions 277
25.1.7 VC Change Log . 278
25.1.8 Undoing Version Control Actions . 280
25.1.9 VC Directory Mode . 280

25.1.9.1 The VC Directory Buffer . 280
25.1.9.2 VC Directory Commands . 281

25.1.10 Version Control Branches . 283
25.1.10.1 Switching between Branches . 283
25.1.10.2 Pulling Changes into a Branch 283
25.1.10.3 Merging Branches . 284
25.1.10.4 Creating New Branches . 284

25.2 Change Logs . 285
25.2.1 Change Log Commands . 285
25.2.2 Format of ChangeLog . 286

25.3 Tags Tables . 286
25.3.1 Source File Tag Syntax . 287
25.3.2 Creating Tags Tables . 289
25.3.3 Etags Regexps . 290
25.3.4 Selecting a Tags Table . 291
25.3.5 Finding a Tag . 292
25.3.6 Searching and Replacing with Tags Tables 293
25.3.7 Tags Table Inquiries . 294

25.4 Emacs Development Environment . 295

26 Abbrevs . 296
26.1 Abbrev Concepts . 296
26.2 Defining Abbrevs . 296
26.3 Controlling Abbrev Expansion . 297
26.4 Examining and Editing Abbrevs . 298
26.5 Saving Abbrevs . 299
26.6 Dynamic Abbrev Expansion . 300
26.7 Customizing Dynamic Abbreviation . 301

27 Dired, the Directory Editor 302
27.1 Entering Dired . 302
27.2 Navigation in the Dired Buffer . 303
27.3 Deleting Files with Dired . 303
27.4 Flagging Many Files at Once . 304
27.5 Visiting Files in Dired . 305
27.6 Dired Marks vs. Flags . 305
27.7 Operating on Files . 307
27.8 Shell Commands in Dired . 309
27.9 Transforming File Names in Dired . 310
27.10 File Comparison with Dired . 311
27.11 Subdirectories in Dired . 311
27.12 Moving Over Subdirectories . 312

xiii

27.13 Hiding Subdirectories . 312
27.14 Updating the Dired Buffer . 313
27.15 Dired and find . 314
27.16 Editing the Dired Buffer . 314
27.17 Viewing Image Thumbnails in Dired . 315
27.18 Other Dired Features . 316

28 The Calendar and the Diary 318
28.1 Movement in the Calendar . 318

28.1.1 Motion by Standard Lengths of Time 318
28.1.2 Beginning or End of Week, Month or Year 319
28.1.3 Specified Dates . 319

28.2 Scrolling in the Calendar . 320
28.3 Counting Days . 320
28.4 Miscellaneous Calendar Commands . 320
28.5 Writing Calendar Files . 321
28.6 Holidays . 322
28.7 Times of Sunrise and Sunset . 323
28.8 Phases of the Moon . 324
28.9 Conversion To and From Other Calendars 325

28.9.1 Supported Calendar Systems . 325
28.9.2 Converting To Other Calendars . 326
28.9.3 Converting From Other Calendars . 327
28.9.4 Converting from the Mayan Calendar 327

28.10 The Diary . 329
28.10.1 Displaying the Diary . 329
28.10.2 The Diary File . 330
28.10.3 Date Formats . 331
28.10.4 Commands to Add to the Diary . 332
28.10.5 Special Diary Entries . 332

28.11 Appointments . 334
28.12 Importing and Exporting Diary Entries . 335
28.13 Daylight Saving Time . 335
28.14 Summing Time Intervals . 336

29 Sending Mail . 337
29.1 The Format of the Mail Buffer . 337
29.2 Mail Header Fields . 338
29.3 Mail Aliases . 339
29.4 Mail Commands . 340

29.4.1 Mail Sending . 340
29.4.2 Mail Header Editing . 341
29.4.3 Citing Mail . 342
29.4.4 Mail Miscellany . 343

29.5 Mail Signature . 343
29.6 Mail Amusements . 344
29.7 Mail-Composition Methods . 344

xiv

30 Reading Mail with Rmail 345
30.1 Basic Concepts of Rmail . 345
30.2 Scrolling Within a Message . 345
30.3 Moving Among Messages . 346
30.4 Deleting Messages . 347
30.5 Rmail Files and Inboxes . 348
30.6 Multiple Rmail Files . 349
30.7 Copying Messages Out to Files . 350
30.8 Labels . 351
30.9 Rmail Attributes . 352
30.10 Sending Replies . 353
30.11 Summaries . 355

30.11.1 Making Summaries . 355
30.11.2 Editing in Summaries . 356

30.12 Sorting the Rmail File . 358
30.13 Display of Messages . 358
30.14 Rmail and Coding Systems . 360
30.15 Editing Within a Message . 360
30.16 Digest Messages . 361
30.17 Reading Rot13 Messages . 361
30.18 movemail program . 361
30.19 Retrieving Mail from Remote Mailboxes . 362
30.20 Retrieving Mail from Local Mailboxes in Various Formats . . 363

31 Miscellaneous Commands 364
31.1 Gnus . 364

31.1.1 Gnus Buffers . 364
31.1.2 When Gnus Starts Up . 364
31.1.3 Using the Gnus Group Buffer . 365
31.1.4 Using the Gnus Summary Buffer . 365

31.2 Document Viewing . 366
31.2.1 DocView Navigation . 366
31.2.2 DocView Searching . 367
31.2.3 DocView Slicing . 367
31.2.4 DocView Conversion . 367

31.3 Running Shell Commands from Emacs . 368
31.3.1 Single Shell Commands . 368
31.3.2 Interactive Subshell . 369
31.3.3 Shell Mode . 370
31.3.4 Shell Prompts . 372
31.3.5 Shell Command History . 373

31.3.5.1 Shell History Ring . 373
31.3.5.2 Shell History Copying . 374
31.3.5.3 Shell History References . 374

31.3.6 Directory Tracking . 375
31.3.7 Shell Mode Options . 375
31.3.8 Emacs Terminal Emulator . 376
31.3.9 Term Mode . 377

xv

31.3.10 Remote Host Shell . 377
31.3.11 Serial Terminal . 377

31.4 Using Emacs as a Server . 378
31.4.1 Invoking emacsclient . 378
31.4.2 emacsclient Options . 379

31.5 Printing Hard Copies . 382
31.5.1 PostScript Hardcopy . 383
31.5.2 Variables for PostScript Hardcopy . 384
31.5.3 Printing Package . 385

31.6 Sorting Text . 385
31.7 Editing Binary Files . 387
31.8 Saving Emacs Sessions . 388
31.9 Recursive Editing Levels . 388
31.10 Emulation . 389
31.11 Hyperlinking and Navigation Features . 390

31.11.1 Following URLs . 390
31.11.2 Activating URLs . 391
31.11.3 Finding Files and URLs at Point . 391

31.12 Other Amusements . 392

32 Emacs Lisp Packages . 394
32.1 The Package Menu Buffer . 394
32.2 Package Installation . 395
32.3 Package Files and Directory Layout . 396

33 Customization . 398
33.1 Easy Customization Interface . 398

33.1.1 Customization Groups . 398
33.1.2 Browsing and Searching for Settings . 399
33.1.3 Changing a Variable . 399
33.1.4 Saving Customizations . 402
33.1.5 Customizing Faces . 402
33.1.6 Customizing Specific Items . 403
33.1.7 Custom Themes . 404
33.1.8 Creating Custom Themes . 405

33.2 Variables . 406
33.2.1 Examining and Setting Variables . 407
33.2.2 Hooks . 408
33.2.3 Local Variables . 409
33.2.4 Local Variables in Files . 410

33.2.4.1 Specifying File Variables . 410
33.2.4.2 Safety of File Variables . 412

33.2.5 Per-Directory Local Variables . 413
33.3 Customizing Key Bindings . 414

33.3.1 Keymaps . 414
33.3.2 Prefix Keymaps . 415
33.3.3 Local Keymaps . 416
33.3.4 Minibuffer Keymaps . 416

xvi

33.3.5 Changing Key Bindings Interactively 416
33.3.6 Rebinding Keys in Your Init File . 417
33.3.7 Modifier Keys . 419
33.3.8 Rebinding Function Keys . 419
33.3.9 Named ASCII Control Characters . 420
33.3.10 Rebinding Mouse Buttons . 421
33.3.11 Disabling Commands . 422

33.4 The Emacs Initialization File . 423
33.4.1 Init File Syntax . 424
33.4.2 Init File Examples . 425
33.4.3 Terminal-specific Initialization . 427
33.4.4 How Emacs Finds Your Init File . 428
33.4.5 Non-ASCII Characters in Init Files . 428

34 Dealing with Common Problems 429
34.1 Quitting and Aborting . 429
34.2 Dealing with Emacs Trouble . 430

34.2.1 If DEL Fails to Delete . 430
34.2.2 Recursive Editing Levels . 431
34.2.3 Garbage on the Screen . 431
34.2.4 Garbage in the Text . 432
34.2.5 Running out of Memory . 432
34.2.6 Recovery After a Crash . 432
34.2.7 Emergency Escape . 433

34.3 Reporting Bugs . 433
34.3.1 Reading Existing Bug Reports and Known Problems . . . 434
34.3.2 When Is There a Bug . 434
34.3.3 Understanding Bug Reporting . 435
34.3.4 Checklist for Bug Reports . 436
34.3.5 Sending Patches for GNU Emacs . 441

34.4 Contributing to Emacs Development . 442
34.5 How To Get Help with GNU Emacs . 443

Appendix A GNU GENERAL PUBLIC
LICENSE . 444

Appendix B GNU Free Documentation License
. 455

xvii

Appendix C Command Line Arguments for
Emacs Invocation . 463

C.1 Action Arguments . 463
C.2 Initial Options . 464
C.3 Command Argument Example . 467
C.4 Environment Variables . 467

C.4.1 General Variables . 467
C.4.2 Miscellaneous Variables . 470
C.4.3 The MS-Windows System Registry . 471

C.5 Specifying the Display Name . 471
C.6 Font Specification Options . 472
C.7 Window Color Options . 472
C.8 Options for Window Size and Position . 474
C.9 Internal and External Borders . 475
C.10 Frame Titles . 476
C.11 Icons . 476
C.12 Other Display Options . 476

Appendix D X Options and Resources 478
D.1 X Resources . 478
D.2 Table of X Resources for Emacs . 479
D.3 GTK resources . 480

D.3.1 GTK Resource Basics . 481
D.3.2 GTK widget names . 481
D.3.3 GTK Widget Names in Emacs . 482
D.3.4 GTK styles . 483

Appendix E Emacs 23 Antinews 485

Appendix F Emacs and Mac OS / GNUstep
. 487

F.1 Basic Emacs usage under Mac OS and GNUstep 487
F.1.1 Grabbing environment variables . 487

F.2 Mac / GNUstep Customization . 488
F.2.1 Font and Color Panels . 488
F.2.2 Customization options specific to Mac OS / GNUstep . . . 488

F.3 Windowing System Events under Mac OS / GNUstep 488
F.4 GNUstep Support . 489

xviii

Appendix G Emacs and Microsoft
Windows/MS-DOS . 490

G.1 How to Start Emacs on MS-Windows . 490
G.2 Text Files and Binary Files . 491
G.3 File Names on MS-Windows . 492
G.4 Emulation of ls on MS-Windows . 493
G.5 HOME and Startup Directories on MS-Windows 493
G.6 Keyboard Usage on MS-Windows . 494
G.7 Mouse Usage on MS-Windows . 494
G.8 Subprocesses on Windows 9X/ME and Windows NT/2K/XP

. 495
G.9 Printing and MS-Windows . 496
G.10 Specifying Fonts on MS-Windows . 497
G.11 Miscellaneous Windows-specific features . 499

The GNU Manifesto . 500
What’s GNU? Gnu’s Not Unix! . 500
Why I Must Write GNU . 501
Why GNU Will Be Compatible with Unix . 501
How GNU Will Be Available . 501
Why Many Other Programmers Want to Help . 501
How You Can Contribute . 502
Why All Computer Users Will Benefit . 502
Some Easily Rebutted Objections to GNU’s Goals 503

Glossary . 508

Key (Character) Index . 531

Command and Function Index 540

Variable Index . 553

Concept Index . 560

Preface 1

Preface

This manual documents the use and simple customization of the Emacs editor. Simple
Emacs customizations do not require you to be a programmer, but if you are not interested
in customizing, you can ignore the customization hints.

This is primarily a reference manual, but can also be used as a primer. If you are
new to Emacs, we recommend you start with the integrated, learn-by-doing tutorial, before
reading the manual. To run the tutorial, start Emacs and type C-h t. The tutorial describes
commands, tells you when to try them, and explains the results. The tutorial is available
in several languages.

On first reading, just skim chapters 1 and 2, which describe the notational conventions of
the manual and the general appearance of the Emacs display screen. Note which questions
are answered in these chapters, so you can refer back later. After reading chapter 4, you
should practice the commands shown there. The next few chapters describe fundamental
techniques and concepts that are used constantly. You need to understand them thoroughly,
so experiment with them until you are fluent.

Chapters 14 through 19 describe intermediate-level features that are useful for many
kinds of editing. Chapter 20 and following chapters describe optional but useful features;
read those chapters when you need them.

Read the Common Problems chapter if Emacs does not seem to be working properly. It
explains how to cope with several common problems (see Section 34.2 [Dealing with Emacs
Trouble], page 430), as well as when and how to report Emacs bugs (see Section 34.3 [Bugs],
page 433).

To find the documentation of a particular command, look in the index. Keys (character
commands) and command names have separate indexes. There is also a glossary, with a
cross reference for each term.

This manual is available as a printed book and also as an Info file. The Info file is
for reading from Emacs itself, or with the Info program. Info is the principal format for
documentation in the GNU system. The Info file and the printed book contain substantially
the same text and are generated from the same source files, which are also distributed with
GNU Emacs.

GNU Emacs is a member of the Emacs editor family. There are many Emacs
editors, all sharing common principles of organization. For information on the
underlying philosophy of Emacs and the lessons learned from its development, see
Emacs, the Extensible, Customizable Self-Documenting Display Editor, available from
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-519A.pdf.

This version of the manual is mainly intended for use with GNU Emacs installed on GNU
and Unix systems. GNU Emacs can also be used on MS-DOS, Microsoft Windows, and
Macintosh systems. The Info file version of this manual contains some more information
about using Emacs on those systems. Those systems use different file name syntax; in
addition MS-DOS does not support all GNU Emacs features. See Appendix G [Microsoft
Windows], page 490, for information about using Emacs on Windows. See Appendix F
[Mac OS / GNUstep], page 487, for information about using Emacs on Macintosh (and
GNUstep).

ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-519A.pdf

Distribution 2

Distribution

GNU Emacs is free software; this means that everyone is free to use it and free to redistribute
it under certain conditions. GNU Emacs is not in the public domain; it is copyrighted
and there are restrictions on its distribution, but these restrictions are designed to permit
everything that a good cooperating citizen would want to do. What is not allowed is to try
to prevent others from further sharing any version of GNU Emacs that they might get from
you. The precise conditions are found in the GNU General Public License that comes with
Emacs and also appears in this manual1. See Appendix A [Copying], page 444.

One way to get a copy of GNU Emacs is from someone else who has it. You need not
ask for our permission to do so, or tell any one else; just copy it. If you have access to the
Internet, you can get the latest distribution version of GNU Emacs by anonymous FTP;
see http://www.gnu.org/software/emacs on our website for more information.

You may also receive GNU Emacs when you buy a computer. Computer manufacturers
are free to distribute copies on the same terms that apply to everyone else. These terms
require them to give you the full sources, including whatever changes they may have made,
and to permit you to redistribute the GNU Emacs received from them under the usual
terms of the General Public License. In other words, the program must be free for you
when you get it, not just free for the manufacturer.

If you find GNU Emacs useful, please send a donation to the Free Software Foundation to
support our work. Donations to the Free Software Foundation are tax deductible in the US.
If you use GNU Emacs at your workplace, please suggest that the company make a donation.
For more information on how you can help, see http://www.gnu.org/help/help.html.

We also sell hardcopy versions of this manual and An Introduction to Program-
ming in Emacs Lisp, by Robert J. Chassell. You can visit our online store at
http://shop.fsf.org/. The income from sales goes to support the foundation’s purpose:
the development of new free software, and improvements to our existing programs
including GNU Emacs.

If you need to contact the Free Software Foundation, see http://www.fsf.org/about/contact/,
or write to

Free Software Foundation
51 Franklin Street, Fifth Floor
Boston, MA 02110-1301
USA

Acknowledgments

Contributors to GNU Emacs include Jari Aalto, Per Abrahamsen, Tomas Abrahamsson,
Jay K. Adams, Alon Albert, Michael Albinus, Nagy Andras, Benjamin Andresen, Ralf An-
geli, Joe Arceneaux, Emil Åström, Miles Bader, David Bakhash, Juanma Barranquero, Eli
Barzilay, Thomas Baumann, Steven L. Baur, Jay Belanger, Alexander L. Belikoff, Thomas
Bellman, Scott Bender, Boaz Ben-Zvi, Sergey Berezin, Karl Berry, Anna M. Bigatti, Ray

1 This manual is itself covered by the GNU Free Documentation License. This license is similar in spirit
to the General Public License, but is more suitable for documentation. See Appendix B [GNU Free
Documentation License], page 455.

http://www.gnu.org/software/emacs
http://www.gnu.org/help/help.html
http://shop.fsf.org/
http://www.fsf.org/about/contact/

Distribution 3

Blaak, Martin Blais, Jim Blandy, Johan Bockg̊ard, Jan Böcker, Joel Boehland, Lennart
Borgman, Per Bothner, Terrence Brannon, Frank Bresz, Peter Breton, Emmanuel Briot,
Kevin Broadey, Vincent Broman, Michael Brouwer, David M. Brown, Stefan Bruda, Georges
Brun-Cottan, Joe Buehler, Scott Byer, W lodek Bzyl, Bill Carpenter, Per Cederqvist, Hans
Chalupsky, Chris Chase, Bob Chassell, Andrew Choi, Chong Yidong, Sacha Chua, Stewart
Clamen, James Clark, Mike Clarkson, Glynn Clements, Andrew Cohen, Daniel Colascione,
Edward O’Connor, Christoph Conrad, Ludovic Courtès, Andrew Csillag, Toby Cubitt, Bao-
qiu Cui, Doug Cutting, Mathias Dahl, Julien Danjou, Satyaki Das, Vivek Dasmohapatra,
Dan Davison, Michael DeCorte, Gary Delp, Nachum Dershowitz, Dave Detlefs, Matthieu
Devin, Christophe de Dinechin, Eri Ding, Jan Djärv, Lawrence R. Dodd, Carsten Do-
minik, Scott Draves, Benjamin Drieu, Viktor Dukhovni, Jacques Duthen, Dmitry Dzhus,
John Eaton, Rolf Ebert, Carl Edman, David Edmondson, Paul Eggert, Stephen Eglen,
Christian Egli, Torbjörn Einarsson, Tsugutomo Enami, David Engster, Hans Henrik Erik-
sen, Michael Ernst, Ata Etemadi, Frederick Farnbach, Oscar Figueiredo, Fred Fish, Steve
Fisk, Karl Fogel, Gary Foster, Eric S. Fraga, Romain Francoise, Noah Friedman, Andreas
Fuchs, Shigeru Fukaya, Hallvard Furuseth, Keith Gabryelski, Peter S. Galbraith, Kevin
Gallagher, Kevin Gallo, Juan León Lahoz Garćıa, Howard Gayle, Daniel German, Stephen
Gildea, Julien Gilles, David Gillespie, Bob Glickstein, Deepak Goel, David De La Harpe
Golden, Boris Goldowsky, David Goodger, Chris Gray, Kevin Greiner, Michelangelo Grigni,
Odd Gripenstam, Kai Großjohann, Michael Gschwind, Bastien Guerry, Henry Guillaume,
Doug Gwyn, Bruno Haible, Ken’ichi Handa, Lars Hansen, Chris Hanson, Jesper Harder,
Alexandru Harsanyi, K. Shane Hartman, John Heidemann, Jon K. Hellan, Magnus Henoch,
Markus Heritsch, Dirk Herrmann, Karl Heuer, Manabu Higashida, Konrad Hinsen, Anders
Holst, Jeffrey C. Honig, Tassilo Horn, Kurt Hornik, Tom Houlder, Joakim Hove, Denis
Howe, Lars Ingebrigtsen, Andrew Innes, Seiichiro Inoue, Philip Jackson, Martyn Jago,
Pavel Janik, Paul Jarc, Ulf Jasper, Thorsten Jolitz, Michael K. Johnson, Kyle Jones, Terry
Jones, Simon Josefsson, Alexandre Julliard, Arne Jørgensen, Tomoji Kagatani, Brewster
Kahle, Tokuya Kameshima, Lute Kamstra, Ivan Kanis, David Kastrup, David Kaufman,
Henry Kautz, Taichi Kawabata, Taro Kawagishi, Howard Kaye, Michael Kifer, Richard
King, Peter Kleiweg, Karel Kĺıč, Shuhei Kobayashi, Pavel Kobyakov, Larry K. Kolodney,
David M. Koppelman, Koseki Yoshinori, Robert Krawitz, Sebastian Kremer, Ryszard Ku-
biak, Igor Kuzmin, David K̊agedal, Daniel LaLiberte, Karl Landstrom, Mario Lang, Aaron
Larson, James R. Larus, Vinicius Jose Latorre, Werner Lemberg, Frederic Lepied, Peter
Liljenberg, Christian Limpach, Lars Lindberg, Chris Lindblad, Anders Lindgren, Thomas
Link, Juri Linkov, Francis Litterio, Sergey Litvinov, Emilio C. Lopes, Martin Lorentzon,
Dave Love, Eric Ludlam, Károly Lőrentey, Sascha Lüdecke, Greg McGary, Roland Mc-
Grath, Michael McNamara, Alan Mackenzie, Christopher J. Madsen, Neil M. Mager, Ken
Manheimer, Bill Mann, Brian Marick, Simon Marshall, Bengt Martensson, Charlie Mar-
tin, Yukihiro Matsumoto, David Maus, Thomas May, Will Mengarini, David Megginson,
Stefan Merten, Ben A. Mesander, Wayne Mesard, Brad Miller, Lawrence Mitchell, Richard
Mlynarik, Gerd Moellmann, Stefan Monnier, Keith Moore, Jan Moringen, Morioka To-
mohiko, Glenn Morris, Don Morrison, Diane Murray, Riccardo Murri, Sen Nagata, Erik
Naggum, Gergely Nagy, Nobuyoshi Nakada, Thomas Neumann, Mike Newton, Thien-Thi
Nguyen, Jurgen Nickelsen, Dan Nicolaescu, Hrvoje Niksic, Jeff Norden, Andrew Norman,
Kentaro Ohkouchi, Christian Ohler, Kenichi Okada, Alexandre Oliva, Bob Olson, Michael
Olson, Takaaki Ota, Pieter E. J. Pareit, Ross Patterson, David Pearson, Juan Pechiar,
Jeff Peck, Damon Anton Permezel, Tom Perrine, William M. Perry, Per Persson, Jens Pe-

Distribution 4

tersen, Daniel Pfeiffer, Justus Piater, Richard L. Pieri, Fred Pierresteguy, François Pinard,
Daniel Pittman, Christian Plaunt, Alexander Pohoyda, David Ponce, Francesco A. Potorti,
Michael D. Prange, Mukesh Prasad, Ken Raeburn, Marko Rahamaa, Ashwin Ram, Eric
S. Raymond, Paul Reilly, Edward M. Reingold, David Reitter, Alex Rezinsky, Rob Rie-
pel, Lara Rios, Adrian Robert, Nick Roberts, Roland B. Roberts, John Robinson, Denis B.
Roegel, Danny Roozendaal, Sebastian Rose, William Rosenblatt, Markus Rost, Guillermo J.
Rozas, Martin Rudalics, Ivar Rummelhoff, Jason Rumney, Wolfgang Rupprecht, Benjamin
Rutt, Kevin Ryde, James B. Salem, Masahiko Sato, Timo Savola, Jorgen Schaefer, Hol-
ger Schauer, William Schelter, Ralph Schleicher, Gregor Schmid, Michael Schmidt, Ronald
S. Schnell, Philippe Schnoebelen, Jan Schormann, Alex Schroeder, Stefan Schoef, Rainer
Schoepf, Raymond Scholz, Eric Schulte, Andreas Schwab, Randal Schwartz, Oliver Seidel,
Manuel Serrano, Paul Sexton, Hovav Shacham, Stanislav Shalunov, Marc Shapiro, Richard
Sharman, Olin Shivers, Tibor Šimko, Espen Skoglund, Rick Sladkey, Lynn Slater, Chris
Smith, David Smith, Paul D. Smith, Wilson Snyder, William Sommerfeld, Simon South,
Andre Spiegel, Michael Staats, Thomas Steffen, Ulf Stegemann, Reiner Steib, Sam Stein-
gold, Ake Stenhoff, Peter Stephenson, Ken Stevens, Andy Stewart, Jonathan Stigelman,
Martin Stjernholm, Kim F. Storm, Steve Strassmann, Christopher Suckling, Olaf Sylvester,
Naoto Takahashi, Steven Tamm, Luc Teirlinck, Jean-Philippe Theberge, Jens T. Berger
Thielemann, Spencer Thomas, Jim Thompson, Toru Tomabechi, David O’Toole, Markus
Triska, Tom Tromey, Enami Tsugutomo, Eli Tziperman, Daiki Ueno, Masanobu Umeda,
Rajesh Vaidheeswarran, Neil W. Van Dyke, Didier Verna, Joakim Verona, Ulrik Vieth, Ge-
offrey Voelker, Johan Vromans, Inge Wallin, John Paul Wallington, Colin Walters, Barry
Warsaw, Christoph Wedler, Ilja Weis, Zhang Weize, Morten Welinder, Joseph Brian Wells,
Rodney Whitby, John Wiegley, Sascha Wilde, Ed Wilkinson, Mike Williams, Roland Win-
kler, Bill Wohler, Steven A. Wood, Dale R. Worley, Francis J. Wright, Felix S. T. Wu, Tom
Wurgler, Yamamoto Mitsuharu, Katsumi Yamaoka, Masatake Yamato, Jonathan Yavner,
Ryan Yeske, Ilya Zakharevich, Milan Zamazal, Victor Zandy, Eli Zaretskii, Jamie Zawinski,
Andrew Zhilin, Shenghuo Zhu, Piotr Zielinski, Ian T. Zimmermann, Reto Zimmermann,
Neal Ziring, Teodor Zlatanov, and Detlev Zundel.

Introduction 5

Introduction

You are reading about GNU Emacs, the GNU incarnation of the advanced, self-
documenting, customizable, extensible editor Emacs. (The ‘G’ in ‘GNU’ is not
silent.)

We call Emacs advanced because it can do much more than simple insertion and deletion
of text. It can control subprocesses, indent programs automatically, show multiple files at
once, and more. Emacs editing commands operate in terms of characters, words, lines, sen-
tences, paragraphs, and pages, as well as expressions and comments in various programming
languages.

Self-documenting means that at any time you can use special commands, known as help
commands, to find out what your options are, or to find out what any command does, or
to find all the commands that pertain to a given topic. See Chapter 7 [Help], page 36.

Customizable means that you can easily alter the behavior of Emacs commands in simple
ways. For instance, if you use a programming language in which comments start with ‘<**’
and end with ‘**>’, you can tell the Emacs comment manipulation commands to use those
strings (see Section 23.5 [Comments], page 239). To take another example, you can rebind
the basic cursor motion commands (up, down, left and right) to any keys on the keyboard
that you find comfortable. See Chapter 33 [Customization], page 398.

Extensible means that you can go beyond simple customization and create entirely new
commands. New commands are simply programs written in the Lisp language, which are run
by Emacs’s own Lisp interpreter. Existing commands can even be redefined in the middle
of an editing session, without having to restart Emacs. Most of the editing commands in
Emacs are written in Lisp; the few exceptions could have been written in Lisp but use C
instead for efficiency. Writing an extension is programming, but non-programmers can use
it afterwards. See Section “Preface” in An Introduction to Programming in Emacs Lisp, if
you want to learn Emacs Lisp programming.

Chapter 1: The Organization of the Screen 6

1 The Organization of the Screen

On a graphical display, such as on GNU/Linux using the X Window System, Emacs occupies
a “graphical window”. On a text terminal, Emacs occupies the entire terminal screen. We
will use the term frame to mean a graphical window or terminal screen occupied by Emacs.
Emacs behaves very similarly on both kinds of frames. It normally starts out with just one
frame, but you can create additional frames if you wish (see Chapter 18 [Frames], page 153).

Each frame consists of several distinct regions. At the top of the frame is a menu bar,
which allows you to access commands via a series of menus. On a graphical display, directly
below the menu bar is a tool bar, a row of icons that perform editing commands if you click
on them. At the very bottom of the frame is an echo area, where informative messages are
displayed and where you enter information when Emacs asks for it.

The main area of the frame, below the tool bar (if one exists) and above the echo area, is
called the window. Henceforth in this manual, we will use the word “window” in this sense.
Graphical display systems commonly use the word “window” with a different meaning; but,
as stated above, we refer to those “graphical windows” as “frames”.

An Emacs window is where the buffer—the text you are editing—is displayed. On a
graphical display, the window possesses a scroll bar on one side, which can be used to
scroll through the buffer. The last line of the window is a mode line. This displays various
information about what is going on in the buffer, such as whether there are unsaved changes,
the editing modes that are in use, the current line number, and so forth.

When you start Emacs, there is normally only one window in the frame. However, you
can subdivide this window horizontally or vertically to create multiple windows, each of
which can independently display a buffer (see Chapter 17 [Windows], page 147).

At any time, one window is the selected window. On a graphical display, the selected
window shows a more prominent cursor (usually solid and blinking); other windows show a
less prominent cursor (usually a hollow box). On a text terminal, there is only one cursor,
which is shown in the selected window. The buffer displayed in the selected window is
called the current buffer, and it is where editing happens. Most Emacs commands implicitly
apply to the current buffer; the text displayed in unselected windows is mostly visible for
reference. If you use multiple frames on a graphical display, selecting a particular frame
selects a window in that frame.

1.1 Point

The cursor in the selected window shows the location where most editing commands take
effect, which is called point1. Many Emacs commands move point to different places in
the buffer; for example, you can place point by clicking mouse button 1 (normally the left
button) at the desired location.

By default, the cursor in the selected window is drawn as a solid block and appears to
be on a character, but you should think of point as between two characters; it is situated
before the character under the cursor. For example, if your text looks like ‘frob’ with the
cursor over the ‘b’, then point is between the ‘o’ and the ‘b’. If you insert the character ‘!’

1 The term “point” comes from the character ‘.’, which was the command in TECO (the language in
which the original Emacs was written) for accessing the editing position.

Chapter 1: The Organization of the Screen 7

at that position, the result is ‘fro!b’, with point between the ‘!’ and the ‘b’. Thus, the
cursor remains over the ‘b’, as before.

If you are editing several files in Emacs, each in its own buffer, each buffer has its own
value of point. A buffer that is not currently displayed remembers its value of point if you
later display it again. Furthermore, if a buffer is displayed in multiple windows, each of
those windows has its own value of point.

See Section 11.20 [Cursor Display], page 81, for options that control how Emacs displays
the cursor.

1.2 The Echo Area

The line at the very bottom of the frame is the echo area. It is used to display small amounts
of text for various purposes.

The echo area is so-named because one of the things it is used for is echoing, which
means displaying the characters of a multi-character command as you type. Single-character
commands are not echoed. Multi-character commands (see Section 2.2 [Keys], page 11) are
echoed if you pause for more than a second in the middle of a command. Emacs then
echoes all the characters of the command so far, to prompt you for the rest. Once echoing
has started, the rest of the command echoes immediately as you type it. This behavior
is designed to give confident users fast response, while giving hesitant users maximum
feedback.

The echo area is also used to display an error message when a command cannot do its
job. Error messages may be accompanied by beeping or by flashing the screen.

Some commands display informative messages in the echo area to tell you what the
command has done, or to provide you with some specific information. These informative
messages, unlike error messages, are not accompanied with a beep or flash. For example,
C-x = (hold down CTRL and type x, then let go of CTRL and type =) displays a message
describing the character at point, its position in the buffer, and its current column in the
window. Commands that take a long time often display messages ending in ‘...’ while they
are working (sometimes also indicating how much progress has been made, as a percentage),
and add ‘done’ when they are finished.

Informative echo area messages are saved in a special buffer named ‘*Messages*’. (We
have not explained buffers yet; see Chapter 16 [Buffers], page 139, for more information
about them.) If you miss a message that appeared briefly on the screen, you can switch to the
‘*Messages*’ buffer to see it again. The ‘*Messages*’ buffer is limited to a certain number
of lines, specified by the variable message-log-max. (We have not explained variables
either; see Section 33.2 [Variables], page 406, for more information about them.) Beyond
this limit, one line is deleted from the beginning whenever a new message line is added at
the end.

See Section 11.23 [Display Custom], page 83, for options that control how Emacs uses
the echo area.

The echo area is also used to display the minibuffer, a special window where you can
input arguments to commands, such as the name of a file to be edited. When the minibuffer
is in use, the text displayed in the echo area begins with a prompt string, and the active
cursor appears within the minibuffer, which is temporarily considered the selected window.
You can always get out of the minibuffer by typing C-g. See Chapter 5 [Minibuffer], page 26.

Chapter 1: The Organization of the Screen 8

1.3 The Mode Line

At the bottom of each window is a mode line, which describes what is going on in the
current buffer. When there is only one window, the mode line appears right above the echo
area; it is the next-to-last line in the frame. On a graphical display, the mode line is drawn
with a 3D box appearance. Emacs also usually draws the mode line of the selected window
with a different color than that of unselected windows, in order to make it stand out.

The text displayed in the mode line has the following format:

cs:ch-fr buf pos line (major minor)

On a text terminal, this text is followed by a series of dashes extending to the right edge of
the window. These dashes are omitted on a graphical display.

The cs string and the colon character after it describe the character set and newline con-
vention used for the current buffer. Normally, Emacs automatically handles these settings
for you, but it is sometimes useful to have this information.

cs describes the character set of the text in the buffer (see Section 19.6 [Coding Systems],
page 174). If it is a dash (‘-’), that indicates no special character set handling (with the
possible exception of end-of-line conventions, described in the next paragraph). ‘=’ means
no conversion whatsoever, and is usually used for files containing non-textual data. Other
characters represent various coding systems—for example, ‘1’ represents ISO Latin-1.

On a text terminal, cs is preceded by two additional characters that describe the coding
systems for keyboard input and terminal output. Furthermore, if you are using an input
method, cs is preceded by a string that identifies the input method (see Section 19.4 [Input
Methods], page 171).

The character after cs is usually a colon. If a different string is displayed, that indicates
a nontrivial end-of-line convention for encoding a file. Usually, lines of text are separated
by newline characters in a file, but two other conventions are sometimes used. The MS-
DOS convention uses a “carriage-return” character followed by a “linefeed” character; when
editing such files, the colon changes to either a backslash (‘\’) or ‘(DOS)’, depending on
the operating system. Another convention, employed by older Macintosh systems, uses a
“carriage-return” character instead of a newline; when editing such files, the colon changes
to either a forward slash (‘/’) or ‘(Mac)’. On some systems, Emacs displays ‘(Unix)’ instead
of the colon for files that use newline as the line separator.

The next element on the mode line is the string indicated by ch. This shows two dashes
(‘--’) if the buffer displayed in the window has the same contents as the corresponding file
on the disk; i.e., if the buffer is “unmodified”. If the buffer is modified, it shows two stars
(‘**’). For a read-only buffer, it shows ‘%*’ if the buffer is modified, and ‘%%’ otherwise.

The character after ch is normally a dash (‘-’). However, if the default-directory for
the current buffer is on a remote machine, ‘@’ is displayed instead (see Section 15.1 [File
Names], page 115).

fr gives the selected frame name (see Chapter 18 [Frames], page 153). It appears only
on text terminals. The initial frame’s name is ‘F1’.

buf is the name of the buffer displayed in the window. Usually, this is the same as the
name of a file you are editing. See Chapter 16 [Buffers], page 139.

pos tells you whether there is additional text above the top of the window, or below the
bottom. If your buffer is small and all of it is visible in the window, pos is ‘All’. Otherwise,

Chapter 1: The Organization of the Screen 9

it is ‘Top’ if you are looking at the beginning of the buffer, ‘Bot’ if you are looking at the
end of the buffer, or ‘nn%’, where nn is the percentage of the buffer above the top of the
window. With Size Indication mode, you can display the size of the buffer as well. See
Section 11.18 [Optional Mode Line], page 79.

line is the character ‘L’ followed by the line number at point. (You can display the
current column number too, by turning on Column Number mode. See Section 11.18
[Optional Mode Line], page 79.)

major is the name of the major mode used in the buffer. A major mode is a principal
editing mode for the buffer, such as Text mode, Lisp mode, C mode, and so forth. See
Section 20.1 [Major Modes], page 189. Some major modes display additional information
after the major mode name. For example, Compilation buffers and Shell buffers display the
status of the subprocess.

minor is a list of some of the enabled minor modes, which are optional editing modes
that provide additional features on top of the major mode. See Section 20.2 [Minor Modes],
page 190.

Some features are listed together with the minor modes whenever they are turned on,
even though they are not really minor modes. ‘Narrow’ means that the buffer being displayed
has editing restricted to only a portion of its text (see Section 11.5 [Narrowing], page 68).
‘Def’ means that a keyboard macro is currently being defined (see Chapter 14 [Keyboard
Macros], page 107).

In addition, if Emacs is inside a recursive editing level, square brackets (‘[...]’) appear
around the parentheses that surround the modes. If Emacs is in one recursive editing level
within another, double square brackets appear, and so on. Since recursive editing levels
affect Emacs globally, such square brackets appear in the mode line of every window. See
Section 31.9 [Recursive Edit], page 388.

You can change the appearance of the mode line as well as the format of its contents. See
Section 11.18 [Optional Mode Line], page 79. In addition, the mode line is mouse-sensitive;
clicking on different parts of the mode line performs various commands. See Section 18.5
[Mode Line Mouse], page 156.

1.4 The Menu Bar

Each Emacs frame normally has a menu bar at the top which you can use to perform
common operations. There’s no need to list them here, as you can more easily see them
yourself.

On a graphical display, you can use the mouse to choose a command from the menu
bar. An arrow on the right edge of a menu item means it leads to a subsidiary menu, or
submenu. A ‘...’ at the end of a menu item means that the command will prompt you for
further input before it actually does anything.

Some of the commands in the menu bar have ordinary key bindings as well; if so, a key
binding is shown in parentheses after the item itself. To view the full command name and
documentation for a menu item, type C-h k, and then select the menu bar with the mouse
in the usual way (see Section 7.1 [Key Help], page 38).

Instead of using the mouse, you can also invoke the first menu bar item by pressing F10
(to run the command menu-bar-open). You can then navigate the menus with the arrow
keys. To activate a selected menu item, press RET; to cancel menu navigation, press ESC.

Chapter 1: The Organization of the Screen 10

On a text terminal, you can use the menu bar by typing M-‘ or F10 (these run the
command tmm-menubar). This lets you select a menu item with the keyboard. A provisional
choice appears in the echo area. You can use the up and down arrow keys to move through
the menu to different items, and then you can type RET to select the item. Each menu
item is also designated by a letter or digit (usually the initial of some word in the item’s
name). This letter or digit is separated from the item name by ‘=>’. You can type the
item’s letter or digit to select the item.

Chapter 2: Characters, Keys and Commands 11

2 Characters, Keys and Commands

This chapter explains the character sets used by Emacs for input commands, and the
fundamental concepts of keys and commands, whereby Emacs interprets your keyboard
and mouse input.

2.1 Kinds of User Input

GNU Emacs is primarily designed for use with the keyboard. While it is possible to use
the mouse to issue editing commands through the menu bar and tool bar, that is not as
efficient as using the keyboard. Therefore, this manual mainly documents how to edit with
the keyboard.

Keyboard input into Emacs is based on a heavily-extended version of ASCII. Simple
characters, like ‘a’, ‘B’, ‘3’, ‘=’, and the space character (denoted as SPC), are entered
by typing the corresponding key. Control characters, such as RET, TAB, DEL, ESC, F1,
HOME, and LEFT, are also entered this way, as are certain characters found on non-English
keyboards (see Chapter 19 [International], page 167).

Emacs also recognizes control characters that are entered using modifier keys. Two
commonly-used modifier keys are CONTROL (usually labeled CTRL), and META (usually
labeled ALT)1. For example, Control-a is entered by holding down the CTRL key while
pressing a; we will refer to this as C-a for short. Similarly Meta-a, or M-a for short, is
entered by holding down the ALT key and pressing a. Modifier keys can also be applied to
non-alphanumerical characters, e.g. C-F1 or M-LEFT.

You can also type Meta characters using two-character sequences starting with ESC.
Thus, you can enter M-a by typing ESC a. You can enter C-M-a by typing ESC C-a. Unlike
META, ESC is entered as a separate character. You don’t hold down ESC while typing
the next character; instead, press ESC and release it, then enter the next character. This
feature is useful on certain text terminals where the META key does not function reliably.

On graphical displays, the window manager might block some keyboard inputs, including
M-TAB, M-SPC, C-M-d and C-M-l. If you have this problem, you can either customize your
window manager to not block those keys, or “rebind” the affected Emacs commands (see
Chapter 33 [Customization], page 398).

Simple characters and control characters, as well as certain non-keyboard inputs such
as mouse clicks, are collectively referred to as input events. For details about how Emacs
internally handles input events, see Section “Input Events” in The Emacs Lisp Reference
Manual.

2.2 Keys

Some Emacs commands are invoked by just one input event; for example, C-f moves forward
one character in the buffer. Other commands take two or more input events to invoke, such
as C-x C-f and C-x 4 C-f.

A key sequence, or key for short, is a sequence of one or more input events that is
meaningful as a unit. If a key sequence invokes a command, we call it a complete key ; for

1 We refer to ALT as META for historical reasons.

Chapter 2: Characters, Keys and Commands 12

example, C-f, C-x C-f and C-x 4 C-f are all complete keys. If a key sequence isn’t long
enough to invoke a command, we call it a prefix key ; from the preceding example, we see
that C-x and C-x 4 are prefix keys. Every key sequence is either a complete key or a prefix
key.

A prefix key combines with the following input event to make a longer key sequence.
For example, C-x is a prefix key, so typing C-x alone does not invoke a command; instead,
Emacs waits for further input (if you pause for longer than a second, it echoes the C-x

key to prompt for that input; see Section 1.2 [Echo Area], page 7). C-x combines with
the next input event to make a two-event key sequence, which could itself be a prefix key
(such as C-x 4), or a complete key (such as C-x C-f). There is no limit to the length of key
sequences, but in practice they are seldom longer than three or four input events.

You can’t add input events onto a complete key. For example, because C-f is a complete
key, the two-event sequence C-f C-k is two key sequences, not one.

By default, the prefix keys in Emacs are C-c, C-h, C-x, C-x RET, C-x @, C-x a, C-x n,
C-x r, C-x v, C-x 4, C-x 5, C-x 6, ESC, M-g, and M-o. (F1 and F2 are aliases for C-h and
C-x 6.) This list is not cast in stone; if you customize Emacs, you can make new prefix
keys. You could even eliminate some of the standard ones, though this is not recommended
for most users; for example, if you remove the prefix definition of C-x 4, then C-x 4 C-f

becomes an invalid key sequence. See Section 33.3 [Key Bindings], page 414.

Typing the help character (C-h or F1) after a prefix key displays a list of the commands
starting with that prefix. The sole exception to this rule is ESC: ESC C-h is equivalent to
C-M-h, which does something else entirely. You can, however, use F1 to display a list of
commands starting with ESC.

2.3 Keys and Commands

This manual is full of passages that tell you what particular keys do. But Emacs does not
assign meanings to keys directly. Instead, Emacs assigns meanings to named commands,
and then gives keys their meanings by binding them to commands.

Every command has a name chosen by a programmer. The name is usually made of a
few English words separated by dashes; for example, next-line or forward-word. Inter-
nally, each command is a special type of Lisp function, and the actions associated with the
command are performed by running the function. See Section “What Is a Function” in The
Emacs Lisp Reference Manual.

The bindings between keys and commands are recorded in tables called keymaps. See
Section 33.3.1 [Keymaps], page 414.

When we say that “C-n moves down vertically one line” we are glossing over a subtle
distinction that is irrelevant in ordinary use, but vital for Emacs customization. The com-
mand next-line does a vertical move downward. C-n has this effect because it is bound to
next-line. If you rebind C-n to the command forward-word, C-n will move forward one
word instead.

In this manual, we will often speak of keys like C-n as commands, even though strictly
speaking the key is bound to a command. Usually we state the name of the command which
really does the work in parentheses after mentioning the key that runs it. For example, we
will say that “The command C-n (next-line) moves point vertically down”, meaning that
the command next-line moves vertically down, and the key C-n is normally bound to it.

Chapter 2: Characters, Keys and Commands 13

Since we are discussing customization, we should tell you about variables. Often the
description of a command will say, “To change this, set the variable mumble-foo.” A
variable is a name used to store a value. Most of the variables documented in this manual are
meant for customization: some command or other part of Emacs examines the variable and
behaves differently according to the value that you set. You can ignore the information about
variables until you are interested in customizing them. Then read the basic information on
variables (see Section 33.2 [Variables], page 406) and the information about specific variables
will make sense.

Chapter 3: Entering and Exiting Emacs 14

3 Entering and Exiting Emacs

This chapter explains how to enter Emacs, and how to exit it.

3.1 Entering Emacs

The usual way to invoke Emacs is with the shell command emacs. From a terminal window
running in the X Window System, you can run Emacs in the background with emacs &;
this way, Emacs won’t tie up the terminal window, so you can use it to run other shell
commands.

When Emacs starts up, the initial frame displays a special buffer named ‘*GNU Emacs*’.
This startup screen contains information about Emacs and links to common tasks that are
useful for beginning users. For instance, activating the ‘Emacs Tutorial’ link opens the
Emacs tutorial; this does the same thing as the command C-h t (help-with-tutorial).
To activate a link, either move point onto it and type RET, or click on it with mouse-1

(the left mouse button).

Using a command line argument, you can tell Emacs to visit one or more files as soon as
it starts up. For example, emacs foo.txt starts Emacs with a buffer displaying the contents
of the file ‘foo.txt’. This feature exists mainly for compatibility with other editors, which
are designed to be launched from the shell for short editing sessions. If you call Emacs
this way, the initial frame is split into two windows—one showing the specified file, and the
other showing the startup screen. See Chapter 17 [Windows], page 147.

Generally, it is unnecessary and wasteful to start Emacs afresh each time you want to
edit a file. The recommended way to use Emacs is to start it just once, just after you log
in, and do all your editing in the same Emacs session. See Chapter 15 [Files], page 115, for
information on visiting more than one file. If you use Emacs this way, the Emacs session
accumulates valuable context, such as the kill ring, registers, undo history, and mark ring
data, which together make editing more convenient. These features are described later in
the manual.

To edit a file from another program while Emacs is running, you can use the emacsclient
helper program to open a file in the existing Emacs session. See Section 31.4 [Emacs Server],
page 378.

Emacs accepts other command line arguments that tell it to load certain Lisp files, where
to put the initial frame, and so forth. See Appendix C [Emacs Invocation], page 463.

If the variable inhibit-startup-screen is non-nil, Emacs does not display the startup
screen. In that case, if one or more files were specified on the command line, Emacs
simply displays those files; otherwise, it displays a buffer named ‘*scratch*’, which can be
used to evaluate Emacs Lisp expressions interactively. See Section 24.10 [Lisp Interaction],
page 267. You can set the variable inhibit-startup-screen using the Customize facility
(see Section 33.1 [Easy Customization], page 398), or by editing your initialization file (see
Section 33.4 [Init File], page 423).1

You can also force Emacs to display a file or directory at startup by setting the variable
initial-buffer-choice to a non-nil value. (In that case, even if you specify one or

1 Setting inhibit-startup-screen in ‘site-start.el’ doesn’t work, because the startup screen is
set up before reading ‘site-start.el’. See Section 33.4 [Init File], page 423, for information about
‘site-start.el’.

Chapter 3: Entering and Exiting Emacs 15

more files on the command line, Emacs opens but does not display them.) The value of
initial-buffer-choice should be the name of the desired file or directory.

3.2 Exiting Emacs

C-x C-c Kill Emacs (save-buffers-kill-terminal).

C-z On a text terminal, suspend Emacs; on a graphical display, “minimize” the
selected frame (suspend-emacs).

Killing Emacs means terminating the Emacs program. To do this, type C-x C-c (save-
buffers-kill-terminal). A two-character key sequence is used to make it harder to type
by accident. If there are any modified file-visiting buffers when you type C-x C-c, Emacs
first offers to save these buffers. If you do not save them all, it asks for confirmation again,
since the unsaved changes will be lost. Emacs also asks for confirmation if any subprocesses
are still running, since killing Emacs will also kill the subprocesses (see Section 31.3 [Shell],
page 368).

C-x C-c behaves specially if you are using Emacs as a server. If you type it from a “client
frame”, it closes the client connection. See Section 31.4 [Emacs Server], page 378.

Emacs can, optionally, record certain session information when you kill it, such as the
files you were visiting at the time. This information is then available the next time you
start Emacs. See Section 31.8 [Saving Emacs Sessions], page 388.

If the value of the variable confirm-kill-emacs is non-nil, C-x C-c assumes that its
value is a predicate function, and calls that function. If the result of the function call is
non-nil, the session is killed, otherwise Emacs continues to run. One convenient function
to use as the value of confirm-kill-emacs is the function yes-or-no-p. The default value
of confirm-kill-emacs is nil.

To kill Emacs without being prompted about saving, type M-x kill-emacs.

C-z runs the command suspend-frame. On a graphical display, this command minimizes
(or iconifies) the selected Emacs frame, hiding it in a way that lets you bring it back later
(exactly how this hiding occurs depends on the window system). On a text terminal, the
C-z command suspends Emacs, stopping the program temporarily and returning control to
the parent process (usually a shell); in most shells, you can resume Emacs after suspending
it with the shell command %emacs.

Text terminals usually listen for certain special characters whose meaning is to kill or
suspend the program you are running. This terminal feature is turned off while you are in
Emacs. The meanings of C-z and C-x C-c as keys in Emacs were inspired by the use of C-z
and C-c on several operating systems as the characters for stopping or killing a program,
but that is their only relationship with the operating system. You can customize these keys
to run any commands of your choice (see Section 33.3.1 [Keymaps], page 414).

Chapter 4: Basic Editing Commands 16

4 Basic Editing Commands

Here we explain the basics of how to enter text, make corrections, and save the text in a file.
If this material is new to you, we suggest you first run the Emacs learn-by-doing tutorial,
by typing C-h t (help-with-tutorial).

4.1 Inserting Text

You can insert an ordinary graphic character (e.g., ‘a’, ‘B’, ‘3’, and ‘=’) by typing the
associated key. This adds the character to the buffer at point. Insertion moves point
forward, so that point remains just after the inserted text. See Section 1.1 [Point], page 6.

To end a line and start a new one, type RET (newline). (The RET key may be labeled
RETURN or ENTER on your keyboard, but we refer to it as RET in this manual.) This
command inserts a newline character into the buffer. If point is at the end of the line, the
effect is to create a new blank line after it; if point is in the middle of a line, the line is split
at that position.

As we explain later in this manual, you can change the way Emacs handles text insertion
by turning on minor modes. For instance, the minor mode called Auto Fill mode splits
lines automatically when they get too long (see Section 22.5 [Filling], page 202). The minor
mode called Overwrite mode causes inserted characters to replace (overwrite) existing text,
instead of shoving it to the right. See Section 20.2 [Minor Modes], page 190.

Only graphic characters can be inserted by typing the associated key; other keys act
as editing commands and do not insert themselves. For instance, DEL runs the command
delete-backward-char by default (some modes bind it to a different command); it does
not insert a literal ‘DEL’ character (ASCII character code 127).

To insert a non-graphic character, or a character that your keyboard does not support,
first quote it by typing C-q (quoted-insert). There are two ways to use C-q:

• C-q followed by any non-graphic character (even C-g) inserts that character. For in-
stance, C-q DEL inserts a literal ‘DEL’ character.

• C-q followed by a sequence of octal digits inserts the character with the specified octal
character code. You can use any number of octal digits; any non-digit terminates the
sequence. If the terminating character is RET, that RET serves only to terminate
the sequence. Any other non-digit terminates the sequence and then acts as normal
input—thus, C-q 1 0 1 B inserts ‘AB’.

The use of octal sequences is disabled in ordinary non-binary Overwrite mode, to give
you a convenient way to insert a digit instead of overwriting with it.

To use decimal or hexadecimal instead of octal, set the variable read-quoted-char-radix

to 10 or 16. If the radix is 16, the letters a to f serve as part of a character code, just like
digits. Case is ignored.

Instead of C-q, you can use the command C-x 8 RET (ucs-insert). This prompts for
the Unicode name or code-point of a character, using the minibuffer. If you enter a name,
the command provides completion (see Section 5.3 [Completion], page 28). If you enter a
code-point, it should be a hexadecimal number (which is the convention for Unicode). The
command then inserts the corresponding character into the buffer. For example, both of
the following insert the infinity sign (Unicode code-point U+221E):

Chapter 4: Basic Editing Commands 17

C-x 8 RET infinity RET

C-x 8 RET 221e RET

A numeric argument to either C-q or C-x 8 RET specifies how many copies of the character
to insert (see Section 4.10 [Arguments], page 23).

4.2 Changing the Location of Point

To do more than insert characters, you have to know how to move point (see Section 1.1
[Point], page 6). The keyboard commands C-f, C-b, C-n, and C-p move point to the right,
left, down, and up, respectively. You can also move point using the arrow keys present on
most keyboards: RIGHT, LEFT, DOWN, and UP; however, many Emacs users find that it
is slower to use the arrow keys than the control keys, because you need to move your hand
to the area of the keyboard where those keys are located.

You can also click the left mouse button to move point to the position clicked. Emacs also
provides a variety of additional keyboard commands that move point in more sophisticated
ways.

C-f Move forward one character (forward-char).

RIGHT This command (right-char) behaves like C-f, with one exception: when edit-
ing right-to-left scripts such as Arabic, it instead moves backward if the current
paragraph is a right-to-left paragraph. See Section 19.20 [Bidirectional Editing],
page 187.

C-b Move backward one character (backward-char).

LEFT This command (left-char) behaves like C-b, except it moves forward if the
current paragraph is right-to-left. See Section 19.20 [Bidirectional Editing],
page 187.

C-n

DOWN Move down one screen line (next-line). This command attempts to keep the
horizontal position unchanged, so if you start in the middle of one line, you
move to the middle of the next.

C-p

UP Move up one screen line (previous-line). This command preserves position
within the line, like C-n.

C-a

HOME Move to the beginning of the line (move-beginning-of-line).

C-e

END Move to the end of the line (move-end-of-line).

M-f Move forward one word (forward-word).

C-RIGHT

M-RIGHT This command (right-word) behaves like M-f, except it moves backward by one
word if the current paragraph is right-to-left. See Section 19.20 [Bidirectional
Editing], page 187.

M-b Move backward one word (backward-word).

Chapter 4: Basic Editing Commands 18

C-LEFT

M-LEFT This command (left-word) behaves like M-f, except it moves forward by one
word if the current paragraph is right-to-left. See Section 19.20 [Bidirectional
Editing], page 187.

M-r Without moving the text on the screen, reposition point on the left margin of
the center-most text line of the window; on subsequent consecutive invocations,
move point to the left margin of the top-most line, the bottom-most line, and
so forth, in cyclic order (move-to-window-line-top-bottom).

A numeric argument says which screen line to place point on, counting down-
ward from the top of the window (zero means the top line). A negative argument
counts lines up from the bottom (−1 means the bottom line). See Section 4.10
[Arguments], page 23, for more information on numeric arguments.

M-< Move to the top of the buffer (beginning-of-buffer). With numeric argument
n, move to n/10 of the way from the top.

M-> Move to the end of the buffer (end-of-buffer).

C-v

PAGEDOWN
NEXT Scroll the display one screen forward, and move point onscreen if necessary

(scroll-up-command). See Section 11.1 [Scrolling], page 65.

M-v

PAGEUP
PRIOR Scroll one screen backward, and move point onscreen if necessary (scroll-

down-command). See Section 11.1 [Scrolling], page 65.

M-x goto-char

Read a number n and move point to buffer position n. Position 1 is the begin-
ning of the buffer.

M-g M-g

M-g g Read a number n and move point to the beginning of line number n (goto-
line). Line 1 is the beginning of the buffer. If point is on or just after a number
in the buffer, that is the default for n. Just type RET in the minibuffer to use
it. You can also specify n by giving M-g M-g a numeric prefix argument. See
Section 16.1 [Select Buffer], page 139, for the behavior of M-g M-g when you
give it a plain prefix argument.

C-x C-n Use the current column of point as the semipermanent goal column for C-n

and C-p (set-goal-column). When a semipermanent goal column is in effect,
those commands always try to move to this column, or as close as possible to
it, after moving vertically. The goal column remains in effect until canceled.

C-u C-x C-n

Cancel the goal column. Henceforth, C-n and C-p try to preserve the horizontal
position, as usual.

When a line of text in the buffer is longer than the width of the window, Emacs usually
displays it on two or more screen lines. For convenience, C-n and C-p move point by

Chapter 4: Basic Editing Commands 19

screen lines, as do the equivalent keys DOWN and UP. You can force these commands to
move according to logical lines (i.e., according to the text lines in the buffer) by setting
the variable line-move-visual to nil; if a logical line occupies multiple screen lines, the
cursor then skips over the additional screen lines. For details, see Section 4.8 [Continuation
Lines], page 21. See Section 33.2 [Variables], page 406, for how to set variables such as
line-move-visual.

Unlike C-n and C-p, most of the Emacs commands that work on lines work on logical
lines. For instance, C-a (move-beginning-of-line) and C-e (move-end-of-line) respec-
tively move to the beginning and end of the logical line. Whenever we encounter commands
that work on screen lines, such as C-n and C-p, we will point these out.

When line-move-visual is nil, you can also set the variable track-eol to a non-nil
value. Then C-n and C-p, when starting at the end of the logical line, move to the end of
the next logical line. Normally, track-eol is nil.

C-n normally stops at the end of the buffer when you use it on the last line in the buffer.
However, if you set the variable next-line-add-newlines to a non-nil value, C-n on the
last line of a buffer creates an additional line at the end and moves down into it.

4.3 Erasing Text

DEL
BACKSPACE

Delete the character before point, or the region if it is active (delete-backward-
char).

DELETE Delete the character after point, or the region if it is active (delete-forward-
char).

C-d Delete the character after point (delete-char).

C-k Kill to the end of the line (kill-line).

M-d Kill forward to the end of the next word (kill-word).

M-DEL Kill back to the beginning of the previous word (backward-kill-word).

The DEL (delete-backward-char) command removes the character before point, mov-
ing the cursor and the characters after it backwards. If point was at the beginning of a line,
this deletes the preceding newline, joining this line to the previous one.

If, however, the region is active, DEL instead deletes the text in the region. See Chapter 8
[Mark], page 44, for a description of the region.

On most keyboards, DEL is labeled BACKSPACE, but we refer to it as DEL in this
manual. (Do not confuse DEL with the DELETE key; we will discuss DELETE momen-
tarily.) On some text terminals, Emacs may not recognize the DEL key properly. See
Section 34.2.1 [DEL Does Not Delete], page 430, if you encounter this problem.

The DELETE (delete-forward-char) command deletes in the “opposite direction”: it
deletes the character after point, i.e. the character under the cursor. If point was at the
end of a line, this joins the following line onto this one. Like DEL, it deletes the text in the
region if the region is active (see Chapter 8 [Mark], page 44).

C-d (delete-char) deletes the character after point, similar to DELETE, but regardless
of whether the region is active.

Chapter 4: Basic Editing Commands 20

See Section 9.1.1 [Deletion], page 50, for more detailed information about the above
deletion commands.

C-k (kill-line) erases (kills) a line at a time. If you type C-k at the beginning or
middle of a line, it kills all the text up to the end of the line. If you type C-k at the end of
a line, it joins that line with the following line.

See Chapter 9 [Killing], page 50, for more information about C-k and related commands.

4.4 Undoing Changes

C-/ Undo one entry of the undo records—usually, one command worth (undo).
C-x u

C-_ The same.

Emacs records a list of changes made in the buffer text, so you can undo recent changes.
This is done using the undo command, which is bound to C-/ (as well as C-x u and C-_).
Normally, this command undoes the last change, moving point back to where it was before
the change. The undo command applies only to changes in the buffer; you can’t use it to
undo cursor motion.

Although each editing command usually makes a separate entry in the undo records,
very simple commands may be grouped together. Sometimes, an entry may cover just part
of a complex command.

If you repeat C-/ (or its aliases), each repetition undoes another, earlier change, back
to the limit of the undo information available. If all recorded changes have already been
undone, the undo command displays an error message and does nothing.

To learn more about the undo command, see Section 13.1 [Undo], page 102.

4.5 Files

Text that you insert in an Emacs buffer lasts only as long as the Emacs session. To keep
any text permanently, you must put it in a file.

Suppose there is a file named ‘test.emacs’ in your home directory. To begin editing
this file in Emacs, type

C-x C-f test.emacs RET

Here the file name is given as an argument to the command C-x C-f (find-file). That
command uses the minibuffer to read the argument, and you type RET to terminate the
argument (see Chapter 5 [Minibuffer], page 26).

Emacs obeys this command by visiting the file: it creates a buffer, copies the contents
of the file into the buffer, and then displays the buffer for editing. If you alter the text, you
can save the new text in the file by typing C-x C-s (save-buffer). This copies the altered
buffer contents back into the file ‘test.emacs’, making them permanent. Until you save,
the changed text exists only inside Emacs, and the file ‘test.emacs’ is unaltered.

To create a file, just visit it with C-x C-f as if it already existed. This creates an empty
buffer, in which you can insert the text you want to put in the file. Emacs actually creates
the file the first time you save this buffer with C-x C-s.

To learn more about using files in Emacs, see Chapter 15 [Files], page 115.

Chapter 4: Basic Editing Commands 21

4.6 Help

If you forget what a key does, you can find out by typing C-h k (describe-key), followed
by the key of interest; for example, C-h k C-n tells you what C-n does.

The prefix key C-h stands for “help”. The key F1 serves as an alias for C-h. Apart from
C-h k, there are many other help commands providing different kinds of help.

See Chapter 7 [Help], page 36, for details.

4.7 Blank Lines

Here are special commands and techniques for inserting and deleting blank lines.

C-o Insert a blank line after the cursor (open-line).

C-x C-o Delete all but one of many consecutive blank lines (delete-blank-lines).

We have seen how RET (newline) starts a new line of text. However, it may be easier
to see what you are doing if you first make a blank line and then insert the desired text into
it. This is easy to do using the key C-o (open-line), which inserts a newline after point
but leaves point in front of the newline. After C-o, type the text for the new line.

You can make several blank lines by typing C-o several times, or by giving it a numeric
argument specifying how many blank lines to make. See Section 4.10 [Arguments], page 23,
for how. If you have a fill prefix, the C-o command inserts the fill prefix on the new line, if
typed at the beginning of a line. See Section 22.5.3 [Fill Prefix], page 204.

The easy way to get rid of extra blank lines is with the command C-x C-o (delete-
blank-lines). If point lies within a run of several blank lines, C-x C-o deletes all but one
of them. If point is on a single blank line, C-x C-o deletes it. If point is on a nonblank line,
C-x C-o deletes all following blank lines, if any exists.

4.8 Continuation Lines

Sometimes, a line of text in the buffer—a logical line—is too long to fit in the window, and
Emacs displays it as two or more screen lines. This is called line wrapping or continuation,
and the long logical line is called a continued line. On a graphical display, Emacs indicates
line wrapping with small bent arrows in the left and right window fringes. On a text
terminal, Emacs indicates line wrapping by displaying a ‘\’ character at the right margin.

Most commands that act on lines act on logical lines, not screen lines. For instance,
C-k kills a logical line. As described earlier, C-n (next-line) and C-p (previous-line)
are special exceptions: they move point down and up, respectively, by one screen line (see
Section 4.2 [Moving Point], page 17).

Emacs can optionally truncate long logical lines instead of continuing them. This means
that every logical line occupies a single screen line; if it is longer than the width of the
window, the rest of the line is not displayed. On a graphical display, a truncated line is
indicated by a small straight arrow in the right fringe; on a text terminal, it is indicated by
a ‘$’ character in the right margin. See Section 11.21 [Line Truncation], page 82.

By default, continued lines are wrapped at the right window edge. Since the wrapping
may occur in the middle of a word, continued lines can be difficult to read. The usual
solution is to break your lines before they get too long, by inserting newlines. If you prefer,

Chapter 4: Basic Editing Commands 22

you can make Emacs insert a newline automatically when a line gets too long, by using
Auto Fill mode. See Section 22.5 [Filling], page 202.

Sometimes, you may need to edit files containing many long logical lines, and it may not
be practical to break them all up by adding newlines. In that case, you can use Visual Line
mode, which enables word wrapping : instead of wrapping long lines exactly at the right
window edge, Emacs wraps them at the word boundaries (i.e., space or tab characters)
nearest to the right window edge. Visual Line mode also redefines editing commands such
as C-a, C-n, and C-k to operate on screen lines rather than logical lines. See Section 11.22
[Visual Line Mode], page 83.

4.9 Cursor Position Information

Here are commands to get information about the size and position of parts of the buffer,
and to count words and lines.

M-x what-line

Display the line number of point.

M-x line-number-mode

M-x column-number-mode

Toggle automatic display of the current line number or column number. See
Section 11.18 [Optional Mode Line], page 79.

M-= Display the number of lines, words, and characters that are present in the region
(count-words-region). See Chapter 8 [Mark], page 44, for information about
the region.

M-x count-words

Display the number of lines, words, and characters that are present in the buffer.
If the region is active (see Chapter 8 [Mark], page 44), display the numbers for
the region instead.

C-x = Display the character code of character after point, character position of point,
and column of point (what-cursor-position).

M-x hl-line-mode

Enable or disable highlighting of the current line. See Section 11.20 [Cursor
Display], page 81.

M-x size-indication-mode

Toggle automatic display of the size of the buffer. See Section 11.18 [Optional
Mode Line], page 79.

M-x what-line displays the current line number in the echo area. This command is
usually redundant, because the current line number is shown in the mode line (see Section 1.3
[Mode Line], page 8). However, if you narrow the buffer, the mode line shows the line number
relative to the accessible portion (see Section 11.5 [Narrowing], page 68). By contrast, what-
line displays both the line number relative to the narrowed region and the line number
relative to the whole buffer.

M-= (count-words-region) displays a message reporting the number of lines, words, and
characters in the region. M-x count-words displays a similar message for the entire buffer,

Chapter 4: Basic Editing Commands 23

or for the region if the region is active. See Chapter 8 [Mark], page 44, for an explanation
of the region.

The command C-x = (what-cursor-position) shows information about the current
cursor position and the buffer contents at that position. It displays a line in the echo area
that looks like this:

Char: c (99, #o143, #x63) point=28062 of 36168 (78%) column=53

After ‘Char:’, this shows the character in the buffer at point. The text inside the
parenthesis shows the corresponding decimal, octal and hex character codes; for more in-
formation about how C-x = displays character information, see Section 19.1 [International
Chars], page 167. After ‘point=’ is the position of point as a character count (the first
character in the buffer is position 1, the second character is position 2, and so on). The
number after that is the total number of characters in the buffer, and the number in paren-
thesis expresses the position as a percentage of the total. After ‘column=’ is the horizontal
position of point, in columns counting from the left edge of the window.

If the buffer has been narrowed, making some of the text at the beginning and the end
temporarily inaccessible, C-x = displays additional text describing the currently accessible
range. For example, it might display this:

Char: C (67, #o103, #x43) point=252 of 889 (28%) <231-599> column=0

where the two extra numbers give the smallest and largest character position that point is
allowed to assume. The characters between those two positions are the accessible ones. See
Section 11.5 [Narrowing], page 68.

4.10 Numeric Arguments

In the terminology of mathematics and computing, argument means “data provided to a
function or operation”. You can give any Emacs command a numeric argument (also called
a prefix argument). Some commands interpret the argument as a repetition count. For
example, giving C-f an argument of ten causes it to move point forward by ten characters
instead of one. With these commands, no argument is equivalent to an argument of one,
and negative arguments cause them to move or act in the opposite direction.

The easiest way to specify a numeric argument is to type a digit and/or a minus sign
while holding down the META key. For example,

M-5 C-n

moves down five lines. The keys M-1, M-2, and so on, as well as M--, are bound to commands
(digit-argument and negative-argument) that set up an argument for the next command.
Meta-- without digits normally means −1.

If you enter more than one digit, you need not hold down the META key for the second
and subsequent digits. Thus, to move down fifty lines, type

M-5 0 C-n

Note that this does not insert five copies of ‘0’ and move down one line, as you might
expect—the ‘0’ is treated as part of the prefix argument.

(What if you do want to insert five copies of ‘0’? Type M-5 C-u 0. Here, C-u “terminates”
the prefix argument, so that the next keystroke begins the command that you want to
execute. Note that this meaning of C-u applies only to this case. For the usual role of C-u,
see below.)

Chapter 4: Basic Editing Commands 24

Instead of typing M-1, M-2, and so on, another way to specify a numeric argument is to
type C-u (universal-argument) followed by some digits, or (for a negative argument) a
minus sign followed by digits. A minus sign without digits normally means −1.

C-u alone has the special meaning of “four times”: it multiplies the argument for the
next command by four. C-u C-u multiplies it by sixteen. Thus, C-u C-u C-f moves forward
sixteen characters. Other useful combinations are C-u C-n, C-u C-u C-n (move down a
good fraction of a screen), C-u C-u C-o (make “a lot” of blank lines), and C-u C-k (kill four
lines).

You can use a numeric argument before a self-inserting character to insert multiple
copies of it. This is straightforward when the character is not a digit; for example, C-u 6 4

a inserts 64 copies of the character ‘a’. But this does not work for inserting digits; C-u 6

4 1 specifies an argument of 641. You can separate the argument from the digit to insert
with another C-u; for example, C-u 6 4 C-u 1 does insert 64 copies of the character ‘1’.

Some commands care whether there is an argument, but ignore its value. For example,
the command M-q (fill-paragraph) fills text; with an argument, it justifies the text as well.
(See Section 22.5 [Filling], page 202, for more information on M-q.) For these commands,
it is enough to the argument with a single C-u.

Some commands use the value of the argument as a repeat count, but do something
special when there is no argument. For example, the command C-k (kill-line) with
argument n kills n lines, including their terminating newlines. But C-k with no argument
is special: it kills the text up to the next newline, or, if point is right at the end of the line,
it kills the newline itself. Thus, two C-k commands with no arguments can kill a nonblank
line, just like C-k with an argument of one. (See Chapter 9 [Killing], page 50, for more
information on C-k.)

A few commands treat a plain C-u differently from an ordinary argument. A few others
may treat an argument of just a minus sign differently from an argument of −1. These
unusual cases are described when they come up; they exist to make an individual command
more convenient, and they are documented in that command’s documentation string.

We use the term “prefix argument” as well as “numeric argument”, to emphasize that
you type these argument before the command, and to distinguish them from minibuffer
arguments that come after the command.

4.11 Repeating a Command

Many simple commands, such as those invoked with a single key or with M-x command-name

RET, can be repeated by invoking them with a numeric argument that serves as a repeat
count (see Section 4.10 [Arguments], page 23). However, if the command you want to repeat
prompts for input, or uses a numeric argument in another way, that method won’t work.

The command C-x z (repeat) provides another way to repeat an Emacs command many
times. This command repeats the previous Emacs command, whatever that was. Repeating
a command uses the same arguments that were used before; it does not read new arguments
each time.

To repeat the command more than once, type additional z’s: each z repeats the command
one more time. Repetition ends when you type a character other than z, or press a mouse
button.

Chapter 4: Basic Editing Commands 25

For example, suppose you type C-u 2 0 C-d to delete 20 characters. You can repeat that
command (including its argument) three additional times, to delete a total of 80 characters,
by typing C-x z z z. The first C-x z repeats the command once, and each subsequent z

repeats it once again.

Chapter 5: The Minibuffer 26

5 The Minibuffer

The minibuffer is where Emacs commands read complicated arguments, such as file names,
buffer names, Emacs command names, or Lisp expressions. We call it the “minibuffer”
because it’s a special-purpose buffer with a small amount of screen space. You can use the
usual Emacs editing commands in the minibuffer to edit the argument text.

When the minibuffer is in use, it appears in the echo area, with a cursor. The minibuffer
starts with a prompt in a distinct color, usually ending with a colon. The prompt states
what kind of input is expected, and how it will be used.

The simplest way to enter a minibuffer argument is to type the text, then RET to submit
the argument and exit the minibuffer. You can cancel the minibuffer, and the command
that wants the argument, by typing C-g.

Sometimes, a default argument appears in the prompt, inside parentheses before the
colon. This default will be used as the argument if you just type RET. For example,
commands that read buffer names usually show a buffer name as the default; you can type
RET to operate on that default buffer.

Since the minibuffer appears in the echo area, it can conflict with other uses of the echo
area. If an error message or an informative message is emitted while the minibuffer is active,
the message hides the minibuffer for a few seconds, or until you type something; then the
minibuffer comes back. While the minibuffer is in use, keystrokes do not echo.

5.1 Minibuffers for File Names

Commands such as C-x C-f (find-file) use the minibuffer to read a file name argument
(see Section 4.5 [Basic Files], page 20). When the minibuffer is used to read a file name, it
typically starts out with some initial text ending in a slash. This is the default directory.
For example, it may start out like this:

Find file: /u2/emacs/src/

Here, ‘Find file: ’ is the prompt and ‘/u2/emacs/src/’ is the default directory. If you now
type buffer.c as input, that specifies the file ‘/u2/emacs/src/buffer.c’. See Section 15.1
[File Names], page 115, for information about the default directory.

You can specify the parent directory with ‘..’: ‘/a/b/../foo.el’ is equivalent to
‘/a/foo.el’. Alternatively, you can use M-DEL to kill directory names backwards (see
Section 22.1 [Words], page 198).

To specify a file in a completely different directory, you can kill the entire default with
C-a C-k (see Section 5.2 [Minibuffer Edit], page 27). Alternatively, you can ignore the
default, and enter an absolute file name starting with a slash or a tilde after the default
directory. For example, you can specify ‘/etc/termcap’ as follows:

Find file: /u2/emacs/src//etc/termcap

Emacs interprets a double slash as “ignore everything before the second slash in the pair”.
In the example above, ‘/u2/emacs/src/’ is ignored, so the argument you supplied is
‘/etc/termcap’. The ignored part of the file name is dimmed if the terminal allows
it. (To disable this dimming, turn off File Name Shadow mode with the command M-x

file-name-shadow-mode.)

Chapter 5: The Minibuffer 27

Emacs interprets ‘~/’ as your home directory. Thus, ‘~/foo/bar.txt’ specifies a
file named ‘bar.txt’, inside a directory named ‘foo’, which is in turn located in your
home directory. In addition, ‘~user-id/’ means the home directory of a user whose
login name is user-id. Any leading directory name in front of the ‘~’ is ignored: thus,
‘/u2/emacs/~/foo/bar.txt’ is equivalent to ‘~/foo/bar.txt’.

On MS-Windows and MS-DOS systems, where a user doesn’t always have a home direc-
tory, Emacs uses several alternatives. For MS-Windows, see Section G.5 [Windows HOME],
page 493; for MS-DOS, see Section “MS-DOS File Names” in the digital version of the
Emacs Manual. On these systems, the ‘~user-id/’ construct is supported only for the
current user, i.e., only if user-id is the current user’s login name.

To prevent Emacs from inserting the default directory when reading file names, change
the variable insert-default-directory to nil. In that case, the minibuffer starts out
empty. Nonetheless, relative file name arguments are still interpreted based on the same
default directory.

You can also enter remote file names in the minibuffer. See Section 15.13 [Remote Files],
page 135.

5.2 Editing in the Minibuffer

The minibuffer is an Emacs buffer, albeit a peculiar one, and the usual Emacs commands
are available for editing the argument text. (The prompt, however, is read-only, and cannot
be changed.)

Since RET in the minibuffer submits the argument, you can’t use it to insert a newline.
You can do that with C-q C-j, which inserts a C-j control character, which is formally
equivalent to a newline character (see Section 4.1 [Inserting Text], page 16). Alternatively,
you can use the C-o (open-line) command (see Section 4.7 [Blank Lines], page 21).

Inside a minibuffer, the keys TAB, SPC, and ? are often bound to completion commands,
which allow you to easily fill in the desired text without typing all of it. See Section 5.3
[Completion], page 28. As with RET, you can use C-q to insert a TAB, SPC, or ‘?’ character.

For convenience, C-a (move-beginning-of-line) in a minibuffer moves point to the
beginning of the argument text, not the beginning of the prompt. For example, this allows
you to erase the entire argument with C-a C-k.

When the minibuffer is active, the echo area is treated much like an ordinary Emacs
window. For instance, you can switch to another window (with C-x o), edit text there, then
return to the minibuffer window to finish the argument. You can even kill text in another
window, return to the minibuffer window, and yank the text into the argument. There are
some restrictions on the minibuffer window, however: for instance, you cannot split it. See
Chapter 17 [Windows], page 147.

Normally, the minibuffer window occupies a single screen line. However, if you add two
or more lines’ worth of text into the minibuffer, it expands automatically to accommodate
the text. The variable resize-mini-windows controls the resizing of the minibuffer. The
default value is grow-only, which means the behavior we have just described. If the value
is t, the minibuffer window will also shrink automatically if you remove some lines of
text from the minibuffer, down to a minimum of one screen line. If the value is nil, the
minibuffer window never changes size automatically, but you can use the usual window-
resizing commands on it (see Chapter 17 [Windows], page 147).

Chapter 5: The Minibuffer 28

The variable max-mini-window-height controls the maximum height for resizing the
minibuffer window. A floating-point number specifies a fraction of the frame’s height; an
integer specifies the maximum number of lines; nil means do not resize the minibuffer
window automatically. The default value is 0.25.

The C-M-v command in the minibuffer scrolls the help text from commands that display
help text of any sort in another window. You can also scroll the help text with M-PRIOR

and M-NEXT (or, equivalently, M-PAGEUP and M-PAGEDOWN). This is especially useful with
long lists of possible completions. See Section 17.3 [Other Window], page 148.

Emacs normally disallows most commands that use the minibuffer while the minibuffer
is active. To allow such commands in the minibuffer, set the variable enable-recursive-

minibuffers to t.

When not active, the minibuffer is in minibuffer-inactive-mode, and clicking Mouse-1

there shows the ‘*Messages*’ buffer. If you use a dedicated frame for minibuffers, Emacs
also recognizes certain keys there, for example n to make a new frame.

5.3 Completion

You can often use a feature called completion to help enter arguments. This means that
after you type part of the argument, Emacs can fill in the rest, or some of it, based on what
was typed so far.

When completion is available, certain keys (usually TAB, RET, and SPC) are rebound in
the minibuffer to special completion commands (see Section 5.3.2 [Completion Commands],
page 29). These commands attempt to complete the text in the minibuffer, based on a set
of completion alternatives provided by the command that requested the argument. You can
usually type ? to see a list of completion alternatives.

Although completion is usually done in the minibuffer, the feature is sometimes available
in ordinary buffers too. See Section 23.8 [Symbol Completion], page 244.

5.3.1 Completion Example

A simple example may help here. M-x uses the minibuffer to read the name of a command,
so completion works by matching the minibuffer text against the names of existing Emacs
commands. Suppose you wish to run the command auto-fill-mode. You can do that by
typing M-x auto-fill-mode RET, but it is easier to use completion.

If you type M-x a u TAB, the TAB looks for completion alternatives (in this case, com-
mand names) that start with ‘au’. There are several, including auto-fill-mode and
autoconf-mode, but they all begin with auto, so the ‘au’ in the minibuffer completes to
‘auto’. (More commands may be defined in your Emacs session. For example, if a command
called authorize-me was defined, Emacs could only complete as far as ‘aut’.)

If you type TAB again immediately, it cannot determine the next character; it could be
‘-’, ‘a’, or ‘c’. So it does not add any characters; instead, TAB displays a list of all possible
completions in another window.

Next, type -f. The minibuffer now contains ‘auto-f’, and the only command name that
starts with this is auto-fill-mode. If you now type TAB, completion fills in the rest of
the argument ‘auto-fill-mode’ into the minibuffer.

Hence, typing just a u TAB - f TAB allows you to enter ‘auto-fill-mode’.

Chapter 5: The Minibuffer 29

5.3.2 Completion Commands

Here is a list of the completion commands defined in the minibuffer when completion is
allowed.

TAB Complete the text in the minibuffer as much as possible; if unable to complete,
display a list of possible completions (minibuffer-complete).

SPC Complete up to one word from the minibuffer text before point (minibuffer-
complete-word). This command is not available for arguments that often in-
clude spaces, such as file names.

RET Submit the text in the minibuffer as the argument, possibly completing first
(minibuffer-complete-and-exit). See Section 5.3.3 [Completion Exit],
page 30.

? Display a list of completions (minibuffer-completion-help).

TAB (minibuffer-complete) is the most fundamental completion command. It searches
for all possible completions that match the existing minibuffer text, and attempts to com-
plete as much as it can. See Section 5.3.4 [Completion Styles], page 30, for how completion
alternatives are chosen.

SPC (minibuffer-complete-word) completes like TAB, but only up to the next hyphen
or space. If you have ‘auto-f’ in the minibuffer and type SPC, it finds that the completion
is ‘auto-fill-mode’, but it only inserts ‘ill-’, giving ‘auto-fill-’. Another SPC at this
point completes all the way to ‘auto-fill-mode’.

If TAB or SPC is unable to complete, it displays a list of matching completion alternatives
(if there are any) in another window. You can display the same list with ? (minibuffer-
completion-help). The following commands can be used with the completion list:

Mouse-1

Mouse-2 Clicking mouse button 1 or 2 on a completion alternative chooses it (mouse-
choose-completion).

M-v

PAGEUP
PRIOR Typing M-v, while in the minibuffer, selects the window showing the completion

list (switch-to-completions). This paves the way for using the commands
below. PAGEUP or PRIOR does the same. You can also select the window in
other ways (see Chapter 17 [Windows], page 147).

RET While in the completion list buffer, this chooses the completion at point
(choose-completion).

RIGHT While in the completion list buffer, this moves point to the following completion
alternative (next-completion).

LEFT While in the completion list buffer, this moves point to the previous completion
alternative (previous-completion).

Chapter 5: The Minibuffer 30

5.3.3 Completion Exit

When a command reads an argument using the minibuffer with completion, it also con-
trols what happens when you type RET (minibuffer-complete-and-exit) to submit the
argument. There are four types of behavior:

• Strict completion accepts only exact completion matches. Typing RET exits the mini-
buffer only if the minibuffer text is an exact match, or completes to one. Otherwise,
Emacs refuses to exit the minibuffer; instead it tries to complete, and if no completion
can be done it momentarily displays ‘[No match]’ after the minibuffer text. (You can
still leave the minibuffer by typing C-g to cancel the command.)

An example of a command that uses this behavior is M-x, since it is meaningless for it
to accept a non-existent command name.

• Cautious completion is like strict completion, except RET exits only if the text is
already an exact match. If the text completes to an exact match, RET performs that
completion but does not exit yet; you must type a second RET to exit.

Cautious completion is used for reading file names for files that must already exist, for
example.

• Permissive completion allows any input; the completion candidates are just suggestions.
Typing RET does not complete, it just submits the argument as you have entered it.

• Permissive completion with confirmation is like permissive completion, with an excep-
tion: if you typed TAB and this completed the text up to some intermediate state (i.e.,
one that is not yet an exact completion match), typing RET right afterward does not
submit the argument. Instead, Emacs asks for confirmation by momentarily display-
ing ‘[Confirm]’ after the text; type RET again to confirm and submit the text. This
catches a common mistake, in which one types RET before realizing that TAB did not
complete as far as desired.

You can tweak the confirmation behavior by customizing the variable confirm-

nonexistent-file-or-buffer. The default value, after-completion, gives the
behavior we have just described. If you change it to nil, Emacs does not ask for
confirmation, falling back on permissive completion. If you change it to any other
non-nil value, Emacs asks for confirmation whether or not the preceding command
was TAB.

This behavior is used by most commands that read file names, like C-x C-f, and com-
mands that read buffer names, like C-x b.

5.3.4 How Completion Alternatives Are Chosen

Completion commands work by narrowing a large list of possible completion alternatives
to a smaller subset that “matches” what you have typed in the minibuffer. In Section 5.3.1
[Completion Example], page 28, we gave a simple example of such matching. The procedure
of determining what constitutes a “match” is quite intricate. Emacs attempts to offer
plausible completions under most circumstances.

Emacs performs completion using one or more completion styles—sets of criteria for
matching minibuffer text to completion alternatives. During completion, Emacs tries each
completion style in turn. If a style yields one or more matches, that is used as the list of
completion alternatives. If a style produces no matches, Emacs falls back on the next style.

Chapter 5: The Minibuffer 31

The list variable completion-styles specifies the completion styles to use. Each list
element is the name of a completion style (a Lisp symbol). The default completion styles
are (in order):

basic A matching completion alternative must have the same beginning as the text in
the minibuffer before point. Furthermore, if there is any text in the minibuffer
after point, the rest of the completion alternative must contain that text as a
substring.

partial-completion

This aggressive completion style divides the minibuffer text into words sepa-
rated by hyphens or spaces, and completes each word separately. (For example,
when completing command names, ‘em-l-m’ completes to ‘emacs-lisp-mode’.)

Furthermore, a ‘*’ in the minibuffer text is treated as a wildcard—it matches
any character at the corresponding position in the completion alternative.

emacs22 This completion style is similar to basic, except that it ignores the text in the
minibuffer after point. It is so-named because it corresponds to the completion
behavior in Emacs 22.

The following additional completion styles are also defined, and you can add them to
completion-styles if you wish (see Chapter 33 [Customization], page 398):

substring

A matching completion alternative must contain the text in the minibuffer
before point, and the text in the minibuffer after point, as substrings (in that
same order).

Thus, if the text in the minibuffer is ‘foobar’, with point between ‘foo’ and
‘bar’, that matches ‘afoobbarc ’, where a, b, and c can be any string including
the empty string.

initials This very aggressive completion style attempts to complete acronyms and ini-
tialisms. For example, when completing command names, it matches ‘lch’ to
‘list-command-history’.

There is also a very simple completion style called emacs21. In this style, if the text in the
minibuffer is ‘foobar’, only matches starting with ‘foobar’ are considered.

You can use different completion styles in different situations, by setting the variable
completion-category-overrides. For example, the default setting says to use only basic

and substring completion for buffer names.

5.3.5 Completion Options

Case is significant when completing case-sensitive arguments, such as command names. For
example, when completing command names, ‘AU’ does not complete to ‘auto-fill-mode’.
Case differences are ignored when completing arguments in which case does not matter.

When completing file names, case differences are ignored if the variable read-file-

name-completion-ignore-case is non-nil. The default value is nil on systems that have
case-sensitive file-names, such as GNU/Linux; it is non-nil on systems that have case-
insensitive file-names, such as Microsoft Windows. When completing buffer names, case

Chapter 5: The Minibuffer 32

differences are ignored if the variable read-buffer-completion-ignore-case is non-nil;
the default is nil.

When completing file names, Emacs usually omits certain alternatives that are con-
sidered unlikely to be chosen, as determined by the list variable completion-ignored-

extensions. Each element in the list should be a string; any file name ending in such a
string is ignored as a completion alternative. Any element ending in a slash (‘/’) repre-
sents a subdirectory name. The standard value of completion-ignored-extensions has
several elements including ".o", ".elc", and "~". For example, if a directory contains
‘foo.c’ and ‘foo.elc’, ‘foo’ completes to ‘foo.c’. However, if all possible completions end
in “ignored” strings, they are not ignored: in the previous example, ‘foo.e’ completes to
‘foo.elc’. Emacs disregards completion-ignored-extensions when showing completion
alternatives in the completion list.

If completion-auto-help is set to nil, the completion commands never display the
completion list buffer; you must type ? to display the list. If the value is lazy, Emacs
only shows the completion list buffer on the second attempt to complete. In other words,
if there is nothing to complete, the first TAB echoes ‘Next char not unique’; the second
TAB shows the completion list buffer.

If completion-cycle-threshold is non-nil, completion commands can “cycle” through
completion alternatives. Normally, if there is more than one completion alternative for the
text in the minibuffer, a completion command completes up to the longest common sub-
string. If you change completion-cycle-threshold to t, the completion command instead
completes to the first of those completion alternatives; each subsequent invocation of the
completion command replaces that with the next completion alternative, in a cyclic man-
ner. If you give completion-cycle-threshold a numeric value n, completion commands
switch to this cycling behavior only when there are fewer than n alternatives.

Icomplete mode presents a constantly-updated display that tells you what completions
are available for the text you’ve entered so far. The command to enable or disable this
minor mode is M-x icomplete-mode.

5.4 Minibuffer History

Every argument that you enter with the minibuffer is saved in a minibuffer history list so
you can easily use it again later. You can use the following arguments to quickly fetch an
earlier argument into the minibuffer:

M-p

UP Move to the previous item in the minibuffer history, an earlier argument
(previous-history-element).

M-n

DOWN Move to the next item in the minibuffer history (next-history-element).

M-r regexp RET

Move to an earlier item in the minibuffer history that matches regexp
(previous-matching-history-element).

M-s regexp RET

Move to a later item in the minibuffer history that matches regexp (next-
matching-history-element).

Chapter 5: The Minibuffer 33

While in the minibuffer, M-p or UP (previous-history-element) moves through the
minibuffer history list, one item at a time. Each M-p fetches an earlier item from the
history list into the minibuffer, replacing its existing contents. Typing M-n or DOWN
(next-history-element) moves through the minibuffer history list in the opposite direc-
tion, fetching later entries into the minibuffer.

If you type M-n in the minibuffer when there are no later entries in the minibuffer
history (e.g., if you haven’t previously typed M-p), Emacs tries fetching from a list of
default arguments: values that you are likely to enter. You can think of this as moving
through the “future history” list.

If you edit the text inserted by the M-p or M-N minibuffer history commands, this does
not change its entry in the history list. However, the edited argument does go at the end
of the history list when you submit it.

You can use M-r (previous-matching-history-element) to search through older ele-
ments in the history list, and M-s (next-matching-history-element) to search through
newer entries. Each of these commands asks for a regular expression as an argument, and
fetches the first matching entry into the minibuffer. See Section 12.5 [Regexps], page 91,
for an explanation of regular expressions. A numeric prefix argument n means to fetch the
nth matching entry. These commands are unusual, in that they use the minibuffer to read
the regular expression argument, even though they are invoked from the minibuffer. An
upper-case letter in the regular expression makes the search case-sensitive (see Section 12.8
[Search Case], page 96).

You can also search through the history using an incremental search. See Section 12.1.7
[Isearch Minibuffer], page 89.

Emacs keeps separate history lists for several different kinds of arguments. For example,
there is a list for file names, used by all the commands that read file names. Other history
lists include buffer names, command names (used by M-x), and command arguments (used
by commands like query-replace).

The variable history-length specifies the maximum length of a minibuffer history list;
adding a new element deletes the oldest element if the list gets too long. If the value is t,
there is no maximum length.

The variable history-delete-duplicates specifies whether to delete duplicates in his-
tory. If it is non-nil, adding a new element deletes from the list all other elements that are
equal to it. The default is nil.

5.5 Repeating Minibuffer Commands

Every command that uses the minibuffer once is recorded on a special history list, the
command history, together with the values of its arguments, so that you can repeat the
entire command. In particular, every use of M-x is recorded there, since M-x uses the
minibuffer to read the command name.

C-x ESC ESC

Re-execute a recent minibuffer command from the command history (repeat-
complex-command).

Chapter 5: The Minibuffer 34

M-x list-command-history

Display the entire command history, showing all the commands C-x ESC ESC

can repeat, most recent first.

C-x ESC ESC re-executes a recent command that used the minibuffer. With no argument,
it repeats the last such command. A numeric argument specifies which command to repeat;
1 means the last one, 2 the previous, and so on.

C-x ESC ESC works by turning the previous command into a Lisp expression and then
entering a minibuffer initialized with the text for that expression. Even if you don’t know
Lisp, it will probably be obvious which command is displayed for repetition. If you type
just RET, that repeats the command unchanged. You can also change the command by
editing the Lisp expression before you execute it. The repeated command is added to the
front of the command history unless it is identical to the most recent item.

Once inside the minibuffer for C-x ESC ESC, you can use the usual minibuffer history
commands (see Section 5.4 [Minibuffer History], page 32) to move through the history list.
After finding the desired previous command, you can edit its expression as usual and then
repeat it by typing RET.

Incremental search does not, strictly speaking, use the minibuffer. Therefore, although
it behaves like a complex command, it normally does not appear in the history list for C-x
ESC ESC. You can make incremental search commands appear in the history by setting
isearch-resume-in-command-history to a non-nil value. See Section 12.1 [Incremental
Search], page 85.

The list of previous minibuffer-using commands is stored as a Lisp list in the variable
command-history. Each element is a Lisp expression that describes one command and its
arguments. Lisp programs can re-execute a command by calling eval with the command-

history element.

5.6 Entering passwords

Sometimes, you may need to enter a password into Emacs. For instance, when you tell
Emacs to visit a file on another machine via a network protocol such as FTP, you often
need to supply a password to gain access to the machine (see Section 15.13 [Remote Files],
page 135).

Entering a password is similar to using a minibuffer. Emacs displays a prompt in the
echo area (such as ‘Password: ’); after you type the required password, press RET to submit
it. To prevent others from seeing your password, every character you type is displayed as a
dot (‘.’) instead of its usual form.

Most of the features and commands associated with the minibuffer can not be used when
entering a password. There is no history or completion, and you cannot change windows or
perform any other action with Emacs until you have submitted the password.

While you are typing the password, you may press DEL to delete backwards, removing
the last character entered. C-U deletes everything you have typed so far. C-g quits the
password prompt (see Section 34.1 [Quitting], page 429). C-y inserts the current kill into
the password (see Chapter 9 [Killing], page 50). You may type either RET or ESC to submit
the password. Any other self-inserting character key inserts the associated character into
the password, and all other input is ignored.

Chapter 6: Running Commands by Name 35

6 Running Commands by Name

Every Emacs command has a name that you can use to run it. For convenience, many
commands also have key bindings. You can run those commands by typing the keys, or run
them by name. Most Emacs commands have no key bindings, so the only way to run them
is by name. (See Section 33.3 [Key Bindings], page 414, for how to set up key bindings.)

By convention, a command name consists of one or more words, separated by hyphens;
for example, auto-fill-mode or manual-entry. Command names mostly use complete
English words to make them easier to remember.

To run a command by name, start with M-x, type the command name, then terminate it
with RET. M-x uses the minibuffer to read the command name. The string ‘M-x’ appears
at the beginning of the minibuffer as a prompt to remind you to enter a command name
to be run. RET exits the minibuffer and runs the command. See Chapter 5 [Minibuffer],
page 26, for more information on the minibuffer.

You can use completion to enter the command name. For example, to invoke the com-
mand forward-char, you can type

M-x forward-char RET

or

M-x forw TAB c RET

Note that forward-char is the same command that you invoke with the key C-f. The
existence of a key binding does not stop you from running the command by name.

To cancel the M-x and not run a command, type C-g instead of entering the command
name. This takes you back to command level.

To pass a numeric argument to the command you are invoking with M-x, specify the nu-
meric argument before M-x. The argument value appears in the prompt while the command
name is being read, and finally M-x passes the argument to that command.

When the command you run with M-x has a key binding, Emacs mentions this in the
echo area after running the command. For example, if you type M-x forward-word, the
message says that you can run the same command by typing M-f. You can turn off these
messages by setting the variable suggest-key-bindings to nil.

In this manual, when we speak of running a command by name, we often omit the
RET that terminates the name. Thus we might say M-x auto-fill-mode rather than M-x

auto-fill-mode RET. We mention the RET only for emphasis, such as when the command
is followed by arguments.

M-x works by running the command execute-extended-command, which is responsible
for reading the name of another command and invoking it.

Chapter 7: Help 36

7 Help

Emacs provides a wide variety of help commands, all accessible through the prefix key C-h

(or, equivalently, the function key F1). These help commands are described in the following
sections. You can also type C-h C-h to view a list of help commands (help-for-help). You
can scroll the list with SPC and DEL, then type the help command you want. To cancel,
type C-g.

Many help commands display their information in a special help buffer. In this buffer,
you can type SPC and DEL to scroll and type RET to follow hyperlinks. See Section 7.4
[Help Mode], page 40.

If you are looking for a certain feature, but don’t know what it is called or where to
look, we recommend three methods. First, try an apropos command, then try searching
the manual index, then look in the FAQ and the package keywords.

C-h a topics RET

This searches for commands whose names match the argument topics. The
argument can be a keyword, a list of keywords, or a regular expression (see
Section 12.5 [Regexps], page 91). See Section 7.3 [Apropos], page 39.

C-h i d m emacs RET i topic RET

This searches for topic in the indices of the Emacs Info manual, displaying the
first match found. Press , to see subsequent matches. You can use a regular
expression as topic.

C-h i d m emacs RET s topic RET

Similar, but searches the text of the manual rather than the indices.

C-h C-f This displays the Emacs FAQ, using Info.

C-h p This displays the available Emacs packages based on keywords. See Section 7.5
[Package Keywords], page 41.

C-h or F1 means “help” in various other contexts as well. For instance, you can type
them after a prefix key to view a list of the keys that can follow the prefix key. (A few
prefix keys don’t support C-h in this way, because they define other meanings for it, but
they all support F1 for help.)

Here is a summary of help commands for accessing the built-in documentation. Most of
these are described in more detail in the following sections.

C-h a topics RET

Display a list of commands whose names match topics (apropos-command).

C-h b Display all active key bindings; minor mode bindings first, then those of the
major mode, then global bindings (describe-bindings).

C-h c key Show the name of the command that the key sequence key is bound to
(describe-key-briefly). Here c stands for “character”. For more extensive
information on key, use C-h k.

C-h d topics RET

Display the commands and variables whose documentation matches topics
(apropos-documentation).

Chapter 7: Help 37

C-h e Display the ‘*Messages*’ buffer (view-echo-area-messages).

C-h f function RET

Display documentation on the Lisp function named function (describe-
function). Since commands are Lisp functions, this works for commands
too.

C-h h Display the ‘HELLO’ file, which shows examples of various character sets.

C-h i Run Info, the GNU documentation browser (info). The Emacs manual is
available in Info.

C-h k key Display the name and documentation of the command that key runs
(describe-key).

C-h l Display a description of your last 300 keystrokes (view-lossage).

C-h m Display documentation of the current major mode (describe-mode).

C-h n Display news of recent Emacs changes (view-emacs-news).

C-h p Find packages by topic keyword (finder-by-keyword). This lists packages
using a package menu buffer. See Chapter 32 [Packages], page 394.

C-h P package RET

Display documentation about the package named package (describe-
package).

C-h r Display the Emacs manual in Info (info-emacs-manual).

C-h s Display the contents of the current syntax table (describe-syntax). The syn-
tax table says which characters are opening delimiters, which are parts of words,
and so on. See Section “Syntax Tables” in The Emacs Lisp Reference Manual,
for details.

C-h t Enter the Emacs interactive tutorial (help-with-tutorial).

C-h v var RET

Display the documentation of the Lisp variable var (describe-variable).

C-h w command RET

Show which keys run the command named command (where-is).

C-h C coding RET

Describe the coding system coding (describe-coding-system).

C-h C RET Describe the coding systems currently in use.

C-h F command RET

Enter Info and go to the node that documents the Emacs command command
(Info-goto-emacs-command-node).

C-h I method RET

Describe the input method method (describe-input-method).

C-h K key Enter Info and go to the node that documents the key sequence key (Info-
goto-emacs-key-command-node).

Chapter 7: Help 38

C-h L language-env RET

Display information on the character sets, coding systems, and input
methods used in language environment language-env (describe-language-
environment).

C-h S symbol RET

Display the Info documentation on symbol symbol according to the program-
ming language you are editing (info-lookup-symbol).

C-h . Display the help message for a special text area, if point is in one (display-
local-help). (These include, for example, links in ‘*Help*’ buffers.)

7.1 Documentation for a Key

The help commands to get information about a key sequence are C-h c (describe-key-
briefly) and C-h k (describe-key).

C-h c key displays in the echo area the name of the command that key is bound to. For
example, C-h c C-f displays ‘forward-char’.

C-h k key is similar but gives more information: it displays a help buffer containing the
command’s documentation string, which describes exactly what the command does.

C-h K key displays the section of the Emacs manual that describes the command corre-
sponding to key.

C-h c, C-h k and C-h K work for any sort of key sequences, including function keys,
menus, and mouse events. For instance, after C-h k you can select a menu item from the
menu bar, to view the documentation string of the command it runs.

C-h w command RET lists the keys that are bound to command. It displays the list in the
echo area. If it says the command is not on any key, that means you must use M-x to run
it. C-h w runs the command where-is.

7.2 Help by Command or Variable Name

C-h f function RET (describe-function) displays the documentation of Lisp function
function, in a window. Since commands are Lisp functions, you can use this method to
view the documentation of any command whose name you know. For example,

C-h f auto-fill-mode RET

displays the documentation of auto-fill-mode. This is the only way to get the documen-
tation of a command that is not bound to any key (one which you would normally run using
M-x).

C-h f is also useful for Lisp functions that you use in a Lisp program. For example, if you
have just written the expression (make-vector len) and want to check that you are using
make-vector properly, type C-h f make-vector RET. Because C-h f allows all function
names, not just command names, you may find that some of your favorite completion
abbreviations that work in M-x don’t work in C-h f. An abbreviation that is unique among
command names may not be unique among all function names.

If you type C-h f RET, it describes the function called by the innermost Lisp expression in
the buffer around point, provided that function name is a valid, defined Lisp function. (That
name appears as the default while you enter the argument.) For example, if point is located

Chapter 7: Help 39

following the text ‘(make-vector (car x)’, the innermost list containing point is the one
that starts with ‘(make-vector’, so C-h f RET will describe the function make-vector.

C-h f is also useful just to verify that you spelled a function name correctly. If the
minibuffer prompt for C-h f shows the function name from the buffer as the default, it
means that name is defined as a Lisp function. Type C-g to cancel the C-h f command if
you don’t really want to view the documentation.

C-h v (describe-variable) is like C-h f but describes Lisp variables instead of Lisp
functions. Its default is the Lisp symbol around or before point, if that is the name of a
defined Lisp variable. See Section 33.2 [Variables], page 406.

Help buffers that describe Emacs variables and functions normally have hyperlinks to
the corresponding source code, if you have the source files installed (see Section 31.11
[Hyperlinking], page 390).

To find a command’s documentation in a manual, use C-h F (Info-goto-emacs-
command-node). This knows about various manuals, not just the Emacs manual, and finds
the right one.

7.3 Apropos

The apropos commands answer questions like, “What are the commands for working with
files?” More precisely, you specify an apropos pattern, which means either a word, a list of
words, or a regular expression.

Each of the following apropos commands reads an apropos pattern in the minibuffer,
searches for items that match the pattern, and displays the results in a different window.

C-h a Search for commands (apropos-command). With a prefix argument, search for
noninteractive functions too.

M-x apropos

Search for functions and variables. Both interactive functions (commands) and
noninteractive functions can be found by this.

M-x apropos-variable

Search for user-customizable variables. With a prefix argument, search for non-
customizable variables too.

M-x apropos-value

Search for variables whose values match the specified pattern. With a prefix
argument, search also for functions with definitions matching the pattern, and
Lisp symbols with properties matching the pattern.

C-h d Search for functions and variables whose documentation strings match the spec-
ified pattern (apropos-documentation).

The simplest kind of apropos pattern is one word. Anything containing that word
matches the pattern. Thus, to find commands that work on files, type C-h a file RET.
This displays a list of all command names that contain ‘file’, including copy-file, find-
file, and so on. Each command name comes with a brief description and a list of keys you
can currently invoke it with. In our example, it would say that you can invoke find-file

by typing C-x C-f.

Chapter 7: Help 40

For more information about a function definition, variable or symbol property listed in
an apropos buffer, you can click on it with Mouse-1 or Mouse-2, or move there and type
RET.

When you specify more than one word in the apropos pattern, a name must contain
at least two of the words in order to match. Thus, if you are looking for commands to
kill a chunk of text before point, you could try C-h a kill back backward behind before

RET. The real command name kill-backward will match that; if there were a command
kill-text-before, it would also match, since it contains two of the specified words.

For even greater flexibility, you can specify a regular expression (see Section 12.5 [Reg-
exps], page 91). An apropos pattern is interpreted as a regular expression if it contains any
of the regular expression special characters, ‘^$*+?.\[’.

Following the conventions for naming Emacs commands, here are some words that you’ll
find useful in apropos patterns. By using them in C-h a, you will also get a feel for the
naming conventions.

char, line, word, sentence, paragraph, region, page, sexp, list, defun, rect, buffer,
frame, window, face, file, dir, register, mode, beginning, end, forward, back-
ward, next, previous, up, down, search, goto, kill, delete, mark, insert, yank,
fill, indent, case, change, set, what, list, find, view, describe, default.

If the variable apropos-do-all is non-nil, the apropos commands always behave as if
they had been given a prefix argument.

By default, all apropos commands except apropos-documentation list their results in
alphabetical order. If the variable apropos-sort-by-scores is non-nil, these commands
instead try to guess the relevance of each result, and display the most relevant ones first. The
apropos-documentation command lists its results in order of relevance by default; to list
them in alphabetical order, change the variable apropos-documentation-sort-by-scores

to nil.

7.4 Help Mode Commands

Help buffers provide the same commands as View mode (see Section 11.6 [View Mode],
page 69); for instance, SPC scrolls forward, and DEL scrolls backward. A few special
commands are also provided:

RET Follow a cross reference at point (help-follow).

TAB Move point forward to the next hyperlink (forward-button).

S-TAB Move point back to the previous hyperlink (backward-button).

Mouse-1

Mouse-2 Follow a hyperlink that you click on.

C-c C-c Show all documentation about the symbol at point (help-follow-symbol).

C-c C-b Go back to the previous help topic (help-go-back).

When a function name, variable name, or face name (see Section 11.8 [Faces], page 70)
appears in the documentation in the help buffer, it is normally an underlined hyperlink.
To view the associated documentation, move point there and type RET (help-follow), or

Chapter 7: Help 41

click on the hyperlink with Mouse-1 or Mouse-2. Doing so replaces the contents of the help
buffer; to retrace your steps, type C-c C-b (help-go-back).

A help buffer can also contain hyperlinks to Info manuals, source code definitions, and
URLs (web pages). The first two are opened in Emacs, and the third using a web browser
via the browse-url command (see Section 31.11.1 [Browse-URL], page 390).

In a help buffer, TAB (forward-button) moves point forward to the next hyperlink,
while S-TAB (backward-button) point back to the previous hyperlink. These commands act
cyclically; for instance, typing TAB at the last hyperlink moves back to the first hyperlink.

To view all documentation about any symbol in the text, move point to there and
type C-c C-c (help-follow-symbol). This shows all available documentation about the
symbol—as a variable, function and/or face.

7.5 Keyword Search for Packages

Most optional features in Emacs are grouped into packages. Emacs contains several hundred
built-in packages, and more can be installed over the network (see Chapter 32 [Packages],
page 394).

To make it easier to find packages related to a topic, most packages are associated with
one or more keywords based on what they do. Type C-h p (finder-by-keyword) to bring
up a list of package keywords, together with a description of what the keywords mean. To
view a list of packages for a given keyword, type RET on that line; this displays the list of
packages in a Package Menu buffer (see Section 32.1 [Package Menu], page 394).

C-h P (describe-package) prompts for the name of a package, and displays a help buffer
describing the attributes of the package and the features that it implements.

7.6 Help for International Language Support

For information on a specific language environment (see Section 19.3 [Language Environ-
ments], page 170), type C-h L (describe-language-environment). This displays a help
buffer describing the languages supported by the language environment, and listing the
associated character sets, coding systems, and input methods, as well as some sample text
for that language environment.

The command C-h h (view-hello-file) displays the file ‘etc/HELLO’, which demon-
strates various character sets by showing how to say “hello” in many languages.

The command C-h I (describe-input-method) describes an input method—either a
specified input method, or by default the input method currently in use. See Section 19.4
[Input Methods], page 171.

The command C-h C (describe-coding-system) describes coding systems—either a
specified coding system, or the ones currently in use. See Section 19.6 [Coding Systems],
page 174.

7.7 Other Help Commands

C-h i (info) runs the Info program, which browses structured documentation files. The
entire Emacs manual is available within Info, along with many other manuals for the GNU
system. Type h after entering Info to run a tutorial on using Info.

Chapter 7: Help 42

With a numeric argument n, C-h i selects the Info buffer ‘*info*<n>’. This is useful
if you want to browse multiple Info manuals simultaneously. If you specify just C-u as the
prefix argument, C-h i prompts for the name of a documentation file, so you can browse a
file which doesn’t have an entry in the top-level Info menu.

The help commands C-h F function RET and C-h K key , described above, enter Info
and go straight to the documentation of function or key.

When editing a program, if you have an Info version of the manual for the programming
language, you can use C-h S (info-lookup-symbol) to find an entry for a symbol (keyword,
function or variable) in the proper manual. The details of how this command works depend
on the major mode.

If something surprising happens, and you are not sure what you typed, use C-h l (view-
lossage). C-h l displays your last 300 input keystrokes. If you see commands that you
don’t know, you can use C-h c to find out what they do.

To review recent echo area messages, use C-h e (view-echo-area-messages). This
displays the buffer ‘*Messages*’, where those messages are kept.

Each Emacs major mode typically redefines a few keys and makes other changes in how
editing works. C-h m (describe-mode) displays documentation on the current major mode,
which normally describes the commands and features that are changed in this mode.

C-h b (describe-bindings) and C-h s (describe-syntax) show other information
about the current environment within Emacs. C-h b displays a list of all the key bindings
now in effect: first the local bindings of the current minor modes, then the local bindings
defined by the current major mode, and finally the global bindings (see Section 33.3 [Key
Bindings], page 414). C-h s displays the contents of the syntax table, with explanations
of each character’s syntax (see Section “Syntax Tables” in The Emacs Lisp Reference
Manual).

You can get a list of subcommands for a particular prefix key by typing C-h (describe-
prefix-bindings) after the prefix key. (There are a few prefix keys for which this does not
work—those that provide their own bindings for C-h. One of these is ESC, because ESC

C-h is actually C-M-h, which marks a defun.)

7.8 Help Files

Apart from the built-in documentation and manuals, Emacs contains several other files
describing topics like copying conditions, release notes, instructions for debugging and re-
porting bugs, and so forth. You can use the following commands to view these files. Apart
from C-h g, they all have the form C-h C-char .

C-h C-c Display the rules under which you can copy and redistribute Emacs (describe-
copying).

C-h C-d Display help for debugging Emacs (view-emacs-debugging).

C-h C-e Display information about where to get external packages (view-external-
packages).

C-h C-f Display the Emacs frequently-answered-questions list (view-emacs-FAQ).

C-h g Display information about the GNU Project (describe-gnu-project).

Chapter 7: Help 43

C-h C-m Display information about ordering printed copies of Emacs manuals (view-
order-manuals).

C-h C-n Display the “news” file, which lists the new features in this version of Emacs
(view-emacs-news).

C-h C-o Display how to order or download the latest version of Emacs and other GNU
software (describe-distribution).

C-h C-p Display the list of known Emacs problems, sometimes with suggested
workarounds (view-emacs-problems).

C-h C-t Display the Emacs to-do list (view-emacs-todo).

C-h C-w Display the full details on the complete absence of warranty for GNU Emacs
(describe-no-warranty).

7.9 Help on Active Text and Tooltips

In Emacs, stretches of “active text” (text that does something special in response to mouse
clicks or RET) often have associated help text. This includes hyperlinks in Emacs buffers,
as well as parts of the mode line. On graphical displays, as well as some text terminals
which support mouse tracking, moving the mouse over the active text displays the help text
as a tooltip. See Section 18.17 [Tooltips], page 165.

On terminals that don’t support mouse-tracking, you can display the help text for active
buffer text at point by typing C-h . (display-local-help). This shows the help text in
the echo area. To display help text automatically whenever it is available at point, set the
variable help-at-pt-display-when-idle to t.

Chapter 8: The Mark and the Region 44

8 The Mark and the Region

Many Emacs commands operate on an arbitrary contiguous part of the current buffer. To
specify the text for such a command to operate on, you set the mark at one end of it, and
move point to the other end. The text between point and the mark is called the region.
The region always extends between point and the mark, no matter which one comes earlier
in the text; each time you move point, the region changes.

Setting the mark at a position in the text also activates it. When the mark is active, we
say also that the region is active; Emacs indicates its extent by highlighting the text within
it, using the region face (see Section 33.1.5 [Face Customization], page 402).

After certain non-motion commands, including any command that changes the text
in the buffer, Emacs automatically deactivates the mark; this turns off the highlighting.
You can also explicitly deactivate the mark at any time, by typing C-g (see Section 34.1
[Quitting], page 429).

The above default behavior is known as Transient Mark mode. Disabling Transient
Mark mode switches Emacs to an alternative behavior, in which the region is usually not
highlighted. See Section 8.7 [Disabled Transient Mark], page 49.

Setting the mark in one buffer has no effect on the marks in other buffers. When you
return to a buffer with an active mark, the mark is at the same place as before. When
multiple windows show the same buffer, they can have different values of point, and thus
different regions, but they all share one common mark position. See Chapter 17 [Windows],
page 147. Ordinarily, only the selected window highlights its region; however, if the variable
highlight-nonselected-windows is non-nil, each window highlights its own region.

8.1 Setting the Mark

Here are some commands for setting the mark:

C-SPC Set the mark at point, and activate it (set-mark-command).

C-@ The same.

C-x C-x Set the mark at point, and activate it; then move point where the mark used
to be (exchange-point-and-mark).

Drag-Mouse-1

Set point and the mark around the text you drag across.

Mouse-3 Set the mark at point, then move point to where you click (mouse-save-then-
kill).

‘Shifted cursor motion keys’

Set the mark at point if the mark is inactive, then move point. See Section 8.6
[Shift Selection], page 48.

The most common way to set the mark is with C-SPC (set-mark-command)1. This sets
the mark where point is, and activates it. You can then move point away, leaving the mark
behind.

1 There is no C-SPC character in ASCII; usually, typing C-SPC on a text terminal gives the character C-@.
This key is also bound to set-mark-command, so unless you are unlucky enough to have a text terminal
that behaves differently, you might as well think of C-@ as C-SPC.

Chapter 8: The Mark and the Region 45

For example, suppose you wish to convert part of the buffer to upper case. To accomplish
this, go to one end of the desired text, type C-SPC, and move point until the desired portion
of text is highlighted. Now type C-x C-u (upcase-region). This converts the text in the
region to upper case, and then deactivates the mark.

Whenever the mark is active, you can deactivate it by typing C-g (see Section 34.1 [Quit-
ting], page 429). Most commands that operate on the region also automatically deactivate
the mark, like C-x C-u in the above example.

Instead of setting the mark in order to operate on a region, you can also use it to
“remember” a position in the buffer (by typing C-SPC C-SPC), and later jump back there
(by typing C-u C-SPC). See Section 8.4 [Mark Ring], page 47, for details.

The command C-x C-x (exchange-point-and-mark) exchanges the positions of point
and the mark. C-x C-x is useful when you are satisfied with the position of point but want
to move the other end of the region (where the mark is). Using C-x C-x a second time,
if necessary, puts the mark at the new position with point back at its original position.
Normally, if the mark is inactive, this command first reactivates the mark wherever it was
last set, to ensure that the region is left highlighted. However, if you call it with a prefix
argument, it leaves the mark inactive and the region unhighlighted; you can use this to
jump to the mark in a manner similar to C-u C-SPC.

You can also set the mark with the mouse. If you press the left mouse button
(down-mouse-1) and drag the mouse across a range of text, this sets the mark where
you first pressed the mouse button and puts point where you release it. Alternatively,
clicking the right mouse button (mouse-3) sets the mark at point and then moves point
to where you clicked. See Section 18.1 [Mouse Commands], page 153, for a more detailed
description of these mouse commands.

Finally, you can set the mark by holding down the shift key while typing certain cursor
motion commands (such as S-RIGHT, S-C-f, S-C-n, etc.) This is called shift-selection. It
sets the mark at point before moving point, but only if there is no active mark set via
shift-selection. The mark set by mouse commands and by shift-selection behaves slightly
differently from the usual mark: any subsequent unshifted cursor motion command deacti-
vates it automatically. For details, See Section 8.6 [Shift Selection], page 48.

Many commands that insert text, such as C-y (yank), set the mark at the other end of
the inserted text, without activating it. This lets you easily return to that position (see
Section 8.4 [Mark Ring], page 47). You can tell that a command does this when it shows
‘Mark set’ in the echo area.

Under X, every time the active region changes, Emacs saves the text in the region to the
primary selection. This lets you insert that text into other X applications with mouse-2

clicks. See Section 9.3.2 [Primary Selection], page 56.

8.2 Commands to Mark Textual Objects

Here are commands for placing point and the mark around a textual object such as a word,
list, paragraph or page:

M-@ Set mark after end of next word (mark-word). This does not move point.

C-M-@ Set mark after end of following balanced expression (mark-sexp). This does
not move point.

Chapter 8: The Mark and the Region 46

M-h Move point to the beginning of the current paragraph, and set mark at the end
(mark-paragraph).

C-M-h Move point to the beginning of the current defun, and set mark at the end
(mark-defun).

C-x C-p Move point to the beginning of the current page, and set mark at the end
(mark-page).

C-x h Move point to the beginning of the buffer, and set mark at the end (mark-
whole-buffer).

M-@ (mark-word) sets the mark at the end of the next word (see Section 22.1 [Words],
page 198, for information about words). Repeated invocations of this command extend the
region by advancing the mark one word at a time. As an exception, if the mark is active
and located before point, M-@ moves the mark backwards from its current position one word
at a time.

This command also accepts a numeric argument n, which tells it to advance the mark
by n words. A negative argument moves the mark back by n words.

Similarly, C-M-@ (mark-sexp) puts the mark at the end of the next balanced expression
(see Section 23.4.1 [Expressions], page 237). Repeated invocations extend the region to sub-
sequent expressions, while positive or negative numeric arguments move the mark forward
or backward by the specified number of expressions.

The other commands in the above list set both point and mark, so as to delimit an ob-
ject in the buffer. M-h (mark-paragraph) marks paragraphs (see Section 22.3 [Paragraphs],
page 200), C-M-h (mark-defun) marks top-level definitions (see Section 23.2.2 [Moving
by Defuns], page 231), and C-x C-p (mark-page) marks pages (see Section 22.4 [Pages],
page 201). Repeated invocations again play the same role, extending the region to consec-
utive objects; similarly, numeric arguments specify how many objects to move the mark
by.

C-x h (mark-whole-buffer) sets up the entire buffer as the region, by putting point at
the beginning and the mark at the end.

8.3 Operating on the Region

Once you have a region, here are some of the ways you can operate on it:

• Kill it with C-w (see Chapter 9 [Killing], page 50).

• Copy it to the kill ring with M-w (see Section 9.2 [Yanking], page 52).

• Convert case with C-x C-l or C-x C-u (see Section 22.6 [Case], page 206).

• Undo changes within it using C-u C-/ (see Section 13.1 [Undo], page 102).

• Replace text within it using M-% (see Section 12.9.4 [Query Replace], page 98).

• Indent it with C-x TAB or C-M-\ (see Chapter 21 [Indentation], page 195).

• Fill it as text with M-x fill-region (see Section 22.5 [Filling], page 202).

• Check the spelling of words within it with M-$ (see Section 13.4 [Spelling], page 104).

• Evaluate it as Lisp code with M-x eval-region (see Section 24.9 [Lisp Eval], page 266).

• Save it in a register with C-x r s (see Chapter 10 [Registers], page 61).

Chapter 8: The Mark and the Region 47

• Save it in a buffer or a file (see Section 9.4 [Accumulating Text], page 57).

Some commands have a default behavior when the mark is inactive, but operate on the
region if the mark is active. For example, M-$ (ispell-word) normally checks the spelling of
the word at point, but it checks the text in the region if the mark is active (see Section 13.4
[Spelling], page 104). Normally, such commands use their default behavior if the region is
empty (i.e., if mark and point are at the same position). If you want them to operate on
the empty region, change the variable use-empty-active-region to t.

As described in Section 4.3 [Erasing], page 19, the DEL (backward-delete-char) and
DELETE (delete-forward-char) commands also act this way. If the mark is active, they
delete the text in the region. (As an exception, if you supply a numeric argument n, where
n is not one, these commands delete n characters regardless of whether the mark is active).
If you change the variable delete-active-region to nil, then these commands don’t act
differently when the mark is active. If you change the value to kill, these commands kill
the region instead of deleting it (see Chapter 9 [Killing], page 50).

Other commands always operate on the region, and have no default behavior. Such
commands usually have the word region in their names, like C-w (kill-region) and C-x

C-u (upcase-region). If the mark is inactive, they operate on the “inactive region”—
that is, on the text between point and the position at which the mark was last set (see
Section 8.4 [Mark Ring], page 47). To disable this behavior, change the variable mark-

even-if-inactive to nil. Then these commands will instead signal an error if the mark
is inactive.

By default, text insertion occurs normally even if the mark is active—for example, typing
a inserts the character ‘a’, then deactivates the mark. If you enable Delete Selection mode,
a minor mode, then inserting text while the mark is active causes the text in the region to be
deleted first. To toggle Delete Selection mode on or off, type M-x delete-selection-mode.

8.4 The Mark Ring

Each buffer remembers previous locations of the mark, in the mark ring. Commands that
set the mark also push the old mark onto this ring. One of the uses of the mark ring is to
remember spots that you may want to go back to.

C-SPC C-SPC

Set the mark, pushing it onto the mark ring, without activating it.

C-u C-SPC Move point to where the mark was, and restore the mark from the ring of former
marks.

The command C-SPC C-SPC is handy when you want to use the mark to remember a
position to which you may wish to return. It pushes the current point onto the mark ring,
without activating the mark (which would cause Emacs to highlight the region). This is
actually two consecutive invocations of C-SPC (set-mark-command); the first C-SPC sets the
mark, and the second C-SPC deactivates it. (When Transient Mark mode is off, C-SPC C-

SPC instead activates Transient Mark mode temporarily; see Section 8.7 [Disabled Transient
Mark], page 49.)

To return to a marked position, use set-mark-command with a prefix argument: C-u

C-SPC. This moves point to where the mark was, and deactivates the mark if it was active.

Chapter 8: The Mark and the Region 48

Each subsequent C-u C-SPC jumps to a prior position stored in the mark ring. The positions
you move through in this way are not lost; they go to the end of the ring.

If you set set-mark-command-repeat-pop to non-nil, then immediately after you type
C-u C-SPC, you can type C-SPC instead of C-u C-SPC to cycle through the mark ring. By
default, set-mark-command-repeat-pop is nil.

Each buffer has its own mark ring. All editing commands use the current buffer’s mark
ring. In particular, C-u C-SPC always stays in the same buffer.

The variable mark-ring-max specifies the maximum number of entries to keep in the
mark ring. This defaults to 16 entries. If that many entries exist and another one is pushed,
the earliest one in the list is discarded. Repeating C-u C-SPC cycles through the positions
currently in the ring.

If you want to move back to the same place over and over, the mark ring may not be
convenient enough. If so, you can record the position in a register for later retrieval (see
Section 10.1 [Saving Positions in Registers], page 61).

8.5 The Global Mark Ring

In addition to the ordinary mark ring that belongs to each buffer, Emacs has a single global
mark ring. Each time you set a mark, this is recorded in the global mark ring in addition
to the current buffer’s own mark ring, if you have switched buffers since the previous mark
setting. Hence, the global mark ring records a sequence of buffers that you have been in,
and, for each buffer, a place where you set the mark. The length of the global mark ring is
controlled by global-mark-ring-max, and is 16 by default.

The command C-x C-SPC (pop-global-mark) jumps to the buffer and position of the
latest entry in the global ring. It also rotates the ring, so that successive uses of C-x C-SPC

take you to earlier buffers and mark positions.

8.6 Shift Selection

If you hold down the shift key while typing a cursor motion command, this sets the mark
before moving point, so that the region extends from the original position of point to its
new position. This feature is referred to as shift-selection. It is similar to the way text is
selected in other editors.

The mark set via shift-selection behaves a little differently from what we have described
above. Firstly, in addition to the usual ways of deactivating the mark (such as changing
the buffer text or typing C-g), the mark is deactivated by any unshifted cursor motion
command. Secondly, any subsequent shifted cursor motion command avoids setting the
mark anew. Therefore, a series of shifted cursor motion commands will continuously adjust
the region.

Shift-selection only works if the shifted cursor motion key is not already bound to a
separate command (see Chapter 33 [Customization], page 398). For example, if you bind
S-C-f to another command, typing S-C-f runs that command instead of performing a
shift-selected version of C-f (forward-char).

A mark set via mouse commands behaves the same as a mark set via shift-selection (see
Section 8.1 [Setting Mark], page 44). For example, if you specify a region by dragging the

Chapter 8: The Mark and the Region 49

mouse, you can continue to extend the region using shifted cursor motion commands. In
either case, any unshifted cursor motion command deactivates the mark.

To turn off shift-selection, set shift-select-mode to nil. Doing so does not disable
setting the mark via mouse commands.

8.7 Disabling Transient Mark Mode

The default behavior of the mark and region, in which setting the mark activates it and
highlights the region, is called Transient Mark mode. This is a minor mode that is enabled
by default. It can be toggled with M-x transient-mark-mode, or with the ‘Active Region

Highlighting’ menu item in the ‘Options’ menu. Turning it off switches Emacs to an
alternative mode of operation:

• Setting the mark, with commands like C-SPC or C-x C-x, does not highlight the region.
Therefore, you can’t tell by looking where the mark is located; you have to remember.

The usual solution to this problem is to set the mark and then use it soon, before
you forget where it is. You can also check where the mark is by using C-x C-x, which
exchanges the positions of the point and the mark (see Section 8.1 [Setting Mark],
page 44).

• Many commands that move point long distances, like M-< and C-s, first set the mark
where point was.

• Some commands, which ordinarily act on the region when the mark is active, no longer
do so. For example, normally M-% (query-replace) performs replacements within the
region, if the mark is active. When Transient Mark mode is off, it always operates from
point to the end of the buffer. Commands that act this way are identified in their own
documentation.

While Transient Mark mode is off, you can activate it temporarily using C-SPC C-SPC

or C-u C-x C-x.

C-SPC C-SPC

Set the mark at point (like plain C-SPC) and enable Transient Mark mode just
once, until the mark is deactivated. (This is not really a separate command;
you are using the C-SPC command twice.)

C-u C-x C-x

Activate the mark and enable Transient Mark mode temporarily, until the mark
is next deactivated. (This is the C-x C-x command, exchange-point-and-

mark, with a prefix argument.)

These commands set or activate the mark, and enable Transient Mark mode only until
the mark is deactivated. One reason you may want to use them is that some commands
operate on the entire buffer instead of the region when Transient Mark mode is off. Enabling
Transient Mark mode momentarily gives you a way to use these commands on the region.

When you specify a region with the mouse (see Section 8.1 [Setting Mark], page 44),
or with shift-selection (see Section 8.6 [Shift Selection], page 48), this likewise activates
Transient Mark mode temporarily and highlights the region.

Chapter 9: Killing and Moving Text 50

9 Killing and Moving Text

In Emacs, killing means erasing text and copying it into the kill ring. Yanking means
bringing text from the kill ring back into the buffer. (Some applications use the terms
“cutting” and “pasting” for similar operations.) The kill ring is so-named because it can
be visualized as a set of blocks of text arranged in a ring, which you can access in cyclic
order. See Section 9.2.1 [Kill Ring], page 53.

Killing and yanking are the most common way to move or copy text within Emacs. It
is very versatile, because there are commands for killing many different types of syntactic
units.

9.1 Deletion and Killing

Most commands which erase text from the buffer save it in the kill ring. These are known as
kill commands, and their names normally contain the word ‘kill’ (e.g. kill-line). The
kill ring stores several recent kills, not just the last one, so killing is a very safe operation:
you don’t have to worry much about losing text that you previously killed. The kill ring is
shared by all buffers, so text that is killed in one buffer can be yanked into another buffer.

When you use C-/ (undo) to undo a kill command (see Section 13.1 [Undo], page 102),
that brings the killed text back into the buffer, but does not remove it from the kill ring.

On graphical displays, killing text also copies it to the system clipboard. See Section 9.3
[Cut and Paste], page 55.

Commands that erase text but do not save it in the kill ring are known as delete
commands; their names usually contain the word ‘delete’. These include C-d (delete-
char) and DEL (delete-backward-char), which delete only one character at a time, and
those commands that delete only spaces or newlines. Commands that can erase significant
amounts of nontrivial data generally do a kill operation instead.

You can also use the mouse to kill and yank. See Section 9.3 [Cut and Paste], page 55.

9.1.1 Deletion

Deletion means erasing text and not saving it in the kill ring. For the most part, the Emacs
commands that delete text are those that erase just one character or only whitespace.

DEL
BACKSPACE

Delete the previous character, or the text in the region if it is active (delete-
backward-char).

DELETE Delete the next character, or the text in the region if it is active (delete-
forward-char).

C-d Delete the next character (delete-char).

M-\ Delete spaces and tabs around point (delete-horizontal-space).

M-SPC Delete spaces and tabs around point, leaving one space (just-one-space).

C-x C-o Delete blank lines around the current line (delete-blank-lines).

Chapter 9: Killing and Moving Text 51

M-^ Join two lines by deleting the intervening newline, along with any indentation
following it (delete-indentation).

We have already described the basic deletion commands DEL (delete-backward-char),
DELETE (delete-forward-char), and C-d (delete-char). See Section 4.3 [Erasing],
page 19. With a numeric argument, they delete the specified number of characters. If the
numeric argument is omitted or one, they delete all the text in the region if it is active (see
Section 8.3 [Using Region], page 46).

The other delete commands are those that delete only whitespace characters: spaces, tabs
and newlines. M-\ (delete-horizontal-space) deletes all the spaces and tab characters
before and after point. With a prefix argument, this only deletes spaces and tab characters
before point. M-SPC (just-one-space) does likewise but leaves a single space before point,
regardless of the number of spaces that existed previously (even if there were none before).
With a numeric argument n, it leaves n spaces before point if n is positive; if n is negative,
it deletes newlines in addition to spaces and tabs, leaving a single space before point.

C-x C-o (delete-blank-lines) deletes all blank lines after the current line. If the
current line is blank, it deletes all blank lines preceding the current line as well (leaving one
blank line, the current line). On a solitary blank line, it deletes that line.

M-^ (delete-indentation) joins the current line and the previous line, by deleting a
newline and all surrounding spaces, usually leaving a single space. See Chapter 21 [Inden-
tation], page 195.

9.1.2 Killing by Lines

C-k Kill rest of line or one or more lines (kill-line).

C-S-backspace

Kill an entire line at once (kill-whole-line)

The simplest kill command is C-k (kill-line). If used at the end of a line, it kills the
line-ending newline character, merging the next line into the current one (thus, a blank line
is entirely removed). Otherwise, C-k kills all the text from point up to the end of the line;
if point was originally at the beginning of the line, this leaves the line blank.

Spaces and tabs at the end of the line are ignored when deciding which case applies. As
long as point is after the last visible character in the line, you can be sure that C-k will kill
the newline. To kill an entire non-blank line, go to the beginning and type C-k twice.

In this context, “line” means a logical text line, not a screen line (see Section 4.8 [Con-
tinuation Lines], page 21).

When C-k is given a positive argument n, it kills n lines and the newlines that follow
them (text on the current line before point is not killed). With a negative argument −n,
it kills n lines preceding the current line, together with the text on the current line before
point. C-k with an argument of zero kills the text before point on the current line.

If the variable kill-whole-line is non-nil, C-k at the very beginning of a line kills the
entire line including the following newline. This variable is normally nil.

C-S-backspace (kill-whole-line) kills a whole line including its newline, regardless
of the position of point within the line. Note that many text terminals will prevent you
from typing the key sequence C-S-backspace.

Chapter 9: Killing and Moving Text 52

9.1.3 Other Kill Commands

C-w Kill the region (kill-region).

M-w Copy the region into the kill ring (kill-ring-save).

M-d Kill the next word (kill-word). See Section 22.1 [Words], page 198.

M-DEL Kill one word backwards (backward-kill-word).

C-x DEL Kill back to beginning of sentence (backward-kill-sentence). See
Section 22.2 [Sentences], page 199.

M-k Kill to the end of the sentence (kill-sentence).

C-M-k Kill the following balanced expression (kill-sexp). See Section 23.4.1 [Expres-
sions], page 237.

M-z char Kill through the next occurrence of char (zap-to-char).

One of the commonly-used kill commands is C-w (kill-region), which kills the text in
the region (see Chapter 8 [Mark], page 44). Similarly, M-w (kill-ring-save) copies the
text in the region into the kill ring without removing it from the buffer. If the mark is
inactive when you type C-w or M-w, the command acts on the text between point and where
you last set the mark (see Section 8.3 [Using Region], page 46).

Emacs also provides commands to kill specific syntactic units: words, with M-DEL and M-d

(see Section 22.1 [Words], page 198); balanced expressions, with C-M-k (see Section 23.4.1
[Expressions], page 237); and sentences, with C-x DEL and M-k (see Section 22.2 [Sentences],
page 199).

The command M-z (zap-to-char) combines killing with searching: it reads a character
and kills from point up to (and including) the next occurrence of that character in the
buffer. A numeric argument acts as a repeat count; a negative argument means to search
backward and kill text before point.

9.1.4 Options for Killing

Some specialized buffers contain read-only text, which cannot be modified and therefore
cannot be killed. The kill commands work specially in a read-only buffer: they move over
text and copy it to the kill ring, without actually deleting it from the buffer. Normally, they
also beep and display an error message when this happens. But if you set the variable kill-
read-only-ok to a non-nil value, they just print a message in the echo area to explain
why the text has not been erased.

If you change the variable kill-do-not-save-duplicates to a non-nil value, identical
subsequent kills yield a single kill-ring entry, without duplication.

9.2 Yanking

Yanking means reinserting text previously killed. The usual way to move or copy text is to
kill it and then yank it elsewhere.

C-y Yank the last kill into the buffer, at point (yank).

M-y Replace the text just yanked with an earlier batch of killed text (yank-pop).
See Section 9.2.2 [Earlier Kills], page 53.

Chapter 9: Killing and Moving Text 53

C-M-w Cause the following command, if it is a kill command, to append to the previous
kill (append-next-kill). See Section 9.2.3 [Appending Kills], page 54.

The basic yanking command is C-y (yank). It inserts the most recent kill, leaving the
cursor at the end of the inserted text. It also sets the mark at the beginning of the inserted
text, without activating the mark; this lets you jump easily to that position, if you wish,
with C-u C-SPC (see Section 8.4 [Mark Ring], page 47).

With a plain prefix argument (C-u C-y), the command instead leaves the cursor in front
of the inserted text, and sets the mark at the end. Using any other prefix argument specifies
an earlier kill; e.g. C-u 4 C-y reinserts the fourth most recent kill. See Section 9.2.2 [Earlier
Kills], page 53.

On graphical displays, C-y first checks if another application has placed any text in
the system clipboard more recently than the last Emacs kill. If so, it inserts the text in
the clipboard instead. Thus, Emacs effectively treats “cut” or “copy” clipboard operations
performed in other applications like Emacs kills, except that they are not recorded in the
kill ring. See Section 9.3 [Cut and Paste], page 55, for details.

9.2.1 The Kill Ring

The kill ring is a list of blocks of text that were previously killed. There is only one kill
ring, shared by all buffers, so you can kill text in one buffer and yank it in another buffer.
This is the usual way to move text from one buffer to another. (There are several other
methods: for instance, you could store the text in a register; see Chapter 10 [Registers],
page 61. See Section 9.4 [Accumulating Text], page 57, for some other ways to move text
around.)

The maximum number of entries in the kill ring is controlled by the variable kill-ring-
max. The default is 60. If you make a new kill when this limit has been reached, Emacs
makes room by deleting the oldest entry in the kill ring.

The actual contents of the kill ring are stored in a variable named kill-ring; you can
view the entire contents of the kill ring with C-h v kill-ring.

9.2.2 Yanking Earlier Kills

As explained in Section 9.2 [Yanking], page 52, you can use a numeric argument to C-y

to yank text that is no longer the most recent kill. This is useful if you remember which
kill ring entry you want. If you don’t, you can use the M-y (yank-pop) command to cycle
through the possibilities.

If the previous command was a yank command, M-y takes the text that was yanked and
replaces it with the text from an earlier kill. So, to recover the text of the next-to-the-last
kill, first use C-y to yank the last kill, and then use M-y to replace it with the previous kill.
M-y is allowed only after a C-y or another M-y.

You can understand M-y in terms of a “last yank” pointer which points at an entry in
the kill ring. Each time you kill, the “last yank” pointer moves to the newly made entry
at the front of the ring. C-y yanks the entry which the “last yank” pointer points to. M-y

moves the “last yank” pointer to a different entry, and the text in the buffer changes to
match. Enough M-y commands can move the pointer to any entry in the ring, so you can
get any entry into the buffer. Eventually the pointer reaches the end of the ring; the next
M-y loops back around to the first entry again.

Chapter 9: Killing and Moving Text 54

M-y moves the “last yank” pointer around the ring, but it does not change the order of
the entries in the ring, which always runs from the most recent kill at the front to the oldest
one still remembered.

M-y can take a numeric argument, which tells it how many entries to advance the “last
yank” pointer by. A negative argument moves the pointer toward the front of the ring; from
the front of the ring, it moves “around” to the last entry and continues forward from there.

Once the text you are looking for is brought into the buffer, you can stop doing M-y

commands and it will stay there. It’s just a copy of the kill ring entry, so editing it in the
buffer does not change what’s in the ring. As long as no new killing is done, the “last yank”
pointer remains at the same place in the kill ring, so repeating C-y will yank another copy
of the same previous kill.

When you call C-y with a numeric argument, that also sets the “last yank” pointer to
the entry that it yanks.

9.2.3 Appending Kills

Normally, each kill command pushes a new entry onto the kill ring. However, two or more
kill commands in a row combine their text into a single entry, so that a single C-y yanks
all the text as a unit, just as it was before it was killed.

Thus, if you want to yank text as a unit, you need not kill all of it with one command;
you can keep killing line after line, or word after word, until you have killed it all, and you
can still get it all back at once.

Commands that kill forward from point add onto the end of the previous killed text.
Commands that kill backward from point add text onto the beginning. This way, any
sequence of mixed forward and backward kill commands puts all the killed text into one
entry without rearrangement. Numeric arguments do not break the sequence of appending
kills. For example, suppose the buffer contains this text:

This is a line ?of sample text.

with point shown by ?. If you type M-d M-DEL M-d M-DEL, killing alternately forward and
backward, you end up with ‘a line of sample’ as one entry in the kill ring, and ‘This is

text.’ in the buffer. (Note the double space between ‘is’ and ‘text’, which you can clean
up with M-SPC or M-q.)

Another way to kill the same text is to move back two words with M-b M-b, then kill all
four words forward with C-u M-d. This produces exactly the same results in the buffer and
in the kill ring. M-f M-f C-u M-DEL kills the same text, all going backward; once again, the
result is the same. The text in the kill ring entry always has the same order that it had in
the buffer before you killed it.

If a kill command is separated from the last kill command by other commands (not just
numeric arguments), it starts a new entry on the kill ring. But you can force it to append
by first typing the command C-M-w (append-next-kill) right before it. The C-M-w tells
the following command, if it is a kill command, to append the text it kills to the last killed
text, instead of starting a new entry. With C-M-w, you can kill several separated pieces of
text and accumulate them to be yanked back in one place.

A kill command following M-w (kill-ring-save) does not append to the text that M-w
copied into the kill ring.

Chapter 9: Killing and Moving Text 55

9.3 “Cut and Paste” Operations on Graphical Displays

In most graphical desktop environments, you can transfer data (usually text) between dif-
ferent applications using a system facility called the clipboard. On X, two other similar
facilities are available: the primary selection and the secondary selection. When Emacs is
run on a graphical display, its kill and yank commands integrate with these facilities, so
that you can easily transfer text between Emacs and other graphical applications.

By default, Emacs uses UTF-8 as the coding system for inter-program text transfers.
If you find that the pasted text is not what you expected, you can specify another coding
system by typing C-x RET x or C-x RET X. You can also request a different data type by cus-
tomizing x-select-request-type. See Section 19.11 [Communication Coding], page 180.

9.3.1 Using the Clipboard

The clipboard is the facility that most graphical applications use for “cutting and pasting”.
When the clipboard exists, the kill and yank commands in Emacs make use of it.

When you kill some text with a command such as C-w (kill-region), or copy it to
the kill ring with a command such as M-w (kill-ring-save), that text is also put in the
clipboard.

When an Emacs kill command puts text in the clipboard, the existing clipboard contents
are normally lost. Optionally, you can change save-interprogram-paste-before-kill to
t. Then Emacs will first save the clipboard to its kill ring, preventing you from losing the
old clipboard data—at the risk of high memory consumption if that data turns out to be
large.

Yank commands, such as C-y (yank), also use the clipboard. If another application
“owns” the clipboard—i.e., if you cut or copied text there more recently than your last kill
command in Emacs—then Emacs yanks from the clipboard instead of the kill ring.

Normally, rotating the kill ring with M-y (yank-pop) does not alter the clipboard. How-
ever, if you change yank-pop-change-selection to t, then M-y saves the new yank to the
clipboard.

To prevent kill and yank commands from accessing the clipboard, change the variable
x-select-enable-clipboard to nil.

Many X desktop environments support a feature called the clipboard manager. If you
exit Emacs while it is the current “owner” of the clipboard data, and there is a clipboard
manager running, Emacs transfers the clipboard data to the clipboard manager so that it
is not lost. In some circumstances, this may cause a delay when exiting Emacs; if you wish
to prevent Emacs from transferring data to the clipboard manager, change the variable
x-select-enable-clipboard-manager to nil.

Prior to Emacs 24, the kill and yank commands used the primary selection (see
Section 9.3.2 [Primary Selection], page 56), not the clipboard. If you prefer this behavior,
change x-select-enable-clipboard to nil, x-select-enable-primary to t, and
mouse-drag-copy-region to t. In this case, you can use the following commands to act
explicitly on the clipboard: clipboard-kill-region kills the region and saves it to the
clipboard; clipboard-kill-ring-save copies the region to the kill ring and saves it to
the clipboard; and clipboard-yank yanks the contents of the clipboard at point.

Chapter 9: Killing and Moving Text 56

9.3.2 Cut and Paste with Other Window Applications

Under the X Window System, there exists a primary selection containing the last stretch of
text selected in an X application (usually by dragging the mouse). Typically, this text can
be inserted into other X applications by mouse-2 clicks. The primary selection is separate
from the clipboard. Its contents are more “fragile”; they are overwritten each time you
select text with the mouse, whereas the clipboard is only overwritten by explicit “cut” or
“copy” commands.

Under X, whenever the region is active (see Chapter 8 [Mark], page 44), the text in the
region is saved in the primary selection. This applies regardless of whether the region was
made by dragging or clicking the mouse (see Section 18.1 [Mouse Commands], page 153),
or by keyboard commands (e.g. by typing C-SPC and moving point; see Section 8.1 [Setting
Mark], page 44).

If you change the variable select-active-regions to only, Emacs saves only temporar-
ily active regions to the primary selection, i.e. those made with the mouse or with shift
selection (see Section 8.6 [Shift Selection], page 48). If you change select-active-regions
to nil, Emacs avoids saving active regions to the primary selection entirely.

To insert the primary selection into an Emacs buffer, click mouse-2 (mouse-yank-
primary) where you want to insert it. See Section 18.1 [Mouse Commands], page 153.

MS-Windows provides no primary selection, but Emacs emulates it within a single Emacs
session by storing the selected text internally. Therefore, all the features and commands
related to the primary selection work on Windows as they do on X, for cutting and pasting
within the same session, but not across Emacs sessions or with other applications.

9.3.3 Secondary Selection

In addition to the primary selection, the X Window System provides a second similar facility
known as the secondary selection. Nowadays, few X applications make use of the secondary
selection, but you can access it using the following Emacs commands:

M-Drag-Mouse-1

Set the secondary selection, with one end at the place where you press down
the button, and the other end at the place where you release it (mouse-set-
secondary). The selected text is highlighted, using the secondary-selection

face, as you drag. The window scrolls automatically if you drag the mouse off
the top or bottom of the window, just like mouse-set-region (see Section 18.1
[Mouse Commands], page 153).

This command does not alter the kill ring.

M-Mouse-1

Set one endpoint for the secondary selection (mouse-start-secondary).

M-Mouse-3

Set the secondary selection, with one end at the position clicked and the other
at the position specified with M-Mouse-1 (mouse-secondary-save-then-kill).
This also puts the selected text in the kill ring. A second M-Mouse-3 at the
same place kills the secondary selection just made.

Chapter 9: Killing and Moving Text 57

M-Mouse-2

Insert the secondary selection where you click, placing point at the end of the
yanked text (mouse-yank-secondary).

Double or triple clicking of M-Mouse-1 operates on words and lines, much like Mouse-1.

If mouse-yank-at-point is non-nil, M-Mouse-2 yanks at point. Then it does not matter
precisely where you click, or even which of the frame’s windows you click on. See Section 18.1
[Mouse Commands], page 153.

9.4 Accumulating Text

Usually we copy or move text by killing it and yanking it, but there are other convenient
methods for copying one block of text in many places, or for copying many scattered blocks
of text into one place. Here we describe the commands to accumulate scattered pieces of
text into a buffer or into a file.

M-x append-to-buffer

Append region to the contents of a specified buffer.

M-x prepend-to-buffer

Prepend region to the contents of a specified buffer.

M-x copy-to-buffer

Copy region into a specified buffer, deleting that buffer’s old contents.

M-x insert-buffer

Insert the contents of a specified buffer into current buffer at point.

M-x append-to-file

Append region to the contents of a specified file, at the end.

To accumulate text into a buffer, use M-x append-to-buffer. This reads a buffer name,
then inserts a copy of the region into the buffer specified. If you specify a nonexistent buffer,
append-to-buffer creates the buffer. The text is inserted wherever point is in that buffer.
If you have been using the buffer for editing, the copied text goes into the middle of the
text of the buffer, starting from wherever point happens to be at that moment.

Point in that buffer is left at the end of the copied text, so successive uses of append-to-
buffer accumulate the text in the specified buffer in the same order as they were copied.
Strictly speaking, append-to-buffer does not always append to the text already in the
buffer—it appends only if point in that buffer is at the end. However, if append-to-buffer
is the only command you use to alter a buffer, then point is always at the end.

M-x prepend-to-buffer is just like append-to-buffer except that point in the other
buffer is left before the copied text, so successive prependings add text in reverse order. M-x
copy-to-buffer is similar, except that any existing text in the other buffer is deleted, so
the buffer is left containing just the text newly copied into it.

The command M-x insert-buffer can be used to retrieve the accumulated text from
another buffer. This prompts for the name of a buffer, and inserts a copy of all the text in
that buffer into the current buffer at point, leaving point at the beginning of the inserted
text. It also adds the position of the end of the inserted text to the mark ring, without
activating the mark. See Chapter 16 [Buffers], page 139, for background information on
buffers.

Chapter 9: Killing and Moving Text 58

Instead of accumulating text in a buffer, you can append text directly into a file with
M-x append-to-file. This prompts for a filename, and adds the text of the region to the
end of the specified file. The file is changed immediately on disk.

You should use append-to-file only with files that are not being visited in Emacs.
Using it on a file that you are editing in Emacs would change the file behind Emacs’s back,
which can lead to losing some of your editing.

Another way to move text around is to store it in a register. See Chapter 10 [Registers],
page 61.

9.5 Rectangles

Rectangle commands operate on rectangular areas of the text: all the characters between a
certain pair of columns, in a certain range of lines. Emacs has commands to kill rectangles,
yank killed rectangles, clear them out, fill them with blanks or text, or delete them. Rect-
angle commands are useful with text in multicolumn formats, and for changing text into or
out of such formats.

To specify a rectangle for a command to work on, set the mark at one corner and point
at the opposite corner. The rectangle thus specified is called the region-rectangle. If point
and the mark are in the same column, the region-rectangle is empty. If they are in the same
line, the region-rectangle is one line high.

The region-rectangle is controlled in much the same way as the region is controlled. But
remember that a given combination of point and mark values can be interpreted either as
a region or as a rectangle, depending on the command that uses them.

C-x r k Kill the text of the region-rectangle, saving its contents as the “last killed
rectangle” (kill-rectangle).

C-x r d Delete the text of the region-rectangle (delete-rectangle).

C-x r y Yank the last killed rectangle with its upper left corner at point
(yank-rectangle).

C-x r o Insert blank space to fill the space of the region-rectangle (open-rectangle).
This pushes the previous contents of the region-rectangle to the right.

C-x r N Insert line numbers along the left edge of the region-rectangle (rectangle-
number-lines). This pushes the previous contents of the region-rectangle to
the right.

C-x r c Clear the region-rectangle by replacing all of its contents with spaces (clear-
rectangle).

M-x delete-whitespace-rectangle

Delete whitespace in each of the lines on the specified rectangle, starting from
the left edge column of the rectangle.

C-x r t string RET

Replace rectangle contents with string on each line (string-rectangle).

M-x string-insert-rectangle RET string RET

Insert string on each line of the rectangle.

Chapter 9: Killing and Moving Text 59

The rectangle operations fall into two classes: commands to erase or insert rectangles,
and commands to make blank rectangles.

There are two ways to erase the text in a rectangle: C-x r d (delete-rectangle) to
delete the text outright, or C-x r k (kill-rectangle) to remove the text and save it as
the last killed rectangle. In both cases, erasing the region-rectangle is like erasing the
specified text on each line of the rectangle; if there is any following text on the line, it
moves backwards to fill the gap.

“Killing” a rectangle is not killing in the usual sense; the rectangle is not stored in the
kill ring, but in a special place that only records the most recent rectangle killed. This
is because yanking a rectangle is so different from yanking linear text that different yank
commands have to be used. Yank-popping is not defined for rectangles.

To yank the last killed rectangle, type C-x r y (yank-rectangle). The rectangle’s first
line is inserted at point, the rectangle’s second line is inserted at the same horizontal position
one line vertically below, and so on. The number of lines affected is determined by the height
of the saved rectangle.

For example, you can convert two single-column lists into a double-column list by killing
one of the single-column lists as a rectangle, and then yanking it beside the other list.

You can also copy rectangles into and out of registers with C-x r r r and C-x r i r .
See Section 10.3 [Rectangle Registers], page 62.

There are two commands you can use for making blank rectangles: C-x r c (clear-
rectangle) blanks out existing text in the region-rectangle, and C-x r o (open-rectangle)
inserts a blank rectangle.

M-x delete-whitespace-rectangle deletes horizontal whitespace starting from a par-
ticular column. This applies to each of the lines in the rectangle, and the column is specified
by the left edge of the rectangle. The right edge of the rectangle does not make any difference
to this command.

The command C-x r N (rectangle-number-lines) inserts line numbers along the left
edge of the region-rectangle. Normally, the numbering begins from 1 (for the first line of
the rectangle). With a prefix argument, the command prompts for a number to begin from,
and for a format string with which to print the numbers (see Section “Formatting Strings”
in The Emacs Lisp Reference Manual).

The command C-x r t (string-rectangle) replaces the contents of a region-rectangle
with a string on each line. The string’s width need not be the same as the width of the
rectangle. If the string’s width is less, the text after the rectangle shifts left; if the string is
wider than the rectangle, the text after the rectangle shifts right.

The command M-x string-insert-rectangle is similar to string-rectangle, but in-
serts the string on each line, shifting the original text to the right.

9.6 CUA Bindings

The command M-x cua-mode sets up key bindings that are compatible with the Common
User Access (CUA) system used in many other applications.

When CUA mode is enabled, the keys C-x, C-c, C-v, and C-z invoke commands that cut
(kill), copy, paste (yank), and undo respectively. The C-x and C-c keys perform cut and
copy only if the region is active. Otherwise, they still act as prefix keys, so that standard

Chapter 9: Killing and Moving Text 60

Emacs commands like C-x C-c still work. Note that this means the variable mark-even-

if-inactive has no effect for C-x and C-c (see Section 8.3 [Using Region], page 46).

To enter an Emacs command like C-x C-f while the mark is active, use one of the
following methods: either hold Shift together with the prefix key, e.g. S-C-x C-f, or
quickly type the prefix key twice, e.g. C-x C-x C-f.

To disable the overriding of standard Emacs binding by CUA mode, while retaining the
other features of CUA mode described below, set the variable cua-enable-cua-keys to
nil.

In CUA mode, typed text replaces the active region as in Delete-Selection mode (see
Section 18.1 [Mouse Commands], page 153).

CUA mode provides enhanced rectangle support with visible rectangle highlighting. Use
C-RET to start a rectangle, extend it using the movement commands, and cut or copy it
using C-x or C-c. RET moves the cursor to the next (clockwise) corner of the rectangle, so
you can easily expand it in any direction. Normal text you type is inserted to the left or
right of each line in the rectangle (on the same side as the cursor).

With CUA you can easily copy text and rectangles into and out of registers by providing
a one-digit numeric prefix to the kill, copy, and yank commands, e.g. C-1 C-c copies the
region into register 1, and C-2 C-v yanks the contents of register 2.

CUA mode also has a global mark feature which allows easy moving and copying of text
between buffers. Use C-S-SPC to toggle the global mark on and off. When the global mark
is on, all text that you kill or copy is automatically inserted at the global mark, and text
you type is inserted at the global mark rather than at the current position.

For example, to copy words from various buffers into a word list in a given buffer, set
the global mark in the target buffer, then navigate to each of the words you want in the
list, mark it (e.g. with S-M-f), copy it to the list with C-c or M-w, and insert a newline
after the word in the target list by pressing RET.

Chapter 10: Registers 61

10 Registers

Emacs registers are compartments where you can save text, rectangles, positions, and other
things for later use. Once you save text or a rectangle in a register, you can copy it into
the buffer once, or many times; once you save a position in a register, you can jump back
to that position once, or many times.

Each register has a name that consists of a single character, which we will denote by r;
r can be a letter (such as ‘a’) or a number (such as ‘1’); case matters, so register ‘a’ is not
the same as register ‘A’.

A register can store a position, a piece of text, a rectangle, a number, a window con-
figuration, or a file name, but only one thing at any given time. Whatever you store in a
register remains there until you store something else in that register. To see what register
r contains, use M-x view-register:

M-x view-register RET r

Display a description of what register r contains.

Bookmarks record files and positions in them, so you can return to those positions when
you look at the file again. Bookmarks are similar in spirit to registers, so they are also
documented in this chapter.

10.1 Saving Positions in Registers

C-x r SPC r

Record the position of point and the current buffer in register r (point-to-
register).

C-x r j r Jump to the position and buffer saved in register r (jump-to-register).

Typing C-x r SPC (point-to-register), followed by a character r , saves both the po-
sition of point and the current buffer in register r. The register retains this information
until you store something else in it.

The command C-x r j r switches to the buffer recorded in register r, and moves point
to the recorded position. The contents of the register are not changed, so you can jump to
the saved position any number of times.

If you use C-x r j to go to a saved position, but the buffer it was saved from has been
killed, C-x r j tries to create the buffer again by visiting the same file. Of course, this works
only for buffers that were visiting files.

10.2 Saving Text in Registers

When you want to insert a copy of the same piece of text several times, it may be inconve-
nient to yank it from the kill ring, since each subsequent kill moves that entry further down
the ring. An alternative is to store the text in a register and later retrieve it.

C-x r s r Copy region into register r (copy-to-register).

C-x r i r Insert text from register r (insert-register).

M-x append-to-register RET r

Append region to text in register r.

Chapter 10: Registers 62

M-x prepend-to-register RET r

Prepend region to text in register r.

C-x r s r stores a copy of the text of the region into the register named r. If the mark
is inactive, Emacs first reactivates the mark where it was last set. The mark is deactivated
at the end of this command. See Chapter 8 [Mark], page 44. C-u C-x r s r , the same
command with a prefix argument, copies the text into register r and deletes the text from
the buffer as well; you can think of this as “moving” the region text into the register.

M-x append-to-register RET r appends the copy of the text in the region to the text
already stored in the register named r. If invoked with a prefix argument, it deletes the
region after appending it to the register. The command prepend-to-register is similar,
except that it prepends the region text to the text in the register instead of appending it.

C-x r i r inserts in the buffer the text from register r. Normally it leaves point before
the text and sets the mark after, without activating it. With a numeric argument, it instead
puts point after the text and the mark before.

10.3 Saving Rectangles in Registers

A register can contain a rectangle instead of linear text. See Section 9.5 [Rectangles],
page 58, for basic information on how to specify a rectangle in the buffer.

C-x r r r Copy the region-rectangle into register r (copy-rectangle-to-register).
With numeric argument, delete it as well.

C-x r i r Insert the rectangle stored in register r (if it contains a rectangle) (insert-
register).

The C-x r i r (insert-register) command, previously documented in Section 10.2
[Text Registers], page 61, inserts a rectangle rather than a text string, if the register contains
a rectangle.

10.4 Saving Window Configurations in Registers

You can save the window configuration of the selected frame in a register, or even the con-
figuration of all windows in all frames, and restore the configuration later. See Chapter 17
[Windows], page 147, for information about window configurations.

C-x r w r Save the state of the selected frame’s windows in register r (window-
configuration-to-register).

C-x r f r Save the state of all frames, including all their windows, in register r (frame-
configuration-to-register).

Use C-x r j r to restore a window or frame configuration. This is the same command
used to restore a cursor position. When you restore a frame configuration, any existing
frames not included in the configuration become invisible. If you wish to delete these
frames instead, use C-u C-x r j r .

Chapter 10: Registers 63

10.5 Keeping Numbers in Registers

There are commands to store a number in a register, to insert the number in the buffer
in decimal, and to increment it. These commands can be useful in keyboard macros (see
Chapter 14 [Keyboard Macros], page 107).

C-u number C-x r n r

Store number into register r (number-to-register).

C-u number C-x r + r

Increment the number in register r by number (increment-register).

C-x r i r Insert the number from register r into the buffer.

C-x r i is the same command used to insert any other sort of register contents into the
buffer. C-x r + with no numeric argument increments the register value by 1; C-x r n with
no numeric argument stores zero in the register.

10.6 Keeping File Names in Registers

If you visit certain file names frequently, you can visit them more conveniently if you put
their names in registers. Here’s the Lisp code used to put a file name in a register:

(set-register ?r ’(file . name))

For example,
(set-register ?z ’(file . "/gd/gnu/emacs/19.0/src/ChangeLog"))

puts the file name shown in register ‘z’.

To visit the file whose name is in register r, type C-x r j r . (This is the same command
used to jump to a position or restore a frame configuration.)

10.7 Bookmarks

Bookmarks are somewhat like registers in that they record positions you can jump to. Unlike
registers, they have long names, and they persist automatically from one Emacs session to
the next. The prototypical use of bookmarks is to record “where you were reading” in
various files.

C-x r m RET

Set the bookmark for the visited file, at point.

C-x r m bookmark RET

Set the bookmark named bookmark at point (bookmark-set).

C-x r b bookmark RET

Jump to the bookmark named bookmark (bookmark-jump).

C-x r l List all bookmarks (list-bookmarks).

M-x bookmark-save

Save all the current bookmark values in the default bookmark file.

The prototypical use for bookmarks is to record one current position in each of several
files. So the command C-x r m, which sets a bookmark, uses the visited file name as the
default for the bookmark name. If you name each bookmark after the file it points to, then

Chapter 10: Registers 64

you can conveniently revisit any of those files with C-x r b, and move to the position of the
bookmark at the same time.

To display a list of all your bookmarks in a separate buffer, type C-x r l (list-
bookmarks). If you switch to that buffer, you can use it to edit your bookmark definitions
or annotate the bookmarks. Type C-h m in the bookmark buffer for more information about
its special editing commands.

When you kill Emacs, Emacs saves your bookmarks, if you have changed any bookmark
values. You can also save the bookmarks at any time with the M-x bookmark-save com-
mand. Bookmarks are saved to the file ‘~/.emacs.d/bookmarks’ (for compatibility with
older versions of Emacs, if you have a file named ‘~/.emacs.bmk’, that is used instead).
The bookmark commands load your default bookmark file automatically. This saving and
loading is how bookmarks persist from one Emacs session to the next.

If you set the variable bookmark-save-flag to 1, each command that sets a bookmark
will also save your bookmarks; this way, you don’t lose any bookmark values even if Emacs
crashes. The value, if a number, says how many bookmark modifications should go by
between saving. If you set this variable to nil, Emacs only saves bookmarks if you explicitly
use M-x bookmark-save.

Bookmark position values are saved with surrounding context, so that bookmark-jump

can find the proper position even if the file is modified slightly. The variable bookmark-

search-size says how many characters of context to record on each side of the bookmark’s
position.

Here are some additional commands for working with bookmarks:

M-x bookmark-load RET filename RET

Load a file named filename that contains a list of bookmark values. You can use
this command, as well as bookmark-write, to work with other files of bookmark
values in addition to your default bookmark file.

M-x bookmark-write RET filename RET

Save all the current bookmark values in the file filename.

M-x bookmark-delete RET bookmark RET

Delete the bookmark named bookmark.

M-x bookmark-insert-location RET bookmark RET

Insert in the buffer the name of the file that bookmark bookmark points to.

M-x bookmark-insert RET bookmark RET

Insert in the buffer the contents of the file that bookmark bookmark points to.

Chapter 11: Controlling the Display 65

11 Controlling the Display

Since only part of a large buffer fits in the window, Emacs has to show only a part of it.
This chapter describes commands and variables that let you specify which part of the text
you want to see, and how the text is displayed.

11.1 Scrolling

If a window is too small to display all the text in its buffer, it displays only a portion of it.
Scrolling commands change which portion of the buffer is displayed.

Scrolling “forward” or “up” advances the portion of the buffer displayed in the window;
equivalently, it moves the buffer text upwards relative to the window. Scrolling “backward”
or “down” displays an earlier portion of the buffer, and moves the text downwards relative
to the window.

In Emacs, scrolling “up” or “down” refers to the direction that the text moves in the
window, not the direction that the window moves relative to the text. This terminology
was adopted by Emacs before the modern meaning of “scrolling up” and “scrolling down”
became widespread. Hence, the strange result that PAGEDOWN scrolls “up” in the Emacs
sense.

The portion of a buffer displayed in a window always contains point. If you move point
past the bottom or top of the window, scrolling occurs automatically to bring it back
onscreen (see Section 11.3 [Auto Scrolling], page 67). You can also scroll explicitly with
these commands:

C-v

NEXT
PAGEDOWN

Scroll forward by nearly a full window (scroll-up-command).

M-v

PRIOR
PAGEUP Scroll backward (scroll-down-command).

C-v (scroll-up-command) scrolls forward by nearly the whole window height. The effect
is to take the two lines at the bottom of the window and put them at the top, followed by
lines that were not previously visible. If point was in the text that scrolled off the top, it
ends up on the window’s new topmost line. The NEXT (or PAGEDOWN) key is equivalent
to C-v.

M-v (scroll-down-command) scrolls backward in a similar way. The PRIOR (or
PAGEUP) key is equivalent to M-v.

The number of lines of overlap left by these scroll commands is controlled by the variable
next-screen-context-lines, whose default value is 2. You can supply the commands with
a numeric prefix argument, n, to scroll by n lines; Emacs attempts to leave point unchanged,
so that the text and point move up or down together. C-v with a negative argument is like
M-v and vice versa.

By default, these commands signal an error (by beeping or flashing the screen) if no more
scrolling is possible, because the window has reached the beginning or end of the buffer. If

Chapter 11: Controlling the Display 66

you change the variable scroll-error-top-bottom to t, the command moves point to the
farthest possible position. If point is already there, the command signals an error.

Some users like scroll commands to keep point at the same screen position, so that
scrolling back to the same screen conveniently returns point to its original position. You
can enable this behavior via the variable scroll-preserve-screen-position. If the value
is t, Emacs adjusts point to keep the cursor at the same screen position whenever a scroll
command moves it off-window, rather than moving it to the topmost or bottommost line.
With any other non-nil value, Emacs adjusts point this way even if the scroll command
leaves point in the window. This variable affects all the scroll commands documented in
this section, as well as scrolling with the mouse wheel (see Section 18.1 [Mouse Commands],
page 153); in general, it affects any command that has a non-nil scroll-command property.
See Section “Property Lists” in The Emacs Lisp Reference Manual.

The commands M-x scroll-up and M-x scroll-down behave similarly to scroll-up-

command and scroll-down-command, except they do not obey scroll-error-top-bottom.
Prior to Emacs 24, these were the default commands for scrolling up and down. The
commands M-x scroll-up-line and M-x scroll-down-line scroll the current window by
one line at a time. If you intend to use any of these commands, you might want to give
them key bindings (see Section 33.3.6 [Init Rebinding], page 417).

11.2 Recentering

C-l Scroll the selected window so the current line is the center-most text line; on sub-
sequent consecutive invocations, make the current line the top line, the bottom
line, and so on in cyclic order. Possibly redisplay the screen too (recenter-
top-bottom).

M-x recenter

Scroll the selected window so the current line is the center-most text line. Pos-
sibly redisplay the screen too.

C-M-l Scroll heuristically to bring useful information onto the screen (reposition-
window).

The C-l (recenter-top-bottom) command recenters the selected window, scrolling it
so that the current screen line is exactly in the center of the window, or as close to the
center as possible.

Typing C-l twice in a row (C-l C-l) scrolls the window so that point is on the topmost
screen line. Typing a third C-l scrolls the window so that point is on the bottom-most
screen line. Each successive C-l cycles through these three positions.

You can change the cycling order by customizing the list variable recenter-positions.
Each list element should be the symbol top, middle, or bottom, or a number; an integer
means to move the line to the specified screen line, while a floating-point number between
0.0 and 1.0 specifies a percentage of the screen space from the top of the window. The
default, (middle top bottom), is the cycling order described above. Furthermore, if you
change the variable scroll-margin to a non-zero value n, C-l always leaves at least n
screen lines between point and the top or bottom of the window (see Section 11.3 [Auto
Scrolling], page 67).

Chapter 11: Controlling the Display 67

You can also give C-l a prefix argument. A plain prefix argument, C-u C-l, simply
recenters point. A positive argument n puts point n lines down from the top of the window.
An argument of zero puts point on the topmost line. A negative argument -n puts point
n lines from the bottom of the window. When given an argument, C-l does not clear the
screen or cycle through different screen positions.

If the variable recenter-redisplay has a non-nil value, each invocation of C-l also
clears and redisplays the screen; the special value tty (the default) says to do this on text-
terminal frames only. Redisplaying is useful in case the screen becomes garbled for any
reason (see Section 34.2.3 [Screen Garbled], page 431).

The more primitive command M-x recenter behaves like recenter-top-bottom, but
does not cycle among screen positions.

C-M-l (reposition-window) scrolls the current window heuristically in a way designed
to get useful information onto the screen. For example, in a Lisp file, this command tries
to get the entire current defun onto the screen if possible.

11.3 Automatic Scrolling

Emacs performs automatic scrolling when point moves out of the visible portion of the text.

Normally, this centers point vertically within the window. However, if you set scroll-

conservatively to a small number n, then if you move point just a little off the screen
(less than n lines), Emacs scrolls the text just far enough to bring point back on screen.
By default, scroll-conservatively is 0. If you set scroll-conservatively to a large
number (larger than 100), Emacs will never center point as result of scrolling, even if point
moves far away from the text previously displayed in the window. With such a large value,
Emacs will always scroll text just enough for bringing point into view, so point will end up
at the top or bottom of the window, depending on the scroll direction.

The variable scroll-step determines how many lines to scroll the window when point
moves off the screen. If moving by that number of lines fails to bring point back into view,
point is centered instead. The default value is zero, which causes point to always be centered
after scrolling.

When the window does scroll by a distance longer than scroll-step, you can control
how aggressively it scrolls by setting the variables scroll-up-aggressively and scroll-

down-aggressively. The value of scroll-up-aggressively should be either nil, or a
fraction f between 0 and 1. A fraction specifies where on the screen to put point when
scrolling upward, i.e. forward. When point goes off the window end, the new start position
is chosen to put point f parts of the window height from the bottom margin. Thus, larger
f means more aggressive scrolling: more new text is brought into view. The default value,
nil, is equivalent to 0.5.

Likewise, scroll-down-aggressively is used for scrolling down, i.e. backward. The
value specifies how far point should be placed from the top margin of the window; thus, as
with scroll-up-aggressively, a larger value is more aggressive.

These two variables are ignored if either scroll-step or scroll-conservatively are
set to a non-zero value.

The variable scroll-margin restricts how close point can come to the top or bottom of
a window (even if aggressive scrolling specifies a fraction f that is larger than the window

Chapter 11: Controlling the Display 68

portion between the top and the bottom margins). Its value is a number of screen lines; if
point comes within that many lines of the top or bottom of the window, Emacs performs
automatic scrolling. By default, scroll-margin is 0.

11.4 Horizontal Scrolling

Horizontal scrolling means shifting all the lines sideways within a window, so that some
of the text near the left margin is not displayed. When the text in a window is scrolled
horizontally, text lines are truncated rather than continued (see Section 11.21 [Line Trun-
cation], page 82). If a window shows truncated lines, Emacs performs automatic horizontal
scrolling whenever point moves off the left or right edge of the screen. To disable automatic
horizontal scrolling, set the variable auto-hscroll-mode to nil. Note that when the auto-
matic horizontal scrolling is turned off, if point moves off the edge of the screen, the cursor
disappears to indicate that. (On text terminals, the cursor is left at the edge instead.)

The variable hscroll-margin controls how close point can get to the window’s edges
before automatic scrolling occurs. It is measured in columns. For example, if the value is 5,
then moving point within 5 columns of an edge causes horizontal scrolling away from that
edge.

The variable hscroll-step determines how many columns to scroll the window when
point gets too close to the edge. Zero, the default value, means to center point horizontally
within the window. A positive integer value specifies the number of columns to scroll by.
A floating-point number specifies the fraction of the window’s width to scroll by.

You can also perform explicit horizontal scrolling with the following commands:

C-x < Scroll text in current window to the left (scroll-left).

C-x > Scroll to the right (scroll-right).

C-x < (scroll-left) scrolls text in the selected window to the left by the full width of
the window, less two columns. (In other words, the text in the window moves left relative
to the window.) With a numeric argument n, it scrolls by n columns.

If the text is scrolled to the left, and point moves off the left edge of the window, the
cursor will freeze at the left edge of the window, until point moves back to the displayed
portion of the text. This is independent of the current setting of auto-hscroll-mode,
which, for text scrolled to the left, only affects the behavior at the right edge of the window.

C-x > (scroll-right) scrolls similarly to the right. The window cannot be scrolled any
farther to the right once it is displayed normally, with each line starting at the window’s
left margin; attempting to do so has no effect. This means that you don’t have to calculate
the argument precisely for C-x >; any sufficiently large argument will restore the normal
display.

If you use those commands to scroll a window horizontally, that sets a lower bound for
automatic horizontal scrolling. Automatic scrolling will continue to scroll the window, but
never farther to the right than the amount you previously set by scroll-left.

11.5 Narrowing

Narrowing means focusing in on some portion of the buffer, making the rest temporarily
inaccessible. The portion which you can still get to is called the accessible portion. Cancel-

Chapter 11: Controlling the Display 69

ing the narrowing, which makes the entire buffer once again accessible, is called widening.
The bounds of narrowing in effect in a buffer are called the buffer’s restriction.

Narrowing can make it easier to concentrate on a single subroutine or paragraph by
eliminating clutter. It can also be used to limit the range of operation of a replace command
or repeating keyboard macro.

C-x n n Narrow down to between point and mark (narrow-to-region).

C-x n w Widen to make the entire buffer accessible again (widen).

C-x n p Narrow down to the current page (narrow-to-page).

C-x n d Narrow down to the current defun (narrow-to-defun).

When you have narrowed down to a part of the buffer, that part appears to be all there
is. You can’t see the rest, you can’t move into it (motion commands won’t go outside the
accessible part), you can’t change it in any way. However, it is not gone, and if you save
the file all the inaccessible text will be saved. The word ‘Narrow’ appears in the mode line
whenever narrowing is in effect.

The primary narrowing command is C-x n n (narrow-to-region). It sets the current
buffer’s restrictions so that the text in the current region remains accessible, but all text
before the region or after the region is inaccessible. Point and mark do not change.

Alternatively, use C-x n p (narrow-to-page) to narrow down to the current page. See
Section 22.4 [Pages], page 201, for the definition of a page. C-x n d (narrow-to-defun)
narrows down to the defun containing point (see Section 23.2 [Defuns], page 231).

The way to cancel narrowing is to widen with C-x n w (widen). This makes all text in
the buffer accessible again.

You can get information on what part of the buffer you are narrowed down to using the
C-x = command. See Section 4.9 [Position Info], page 22.

Because narrowing can easily confuse users who do not understand it, narrow-to-region
is normally a disabled command. Attempting to use this command asks for confirmation
and gives you the option of enabling it; if you enable the command, confirmation will no
longer be required for it. See Section 33.3.11 [Disabling], page 422.

11.6 View Mode

View mode is a minor mode that lets you scan a buffer by sequential screenfuls. It provides
commands for scrolling through the buffer conveniently but not for changing it. Apart
from the usual Emacs cursor motion commands, you can type SPC to scroll forward one
windowful, DEL to scroll backward, and s to start an incremental search.

Typing q (View-quit) disables View mode, and switches back to the buffer and position
before View mode was enabled. Typing e (View-exit) disables View mode, keeping the
current buffer and position.

M-x view-buffer prompts for an existing Emacs buffer, switches to it, and enables View
mode. M-x view-file prompts for a file and visits it with View mode enabled.

Chapter 11: Controlling the Display 70

11.7 Follow Mode

Follow mode is a minor mode that makes two windows, both showing the same buffer, scroll
as a single tall “virtual window”. To use Follow mode, go to a frame with just one window,
split it into two side-by-side windows using C-x 3, and then type M-x follow-mode. From
then on, you can edit the buffer in either of the two windows, or scroll either one; the other
window follows it.

In Follow mode, if you move point outside the portion visible in one window and into
the portion visible in the other window, that selects the other window—again, treating the
two as if they were parts of one large window.

To turn off Follow mode, type M-x follow-mode a second time.

11.8 Text Faces

Emacs can display text in several different styles, called faces. Each face can specify various
face attributes, such as the font, height, weight, slant, foreground and background color,
and underlining or overlining. Most major modes assign faces to the text automatically, via
Font Lock mode. See Section 11.12 [Font Lock], page 74, for more information about how
these faces are assigned.

To see what faces are currently defined, and what they look like, type M-x

list-faces-display. With a prefix argument, this prompts for a regular expression,
and displays only faces with names matching that regular expression (see Section 12.5
[Regexps], page 91).

It’s possible for a given face to look different in different frames. For instance, some text
terminals do not support all face attributes, particularly font, height, and width, and some
support a limited range of colors.

You can customize a face to alter its appearance, and save those changes for future
Emacs sessions. See Section 33.1.5 [Face Customization], page 402. A face does not have
to specify every single attribute; often it inherits most attributes from another face. Any
ultimately unspecified attribute is taken from the face named default.

The default face is the default for displaying text, and all of its attributes are specified.
Its background color is also used as the frame’s background color. See Section 11.9 [Colors],
page 71.

Another special face is the cursor face. On graphical displays, the background color of
this face is used to draw the text cursor. None of the other attributes of this face have any
effect; the foreground color for text under the cursor is taken from the background color of
the underlying text. On text terminals, the appearance of the text cursor is determined by
the terminal, not by the cursor face.

You can also use X resources to specify attributes of any particular face. See Section D.1
[Resources], page 478.

Emacs can display variable-width fonts, but some Emacs commands, particularly in-
dentation commands, do not account for variable character display widths. Therefore, we
recommend not using variable-width fonts for most faces, particularly those assigned by
Font Lock mode.

Chapter 11: Controlling the Display 71

11.9 Colors for Faces

Faces can have various foreground and background colors. When you specify a color for
a face—for instance, when customizing the face (see Section 33.1.5 [Face Customization],
page 402)—you can use either a color name or an RGB triplet.

A color name is a pre-defined name, such as ‘dark orange’ or ‘medium sea green’. To
view a list of color names, type M-x list-colors-display. To control the order in which
colors are shown, customize list-colors-sort. If you run this command on a graphical
display, it shows the full range of color names known to Emacs (these are the standard X11
color names, defined in X’s ‘rgb.txt’ file). If you run the command on a text terminal, it
shows only a small subset of colors that can be safely displayed on such terminals. However,
Emacs understands X11 color names even on text terminals; if a face is given a color specified
by an X11 color name, it is displayed using the closest-matching terminal color.

An RGB triplet is a string of the form ‘#RRGGBB’. Each of the R, G, and B components
is a hexadecimal number specifying the component’s relative intensity, one to four digits
long (usually two digits are used). The components must have the same number of digits.
For hexadecimal values A to F, either upper or lower case are acceptable.

The M-x list-colors-display command also shows the equivalent RGB triplet for
each named color. For instance, ‘medium sea green’ is equivalent to ‘#3CB371’.

You can change the foreground and background colors of a face with M-x

set-face-foreground and M-x set-face-background. These commands prompt in the
minibuffer for a face name and a color, with completion, and then set that face to use the
specified color. They affect the face colors on all frames, but their effects do not persist
for future Emacs sessions, unlike using the customization buffer or X resources. You can
also use frame parameters to set foreground and background colors for a specific frame;
See Section 18.11 [Frame Parameters], page 162.

11.10 Standard Faces

Here are the standard faces for specifying text appearance. You can apply them to specific
text when you want the effects they produce.

default This face is used for ordinary text that doesn’t specify any face. Its background
color is used as the frame’s background color.

bold This face uses a bold variant of the default font.

italic This face uses an italic variant of the default font.

bold-italic

This face uses a bold italic variant of the default font.

underline

This face underlines text.

fixed-pitch

This face forces use of a fixed-width font. It’s reasonable to customize this face
to use a different fixed-width font, if you like, but you should not make it a
variable-width font.

Chapter 11: Controlling the Display 72

variable-pitch

This face forces use of a variable-width font.

shadow This face is used for making the text less noticeable than the surrounding
ordinary text. Usually this can be achieved by using shades of gray in contrast
with either black or white default foreground color.

Here’s an incomplete list of faces used to highlight parts of the text temporarily for
specific purposes. (Many other modes define their own faces for this purpose.)

highlight

This face is used for text highlighting in various contexts, such as when the
mouse cursor is moved over a hyperlink.

isearch This face is used to highlight the current Isearch match (see Section 12.1 [In-
cremental Search], page 85).

query-replace

This face is used to highlight the current Query Replace match (see Section 12.9
[Replace], page 96).

lazy-highlight

This face is used to highlight “lazy matches” for Isearch and Query Replace
(matches other than the current one).

region This face is used for displaying an active region (see Chapter 8 [Mark], page 44).
When Emacs is built with GTK support, its colors are taken from the current
GTK theme.

secondary-selection

This face is used for displaying a secondary X selection (see Section 9.3.3 [Sec-
ondary Selection], page 56).

trailing-whitespace

The face for highlighting excess spaces and tabs at the end of a line
when show-trailing-whitespace is non-nil (see Section 11.16 [Useless
Whitespace], page 78).

escape-glyph

The face for displaying control characters and escape sequences (see
Section 11.19 [Text Display], page 81).

nobreak-space

The face for displaying “no-break” space characters (see Section 11.19 [Text
Display], page 81).

The following faces control the appearance of parts of the Emacs frame:

mode-line

This face is used for the mode line of the currently selected window, and for
menu bars when toolkit menus are not used. By default, it’s drawn with shad-
ows for a “raised” effect on graphical displays, and drawn as the inverse of the
default face on non-windowed terminals.

Chapter 11: Controlling the Display 73

mode-line-inactive

Like mode-line, but used for mode lines of the windows other than the selected
one (if mode-line-in-non-selected-windows is non-nil). This face inherits
from mode-line, so changes in that face affect mode lines in all windows.

mode-line-highlight

Like highlight, but used for portions of text on mode lines.

mode-line-buffer-id

This face is used for buffer identification parts in the mode line.

header-line

Similar to mode-line for a window’s header line, which appears at the top of
a window just as the mode line appears at the bottom. Most windows do not
have a header line—only some special modes, such Info mode, create one.

vertical-border

This face is used for the vertical divider between windows on text terminals.

minibuffer-prompt

This face is used for the prompt strings displayed in the minibuffer. By de-
fault, Emacs automatically adds this face to the value of minibuffer-prompt-
properties, which is a list of text properties used to display the prompt text.
(This variable takes effect when you enter the minibuffer.)

fringe The face for the fringes to the left and right of windows on graphic displays.
(The fringes are the narrow portions of the Emacs frame between the text area
and the window’s right and left borders.) See Section 11.14 [Fringes], page 77.

cursor The :background attribute of this face specifies the color of the text cursor.
See Section 11.20 [Cursor Display], page 81.

tooltip This face is used for tooltip text. By default, if Emacs is built with GTK sup-
port, tooltips are drawn via GTK and this face has no effect. See Section 18.17
[Tooltips], page 165.

mouse This face determines the color of the mouse pointer.

The following faces likewise control the appearance of parts of the Emacs frame, but only
on text terminals, or when Emacs is built on X with no toolkit support. (For all other cases,
the appearance of the respective frame elements is determined by system-wide settings.)

scroll-bar

This face determines the visual appearance of the scroll bar. See Section 18.12
[Scroll Bars], page 163.

tool-bar This face determines the color of tool bar icons. See Section 18.15 [Tool Bars],
page 164.

menu This face determines the colors and font of Emacs’s menus. See Section 18.14
[Menu Bars], page 163.

Chapter 11: Controlling the Display 74

11.11 Text Scale

To increase the height of the default face in the current buffer, type C-x C-+ or C-x C-=. To
decrease it, type C-x C--. To restore the default (global) face height, type C-x C-0. These
keys are all bound to the same command, text-scale-adjust, which looks at the last key
typed to determine which action to take.

The final key of these commands may be repeated without the leading C-x. For instance,
C-x C-= C-= C-= increases the face height by three steps. Each step scales the text height
by a factor of 1.2; to change this factor, customize the variable text-scale-mode-step. As
an exception, a numeric argument of 0 to the text-scale-adjust command restores the
default height, similar to typing C-x C-0.

The commands text-scale-increase and text-scale-decrease increase or decrease
the height of the default face, just like C-x C-+ and C-x C-- respectively. You may find it
convenient to bind to these commands, rather than text-scale-adjust.

The command text-scale-set scales the height of the default face in the current buffer
to an absolute level specified by its prefix argument.

The above commands automatically enable the minor mode text-scale-mode if the
current font scaling is other than 1, and disable it otherwise.

11.12 Font Lock mode

Font Lock mode is a minor mode, always local to a particular buffer, which assigns faces to
(or fontifies) the text in the buffer. Each buffer’s major mode tells Font Lock mode which
text to fontify; for instance, programming language modes fontify syntactically relevant
constructs like comments, strings, and function names.

Font Lock mode is enabled by default. To toggle it in the current buffer, type M-x

font-lock-mode. A positive numeric argument unconditionally enables Font Lock mode,
and a negative or zero argument disables it.

To toggle Font Lock mode in all buffers, type M-x global-font-lock-mode. To impose
this setting for future Emacs sessions, customize the variable global-font-lock-mode (see
Section 33.1 [Easy Customization], page 398), or add the following line to your init file:

(global-font-lock-mode 0)

If you have disabled Global Font Lock mode, you can still enable Font Lock for specific
major modes by adding the function font-lock-mode to the mode hooks (see Section 33.2.2
[Hooks], page 408). For example, to enable Font Lock mode for editing C files, you can do
this:

(add-hook ’c-mode-hook ’font-lock-mode)

Font Lock mode uses several specifically named faces to do its job, including font-

lock-string-face, font-lock-comment-face, and others. The easiest way to find them
all is to use M-x customize-group RET font-lock-faces RET. You can then use that cus-
tomization buffer to customize the appearance of these faces. See Section 33.1.5 [Face
Customization], page 402.

You can customize the variable font-lock-maximum-decoration to alter the amount of
fontification applied by Font Lock mode, for major modes that support this feature. The
value should be a number (with 1 representing a minimal amount of fontification; some

Chapter 11: Controlling the Display 75

modes support levels as high as 3); or t, meaning “as high as possible” (the default). You
can also specify different numbers for particular major modes; for example, to use level 1
for C/C++ modes, and the default level otherwise, use the value

’((c-mode . 1) (c++-mode . 1)))

Comment and string fontification (or “syntactic” fontification) relies on analysis of the
syntactic structure of the buffer text. For the sake of speed, some modes, including Lisp
mode, rely on a special convention: an open-parenthesis or open-brace in the leftmost
column always defines the beginning of a defun, and is thus always outside any string or
comment. Therefore, you should avoid placing an open-parenthesis or open-brace in the
leftmost column, if it is inside a string or comment. See Section 23.2.1 [Left Margin Paren],
page 231, for details.

The variable font-lock-beginning-of-syntax-function, which is always buffer-local,
specifies how Font Lock mode can find a position guaranteed to be outside any comment or
string. In modes which use the leftmost column parenthesis convention, the default value
of the variable is beginning-of-defun—that tells Font Lock mode to use the convention.
If you set this variable to nil, Font Lock no longer relies on the convention. This avoids
incorrect results, but the price is that, in some cases, fontification for a changed text must
rescan buffer text from the beginning of the buffer. This can considerably slow down
redisplay while scrolling, particularly if you are close to the end of a large buffer.

Font Lock highlighting patterns already exist for most modes, but you may want to
fontify additional patterns. You can use the function font-lock-add-keywords, to add
your own highlighting patterns for a particular mode. For example, to highlight ‘FIXME:’
words in C comments, use this:

(add-hook ’c-mode-hook

(lambda ()

(font-lock-add-keywords nil

’(("\\<\\(FIXME\\):" 1

font-lock-warning-face t)))))

To remove keywords from the font-lock highlighting patterns, use the function font-lock-

remove-keywords. See Section “Search-based Fontification” in The Emacs Lisp Reference
Manual.

Fontifying large buffers can take a long time. To avoid large delays when a file is visited,
Emacs initially fontifies only the visible portion of a buffer. As you scroll through the buffer,
each portion that becomes visible is fontified as soon as it is displayed; this type of Font Lock
is called Just-In-Time (or JIT) Lock. You can control how JIT Lock behaves, including
telling it to perform fontification while idle, by customizing variables in the customization
group ‘jit-lock’. See Section 33.1.6 [Specific Customization], page 403.

11.13 Interactive Highlighting

Highlight Changes mode is a minor mode that highlights the parts of the buffer that were
changed most recently, by giving that text a different face. To enable or disable Highlight
Changes mode, use M-x highlight-changes-mode.

Hi Lock mode is a minor mode that highlights text that matches regular expressions you
specify. For example, you can use it to highlight all the references to a certain variable in

Chapter 11: Controlling the Display 76

a program source file, highlight certain parts in a voluminous output of some program, or
highlight certain names in an article. To enable or disable Hi Lock mode, use the command
M-x hi-lock-mode. To enable Hi Lock mode for all buffers, use M-x global-hi-lock-mode

or place (global-hi-lock-mode 1) in your ‘.emacs’ file.

Hi Lock mode works like Font Lock mode (see Section 11.12 [Font Lock], page 74), except
that you specify explicitly the regular expressions to highlight. You control them with these
commands:

C-x w h regexp RET face RET

Highlight text that matches regexp using face face (highlight-regexp). The
highlighting will remain as long as the buffer is loaded. For example, to highlight
all occurrences of the word “whim” using the default face (a yellow background)
C-x w h whim RET RET. Any face can be used for highlighting, Hi Lock provides
several of its own and these are pre-loaded into a list of default values. While
being prompted for a face use M-n and M-p to cycle through them.

You can use this command multiple times, specifying various regular expressions
to highlight in different ways.

C-x w r regexp RET

Unhighlight regexp (unhighlight-regexp).

If you invoke this from the menu, you select the expression to unhighlight from
a list. If you invoke this from the keyboard, you use the minibuffer. It will
show the most recently added regular expression; use M-p to show the next
older expression and M-n to select the next newer expression. (You can also
type the expression by hand, with completion.) When the expression you want
to unhighlight appears in the minibuffer, press RET to exit the minibuffer and
unhighlight it.

C-x w l regexp RET face RET

Highlight entire lines containing a match for regexp, using face face
(highlight-lines-matching-regexp).

C-x w b Insert all the current highlighting regexp/face pairs into the buffer at point,
with comment delimiters to prevent them from changing your program. (This
key binding runs the hi-lock-write-interactive-patterns command.)

These patterns are extracted from the comments, if appropriate, if you invoke
M-x hi-lock-find-patterns, or if you visit the file while Hi Lock mode is
enabled (since that runs hi-lock-find-patterns).

C-x w i Extract regexp/face pairs from comments in the current buffer (hi-
lock-find-patterns). Thus, you can enter patterns interactively
with highlight-regexp, store them into the file with hi-lock-write-

interactive-patterns, edit them (perhaps including different faces for
different parenthesized parts of the match), and finally use this command
(hi-lock-find-patterns) to have Hi Lock highlight the edited patterns.

The variable hi-lock-file-patterns-policy controls whether Hi Lock mode
should automatically extract and highlight patterns found in a file when it
is visited. Its value can be nil (never highlight), ask (query the user), or a
function. If it is a function, hi-lock-find-patterns calls it with the patterns

Chapter 11: Controlling the Display 77

as argument; if the function returns non-nil, the patterns are used. The default
is ask. Note that patterns are always highlighted if you call hi-lock-find-
patterns directly, regardless of the value of this variable.

Also, hi-lock-find-patterns does nothing if the current major mode’s sym-
bol is a member of the list hi-lock-exclude-modes.

11.14 Window Fringes

On graphical displays, each Emacs window normally has narrow fringes on the left and
right edges. The fringes are used to display symbols that provide information about the
text in the window. You can type M-x fringe-mode to disable the fringes, or modify their
width. This command affects fringes in all frames; to modify fringes on the selected frame
only, use M-x set-fringe-style.

The most common use of the fringes is to indicate a continuation line (see Section 4.8
[Continuation Lines], page 21). When one line of text is split into multiple screen lines, the
left fringe shows a curving arrow for each screen line except the first, indicating that “this is
not the real beginning”. The right fringe shows a curving arrow for each screen line except
the last, indicating that “this is not the real end”. If the line’s direction is right-to-left (see
Section 19.20 [Bidirectional Editing], page 187), the meanings of the curving arrows in the
fringes are swapped.

The fringes indicate line truncation with short horizontal arrows meaning “there’s more
text on this line which is scrolled horizontally out of view”. Clicking the mouse on one of
the arrows scrolls the display horizontally in the direction of the arrow.

The fringes can also indicate other things, such as buffer boundaries (see Section 11.15
[Displaying Boundaries], page 77), and where a program you are debugging is executing
(see Section 24.6 [Debuggers], page 255).

The fringe is also used for drawing the cursor, if the current line is exactly as wide
as the window and point is at the end of the line. To disable this, change the variable
overflow-newline-into-fringe to nil; this causes Emacs to continue or truncate lines
that are exactly as wide as the window.

11.15 Displaying Boundaries

On graphical displays, Emacs can indicate the buffer boundaries in the fringes. If you enable
this feature, the first line and the last line are marked with angle images in the fringes. This
can be combined with up and down arrow images which say whether it is possible to scroll
the window.

The buffer-local variable indicate-buffer-boundaries controls how the buffer bound-
aries and window scrolling is indicated in the fringes. If the value is left or right, both
angle and arrow bitmaps are displayed in the left or right fringe, respectively.

If value is an alist, each element (indicator . position) specifies the position of one
of the indicators. The indicator must be one of top, bottom, up, down, or t which specifies
the default position for the indicators not present in the alist. The position is one of left,
right, or nil which specifies not to show this indicator.

For example, ((top . left) (t . right)) places the top angle bitmap in left fringe, the
bottom angle bitmap in right fringe, and both arrow bitmaps in right fringe. To show just

Chapter 11: Controlling the Display 78

the angle bitmaps in the left fringe, but no arrow bitmaps, use ((top . left) (bottom .

left)).

11.16 Useless Whitespace

It is easy to leave unnecessary spaces at the end of a line, or empty lines at the end of a
file, without realizing it. In most cases, this trailing whitespace has no effect, but there are
special circumstances where it matters, and it can be a nuisance.

You can make trailing whitespace at the end of a line visible by setting the buffer-local
variable show-trailing-whitespace to t. Then Emacs displays trailing whitespace, using
the face trailing-whitespace.

This feature does not apply when point is at the end of the line containing the whitespace.
Strictly speaking, that is “trailing whitespace” nonetheless, but displaying it specially in
that case looks ugly while you are typing in new text. In this special case, the location of
point is enough to show you that the spaces are present.

Type M-x delete-trailing-whitespace to delete all trailing whitespace within the
buffer. If the region is active, it deletes all trailing whitespace in the region instead.

On graphical displays, Emacs can indicate unused lines at the end of the window with
a small image in the left fringe (see Section 11.14 [Fringes], page 77). The image appears
for screen lines that do not correspond to any buffer text, so blank lines at the end of
the buffer stand out because they lack this image. To enable this feature, set the buffer-
local variable indicate-empty-lines to a non-nil value. You can enable or disable this
feature for all new buffers by setting the default value of this variable, e.g. (setq-default
indicate-empty-lines t).

Whitespace mode is a buffer-local minor mode that lets you “visualize” many kinds of
whitespace in the buffer, by either drawing the whitespace characters with a special face or
displaying them as special glyphs. To toggle this mode, type M-x whitespace-mode. The
kinds of whitespace visualized are determined by the list variable whitespace-style. Here
is a partial list of possible elements (see the variable’s documentation for the full list):

face Enable all visualizations which use special faces. This element has a special
meaning: if it is absent from the list, none of the other visualizations take effect
except space-mark, tab-mark, and newline-mark.

trailing Highlight trailing whitespace.

tabs Highlight tab characters.

spaces Highlight space and non-breaking space characters.

lines Highlight lines longer than 80 lines. To change the column limit, customize the
variable whitespace-line-column.

newline Highlight newlines.

empty Highlight empty lines.

space-mark

Draw space and non-breaking characters with a special glyph.

tab-mark Draw tab characters with a special glyph.

Chapter 11: Controlling the Display 79

newline-mark

Draw newline characters with a special glyph.

11.17 Selective Display

Emacs has the ability to hide lines indented more than a given number of columns. You
can use this to get an overview of a part of a program.

To hide lines in the current buffer, type C-x $ (set-selective-display) with a numeric
argument n. Then lines with at least n columns of indentation disappear from the screen.
The only indication of their presence is that three dots (‘...’) appear at the end of each
visible line that is followed by one or more hidden ones.

The commands C-n and C-p move across the hidden lines as if they were not there.

The hidden lines are still present in the buffer, and most editing commands see them
as usual, so you may find point in the middle of the hidden text. When this happens, the
cursor appears at the end of the previous line, after the three dots. If point is at the end of
the visible line, before the newline that ends it, the cursor appears before the three dots.

To make all lines visible again, type C-x $ with no argument.

If you set the variable selective-display-ellipses to nil, the three dots do not
appear at the end of a line that precedes hidden lines. Then there is no visible indication
of the hidden lines. This variable becomes local automatically when set.

See also Section 22.8 [Outline Mode], page 207 for another way to hide part of the text
in a buffer.

11.18 Optional Mode Line Features

The buffer percentage pos indicates the percentage of the buffer above the top of the window.
You can additionally display the size of the buffer by typing M-x size-indication-mode to
turn on Size Indication mode. The size will be displayed immediately following the buffer
percentage like this:

POS of SIZE

Here SIZE is the human readable representation of the number of characters in the buffer,
which means that ‘k’ for 10^3, ‘M’ for 10^6, ‘G’ for 10^9, etc., are used to abbreviate.

The current line number of point appears in the mode line when Line Number mode is
enabled. Use the command M-x line-number-mode to turn this mode on and off; normally
it is on. The line number appears after the buffer percentage pos, with the letter ‘L’ to
indicate what it is.

Similarly, you can display the current column number by turning on Column number
mode with M-x column-number-mode. The column number is indicated by the letter ‘C’.
However, when both of these modes are enabled, the line and column numbers are displayed
in parentheses, the line number first, rather than with ‘L’ and ‘C’. For example: ‘(561,2)’.
See Section 20.2 [Minor Modes], page 190, for more information about minor modes and
about how to use these commands.

If you have narrowed the buffer (see Section 11.5 [Narrowing], page 68), the displayed
line number is relative to the accessible portion of the buffer. Thus, it isn’t suitable as an
argument to goto-line. (Use what-line command to see the line number relative to the
whole file.)

Chapter 11: Controlling the Display 80

If the buffer is very large (larger than the value of line-number-display-limit), Emacs
won’t compute the line number, because that would be too slow; therefore, the line number
won’t appear on the mode-line. To remove this limit, set line-number-display-limit to
nil.

Line-number computation can also be slow if the lines in the buffer are too long. For
this reason, Emacs doesn’t display line numbers if the average width, in characters, of lines
near point is larger than the value of line-number-display-limit-width. The default
value is 200 characters.

Emacs can optionally display the time and system load in all mode lines. To enable
this feature, type M-x display-time or customize the option display-time-mode. The
information added to the mode line looks like this:

hh:mmpm l.ll

Here hh and mm are the hour and minute, followed always by ‘am’ or ‘pm’. l.ll is the average
number, collected for the last few minutes, of processes in the whole system that were
either running or ready to run (i.e. were waiting for an available processor). (Some fields
may be missing if your operating system cannot support them.) If you prefer time display
in 24-hour format, set the variable display-time-24hr-format to t.

The word ‘Mail’ appears after the load level if there is mail for you that you have
not read yet. On graphical displays, you can use an icon instead of ‘Mail’ by customiz-
ing display-time-use-mail-icon; this may save some space on the mode line. You can
customize display-time-mail-face to make the mail indicator prominent. Use display-

time-mail-file to specify the mail file to check, or set display-time-mail-directory to
specify the directory to check for incoming mail (any nonempty regular file in the directory
is considered as “newly arrived mail”).

When running Emacs on a laptop computer, you can display the battery charge on
the mode-line, by using the command display-battery-mode or customizing the variable
display-battery-mode. The variable battery-mode-line-format determines the way the
battery charge is displayed; the exact mode-line message depends on the operating system,
and it usually shows the current battery charge as a percentage of the total charge.

On graphical displays, the mode line is drawn as a 3D box. If you don’t like this effect,
you can disable it by customizing the mode-line face and setting its box attribute to nil.
See Section 33.1.5 [Face Customization], page 402.

By default, the mode line of nonselected windows is displayed in a different face, called
mode-line-inactive. Only the selected window is displayed in the mode-line face. This
helps show which window is selected. When the minibuffer is selected, since it has no mode
line, the window from which you activated the minibuffer has its mode line displayed using
mode-line; as a result, ordinary entry to the minibuffer does not change any mode lines.

You can disable use of mode-line-inactive by setting variable mode-line-in-non-

selected-windows to nil; then all mode lines are displayed in the mode-line face.

You can customize the mode line display for each of the end-of-line formats by setting
each of the variables eol-mnemonic-unix, eol-mnemonic-dos, eol-mnemonic-mac, and
eol-mnemonic-undecided to the strings you prefer.

Chapter 11: Controlling the Display 81

11.19 How Text Is Displayed

Most characters are printing characters: when they appear in a buffer, they are displayed
literally on the screen. Printing characters include ASCII numbers, letters, and punctuation
characters, as well as many non-ASCII characters.

The ASCII character set contains non-printing control characters. Two of these are
displayed specially: the newline character (Unicode code point U+000A) is displayed by
starting a new line, while the tab character (U+0009) is displayed as a space that extends
to the next tab stop column (normally every 8 columns). The number of spaces per tab is
controlled by the buffer-local variable tab-width, which must have an integer value between
1 and 1000, inclusive. Note that how the tab character in the buffer is displayed has nothing
to do with the definition of TAB as a command.

Other ASCII control characters, whose codes are below U+0020 (octal 40, decimal 32),
are displayed as a caret (‘^’) followed by the non-control version of the character, with the
escape-glyph face. For instance, the ‘control-A’ character, U+0001, is displayed as ‘^A’.

The raw bytes with codes U+0080 (octal 200) through U+009F (octal 237) are displayed
as octal escape sequences, with the escape-glyph face. For instance, character code U+0098
(octal 230) is displayed as ‘\230’. If you change the buffer-local variable ctl-arrow to nil,
the ASCII control characters are also displayed as octal escape sequences instead of caret
escape sequences.

Some non-ASCII characters have the same appearance as an ASCII space or hyphen
(minus) character. Such characters can cause problems if they are entered into a buffer
without your realization, e.g. by yanking; for instance, source code compilers typically do not
treat non-ASCII spaces as whitespace characters. To deal with this problem, Emacs displays
such characters specially: it displays U+00A0 (no-break space) with the nobreak-space face,
and it displays U+00AD (soft hyphen), U+2010 (hyphen), and U+2011 (non-breaking hyphen)
with the escape-glyph face. To disable this, change the variable nobreak-char-display

to nil. If you give this variable a non-nil and non-t value, Emacs instead displays such
characters as a highlighted backslash followed by a space or hyphen.

You can customize the way any particular character code is displayed by means of a
display table. See Section “Display Tables” in The Emacs Lisp Reference Manual.

On graphical displays, some characters may have no glyphs in any of the fonts available
to Emacs. These glyphless characters are normally displayed as boxes containing the hex-
adecimal character code. Similarly, on text terminals, characters that cannot be displayed
using the terminal encoding (see Section 19.13 [Terminal Coding], page 181) are normally
displayed as question signs. You can control the display method by customizing the vari-
able glyphless-char-display-control. See Section “Glyphless Character Display” in
The Emacs Lisp Reference Manual, for details.

11.20 Displaying the Cursor

On a text terminal, the cursor’s appearance is controlled by the terminal, largely out of the
control of Emacs. Some terminals offer two different cursors: a “visible” static cursor, and a
“very visible” blinking cursor. By default, Emacs uses the very visible cursor, and switches
to it when you start or resume Emacs. If the variable visible-cursor is nil when Emacs
starts or resumes, it uses the normal cursor.

Chapter 11: Controlling the Display 82

On a graphical display, many more properties of the text cursor can be altered. To
customize its color, change the :background attribute of the face named cursor (see
Section 33.1.5 [Face Customization], page 402). (The other attributes of this face have
no effect; the text shown under the cursor is drawn using the frame’s background color.)
To change its shape, customize the buffer-local variable cursor-type; possible values are
box (the default), hollow (a hollow box), bar (a vertical bar), (bar . n) (a vertical bar
n pixels wide), hbar (a horizontal bar), (hbar . n) (a horizontal bar n pixels tall), or nil

(no cursor at all).

To disable cursor blinking, change the variable blink-cursor-mode to nil (see
Section 33.1 [Easy Customization], page 398), or add the line (blink-cursor-mode 0) to
your init file. Alternatively, you can change how the cursor looks when it “blinks off” by
customizing the list variable blink-cursor-alist. Each element in the list should have
the form (on-type . off-type); this means that if the cursor is displayed as on-type
when it blinks on (where on-type is one of the cursor types described above), then it is
displayed as off-type when it blinks off.

Some characters, such as tab characters, are “extra wide”. When the cursor is positioned
over such a character, it is normally drawn with the default character width. You can make
the cursor stretch to cover wide characters, by changing the variable x-stretch-cursor to
a non-nil value.

The cursor normally appears in non-selected windows as a non-blinking hollow box.
(For a bar cursor, it instead appears as a thinner bar.) To turn off cursors in non-selected
windows, change the variable cursor-in-non-selected-windows to nil.

To make the cursor even more visible, you can use HL Line mode, a minor mode that
highlights the line containing point. Use M-x hl-line-mode to enable or disable it in the
current buffer. M-x global-hl-line-mode enables or disables the same mode globally.

11.21 Line Truncation

As an alternative to continuation (see Section 4.8 [Continuation Lines], page 21), Emacs
can display long lines by truncation. This means that all the characters that do not fit
in the width of the screen or window do not appear at all. On graphical displays, a small
straight arrow in the fringe indicates truncation at either end of the line. On text terminals,
this is indicated with ‘$’ signs in the leftmost and/or rightmost columns.

Horizontal scrolling automatically causes line truncation (see Section 11.4 [Horizontal
Scrolling], page 68). You can explicitly enable line truncation for a particular buffer with
the command M-x toggle-truncate-lines. This works by locally changing the variable
truncate-lines. If that variable is non-nil, long lines are truncated; if it is nil, they
are continued onto multiple screen lines. Setting the variable truncate-lines in any way
makes it local to the current buffer; until that time, the default value, which is normally
nil, is in effect.

If a split window becomes too narrow, Emacs may automatically enable line truncation.
See Section 17.2 [Split Window], page 147, for the variable truncate-partial-width-

windows which controls this.

Chapter 11: Controlling the Display 83

11.22 Visual Line Mode

Another alternative to ordinary line continuation is to use word wrap. Here, each long
logical line is divided into two or more screen lines, like in ordinary line continuation.
However, Emacs attempts to wrap the line at word boundaries near the right window edge.
This makes the text easier to read, as wrapping does not occur in the middle of words.

Word wrap is enabled by Visual Line mode, an optional minor mode. To turn on Visual
Line mode in the current buffer, type M-x visual-line-mode; repeating this command
turns it off. You can also turn on Visual Line mode using the menu bar: in the Options menu,
select the ‘Line Wrapping in this Buffer’ submenu, followed by the ‘Word Wrap (Visual

Line Mode)’ menu item. While Visual Line mode is enabled, the mode-line shows the string
‘wrap’ in the mode display. The command M-x global-visual-line-mode toggles Visual
Line mode in all buffers.

In Visual Line mode, some editing commands work on screen lines instead of logical
lines: C-a (beginning-of-visual-line) moves to the beginning of the screen line, C-e

(end-of-visual-line) moves to the end of the screen line, and C-k (kill-visual-line)
kills text to the end of the screen line.

To move by logical lines, use the commands M-x next-logical-line and M-x

previous-logical-line. These move point to the next logical line and the previous
logical line respectively, regardless of whether Visual Line mode is enabled. If you use
these commands frequently, it may be convenient to assign key bindings to them. See
Section 33.3.6 [Init Rebinding], page 417.

By default, word-wrapped lines do not display fringe indicators. Visual Line mode is
often used to edit files that contain many long logical lines, so having a fringe indicator for
each wrapped line would be visually distracting. You can change this by customizing the
variable visual-line-fringe-indicators.

11.23 Customization of Display

This section describes variables that control miscellaneous aspects of the appearance of the
Emacs screen. Beginning users can skip it.

If the variable visible-bell is non-nil, Emacs attempts to make the whole screen
blink when it would normally make an audible bell sound. This variable has no effect if
your terminal does not have a way to make the screen blink.

The variable echo-keystrokes controls the echoing of multi-character keys; its value is
the number of seconds of pause required to cause echoing to start, or zero, meaning don’t
echo at all. The value takes effect when there is something to echo. See Section 1.2 [Echo
Area], page 7.

On graphical displays, Emacs displays the mouse pointer as an hourglass if Emacs is
busy. To disable this feature, set the variable display-hourglass to nil. The variable
hourglass-delay determines the number of seconds of “busy time” before the hourglass is
shown; the default is 1.

If the mouse pointer lies inside an Emacs frame, Emacs makes it invisible each time you
type a character to insert text, to prevent it from obscuring the text. (To be precise, the
hiding occurs when you type a “self-inserting” character. See Section 4.1 [Inserting Text],

Chapter 11: Controlling the Display 84

page 16.) Moving the mouse pointer makes it visible again. To disable this feature, set the
variable make-pointer-invisible to nil.

On graphical displays, the variable underline-minimum-offset determines the mini-
mum distance between the baseline and underline, in pixels, for underlined text. By default,
the value is 1; increasing it may improve the legibility of underlined text for certain fonts.
(However, Emacs will never draw the underline below the current line area.) The variable
x-underline-at-descent-line determines how to draw underlined text. The default is
nil, which means to draw it at the baseline level of the font; if you change it to nil, Emacs
draws the underline at the same height as the font’s descent line.

The variable overline-margin specifies the vertical position of an overline above the
text, including the height of the overline itself, in pixels; the default is 2.

On some text terminals, bold face and inverse video together result in text that is hard
to read. Call the function tty-suppress-bold-inverse-default-colors with a non-nil
argument to suppress the effect of bold-face in this case.

Chapter 12: Searching and Replacement 85

12 Searching and Replacement

Like other editors, Emacs has commands to search for occurrences of a string. Emacs also
has commands to replace occurrences of a string with a different string. There are also
commands that do the same thing, but search for patterns instead of fixed strings.

You can also search multiple files under the control of a tags table (see Section 25.3.6
[Tags Search], page 293) or through the Dired A command (see Section 27.7 [Operating
on Files], page 307), or ask the grep program to do it (see Section 24.4 [Grep Searching],
page 253).

12.1 Incremental Search

The principal search command in Emacs is incremental: it begins searching as soon as you
type the first character of the search string. As you type in the search string, Emacs shows
you where the string (as you have typed it so far) would be found. When you have typed
enough characters to identify the place you want, you can stop. Depending on what you
plan to do next, you may or may not need to terminate the search explicitly with RET.

C-s Incremental search forward (isearch-forward).

C-r Incremental search backward (isearch-backward).

12.1.1 Basics of Incremental Search

C-s Begin incremental search (isearch-forward).

C-r Begin reverse incremental search (isearch-backward).

C-s (isearch-forward) starts a forward incremental search. It reads characters from
the keyboard, and moves point just past the end of the next occurrence of those characters
in the buffer.

For instance, if you type C-s and then F, that puts the cursor after the first ‘F’ that
occurs in the buffer after the starting point. Then if you then type O, the cursor moves to
just after the first ‘FO’; the ‘F’ in that ‘FO’ might not be the first ‘F’ previously found. After
another O, the cursor moves to just after the first ‘FOO’.

At each step, Emacs highlights the current match—the buffer text that matches the
search string—using the isearch face (see Section 11.8 [Faces], page 70). The current
search string is also displayed in the echo area.

If you make a mistake typing the search string, type DEL. Each DEL cancels the last
character of the search string.

When you are satisfied with the place you have reached, type RET. This stops searching,
leaving the cursor where the search brought it. Also, any command not specially meaningful
in searches stops the searching and is then executed. Thus, typing C-a exits the search and
then moves to the beginning of the line. RET is necessary only if the next command you
want to type is a printing character, DEL, RET, or another character that is special within
searches (C-q, C-w, C-r, C-s, C-y, M-y, M-r, M-c, M-e, and some others described below).

As a special exception, entering RET when the search string is empty launches nonin-
cremental search (see Section 12.2 [Nonincremental Search], page 89).

Chapter 12: Searching and Replacement 86

When you exit the incremental search, it adds the original value of point to the mark
ring, without activating the mark; you can thus use C-u C-SPC to return to where you were
before beginning the search. See Section 8.4 [Mark Ring], page 47. It only does this if the
mark was not already active.

To search backwards, use C-r (isearch-backward) instead of C-s to start the search. A
backward search finds matches that end before the starting point, just as a forward search
finds matches that begin after it.

12.1.2 Repeating Incremental Search

Suppose you search forward for ‘FOO’ and find a match, but not the one you expected to
find: the ‘FOO’ you were aiming for occurs later in the buffer. In this event, type another
C-s to move to the next occurrence of the search string. You can repeat this any number
of times. If you overshoot, you can cancel some C-s characters with DEL. Similarly, each
C-r in a backward incremental search repeats the backward search.

If you pause for a little while during incremental search, Emacs highlights all the other
possible matches for the search string that are present on the screen. This helps you
anticipate where you can get to by typing C-s or C-r to repeat the search. The other
matches are highlighted differently from the current match, using the customizable face
lazy-highlight (see Section 11.8 [Faces], page 70). If you don’t like this feature, you can
disable it by setting isearch-lazy-highlight to nil.

After exiting a search, you can search for the same string again by typing just C-s C-s.
The first C-s is the key that invokes incremental search, and the second C-s means “search
again”. Similarly, C-r C-r searches backward for the last search string. In determining the
last search string, it doesn’t matter whether the string was searched for with C-s or C-r.

If you are searching forward but you realize you were looking for something before the
starting point, type C-r to switch to a backward search, leaving the search string unchanged.
Similarly, C-s in a backward search switches to a forward search.

If a search is failing and you ask to repeat it by typing another C-s, it starts again
from the beginning of the buffer. Repeating a failing reverse search with C-r starts again
from the end. This is called wrapping around, and ‘Wrapped’ appears in the search prompt
once this has happened. If you keep on going past the original starting point of the search,
it changes to ‘Overwrapped’, which means that you are revisiting matches that you have
already seen.

To reuse earlier search strings, use the search ring. The commands M-p and M-n move
through the ring to pick a search string to reuse. These commands leave the selected search
ring element in the minibuffer, where you can edit it.

To edit the current search string in the minibuffer without replacing it with items from
the search ring, type M-e. Type C-s or C-r to finish editing the string and search for it.

12.1.3 Errors in Incremental Search

If your string is not found at all, the echo area says ‘Failing I-Search’, and the cursor
moves past the place where Emacs found as much of your string as it could. Thus, if you
search for ‘FOOT’, and there is no ‘FOOT’, you might see the cursor after the ‘FOO’ in ‘FOOL’.
In the echo area, the part of the search string that failed to match is highlighted using the
face isearch-fail.

Chapter 12: Searching and Replacement 87

At this point, there are several things you can do. If your string was mistyped, you can
use DEL to erase some of it and correct it. If you like the place you have found, you can
type RET to remain there. Or you can type C-g, which removes from the search string the
characters that could not be found (the ‘T’ in ‘FOOT’), leaving those that were found (the
‘FOO’ in ‘FOOT’). A second C-g at that point cancels the search entirely, returning point to
where it was when the search started.

The quit command, C-g, does special things during searches; just what it does depends
on the status of the search. If the search has found what you specified and is waiting for
input, C-g cancels the entire search, moving the cursor back to where you started the search.
If C-g is typed when there are characters in the search string that have not been found—
because Emacs is still searching for them, or because it has failed to find them—then the
search string characters which have not been found are discarded from the search string.
With them gone, the search is now successful and waiting for more input, so a second C-g

will cancel the entire search.

12.1.4 Special Input for Incremental Search

Some of the characters you type during incremental search have special effects.

If the search string you entered contains only lower-case letters, the search is case-
insensitive; as long as an upper-case letter exists in the search string, the search becomes
case-sensitive. If you delete the upper-case character from the search string, it ceases to
have this effect. See Section 12.8 [Search Case], page 96.

To search for a newline character, type C-j.

To search for other control characters, such as CONTROL-S, quote it by typing C-q

first (see Section 4.1 [Inserting Text], page 16). To search for non-ASCII characters, you
can either use C-q and enter its octal code, or use an input method (see Section 19.4 [Input
Methods], page 171). If an input method is enabled in the current buffer when you start
the search, you can use it in the search string also. While typing the search string, you
can toggle the input method with the command C-\ (isearch-toggle-input-method).
You can also turn on a non-default input method with C-^ (isearch-toggle-specified-
input-method), which prompts for the name of the input method. When an input method
is active during incremental search, the search prompt includes the input method mnemonic,
like this:

I-search [im]:

where im is the mnemonic of the active input method. Any input method you enable during
incremental search remains enabled in the current buffer afterwards.

Typing M-% in incremental search invokes query-replace or query-replace-regexp

(depending on search mode) with the current search string used as the string to replace.
See Section 12.9.4 [Query Replace], page 98.

Typing M-TAB in incremental search invokes isearch-complete, which attempts to com-
plete the search string using the search ring as a list of completion alternatives. See
Section 5.3 [Completion], page 28. In many operating systems, the M-TAB key sequence
is captured by the window manager; you then need to rebind isearch-complete to an-
other key sequence if you want to use it (see Section 33.3.5 [Rebinding], page 416).

Chapter 12: Searching and Replacement 88

When incremental search is active, you can type C-h C-h to access interactive help
options, including a list of special key bindings. These key bindings are part of the keymap
isearch-mode-map (see Section 33.3.1 [Keymaps], page 414).

12.1.5 Isearch Yanking

Within incremental search, C-y (isearch-yank-kill) appends the current kill to the search
string. M-y (isearch-yank-pop), if called after C-y, replaces that appended text with
an earlier kill, similar to the usual M-y (yank-pop) command (see Section 9.2 [Yanking],
page 52). Mouse-2 appends the current X selection (see Section 9.3.2 [Primary Selection],
page 56).

C-w (isearch-yank-word-or-char) appends the next character or word at point to the
search string. This is an easy way to search for another occurrence of the text at point.
(The decision of whether to copy a character or a word is heuristic.)

Similarly, M-s C-e (isearch-yank-line) appends the rest of the current line to the
search string. If point is already at the end of a line, it appends the next line.

If the search is currently case-insensitive, both C-w and M-s C-e convert the text they
copy to lower case, so that the search remains case-insensitive.

C-M-w (isearch-del-char) deletes the last character from the search string, and C-M-y

(isearch-yank-char) appends the character after point to the search string. An alter-
native method to add the character after point is to enter the minibuffer with M-e (see
Section 12.1.2 [Repeat Isearch], page 86) and type C-f at the end of the search string in
the minibuffer.

12.1.6 Scrolling During Incremental Search

Normally, scrolling commands exit incremental search. If you change the variable isearch-
allow-scroll to a non-nil value, that enables the use of the scroll-bar, as well as keyboard
scrolling commands like C-v, M-v, and C-l (see Section 11.1 [Scrolling], page 65). This
applies only to calling these commands via their bound key sequences—typing M-x will still
exit the search. You can give prefix arguments to these commands in the usual way. This
feature won’t let you scroll the current match out of visibility, however.

The isearch-allow-scroll feature also affects some other commands, such as C-x 2

(split-window-below) and C-x ^ (enlarge-window), which don’t exactly scroll but do
affect where the text appears on the screen. It applies to any command whose name has
a non-nil isearch-scroll property. So you can control which commands are affected by
changing these properties.

For example, to make C-h l usable within an incremental search in all future Emacs
sessions, use C-h c to find what command it runs (see Section 7.1 [Key Help], page 38),
which is view-lossage. Then you can put the following line in your init file (see Section 33.4
[Init File], page 423):

(put ’view-lossage ’isearch-scroll t)

This feature can be applied to any command that doesn’t permanently change point, the
buffer contents, the match data, the current buffer, or the selected window and frame. The
command must not itself attempt an incremental search.

Chapter 12: Searching and Replacement 89

12.1.7 Searching the Minibuffer

If you start an incremental search while the minibuffer is active, Emacs searches the contents
of the minibuffer. Unlike searching an ordinary buffer, the search string is not shown in the
echo area, because that is used to display the minibuffer.

If an incremental search fails in the minibuffer, it tries searching the minibuffer history.
See Section 5.4 [Minibuffer History], page 32. You can visualize the minibuffer and its
history as a series of “pages”, with the earliest history element on the first page and the
current minibuffer on the last page. A forward search, C-s, searches forward to later pages;
a reverse search, C-r, searches backwards to earlier pages. Like in ordinary buffer search, a
failing search can wrap around, going from the last page to the first page or vice versa.

When the current match is on a history element, that history element is pulled into the
minibuffer. If you exit the incremental search normally (e.g. by typing RET), it remains
in the minibuffer afterwards. Canceling the search, with C-g, restores the contents of the
minibuffer when you began the search.

12.2 Nonincremental Search

Emacs also has conventional nonincremental search commands, which require you to type
the entire search string before searching begins.

C-s RET string RET

Search for string.

C-r RET string RET

Search backward for string.

To start a nonincremental search, first type C-s RET. This enters the minibuffer to read
the search string; terminate the string with RET, and then the search takes place. If the
string is not found, the search command signals an error.

When you type C-s RET, the C-s invokes incremental search as usual. That command is
specially programmed to invoke the command for nonincremental search, search-forward,
if the string you specify is empty. (Such an empty argument would otherwise be useless.)
C-r RET does likewise, invoking the command search-backward.

12.3 Word Search

A word search finds a sequence of words without regard to the type of punctuation between
them. For instance, if you enter a search string that consists of two words separated by a
single space, the search matches any sequence of those two words separated by one or more
spaces, newlines, or other punctuation characters. This is particularly useful for searching
text documents, because you don’t have to worry whether the words you are looking for are
separated by newlines or spaces.

M-s w If incremental search is active, toggle word search mode (isearch-
toggle-word); otherwise, begin an incremental forward word search
(isearch-forward-word).

M-s w RET words RET

Search for words, using a forward nonincremental word search.

Chapter 12: Searching and Replacement 90

M-s w C-r RET words RET

Search backward for words, using a nonincremental word search.

To begin a forward incremental word search, type M-s w. If incremental search is not
already active, this runs the command isearch-forward-word. If incremental search is
already active (whether a forward or backward search), M-s w switches to a word search
while keeping the direction of the search and the current search string unchanged. You can
toggle word search back off by typing M-s w again.

To begin a nonincremental word search, type M-s w RET for a forward search, or M-s

w C-r RET for a backward search. These run the commands word-search-forward and
word-search-backward respectively.

Incremental and nonincremental word searches differ slightly in the way they find a
match. In a nonincremental word search, the last word in the search string must exactly
match a whole word. In an incremental word search, the matching is more lax: the last word
in the search string can match part of a word, so that the matching proceeds incrementally
as you type. This additional laxity does not apply to the lazy highlight, which always
matches whole words.

12.4 Regular Expression Search

A regular expression (or regexp for short) is a pattern that denotes a class of alternative
strings to match. Emacs provides both incremental and nonincremental ways to search for
a match for a regexp. The syntax of regular expressions is explained in the next section.

C-M-s Begin incremental regexp search (isearch-forward-regexp).

C-M-r Begin reverse incremental regexp search (isearch-backward-regexp).

Incremental search for a regexp is done by typing C-M-s (isearch-forward-regexp),
by invoking C-s with a prefix argument (whose value does not matter), or by typing M-r

within a forward incremental search. This command reads a search string incrementally
just like C-s, but it treats the search string as a regexp rather than looking for an exact
match against the text in the buffer. Each time you add text to the search string, you make
the regexp longer, and the new regexp is searched for. To search backward for a regexp, use
C-M-r (isearch-backward-regexp), C-r with a prefix argument, or M-r within a backward
incremental search.

All of the special key sequences in an ordinary incremental search do similar things in an
incremental regexp search. For instance, typing C-s immediately after starting the search
retrieves the last incremental search regexp used and searches forward for it. Incremental
regexp and non-regexp searches have independent defaults. They also have separate search
rings, which you can access with M-p and M-n.

If you type SPC in incremental regexp search, it matches any sequence of whitespace
characters, including newlines. If you want to match just a space, type C-q SPC. You can
control what a bare space matches by setting the variable search-whitespace-regexp to
the desired regexp.

In some cases, adding characters to the regexp in an incremental regexp search can
make the cursor move back and start again. For example, if you have searched for ‘foo’
and you add ‘\|bar’, the cursor backs up in case the first ‘bar’ precedes the first ‘foo’. See
Section 12.5 [Regexps], page 91.

Chapter 12: Searching and Replacement 91

Forward and backward regexp search are not symmetrical, because regexp matching in
Emacs always operates forward, starting with the beginning of the regexp. Thus, forward
regexp search scans forward, trying a forward match at each possible starting position.
Backward regexp search scans backward, trying a forward match at each possible starting
position. These search methods are not mirror images.

Nonincremental search for a regexp is done with the commands re-search-forward

and re-search-backward. You can invoke these with M-x, or by way of incremental regexp
search with C-M-s RET and C-M-r RET.

If you use the incremental regexp search commands with a prefix argument, they perform
ordinary string search, like isearch-forward and isearch-backward. See Section 12.1
[Incremental Search], page 85.

12.5 Syntax of Regular Expressions

This manual describes regular expression features that users typically use. See Section
“Regular Expressions” in The Emacs Lisp Reference Manual, for additional features used
mainly in Lisp programs.

Regular expressions have a syntax in which a few characters are special constructs and
the rest are ordinary. An ordinary character matches that same character and nothing else.
The special characters are ‘$^.*+?[\’. The character ‘]’ is special if it ends a character
alternative (see later). The character ‘-’ is special inside a character alternative. Any other
character appearing in a regular expression is ordinary, unless a ‘\’ precedes it. (When you
use regular expressions in a Lisp program, each ‘\’ must be doubled, see the example near
the end of this section.)

For example, ‘f’ is not a special character, so it is ordinary, and therefore ‘f’ is a regular
expression that matches the string ‘f’ and no other string. (It does not match the string
‘ff’.) Likewise, ‘o’ is a regular expression that matches only ‘o’. (When case distinctions
are being ignored, these regexps also match ‘F’ and ‘O’, but we consider this a generalization
of “the same string”, rather than an exception.)

Any two regular expressions a and b can be concatenated. The result is a regular
expression which matches a string if a matches some amount of the beginning of that string
and b matches the rest of the string. For example, concatenating the regular expressions
‘f’ and ‘o’ gives the regular expression ‘fo’, which matches only the string ‘fo’. Still trivial.
To do something nontrivial, you need to use one of the special characters. Here is a list of
them.

. (Period) is a special character that matches any single character except a newline. For
example, the regular expressions ‘a.b’ matches any three-character string that
begins with ‘a’ and ends with ‘b’.

* is not a construct by itself; it is a postfix operator that means to match the
preceding regular expression repetitively any number of times, as many times
as possible. Thus, ‘o*’ matches any number of ‘o’s, including no ‘o’s.

‘*’ always applies to the smallest possible preceding expression. Thus, ‘fo*’
has a repeating ‘o’, not a repeating ‘fo’. It matches ‘f’, ‘fo’, ‘foo’, and so on.

The matcher processes a ‘*’ construct by matching, immediately, as many rep-
etitions as can be found. Then it continues with the rest of the pattern. If that

Chapter 12: Searching and Replacement 92

fails, backtracking occurs, discarding some of the matches of the ‘*’-modified
construct in case that makes it possible to match the rest of the pattern. For
example, in matching ‘ca*ar’ against the string ‘caaar’, the ‘a*’ first tries to
match all three ‘a’s; but the rest of the pattern is ‘ar’ and there is only ‘r’ left
to match, so this try fails. The next alternative is for ‘a*’ to match only two
‘a’s. With this choice, the rest of the regexp matches successfully.

+ is a postfix operator, similar to ‘*’ except that it must match the preceding
expression at least once. Thus, ‘ca+r’ matches the strings ‘car’ and ‘caaaar’
but not the string ‘cr’, whereas ‘ca*r’ matches all three strings.

? is a postfix operator, similar to ‘*’ except that it can match the preceding
expression either once or not at all. Thus, ‘ca?r’ matches ‘car’ or ‘cr’, and
nothing else.

?, +?, ?? are non-greedy variants of the operators above. The normal operators ‘’, ‘+’,
‘?’ match as much as they can, as long as the overall regexp can still match.
With a following ‘?’, they will match as little as possible.

Thus, both ‘ab*’ and ‘ab*?’ can match the string ‘a’ and the string ‘abbbb’;
but if you try to match them both against the text ‘abbb’, ‘ab*’ will match it
all (the longest valid match), while ‘ab*?’ will match just ‘a’ (the shortest valid
match).

Non-greedy operators match the shortest possible string starting at a given
starting point; in a forward search, though, the earliest possible starting point
for match is always the one chosen. Thus, if you search for ‘a.*?$’ against the
text ‘abbab’ followed by a newline, it matches the whole string. Since it can
match starting at the first ‘a’, it does.

\{n\} is a postfix operator specifying n repetitions—that is, the preceding regular
expression must match exactly n times in a row. For example, ‘x\{4\}’ matches
the string ‘xxxx’ and nothing else.

\{n,m\} is a postfix operator specifying between n and m repetitions—that is, the pre-
ceding regular expression must match at least n times, but no more than m
times. If m is omitted, then there is no upper limit, but the preceding regular
expression must match at least n times.
‘\{0,1\}’ is equivalent to ‘?’.
‘\{0,\}’ is equivalent to ‘*’.
‘\{1,\}’ is equivalent to ‘+’.

[...] is a character set, beginning with ‘[’ and terminated by ‘]’.

In the simplest case, the characters between the two brackets are what this set
can match. Thus, ‘[ad]’ matches either one ‘a’ or one ‘d’, and ‘[ad]*’ matches
any string composed of just ‘a’s and ‘d’s (including the empty string). It follows
that ‘c[ad]*r’ matches ‘cr’, ‘car’, ‘cdr’, ‘caddaar’, etc.

You can also include character ranges in a character set, by writing the starting
and ending characters with a ‘-’ between them. Thus, ‘[a-z]’ matches any
lower-case ASCII letter. Ranges may be intermixed freely with individual char-
acters, as in ‘[a-z$%.]’, which matches any lower-case ASCII letter or ‘$’, ‘%’
or period.

Chapter 12: Searching and Replacement 93

You can also include certain special character classes in a character set. A ‘[:’
and balancing ‘:]’ enclose a character class inside a character alternative. For
instance, ‘[[:alnum:]]’ matches any letter or digit. See Section “Char Classes”
in The Emacs Lisp Reference Manual, for a list of character classes.

To include a ‘]’ in a character set, you must make it the first character. For
example, ‘[]a]’ matches ‘]’ or ‘a’. To include a ‘-’, write ‘-’ as the first or last
character of the set, or put it after a range. Thus, ‘[]-]’ matches both ‘]’ and
‘-’.

To include ‘^’ in a set, put it anywhere but at the beginning of the set. (At the
beginning, it complements the set—see below.)

When you use a range in case-insensitive search, you should write both ends of
the range in upper case, or both in lower case, or both should be non-letters.
The behavior of a mixed-case range such as ‘A-z’ is somewhat ill-defined, and
it may change in future Emacs versions.

[^ ...] ‘[^’ begins a complemented character set, which matches any character except
the ones specified. Thus, ‘[^a-z0-9A-Z]’ matches all characters except ASCII

letters and digits.

‘^’ is not special in a character set unless it is the first character. The character
following the ‘^’ is treated as if it were first (in other words, ‘-’ and ‘]’ are not
special there).

A complemented character set can match a newline, unless newline is mentioned
as one of the characters not to match. This is in contrast to the handling of
regexps in programs such as grep.

^ is a special character that matches the empty string, but only at the beginning
of a line in the text being matched. Otherwise it fails to match anything. Thus,
‘^foo’ matches a ‘foo’ that occurs at the beginning of a line.

For historical compatibility reasons, ‘^’ can be used with this meaning only at
the beginning of the regular expression, or after ‘\(’ or ‘\|’.

$ is similar to ‘^’ but matches only at the end of a line. Thus, ‘x+$’ matches a
string of one ‘x’ or more at the end of a line.

For historical compatibility reasons, ‘$’ can be used with this meaning only at
the end of the regular expression, or before ‘\)’ or ‘\|’.

\ has two functions: it quotes the special characters (including ‘\’), and it intro-
duces additional special constructs.

Because ‘\’ quotes special characters, ‘\$’ is a regular expression that matches
only ‘$’, and ‘\[’ is a regular expression that matches only ‘[’, and so on.

See the following section for the special constructs that begin with ‘\’.

Note: for historical compatibility, special characters are treated as ordinary ones if they
are in contexts where their special meanings make no sense. For example, ‘*foo’ treats
‘*’ as ordinary since there is no preceding expression on which the ‘*’ can act. It is poor
practice to depend on this behavior; it is better to quote the special character anyway,
regardless of where it appears.

Chapter 12: Searching and Replacement 94

As a ‘\’ is not special inside a character alternative, it can never remove the special
meaning of ‘-’ or ‘]’. So you should not quote these characters when they have no special
meaning either. This would not clarify anything, since backslashes can legitimately precede
these characters where they have special meaning, as in ‘[^\]’ ("[^\\]" for Lisp string
syntax), which matches any single character except a backslash.

12.6 Backslash in Regular Expressions

For the most part, ‘\’ followed by any character matches only that character. However,
there are several exceptions: two-character sequences starting with ‘\’ that have special
meanings. The second character in the sequence is always an ordinary character when used
on its own. Here is a table of ‘\’ constructs.

\| specifies an alternative. Two regular expressions a and b with ‘\|’ in between
form an expression that matches some text if either a matches it or b matches
it. It works by trying to match a, and if that fails, by trying to match b.

Thus, ‘foo\|bar’ matches either ‘foo’ or ‘bar’ but no other string.

‘\|’ applies to the largest possible surrounding expressions. Only a surrounding
‘\(... \)’ grouping can limit the grouping power of ‘\|’.

Full backtracking capability exists to handle multiple uses of ‘\|’.

\(... \) is a grouping construct that serves three purposes:

1. To enclose a set of ‘\|’ alternatives for other operations. Thus,
‘\(foo\|bar\)x’ matches either ‘foox’ or ‘barx’.

2. To enclose a complicated expression for the postfix operators ‘*’, ‘+’ and
‘?’ to operate on. Thus, ‘ba\(na\)*’ matches ‘bananana’, etc., with any
(zero or more) number of ‘na’ strings.

3. To record a matched substring for future reference.

This last application is not a consequence of the idea of a parenthetical grouping;
it is a separate feature that is assigned as a second meaning to the same ‘\(...

\)’ construct. In practice there is usually no conflict between the two meanings;
when there is a conflict, you can use a “shy” group.

\(?: ... \)

specifies a “shy” group that does not record the matched substring; you can’t
refer back to it with ‘\d ’. This is useful in mechanically combining regular ex-
pressions, so that you can add groups for syntactic purposes without interfering
with the numbering of the groups that are meant to be referred to.

\d matches the same text that matched the dth occurrence of a ‘\(... \)’ con-
struct. This is called a back reference.

After the end of a ‘\(... \)’ construct, the matcher remembers the beginning
and end of the text matched by that construct. Then, later on in the regular
expression, you can use ‘\’ followed by the digit d to mean “match the same
text matched the dth time by the ‘\(... \)’ construct”.

The strings matching the first nine ‘\(... \)’ constructs appearing in a reg-
ular expression are assigned numbers 1 through 9 in the order that the open-

Chapter 12: Searching and Replacement 95

parentheses appear in the regular expression. So you can use ‘\1’ through ‘\9’
to refer to the text matched by the corresponding ‘\(... \)’ constructs.

For example, ‘\(.*\)\1’ matches any newline-free string that is composed of
two identical halves. The ‘\(.*\)’ matches the first half, which may be any-
thing, but the ‘\1’ that follows must match the same exact text.

If a particular ‘\(... \)’ construct matches more than once (which can easily
happen if it is followed by ‘*’), only the last match is recorded.

\‘ matches the empty string, but only at the beginning of the string or buffer (or
its accessible portion) being matched against.

\’ matches the empty string, but only at the end of the string or buffer (or its
accessible portion) being matched against.

\= matches the empty string, but only at point.

\b matches the empty string, but only at the beginning or end of a word. Thus,
‘\bfoo\b’ matches any occurrence of ‘foo’ as a separate word. ‘\bballs?\b’
matches ‘ball’ or ‘balls’ as a separate word.

‘\b’ matches at the beginning or end of the buffer regardless of what text
appears next to it.

\B matches the empty string, but not at the beginning or end of a word.

\< matches the empty string, but only at the beginning of a word. ‘\<’ matches
at the beginning of the buffer only if a word-constituent character follows.

\> matches the empty string, but only at the end of a word. ‘\>’ matches at the
end of the buffer only if the contents end with a word-constituent character.

\w matches any word-constituent character. The syntax table determines which
characters these are. See Section “Syntax Tables” in The Emacs Lisp Reference
Manual.

\W matches any character that is not a word-constituent.

_< matches the empty string, but only at the beginning of a symbol. A symbol is a
sequence of one or more symbol-constituent characters. A symbol-constituent
character is a character whose syntax is either ‘w’ or ‘_’. ‘_<’ matches at the
beginning of the buffer only if a symbol-constituent character follows.

> matches the empty string, but only at the end of a symbol. ‘>’ matches at the
end of the buffer only if the contents end with a symbol-constituent character.

\sc matches any character whose syntax is c. Here c is a character that designates
a particular syntax class: thus, ‘w’ for word constituent, ‘-’ or ‘ ’ for whitespace,
‘.’ for ordinary punctuation, etc. See Section “Syntax Tables” in The Emacs
Lisp Reference Manual.

\Sc matches any character whose syntax is not c.

\cc matches any character that belongs to the category c. For example, ‘\cc’
matches Chinese characters, ‘\cg’ matches Greek characters, etc. For the de-
scription of the known categories, type M-x describe-categories RET.

Chapter 12: Searching and Replacement 96

\Cc matches any character that does not belong to category c.

The constructs that pertain to words and syntax are controlled by the setting of the
syntax table. See Section “Syntax Tables” in The Emacs Lisp Reference Manual.

12.7 Regular Expression Example

Here is an example of a regexp—similar to the regexp that Emacs uses, by default, to rec-
ognize the end of a sentence, not including the following space (i.e., the variable sentence-

end-base):

[.?!][]\"’)}]*

This contains two parts in succession: a character set matching period, ‘?’, or ‘!’, and a
character set matching close-brackets, quotes, or parentheses, repeated zero or more times.

12.8 Searching and Case

Searches in Emacs normally ignore the case of the text they are searching through, if you
specify the text in lower case. Thus, if you specify searching for ‘foo’, then ‘Foo’ and ‘foo’
also match. Regexps, and in particular character sets, behave likewise: ‘[ab]’ matches ‘a’
or ‘A’ or ‘b’ or ‘B’.

An upper-case letter anywhere in the incremental search string makes the search case-
sensitive. Thus, searching for ‘Foo’ does not find ‘foo’ or ‘FOO’. This applies to regular
expression search as well as to string search. The effect ceases if you delete the upper-case
letter from the search string.

Typing M-c within an incremental search toggles the case sensitivity of that search. The
effect does not extend beyond the current incremental search to the next one, but it does
override the effect of adding or removing an upper-case letter in the current search.

If you set the variable case-fold-search to nil, then all letters must match exactly,
including case. This is a per-buffer variable; altering the variable normally affects only the
current buffer, unless you change its default value. See Section 33.2.3 [Locals], page 409.
This variable applies to nonincremental searches also, including those performed by the
replace commands (see Section 12.9 [Replace], page 96) and the minibuffer history matching
commands (see Section 5.4 [Minibuffer History], page 32).

Several related variables control case-sensitivity of searching and matching for specific
commands or activities. For instance, tags-case-fold-search controls case sensitivity for
find-tag. To find these variables, do M-x apropos-variable RET case-fold-search RET.

12.9 Replacement Commands

Emacs provides several commands for performing search-and-replace operations. In addition
to the simple M-x replace-string command, there is M-% (query-replace), which presents
each occurrence of the pattern and asks you whether to replace it.

The replace commands normally operate on the text from point to the end of the buffer.
When the region is active, they operate on it instead (see Chapter 8 [Mark], page 44). The
basic replace commands replace one search string (or regexp) with one replacement string.
It is possible to perform several replacements in parallel, using the command expand-

region-abbrevs (see Section 26.3 [Expanding Abbrevs], page 297).

Chapter 12: Searching and Replacement 97

12.9.1 Unconditional Replacement

M-x replace-string RET string RET newstring RET

Replace every occurrence of string with newstring.

To replace every instance of ‘foo’ after point with ‘bar’, use the command M-x

replace-string with the two arguments ‘foo’ and ‘bar’. Replacement happens only in
the text after point, so if you want to cover the whole buffer you must go to the beginning
first. All occurrences up to the end of the buffer are replaced; to limit replacement to part
of the buffer, activate the region around that part. When the region is active, replacement
is limited to the region (see Chapter 8 [Mark], page 44).

When replace-string exits, it leaves point at the last occurrence replaced. It adds the
prior position of point (where the replace-string command was issued) to the mark ring,
without activating the mark; use C-u C-SPC to move back there. See Section 8.4 [Mark
Ring], page 47.

A prefix argument restricts replacement to matches that are surrounded by word bound-
aries.

See Section 12.9.3 [Replacement and Case], page 98, for details about case-sensitivity in
replace commands.

12.9.2 Regexp Replacement

The M-x replace-string command replaces exact matches for a single string. The similar
command M-x replace-regexp replaces any match for a specified pattern.

M-x replace-regexp RET regexp RET newstring RET

Replace every match for regexp with newstring.

In replace-regexp, the newstring need not be constant: it can refer to all or part
of what is matched by the regexp. ‘\&’ in newstring stands for the entire match being
replaced. ‘\d ’ in newstring, where d is a digit, stands for whatever matched the dth
parenthesized grouping in regexp. (This is called a “back reference”.) ‘\#’ refers to the
count of replacements already made in this command, as a decimal number. In the first
replacement, ‘\#’ stands for ‘0’; in the second, for ‘1’; and so on. For example,

M-x replace-regexp RET c[ad]+r RET \&-safe RET

replaces (for example) ‘cadr’ with ‘cadr-safe’ and ‘cddr’ with ‘cddr-safe’.

M-x replace-regexp RET \(c[ad]+r\)-safe RET \1 RET

performs the inverse transformation. To include a ‘\’ in the text to replace with, you must
enter ‘\\’.

If you want to enter part of the replacement string by hand each time, use ‘\?’ in the
replacement string. Each replacement will ask you to edit the replacement string in the
minibuffer, putting point where the ‘\?’ was.

The remainder of this subsection is intended for specialized tasks and requires knowledge
of Lisp. Most readers can skip it.

You can use Lisp expressions to calculate parts of the replacement string. To do this,
write ‘\,’ followed by the expression in the replacement string. Each replacement calculates
the value of the expression and converts it to text without quoting (if it’s a string, this means
using the string’s contents), and uses it in the replacement string in place of the expression

Chapter 12: Searching and Replacement 98

itself. If the expression is a symbol, one space in the replacement string after the symbol
name goes with the symbol name, so the value replaces them both.

Inside such an expression, you can use some special sequences. ‘\&’ and ‘\n ’ refer here,
as usual, to the entire match as a string, and to a submatch as a string. n may be multiple
digits, and the value of ‘\n ’ is nil if subexpression n did not match. You can also use ‘\#&’
and ‘\#n ’ to refer to those matches as numbers (this is valid when the match or submatch
has the form of a numeral). ‘\#’ here too stands for the number of already-completed
replacements.

Repeating our example to exchange ‘x’ and ‘y’, we can thus do it also this way:

M-x replace-regexp RET \(x\)\|y RET

\,(if \1 "y" "x") RET

For computing replacement strings for ‘\,’, the format function is often useful (see
Section “Formatting Strings” in The Emacs Lisp Reference Manual). For example, to add
consecutively numbered strings like ‘ABC00042’ to columns 73 to 80 (unless they are already
occupied), you can use

M-x replace-regexp RET ^.\{0,72\}$ RET

\,(format "%-72sABC%05d" \& \#) RET

12.9.3 Replace Commands and Case

If the first argument of a replace command is all lower case, the command ignores case
while searching for occurrences to replace—provided case-fold-search is non-nil. If
case-fold-search is set to nil, case is always significant in all searches.

In addition, when the newstring argument is all or partly lower case, replacement com-
mands try to preserve the case pattern of each occurrence. Thus, the command

M-x replace-string RET foo RET bar RET

replaces a lower case ‘foo’ with a lower case ‘bar’, an all-caps ‘FOO’ with ‘BAR’, and a
capitalized ‘Foo’ with ‘Bar’. (These three alternatives—lower case, all caps, and capitalized,
are the only ones that replace-string can distinguish.)

If upper-case letters are used in the replacement string, they remain upper case every
time that text is inserted. If upper-case letters are used in the first argument, the second
argument is always substituted exactly as given, with no case conversion. Likewise, if
either case-replace or case-fold-search is set to nil, replacement is done without case
conversion.

12.9.4 Query Replace

M-% string RET newstring RET

Replace some occurrences of string with newstring.

C-M-% regexp RET newstring RET

Replace some matches for regexp with newstring.

If you want to change only some of the occurrences of ‘foo’ to ‘bar’, not all of them, use
M-% (query-replace). This command finds occurrences of ‘foo’ one by one, displays each
occurrence and asks you whether to replace it. Aside from querying, query-replace works
just like replace-string (see Section 12.9.1 [Unconditional Replace], page 97). In particu-
lar, it preserves case provided case-replace is non-nil, as it normally is (see Section 12.9.3

Chapter 12: Searching and Replacement 99

[Replacement and Case], page 98). A numeric argument means to consider only occurrences
that are bounded by word-delimiter characters.

C-M-% performs regexp search and replace (query-replace-regexp). It works like
replace-regexp except that it queries like query-replace.

These commands highlight the current match using the face query-replace. They high-
light other matches using lazy-highlight just like incremental search (see Section 12.1
[Incremental Search], page 85). By default, query-replace-regexp will show the sub-
stituted replacement string for the current match in the minibuffer. If you want to keep
special sequences ‘\&’ and ‘\n ’ unexpanded, customize query-replace-show-replacement
variable.

The characters you can type when you are shown a match for the string or regexp are:

SPC to replace the occurrence with newstring.

DEL to skip to the next occurrence without replacing this one.

, (Comma)
to replace this occurrence and display the result. You are then asked for another
input character to say what to do next. Since the replacement has already been
made, DEL and SPC are equivalent in this situation; both move to the next
occurrence.

You can type C-r at this point (see below) to alter the replaced text. You can
also type C-x u to undo the replacement; this exits the query-replace, so if
you want to do further replacement you must use C-x ESC ESC RET to restart
(see Section 5.5 [Repetition], page 33).

RET to exit without doing any more replacements.

. (Period) to replace this occurrence and then exit without searching for more occurrences.

! to replace all remaining occurrences without asking again.

^ to go back to the position of the previous occurrence (or what used to be an
occurrence), in case you changed it by mistake or want to reexamine it.

C-r to enter a recursive editing level, in case the occurrence needs to be edited rather
than just replaced with newstring. When you are done, exit the recursive editing
level with C-M-c to proceed to the next occurrence. See Section 31.9 [Recursive
Edit], page 388.

C-w to delete the occurrence, and then enter a recursive editing level as in C-r.
Use the recursive edit to insert text to replace the deleted occurrence of string.
When done, exit the recursive editing level with C-M-c to proceed to the next
occurrence.

e to edit the replacement string in the minibuffer. When you exit the minibuf-
fer by typing RET, the minibuffer contents replace the current occurrence of
the pattern. They also become the new replacement string for any further
occurrences.

C-l to redisplay the screen. Then you must type another character to specify what
to do with this occurrence.

Chapter 12: Searching and Replacement 100

C-h to display a message summarizing these options. Then you must type another
character to specify what to do with this occurrence.

Some other characters are aliases for the ones listed above: y, n and q are equivalent to
SPC, DEL and RET.

Aside from this, any other character exits the query-replace, and is then reread as part
of a key sequence. Thus, if you type C-k, it exits the query-replace and then kills to end
of line.

To restart a query-replace once it is exited, use C-x ESC ESC, which repeats the query-
replace because it used the minibuffer to read its arguments. See Section 5.5 [Repetition],
page 33.

See Section 27.7 [Operating on Files], page 307, for the Dired Q command which performs
query replace on selected files. See also Section 27.9 [Transforming File Names], page 310,
for Dired commands to rename, copy, or link files by replacing regexp matches in file names.

12.10 Other Search-and-Loop Commands

Here are some other commands that find matches for a regular expression. They all ignore
case in matching, if the pattern contains no upper-case letters and case-fold-search is
non-nil. Aside from occur and its variants, all operate on the text from point to the end
of the buffer, or on the region if it is active.

M-x multi-isearch-buffers

Prompt for one or more buffer names, ending with RET; then, begin a multi-
buffer incremental search in those buffers. (If the search fails in one buffer, the
next C-s tries searching the next specified buffer, and so forth.) With a prefix
argument, prompt for a regexp and begin a multi-buffer incremental search in
buffers matching that regexp.

M-x multi-isearch-buffers-regexp

This command is just like multi-isearch-buffers, except it performs an in-
cremental regexp search.

M-x occur Prompt for a regexp, and display a list showing each line in the buffer that
contains a match for it. To limit the search to part of the buffer, narrow to that
part (see Section 11.5 [Narrowing], page 68). A numeric argument n specifies
that n lines of context are to be displayed before and after each matching line.

In the ‘*Occur*’ buffer, you can click on each entry, or move point there and
type RET, to visit the corresponding position in the buffer that was searched.
o and C-o display the match in another window; C-o does not select it. Alter-
natively, you can use the C-x ‘ (next-error) command to visit the occurrences
one by one (see Section 24.2 [Compilation Mode], page 251).

Typing e in the ‘*Occur*’ buffer switches to Occur Edit mode, in which edits
made to the entries are also applied to the text in the originating buffer. Type
C-c C-c to return to Occur mode.

The command M-x list-matching-lines is a synonym for M-x occur.

M-s o Run occur using the search string of the last incremental string search. You
can also run M-s o when an incremental search is active; this uses the current
search string.

Chapter 12: Searching and Replacement 101

M-x multi-occur

This command is just like occur, except it is able to search through multiple
buffers. It asks you to specify the buffer names one by one.

M-x multi-occur-in-matching-buffers

This command is similar to multi-occur, except the buffers to search are
specified by a regular expression that matches visited file names. With a prefix
argument, it uses the regular expression to match buffer names instead.

M-x how-many

Prompt for a regexp, and print the number of matches for it in the buffer after
point. If the region is active, this operates on the region instead.

M-x flush-lines

Prompt for a regexp, and delete each line that contains a match for it, operating
on the text after point. This command deletes the current line if it contains
a match starting after point. If the region is active, it operates on the region
instead; if a line partially contained in the region contains a match entirely
contained in the region, it is deleted.

If a match is split across lines, flush-lines deletes all those lines. It deletes
the lines before starting to look for the next match; hence, it ignores a match
starting on the same line at which another match ended.

M-x keep-lines

Prompt for a regexp, and delete each line that does not contain a match for it,
operating on the text after point. If point is not at the beginning of a line, this
command always keeps the current line. If the region is active, the command
operates on the region instead; it never deletes lines that are only partially
contained in the region (a newline that ends a line counts as part of that line).

If a match is split across lines, this command keeps all those lines.

Chapter 13: Commands for Fixing Typos 102

13 Commands for Fixing Typos

In this chapter we describe commands that are useful when you catch a mistake while
editing. The most fundamental of these commands is the undo command C-/ (also bound
to C-x u and C-_). This undoes a single command, or a part of a command (as in the case
of query-replace), or several consecutive character insertions. Consecutive repetitions of
C-/ undo earlier and earlier changes, back to the limit of the undo information available.

Aside from the commands described here, you can erase text using deletion commands
such as DEL (delete-backward-char). These were described earlier in this manual. See
Section 4.3 [Erasing], page 19.

13.1 Undo

The undo command reverses recent changes in the buffer’s text. Each buffer records changes
individually, and the undo command always applies to the current buffer. You can undo
all the changes in a buffer for as far as back its records go. Usually, each editing command
makes a separate entry in the undo records, but some commands such as query-replace

divide their changes into multiple entries for flexibility in undoing. Consecutive character
insertion commands are usually grouped together into a single undo record, to make undoing
less tedious.

C-/

C-x u

C-_ Undo one entry in the current buffer’s undo records (undo).

To begin to undo, type C-/ (or its aliases, C-_ or C-x u)1. This undoes the most recent
change in the buffer, and moves point back to where it was before that change. Consecutive
repetitions of C-/ (or its aliases) undo earlier and earlier changes in the current buffer. If
all the recorded changes have already been undone, the undo command signals an error.

Any command other than an undo command breaks the sequence of undo commands.
Starting from that moment, the entire sequence of undo commands that you have just
performed are themselves placed into the undo record, as a single set of changes. Therefore,
to re-apply changes you have undone, type C-f or any other command that harmlessly
breaks the sequence of undoing; then type C-/ to undo the undo command.

Alternatively, if you want to resume undoing, without redoing previous undo commands,
use M-x undo-only. This is like undo, but will not redo changes you have just undone.

If you notice that a buffer has been modified accidentally, the easiest way to recover is to
type C-/ repeatedly until the stars disappear from the front of the mode line (see Section 1.3
[Mode Line], page 8). Whenever an undo command makes the stars disappear from the
mode line, it means that the buffer contents are the same as they were when the file was
last read in or saved. If you do not remember whether you changed the buffer deliberately,
type C-/ once. When you see the last change you made undone, you will see whether it was
an intentional change. If it was an accident, leave it undone. If it was deliberate, redo the
change as described above.

1 Aside from C-/, the undo command is also bound to C-x u because that is more straightforward for
beginners to remember: ‘u’ stands for “undo”. It is also bound to C-_ because typing C-/ on some text
terminals actually enters C-_.

Chapter 13: Commands for Fixing Typos 103

When there is an active region, any use of undo performs selective undo: it undoes the
most recent change within the region, instead of the entire buffer. However, when Transient
Mark mode is off (see Section 8.7 [Disabled Transient Mark], page 49), C-/ always operates
on the entire buffer, ignoring the region. In this case, you can perform selective undo by
supplying a prefix argument to the undo command: C-u C-/. To undo further changes in
the same region, repeat the undo command (no prefix argument is needed).

Some specialized buffers do not make undo records. Buffers whose names start with
spaces never do; these buffers are used internally by Emacs to hold text that users don’t
normally look at or edit.

When the undo records for a buffer becomes too large, Emacs discards the oldest undo
records from time to time (during garbage collection). You can specify how much undo
records to keep by setting the variables undo-limit, undo-strong-limit, and undo-outer-

limit. Their values are expressed in bytes.

The variable undo-limit sets a soft limit: Emacs keeps undo data for enough commands
to reach this size, and perhaps exceed it, but does not keep data for any earlier commands
beyond that. Its default value is 80000. The variable undo-strong-limit sets a stricter
limit: any previous command (though not the most recent one) that pushes the size past
this amount is forgotten. The default value of undo-strong-limit is 120000.

Regardless of the values of those variables, the most recent change is never discarded
unless it gets bigger than undo-outer-limit (normally 12,000,000). At that point, Emacs
discards the undo data and warns you about it. This is the only situation in which you
cannot undo the last command. If this happens, you can increase the value of undo-outer-
limit to make it even less likely to happen in the future. But if you didn’t expect the
command to create such large undo data, then it is probably a bug and you should report
it. See Section 34.3 [Reporting Bugs], page 433.

13.2 Transposing Text

C-t Transpose two characters (transpose-chars).

M-t Transpose two words (transpose-words).

C-M-t Transpose two balanced expressions (transpose-sexps).

C-x C-t Transpose two lines (transpose-lines).

The common error of transposing two characters can be fixed, when they are adjacent,
with the C-t command (transpose-chars). Normally, C-t transposes the two characters
on either side of point. When given at the end of a line, rather than transposing the last
character of the line with the newline, which would be useless, C-t transposes the last two
characters on the line. So, if you catch your transposition error right away, you can fix
it with just a C-t. If you don’t catch it so fast, you must move the cursor back between
the two transposed characters before you type C-t. If you transposed a space with the last
character of the word before it, the word motion commands are a good way of getting there.
Otherwise, a reverse search (C-r) is often the best way. See Chapter 12 [Search], page 85.

M-t transposes the word before point with the word after point (transpose-words). It
moves point forward over a word, dragging the word preceding or containing point forward as
well. The punctuation characters between the words do not move. For example, ‘FOO, BAR’
transposes into ‘BAR, FOO’ rather than ‘BAR FOO,’.

Chapter 13: Commands for Fixing Typos 104

C-M-t (transpose-sexps) is a similar command for transposing two expressions (see
Section 23.4.1 [Expressions], page 237), and C-x C-t (transpose-lines) exchanges lines.
They work like M-t except as regards what units of text they transpose.

A numeric argument to a transpose command serves as a repeat count: it tells the
transpose command to move the character (word, expression, line) before or containing
point across several other characters (words, expressions, lines). For example, C-u 3 C-t

moves the character before point forward across three other characters. It would change
‘f?oobar’ into ‘oobf?ar’. This is equivalent to repeating C-t three times. C-u - 4 M-t

moves the word before point backward across four words. C-u - C-M-t would cancel the
effect of plain C-M-t.

A numeric argument of zero is assigned a special meaning (because otherwise a command
with a repeat count of zero would do nothing): to transpose the character (word, expression,
line) ending after point with the one ending after the mark.

13.3 Case Conversion

M-- M-l Convert last word to lower case. Note Meta-- is Meta-minus.

M-- M-u Convert last word to all upper case.

M-- M-c Convert last word to lower case with capital initial.

A very common error is to type words in the wrong case. Because of this, the word case-
conversion commands M-l, M-u and M-c have a special feature when used with a negative
argument: they do not move the cursor. As soon as you see you have mistyped the last
word, you can simply case-convert it and go on typing. See Section 22.6 [Case], page 206.

13.4 Checking and Correcting Spelling

This section describes the commands to check the spelling of a single word or of a portion
of a buffer. These commands only work if the spelling checker program Aspell, Ispell or
Hunspell is installed. These programs are not part of Emacs, but one of them is usually
installed in GNU/Linux and other free operating systems.

M-$ Check and correct spelling of the word at point (ispell-word). If the region
is active, do it for all words in the region instead.

M-x ispell

Check and correct spelling of all words in the buffer. If the region is active, do
it for all words in the region instead.

M-x ispell-buffer

Check and correct spelling in the buffer.

M-x ispell-region

Check and correct spelling in the region.

M-x ispell-message

Check and correct spelling in a draft mail message, excluding cited material.

M-x ispell-change-dictionary RET dict RET

Restart the Aspell/Ispell/Hunspell process, using dict as the dictionary.

Chapter 13: Commands for Fixing Typos 105

M-x ispell-kill-ispell

Kill the Aspell/Ispell/Hunspell subprocess.

M-TAB

ESC TAB Complete the word before point based on the spelling dictionary (ispell-
complete-word).

M-x flyspell-mode

Enable Flyspell mode, which highlights all misspelled words.

M-x flyspell-prog-mode

Enable Flyspell mode for comments and strings only.

To check the spelling of the word around or before point, and optionally correct it as
well, type M-$ (ispell-word). If a region is active, M-$ checks the spelling of all words
within the region. See Chapter 8 [Mark], page 44. (When Transient Mark mode is off,
M-$ always acts on the word around or before point, ignoring the region; see Section 8.7
[Disabled Transient Mark], page 49.)

Similarly, the command M-x ispell performs spell-checking in the region if one is
active, or in the entire buffer otherwise. The commands M-x ispell-buffer and M-x

ispell-region explicitly perform spell-checking on the entire buffer or the region respec-
tively. To check spelling in an email message you are writing, use M-x ispell-message;
that command checks the whole buffer, except for material that is indented or appears to
be cited from other messages. See Chapter 29 [Sending Mail], page 337.

When one of these commands encounters what appears to be an incorrect word, it asks
you what to do. It usually displays a list of numbered “near-misses”—words that are close
to the incorrect word. Then you must type a single-character response. Here are the valid
responses:

digit Replace the word, just this time, with one of the displayed near-misses. Each
near-miss is listed with a digit; type that digit to select it.

SPC Skip this word—continue to consider it incorrect, but don’t change it here.

r new RET Replace the word, just this time, with new. (The replacement string will be
rescanned for more spelling errors.)

R new RET Replace the word with new, and do a query-replace so you can replace it
elsewhere in the buffer if you wish. (The replacements will be rescanned for
more spelling errors.)

a Accept the incorrect word—treat it as correct, but only in this editing session.

A Accept the incorrect word—treat it as correct, but only in this editing session
and for this buffer.

i Insert this word in your private dictionary file so that Aspell or Ispell or Hun-
spell will consider it correct from now on, even in future sessions.

m Like i, but you can also specify dictionary completion information.

u Insert the lower-case version of this word in your private dictionary file.

Chapter 13: Commands for Fixing Typos 106

l word RET

Look in the dictionary for words that match word. These words become the
new list of “near-misses”; you can select one of them as the replacement by
typing a digit. You can use ‘*’ in word as a wildcard.

C-g

X Quit interactive spell checking, leaving point at the word that was being
checked. You can restart checking again afterward with C-u M-$.

x Quit interactive spell checking and move point back to where it was when you
started spell checking.

q Quit interactive spell checking and kill the spell-checker subprocess.

? Show the list of options.

In Text mode and related modes, M-TAB (ispell-complete-word) performs in-buffer
completion based on spelling correction. Insert the beginning of a word, and then type
M-TAB; this shows a list of completions. (If your window manager intercepts M-TAB, type
ESC TAB or C-M-i.) Each completion is listed with a digit or character; type that digit or
character to choose it.

Once started, the Aspell or Ispell or Hunspell subprocess continues to run, waiting for
something to do, so that subsequent spell checking commands complete more quickly. If you
want to get rid of the process, use M-x ispell-kill-ispell. This is not usually necessary,
since the process uses no processor time except when you do spelling correction.

Ispell, Aspell and Hunspell look up spelling in two dictionaries: the standard dic-
tionary and your personal dictionary. The standard dictionary is specified by the vari-
able ispell-local-dictionary or, if that is nil, by the variable ispell-dictionary.
If both are nil, the spelling program’s default dictionary is used. The command M-x

ispell-change-dictionary sets the standard dictionary for the buffer and then restarts
the subprocess, so that it will use a different standard dictionary. Your personal dictio-
nary is specified by the variable ispell-personal-dictionary. If that is nil, the spelling
program looks for a personal dictionary in a default location.

A separate dictionary is used for word completion. The variable ispell-complete-

word-dict specifies the file name of this dictionary. The completion dictionary must be
different because it cannot use root and affix information. For some languages, there is a
spell checking dictionary but no word completion dictionary.

Flyspell mode is a minor mode that performs automatic spell checking as you type. When
it finds a word that it does not recognize, it highlights that word. Type M-x flyspell-mode

to toggle Flyspell mode in the current buffer. To enable Flyspell mode in all text mode
buffers, add flyspell-mode to text-mode-hook. See Section 33.2.2 [Hooks], page 408.

When Flyspell mode highlights a word as misspelled, you can click on it with Mouse-2

to display a menu of possible corrections and actions. You can also correct the word by
editing it manually in any way you like.

Flyspell Prog mode works just like ordinary Flyspell mode, except that it only checks
words in comments and string constants. This feature is useful for editing programs. Type
M-x flyspell-prog-mode to enable or disable this mode in the current buffer. To enable
this mode in all programming mode buffers, add flyspell-prog-mode to prog-mode-hook

(see Section 33.2.2 [Hooks], page 408).

Chapter 14: Keyboard Macros 107

14 Keyboard Macros

In this chapter we describe how to record a sequence of editing commands so you can repeat
it conveniently later.

A keyboard macro is a command defined by an Emacs user to stand for another sequence
of keys. For example, if you discover that you are about to type C-n M-d C-d forty times, you
can speed your work by defining a keyboard macro to do C-n M-d C-d, and then executing
it 39 more times.

You define a keyboard macro by executing and recording the commands which are its
definition. Put differently, as you define a keyboard macro, the definition is being executed
for the first time. This way, you can see the effects of your commands, so that you don’t
have to figure them out in your head. When you close the definition, the keyboard macro
is defined and also has been, in effect, executed once. You can then do the whole thing over
again by invoking the macro.

Keyboard macros differ from ordinary Emacs commands in that they are written in
the Emacs command language rather than in Lisp. This makes it easier for the novice to
write them, and makes them more convenient as temporary hacks. However, the Emacs
command language is not powerful enough as a programming language to be useful for
writing anything intelligent or general. For such things, Lisp must be used.

14.1 Basic Use

F3 Start defining a keyboard macro (kmacro-start-macro-or-insert-counter).

F4 If a keyboard macro is being defined, end the definition; otherwise, execute the
most recent keyboard macro (kmacro-end-or-call-macro).

C-u F3 Re-execute last keyboard macro, then append keys to its definition.

C-u C-u F3

Append keys to the last keyboard macro without re-executing it.

C-x C-k r Run the last keyboard macro on each line that begins in the region (apply-
macro-to-region-lines).

To start defining a keyboard macro, type F3. From then on, your keys continue to be
executed, but also become part of the definition of the macro. ‘Def’ appears in the mode
line to remind you of what is going on. When you are finished, type F4 (kmacro-end-or-
call-macro) to terminate the definition. For example,

F3 M-f foo F4

defines a macro to move forward a word and then insert ‘foo’. Note that F3 and F4 do not
become part of the macro.

After defining the macro, you can call it with F4. For the above example, this has the
same effect as typing M-f foo again. (Note the two roles of the F4 command: it ends the
macro if you are in the process of defining one, or calls the last macro otherwise.) You can
also supply F4 with a numeric prefix argument ‘n’, which means to invoke the macro ‘n’
times. An argument of zero repeats the macro indefinitely, until it gets an error or you type
C-g (or, on MS-DOS, C-BREAK).

Chapter 14: Keyboard Macros 108

The above example demonstrates a handy trick that you can employ with keyboard
macros: if you wish to repeat an operation at regularly spaced places in the text, include a
motion command as part of the macro. In this case, repeating the macro inserts the string
‘foo’ after each successive word.

After terminating the definition of a keyboard macro, you can append more keystrokes
to its definition by typing C-u F3. This is equivalent to plain F3 followed by retyping the
whole definition so far. As a consequence, it re-executes the macro as previously defined. If
you change the variable kmacro-execute-before-append to nil, the existing macro will
not be re-executed before appending to it (the default is t). You can also add to the end
of the definition of the last keyboard macro without re-executing it by typing C-u C-u F3.

When a command reads an argument with the minibuffer, your minibuffer input becomes
part of the macro along with the command. So when you replay the macro, the command
gets the same argument as when you entered the macro. For example,

F3 C-a C-k C-x b foo RET C-y C-x b RET F4

defines a macro that kills the current line, yanks it into the buffer ‘foo’, then returns to the
original buffer.

Most keyboard commands work as usual in a keyboard macro definition, with some
exceptions. Typing C-g (keyboard-quit) quits the keyboard macro definition. Typing
C-M-c (exit-recursive-edit) can be unreliable: it works as you’d expect if exiting a
recursive edit that started within the macro, but if it exits a recursive edit that started
before you invoked the keyboard macro, it also necessarily exits the keyboard macro too.
Mouse events are also unreliable, even though you can use them in a keyboard macro: when
the macro replays the mouse event, it uses the original mouse position of that event, the
position that the mouse had while you were defining the macro. The effect of this may be
hard to predict.

The command C-x C-k r (apply-macro-to-region-lines) repeats the last defined key-
board macro on each line that begins in the region. It does this line by line, by moving
point to the beginning of the line and then executing the macro.

In addition to the F3 and F4 commands described above, Emacs also supports an older
set of key bindings for defining and executing keyboard macros. To begin a macro definition,
type C-x ((kmacro-start-macro); as with F3, a prefix argument appends this definition to
the last keyboard macro. To end a macro definition, type C-x) (kmacro-end-macro). To
execute the most recent macro, type C-x e (kmacro-end-and-call-macro). If you enter C-x
e while defining a macro, the macro is terminated and executed immediately. Immediately
after typing C-x e, you can type E repeatedly to immediately repeat the macro one or more
times. You can also give C-x e a repeat argument, just like F4.

C-x) can be given a repeat count as an argument. This means to repeat the macro
right after defining it. The macro definition itself counts as the first repetition, since it
is executed as you define it, so C-u 4 C-x) executes the macro immediately 3 additional
times.

14.2 The Keyboard Macro Ring

All defined keyboard macros are recorded in the keyboard macro ring. There is only one
keyboard macro ring, shared by all buffers.

Chapter 14: Keyboard Macros 109

C-x C-k C-k

Execute the keyboard macro at the head of the ring (kmacro-end-or-call-
macro-repeat).

C-x C-k C-n

Rotate the keyboard macro ring to the next macro (defined earlier) (kmacro-
cycle-ring-next).

C-x C-k C-p

Rotate the keyboard macro ring to the previous macro (defined later) (kmacro-
cycle-ring-previous).

All commands which operate on the keyboard macro ring use the same C-x C-k prefix.
Most of these commands can be executed and repeated immediately after each other without
repeating the C-x C-k prefix. For example,

C-x C-k C-p C-p C-k C-k C-k C-n C-n C-k C-p C-k C-d

will rotate the keyboard macro ring to the “second previous” macro, execute the resulting
head macro three times, rotate back to the original head macro, execute that once, rotate
to the “previous” macro, execute that, and finally delete it from the macro ring.

The command C-x C-k C-k (kmacro-end-or-call-macro-repeat) executes the key-
board macro at the head of the macro ring. You can repeat the macro immediately by
typing another C-k, or you can rotate the macro ring immediately by typing C-n or C-p.

When a keyboard macro is being defined, C-x C-k C-k behaves like F4 except that,
immediately afterward, you can use most key bindings of this section without the C-x C-k

prefix. For instance, another C-k will re-execute the macro.

The commands C-x C-k C-n (kmacro-cycle-ring-next) and C-x C-k C-p (kmacro-
cycle-ring-previous) rotate the macro ring, bringing the next or previous keyboard
macro to the head of the macro ring. The definition of the new head macro is displayed
in the echo area. You can continue to rotate the macro ring immediately by repeating just
C-n and C-p until the desired macro is at the head of the ring. To execute the new macro
ring head immediately, just type C-k.

Note that Emacs treats the head of the macro ring as the “last defined keyboard macro”.
For instance, F4 will execute that macro, and C-x C-k n will give it a name.

The maximum number of macros stored in the keyboard macro ring is determined by
the customizable variable kmacro-ring-max.

14.3 The Keyboard Macro Counter

Each keyboard macro has an associated counter, which is initialized to 0 when you start
defining the macro. This counter allows you to insert a number into the buffer that depends
on the number of times the macro has been called. The counter is incremented each time
its value is inserted into the buffer.

F3 In a keyboard macro definition, insert the keyboard macro counter value in the
buffer (kmacro-start-macro-or-insert-counter).

C-x C-k C-i

Insert the keyboard macro counter value in the buffer (kmacro-insert-
counter).

Chapter 14: Keyboard Macros 110

C-x C-k C-c

Set the keyboard macro counter (kmacro-set-counter).

C-x C-k C-a

Add the prefix arg to the keyboard macro counter (kmacro-add-counter).

C-x C-k C-f

Specify the format for inserting the keyboard macro counter (kmacro-set-
format).

When you are defining a keyboard macro, the command F3 (kmacro-start-macro-
or-insert-counter) inserts the current value of the keyboard macro’s counter into the
buffer, and increments the counter by 1. (If you are not defining a macro, F3 begins a
macro definition instead. See Section 14.1 [Basic Keyboard Macro], page 107.) You can
use a numeric prefix argument to specify a different increment. If you just specify a C-u

prefix, that is the same as an increment of zero: it inserts the current counter value without
changing it.

As an example, let us show how the keyboard macro counter can be used to build a
numbered list. Consider the following key sequence:

F3 C-a F3 . SPC F4

As part of this keyboard macro definition, the string ‘0. ’ was inserted into the beginning
of the current line. If you now move somewhere else in the buffer and type F4 to invoke
the macro, the string ‘1. ’ is inserted at the beginning of that line. Subsequent invocations
insert ‘2. ’, ‘3. ’, and so forth.

The command C-x C-k C-i (kmacro-insert-counter) does the same thing as F3, but
it can be used outside a keyboard macro definition. When no keyboard macro is being
defined or executed, it inserts and increments the counter of the macro at the head of the
keyboard macro ring.

The command C-x C-k C-c (kmacro-set-counter) sets the current macro counter to
the value of the numeric argument. If you use it inside the macro, it operates on each
repetition of the macro. If you specify just C-u as the prefix, while executing the macro,
that resets the counter to the value it had at the beginning of the current repetition of the
macro (undoing any increments so far in this repetition).

The command C-x C-k C-a (kmacro-add-counter) adds the prefix argument to the
current macro counter. With just C-u as argument, it resets the counter to the last value
inserted by any keyboard macro. (Normally, when you use this, the last insertion will be in
the same macro and it will be the same counter.)

The command C-x C-k C-f (kmacro-set-format) prompts for the format to use when
inserting the macro counter. The default format is ‘%d’, which means to insert the number
in decimal without any padding. You can exit with empty minibuffer to reset the format to
this default. You can specify any format string that the format function accepts and that
makes sense with a single integer extra argument (see Section “Formatting Strings” in The
Emacs Lisp Reference Manual). Do not put the format string inside double quotes when
you insert it in the minibuffer.

If you use this command while no keyboard macro is being defined or executed, the new
format affects all subsequent macro definitions. Existing macros continue to use the format
in effect when they were defined. If you set the format while defining a keyboard macro,

Chapter 14: Keyboard Macros 111

this affects the macro being defined from that point on, but it does not affect subsequent
macros. Execution of the macro will, at each step, use the format in effect at that step
during its definition. Changes to the macro format during execution of a macro, like the
corresponding changes during its definition, have no effect on subsequent macros.

The format set by C-x C-k C-f does not affect insertion of numbers stored in registers.

If you use a register as a counter, incrementing it on each repetition of the macro,
that accomplishes the same thing as a keyboard macro counter. See Section 10.5 [Number
Registers], page 63. For most purposes, it is simpler to use a keyboard macro counter.

14.4 Executing Macros with Variations

In a keyboard macro, you can create an effect similar to that of query-replace, in that
the macro asks you each time around whether to make a change.

C-x q When this point is reached during macro execution, ask for confirmation (kbd-
macro-query).

While defining the macro, type C-x q at the point where you want the query to occur.
During macro definition, the C-x q does nothing, but when you run the macro later, C-x q

asks you interactively whether to continue.

The valid responses when C-x q asks are:

SPC (or y)
Continue executing the keyboard macro.

DEL (or n)
Skip the remainder of this repetition of the macro, and start right away with
the next repetition.

RET (or q)
Skip the remainder of this repetition and cancel further repetitions.

C-r Enter a recursive editing level, in which you can perform editing which is not
part of the macro. When you exit the recursive edit using C-M-c, you are asked
again how to continue with the keyboard macro. If you type a SPC at this
time, the rest of the macro definition is executed. It is up to you to leave point
and the text in a state such that the rest of the macro will do what you want.

C-u C-x q, which is C-x q with a numeric argument, performs a completely different
function. It enters a recursive edit reading input from the keyboard, both when you type
it during the definition of the macro, and when it is executed from the macro. During
definition, the editing you do inside the recursive edit does not become part of the macro.
During macro execution, the recursive edit gives you a chance to do some particularized
editing on each repetition. See Section 31.9 [Recursive Edit], page 388.

14.5 Naming and Saving Keyboard Macros

C-x C-k n Give a command name (for the duration of the Emacs session) to the most
recently defined keyboard macro (kmacro-name-last-macro).

C-x C-k b Bind the most recently defined keyboard macro to a key sequence (for the
duration of the session) (kmacro-bind-to-key).

Chapter 14: Keyboard Macros 112

M-x insert-kbd-macro

Insert in the buffer a keyboard macro’s definition, as Lisp code.

If you wish to save a keyboard macro for later use, you can give it a name using C-x C-k

n (kmacro-name-last-macro). This reads a name as an argument using the minibuffer and
defines that name to execute the last keyboard macro, in its current form. (If you later add
to the definition of this macro, that does not alter the name’s definition as a macro.) The
macro name is a Lisp symbol, and defining it in this way makes it a valid command name for
calling with M-x or for binding a key to with global-set-key (see Section 33.3.1 [Keymaps],
page 414). If you specify a name that has a prior definition other than a keyboard macro,
an error message is shown and nothing is changed.

You can also bind the last keyboard macro (in its current form) to a key, using C-x C-k

b (kmacro-bind-to-key) followed by the key sequence you want to bind. You can bind to
any key sequence in the global keymap, but since most key sequences already have other
bindings, you should select the key sequence carefully. If you try to bind to a key sequence
with an existing binding (in any keymap), this command asks you for confirmation before
replacing the existing binding.

To avoid problems caused by overriding existing bindings, the key sequences C-x C-k 0

through C-x C-k 9 and C-x C-k A through C-x C-k Z are reserved for your own keyboard
macro bindings. In fact, to bind to one of these key sequences, you only need to type the
digit or letter rather than the whole key sequences. For example,

C-x C-k b 4

will bind the last keyboard macro to the key sequence C-x C-k 4.

Once a macro has a command name, you can save its definition in a file. Then it can
be used in another editing session. First, visit the file you want to save the definition in.
Then use this command:

M-x insert-kbd-macro RET macroname RET

This inserts some Lisp code that, when executed later, will define the same macro with
the same definition it has now. (You need not understand Lisp code to do this, because
insert-kbd-macro writes the Lisp code for you.) Then save the file. You can load the file
later with load-file (see Section 24.8 [Lisp Libraries], page 265). If the file you save in
is your init file ‘~/.emacs’ (see Section 33.4 [Init File], page 423) then the macro will be
defined each time you run Emacs.

If you give insert-kbd-macro a numeric argument, it makes additional Lisp code to
record the keys (if any) that you have bound to macroname, so that the macro will be
reassigned the same keys when you load the file.

14.6 Editing a Keyboard Macro

C-x C-k C-e

Edit the last defined keyboard macro (kmacro-edit-macro).

C-x C-k e name RET

Edit a previously defined keyboard macro name (edit-kbd-macro).

C-x C-k l Edit the last 300 keystrokes as a keyboard macro (kmacro-edit-lossage).

Chapter 14: Keyboard Macros 113

You can edit the last keyboard macro by typing C-x C-k C-e or C-x C-k RET (kmacro-
edit-macro). This formats the macro definition in a buffer and enters a specialized major
mode for editing it. Type C-h m once in that buffer to display details of how to edit the
macro. When you are finished editing, type C-c C-c.

You can edit a named keyboard macro or a macro bound to a key by typing C-x C-k e

(edit-kbd-macro). Follow that with the keyboard input that you would use to invoke the
macro—C-x e or M-x name or some other key sequence.

You can edit the last 300 keystrokes as a macro by typing C-x C-k l (kmacro-edit-
lossage).

14.7 Stepwise Editing a Keyboard Macro

You can interactively replay and edit the last keyboard macro, one command at a time,
by typing C-x C-k SPC (kmacro-step-edit-macro). Unless you quit the macro using q or
C-g, the edited macro replaces the last macro on the macro ring.

This macro editing feature shows the last macro in the minibuffer together with the first
(or next) command to be executed, and prompts you for an action. You can enter ? to get
a summary of your options. These actions are available:

• SPC and y execute the current command, and advance to the next command in the
keyboard macro.

• n, d, and DEL skip and delete the current command.

• f skips the current command in this execution of the keyboard macro, but doesn’t
delete it from the macro.

• TAB executes the current command, as well as all similar commands immediately
following the current command; for example, TAB may be used to insert a sequence of
characters (corresponding to a sequence of self-insert-command commands).

• c continues execution (without further editing) until the end of the keyboard macro. If
execution terminates normally, the edited macro replaces the original keyboard macro.

• C-k skips and deletes the rest of the keyboard macro, terminates step-editing, and
replaces the original keyboard macro with the edited macro.

• q and C-g cancels the step-editing of the keyboard macro; discarding any changes made
to the keyboard macro.

• i KEY... C-j reads and executes a series of key sequences (not including the final
C-j), and inserts them before the current command in the keyboard macro, without
advancing over the current command.

• I KEY... reads one key sequence, executes it, and inserts it before the current command
in the keyboard macro, without advancing over the current command.

• r KEY... C-j reads and executes a series of key sequences (not including the final C-j),
and replaces the current command in the keyboard macro with them, advancing over
the inserted key sequences.

• R KEY... reads one key sequence, executes it, and replaces the current command in the
keyboard macro with that key sequence, advancing over the inserted key sequence.

• a KEY... C-j executes the current command, then reads and executes a series of key
sequences (not including the final C-j), and inserts them after the current command

Chapter 14: Keyboard Macros 114

in the keyboard macro; it then advances over the current command and the inserted
key sequences.

• A KEY... C-j executes the rest of the commands in the keyboard macro, then reads
and executes a series of key sequences (not including the final C-j), and appends them
at the end of the keyboard macro; it then terminates the step-editing and replaces the
original keyboard macro with the edited macro.

Chapter 15: File Handling 115

15 File Handling

The operating system stores data permanently in named files, so most of the text you edit
with Emacs comes from a file and is ultimately stored in a file.

To edit a file, you must tell Emacs to read the file and prepare a buffer containing a
copy of the file’s text. This is called visiting the file. Editing commands apply directly to
text in the buffer; that is, to the copy inside Emacs. Your changes appear in the file itself
only when you save the buffer back into the file.

In addition to visiting and saving files, Emacs can delete, copy, rename, and append to
files, keep multiple versions of them, and operate on file directories.

15.1 File Names

Many Emacs commands that operate on a file require you to specify the file name, using
the minibuffer (see Section 5.1 [Minibuffer File], page 26).

While in the minibuffer, you can use the usual completion and history commands
(see Chapter 5 [Minibuffer], page 26). Note that file name completion ignores file
names whose extensions appear in the variable completion-ignored-extensions (see
Section 5.3.5 [Completion Options], page 31). Note also that most commands use
“permissive completion with confirmation” for reading file names: you are allowed to
submit a nonexistent file name, but if you type RET immediately after completing up to
a nonexistent file name, Emacs prints ‘[Confirm]’ and you must type a second RET to
confirm. See Section 5.3.3 [Completion Exit], page 30, for details.

Each buffer has a default directory, stored in the buffer-local variable default-

directory. Whenever Emacs reads a file name using the minibuffer, it usually inserts the
default directory into the minibuffer as the initial contents. You can inhibit this insertion
by changing the variable insert-default-directory to nil (see Section 5.1 [Minibuffer
File], page 26). Regardless, Emacs always assumes that any relative file name is relative to
the default directory, e.g. entering a file name without a directory specifies a file in the
default directory.

When you visit a file, Emacs sets default-directory in the visiting buffer to the
directory of its file. When you create a new buffer that is not visiting a file, via a command
like C-x b, its default directory is usually copied from the buffer that was current at the
time (see Section 16.1 [Select Buffer], page 139). You can use the command M-x pwd to see
the value of default-directory in the current buffer. The command M-x cd prompts for
a directory name, and sets the buffer’s default-directory to that directory (doing this
does not change the buffer’s file name, if any).

As an example, when you visit the file ‘/u/rms/gnu/gnu.tasks’, the default directory
is set to ‘/u/rms/gnu/’. If you invoke a command that reads a file name, entering just
‘foo’ in the minibuffer, with a directory omitted, specifies the file ‘/u/rms/gnu/foo’;
entering ‘../.login’ specifies ‘/u/rms/.login’; and entering ‘new/foo’ specifies
‘/u/rms/gnu/new/foo’.

When typing a file name into the minibuffer, you can make use of a couple of shortcuts:
a double slash is interpreted as “ignore everything before the second slash in the pair”, and
‘~/’ is interpreted as your home directory. See Section 5.1 [Minibuffer File], page 26.

Chapter 15: File Handling 116

The character ‘$’ is used to substitute an environment variable into a file name. The
name of the environment variable consists of all the alphanumeric characters after the ‘$’;
alternatively, it can be enclosed in braces after the ‘$’. For example, if you have used the shell
command export FOO=rms/hacks to set up an environment variable named FOO, then both
‘/u/$FOO/test.c’ and ‘/u/${FOO}/test.c’ are abbreviations for ‘/u/rms/hacks/test.c’.
If the environment variable is not defined, no substitution occurs, so that the character
‘$’ stands for itself. Note that environment variables affect Emacs only if they are applied
before Emacs is started.

To access a file with ‘$’ in its name, if the ‘$’ causes expansion, type ‘$$’. This pair
is converted to a single ‘$’ at the same time that variable substitution is performed for a
single ‘$’. Alternatively, quote the whole file name with ‘/:’ (see Section 15.14 [Quoted File
Names], page 136). File names which begin with a literal ‘~’ should also be quoted with
‘/:’.

You can include non-ASCII characters in file names. See Section 19.12 [File Name Cod-
ing], page 181.

15.2 Visiting Files

C-x C-f Visit a file (find-file).

C-x C-r Visit a file for viewing, without allowing changes to it (find-file-read-only).

C-x C-v Visit a different file instead of the one visited last (find-alternate-file).

C-x 4 f Visit a file, in another window (find-file-other-window). Don’t alter what
is displayed in the selected window.

C-x 5 f Visit a file, in a new frame (find-file-other-frame). Don’t alter what is
displayed in the selected frame.

M-x find-file-literally

Visit a file with no conversion of the contents.

Visiting a file means reading its contents into an Emacs buffer so you can edit them.
Emacs makes a new buffer for each file that you visit.

To visit a file, type C-x C-f (find-file) and use the minibuffer to enter the name of
the desired file. While in the minibuffer, you can abort the command by typing C-g. See
Section 15.1 [File Names], page 115, for details about entering file names into minibuffers.

If the specified file exists but the system does not allow you to read it, an error message is
displayed in the echo area. Otherwise, you can tell that C-x C-f has completed successfully
by the appearance of new text on the screen, and by the buffer name shown in the mode line
(see Section 1.3 [Mode Line], page 8). Emacs normally constructs the buffer name from the
file name, omitting the directory name. For example, a file named ‘/usr/rms/emacs.tex’
is visited in a buffer named ‘emacs.tex’. If there is already a buffer with that name, Emacs
constructs a unique name; the normal method is to append ‘<2>’, ‘<3>’, and so on, but you
can select other methods. See Section 16.7.1 [Uniquify], page 145.

To create a new file, just visit it using the same command, C-x C-f. Emacs displays
‘(New file)’ in the echo area, but in other respects behaves as if you had visited an existing
empty file.

Chapter 15: File Handling 117

After visiting a file, the changes you make with editing commands are made in the Emacs
buffer. They do not take effect in the visited file, until you save the buffer (see Section 15.3
[Saving], page 118). If a buffer contains changes that have not been saved, we say the buffer
is modified. This implies that some changes will be lost if the buffer is not saved. The mode
line displays two stars near the left margin to indicate that the buffer is modified.

If you visit a file that is already in Emacs, C-x C-f switches to the existing buffer instead
of making another copy. Before doing so, it checks whether the file has changed since you
last visited or saved it. If the file has changed, Emacs offers to reread it.

If you try to visit a file larger than large-file-warning-threshold (the default is
10000000, which is about 10 megabytes), Emacs asks you for confirmation first. You can
answer y to proceed with visiting the file. Note, however, that Emacs cannot visit files that
are larger than the maximum Emacs buffer size, which is limited by the amount of memory
Emacs can allocate and by the integers that Emacs can represent (see Chapter 16 [Buffers],
page 139). If you try, Emacs displays an error message saying that the maximum buffer
size has been exceeded.

If the file name you specify contains shell-style wildcard characters, Emacs visits all
the files that match it. (On case-insensitive filesystems, Emacs matches the wildcards
disregarding the letter case.) Wildcards include ‘?’, ‘*’, and ‘[...]’ sequences. To enter
the wild card ‘?’ in a file name in the minibuffer, you need to type C-q ?. See Section 15.14
[Quoted File Names], page 136, for information on how to visit a file whose name actually
contains wildcard characters. You can disable the wildcard feature by customizing find-

file-wildcards.

If you visit the wrong file unintentionally by typing its name incorrectly, type C-x C-v

(find-alternate-file) to visit the file you really wanted. C-x C-v is similar to C-x C-f,
but it kills the current buffer (after first offering to save it if it is modified). When C-x

C-v reads the file name to visit, it inserts the entire default file name in the buffer, with
point just after the directory part; this is convenient if you made a slight error in typing
the name.

If you “visit” a file that is actually a directory, Emacs invokes Dired, the Emacs directory
browser. See Chapter 27 [Dired], page 302. You can disable this behavior by setting the
variable find-file-run-dired to nil; in that case, it is an error to try to visit a directory.

Files which are actually collections of other files, or file archives, are visited in special
modes which invoke a Dired-like environment to allow operations on archive members. See
Section 15.12 [File Archives], page 134, for more about these features.

If you visit a file that the operating system won’t let you modify, or that is marked
read-only, Emacs makes the buffer read-only too, so that you won’t go ahead and make
changes that you’ll have trouble saving afterward. You can make the buffer writable with
C-x C-q (toggle-read-only). See Section 16.3 [Misc Buffer], page 141.

If you want to visit a file as read-only in order to protect yourself from entering changes
accidentally, visit it with the command C-x C-r (find-file-read-only) instead of C-x

C-f.

C-x 4 f (find-file-other-window) is like C-x C-f except that the buffer containing
the specified file is selected in another window. The window that was selected before C-x

4 f continues to show the same buffer it was already showing. If this command is used
when only one window is being displayed, that window is split in two, with one window

Chapter 15: File Handling 118

showing the same buffer as before, and the other one showing the newly requested file. See
Chapter 17 [Windows], page 147.

C-x 5 f (find-file-other-frame) is similar, but opens a new frame, or selects any
existing frame showing the specified file. See Chapter 18 [Frames], page 153.

On graphical displays, there are two additional methods for visiting files. Firstly, when
Emacs is built with a suitable GUI toolkit, commands invoked with the mouse (by clicking
on the menu bar or tool bar) use the toolkit’s standard “File Selection” dialog instead
of prompting for the file name in the minibuffer. On GNU/Linux and Unix platforms,
Emacs does this when built with GTK, LessTif, and Motif toolkits; on MS-Windows and
Mac, the GUI version does that by default. For information on how to customize this, see
Section 18.16 [Dialog Boxes], page 164.

Secondly, Emacs supports “drag and drop”: dropping a file into an ordinary Emacs
window visits the file using that window. As an exception, dropping a file into a window
displaying a Dired buffer moves or copies the file into the displayed directory. For details,
see Section 18.13 [Drag and Drop], page 163, and Section 27.18 [Misc Dired Features],
page 316.

Each time you visit a file, Emacs automatically scans its contents to detect what char-
acter encoding and end-of-line convention it uses, and converts these to Emacs’s internal
encoding and end-of-line convention within the buffer. When you save the buffer, Emacs
performs the inverse conversion, writing the file to disk with its original encoding and end-
of-line convention. See Section 19.6 [Coding Systems], page 174.

If you wish to edit a file as a sequence of ASCII characters with no special encoding
or conversion, use the M-x find-file-literally command. This visits a file, like C-x

C-f, but does not do format conversion (see Section “Format Conversion” in the Emacs
Lisp Reference Manual), character code conversion (see Section 19.6 [Coding Systems],
page 174), or automatic uncompression (see Section 15.11 [Compressed Files], page 134),
and does not add a final newline because of require-final-newline (see Section 15.3.3
[Customize Save], page 123). If you have already visited the same file in the usual (non-
literal) manner, this command asks you whether to visit it literally instead.

Two special hook variables allow extensions to modify the operation of visiting files.
Visiting a file that does not exist runs the functions in find-file-not-found-functions;
this variable holds a list of functions, which are called one by one (with no arguments) until
one of them returns non-nil. This is not a normal hook, and the name ends in ‘-functions’
rather than ‘-hook’ to indicate that fact.

Successful visiting of any file, whether existing or not, calls the functions in find-file-

hook, with no arguments. This variable is a normal hook. In the case of a nonexistent file,
the find-file-not-found-functions are run first. See Section 33.2.2 [Hooks], page 408.

There are several ways to specify automatically the major mode for editing the file (see
Section 20.3 [Choosing Modes], page 192), and to specify local variables defined for that file
(see Section 33.2.4 [File Variables], page 410).

15.3 Saving Files

Saving a buffer in Emacs means writing its contents back into the file that was visited in
the buffer.

Chapter 15: File Handling 119

15.3.1 Commands for Saving Files

These are the commands that relate to saving and writing files.

C-x C-s Save the current buffer to its file (save-buffer).

C-x s Save any or all buffers to their files (save-some-buffers).

M-~ Forget that the current buffer has been changed (not-modified). With prefix
argument (C-u), mark the current buffer as changed.

C-x C-w Save the current buffer with a specified file name (write-file).

M-x set-visited-file-name

Change the file name under which the current buffer will be saved.

When you wish to save the file and make your changes permanent, type C-x C-s (save-
buffer). After saving is finished, C-x C-s displays a message like this:

Wrote /u/rms/gnu/gnu.tasks

If the current buffer is not modified (no changes have been made in it since the buffer was
created or last saved), saving is not really done, because it would have no effect. Instead,
C-x C-s displays a message like this in the echo area:

(No changes need to be saved)

With a prefix argument, C-u C-x C-s, Emacs also marks the buffer to be backed up
when the next save is done. See Section 15.3.2 [Backup], page 120.

The command C-x s (save-some-buffers) offers to save any or all modified buffers. It
asks you what to do with each buffer. The possible responses are analogous to those of
query-replace:

y Save this buffer and ask about the rest of the buffers.

n Don’t save this buffer, but ask about the rest of the buffers.

! Save this buffer and all the rest with no more questions.

RET Terminate save-some-buffers without any more saving.

. Save this buffer, then exit save-some-buffers without even asking about other
buffers.

C-r View the buffer that you are currently being asked about. When you exit View
mode, you get back to save-some-buffers, which asks the question again.

d Diff the buffer against its corresponding file, so you can see what changes
you would be saving. This calls the command diff-buffer-with-file (see
Section 15.8 [Comparing Files], page 130).

C-h Display a help message about these options.

C-x C-c, the key sequence to exit Emacs, invokes save-some-buffers and therefore
asks the same questions.

If you have changed a buffer but do not wish to save the changes, you should take some
action to prevent it. Otherwise, each time you use C-x s or C-x C-c, you are liable to save
this buffer by mistake. One thing you can do is type M-~ (not-modified), which clears out

Chapter 15: File Handling 120

the indication that the buffer is modified. If you do this, none of the save commands will
believe that the buffer needs to be saved. (‘~’ is often used as a mathematical symbol for
‘not’; thus M-~ is ‘not’, metafied.) Alternatively, you can cancel all the changes made since
the file was visited or saved, by reading the text from the file again. This is called reverting.
See Section 15.4 [Reverting], page 125. (You could also undo all the changes by repeating
the undo command C-x u until you have undone all the changes; but reverting is easier.)

M-x set-visited-file-name alters the name of the file that the current buffer is visit-
ing. It reads the new file name using the minibuffer. Then it marks the buffer as visiting
that file name, and changes the buffer name correspondingly. set-visited-file-name

does not save the buffer in the newly visited file; it just alters the records inside Emacs in
case you do save later. It also marks the buffer as “modified” so that C-x C-s in that buffer
will save.

If you wish to mark the buffer as visiting a different file and save it right away, use C-x

C-w (write-file). This is equivalent to set-visited-file-name followed by C-x C-s,
except that C-x C-w asks for confirmation if the file exists. C-x C-s used on a buffer that
is not visiting a file has the same effect as C-x C-w; that is, it reads a file name, marks the
buffer as visiting that file, and saves it there. The default file name in a buffer that is not
visiting a file is made by combining the buffer name with the buffer’s default directory (see
Section 15.1 [File Names], page 115).

If the new file name implies a major mode, then C-x C-w switches to that major mode,
in most cases. The command set-visited-file-name also does this. See Section 20.3
[Choosing Modes], page 192.

If Emacs is about to save a file and sees that the date of the latest version on disk
does not match what Emacs last read or wrote, Emacs notifies you of this fact, because it
probably indicates a problem caused by simultaneous editing and requires your immediate
attention. See Section 15.3.4 [Simultaneous Editing], page 123.

15.3.2 Backup Files

On most operating systems, rewriting a file automatically destroys all record of what the
file used to contain. Thus, saving a file from Emacs throws away the old contents of the
file—or it would, except that Emacs carefully copies the old contents to another file, called
the backup file, before actually saving.

Emacs makes a backup for a file only the first time the file is saved from a buffer. No
matter how many times you subsequently save the file, its backup remains unchanged.
However, if you kill the buffer and then visit the file again, a new backup file will be made.

For most files, the variable make-backup-files determines whether to make backup
files. On most operating systems, its default value is t, so that Emacs does write backup
files.

For files managed by a version control system (see Section 25.1 [Version Control],
page 269), the variable vc-make-backup-files determines whether to make backup files.
By default it is nil, since backup files are redundant when you store all the previous
versions in a version control system. See Section “General VC Options” in Specialized
Emacs Features.

Chapter 15: File Handling 121

At your option, Emacs can keep either a single backup for each file, or make a series
of numbered backup files for each file that you edit. See Section 15.3.2.1 [Backup Names],
page 121.

The default value of the backup-enable-predicate variable prevents backup files being
written for files in the directories used for temporary files, specified by temporary-file-

directory or small-temporary-file-directory.

You can explicitly tell Emacs to make another backup file from a buffer, even though
that buffer has been saved before. If you save the buffer with C-u C-x C-s, the version thus
saved will be made into a backup file if you save the buffer again. C-u C-u C-x C-s saves
the buffer, but first makes the previous file contents into a new backup file. C-u C-u C-u

C-x C-s does both things: it makes a backup from the previous contents, and arranges to
make another from the newly saved contents if you save again.

15.3.2.1 Single or Numbered Backups

When Emacs makes a backup file, its name is normally constructed by appending ‘~’ to the
file name being edited; thus, the backup file for ‘eval.c’ would be ‘eval.c~’.

If access control stops Emacs from writing backup files under the usual names, it writes
the backup file as ‘~/.emacs.d/%backup%~’. Only one such file can exist, so only the most
recently made such backup is available.

Emacs can also make numbered backup files. Numbered backup file names contain ‘.~’,
the number, and another ‘~’ after the original file name. Thus, the backup files of ‘eval.c’
would be called ‘eval.c.~1~’, ‘eval.c.~2~’, and so on, all the way through names like
‘eval.c.~259~’ and beyond.

The variable version-control determines whether to make single backup files or mul-
tiple numbered backup files. Its possible values are:

nil Make numbered backups for files that have numbered backups already. Other-
wise, make single backups. This is the default.

t Make numbered backups.

never Never make numbered backups; always make single backups.

The usual way to set this variable is globally, through your init file or the customization
buffer. However, you can set version-control locally in an individual buffer to control
the making of backups for that buffer’s file (see Section 33.2.3 [Locals], page 409). You can
have Emacs set version-control locally whenever you visit a given file (see Section 33.2.4
[File Variables], page 410). Some modes, such as Rmail mode, set this variable.

If you set the environment variable VERSION_CONTROL, to tell various GNU utilities
what to do with backup files, Emacs also obeys the environment variable by setting the
Lisp variable version-control accordingly at startup. If the environment variable’s value
is ‘t’ or ‘numbered’, then version-control becomes t; if the value is ‘nil’ or ‘existing’,
then version-control becomes nil; if it is ‘never’ or ‘simple’, then version-control

becomes never.

You can customize the variable backup-directory-alist to specify that files matching
certain patterns should be backed up in specific directories. This variable applies to both
single and numbered backups. A typical use is to add an element ("." . dir) to make

Chapter 15: File Handling 122

all backups in the directory with absolute name dir; Emacs modifies the backup file names
to avoid clashes between files with the same names originating in different directories.
Alternatively, adding, ("." . ".~") would make backups in the invisible subdirectory ‘.~’
of the original file’s directory. Emacs creates the directory, if necessary, to make the backup.

If you define the variable make-backup-file-name-function to a suitable Lisp function,
that overrides the usual way Emacs constructs backup file names.

15.3.2.2 Automatic Deletion of Backups

To prevent excessive consumption of disk space, Emacs can delete numbered backup versions
automatically. Generally Emacs keeps the first few backups and the latest few backups,
deleting any in between. This happens every time a new backup is made.

The two variables kept-old-versions and kept-new-versions control this deletion.
Their values are, respectively, the number of oldest (lowest-numbered) backups to keep
and the number of newest (highest-numbered) ones to keep, each time a new backup is
made. The backups in the middle (excluding those oldest and newest) are the excess middle
versions—those backups are deleted. These variables’ values are used when it is time to
delete excess versions, just after a new backup version is made; the newly made backup is
included in the count in kept-new-versions. By default, both variables are 2.

If delete-old-versions is t, Emacs deletes the excess backup files silently. If it is nil,
the default, Emacs asks you whether it should delete the excess backup versions. If it has
any other value, then Emacs never automatically deletes backups.

Dired’s . (Period) command can also be used to delete old versions. See Section 27.3
[Dired Deletion], page 303.

15.3.2.3 Copying vs. Renaming

Backup files can be made by copying the old file or by renaming it. This makes a difference
when the old file has multiple names (hard links). If the old file is renamed into the backup
file, then the alternate names become names for the backup file. If the old file is copied
instead, then the alternate names remain names for the file that you are editing, and the
contents accessed by those names will be the new contents.

The method of making a backup file may also affect the file’s owner and group. If
copying is used, these do not change. If renaming is used, you become the file’s owner, and
the file’s group becomes the default (different operating systems have different defaults for
the group).

The choice of renaming or copying is made as follows:

• If the variable backup-by-copying is non-nil (the default is nil), use copying.

• Otherwise, if the variable backup-by-copying-when-linked is non-nil (the default is
nil), and the file has multiple names, use copying.

• Otherwise, if the variable backup-by-copying-when-mismatch is non-nil (the default
is t), and renaming would change the file’s owner or group, use copying.

If you change backup-by-copying-when-mismatch to nil, Emacs checks the
numeric user-id of the file’s owner. If this is higher than backup-by-copying-

when-privileged-mismatch, then it behaves as though backup-by-copying-when-

mismatch is non-nil anyway.

Chapter 15: File Handling 123

• Otherwise, renaming is the default choice.

When a file is managed with a version control system (see Section 25.1 [Version Control],
page 269), Emacs does not normally make backups in the usual way for that file. But check-
in and check-out are similar in some ways to making backups. One unfortunate similarity
is that these operations typically break hard links, disconnecting the file name you visited
from any alternate names for the same file. This has nothing to do with Emacs—the version
control system does it.

15.3.3 Customizing Saving of Files

If the value of the variable require-final-newline is t, saving or writing a file silently
puts a newline at the end if there isn’t already one there. If the value is visit, Emacs adds
a newline at the end of any file that doesn’t have one, just after it visits the file. (This
marks the buffer as modified, and you can undo it.) If the value is visit-save, Emacs adds
such newlines both on visiting and on saving. If the value is nil, Emacs leaves the end of
the file unchanged; any other non-nil value means to asks you whether to add a newline.
The default is nil.

Some major modes are designed for specific kinds of files that are always supposed to
end in newlines. Such major modes set the variable require-final-newline to the value
of mode-require-final-newline, which defaults to t. By setting the latter variable, you
can control how these modes handle final newlines.

When Emacs saves a file, it invokes the fsync system call to force the data immediately
out to disk. This is important for safety if the system crashes or in case of power outage.
However, it can be disruptive on laptops using power saving, as it may force a disk spin-
up each time you save a file. If you accept an increased risk of data loss, you can set
write-region-inhibit-fsync to a non-nil value to disable the synchronization.

15.3.4 Protection against Simultaneous Editing

Simultaneous editing occurs when two users visit the same file, both make changes, and
then both save them. If nobody is informed that this is happening, whichever user saves
first would later find that his changes were lost.

On some systems, Emacs notices immediately when the second user starts to change the
file, and issues an immediate warning. On all systems, Emacs checks when you save the
file, and warns if you are about to overwrite another user’s changes. You can prevent loss
of the other user’s work by taking the proper corrective action instead of saving the file.

When you make the first modification in an Emacs buffer that is visiting a file, Emacs
records that the file is locked by you. (It does this by creating a specially-named symbolic
link in the same directory.) Emacs removes the lock when you save the changes. The idea
is that the file is locked whenever an Emacs buffer visiting it has unsaved changes.

If you begin to modify the buffer while the visited file is locked by someone else, this
constitutes a collision. When Emacs detects a collision, it asks you what to do, by calling
the Lisp function ask-user-about-lock. You can redefine this function for the sake of
customization. The standard definition of this function asks you a question and accepts
three possible answers:

s Steal the lock. Whoever was already changing the file loses the lock, and you
gain the lock.

Chapter 15: File Handling 124

p Proceed. Go ahead and edit the file despite its being locked by someone else.

q Quit. This causes an error (file-locked), and the buffer contents remain
unchanged—the modification you were trying to make does not actually take
place.

If Emacs or the operating system crashes, this may leave behind lock files which are
stale, so you may occasionally get warnings about spurious collisions. When you determine
that the collision is spurious, just use p to tell Emacs to go ahead anyway.

Note that locking works on the basis of a file name; if a file has multiple names, Emacs
does not prevent two users from editing it simultaneously under different names.

A lock file cannot be written in some circumstances, e.g. if Emacs lacks the system
permissions or the system does not support symbolic links. In these cases, Emacs can still
detect the collision when you try to save a file, by checking the file’s last-modification date.
If the file has changed since the last time Emacs visited or saved it, that implies that changes
have been made in some other way, and will be lost if Emacs proceeds with saving. Emacs
then displays a warning message and asks for confirmation before saving; answer yes to
save, and no or C-g cancel the save.

If you are notified that simultaneous editing has already taken place, one way to com-
pare the buffer to its file is the M-x diff-buffer-with-file command. See Section 15.8
[Comparing Files], page 130.

15.3.5 Shadowing Files

M-x shadow-initialize

Set up file shadowing.

M-x shadow-define-literal-group

Declare a single file to be shared between sites.

M-x shadow-define-regexp-group

Make all files that match each of a group of files be shared between hosts.

M-x shadow-define-cluster RET name RET

Define a shadow file cluster name.

M-x shadow-copy-files

Copy all pending shadow files.

M-x shadow-cancel

Cancel the instruction to shadow some files.

You can arrange to keep identical shadow copies of certain files in more than one place—
possibly on different machines. To do this, first you must set up a shadow file group, which
is a set of identically-named files shared between a list of sites. The file group is permanent
and applies to further Emacs sessions as well as the current one. Once the group is set up,
every time you exit Emacs, it will copy the file you edited to the other files in its group.
You can also do the copying without exiting Emacs, by typing M-x shadow-copy-files.

To set up a shadow file group, use M-x shadow-define-literal-group or M-x

shadow-define-regexp-group. See their documentation strings for further information.

Chapter 15: File Handling 125

Before copying a file to its shadows, Emacs asks for confirmation. You can answer “no”
to bypass copying of this file, this time. If you want to cancel the shadowing permanently
for a certain file, use M-x shadow-cancel to eliminate or change the shadow file group.

A shadow cluster is a group of hosts that share directories, so that copying to or from
one of them is sufficient to update the file on all of them. Each shadow cluster has a name,
and specifies the network address of a primary host (the one we copy files to), and a regular
expression that matches the host names of all the other hosts in the cluster. You can define
a shadow cluster with M-x shadow-define-cluster.

15.3.6 Updating Time Stamps Automatically

You can arrange to put a time stamp in a file, so that it is updated automatically each time
you edit and save the file. The time stamp must be in the first eight lines of the file, and
you should insert it like this:

Time-stamp: <>

or like this:

Time-stamp: " "

Then add the function time-stamp to the hook before-save-hook (see Section 33.2.2
[Hooks], page 408). When you save the file, this function then automatically updates
the time stamp with the current date and time. You can also use the command M-x

time-stamp to update the time stamp manually. For other customizations, see the Custom
group time-stamp. Note that the time stamp is formatted according to your locale setting
(see Section C.4 [Environment], page 467).

15.4 Reverting a Buffer

If you have made extensive changes to a file-visiting buffer and then change your mind, you
can revert the changes and go back to the saved version of the file. To do this, type M-x

revert-buffer. Since reverting unintentionally could lose a lot of work, Emacs asks for
confirmation first.

The revert-buffer command tries to position point in such a way that, if the file was
edited only slightly, you will be at approximately the same part of the text as before. But
if you have made major changes, point may end up in a totally different location.

Reverting marks the buffer as “not modified”. It also clears the buffer’s undo history
(see Section 13.1 [Undo], page 102). Thus, the reversion cannot be undone—if you change
your mind yet again, you can’t use the undo commands to bring the reverted changes back.

Some kinds of buffers that are not associated with files, such as Dired buffers, can also be
reverted. For them, reverting means recalculating their contents. Buffers created explicitly
with C-x b cannot be reverted; revert-buffer reports an error if you try.

When you edit a file that changes automatically and frequently—for example, a log of
output from a process that continues to run—it may be useful for Emacs to revert the file
without querying you. To request this behavior, set the variable revert-without-query

to a list of regular expressions. When a file name matches one of these regular expressions,
find-file and revert-buffer will revert it automatically if it has changed—provided the
buffer itself is not modified. (If you have edited the text, it would be wrong to discard your
changes.)

Chapter 15: File Handling 126

You can also tell Emacs to revert buffers periodically. To do this for a specific buffer,
enable the minor mode Auto-Revert mode by typing M-x auto-revert-mode. This au-
tomatically reverts the current buffer every five seconds; you can change the interval
through the variable auto-revert-interval. To do the same for all file buffers, type
M-x global-auto-revert-mode to enable Global Auto-Revert mode. These minor modes
do not check or revert remote files, because that is usually too slow.

One use of Auto-Revert mode is to “tail” a file such as a system log, so that changes
made to that file by other programs are continuously displayed. To do this, just move the
point to the end of the buffer, and it will stay there as the file contents change. However,
if you are sure that the file will only change by growing at the end, use Auto-Revert Tail
mode instead (auto-revert-tail-mode). It is more efficient for this. Auto-Revert Tail
mode works also for remote files.

See Section 25.1.8 [VC Undo], page 280, for commands to revert to earlier versions of
files under version control. See Section 25.1.2 [VC Mode Line], page 272, for Auto Revert
peculiarities when visiting files under version control.

15.5 Auto-Saving: Protection Against Disasters

From time to time, Emacs automatically saves each visited file in a separate file, without
altering the file you actually use. This is called auto-saving. It prevents you from losing
more than a limited amount of work if the system crashes.

When Emacs determines that it is time for auto-saving, it considers each buffer, and
each is auto-saved if auto-saving is enabled for it and it has been changed since the last
time it was auto-saved. The message ‘Auto-saving...’ is displayed in the echo area during
auto-saving, if any files are actually auto-saved. Errors occurring during auto-saving are
caught so that they do not interfere with the execution of commands you have been typing.

15.5.1 Auto-Save Files

Auto-saving does not normally save in the files that you visited, because it can be very
undesirable to save a change that you did not want to make permanent. Instead, auto-
saving is done in a different file called the auto-save file, and the visited file is changed only
when you request saving explicitly (such as with C-x C-s).

Normally, the auto-save file name is made by appending ‘#’ to the front and rear of the
visited file name. Thus, a buffer visiting file ‘foo.c’ is auto-saved in a file ‘#foo.c#’. Most
buffers that are not visiting files are auto-saved only if you request it explicitly; when they
are auto-saved, the auto-save file name is made by appending ‘#’ to the front and rear of
buffer name, then adding digits and letters at the end for uniqueness. For example, the
‘*mail*’ buffer in which you compose messages to be sent might be auto-saved in a file
named ‘#*mail*#704juu’. Auto-save file names are made this way unless you reprogram
parts of Emacs to do something different (the functions make-auto-save-file-name and
auto-save-file-name-p). The file name to be used for auto-saving in a buffer is calculated
when auto-saving is turned on in that buffer.

The variable auto-save-file-name-transforms allows a degree of control over the
auto-save file name. It lets you specify a series of regular expressions and replacements to
transform the auto save file name. The default value puts the auto-save files for remote files

Chapter 15: File Handling 127

(see Section 15.13 [Remote Files], page 135) into the temporary file directory on the local
machine.

When you delete a substantial part of the text in a large buffer, auto save turns off
temporarily in that buffer. This is because if you deleted the text unintentionally, you
might find the auto-save file more useful if it contains the deleted text. To reenable auto-
saving after this happens, save the buffer with C-x C-s, or use C-u 1 M-x auto-save-mode.

If you want auto-saving to be done in the visited file rather than in a separate auto-save
file, set the variable auto-save-visited-file-name to a non-nil value. In this mode,
there is no real difference between auto-saving and explicit saving.

A buffer’s auto-save file is deleted when you save the buffer in its visited file. (You can
inhibit this by setting the variable delete-auto-save-files to nil.) Changing the visited
file name with C-x C-w or set-visited-file-name renames any auto-save file to go with
the new visited name.

15.5.2 Controlling Auto-Saving

Each time you visit a file, auto-saving is turned on for that file’s buffer if the variable
auto-save-default is non-nil (but not in batch mode; see Section C.2 [Initial Options],
page 464). The default for this variable is t, so auto-saving is the usual practice for
file-visiting buffers. To toggle auto-saving in the current buffer, type M-x auto-save-mode.
Auto Save mode acts as a buffer-local minor mode (see Section 20.2 [Minor Modes],
page 190).

Emacs auto-saves periodically based on how many characters you have typed since the
last auto-save. The variable auto-save-interval specifies how many characters there are
between auto-saves. By default, it is 300. Emacs doesn’t accept values that are too small:
if you customize auto-save-interval to a value less than 20, Emacs will behave as if the
value is 20.

Auto-saving also takes place when you stop typing for a while. By default, it does
this after 30 seconds of idleness (at this time, Emacs may also perform garbage collection;
see Section “Garbage Collection” in The Emacs Lisp Reference Manual). To change this
interval, customize the variable auto-save-timeout. The actual time period is longer if the
current buffer is long; this is a heuristic which aims to keep out of your way when you are
editing long buffers, in which auto-save takes an appreciable amount of time. Auto-saving
during idle periods accomplishes two things: first, it makes sure all your work is saved if
you go away from the terminal for a while; second, it may avoid some auto-saving while
you are actually typing.

Emacs also does auto-saving whenever it gets a fatal error. This includes killing the
Emacs job with a shell command such as ‘kill %emacs’, or disconnecting a phone line or
network connection.

You can perform an auto-save explicitly with the command M-x do-auto-save.

15.5.3 Recovering Data from Auto-Saves

You can use the contents of an auto-save file to recover from a loss of data with the com-
mand M-x recover-file RET file RET. This visits file and then (after your confirmation)
restores the contents from its auto-save file ‘#file#’. You can then save with C-x C-s to

Chapter 15: File Handling 128

put the recovered text into file itself. For example, to recover file ‘foo.c’ from its auto-save
file ‘#foo.c#’, do:

M-x recover-file RET foo.c RET

yes RET

C-x C-s

Before asking for confirmation, M-x recover-file displays a directory listing describing
the specified file and the auto-save file, so you can compare their sizes and dates. If the
auto-save file is older, M-x recover-file does not offer to read it.

If Emacs or the computer crashes, you can recover all the files you were editing from
their auto save files with the command M-x recover-session. This first shows you a list
of recorded interrupted sessions. Move point to the one you choose, and type C-c C-c.

Then recover-session asks about each of the files that were being edited during that
session, asking whether to recover that file. If you answer y, it calls recover-file, which
works in its normal fashion. It shows the dates of the original file and its auto-save file, and
asks once again whether to recover that file.

When recover-session is done, the files you’ve chosen to recover are present in Emacs
buffers. You should then save them. Only this—saving them—updates the files themselves.

Emacs records information about interrupted sessions for later recovery in files named
‘.saves-pid-hostname ’ in the directory ‘~/.emacs.d/auto-save-list/’. This directory
is determined by the variable auto-save-list-file-prefix. If you set auto-save-list-
file-prefix to nil, sessions are not recorded for recovery.

15.6 File Name Aliases

Symbolic links and hard links both make it possible for several file names to refer to the
same file. Hard links are alternate names that refer directly to the file; all the names are
equally valid, and no one of them is preferred. By contrast, a symbolic link is a kind of
defined alias: when ‘foo’ is a symbolic link to ‘bar’, you can use either name to refer to the
file, but ‘bar’ is the real name, while ‘foo’ is just an alias. More complex cases occur when
symbolic links point to directories.

Normally, if you visit a file which Emacs is already visiting under a different name, Emacs
displays a message in the echo area and uses the existing buffer visiting that file. This can
happen on systems that support hard or symbolic links, or if you use a long file name
on a system that truncates long file names, or on a case-insensitive file system. You can
suppress the message by setting the variable find-file-suppress-same-file-warnings

to a non-nil value. You can disable this feature entirely by setting the variable find-file-
existing-other-name to nil: then if you visit the same file under two different names,
you get a separate buffer for each file name.

If the variable find-file-visit-truename is non-nil, then the file name recorded for a
buffer is the file’s truename (made by replacing all symbolic links with their target names),
rather than the name you specify. Setting find-file-visit-truename also implies the
effect of find-file-existing-other-name.

Sometimes, a directory is ordinarily accessed through a symbolic link, and you may want
Emacs to preferentially show its “linked” name. To do this, customize directory-abbrev-

alist. Each element in this list should have the form (from . to), which means to replace

Chapter 15: File Handling 129

from with to whenever from appears in a directory name. The from string is a regular
expression (see Section 12.5 [Regexps], page 91). It is matched against directory names
anchored at the first character, and should start with ‘\‘’ (to support directory names with
embedded newlines, which would defeat ‘^’). The to string should be an ordinary absolute
directory name pointing to the same directory. Do not use ‘~’ to stand for a home directory
in the to string; Emacs performs these substitutions separately. Here’s an example, from a
system on which ‘/home/fsf’ is normally accessed through a symbolic link named ‘/fsf’:

(("\\‘/home/fsf" . "/fsf"))

15.7 File Directories

The file system groups files into directories. A directory listing is a list of all the files in a
directory. Emacs provides commands to create and delete directories, and to make directory
listings in brief format (file names only) and verbose format (sizes, dates, and authors
included). Emacs also includes a directory browser feature called Dired; see Chapter 27
[Dired], page 302.

C-x C-d dir-or-pattern RET

Display a brief directory listing (list-directory).

C-u C-x C-d dir-or-pattern RET

Display a verbose directory listing.

M-x make-directory RET dirname RET

Create a new directory named dirname.

M-x delete-directory RET dirname RET

Delete the directory named dirname. If it isn’t empty, you will be asked whether
you want to delete it recursively.

The command to display a directory listing is C-x C-d (list-directory). It reads using
the minibuffer a file name which is either a directory to be listed or a wildcard-containing
pattern for the files to be listed. For example,

C-x C-d /u2/emacs/etc RET

lists all the files in directory ‘/u2/emacs/etc’. Here is an example of specifying a file name
pattern:

C-x C-d /u2/emacs/src/*.c RET

Normally, C-x C-d displays a brief directory listing containing just file names. A numeric
argument (regardless of value) tells it to make a verbose listing including sizes, dates, and
owners (like ‘ls -l’).

The text of a directory listing is mostly obtained by running ls in an inferior pro-
cess. Two Emacs variables control the switches passed to ls: list-directory-brief-

switches is a string giving the switches to use in brief listings ("-CF" by default), and
list-directory-verbose-switches is a string giving the switches to use in a verbose
listing ("-l" by default).

In verbose directory listings, Emacs adds information about the amount of free space on
the disk that contains the directory. To do this, it runs the program specified by directory-

free-space-program with arguments directory-free-space-args.

Chapter 15: File Handling 130

The command M-x delete-directory prompts for a directory name using the minibuf-
fer, and deletes the directory if it is empty. If the directory is not empty, you will be asked
whether you want to delete it recursively. On systems that have a “Trash” (or “Recycle
Bin”) feature, you can make this command move the specified directory to the Trash in-
stead of deleting it outright, by changing the variable delete-by-moving-to-trash to t.
See Section 15.10 [Misc File Ops], page 132, for more information about using the Trash.

15.8 Comparing Files

The command M-x diff prompts for two file names, using the minibuffer, and displays
the differences between the two files in a buffer named ‘*diff*’. This works by running
the diff program, using options taken from the variable diff-switches. The value of
diff-switches should be a string; the default is "-c" to specify a context diff. See Section
“Diff” in Comparing and Merging Files, for more information about the diff program.

The output of the diff command is shown using a major mode called Diff mode. See
Section 15.9 [Diff Mode], page 131.

The command M-x diff-backup compares a specified file with its most recent backup.
If you specify the name of a backup file, diff-backup compares it with the source file that
it is a backup of. In all other respects, this behaves like M-x diff.

The command M-x diff-buffer-with-file compares a specified buffer with its corre-
sponding file. This shows you what changes you would make to the file if you save the
buffer.

The command M-x compare-windows compares the text in the current window with
that in the next window. (For more information about windows in Emacs, Chapter 17
[Windows], page 147.) Comparison starts at point in each window, after pushing each
initial point value on the mark ring in its respective buffer. Then it moves point forward in
each window, one character at a time, until it reaches characters that don’t match. Then
the command exits.

If point in the two windows is followed by non-matching text when the command starts,
M-x compare-windows tries heuristically to advance up to matching text in the two windows,
and then exits. So if you use M-x compare-windows repeatedly, each time it either skips
one matching range or finds the start of another.

With a numeric argument, compare-windows ignores changes in whitespace. If the
variable compare-ignore-case is non-nil, the comparison ignores differences in case as
well. If the variable compare-ignore-whitespace is non-nil, compare-windows normally
ignores changes in whitespace, and a prefix argument turns that off.

You can use M-x smerge-mode to turn on Smerge mode, a minor mode for editing output
from the diff3 program. This is typically the result of a failed merge from a version control
system “update” outside VC, due to conflicting changes to a file. Smerge mode provides
commands to resolve conflicts by selecting specific changes.

See Section “Emerge” in Specialized Emacs Features, for the Emerge facility, which
provides a powerful interface for merging files.

Chapter 15: File Handling 131

15.9 Diff Mode

Diff mode is a major mode used for the output of M-x diff and other similar commands.
This kind of output is called a patch, because it can be passed to the patch command
to automatically apply the specified changes. To select Diff mode manually, type M-x

diff-mode.

The changes specified in a patch are grouped into hunks, which are contiguous chunks
of text that contain one or more changed lines. Hunks can also include unchanged lines to
provide context for the changes. Each hunk is preceded by a hunk header, which specifies
the old and new line numbers at which the hunk occurs. Diff mode highlights each hunk
header, to distinguish it from the actual contents of the hunk.

You can edit a Diff mode buffer like any other buffer. (If it is read-only, you need to
make it writable first. See Section 16.3 [Misc Buffer], page 141.) Whenever you change a
hunk, Diff mode attempts to automatically correct the line numbers in the hunk headers, to
ensure that the diff remains “correct”. To disable automatic line number correction, change
the variable diff-update-on-the-fly to nil.

Diff mode treats each hunk as an “error message”, similar to Compilation mode. Thus,
you can use commands such as C-x ’ to visit the corresponding source locations. See
Section 24.2 [Compilation Mode], page 251.

In addition, Diff mode provides the following commands to navigate, manipulate and
apply parts of patches:

M-n Move to the next hunk-start (diff-hunk-next).

This command has a side effect: it refines the hunk you move to, highlight-
ing its changes with better granularity. To disable this feature, type M-x

diff-auto-refine-mode to toggle off the minor mode Diff Auto-Refine mode.
To disable Diff Auto Refine mode by default, add this to your init file (see
Section 33.2.2 [Hooks], page 408):

(add-hook ’diff-mode-hook

(lambda () (diff-auto-refine-mode -1)))

M-p Move to the previous hunk-start (diff-hunk-prev). Like M-n, this has the
side-effect of refining the hunk you move to, unless you disable Diff Auto-Refine
mode.

M-} Move to the next file-start, in a multi-file patch (diff-file-next).

M-{ Move to the previous file-start, in a multi-file patch (diff-file-prev).

M-k Kill the hunk at point (diff-hunk-kill).

M-K In a multi-file patch, kill the current file part. (diff-file-kill).

C-c C-a Apply this hunk to its target file (diff-apply-hunk). With a prefix argument
of C-u, revert this hunk.

C-c C-b Highlight the changes of the hunk at point with a finer granularity (diff-
refine-hunk). This allows you to see exactly which parts of each changed line
were actually changed.

C-c C-c Go to the source file and line corresponding to this hunk (diff-goto-source).

Chapter 15: File Handling 132

C-c C-e Start an Ediff session with the patch (diff-ediff-patch). See Section “Ediff”
in The Ediff Manual.

C-c C-n Restrict the view to the current hunk (diff-restrict-view). See Section 11.5
[Narrowing], page 68. With a prefix argument of C-u, restrict the view to the
current file of a multiple-file patch. To widen again, use C-x n w (widen).

C-c C-r Reverse the direction of comparison for the entire buffer (diff-reverse-
direction).

C-c C-s Split the hunk at point (diff-split-hunk). This is for manually editing
patches, and only works with the unified diff format produced by the ‘-u’ or
‘--unified’ options to the diff program. If you need to split a hunk in the
context diff format produced by the ‘-c’ or ‘--context’ options to diff, first
convert the buffer to the unified diff format with C-c C-u.

C-c C-d Convert the entire buffer to the context diff format (diff-unified->context).
With a prefix argument, convert only the text within the region.

C-c C-u Convert the entire buffer to unified diff format (diff-context->unified).
With a prefix argument, convert unified format to context format. When the
mark is active, convert only the text within the region.

C-c C-w Refine the current hunk so that it disregards changes in whitespace (diff-
refine-hunk).

C-x 4 A Generate a ChangeLog entry, like C-x 4 a does (see Section 25.2 [Change Log],
page 285), for each one of the hunks (diff-add-change-log-entries-other-
window). This creates a skeleton of the log of changes that you can later fill
with the actual descriptions of the changes. C-x 4 a itself in Diff mode operates
on behalf of the current hunk’s file, but gets the function name from the patch
itself. This is useful for making log entries for functions that are deleted by the
patch.

By default, Diff mode highlights trailing whitespace on modified lines, so that they are
more obvious. This is done by enabling Whitespace mode in the Diff buffer (see Section 11.16
[Useless Whitespace], page 78). Diff mode buffers are set up so that Whitespace mode avoids
highlighting trailing whitespace occurring in the diff context.

15.10 Miscellaneous File Operations

Emacs has commands for performing many other operations on files. All operate on one
file; they do not accept wildcard file names.

M-x delete-file prompts for a file and deletes it. If you are deleting many files in
one directory, it may be more convenient to use Dired rather than delete-file. See
Section 27.3 [Dired Deletion], page 303.

M-x move-file-to-trash moves a file into the system Trash (or Recycle Bin). This is
a facility available on most operating systems; files that are moved into the Trash can be
brought back later if you change your mind.

By default, Emacs deletion commands do not use the Trash. To use the Trash (when
it is available) for common deletion commands, change the variable delete-by-moving-

to-trash to t. This affects the commands M-x delete-file and M-x delete-directory

Chapter 15: File Handling 133

(see Section 15.7 [Directories], page 129), as well as the deletion commands in Dired (see
Section 27.3 [Dired Deletion], page 303). Supplying a prefix argument to M-x delete-file

or M-x delete-directory makes them delete outright, instead of using the Trash, regardless
of delete-by-moving-to-trash.

M-x copy-file reads the file old and writes a new file named new with the same contents.

M-x copy-directory copies directories, similar to the cp -r shell command. It prompts
for a directory old and a destination new. If new is an existing directory, it creates a copy
of the old directory and puts it in new. If new is not an existing directory, it copies all the
contents of old into a new directory named new.

M-x rename-file reads two file names old and new using the minibuffer, then renames
file old as new. If the file name new already exists, you must confirm with yes or renaming
is not done; this is because renaming causes the old meaning of the name new to be lost.
If old and new are on different file systems, the file old is copied and deleted. If the
argument new is just a directory name, the real new name is in that directory, with the
same non-directory component as old. For example, M-x rename-file RET ~/foo RET /tmp

RET renames ‘~/foo’ to ‘/tmp/foo’. The same rule applies to all the remaining commands
in this section. All of them ask for confirmation when the new file name already exists, too.

M-x add-name-to-file adds an additional name to an existing file without removing its
old name. The new name is created as a “hard link” to the existing file. The new name
must belong on the same file system that the file is on. On MS-Windows, this command
works only if the file resides in an NTFS file system. On MS-DOS, it works by copying the
file.

M-x make-symbolic-link reads two file names target and linkname, then creates a sym-
bolic link named linkname, which points at target. The effect is that future attempts to
open file linkname will refer to whatever file is named target at the time the opening is
done, or will get an error if the name target is nonexistent at that time. This command
does not expand the argument target, so that it allows you to specify a relative name as the
target of the link. Not all systems support symbolic links; on systems that don’t support
them, this command is not defined.

M-x insert-file (also C-x i) inserts a copy of the contents of the specified file into the
current buffer at point, leaving point unchanged before the contents. The position after the
inserted contents is added to the mark ring, without activating the mark (see Section 8.4
[Mark Ring], page 47).

M-x insert-file-literally is like M-x insert-file, except the file is inserted “liter-
ally”: it is treated as a sequence of ASCII characters with no special encoding or conversion,
similar to the M-x find-file-literally command (see Section 15.2 [Visiting], page 116).

M-x write-region is the inverse of M-x insert-file; it copies the contents of the region
into the specified file. M-x append-to-file adds the text of the region to the end of
the specified file. See Section 9.4 [Accumulating Text], page 57. The variable write-

region-inhibit-fsync applies to these commands, as well as saving files; see Section 15.3.3
[Customize Save], page 123.

M-x set-file-modes reads a file name followed by a file mode, and applies that file mode
to the specified file. File modes, also called file permissions, determine whether a file can
be read, written to, or executed, and by whom. This command reads file modes using the
same symbolic or octal format accepted by the chmod command; for instance, ‘u+x’ means

Chapter 15: File Handling 134

to add execution permission for the user who owns the file. It has no effect on operating
systems that do not support file modes. chmod is a convenience alias for this function.

15.11 Accessing Compressed Files

Emacs automatically uncompresses compressed files when you visit them, and automatically
recompresses them if you alter them and save them. Emacs recognizes compressed files by
their file names. File names ending in ‘.gz’ indicate a file compressed with gzip. Other
endings indicate other compression programs.

Automatic uncompression and compression apply to all the operations in which Emacs
uses the contents of a file. This includes visiting it, saving it, inserting its contents into a
buffer, loading it, and byte compiling it.

To disable this feature, type the command M-x auto-compression-mode. You can dis-
able it permanently by customizing the variable auto-compression-mode.

15.12 File Archives

A file whose name ends in ‘.tar’ is normally an archive made by the tar program. Emacs
views these files in a special mode called Tar mode which provides a Dired-like list of the
contents (see Chapter 27 [Dired], page 302). You can move around through the list just as
you would in Dired, and visit the subfiles contained in the archive. However, not all Dired
commands are available in Tar mode.

If Auto Compression mode is enabled (see Section 15.11 [Compressed Files], page 134),
then Tar mode is used also for compressed archives—files with extensions ‘.tgz’, .tar.Z
and .tar.gz.

The keys e, f and RET all extract a component file into its own buffer. You can edit
it there, and if you save the buffer, the edited version will replace the version in the Tar
buffer. Clicking with the mouse on the file name in the Tar buffer does likewise. v extracts
a file into a buffer in View mode (see Section 11.6 [View Mode], page 69). o extracts the
file and displays it in another window, so you could edit the file and operate on the archive
simultaneously.

d marks a file for deletion when you later use x, and u unmarks a file, as in Dired. C

copies a file from the archive to disk and R renames a file within the archive. g reverts
the buffer from the archive on disk. The keys M, G, and O change the file’s permission bits,
group, and owner, respectively.

Saving the Tar buffer writes a new version of the archive to disk with the changes you
made to the components.

You don’t need the tar program to use Tar mode—Emacs reads the archives directly.
However, accessing compressed archives requires the appropriate uncompression program.

A separate but similar Archive mode is used for arc, jar, lzh, zip, rar, 7z, and zoo

archives, as well as exe files that are self-extracting executables.

The key bindings of Archive mode are similar to those in Tar mode, with the addition
of the m key which marks a file for subsequent operations, and M-DEL which unmarks all
the marked files. Also, the a key toggles the display of detailed file information, for those
archive types where it won’t fit in a single line. Operations such as renaming a subfile, or
changing its mode or owner, are supported only for some of the archive formats.

Chapter 15: File Handling 135

Unlike Tar mode, Archive mode runs the archiving programs to unpack and repack
archives. However, you don’t need these programs to look at the archive table of contents,
only to extract or manipulate the subfiles in the archive. Details of the program names and
their options can be set in the ‘Archive’ Customize group.

15.13 Remote Files

You can refer to files on other machines using a special file name syntax:

/host:filename

/user@host:filename

/user@host#port:filename

/method:user@host:filename

/method:user@host#port:filename

To carry out this request, Emacs uses a remote-login program such as ftp, ssh, rlogin,
or telnet. You can always specify in the file name which method to use—for example,
‘/ftp:user@host:filename ’ uses FTP, whereas ‘/ssh:user@host:filename ’ uses ssh.
When you don’t specify a method in the file name, Emacs chooses the method as follows:

1. If the host name starts with ‘ftp.’ (with dot), Emacs uses FTP.

2. If the user name is ‘ftp’ or ‘anonymous’, Emacs uses FTP.

3. If the variable tramp-default-method is set to ‘ftp’, Emacs uses FTP.

4. If ssh-agent is running, Emacs uses scp.

5. Otherwise, Emacs uses ssh.

You can entirely turn off the remote file name feature by setting the variable tramp-mode

to nil. You can turn off the feature in individual cases by quoting the file name with ‘/:’
(see Section 15.14 [Quoted File Names], page 136).

Remote file access through FTP is handled by the Ange-FTP package, which is docu-
mented in the following. Remote file access through the other methods is handled by the
Tramp package, which has its own manual. See Section “Top” in The Tramp Manual.

When the Ange-FTP package is used, Emacs logs in through FTP using the name user,
if that is specified in the remote file name. If user is unspecified, Emacs logs in using your
user name on the local system; but if you set the variable ange-ftp-default-user to a
string, that string is used instead. When logging in, Emacs may also ask for a password.

For performance reasons, Emacs does not make backup files for files accessed via FTP by
default. To make it do so, change the variable ange-ftp-make-backup-files to a non-nil
value.

By default, auto-save files for remote files are made in the temporary file directory on
the local machine, as specified by the variable auto-save-file-name-transforms. See
Section 15.5.1 [Auto Save Files], page 126.

To visit files accessible by anonymous FTP, you use special user names ‘anonymous’
or ‘ftp’. Passwords for these user names are handled specially. The variable ange-ftp-

generate-anonymous-password controls what happens: if the value of this variable is a
string, then that string is used as the password; if non-nil (the default), then the value of
user-mail-address is used; if nil, then Emacs prompts you for a password as usual (see
Section 5.6 [Passwords], page 34).

Chapter 15: File Handling 136

Sometimes you may be unable to access files on a remote machine because a firewall in
between blocks the connection for security reasons. If you can log in on a gateway machine
from which the target files are accessible, and whose FTP server supports gatewaying
features, you can still use remote file names; all you have to do is specify the name of
the gateway machine by setting the variable ange-ftp-gateway-host, and set ange-ftp-

smart-gateway to t. Otherwise you may be able to make remote file names work, but the
procedure is complex. You can read the instructions by typing M-x finder-commentary

RET ange-ftp RET.

15.14 Quoted File Names

You can quote an absolute file name to prevent special characters and syntax in it from
having their special effects. The way to do this is to add ‘/:’ at the beginning.

For example, you can quote a local file name which appears remote, to prevent it from
being treated as a remote file name. Thus, if you have a directory named ‘/foo:’ and a file
named ‘bar’ in it, you can refer to that file in Emacs as ‘/:/foo:/bar’.

‘/:’ can also prevent ‘~’ from being treated as a special character for a user’s home
directory. For example, ‘/:/tmp/~hack’ refers to a file whose name is ‘~hack’ in directory
‘/tmp’.

Quoting with ‘/:’ is also a way to enter in the minibuffer a file name that contains ‘$’.
In order for this to work, the ‘/:’ must be at the beginning of the minibuffer contents. (You
can also double each ‘$’; see [File Names with $], page 115.)

You can also quote wildcard characters with ‘/:’, for visiting. For example,
‘/:/tmp/foo*bar’ visits the file ‘/tmp/foo*bar’.

Another method of getting the same result is to enter ‘/tmp/foo[*]bar’, which is a
wildcard specification that matches only ‘/tmp/foo*bar’. However, in many cases there is
no need to quote the wildcard characters because even unquoted they give the right result.
For example, if the only file name in ‘/tmp’ that starts with ‘foo’ and ends with ‘bar’ is
‘foo*bar’, then specifying ‘/tmp/foo*bar’ will visit only ‘/tmp/foo*bar’.

15.15 File Name Cache

You can use the file name cache to make it easy to locate a file by name, without having
to remember exactly where it is located. When typing a file name in the minibuffer, C-TAB
(file-cache-minibuffer-complete) completes it using the file name cache. If you repeat
C-TAB, that cycles through the possible completions of what you had originally typed.
(However, note that the C-TAB character cannot be typed on most text terminals.)

The file name cache does not fill up automatically. Instead, you load file names into the
cache using these commands:

M-x file-cache-add-directory RET directory RET

Add each file name in directory to the file name cache.

M-x file-cache-add-directory-using-find RET directory RET

Add each file name in directory and all of its nested subdirectories to the file
name cache.

Chapter 15: File Handling 137

M-x file-cache-add-directory-using-locate RET directory RET

Add each file name in directory and all of its nested subdirectories to the file
name cache, using locate to find them all.

M-x file-cache-add-directory-list RET variable RET

Add each file name in each directory listed in variable to the file name cache.
variable should be a Lisp variable whose value is a list of directory names, like
load-path.

M-x file-cache-clear-cache RET

Clear the cache; that is, remove all file names from it.

The file name cache is not persistent: it is kept and maintained only for the duration of
the Emacs session. You can view the contents of the cache with the file-cache-display

command.

15.16 Convenience Features for Finding Files

In this section, we introduce some convenient facilities for finding recently-opened files,
reading file names from a buffer, and viewing image files.

If you enable Recentf mode, with M-x recentf-mode, the ‘File’ menu includes a sub-
menu containing a list of recently opened files. M-x recentf-save-list saves the current
recent-file-list to a file, and M-x recentf-edit-list edits it.

The M-x ffap command generalizes find-file with more powerful heuristic defaults
(see Section 31.11.3 [FFAP], page 391), often based on the text at point. Partial Comple-
tion mode offers other features extending find-file, which can be used with ffap. See
Section 5.3.5 [Completion Options], page 31.

Visiting image files automatically selects Image mode. In this major mode, you can type
C-c C-c (image-toggle-display) to toggle between displaying the file as an image in the
Emacs buffer, and displaying its underlying text (or raw byte) representation. Displaying
the file as an image works only if Emacs is compiled with support for displaying such images.
If the displayed image is wider or taller than the frame, the usual point motion keys (C-f,
C-p, and so forth) cause different parts of the image to be displayed. If the image can
be animated, the command RET (image-toggle-animation) starts or stops the animation.
Animation plays once, unless the option image-animate-loop is non-nil. Currently, Emacs
only supports animation in GIF files.

If your Emacs was compiled with ImageMagick support, it is possible to view a much
wider variety of image types in Image mode, by rendering the images via ImageMagick.
However, this feature is currently disabled by default. To enable it, add the following line
to your init file:

(imagemagick-register-types)

The Image-Dired package can also be used to view images as thumbnails. See
Section 27.17 [Image-Dired], page 315.

15.17 Filesets

If you regularly edit a certain group of files, you can define them as a fileset. This lets you
perform certain operations, such as visiting, query-replace, and shell commands on all the

Chapter 15: File Handling 138

files at once. To make use of filesets, you must first add the expression (filesets-init)

to your init file (see Section 33.4 [Init File], page 423). This adds a ‘Filesets’ menu to the
menu bar.

The simplest way to define a fileset is by adding files to it one at a time. To add a file
to fileset name, visit the file and type M-x filesets-add-buffer RET name RET. If there is
no fileset name, this creates a new one, which initially contains only the current file. The
command M-x filesets-remove-buffer removes the current file from a fileset.

You can also edit the list of filesets directly, with M-x filesets-edit (or by choosing
‘Edit Filesets’ from the ‘Filesets’ menu). The editing is performed in a Customize
buffer (see Section 33.1 [Easy Customization], page 398). Normally, a fileset is a simple list
of files, but you can also define a fileset as a regular expression matching file names. Some
examples of these more complicated filesets are shown in the Customize buffer. Remember
to select ‘Save for future sessions’ if you want to use the same filesets in future Emacs
sessions.

You can use the command M-x filesets-open to visit all the files in a fileset, and M-x

filesets-close to close them. Use M-x filesets-run-cmd to run a shell command on all
the files in a fileset. These commands are also available from the ‘Filesets’ menu, where
each existing fileset is represented by a submenu.

See Section 25.1 [Version Control], page 269, for a different concept of “filesets”: groups
of files bundled together for version control operations. Filesets of that type are unnamed,
and do not persist across Emacs sessions.

Chapter 16: Using Multiple Buffers 139

16 Using Multiple Buffers

The text you are editing in Emacs resides in an object called a buffer. Each time you visit
a file, a buffer is used to hold the file’s text. Each time you invoke Dired, a buffer is used
to hold the directory listing. If you send a message with C-x m, a buffer is used to hold
the text of the message. When you ask for a command’s documentation, that appears in a
buffer named ‘*Help*’.

Each buffer has a unique name, which can be of any length. When a buffer is displayed
in a window, its name is shown in the mode line (see Section 1.3 [Mode Line], page 8). The
distinction between upper and lower case matters in buffer names. Most buffers are made
by visiting files, and their names are derived from the files’ names; however, you can also
create an empty buffer with any name you want. A newly started Emacs has several buffers,
including one named ‘*scratch*’, which can be used for evaluating Lisp expressions and is
not associated with any file (see Section 24.10 [Lisp Interaction], page 267).

At any time, one and only one buffer is selected; we call it the current buffer. We
sometimes say that a command operates on “the buffer”; this really means that it operates
on the current buffer. When there is only one Emacs window, the buffer displayed in that
window is current. When there are multiple windows, the buffer displayed in the selected
window is current. See Chapter 17 [Windows], page 147.

Aside from its textual contents, each buffer records several pieces of information, such as
what file it is visiting (if any), whether it is modified, and what major mode and minor modes
are in effect (see Chapter 20 [Modes], page 189). These are stored in buffer-local variables—
variables that can have a different value in each buffer. See Section 33.2.3 [Locals], page 409.

A buffer’s size cannot be larger than some maximum, which is defined by the largest
buffer position representable by Emacs integers. This is because Emacs tracks buffer posi-
tions using that data type. For typical 64-bit machines, this maximum buffer size is 261− 2
bytes, or about 2 EiB. For typical 32-bit machines, the maximum is usually 229 − 2 bytes,
or about 512 MiB. Buffer sizes are also limited by the amount of memory in the system.

16.1 Creating and Selecting Buffers

C-x b buffer RET

Select or create a buffer named buffer (switch-to-buffer).

C-x 4 b buffer RET

Similar, but select buffer in another window (switch-to-buffer-other-
window).

C-x 5 b buffer RET

Similar, but select buffer in a separate frame (switch-to-buffer-other-
frame).

C-x LEFT Select the previous buffer in the buffer list (previous-buffer).

C-x RIGHT Select the next buffer in the buffer list (next-buffer).

C-u M-g M-g

C-u M-g g Read a number n and move to line n in the most recently selected buffer other
than the current buffer.

Chapter 16: Using Multiple Buffers 140

The C-x b (switch-to-buffer) command reads a buffer name using the minibuffer.
Then it makes that buffer current, and displays it in the currently-selected window. An
empty input specifies the buffer that was current most recently among those not now dis-
played in any window.

While entering the buffer name, you can use the usual completion and history com-
mands (see Chapter 5 [Minibuffer], page 26). Note that C-x b, and related commands, use
“permissive completion with confirmation” for minibuffer completion: if you type RET im-
mediately after completing up to a nonexistent buffer name, Emacs prints ‘[Confirm]’ and
you must type a second RET to submit that buffer name. See Section 5.3.3 [Completion
Exit], page 30, for details.

If you specify a buffer that does not exist, C-x b creates a new, empty buffer that is
not visiting any file, and selects it for editing. The default value of the variable major-

mode determines the new buffer’s major mode; the default value is Fundamental mode. See
Section 20.1 [Major Modes], page 189. One reason to create a new buffer is to use it for
making temporary notes. If you try to save it, Emacs asks for the file name to use, and the
buffer’s major mode is re-established taking that file name into account (see Section 20.3
[Choosing Modes], page 192).

For conveniently switching between a few buffers, use the commands C-x LEFT and C-x

RIGHT. C-x LEFT (previous-buffer) selects the previous buffer (following the order of
most recent selection in the current frame), while C-x RIGHT (next-buffer) moves through
buffers in the reverse direction.

To select a buffer in a window other than the current one, type C-x 4 b (switch-to-
buffer-other-window). This prompts for a buffer name using the minibuffer, displays that
buffer in another window, and selects that window.

Similarly, C-x 5 b (switch-to-buffer-other-frame) prompts for a buffer name, dis-
plays that buffer in another frame, and selects that frame. If the buffer is already being
shown in a window on another frame, Emacs selects that window and frame instead of
creating a new frame.

See Section 17.6 [Displaying Buffers], page 150, for how the C-x 4 b and C-x 5 b com-
mands get the window and/or frame to display in.

In addition, C-x C-f, and any other command for visiting a file, can also be used to
switch to an existing file-visiting buffer. See Section 15.2 [Visiting], page 116.

C-u M-g M-g, that is goto-line with a plain prefix argument, reads a number n using
the minibuffer, selects the most recently selected buffer other than the current buffer in
another window, and then moves point to the beginning of line number n in that buffer.
This is mainly useful in a buffer that refers to line numbers in another buffer: if point is
on or just after a number, goto-line uses that number as the default for n. Note that
prefix arguments other than just C-u behave differently. C-u 4 M-g M-g goes to line 4 in the
current buffer, without reading a number from the minibuffer. (Remember that M-g M-g

without prefix argument reads a number n and then moves to line number n in the current
buffer. See Section 4.2 [Moving Point], page 17.)

Emacs uses buffer names that start with a space for internal purposes. It treats these
buffers specially in minor ways—for example, by default they do not record undo informa-
tion. It is best to avoid using such buffer names yourself.

Chapter 16: Using Multiple Buffers 141

16.2 Listing Existing Buffers

C-x C-b List the existing buffers (list-buffers).

To display a list of existing buffers, type C-x C-b. Each line in the list shows one buffer’s
name, major mode and visited file. The buffers are listed in the order that they were
current; the buffers that were current most recently come first.

‘.’ in the first field of a line indicates that the buffer is current. ‘%’ indicates a read-only
buffer. ‘*’ indicates that the buffer is “modified”. If several buffers are modified, it may be
time to save some with C-x s (see Section 15.3.1 [Save Commands], page 119). Here is an
example of a buffer list:

CRM Buffer Size Mode File

. * .emacs 3294 Emacs-Lisp ~/.emacs

% *Help* 101 Help

search.c 86055 C ~/cvs/emacs/src/search.c

% src 20959 Dired by name ~/cvs/emacs/src/

* *mail* 42 Mail

% HELLO 1607 Fundamental ~/cvs/emacs/etc/HELLO

% NEWS 481184 Outline ~/cvs/emacs/etc/NEWS

scratch 191 Lisp Interaction

* *Messages* 1554 Fundamental

The buffer ‘*Help*’ was made by a help request (see Chapter 7 [Help], page 36); it is not
visiting any file. The buffer src was made by Dired on the directory ‘~/cvs/emacs/src/’.
You can list only buffers that are visiting files by giving the command a prefix argument,
as in C-u C-x C-b.

list-buffers omits buffers whose names begin with a space, unless they visit files: such
buffers are used internally by Emacs.

16.3 Miscellaneous Buffer Operations

C-x C-q Toggle read-only status of buffer (toggle-read-only).

M-x rename-buffer RET name RET

Change the name of the current buffer.

M-x rename-uniquely

Rename the current buffer by adding ‘<number>’ to the end.

M-x view-buffer RET buffer RET

Scroll through buffer buffer. See Section 11.6 [View Mode], page 69.

A buffer can be read-only, which means that commands to change its contents are not
allowed. The mode line indicates read-only buffers with ‘%%’ or ‘%*’ near the left margin.
Read-only buffers are usually made by subsystems such as Dired and Rmail that have
special commands to operate on the text; also by visiting a file whose access control says
you cannot write it.

The command C-x C-q (toggle-read-only) makes a read-only buffer writable, and
makes a writable buffer read-only. This works by setting the variable buffer-read-only,
which has a local value in each buffer and makes the buffer read-only if its value is non-nil.

M-x rename-buffer changes the name of the current buffer. You specify the new name
as a minibuffer argument; there is no default. If you specify a name that is in use for some
other buffer, an error happens and no renaming is done.

Chapter 16: Using Multiple Buffers 142

M-x rename-uniquely renames the current buffer to a similar name with a numeric suffix
added to make it both different and unique. This command does not need an argument.
It is useful for creating multiple shell buffers: if you rename the ‘*shell*’ buffer, then do
M-x shell again, it makes a new shell buffer named ‘*shell*’; meanwhile, the old shell
buffer continues to exist under its new name. This method is also good for mail buffers,
compilation buffers, and most Emacs features that create special buffers with particular
names. (With some of these features, such as M-x compile, M-x grep, you need to switch
to some other buffer before using the command again, otherwise it will reuse the current
buffer despite the name change.)

The commands M-x append-to-buffer and M-x insert-buffer can also be used to
copy text from one buffer to another. See Section 9.4 [Accumulating Text], page 57.

16.4 Killing Buffers

If you continue an Emacs session for a while, you may accumulate a large number of buffers.
You may then find it convenient to kill the buffers you no longer need. On most operat-
ing systems, killing a buffer releases its space back to the operating system so that other
programs can use it. Here are some commands for killing buffers:

C-x k bufname RET

Kill buffer bufname (kill-buffer).

M-x kill-some-buffers

Offer to kill each buffer, one by one.

M-x kill-matching-buffers

Offer to kill all buffers matching a regular expression.

C-x k (kill-buffer) kills one buffer, whose name you specify in the minibuffer. The
default, used if you type just RET in the minibuffer, is to kill the current buffer. If you
kill the current buffer, another buffer becomes current: one that was current in the recent
past but is not displayed in any window now. If you ask to kill a file-visiting buffer that is
modified, then you must confirm with yes before the buffer is killed.

The command M-x kill-some-buffers asks about each buffer, one by one. An answer
of y means to kill the buffer, just like kill-buffer. This command ignores buffers whose
names begin with a space, which are used internally by Emacs.

The command M-x kill-matching-buffers prompts for a regular expression and kills
all buffers whose names match that expression. See Section 12.5 [Regexps], page 91. Like
kill-some-buffers, it asks for confirmation before each kill. This command normally
ignores buffers whose names begin with a space, which are used internally by Emacs. To
kill internal buffers as well, call kill-matching-buffers with a prefix argument.

The buffer menu feature is also convenient for killing various buffers. See Section 16.5
[Several Buffers], page 143.

If you want to do something special every time a buffer is killed, you can add hook
functions to the hook kill-buffer-hook (see Section 33.2.2 [Hooks], page 408).

If you run one Emacs session for a period of days, as many people do, it can fill up
with buffers that you used several days ago. The command M-x clean-buffer-list is a
convenient way to purge them; it kills all the unmodified buffers that you have not used for

Chapter 16: Using Multiple Buffers 143

a long time. An ordinary buffer is killed if it has not been displayed for three days; however,
you can specify certain buffers that should never be killed automatically, and others that
should be killed if they have been unused for a mere hour.

You can also have this buffer purging done for you, once a day, by enabling Midnight
mode. Midnight mode operates each day at midnight; at that time, it runs clean-buffer-
list, or whichever functions you have placed in the normal hook midnight-hook (see
Section 33.2.2 [Hooks], page 408). To enable Midnight mode, use the Customization buffer
to set the variable midnight-mode to t. See Section 33.1 [Easy Customization], page 398.

16.5 Operating on Several Buffers

M-x buffer-menu

Begin editing a buffer listing all Emacs buffers.

M-x buffer-menu-other-window.

Similar, but do it in another window.

The buffer menu opened by C-x C-b (see Section 16.2 [List Buffers], page 141) does not
merely list buffers. It also allows you to perform various operations on buffers, through
an interface similar to Dired (see Chapter 27 [Dired], page 302). You can save buffers, kill
them (here called deleting them, for consistency with Dired), or display them.

To use the buffer menu, type C-x C-b and switch to the window displaying the ‘*Buffer
List*’ buffer. You can also type M-x buffer-menu to open the buffer menu in the selected
window. Alternatively, the command M-x buffer-menu-other-window opens the buffer
menu in another window, and selects that window.

The buffer menu is a read-only buffer, and can be changed only through the special
commands described in this section. The usual cursor motion commands can be used in
this buffer. The following commands apply to the buffer described on the current line:

d Request to delete (kill) the buffer, then move down. The request shows as a ‘D’
on the line, before the buffer name. Requested deletions take place when you
type the x command.

C-d Like d but move up afterwards instead of down.

s Request to save the buffer. The request shows as an ‘S’ on the line. Requested
saves take place when you type the x command. You may request both saving
and deletion for the same buffer.

x Perform previously requested deletions and saves.

u Remove any request made for the current line, and move down.

DEL Move to previous line and remove any request made for that line.

The d, C-d, s and u commands to add or remove flags also move down (or up) one line.
They accept a numeric argument as a repeat count.

These commands operate immediately on the buffer listed on the current line:

~ Mark the buffer “unmodified”. The command ~ does this immediately when
you type it.

Chapter 16: Using Multiple Buffers 144

% Toggle the buffer’s read-only flag. The command % does this immediately when
you type it.

t Visit the buffer as a tags table. See Section 25.3.4 [Select Tags Table], page 291.

There are also commands to select another buffer or buffers:

q Quit the buffer menu—immediately display the most recent formerly visible
buffer in its place.

RET
f Immediately select this line’s buffer in place of the ‘*Buffer List*’ buffer.

o Immediately select this line’s buffer in another window as if by C-x 4 b, leaving
‘*Buffer List*’ visible.

C-o Immediately display this line’s buffer in another window, but don’t select the
window.

1 Immediately select this line’s buffer in a full-screen window.

2 Immediately set up two windows, with this line’s buffer selected in one, and the
previously current buffer (aside from the buffer ‘*Buffer List*’) displayed in
the other.

b Bury the buffer listed on this line.

m Mark this line’s buffer to be displayed in another window if you exit with the
v command. The request shows as a ‘>’ at the beginning of the line. (A single
buffer may not have both a delete request and a display request.)

v Immediately select this line’s buffer, and also display in other windows any
buffers previously marked with the m command. If you have not marked any
buffers, this command is equivalent to 1.

There is also a command that affects the entire buffer list:

T Delete, or reinsert, lines for non-file buffers. This command toggles the inclusion
of such buffers in the buffer list.

What buffer-menu actually does is create and switch to a suitable buffer, and turn on
Buffer Menu mode in it. Everything else described above is implemented by the special
commands provided in Buffer Menu mode. One consequence of this is that you can switch
from the ‘*Buffer List*’ buffer to another Emacs buffer, and edit there. You can reselect
the ‘*Buffer List*’ buffer later, to perform the operations already requested, or you can
kill it, or pay no further attention to it.

Normally, the buffer ‘*Buffer List*’ is not updated automatically when buffers are
created and killed; its contents are just text. If you have created, deleted or renamed buffers,
the way to update ‘*Buffer List*’ to show what you have done is to type g (revert-
buffer). You can make this happen regularly every auto-revert-interval seconds if
you enable Auto Revert mode in this buffer, as long as it is not marked modified. Global
Auto Revert mode applies to the ‘*Buffer List*’ buffer only if global-auto-revert-non-
file-buffers is non-nil. See Info file ‘emacs-xtra’, node ‘Autorevert’, for details.

Chapter 16: Using Multiple Buffers 145

16.6 Indirect Buffers

An indirect buffer shares the text of some other buffer, which is called the base buffer of
the indirect buffer. In some ways it is a buffer analogue of a symbolic link between files.

M-x make-indirect-buffer RET base-buffer RET indirect-name RET

Create an indirect buffer named indirect-name with base buffer base-buffer.

M-x clone-indirect-buffer RET

Create an indirect buffer that is a twin copy of the current buffer.

C-x 4 c Create an indirect buffer that is a twin copy of the current buffer, and select it
in another window (clone-indirect-buffer-other-window).

The text of the indirect buffer is always identical to the text of its base buffer; changes
made by editing either one are visible immediately in the other. But in all other respects, the
indirect buffer and its base buffer are completely separate. They can have different names,
different values of point, different narrowing, different markers, different major modes, and
different local variables.

An indirect buffer cannot visit a file, but its base buffer can. If you try to save the indirect
buffer, that actually works by saving the base buffer. Killing the base buffer effectively kills
the indirect buffer, but killing an indirect buffer has no effect on its base buffer.

One way to use indirect buffers is to display multiple views of an outline. See
Section 22.8.4 [Outline Views], page 211.

A quick and handy way to make an indirect buffer is with the command M-x

clone-indirect-buffer. It creates and selects an indirect buffer whose base buffer is
the current buffer. With a numeric argument, it prompts for the name of the indirect
buffer; otherwise it uses the name of the current buffer, with a ‘<n>’ suffix added. C-x

4 c (clone-indirect-buffer-other-window) works like M-x clone-indirect-buffer,
but it selects the new buffer in another window. These functions run the hook
clone-indirect-buffer-hook after creating the indirect buffer.

The more general way to make an indirect buffer is with the command M-x

make-indirect-buffer. It creates an indirect buffer named indirect-name from a buffer
base-buffer, prompting for both using the minibuffer.

16.7 Convenience Features and Customization of Buffer
Handling

This section describes several modes and features that make it more convenient to switch
between buffers.

16.7.1 Making Buffer Names Unique

When several buffers visit identically-named files, Emacs must give the buffers distinct
names. The usual method for making buffer names unique adds ‘<2>’, ‘<3>’, etc. to the
end of the buffer names (all but one of them).

Other methods work by adding parts of each file’s directory to the buffer name. To select
one, load the library ‘uniquify’ (e.g. using (require ’uniquify)), and customize the
variable uniquify-buffer-name-style (see Section 33.1 [Easy Customization], page 398).

Chapter 16: Using Multiple Buffers 146

To begin with, the forward naming method includes part of the file’s directory
name at the beginning of the buffer name; using this method, buffers visiting the
files ‘/u/rms/tmp/Makefile’ and ‘/usr/projects/zaphod/Makefile’ would be named
‘tmp/Makefile’ and ‘zaphod/Makefile’, respectively (instead of ‘Makefile’ and
‘Makefile<2>’).

In contrast, the post-forward naming method would call the buffers ‘Makefile|tmp’
and ‘Makefile|zaphod’, and the reverse naming method would call them ‘Makefile\tmp’
and ‘Makefile\zaphod’. The nontrivial difference between post-forward and reverse

occurs when just one directory name is not enough to distinguish two files; then
reverse puts the directory names in reverse order, so that ‘/top/middle/file’ becomes
‘file\middle\top’, while post-forward puts them in forward order after the file name,
as in ‘file|top/middle’.

Which rule to follow for putting the directory names in the buffer name is not very
important if you are going to look at the buffer names before you type one. But as an
experienced user, if you know the rule, you won’t have to look. And then you may find that
one rule or another is easier for you to remember and apply quickly.

16.7.2 Switching Between Buffers using Substrings

Iswitchb global minor mode provides convenient switching between buffers using substrings
of their names. It replaces the normal definitions of C-x b, C-x 4 b, C-x 5 b, and C-x 4 C-o

with alternative commands that are somewhat “smarter”.

When one of these commands prompts you for a buffer name, you can type in just a
substring of the name you want to choose. As you enter the substring, Iswitchb mode
continuously displays a list of buffers that match the substring you have typed.

At any time, you can type RET to select the first buffer in the list. So the way to select
a particular buffer is to make it the first in the list. There are two ways to do this. You can
type more of the buffer name and thus narrow down the list, excluding unwanted buffers
above the desired one. Alternatively, you can use C-s and C-r to rotate the list until the
desired buffer is first.

TAB while entering the buffer name performs completion on the string you have entered,
based on the displayed list of buffers.

To enable Iswitchb mode, type M-x iswitchb-mode, or customize the variable iswitchb-
mode to t (see Section 33.1 [Easy Customization], page 398).

16.7.3 Customizing Buffer Menus

M-x bs-show

Make a list of buffers similarly to M-x list-buffers but customizable.

M-x bs-show pops up a buffer list similar to the one normally displayed by C-x C-b

but which you can customize. If you prefer this to the usual buffer list, you can bind
this command to C-x C-b. To customize this buffer list, use the bs Custom group (see
Section 33.1 [Easy Customization], page 398).

MSB global minor mode (“MSB” stands for “mouse select buffer”) provides a different
and customizable mouse buffer menu which you may prefer. It replaces the bindings of
mouse-buffer-menu, normally on C-Down-Mouse-1, and the menu bar buffer menu. You
can customize the menu in the msb Custom group.

Chapter 17: Multiple Windows 147

17 Multiple Windows

Emacs can split a frame into two or many windows. Multiple windows can display parts
of different buffers, or different parts of one buffer. Multiple frames always imply multiple
windows, because each frame has its own set of windows. Each window belongs to one and
only one frame.

17.1 Concepts of Emacs Windows

Each Emacs window displays one Emacs buffer at any time. A single buffer may appear in
more than one window; if it does, any changes in its text are displayed in all the windows
where it appears. But these windows can show different parts of the buffer, because each
window has its own value of point.

At any time, one Emacs window is the selected window ; the buffer this window is
displaying is the current buffer. On graphical displays, the point is indicated by a solid
blinking cursor in the selected window, and by a hollow box in non-selected windows. On
text terminals, the cursor is drawn only in the selected window. See Section 11.20 [Cursor
Display], page 81.

Commands to move point affect the value of point for the selected Emacs window only.
They do not change the value of point in other Emacs windows, even those showing the
same buffer. The same is true for buffer-switching commands such as C-x b; they do not
affect other windows at all. However, there are other commands such as C-x 4 b that select
a different window and switch buffers in it. Also, all commands that display information
in a window, including (for example) C-h f (describe-function) and C-x C-b (list-
buffers), work by switching buffers in a nonselected window without affecting the selected
window.

When multiple windows show the same buffer, they can have different regions, because
they can have different values of point. However, they all have the same value for the mark,
because each buffer has only one mark position.

Each window has its own mode line, which displays the buffer name, modification status
and major and minor modes of the buffer that is displayed in the window. The selected
window’s mode line appears in a different color. See Section 1.3 [Mode Line], page 8, for
details.

17.2 Splitting Windows

C-x 2 Split the selected window into two windows, one above the other (split-
window-below).

C-x 3 Split the selected window into two windows, positioned side by side (split-
window-right).

C-Mouse-2

In the mode line of a window, split that window.

C-x 2 (split-window-below) splits the selected window into two windows, one above
the other. After splitting, the selected window is the upper one, and the newly split-off
window is below. Both windows have the same value of point as before, and display the

Chapter 17: Multiple Windows 148

same portion of the buffer (or as close to it as possible). If necessary, the windows are
scrolled to keep point on-screen. By default, the two windows each get half the height of
the original window. A positive numeric argument specifies how many lines to give to the
top window; a negative numeric argument specifies how many lines to give to the bottom
window.

If you change the variable split-window-keep-point to nil, C-x 2 instead adjusts the
portion of the buffer displayed by the two windows, as well as the value of point in each
window, in order to keep the text on the screen as close as possible to what it was before;
furthermore, if point was in the lower half of the original window, the bottom window is
selected instead of the upper one.

C-x 3 (split-window-right) splits the selected window into two side-by-side windows.
The left window is the selected one; the right window displays the same portion of the same
buffer, and has the same value of point. A positive numeric argument specifies how many
columns to give the left window; a negative numeric argument specifies how many columns
to give the right window.

When you split a window with C-x 3, each resulting window occupies less than the
full width of the frame. If it becomes too narrow, the buffer may be difficult to read if
continuation lines are in use (see Section 4.8 [Continuation Lines], page 21). Therefore,
Emacs automatically switches to line truncation if the window width becomes narrower
than 50 columns. This truncation occurs regardless of the value of the variable truncate-

lines (see Section 11.21 [Line Truncation], page 82); it is instead controlled by the variable
truncate-partial-width-windows. If the value of this variable is a positive integer (the
default is 50), that specifies the minimum width for a partial-width window before automatic
line truncation occurs; if the value is nil, automatic line truncation is disabled; and for any
other non-nil value, Emacs truncates lines in every partial-width window regardless of its
width.

On text terminals, side-by-side windows are separated by a vertical divider which is
drawn using the vertical-border face.

If you click C-Mouse-2 in the mode line of a window, that splits the window, putting a
vertical divider where you click. Depending on how Emacs is compiled, you can also split a
window by clicking C-Mouse-2 in the scroll bar, which puts a horizontal divider where you
click (this feature does not work when Emacs uses GTK+ scroll bars).

17.3 Using Other Windows

C-x o Select another window (other-window).

C-M-v Scroll the next window (scroll-other-window).

Mouse-1 Mouse-1, in the text area of a window, selects the window and moves point
to the position clicked. Clicking in the mode line selects the window without
moving point in it.

With the keyboard, you can switch windows by typing C-x o (other-window). That is
an o, for “other”, not a zero. When there are more than two windows, this command moves
through all the windows in a cyclic order, generally top to bottom and left to right. After
the rightmost and bottommost window, it goes back to the one at the upper left corner. A
numeric argument means to move several steps in the cyclic order of windows. A negative

Chapter 17: Multiple Windows 149

argument moves around the cycle in the opposite order. When the minibuffer is active, the
minibuffer is the last window in the cycle; you can switch from the minibuffer window to one
of the other windows, and later switch back and finish supplying the minibuffer argument
that is requested. See Section 5.2 [Minibuffer Edit], page 27.

The usual scrolling commands (see Chapter 11 [Display], page 65) apply to the selected
window only, but there is one command to scroll the next window. C-M-v (scroll-other-
window) scrolls the window that C-x o would select. It takes arguments, positive and
negative, like C-v. (In the minibuffer, C-M-v scrolls the help window associated with the
minibuffer, if any, rather than the next window in the standard cyclic order; see Section 5.2
[Minibuffer Edit], page 27.)

If you set mouse-autoselect-window to a non-nil value, moving the mouse over a
different window selects that window. This feature is off by default.

17.4 Displaying in Another Window

C-x 4 is a prefix key for a variety of commands that switch to a buffer in a different window—
either another existing window, or a new window created by splitting the selected window.
See Section 17.6.1 [Window Choice], page 151, for how Emacs picks or creates the window
to use.

C-x 4 b bufname RET

Select buffer bufname in another window (switch-to-buffer-other-window).

C-x 4 C-o bufname RET

Display buffer bufname in some window, without trying to select it (display-
buffer). See Section 17.6 [Displaying Buffers], page 150, for details about how
the window is chosen.

C-x 4 f filename RET

Visit file filename and select its buffer in another window (find-file-other-
window). See Section 15.2 [Visiting], page 116.

C-x 4 d directory RET

Select a Dired buffer for directory directory in another window (dired-other-
window). See Chapter 27 [Dired], page 302.

C-x 4 m Start composing a mail message, similar to C-x m (see Chapter 29 [Sending
Mail], page 337), but in another window (mail-other-window).

C-x 4 . Find a tag in the current tags table, similar to M-. (see Section 25.3 [Tags],
page 286), but in another window (find-tag-other-window).

C-x 4 r filename RET

Visit file filename read-only, and select its buffer in another window (find-
file-read-only-other-window). See Section 15.2 [Visiting], page 116.

17.5 Deleting and Rearranging Windows

C-x 0 Delete the selected window (delete-window).

C-x 1 Delete all windows in the selected frame except the selected window (delete-
other-windows).

Chapter 17: Multiple Windows 150

C-x 4 0 Delete the selected window and kill the buffer that was showing in it (kill-
buffer-and-window). The last character in this key sequence is a zero.

C-x ^ Make selected window taller (enlarge-window).

C-x } Make selected window wider (enlarge-window-horizontally).

C-x { Make selected window narrower (shrink-window-horizontally).

C-x - Shrink this window if its buffer doesn’t need so many lines (shrink-window-
if-larger-than-buffer).

C-x + Make all windows the same height (balance-windows).

To delete the selected window, type C-x 0 (delete-window). (That is a zero.) Once a
window is deleted, the space that it occupied is given to an adjacent window (but not the
minibuffer window, even if that is active at the time). Deleting the window has no effect on
the buffer it used to display; the buffer continues to exist, and you can still switch to with
C-x b.

C-x 4 0 (kill-buffer-and-window) is a stronger command than C-x 0; it kills the cur-
rent buffer and then deletes the selected window.

C-x 1 (delete-other-windows) deletes all the windows, except the selected one; the
selected window expands to use the whole frame. (This command cannot be used while the
minibuffer window is active; attempting to do so signals an error.)

The command C-x ^ (enlarge-window) makes the selected window one line taller, taking
space from a vertically adjacent window without changing the height of the frame. With a
positive numeric argument, this command increases the window height by that many lines;
with a negative argument, it reduces the height by that many lines. If there are no vertically
adjacent windows (i.e. the window is at the full frame height), that signals an error. The
command also signals an error if you attempt to reduce the height of any window below a
certain minimum number of lines, specified by the variable window-min-height (the default
is 4).

Similarly, C-x } (enlarge-window-horizontally) makes the selected window wider,
and C-x { (shrink-window-horizontally) makes it narrower. These commands signal an
error if you attempt to reduce the width of any window below a certain minimum number
of columns, specified by the variable window-min-width (the default is 10).

C-x - (shrink-window-if-larger-than-buffer) reduces the height of the selected win-
dow, if it is taller than necessary to show the whole text of the buffer it is displaying. It
gives the extra lines to other windows in the frame.

You can also use C-x + (balance-windows) to even out the heights of all the windows
in the selected frame.

Mouse clicks on the mode line provide another way to change window heights and to
delete windows. See Section 18.5 [Mode Line Mouse], page 156.

17.6 Displaying a Buffer in a Window

It is a common Emacs operation to display or “pop up” some buffer in response to a user
command. There are several different ways in which commands do this.

Chapter 17: Multiple Windows 151

Many commands, like C-x C-f (find-file), display the buffer by “taking over” the
selected window, expecting that the user’s attention will be diverted to that buffer. These
commands usually work by calling switch-to-buffer internally (see Section 16.1 [Select
Buffer], page 139).

Some commands try to display “intelligently”, trying not to take over the selected win-
dow, e.g. by splitting off a new window and displaying the desired buffer there. Such
commands, which include the various help commands (see Chapter 7 [Help], page 36), work
by calling display-buffer internally. See Section 17.6.1 [Window Choice], page 151, for
details.

Other commands do the same as display-buffer, and additionally select the displaying
window so that you can begin editing its buffer. The command C-x ‘ (next-error) is one
example (see Section 24.2 [Compilation Mode], page 251). Such commands work by calling
the function pop-to-buffer internally. See Section “Switching to a Buffer in a Window”
in The Emacs Lisp Reference Manual.

Commands with names ending in -other-window behave like display-buffer, except
that they never display in the selected window. Several of these commands are bound in
the C-x 4 prefix key (see Section 17.4 [Pop Up Window], page 149).

Commands with names ending in -other-frame behave like display-buffer, except
that they (i) never display in the selected window and (ii) prefer to create a new frame
to display the desired buffer instead of splitting a window—as though the variable pop-

up-frames is set to t (see Section 17.6.1 [Window Choice], page 151). Several of these
commands are bound in the C-x 5 prefix key.

17.6.1 How display-buffer works

The display-buffer command (as well as commands that call it internally) chooses a
window to display by following the steps given below. See Section “Choosing a Window for
Display” in The Emacs Lisp Reference Manual, for details about how to alter this sequence
of steps.

• First, check if the buffer should be displayed in the selected window regardless of other
considerations. You can tell Emacs to do this by adding the desired buffer’s name to
the list same-window-buffer-names, or adding a matching regular expression to the
list same-window-regexps. By default, these variables are nil, so this step is skipped.

• Otherwise, if the buffer is already displayed in an existing window, “reuse” that window.
Normally, only windows on the selected frame are considered, but windows on other
frames are also reusable if you change display-buffer-reuse-frames to t, or if you
change pop-up-frames (see below) to t.

• Otherwise, if you specified that the buffer should be displayed in a special frame by
customizing special-display-buffer-names or special-display-regexps, do so.
See Section “Choosing Window Options” in The Emacs Lisp Reference Manual.

• Otherwise, optionally create a new frame and display the buffer there. By default, this
step is skipped. To enable it, change the variable pop-up-frames to a non-nil value.
The special value graphic-only means to do this only on graphical displays.

• Otherwise, try to create a new window by splitting the selected window, and display
the buffer in that new window.

Chapter 17: Multiple Windows 152

The split can be either vertical or horizontal, depending on the variables split-

height-threshold and split-width-threshold. These variables should have integer
values. If split-height-threshold is smaller than the selected window’s height, the
split puts the new window below. Otherwise, if split-width-threshold is smaller
than the window’s width, the split puts the new window on the right. If neither con-
dition holds, Emacs tries to split so that the new window is below—but only if the
window was not split before (to avoid excessive splitting).

• Otherwise, display the buffer in an existing window on the selected frame.

• If all the above methods fail for whatever reason, create a new frame and display the
buffer there.

17.7 Convenience Features for Window Handling

Winner mode is a global minor mode that records the changes in the window configuration
(i.e. how the frames are partitioned into windows), so that you can “undo” them. You can
toggle Winner mode with M-x winner-mode, or by customizing the variable winner-mode.
When the mode is enabled, C-c left (winner-undo) undoes the last window configuration
change. If you change your mind while undoing, you can redo the changes you had undone
using C-c right (M-x winner-redo).

Follow mode (M-x follow-mode) synchronizes several windows on the same buffer so
that they always display adjacent sections of that buffer. See Section 11.7 [Follow Mode],
page 70.

The Windmove package defines commands for moving directionally between neighboring
windows in a frame. M-x windmove-right selects the window immediately to the right of
the currently selected one, and similarly for the “left”, “up”, and “down” counterparts. M-x
windmove-default-keybindings binds these commands to S-right etc.; doing so disables
shift selection for those keys (see Section 8.6 [Shift Selection], page 48).

The command M-x compare-windows lets you compare the text shown in different win-
dows. See Section 15.8 [Comparing Files], page 130.

Scroll All mode (M-x scroll-all-mode) is a global minor mode that causes scrolling
commands and point motion commands to apply to every single window.

Chapter 18: Frames and Graphical Displays 153

18 Frames and Graphical Displays

When Emacs is started on a graphical display, e.g. on the X Window System, it occupies a
graphical system-level “window”. In this manual, we call this a frame, reserving the word
“window” for the part of the frame used for displaying a buffer. A frame initially contains
one window, but it can be subdivided into multiple windows (see Chapter 17 [Windows],
page 147). A frame normally also contains a menu bar, tool bar, and echo area.

You can also create additional frames (see Section 18.6 [Creating Frames], page 157). All
frames created in the same Emacs session have access to the same underlying buffers and
other data. For instance, if a buffer is being shown in more than one frame, any changes
made to it in one frame show up immediately in the other frames too.

Typing C-x C-c closes all the frames on the current display, and ends the Emacs session
if it has no frames open on any other displays (see Section 3.2 [Exiting], page 15). To close
just the selected frame, type C-x 5 0 (that is zero, not o).

This chapter describes Emacs features specific to graphical displays (particularly mouse
commands), and features for managing multiple frames. On text terminals, many of these
features are unavailable. However, it is still possible to create multiple “frames” on text
terminals; such frames are displayed one at a time, filling the entire terminal screen (see
Section 18.19 [Non-Window Terminals], page 166). It is also possible to use the mouse on
some text terminals (see Section 18.20 [Text-Only Mouse], page 166, for doing so on GNU
and Unix systems; and see Section “MS-DOS Mouse” in Specialized Emacs Features, for
doing so on MS-DOS).

18.1 Mouse Commands for Editing

Mouse-1 Move point to where you click (mouse-set-point).

Drag-Mouse-1

Activate the region around the text selected by dragging, and copy it to the kill
ring (mouse-set-region).

Mouse-2 Yank the last killed text at the click position (mouse-yank-at-click).

Mouse-3 If the region is active, move the nearer end of the region to the click position;
otherwise, set mark at the current value of point and point at the click position.
Save the resulting region in the kill ring; on a second click, kill it (mouse-save-
then-kill).

The most basic mouse command is mouse-set-point, which is invoked by clicking with
the left mouse button, Mouse-1, in the text area of a window. This moves point to the
position where you clicked. If that window was not the selected window, it becomes the
selected window.

Normally, if the frame you clicked in was not the selected frame, it is made the selected
frame, in addition to selecting the window and setting the cursor. On the X Window System,
you can change this by setting the variable x-mouse-click-focus-ignore-position to t.
In that case, the initial click on an unselected frame just selects the frame, without doing
anything else; clicking again selects the window and sets the cursor position.

Holding down Mouse-1 and “dragging” the mouse over a stretch of text activates the
region around that text (mouse-set-region), placing the mark where you started holding

Chapter 18: Frames and Graphical Displays 154

down the mouse button, and point where you release it (see Chapter 8 [Mark], page 44). In
addition, the text in the region becomes the primary selection (see Section 9.3.2 [Primary
Selection], page 56).

If you change the variable mouse-drag-copy-region to a non-nil value, dragging the
mouse over a stretch of text also adds the text to the kill ring. The default is nil.

If you move the mouse off the top or bottom of the window while dragging, the window
scrolls at a steady rate until you move the mouse back into the window. This way, you
can select regions that don’t fit entirely on the screen. The number of lines scrolled per
step depends on how far away from the window edge the mouse has gone; the variable
mouse-scroll-min-lines specifies a minimum step size.

Clicking with the middle mouse button, Mouse-2, moves point to the position where
you clicked and inserts the contents of the primary selection (mouse-yank-primary). See
Section 9.3.2 [Primary Selection], page 56. This behavior is consistent with other X appli-
cations. Alternatively, you can rebind Mouse-2 to mouse-yank-at-click, which performs
a yank at point.

If you change the variable mouse-yank-at-point to a non-nil value, Mouse-2 does not
move point; it inserts the text at point, regardless of where you clicked or even which of
the frame’s windows you clicked on. This variable affects both mouse-yank-primary and
mouse-yank-at-click.

Clicking with the right mouse button, Mouse-3, runs the command mouse-save-then-

kill. This performs several actions depending on where you click and the status of the
region:

• If no region is active, clicking Mouse-3 activates the region, placing the mark where
point was and point at the clicked position.

• If a region is active, clicking Mouse-3 adjusts the nearer end of the region by moving it
to the clicked position. The adjusted region’s text is copied to the kill ring; if the text
in the original region was already on the kill ring, it replaces it there.

• If you originally specified the region using a double or triple Mouse-1, so that the region
is defined to consist of entire words or lines (see Section 18.2 [Word and Line Mouse],
page 155), then adjusting the region with Mouse-3 also proceeds by entire words or
lines.

• If you use Mouse-3 a second time consecutively, at the same place, that kills the region
already selected. Thus, the simplest way to kill text with the mouse is to click Mouse-1

at one end, then click Mouse-3 twice at the other end. To copy the text into the kill
ring without deleting it from the buffer, press Mouse-3 just once—or just drag across
the text with Mouse-1. Then you can copy it elsewhere by yanking it.

The mouse-save-then-kill command also obeys the variable mouse-drag-copy-

region (described above). If the value is non-nil, then whenever the command sets or
adjusts the active region, the text in the region is also added to the kill ring. If the latest
kill ring entry had been added the same way, that entry is replaced rather than making a
new entry.

Whenever you set the region using any of the mouse commands described above, the
mark will be deactivated by any subsequent unshifted cursor motion command, in addition
to the usual ways of deactivating the mark. See Section 8.6 [Shift Selection], page 48.

Chapter 18: Frames and Graphical Displays 155

Some mice have a “wheel” which can be used for scrolling. Emacs supports scrolling
windows with the mouse wheel, by default, on most graphical displays. To toggle this fea-
ture, use M-x mouse-wheel-mode. The variables mouse-wheel-follow-mouse and mouse-

wheel-scroll-amount determine where and by how much buffers are scrolled. The variable
mouse-wheel-progressive-speed determines whether the scroll speed is linked to how fast
you move the wheel.

18.2 Mouse Commands for Words and Lines

These variants of Mouse-1 select entire words or lines at a time. Emacs activates the region
around the selected text, which is also copied to the kill ring.

Double-Mouse-1

Select the text around the word which you click on.

Double-clicking on a character with “symbol” syntax (such as underscore, in
C mode) selects the symbol surrounding that character. Double-clicking on a
character with open- or close-parenthesis syntax selects the parenthetical group-
ing which that character starts or ends. Double-clicking on a character with
string-delimiter syntax (such as a single-quote or double-quote in C) selects the
string constant (Emacs uses heuristics to figure out whether that character is
the beginning or the end of it).

Double-Drag-Mouse-1

Select the text you drag across, in the form of whole words.

Triple-Mouse-1

Select the line you click on.

Triple-Drag-Mouse-1

Select the text you drag across, in the form of whole lines.

18.3 Following References with the Mouse

Some Emacs buffers include buttons, or hyperlinks: pieces of text that perform some action
(e.g. following a reference) when activated (e.g. by clicking on them). Usually, a button’s
text is visually highlighted: it is underlined, or a box is drawn around it. If you move the
mouse over a button, the shape of the mouse cursor changes and the button lights up. If
you change the variable mouse-highlight to nil, Emacs disables this highlighting.

You can activate a button by moving point to it and typing RET, or by clicking either
Mouse-1 or Mouse-2 on the button. For example, in a Dired buffer, each file name is a
button; activating it causes Emacs to visit that file (see Chapter 27 [Dired], page 302). In a
‘*Compilation*’ buffer, each error message is a button, and activating it visits the source
code for that error (see Section 24.1 [Compilation], page 250).

Although clicking Mouse-1 on a button usually activates the button, if you hold the
mouse button down for a period of time before releasing it (specifically, for more than 450
milliseconds), then Emacs moves point where you clicked, without activating the button.
In this way, you can use the mouse to move point over a button without activating it.
Dragging the mouse over or onto a button has its usual behavior of setting the region, and
does not activate the button.

Chapter 18: Frames and Graphical Displays 156

You can change how Mouse-1 applies to buttons by customizing the variable mouse-

1-click-follows-link. If the value is a positive integer, that determines how long you
need to hold the mouse button down for, in milliseconds, to cancel button activation; the
default is 450, as described in the previous paragraph. If the value is nil, Mouse-1 just
sets point where you clicked, and does not activate buttons. If the value is double, double
clicks activate buttons but single clicks just set point.

Normally, Mouse-1 on a button activates the button even if it is in a non-selected window.
If you change the variable mouse-1-click-in-non-selected-windows to nil, Mouse-1 on
a button in an unselected window moves point to the clicked position and selects that
window, without activating the button.

18.4 Mouse Clicks for Menus

Several mouse clicks with the CTRL and SHIFT modifiers bring up menus.

C-Mouse-1

This menu is for selecting a buffer.

The MSB (“mouse select buffer”) global minor mode makes this menu smarter
and more customizable. See Section 16.7.3 [Buffer Menus], page 146.

C-Mouse-2

This menu contains entries for examining faces and other text properties, and
well as for setting them (the latter is mainly useful when editing enriched text;
see Section 22.13 [Enriched Text], page 220).

C-Mouse-3

This menu is mode-specific. For most modes if Menu-bar mode is on, this menu
has the same items as all the mode-specific menu-bar menus put together. Some
modes may specify a different menu for this button. If Menu Bar mode is off,
this menu contains all the items which would be present in the menu bar—not
just the mode-specific ones—so that you can access them without having to
display the menu bar.

S-Mouse-1

This menu is for changing the default face within the window’s buffer. See
Section 11.11 [Text Scale], page 74.

Some graphical applications use Mouse-3 for a mode-specific menu. If you prefer Mouse-3
in Emacs to bring up such a menu instead of running the mouse-save-then-kill command,
rebind Mouse-3 by adding the following line to your init file (see Section 33.3.6 [Init Re-
binding], page 417):

(global-set-key [mouse-3] ’mouse-popup-menubar-stuff)

18.5 Mode Line Mouse Commands

You can use mouse clicks on window mode lines to select and manipulate windows.

Some areas of the mode line, such as the buffer name, and major and minor mode
names, have their own special mouse bindings. These areas are highlighted when you hold
the mouse over them, and information about the special bindings will be displayed (see
Section 18.17 [Tooltips], page 165). This section’s commands do not apply in those areas.

Chapter 18: Frames and Graphical Displays 157

Mouse-1 Mouse-1 on a mode line selects the window it belongs to. By dragging Mouse-1

on the mode line, you can move it, thus changing the height of the windows
above and below. Changing heights with the mouse in this way never deletes
windows, it just refuses to make any window smaller than the minimum height.

Mouse-2 Mouse-2 on a mode line expands that window to fill its frame.

Mouse-3 Mouse-3 on a mode line deletes the window it belongs to. If the frame has only
one window, it does nothing.

C-Mouse-2

C-Mouse-2 on a mode line splits that window, producing two side-by-side win-
dows with the boundary running through the click position (see Section 17.2
[Split Window], page 147).

Furthermore, by clicking and dragging Mouse-1 on the divider between two side-by-side
mode lines, you can move the vertical boundary to the left or right.

18.6 Creating Frames

The prefix key C-x 5 is analogous to C-x 4. Whereas each C-x 4 command pops up a buffer
in a different window in the selected frame (see Section 17.4 [Pop Up Window], page 149),
the C-x 5 commands use a different frame. If an existing visible or iconified (“minimized”)
frame already displays the requested buffer, that frame is raised and deiconified (“un-
minimized”); otherwise, a new frame is created on the current display terminal.

The various C-x 5 commands differ in how they find or create the buffer to select:

C-x 5 2 Create a new frame (make-frame-command).

C-x 5 b bufname RET

Select buffer bufname in another frame. This runs switch-to-buffer-other-
frame.

C-x 5 f filename RET

Visit file filename and select its buffer in another frame. This runs find-file-
other-frame. See Section 15.2 [Visiting], page 116.

C-x 5 d directory RET

Select a Dired buffer for directory directory in another frame. This runs dired-
other-frame. See Chapter 27 [Dired], page 302.

C-x 5 m Start composing a mail message in another frame. This runs mail-other-

frame. It is the other-frame variant of C-x m. See Chapter 29 [Sending Mail],
page 337.

C-x 5 . Find a tag in the current tag table in another frame. This runs find-tag-

other-frame, the multiple-frame variant of M-.. See Section 25.3 [Tags],
page 286.

C-x 5 r filename RET

Visit file filename read-only, and select its buffer in another frame. This runs
find-file-read-only-other-frame. See Section 15.2 [Visiting], page 116.

You can control the appearance and behavior of the newly-created frames by specifying
frame parameters. See Section 18.11 [Frame Parameters], page 162.

Chapter 18: Frames and Graphical Displays 158

18.7 Frame Commands

The following commands are used to delete and operate on frames:

C-x 5 0 Delete the selected frame (delete-frame). This signals an error if there is only
one frame.

C-z Minimize (or “iconify) the selected Emacs frame (suspend-frame). See
Section 3.2 [Exiting], page 15.

C-x 5 o Select another frame, and raise it. If you repeat this command, it cycles through
all the frames on your terminal.

C-x 5 1 Delete all frames on the current terminal, except the selected one.

The C-x 5 0 (delete-frame) command deletes the selected frame. However, it will
refuse to delete the last frame in an Emacs session, to prevent you from losing the ability to
interact with the Emacs session. Note that when Emacs is run as a daemon (see Section 31.4
[Emacs Server], page 378), there is always a “virtual frame” that remains after all the
ordinary, interactive frames are deleted. In this case, C-x 5 0 can delete the last interactive
frame; you can use emacsclient to reconnect to the Emacs session.

The C-x 5 1 (delete-other-frames) command deletes all other frames on the cur-
rent terminal (this terminal refers to either a graphical display, or a text terminal; see
Section 18.19 [Non-Window Terminals], page 166). If the Emacs session has frames open
on other graphical displays or text terminals, those are not deleted.

The C-x 5 o (other-frame) command selects the next frame on the current terminal.
If you are using Emacs on the X Window System with a window manager that selects (or
gives focus to) whatever frame the mouse cursor is over, you have to change the variable
focus-follows-mouse to t in order for this command to work properly. Then invoking
C-x 5 o will also warp the mouse cursor to the chosen frame.

18.8 Fonts

By default, Emacs displays text on graphical displays using a 12-point monospace font.
There are several different ways to specify a different font:

• Click on ‘Set Default Font’ in the ‘Options’ menu. To save this for future sessions,
click on ‘Save Options’ in the ‘Options’ menu.

• Add a line to your init file, modifying the variable default-frame-alist to specify
the font parameter (see Section 18.11 [Frame Parameters], page 162), like this:

(add-to-list ’default-frame-alist ’(font . "DejaVu Sans Mono-10"))

• Add an ‘emacs.font’ X resource setting to your X resource file, like this:

emacs.font: DejaVu Sans Mono-12

You must restart X, or use the xrdb command, for the X resources file to take effect.
See Section D.1 [Resources], page 478. Do not quote font names in X resource files.

• If you are running Emacs on the GNOME desktop, you can tell Emacs to use the
default system font by setting the variable font-use-system-font to t (the default is
nil). For this to work, Emacs must have been compiled with Gconf support.

• Use the command line option ‘-fn’ (or ‘--font’). See Section C.6 [Font X], page 472.

Chapter 18: Frames and Graphical Displays 159

To check what font you’re currently using, the C-u C-x = command can be helpful. It
describes the character at point, and names the font that it’s rendered in.

On X, there are four different ways to express a “font name”. The first is to use a
Fontconfig pattern. Fontconfig patterns have the following form:

fontname[-fontsize][:name1=values1][:name2=values2]...

Within this format, any of the elements in braces may be omitted. Here, fontname is the
family name of the font, such as ‘Monospace’ or ‘DejaVu Sans Mono’; fontsize is the point
size of the font (one printer’s point is about 1/72 of an inch); and the ‘name=values ’ entries
specify settings such as the slant and weight of the font. Each values may be a single value,
or a list of values separated by commas. In addition, some property values are valid with
only one kind of property name, in which case the ‘name=’ part may be omitted.

Here is a list of common font properties:

‘slant’ One of ‘italic’, ‘oblique’, or ‘roman’.

‘weight’ One of ‘light’, ‘medium’, ‘demibold’, ‘bold’ or ‘black’.

‘style’ Some fonts define special styles which are a combination of slant and weight.
For instance, ‘Dejavu Sans’ defines the ‘book’ style, which overrides the slant
and weight properties.

‘width’ One of ‘condensed’, ‘normal’, or ‘expanded’.

‘spacing’ One of ‘monospace’, ‘proportional’, ‘dual-width’, or ‘charcell’.

Here are some examples of Fontconfig patterns:

Monospace

Monospace-12

Monospace-12:bold

DejaVu Sans Mono:bold:italic

Monospace-12:weight=bold:slant=italic

For a more detailed description of Fontconfig patterns, see the Font-
config manual, which is distributed with Fontconfig and available online at
http://fontconfig.org/fontconfig-user.html.

The second way to specify a font is to use a GTK font pattern. These have the syntax

fontname [properties] [fontsize]

where fontname is the family name, properties is a list of property values separated by
spaces, and fontsize is the point size. The properties that you may specify for GTK font
patterns are as follows:

• Slant properties: ‘Italic’ or ‘Oblique’. If omitted, the default (roman) slant is implied.

• Weight properties: ‘Bold’, ‘Book’, ‘Light’, ‘Medium’, ‘Semi-bold’, or ‘Ultra-light’.
If omitted, ‘Medium’ weight is implied.

• Width properties: ‘Semi-Condensed’ or ‘Condensed’. If omitted, a default width is
used.

Here are some examples of GTK font patterns:

http://fontconfig.org/fontconfig-user.html

Chapter 18: Frames and Graphical Displays 160

Monospace 12

Monospace Bold Italic 12

The third way to specify a font is to use an XLFD (X Logical Font Description). This is
the traditional method for specifying fonts under X. Each XLFD consists of fourteen words
or numbers, separated by dashes, like this:

-misc-fixed-medium-r-semicondensed--13-*-*-*-c-60-iso8859-1

A wildcard character (‘*’) in an XLFD matches any sequence of characters (including none),
and ‘?’ matches any single character. However, matching is implementation-dependent, and
can be inaccurate when wildcards match dashes in a long name. For reliable results, supply
all 14 dashes and use wildcards only within a field. Case is insignificant in an XLFD. The
syntax for an XLFD is as follows:

-maker-family-weight-slant-widthtype-style...

...-pixels-height-horiz-vert-spacing-width-registry-encoding

The entries have the following meanings:

maker The name of the font manufacturer.

family The name of the font family (e.g. ‘courier’).

weight The font weight—normally either ‘bold’, ‘medium’ or ‘light’. Some font names
support other values.

slant The font slant—normally ‘r’ (roman), ‘i’ (italic), ‘o’ (oblique), ‘ri’ (reverse
italic), or ‘ot’ (other). Some font names support other values.

widthtype The font width—normally ‘normal’, ‘condensed’, ‘semicondensed’, or
‘extended’. Some font names support other values.

style An optional additional style name. Usually it is empty—most XLFDs have two
hyphens in a row at this point.

pixels The font height, in pixels.

height The font height on the screen, measured in tenths of a printer’s point. This is
the point size of the font, times ten. For a given vertical resolution, height and
pixels are proportional; therefore, it is common to specify just one of them and
use ‘*’ for the other.

horiz The horizontal resolution, in pixels per inch, of the screen for which the font is
intended.

vert The vertical resolution, in pixels per inch, of the screen for which the font is
intended. Normally the resolution of the fonts on your system is the right value
for your screen; therefore, you normally specify ‘*’ for this and horiz.

spacing This is ‘m’ (monospace), ‘p’ (proportional) or ‘c’ (character cell).

width The average character width, in pixels, multiplied by ten.

registry
encoding The X font character set that the font depicts. (X font character sets are not the

same as Emacs character sets, but they are similar.) You can use the xfontsel

program to check which choices you have. Normally you should use ‘iso8859’
for registry and ‘1’ for encoding.

Chapter 18: Frames and Graphical Displays 161

The fourth and final method of specifying a font is to use a “font nickname”. Certain
fonts have shorter nicknames, which you can use instead of a normal font specification. For
instance, ‘6x13’ is equivalent to

-misc-fixed-medium-r-semicondensed--13-*-*-*-c-60-iso8859-1

On X, Emacs recognizes two types of fonts: client-side fonts, which are provided by
the Xft and Fontconfig libraries, and server-side fonts, which are provided by the X server
itself. Most client-side fonts support advanced font features such as antialiasing and subpixel
hinting, while server-side fonts do not. Fontconfig and GTK patterns match only client-side
fonts.

You will probably want to use a fixed-width default font—that is, a font in which all
characters have the same width. For Xft and Fontconfig fonts, you can use the fc-list

command to list the available fixed-width fonts, like this:

fc-list :spacing=mono fc-list :spacing=charcell

For server-side X fonts, you can use the xlsfonts program to list the available fixed-width
fonts, like this:

xlsfonts -fn ’*x*’ | egrep "^[0-9]+x[0-9]+"

xlsfonts -fn ’*-*-*-*-*-*-*-*-*-*-*-m*’

xlsfonts -fn ’*-*-*-*-*-*-*-*-*-*-*-c*’

Any font with ‘m’ or ‘c’ in the spacing field of the XLFD is a fixed-width font. To see what
a particular font looks like, use the xfd command. For example:

xfd -fn 6x13

displays the entire font ‘6x13’.

While running Emacs, you can also set the font of a specific kind of text (see Section 11.8
[Faces], page 70), or a particular frame (see Section 18.11 [Frame Parameters], page 162).

18.9 Speedbar Frames

The speedbar is a special frame for conveniently navigating in or operating on another
frame. The speedbar, when it exists, is always associated with a specific frame, called its
attached frame; all speedbar operations act on that frame.

Type M-x speedbar to create the speedbar and associate it with the current frame. To
dismiss the speedbar, type M-x speedbar again, or select the speedbar and type q. (You
can also delete the speedbar frame like any other Emacs frame.) If you wish to associate
the speedbar with a different frame, dismiss it and call M-x speedbar from that frame.

The speedbar can operate in various modes. Its default mode is File Display mode,
which shows the files in the current directory of the selected window of the attached frame,
one file per line. Clicking on a file name visits that file in the selected window of the
attached frame, and clicking on a directory name shows that directory in the speedbar (see
Section 18.3 [Mouse References], page 155). Each line also has a box, ‘[+]’ or ‘<+>’, that you
can click on to expand the contents of that item. Expanding a directory adds the contents
of that directory to the speedbar display, underneath the directory’s own line. Expanding
an ordinary file adds a list of the tags in that file to the speedbar display; you can click on
a tag name to jump to that tag in the selected window of the attached frame. When a file
or directory is expanded, the ‘[+]’ changes to ‘[-]’; you can click on that box to contract
the item, hiding its contents.

Chapter 18: Frames and Graphical Displays 162

You navigate through the speedbar using the keyboard, too. Typing RET while point
is on a line in the speedbar is equivalent to clicking the item on the current line, and SPC

expands or contracts the item. U displays the parent directory of the current directory. To
copy, delete, or rename the file on the current line, type C, D, and R respectively. To create
a new directory, type M.

Another general-purpose speedbar mode is Buffer Display mode; in this mode, the speed-
bar displays a list of Emacs buffers. To switch to this mode, type b in the speedbar. To
return to File Display mode, type f. You can also change the display mode by clicking
mouse-3 anywhere in the speedbar window (or mouse-1 on the mode-line) and selecting
‘Displays’ in the pop-up menu.

Some major modes, including Rmail mode, Info, and GUD, have specialized ways of
putting useful items into the speedbar for you to select. For example, in Rmail mode, the
speedbar shows a list of Rmail files, and lets you move the current message to another Rmail
file by clicking on its ‘<M>’ box.

For more details on using and programming the speedbar, See Section “Top” in Speedbar
Manual.

18.10 Multiple Displays

A single Emacs can talk to more than one X display. Initially, Emacs uses just one display—
the one specified with the DISPLAY environment variable or with the ‘--display’ option (see
Section C.2 [Initial Options], page 464). To connect to another display, use the command
make-frame-on-display:

M-x make-frame-on-display RET display RET

Create a new frame on display display.

A single X server can handle more than one screen. When you open frames on two
screens belonging to one server, Emacs knows they share a single keyboard, and it treats
all the commands arriving from these screens as a single stream of input.

When you open frames on different X servers, Emacs makes a separate input stream for
each server. Each server also has its own selected frame. The commands you enter with a
particular X server apply to that server’s selected frame.

18.11 Frame Parameters

You can control the default appearance and behavior of all frames by specifying a default
list of frame parameters in the variable default-frame-alist. Its value should be a list
of entries, each specifying a parameter name and a value for that parameter. These entries
take effect whenever Emacs creates a new frame, including the initial frame.

For example, you can add the following lines to your init file (see Section 33.4 [Init File],
page 423) to set the default frame width to 90 character columns, the default frame height
to 40 character rows, and the default font to ‘Monospace-10’:

(add-to-list ’default-frame-alist ’(width . 90))

(add-to-list ’default-frame-alist ’(height . 40))

(add-to-list ’default-frame-alist ’(font . "Monospace-10"))

For a list of frame parameters and their effects, see Section “Frame Parameters” in The
Emacs Lisp Reference Manual.

Chapter 18: Frames and Graphical Displays 163

You can also specify a list of frame parameters which apply to just the initial frame, by
customizing the variable initial-frame-alist.

If Emacs is compiled to use an X toolkit, frame parameters that specify colors and fonts
don’t affect menus and the menu bar, since those are drawn by the toolkit and not directly
by Emacs.

18.12 Scroll Bars

On graphical displays, there is a scroll bar on the side of each Emacs window. Clicking
Mouse-1 on the scroll bar’s up and down buttons scrolls the window by one line at a time.
Clicking Mouse-1 above or below the scroll bar’s inner box scrolls the window by nearly the
entire height of the window, like M-v and C-v respectively (see Section 4.2 [Moving Point],
page 17). Dragging the inner box scrolls continuously.

If Emacs is compiled on the X Window System without X toolkit support, the scroll bar
behaves differently. Clicking Mouse-1 anywhere on the scroll bar scrolls forward like C-v,
while Mouse-3 scrolls backward like M-v. Clicking Mouse-2 in the scroll bar lets you drag
the inner box up and down.

To toggle the use of scroll bars, type M-x scroll-bar-mode. This command applies to
all frames, including frames yet to be created. To toggle scroll bars for just the selected
frame, use the command M-x toggle-scroll-bar.

To control the use of scroll bars at startup, customize the variable scroll-bar-mode. Its
value should be either right (put scroll bars on the right side of windows), left (put them
on the left), or nil (disable scroll bars). By default, Emacs puts scroll bars on the right
if it was compiled with GTK+ support on the X Window System, and on MS-Windows or
Mac OS; Emacs puts scroll bars on the left if compiled on the X Window System without
GTK+ support (following the old convention for X applications).

You can also use the X resource ‘verticalScrollBars’ to enable or disable the scroll
bars (see Section D.1 [Resources], page 478). To control the scroll bar width, change the
scroll-bar-width frame parameter (see Section “Frame Parameters” in The Emacs Lisp
Reference Manual).

18.13 Drag and Drop

In most graphical desktop environments, Emacs has basic support for drag and drop opera-
tions. For instance, dropping text onto an Emacs frame inserts the text where it is dropped.
Dropping a file onto an Emacs frame visits that file. As a special case, dropping the file on
a Dired buffer moves or copies the file (according to the conventions of the application it
came from) into the directory displayed in that buffer.

Dropping a file normally visits it in the window you drop it on. If you prefer to visit the
file in a new window in such cases, customize the variable dnd-open-file-other-window.

The XDND and Motif drag and drop protocols, and the old KDE 1.x protocol, are
currently supported.

18.14 Menu Bars

You can toggle the use of menu bars with M-x menu-bar-mode. With no argument, this
command toggles Menu Bar mode, a global minor mode. With an argument, the command

Chapter 18: Frames and Graphical Displays 164

turns Menu Bar mode on if the argument is positive, off if the argument is not positive. To
control the use of menu bars at startup, customize the variable menu-bar-mode.

Expert users often turn off the menu bar, especially on text terminals, where this makes
one additional line available for text. If the menu bar is off, you can still pop up a menu of
its contents with C-Mouse-3 on a display which supports pop-up menus. See Section 18.4
[Menu Mouse Clicks], page 156.

See Section 1.4 [Menu Bar], page 9, for information on how to invoke commands with
the menu bar. See Appendix D [X Resources], page 478, for how to customize the menu
bar menus’ visual appearance.

18.15 Tool Bars

On graphical displays, Emacs puts a tool bar at the top of each frame, just below the
menu bar. This is a row of icons which you can click on with the mouse to invoke various
commands.

The global (default) tool bar contains general commands. Some major modes define
their own tool bars; whenever a buffer with such a major mode is current, the mode’s tool
bar replaces the global tool bar.

To toggle the use of tool bars, type M-x tool-bar-mode. This command applies to all
frames, including frames yet to be created. To control the use of tool bars at startup,
customize the variable tool-bar-mode.

When Emacs is compiled with GTK+ support, each tool bar item can consist of an
image, or a text label, or both. By default, Emacs follows the Gnome desktop’s tool bar
style setting; if none is defined, it displays tool bar items as just images. To impose a
specific tool bar style, customize the variable tool-bar-style.

You can also control the placement of the tool bar for the GTK+ tool bar with the
frame parameter tool-bar-position. See Section “Frame Parameters” in The Emacs
Lisp Reference Manual.

18.16 Using Dialog Boxes

A dialog box is a special kind of menu for asking you a yes-or-no question or some other
special question. Many Emacs commands use a dialog box to ask a yes-or-no question, if
you used the mouse to invoke the command that led to the question.

To disable the use of dialog boxes, change the variable use-dialog-box to nil. In
that case, Emacs always performs yes-or-no prompts using the echo area and keyboard
input. This variable also controls whether to use file selection windows (but those are not
supported on all platforms).

A file selection window is a special kind of dialog box for asking for file names. You can
customize the variable use-file-dialog to suppress the use of file selection windows, even
if you still want other kinds of dialogs. This variable has no effect if you have suppressed
all dialog boxes with the variable use-dialog-box.

When Emacs is compiled with GTK+ support, it uses the GTK+ “file chooser” dialog.
Emacs adds an additional toggle button to this dialog, which you can use to enable or
disable the display of hidden files (files starting with a dot) in that dialog. If you want this
toggle to be activated by default, change the variable x-gtk-show-hidden-files to t. In

Chapter 18: Frames and Graphical Displays 165

addition, Emacs adds help text to the GTK+ file chooser dialog; to disable this help text,
change the variable x-gtk-file-dialog-help-text to nil.

18.17 Tooltips

Tooltips are small windows that display text information at the current mouse position.
They activate when there is a pause in mouse movement over some significant piece of text
in a window, or the mode line, or some other part of the Emacs frame such as a tool bar
button or menu item.

You can toggle the use of tooltips with the command M-x tooltip-mode. When Tooltip
mode is disabled, the help text is displayed in the echo area instead. To control the use of
tooltips at startup, customize the variable tooltip-mode.

The variables tooltip-delay specifies how long Emacs should wait before display-
ing a tooltip. For additional customization options for displaying tooltips, use M-x cus-

tomize-group RET tooltip RET.

If Emacs is built with GTK+ support, it displays tooltips via GTK+, using the default
appearance of GTK+ tooltips. To disable this, change the variable x-gtk-use-system-

tooltips to nil. If you do this, or if Emacs is built without GTK+ support, most attributes
of the tooltip text are specified by the tooltip face, and by X resources (see Appendix D
[X Resources], page 478).

GUD tooltips are special tooltips that show the values of variables when debugging a
program with GUD. See Section 24.6.2 [Debugger Operation], page 256.

18.18 Mouse Avoidance

On graphical terminals, the mouse pointer may obscure the text in the Emacs frame. Emacs
provides two methods to avoid this problem.

Firstly, Emacs hides the mouse pointer each time you type a self-inserting character, if
the pointer lies inside an Emacs frame; moving the mouse pointer makes it visible again.
To disable this feature, set the variable make-pointer-invisible to nil.

Secondly, you can use Mouse Avoidance mode, a minor mode, to keep the mouse pointer
away from point. To use Mouse Avoidance mode, customize the variable mouse-avoidance-
mode. You can set this to various values to move the mouse in several ways:

banish Move the mouse to the upper-right corner on any key-press;

exile Move the mouse to the corner only if the cursor gets too close, and allow it to
return once the cursor is out of the way;

jump If the cursor gets too close to the mouse, displace the mouse a random distance
& direction;

animate As jump, but shows steps along the way for illusion of motion;

cat-and-mouse

The same as animate;

proteus As animate, but changes the shape of the mouse pointer too.

You can also use the command M-x mouse-avoidance-mode to enable the mode. When-
ever Mouse Avoidance mode moves the mouse, it also raises the frame.

Chapter 18: Frames and Graphical Displays 166

18.19 Non-Window Terminals

On a text terminal, Emacs can display only one Emacs frame at a time. However, you can
still create multiple Emacs frames, and switch between them. Switching frames on these
terminals is much like switching between different window configurations.

Use C-x 5 2 to create a new frame and switch to it; use C-x 5 o to cycle through the
existing frames; use C-x 5 0 to delete the current frame.

Each frame has a number to distinguish it. If your terminal can display only one frame
at a time, the selected frame’s number n appears near the beginning of the mode line, in
the form ‘Fn ’.

‘Fn ’ is in fact the frame’s initial name. You can give frames more meaningful names if you
wish, and you can select a frame by its name. Use the command M-x set-frame-name RET

name RET to specify a new name for the selected frame, and use M-x select-frame-by-name

RET name RET to select a frame according to its name. The name you specify appears in
the mode line when the frame is selected.

18.20 Using a Mouse in Text Terminals

Some text terminals support mouse clicks in the terminal window.

In a terminal emulator which is compatible with xterm, you can use M-x

xterm-mouse-mode to give Emacs control over simple uses of the mouse—basically, only
non-modified single clicks are supported. The normal xterm mouse functionality for such
clicks is still available by holding down the SHIFT key when you press the mouse button.
Xterm Mouse mode is a global minor mode (see Section 20.2 [Minor Modes], page 190).
Repeating the command turns the mode off again.

In the console on GNU/Linux, you can use M-x gpm-mouse-mode to enable mouse sup-
port. You must have the gpm server installed and running on your system in order for this
to work.

See Section “MS-DOS Mouse” in Specialized Emacs Features, for information about
mouse support on MS-DOS.

Chapter 19: International Character Set Support 167

19 International Character Set Support

Emacs supports a wide variety of international character sets, including European and
Vietnamese variants of the Latin alphabet, as well as Cyrillic, Devanagari (for Hindi and
Marathi), Ethiopic, Greek, Han (for Chinese and Japanese), Hangul (for Korean), Hebrew,
IPA, Kannada, Lao, Malayalam, Tamil, Thai, Tibetan, and Vietnamese scripts. Emacs
also supports various encodings of these characters that are used by other internationalized
software, such as word processors and mailers.

Emacs allows editing text with international characters by supporting all the related
activities:

• You can visit files with non-ASCII characters, save non-ASCII text, and pass non-ASCII

text between Emacs and programs it invokes (such as compilers, spell-checkers, and
mailers). Setting your language environment (see Section 19.3 [Language Environ-
ments], page 170) takes care of setting up the coding systems and other options for a
specific language or culture. Alternatively, you can specify how Emacs should encode
or decode text for each command; see Section 19.10 [Text Coding], page 179.

• You can display non-ASCII characters encoded by the various scripts. This works by
using appropriate fonts on graphics displays (see Section 19.15 [Defining Fontsets],
page 183), and by sending special codes to text displays (see Section 19.13 [Terminal
Coding], page 181). If some characters are displayed incorrectly, refer to Section 19.17
[Undisplayable Characters], page 185, which describes possible problems and explains
how to solve them.

• Characters from scripts whose natural ordering of text is from right to left are reordered
for display (see Section 19.20 [Bidirectional Editing], page 187). These scripts include
Arabic, Hebrew, Syriac, Thaana, and a few others.

• You can insert non-ASCII characters or search for them. To do that, you can spec-
ify an input method (see Section 19.5 [Select Input Method], page 173) suitable for
your language, or use the default input method set up when you chose your language
environment. If your keyboard can produce non-ASCII characters, you can select an
appropriate keyboard coding system (see Section 19.13 [Terminal Coding], page 181),
and Emacs will accept those characters. Latin-1 characters can also be input by using
the C-x 8 prefix, see Section 19.18 [Unibyte Mode], page 186.

With the X Window System, your locale should be set to an appropriate value to make
sure Emacs interprets keyboard input correctly; see Section 19.3 [Language Environ-
ments], page 170.

The rest of this chapter describes these issues in detail.

19.1 Introduction to International Character Sets

The users of international character sets and scripts have established many more-or-less
standard coding systems for storing files. These coding systems are typically multibyte,
meaning that sequences of two or more bytes are used to represent individual non-ASCII

characters.

Internally, Emacs uses its own multibyte character encoding, which is a superset of
the Unicode standard. This internal encoding allows characters from almost every known

Chapter 19: International Character Set Support 168

script to be intermixed in a single buffer or string. Emacs translates between the multibyte
character encoding and various other coding systems when reading and writing files, and
when exchanging data with subprocesses.

The command C-h h (view-hello-file) displays the file ‘etc/HELLO’, which illustrates
various scripts by showing how to say “hello” in many languages. If some characters can’t
be displayed on your terminal, they appear as ‘?’ or as hollow boxes (see Section 19.17
[Undisplayable Characters], page 185).

Keyboards, even in the countries where these character sets are used, generally don’t
have keys for all the characters in them. You can insert characters that your keyboard
does not support, using C-q (quoted-insert) or C-x 8 RET (ucs-insert). See Section 4.1
[Inserting Text], page 16. Emacs also supports various input methods, typically one for each
script or language, which make it easier to type characters in the script. See Section 19.4
[Input Methods], page 171.

The prefix key C-x RET is used for commands that pertain to multibyte characters, coding
systems, and input methods.

The command C-x = (what-cursor-position) shows information about the character
at point. In addition to the character position, which was described in Section 4.9 [Position
Info], page 22, this command displays how the character is encoded. For instance, it displays
the following line in the echo area for the character ‘c’:

Char: c (99, #o143, #x63) point=28062 of 36168 (78%) column=53

The four values after ‘Char:’ describe the character that follows point, first by showing it
and then by giving its character code in decimal, octal and hex. For a non-ASCII multibyte
character, these are followed by ‘file’ and the character’s representation, in hex, in the
buffer’s coding system, if that coding system encodes the character safely and with a single
byte (see Section 19.6 [Coding Systems], page 174). If the character’s encoding is longer
than one byte, Emacs shows ‘file ...’.

As a special case, if the character lies in the range 128 (0200 octal) through 159 (0237
octal), it stands for a “raw” byte that does not correspond to any specific displayable
character. Such a “character” lies within the eight-bit-control character set, and is
displayed as an escaped octal character code. In this case, C-x = shows ‘part of display

...’ instead of ‘file’.

With a prefix argument (C-u C-x =), this command displays a detailed description of
the character in a window:

• The character set name, and the codes that identify the character within that character
set; ASCII characters are identified as belonging to the ascii character set.

• The character’s syntax and categories.

• The character’s encodings, both internally in the buffer, and externally if you were to
save the file.

• What keys to type to input the character in the current input method (if it supports
the character).

• If you are running Emacs on a graphical display, the font name and glyph code for
the character. If you are running Emacs on a text terminal, the code(s) sent to the
terminal.

Chapter 19: International Character Set Support 169

• The character’s text properties (see Section “Text Properties” in the Emacs Lisp Ref-
erence Manual), including any non-default faces used to display the character, and any
overlays containing it (see Section “Overlays” in the same manual).

Here’s an example showing the Latin-1 character A with grave accent, in a buffer whose
coding system is utf-8-unix:

position: 1 of 1 (0%), column: 0

character: À (displayed as À) (codepoint 192, #o300, #xc0)

preferred charset: unicode (Unicode (ISO10646))

code point in charset: 0xC0

syntax: w which means: word

category: .:Base, L:Left-to-right (strong),

j:Japanese, l:Latin, v:Viet

buffer code: #xC3 #x80

file code: not encodable by coding system undecided-unix

display: by this font (glyph code)

xft:-unknown-DejaVu Sans Mono-normal-normal-

normal-*-13-*-*-*-m-0-iso10646-1 (#x82)

Character code properties: customize what to show

name: LATIN CAPITAL LETTER A WITH GRAVE

old-name: LATIN CAPITAL LETTER A GRAVE

general-category: Lu (Letter, Uppercase)

decomposition: (65 768) (’A’ ’‘’)

19.2 Disabling Multibyte Characters

By default, Emacs starts in multibyte mode: it stores the contents of buffers and strings
using an internal encoding that represents non-ASCII characters using multi-byte sequences.
Multibyte mode allows you to use all the supported languages and scripts without limita-
tions.

Under very special circumstances, you may want to disable multibyte character support,
for a specific buffer. When multibyte characters are disabled in a buffer, we call that unibyte
mode. In unibyte mode, each character in the buffer has a character code ranging from 0
through 255 (0377 octal); 0 through 127 (0177 octal) represent ASCII characters, and 128
(0200 octal) through 255 (0377 octal) represent non-ASCII characters.

To edit a particular file in unibyte representation, visit it using find-file-literally.
See Section 15.2 [Visiting], page 116. You can convert a multibyte buffer to unibyte by
saving it to a file, killing the buffer, and visiting the file again with find-file-literally.
Alternatively, you can use C-x RET c (universal-coding-system-argument) and specify
‘raw-text’ as the coding system with which to visit or save a file. See Section 19.10 [Text
Coding], page 179. Unlike find-file-literally, finding a file as ‘raw-text’ doesn’t
disable format conversion, uncompression, or auto mode selection.

Emacs normally loads Lisp files as multibyte. This includes the Emacs initialization file,
‘.emacs’, and the initialization files of packages such as Gnus. However, you can specify
unibyte loading for a particular Lisp file, by adding an entry ‘unibyte: t’ in a file local
variables section (see Section 33.2.4 [File Variables], page 410). Then that file is always
loaded as unibyte text. Note that this does not represent a real unibyte variable, rather
it just acts as an indicator to Emacs in the same way as coding does (see Section 19.8
[Specify Coding], page 178). Note also that this feature only applies to loading Lisp files

Chapter 19: International Character Set Support 170

for evaluation, not to visiting them for editing. You can also load a Lisp file as unibyte, on
any one occasion, by typing C-x RET c raw-text RET immediately before loading it.

The buffer-local variable enable-multibyte-characters is non-nil in multibyte
buffers, and nil in unibyte ones. The mode line also indicates whether a buffer is multibyte
or not. See Section 1.3 [Mode Line], page 8. With a graphical display, in a multibyte
buffer, the portion of the mode line that indicates the character set has a tooltip that
(amongst other things) says that the buffer is multibyte. In a unibyte buffer, the character
set indicator is absent. Thus, in a unibyte buffer (when using a graphical display) there is
normally nothing before the indication of the visited file’s end-of-line convention (colon,
backslash, etc.), unless you are using an input method.

You can turn off multibyte support in a specific buffer by invoking the command toggle-

enable-multibyte-characters in that buffer.

19.3 Language Environments

All supported character sets are supported in Emacs buffers whenever multibyte characters
are enabled; there is no need to select a particular language in order to display its characters.
However, it is important to select a language environment in order to set various defaults.
Roughly speaking, the language environment represents a choice of preferred script rather
than a choice of language.

The language environment controls which coding systems to recognize when reading text
(see Section 19.7 [Recognize Coding], page 176). This applies to files, incoming mail, and
any other text you read into Emacs. It may also specify the default coding system to use
when you create a file. Each language environment also specifies a default input method.

To select a language environment, customize current-language-environment or use
the command M-x set-language-environment. It makes no difference which buffer is
current when you use this command, because the effects apply globally to the Emacs session.
The supported language environments (see the variable language-info-alist) include:

ASCII, Belarusian, Bengali, Brazilian Portuguese, Bulgarian, Cham, Chinese-
BIG5, Chinese-CNS, Chinese-EUC-TW, Chinese-GB, Chinese-GBK, Chinese-
GB18030, Croatian, Cyrillic-ALT, Cyrillic-ISO, Cyrillic-KOI8, Czech, Devana-
gari, Dutch, English, Esperanto, Ethiopic, French, Georgian, German, Greek,
Gujarati, Hebrew, IPA, Italian, Japanese, Kannada, Khmer, Korean, Lao,
Latin-1, Latin-2, Latin-3, Latin-4, Latin-5, Latin-6, Latin-7, Latin-8 (Celtic),
Latin-9 (updated Latin-1 with the Euro sign), Latvian, Lithuanian, Malayalam,
Oriya, Polish, Punjabi, Romanian, Russian, Sinhala, Slovak, Slovenian, Span-
ish, Swedish, TaiViet, Tajik, Tamil, Telugu, Thai, Tibetan, Turkish, UTF-8
(for a setup which prefers Unicode characters and files encoded in UTF-8),
Ukrainian, Vietnamese, Welsh, and Windows-1255 (for a setup which prefers
Cyrillic characters and files encoded in Windows-1255).

To display the script(s) used by your language environment on a graphical display, you
need to have suitable fonts. See Section 19.14 [Fontsets], page 182, for more details about
setting up your fonts.

Some operating systems let you specify the character-set locale you are using by set-
ting the locale environment variables LC_ALL, LC_CTYPE, or LANG. (If more than one of
these is set, the first one that is nonempty specifies your locale for this purpose.) During

Chapter 19: International Character Set Support 171

startup, Emacs looks up your character-set locale’s name in the system locale alias table,
matches its canonical name against entries in the value of the variables locale-charset-

language-names and locale-language-names (the former overrides the latter), and selects
the corresponding language environment if a match is found. It also adjusts the display
table and terminal coding system, the locale coding system, the preferred coding system as
needed for the locale, and—last but not least—the way Emacs decodes non-ASCII characters
sent by your keyboard.

If you modify the LC_ALL, LC_CTYPE, or LANG environment variables while running Emacs
(by using M-x setenv), you may want to invoke the set-locale-environment function
afterwards to readjust the language environment from the new locale.

The set-locale-environment function normally uses the preferred coding system es-
tablished by the language environment to decode system messages. But if your locale
matches an entry in the variable locale-preferred-coding-systems, Emacs uses the
corresponding coding system instead. For example, if the locale ‘ja_JP.PCK’ matches
japanese-shift-jis in locale-preferred-coding-systems, Emacs uses that encoding
even though it might normally use japanese-iso-8bit.

You can override the language environment chosen at startup with explicit use of the
command set-language-environment, or with customization of current-language-

environment in your init file.

To display information about the effects of a certain language environment lang-env, use
the command C-h L lang-env RET (describe-language-environment). This tells you
which languages this language environment is useful for, and lists the character sets, coding
systems, and input methods that go with it. It also shows some sample text to illustrate
scripts used in this language environment. If you give an empty input for lang-env, this
command describes the chosen language environment.

You can customize any language environment with the normal hook set-language-

environment-hook. The command set-language-environment runs that hook after set-
ting up the new language environment. The hook functions can test for a specific language
environment by checking the variable current-language-environment. This hook is where
you should put non-default settings for specific language environments, such as coding sys-
tems for keyboard input and terminal output, the default input method, etc.

Before it starts to set up the new language environment, set-language-environment
first runs the hook exit-language-environment-hook. This hook is useful for undoing
customizations that were made with set-language-environment-hook. For instance, if
you set up a special key binding in a specific language environment using set-language-

environment-hook, you should set up exit-language-environment-hook to restore the
normal binding for that key.

19.4 Input Methods

An input method is a kind of character conversion designed specifically for interactive input.
In Emacs, typically each language has its own input method; sometimes several languages
that use the same characters can share one input method. A few languages support several
input methods.

Chapter 19: International Character Set Support 172

The simplest kind of input method works by mapping ASCII letters into another alpha-
bet; this allows you to use one other alphabet instead of ASCII. The Greek and Russian
input methods work this way.

A more powerful technique is composition: converting sequences of characters into one
letter. Many European input methods use composition to produce a single non-ASCII letter
from a sequence that consists of a letter followed by accent characters (or vice versa). For
example, some methods convert the sequence o ^ into a single accented letter. These input
methods have no special commands of their own; all they do is compose sequences of printing
characters.

The input methods for syllabic scripts typically use mapping followed by composition.
The input methods for Thai and Korean work this way. First, letters are mapped into
symbols for particular sounds or tone marks; then, sequences of these that make up a whole
syllable are mapped into one syllable sign.

Chinese and Japanese require more complex methods. In Chinese input methods, first
you enter the phonetic spelling of a Chinese word (in input method chinese-py, among
others), or a sequence of portions of the character (input methods chinese-4corner and
chinese-sw, and others). One input sequence typically corresponds to many possible Chi-
nese characters. You select the one you mean using keys such as C-f, C-b, C-n, C-p (or the
arrow keys), and digits, which have special meanings in this situation.

The possible characters are conceptually arranged in several rows, with each row holding
up to 10 alternatives. Normally, Emacs displays just one row at a time, in the echo area;
(i/j) appears at the beginning, to indicate that this is the ith row out of a total of j rows.
Type C-n or C-p to display the next row or the previous row.

Type C-f and C-b to move forward and backward among the alternatives in the current
row. As you do this, Emacs highlights the current alternative with a special color; type
C-SPC to select the current alternative and use it as input. The alternatives in the row are
also numbered; the number appears before the alternative. Typing a number selects the
associated alternative of the current row and uses it as input.

TAB in these Chinese input methods displays a buffer showing all the possible characters
at once; then clicking Mouse-2 on one of them selects that alternative. The keys C-f, C-b,
C-n, C-p, and digits continue to work as usual, but they do the highlighting in the buffer
showing the possible characters, rather than in the echo area.

In Japanese input methods, first you input a whole word using phonetic spelling; then,
after the word is in the buffer, Emacs converts it into one or more characters using a large
dictionary. One phonetic spelling corresponds to a number of different Japanese words; to
select one of them, use C-n and C-p to cycle through the alternatives.

Sometimes it is useful to cut off input method processing so that the characters you have
just entered will not combine with subsequent characters. For example, in input method
latin-1-postfix, the sequence o ^ combines to form an ‘o’ with an accent. What if you
want to enter them as separate characters?

One way is to type the accent twice; this is a special feature for entering the separate
letter and accent. For example, o ^ ^ gives you the two characters ‘o^’. Another way is to
type another letter after the o—something that won’t combine with that—and immediately
delete it. For example, you could type o o DEL ^ to get separate ‘o’ and ‘^’.

Chapter 19: International Character Set Support 173

Another method, more general but not quite as easy to type, is to use C-\ C-\ between
two characters to stop them from combining. This is the command C-\ (toggle-input-
method) used twice.

C-\ C-\ is especially useful inside an incremental search, because it stops waiting for
more characters to combine, and starts searching for what you have already entered.

To find out how to input the character after point using the current input method, type
C-u C-x =. See Section 4.9 [Position Info], page 22.

The variables input-method-highlight-flag and input-method-verbose-flag con-
trol how input methods explain what is happening. If input-method-highlight-flag is
non-nil, the partial sequence is highlighted in the buffer (for most input methods—some
disable this feature). If input-method-verbose-flag is non-nil, the list of possible char-
acters to type next is displayed in the echo area (but not when you are in the minibuffer).

Another facility for typing characters not on your keyboard is by using C-x 8 RET (ucs-
insert) to insert a single character based on its Unicode name or code-point; see Section 4.1
[Inserting Text], page 16.

19.5 Selecting an Input Method

C-\ Enable or disable use of the selected input method (toggle-input-method).

C-x RET C-\ method RET

Select a new input method for the current buffer (set-input-method).

C-h I method RET

C-h C-\ method RET

Describe the input method method (describe-input-method). By default, it
describes the current input method (if any). This description should give you
the full details of how to use any particular input method.

M-x list-input-methods

Display a list of all the supported input methods.

To choose an input method for the current buffer, use C-x RET C-\ (set-input-method).
This command reads the input method name from the minibuffer; the name normally starts
with the language environment that it is meant to be used with. The variable current-

input-method records which input method is selected.

Input methods use various sequences of ASCII characters to stand for non-ASCII char-
acters. Sometimes it is useful to turn off the input method temporarily. To do this, type
C-\ (toggle-input-method). To reenable the input method, type C-\ again.

If you type C-\ and you have not yet selected an input method, it prompts you to specify
one. This has the same effect as using C-x RET C-\ to specify an input method.

When invoked with a numeric argument, as in C-u C-\, toggle-input-method always
prompts you for an input method, suggesting the most recently selected one as the default.

Selecting a language environment specifies a default input method for use in various
buffers. When you have a default input method, you can select it in the current buffer by
typing C-\. The variable default-input-method specifies the default input method (nil
means there is none).

Chapter 19: International Character Set Support 174

In some language environments, which support several different input methods, you
might want to use an input method different from the default chosen by set-language-

environment. You can instruct Emacs to select a different default input method for a
certain language environment, if you wish, by using set-language-environment-hook (see
Section 19.3 [Language Environments], page 170). For example:

(defun my-chinese-setup ()

"Set up my private Chinese environment."

(if (equal current-language-environment "Chinese-GB")

(setq default-input-method "chinese-tonepy")))

(add-hook ’set-language-environment-hook ’my-chinese-setup)

This sets the default input method to be chinese-tonepy whenever you choose a Chinese-
GB language environment.

You can instruct Emacs to activate a certain input method automatically. For example:

(add-hook ’text-mode-hook

(lambda () (set-input-method "german-prefix")))

This automatically activates the input method “german-prefix” in Text mode.

Some input methods for alphabetic scripts work by (in effect) remapping the keyboard
to emulate various keyboard layouts commonly used for those scripts. How to do this
remapping properly depends on your actual keyboard layout. To specify which layout your
keyboard has, use the command M-x quail-set-keyboard-layout.

You can use the command M-x quail-show-key to show what key (or key sequence) to
type in order to input the character following point, using the selected keyboard layout. The
command C-u C-x = also shows that information, in addition to other information about
the character.

M-x list-input-methods displays a list of all the supported input methods. The list
gives information about each input method, including the string that stands for it in the
mode line.

19.6 Coding Systems

Users of various languages have established many more-or-less standard coding systems for
representing them. Emacs does not use these coding systems internally; instead, it converts
from various coding systems to its own system when reading data, and converts the internal
coding system to other coding systems when writing data. Conversion is possible in reading
or writing files, in sending or receiving from the terminal, and in exchanging data with
subprocesses.

Emacs assigns a name to each coding system. Most coding systems are used for one
language, and the name of the coding system starts with the language name. Some coding
systems are used for several languages; their names usually start with ‘iso’. There are also
special coding systems, such as no-conversion, raw-text, and emacs-internal.

A special class of coding systems, collectively known as codepages, is designed to support
text encoded by MS-Windows and MS-DOS software. The names of these coding systems
are cpnnnn , where nnnn is a 3- or 4-digit number of the codepage. You can use these
encodings just like any other coding system; for example, to visit a file encoded in codepage
850, type C-x RET c cp850 RET C-x C-f filename RET.

Chapter 19: International Character Set Support 175

In addition to converting various representations of non-ASCII characters, a coding sys-
tem can perform end-of-line conversion. Emacs handles three different conventions for
how to separate lines in a file: newline (“unix”), carriage-return linefeed (“dos”), and just
carriage-return (“mac”).

C-h C coding RET

Describe coding system coding (describe-coding-system).

C-h C RET Describe the coding systems currently in use.

M-x list-coding-systems

Display a list of all the supported coding systems.

The command C-h C (describe-coding-system) displays information about particular
coding systems, including the end-of-line conversion specified by those coding systems.
You can specify a coding system name as the argument; alternatively, with an empty
argument, it describes the coding systems currently selected for various purposes, both in
the current buffer and as the defaults, and the priority list for recognizing coding systems
(see Section 19.7 [Recognize Coding], page 176).

To display a list of all the supported coding systems, type M-x list-coding-systems.
The list gives information about each coding system, including the letter that stands for it
in the mode line (see Section 1.3 [Mode Line], page 8).

Each of the coding systems that appear in this list—except for no-conversion, which
means no conversion of any kind—specifies how and whether to convert printing characters,
but leaves the choice of end-of-line conversion to be decided based on the contents of each
file. For example, if the file appears to use the sequence carriage-return linefeed to separate
lines, DOS end-of-line conversion will be used.

Each of the listed coding systems has three variants, which specify exactly what to do
for end-of-line conversion:

...-unix Don’t do any end-of-line conversion; assume the file uses newline to separate
lines. (This is the convention normally used on Unix and GNU systems, and
Mac OS X.)

...-dos Assume the file uses carriage-return linefeed to separate lines, and do the appro-
priate conversion. (This is the convention normally used on Microsoft systems.1)

...-mac Assume the file uses carriage-return to separate lines, and do the appropriate
conversion. (This was the convention used on the Macintosh system prior to
OS X.)

These variant coding systems are omitted from the list-coding-systems display for
brevity, since they are entirely predictable. For example, the coding system iso-latin-1

has variants iso-latin-1-unix, iso-latin-1-dos and iso-latin-1-mac.

The coding systems unix, dos, and mac are aliases for undecided-unix, undecided-
dos, and undecided-mac, respectively. These coding systems specify only the end-of-line
conversion, and leave the character code conversion to be deduced from the text itself.

1 It is also specified for MIME ‘text/*’ bodies and in other network transport contexts. It is different
from the SGML reference syntax record-start/record-end format, which Emacs doesn’t support directly.

Chapter 19: International Character Set Support 176

The coding system raw-text is good for a file which is mainly ASCII text, but may con-
tain byte values above 127 that are not meant to encode non-ASCII characters. With raw-

text, Emacs copies those byte values unchanged, and sets enable-multibyte-characters
to nil in the current buffer so that they will be interpreted properly. raw-text handles
end-of-line conversion in the usual way, based on the data encountered, and has the usual
three variants to specify the kind of end-of-line conversion to use.

In contrast, the coding system no-conversion specifies no character code conversion at
all—none for non-ASCII byte values and none for end of line. This is useful for reading or
writing binary files, tar files, and other files that must be examined verbatim. It, too, sets
enable-multibyte-characters to nil.

The easiest way to edit a file with no conversion of any kind is with the M-x

find-file-literally command. This uses no-conversion, and also suppresses other
Emacs features that might convert the file contents before you see them. See Section 15.2
[Visiting], page 116.

The coding system emacs-internal (or utf-8-emacs, which is equivalent) means that
the file contains non-ASCII characters stored with the internal Emacs encoding. This coding
system handles end-of-line conversion based on the data encountered, and has the usual
three variants to specify the kind of end-of-line conversion.

19.7 Recognizing Coding Systems

Whenever Emacs reads a given piece of text, it tries to recognize which coding system to
use. This applies to files being read, output from subprocesses, text from X selections, etc.
Emacs can select the right coding system automatically most of the time—once you have
specified your preferences.

Some coding systems can be recognized or distinguished by which byte sequences appear
in the data. However, there are coding systems that cannot be distinguished, not even
potentially. For example, there is no way to distinguish between Latin-1 and Latin-2; they
use the same byte values with different meanings.

Emacs handles this situation by means of a priority list of coding systems. Whenever
Emacs reads a file, if you do not specify the coding system to use, Emacs checks the data
against each coding system, starting with the first in priority and working down the list,
until it finds a coding system that fits the data. Then it converts the file contents assuming
that they are represented in this coding system.

The priority list of coding systems depends on the selected language environment (see
Section 19.3 [Language Environments], page 170). For example, if you use French, you
probably want Emacs to prefer Latin-1 to Latin-2; if you use Czech, you probably want
Latin-2 to be preferred. This is one of the reasons to specify a language environment.

However, you can alter the coding system priority list in detail with the command
M-x prefer-coding-system. This command reads the name of a coding system from the
minibuffer, and adds it to the front of the priority list, so that it is preferred to all others. If
you use this command several times, each use adds one element to the front of the priority
list.

If you use a coding system that specifies the end-of-line conversion type, such as iso-

8859-1-dos, what this means is that Emacs should attempt to recognize iso-8859-1 with
priority, and should use DOS end-of-line conversion when it does recognize iso-8859-1.

Chapter 19: International Character Set Support 177

Sometimes a file name indicates which coding system to use for the file. The vari-
able file-coding-system-alist specifies this correspondence. There is a special function
modify-coding-system-alist for adding elements to this list. For example, to read and
write all ‘.txt’ files using the coding system chinese-iso-8bit, you can execute this Lisp
expression:

(modify-coding-system-alist ’file "\\.txt\\’" ’chinese-iso-8bit)

The first argument should be file, the second argument should be a regular expression that
determines which files this applies to, and the third argument says which coding system to
use for these files.

Emacs recognizes which kind of end-of-line conversion to use based on the contents of
the file: if it sees only carriage-returns, or only carriage-return linefeed sequences, then it
chooses the end-of-line conversion accordingly. You can inhibit the automatic use of end-
of-line conversion by setting the variable inhibit-eol-conversion to non-nil. If you do
that, DOS-style files will be displayed with the ‘^M’ characters visible in the buffer; some
people prefer this to the more subtle ‘(DOS)’ end-of-line type indication near the left edge
of the mode line (see Section 1.3 [Mode Line], page 8).

By default, the automatic detection of coding system is sensitive to escape sequences. If
Emacs sees a sequence of characters that begin with an escape character, and the sequence
is valid as an ISO-2022 code, that tells Emacs to use one of the ISO-2022 encodings to
decode the file.

However, there may be cases that you want to read escape sequences in a file as is. In
such a case, you can set the variable inhibit-iso-escape-detection to non-nil. Then
the code detection ignores any escape sequences, and never uses an ISO-2022 encoding. The
result is that all escape sequences become visible in the buffer.

The default value of inhibit-iso-escape-detection is nil. We recommend that you
not change it permanently, only for one specific operation. That’s because some Emacs Lisp
source files in the Emacs distribution contain non-ASCII characters encoded in the coding
system iso-2022-7bit, and they won’t be decoded correctly when you visit those files if
you suppress the escape sequence detection.

The variables auto-coding-alist and auto-coding-regexp-alist are the strongest
way to specify the coding system for certain patterns of file names, or for files containing
certain patterns, respectively. These variables even override ‘-*-coding:-*-’ tags in the file
itself (see Section 19.8 [Specify Coding], page 178). For example, Emacs uses auto-coding-
alist for tar and archive files, to prevent it from being confused by a ‘-*-coding:-*-’ tag
in a member of the archive and thinking it applies to the archive file as a whole.

Another way to specify a coding system is with the variable auto-coding-functions.
For example, one of the builtin auto-coding-functions detects the encoding for XML
files. Unlike the previous two, this variable does not override any ‘-*-coding:-*-’ tag.

When you get new mail in Rmail, each message is translated automatically from the
coding system it is written in, as if it were a separate file. This uses the priority list of
coding systems that you have specified. If a MIME message specifies a character set, Rmail
obeys that specification. For reading and saving Rmail files themselves, Emacs uses the
coding system specified by the variable rmail-file-coding-system. The default value is
nil, which means that Rmail files are not translated (they are read and written in the
Emacs internal character code).

Chapter 19: International Character Set Support 178

19.8 Specifying a File’s Coding System

If Emacs recognizes the encoding of a file incorrectly, you can reread the file using the correct
coding system with C-x RET r (revert-buffer-with-coding-system). This command
prompts for the coding system to use. To see what coding system Emacs actually used to
decode the file, look at the coding system mnemonic letter near the left edge of the mode
line (see Section 1.3 [Mode Line], page 8), or type C-h C (describe-coding-system).

You can specify the coding system for a particular file in the file itself, using the
‘-*-...-*-’ construct at the beginning, or a local variables list at the end (see Section 33.2.4
[File Variables], page 410). You do this by defining a value for the “variable” named coding.
Emacs does not really have a variable coding; instead of setting a variable, this uses the
specified coding system for the file. For example, ‘-*-mode: C; coding: latin-1;-*-’
specifies use of the Latin-1 coding system, as well as C mode. When you specify the coding
explicitly in the file, that overrides file-coding-system-alist.

19.9 Choosing Coding Systems for Output

Once Emacs has chosen a coding system for a buffer, it stores that coding system in buffer-

file-coding-system. That makes it the default for operations that write from this buffer
into a file, such as save-buffer and write-region. You can specify a different coding
system for further file output from the buffer using set-buffer-file-coding-system (see
Section 19.10 [Text Coding], page 179).

You can insert any character Emacs supports into any Emacs buffer, but most coding
systems can only handle a subset of these characters. Therefore, it’s possible that the
characters you insert cannot be encoded with the coding system that will be used to save
the buffer. For example, you could visit a text file in Polish, encoded in iso-8859-2,
and add some Russian words to it. When you save that buffer, Emacs cannot use the
current value of buffer-file-coding-system, because the characters you added cannot
be encoded by that coding system.

When that happens, Emacs tries the most-preferred coding system (set by M-x

prefer-coding-system or M-x set-language-environment). If that coding system can
safely encode all of the characters in the buffer, Emacs uses it, and stores its value in
buffer-file-coding-system. Otherwise, Emacs displays a list of coding systems suitable
for encoding the buffer’s contents, and asks you to choose one of those coding systems.

If you insert the unsuitable characters in a mail message, Emacs behaves a bit differently.
It additionally checks whether the most-preferred coding system is recommended for use
in MIME messages; if not, it informs you of this fact and prompts you for another coding
system. This is so you won’t inadvertently send a message encoded in a way that your
recipient’s mail software will have difficulty decoding. (You can still use an unsuitable
coding system if you enter its name at the prompt.)

When you send a mail message (see Chapter 29 [Sending Mail], page 337), Emacs has
four different ways to determine the coding system to use for encoding the message text. It
tries the buffer’s own value of buffer-file-coding-system, if that is non-nil. Otherwise,
it uses the value of sendmail-coding-system, if that is non-nil. The third way is to
use the default coding system for new files, which is controlled by your choice of language
environment, if that is non-nil. If all of these three values are nil, Emacs encodes outgoing
mail using the Latin-1 coding system.

Chapter 19: International Character Set Support 179

19.10 Specifying a Coding System for File Text

In cases where Emacs does not automatically choose the right coding system for a file’s
contents, you can use these commands to specify one:

C-x RET f coding RET

Use coding system coding to save or revisit the file in the current buffer (set-
buffer-file-coding-system).

C-x RET c coding RET

Specify coding system coding for the immediately following command
(universal-coding-system-argument).

C-x RET r coding RET

Revisit the current file using the coding system coding (revert-buffer-with-
coding-system).

M-x recode-region RET right RET wrong RET

Convert a region that was decoded using coding system wrong, decoding it
using coding system right instead.

The command C-x RET f (set-buffer-file-coding-system) sets the file coding system
for the current buffer—in other words, it says which coding system to use when saving or
reverting the visited file. You specify which coding system using the minibuffer. If you
specify a coding system that cannot handle all of the characters in the buffer, Emacs warns
you about the troublesome characters when you actually save the buffer.

You can also use this command to specify the end-of-line conversion (see Section 19.6
[Coding Systems], page 174) for encoding the current buffer. For example, C-x RET f dos

RET will cause Emacs to save the current buffer’s text with DOS-style carriage-return linefeed
line endings.

Another way to specify the coding system for a file is when you visit the file. First use
the command C-x RET c (universal-coding-system-argument); this command uses the
minibuffer to read a coding system name. After you exit the minibuffer, the specified coding
system is used for the immediately following command.

So if the immediately following command is C-x C-f, for example, it reads the file using
that coding system (and records the coding system for when you later save the file). Or if
the immediately following command is C-x C-w, it writes the file using that coding system.
When you specify the coding system for saving in this way, instead of with C-x RET f, there
is no warning if the buffer contains characters that the coding system cannot handle.

Other file commands affected by a specified coding system include C-x i and C-x C-v, as
well as the other-window variants of C-x C-f. C-x RET c also affects commands that start
subprocesses, including M-x shell (see Section 31.3 [Shell], page 368). If the immediately
following command does not use the coding system, then C-x RET c ultimately has no effect.

An easy way to visit a file with no conversion is with the M-x find-file-literally

command. See Section 15.2 [Visiting], page 116.

The default value of the variable buffer-file-coding-system specifies the choice of
coding system to use when you create a new file. It applies when you find a new file,
and when you create a buffer and then save it in a file. Selecting a language environment

Chapter 19: International Character Set Support 180

typically sets this variable to a good choice of default coding system for that language
environment.

If you visit a file with a wrong coding system, you can correct this with C-x RET r

(revert-buffer-with-coding-system). This visits the current file again, using a coding
system you specify.

If a piece of text has already been inserted into a buffer using the wrong coding system,
you can redo the decoding of it using M-x recode-region. This prompts you for the proper
coding system, then for the wrong coding system that was actually used, and does the
conversion. It first encodes the region using the wrong coding system, then decodes it again
using the proper coding system.

19.11 Coding Systems for Interprocess Communication

This section explains how to specify coding systems for use in communication with other
processes.

C-x RET x coding RET

Use coding system coding for transferring selections to and from other window-
based applications (set-selection-coding-system).

C-x RET X coding RET

Use coding system coding for transferring one selection—the next one—to
or from another window-based application (set-next-selection-coding-
system).

C-x RET p input-coding RET output-coding RET

Use coding systems input-coding and output-coding for subprocess input and
output in the current buffer (set-buffer-process-coding-system).

The command C-x RET x (set-selection-coding-system) specifies the coding system
for sending selected text to other windowing applications, and for receiving the text of
selections made in other applications. This command applies to all subsequent selections,
until you override it by using the command again. The command C-x RET X (set-next-
selection-coding-system) specifies the coding system for the next selection made in
Emacs or read by Emacs.

The variable x-select-request-type specifies the data type to request from the X
Window System for receiving text selections from other applications. If the value is nil

(the default), Emacs tries UTF8_STRING and COMPOUND_TEXT, in this order, and uses various
heuristics to choose the more appropriate of the two results; if none of these succeed,
Emacs falls back on STRING. If the value of x-select-request-type is one of the symbols
COMPOUND_TEXT, UTF8_STRING, STRING, or TEXT, Emacs uses only that request type. If the
value is a list of some of these symbols, Emacs tries only the request types in the list, in
order, until one of them succeeds, or until the list is exhausted.

The command C-x RET p (set-buffer-process-coding-system) specifies the coding
system for input and output to a subprocess. This command applies to the current buffer;
normally, each subprocess has its own buffer, and thus you can use this command to specify
translation to and from a particular subprocess by giving the command in the corresponding
buffer.

Chapter 19: International Character Set Support 181

You can also use C-x RET c (universal-coding-system-argument) just before the com-
mand that runs or starts a subprocess, to specify the coding system for communicating with
that subprocess. See Section 19.10 [Text Coding], page 179.

The default for translation of process input and output depends on the current language
environment.

The variable locale-coding-system specifies a coding system to use when encoding
and decoding system strings such as system error messages and format-time-string for-
mats and time stamps. That coding system is also used for decoding non-ASCII keyboard
input on the X Window System. You should choose a coding system that is compatible
with the underlying system’s text representation, which is normally specified by one of the
environment variables LC_ALL, LC_CTYPE, and LANG. (The first one, in the order specified
above, whose value is nonempty is the one that determines the text representation.)

19.12 Coding Systems for File Names

C-x RET F coding RET

Use coding system coding for encoding and decoding file names (set-file-
name-coding-system).

The command C-x RET F (set-file-name-coding-system) specifies a coding system to
use for encoding file names. It has no effect on reading and writing the contents of files.

In fact, all this command does is set the value of the variable file-name-coding-

system. If you set the variable to a coding system name (as a Lisp symbol or a string),
Emacs encodes file names using that coding system for all file operations. This makes it
possible to use non-ASCII characters in file names—or, at least, those non-ASCII characters
that the specified coding system can encode.

If file-name-coding-system is nil, Emacs uses a default coding system determined by
the selected language environment, and stored in the default-file-name-coding-system

variable. In the default language environment, non-ASCII characters in file names are not
encoded specially; they appear in the file system using the internal Emacs representation.

Warning: if you change file-name-coding-system (or the language environment) in
the middle of an Emacs session, problems can result if you have already visited files whose
names were encoded using the earlier coding system and cannot be encoded (or are encoded
differently) under the new coding system. If you try to save one of these buffers under the
visited file name, saving may use the wrong file name, or it may encounter an error. If such
a problem happens, use C-x C-w to specify a new file name for that buffer.

If a mistake occurs when encoding a file name, use the command M-x recode-file-name

to change the file name’s coding system. This prompts for an existing file name, its old
coding system, and the coding system to which you wish to convert.

19.13 Coding Systems for Terminal I/O

C-x RET t coding RET

Use coding system coding for terminal output (set-terminal-coding-
system).

C-x RET k coding RET

Use coding system coding for keyboard input (set-keyboard-coding-system).

Chapter 19: International Character Set Support 182

The command C-x RET t (set-terminal-coding-system) specifies the coding system
for terminal output. If you specify a character code for terminal output, all characters
output to the terminal are translated into that coding system.

This feature is useful for certain character-only terminals built to support specific lan-
guages or character sets—for example, European terminals that support one of the ISO
Latin character sets. You need to specify the terminal coding system when using multibyte
text, so that Emacs knows which characters the terminal can actually handle.

By default, output to the terminal is not translated at all, unless Emacs can deduce the
proper coding system from your terminal type or your locale specification (see Section 19.3
[Language Environments], page 170).

The command C-x RET k (set-keyboard-coding-system), or the variable keyboard-

coding-system, specifies the coding system for keyboard input. Character-code translation
of keyboard input is useful for terminals with keys that send non-ASCII graphic characters—
for example, some terminals designed for ISO Latin-1 or subsets of it.

By default, keyboard input is translated based on your system locale setting. If your
terminal does not really support the encoding implied by your locale (for example, if you
find it inserts a non-ASCII character if you type M-i), you will need to set keyboard-

coding-system to nil to turn off encoding. You can do this by putting

(set-keyboard-coding-system nil)

in your init file.

There is a similarity between using a coding system translation for keyboard input, and
using an input method: both define sequences of keyboard input that translate into single
characters. However, input methods are designed to be convenient for interactive use by
humans, and the sequences that are translated are typically sequences of ASCII printing
characters. Coding systems typically translate sequences of non-graphic characters.

19.14 Fontsets

A font typically defines shapes for a single alphabet or script. Therefore, displaying the
entire range of scripts that Emacs supports requires a collection of many fonts. In Emacs,
such a collection is called a fontset. A fontset is defined by a list of font specifications, each
assigned to handle a range of character codes, and may fall back on another fontset for
characters that are not covered by the fonts it specifies.

Each fontset has a name, like a font. However, while fonts are stored in the system
and the available font names are defined by the system, fontsets are defined within Emacs
itself. Once you have defined a fontset, you can use it within Emacs by specifying its name,
anywhere that you could use a single font. Of course, Emacs fontsets can use only the fonts
that the system supports. If some characters appear on the screen as empty boxes or hex
codes, this means that the fontset in use for them has no font for those characters. In this
case, or if the characters are shown, but not as well as you would like, you may need to
install extra fonts. Your operating system may have optional fonts that you can install; or
you can install the GNU Intlfonts package, which includes fonts for most supported scripts.2

2 If you run Emacs on X, you may need to inform the X server about the location of the newly installed
fonts with commands such as:

xset fp+ /usr/local/share/emacs/fonts

Chapter 19: International Character Set Support 183

Emacs creates three fontsets automatically: the standard fontset, the startup fontset
and the default fontset. The default fontset is most likely to have fonts for a wide variety
of non-ASCII characters, and is the default fallback for the other two fontsets, and if you
set a default font rather than fontset. However, it does not specify font family names, so
results can be somewhat random if you use it directly. You can specify use of a particular
fontset by starting Emacs with the ‘-fn’ option. For example,

emacs -fn fontset-standard

You can also specify a fontset with the ‘Font’ resource (see Appendix D [X Resources],
page 478).

If no fontset is specified for use, then Emacs uses an ASCII font, with ‘fontset-default’
as a fallback for characters the font does not cover. The standard fontset is only used if
explicitly requested, despite its name.

A fontset does not necessarily specify a font for every character code. If a fontset specifies
no font for a certain character, or if it specifies a font that does not exist on your system,
then it cannot display that character properly. It will display that character as a hex code
or thin space or an empty box instead. (See Section 11.19 [glyphless characters], page 81,
for details.)

19.15 Defining fontsets

When running on X, Emacs creates a standard fontset automatically according to the value
of standard-fontset-spec. This fontset’s name is

-*-fixed-medium-r-normal-*-16-*-*-*-*-*-fontset-standard

or just ‘fontset-standard’ for short.

On GNUstep and Mac OS X, the standard fontset is created using the value of
ns-standard-fontset-spec, and on MS Windows it is created using the value of
w32-standard-fontset-spec.

Bold, italic, and bold-italic variants of the standard fontset are created automatically.
Their names have ‘bold’ instead of ‘medium’, or ‘i’ instead of ‘r’, or both.

Emacs generates a fontset automatically, based on any default ASCII font that you specify
with the ‘Font’ resource or the ‘-fn’ argument, or the default font that Emacs found when
it started. This is the startup fontset and its name is fontset-startup. It does this by
replacing the charset registry field with ‘fontset’, and replacing charset encoding field
with ‘startup’, then using the resulting string to specify a fontset.

For instance, if you start Emacs with a font of this form,

emacs -fn "*courier-medium-r-normal--14-140-*-iso8859-1"

Emacs generates the following fontset and uses it for the initial X window frame:

-*-courier-medium-r-normal-*-14-140-*-*-*-*-fontset-startup

The startup fontset will use the font that you specify, or a variant with a different
registry and encoding, for all the characters that are supported by that font, and fallback
on ‘fontset-default’ for other characters.

xset fp rehash

Chapter 19: International Character Set Support 184

With the X resource ‘Emacs.Font’, you can specify a fontset name just like an ac-
tual font name. But be careful not to specify a fontset name in a wildcard resource
like ‘Emacs*Font’—that wildcard specification matches various other resources, such as
for menus, and menus cannot handle fontsets. See Appendix D [X Resources], page 478.

You can specify additional fontsets using X resources named ‘Fontset-n ’, where n is an
integer starting from 0. The resource value should have this form:

fontpattern, [charset:font]. . .

fontpattern should have the form of a standard X font name (see the previous fontset-startup
example), except for the last two fields. They should have the form ‘fontset-alias ’.

The fontset has two names, one long and one short. The long name is fontpattern. The
short name is ‘fontset-alias ’. You can refer to the fontset by either name.

The construct ‘charset:font ’ specifies which font to use (in this fontset) for one par-
ticular character set. Here, charset is the name of a character set, and font is the font to
use for that character set. You can use this construct any number of times in defining one
fontset.

For the other character sets, Emacs chooses a font based on fontpattern. It replaces
‘fontset-alias ’ with values that describe the character set. For the ASCII character font,
‘fontset-alias ’ is replaced with ‘ISO8859-1’.

In addition, when several consecutive fields are wildcards, Emacs collapses them into a
single wildcard. This is to prevent use of auto-scaled fonts. Fonts made by scaling larger
fonts are not usable for editing, and scaling a smaller font is not also useful, because it is
better to use the smaller font in its own size, which is what Emacs does.

Thus if fontpattern is this,

-*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24

the font specification for ASCII characters would be this:

-*-fixed-medium-r-normal-*-24-*-ISO8859-1

and the font specification for Chinese GB2312 characters would be this:

-*-fixed-medium-r-normal-*-24-*-gb2312*-*

You may not have any Chinese font matching the above font specification. Most X
distributions include only Chinese fonts that have ‘song ti’ or ‘fangsong ti’ in the family
field. In such a case, ‘Fontset-n ’ can be specified as:

Emacs.Fontset-0: -*-fixed-medium-r-normal-*-24-*-*-*-*-*-fontset-24,\

chinese-gb2312:-*-*-medium-r-normal-*-24-*-gb2312*-*

Then, the font specifications for all but Chinese GB2312 characters have ‘fixed’ in the
family field, and the font specification for Chinese GB2312 characters has a wild card ‘*’
in the family field.

The function that processes the fontset resource value to create the fontset is called
create-fontset-from-fontset-spec. You can also call this function explicitly to create
a fontset.

See Section 18.8 [Fonts], page 158, for more information about font naming.

Chapter 19: International Character Set Support 185

19.16 Modifying Fontsets

Fontsets do not always have to be created from scratch. If only minor changes are required
it may be easier to modify an existing fontset. Modifying ‘fontset-default’ will also affect
other fontsets that use it as a fallback, so can be an effective way of fixing problems with
the fonts that Emacs chooses for a particular script.

Fontsets can be modified using the function set-fontset-font, specifying a character,
a charset, a script, or a range of characters to modify the font for, and a font specification
for the font to be used. Some examples are:

;; Use Liberation Mono for latin-3 charset.

(set-fontset-font "fontset-default" ’iso-8859-3

"Liberation Mono")

;; Prefer a big5 font for han characters

(set-fontset-font "fontset-default"

’han (font-spec :registry "big5")

nil ’prepend)

;; Use DejaVu Sans Mono as a fallback in fontset-startup

;; before resorting to fontset-default.

(set-fontset-font "fontset-startup" nil "DejaVu Sans Mono"

nil ’append)

;; Use MyPrivateFont for the Unicode private use area.

(set-fontset-font "fontset-default" ’(#xe000 . #xf8ff)

"MyPrivateFont")

19.17 Undisplayable Characters

There may be some non-ASCII characters that your terminal cannot display. Most text
terminals support just a single character set (use the variable default-terminal-coding-

system to tell Emacs which one, Section 19.13 [Terminal Coding], page 181); characters
that can’t be encoded in that coding system are displayed as ‘?’ by default.

Graphical displays can display a broader range of characters, but you may not have fonts
installed for all of them; characters that have no font appear as a hollow box.

If you use Latin-1 characters but your terminal can’t display Latin-1, you can arrange
to display mnemonic ASCII sequences instead, e.g. ‘"o’ for o-umlaut. Load the library
‘iso-ascii’ to do this.

If your terminal can display Latin-1, you can display characters from other European
character sets using a mixture of equivalent Latin-1 characters and ASCII mnemonics. Cus-
tomize the variable latin1-display to enable this. The mnemonic ASCII sequences mostly
correspond to those of the prefix input methods.

Chapter 19: International Character Set Support 186

19.18 Unibyte Editing Mode

The ISO 8859 Latin-n character sets define character codes in the range 0240 to 0377 octal
(160 to 255 decimal) to handle the accented letters and punctuation needed by various
European languages (and some non-European ones). Note that Emacs considers bytes with
codes in this range as raw bytes, not as characters, even in a unibyte buffer, i.e. if you
disable multibyte characters. However, Emacs can still handle these character codes as
if they belonged to one of the single-byte character sets at a time. To specify which of
these codes to use, invoke M-x set-language-environment and specify a suitable language
environment such as ‘Latin-n ’.

For more information about unibyte operation, see Section 19.2 [Disabling Multibyte],
page 169.

Emacs can also display bytes in the range 160 to 255 as readable characters, provided the
terminal or font in use supports them. This works automatically. On a graphical display,
Emacs can also display single-byte characters through fontsets, in effect by displaying the
equivalent multibyte characters according to the current language environment. To request
this, set the variable unibyte-display-via-language-environment to a non-nil value.
Note that setting this only affects how these bytes are displayed, but does not change the
fundamental fact that Emacs treats them as raw bytes, not as characters.

If your terminal does not support display of the Latin-1 character set, Emacs can dis-
play these characters as ASCII sequences which at least give you a clear idea of what the
characters are. To do this, load the library iso-ascii. Similar libraries for other Latin-n
character sets could be implemented, but have not been so far.

Normally non-ISO-8859 characters (decimal codes between 128 and 159 inclusive) are
displayed as octal escapes. You can change this for non-standard “extended” versions of
ISO-8859 character sets by using the function standard-display-8bit in the disp-table

library.

There are two ways to input single-byte non-ASCII characters:

• You can use an input method for the selected language environment. See Section 19.4
[Input Methods], page 171. When you use an input method in a unibyte buffer, the
non-ASCII character you specify with it is converted to unibyte.

• If your keyboard can generate character codes 128 (decimal) and up, representing non-
ASCII characters, you can type those character codes directly.

On a graphical display, you should not need to do anything special to use these keys;
they should simply work. On a text terminal, you should use the command M-x

set-keyboard-coding-system or customize the variable keyboard-coding-system

to specify which coding system your keyboard uses (see Section 19.13 [Terminal Cod-
ing], page 181). Enabling this feature will probably require you to use ESC to type
Meta characters; however, on a console terminal or in xterm, you can arrange for Meta
to be converted to ESC and still be able type 8-bit characters present directly on the
keyboard or using Compose or AltGr keys. See Section 2.1 [User Input], page 11.

• For Latin-1 only, you can use the key C-x 8 as a “compose character” prefix for entry
of non-ASCII Latin-1 printing characters. C-x 8 is good for insertion (in the minibuffer
as well as other buffers), for searching, and in any other context where a key sequence
is allowed.

Chapter 19: International Character Set Support 187

C-x 8 works by loading the iso-transl library. Once that library is loaded, the ALT
modifier key, if the keyboard has one, serves the same purpose as C-x 8: use ALT
together with an accent character to modify the following letter. In addition, if the
keyboard has keys for the Latin-1 “dead accent characters”, they too are defined to
compose with the following character, once iso-transl is loaded.

Use C-x 8 C-h to list all the available C-x 8 translations.

19.19 Charsets

In Emacs, charset is short for “character set”. Emacs supports most popular charsets (such
as ascii, iso-8859-1, cp1250, big5, and unicode), in addition to some charsets of its own
(such as emacs, unicode-bmp, and eight-bit). All supported characters belong to one or
more charsets.

Emacs normally “does the right thing” with respect to charsets, so that you don’t have
to worry about them. However, it is sometimes helpful to know some of the underlying
details about charsets.

One example is font selection (see Section 18.8 [Fonts], page 158). Each language envi-
ronment (see Section 19.3 [Language Environments], page 170) defines a “priority list” for
the various charsets. When searching for a font, Emacs initially attempts to find one that
can display the highest-priority charsets. For instance, in the Japanese language environ-
ment, the charset japanese-jisx0208 has the highest priority, so Emacs tries to use a font
whose registry property is ‘JISX0208.1983-0’.

There are two commands that can be used to obtain information about charsets. The
command M-x list-charset-chars prompts for a charset name, and displays all the char-
acters in that character set. The command M-x describe-character-set prompts for a
charset name, and displays information about that charset, including its internal represen-
tation within Emacs.

M-x list-character-sets displays a list of all supported charsets. The list gives the
names of charsets and additional information to identity each charset; see the International
Register of Coded Character Sets for more details. In this list, charsets are divided into
two categories: normal charsets are listed first, followed by supplementary charsets. A
supplementary charset is one that is used to define another charset (as a parent or a subset),
or to provide backward-compatibility for older Emacs versions.

To find out which charset a character in the buffer belongs to, put point before it and
type C-u C-x = (see Section 19.1 [International Chars], page 167).

19.20 Bidirectional Editing

Emacs supports editing text written in scripts, such as Arabic and Hebrew, whose natural
ordering of horizontal text for display is from right to left. However, digits and Latin text
embedded in these scripts are still displayed left to right. It is also not uncommon to have
small portions of text in Arabic or Hebrew embedded in an otherwise Latin document;
e.g., as comments and strings in a program source file. For these reasons, text that uses
these scripts is actually bidirectional: a mixture of runs of left-to-right and right-to-left
characters.

This section describes the facilities and options provided by Emacs for editing bidirec-
tional text.

http://www.itscj.ipsj.or.jp/ISO-IR/
http://www.itscj.ipsj.or.jp/ISO-IR/

Chapter 19: International Character Set Support 188

Emacs stores right-to-left and bidirectional text in the so-called logical (or reading)
order: the buffer or string position of the first character you read precedes that of the next
character. Reordering of bidirectional text into the visual order happens at display time. As
result, character positions no longer increase monotonically with their positions on display.
Emacs implements the Unicode Bidirectional Algorithm described in the Unicode Standard
Annex #9, for reordering of bidirectional text for display.

The buffer-local variable bidi-display-reordering controls whether text in the buffer
is reordered for display. If its value is non-nil, Emacs reorders characters that have right-
to-left directionality when they are displayed. The default value is t.

Each paragraph of bidirectional text can have its own base direction, either right-to-
left or left-to-right. (Paragraph boundaries are empty lines, i.e. lines consisting entirely of
whitespace characters.) Text in left-to-right paragraphs begins on the screen at the left
margin of the window and is truncated or continued when it reaches the right margin. By
contrast, text in right-to-left paragraphs is displayed starting at the right margin and is
continued or truncated at the left margin.

Emacs determines the base direction of each paragraph dynamically, based on the text at
the beginning of the paragraph. However, sometimes a buffer may need to force a certain
base direction for its paragraphs. The variable bidi-paragraph-direction, if non-nil,
disables the dynamic determination of the base direction, and instead forces all paragraphs
in the buffer to have the direction specified by its buffer-local value. The value can be either
right-to-left or left-to-right. Any other value is interpreted as nil.

Alternatively, you can control the base direction of a paragraph by inserting special
formatting characters in front of the paragraph. The special character RIGHT-TO-LEFT

MARK, or rlm, forces the right-to-left direction on the following paragraph, while LEFT-

TO-RIGHT MARK, or lrm forces the left-to-right direction. (You can use C-x 8 RET to insert
these characters.) In a GUI session, the lrm and rlm characters display as very thin blank
characters; on text terminals they display as blanks.

Because characters are reordered for display, Emacs commands that operate in the logical
order or on stretches of buffer positions may produce unusual effects. For example, C-f and
C-b commands move point in the logical order, so the cursor will sometimes jump when point
traverses reordered bidirectional text. Similarly, a highlighted region covering a contiguous
range of character positions may look discontinuous if the region spans reordered text. This
is normal and similar to the behavior of other programs that support bidirectional text.

Chapter 20: Major and Minor Modes 189

20 Major and Minor Modes

Emacs contains many editing modes that alter its basic behavior in useful ways. These are
divided into major modes and minor modes.

Major modes provide specialized facilities for working on a particular file type, such
as a C source file (see Chapter 23 [Programs], page 230), or a particular type of non-file
buffer, such as a shell buffer (see Section 31.3 [Shell], page 368). Major modes are mutually
exclusive; each buffer has one and only one major mode at any time.

Minor modes are optional features which you can turn on or off, not necessarily specific
to a type of file or buffer. For example, Auto Fill mode is a minor mode in which SPC
breaks lines between words as you type (see Section 22.5.1 [Auto Fill], page 202). Minor
modes are independent of one another, and of the selected major mode.

20.1 Major Modes

Every buffer possesses a major mode, which determines the editing behavior of Emacs while
that buffer is current. The mode line normally shows the name of the current major mode,
in parentheses (see Section 1.3 [Mode Line], page 8).

The least specialized major mode is called Fundamental mode. This mode has no mode-
specific redefinitions or variable settings, so that each Emacs command behaves in its most
general manner, and each user option variable is in its default state.

For editing text of a specific type that Emacs knows about, such as Lisp code or English
text, you typically use a more specialized major mode, such as Lisp mode or Text mode.
Most major modes fall into three major groups. The first group contains modes for normal
text, either plain or with mark-up. It includes Text mode, HTML mode, SGML mode,
TEX mode and Outline mode. The second group contains modes for specific programming
languages. These include Lisp mode (which has several variants), C mode, Fortran mode,
and others. The third group consists of major modes that are not associated directly with
files; they are used in buffers created for specific purposes by Emacs, such as Dired mode for
buffers made by Dired (see Chapter 27 [Dired], page 302), Message mode for buffers made
by C-x m (see Chapter 29 [Sending Mail], page 337), and Shell mode for buffers used to
communicate with an inferior shell process (see Section 31.3.2 [Interactive Shell], page 369).

Usually, the major mode is automatically set by Emacs, when you first visit a file or
create a buffer (see Section 20.3 [Choosing Modes], page 192). You can explicitly select a
new major mode by using an M-x command. Take the name of the mode and add -mode to
get the name of the command to select that mode (e.g., M-x lisp-mode enters Lisp mode).

The value of the buffer-local variable major-mode is a symbol with the same name as
the major mode command (e.g. lisp-mode). This variable is set automatically; you should
not change it yourself.

The default value of major-mode determines the major mode to use for files that do
not specify a major mode, and for new buffers created with C-x b. Normally, this default
value is the symbol fundamental-mode, which specifies Fundamental mode. You can change
this default value via the Customization interface (see Section 33.1 [Easy Customization],
page 398), or by adding a line like this to your init file (see Section 33.4 [Init File], page 423):

(setq-default major-mode ’text-mode)

Chapter 20: Major and Minor Modes 190

If the default value of major-mode is nil, the major mode is taken from the previously
current buffer.

Specialized major modes often change the meanings of certain keys to do something more
suitable for the mode. For instance, programming language modes bind TAB to indent the
current line according to the rules of the language (see Chapter 21 [Indentation], page 195).
The keys that are commonly changed are TAB, DEL, and C-j. Many modes also define
special commands of their own, usually bound in the prefix key C-c. Major modes can
also alter user options and variables; for instance, programming language modes typically
set a buffer-local value for the variable comment-start, which determines how source code
comments are delimited (see Section 23.5 [Comments], page 239).

To view the documentation for the current major mode, including a list of its key bind-
ings, type C-h m (describe-mode).

Every major mode, apart from Fundamental mode, defines a mode hook, a customizable
list of Lisp functions to run each time the mode is enabled in a buffer. See Section 33.2.2
[Hooks], page 408, for more information about hooks. Each mode hook is named after
its major mode, e.g. Fortran mode has fortran-mode-hook. Furthermore, all text-based
major modes run text-mode-hook, and all programming language modes run prog-mode-

hook, prior to running their own mode hooks. Hook functions can look at the value of the
variable major-mode to see which mode is actually being entered.

Mode hooks are commonly used to enable minor modes (see Section 20.2 [Minor Modes],
page 190). For example, you can put the following lines in your init file to enable Flyspell
minor mode in all text-based major modes (see Section 13.4 [Spelling], page 104), and Eldoc
minor mode in Emacs Lisp mode (see Section 23.6.3 [Lisp Doc], page 243):

(add-hook ’text-mode-hook ’flyspell-mode)

(add-hook ’emacs-lisp-mode-hook ’eldoc-mode)

20.2 Minor Modes

A minor mode is an optional editing mode that alters the behavior of Emacs in some well-
defined way. Unlike major modes, any number of minor modes can be in effect at any time.
Some minor modes are buffer-local, and can be turned on (enabled) in certain buffers and off
(disabled) in others. Other minor modes are global: while enabled, they affect everything
you do in the Emacs session, in all buffers. Most minor modes are disabled by default, but
a few are enabled by default.

Most buffer-local minor modes say in the mode line when they are enabled, just after
the major mode indicator. For example, ‘Fill’ in the mode line means that Auto Fill mode
is enabled. See Section 1.3 [Mode Line], page 8.

Like major modes, each minor mode is associated with a mode command, whose name
consists of the mode name followed by ‘-mode’. For instance, the mode command for Auto
Fill mode is auto-fill-mode. But unlike a major mode command, which simply enables
the mode, the mode command for a minor mode can either enable or disable it:

• If you invoke the mode command directly with no prefix argument (either via M-x, or
by binding it to a key and typing that key; see Section 33.3 [Key Bindings], page 414),
that toggles the minor mode. The minor mode is turned on if it was off, and turned
off if it was on.

Chapter 20: Major and Minor Modes 191

• If you invoke the mode command with a prefix argument, the minor mode is uncondi-
tionally turned off if that argument is zero or negative; otherwise, it is unconditionally
turned on.

• If the mode command is called via Lisp, the minor mode is unconditionally turned on
if the argument is omitted or nil. This makes it easy to turn on a minor mode from
a major mode’s mode hook (see Section 20.1 [Major Modes], page 189). A non-nil
argument is handled like an interactive prefix argument, as described above.

Most minor modes also have a mode variable, with the same name as the mode command.
Its value is non-nil if the mode is enabled, and nil if it is disabled. In general, you should
not try to enable or disable the mode by changing the value of the mode variable directly
in Lisp; you should run the mode command instead. However, setting the mode variable
through the Customize interface (see Section 33.1 [Easy Customization], page 398) will
always properly enable or disable the mode, since Customize automatically runs the mode
command for you.

The following is a list of some buffer-local minor modes:

• Abbrev mode automatically expands text based on pre-defined abbreviation definitions.
See Chapter 26 [Abbrevs], page 296.

• Auto Fill mode inserts newlines as you type to prevent lines from becoming too long.
See Section 22.5 [Filling], page 202.

• Auto Save mode saves the buffer contents periodically to reduce the amount of work
you can lose in case of a crash. See Section 15.5 [Auto Save], page 126.

• Enriched mode enables editing and saving of formatted text. See Section 22.13 [En-
riched Text], page 220.

• Flyspell mode automatically highlights misspelled words. See Section 13.4 [Spelling],
page 104.

• Font-Lock mode automatically highlights certain textual units found in programs. It is
enabled globally by default, but you can disable it in individual buffers. See Section 11.8
[Faces], page 70.

• Linum mode displays each line’s line number in the window’s left margin.

• Outline minor mode provides similar facilities to the major mode called Outline mode.
See Section 22.8 [Outline Mode], page 207.

• Overwrite mode causes ordinary printing characters to replace existing text instead of
shoving it to the right. For example, if point is in front of the ‘B’ in ‘FOOBAR’, then
in Overwrite mode typing a G changes it to ‘FOOGAR’, instead of producing ‘FOOGBAR’
as usual. In Overwrite mode, the command C-q inserts the next character whatever
it may be, even if it is a digit—this gives you a way to insert a character instead of
replacing an existing character. The mode command, overwrite-mode, is bound to
the INSERT key.

• Binary Overwrite mode is a variant of Overwrite mode for editing binary files; it treats
newlines and tabs like other characters, so that they overwrite other characters and
can be overwritten by them. In Binary Overwrite mode, digits after C-q specify an
octal character code, as usual.

• Visual Line mode performs “word wrapping”, causing long lines to be wrapped at word
boundaries. See Section 11.22 [Visual Line Mode], page 83.

Chapter 20: Major and Minor Modes 192

And here are some useful global minor modes:

• Column Number mode enables display of the current column number in the mode line.
See Section 1.3 [Mode Line], page 8.

• Delete Selection mode causes text insertion to first delete the text in the region, if the
region is active. See Section 8.3 [Using Region], page 46.

• Icomplete mode displays an indication of available completions when you are in the
minibuffer and completion is active. See Section 5.3.5 [Completion Options], page 31.

• Line Number mode enables display of the current line number in the mode line. It is
enabled by default. See Section 1.3 [Mode Line], page 8.

• Menu Bar mode gives each frame a menu bar. It is enabled by default. See Section 18.14
[Menu Bars], page 163.

• Scroll Bar mode gives each window a scroll bar. It is enabled by default, but the scroll
bar is only displayed on graphical terminals. See Section 18.12 [Scroll Bars], page 163.

• Tool Bar mode gives each frame a tool bar. It is enabled by default, but the tool bar
is only displayed on graphical terminals. See Section 18.15 [Tool Bars], page 164.

• Transient Mark mode highlights the region, and makes many Emacs commands operate
on the region when the mark is active. It is enabled by default. See Chapter 8 [Mark],
page 44.

20.3 Choosing File Modes

When you visit a file, Emacs chooses a major mode automatically. Normally, it makes the
choice based on the file name—for example, files whose names end in ‘.c’ are normally
edited in C mode—but sometimes it chooses the major mode based on special text in the
file. This special text can also be used to enable buffer-local minor modes.

Here is the exact procedure:

First, Emacs checks whether the file contains file-local mode variables. See Section 33.2.4
[File Variables], page 410. If there is a file-local variable that specifies a major mode, then
Emacs uses that major mode, ignoring all other criteria. There are several methods to
specify a major mode using a file-local variable; the simplest is to put the mode name in
the first nonblank line, preceded and followed by ‘-*-’. Other text may appear on the line
as well. For example,

; -*-Lisp-*-

tells Emacs to use Lisp mode. Note how the semicolon is used to make Lisp treat this line
as a comment. You could equivalently write

; -*- mode: Lisp;-*-

You can also use file-local variables to specify buffer-local minor modes, by using eval

specifications. For example, this first nonblank line puts the buffer in Lisp mode and
enables Auto-Fill mode:

; -*- mode: Lisp; eval: (auto-fill-mode 1); -*-

Note, however, that it is usually inappropriate to enable minor modes this way, since most
minor modes represent individual user preferences. If you personally want to use a minor
mode for a particular file type, it is better to enable the minor mode via a major mode
hook (see Section 20.1 [Major Modes], page 189).

Chapter 20: Major and Minor Modes 193

Second, if there is no file variable specifying a major mode, Emacs checks whether the
file’s contents begin with ‘#!’. If so, that indicates that the file can serve as an executable
shell command, which works by running an interpreter named on the file’s first line (the rest
of the file is used as input to the interpreter). Therefore, Emacs tries to use the interpreter
name to choose a mode. For instance, a file that begins with ‘#!/usr/bin/perl’ is opened
in Perl mode. The variable interpreter-mode-alist specifies the correspondence between
interpreter program names and major modes.

When the first line starts with ‘#!’, you usually cannot use the ‘-*-’ feature on the first
line, because the system would get confused when running the interpreter. So Emacs looks
for ‘-*-’ on the second line in such files as well as on the first line. The same is true for
man pages which start with the magic string ‘’\"’ to specify a list of troff preprocessors.

Third, Emacs tries to determine the major mode by looking at the text at the start of
the buffer, based on the variable magic-mode-alist. By default, this variable is nil (an
empty list), so Emacs skips this step; however, you can customize it in your init file (see
Section 33.4 [Init File], page 423). The value should be a list of elements of the form

(regexp . mode-function)

where regexp is a regular expression (see Section 12.5 [Regexps], page 91), and mode-
function is a major mode command. If the text at the beginning of the file matches regexp,
Emacs chooses the major mode specified by mode-function.

Alternatively, an element of magic-mode-alist may have the form

(match-function . mode-function)

where match-function is a Lisp function that is called at the beginning of the buffer; if the
function returns non-nil, Emacs set the major mode with mode-function.

Fourth—if Emacs still hasn’t found a suitable major mode—it looks at the file’s name.
The correspondence between file names and major modes is controlled by the variable
auto-mode-alist. Its value is a list in which each element has this form,

(regexp . mode-function)

or this form,

(regexp mode-function flag)

For example, one element normally found in the list has the form ("\\.c\\’" . c-mode),
and it is responsible for selecting C mode for files whose names end in ‘.c’. (Note that ‘\\’
is needed in Lisp syntax to include a ‘\’ in the string, which must be used to suppress the
special meaning of ‘.’ in regexps.) If the element has the form (regexp mode-function

flag) and flag is non-nil, then after calling mode-function, Emacs discards the suffix that
matched regexp and searches the list again for another match.

On GNU/Linux and other systems with case-sensitive file names, Emacs performs a
case-sensitive search through auto-mode-alist; if this search fails, it performs a second
case-insensitive search through the alist. To suppress the second search, change the vari-
able auto-mode-case-fold to nil. On systems with case-insensitive file names, such as
Microsoft Windows, Emacs performs a single case-insensitive search through auto-mode-

alist.

Finally, if Emacs still hasn’t found a major mode to use, it compares the text at
the start of the buffer to the variable magic-fallback-mode-alist. This variable works

Chapter 20: Major and Minor Modes 194

like magic-mode-alist, described above, except that is consulted only after auto-mode-

alist. By default, magic-fallback-mode-alist contains forms that check for image files,
HTML/XML/SGML files, and PostScript files.

If you have changed the major mode of a buffer, you can return to the major mode
Emacs would have chosen automatically, by typing M-x normal-mode. This is the same
function that find-file calls to choose the major mode. It also processes the file’s ‘-*-’
line or local variables list (if any). See Section 33.2.4 [File Variables], page 410.

The commands C-x C-w and set-visited-file-name change to a new major mode if
the new file name implies a mode (see Section 15.3 [Saving], page 118). (C-x C-s does this
too, if the buffer wasn’t visiting a file.) However, this does not happen if the buffer contents
specify a major mode, and certain “special” major modes do not allow the mode to change.
You can turn off this mode-changing feature by setting change-major-mode-with-file-

name to nil.

Chapter 21: Indentation 195

21 Indentation

Indentation refers to inserting or adjusting whitespace characters (space and/or tab char-
acters) at the beginning of a line of text. This chapter documents indentation commands
and options which are common to Text mode and related modes, as well as programming
language modes. See Section 23.3 [Program Indent], page 233, for additional documentation
about indenting in programming modes.

The simplest way to perform indentation is the TAB key. In most major modes, this
runs the command indent-for-tab-command. (In C and related modes, TAB runs the
command c-indent-line-or-region, which behaves similarly).

TAB Insert whitespace, or indent the current line, in a mode-appropriate way
(indent-for-tab-command). If the region is active, indent all the lines within
it.

The exact behavior of TAB depends on the major mode. In Text mode and related major
modes, TAB normally inserts some combination of space and tab characters to advance point
to the next tab stop (see Section 21.2 [Tab Stops], page 196). For this purpose, the position
of the first non-whitespace character on the preceding line is treated as an additional tab
stop, so you can use TAB to “align” point with the preceding line. If the region is active
(see Section 8.3 [Using Region], page 46), TAB acts specially: it indents each line in the
region so that its first non-whitespace character is aligned with the preceding line.

In programming modes, TAB indents the current line of code in a way that makes sense
given the code in the preceding lines. If the region is active, all the lines in the region
are indented this way. If point was initially within the current line’s indentation, it is
repositioned to the first non-whitespace character on the line.

If you just want to insert a tab character in the buffer, type C-q TAB (see Section 4.1
[Inserting Text], page 16).

21.1 Indentation Commands

Apart from the TAB (indent-for-tab-command) command, Emacs provides a variety of
commands to perform indentation in other ways.

C-j Perform RET followed by TAB (newline-and-indent).

C-M-o Split the current line at point (split-line). The text on the line after point
becomes a new line, indented to the same column where point is located. This
command first moves point forward over any spaces and tabs. Afterward, point
is positioned before the inserted newline.

M-m Move (forward or back) to the first non-whitespace character on the current
line (back-to-indentation). If there are no non-whitespace characters on the
line, move to the end of the line.

M-i Indent whitespace at point, up to the next tab stop (tab-to-tab-stop). See
Section 21.2 [Tab Stops], page 196.

M-x indent-relative

Insert whitespace at point, until point is aligned with the first non-whitespace
character on the previous line (actually, the last non-blank line). If point is

Chapter 21: Indentation 196

already farther right than that, run tab-to-tab-stop instead—unless called
with a numeric argument, in which case do nothing.

M-^ Merge the previous and the current line (delete-indentation). This “joins”
the two lines cleanly, by replacing any indentation at the front of the current
line, together with the line boundary, with a single space.

As a special case (useful for Lisp code), the single space is omitted if the char-
acters to be joined are consecutive opening and closing parentheses, or if the
junction follows another newline.

If there is a fill prefix, M-^ deletes the fill prefix if it appears after the newline
that is deleted. See Section 22.5.3 [Fill Prefix], page 204.

C-M-\ Indent all the lines in the region, as though you had typed TAB at the beginning
of each line (indent-region).

If a numeric argument is supplied, indent every line in the region to that column
number.

C-x TAB Shift each line in the region by a fixed distance, to the right or left (indent-
rigidly). The distance to move is determined by the numeric argument (pos-
itive to move rightward, negative to move leftward).

This command can be used to remove all indentation from the lines in the
region, by invoking it with a large negative argument, e.g. C-u -1000 C-x TAB.

21.2 Tab Stops

Emacs defines certain column numbers to be tab stops. These are used as stopping points
by TAB when inserting whitespace in Text mode and related modes (see Chapter 21 [Inden-
tation], page 195), and by commands like M-i (see Section 21.1 [Indentation Commands],
page 195). By default, tab stops are located every 8 columns. These positions are stored in
the variable tab-stop-list, whose value is a list of column numbers in increasing order.

Instead of customizing the variable tab-stop-list directly, a convenient way to view
and set tab stops is via the command M-x edit-tab-stops. This switches to a buffer
containing a description of the tab stop settings, which looks like this:

: : : : : :

0 1 2 3 4

0123456789012345678901234567890123456789012345678

To install changes, type C-c C-c

The first line contains a colon at each tab stop. The numbers on the next two lines are
present just to indicate where the colons are.

You can edit this buffer to specify different tab stops by placing colons on the desired
columns. The buffer uses Overwrite mode (see Section 20.2 [Minor Modes], page 190).
When you are done, type C-c C-c to make the new tab stops take effect. Normally, the
new tab stop settings apply to all buffers. However, if you have made the tab-stop-

list variable local to the buffer where you called M-x edit-tab-stops (see Section 33.2.3
[Locals], page 409), then the new tab stop settings apply only to that buffer. To save the
tab stop settings for future Emacs sessions, use the Customize interface to save the value
of tab-stop-list (see Section 33.1 [Easy Customization], page 398).

Chapter 21: Indentation 197

Note that the tab stops discussed in this section have nothing to do with how tab
characters are displayed in the buffer. Tab characters are always displayed as empty spaces
extending to the next display tab stop. See Section 11.19 [Text Display], page 81.

21.3 Tabs vs. Spaces

Normally, indentation commands insert (or remove) an optimal mix of space characters and
tab characters to align to the desired column. Tab characters are displayed as a stretch of
empty space extending to the next display tab stop. By default, there is one display tab
stop every tab-width columns (the default is 8). See Section 11.19 [Text Display], page 81.

If you prefer, all indentation can be made from spaces only. To request this, set the
buffer-local variable indent-tabs-mode to nil. See Section 33.2.3 [Locals], page 409, for
information about setting buffer-local variables. Note, however, that C-q TAB always inserts
a tab character, regardless of the value of indent-tabs-mode.

One reason to set indent-tabs-mode to nil is that not all editors display tab characters
in the same way. Emacs users, too, may have different customized values of tab-width.
By using spaces only, you can make sure that your file always looks the same. If you only
care about how it looks within Emacs, another way to tackle this problem is to set the
tab-width variable in a file-local variable (see Section 33.2.4 [File Variables], page 410).

There are also commands to convert tabs to spaces or vice versa, always preserving the
columns of all non-whitespace text. M-x tabify scans the region for sequences of spaces,
and converts sequences of at least two spaces to tabs if that can be done without changing
indentation. M-x untabify changes all tabs in the region to appropriate numbers of spaces.

21.4 Convenience Features for Indentation

The variable tab-always-indent tweaks the behavior of the TAB (indent-for-tab-
command) command. The default value, t, gives the behavior described in Chapter 21
[Indentation], page 195. If you change the value to the symbol complete, then TAB first
tries to indent the current line, and if the line was already indented, it tries to complete the
text at point (see Section 23.8 [Symbol Completion], page 244). If the value is nil, then
TAB indents the current line only if point is at the left margin or in the line’s indentation;
otherwise, it inserts a tab character.

Electric Indent mode is a global minor mode that automatically indents the line after
every RET you type. To toggle this minor mode, type M-x electric-indent-mode.

Chapter 22: Commands for Human Languages 198

22 Commands for Human Languages

This chapter describes Emacs commands that act on text, by which we mean sequences of
characters in a human language (as opposed to, say, a computer programming language).
These commands act in ways that take into account the syntactic and stylistic conventions of
human languages: conventions involving words, sentences, paragraphs, and capital letters.
There are also commands for filling, which means rearranging the lines of a paragraph to
be approximately equal in length. These commands, while intended primarily for editing
text, are also often useful for editing programs.

Emacs has several major modes for editing human-language text. If the file contains
ordinary text, use Text mode, which customizes Emacs in small ways for the syntactic
conventions of text. Outline mode provides special commands for operating on text with
an outline structure. Org mode extends Outline mode and turn Emacs into a full-fledged
organizer: you can manage TODO lists, store notes and publish them in many formats.

See Section 22.8 [Outline Mode], page 207.

Emacs has other major modes for text which contains “embedded” commands, such
as TEX and LaTEX (see Section 22.10 [TeX Mode], page 214); HTML and SGML (see
Section 22.11 [HTML Mode], page 218); XML (see the nXML mode Info manual, which is
distributed with Emacs); and Groff and Nroff (see Section 22.12 [Nroff Mode], page 219).

If you need to edit pictures made out of text characters (commonly referred to as “ASCII
art”), use Picture mode, a special major mode for editing such pictures. See Section “Picture
Mode” in Specialized Emacs Features.

22.1 Words

Emacs defines several commands for moving over or operating on words:

M-f Move forward over a word (forward-word).

M-b Move backward over a word (backward-word).

M-d Kill up to the end of a word (kill-word).

M-DEL Kill back to the beginning of a word (backward-kill-word).

M-@ Mark the end of the next word (mark-word).

M-t Transpose two words or drag a word across others (transpose-words).

Notice how these keys form a series that parallels the character-based C-f, C-b, C-d,
DEL and C-t. M-@ is cognate to C-@, which is an alias for C-SPC.

The commands M-f (forward-word) and M-b (backward-word) move forward and back-
ward over words. These META-based key sequences are analogous to the key sequences C-f
and C-b, which move over single characters. The analogy extends to numeric arguments,
which serve as repeat counts. M-f with a negative argument moves backward, and M-b with
a negative argument moves forward. Forward motion stops right after the last letter of the
word, while backward motion stops right before the first letter.

M-d (kill-word) kills the word after point. To be precise, it kills everything from point
to the place M-f would move to. Thus, if point is in the middle of a word, M-d kills just
the part after point. If some punctuation comes between point and the next word, it is

Chapter 22: Commands for Human Languages 199

killed along with the word. (If you wish to kill only the next word but not the punctuation
before it, simply do M-f to get the end, and kill the word backwards with M-DEL.) M-d takes
arguments just like M-f.

M-DEL (backward-kill-word) kills the word before point. It kills everything from point
back to where M-b would move to. For instance, if point is after the space in ‘FOO, BAR’, it
kills ‘FOO, ’. If you wish to kill just ‘FOO’, and not the comma and the space, use M-b M-d

instead of M-DEL.

M-t (transpose-words) exchanges the word before or containing point with the following
word. The delimiter characters between the words do not move. For example, ‘FOO, BAR’
transposes into ‘BAR, FOO’ rather than ‘BAR FOO,’. See Section 13.2 [Transpose], page 103,
for more on transposition.

To operate on words with an operation which acts on the region, use the command M-@

(mark-word). This command sets the mark where M-f would move to. See Section 8.2
[Marking Objects], page 45, for more information about this command.

The word commands’ understanding of word boundaries is controlled by the syntax
table. Any character can, for example, be declared to be a word delimiter. See Section
“Syntax Tables” in The Emacs Lisp Reference Manual.

In addition, see Section 4.9 [Position Info], page 22 for the M-= (count-words-region)
and M-x count-words commands, which count and report the number of words in the region
or buffer.

22.2 Sentences

The Emacs commands for manipulating sentences and paragraphs are mostly on Meta keys,
like the word-handling commands.

M-a Move back to the beginning of the sentence (backward-sentence).

M-e Move forward to the end of the sentence (forward-sentence).

M-k Kill forward to the end of the sentence (kill-sentence).

C-x DEL Kill back to the beginning of the sentence (backward-kill-sentence).

The commands M-a (backward-sentence) and M-e (forward-sentence) move to the
beginning and end of the current sentence, respectively. Their bindings were chosen to
resemble C-a and C-e, which move to the beginning and end of a line. Unlike them, M-a
and M-e move over successive sentences if repeated.

Moving backward over a sentence places point just before the first character of the
sentence; moving forward places point right after the punctuation that ends the sentence.
Neither one moves over the whitespace at the sentence boundary.

Just as C-a and C-e have a kill command, C-k, to go with them, M-a and M-e have
a corresponding kill command: M-k (kill-sentence) kills from point to the end of the
sentence. With a positive numeric argument n, it kills the next n sentences; with a negative
argument −n, it kills back to the beginning of the nth preceding sentence.

The C-x DEL (backward-kill-sentence) kills back to the beginning of a sentence.

The sentence commands assume that you follow the American typist’s convention of
putting two spaces at the end of a sentence. That is, a sentence ends wherever there is a

Chapter 22: Commands for Human Languages 200

‘.’, ‘?’ or ‘!’ followed by the end of a line or two spaces, with any number of ‘)’, ‘]’, ‘’’,
or ‘"’ characters allowed in between. A sentence also begins or ends wherever a paragraph
begins or ends. It is useful to follow this convention, because it allows the Emacs sentence
commands to distinguish between periods that end a sentence and periods that indicate
abbreviations.

If you want to use just one space between sentences, you can set the variable sentence-

end-double-space to nil to make the sentence commands stop for single spaces. However,
this has a drawback: there is no way to distinguish between periods that end sentences
and those that indicate abbreviations. For convenient and reliable editing, we therefore
recommend you follow the two-space convention. The variable sentence-end-double-

space also affects filling (see Section 22.5.2 [Fill Commands], page 203).

The variable sentence-end controls how to recognize the end of a sentence. If non-nil,
its value should be a regular expression, which is used to match the last few characters of a
sentence, together with the whitespace following the sentence (see Section 12.5 [Regexps],
page 91). If the value is nil, the default, then Emacs computes sentence ends according to
various criteria such as the value of sentence-end-double-space.

Some languages, such as Thai, do not use periods to indicate the end of a sentence. Set
the variable sentence-end-without-period to t in such cases.

22.3 Paragraphs

The Emacs commands for manipulating paragraphs are also on Meta keys.

M-{ Move back to previous paragraph beginning (backward-paragraph).

M-} Move forward to next paragraph end (forward-paragraph).

M-h Put point and mark around this or next paragraph (mark-paragraph).

M-{ (backward-paragraph) moves to the beginning of the current or previous paragraph
(see below for the definition of a paragraph). M-} (forward-paragraph) moves to the end
of the current or next paragraph. If there is a blank line before the paragraph, M-{ moves
to the blank line.

When you wish to operate on a paragraph, type M-h (mark-paragraph) to set the region
around it. For example, M-h C-w kills the paragraph around or after point. M-h puts point
at the beginning and mark at the end of the paragraph point was in. If point is between
paragraphs (in a run of blank lines, or at a boundary), M-h sets the region around the
paragraph following point. If there are blank lines preceding the first line of the paragraph,
one of these blank lines is included in the region. If the region is already active, the command
sets the mark without changing point, and each subsequent M-h further advances the mark
by one paragraph.

The definition of a paragraph depends on the major mode. In Fundamental mode, as
well as Text mode and related modes, a paragraph is separated each neighboring paragraph
another by one or more blank lines—lines that are either empty, or consist solely of space,
tab and/or formfeed characters. In programming language modes, paragraphs are usually
defined in a similar way, so that you can use the paragraph commands even though there
are no paragraphs as such in a program.

Chapter 22: Commands for Human Languages 201

Note that an indented line is not itself a paragraph break in Text mode. If you want
indented lines to separate paragraphs, use Paragraph-Indent Text mode instead. See
Section 22.7 [Text Mode], page 207.

If you set a fill prefix, then paragraphs are delimited by all lines which don’t start with
the fill prefix. See Section 22.5 [Filling], page 202.

The precise definition of a paragraph boundary is controlled by the variables paragraph-
separate and paragraph-start. The value of paragraph-start is a regular expression
that should match lines that either start or separate paragraphs (see Section 12.5 [Reg-
exps], page 91). The value of paragraph-separate is another regular expression that
should match lines that separate paragraphs without being part of any paragraph (for ex-
ample, blank lines). Lines that start a new paragraph and are contained in it must match
only paragraph-start, not paragraph-separate. For example, in Fundamental mode,
paragraph-start is "\f\\|[\t]*$", and paragraph-separate is "[\t\f]*$".

22.4 Pages

Within some text files, text is divided into pages delimited by the formfeed character (ASCII

code 12, also denoted as CONTROL-L), which is displayed in Emacs as the escape sequence
‘^L’ (see Section 11.19 [Text Display], page 81). Traditionally, when such text files are
printed to hardcopy, each formfeed character forces a page break. Most Emacs commands
treat it just like any other character, so you can insert it with C-q C-l, delete it with DEL,
etc. In addition, Emacs provides commands to move over pages and operate on them.

M-x what-page

Display the page number of point, and the line number within that page.

C-x [Move point to previous page boundary (backward-page).

C-x] Move point to next page boundary (forward-page).

C-x C-p Put point and mark around this page (or another page) (mark-page).

C-x l Count the lines in this page (count-lines-page).

M-x what-page counts pages from the beginning of the file, and counts lines within the
page, showing both numbers in the echo area.

The C-x [(backward-page) command moves point to immediately after the previous
page delimiter. If point is already right after a page delimiter, it skips that one and stops at
the previous one. A numeric argument serves as a repeat count. The C-x] (forward-page)
command moves forward past the next page delimiter.

The C-x C-p command (mark-page) puts point at the beginning of the current page
(after that page delimiter at the front), and the mark at the end of the page (after the page
delimiter at the end).

C-x C-p C-w is a handy way to kill a page to move it elsewhere. If you move to another
page delimiter with C-x [and C-x], then yank the killed page, all the pages will be properly
delimited once again. The reason C-x C-p includes only the following page delimiter in the
region is to ensure that.

A numeric argument to C-x C-p specifies which page to go to, relative to the current
one. Zero means the current page, one the next page, and −1 the previous one.

Chapter 22: Commands for Human Languages 202

The C-x l command (count-lines-page) is good for deciding where to break a page
in two. It displays in the echo area the total number of lines in the current page, and then
divides it up into those preceding the current line and those following, as in

Page has 96 (72+25) lines

Notice that the sum is off by one; this is correct if point is not at the beginning of a line.

The variable page-delimiter controls where pages begin. Its value is a regular expres-
sion that matches the beginning of a line that separates pages (see Section 12.5 [Regexps],
page 91). The normal value of this variable is "^\f", which matches a formfeed character
at the beginning of a line.

22.5 Filling Text

Filling text means breaking it up into lines that fit a specified width. Emacs does filling in
two ways. In Auto Fill mode, inserting text with self-inserting characters also automatically
fills it. There are also explicit fill commands that you can use when editing text.

22.5.1 Auto Fill Mode

Auto Fill mode is a buffer-local minor mode (see Section 20.2 [Minor Modes], page 190) in
which lines are broken automatically when they become too wide. Breaking happens only
when you type a SPC or RET.

M-x auto-fill-mode

Enable or disable Auto Fill mode.

SPC
RET In Auto Fill mode, break lines when appropriate.

The mode command M-x auto-fill-mode toggles Auto Fill mode in the current buffer.
With a positive numeric argument, it enables Auto Fill mode, and with a negative argument
it disables it. If auto-fill-mode is called from Lisp with an omitted or nil argument, it en-
ables Auto Fill mode. To enable Auto Fill mode automatically in certain major modes, add
auto-fill-mode to the mode hooks (see Section 20.1 [Major Modes], page 189). When Auto
Fill mode is enabled, the mode indicator ‘Fill’ appears in the mode line (see Section 1.3
[Mode Line], page 8).

Auto Fill mode breaks lines automatically at spaces whenever they get longer than the
desired width. This line breaking occurs only when you type SPC or RET. If you wish
to insert a space or newline without permitting line-breaking, type C-q SPC or C-q C-j

respectively. Also, C-o inserts a newline without line breaking.

When Auto Fill mode breaks a line, it tries to obey the adaptive fill prefix: if a fill prefix
can be deduced from the first and/or second line of the current paragraph, it is inserted
into the new line (see Section 22.5.4 [Adaptive Fill], page 205). Otherwise the new line is
indented, as though you had typed TAB on it (see Chapter 21 [Indentation], page 195). In
a programming language mode, if a line is broken in the middle of a comment, the comment
is split by inserting new comment delimiters as appropriate.

Auto Fill mode does not refill entire paragraphs; it breaks lines but does not merge
lines. Therefore, editing in the middle of a paragraph can result in a paragraph that is not
correctly filled. To fill it, call the explicit fill commands described in the next section.

Chapter 22: Commands for Human Languages 203

22.5.2 Explicit Fill Commands

M-q Fill current paragraph (fill-paragraph).

C-x f Set the fill column (set-fill-column).

M-x fill-region

Fill each paragraph in the region (fill-region).

M-x fill-region-as-paragraph

Fill the region, considering it as one paragraph.

M-o M-s Center a line.

The command M-q (fill-paragraph) fills the current paragraph. It redistributes the
line breaks within the paragraph, and deletes any excess space and tab characters occurring
within the paragraph, in such a way that the lines end up fitting within a certain maximum
width.

Normally, M-q acts on the paragraph where point is, but if point is between paragraphs,
it acts on the paragraph after point. If the region is active, it acts instead on the text in
the region. You can also call M-x fill-region to specifically fill the text in the region.

M-q and fill-region use the usual Emacs criteria for finding paragraph boundaries
(see Section 22.3 [Paragraphs], page 200). For more control, you can use M-x

fill-region-as-paragraph, which refills everything between point and mark as a single
paragraph. This command deletes any blank lines within the region, so separate blocks of
text end up combined into one block.

A numeric argument to M-q tells it to justify the text as well as filling it. This means
that extra spaces are inserted to make the right margin line up exactly at the fill column.
To remove the extra spaces, use M-q with no argument. (Likewise for fill-region.)

The maximum line width for filling is specified by the buffer-local variable fill-column.
The default value (see Section 33.2.3 [Locals], page 409) is 70. The easiest way to set fill-
column in the current buffer is to use the command C-x f (set-fill-column). With a
numeric argument, it uses that as the new fill column. With just C-u as argument, it sets
fill-column to the current horizontal position of point.

The command M-o M-s (center-line) centers the current line within the current fill col-
umn. With an argument n, it centers n lines individually and moves past them. This binding
is made by Text mode and is available only in that and related modes (see Section 22.7
[Text Mode], page 207).

By default, Emacs considers a period followed by two spaces or by a newline as the end
of a sentence; a period followed by just one space indicates an abbreviation, not the end of a
sentence. Accordingly, the fill commands will not break a line after a period followed by just
one space. If you set the variable sentence-end-double-space to nil, the fill commands
will break a line after a period followed by one space, and put just one space after each
period. See Section 22.2 [Sentences], page 199, for other effects and possible drawbacks of
this.

If the variable colon-double-space is non-nil, the fill commands put two spaces after
a colon.

To specify additional conditions where line-breaking is not allowed, customize the abnor-
mal hook variable fill-nobreak-predicate (see Section 33.2.2 [Hooks], page 408). Each

Chapter 22: Commands for Human Languages 204

function in this hook is called with no arguments, with point positioned where Emacs is
considering breaking a line. If a function returns a non-nil value, Emacs will not break
the line there. Two functions you can use are fill-single-word-nobreak-p (don’t break
after the first word of a sentence or before the last) and fill-french-nobreak-p (don’t
break after ‘(’ or before ‘)’, ‘:’ or ‘?’).

22.5.3 The Fill Prefix

The fill prefix feature allows paragraphs to be filled so that each line starts with a special
string of characters (such as a sequence of spaces, giving an indented paragraph). You
can specify a fill prefix explicitly; otherwise, Emacs tries to deduce one automatically (see
Section 22.5.4 [Adaptive Fill], page 205).

C-x . Set the fill prefix (set-fill-prefix).

M-q Fill a paragraph using current fill prefix (fill-paragraph).

M-x fill-individual-paragraphs

Fill the region, considering each change of indentation as starting a new para-
graph.

M-x fill-nonuniform-paragraphs

Fill the region, considering only paragraph-separator lines as starting a new
paragraph.

To specify a fill prefix for the current buffer, move to a line that starts with the desired
prefix, put point at the end of the prefix, and type C-x . (set-fill-prefix). (That’s a
period after the C-x.) To turn off the fill prefix, specify an empty prefix: type C-x . with
point at the beginning of a line.

When a fill prefix is in effect, the fill commands remove the fill prefix from each line of the
paragraph before filling, and insert it on each line after filling. (The beginning of the first
line of the paragraph is left unchanged, since often that is intentionally different.) Auto Fill
mode also inserts the fill prefix automatically when it makes a new line (see Section 22.5.1
[Auto Fill], page 202). The C-o command inserts the fill prefix on new lines it creates, when
you use it at the beginning of a line (see Section 4.7 [Blank Lines], page 21). Conversely,
the command M-^ deletes the prefix (if it occurs) after the newline that it deletes (see
Chapter 21 [Indentation], page 195).

For example, if fill-column is 40 and you set the fill prefix to ‘;; ’, then M-q in the
following text

;; This is an

;; example of a paragraph

;; inside a Lisp-style comment.

produces this:

;; This is an example of a paragraph

;; inside a Lisp-style comment.

Lines that do not start with the fill prefix are considered to start paragraphs, both in
M-q and the paragraph commands; this gives good results for paragraphs with hanging
indentation (every line indented except the first one). Lines which are blank or indented
once the prefix is removed also separate or start paragraphs; this is what you want if you
are writing multi-paragraph comments with a comment delimiter on each line.

Chapter 22: Commands for Human Languages 205

You can use M-x fill-individual-paragraphs to set the fill prefix for each paragraph
automatically. This command divides the region into paragraphs, treating every change in
the amount of indentation as the start of a new paragraph, and fills each of these para-
graphs. Thus, all the lines in one “paragraph” have the same amount of indentation. That
indentation serves as the fill prefix for that paragraph.

M-x fill-nonuniform-paragraphs is a similar command that divides the region into
paragraphs in a different way. It considers only paragraph-separating lines (as defined by
paragraph-separate) as starting a new paragraph. Since this means that the lines of one
paragraph may have different amounts of indentation, the fill prefix used is the smallest
amount of indentation of any of the lines of the paragraph. This gives good results with
styles that indent a paragraph’s first line more or less that the rest of the paragraph.

The fill prefix is stored in the variable fill-prefix. Its value is a string, or nil when
there is no fill prefix. This is a per-buffer variable; altering the variable affects only the
current buffer, but there is a default value which you can change as well. See Section 33.2.3
[Locals], page 409.

The indentation text property provides another way to control the amount of inden-
tation paragraphs receive. See Section 22.13.5 [Enriched Indentation], page 222.

22.5.4 Adaptive Filling

The fill commands can deduce the proper fill prefix for a paragraph automatically in certain
cases: either whitespace or certain punctuation characters at the beginning of a line are
propagated to all lines of the paragraph.

If the paragraph has two or more lines, the fill prefix is taken from the paragraph’s
second line, but only if it appears on the first line as well.

If a paragraph has just one line, fill commands may take a prefix from that line. The
decision is complicated because there are three reasonable things to do in such a case:

• Use the first line’s prefix on all the lines of the paragraph.

• Indent subsequent lines with whitespace, so that they line up under the text that follows
the prefix on the first line, but don’t actually copy the prefix from the first line.

• Don’t do anything special with the second and following lines.

All three of these styles of formatting are commonly used. So the fill commands try to
determine what you would like, based on the prefix that appears and on the major mode.
Here is how.

If the prefix found on the first line matches adaptive-fill-first-line-regexp, or if
it appears to be a comment-starting sequence (this depends on the major mode), then the
prefix found is used for filling the paragraph, provided it would not act as a paragraph
starter on subsequent lines.

Otherwise, the prefix found is converted to an equivalent number of spaces, and those
spaces are used as the fill prefix for the rest of the lines, provided they would not act as a
paragraph starter on subsequent lines.

In Text mode, and other modes where only blank lines and page delimiters separate
paragraphs, the prefix chosen by adaptive filling never acts as a paragraph starter, so it can
always be used for filling.

Chapter 22: Commands for Human Languages 206

The variable adaptive-fill-regexp determines what kinds of line beginnings can serve
as a fill prefix: any characters at the start of the line that match this regular expression
are used. If you set the variable adaptive-fill-mode to nil, the fill prefix is never chosen
automatically.

You can specify more complex ways of choosing a fill prefix automatically by setting the
variable adaptive-fill-function to a function. This function is called with point after
the left margin of a line, and it should return the appropriate fill prefix based on that line.
If it returns nil, adaptive-fill-regexp gets a chance to find a prefix.

22.6 Case Conversion Commands

Emacs has commands for converting either a single word or any arbitrary range of text to
upper case or to lower case.

M-l Convert following word to lower case (downcase-word).

M-u Convert following word to upper case (upcase-word).

M-c Capitalize the following word (capitalize-word).

C-x C-l Convert region to lower case (downcase-region).

C-x C-u Convert region to upper case (upcase-region).

M-l (downcase-word) converts the word after point to lower case, moving past it. Thus,
repeating M-l converts successive words. M-u (upcase-word) converts to all capitals instead,
while M-c (capitalize-word) puts the first letter of the word into upper case and the rest
into lower case. All these commands convert several words at once if given an argument.
They are especially convenient for converting a large amount of text from all upper case to
mixed case, because you can move through the text using M-l, M-u or M-c on each word as
appropriate, occasionally using M-f instead to skip a word.

When given a negative argument, the word case conversion commands apply to the
appropriate number of words before point, but do not move point. This is convenient when
you have just typed a word in the wrong case: you can give the case conversion command
and continue typing.

If a word case conversion command is given in the middle of a word, it applies only to
the part of the word which follows point. (This is comparable to what M-d (kill-word)
does.) With a negative argument, case conversion applies only to the part of the word
before point.

The other case conversion commands are C-x C-u (upcase-region) and C-x C-l

(downcase-region), which convert everything between point and mark to the specified
case. Point and mark do not move.

The region case conversion commands upcase-region and downcase-region are nor-
mally disabled. This means that they ask for confirmation if you try to use them. When
you confirm, you may enable the command, which means it will not ask for confirmation
again. See Section 33.3.11 [Disabling], page 422.

Chapter 22: Commands for Human Languages 207

22.7 Text Mode

Text mode is a major mode for editing files of text in a human language. Files which have
names ending in the extension ‘.txt’ are usually opened in Text mode (see Section 20.3
[Choosing Modes], page 192). To explicitly switch to Text mode, type M-x text-mode.

In Text mode, only blank lines and page delimiters separate paragraphs. As a result,
paragraphs can be indented, and adaptive filling determines what indentation to use when
filling a paragraph. See Section 22.5.4 [Adaptive Fill], page 205.

In Text mode, the TAB (indent-for-tab-command) command usually inserts white-
space up to the next tab stop, instead of indenting the current line. See Chapter 21 [Inden-
tation], page 195, for details.

Text mode turns off the features concerned with comments except when you explicitly
invoke them. It changes the syntax table so that single-quotes are considered part of words
(e.g. ‘don’t’ is considered one word). However, if a word starts with a single-quote, it
is treated as a prefix for the purposes of capitalization (e.g. M-c converts ‘’hello’’ into
‘’Hello’’, as expected).

If you indent the first lines of paragraphs, then you should use Paragraph-Indent Text
mode (M-x paragraph-indent-text-mode) rather than Text mode. In that mode, you
do not need to have blank lines between paragraphs, because the first-line indentation is
sufficient to start a paragraph; however paragraphs in which every line is indented are
not supported. Use M-x paragraph-indent-minor-mode to enable an equivalent minor
mode for situations where you shouldn’t change the major mode—in mail composition, for
instance.

Text mode binds M-TAB to ispell-complete-word. This command performs completion
of the partial word in the buffer before point, using the spelling dictionary as the space of
possible words. See Section 13.4 [Spelling], page 104. If your window manager defines M-TAB
to switch windows, you can type ESC TAB or C-M-i instead.

Entering Text mode runs the mode hook text-mode-hook (see Section 20.1 [Major
Modes], page 189).

The following sections describe several major modes that are derived from Text mode.
These derivatives share most of the features of Text mode described above. In particular,
derivatives of Text mode run text-mode-hook prior to running their own mode hooks.

22.8 Outline Mode

Outline mode is a major mode derived from Text mode, which is specialized for editing
outlines. It provides commands to navigate between entries in the outline structure, and
commands to make parts of a buffer temporarily invisible, so that the outline structure
may be more easily viewed. Type M-x outline-mode to switch to Outline mode. Entering
Outline mode runs the hook text-mode-hook followed by the hook outline-mode-hook

(see Section 33.2.2 [Hooks], page 408).

When you use an Outline mode command to make a line invisible (see Section 22.8.3
[Outline Visibility], page 209), the line disappears from the screen. An ellipsis (three periods
in a row) is displayed at the end of the previous visible line, to indicate the hidden text.
Multiple consecutive invisible lines produce just one ellipsis.

Chapter 22: Commands for Human Languages 208

Editing commands that operate on lines, such as C-n and C-p, treat the text of the
invisible line as part of the previous visible line. Killing the ellipsis at the end of a visible
line really kills all the following invisible text associated with the ellipsis.

Outline minor mode is a buffer-local minor mode which provides the same commands as
the major mode, Outline mode, but can be used in conjunction with other major modes.
You can type M-x outline-minor-mode to toggle Outline minor mode in the current buffer,
or use a file-local variable setting to enable it in a specific file (see Section 33.2.4 [File
Variables], page 410).

The major mode, Outline mode, provides special key bindings on the C-c prefix. Outline
minor mode provides similar bindings with C-c @ as the prefix; this is to reduce the conflicts
with the major mode’s special commands. (The variable outline-minor-mode-prefix

controls the prefix used.)

22.8.1 Format of Outlines

Outline mode assumes that the lines in the buffer are of two types: heading lines and body
lines. A heading line represents a topic in the outline. Heading lines start with one or more
asterisk (‘*’) characters; the number of asterisks determines the depth of the heading in the
outline structure. Thus, a heading line with one ‘*’ is a major topic; all the heading lines
with two ‘*’s between it and the next one-‘*’ heading are its subtopics; and so on. Any line
that is not a heading line is a body line. Body lines belong with the preceding heading line.
Here is an example:

* Food

This is the body,

which says something about the topic of food.

** Delicious Food

This is the body of the second-level header.

** Distasteful Food

This could have

a body too, with

several lines.

*** Dormitory Food

* Shelter

Another first-level topic with its header line.

A heading line together with all following body lines is called collectively an entry. A
heading line together with all following deeper heading lines and their body lines is called
a subtree.

You can customize the criterion for distinguishing heading lines by setting the variable
outline-regexp. (The recommended ways to do this are in a major mode function or with
a file local variable.) Any line whose beginning has a match for this regexp is considered a
heading line. Matches that start within a line (not at the left margin) do not count.

The length of the matching text determines the level of the heading; longer matches
make a more deeply nested level. Thus, for example, if a text formatter has commands

Chapter 22: Commands for Human Languages 209

‘@chapter’, ‘@section’ and ‘@subsection’ to divide the document into chapters and sec-
tions, you could make those lines count as heading lines by setting outline-regexp to
‘"@chap\\|@\\(sub\\)*section"’. Note the trick: the two words ‘chapter’ and ‘section’
are equally long, but by defining the regexp to match only ‘chap’ we ensure that the length
of the text matched on a chapter heading is shorter, so that Outline mode will know that
sections are contained in chapters. This works as long as no other command starts with
‘@chap’.

You can explicitly specify a rule for calculating the level of a heading line by setting the
variable outline-level. The value of outline-level should be a function that takes no
arguments and returns the level of the current heading. The recommended ways to set this
variable are in a major mode command or with a file local variable.

22.8.2 Outline Motion Commands

Outline mode provides special motion commands that move backward and forward to head-
ing lines.

C-c C-n Move point to the next visible heading line (outline-next-visible-heading).

C-c C-p Move point to the previous visible heading line (outline-previous-visible-
heading).

C-c C-f Move point to the next visible heading line at the same level as the one point
is on (outline-forward-same-level).

C-c C-b Move point to the previous visible heading line at the same level (outline-
backward-same-level).

C-c C-u Move point up to a lower-level (more inclusive) visible heading line (outline-
up-heading).

C-c C-n (outline-next-visible-heading) moves down to the next heading line. C-c

C-p (outline-previous-visible-heading) moves similarly backward. Both accept nu-
meric arguments as repeat counts.

The commands C-c C-f (outline-forward-same-level) and C-c C-b (outline-
backward-same-level) move from one heading line to another visible heading at the same
depth in the outline. C-c C-u (outline-up-heading) moves backward to another heading
that is less deeply nested.

22.8.3 Outline Visibility Commands

Outline mode provides several commands for temporarily hiding or revealing parts of the
buffer, based on the outline structure. These commands are not undoable; their effects
are simply not recorded by the undo mechanism, so you can undo right past them (see
Section 13.1 [Undo], page 102).

Many of these commands act on the “current” heading line. If point is on a heading
line, that is the current heading line; if point is on a body line, the current heading line is
the nearest preceding header line.

C-c C-c Make the current heading line’s body invisible (hide-entry).

C-c C-e Make the current heading line’s body visible (show-entry).

Chapter 22: Commands for Human Languages 210

C-c C-d Make everything under the current heading invisible, not including the heading
itself (hide-subtree).

C-c C-s Make everything under the current heading visible, including body, subhead-
ings, and their bodies (show-subtree).

C-c C-l Make the body of the current heading line, and of all its subheadings, invisible
(hide-leaves).

C-c C-k Make all subheadings of the current heading line, at all levels, visible (show-
branches).

C-c C-i Make immediate subheadings (one level down) of the current heading line visible
(show-children).

C-c C-t Make all body lines in the buffer invisible (hide-body).

C-c C-a Make all lines in the buffer visible (show-all).

C-c C-q Hide everything except the top n levels of heading lines (hide-sublevels).

C-c C-o Hide everything except for the heading or body that point is in, plus the head-
ings leading up from there to the top level of the outline (hide-other).

The simplest of these commands are C-c C-c (hide-entry), which hides the body lines
directly following the current heading line, and C-c C-e (show-entry), which reveals them.
Subheadings and their bodies are not affected.

The commands C-c C-d (hide-subtree) and C-c C-s (show-subtree) are more power-
ful. They apply to the current heading line’s subtree: its body, all of its subheadings, both
direct and indirect, and all of their bodies.

The command C-c C-l (hide-leaves) hides the body of the current heading line as well
as all the bodies in its subtree; the subheadings themselves are left visible. The command
C-c C-k (show-branches) reveals the subheadings, if they had previously been hidden (e.g.
by C-c C-d). The command C-c C-i (show-children) is a weaker version of this; it reveals
just the direct subheadings, i.e. those one level down.

The command C-c C-o (hide-other) hides everything except the entry that point is in,
plus its parents (the headers leading up from there to top level in the outline) and the top
level headings.

The remaining commands affect the whole buffer. C-c C-t (hide-body) makes all body
lines invisible, so that you see just the outline structure (as a special exception, it will
not hide lines at the top of the file, preceding the first header line, even though these
are technically body lines). C-c C-a (show-all) makes all lines visible. C-c C-q (hide-
sublevels) hides all but the top level headings; with a numeric argument n, it hides
everything except the top n levels of heading lines.

When incremental search finds text that is hidden by Outline mode, it makes that part
of the buffer visible. If you exit the search at that position, the text remains visible. You
can also automatically make text visible as you navigate in it by using Reveal mode (M-x
reveal-mode), a buffer-local minor mode.

Chapter 22: Commands for Human Languages 211

22.8.4 Viewing One Outline in Multiple Views

You can display two views of a single outline at the same time, in different windows. To
do this, you must create an indirect buffer using M-x make-indirect-buffer. The first
argument of this command is the existing outline buffer name, and its second argument is
the name to use for the new indirect buffer. See Section 16.6 [Indirect Buffers], page 145.

Once the indirect buffer exists, you can display it in a window in the normal fashion,
with C-x 4 b or other Emacs commands. The Outline mode commands to show and hide
parts of the text operate on each buffer independently; as a result, each buffer can have its
own view. If you want more than two views on the same outline, create additional indirect
buffers.

22.8.5 Folding Editing

The Foldout package extends Outline mode and Outline minor mode with “folding” com-
mands. The idea of folding is that you zoom in on a nested portion of the outline, while
hiding its relatives at higher levels.

Consider an Outline mode buffer with all the text and subheadings under level-1 headings
hidden. To look at what is hidden under one of these headings, you could use C-c C-e (M-x
show-entry) to expose the body, or C-c C-i to expose the child (level-2) headings.

With Foldout, you use C-c C-z (M-x foldout-zoom-subtree). This exposes the body
and child subheadings, and narrows the buffer so that only the level-1 heading, the body
and the level-2 headings are visible. Now to look under one of the level-2 headings, position
the cursor on it and use C-c C-z again. This exposes the level-2 body and its level-3 child
subheadings and narrows the buffer again. Zooming in on successive subheadings can be
done as much as you like. A string in the mode line shows how deep you’ve gone.

When zooming in on a heading, to see only the child subheadings specify a numeric
argument: C-u C-c C-z. The number of levels of children can be specified too (compare M-x
show-children), e.g. M-2 C-c C-z exposes two levels of child subheadings. Alternatively,
the body can be specified with a negative argument: M-- C-c C-z. The whole subtree can
be expanded, similarly to C-c C-s (M-x show-subtree), by specifying a zero argument: M-0
C-c C-z.

While you’re zoomed in, you can still use Outline mode’s exposure and hiding functions
without disturbing Foldout. Also, since the buffer is narrowed, “global” editing actions will
only affect text under the zoomed-in heading. This is useful for restricting changes to a
particular chapter or section of your document.

To unzoom (exit) a fold, use C-c C-x (M-x foldout-exit-fold). This hides all the text
and subheadings under the top-level heading and returns you to the previous view of the
buffer. Specifying a numeric argument exits that many levels of folds. Specifying a zero
argument exits all folds.

To cancel the narrowing of a fold without hiding the text and subheadings, specify a
negative argument. For example, M--2 C-c C-x exits two folds and leaves the text and
subheadings exposed.

Foldout mode also provides mouse commands for entering and exiting folds, and for
showing and hiding text:

C-M-Mouse-1 zooms in on the heading clicked on
single click: expose body.

Chapter 22: Commands for Human Languages 212

double click: expose subheadings.

triple click: expose body and subheadings.

quad click: expose entire subtree.

C-M-Mouse-2 exposes text under the heading clicked on
single click: expose body.

double click: expose subheadings.

triple click: expose body and subheadings.

quad click: expose entire subtree.

C-M-Mouse-3 hides text under the heading clicked on or exits fold
single click: hide subtree.

double click: exit fold and hide text.

triple click: exit fold without hiding text.

quad click: exit all folds and hide text.

You can specify different modifier keys (instead of Control-Meta-) by setting foldout-

mouse-modifiers; but if you have already loaded the ‘foldout.el’ library, you must reload
it in order for this to take effect.

To use the Foldout package, you can type M-x load-library RET foldout RET; or you
can arrange for to do that automatically by putting the following in your init file:

(eval-after-load "outline" ’(require ’foldout))

22.9 Org Mode

Org mode is a variant of Outline mode for using Emacs as an organizer and/or authoring
system. Files with names ending in the extension ‘.org’ are opened in Org mode (see
Section 20.3 [Choosing Modes], page 192). To explicitly switch to Org mode, type M-x

org-mode.

In Org mode, as in Outline mode, each entry has a heading line that starts with one or
more ‘*’ characters. See Section 22.8.1 [Outline Format], page 208. In addition, any line
that begins with the ‘#’ character is treated as a comment.

Org mode provides commands for easily viewing and manipulating the outline structure.
The simplest of these commands is TAB (org-cycle). If invoked on a heading line, it cycles
through the different visibility states of the subtree: (i) showing only that heading line, (ii)
showing only the heading line and the heading lines of its direct children, if any, and (iii)
showing the entire subtree. If invoked in a body line, the global binding for TAB is executed.

Typing S-TAB (org-shifttab) anywhere in an Org mode buffer cycles the visibility of
the entire outline structure, between (i) showing only top-level heading lines, (ii) showing
all heading lines but no body lines, and (iii) showing everything.

You can move an entire entry up or down in the buffer, including its body lines and sub-
tree (if any), by typing M-<up> (org-metaup) or M-<down> (org-metadown) on the heading
line. Similarly, you can promote or demote a heading line with M-<left> (org-metaleft)
and M-<right> (org-metaright). These commands execute their global bindings if invoked
on a body line.

The following subsections give basic instructions for using Org mode as an organizer and
as an authoring system. For details, see Section “Introduction” in The Org Manual.

Chapter 22: Commands for Human Languages 213

22.9.1 Org as an organizer

You can tag an Org entry as a TODO item by typing C-c C-t (org-todo) anywhere in the
entry. This adds the keyword ‘TODO’ to the heading line. Typing C-c C-t again switches
the keyword to ‘DONE’; another C-c C-t removes the keyword entirely, and so forth. You
can customize the keywords used by C-c C-t via the variable org-todo-keywords.

Apart from marking an entry as TODO, you can attach a date to it, by typing C-c C-s

(org-schedule) in the entry. This prompts for a date by popping up the Emacs Calendar
(see Chapter 28 [Calendar/Diary], page 318), and then adds the tag ‘SCHEDULED’, together
with the selected date, beneath the heading line. The command C-c C-d (org-deadline)
has the same effect, except that it uses the tag DEADLINE.

Once you have some TODO items planned in an Org file, you can add that file to the
list of agenda files by typing C-c [(org-agenda-file-to-front). Org mode is designed
to let you easily maintain multiple agenda files, e.g. for organizing different aspects of your
life. The list of agenda files is stored in the variable org-agenda-files.

To view items coming from your agenda files, type M-x org-agenda. This command
prompts for what you want to see: a list of things to do this week, a list of TODO items
with specific keywords, etc.

22.9.2 Org as an authoring system

You may want to format your Org notes nicely and to prepare them for export and publica-
tion. To export the current buffer, type C-c C-e (org-export) anywhere in an Org buffer.
This command prompts for an export format; currently supported formats include HTML,
LaTEX, OpenDocument (‘.odt’), and PDF. Some formats, such as PDF, require certain
system tools to be installed.

To export several files at once to a specific directory, either locally or over the network,
you must define a list of projects through the variable org-publish-project-alist. See
its documentation for details.

Org supports a simple markup scheme for applying text formatting to exported docu-
ments:

- This text is /emphasized/

- This text is *in bold*

- This text is _underlined_

- This text uses =a teletype font=

#+begin_quote

‘‘This is a quote.’’

#+end_quote

#+begin_example

This is an example.

#+end_example

For further details, see Section “Exporting” in The Org Manual and Section “Publishing”
in The Org Manual.

Chapter 22: Commands for Human Languages 214

22.10 TEX Mode

Emacs provides special major modes for editing files written in TEX and its related formats.
TEX is a powerful text formatter written by Donald Knuth; like GNU Emacs, it is free
software. LaTEX is a simplified input format for TEX, implemented using TEX macros.
DocTEX is a special file format in which the LaTEX sources are written, combining sources
with documentation. SliTEX is an obsolete special form of LaTEX.1

TEX mode has four variants: Plain TEX mode, LaTEX mode, DocTEX mode, and SliTEX
mode. These distinct major modes differ only slightly, and are designed for editing the four
different formats. Emacs selects the appropriate mode by looking at the contents of the
buffer. (This is done by the tex-mode command, which is normally called automatically
when you visit a TEX-like file. See Section 20.3 [Choosing Modes], page 192.) If the
contents are insufficient to determine this, Emacs chooses the mode specified by the variable
tex-default-mode; its default value is latex-mode. If Emacs does not guess right, you
can select the correct variant of TEX mode using the command M-x plain-tex-mode, M-x
latex-mode, M-x slitex-mode, or doctex-mode.

The following sections document the features of TEX mode and its variants. There are
several other TEX-related Emacs packages, which are not documented in this manual:

• BibTEX mode is a major mode for BibTEX files, which are commonly used for keeping
bibliographic references for LaTEX documents. For more information, see the docu-
mentation string for the command bibtex-mode.

• The RefTEX package provides a minor mode which can be used with LaTEX mode to
manage bibliographic references. For more information, see the RefTEX Info manual,
which is distributed with Emacs.

• The AUCTEX package provides more advanced features for editing TEX and its related
formats, including the ability to preview TEX equations within Emacs buffers. Unlike
BibTEX mode and the RefTEX package, AUCTEX is not distributed with Emacs by
default. It can be downloaded via the Package Menu (see Chapter 32 [Packages],
page 394); once installed, see the AUCTEX manual, which is included with the package.

22.10.1 TEX Editing Commands

" Insert, according to context, either ‘‘‘’ or ‘"’ or ‘’’’ (tex-insert-quote).

C-j Insert a paragraph break (two newlines) and check the previous paragraph for
unbalanced braces or dollar signs (tex-terminate-paragraph).

M-x tex-validate-region

Check each paragraph in the region for unbalanced braces or dollar signs.

C-c { Insert ‘{}’ and position point between them (tex-insert-braces).

C-c } Move forward past the next unmatched close brace (up-list).

In TEX, the character ‘"’ is not normally used; instead, quotations begin with ‘‘‘’ and
end with ‘’’’. TEX mode therefore binds the " key to the tex-insert-quote command.
This inserts ‘‘‘’ after whitespace or an open brace, ‘"’ after a backslash, and ‘’’’ after any
other character.

1 It has been replaced by the ‘slides’ document class, which comes with LaTEX.

Chapter 22: Commands for Human Languages 215

As a special exception, if you type " when the text before point is either ‘‘‘’ or ‘’’’,
Emacs replaces that preceding text with a single ‘"’ character. You can therefore type "" to
insert ‘"’, should you ever need to do so. (You can also use C-q " to insert this character.)

In TEX mode, ‘$’ has a special syntax code which attempts to understand the way TEX
math mode delimiters match. When you insert a ‘$’ that is meant to exit math mode,
the position of the matching ‘$’ that entered math mode is displayed for a second. This is
the same feature that displays the open brace that matches a close brace that is inserted.
However, there is no way to tell whether a ‘$’ enters math mode or leaves it; so when you
insert a ‘$’ that enters math mode, the previous ‘$’ position is shown as if it were a match,
even though they are actually unrelated.

TEX uses braces as delimiters that must match. Some users prefer to keep braces bal-
anced at all times, rather than inserting them singly. Use C-c { (tex-insert-braces) to
insert a pair of braces. It leaves point between the two braces so you can insert the text
that belongs inside. Afterward, use the command C-c } (up-list) to move forward past
the close brace.

There are two commands for checking the matching of braces. C-j (tex-terminate-
paragraph) checks the paragraph before point, and inserts two newlines to start a
new paragraph. It outputs a message in the echo area if any mismatch is found. M-x

tex-validate-region checks a region, paragraph by paragraph. The errors are listed in
an ‘*Occur*’ buffer; you can use the usual Occur mode commands in that buffer, such
as C-c C-c, to visit a particular mismatch (see Section 12.10 [Other Repeating Search],
page 100).

Note that Emacs commands count square brackets and parentheses in TEX mode, not
just braces. This is not strictly correct for the purpose of checking TEX syntax. However,
parentheses and square brackets are likely to be used in text as matching delimiters, and
it is useful for the various motion commands and automatic match display to work with
them.

22.10.2 LaTEX Editing Commands

LaTEX mode provides a few extra features not applicable to plain TEX:

C-c C-o Insert ‘\begin’ and ‘\end’ for LaTEX block and position point on a line between
them (tex-latex-block).

C-c C-e Close the innermost LaTEX block not yet closed (tex-close-latex-block).

In LaTEX input, ‘\begin’ and ‘\end’ tags are used to group blocks of text. To insert
a block, type C-c C-o (tex-latex-block). This prompts for a block type, and inserts the
appropriate matching ‘\begin’ and ‘\end’ tags, leaving a blank line between the two and
moving point there.

When entering the block type argument to C-c C-o, you can use the usual completion
commands (see Section 5.3 [Completion], page 28). The default completion list contains the
standard LaTEX block types. If you want additional block types for completion, customize
the list variable latex-block-names.

In LaTEX input, ‘\begin’ and ‘\end’ tags must balance. You can use C-c C-e (tex-
close-latex-block) to insert an ‘\end’ tag which matches the last unmatched ‘\begin’.
It also indents the ‘\end’ to match the corresponding ‘\begin’, and inserts a newline after

Chapter 22: Commands for Human Languages 216

the ‘\end’ tag if point is at the beginning of a line. The minor mode latex-electric-

env-pair-mode automatically inserts an ‘\end’ or ‘\begin’ tag for you when you type the
corresponding one.

22.10.3 TEX Printing Commands

You can invoke TEX as an subprocess of Emacs, supplying either the entire contents of the
buffer or just part of it (e.g. one chapter of a larger document).

C-c C-b Invoke TEX on the entire current buffer (tex-buffer).

C-c C-r Invoke TEX on the current region, together with the buffer’s header (tex-
region).

C-c C-f Invoke TEX on the current file (tex-file).

C-c C-v Preview the output from the last C-c C-r, C-c C-b, or C-c C-f command (tex-
view).

C-c C-p Print the output from the last C-c C-b, C-c C-r, or C-c C-f command (tex-
print).

C-c TAB Invoke BibTEX on the current file (tex-bibtex-file).

C-c C-l Recenter the window showing output from TEX so that the last line can be seen
(tex-recenter-output-buffer).

C-c C-k Kill the TEX subprocess (tex-kill-job).

C-c C-c Invoke some other compilation command on the entire current buffer (tex-
compile).

To pass the current buffer through TEX, type C-c C-b (tex-buffer). The formatted
output goes in a temporary file, normally a ‘.dvi’ file. Afterwards, you can type C-c C-v

(tex-view) to launch an external program, such as xdvi, to view this output file. You can
also type C-c C-p (tex-print) to print a hardcopy of the output file.

By default, C-c C-b runs TEX in the current directory. The output of TEX also goes
in this directory. To run TEX in a different directory, change the variable tex-directory

to the desired directory name. If your environment variable TEXINPUTS contains relative
directory names, or if your files contains ‘\input’ commands with relative file names, then
tex-directory must be "." or you will get the wrong results. Otherwise, it is safe to
specify some other directory, such as "/tmp".

The buffer’s TEX variant determines what shell command C-c C-b actually runs. In
Plain TEX mode, it is specified by the variable tex-run-command, which defaults to "tex".
In LaTEX mode, it is specified by latex-run-command, which defaults to "latex". The
shell command that C-c C-v runs to view the ‘.dvi’ output is determined by the variable
tex-dvi-view-command, regardless of the TEX variant. The shell command that C-c C-p

runs to print the output is determined by the variable tex-dvi-print-command.

Normally, Emacs automatically appends the output file name to the shell command
strings described in the preceding paragraph. For example, if tex-dvi-view-command is
"xdvi", C-c C-v runs xdvi output-file-name . In some cases, however, the file name needs
to be embedded in the command, e.g. if you need to provide the file name as an argument
to one command whose output is piped to another. You can specify where to put the file
name with ‘*’ in the command string. For example,

Chapter 22: Commands for Human Languages 217

(setq tex-dvi-print-command "dvips -f * | lpr")

The terminal output from TEX, including any error messages, appears in a buffer called
‘*tex-shell*’. If TEX gets an error, you can switch to this buffer and feed it input (this
works as in Shell mode; see Section 31.3.2 [Interactive Shell], page 369). Without switching
to this buffer you can scroll it so that its last line is visible by typing C-c C-l.

Type C-c C-k (tex-kill-job) to kill the TEX process if you see that its output is no
longer useful. Using C-c C-b or C-c C-r also kills any TEX process still running.

You can also pass an arbitrary region through TEX by typing C-c C-r (tex-region).
This is tricky, however, because most files of TEX input contain commands at the beginning
to set parameters and define macros, without which no later part of the file will format
correctly. To solve this problem, C-c C-r allows you to designate a part of the file as
containing essential commands; it is included before the specified region as part of the
input to TEX. The designated part of the file is called the header.

To indicate the bounds of the header in Plain TEX mode, you insert two special strings
in the file. Insert ‘%**start of header’ before the header, and ‘%**end of header’ after it.
Each string must appear entirely on one line, but there may be other text on the line before
or after. The lines containing the two strings are included in the header. If ‘%**start of

header’ does not appear within the first 100 lines of the buffer, C-c C-r assumes that there
is no header.

In LaTEX mode, the header begins with ‘\documentclass’ or ‘\documentstyle’ and
ends with ‘\begin{document}’. These are commands that LaTEX requires you to use in
any case, so nothing special needs to be done to identify the header.

The commands (tex-buffer) and (tex-region) do all of their work in a temporary
directory, and do not have available any of the auxiliary files needed by TEX for cross-
references; these commands are generally not suitable for running the final copy in which
all of the cross-references need to be correct.

When you want the auxiliary files for cross references, use C-c C-f (tex-file) which
runs TEX on the current buffer’s file, in that file’s directory. Before running TEX, it offers
to save any modified buffers. Generally, you need to use (tex-file) twice to get the cross-
references right.

The value of the variable tex-start-options specifies options for the TEX run.

The value of the variable tex-start-commands specifies TEX commands for starting
TEX. The default value causes TEX to run in nonstop mode. To run TEX interactively, set
the variable to "".

Large TEX documents are often split into several files—one main file, plus subfiles.
Running TEX on a subfile typically does not work; you have to run it on the main file.
In order to make tex-file useful when you are editing a subfile, you can set the variable
tex-main-file to the name of the main file. Then tex-file runs TEX on that file.

The most convenient way to use tex-main-file is to specify it in a local variable list in
each of the subfiles. See Section 33.2.4 [File Variables], page 410.

For LaTEX files, you can use BibTEX to process the auxiliary file for the current buffer’s
file. BibTEX looks up bibliographic citations in a data base and prepares the cited refer-
ences for the bibliography section. The command C-c TAB (tex-bibtex-file) runs the
shell command (tex-bibtex-command) to produce a ‘.bbl’ file for the current buffer’s file.

Chapter 22: Commands for Human Languages 218

Generally, you need to do C-c C-f (tex-file) once to generate the ‘.aux’ file, then do
C-c TAB (tex-bibtex-file), and then repeat C-c C-f (tex-file) twice more to get the
cross-references correct.

To invoke some other compilation program on the current TEX buffer, type C-c C-c

(tex-compile). This command knows how to pass arguments to many common programs,
including ‘pdflatex’, ‘yap’, ‘xdvi’, and ‘dvips’. You can select your desired compilation
program using the standard completion keys (see Section 5.3 [Completion], page 28).

22.10.4 TEX Mode Miscellany

Entering any variant of TEX mode runs the hooks text-mode-hook and tex-mode-hook.
Then it runs either plain-tex-mode-hook, latex-mode-hook, or slitex-mode-hook,
whichever is appropriate. Starting the TEX shell runs the hook tex-shell-hook. See
Section 33.2.2 [Hooks], page 408.

The commands M-x iso-iso2tex, M-x iso-tex2iso, M-x iso-iso2gtex and M-x

iso-gtex2iso can be used to convert between Latin-1 encoded files and TEX-encoded
equivalents.

22.11 SGML and HTML Modes

The major modes for SGML and HTML provide indentation support and commands for
operating on tags. HTML mode is a slightly customized variant of SGML mode.

C-c C-n Interactively specify a special character and insert the SGML ‘&’-command for
that character (sgml-name-char).

C-c C-t Interactively specify a tag and its attributes (sgml-tag). This command asks
you for a tag name and for the attribute values, then inserts both the opening
tag and the closing tag, leaving point between them.

With a prefix argument n, the command puts the tag around the n words
already present in the buffer after point. Whenever a region is active, it puts
the tag around the region (when Transient Mark mode is off, it does this when
a numeric argument of −1 is supplied.)

C-c C-a Interactively insert attribute values for the current tag (sgml-attributes).

C-c C-f Skip across a balanced tag group (which extends from an opening tag through
its corresponding closing tag) (sgml-skip-tag-forward). A numeric argument
acts as a repeat count.

C-c C-b Skip backward across a balanced tag group (which extends from an opening tag
through its corresponding closing tag) (sgml-skip-tag-backward). A numeric
argument acts as a repeat count.

C-c C-d Delete the tag at or after point, and delete the matching tag too (sgml-delete-
tag). If the tag at or after point is an opening tag, delete the closing tag too;
if it is a closing tag, delete the opening tag too.

C-c ? tag RET

Display a description of the meaning of tag tag (sgml-tag-help). If the argu-
ment tag is empty, describe the tag at point.

Chapter 22: Commands for Human Languages 219

C-c / Insert a close tag for the innermost unterminated tag (sgml-close-tag). If
called within a tag or a comment, close it instead of inserting a close tag.

C-c 8 Toggle a minor mode in which Latin-1 characters insert the corresponding
SGML commands that stand for them, instead of the characters themselves
(sgml-name-8bit-mode).

C-c C-v Run a shell command (which you must specify) to validate the current buffer
as SGML (sgml-validate).

C-c TAB Toggle the visibility of existing tags in the buffer. This can be used as a cheap
preview (sgml-tags-invisible).

The major mode for editing XML documents is called nXML mode. This is a power-
ful major mode that can recognize many existing XML schema and use them to provide
completion of XML elements via C-RET or M-TAB, as well as “on-the-fly” XML validation
with error highlighting. To enable nXML mode in an existing buffer, type M-x nxml-mode,
or, equivalently, M-x xml-mode. Emacs uses nXML mode for files which have the extension
‘.xml’. For XHTML files, which have the extension ‘.xhtml’, Emacs uses HTML mode by
default; you can make it use nXML mode by customizing the variable auto-mode-alist

(see Section 20.3 [Choosing Modes], page 192). nXML mode is described in an Info manual,
which is distributed with Emacs.

You may choose to use the less powerful SGML mode for editing XML, since XML is a
strict subset of SGML. To enable SGML mode in an existing buffer, type M-x sgml-mode.
On enabling SGML mode, Emacs examines the buffer to determine whether it is XML; if
so, it sets the variable sgml-xml-mode to a non-nil value. This causes SGML mode’s tag
insertion commands, described above, to always insert explicit closing tags as well.

22.12 Nroff Mode

Nroff mode, a major mode derived from Text mode, is specialized for editing nroff files (e.g.
Unix man pages). Type M-x nroff-mode to enter this mode. Entering Nroff mode runs the
hook text-mode-hook, then nroff-mode-hook (see Section 33.2.2 [Hooks], page 408).

In Nroff mode, nroff command lines are treated as paragraph separators, pages are
separated by ‘.bp’ commands, and comments start with backslash-doublequote. It also
defines these commands:

M-n Move to the beginning of the next line that isn’t an nroff command (forward-
text-line). An argument is a repeat count.

M-p Like M-n but move up (backward-text-line).

M-? Displays in the echo area the number of text lines (lines that are not nroff
commands) in the region (count-text-lines).

Electric Nroff mode is a buffer-local minor mode that can be used with Nroff mode. To
toggle this minor mode, type M-x electric-nroff-mode (see Section 20.2 [Minor Modes],
page 190). When the mode is on, each time you type RET to end a line containing an
nroff command that opens a kind of grouping, the nroff command to close that grouping is
automatically inserted on the following line.

If you use Outline minor mode with Nroff mode (see Section 22.8 [Outline Mode],
page 207), heading lines are lines of the form ‘.H’ followed by a number (the header level).

Chapter 22: Commands for Human Languages 220

22.13 Enriched Text

Enriched mode is a minor mode for editing formatted text files in a WYSIWYG (“what
you see is what you get”) fashion. When Enriched mode is enabled, you can apply various
formatting properties to the text in the buffer, such as fonts and colors; upon saving the
buffer, those properties are saved together with the text, using the MIME ‘text/enriched’
file format.

Enriched mode is typically used with Text mode (see Section 22.7 [Text Mode], page 207).
It is not compatible with Font Lock mode, which is used by many major modes, including
most programming language modes, for syntax highlighting (see Section 11.12 [Font Lock],
page 74). Unlike Enriched mode, Font Lock mode assigns text properties automatically,
based on the current buffer contents; those properties are not saved to disk.

The file ‘etc/enriched.doc’ in the Emacs distribution serves as an example of the
features of Enriched mode.

22.13.1 Enriched Mode

Enriched mode is a buffer-local minor mode (see Section 20.2 [Minor Modes], page 190).
When you visit a file that has been saved in the ‘text/enriched’ format, Emacs auto-
matically enables Enriched mode, and applies the formatting information in the file to the
buffer text. When you save a buffer with Enriched mode enabled, it is saved using the
‘text/enriched’ format, including the formatting information.

To create a new file of formatted text, visit the nonexistent file and type M-x

enriched-mode. This command actually toggles Enriched mode. With a prefix argument,
it enables Enriched mode if the argument is positive, and disables Enriched mode
otherwise. If you disable Enriched mode, Emacs no longer saves the buffer using the
‘text/enriched’ format; any formatting properties that have been added to the buffer
remain in the buffer, but they are not saved to disk.

Enriched mode does not save all Emacs text properties, only those specified in the
variable enriched-translations. These include properties for fonts, colors, indentation,
and justification.

If you visit a file and Emacs fails to recognize that it is in the ‘text/enriched’ format,
type M-x format-decode-buffer. This command prompts for a file format, and re-reads
the file in that format. Specifying the ‘text/enriched’ format automatically enables En-
riched mode.

To view a ‘text/enriched’ file in raw form (as plain text with markup tags rather than
formatted text), use M-x find-file-literally (see Section 15.2 [Visiting], page 116).

See Section “Format Conversion” in the Emacs Lisp Reference Manual, for details of
how Emacs recognizes and converts file formats like ‘text/enriched’. See Section “Text
Properties” in the Emacs Lisp Reference Manual, for more information about text proper-
ties.

22.13.2 Hard and Soft Newlines

In Enriched mode, Emacs distinguishes between two different kinds of newlines, hard new-
lines and soft newlines. You can also enable or disable this feature in other buffers, by
typing M-x use-hard-newlines.

Chapter 22: Commands for Human Languages 221

Hard newlines are used to separate paragraphs, or anywhere there needs to be a line break
regardless of how the text is filled; soft newlines are used for filling. The RET (newline)
and C-o (open-line) commands insert hard newlines. The fill commands, including Auto
Fill (see Section 22.5.1 [Auto Fill], page 202), insert only soft newlines and delete only soft
newlines, leaving hard newlines alone.

Thus, when editing with Enriched mode, you should not use RET or C-o to break
lines in the middle of filled paragraphs. Use Auto Fill mode or explicit fill commands (see
Section 22.5.2 [Fill Commands], page 203) instead. Use RET or C-o where line breaks
should always remain, such as in tables and lists. For such lines, you may also want to set
the justification style to unfilled (see Section 22.13.6 [Enriched Justification], page 223).

22.13.3 Editing Format Information

The easiest way to alter properties is with the Text Properties menu. You can get to this
menu from the Edit menu in the menu bar (see Section 1.4 [Menu Bar], page 9), or with
C-Mouse-2 (see Section 18.4 [Menu Mouse Clicks], page 156). Some of the commands in
the Text Properties menu are listed below (you can also invoke them with M-x):

Remove Face Properties

Remove face properties from the region (facemenu-remove-face-props).

Remove Text Properties

Remove all text properties from the region, including face properties
(facemenu-remove-all).

Describe Properties

List all text properties and other information about the character following
point (describe-text-properties).

Display Faces

Display a list of defined faces (list-faces-display). See Section 11.8 [Faces],
page 70.

Display Colors

Display a list of defined colors (list-colors-display). See Section 11.9 [Col-
ors], page 71.

The other menu entries are described in the following sections.

22.13.4 Faces in Enriched Text

The following commands can be used to add or remove faces (see Section 11.8 [Faces],
page 70). Each applies to the text in the region if the mark is active, and to the next self-
inserting character if the mark is inactive. With a prefix argument, each command applies
to the next self-inserting character even if the region is active.

M-o d Remove all face properties (facemenu-set-default).

M-o b Apply the bold face (facemenu-set-bold).

M-o i Apply the italic face (facemenu-set-italic).

M-o l Apply the bold-italic face (facemenu-set-bold-italic).

M-o u Apply the underline face (facemenu-set-underline).

Chapter 22: Commands for Human Languages 222

M-o o face RET

Apply the face face (facemenu-set-face).

M-x facemenu-set-foreground

Prompt for a color (see Section 11.9 [Colors], page 71), and apply it as a fore-
ground color.

M-x facemenu-set-background

Prompt for a color, and apply it as a background color.

These command are also available via the Text Properties menu.

A self-inserting character normally inherits the face properties (and most other text
properties) from the preceding character in the buffer. If you use one of the above commands
to specify the face for the next self-inserting character, that character will not inherit the
faces properties from the preceding character, but it will still inherit other text properties.

Enriched mode defines two additional faces: excerpt and fixed. These correspond to
codes used in the text/enriched file format. The excerpt face is intended for quotations;
by default, it appears the same as italic. The fixed face specifies fixed-width text; by
default, it appears the same as bold.

22.13.5 Indentation in Enriched Text

In Enriched mode, you can specify different amounts of indentation for the right or left
margin of a paragraph or a part of a paragraph. These margins also affect fill commands
such as M-q (see Section 22.5 [Filling], page 202).

The Indentation submenu of Text Properties offers commands for specifying indentation:

Indent More

Indent the region by 4 columns (increase-left-margin). In Enriched mode,
this command is also available on C-x TAB; if you supply a numeric argument,
that says how many columns to add to the margin (a negative argument reduces
the number of columns).

Indent Less

Remove 4 columns of indentation from the region.

Indent Right More

Make the text narrower by indenting 4 columns at the right margin.

Indent Right Less

Remove 4 columns of indentation from the right margin.

The variable standard-indent specifies how many columns these commands should add
to or subtract from the indentation. The default value is 4. The default right margin for
Enriched mode is controlled by the variable fill-column, as usual.

You can also type C-c [(set-left-margin) and C-c] (set-right-margin) to set
the left and right margins. You can specify the margin width with a numeric argument;
otherwise these commands prompt for a value via the minibuffer.

The fill prefix, if any, works in addition to the specified paragraph indentation: C-x . does
not include the specified indentation’s whitespace in the new value for the fill prefix, and the
fill commands look for the fill prefix after the indentation on each line. See Section 22.5.3
[Fill Prefix], page 204.

Chapter 22: Commands for Human Languages 223

22.13.6 Justification in Enriched Text

In Enriched mode, you can use the following commands to specify various justification styles
for filling. These commands apply to the paragraph containing point, or, if the region is
active, to all paragraphs overlapping the region.

M-j l Align lines to the left margin (set-justification-left).

M-j r Align lines to the right margin (set-justification-right).

M-j b Align lines to both margins, inserting spaces in the middle of the line to achieve
this (set-justification-full).

M-j c

M-S Center lines between the margins (set-justification-center).

M-j u Turn off filling entirely (set-justification-none). The fill commands do
nothing on text with this setting. You can, however, still indent the left margin.

You can also specify justification styles using the Justification submenu in the Text Prop-
erties menu. The default justification style is specified by the per-buffer variable default-

justification. Its value should be one of the symbols left, right, full, center, or
none.

22.13.7 Setting Other Text Properties

The Special Properties submenu of Text Properties has entries for adding or removing
three other text properties: read-only, (which disallows alteration of the text), invisible
(which hides text), and intangible (which disallows moving point within the text). The
‘Remove Special’ menu item removes all of these special properties from the text in the
region.

The invisible and intangible properties are not saved in the ‘text/enriched’ format.

22.14 Editing Text-based Tables

The table package provides commands to easily edit text-based tables. Here is an example
of what such a table looks like:

+-----------------+--------------------------------+-----------------+

| Command | Description | Key Binding |

+-----------------+--------------------------------+-----------------+

| forward-char |Move point right N characters | C-f |

| |(left if N is negative). | |

| | | |

+-----------------+--------------------------------+-----------------+

| backward-char |Move point left N characters | C-b |

| |(right if N is negative). | |

| | | |

+-----------------+--------------------------------+-----------------+

When Emacs recognizes such a stretch of text as a table (see Section 22.14.3 [Table
Recognition], page 224), editing the contents of each table cell will automatically resize the
table, whenever the contents become too large to fit in the cell. You can use the commands
defined in the following sections for navigating and editing the table layout.

To toggle the automatic table resizing feature, type M-x table-fixed-width-mode.

Chapter 22: Commands for Human Languages 224

22.14.1 What is a Text-based Table?

A table consists of a rectangular text area which is divided into cells. Each cell must be at
least one character wide and one character high, not counting its border lines. A cell can
be subdivided into more cells, but they cannot overlap.

Cell border lines are drawn with three special characters, specified by the following
variables:

table-cell-vertical-char

The character used for vertical lines. The default is ‘|’.

table-cell-horizontal-chars

The characters used for horizontal lines. The default is ‘"-="’.

table-cell-intersection-char

The character used for the intersection of horizontal and vertical lines. The
default is ‘+’.

The following are examples of invalid tables:

+-----+ +--+ +-++--+

| | | | | || |

| | | | | || |

+--+ | +--+--+ +-++--+

| | | | | | +-++--+

| | | | | | | || |

+--+--+ +--+--+ +-++--+

a b c

From left to right:

a. Overlapped cells or non-rectangular cells are not allowed.

b. The border must be rectangular.

c. Cells must have a minimum width/height of one character.

22.14.2 Creating a Table

To create a text-based table from scratch, type M-x table-insert. This command prompts
for the number of table columns, the number of table rows, cell width and cell height. The
cell width and cell height do not include the cell borders; each can be specified as a single
integer (which means each cell is given the same width/height), or as a sequence of integers
separated by spaces or commas (which specify the width/height of the individual table
columns/rows, counting from left to right for table columns and from top to bottom for
table rows). The specified table is then inserted at point.

The table inserted by M-x table-insert contains special text properties, which tell
Emacs to treat it specially as a text-based table. If you save the buffer to a file and visit it
again later, those properties are lost, and the table appears to Emacs as an ordinary piece
of text. See the next section, for how to convert it back into a table.

22.14.3 Table Recognition

Existing text-based tables in a buffer, which lack the special text properties applied by
M-x table-insert, are not treated specially as tables. To apply those text properties,

Chapter 22: Commands for Human Languages 225

type M-x table-recognize. This command scans the current buffer, recognizes valid table
cells, and applies the relevant text properties. Conversely, type M-x table-unrecognize

to unrecognize all tables in the current buffer, removing the special text properties and
converting tables back to plain text.

You can also use the following commands to selectively recognize or unrecognize tables:

M-x table-recognize-region

Recognize tables within the current region.

M-x table-unrecognize-region

Unrecognize tables within the current region.

M-x table-recognize-table

Recognize the table at point and activate it.

M-x table-unrecognize-table

Deactivate the table at point.

M-x table-recognize-cell

Recognize the cell at point and activate it.

M-x table-unrecognize-cell

Deactivate the cell at point.

See Section 22.14.7 [Table Conversion], page 226, for another way to recognize a table.

22.14.4 Commands for Table Cells

The commands M-x table-forward-cell and M-x table-backward-cell move point from
the current cell to an adjacent cell. The order is cyclic: when point is in the last cell of a
table, M-x table-forward-cell moves to the first cell. Likewise, when point is on the first
cell, M-x table-backward-cell moves to the last cell.

M-x table-span-cell prompts for a direction—right, left, above, or below—and merges
the current cell with the adjacent cell in that direction. This command signals an error if
the merge would result in an illegitimate cell layout.

M-x table-split-cell splits the current cell vertically or horizontally, prompting for
the direction with the minibuffer. The commands M-x table-split-cell-vertically

and M-x table-split-cell-horizontally split in a specific direction. When splitting
vertically, the old cell contents are automatically split between the two new cells. When
splitting horizontally, you are prompted for how to divide the cell contents, if the cell is non-
empty; the options are ‘split’ (divide the contents at point), ‘left’ (put all the contents
in the left cell), and ‘right’ (put all the contents in the right cell).

The following commands enlarge or shrink a cell. By default, they resize by one row or
column; if a numeric argument is supplied, that specifies the number of rows or columns to
resize by.

M-x table-heighten-cell

Enlarge the current cell vertically.

M-x table-shorten-cell

Shrink the current cell vertically.

Chapter 22: Commands for Human Languages 226

M-x table-widen-cell

Enlarge the current cell horizontally.

M-x table-narrow-cell

Shrink the current cell horizontally.

22.14.5 Cell Justification

The command M-x table-justify imposes justification on one or more cells in a text-based
table. Justification determines how the text in the cell is aligned, relative to the edges of
the cell. Each cell in a table can be separately justified.

M-x table-justify first prompts for what to justify; the options are ‘cell’ (just the
current cell), ‘column’ (all cells in the current table column) and ‘row’ (all cells in the
current table row). The command then prompts for the justification style; the options are
left, center, right, top, middle, bottom, or none (meaning no vertical justification).

Horizontal and vertical justification styles are specified independently, and both types
can be in effect simultaneously; for instance, you can call M-x table-justify twice, once
to specify right justification and once to specify bottom justification, to align the contents
of a cell to the bottom right.

The justification style is stored in the buffer as a text property, and is lost when you
kill the buffer or exit Emacs. However, the table recognition commands, such as M-x

table-recognize (see Section 22.14.3 [Table Recognition], page 224), attempt to determine
and re-apply each cell’s justification style, by examining its contents. To disable this feature,
change the variable table-detect-cell-alignment to nil.

22.14.6 Table Rows and Columns

M-x table-insert-row inserts a row of cells before the current table row. The current
row, together with point, is pushed down past the new row. To insert a row after the last
row at the bottom of a table, invoke this command with point below the table, just below
the bottom edge. You can insert more than one row at a time by using a numeric prefix
argument.

Similarly, M-x table-insert-column inserts a column of cells to the left of the current
table column. To insert a column to the right side of the rightmost column, invoke this
command with point to the right of the rightmost column, outside the table. A numeric
prefix argument specifies the number of columns to insert.

M-x table-delete-column deletes the column of cells at point. Similarly, M-x

table-delete-row deletes the row of cells at point. A numeric prefix argument to either
command specifies the number of columns or rows to delete.

22.14.7 Converting Between Plain Text and Tables

The command M-x table-capture captures plain text in a region and turns it into a table.
Unlike M-x table-recognize (see Section 22.14.3 [Table Recognition], page 224), the orig-
inal text does not need to have a table appearance; it only needs to have a logical table-like
structure.

For example, suppose we have the following numbers, which are divided into three lines
and separated horizontally by commas:

Chapter 22: Commands for Human Languages 227

1, 2, 3, 4

5, 6, 7, 8

, 9, 10

Invoking M-x table-capture on that text produces this table:

+-----+-----+-----+-----+

|1 |2 |3 |4 |

+-----+-----+-----+-----+

|5 |6 |7 |8 |

+-----+-----+-----+-----+

| |9 |10 | |

+-----+-----+-----+-----+

M-x table-release does the opposite: it converts a table back to plain text, removing
its cell borders.

One application of this pair of commands is to edit a text in layout. Look at the following
three paragraphs (the latter two are indented with header lines):

table-capture is a powerful command.

Here are some things it can do:

Parse Cell Items Using row and column delimiter regexps,

it parses the specified text area and

extracts cell items into a table.

Applying table-capture to a region containing the above text, with empty strings for the
column and row delimiter regexps, creates a table with a single cell like the following one.

+--+

|table-capture is a powerful command. |

|Here are some things it can do: |

| |

|Parse Cell Items Using row and column delimiter regexps,|

| it parses the specified text area and |

| extracts cell items into a table. |

+--+

We can then use the cell splitting commands (see Section 22.14.4 [Cell Commands],
page 225) to subdivide the table so that each paragraph occupies a cell:

+--+

|table-capture is a powerful command. |

|Here are some things it can do: |

+-----------------+--+

|Parse Cell Items | Using row and column delimiter regexps,|

| | it parses the specified text area and |

| | extracts cell items into a table. |

+-----------------+--+

Each cell can now be edited independently without affecting the layout of other cells. When
finished, we can invoke M-x table-release to convert the table back to plain text.

22.14.8 Table Miscellany

The command table-query-dimension reports the layout of the table and table cell at
point. Here is an example of its output:

Chapter 22: Commands for Human Languages 228

Cell: (21w, 6h), Table: (67w, 16h), Dim: (2c, 3r), Total Cells: 5

This indicates that the current cell is 21 characters wide and 6 lines high, the table is 67
characters wide and 16 lines high with 2 columns and 3 rows, and a total of 5 cells.

M-x table-insert-sequence inserts a string into each cell. Each string is a part of a
sequence i.e. a series of increasing integer numbers.

M-x table-generate-source generates a table formatted for a specific markup lan-
guage. It asks for a language (which must be one of html, latex, or cals), a destination
buffer in which to put the result, and a table caption, and then inserts the generated table
into the specified buffer. The default destination buffer is table.lang , where lang is the
language you specified.

22.15 Two-Column Editing

Two-column mode lets you conveniently edit two side-by-side columns of text. It uses two
side-by-side windows, each showing its own buffer. There are three ways to enter two-column
mode:

F2 2 or C-x 6 2

Enter two-column mode with the current buffer on the left, and on the right,
a buffer whose name is based on the current buffer’s name (2C-two-columns).
If the right-hand buffer doesn’t already exist, it starts out empty; the current
buffer’s contents are not changed.

This command is appropriate when the current buffer is empty or contains just
one column and you want to add another column.

F2 s or C-x 6 s

Split the current buffer, which contains two-column text, into two buffers, and
display them side by side (2C-split). The current buffer becomes the left-hand
buffer, but the text in the right-hand column is moved into the right-hand buffer.
The current column specifies the split point. Splitting starts with the current
line and continues to the end of the buffer.

This command is appropriate when you have a buffer that already contains
two-column text, and you wish to separate the columns temporarily.

F2 b buffer RET

C-x 6 b buffer RET

Enter two-column mode using the current buffer as the left-hand buffer, and
using buffer buffer as the right-hand buffer (2C-associate-buffer).

F2 s or C-x 6 s looks for a column separator, which is a string that appears on each
line between the two columns. You can specify the width of the separator with a numeric
argument to F2 s; that many characters, before point, constitute the separator string. By
default, the width is 1, so the column separator is the character before point.

When a line has the separator at the proper place, F2 s puts the text after the separator
into the right-hand buffer, and deletes the separator. Lines that don’t have the column
separator at the proper place remain unsplit; they stay in the left-hand buffer, and the
right-hand buffer gets an empty line to correspond. (This is the way to write a line that
“spans both columns while in two-column mode”: write it in the left-hand buffer, and put
an empty line in the right-hand buffer.)

Chapter 22: Commands for Human Languages 229

The command C-x 6 RET or F2 RET (2C-newline) inserts a newline in each of the two
buffers at corresponding positions. This is the easiest way to add a new line to the two-
column text while editing it in split buffers.

When you have edited both buffers as you wish, merge them with F2 1 or C-x 6 1 (2C-
merge). This copies the text from the right-hand buffer as a second column in the other
buffer. To go back to two-column editing, use F2 s.

Use F2 d or C-x 6 d to dissociate the two buffers, leaving each as it stands
(2C-dissociate). If the other buffer, the one not current when you type F2 d, is empty,
F2 d kills it.

Chapter 23: Editing Programs 230

23 Editing Programs

This chapter describes Emacs features for facilitating editing programs. Some of the things
these features can do are:

• Find or move over top-level definitions (see Section 23.2 [Defuns], page 231).

• Apply the usual indentation conventions of the language (see Section 23.3 [Program
Indent], page 233).

• Balance parentheses (see Section 23.4 [Parentheses], page 236).

• Insert, kill or align comments (see Section 23.5 [Comments], page 239).

• Highlight program syntax (see Section 11.12 [Font Lock], page 74).

23.1 Major Modes for Programming Languages

Emacs has specialized major modes (see Section 20.1 [Major Modes], page 189) for many
programming languages. A programming language mode typically specifies the syntax of
expressions, the customary rules for indentation, how to do syntax highlighting for the
language, and how to find the beginning or end of a function definition. It often has
features for compiling and debugging programs as well. The major mode for each language
is named after the language; for instance, the major mode for the C programming language
is c-mode.

Emacs has programming language modes for Lisp, Scheme, the Scheme-based DSSSL
expression language, Ada, ASM, AWK, C, C++, Delphi, Fortran, Icon, IDL (CORBA),
IDLWAVE, Java, Javascript, Metafont (TEX’s companion for font creation), Modula2,
Objective-C, Octave, Pascal, Perl, Pike, PostScript, Prolog, Python, Ruby, Simula, Tcl,
and VHDL. An alternative mode for Perl is called CPerl mode. Modes are also available for
the scripting languages of the common GNU and Unix shells, VMS DCL, and MS-DOS/MS-
Windows ‘BAT’ files, and for makefiles, DNS master files, and various sorts of configuration
files.

Ideally, Emacs should have a major mode for each programming language that you
might want to edit. If it doesn’t have a mode for your favorite language, the mode might be
implemented in a package not distributed with Emacs (see Chapter 32 [Packages], page 394);
or you can contribute one.

In most programming languages, indentation should vary from line to line to illustrate
the structure of the program. Therefore, in most programming language modes, typing TAB
updates the indentation of the current line (see Section 23.3 [Program Indent], page 233).
Furthermore, DEL is usually bound to backward-delete-char-untabify, which deletes
backward treating each tab as if it were the equivalent number of spaces, so that you can
delete one column of indentation without worrying whether the whitespace consists of spaces
or tabs.

Entering a programming language mode runs the custom Lisp functions specified in the
hook variable prog-mode-hook, followed by those specified in the mode’s own mode hook
(see Section 20.1 [Major Modes], page 189). For instance, entering C mode runs the hooks
prog-mode-hook and c-mode-hook. See Section 33.2.2 [Hooks], page 408, for information
about hooks.

Chapter 23: Editing Programs 231

The Emacs distribution contains Info manuals for the major modes for Ada,
C/C++/Objective C/Java/Corba IDL/Pike/AWK, and IDLWAVE. For Fortran mode, see
Section “Fortran” in Specialized Emacs Features.

23.2 Top-Level Definitions, or Defuns

In Emacs, a major definition at the top level in the buffer, such as a function, is called a
defun. The name comes from Lisp, but in Emacs we use it for all languages.

23.2.1 Left Margin Convention

Many programming-language modes assume by default that any opening delimiter found
at the left margin is the start of a top-level definition, or defun. Therefore, don’t put an
opening delimiter at the left margin unless it should have that significance. For instance,
never put an open-parenthesis at the left margin in a Lisp file unless it is the start of a
top-level list.

The convention speeds up many Emacs operations, which would otherwise have to scan
back to the beginning of the buffer to analyze the syntax of the code.

If you don’t follow this convention, not only will you have trouble when you explicitly use
the commands for motion by defuns; other features that use them will also give you trouble.
This includes the indentation commands (see Section 23.3 [Program Indent], page 233) and
Font Lock mode (see Section 11.12 [Font Lock], page 74).

The most likely problem case is when you want an opening delimiter at the start of a line
inside a string. To avoid trouble, put an escape character (‘\’, in C and Emacs Lisp, ‘/’ in
some other Lisp dialects) before the opening delimiter. This will not affect the contents of
the string, but will prevent that opening delimiter from starting a defun. Here’s an example:

(insert "Foo:

\(bar)

")

To help you catch violations of this convention, Font Lock mode highlights confusing
opening delimiters (those that ought to be quoted) in bold red.

If you need to override this convention, you can do so by setting the variable open-

paren-in-column-0-is-defun-start. If this user option is set to t (the default), opening
parentheses or braces at column zero always start defuns. When it is nil, defuns are found
by searching for parens or braces at the outermost level.

Usually, you should leave this option at its default value of t. If your buffer contains
parentheses or braces in column zero which don’t start defuns, and it is somehow impractical
to remove these parentheses or braces, it might be helpful to set the option to nil. Be aware
that this might make scrolling and display in large buffers quite sluggish. Furthermore, the
parentheses and braces must be correctly matched throughout the buffer for it to work
properly.

23.2.2 Moving by Defuns

These commands move point or set up the region based on top-level major definitions, also
called defuns.

C-M-a Move to beginning of current or preceding defun (beginning-of-defun).

Chapter 23: Editing Programs 232

C-M-e Move to end of current or following defun (end-of-defun).

C-M-h Put region around whole current or following defun (mark-defun).

The commands to move to the beginning and end of the current defun are C-M-a

(beginning-of-defun) and C-M-e (end-of-defun). If you repeat one of these commands,
or use a positive numeric argument, each repetition moves to the next defun in the direction
of motion.

C-M-a with a negative argument −n moves forward n times to the next beginning of a
defun. This is not exactly the same place that C-M-e with argument n would move to; the
end of this defun is not usually exactly the same place as the beginning of the following
defun. (Whitespace, comments, and perhaps declarations can separate them.) Likewise,
C-M-e with a negative argument moves back to an end of a defun, which is not quite the
same as C-M-a with a positive argument.

To operate on the current defun, use C-M-h (mark-defun), which sets the mark at the end
of the current defun and puts point at its beginning. See Section 8.2 [Marking Objects],
page 45. This is the easiest way to get ready to kill the defun in order to move it to a
different place in the file. If you use the command while point is between defuns, it uses
the following defun. If you use the command while the mark is already active, it sets the
mark but does not move point; furthermore, each successive use of C-M-h extends the end
of the region to include one more defun.

In C mode, C-M-h runs the function c-mark-function, which is almost the same as
mark-defun; the difference is that it backs up over the argument declarations, function
name and returned data type so that the entire C function is inside the region. This is
an example of how major modes adjust the standard key bindings so that they do their
standard jobs in a way better fitting a particular language. Other major modes may replace
any or all of these key bindings for that purpose.

23.2.3 Imenu

The Imenu facility offers a way to find the major definitions in a file by name. It is also useful
in text formatter major modes, where it treats each chapter, section, etc., as a definition.
(See Section 25.3 [Tags], page 286, for a more powerful feature that handles multiple files
together.)

If you type M-x imenu, it reads the name of a definition using the minibuffer, then moves
point to that definition. You can use completion to specify the name; the command always
displays the whole list of valid names.

Alternatively, you can bind the command imenu to a mouse click. Then it displays
mouse menus for you to select a definition name. You can also add the buffer’s index to the
menu bar by calling imenu-add-menubar-index. If you want to have this menu bar item
available for all buffers in a certain major mode, you can do this by adding imenu-add-

menubar-index to its mode hook. But if you have done that, you will have to wait a little
while each time you visit a file in that mode, while Emacs finds all the definitions in that
buffer.

When you change the contents of a buffer, if you add or delete definitions, you can
update the buffer’s index based on the new contents by invoking the ‘*Rescan*’ item in
the menu. Rescanning happens automatically if you set imenu-auto-rescan to a non-nil
value. There is no need to rescan because of small changes in the text.

Chapter 23: Editing Programs 233

You can customize the way the menus are sorted by setting the variable imenu-sort-

function. By default, names are ordered as they occur in the buffer; if you want alphabetic
sorting, use the symbol imenu--sort-by-name as the value. You can also define your own
comparison function by writing Lisp code.

Imenu provides the information to guide Which Function mode (see below). The Speed-
bar can also use it (see Section 18.9 [Speedbar], page 161).

23.2.4 Which Function Mode

Which Function mode is a global minor mode (see Section 20.2 [Minor Modes], page 190)
which displays the current function name in the mode line, updating it as you move around
in a buffer.

To either enable or disable Which Function mode, use the command M-x

which-function-mode. Although Which Function mode is a global minor mode, it takes
effect only in certain major modes: those listed in the variable which-func-modes. If the
value of which-func-modes is t rather than a list of modes, then Which Function mode
applies to all major modes that know how to support it—in other words, all the major
modes that support Imenu.

23.3 Indentation for Programs

The best way to keep a program properly indented is to use Emacs to reindent it as you
change it. Emacs has commands to indent either a single line, a specified number of lines,
or all of the lines inside a single parenthetical grouping.

See Chapter 21 [Indentation], page 195, for general information about indentation. This
section describes indentation features specific to programming language modes.

Emacs also provides a Lisp pretty-printer in the pp package, which reformats Lisp objects
with nice-looking indentation.

23.3.1 Basic Program Indentation Commands

TAB Adjust indentation of current line (indent-for-tab-command).

C-j Insert a newline, then adjust indentation of following line (newline-and-
indent).

The basic indentation command is TAB (indent-for-tab-command), which was doc-
umented in Chapter 21 [Indentation], page 195. In programming language modes, TAB
indents the current line, based on the indentation and syntactic content of the preceding
lines; if the region is active, TAB indents each line within the region, not just the current
line.

The command C-j (newline-and-indent), which was documented in Section 21.1 [In-
dentation Commands], page 195, does the same as RET followed by TAB: it inserts a new
line, then adjusts the line’s indentation.

When indenting a line that starts within a parenthetical grouping, Emacs usually places
the start of the line under the preceding line within the group, or under the text after the
parenthesis. If you manually give one of these lines a nonstandard indentation (e.g. for
aesthetic purposes), the lines below will follow it.

Chapter 23: Editing Programs 234

The indentation commands for most programming language modes assume that a open-
parenthesis, open-brace or other opening delimiter at the left margin is the start of a
function. If the code you are editing violates this assumption—even if the delimiters occur
in strings or comments—you must set open-paren-in-column-0-is-defun-start to nil

for indentation to work properly. See Section 23.2.1 [Left Margin Paren], page 231.

23.3.2 Indenting Several Lines

Sometimes, you may want to reindent several lines of code at a time. One way to do this is
to use the mark; when the mark is active and the region is non-empty, TAB indents every
line in the region. Alternatively, the command C-M-\ (indent-region) indents every line
in the region, whether or not the mark is active (see Section 21.1 [Indentation Commands],
page 195).

In addition, Emacs provides the following commands for indenting large chunks of code:

C-M-q Reindent all the lines within one parenthetical grouping.

C-u TAB Shift an entire parenthetical grouping rigidly sideways so that its first line is
properly indented.

M-x indent-code-rigidly

Shift all the lines in the region rigidly sideways, but do not alter lines that start
inside comments and strings.

To reindent the contents of a single parenthetical grouping, position point before the
beginning of the grouping and type C-M-q. This changes the relative indentation within the
grouping, without affecting its overall indentation (i.e. the indentation of the line where the
grouping starts). The function that C-M-q runs depends on the major mode; it is indent-

pp-sexp in Lisp mode, c-indent-exp in C mode, etc. To correct the overall indentation
as well, type TAB first.

If you like the relative indentation within a grouping but not the indentation of its first
line, move point to that first line and type C-u TAB. In Lisp, C, and some other major
modes, TAB with a numeric argument reindents the current line as usual, then reindents
by the same amount all the lines in the parenthetical grouping starting on the current line.
It is clever, though, and does not alter lines that start inside strings. Neither does it alter
C preprocessor lines when in C mode, but it does reindent any continuation lines that may
be attached to them.

The command M-x indent-code-rigidly rigidly shifts all the lines in the region side-
ways, like indent-rigidly does (see Section 21.1 [Indentation Commands], page 195). It
doesn’t alter the indentation of lines that start inside a string, unless the region also starts
inside that string. The prefix arg specifies the number of columns to indent.

23.3.3 Customizing Lisp Indentation

The indentation pattern for a Lisp expression can depend on the function called by the
expression. For each Lisp function, you can choose among several predefined patterns of
indentation, or define an arbitrary one with a Lisp program.

The standard pattern of indentation is as follows: the second line of the expression
is indented under the first argument, if that is on the same line as the beginning of the

Chapter 23: Editing Programs 235

expression; otherwise, the second line is indented underneath the function name. Each
following line is indented under the previous line whose nesting depth is the same.

If the variable lisp-indent-offset is non-nil, it overrides the usual indentation pat-
tern for the second line of an expression, so that such lines are always indented lisp-

indent-offset more columns than the containing list.

Certain functions override the standard pattern. Functions whose names start with def

treat the second lines as the start of a body, by indenting the second line lisp-body-indent
additional columns beyond the open-parenthesis that starts the expression.

You can override the standard pattern in various ways for individual functions, according
to the lisp-indent-function property of the function name. This is normally done for
macro definitions, using the declare construct. See Section “Defining Macros” in the Emacs
Lisp Reference Manual.

23.3.4 Commands for C Indentation

Here are special features for indentation in C mode and related modes:

C-c C-q Reindent the current top-level function definition or aggregate type declaration
(c-indent-defun).

C-M-q Reindent each line in the balanced expression that follows point (c-indent-
exp). A prefix argument inhibits warning messages about invalid syntax.

TAB Reindent the current line, and/or in some cases insert a tab character (c-
indent-command).

If c-tab-always-indent is t, this command always reindents the current line
and does nothing else. This is the default.

If that variable is nil, this command reindents the current line only if point is
at the left margin or in the line’s indentation; otherwise, it inserts a tab (or the
equivalent number of spaces, if indent-tabs-mode is nil).

Any other value (not nil or t) means always reindent the line, and also insert
a tab if within a comment or a string.

To reindent the whole current buffer, type C-x h C-M-\. This first selects the whole
buffer as the region, then reindents that region.

To reindent the current block, use C-M-u C-M-q. This moves to the front of the block
and then reindents it all.

23.3.5 Customizing C Indentation

C mode and related modes use a flexible mechanism for customizing indentation. C mode
indents a source line in two steps: first it classifies the line syntactically according to
its contents and context; second, it determines the indentation offset associated by your
selected style with the syntactic construct and adds this onto the indentation of the anchor
statement.

C-c . RET style RET

Select a predefined style style (c-set-style).

A style is a named collection of customizations that can be used in C mode and the
related modes. Section “Styles” in The CC Mode Manual, for a complete description.

Chapter 23: Editing Programs 236

Emacs comes with several predefined styles, including gnu, k&r, bsd, stroustrup, linux,
python, java, whitesmith, ellemtel, and awk. Some of these styles are primarily intended
for one language, but any of them can be used with any of the languages supported by these
modes. To find out what a style looks like, select it and reindent some code, e.g., by typing
C-M-Q at the start of a function definition.

To choose a style for the current buffer, use the command C-c .. Specify a style name as
an argument (case is not significant). This command affects the current buffer only, and it
affects only future invocations of the indentation commands; it does not reindent the code
already in the buffer. To reindent the whole buffer in the new style, you can type C-x h

C-M-\.

You can also set the variable c-default-style to specify the default style for various
major modes. Its value should be either the style’s name (a string) or an alist, in which each
element specifies one major mode and which indentation style to use for it. For example,

(setq c-default-style

’((java-mode . "java")

(awk-mode . "awk")

(other . "gnu")))

specifies explicit choices for Java and AWK modes, and the default ‘gnu’ style for the other
C-like modes. (These settings are actually the defaults.) This variable takes effect when
you select one of the C-like major modes; thus, if you specify a new default style for Java
mode, you can make it take effect in an existing Java mode buffer by typing M-x java-mode

there.

The gnu style specifies the formatting recommended by the GNU Project for C; it is the
default, so as to encourage use of our recommended style.

See Section “Indentation Engine Basics” in the CC Mode Manual, and Section “Cus-
tomizing Indentation” in the CC Mode Manual, for more information on customizing in-
dentation for C and related modes, including how to override parts of an existing style and
how to define your own styles.

As an alternative to specifying a style, you can tell Emacs to guess a style by typing
M-x c-guess in a sample code buffer. You can then apply the guessed style to other buffers
with M-x c-guess-install. See Section “Guessing the Style” in the CC Mode Manual, for
details.

23.4 Commands for Editing with Parentheses

This section describes the commands and features that take advantage of the parenthesis
structure in a program, or help you keep it balanced.

When talking about these facilities, the term “parenthesis” also includes braces, brackets,
or whatever delimiters are defined to match in pairs. The major mode controls which
delimiters are significant, through the syntax table (see Section “Syntax Tables” in The
Emacs Lisp Reference Manual). In Lisp, only parentheses count; in C, these commands
apply to braces and brackets too.

You can use M-x check-parens to find any unbalanced parentheses and unbalanced
string quotes in the buffer.

Chapter 23: Editing Programs 237

23.4.1 Expressions with Balanced Parentheses

Each programming language mode has its own definition of a balanced expression. Balanced
expressions typically include individual symbols, numbers, and string constants, as well as
pieces of code enclosed in a matching pair of delimiters. The following commands deal with
balanced expressions (in Emacs, such expressions are referred to internally as sexps1).

C-M-f Move forward over a balanced expression (forward-sexp).

C-M-b Move backward over a balanced expression (backward-sexp).

C-M-k Kill balanced expression forward (kill-sexp).

C-M-t Transpose expressions (transpose-sexps).

C-M-@

C-M-SPC Put mark after following expression (mark-sexp).

To move forward over a balanced expression, use C-M-f (forward-sexp). If the first
significant character after point is an opening delimiter (e.g. ‘(’, ‘[’ or ‘{’ in C), this com-
mand moves past the matching closing delimiter. If the character begins a symbol, string,
or number, the command moves over that.

The command C-M-b (backward-sexp) moves backward over a balanced expression—like
C-M-f, but in the reverse direction. If the expression is preceded by any prefix characters
(single-quote, backquote and comma, in Lisp), the command moves back over them as well.

C-M-f or C-M-b with an argument repeats that operation the specified number of times;
with a negative argument means to move in the opposite direction. In most modes, these
two commands move across comments as if they were whitespace. Note that their keys,
C-M-f and C-M-b, are analogous to C-f and C-b, which move by characters (see Section 4.2
[Moving Point], page 17), and M-f and M-b, which move by words (see Section 22.1 [Words],
page 198).

To kill a whole balanced expression, type C-M-k (kill-sexp). This kills the text that
C-M-f would move over.

C-M-t (transpose-sexps) switches the positions of the previous balanced expression
and the next one. It is analogous to the C-t command, which transposes characters (see
Section 13.2 [Transpose], page 103). An argument to C-M-t serves as a repeat count,
moving the previous expression over that many following ones. A negative argument moves
the previous balanced expression backwards across those before it. An argument of zero,
rather than doing nothing, transposes the balanced expressions ending at or after point and
the mark.

To operate on balanced expressions with a command which acts on the region, type
C-M-SPC (mark-sexp). This sets the mark where C-M-f would move to. While the mark
is active, each successive call to this command extends the region by shifting the mark
by one expression. Positive or negative numeric arguments move the mark forward or
backward by the specified number of expressions. The alias C-M-@ is equivalent to C-M-SPC.
See Section 8.2 [Marking Objects], page 45, for more information about this and related
commands.

1 The word “sexp” is used to refer to an expression in Lisp.

Chapter 23: Editing Programs 238

In languages that use infix operators, such as C, it is not possible to recognize all balanced
expressions because there can be multiple possibilities at a given position. For example, C
mode does not treat ‘foo + bar’ as a single expression, even though it is one C expression;
instead, it recognizes ‘foo’ as one expression and ‘bar’ as another, with the ‘+’ as punc-
tuation between them. However, C mode recognizes ‘(foo + bar)’ as a single expression,
because of the parentheses.

23.4.2 Moving in the Parenthesis Structure

The following commands move over groupings delimited by parentheses (or whatever else
serves as delimiters in the language you are working with). They ignore strings and com-
ments, including any parentheses within them, and also ignore parentheses that are “quoted”
with an escape character. These commands are mainly intended for editing programs, but
can be useful for editing any text containing parentheses. They are referred to internally
as “list” commands because in Lisp these groupings are lists.

These commands assume that the starting point is not inside a string or a comment. If
you invoke them from inside a string or comment, the results are unreliable.

C-M-n Move forward over a parenthetical group (forward-list).

C-M-p Move backward over a parenthetical group (backward-list).

C-M-u Move up in parenthesis structure (backward-up-list).

C-M-d Move down in parenthesis structure (down-list).

The “list” commands C-M-n (forward-list) and C-M-p (backward-list) move forward
or backward over one (or n) parenthetical groupings.

C-M-n and C-M-p try to stay at the same level in the parenthesis structure. To move
up one (or n) levels, use C-M-u (backward-up-list). C-M-u moves backward up past one
unmatched opening delimiter. A positive argument serves as a repeat count; a negative
argument reverses the direction of motion, so that the command moves forward and up one
or more levels.

To move down in the parenthesis structure, use C-M-d (down-list). In Lisp mode, where
‘(’ is the only opening delimiter, this is nearly the same as searching for a ‘(’. An argument
specifies the number of levels to go down.

23.4.3 Matching Parentheses

Emacs has a number of parenthesis matching features, which make it easy to see how and
whether parentheses (or other delimiters) match up.

Whenever you type a self-inserting character that is a closing delimiter, the cursor moves
momentarily to the location of the matching opening delimiter, provided that is on the
screen. If it is not on the screen, Emacs displays some of the text near it in the echo area.
Either way, you can tell which grouping you are closing off. If the opening delimiter and
closing delimiter are mismatched—such as in ‘[x)’—a warning message is displayed in the
echo area.

Three variables control the display of matching parentheses:

• blink-matching-paren turns the feature on or off: nil disables it, but the default is
t to enable it.

Chapter 23: Editing Programs 239

• blink-matching-delay says how many seconds to leave the cursor on the matching
opening delimiter, before bringing it back to the real location of point. This may be
an integer or floating-point number; the default is 1.

• blink-matching-paren-distance specifies how many characters back to search to
find the matching opening delimiter. If the match is not found in that distance, Emacs
stops scanning and nothing is displayed. The default is 102400.

Show Paren mode, a global minor mode, provides a more powerful kind of automatic
matching. Whenever point is before an opening delimiter or after a closing delimiter, both
that delimiter and its opposite delimiter are highlighted. To toggle Show Paren mode, type
M-x show-paren-mode.

Electric Pair mode, a global minor mode, provides a way to easily insert matching
delimiters. Whenever you insert an opening delimiter, the matching closing delimiter is
automatically inserted as well, leaving point between the two. To toggle Electric Pair
mode, type M-x electric-pair-mode.

23.5 Manipulating Comments

Because comments are such an important part of programming, Emacs provides special
commands for editing and inserting comments. It can also do spell checking on comments
with Flyspell Prog mode (see Section 13.4 [Spelling], page 104).

Some major modes have special rules for indenting different kinds of comments. For
example, in Lisp code, comments starting with two semicolons are indented as if they were
lines of code, while those starting with three semicolons are supposed to be aligned to the
left margin and are often used for sectioning purposes. Emacs understand these conventions;
for instance, typing TAB on a comment line will indent the comment to the appropriate
position.

;; This function is just an example.

;;; Here either two or three semicolons are appropriate.

(defun foo (x)

;;; And now, the first part of the function:

;; The following line adds one.

(1+ x)) ; This line adds one.

23.5.1 Comment Commands

The following commands operate on comments:

M-; Insert or realign comment on current line; if the region is active, comment or
uncomment the region instead (comment-dwim).

C-u M-; Kill comment on current line (comment-kill).

C-x ; Set comment column (comment-set-column).

C-M-j

M-j Like RET followed by inserting and aligning a comment (comment-indent-
new-line). See Section 23.5.2 [Multi-Line Comments], page 241.

M-x comment-region

C-c C-c (in C-like modes)
Add comment delimiters to all the lines in the region.

Chapter 23: Editing Programs 240

The command to create or align a comment is M-; (comment-dwim). The word “dwim”
is an acronym for “Do What I Mean”; it indicates that this command can be used for many
different jobs relating to comments, depending on the situation where you use it.

When a region is active (see Chapter 8 [Mark], page 44), M-; either adds comment
delimiters to the region, or removes them. If every line in the region is already a comment,
it “uncomments” each of those lines by removing their comment delimiters. Otherwise, it
adds comment delimiters to enclose the text in the region.

If you supply a prefix argument to M-; when a region is active, that specifies the number
of comment delimiters to add or delete. A positive argument n adds n delimiters, while a
negative argument -n removes n delimiters.

If the region is not active, and there is no existing comment on the current line, M-;
adds a new comment to the current line. If the line is blank (i.e. empty or containing only
whitespace characters), the comment is indented to the same position where TAB would
indent to (see Section 23.3.1 [Basic Indent], page 233). If the line is non-blank, the comment
is placed after the last non-whitespace character on the line; normally, Emacs tries putting
it at the column specified by the variable comment-column (see Section 23.5.3 [Options
for Comments], page 241), but if the line already extends past that column, it puts the
comment at some suitable position, usually separated from the non-comment text by at
least one space. In each case, Emacs places point after the comment’s starting delimiter, so
that you can start typing the comment text right away.

You can also use M-; to align an existing comment. If a line already contains the
comment-start string, M-; realigns it to the conventional alignment and moves point after
the comment’s starting delimiter. As an exception, comments starting in column 0 are not
moved. Even when an existing comment is properly aligned, M-; is still useful for moving
directly to the start of the comment text.

C-u M-; (comment-dwim with a prefix argument) kills any comment on the current line,
along with the whitespace before it. Since the comment is saved to the kill ring, you
can reinsert it on another line by moving to the end of that line, doing C-y, and then
M-; to realign the comment. You can achieve the same effect as C-u M-; by typing M-x

comment-kill (comment-dwim actually calls comment-kill as a subroutine when it is given
a prefix argument).

The command M-x comment-region is equivalent to calling M-; on an active region,
except that it always acts on the region, even if the mark is inactive. In C mode and
related modes, this command is bound to C-c C-c. The command M-x uncomment-region

uncomments each line in the region; a numeric prefix argument specifies the number of
comment delimiters to remove (negative arguments specify the number of comment to
delimiters to add).

For C-like modes, you can configure the exact effect of M-; by setting the variables c-

indent-comment-alist and c-indent-comments-syntactically-p. For example, on a
line ending in a closing brace, M-; puts the comment one space after the brace rather than
at comment-column. For full details see Section “Comment Commands” in The CC Mode
Manual.

Chapter 23: Editing Programs 241

23.5.2 Multiple Lines of Comments

If you are typing a comment and wish to continue it to another line, type M-j or C-M-j

(comment-indent-new-line). This breaks the current line, and inserts the necessary com-
ment delimiters and indentation to continue the comment.

For languages with closing comment delimiters (e.g. ‘*/’ in C), the exact behavior of
M-j depends on the value of the variable comment-multi-line. If the value is nil, the
command closes the comment on the old line and starts a new comment on the new line.
Otherwise, it opens a new line within the current comment delimiters.

When Auto Fill mode is on, going past the fill column while typing a comment also
continues the comment, in the same way as an explicit invocation of M-j.

To turn existing lines into comment lines, use M-; with the region active, or use M-x

comment-region as described in the preceding section.

You can configure C Mode such that when you type a ‘/’ at the start of a line in a multi-
line block comment, this closes the comment. Enable the comment-close-slash clean-up
for this. See Section “Clean-ups” in The CC Mode Manual.

23.5.3 Options Controlling Comments

As mentioned in Section 23.5.1 [Comment Commands], page 239, when the M-j command
adds a comment to a line, it tries to place the comment at the column specified by the
buffer-local variable comment-column. You can set either the local value or the default
value of this buffer-local variable in the usual way (see Section 33.2.3 [Locals], page 409).
Alternatively, you can type C-x ; (comment-set-column) to set the value of comment-

column in the current buffer to the column where point is currently located. C-u C-x ; sets
the comment column to match the last comment before point in the buffer, and then does
a M-; to align the current line’s comment under the previous one.

The comment commands recognize comments based on the regular expression that is
the value of the variable comment-start-skip. Make sure this regexp does not match the
null string. It may match more than the comment starting delimiter in the strictest sense of
the word; for example, in C mode the value of the variable is "\\(//+\\|/*+\\)\\s *",
which matches extra stars and spaces after the ‘/*’ itself, and accepts C++ style comments
also. (Note that ‘\\’ is needed in Lisp syntax to include a ‘\’ in the string, which is
needed to deny the first star its special meaning in regexp syntax. See Section 12.6 [Regexp
Backslash], page 94.)

When a comment command makes a new comment, it inserts the value of comment-

start as an opening comment delimiter. It also inserts the value of comment-end after
point, as a closing comment delimiter. For example, in Lisp mode, comment-start is
‘";"’ and comment-end is "" (the empty string). In C mode, comment-start is "/* " and
comment-end is " */".

The variable comment-padding specifies a string that the commenting commands should
insert between the comment delimiter(s) and the comment text. The default, ‘" "’, specifies
a single space. Alternatively, the value can be a number, which specifies that number of
spaces, or nil, which means no spaces at all.

The variable comment-multi-line controls how M-j and Auto Fill mode continue com-
ments over multiple lines. See Section 23.5.2 [Multi-Line Comments], page 241.

Chapter 23: Editing Programs 242

The variable comment-indent-function should contain a function that will be called to
compute the alignment for a newly inserted comment or for aligning an existing comment.
It is set differently by various major modes. The function is called with no arguments, but
with point at the beginning of the comment, or at the end of a line if a new comment is
to be inserted. It should return the column in which the comment ought to start. For
example, in Lisp mode, the indent hook function bases its decision on how many semicolons
begin an existing comment, and on the code in the preceding lines.

23.6 Documentation Lookup

Emacs provides several features you can use to look up the documentation of functions,
variables and commands that you plan to use in your program.

23.6.1 Info Documentation Lookup

For major modes that apply to languages which have documentation in Info, you can use
C-h S (info-lookup-symbol) to view the Info documentation for a symbol used in the
program. You specify the symbol with the minibuffer; the default is the symbol appearing
in the buffer at point. For example, in C mode this looks for the symbol in the C Library
Manual. The command only works if the appropriate manual’s Info files are installed.

The major mode determines where to look for documentation for the symbol—which
Info files to look in, and which indices to search. You can also use M-x info-lookup-file

to look for documentation for a file name.

If you use C-h S in a major mode that does not support it, it asks you to specify the
“symbol help mode”. You should enter a command such as c-mode that would select a
major mode which C-h S does support.

23.6.2 Man Page Lookup

On Unix, the main form of on-line documentation was the manual page or man page. In
the GNU operating system, we aim to replace man pages with better-organized manuals
that you can browse with Info (see Section 7.7 [Misc Help], page 41). This process is not
finished, so it is still useful to read manual pages.

You can read the man page for an operating system command, library function, or system
call, with the M-x man command. This prompts for a topic, with completion (see Section 5.3
[Completion], page 28), and runs the man program to format the corresponding man page.
If the system permits, it runs man asynchronously, so that you can keep on editing while the
page is being formatted. The result goes in a buffer named ‘*Man topic*’. These buffers
use a special major mode, Man mode, that facilitates scrolling and jumping to other manual
pages. For details, type C-h m while in a Man mode buffer.

Each man page belongs to one of ten or more sections, each named by a digit or by a digit
and a letter. Sometimes there are man pages with the same name in different sections. To
read a man page from a specific section, type ‘topic(section)’ or ‘section topic ’ when
M-x manual-entry prompts for the topic. For example, the man page for the C library
function chmod is in section 2, but there is a shell command of the same name, whose man
page is in section 1; to view the former, type M-x manual-entry RET chmod(2) RET.

If you do not specify a section, M-x man normally displays only the first man page found.
On some systems, the man program accepts a ‘-a’ command-line option, which tells it to

Chapter 23: Editing Programs 243

display all the man pages for the specified topic. To make use of this, change the value
of the variable Man-switches to ‘"-a"’. Then, in the Man mode buffer, you can type M-n

and M-p to switch between man pages in different sections. The mode line shows how many
manual pages are available.

An alternative way of reading manual pages is the M-x woman command. Unlike M-x man,
it does not run any external programs to format and display the man pages; the formatting
is done by Emacs, so it works on systems such as MS-Windows where the man program
may be unavailable. It prompts for a man page, and displays it in a buffer named ‘*WoMan
section topic ’.

M-x woman computes the completion list for manpages the first time you invoke the
command. With a numeric argument, it recomputes this list; this is useful if you add or
delete manual pages.

If you type a name of a manual page and M-x woman finds that several manual pages
by the same name exist in different sections, it pops up a window with possible candidates
asking you to choose one of them.

For more information about setting up and using M-x woman, see the WoMan Info manual,
which is distributed with Emacs.

23.6.3 Emacs Lisp Documentation Lookup

When editing Emacs Lisp code, you can use the commands C-h f (describe-function)
and C-h v (describe-variable) to view the built-in documentation for the Lisp functions
and variables that you want to use. See Section 7.2 [Name Help], page 38.

Eldoc is a buffer-local minor mode that helps with looking up Lisp documention. When
it is enabled, the echo area displays some useful information whenever there is a Lisp
function or variable at point; for a function, it shows the argument list, and for a variable
it shows the first line of the variable’s documentation string. To toggle Eldoc mode, type
M-x eldoc-mode. Eldoc mode can be used with the Emacs Lisp and Lisp Interaction major
modes.

23.7 Hideshow minor mode

Hideshow mode is a buffer-local minor mode that allows you to selectively display portions
of a program, which are referred to as blocks. Type M-x hs-minor-mode to toggle this
minor mode (see Section 20.2 [Minor Modes], page 190).

When you use Hideshow mode to hide a block, the block disappears from the screen, to
be replaced by an ellipsis (three periods in a row). Just what constitutes a block depends
on the major mode. In C mode and related modes, blocks are delimited by braces, while in
Lisp mode they are delimited by parentheses. Multi-line comments also count as blocks.

Hideshow mode provides the following commands:

C-c @ C-h Hide the current block (hs-hide-block).

C-c @ C-s Show the current block (hs-show-block).

C-c @ C-c Either hide or show the current block (hs-toggle-hiding).

S-Mouse-2

Toggle hiding for the block you click on (hs-mouse-toggle-hiding).

Chapter 23: Editing Programs 244

C-c @ C-M-h

Hide all top-level blocks (hs-hide-all).

C-c @ C-M-s

Show all blocks in the buffer (hs-show-all).

C-c @ C-l Hide all blocks n levels below this block (hs-hide-level).

These variables can be used to customize Hideshow mode:

hs-hide-comments-when-hiding-all

If non-nil, C-c @ C-M-h (hs-hide-all) hides comments too.

hs-isearch-open

This variable specifies the conditions under which incremental search should
unhide a hidden block when matching text occurs within the block. Its value
should be either code (unhide only code blocks), comment (unhide only com-
ments), t (unhide both code blocks and comments), or nil (unhide neither
code blocks nor comments). The default value is code.

23.8 Completion for Symbol Names

Completion is normally done in the minibuffer (see Section 5.3 [Completion], page 28), but
you can also complete symbol names in ordinary Emacs buffers.

In programming language modes, type C-M-i or M-TAB to complete the partial symbol
before point. On graphical displays, the M-TAB key is usually reserved by the window
manager for switching graphical windows, so you should type C-M-i or ESC TAB instead.

In most programming language modes, C-M-i (or M-TAB) invokes the command
completion-at-point, which generates its completion list in a flexible way. If Semantic
mode is enabled, it tries to use the Semantic parser data for completion (see Section 23.10
[Semantic], page 245). If Semantic mode is not enabled or fails at performing completion,
it tries to complete using the selected tags table (see Section 25.3 [Tags], page 286). If in
Emacs Lisp mode, it performs completion using the function, variable, or property names
defined in the current Emacs session.

In all other respects, in-buffer symbol completion behaves like minibuffer completion.
For instance, if Emacs cannot complete to a unique symbol, it displays a list of completion
alternatives in another window. See Section 5.3 [Completion], page 28.

In Text mode and related modes, M-TAB completes words based on the spell-checker’s
dictionary. See Section 13.4 [Spelling], page 104.

23.9 Glasses minor mode

Glasses mode is a buffer-local minor mode that makes it easier to read mixed-case (or
“CamelCase”) symbols like ‘unReadableSymbol’, by altering how they are displayed. By
default, it displays extra underscores between each lower-case letter and the following capital
letter. This does not alter the buffer text, only how it is displayed.

To toggle Glasses mode, type M-x glasses-mode (see Section 20.2 [Minor Modes],
page 190). When Glasses mode is enabled, the minor mode indicator ‘o^o’ appears in the
mode line. For more information about Glasses mode, type C-h P glasses RET.

Chapter 23: Editing Programs 245

23.10 Semantic

Semantic is a package that provides language-aware editing commands based on source

code parsers. This section provides a brief description of Semantic; for full details, see the
Semantic Info manual, which is distributed with Emacs.

Most of the “language aware” features in Emacs, such as Font Lock mode (see
Section 11.12 [Font Lock], page 74), rely on “rules of thumb”2 that usually give good
results but are never completely exact. In contrast, the parsers used by Semantic have an
exact understanding of programming language syntax. This allows Semantic to provide
search, navigation, and completion commands that are powerful and precise.

To begin using Semantic, type M-x semantic-mode or click on the menu item named
‘Source Code Parsers (Semantic)’ in the ‘Tools’ menu. This enables Semantic mode, a
global minor mode.

When Semantic mode is enabled, Emacs automatically attempts to parses each file you
visit. Currently, Semantic understands C, C++, Scheme, Javascript, Java, HTML, and
Make. Within each parsed buffer, the following commands are available:

C-c , j Prompt for the name of a function defined in the current file, and move point
there (semantic-complete-jump-local).

C-c , J Prompt for the name of a function defined in any file Emacs has parsed, and
move point there (semantic-complete-jump).

C-c , SPC Display a list of possible completions for the symbol at point (semantic-
complete-analyze-inline). This also activates a set of special key bindings
for choosing a completion: RET accepts the current completion, M-n and M-p

cycle through possible completions, TAB completes as far as possible and then
cycles, and C-g or any other key aborts completion.

C-c , l Display a list of the possible completions of the symbol at point, in another
window (semantic-analyze-possible-completions).

In addition to the above commands, the Semantic package provides a variety of other ways to
make use of parser information. For instance, you can use it to display a list of completions
when Emacs is idle.

23.11 Other Features Useful for Editing Programs

Some Emacs commands that aren’t designed specifically for editing programs are useful for
that nonetheless.

The Emacs commands that operate on words, sentences and paragraphs are useful for
editing code. Most symbols names contain words (see Section 22.1 [Words], page 198), while
sentences can be found in strings and comments (see Section 22.2 [Sentences], page 199).
As for paragraphs, they are defined in most programming language modes to begin and end
at blank lines (see Section 22.3 [Paragraphs], page 200). Therefore, judicious use of blank
lines to make the program clearer will also provide useful chunks of text for the paragraph
commands to work on. Auto Fill mode, if enabled in a programming language major mode,
indents the new lines which it creates.

2 Regular expressions and syntax tables.

Chapter 23: Editing Programs 246

Electric Layout mode (M-x electric-layout-mode) is a global minor mode that auto-
matically inserts newlines when you type certain characters; for example, ‘{’, ‘}’ and ‘;’ in
Javascript mode.

Apart from Hideshow mode (see Section 23.7 [Hideshow], page 243), another way to
selectively display parts of a program is to use the selective display feature (see Section 11.17
[Selective Display], page 79). Programming modes often also support Outline minor mode
(see Section 22.8 [Outline Mode], page 207), which can be used with the Foldout package
(see Section 22.8.5 [Foldout], page 211).

23.12 C and Related Modes

This section gives a brief description of the special features available in C, C++, Objective-C,
Java, CORBA IDL, Pike and AWK modes. (These are called “C mode and related modes”.)
For more details, see the CC mode Info manual, which is distributed with Emacs.

23.12.1 C Mode Motion Commands

This section describes commands for moving point, in C mode and related modes.

C-M-a

C-M-e Move point to the beginning or end of the current function or top-level defi-
nition. In languages with enclosing scopes (such as C++’s classes) the current
function is the immediate one, possibly inside a scope. Otherwise it is the one
defined by the least enclosing braces. (By contrast, beginning-of-defun and
end-of-defun search for braces in column zero.) See Section 23.2.2 [Moving
by Defuns], page 231.

C-c C-u Move point back to the containing preprocessor conditional, leaving the mark
behind. A prefix argument acts as a repeat count. With a negative argument,
move point forward to the end of the containing preprocessor conditional.

‘#elif’ is equivalent to ‘#else’ followed by ‘#if’, so the function will stop at a
‘#elif’ when going backward, but not when going forward.

C-c C-p Move point back over a preprocessor conditional, leaving the mark behind.
A prefix argument acts as a repeat count. With a negative argument, move
forward.

C-c C-n Move point forward across a preprocessor conditional, leaving the mark behind.
A prefix argument acts as a repeat count. With a negative argument, move
backward.

M-a Move point to the beginning of the innermost C statement (c-beginning-of-
statement). If point is already at the beginning of a statement, move to the
beginning of the preceding statement. With prefix argument n, move back n −
1 statements.

In comments or in strings which span more than one line, this command moves
by sentences instead of statements.

M-e Move point to the end of the innermost C statement or sentence; like M-a except
that it moves in the other direction (c-end-of-statement).

Chapter 23: Editing Programs 247

23.12.2 Electric C Characters

In C mode and related modes, certain printing characters are electric—in addition to in-
serting themselves, they also reindent the current line, and optionally also insert newlines.
The “electric” characters are {, }, :, #, ;, ,, <, >, /, *, (, and).

You might find electric indentation inconvenient if you are editing chaotically indented
code. If you are new to CC Mode, you might find it disconcerting. You can toggle electric
action with the command C-c C-l; when it is enabled, ‘/l’ appears in the mode line after
the mode name:

C-c C-l Toggle electric action (c-toggle-electric-state). With a positive prefix ar-
gument, this command enables electric action, with a negative one it disables
it.

Electric characters insert newlines only when, in addition to the electric state, the auto-
newline feature is enabled (indicated by ‘/la’ in the mode line after the mode name). You
can turn this feature on or off with the command C-c C-a:

C-c C-a Toggle the auto-newline feature (c-toggle-auto-newline). With a prefix ar-
gument, this command turns the auto-newline feature on if the argument is
positive, and off if it is negative.

Usually the CC Mode style configures the exact circumstances in which Emacs inserts
auto-newlines. You can also configure this directly. See Section “Custom Auto-newlines”
in The CC Mode Manual.

23.12.3 Hungry Delete Feature in C

If you want to delete an entire block of whitespace at point, you can use hungry deletion.
This deletes all the contiguous whitespace either before point or after point in a single
operation. Whitespace here includes tabs and newlines, but not comments or preprocessor
commands.

C-c C-DEL

C-c DEL Delete the entire block of whitespace preceding point (c-hungry-delete-
backwards).

C-c C-d

C-c C-DELETE

C-c DELETE

Delete the entire block of whitespace after point (c-hungry-delete-forward).

As an alternative to the above commands, you can enable hungry delete mode. When
this feature is enabled (indicated by ‘/h’ in the mode line after the mode name), a single
DEL deletes all preceding whitespace, not just one space, and a single C-c C-d (but not
plain DELETE) deletes all following whitespace.

M-x c-toggle-hungry-state

Toggle the hungry-delete feature (c-toggle-hungry-state). With a prefix
argument, this command turns the hungry-delete feature on if the argument is
positive, and off if it is negative.

The variable c-hungry-delete-key controls whether the hungry-delete feature is en-
abled.

Chapter 23: Editing Programs 248

23.12.4 Other Commands for C Mode

C-c C-w

M-x subword-mode

Enable (or disable) subword mode. In subword mode, Emacs’s word commands
recognize upper case letters in ‘StudlyCapsIdentifiers’ as word boundaries.
This is indicated by the flag ‘/w’ on the mode line after the mode name (e.g.
‘C/law’). You can even use M-x subword-mode in non-CC Mode buffers.

In the GNU project, we recommend using underscores to separate words within
an identifier in C or C++, rather than using case distinctions.

M-x c-context-line-break

This command inserts a line break and indents the new line in a manner appro-
priate to the context. In normal code, it does the work of C-j (newline-and-
indent), in a C preprocessor line it additionally inserts a ‘\’ at the line break,
and within comments it’s like M-j (c-indent-new-comment-line).

c-context-line-break isn’t bound to a key by default, but it needs a binding
to be useful. The following code will bind it to C-j. We use c-initialization-
hook here to make sure the keymap is loaded before we try to change it.

(defun my-bind-clb ()

(define-key c-mode-base-map "\C-j" ’c-context-line-break))

(add-hook ’c-initialization-hook ’my-bind-clb)

C-M-h Put mark at the end of a function definition, and put point at the beginning
(c-mark-function).

M-q Fill a paragraph, handling C and C++ comments (c-fill-paragraph). If any
part of the current line is a comment or within a comment, this command fills
the comment or the paragraph of it that point is in, preserving the comment
indentation and comment delimiters.

C-c C-e Run the C preprocessor on the text in the region, and show the result, which
includes the expansion of all the macro calls (c-macro-expand). The buffer
text before the region is also included in preprocessing, for the sake of macros
defined there, but the output from this part isn’t shown.

When you are debugging C code that uses macros, sometimes it is hard to figure
out precisely how the macros expand. With this command, you don’t have to
figure it out; you can see the expansions.

C-c C-\ Insert or align ‘\’ characters at the ends of the lines of the region (c-backslash-
region). This is useful after writing or editing a C macro definition.

If a line already ends in ‘\’, this command adjusts the amount of whitespace
before it. Otherwise, it inserts a new ‘\’. However, the last line in the region is
treated specially; no ‘\’ is inserted on that line, and any ‘\’ there is deleted.

M-x cpp-highlight-buffer

Highlight parts of the text according to its preprocessor conditionals. This
command displays another buffer named ‘*CPP Edit*’, which serves as a graphic
menu for selecting how to display particular kinds of conditionals and their

Chapter 23: Editing Programs 249

contents. After changing various settings, click on ‘[A]pply these settings’
(or go to that buffer and type a) to rehighlight the C mode buffer accordingly.

C-c C-s Display the syntactic information about the current source line (c-
show-syntactic-information). This information directs how the line is
indented.

M-x cwarn-mode

M-x global-cwarn-mode

CWarn minor mode highlights certain suspicious C and C++ constructions:

• Assignments inside expressions.

• Semicolon following immediately after ‘if’, ‘for’, and ‘while’ (except after
a ‘do ... while’ statement);

• C++ functions with reference parameters.

You can enable the mode for one buffer with the command M-x cwarn-mode,
or for all suitable buffers with the command M-x global-cwarn-mode or by
customizing the variable global-cwarn-mode. You must also enable Font Lock
mode to make it work.

M-x hide-ifdef-mode

Hide-ifdef minor mode hides selected code within ‘#if’ and ‘#ifdef’ preproces-
sor blocks. If you change the variable hide-ifdef-shadow to t, Hide-ifdef mi-
nor mode “shadows” preprocessor blocks by displaying them with a less promi-
nent face, instead of hiding them entirely. See the documentation string of
hide-ifdef-mode for more information.

M-x ff-find-related-file

Find a file “related” in a special way to the file visited by the current buffer.
Typically this will be the header file corresponding to a C/C++ source file, or
vice versa. The variable ff-related-file-alist specifies how to compute
related file names.

23.13 Asm Mode

Asm mode is a major mode for editing files of assembler code. It defines these commands:

TAB tab-to-tab-stop.

C-j Insert a newline and then indent using tab-to-tab-stop.

: Insert a colon and then remove the indentation from before the label preceding
colon. Then do tab-to-tab-stop.

; Insert or align a comment.

The variable asm-comment-char specifies which character starts comments in assembler
syntax.

Chapter 24: Compiling and Testing Programs 250

24 Compiling and Testing Programs

The previous chapter discusses the Emacs commands that are useful for making changes in
programs. This chapter deals with commands that assist in the process of compiling and
testing programs.

24.1 Running Compilations under Emacs

Emacs can run compilers for languages such as C and Fortran, feeding the compilation log
into an Emacs buffer. It can also parse the error messages and show you where the errors
occurred.

M-x compile

Run a compiler asynchronously under Emacs, with error messages going to the
‘*compilation*’ buffer.

M-x recompile

Invoke a compiler with the same command as in the last invocation of M-x

compile.

M-x kill-compilation

Kill the running compilation subprocess.

To run make or another compilation command, type M-x compile. This reads a shell
command line using the minibuffer, and then executes the command by running a shell
as a subprocess (or inferior process) of Emacs. The output is inserted in a buffer named
‘*compilation*’. The current buffer’s default directory is used as the working directory for
the execution of the command; normally, therefore, compilation takes place in this directory.

The default compilation command is ‘make -k’, which is usually correct for programs
compiled using the make utility (the ‘-k’ flag tells make to continue compiling as much as
possible after an error). See Section “Make” in GNU Make Manual. If you have done M-x

compile before, the command that you specified is automatically stored in the variable
compile-command; this is used as the default the next time you type M-x compile. A file
can also specify a file-local value for compile-command (see Section 33.2.4 [File Variables],
page 410).

Starting a compilation displays the ‘*compilation*’ buffer in another window but does
not select it. While the compilation is running, the word ‘run’ is shown in the major mode
indicator for the ‘*compilation*’ buffer, and the word ‘Compiling’ appears in all mode
lines. You do not have to keep the ‘*compilation*’ buffer visible while compilation is
running; it continues in any case. When the compilation ends, for whatever reason, the
mode line of the ‘*compilation*’ buffer changes to say ‘exit’ (followed by the exit code:
‘[0]’ for a normal exit), or ‘signal’ (if a signal terminated the process).

If you want to watch the compilation transcript as it appears, switch to the
‘*compilation*’ buffer and move point to the end of the buffer. When point is at the end,
new compilation output is inserted above point, which remains at the end. Otherwise,
point remains fixed while compilation output is added at the end of the buffer.

If you change the variable compilation-scroll-output to a non-nil value, the
‘*compilation*’ buffer scrolls automatically to follow the output. If the value is

Chapter 24: Compiling and Testing Programs 251

first-error, scrolling stops when the first error appears, leaving point at that error. For
any other non-nil value, scrolling continues until there is no more output.

To rerun the last compilation with the same command, type M-x recompile. This
reuses the compilation command from the last invocation of M-x compile. It also reuses
the ‘*compilation*’ buffer and starts the compilation in its default directory, which is the
directory in which the previous compilation was started.

Starting a new compilation also kills any compilation already running in
‘*compilation*’, as the buffer can only handle one compilation at any time. However,
M-x compile asks for confirmation before actually killing a compilation that is running.
You can also kill the compilation process with M-x kill-compilation.

To run two compilations at once, start the first one, then rename the ‘*compilation*’
buffer (perhaps using rename-uniquely; see Section 16.3 [Misc Buffer], page 141), then
switch buffers and start the other compilation. This will create a new ‘*compilation*’
buffer.

You can control the environment passed to the compilation command with the variable
compilation-environment. Its value is a list of environment variable settings; each element
should be a string of the form "envvarname=value". These environment variable settings
override the usual ones.

24.2 Compilation Mode

The ‘*compilation*’ buffer uses a major mode called Compilation mode. Compilation
mode turns each error message in the buffer into a hyperlink; you can move point to it and
type RET, or click on it with the mouse (see Section 18.3 [Mouse References], page 155), to
visit the locus of the error message in a separate window. The locus is the specific position
in a file where that error occurred.

If you change the variable compilation-auto-jump-to-first-error to a non-nil
value, Emacs automatically visits the locus of the first error message that appears in the
‘*compilation*’ buffer.

Compilation mode provides the following additional commands. These commands can
also be used in ‘*grep*’ buffers, where the hyperlinks are search matches rather than error
messages (see Section 24.4 [Grep Searching], page 253).

M-g M-n

M-g n

C-x ‘ Visit the locus of the next error message or match (next-error).

M-g M-p

M-g p Visit the locus of the previous error message or match (previous-error).

M-n Move point to the next error message or match, without visiting its locus
(compilation-next-error).

M-p Move point to the previous error message or match, without visiting its locus
(compilation-previous-error).

M-} Move point to the next error message or match occurring in a different file
(compilation-next-file).

Chapter 24: Compiling and Testing Programs 252

M-{ Move point to the previous error message or match occurring in a different file
(compilation-previous-file).

C-c C-f Toggle Next Error Follow minor mode, which makes cursor motion in the com-
pilation buffer produce automatic source display.

To visit errors sequentially, type C-x ‘ (next-error), or equivalently M-g M-n or M-g n.
This command can be invoked from any buffer, not just a Compilation mode buffer. The
first time you invoke it after a compilation, it visits the locus of the first error message.
Each subsequent C-x ‘ visits the next error, in a similar fashion. If you visit a specific error
with RET or a mouse click in the ‘*compilation*’ buffer, subsequent C-x ‘ commands
advance from there. When C-x ‘ finds no more error messages to visit, it signals an error.
C-u C-x ‘ starts again from the beginning of the compilation buffer, and visits the first
locus.

M-g M-p or M-g p (previous-error) iterates through errors in the opposite direction.

The next-error and previous-error commands don’t just act on the errors or matches
listed in ‘*compilation*’ and ‘*grep*’ buffers; they also know how to iterate through error
or match lists produced by other commands, such as M-x occur (see Section 12.10 [Other
Repeating Search], page 100). If you are already in a buffer containing error messages or
matches, those are the ones that are iterated through; otherwise, Emacs looks for a buffer
containing error messages or matches amongst the windows of the selected frame, then for
one that next-error or previous-error previously iterated through, and finally amongst
all other buffers. If the buffer chosen for iterating through is not currently displayed in a
window, it will be displayed.

By default, the next-error and previous-error commands skip less important mes-
sages. The variable compilation-skip-threshold controls this. The default value, 1,
means to skip anything less important than a warning. A value of 2 means to skip anything
less important than an error, while 0 means not to skip any messages.

When Emacs visits the locus of an error message, it momentarily highlights the relevant
source line. The duration of this highlight is determined by the variable next-error-

highlight.

If the ‘*compilation*’ buffer is shown in a window with a left fringe (see Section 11.14
[Fringes], page 77), the locus-visiting commands put an arrow in the fringe, pointing to the
current error message. If the window has no left fringe, such as on a text terminal, these
commands scroll the window so that the current message is at the top of the window. If you
change the variable compilation-context-lines to an integer value n, these commands
scroll the window so that the current error message is n lines from the top, whether or not
there is a fringe; the default value, nil, gives the behavior described above.

To parse messages from the compiler, Compilation mode uses the variable compilation-
error-regexp-alist which lists various error message formats and tells Emacs how to
extract the locus from each. A similar variable, grep-regexp-alist, tells Emacs how to
parse output from a grep command (see Section 24.4 [Grep Searching], page 253).

Compilation mode also defines the keys SPC and DEL to scroll by screenfuls; M-n

(compilation-next-error) and M-p (compilation-previous-error) to move to the next
or previous error message; and M-{ (compilation-next-file) and M-} (compilation-
previous-file) to move to the next or previous error message for a different source file.

Chapter 24: Compiling and Testing Programs 253

You can type C-c C-f to toggle Next Error Follow mode. In this minor mode, ordinary
cursor motion in the compilation buffer automatically updates the source buffer, i.e. moving
the cursor over an error message causes the locus of that error to be displayed.

The features of Compilation mode are also available in a minor mode called Compi-
lation Minor mode. This lets you parse error messages in any buffer, not just a normal
compilation output buffer. Type M-x compilation-minor-mode to enable the minor mode.
For instance, in an Rlogin buffer (see Section 31.3.10 [Remote Host], page 377), Compila-
tion minor mode automatically accesses remote source files by FTP (see Section 15.1 [File
Names], page 115).

24.3 Subshells for Compilation

The M-x compile command uses a shell to run the compilation command, but specifies
the option for a noninteractive shell. This means, in particular, that the shell should start
with no prompt. If you find your usual shell prompt making an unsightly appearance in
the ‘*compilation*’ buffer, it means you have made a mistake in your shell’s init file by
setting the prompt unconditionally. (This init file may be named ‘.bashrc’, ‘.profile’,
‘.cshrc’, ‘.shrc’, etc., depending on what shell you use.) The shell init file should set the
prompt only if there already is a prompt. Here’s how to do it in bash:

if ["${PS1+set}" = set]

then PS1=...

fi

And here’s how to do it in csh:

if ($?prompt) set prompt = ...

Emacs does not expect a compiler process to launch asynchronous subprocesses; if it
does, and they keep running after the main compiler process has terminated, Emacs may
kill them or their output may not arrive in Emacs. To avoid this problem, make the main
compilation process wait for its subprocesses to finish. In a shell script, you can do this
using ‘$!’ and ‘wait’, like this:

(sleep 10; echo 2nd)& pid=$! # Record pid of subprocess
echo first message

wait $pid # Wait for subprocess

If the background process does not output to the compilation buffer, so you only need to
prevent it from being killed when the main compilation process terminates, this is sufficient:

nohup command; sleep 1

24.4 Searching with Grep under Emacs

Just as you can run a compiler from Emacs and then visit the lines with compilation errors,
you can also run grep and then visit the lines on which matches were found. This works
by treating the matches reported by grep as if they were “errors”. The output buffer uses
Grep mode, which is a variant of Compilation mode (see Section 24.2 [Compilation Mode],
page 251).

M-x grep

M-x lgrep Run grep asynchronously under Emacs, listing matching lines in the buffer
named ‘*grep*’.

Chapter 24: Compiling and Testing Programs 254

M-x grep-find

M-x find-grep

M-x rgrep Run grep via find, and collect output in the ‘*grep*’ buffer.

M-x zrgrep

Run zgrep and collect output in the ‘*grep*’ buffer.

M-x kill-grep

Kill the running grep subprocess.

To run grep, type M-x grep, then enter a command line that specifies how to run
grep. Use the same arguments you would give grep when running it normally: a grep-
style regexp (usually in single-quotes to quote the shell’s special characters) followed by file
names, which may use wildcards. If you specify a prefix argument for M-x grep, it finds the
tag (see Section 25.3 [Tags], page 286) in the buffer around point, and puts that into the
default grep command.

Your command need not simply run grep; you can use any shell command that produces
output in the same format. For instance, you can chain grep commands, like this:

grep -nH -e foo *.el | grep bar | grep toto

The output from grep goes in the ‘*grep*’ buffer. You can find the corresponding lines
in the original files using C-x ‘, RET, and so forth, just like compilation errors.

Some grep programs accept a ‘--color’ option to output special markers around
matches for the purpose of highlighting. You can make use of this feature by setting
grep-highlight-matches to t. When displaying a match in the source buffer, the exact
match will be highlighted, instead of the entire source line.

The command M-x grep-find (also available as M-x find-grep) is similar to M-x grep,
but it supplies a different initial default for the command—one that runs both find and
grep, so as to search every file in a directory tree. See also the find-grep-dired command,
in Section 27.15 [Dired and Find], page 314.

The commands M-x lgrep (local grep) and M-x rgrep (recursive grep) are more user-
friendly versions of grep and grep-find, which prompt separately for the regular expression
to match, the files to search, and the base directory for the search. Case sensitivity of the
search is controlled by the current value of case-fold-search. The command M-x zrgrep

is similar to M-x rgrep, but it calls zgrep instead of grep to search the contents of gzipped
files.

These commands build the shell commands based on the variables grep-template (for
lgrep) and grep-find-template (for rgrep). The files to search can use aliases defined in
the variable grep-files-aliases.

Directories listed in the variable grep-find-ignored-directories are automatically
skipped by M-x rgrep. The default value includes the data directories used by various
version control systems.

24.5 Finding Syntax Errors On The Fly

Flymake mode is a minor mode that performs on-the-fly syntax checking for many pro-
gramming and markup languages, including C, C++, Perl, HTML, and TEX/LaTEX. It is
somewhat analogous to Flyspell mode, which performs spell checking for ordinary human

Chapter 24: Compiling and Testing Programs 255

languages in a similar fashion (see Section 13.4 [Spelling], page 104). As you edit a file,
Flymake mode runs an appropriate syntax checking tool in the background, using a tempo-
rary copy of the buffer. It then parses the error and warning messages, and highlights the
erroneous lines in the buffer. The syntax checking tool used depends on the language; for
example, for C/C++ files this is usually the C compiler. Flymake can also use build tools
such as make for checking complicated projects.

To enable Flymake mode, type M-x flymake-mode. You can jump to the errors that it
finds by using M-x flymake-goto-next-error and M-x flymake-goto-prev-error. Use
the command M-x flymake-display-err-menu-for-current-line to display any error
messages associated with the current line.

For more details about using Flymake, see the Flymake Info manual, which is distributed
with Emacs.

24.6 Running Debuggers Under Emacs

The GUD (Grand Unified Debugger) library provides an Emacs interface to a wide variety
of symbolic debuggers. It can run the GNU Debugger (GDB), as well as DBX, SDB, XDB,
Perl’s debugging mode, the Python debugger PDB, and the Java Debugger JDB.

Emacs provides a special interface to GDB, which uses extra Emacs windows to display
the state of the debugged program. See Section 24.6.5 [GDB Graphical Interface], page 259.

Emacs also has a built-in debugger for Emacs Lisp programs. See Section “The Lisp
Debugger” in the Emacs Lisp Reference Manual.

24.6.1 Starting GUD

There are several commands for starting a debugger subprocess, each corresponding to a
particular debugger program.

M-x gdb Run GDB as a subprocess, and interact with it via an IDE-like Emacs interface.
See Section 24.6.5 [GDB Graphical Interface], page 259, for more information
about this command.

M-x gud-gdb

Run GDB, using a GUD interaction buffer for input and output to the GDB
subprocess (see Section 24.6.2 [Debugger Operation], page 256). If such a buffer
already exists, switch to it; otherwise, create the buffer and switch to it.

The other commands in this list do the same, for other debugger programs.

M-x perldb

Run the Perl interpreter in debug mode.

M-x jdb Run the Java debugger.

M-x pdb Run the Python debugger.

M-x dbx Run the DBX debugger.

M-x xdb Run the XDB debugger.

M-x sdb Run the SDB debugger.

Chapter 24: Compiling and Testing Programs 256

Each of these commands reads a command line to invoke the debugger, using the mini-
buffer. The minibuffer’s initial contents contain the standard executable name and options
for the debugger, and sometimes also a guess for the name of the executable file you want to
debug. Shell wildcards and variables are not allowed in this command line. Emacs assumes
that the first command argument which does not start with a ‘-’ is the executable file name.

Tramp provides a facility for remote debugging, whereby both the debugger and the
program being debugged are on the same remote host. See Section “Running a debugger
on a remote host” in The Tramp Manual, for details. This is separate from GDB’s remote
debugging feature, where the program and the debugger run on different machines (see
Section “Debugging Remote Programs” in The GNU debugger).

24.6.2 Debugger Operation

The GUD interaction buffer is an Emacs buffer which is used to send text commands to a
debugger subprocess, and record its output. This is the basic interface for interacting with
a debugger, used by M-x gud-gdb and other commands listed in the preceding section. The
M-x gdb command extends this interface with additional specialized buffers for controlling
breakpoints, stack frames, and other aspects of the debugger state (see Section 24.6.5 [GDB
Graphical Interface], page 259).

The GUD interaction buffer uses a variant of Shell mode, so the Emacs commands
defined by Shell mode are available (see Section 31.3.3 [Shell Mode], page 370). Completion
is available for most debugger commands (see Section 5.3 [Completion], page 28), and you
can use the usual Shell mode history commands to repeat them. See the next section for
special commands that can be used in the GUD interaction buffer.

As you debug a program, Emacs displays the relevant source files by visiting them in
Emacs buffers, with an arrow in the left fringe indicating the current execution line. (On
a text terminal, the arrow appears as ‘=>’, overlaid on the first two text columns.) Moving
point in such a buffer does not move the arrow. You are free to edit these source files, but
note that inserting or deleting lines will throw off the arrow’s positioning, as Emacs has no
way to figure out which edited source line corresponds to the line reported by the debugger
subprocess. To update this information, you typically have to recompile and restart the
program.

GUD Tooltip mode is a global minor mode that adds tooltip support to GUD. To toggle
this mode, type M-x gud-tooltip-mode. It is disabled by default. If enabled, you can move
the mouse cursor over a variable to show its value in a tooltip (see Section 18.17 [Tooltips],
page 165); this takes effect in the GUD interaction buffer, and in all source buffers with
major modes listed in the variable gud-tooltip-modes. If the variable gud-tooltip-echo-
area is non-nil, values are shown in the echo area instead of a tooltip.

When using GUD Tooltip mode with M-x gud-gdb, you should note that displaying an
expression’s value in GDB can sometimes expand a macro, potentially causing side effects
in the debugged program. If you use the M-x gdb interface, this problem does not occur,
as there is special code to avoid side-effects; furthermore, you can display macro definitions
associated with an identifier when the program is not executing.

24.6.3 Commands of GUD

GUD provides commands for setting and clearing breakpoints, selecting stack frames, and
stepping through the program.

Chapter 24: Compiling and Testing Programs 257

C-x SPC Set a breakpoint on the source line that point is on.

C-x SPC (gud-break), when called in a source buffer, sets a debugger breakpoint on the
current source line. This command is available only after starting GUD. If you call it in a
buffer that is not associated with any debugger subprocess, it signals a error.

The following commands are available both in the GUD interaction buffer and globally,
but with different key bindings. The keys starting with C-c are available only in the GUD
interaction buffer, while those starting with C-x C-a are available globally. Some of these
commands are also available via the tool bar; some are not supported by certain debuggers.

C-c C-l

C-x C-a C-l

Display, in another window, the last source line referred to in the GUD inter-
action buffer (gud-refresh).

C-c C-s

C-x C-a C-s

Execute the next single line of code (gud-step). If the line contains a function
call, execution stops after entering the called function.

C-c C-n

C-x C-a C-n

Execute the next single line of code, stepping across function calls without
stopping inside the functions (gud-next).

C-c C-i

C-x C-a C-i

Execute a single machine instruction (gud-stepi).

C-c C-p

C-x C-a C-p

Evaluate the expression at point (gud-print). If Emacs does not print the
exact expression that you want, mark it as a region first.

C-c C-r

C-x C-a C-r

Continue execution without specifying any stopping point. The program will
run until it hits a breakpoint, terminates, or gets a signal that the debugger is
checking for (gud-cont).

C-c C-d

C-x C-a C-d

Delete the breakpoint(s) on the current source line, if any (gud-remove). If you
use this command in the GUD interaction buffer, it applies to the line where
the program last stopped.

C-c C-t

C-x C-a C-t

Set a temporary breakpoint on the current source line, if any (gud-tbreak).
If you use this command in the GUD interaction buffer, it applies to the line
where the program last stopped.

Chapter 24: Compiling and Testing Programs 258

C-c <

C-x C-a < Select the next enclosing stack frame (gud-up). This is equivalent to the GDB
command ‘up’.

C-c >

C-x C-a > Select the next inner stack frame (gud-down). This is equivalent to the GDB
command ‘down’.

C-c C-u

C-x C-a C-u

Continue execution to the current line (gud-until). The program will run until
it hits a breakpoint, terminates, gets a signal that the debugger is checking for,
or reaches the line on which the cursor currently sits.

C-c C-f

C-x C-a C-f

Run the program until the selected stack frame returns or stops for some other
reason (gud-finish).

If you are using GDB, these additional key bindings are available:

C-x C-a C-j

Only useful in a source buffer, gud-jump transfers the program’s execution point
to the current line. In other words, the next line that the program executes
will be the one where you gave the command. If the new execution line is in
a different function from the previously one, GDB prompts for confirmation
since the results may be bizarre. See the GDB manual entry regarding jump

for details.

TAB With GDB, complete a symbol name (gud-gdb-complete-command). This key
is available only in the GUD interaction buffer.

These commands interpret a numeric argument as a repeat count, when that makes
sense.

Because TAB serves as a completion command, you can’t use it to enter a tab as input
to the program you are debugging with GDB. Instead, type C-q TAB to enter a tab.

24.6.4 GUD Customization

On startup, GUD runs one of the following hooks: gdb-mode-hook, if you are using GDB;
dbx-mode-hook, if you are using DBX; sdb-mode-hook, if you are using SDB; xdb-mode-
hook, if you are using XDB; perldb-mode-hook, for Perl debugging mode; pdb-mode-hook,
for PDB; jdb-mode-hook, for JDB. See Section 33.2.2 [Hooks], page 408.

The gud-def Lisp macro (see Section “Defining Macros” in the Emacs Lisp Reference
Manual) provides a convenient way to define an Emacs command that sends a particular
command string to the debugger, and set up a key binding for in the GUD interaction
buffer:

(gud-def function cmdstring binding docstring)

This defines a command named function which sends cmdstring to the debugger process,
and gives it the documentation string docstring. You can then use the command function

Chapter 24: Compiling and Testing Programs 259

in any buffer. If binding is non-nil, gud-def also binds the command to C-c binding in
the GUD buffer’s mode and to C-x C-a binding generally.

The command string cmdstring may contain certain ‘%’-sequences that stand for data
to be filled in at the time function is called:

‘%f’ The name of the current source file. If the current buffer is the GUD buffer,
then the “current source file” is the file that the program stopped in.

‘%l’ The number of the current source line. If the current buffer is the GUD buffer,
then the “current source line” is the line that the program stopped in.

‘%e’ In transient-mark-mode the text in the region, if it is active. Otherwise the
text of the C lvalue or function-call expression at or adjacent to point.

‘%a’ The text of the hexadecimal address at or adjacent to point.

‘%p’ The numeric argument of the called function, as a decimal number. If the
command is used without a numeric argument, ‘%p’ stands for the empty string.

If you don’t use ‘%p’ in the command string, the command you define ignores
any numeric argument.

‘%d’ The name of the directory of the current source file.

‘%c’ Fully qualified class name derived from the expression surrounding point (jdb
only).

24.6.5 GDB Graphical Interface

The command M-x gdb starts GDB in an IDE-like interface, with specialized buffers for
controlling breakpoints, stack frames, and other aspects of the debugger state. It also
provides additional ways to control the debugging session with the mouse, such as clicking
in the fringe of a source buffer to set a breakpoint there.

To run GDB using just the GUD interaction buffer interface, without these additional
features, use M-x gud-gdb (see Section 24.6.1 [Starting GUD], page 255). You must use
this if you want to debug multiple programs within one Emacs session, as that is currently
unsupported by M-x gdb.

Internally, M-x gdb informs GDB that its “screen size” is unlimited; for correct operation,
you must not change GDB’s screen height and width values during the debugging session.

24.6.5.1 GDB User Interface Layout

If the variable gdb-many-windows is nil (the default), M-x gdb normally displays only the
GUD interaction buffer. However, if the variable gdb-show-main is also non-nil, it starts
with two windows: one displaying the GUD interaction buffer, and the other showing the
source for the main function of the program you are debugging.

If gdb-many-windows is non-nil, then M-x gdb displays the following frame layout:
+--------------------------------+--------------------------------+

| GUD interaction buffer | Locals/Registers buffer |

|--------------------------------+--------------------------------+

| Primary Source buffer | I/O buffer for debugged pgm |

|--------------------------------+--------------------------------+

| Stack buffer | Breakpoints/Threads buffer |

+--------------------------------+--------------------------------+

Chapter 24: Compiling and Testing Programs 260

However, if gdb-use-separate-io-buffer is nil, the I/O buffer does not appear and
the primary source buffer occupies the full width of the frame.

If you ever change the window layout, you can restore the “many windows” layout by typ-
ing M-x gdb-restore-windows. To toggle between the many windows layout and a simple
layout with just the GUD interaction buffer and a source file, type M-x gdb-many-windows.

You may also specify additional GDB-related buffers to display, either in the same
frame or a different one. Select the buffers you want by typing M-x gdb-display-

buffertype-buffer or M-x gdb-frame-buffertype-buffer, where buffertype is the
relevant buffer type, such as ‘breakpoints’. You can do the same with the menu bar, with
the ‘GDB-Windows’ and ‘GDB-Frames’ sub-menus of the ‘GUD’ menu.

When you finish debugging, kill the GUD interaction buffer with C-x k, which will also
kill all the buffers associated with the session. However you need not do this if, after
editing and re-compiling your source code within Emacs, you wish to continue debugging.
When you restart execution, GDB automatically finds the new executable. Keeping the
GUD interaction buffer has the advantage of keeping the shell history as well as GDB’s
breakpoints. You do need to check that the breakpoints in recently edited source files are
still in the right places.

24.6.5.2 Source Buffers

Mouse-1 (in fringe)
Set or clear a breakpoint on that line.

C-Mouse-1 (in fringe)
Enable or disable a breakpoint on that line.

Mouse-3 (in fringe)
Continue execution to that line.

C-Mouse-3 (in fringe)
Jump to that line.

On a graphical display, you can click Mouse-1 in the fringe of a source buffer, to set a
breakpoint on that line (see Section 11.14 [Fringes], page 77). A red dot appears in the
fringe, where you clicked. If a breakpoint already exists there, the click removes it. A
C-Mouse-1 click enables or disables an existing breakpoint; a breakpoint that is disabled,
but not unset, is indicated by a gray dot.

On a text terminal, or when fringes are disabled, enabled breakpoints are indicated with
a ‘B’ character in the left margin of the window. Disabled breakpoints are indicated with
‘b’. (The margin is only displayed if a breakpoint is present.)

A solid arrow in the left fringe of a source buffer indicates the line of the innermost frame
where the debugged program has stopped. A hollow arrow indicates the current execution
line of a higher-level frame. If you drag the arrow in the fringe with Mouse-1, that causes
execution to advance to the line where you release the button. Alternatively, you can click
Mouse-3 in the fringe to advance to that line. You can click C-Mouse-3 in the fringe to
jump to that line without executing the intermediate lines. This command allows you to
go backwards, which can be useful for running through code that has already executed, in
order to examine its execution in more detail.

Chapter 24: Compiling and Testing Programs 261

24.6.5.3 Breakpoints Buffer

The GDB Breakpoints buffer shows the breakpoints, watchpoints and catchpoints in the
debugger session. See Section “Breakpoints” in The GNU debugger. It provides the follow-
ing commands, which mostly apply to the current breakpoint (the breakpoint which point
is on):

SPC Enable/disable current breakpoint (gdb-toggle-breakpoint). On a graphical
display, this changes the color of the dot in the fringe of the source buffer at
that line. The dot is red when the breakpoint is enabled, and gray when it is
disabled.

D Delete the current breakpoint (gdb-delete-breakpoint).

RET Visit the source line for the current breakpoint (gdb-goto-breakpoint).

Mouse-2 Visit the source line for the breakpoint you click on.

When gdb-many-windows is non-nil, the GDB Breakpoints buffer shares its window
with the GDB Threads buffer. To switch from one to the other click with Mouse-1 on the
relevant button in the header line. If gdb-show-threads-by-default is non-nil, the GDB
Threads buffer is the one shown by default.

24.6.5.4 Threads Buffer

The GDB Threads buffer displays a summary of the threads in the debugged program. See
Section “Debugging programs with multiple threads” in The GNU debugger. To select a
thread, move point there and type RET (gdb-select-thread), or click on it with Mouse-2.
This also displays the associated source buffer, and updates the contents of the other GDB
buffers.

You can customize variables under gdb-buffers group to select fields included in GDB
Threads buffer.

gdb-thread-buffer-verbose-names

Show long thread names like ‘Thread 0x4e2ab70 (LWP 1983)’.

gdb-thread-buffer-arguments

Show arguments of thread top frames.

gdb-thread-buffer-locations

Show file information or library names.

gdb-thread-buffer-addresses

Show addresses for thread frames in threads buffer.

To view information for several threads simultaneously, use the following commands
from the GDB Threads buffer.

d Display disassembly buffer for the thread at current line (gdb-display-
disassembly-for-thread).

f Display the GDB Stack buffer for the thread at current line (gdb-display-
stack-for-thread).

l Display the GDB Locals buffer for the thread at current line (gdb-display-
locals-for-thread).

Chapter 24: Compiling and Testing Programs 262

r Display the GDB Registers buffer for the thread at current line (gdb-display-
registers-for-thread).

Their upper-case counterparts, D, F ,L and R, display the corresponding buffer in a new
frame.

When you create a buffer showing information about some specific thread, it becomes
bound to that thread and keeps showing actual information while you debug your pro-
gram. The mode indicator for each GDB buffer shows the number of thread it is showing
information about. The thread number is also included in the buffer name of bound buffers.

Further commands are available in the GDB Threads buffer which depend on the mode
of GDB that is used for controlling execution of your program. See Section 24.6.5.8 [Mul-
tithreaded Debugging], page 263.

24.6.5.5 Stack Buffer

The GDB Stack buffer displays a call stack, with one line for each of the nested subrou-
tine calls (stack frames) in the debugger session. See Section “Backtraces” in The GNU
debugger.

On graphical displays, the selected stack frame is indicated by an arrow in the fringe. On
text terminals, or when fringes are disabled, the selected stack frame is displayed in reverse
contrast. To select a stack frame, move point in its line and type RET (gdb-frames-
select), or click Mouse-2 on it. Doing so also updates the Locals buffer (described in the
next section).

24.6.5.6 Other GDB Buffers

Locals Buffer
This buffer displays the values of local variables of the current frame for simple
data types (see Section “Information on a frame” in The GNU debugger). Press
RET or click Mouse-2 on the value if you want to edit it.

Arrays and structures display their type only. With GDB 6.4 or later, you
can examine the value of the local variable at point by typing RET, or with
a Mouse-2 click. With earlier versions of GDB, use RET or Mouse-2 on the
type description (‘[struct/union]’ or ‘[array]’). See Section 24.6.5.7 [Watch
Expressions], page 263.

Registers Buffer
This buffer displays the values held by the registers (see Section “Registers” in
The GNU debugger). Press RET or click Mouse-2 on a register if you want to
edit its value. With GDB 6.4 or later, recently changed register values display
with font-lock-warning-face.

Assembler Buffer
The assembler buffer displays the current frame as machine code. An arrow
points to the current instruction, and you can set and remove breakpoints as
in a source buffer. Breakpoint icons also appear in the fringe or margin.

Memory Buffer
The memory buffer lets you examine sections of program memory (see Section
“Examining memory” in The GNU debugger). Click Mouse-1 on the appropri-
ate part of the header line to change the starting address or number of data

Chapter 24: Compiling and Testing Programs 263

items that the buffer displays. Alternatively, use S or N respectively. Click
Mouse-3 on the header line to select the display format or unit size for these
data items.

When gdb-many-windows is non-nil, the locals buffer shares its window with the regis-
ters buffer, just like breakpoints and threads buffers. To switch from one to the other, click
with Mouse-1 on the relevant button in the header line.

24.6.5.7 Watch Expressions

If you want to see how a variable changes each time your program stops, move point into
the variable name and click on the watch icon in the tool bar (gud-watch) or type C-x C-a

C-w. If you specify a prefix argument, you can enter the variable name in the minibuffer.

Each watch expression is displayed in the speedbar (see Section 18.9 [Speedbar],
page 161). Complex data types, such as arrays, structures and unions are represented in a
tree format. Leaves and simple data types show the name of the expression and its value
and, when the speedbar frame is selected, display the type as a tooltip. Higher levels show
the name, type and address value for pointers and just the name and type otherwise. Root
expressions also display the frame address as a tooltip to help identify the frame in which
they were defined.

To expand or contract a complex data type, click Mouse-2 or press SPC on the tag to
the left of the expression. Emacs asks for confirmation before expanding the expression if
its number of immediate children exceeds the value of the variable gdb-max-children.

To delete a complex watch expression, move point to the root expression in the speedbar
and type D (gdb-var-delete).

To edit a variable with a simple data type, or a simple element of a complex data type,
move point there in the speedbar and type RET (gdb-edit-value). Or you can click
Mouse-2 on a value to edit it. Either way, this reads the new value using the minibuffer.

If you set the variable gdb-show-changed-values to non-nil (the default value), Emacs
uses font-lock-warning-face to highlight values that have recently changed and shadow

face to make variables which have gone out of scope less noticeable. When a variable goes
out of scope you can’t edit its value.

If the variable gdb-delete-out-of-scope is non-nil (the default value), Emacs auto-
matically deletes watch expressions which go out of scope. Sometimes, when re-entering the
same function, it may be useful to set this value to nil so that you don’t need to recreate
the watch expression.

If the variable gdb-use-colon-colon-notation is non-nil, Emacs uses the ‘func-
tion::variable ’ format. This allows the user to display watch expressions which share
the same variable name. The default value is nil.

To automatically raise the speedbar every time the display of watch expressions updates,
set gdb-speedbar-auto-raise to non-nil. This can be useful if you are debugging with a
full screen Emacs frame.

24.6.5.8 Multithreaded Debugging

In GDB’s all-stop mode, whenever your program stops, all execution threads stop. Likewise,
whenever you restart the program, all threads start executing. See Section “All-Stop Mode”

Chapter 24: Compiling and Testing Programs 264

in The GNU debugger. For some multi-threaded targets, GDB supports a further mode
of operation, called non-stop mode, in which you can examine stopped program threads in
the debugger while other threads continue to execute freely. See Section “Non-Stop Mode”
in The GNU debugger. Versions of GDB prior to 7.0 do not support non-stop mode, and
it does not work on all targets.

The variable gdb-non-stop-setting determines whether Emacs runs GDB in all-stop
mode or non-stop mode. The default is t, which means it tries to use non-stop mode if that
is available. If you change the value to nil, or if non-stop mode is unavailable, Emacs runs
GDB in all-stop mode. The variable takes effect when Emacs begins a debugging session;
if you change its value, you should restart any active debugging session.

When a thread stops in non-stop mode, Emacs usually switches to that thread. If you
don’t want Emacs to do this switch if another stopped thread is already selected, change
the variable gdb-switch-when-another-stopped to nil.

Emacs can decide whether or not to switch to the stopped thread depending on the
reason which caused the stop. Customize the variable gdb-switch-reasons to select the
stop reasons which will cause a thread switch.

The variable gdb-stopped-hooks allows you to execute your functions whenever some
thread stops.

In non-stop mode, you can switch between different modes for GUD execution control
commands.

Non-stop/A
When gdb-gud-control-all-threads is t (the default value), interruption
and continuation commands apply to all threads, so you can halt or continue
all your threads with one command using gud-stop-subjob and gud-cont,
respectively. The ‘Go’ button is shown on the toolbar when at least one thread
is stopped, whereas ‘Stop’ button is shown when at least one thread is running.

Non-stop/T
When gdb-gud-control-all-threads is nil, only the current thread is
stopped/continued. ‘Go’ and ‘Stop’ buttons on the GUD toolbar are shown
depending on the state of current thread.

You can change the current value of gdb-gud-control-all-threads from the tool bar
or from ‘GUD->GDB-MI’ menu.

Stepping commands always apply to the current thread.

In non-stop mode, you can interrupt/continue your threads without selecting them.
Hitting i in threads buffer interrupts thread under point, c continues it, s steps through.
More such commands may be added in the future.

Note that when you interrupt a thread, it stops with the ‘signal received’ reason. If
that reason is included in your gdb-switch-reasons (it is by default), Emacs will switch
to that thread.

24.7 Executing Lisp Expressions

Emacs has major modes for several variants of Lisp. They use the same editing commands
as other programming language modes (see Chapter 23 [Programs], page 230). In addition,
they provide special commands for executing Lisp expressions.

Chapter 24: Compiling and Testing Programs 265

Emacs Lisp mode
The mode for editing Emacs Lisp source files. It defines C-M-x to evaluate the
current top-level Lisp expression. See Section 24.9 [Lisp Eval], page 266.

Lisp Interaction mode
The mode for an interactive Emacs Lisp session. It defines C-j to evaluate the
expression before point and insert its value in the buffer. See Section 24.10
[Lisp Interaction], page 267.

Lisp mode The mode for editing source files of programs that run in Lisps other than
Emacs Lisp. It defines C-M-x to evaluate the current top-level expression in an
external Lisp. See Section 24.11 [External Lisp], page 268.

Inferior Lisp mode
The mode for an interactive session with an external Lisp which is being run
as a subprocess (or inferior process) of Emacs.

Scheme mode
Like Lisp mode, but for Scheme programs.

Inferior Scheme mode
Like Inferior Lisp mode, but for Scheme.

24.8 Libraries of Lisp Code for Emacs

Emacs Lisp code is stored in files whose names conventionally end in ‘.el’. Such files are
automatically visited in Emacs Lisp mode.

Emacs Lisp code can be compiled into byte-code, which loads faster, takes up less space,
and executes faster. By convention, compiled Emacs Lisp code goes in a separate file whose
name ends in ‘.elc’. For example, the compiled code for ‘foo.el’ goes in ‘foo.elc’. See
Section “Byte Compilation” in the Emacs Lisp Reference Manual.

To load an Emacs Lisp file, type M-x load-file. This command reads a file name using
the minibuffer, and executes the contents of that file as Emacs Lisp code. It is not necessary
to visit the file first; this command reads the file directly from disk, not from an existing
Emacs buffer.

If an Emacs Lisp file is installed in the Emacs Lisp load path (defined below), you can load
it by typing M-x load-library, instead of using M-x load-file. The M-x load-library

command prompts for a library name rather than a file name; it searches through each
directory in the Emacs Lisp load path, trying to find a file matching that library name. If
the library name is ‘foo ’, it tries looking for files named ‘foo.elc’, ‘foo.el’, and lastly
just ‘foo ’; the first one found is loaded. This command prefers ‘.elc’ files over ‘.el’ files
because compiled files load and run faster. If it finds that ‘lib.el’ is newer than ‘lib.elc’,
it issues a warning, in case someone made changes to the ‘.el’ file and forgot to recompile
it, but loads the ‘.elc’ file anyway. (Due to this behavior, you can save unfinished edits to
Emacs Lisp source files, and not recompile until your changes are ready for use.)

Emacs Lisp programs usually load Emacs Lisp files using the load function. This is
similar to load-library, but is lower-level and accepts additional arguments. See Section
“How Programs Do Loading” in the Emacs Lisp Reference Manual.

The Emacs Lisp load path is specified by the variable load-path. Its value should be a
list of directory names (strings). These directories are searched, in the specified order, by

Chapter 24: Compiling and Testing Programs 266

the M-x load-library command, the lower-level load function, and other Emacs functions
that find Emacs Lisp libraries. A list entry in load-path can also have the special value
nil, which stands for the current default directory, but it is almost always a bad idea to
use this. (If you find yourself wishing that nil were in the list, most likely what you really
want is to use M-x load-file.)

The default value of load-path is a list of directories where the Lisp code for Emacs itself
is stored. If you have libraries of your own in another directory, you can add that directory
to the load path. Unlike most other variables described in this manual, load-path cannot
be changed via the Customize interface (see Section 33.1 [Easy Customization], page 398),
but you can add a directory to it by putting a line like this in your init file (see Section 33.4
[Init File], page 423):

(add-to-list ’load-path "/path/to/my/lisp/library")

Some commands are autoloaded: when you run them, Emacs automatically loads the
associated library first. For instance, the M-x compile command (see Section 24.1 [Com-
pilation], page 250) is autoloaded; if you call it, Emacs automatically loads the compile

library first. In contrast, the command M-x recompile is not autoloaded, so it is unavailable
until you load the compile library.

By default, Emacs refuses to load compiled Lisp files which were compiled with XEmacs,
a modified versions of Emacs—they can cause Emacs to crash. Set the variable load-

dangerous-libraries to t if you want to try loading them.

24.9 Evaluating Emacs Lisp Expressions

Emacs Lisp mode is the major mode for editing Emacs Lisp. Its mode command is M-x

emacs-lisp-mode.

Emacs provides several commands for evaluating Emacs Lisp expressions. You can use
these commands in Emacs Lisp mode, to test your Emacs Lisp code as it is being written.
For example, after re-writing a function, you can evaluate the function definition to make it
take effect for subsequent function calls. These commands are also available globally, and
can be used outside Emacs Lisp mode.

M-: Read a single Emacs Lisp expression in the minibuffer, evaluate it, and print
the value in the echo area (eval-expression).

C-x C-e Evaluate the Emacs Lisp expression before point, and print the value in the
echo area (eval-last-sexp).

C-M-x (in Emacs Lisp mode)
M-x eval-defun

Evaluate the defun containing or after point, and print the value in the echo
area (eval-defun).

M-x eval-region

Evaluate all the Emacs Lisp expressions in the region.

M-x eval-buffer

Evaluate all the Emacs Lisp expressions in the buffer.

Chapter 24: Compiling and Testing Programs 267

M-: (eval-expression) reads an expression using the minibuffer, and evaluates it. (Be-
fore evaluating the expression, the current buffer switches back to the buffer that was current
when you typed M-:, not the minibuffer into which you typed the expression.)

The command C-x C-e (eval-last-sexp) evaluates the Emacs Lisp expression preced-
ing point in the buffer, and displays the value in the echo area. When the result of an
evaluation is an integer, you can type C-x C-e a second time to display the value of the
integer result in additional formats (octal, hexadecimal, and character).

If M-: or C-x C-e is given a prefix argument, it inserts the value into the current buffer
at point, rather than displaying it in the echo area. The argument’s value does not matter.

The eval-defun command is bound to C-M-x in Emacs Lisp mode. It evaluates the top-
level Lisp expression containing or following point, and prints the value in the echo area.
In this context, a top-level expression is referred to as a “defun”, but it need not be an
actual defun (function definition). In particular, this command treats defvar expressions
specially. Normally, evaluating a defvar expression does nothing if the variable it defines
already has a value. But this command unconditionally resets the variable to the initial value
specified by the defvar; this is convenient for debugging Emacs Lisp programs. defcustom
and defface expressions are treated similarly. Note that the other commands documented
in this section do not have this special feature.

With a prefix argument, C-M-x instruments the function definition for Edebug, the
Emacs Lisp Debugger. See Section “Instrumenting” in the Emacs Lisp Reference Manual.

The command M-x eval-region parses the text of the region as one or more Lisp ex-
pressions, evaluating them one by one. M-x eval-buffer is similar but evaluates the entire
buffer.

The customizable variables eval-expression-print-level and eval-expression-

print-length control the maximum depth and length of lists to print in the result of
the evaluation commands before abbreviating them. eval-expression-debug-on-error

controls whether evaluation errors invoke the debugger when these commands are used; its
default is t.

24.10 Lisp Interaction Buffers

When Emacs starts up, it contains a buffer named ‘*scratch*’, which is provided for
evaluating Emacs Lisp expressions interactively. Its major mode is Lisp Interaction mode.
You can also enable Lisp Interaction mode by typing M-x lisp-interaction-mode.

In the ‘*scratch*’ buffer, and other Lisp Interaction mode buffers, C-j (eval-print-
last-sexp) evaluates the Lisp expression before point, and inserts the value at point. Thus,
as you type expressions into the buffer followed by C-j after each expression, the buffer
records a transcript of the evaluated expressions and their values. All other commands in
Lisp Interaction mode are the same as in Emacs Lisp mode.

At startup, the ‘*scratch*’ buffer contains a short message, in the form of a Lisp
comment, that explains what it is for. This message is controlled by the variable initial-

scratch-message, which should be either a string, or nil (which means to suppress the
message).

An alternative way of evaluating Emacs Lisp expressions interactively is to use Inferior
Emacs Lisp mode, which provides an interface rather like Shell mode (see Section 31.3.3

Chapter 24: Compiling and Testing Programs 268

[Shell Mode], page 370) for evaluating Emacs Lisp expressions. Type M-x ielm to cre-
ate an ‘*ielm*’ buffer which uses this mode. For more information, see that command’s
documentation.

24.11 Running an External Lisp

Lisp mode is the major mode for editing programs written in general-purpose Lisp dialects,
such as Common Lisp. Its mode command is M-x lisp-mode. Emacs uses Lisp mode
automatically for files whose names end in ‘.l’, ‘.lsp’, or ‘.lisp’.

You can run an external Lisp session as a subprocess or inferior process of Emacs, and
pass expressions to it to be evaluated. To begin an external Lisp session, type M-x run-lisp.
This runs the program named lisp, and sets it up so that both input and output go through
an Emacs buffer named ‘*inferior-lisp*’. To change the name of the Lisp program run
by M-x run-lisp, change the variable inferior-lisp-program.

The major mode for the ‘*lisp*’ buffer is Inferior Lisp mode, which combines the
characteristics of Lisp mode and Shell mode (see Section 31.3.3 [Shell Mode], page 370).
To send input to the Lisp session, go to the end of the ‘*lisp*’ buffer and type the input,
followed by RET. Terminal output from the Lisp session is automatically inserted in the
buffer.

When you edit a Lisp program in Lisp mode, you can type C-M-x (lisp-eval-defun)
to send an expression from the Lisp mode buffer to a Lisp session that you had started with
M-x run-lisp. The expression sent is the top-level Lisp expression at or following point.
The resulting value goes as usual into the ‘*inferior-lisp*’ buffer. Note that the effect of
C-M-x in Lisp mode is thus very similar to its effect in Emacs Lisp mode (see Section 24.9
[Lisp Eval], page 266), except that the expression is sent to a different Lisp environment
instead of being evaluated in Emacs.

The facilities for editing Scheme code, and for sending expressions to a Scheme sub-
process, are very similar. Scheme source files are edited in Scheme mode, which can be
explicitly enabled with M-x scheme-mode. You can initiate a Scheme session by typing
M-x run-scheme (the buffer for interacting with Scheme is named ‘*scheme*’), and send
expressions to it by typing C-M-x.

Chapter 25: Maintaining Large Programs 269

25 Maintaining Large Programs

This chapter describes Emacs features for maintaining large programs. If you are maintain-
ing a large Lisp program, then in addition to the features described here, you may find the
‘ERT’ (“Emacs Lisp Regression Testing”) library useful (see Section “ERT” in Emacs Lisp
Regression Testing).

25.1 Version Control

A version control system is a program that can record multiple versions of a source file,
storing information such as the creation time of each version, who made it, and a description
of what was changed.

The Emacs version control interface is called VC. VC commands work with several
different version control systems; currently, it supports GNU Arch, Bazaar, CVS, Git,
Mercurial, Monotone, RCS, SCCS/CSSC, and Subversion. Of these, the GNU project
distributes CVS, Arch, RCS, and Bazaar.

VC is enabled automatically whenever you visit a file governed by a version control
system. To disable VC entirely, set the customizable variable vc-handled-backends to
nil (see Section “Customizing VC” in Specialized Emacs Features).

25.1.1 Introduction to Version Control

VC allows you to use a version control system from within Emacs, integrating the version
control operations smoothly with editing. It provides a uniform interface for common
operations in many version control operations.

Some uncommon or intricate version control operations, such as altering repository set-
tings, are not supported in VC. You should perform such tasks outside Emacs, e.g. via the
command line.

This section provides a general overview of version control, and describes the version
control systems that VC supports. You can skip this section if you are already familiar
with the version control system you want to use.

25.1.1.1 Understanding the problems it addresses

Version control systems provide you with three important capabilities:

• Reversibility : the ability to back up to a previous state if you discover that some
modification you did was a mistake or a bad idea.

• Concurrency : the ability to have many people modifying the same collection of files
knowing that conflicting modifications can be detected and resolved.

• History : the ability to attach historical data to your data, such as explanatory com-
ments about the intention behind each change to it. Even for a programmer working
solo, change histories are an important aid to memory; for a multi-person project, they
are a vitally important form of communication among developers.

25.1.1.2 Supported Version Control Systems

VC currently works with many different version control systems, which it refers to as back
ends:

Chapter 25: Maintaining Large Programs 270

• SCCS was the first version control system ever built, and was long ago superseded by
more advanced ones. VC compensates for certain features missing in SCCS (e.g. tag
names for releases) by implementing them itself. Other VC features, such as multiple
branches, are simply unavailable. Since SCCS is non-free, we recommend avoiding it.

• CSSC is a free replacement for SCCS. You should use CSSC only if, for some reason,
you cannot use a more recent and better-designed version control system.

• RCS is the free version control system around which VC was initially built. It is
relatively primitive: it cannot be used over the network, and works at the level of
individual files. Almost everything you can do with RCS can be done through VC.

• CVS is the free version control system that was, until recently (circa 2008), used by
the majority of free software projects. Nowadays, it is slowly being superseded by
newer systems. CVS allows concurrent multi-user development either locally or over
the network. Unlike newer systems, it lacks support for atomic commits and file mov-
ing/renaming. VC supports all basic editing operations under CVS.

• Subversion (svn) is a free version control system designed to be similar to CVS but
without its problems (e.g., it supports atomic commits of filesets, and versioning of
directories, symbolic links, meta-data, renames, copies, and deletes).

• GNU Arch is one of the earliest decentralized version control systems (the other being
Monotone). See Section 25.1.1.3 [VCS Concepts], page 270, for a description of de-
centralized version control systems. It is no longer under active development, and has
been deprecated in favor of Bazaar.

• Git is a decentralized version control system originally invented by Linus Torvalds to
support development of Linux (his kernel). VC supports many common Git operations,
but others, such as repository syncing, must be done from the command line.

• Mercurial (hg) is a decentralized version control system broadly resembling Git. VC
supports most Mercurial commands, with the exception of repository sync operations.

• Bazaar (bzr) is a decentralized version control system that supports both repository-
based and decentralized versioning. VC supports most basic editing operations under
Bazaar.

25.1.1.3 Concepts of Version Control

When a file is under version control, we say that it is registered in the version control
system. The system has a repository which stores both the file’s present state and its change
history—enough to reconstruct the current version or any earlier version. The repository
also contains other information, such as log entries that describe the changes made to each
file.

The copy of a version-controlled file that you actually edit is called the work file. You
can change each work file as you would an ordinary file. After you are done with a set
of changes, you may commit (or check in) the changes; this records the changes in the
repository, along with a descriptive log entry.

A directory tree of work files is called a working tree.

Each commit creates a new revision in the repository. The version control system keeps
track of all past revisions and the changes that were made in each revision. Each revision
is named by a revision ID, whose format depends on the version control system; in the
simplest case, it is just an integer.

Chapter 25: Maintaining Large Programs 271

To go beyond these basic concepts, you will need to understand three aspects in which
version control systems differ. As explained in the next three sections, they can be lock-
based or merge-based; file-based or changeset-based; and centralized or decentralized. VC
handles all these modes of operation, but it cannot hide the differences.

25.1.1.4 Merge-based vs lock-based Version Control

A version control system typically has some mechanism to coordinate between users who
want to change the same file. There are two ways to do this: merging and locking.

In a version control system that uses merging, each user may modify a work file at any
time. The system lets you merge your work file, which may contain changes that have not
been committed, with the latest changes that others have committed.

Older version control systems use a locking scheme instead. Here, work files are normally
read-only. To edit a file, you ask the version control system to make it writable for you by
locking it; only one user can lock a given file at any given time. This procedure is analogous
to, but different from, the locking that Emacs uses to detect simultaneous editing of ordinary
files (see Section 15.3.4 [Interlocking], page 123). When you commit your changes, that
unlocks the file, and the work file becomes read-only again. Other users may then lock the
file to make their own changes.

Both locking and merging systems can have problems when multiple users try to modify
the same file at the same time. Locking systems have lock conflicts; a user may try to
check a file out and be unable to because it is locked. In merging systems, merge conflicts
happen when you commit a change to a file that conflicts with a change committed by
someone else after your checkout. Both kinds of conflict have to be resolved by human
judgment and communication. Experience has shown that merging is superior to locking,
both in convenience to developers and in minimizing the number and severity of conflicts
that actually occur.

SCCS always uses locking. RCS is lock-based by default but can be told to operate in a
merging style. CVS and Subversion are merge-based by default but can be told to operate
in a locking mode. Decentralized version control systems, such as GNU Arch, Git, and
Mercurial, are exclusively merging-based.

VC mode supports both locking and merging version control. The terms “commit” and
“update” are used in newer version control systems; older lock-based systems use the terms
“check in” and “check out”. VC hides the differences between them as much as possible.

25.1.1.5 Changeset-based vs File-based Version Control

On SCCS, RCS, CVS, and other early version control systems, version control operations
are file-based: each file has its own comment and revision history separate from that of all
other files. Newer systems, beginning with Subversion, are changeset-based: a commit may
include changes to several files, and the entire set of changes is handled as a unit. Any
comment associated with the change does not belong to a single file, but to the changeset
itself.

Changeset-based version control is more flexible and powerful than file-based version
control; usually, when a change to multiple files has to be reversed, it’s good to be able to
easily identify and remove all of it.

Chapter 25: Maintaining Large Programs 272

25.1.1.6 Decentralized vs Centralized Repositories

Early version control systems were designed around a centralized model in which each
project has only one repository used by all developers. SCCS, RCS, CVS, and Subversion
share this kind of model. One of its drawbacks is that the repository is a choke point for
reliability and efficiency.

GNU Arch pioneered the concept of distributed or decentralized version control, later
implemented in Git, Mercurial, and Bazaar. A project may have several different reposi-
tories, and these systems support a sort of super-merge between repositories that tries to
reconcile their change histories. In effect, there is one repository for each developer, and
repository merges take the place of commit operations.

VC helps you manage the traffic between your personal workfiles and a repository.
Whether the repository is a single master, or one of a network of peer repositories, is
not something VC has to care about.

25.1.1.7 Types of Log File

Projects that use a version control system can have two types of log for changes. One is
the log maintained by the version control system: each time you commit a change, you fill
out a log entry for the change (see Section 25.1.4 [Log Buffer], page 275). This is called the
version control log.

The other kind of log is the file ‘ChangeLog’ (see Section 25.2 [Change Log], page 285). It
provides a chronological record of all changes to a large portion of a program—typically one
directory and its subdirectories. A small program would use one ‘ChangeLog’ file; a large
program may have a ‘ChangeLog’ file in each major directory. See Section 25.2 [Change Log],
page 285. Programmers have used change logs since long before version control systems.

Changeset-based version systems typically maintain a changeset-based modification log
for the entire system, which makes change log files somewhat redundant. One advantage
that they retain is that it is sometimes useful to be able to view the transaction history of
a single directory separately from those of other directories.

A project maintained with version control can use just the version control log, or it can
use both kinds of logs. It can handle some files one way and some files the other way. Each
project has its policy, which you should follow.

When the policy is to use both, you typically want to write an entry for each change just
once, then put it into both logs. You can write the entry in ‘ChangeLog’, then copy it to
the log buffer with C-c C-a when committing the change (see Section 25.1.4 [Log Buffer],
page 275). Or you can write the entry in the log buffer while committing the change, and
later use the C-x v a command to copy it to ‘ChangeLog’ (see Section “Change Logs and
VC” in Specialized Emacs Features).

25.1.2 Version Control and the Mode Line

When you visit a file that is under version control, Emacs indicates this on the mode line.
For example, ‘Bzr-1223’ says that Bazaar is used for that file, and the current revision ID
is 1223.

The character between the back-end name and the revision ID indicates the version con-
trol status of the work file. In a merge-based version control system, a ‘-’ character indicates
that the work file is unmodified, and ‘:’ indicates that it has been modified. ‘!’ indicates

Chapter 25: Maintaining Large Programs 273

that the file contains conflicts as result of a recent merge operation (see Section 25.1.10.3
[Merging], page 284), or that the file was removed from the version control. Finally, ‘?’
means that the file is under version control, but is missing from the working tree.

In a lock-based system, ‘-’ indicates an unlocked file, and ‘:’ a locked file; if the file is
locked by another user (for instance, ‘jim’), that is displayed as ‘RCS:jim:1.3’. ‘@’ means
that the file was locally added, but not yet committed to the master repository.

On a graphical display, you can move the mouse over this mode line indicator to pop
up a “tool-tip”, which displays a more verbose description of the version control status.
Pressing Mouse-1 over the indicator pops up a menu of VC commands, identical to ‘Tools
/ Version Control’ on the menu bar.

When Auto Revert mode (see Section 15.4 [Reverting], page 125) reverts a buffer that is
under version control, it updates the version control information in the mode line. However,
Auto Revert mode may not properly update this information if the version control status
changes without changes to the work file, from outside the current Emacs session. If you set
auto-revert-check-vc-info to t, Auto Revert mode updates the version control status
information every auto-revert-interval seconds, even if the work file itself is unchanged.
The resulting CPU usage depends on the version control system, but is usually not excessive.

25.1.3 Basic Editing under Version Control

Most VC commands operate on VC filesets. A VC fileset is a collection of one or more
files that a VC operation acts on. When you type VC commands in a buffer visiting a
version-controlled file, the VC fileset is simply that one file. When you type them in a VC
Directory buffer, and some files in it are marked, the VC fileset consists of the marked files
(see Section 25.1.9 [VC Directory Mode], page 280).

On modern changeset-based version control systems (see Section 25.1.1.5 [VCS Change-
sets], page 271), VC commands handle multi-file VC filesets as a group. For example,
committing a multi-file VC fileset generates a single revision, containing the changes to all
those files. On older file-based version control systems like CVS, each file in a multi-file
VC fileset is handled individually; for example, a commit generates one revision for each
changed file.

C-x v v Perform the next appropriate version control operation on the current VC file-
set.

The principal VC command is a multi-purpose command, C-x v v (vc-next-action),
which performs the “most appropriate” action on the current VC fileset: either registering
it with a version control system, or committing it, or unlocking it, or merging changes into
it. The precise actions are described in detail in the following subsections. You can use C-x

v v either in a file-visiting buffer or in a VC Directory buffer.

Note that VC filesets are distinct from the “named filesets” used for viewing and visiting
files in functional groups (see Section 15.17 [Filesets], page 137). Unlike named filesets, VC
filesets are not named and don’t persist across sessions.

25.1.3.1 Basic Version Control with Merging

On a merging-based version control system (i.e. most modern ones; see Section 25.1.1.4
[VCS Merging], page 271), C-x v v does the following:

Chapter 25: Maintaining Large Programs 274

• If there is more than one file in the VC fileset and the files have inconsistent version
control statuses, signal an error. (Note, however, that a fileset is allowed to include both
“newly-added” files and “modified” files; see Section 25.1.5 [Registering], page 276.)

• If none of the files in the VC fileset are registered with a version control system, register
the VC fileset, i.e. place it under version control. See Section 25.1.5 [Registering],
page 276. If Emacs cannot find a system to register under, it prompts for a repository
type, creates a new repository, and registers the VC fileset with it.

• If every work file in the VC fileset is unchanged, do nothing.

• If every work file in the VC fileset has been modified, commit the changes. To do this,
Emacs pops up a ‘*vc-log*’ buffer; type the desired log entry for the new revision,
followed by C-c C-c to commit. See Section 25.1.4 [Log Buffer], page 275.

If committing to a shared repository, the commit may fail if the repository that has been
changed since your last update. In that case, you must perform an update before trying
again. On a decentralized version control system, use C-x v + (see Section 25.1.10.2 [VC
Pull], page 283) or C-x v m (see Section 25.1.10.3 [Merging], page 284). On a centralized
version control system, type C-x v v again to merge in the repository changes.

• Finally, if you are using a centralized version control system, check if each work file
in the VC fileset is up-to-date. If any file has been changed in the repository, offer to
update it.

These rules also apply when you use RCS in its “non-locking” mode, except that changes
are not automatically merged from the repository. Nothing informs you if another user has
committed changes in the same file since you began editing it; when you commit your
revision, his changes are removed (however, they remain in the repository and are thus not
irrevocably lost). Therefore, you must verify that the current revision is unchanged before
committing your changes. In addition, locking is possible with RCS even in this mode: C-x
v v with an unmodified file locks the file, just as it does with RCS in its normal locking
mode (see Section 25.1.3.2 [VC With A Locking VCS], page 274).

25.1.3.2 Basic Version Control with Locking

On a locking-based version control system (such as SCCS, and RCS in its default mode),
C-x v v does the following:

• If there is more than one file in the VC fileset and the files have inconsistent version
control statuses, signal an error.

• If each file in the VC fileset is not registered with a version control system, register the
VC fileset. See Section 25.1.5 [Registering], page 276. If Emacs cannot find a system to
register under, it prompts for a repository type, creates a new repository, and registers
the VC fileset with it.

• If each file is registered and unlocked, lock it and make it writable, so that you can
begin to edit it.

• If each file is locked by you and contains changes, commit the changes. To do this,
Emacs pops up a ‘*vc-log*’ buffer; type the desired log entry for the new revision,
followed by C-c C-c to commit (see Section 25.1.4 [Log Buffer], page 275).

• If each file is locked by you, but you have not changed it, release the lock and make
the file read-only again.

Chapter 25: Maintaining Large Programs 275

• If each file is locked by another user, ask whether you want to “steal the lock”. If you
say yes, the file becomes locked by you, and a warning message is sent to the user who
had formerly locked the file.

These rules also apply when you use CVS in locking mode, except that CVS does not
support stealing locks.

25.1.3.3 Advanced Control in C-x v v

When you give a prefix argument to vc-next-action (C-u C-x v v), it still performs the
next logical version control operation, but accepts additional arguments to specify precisely
how to do the operation.

• You can specify the name of a version control system. This is useful if the fileset can
be managed by more than one version control system, and Emacs fails to detect the
correct one.

• Otherwise, if using CVS or RCS, you can specify a revision ID.

If the fileset is modified (or locked), this makes Emacs commit with that revision
ID. You can create a new branch by supplying an appropriate revision ID (see
Section 25.1.10 [Branches], page 283).

If the fileset is unmodified (and unlocked), this checks the specified revision into the
working tree. You can also specify a revision on another branch by giving its revision or
branch ID (see Section 25.1.10.1 [Switching Branches], page 283). An empty argument
(i.e. C-u C-x v v RET) checks out the latest (“head”) revision on the current branch.

This signals an error on a decentralized version control system. Those systems do not
let you specify your own revision IDs, nor do they use the concept of “checking out”
individual files.

25.1.4 Features of the Log Entry Buffer

When you tell VC to commit a change, it pops up a buffer named ‘*vc-log*’. In this buffer,
you should write a log entry describing the changes you have made (see Section 25.1.1.1
[Why Version Control?], page 269). After you are done, type C-c C-c (log-edit-done) to
exit the buffer and commit the change, together with your log entry.

The major mode for the ‘*vc-log*’ buffer is Log Edit mode, a variant of Text mode (see
Section 22.7 [Text Mode], page 207). On entering Log Edit mode, Emacs runs the hooks
text-mode-hook and vc-log-mode-hook (see Section 33.2.2 [Hooks], page 408).

In the ‘*vc-log*’ buffer, you can write one or more header lines, specifying additional
information to be supplied to the version control system. Each header line must occupy a
single line at the top of the buffer; the first line that is not a header line is treated as the
start of the log entry. For example, the following header line states that the present change
was not written by you, but by another developer:

Author: J. R. Hacker <jrh@example.com>

Apart from the ‘Author’ header, Emacs recognizes the headers ‘Date’ (a manually-specified
commit time) and ‘Fixes’ (a reference to a bug fixed by the change). Not all version control
systems recognize all headers: Bazaar recognizes all three headers, while Git, Mercurial, and
Monotone recognize only ‘Author’ and ‘Date’. If you specify a header for a system that
does not support it, the header is treated as part of the log entry.

Chapter 25: Maintaining Large Programs 276

While in the ‘*vc-log*’ buffer, the “current VC fileset” is considered to be the fileset
that will be committed if you type C-c C-c. To view a list of the files in the VC fileset, type
C-c C-f (log-edit-show-files). To view a diff of changes between the VC fileset and the
version from which you started editing (see Section 25.1.6 [Old Revisions], page 277), type
C-c C-d (log-edit-show-diff).

If the VC fileset includes one or more ‘ChangeLog’ files (see Section 25.2 [Change Log],
page 285), type C-c C-a (log-edit-insert-changelog) to pull the relevant entries into
the ‘*vc-log*’ buffer. If the topmost item in each ‘ChangeLog’ was made under your user
name on the current date, this command searches that item for entries matching the file(s)
to be committed, and inserts them.

To abort a commit, just don’t type C-c C-c in that buffer. You can switch buffers and
do other editing. As long as you don’t try to make another commit, the entry you were
editing remains in the ‘*vc-log*’ buffer, and you can go back to that buffer at any time to
complete the commit.

You can also browse the history of previous log entries to duplicate a commit comment.
This can be useful when you want to make several commits with similar comments. The
commands M-n, M-p, M-s and M-r for doing this work just like the minibuffer history com-
mands (see Section 5.4 [Minibuffer History], page 32), except that they are used outside the
minibuffer.

25.1.5 Registering a File for Version Control

C-x v i Register the visited file for version control.

The command C-x v i (vc-register) registers each file in the current VC fileset, placing
it under version control. This is essentially equivalent to the action of C-x v v on an
unregistered VC fileset (see Section 25.1.3 [Basic VC Editing], page 273), except that if the
VC fileset is already registered, C-x v i signals an error whereas C-x v v performs some
other action.

To register a file, Emacs must choose a version control system. For a multi-file VC fileset,
the VC Directory buffer specifies the system to use (see Section 25.1.9 [VC Directory Mode],
page 280). For a single-file VC fileset, if the file’s directory already contains files registered
in a version control system, or if the directory is part of a directory tree controlled by
a version control system, Emacs chooses that system. In the event that more than one
version control system is applicable, Emacs uses the one that appears first in the variable
vc-handled-backends. If Emacs cannot find a version control system to register the file
under, it prompts for a repository type, creates a new repository, and registers the file into
that repository.

On most version control systems, registering a file with C-x v i or C-x v v adds it to
the “working tree” but not to the repository. Such files are labeled as ‘added’ in the VC
Directory buffer, and show a revision ID of ‘@@’ in the mode line. To make the registration
take effect in the repository, you must perform a commit (see Section 25.1.3 [Basic VC
Editing], page 273). Note that a single commit can include both file additions and edits to
existing files.

On a locking-based version control system (see Section 25.1.1.4 [VCS Merging], page 271),
registering a file leaves it unlocked and read-only. Type C-x v v to start editing it.

Chapter 25: Maintaining Large Programs 277

25.1.6 Examining And Comparing Old Revisions

C-x v = Compare the work files in the current VC fileset with the versions you started
from (vc-diff). With a prefix argument, prompt for two revisions of the
current VC fileset and compare them. You can also call this command from a
Dired buffer (see Chapter 27 [Dired], page 302).

C-x v D Compare the entire working tree to the revision you started from (vc-root-
diff). With a prefix argument, prompt for two revisions and compare their
trees.

C-x v ~ Prompt for a revision of the current file, and visit it in a separate buffer (vc-
revision-other-window).

C-x v g Display an annotated version of the current file: for each line, show the latest
revision in which it was modified (vc-annotate).

C-x v = (vc-diff) displays a diff which compares each work file in the current VC fileset
to the version(s) from which you started editing. The diff is displayed in another window, in
a Diff mode buffer (see Section 15.9 [Diff Mode], page 131) named ‘*vc-diff*’. The usual
Diff mode commands are available in this buffer. In particular, the g (revert-buffer)
command performs the file comparison again, generating a new diff.

To compare two arbitrary revisions of the current VC fileset, call vc-diff with a prefix
argument: C-u C-x v =. This prompts for two revision IDs (see Section 25.1.1.3 [VCS
Concepts], page 270), and displays a diff between those versions of the fileset. This will not
work reliably for multi-file VC filesets, if the version control system is file-based rather than
changeset-based (e.g. CVS), since then revision IDs for different files would not be related
in any meaningful way.

Instead of the revision ID, some version control systems let you specify revisions in other
formats. For instance, under Bazaar you can enter ‘date:yesterday’ for the argument to
C-u C-x v = (and related commands) to specify the first revision committed after yesterday.
See the documentation of the version control system for details.

If you invoke C-x v = or C-u C-x v = from a Dired buffer (see Chapter 27 [Dired],
page 302), the file listed on the current line is treated as the current VC fileset.

C-x v D (vc-root-diff) is similar to C-x v =, but it displays the changes in the entire
current working tree (i.e. the working tree containing the current VC fileset). If you invoke
this command from a Dired buffer, it applies to the working tree containing the directory.

You can customize the diff options that C-x v = and C-x v D use for generating diffs.
The options used are taken from the first non-nil value amongst the variables vc-backend-
diff-switches, vc-diff-switches, and diff-switches (see Section 15.8 [Comparing
Files], page 130), in that order. Here, backend stands for the relevant version control
system, e.g. bzr for Bazaar. Since nil means to check the next variable in the sequence,
either of the first two may use the value t to mean no switches at all. Most of the vc-

backend-diff-switches variables default to nil, but some default to t; these are for
version control systems whose diff implementations do not accept common diff options,
such as Subversion.

To directly examine an older version of a file, visit the work file and type C-x v ~ revi-

sion RET (vc-revision-other-window). This retrieves the file version corresponding to
revision, saves it to ‘filename.~revision~’, and visits it in a separate window.

Chapter 25: Maintaining Large Programs 278

Many version control systems allow you to view files annotated with per-line revision
information, by typing C-x v g (vc-annotate). This creates a new buffer (the “annotate
buffer”) displaying the file’s text, with each line colored to show how old it is. Red text is
new, blue is old, and intermediate colors indicate intermediate ages. By default, the color
is scaled over the full range of ages, such that the oldest changes are blue, and the newest
changes are red.

When you give a prefix argument to this command, Emacs reads two arguments using
the minibuffer: the revision to display and annotate (instead of the current file contents),
and the time span in days the color range should cover.

From the annotate buffer, these and other color scaling options are available from the
‘VC-Annotate’ menu. In this buffer, you can also use the following keys to browse the
annotations of past revisions, view diffs, or view log entries:

p Annotate the previous revision, i.e. the revision before the one currently anno-
tated. A numeric prefix argument is a repeat count, so C-u 10 p would take
you back 10 revisions.

n Annotate the next revision, i.e. the revision after the one currently annotated.
A numeric prefix argument is a repeat count.

j Annotate the revision indicated by the current line.

a Annotate the revision before the one indicated by the current line. This is
useful to see the state the file was in before the change on the current line was
made.

f Show in a buffer the file revision indicated by the current line.

d Display the diff between the current line’s revision and the previous revision.
This is useful to see what the current line’s revision actually changed in the file.

D Display the diff between the current line’s revision and the previous revision
for all files in the changeset (for VC systems that support changesets). This is
useful to see what the current line’s revision actually changed in the tree.

l Show the log of the current line’s revision. This is useful to see the author’s
description of the changes in the revision on the current line.

w Annotate the working revision–the one you are editing. If you used p and n to
browse to other revisions, use this key to return to your working revision.

v Toggle the annotation visibility. This is useful for looking just at the file con-
tents without distraction from the annotations.

25.1.7 VC Change Log

C-x v l Display the change history for the current fileset (vc-print-log).

C-x v L Display the change history for the current repository (vc-print-root-log).

C-x v I Display the changes that a pull operation will retrieve (vc-log-incoming).

C-x v O Display the changes that will be sent by the next push operation (vc-log-
outgoing).

Chapter 25: Maintaining Large Programs 279

The command C-x v l (vc-print-log) displays a buffer named ‘*vc-change-log*’,
showing the history of changes made to the current file, including who made the changes,
the dates, and the log entry for each change (these are the same log entries you would enter
via the ‘*vc-log*’ buffer; see Section 25.1.4 [Log Buffer], page 275). Point is centered at the
revision of the file currently being visited. With a prefix argument, the command prompts
for the revision to center on, and the maximum number of revisions to display.

If you call C-x v l from a VC Directory buffer (see Section 25.1.9 [VC Directory Mode],
page 280) or a Dired buffer (see Chapter 27 [Dired], page 302), it applies to the file listed
on the current line.

C-x v L (vc-print-root-log) displays a ‘*vc-change-log*’ buffer showing the history
of the entire version-controlled directory tree (RCS, SCCS, and CVS do not support this
feature). With a prefix argument, the command prompts for the maximum number of
revisions to display.

The C-x v L history is shown in a compact form, usually showing only the first line of
each log entry. However, you can type RET (log-view-toggle-entry-display) in the
‘*vc-change-log*’ buffer to reveal the entire log entry for the revision at point. A second
RET hides it again.

On a decentralized version control system, the C-x v I (vc-log-incoming) command
displays a log buffer showing the changes that will be applied, the next time you run the
version control system’s “pull” command to get new revisions from another repository (see
Section 25.1.10.2 [VC Pull], page 283). This other repository is the default one from which
changes are pulled, as defined by the version control system; with a prefix argument, vc-
log-incoming prompts for a specific repository. Similarly, C-x v O (vc-log-outgoing)
shows the changes that will be sent to another repository, the next time you run the “push”
command; with a prefix argument, it prompts for a specific destination repository.

In the ‘*vc-change-log*’ buffer, you can use the following keys to move between the
logs of revisions and of files, and to examine and compare past revisions (see Section 25.1.6
[Old Revisions], page 277):

p Move to the previous revision entry. (Revision entries in the log buffer are usu-
ally in reverse-chronological order, so the previous revision-item usually corre-
sponds to a newer revision.) A numeric prefix argument is a repeat count.

n Move to the next revision entry. A numeric prefix argument is a repeat count.

P Move to the log of the previous file, if showing logs for a multi-file VC fileset.
Otherwise, just move to the beginning of the log. A numeric prefix argument
is a repeat count.

N Move to the log of the next file, if showing logs for a multi-file VC fileset. A
numeric prefix argument is a repeat count.

a Annotate the revision on the current line (see Section 25.1.6 [Old Revisions],
page 277).

e Modify the change comment displayed at point. Note that not all VC systems
support modifying change comments.

f Visit the revision indicated at the current line.

Chapter 25: Maintaining Large Programs 280

d Display a diff between the revision at point and the next earlier revision, for
the specific file.

D Display the changeset diff between the revision at point and the next earlier
revision. This shows the changes to all files made in that revision.

RET In a compact-style log buffer (e.g. the one created by C-x v L), toggle between
showing and hiding the full log entry for the revision at point.

Because fetching many log entries can be slow, the ‘*vc-change-log*’ buffer displays
no more than 2000 revisions by default. The variable vc-log-show-limit specifies this
limit; if you set the value to zero, that removes the limit. You can also increase the number
of revisions shown in an existing ‘*vc-change-log*’ buffer by clicking on the ‘Show 2X

entries’ or ‘Show unlimited entries’ buttons at the end of the buffer. However, RCS,
SCCS, and CVS do not support this feature.

25.1.8 Undoing Version Control Actions

C-x v u Revert the work file(s) in the current VC fileset to the last revision (vc-revert).

If you want to discard all the changes you have made to the current VC fileset, type C-x v

u (vc-revert-buffer). This shows you a diff between the work file(s) and the revision from
which you started editing, and asks for confirmation for discarding the changes. If you agree,
the fileset is reverted. If you don’t want C-x v u to show a diff, set the variable vc-revert-

show-diff to nil (you can still view the diff directly with C-x v =; see Section 25.1.6 [Old
Revisions], page 277). Note that C-x v u cannot be reversed with the usual undo commands
(see Section 13.1 [Undo], page 102), so use it with care.

On locking-based version control systems, C-x v u leaves files unlocked; you must lock
again to resume editing. You can also use C-x v u to unlock a file if you lock it and then
decide not to change it.

25.1.9 VC Directory Mode

The VC Directory buffer is a specialized buffer for viewing the version control statuses of
the files in a directory tree, and performing version control operations on those files. In
particular, it is used to specify multi-file VC filesets for commands like C-x v v to act on
(see Section 25.1.9.2 [VC Directory Commands], page 281).

To use the VC Directory buffer, type C-x v d (vc-dir). This reads a directory name
using the minibuffer, and switches to a VC Directory buffer for that directory. By default,
the buffer is named ‘*vc-dir*’. Its contents are described below.

The vc-dir command automatically detects the version control system to be used in the
specified directory. In the event that more than one system is being used in the directory,
you should invoke the command with a prefix argument, C-u C-x v d; this prompts for the
version control system which the VC Directory buffer should use.

25.1.9.1 The VC Directory Buffer

The VC Directory buffer contains a list of version-controlled files and their version control
statuses. It lists files in the current directory (the one specified when you called C-x v d)
and its subdirectories, but only those with a “noteworthy” status. Files that are up-to-date

Chapter 25: Maintaining Large Programs 281

(i.e. the same as in the repository) are omitted. If all the files in a subdirectory are up-to-
date, the subdirectory is not listed either. As an exception, if a file has become up-to-date
as a direct result of a VC command, it is listed.

Here is an example of a VC Directory buffer listing:
./

edited configure.ac

* added README

unregistered temp.txt

src/

* edited src/main.c

Two work files have been modified but not committed: ‘configure.ac’ in the current
directory, and ‘foo.c’ in the ‘src/’ subdirectory. The file named ‘README’ has been added
but is not yet committed, while ‘temp.txt’ is not under version control (see Section 25.1.5
[Registering], page 276).

The ‘*’ characters next to the entries for ‘README’ and ‘src/main.c’ indicate that the
user has marked out these files as the current VC fileset (see below).

The above example is typical for a decentralized version control system like Bazaar,
Git, or Mercurial. Other systems can show other statuses. For instance, CVS shows the
‘needs-update’ status if the repository has changes that have not been applied to the work
file. RCS and SCCS show the name of the user locking a file as its status.

The VC Directory buffer omits subdirectories listed in the variable vc-directory-

exclusion-list. Its default value contains directories that are used internally by version
control systems.

25.1.9.2 VC Directory Commands

Emacs provides several commands for navigating the VC Directory buffer, and for “mark-
ing” files as belonging to the current VC fileset.

n

SPC Move point to the next entry (vc-dir-next-line).

p Move point to the previous entry (vc-dir-previous-line).

TAB Move to the next directory entry (vc-dir-next-directory).

S-TAB Move to the previous directory entry (vc-dir-previous-directory).

RET
f Visit the file or directory listed on the current line (vc-dir-find-file).

o Visit the file or directory on the current line, in a separate window (vc-dir-
find-file-other-window).

m Mark the file or directory on the current line (vc-dir-mark), putting it in the
current VC fileset. If the region is active, mark all files in the region.

A file cannot be marked with this command if it is already in a marked directory,
or one of its subdirectories. Similarly, a directory cannot be marked with this
command if any file in its tree is marked.

M If point is on a file entry, mark all files with the same status; if point is on a
directory entry, mark all files in that directory tree (vc-dir-mark-all-files).
With a prefix argument, mark all listed files and directories.

Chapter 25: Maintaining Large Programs 282

q Bury the VC Directory buffer, and delete its window if the window was created
just for that buffer.

u Unmark the file or directory on the current line. If the region is active, unmark
all the files in the region (vc-dir-unmark).

U If point is on a file entry, unmark all files with the same status; if point is on
a directory entry, unmark all files in that directory tree (vc-dir-unmark-all-
files). With a prefix argument, unmark all files and directories.

x Hide files with ‘up-to-date’ status (vc-dir-hide-up-to-date).

q Quit the VC Directory buffer, and bury it (quit-window).

While in the VC Directory buffer, all the files that you mark with m (vc-dir-mark) or
M (vc-dir-mark) are in the current VC fileset. If you mark a directory entry with m, all
the listed files in that directory tree are in the current VC fileset. The files and directories
that belong to the current VC fileset are indicated with a ‘*’ character in the VC Directory
buffer, next to their VC status. In this way, you can set up a multi-file VC fileset to be
acted on by VC commands like C-x v v (see Section 25.1.3 [Basic VC Editing], page 273),
C-x v = (see Section 25.1.6 [Old Revisions], page 277), and C-x v u (see Section 25.1.8 [VC
Undo], page 280).

The VC Directory buffer also defines some single-key shortcuts for VC commands with
the C-x v prefix: =, +, l, i, and v.

For example, you can commit a set of edited files by opening a VC Directory buffer,
where the files are listed with the ‘edited’ status; marking the files; and typing v or C-x v

v (vc-next-action). If the version control system is changeset-based, Emacs will commit
the files in a single revision.

While in the VC Directory buffer, you can also perform search and replace on the current
VC fileset, with the following commands:

S Search the fileset (vc-dir-search).

Q Do a regular expression query replace on the fileset (vc-dir-query-replace-
regexp).

M-s a C-s Do an incremental search on the fileset (vc-dir-isearch).

M-s a C-M-s

Do an incremental regular expression search on the fileset (vc-dir-isearch-
regexp).

Apart from acting on multiple files, these commands behave much like their single-buffer
counterparts (see Chapter 12 [Search], page 85).

The above commands are also available via the menu bar, and via a context menu invoked
by Mouse-2. Furthermore, some VC backends use the menu to provide extra backend-
specific commands. For example, Git and Bazaar allow you to manipulate stashes and
shelves (where are a way to temporarily put aside uncommitted changes, and bring them
back at a later time).

Chapter 25: Maintaining Large Programs 283

25.1.10 Version Control Branches

One use of version control is to support multiple independent lines of development, which
are called branches. Branches are used for maintaining separate “stable” and “development”
versions of a program, and for developing unrelated features in isolation from one another.

VC’s support for branch operations is currently fairly limited. For decentralized version
control systems, it provides commands for updating one branch with the contents of an-
other, and for merging the changes made to two different branches (see Section 25.1.10.3
[Merging], page 284). For centralized version control systems, it supports checking out
different branches and committing into new or different branches.

25.1.10.1 Switching between Branches

The various version control systems differ in how branches are implemented, and these
differences cannot be entirely concealed by VC.

On some decentralized version control systems, including Bazaar and Mercurial in its
normal mode of operation, each branch has its own working directory tree, so switching
between branches just involves switching directories. On Git, switching between branches
is done using the git branch command, which changes the contents of the working tree
itself.

On centralized version control systems, you can switch between branches by typing C-u

C-x v v in an up-to-date work file (see Section 25.1.3.3 [Advanced C-x v v], page 275), and
entering the revision ID for a revision on another branch. On CVS, for instance, revisions
on the trunk (the main line of development) normally have IDs of the form 1.1, 1.2, 1.3,
. . . , while the first branch created from (say) revision 1.2 has revision IDs 1.2.1.1, 1.2.1.2,
. . . , the second branch created from revision 1.2 has revision IDs 1.2.2.1, 1.2.2.2, . . . , and
so forth. You can also specify the branch ID, which is a branch revision ID omitting its
final component (e.g. 1.2.1), to switch to the latest revision on that branch.

On a locking-based system, switching to a different branch also unlocks (write-protects)
the working tree.

Once you have switched to a branch, VC commands will apply to that branch until
you switch away; for instance, any VC filesets that you commit will be committed to that
specific branch.

25.1.10.2 Pulling Changes into a Branch

C-x v + On a decentralized version control system, update the current branch by
“pulling in” changes from another location.

On a centralized version control system, update the current VC fileset.

On a decentralized version control system, the command C-x v + (vc-pull) updates the
current branch and working tree. It is typically used to update a copy of a remote branch. If
you supply a prefix argument, the command prompts for the exact version control command
to use, which lets you specify where to pull changes from. Otherwise, it pulls from a default
location determined by the version control system.

Amongst decentralized version control systems, C-x v + is currently supported only by
Bazaar, Git, and Mercurial. On Bazaar, it calls bzr pull for ordinary branches (to pull
from a master branch into a mirroring branch), and bzr update for a bound branch (to

Chapter 25: Maintaining Large Programs 284

pull from a central repository). On Git, it calls git pull to fetch changes from a remote
repository and merge it into the current branch. On Mercurial, it calls hg pull -u to fetch
changesets from the default remote repository and update the working directory.

Prior to pulling, you can use C-x v I (vc-log-incoming) to view a log buffer of the
changes to be applied. See Section 25.1.7 [VC Change Log], page 278.

On a centralized version control system like CVS, C-x v + updates the current VC fileset
from the repository.

25.1.10.3 Merging Branches

C-x v m On a decentralized version control system, merge changes from another branch
into the current one.

On a centralized version control system, merge changes from another branch
into the current VC fileset.

While developing a branch, you may sometimes need to merge in changes that have
already been made in another branch. This is not a trivial operation, as overlapping changes
may have been made to the two branches.

On a decentralized version control system, merging is done with the command C-x v

m (vc-merge). On Bazaar, this prompts for the exact arguments to pass to bzr merge,
offering a sensible default if possible. On Git, this prompts for the name of a branch to
merge from, with completion (based on the branch names known to the current repository).
The output from running the merge command is shown in a separate buffer.

On a centralized version control system like CVS, C-x v m prompts for a branch ID, or
a pair of revision IDs (see Section 25.1.10.1 [Switching Branches], page 283); then it finds
the changes from that branch, or the changes between the two revisions you specified, and
merges those changes into the current VC fileset. If you just type RET, Emacs simply
merges any changes that were made on the same branch since you checked the file out.

Immediately after performing a merge, only the working tree is modified, and you
can review the changes produced by the merge with C-x v D and related commands (see
Section 25.1.6 [Old Revisions], page 277). If the two branches contained overlapping
changes, merging produces a conflict; a warning appears in the output of the merge com-
mand, and conflict markers are inserted into each affected work file, surrounding the two
sets of conflicting changes. You must then resolve the conflict by editing the conflicted files.
Once you are done, the modified files must be committed in the usual way for the merge to
take effect (see Section 25.1.3 [Basic VC Editing], page 273).

25.1.10.4 Creating New Branches

On centralized version control systems like CVS, Emacs supports creating new branches as
part of a commit operation. When committing a modified VC fileset, type C-u C-x v v (vc-
next-action with a prefix argument; see Section 25.1.3.3 [Advanced C-x v v], page 275).
Then Emacs prompts for a revision ID for the new revision. You should specify a suitable
branch ID for a branch starting at the current revision. For example, if the current revision
is 2.5, the branch ID should be 2.5.1, 2.5.2, and so on, depending on the number of existing
branches at that point.

To create a new branch at an older revision (one that is no longer the head of a branch),
first select that revision (see Section 25.1.10.1 [Switching Branches], page 283). Your pro-

Chapter 25: Maintaining Large Programs 285

cedure will then differ depending on whether you are using a locking or merging-based
VCS.

On a locking VCS, you will need to lock the old revision branch with C-x v v. You’ll
be asked to confirm, when you lock the old revision, that you really mean to create a new
branch—if you say no, you’ll be offered a chance to lock the latest revision instead. On a
merging-based VCS you will skip this step.

Then make your changes and type C-x v v again to commit a new revision. This creates
a new branch starting from the selected revision.

After the branch is created, subsequent commits create new revisions on that branch.
To leave the branch, you must explicitly select a different revision with C-u C-x v v.

25.2 Change Logs

Many software projects keep a change log. This is a file, normally named ‘ChangeLog’,
containing a chronological record of when and how the program was changed. Sometimes,
there are several change log files, each recording the changes in one directory or directory
tree.

25.2.1 Change Log Commands

The Emacs command C-x 4 a adds a new entry to the change log file for the file you are
editing (add-change-log-entry-other-window). If that file is actually a backup file, it
makes an entry appropriate for the file’s parent—that is useful for making log entries for
functions that have been deleted in the current version.

C-x 4 a visits the change log file and creates a new entry unless the most recent entry is
for today’s date and your name. It also creates a new item for the current file. For many
languages, it can even guess the name of the function or other object that was changed.

When the variable add-log-keep-changes-together is non-nil, C-x 4 a adds to any
existing item for the file rather than starting a new item.

You can combine multiple changes of the same nature. If you don’t enter any text after
the initial C-x 4 a, any subsequent C-x 4 a adds another symbol to the change log entry.

If add-log-always-start-new-record is non-nil, C-x 4 a always makes a new entry,
even if the last entry was made by you and on the same date.

If the value of the variable change-log-version-info-enabled is non-nil, C-x 4 a adds
the file’s version number to the change log entry. It finds the version number by searching
the first ten percent of the file, using regular expressions from the variable change-log-

version-number-regexp-list.

The change log file is visited in Change Log mode. In this major mode, each bunch
of grouped items counts as one paragraph, and each entry is considered a page. This
facilitates editing the entries. C-j and auto-fill indent each new line like the previous line;
this is convenient for entering the contents of an entry.

You can use the next-error command (by default bound to C-x ‘) to move between
entries in the Change Log, when Change Log mode is on. You will jump to the actual
site in the file that was changed, not just to the next Change Log entry. You can also use
previous-error to move back in the same list.

Chapter 25: Maintaining Large Programs 286

You can use the command M-x change-log-merge to merge other log files into a buffer
in Change Log Mode, preserving the date ordering of entries.

Version control systems are another way to keep track of changes in your program and
keep a change log. In the VC log buffer, typing C-c C-a (log-edit-insert-changelog)
inserts the relevant Change Log entry, if one exists. See Section 25.1.4 [Log Buffer], page 275.

25.2.2 Format of ChangeLog

A change log entry starts with a header line that contains the current date, your name (taken
from the variable add-log-full-name), and your email address (taken from the variable
add-log-mailing-address). Aside from these header lines, every line in the change log
starts with a space or a tab. The bulk of the entry consists of items, each of which starts
with a line starting with whitespace and a star. Here are two entries, both dated in May
1993, with two items and one item respectively.

1993-05-25 Richard Stallman <rms@gnu.org>

* man.el: Rename symbols ‘man-*’ to ‘Man-*’.

(manual-entry): Make prompt string clearer.

* simple.el (blink-matching-paren-distance):

Change default to 12,000.

1993-05-24 Richard Stallman <rms@gnu.org>

* vc.el (minor-mode-map-alist): Don’t use it if it’s void.

(vc-cancel-version): Doc fix.

One entry can describe several changes; each change should have its own item, or its
own line in an item. Normally there should be a blank line between items. When items are
related (parts of the same change, in different places), group them by leaving no blank line
between them.

You should put a copyright notice and permission notice at the end of the change log
file. Here is an example:

Copyright 1997, 1998 Free Software Foundation, Inc.

Copying and distribution of this file, with or without modification, are

permitted provided the copyright notice and this notice are preserved.

Of course, you should substitute the proper years and copyright holder.

25.3 Tags Tables

A tag is a reference to a subunit in a program or in a document. In source code, tags
reference syntactic elements of the program: functions, subroutines, data types, macros,
etc. In a document, tags reference chapters, sections, appendices, etc. Each tag specifies
the name of the file where the corresponding subunit is defined, and the position of the
subunit’s definition in that file.

A tags table records the tags extracted by scanning the source code of a certain program
or a certain document. Tags extracted from generated files reference the original files, rather
than the generated files that were scanned during tag extraction. Examples of generated
files include C files generated from Cweb source files, from a Yacc parser, or from Lex
scanner definitions; ‘.i’ preprocessed C files; and Fortran files produced by preprocessing
‘.fpp’ source files.

Chapter 25: Maintaining Large Programs 287

To produce a tags table, you run the etags shell command on a document or the source
code file. The ‘etags’ program writes the tags to a tags table file, or tags file in short. The
conventional name for a tags file is ‘TAGS’. See Section 25.3.2 [Create Tags Table], page 289.

Emacs provides many commands for searching and replacing using the information
recorded in tags tables. For instance, the M-. (find-tag) jumps to the location of a
specified function definition in its source file. See Section 25.3.5 [Find Tag], page 292.

The Ebrowse facility is similar to etags but specifically tailored for C++. See Section
“Ebrowse” in Ebrowse User’s Manual. The Semantic package provides another way to
generate and use tags, separate from the etags facility. See Section 23.10 [Semantic],
page 245.

25.3.1 Source File Tag Syntax

Here is how tag syntax is defined for the most popular languages:

• In C code, any C function or typedef is a tag, and so are definitions of struct, union
and enum. #define macro definitions, #undef and enum constants are also tags, unless
you specify ‘--no-defines’ when making the tags table. Similarly, global variables
are tags, unless you specify ‘--no-globals’, and so are struct members, unless you
specify ‘--no-members’. Use of ‘--no-globals’, ‘--no-defines’ and ‘--no-members’
can make the tags table file much smaller.

You can tag function declarations and external variables in addition to function defi-
nitions by giving the ‘--declarations’ option to etags.

• In C++ code, in addition to all the tag constructs of C code, member functions are also
recognized; member variables are also recognized, unless you use the ‘--no-members’
option. Tags for variables and functions in classes are named ‘class::variable ’ and
‘class::function ’. operator definitions have tag names like ‘operator+’.

• In Java code, tags include all the constructs recognized in C++, plus the interface,
extends and implements constructs. Tags for variables and functions in classes are
named ‘class.variable ’ and ‘class.function ’.

• In LaTEX documents, the arguments for \chapter, \section, \subsection,
\subsubsection, \eqno, \label, \ref, \cite, \bibitem, \part, \appendix,
\entry, \index, \def, \newcommand, \renewcommand, \newenvironment and
\renewenvironment are tags.

Other commands can make tags as well, if you specify them in the environment variable
TEXTAGS before invoking etags. The value of this environment variable should be a
colon-separated list of command names. For example,

TEXTAGS="mycommand:myothercommand"

export TEXTAGS

specifies (using Bourne shell syntax) that the commands ‘\mycommand’ and
‘\myothercommand’ also define tags.

• In Lisp code, any function defined with defun, any variable defined with defvar or
defconst, and in general the first argument of any expression that starts with ‘(def’
in column zero is a tag.

• In Scheme code, tags include anything defined with def or with a construct whose
name starts with ‘def’. They also include variables set with set! at top level in the
file.

Chapter 25: Maintaining Large Programs 288

Several other languages are also supported:

• In Ada code, functions, procedures, packages, tasks and types are tags. Use the
‘--packages-only’ option to create tags for packages only.

In Ada, the same name can be used for different kinds of entity (e.g., for a procedure
and for a function). Also, for things like packages, procedures and functions, there is
the spec (i.e. the interface) and the body (i.e. the implementation). To make it easier to
pick the definition you want, Ada tag name have suffixes indicating the type of entity:

‘/b’ package body.

‘/f’ function.

‘/k’ task.

‘/p’ procedure.

‘/s’ package spec.

‘/t’ type.

Thus, M-x find-tag RET bidule/b RET will go directly to the body of the package
bidule, while M-x find-tag RET bidule RET will just search for any tag bidule.

• In assembler code, labels appearing at the start of a line, followed by a colon, are tags.

• In Bison or Yacc input files, each rule defines as a tag the nonterminal it constructs.
The portions of the file that contain C code are parsed as C code.

• In Cobol code, tags are paragraph names; that is, any word starting in column 8 and
followed by a period.

• In Erlang code, the tags are the functions, records and macros defined in the file.

• In Fortran code, functions, subroutines and block data are tags.

• In HTML input files, the tags are the title and the h1, h2, h3 headers. Also, tags are
name= in anchors and all occurrences of id=.

• In Lua input files, all functions are tags.

• In makefiles, targets are tags; additionally, variables are tags unless you specify
‘--no-globals’.

• In Objective C code, tags include Objective C definitions for classes, class categories,
methods and protocols. Tags for variables and functions in classes are named
‘class::variable ’ and ‘class::function ’.

• In Pascal code, the tags are the functions and procedures defined in the file.

• In Perl code, the tags are the packages, subroutines and variables defined by the
package, sub, my and local keywords. Use ‘--globals’ if you want to tag global
variables. Tags for subroutines are named ‘package::sub ’. The name for subroutines
defined in the default package is ‘main::sub ’.

• In PHP code, tags are functions, classes and defines. Vars are tags too, unless you use
the ‘--no-members’ option.

• In PostScript code, the tags are the functions.

• In Prolog code, tags are predicates and rules at the beginning of line.

• In Python code, def or class at the beginning of a line generate a tag.

You can also generate tags based on regexp matching (see Section 25.3.3 [Etags Regexps],
page 290) to handle other formats and languages.

Chapter 25: Maintaining Large Programs 289

25.3.2 Creating Tags Tables

The etags program is used to create a tags table file. It knows the syntax of several
languages, as described in the previous section. Here is how to run etags:

etags inputfiles...

The etags program reads the specified files, and writes a tags table named ‘TAGS’ in the
current working directory. You can optionally specify a different file name for the tags table
by using the ‘--output=file ’ option; specifying ‘-’ as a file name prints the tags table to
standard output.

If the specified files don’t exist, etags looks for compressed versions of them and un-
compresses them to read them. Under MS-DOS, etags also looks for file names like
‘mycode.cgz’ if it is given ‘mycode.c’ on the command line and ‘mycode.c’ does not exist.

If the tags table becomes outdated due to changes in the files described in it, you can
update it by running the etags program again. If the tags table does not record a tag, or
records it for the wrong file, then Emacs will not be able to find that definition until you
update the tags table. But if the position recorded in the tags table becomes a little bit
wrong (due to other editing), Emacs will still be able to find the right position, with a slight
delay.

Thus, there is no need to update the tags table after each edit. You should update a
tags table when you define new tags that you want to have listed, or when you move tag
definitions from one file to another, or when changes become substantial.

You can make a tags table include another tags table, by passing the ‘--include=file ’
option to etags. It then covers all the files covered by the included tags file, as well as its
own.

If you specify the source files with relative file names when you run etags, the tags file
will contain file names relative to the directory where the tags file was initially written.
This way, you can move an entire directory tree containing both the tags file and the source
files, and the tags file will still refer correctly to the source files. If the tags file is ‘-’ or is
in the ‘/dev’ directory, however, the file names are made relative to the current working
directory. This is useful, for example, when writing the tags to ‘/dev/stdout’.

When using a relative file name, it should not be a symbolic link pointing to a tags file
in a different directory, because this would generally render the file names invalid.

If you specify absolute file names as arguments to etags, then the tags file will contain
absolute file names. This way, the tags file will still refer to the same files even if you move
it, as long as the source files remain in the same place. Absolute file names start with ‘/’,
or with ‘device:/’ on MS-DOS and MS-Windows.

When you want to make a tags table from a great number of files, you may have problems
listing them on the command line, because some systems have a limit on its length. You
can circumvent this limit by telling etags to read the file names from its standard input,
by typing a dash in place of the file names, like this:

find . -name "*.[chCH]" -print | etags -

etags recognizes the language used in an input file based on its file name and contents.
You can specify the language explicitly with the ‘--language=name ’ option. You can inter-
mix these options with file names; each one applies to the file names that follow it. Specify
‘--language=auto’ to tell etags to resume guessing the language from the file names and

Chapter 25: Maintaining Large Programs 290

file contents. Specify ‘--language=none’ to turn off language-specific processing entirely;
then etags recognizes tags by regexp matching alone (see Section 25.3.3 [Etags Regexps],
page 290).

The option ‘--parse-stdin=file ’ is mostly useful when calling etags from programs.
It can be used (only once) in place of a file name on the command line. etags will read
from standard input and mark the produced tags as belonging to the file file.

‘etags --help’ outputs the list of the languages etags knows, and the file name rules
for guessing the language. It also prints a list of all the available etags options, together
with a short explanation. If followed by one or more ‘--language=lang ’ options, it outputs
detailed information about how tags are generated for lang.

25.3.3 Etags Regexps

The ‘--regex’ option to etags allows tags to be recognized by regular expression matching.
You can intermix this option with file names; each one applies to the source files that follow
it. If you specify multiple ‘--regex’ options, all of them are used in parallel. The syntax
is:

--regex=[{language}]/tagregexp/[nameregexp/]modifiers

The essential part of the option value is tagregexp, the regexp for matching tags. It is
always used anchored, that is, it only matches at the beginning of a line. If you want to
allow indented tags, use a regexp that matches initial whitespace; start it with ‘[\t]*’.

In these regular expressions, ‘\’ quotes the next character, and all the GCC character
escape sequences are supported (‘\a’ for bell, ‘\b’ for back space, ‘\d’ for delete, ‘\e’ for
escape, ‘\f’ for formfeed, ‘\n’ for newline, ‘\r’ for carriage return, ‘\t’ for tab, and ‘\v’ for
vertical tab).

Ideally, tagregexp should not match more characters than are needed to recognize what
you want to tag. If the syntax requires you to write tagregexp so it matches more characters
beyond the tag itself, you should add a nameregexp, to pick out just the tag. This will enable
Emacs to find tags more accurately and to do completion on tag names more reliably. You
can find some examples below.

The modifiers are a sequence of zero or more characters that modify the way etags does
the matching. A regexp with no modifiers is applied sequentially to each line of the input
file, in a case-sensitive way. The modifiers and their meanings are:

‘i’ Ignore case when matching this regexp.

‘m’ Match this regular expression against the whole file, so that multi-line matches
are possible.

‘s’ Match this regular expression against the whole file, and allow ‘.’ in tagregexp
to match newlines.

The ‘-R’ option cancels all the regexps defined by preceding ‘--regex’ options. It too
applies to the file names following it. Here’s an example:

etags --regex=/reg1/i voo.doo --regex=/reg2/m \

bar.ber -R --lang=lisp los.er

Here etags chooses the parsing language for ‘voo.doo’ and ‘bar.ber’ according to their
contents. etags also uses reg1 to recognize additional tags in ‘voo.doo’, and both reg1
and reg2 to recognize additional tags in ‘bar.ber’. reg1 is checked against each line of

Chapter 25: Maintaining Large Programs 291

‘voo.doo’ and ‘bar.ber’, in a case-insensitive way, while reg2 is checked against the whole
‘bar.ber’ file, permitting multi-line matches, in a case-sensitive way. etags uses only the
Lisp tags rules, with no user-specified regexp matching, to recognize tags in ‘los.er’.

You can restrict a ‘--regex’ option to match only files of a given language by using
the optional prefix {language}. (‘etags --help’ prints the list of languages recognized by
etags.) This is particularly useful when storing many predefined regular expressions for
etags in a file. The following example tags the DEFVAR macros in the Emacs source files,
for the C language only:

--regex=’{c}/[\t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/’

When you have complex regular expressions, you can store the list of them in a file. The
following option syntax instructs etags to read two files of regular expressions. The regular
expressions contained in the second file are matched without regard to case.

--regex=@case-sensitive-file --ignore-case-regex=@ignore-case-file

A regex file for etags contains one regular expression per line. Empty lines, and lines
beginning with space or tab are ignored. When the first character in a line is ‘@’, etags
assumes that the rest of the line is the name of another file of regular expressions; thus, one
such file can include another file. All the other lines are taken to be regular expressions. If
the first non-whitespace text on the line is ‘--’, that line is a comment.

For example, we can create a file called ‘emacs.tags’ with the following contents:
-- This is for GNU Emacs C source files

{c}/[\t]*DEFVAR_[A-Z_ \t(]+"\([^"]+\)"/\1/

and then use it like this:
etags --regex=@emacs.tags *.[ch] */*.[ch]

Here are some more examples. The regexps are quoted to protect them from shell
interpretation.

• Tag Octave files:
etags --language=none \

--regex=’/[\t]*function.*=[\t]*\([^ \t]*\)[\t]*(/\1/’ \

--regex=’/###key \(.*\)/\1/’ \

--regex=’/[\t]*global[\t].*/’ \

*.m

Note that tags are not generated for scripts, so that you have to add a line by yourself
of the form ‘###key scriptname ’ if you want to jump to it.

• Tag Tcl files:
etags --language=none --regex=’/proc[\t]+\([^ \t]+\)/\1/’ *.tcl

• Tag VHDL files:
etags --language=none \

--regex=’/[\t]*\(ARCHITECTURE\|CONFIGURATION\) +[^]* +OF/’ \

--regex=’/[\t]*\(ATTRIBUTE\|ENTITY\|FUNCTION\|PACKAGE\

\(BODY\)?\|PROCEDURE\|PROCESS\|TYPE\)[\t]+\([^ \t(]+\)/\3/’

25.3.4 Selecting a Tags Table

Emacs has at any time one selected tags table. All the commands for working with tags
tables use the selected one. To select a tags table, type M-x visit-tags-table, which
reads the tags table file name as an argument, with ‘TAGS’ in the default directory as the
default.

Chapter 25: Maintaining Large Programs 292

Emacs does not actually read in the tags table contents until you try to use them; all
visit-tags-table does is store the file name in the variable tags-file-name, and setting
the variable yourself is just as good. The variable’s initial value is nil; that value tells all
the commands for working with tags tables that they must ask for a tags table file name to
use.

Using visit-tags-table when a tags table is already loaded gives you a choice: you
can add the new tags table to the current list of tags tables, or start a new list. The tags
commands use all the tags tables in the current list. If you start a new list, the new tags
table is used instead of others. If you add the new table to the current list, it is used as
well as the others.

You can specify a precise list of tags tables by setting the variable tags-table-list to
a list of strings, like this:

(setq tags-table-list

’("~/emacs" "/usr/local/lib/emacs/src"))

This tells the tags commands to look at the ‘TAGS’ files in your ‘~/emacs’ directory and in
the ‘/usr/local/lib/emacs/src’ directory. The order depends on which file you are in
and which tags table mentions that file, as explained above.

Do not set both tags-file-name and tags-table-list.

25.3.5 Finding a Tag

The most important thing that a tags table enables you to do is to find the definition of a
specific tag.

M-. tag RET

Find first definition of tag (find-tag).

C-u M-. Find next alternate definition of last tag specified.

C-u - M-. Go back to previous tag found.

C-M-. pattern RET

Find a tag whose name matches pattern (find-tag-regexp).

C-u C-M-. Find the next tag whose name matches the last pattern used.

C-x 4 . tag RET

Find first definition of tag, but display it in another window (find-tag-other-
window).

C-x 5 . tag RET

Find first definition of tag, and create a new frame to select the buffer (find-
tag-other-frame).

M-* Pop back to where you previously invoked M-. and friends.

M-. (find-tag) prompts for a tag name and jumps to its source definition. It works
by searching through the tags table for that tag’s file and approximate character position,
visiting that file, and searching for the tag definition at ever-increasing distances away from
the recorded approximate position.

When entering the tag argument to M-., the usual minibuffer completion commands can
be used (see Section 5.3 [Completion], page 28), with the tag names in the selected tags table

Chapter 25: Maintaining Large Programs 293

as completion candidates. If you specify an empty argument, the balanced expression in
the buffer before or around point is the default argument. See Section 23.4.1 [Expressions],
page 237.

You don’t need to give M-. the full name of the tag; a part will do. M-. finds tags
which contain that argument as a substring. However, it prefers an exact match to a
substring match. To find other tags that match the same substring, give find-tag a
numeric argument, as in C-u M-. or M-0 M-.; this does not read a tag name, but continues
searching the tags table’s text for another tag containing the same substring last used.

Like most commands that can switch buffers, find-tag has a variant that displays the
new buffer in another window, and one that makes a new frame for it. The former is C-x 4 .

(find-tag-other-window), and the latter is C-x 5 . (find-tag-other-frame).

To move back to previous tag definitions, use C-u - M-.; more generally, M-. with a
negative numeric argument. Similarly, C-x 4 . with a negative argument finds the previous
tag location in another window.

As well as going back to places you’ve found tags recently, you can go back to places
from where you found them, using M-* (pop-tag-mark). Thus you can find and examine
the definition of something with M-. and then return to where you were with M-*.

Both C-u - M-. and M-* allow you to retrace your steps to a depth determined by the
variable find-tag-marker-ring-length.

The command C-M-. (find-tag-regexp) visits the tags that match a specified regular
expression. It is just like M-. except that it does regexp matching instead of substring
matching.

25.3.6 Searching and Replacing with Tags Tables

The commands in this section visit and search all the files listed in the selected tags table,
one by one. For these commands, the tags table serves only to specify a sequence of files
to search. These commands scan the list of tags tables starting with the first tags table (if
any) that describes the current file, proceed from there to the end of the list, and then scan
from the beginning of the list until they have covered all the tables in the list.

M-x tags-search RET regexp RET

Search for regexp through the files in the selected tags table.

M-x tags-query-replace RET regexp RET replacement RET

Perform a query-replace-regexp on each file in the selected tags table.

M-, Restart one of the commands above, from the current location of point (tags-
loop-continue).

M-x tags-search reads a regexp using the minibuffer, then searches for matches in all
the files in the selected tags table, one file at a time. It displays the name of the file being
searched so you can follow its progress. As soon as it finds an occurrence, tags-search
returns.

Having found one match, you probably want to find all the rest. Type M-, (tags-loop-
continue) to resume the tags-search, finding one more match. This searches the rest of
the current buffer, followed by the remaining files of the tags table.

Chapter 25: Maintaining Large Programs 294

M-x tags-query-replace performs a single query-replace-regexp through all the files
in the tags table. It reads a regexp to search for and a string to replace with, just like ordi-
nary M-x query-replace-regexp. It searches much like M-x tags-search, but repeatedly,
processing matches according to your input. See Section 12.9 [Replace], page 96, for more
information on query replace.

You can control the case-sensitivity of tags search commands by customizing the value
of the variable tags-case-fold-search. The default is to use the same setting as the value
of case-fold-search (see Section 12.8 [Search Case], page 96).

It is possible to get through all the files in the tags table with a single invocation of M-x
tags-query-replace. But often it is useful to exit temporarily, which you can do with any
input event that has no special query replace meaning. You can resume the query replace
subsequently by typing M-,; this command resumes the last tags search or replace command
that you did. For instance, to skip the rest of the current file, you can type M-> M-,.

The commands in this section carry out much broader searches than the find-tag family.
The find-tag commands search only for definitions of tags that match your substring or
regexp. The commands tags-search and tags-query-replace find every occurrence of
the regexp, as ordinary search commands and replace commands do in the current buffer.

These commands create buffers only temporarily for the files that they have to search
(those which are not already visited in Emacs buffers). Buffers in which no match is found
are quickly killed; the others continue to exist.

As an alternative to tags-search, you can run grep as a subprocess and have Emacs
show you the matching lines one by one. See Section 24.4 [Grep Searching], page 253.

25.3.7 Tags Table Inquiries

C-M-i

M-TAB Perform completion on the text around point, using the selected tags table if
one is loaded (completion-at-point).

M-x list-tags RET file RET

Display a list of the tags defined in the program file file.

M-x tags-apropos RET regexp RET

Display a list of all tags matching regexp.

In most programming language modes, you can type C-M-i or M-TAB (completion-at-
point) to complete the symbol at point. If there is a selected tags table, this command can
use it to generate completion candidates. See Section 23.8 [Symbol Completion], page 244.

M-x list-tags reads the name of one of the files covered by the selected tags table, and
displays a list of tags defined in that file. Do not include a directory as part of the file name
unless the file name recorded in the tags table includes a directory.

M-x tags-apropos is like apropos for tags (see Section 7.3 [Apropos], page 39). It
displays a list of tags in the selected tags table whose entries match regexp. If the variable
tags-apropos-verbose is non-nil, it displays the names of the tags files together with
the tag names. You can customize the appearance of the output by setting the variable
tags-tag-face to a face. You can display additional output by customizing the variable
tags-apropos-additional-actions; see its documentation for details.

Chapter 25: Maintaining Large Programs 295

M-x next-file visits files covered by the selected tags table. The first time it is called,
it visits the first file covered by the table. Each subsequent call visits the next covered file,
unless a prefix argument is supplied, in which case it returns to the first file.

25.4 Emacs Development Environment

EDE (Emacs Development Environment) is a package that simplifies the task of creating,
building, and debugging large programs with Emacs. It provides some of the features of an
IDE, or Integrated Development Environment, in Emacs.

This section provides a brief description of EDE usage. For full details on Ede, type C-h

i and then select the EDE manual.

EDE is implemented as a global minor mode (see Section 20.2 [Minor Modes], page 190).
To enable it, type M-x global-ede-mode or click on the ‘Project Support (EDE)’ item in
the ‘Tools’ menu. You can also enable EDE each time you start Emacs, by adding the
following line to your initialization file:

(global-ede-mode t)

Activating EDE adds a menu named ‘Development’ to the menu bar. Many EDE com-
mands, including the ones described below, can be invoked from this menu.

EDE organizes files into projects, which correspond to directory trees. The project root
is the topmost directory of a project. To define a new project, visit a file in the desired
project root and type M-x ede-new. This command prompts for a project type, which refers
to the underlying method that EDE will use to manage the project (see Section “Creating a
Project” in Emacs Development Environment). The most common project types are ‘Make’,
which uses Makefiles, and ‘Automake’, which uses GNU Automake (see Section “Top” in
Automake). In both cases, EDE also creates a file named ‘Project.ede’, which stores
information about the project.

A project may contain one or more targets. A target can be an object file, executable
program, or some other type of file, which is “built” from one or more of the files in the
project.

To add a new target to a project, type C-c . t (M-x ede-new-target). This command
also asks if you wish to “add” the current file to that target, which means that the target
is to be built from that file. After you have defined a target, you can add more files to it
by typing C-c . a (ede-add-file).

To build a target, type C-c . c (ede-compile-target). To build all the targets in the
project, type C-c . C (ede-compile-project). EDE uses the file types to guess how the
target should be built.

Chapter 26: Abbrevs 296

26 Abbrevs

A defined abbrev is a word which expands, if you insert it, into some different text. Abbrevs
are defined by the user to expand in specific ways. For example, you might define ‘foo’ as
an abbrev expanding to ‘find outer otter’. Then you could insert ‘find outer otter ’
into the buffer by typing f o o SPC.

A second kind of abbreviation facility is called dynamic abbrev expansion. You use
dynamic abbrev expansion with an explicit command to expand the letters in the buffer
before point by looking for other words in the buffer that start with those letters. See
Section 26.6 [Dynamic Abbrevs], page 300.

“Hippie” expansion generalizes abbreviation expansion. See Section “Hippie Expansion”
in Features for Automatic Typing .

26.1 Abbrev Concepts

An abbrev is a word that has been defined to expand into a specified expansion. When you
insert a word-separator character following the abbrev, that expands the abbrev—replacing
the abbrev with its expansion. For example, if ‘foo’ is defined as an abbrev expanding to
‘find outer otter’, then typing f o o . will insert ‘find outer otter.’.

Abbrevs expand only when Abbrev mode, a buffer-local minor mode, is enabled. Dis-
abling Abbrev mode does not cause abbrev definitions to be forgotten, but they do not
expand until Abbrev mode is enabled again. The command M-x abbrev-mode toggles Ab-
brev mode; with a numeric argument, it turns Abbrev mode on if the argument is positive,
off otherwise. See Section 20.2 [Minor Modes], page 190.

Abbrevs can have mode-specific definitions, active only in one major mode. Abbrevs
can also have global definitions that are active in all major modes. The same abbrev can
have a global definition and various mode-specific definitions for different major modes. A
mode-specific definition for the current major mode overrides a global definition.

You can define abbrevs interactively during the editing session, irrespective of whether
Abbrev mode is enabled. You can also save lists of abbrev definitions in files, which you
can the reload for use in later sessions.

26.2 Defining Abbrevs

C-x a g Define an abbrev, using one or more words before point as its expansion (add-
global-abbrev).

C-x a l Similar, but define an abbrev specific to the current major mode (add-mode-
abbrev).

C-x a i g Define a word in the buffer as an abbrev (inverse-add-global-abbrev).

C-x a i l Define a word in the buffer as a mode-specific abbrev (inverse-add-mode-
abbrev).

M-x define-global-abbrev RET abbrev RET exp RET

Define abbrev as an abbrev expanding into exp.

M-x define-mode-abbrev RET abbrev RET exp RET

Define abbrev as a mode-specific abbrev expanding into exp.

Chapter 26: Abbrevs 297

M-x kill-all-abbrevs

Discard all abbrev definitions, leaving a blank slate.

The usual way to define an abbrev is to enter the text you want the abbrev to expand
to, position point after it, and type C-x a g (add-global-abbrev). This reads the abbrev
itself using the minibuffer, and then defines it as an abbrev for one or more words before
point. Use a numeric argument to say how many words before point should be taken as
the expansion. For example, to define the abbrev ‘foo’ as mentioned above, insert the text
‘find outer otter’ and then type C-u 3 C-x a g f o o RET.

An argument of zero to C-x a g means to use the contents of the region as the expansion
of the abbrev being defined.

The command C-x a l (add-mode-abbrev) is similar, but defines a mode-specific abbrev
for the current major mode. The arguments work the same as for C-x a g.

C-x a i g (inverse-add-global-abbrev) and C-x a i l (inverse-add-mode-abbrev)
perform the opposite task: if the abbrev text is already in the buffer, you use these com-
mands to define an abbrev by specifying the expansion in the minibuffer. These commands
will expand the abbrev text used for the definition.

You can define an abbrev without inserting either the abbrev or its expansion in the
buffer using the command define-global-abbrev. It reads two arguments—the abbrev,
and its expansion. The command define-mode-abbrev does likewise for a mode-specific
abbrev.

To change the definition of an abbrev, just make a new definition. When an abbrev has
a prior definition, the abbrev definition commands ask for confirmation before replacing it.

To remove an abbrev definition, give a negative argument to the abbrev definition com-
mand: C-u - C-x a g or C-u - C-x a l. The former removes a global definition, while the
latter removes a mode-specific definition. M-x kill-all-abbrevs removes all abbrev defi-
nitions, both global and local.

26.3 Controlling Abbrev Expansion

When Abbrev mode is enabled, an abbrev expands whenever it is present in the buffer
just before point and you type a self-inserting whitespace or punctuation character (SPC,
comma, etc.). More precisely, any character that is not a word constituent expands an
abbrev, and any word-constituent character can be part of an abbrev. The most common
way to use an abbrev is to insert it and then insert a punctuation or whitespace character
to expand it.

Abbrev expansion preserves case: ‘foo’ expands to ‘find outer otter’, and ‘Foo’ to
‘Find outer otter’. ‘FOO’ expands to ‘Find Outer Otter’ by default, but if you change the
variable abbrev-all-caps to a non-nil value, it expands to ‘FIND OUTER OTTER’.

These commands are used to control abbrev expansion:

M-’ Separate a prefix from a following abbrev to be expanded (abbrev-prefix-
mark).

C-x a e Expand the abbrev before point (expand-abbrev). This is effective even when
Abbrev mode is not enabled.

Chapter 26: Abbrevs 298

M-x expand-region-abbrevs

Expand some or all abbrevs found in the region.

You may wish to expand an abbrev and attach a prefix to the expansion; for example, if
‘cnst’ expands into ‘construction’, you might want to use it to enter ‘reconstruction’.
It does not work to type recnst, because that is not necessarily a defined abbrev. What
you can do is use the command M-’ (abbrev-prefix-mark) in between the prefix ‘re’
and the abbrev ‘cnst’. First, insert ‘re’. Then type M-’; this inserts a hyphen in the
buffer to indicate that it has done its work. Then insert the abbrev ‘cnst’; the buffer now
contains ‘re-cnst’. Now insert a non-word character to expand the abbrev ‘cnst’ into
‘construction’. This expansion step also deletes the hyphen that indicated M-’ had been
used. The result is the desired ‘reconstruction’.

If you actually want the text of the abbrev in the buffer, rather than its expansion,
you can accomplish this by inserting the following punctuation with C-q. Thus, foo C-q ,

leaves ‘foo,’ in the buffer, not expanding it.

If you expand an abbrev by mistake, you can undo the expansion by typing C-/ (undo).
See Section 13.1 [Undo], page 102. This undoes the insertion of the abbrev expansion and
brings back the abbrev text. If the result you want is the terminating non-word character
plus the unexpanded abbrev, you must reinsert the terminating character, quoting it with
C-q. You can also use the command M-x unexpand-abbrev to cancel the last expansion
without deleting the terminating character.

M-x expand-region-abbrevs searches through the region for defined abbrevs, and for
each one found offers to replace it with its expansion. This command is useful if you have
typed in text using abbrevs but forgot to turn on Abbrev mode first. It may also be useful
together with a special set of abbrev definitions for making several global replacements at
once. This command is effective even if Abbrev mode is not enabled.

Expanding any abbrev runs abbrev-expand-functions, a special hook. Functions in
this special hook can make arbitrary changes to the abbrev expansion. See Section “Abbrev
Expansion” in The Emacs Lisp Reference Manual.

26.4 Examining and Editing Abbrevs

M-x list-abbrevs

Display a list of all abbrev definitions. With a numeric argument, list only local
abbrevs.

M-x edit-abbrevs

Edit a list of abbrevs; you can add, alter or remove definitions.

The output from M-x list-abbrevs looks like this:

various other tables...

(lisp-mode-abbrev-table)

"dk" 0 "define-key"

(global-abbrev-table)

"dfn" 0 "definition"

(Some blank lines of no semantic significance, and some other abbrev tables, have been
omitted.)

Chapter 26: Abbrevs 299

A line containing a name in parentheses is the header for abbrevs in a particular abbrev
table; global-abbrev-table contains all the global abbrevs, and the other abbrev tables
that are named after major modes contain the mode-specific abbrevs.

Within each abbrev table, each nonblank line defines one abbrev. The word at the
beginning of the line is the abbrev. The number that follows is the number of times the
abbrev has been expanded. Emacs keeps track of this to help you see which abbrevs you
actually use, so that you can eliminate those that you don’t use often. The string at the
end of the line is the expansion.

Some abbrevs are marked with ‘(sys)’. These “system” abbrevs (see Section “Abbrevs”
in The Emacs Lisp Reference Manual) are pre-defined by various modes, and are not saved
to your abbrev file. To disable a “system” abbrev, define an abbrev of the same name that
expands to itself, and save it to your abbrev file.

M-x edit-abbrevs allows you to add, change or kill abbrev definitions by editing a list
of them in an Emacs buffer. The list has the same format described above. The buffer of
abbrevs is called ‘*Abbrevs*’, and is in Edit-Abbrevs mode. Type C-c C-c in this buffer to
install the abbrev definitions as specified in the buffer—and delete any abbrev definitions
not listed.

The command edit-abbrevs is actually the same as list-abbrevs except that it selects
the buffer ‘*Abbrevs*’ whereas list-abbrevs merely displays it in another window.

26.5 Saving Abbrevs

These commands allow you to keep abbrev definitions between editing sessions.

M-x write-abbrev-file RET file RET

Write a file file describing all defined abbrevs.

M-x read-abbrev-file RET file RET

Read the file file and define abbrevs as specified therein.

M-x define-abbrevs

Define abbrevs from definitions in current buffer.

M-x insert-abbrevs

Insert all abbrevs and their expansions into current buffer.

M-x write-abbrev-file reads a file name using the minibuffer and then writes a descrip-
tion of all current abbrev definitions into that file. This is used to save abbrev definitions
for use in a later session. The text stored in the file is a series of Lisp expressions that,
when executed, define the same abbrevs that you currently have.

M-x read-abbrev-file reads a file name using the minibuffer and then reads the file,
defining abbrevs according to the contents of the file. The function quietly-read-abbrev-

file is similar except that it does not display a message in the echo area; you cannot invoke
it interactively, and it is used primarily in your init file (see Section 33.4 [Init File], page 423).
If either of these functions is called with nil as the argument, it uses the file given by the
variable abbrev-file-name, which is ‘~/.emacs.d/abbrev_defs’ by default. This is your
standard abbrev definition file, and Emacs loads abbrevs from it automatically when it
starts up. (As an exception, Emacs does not load the abbrev file when it is started in batch
mode. See Section C.2 [Initial Options], page 464, for a description of batch mode.)

Chapter 26: Abbrevs 300

Emacs will offer to save abbrevs automatically if you have changed any of them, whenever
it offers to save all files (for C-x s or C-x C-c). It saves them in the file specified by abbrev-

file-name. This feature can be inhibited by setting the variable save-abbrevs to nil.

The commands M-x insert-abbrevs and M-x define-abbrevs are similar to the previ-
ous commands but work on text in an Emacs buffer. M-x insert-abbrevs inserts text into
the current buffer after point, describing all current abbrev definitions; M-x define-abbrevs

parses the entire current buffer and defines abbrevs accordingly.

26.6 Dynamic Abbrev Expansion

The abbrev facility described above operates automatically as you insert text, but all ab-
brevs must be defined explicitly. By contrast, dynamic abbrevs allow the meanings of
abbreviations to be determined automatically from the contents of the buffer, but dynamic
abbrev expansion happens only when you request it explicitly.

M-/ Expand the word in the buffer before point as a dynamic abbrev, by searching
in the buffer for words starting with that abbreviation (dabbrev-expand).

C-M-/ Complete the word before point as a dynamic abbrev (dabbrev-completion).

For example, if the buffer contains ‘does this follow ’ and you type f o M-/, the effect
is to insert ‘follow’ because that is the last word in the buffer that starts with ‘fo’. A
numeric argument to M-/ says to take the second, third, etc. distinct expansion found
looking backward from point. Repeating M-/ searches for an alternative expansion by
looking farther back. After scanning all the text before point, it searches the text after
point. The variable dabbrev-limit, if non-nil, specifies how far away in the buffer to
search for an expansion.

After scanning the current buffer, M-/ normally searches other buffers, unless you have
set dabbrev-check-all-buffers to nil.

For finer control over which buffers to scan, customize the variable dabbrev-ignored-

buffer-regexps. Its value is a list of regular expressions. If a buffer’s name matches any
of these regular expressions, dynamic abbrev expansion skips that buffer.

A negative argument to M-/, as in C-u - M-/, says to search first for expansions after
point, then other buffers, and consider expansions before point only as a last resort. If you
repeat the M-/ to look for another expansion, do not specify an argument. Repeating M-/

cycles through all the expansions after point and then the expansions before point.

After you have expanded a dynamic abbrev, you can copy additional words that follow
the expansion in its original context. Simply type SPC M-/ for each additional word you
want to copy. The spacing and punctuation between words is copied along with the words.

The command C-M-/ (dabbrev-completion) performs completion of a dynamic abbrev.
Instead of trying the possible expansions one by one, it finds all of them, then inserts the
text that they have in common. If they have nothing in common, C-M-/ displays a list
of completions, from which you can select a choice in the usual manner. See Section 5.3
[Completion], page 28.

Dynamic abbrev expansion is completely independent of Abbrev mode; the expansion
of a word with M-/ is completely independent of whether it has a definition as an ordinary
abbrev.

Chapter 26: Abbrevs 301

26.7 Customizing Dynamic Abbreviation

Normally, dynamic abbrev expansion ignores case when searching for expansions. That is,
the expansion need not agree in case with the word you are expanding.

This feature is controlled by the variable dabbrev-case-fold-search. If it is t, case
is ignored in this search; if it is nil, the word and the expansion must match in case. If
the value is case-fold-search (the default), then the variable case-fold-search con-
trols whether to ignore case while searching for expansions (see Section 12.8 [Search Case],
page 96).

Normally, dynamic abbrev expansion preserves the case pattern of the dynamic abbrev
you are expanding, by converting the expansion to that case pattern.

The variable dabbrev-case-replace controls whether to preserve the case pattern of the
dynamic abbrev. If it is t, the dynamic abbrev’s case pattern is preserved in most cases;
if it is nil, the expansion is always copied verbatim. If the value is case-replace (the
default), then the variable case-replace controls whether to copy the expansion verbatim
(see Section 12.9.3 [Replacement and Case], page 98).

However, if the expansion contains a complex mixed case pattern, and the dynamic
abbrev matches this pattern as far as it goes, then the expansion is always copied
verbatim, regardless of those variables. Thus, for example, if the buffer contains
variableWithSillyCasePattern, and you type v a M-/, it copies the expansion verbatim
including its case pattern.

The variable dabbrev-abbrev-char-regexp, if non-nil, controls which characters are
considered part of a word, for dynamic expansion purposes. The regular expression must
match just one character, never two or more. The same regular expression also determines
which characters are part of an expansion. The value nil has a special meaning: dy-
namic abbrevs are made of word characters, but expansions are made of word and symbol
characters.

In shell scripts and makefiles, a variable name is sometimes prefixed with ‘$’ and some-
times not. Major modes for this kind of text can customize dynamic abbrev expansion to
handle optional prefixes by setting the variable dabbrev-abbrev-skip-leading-regexp.
Its value should be a regular expression that matches the optional prefix that dynamic
abbrev expression should ignore.

Chapter 27: Dired, the Directory Editor 302

27 Dired, the Directory Editor

Dired makes an Emacs buffer containing a listing of a directory, and optionally some of its
subdirectories as well. You can use the normal Emacs commands to move around in this
buffer, and special Dired commands to operate on the listed files.

The Dired buffer is “read-only”, and inserting text in it is not allowed. Ordinary printing
characters such as d and x are redefined for special Dired commands. Some Dired commands
mark or flag the current file (that is, the file on the current line); other commands operate
on the marked files or on the flagged files. You first mark certain files in order to operate
on all of them with one command.

The Dired-X package provides various extra features for Dired mode. See Section “Top”
in Dired Extra User’s Manual.

You can also view a list of files in a directory with C-x C-d (list-directory). Unlike
Dired, this command does not allow you to operate on the listed files. See Section 15.7
[Directories], page 129.

27.1 Entering Dired

To invoke Dired, type C-x d (dired). This reads a directory name using the minibuffer,
and opens a Dired buffer listing the files in that directory. You can also supply a wildcard
file name pattern as the minibuffer argument, in which case the Dired buffer lists all files
matching that pattern. The usual history and completion commands can be used in the
minibuffer; in particular, M-n puts the name of the visited file (if any) in the minibuffer (see
Section 5.4 [Minibuffer History], page 32).

You can also invoke Dired by giving C-x C-f (find-file) a directory name.

The variable dired-listing-switches specifies the options to give to ls for listing
the directory; this string must contain ‘-l’. If you use a prefix argument with the dired

command, you can specify the ls switches with the minibuffer before you enter the directory
specification. No matter how they are specified, the ls switches can include short options
(that is, single characters) requiring no arguments, and long options (starting with ‘--’)
whose arguments are specified with ‘=’.

If your ls program supports the ‘--dired’ option, Dired automatically passes it that
option; this causes ls to emit special escape sequences for certain unusual file names,
without which Dired will not be able to parse those names. The first time you run Dired
in an Emacs session, it checks whether ls supports the ‘--dired’ option by calling it once
with that option. If the exit code is 0, Dired will subsequently use the ‘--dired’ option;
otherwise it will not. You can inhibit this check by customizing the variable dired-use-

ls-dired. The value unspecified (the default) means to perform the check; any other
non-nil value means to use the ‘--dired’ option; and nil means not to use the ‘--dired’
option.

On MS-Windows and MS-DOS systems, Emacs emulates ls. See Section G.4 [ls in Lisp],
page 493, for options and peculiarities of this emulation.

To display the Dired buffer in another window, use C-x 4 d (dired-other-window). C-x
5 d (dired-other-frame) displays the Dired buffer in a separate frame.

Typing q (quit-window) buries the Dired buffer, and deletes its window if the window
was created just for that buffer.

Chapter 27: Dired, the Directory Editor 303

27.2 Navigation in the Dired Buffer

All the usual Emacs cursor motion commands are available in Dired buffers. The keys C-n
and C-p are redefined to put the cursor at the beginning of the file name on the line, rather
than at the beginning of the line.

For extra convenience, SPC and n in Dired are equivalent to C-n. p is equivalent to C-p.
(Moving by lines is so common in Dired that it deserves to be easy to type.) DEL (move
up and unflag) is also often useful simply for moving up (see Section 27.3 [Dired Deletion],
page 303).

j (dired-goto-file) prompts for a file name using the minibuffer, and moves point to
the line in the Dired buffer describing that file.

M-s f C-s (dired-isearch-filenames) performs a forward incremental search in the
Dired buffer, looking for matches only amongst the file names and ignoring the rest of
the text in the buffer. M-s f M-C-s (dired-isearch-filenames-regexp) does the same,
using a regular expression search. If you change the variable dired-isearch-filenames

to t, then the usual search commands also limit themselves to the file names; for instance,
C-s behaves like M-s f C-s. If the value is dwim, then search commands match the file
names only when point was on a file name initially. See Chapter 12 [Search], page 85, for
information about incremental search.

Some additional navigation commands are available when the Dired buffer includes sev-
eral directories. See Section 27.12 [Subdirectory Motion], page 312.

27.3 Deleting Files with Dired

One of the most frequent uses of Dired is to first flag files for deletion, then delete the files
that were flagged.

d Flag this file for deletion.

u Remove deletion flag on this line.

DEL Move point to previous line and remove the deletion flag on that line.

x Delete the files that are flagged for deletion.

You can flag a file for deletion by moving to the line describing the file and typing d

(dired-flag-file-deletion). The deletion flag is visible as a ‘D’ at the beginning of
the line. This command moves point to the next line, so that repeated d commands flag
successive files. A numeric argument serves as a repeat count.

The reason for flagging files for deletion, rather than deleting files immediately, is to
reduce the danger of deleting a file accidentally. Until you direct Dired to delete the flagged
files, you can remove deletion flags using the commands u and DEL. u (dired-unmark)
works just like d, but removes flags rather than making flags. DEL (dired-unmark-
backward) moves upward, removing flags; it is like u with argument −1.

To delete the flagged files, type x (dired-do-flagged-delete). This command first
displays a list of all the file names flagged for deletion, and requests confirmation with yes.
If you confirm, Dired deletes the flagged files, then deletes their lines from the text of the
Dired buffer. The Dired buffer, with somewhat fewer lines, remains selected.

If you answer no or quit with C-g when asked to confirm, you return immediately to
Dired, with the deletion flags still present in the buffer, and no files actually deleted.

Chapter 27: Dired, the Directory Editor 304

You can delete empty directories just like other files, but normally Dired cannot delete
directories that are nonempty. If the variable dired-recursive-deletes is non-nil, then
Dired can delete nonempty directories including all their contents. That can be somewhat
risky.

If you change the variable delete-by-moving-to-trash to t, the above deletion com-
mands will move the affected files or directories into the operating system’s Trash, instead
of deleting them outright. See Section 15.10 [Misc File Ops], page 132.

27.4 Flagging Many Files at Once

The #, ~, ., % &, and % d commands flag many files for deletion, based on their file names:

Flag all auto-save files (files whose names start and end with ‘#’) for deletion
(see Section 15.5 [Auto Save], page 126).

~ Flag all backup files (files whose names end with ‘~’) for deletion (see
Section 15.3.2 [Backup], page 120).

. (Period) Flag excess numeric backup files for deletion. The oldest and newest few backup
files of any one file are exempt; the middle ones are flagged.

% & Flag for deletion all files with certain kinds of names which suggest you could
easily create those files again.

% d regexp RET

Flag for deletion all files whose names match the regular expression regexp.

(dired-flag-auto-save-files) flags all files whose names look like auto-save files—
that is, files whose names begin and end with ‘#’. See Section 15.5 [Auto Save], page 126.

~ (dired-flag-backup-files) flags all files whose names say they are backup files—that
is, files whose names end in ‘~’. See Section 15.3.2 [Backup], page 120.

. (period, dired-clean-directory) flags just some of the backup files for deletion: all
but the oldest few and newest few backups of any one file. Normally, the number of newest
versions kept for each file is given by the variable dired-kept-versions (not kept-new-
versions; that applies only when saving). The number of oldest versions to keep is given
by the variable kept-old-versions.

Period with a positive numeric argument, as in C-u 3 ., specifies the number of newest
versions to keep, overriding dired-kept-versions. A negative numeric argument overrides
kept-old-versions, using minus the value of the argument to specify the number of oldest
versions of each file to keep.

% & (dired-flag-garbage-files) flags files whose names match the regular expression
specified by the variable dired-garbage-files-regexp. By default, this matches certain
files produced by TEX, ‘.bak’ files, and the ‘.orig’ and ‘.rej’ files produced by patch.

% d flags all files whose names match a specified regular expression (dired-flag-files-
regexp). Only the non-directory part of the file name is used in matching. You can use ‘^’
and ‘$’ to anchor matches. You can exclude certain subdirectories from marking by hiding
them while you use % d. See Section 27.13 [Hiding Subdirectories], page 312.

Chapter 27: Dired, the Directory Editor 305

27.5 Visiting Files in Dired

There are several Dired commands for visiting or examining the files listed in the Dired
buffer. All of them apply to the current line’s file; if that file is really a directory, these
commands invoke Dired on that subdirectory (making a separate Dired buffer).

f Visit the file described on the current line, like typing C-x C-f and supplying
that file name (dired-find-file). See Section 15.2 [Visiting], page 116.

RET
e Equivalent to f.

o Like f, but uses another window to display the file’s buffer (dired-find-file-
other-window). The Dired buffer remains visible in the first window. This is
like using C-x 4 C-f to visit the file. See Chapter 17 [Windows], page 147.

C-o Visit the file described on the current line, and display the buffer in another
window, but do not select that window (dired-display-file).

Mouse-1

Mouse-2 Visit the file whose name you clicked on (dired-mouse-find-file-other-
window). This uses another window to display the file, like the o command.

v View the file described on the current line, with View mode (dired-view-
file). View mode provides convenient commands to navigate the buffer but
forbids changing it; See Section 11.6 [View Mode], page 69.

^ Visit the parent directory of the current directory (dired-up-directory). This
is equivalent to moving to the line for ‘..’ and typing f there.

27.6 Dired Marks vs. Flags

Instead of flagging a file with ‘D’, you can mark the file with some other character (usually
‘*’). Most Dired commands to operate on files use the files marked with ‘*’. The only
command that operates on flagged files is x, which deletes them.

Here are some commands for marking with ‘*’, for unmarking, and for operating on
marks. (See Section 27.3 [Dired Deletion], page 303, for commands to flag and unflag files.)

m

* m Mark the current file with ‘*’ (dired-mark). With a numeric argument n, mark
the next n files starting with the current file. (If n is negative, mark the previous
−n files.)

* * Mark all executable files with ‘*’ (dired-mark-executables). With a numeric
argument, unmark all those files.

* @ Mark all symbolic links with ‘*’ (dired-mark-symlinks). With a numeric
argument, unmark all those files.

* / Mark with ‘*’ all files which are directories, except for ‘.’ and ‘..’ (dired-
mark-directories). With a numeric argument, unmark all those files.

* s Mark all the files in the current subdirectory, aside from ‘.’ and ‘..’ (dired-
mark-subdir-files).

Chapter 27: Dired, the Directory Editor 306

u

* u Remove any mark on this line (dired-unmark).

DEL
* DEL Move point to previous line and remove any mark on that line (dired-unmark-

backward).

* !

U Remove all marks from all the files in this Dired buffer (dired-unmark-all-
marks).

* ? markchar

M-DEL Remove all marks that use the character markchar (dired-unmark-all-
files). The argument is a single character—do not use RET to terminate it.
See the description of the * c command below, which lets you replace one
mark character with another.

With a numeric argument, this command queries about each marked file, asking
whether to remove its mark. You can answer y meaning yes, n meaning no, or
! to remove the marks from the remaining files without asking about them.

* C-n

M-} Move down to the next marked file (dired-next-marked-file) A file is
“marked” if it has any kind of mark.

* C-p

M-{ Move up to the previous marked file (dired-prev-marked-file)

t

* t Toggle all marks (dired-toggle-marks): files marked with ‘*’ become un-
marked, and unmarked files are marked with ‘*’. Files marked in any other
way are not affected.

* c old-markchar new-markchar

Replace all marks that use the character old-markchar with marks that use
the character new-markchar (dired-change-marks). This command is the
primary way to create or use marks other than ‘*’ or ‘D’. The arguments are
single characters—do not use RET to terminate them.

You can use almost any character as a mark character by means of this com-
mand, to distinguish various classes of files. If old-markchar is a space (‘ ’),
then the command operates on all unmarked files; if new-markchar is a space,
then the command unmarks the files it acts on.

To illustrate the power of this command, here is how to put ‘D’ flags on all the
files that have no marks, while unflagging all those that already have ‘D’ flags:

* c D t * c SPC D * c t SPC

This assumes that no files were already marked with ‘t’.

% m regexp RET

* % regexp RET

Mark (with ‘*’) all files whose names match the regular expression regexp
(dired-mark-files-regexp). This command is like % d, except that it marks
files with ‘*’ instead of flagging with ‘D’.

Chapter 27: Dired, the Directory Editor 307

Only the non-directory part of the file name is used in matching. Use ‘^’ and
‘$’ to anchor matches. You can exclude subdirectories by temporarily hiding
them (see Section 27.13 [Hiding Subdirectories], page 312).

% g regexp RET

Mark (with ‘*’) all files whose contents contain a match for the regular expres-
sion regexp (dired-mark-files-containing-regexp). This command is like
% m, except that it searches the file contents instead of the file name.

C-/

C-x u

C-_ Undo changes in the Dired buffer, such as adding or removing marks (dired-
undo). This command does not revert the actual file operations, nor recover lost
files! It just undoes changes in the buffer itself.

In some cases, using this after commands that operate on files can cause trouble.
For example, after renaming one or more files, dired-undo restores the original
names in the Dired buffer, which gets the Dired buffer out of sync with the
actual contents of the directory.

27.7 Operating on Files

This section describes the basic Dired commands to operate on one file or several files. All
of these commands are capital letters; all of them use the minibuffer, either to read an
argument or to ask for confirmation, before they act. All of them let you specify the files
to manipulate in these ways:

• If you give the command a numeric prefix argument n, it operates on the next n files,
starting with the current file. (If n is negative, the command operates on the −n files
preceding the current line.)

• Otherwise, if some files are marked with ‘*’, the command operates on all those files.

• Otherwise, the command operates on the current file only.

Certain other Dired commands, such as ! and the ‘%’ commands, use the same conventions
to decide which files to work on.

Commands which ask for a destination directory, such as those which copy and rename
files or create links for them, try to guess the default target directory for the operation.
Normally, they suggest the Dired buffer’s default directory, but if the variable dired-dwim-

target is non-nil, and if there is another Dired buffer displayed in the next window, that
other buffer’s directory is suggested instead.

Here are the file-manipulating Dired commands that operate on files.

C new RET Copy the specified files (dired-do-copy). The argument new is the directory
to copy into, or (if copying a single file) the new name. This is like the shell
command cp.

If dired-copy-preserve-time is non-nil, then copying with this command
preserves the modification time of the old file in the copy, like ‘cp -p’.

The variable dired-recursive-copies controls whether to copy directories
recursively (like ‘cp -r’). The default is top, which means to ask before recur-
sively copying a directory.

Chapter 27: Dired, the Directory Editor 308

D Delete the specified files (dired-do-delete). This is like the shell command
rm.

Like the other commands in this section, this command operates on the marked
files, or the next n files. By contrast, x (dired-do-flagged-delete) deletes
all flagged files.

R new RET Rename the specified files (dired-do-rename). If you rename a single file, the
argument new is the new name of the file. If you rename several files, the
argument new is the directory into which to move the files (this is like the shell
command mv).

Dired automatically changes the visited file name of buffers associated with
renamed files so that they refer to the new names.

H new RET Make hard links to the specified files (dired-do-hardlink). This is like the
shell command ln. The argument new is the directory to make the links in, or
(if making just one link) the name to give the link.

S new RET Make symbolic links to the specified files (dired-do-symlink). This is like ‘ln
-s’. The argument new is the directory to make the links in, or (if making just
one link) the name to give the link.

M modespec RET

Change the mode (also called permission bits) of the specified files (dired-do-
chmod). modespec can be in octal or symbolic notation, like arguments handled
by the chmod program.

G newgroup RET

Change the group of the specified files to newgroup (dired-do-chgrp).

O newowner RET

Change the owner of the specified files to newowner (dired-do-chown). (On
most systems, only the superuser can do this.)

The variable dired-chown-program specifies the name of the program to use
to do the work (different systems put chown in different places).

T timestamp RET

Touch the specified files (dired-do-touch). This means updating their modi-
fication times to the present time. This is like the shell command touch.

P command RET

Print the specified files (dired-do-print). You must specify the command
to print them with, but the minibuffer starts out with a suitable guess made
using the variables lpr-command and lpr-switches (the same variables that
lpr-buffer uses; see Section 31.5 [Printing], page 382).

Z Compress the specified files (dired-do-compress). If the file appears to be a
compressed file already, uncompress it instead.

:d Decrypt the specified files (epa-dired-do-decrypt). See Section “Dired inte-
gration” in EasyPG Assistant User’s Manual.

:v Verify digital signatures on the specified files (epa-dired-do-verify). See
Section “Dired integration” in EasyPG Assistant User’s Manual.

Chapter 27: Dired, the Directory Editor 309

:s Digitally sign the specified files (epa-dired-do-sign). See Section “Dired in-
tegration” in EasyPG Assistant User’s Manual.

:e Encrypt the specified files (epa-dired-do-encrypt). See Section “Dired inte-
gration” in EasyPG Assistant User’s Manual.

L Load the specified Emacs Lisp files (dired-do-load). See Section 24.8 [Lisp
Libraries], page 265.

B Byte compile the specified Emacs Lisp files (dired-do-byte-compile). See
Section “Byte Compilation” in The Emacs Lisp Reference Manual.

A regexp RET

Search all the specified files for the regular expression regexp (dired-do-
search).

This command is a variant of tags-search. The search stops at the first match
it finds; use M-, to resume the search and find the next match. See Section 25.3.6
[Tags Search], page 293.

Q regexp RET to RET

Perform query-replace-regexp on each of the specified files, replacing
matches for regexp with the string to (dired-do-query-replace-regexp).

This command is a variant of tags-query-replace. If you exit the query
replace loop, you can use M-, to resume the scan and replace more matches.
See Section 25.3.6 [Tags Search], page 293.

27.8 Shell Commands in Dired

The Dired command ! (dired-do-shell-command) reads a shell command string in the
minibuffer and runs that shell command on one or more files. The files that the shell
command operates on are determined in the usual way for Dired commands (see Section 27.7
[Operating on Files], page 307). The command X is a synonym for !.

The command & (dired-do-async-shell-command) does the same, except that it runs
the shell command asynchronously. You can also do this with !, by appending a ‘&’ character
to the end of the shell command.

For both ! and &, the working directory for the shell command is the top-level directory
of the Dired buffer.

If you tell ! or & to operate on more than one file, the shell command string determines
how those files are passed to the shell command:

• If you use ‘*’ surrounded by whitespace in the command string, then the command
runs just once, with the list of file names substituted for the ‘*’. The order of file
names is the order of appearance in the Dired buffer.

Thus, ! tar cf foo.tar * RET runs tar on the entire list of file names, putting them
into one tar file ‘foo.tar’.

If you want to use ‘*’ as a shell wildcard with whitespace around it, write ‘*""’. In the
shell, this is equivalent to ‘*’; but since the ‘*’ is not surrounded by whitespace, Dired
does not treat it specially.

Chapter 27: Dired, the Directory Editor 310

• Otherwise, if the command string contains ‘?’ surrounded by whitespace, Emacs runs
the shell command once for each file, substituting the current file name for ‘?’ each
time. You can use ‘?’ more than once in the command; the same file name replaces
each occurrence.

• If the command string contains neither ‘*’ nor ‘?’, Emacs runs the shell command
once for each file, adding the file name at the end. For example, ! uudecode RET runs
uudecode on each file.

To iterate over the file names in a more complicated fashion, use an explicit shell loop.
For example, here is how to uuencode each file, making the output file name by appending
‘.uu’ to the input file name:

for file in * ; do uuencode "$file" "$file" >"$file".uu; done

The ! and & commands do not attempt to update the Dired buffer to show new or
modified files, because they don’t know what files will be changed. Use the g command to
update the Dired buffer (see Section 27.14 [Dired Updating], page 313).

See Section 31.3.1 [Single Shell], page 368, for information about running shell commands
outside Dired.

27.9 Transforming File Names in Dired

This section describes Dired commands which alter file names in a systematic way. Each
command operates on some or all of the marked files, using a new name made by trans-
forming the existing name.

Like the basic Dired file-manipulation commands (see Section 27.7 [Operating on Files],
page 307), the commands described here operate either on the next n files, or on all files
marked with ‘*’, or on the current file. (To mark files, use the commands described in
Section 27.6 [Marks vs Flags], page 305.)

All of the commands described in this section work interactively : they ask you to confirm
the operation for each candidate file. Thus, you can select more files than you actually need
to operate on (e.g., with a regexp that matches many files), and then filter the selected
names by typing y or n when the command prompts for confirmation.

% u Rename each of the selected files to an upper-case name (dired-upcase). If
the old file names are ‘Foo’ and ‘bar’, the new names are ‘FOO’ and ‘BAR’.

% l Rename each of the selected files to a lower-case name (dired-downcase). If
the old file names are ‘Foo’ and ‘bar’, the new names are ‘foo’ and ‘bar’.

% R from RET to RET

% C from RET to RET

% H from RET to RET

% S from RET to RET

These four commands rename, copy, make hard links and make soft links, in
each case computing the new name by regular-expression substitution from the
name of the old file.

The four regular-expression substitution commands effectively perform a search-and-
replace on the selected file names. They read two arguments: a regular expression from,
and a substitution pattern to; they match each “old” file name against from, and then

Chapter 27: Dired, the Directory Editor 311

replace the matching part with to. You can use ‘\&’ and ‘\digit ’ in to to refer to all
or part of what the pattern matched in the old file name, as in replace-regexp (see
Section 12.9.2 [Regexp Replace], page 97). If the regular expression matches more than
once in a file name, only the first match is replaced.

For example, % R ^.*$ RET x-\& RET renames each selected file by prepending ‘x-’ to its
name. The inverse of this, removing ‘x-’ from the front of each file name, is also possible:
one method is % R ^x-\(.*\)$ RET \1 RET; another is % R ^x- RET RET. (Use ‘^’ and ‘$’ to
anchor matches that should span the whole file name.)

Normally, the replacement process does not consider the files’ directory names; it oper-
ates on the file name within the directory. If you specify a numeric argument of zero, then
replacement affects the entire absolute file name including directory name. (A non-zero
argument specifies the number of files to operate on.)

You may want to select the set of files to operate on using the same regexp from that
you will use to operate on them. To do this, mark those files with % m from RET, then use
the same regular expression in the command to operate on the files. To make this more
convenient, the % commands to operate on files use the last regular expression specified in
any % command as a default.

27.10 File Comparison with Dired

Here are two Dired commands that compare specified files using diff. They show the
output in a buffer using Diff mode (see Section 15.8 [Comparing Files], page 130).

= Compare the current file (the file at point) with another file (the file at the
mark) using the diff program (dired-diff). The file at the mark is the first
argument of diff, and the file at point is the second argument. This refers to
the ordinary Emacs mark, not Dired marks; use C-SPC (set-mark-command) to
set the mark at the first file’s line (see Section 8.1 [Setting Mark], page 44).

M-= Compare the current file with its latest backup file (dired-backup-diff). If
the current file is itself a backup, compare it with the file it is a backup of; this
way, you can compare a file with any one of its backups.

The backup file is the first file given to diff.

27.11 Subdirectories in Dired

A Dired buffer usually displays just one directory, but you can optionally include its subdi-
rectories as well.

The simplest way to include multiple directories in one Dired buffer is to specify the
options ‘-lR’ for running ls. (If you give a numeric argument when you run Dired, then
you can specify these options in the minibuffer.) That produces a recursive directory listing
showing all subdirectories at all levels.

More often, you will want to show only specific subdirectories. You can do this with i

(dired-maybe-insert-subdir):

i Insert the contents of a subdirectory later in the buffer.

Chapter 27: Dired, the Directory Editor 312

If you use this command on a line that describes a file which is a directory, it inserts the
contents of that directory into the same Dired buffer, and moves there. Inserted subdirectory
contents follow the top-level directory of the Dired buffer, just as they do in ‘ls -lR’ output.

If the subdirectory’s contents are already present in the buffer, the i command just
moves to it.

In either case, i sets the Emacs mark before moving, so C-u C-SPC returns to your
previous position in the Dired buffer (see Section 8.1 [Setting Mark], page 44). You can also
use ‘^’ to return to the parent directory in the same Dired buffer (see Section 27.5 [Dired
Visiting], page 305).

Use the l command (dired-do-redisplay) to update the subdirectory’s contents,
and use C-u k on the subdirectory header line to remove the subdirectory listing
(see Section 27.14 [Dired Updating], page 313). You can also hide and show inserted
subdirectories (see Section 27.13 [Hiding Subdirectories], page 312).

27.12 Moving Over Subdirectories

When a Dired buffer lists subdirectories, you can use the page motion commands C-x [and
C-x] to move by entire directories (see Section 22.4 [Pages], page 201).

The following commands move across, up and down in the tree of directories within one
Dired buffer. They move to directory header lines, which are the lines that give a directory’s
name, at the beginning of the directory’s contents.

C-M-n Go to next subdirectory header line, regardless of level (dired-next-subdir).

C-M-p Go to previous subdirectory header line, regardless of level (dired-prev-
subdir).

C-M-u Go up to the parent directory’s header line (dired-tree-up).

C-M-d Go down in the directory tree, to the first subdirectory’s header line (dired-
tree-down).

< Move up to the previous directory-file line (dired-prev-dirline). These lines
are the ones that describe a directory as a file in its parent directory.

> Move down to the next directory-file line (dired-prev-dirline).

27.13 Hiding Subdirectories

Hiding a subdirectory means to make it invisible, except for its header line.

$ Hide or show the subdirectory that point is in, and move point to the next
subdirectory (dired-hide-subdir). This is a toggle. A numeric argument
serves as a repeat count.

M-$ Hide all subdirectories in this Dired buffer, leaving only their header lines
(dired-hide-all). Or, if any subdirectory is currently hidden, make all sub-
directories visible again. You can use this command to get an overview in very
deep directory trees or to move quickly to subdirectories far away.

Ordinary Dired commands never consider files inside a hidden subdirectory. For example,
the commands to operate on marked files ignore files in hidden directories even if they are

Chapter 27: Dired, the Directory Editor 313

marked. Thus you can use hiding to temporarily exclude subdirectories from operations
without having to remove the Dired marks on files in those subdirectories.

See Section 27.14 [Dired Updating], page 313, for how to insert or delete a subdirectory
listing.

27.14 Updating the Dired Buffer

This section describes commands to update the Dired buffer to reflect outside (non-Dired)
changes in the directories and files, and to delete part of the Dired buffer.

g Update the entire contents of the Dired buffer (revert-buffer).

l Update the specified files (dired-do-redisplay). You specify the files for l in
the same way as for file operations.

k Delete the specified file lines—not the files, just the lines (dired-do-kill-
lines).

s Toggle between alphabetical order and date/time order (dired-sort-toggle-
or-edit).

C-u s switches RET

Refresh the Dired buffer using switches as dired-listing-switches.

Type g (revert-buffer) to update the contents of the Dired buffer, based on changes
in the files and directories listed. This preserves all marks except for those on files that
have vanished. Hidden subdirectories are updated but remain hidden.

To update only some of the files, type l (dired-do-redisplay). Like the Dired file-
operating commands, this command operates on the next n files (or previous −n files), or
on the marked files if any, or on the current file. Updating the files means reading their
current status, then updating their lines in the buffer to indicate that status.

If you use l on a subdirectory header line, it updates the contents of the corresponding
subdirectory.

If you use C-x d or some other Dired command to visit a directory that is already being
shown in a Dired buffer, Dired switches to that buffer but does not update it. If the buffer
is not up-to-date, Dired displays a warning telling you to type G to update it. You can
also tell Emacs to revert each Dired buffer automatically when you revisit it, by setting the
variable dired-auto-revert-buffer to a non-nil value.

To delete the specified file lines from the buffer—not delete the files—type k (dired-
do-kill-lines). Like the file-operating commands, this command operates on the next n
files, or on the marked files if any; but it does not operate on the current file as a last resort.

If you use k with a numeric prefix argument to kill the line for a file that is a directory,
which you have inserted in the Dired buffer as a subdirectory, it removed that subdirectory
line from the buffer as well. Typing C-u k on the header line for a subdirectory also removes
the subdirectory line from the Dired buffer.

The g command brings back any individual lines that you have killed in this way, but
not subdirectories—you must use i to reinsert a subdirectory.

Chapter 27: Dired, the Directory Editor 314

The files in a Dired buffers are normally listed in alphabetical order by file names.
Alternatively Dired can sort them by date/time. The Dired command s (dired-sort-
toggle-or-edit) switches between these two sorting modes. The mode line in a Dired
buffer indicates which way it is currently sorted—by name, or by date.

C-u s switches RET lets you specify a new value for dired-listing-switches.

27.15 Dired and find

You can select a set of files for display in a Dired buffer more flexibly by using the find

utility to choose the files.

To search for files with names matching a wildcard pattern use M-x find-name-dired.
It reads arguments directory and pattern, and chooses all the files in directory or its sub-
directories whose individual names match pattern.

The files thus chosen are displayed in a Dired buffer, in which the ordinary Dired com-
mands are available.

If you want to test the contents of files, rather than their names, use M-x

find-grep-dired. This command reads two minibuffer arguments, directory and regexp;
it chooses all the files in directory or its subdirectories that contain a match for regexp. It
works by running the programs find and grep. See also M-x grep-find, in Section 24.4
[Grep Searching], page 253. Remember to write the regular expression for grep, not for
Emacs. (An alternative method of showing files whose contents match a given regexp is
the % g regexp command, see Section 27.6 [Marks vs Flags], page 305.)

The most general command in this series is M-x find-dired, which lets you specify any
condition that find can test. It takes two minibuffer arguments, directory and find-args;
it runs find in directory, passing find-args to tell find what condition to test. To use this
command, you need to know how to use find.

The format of listing produced by these commands is controlled by the variable find-

ls-option. This is a pair of options; the first specifying how to call find to produce the
file listing, and the second telling Dired to parse the output.

The command M-x locate provides a similar interface to the locate program. M-x

locate-with-filter is similar, but keeps only files whose names match a given regular
expression.

These buffers don’t work entirely like ordinary Dired buffers: file operations work, but do
not always automatically update the buffer. Reverting the buffer with g deletes all inserted
subdirectories, and erases all flags and marks.

27.16 Editing the Dired Buffer

Wdired is a special mode that allows you to perform file operations by editing the Dired
buffer directly (the “W” in “Wdired” stands for “writable”.) To enter Wdired mode,
type C-x C-q (dired-toggle-read-only) while in a Dired buffer. Alternatively, use the
‘Immediate / Edit File Names’ menu item.

While in Wdired mode, you can rename files by editing the file names displayed in the
Dired buffer. All the ordinary Emacs editing commands, including rectangle operations and
query-replace, are available for this. Once you are done editing, type C-c C-c (wdired-
finish-edit). This applies your changes and switches back to ordinary Dired mode.

Chapter 27: Dired, the Directory Editor 315

Apart from simply renaming files, you can move a file to another directory by typing in
the new file name (either absolute or relative). To mark a file for deletion, delete the entire
file name. To change the target of a symbolic link, edit the link target name which appears
next to the link name.

The rest of the text in the buffer, such as the file sizes and modification dates, is marked
read-only, so you can’t edit it. However, if you set wdired-allow-to-change-permissions
to t, you can edit the file permissions. For example, you can change ‘-rw-r--r--’ to
‘-rw-rw-rw-’ to make a file world-writable. These changes also take effect when you type
C-c C-c.

27.17 Viewing Image Thumbnails in Dired

Image-Dired is a facility for browsing image files. It provides viewing the images either as
thumbnails or in full size, either inside Emacs or through an external viewer.

To enter Image-Dired, mark the image files you want to look at in the Dired buffer, using
m as usual. Then type C-t d (image-dired-display-thumbs). This creates and switches
to a buffer containing image-dired, corresponding to the marked files.

You can also enter Image-Dired directly by typing M-x image-dired. This prompts for
a directory; specify one that has image files. This creates thumbnails for all the images in
that directory, and displays them all in the “thumbnail buffer”. This takes a long time if
the directory contains many image files, and it asks for confirmation if the number of image
files exceeds image-dired-show-all-from-dir-max-files.

With point in the thumbnail buffer, you can type RET (image-dired-display-
thumbnail-original-image) to display a sized version of it in another window.
This sizes the image to fit the window. Use the arrow keys to move around in the
buffer. For easy browsing, use SPC (image-dired-display-next-thumbnail-original)
to advance and display the next image. Typing DEL (image-dired-display-
previous-thumbnail-original) backs up to the previous thumbnail and displays that
instead.

To view and the image in its original size, either provide a prefix argument (C-u) before
pressing RET, or type C-RET (image-dired-thumbnail-display-external) to display the
image in an external viewer. You must first configure image-dired-external-viewer.

You can delete images through Image-Dired also. Type d (image-dired-flag-thumb-
original-file) to flag the image file for deletion in the Dired buffer. You can also delete
the thumbnail image from the thumbnail buffer with C-d (image-dired-delete-char).

More advanced features include image tags, which are metadata used to categorize image
files. The tags are stored in a plain text file configured by image-dired-db-file.

To tag image files, mark them in the dired buffer (you can also mark files in Dired from
the thumbnail buffer by typing m) and type C-t t (image-dired-tag-files). This reads
the tag name in the minibuffer. To mark files having a certain tag, type C-t f (image-
dired-mark-tagged-files). After marking image files with a certain tag, you can use C-t

d to view them.

You can also tag a file directly from the thumbnail buffer by typing t t and you can
remove a tag by typing t r. There is also a special “tag” called “comment” for each file (it
is not a tag in the exact same sense as the other tags, it is handled slightly different). That

Chapter 27: Dired, the Directory Editor 316

is used to enter a comment or description about the image. You comment a file from the
thumbnail buffer by typing c. You will be prompted for a comment. Type C-t c to add a
comment from Dired (image-dired-dired-comment-files).

Image-Dired also provides simple image manipulation. In the thumbnail buffer, type L to
rotate the original image 90 degrees anti clockwise, and R to rotate it 90 degrees clockwise.
This rotation is lossless, and uses an external utility called JpegTRAN.

27.18 Other Dired Features

The command + (dired-create-directory) reads a directory name, and creates that
directory. It signals an error if the directory already exists.

The command M-s a C-s (dired-do-isearch) begins a “multi-file” incremental search
on the marked files. If a search fails at the end of a file, typing C-s advances to the next
marked file and repeats the search; at the end of the last marked file, the search wraps
around to the first marked file. The command M-s a M-C-s (dired-do-isearch-regexp)
does the same with a regular expression search. See Section 12.1.2 [Repeat Isearch], page 86,
for information about search repetition.

The command w (dired-copy-filename-as-kill) puts the names of the marked (or
next n) files into the kill ring, as if you had killed them with C-w. The names are separated
by a space.

With a zero prefix argument, this uses the absolute file name of each marked file. With
just C-u as the prefix argument, it uses file names relative to the Dired buffer’s default
directory. (This can still contain slashes if in a subdirectory.) As a special case, if point
is on a directory headerline, w gives you the absolute name of that directory. Any prefix
argument or marked files are ignored in this case.

The main purpose of this command is so that you can yank the file names into arguments
for other Emacs commands. It also displays what it added to the kill ring, so you can use
it to display the list of currently marked files in the echo area.

If the directory you are visiting is under version control (see Section 25.1 [Version Con-
trol], page 269), then the normal VC diff and log commands will operate on the selected
files.

The command M-x dired-compare-directories is used to compare the current Dired
buffer with another directory. It marks all the files that are “different” between the two
directories. It puts these marks in all Dired buffers where these files are listed, which of
course includes the current buffer.

The default comparison method (used if you type RET at the prompt) is to compare just
the file names—each file name that does not appear in the other directory is “different”.
You can specify more stringent comparisons by entering a Lisp expression, which can refer
to the variables size1 and size2, the respective file sizes; mtime1 and mtime2, the last
modification times in seconds, as floating point numbers; and fa1 and fa2, the respective file
attribute lists (as returned by the function file-attributes). This expression is evaluated
for each pair of like-named files, and if the expression’s value is non-nil, those files are
considered “different”.

For instance, the sequence M-x dired-compare-directories RET (> mtime1 mtime2)

RET marks files newer in this directory than in the other, and marks files older in the other

Chapter 27: Dired, the Directory Editor 317

directory than in this one. It also marks files with no counterpart, in both directories, as
always.

On the X Window System, Emacs supports the “drag and drop” protocol. You can
drag a file object from another program, and drop it onto a Dired buffer; this either moves,
copies, or creates a link to the file in that directory. Precisely which action is taken is
determined by the originating program. Dragging files out of a Dired buffer is currently not
supported.

Chapter 28: The Calendar and the Diary 318

28 The Calendar and the Diary

Emacs provides the functions of a desk calendar, with a diary of planned or past events.
It also has facilities for managing your appointments, and keeping track of how much time
you spend working on certain projects.

To enter the calendar, type M-x calendar; this displays a three-month calendar centered
on the current month, with point on the current date. With a numeric argument, as in C-u

M-x calendar, it prompts you for the month and year to be the center of the three-month
calendar. The calendar uses its own buffer, whose major mode is Calendar mode.

Mouse-3 in the calendar brings up a menu of operations on a particular date; Mouse-2
brings up a menu of commonly used calendar features that are independent of any particular
date. To exit the calendar, type q.

This chapter describes the basic calendar features. For more advanced topics, see Section
“Advanced Calendar/Diary Usage” in Specialized Emacs Features.

28.1 Movement in the Calendar

Calendar mode provides commands to move through the calendar in logical units of time
such as days, weeks, months, and years. If you move outside the three months originally
displayed, the calendar display “scrolls” automatically through time to make the selected
date visible. Moving to a date lets you view its holidays or diary entries, or convert it to
other calendars; moving by long time periods is also useful simply to scroll the calendar.

28.1.1 Motion by Standard Lengths of Time

The commands for movement in the calendar buffer parallel the commands for movement
in text. You can move forward and backward by days, weeks, months, and years.

C-f Move point one day forward (calendar-forward-day).

C-b Move point one day backward (calendar-backward-day).

C-n Move point one week forward (calendar-forward-week).

C-p Move point one week backward (calendar-backward-week).

M-} Move point one month forward (calendar-forward-month).

M-{ Move point one month backward (calendar-backward-month).

C-x] Move point one year forward (calendar-forward-year).

C-x [Move point one year backward (calendar-backward-year).

The day and week commands are natural analogues of the usual Emacs commands for
moving by characters and by lines. Just as C-n usually moves to the same column in the
following line, in Calendar mode it moves to the same day in the following week. And C-p

moves to the same day in the previous week.

The arrow keys are equivalent to C-f, C-b, C-n and C-p, just as they normally are in
other modes.

The commands for motion by months and years work like those for weeks, but move a
larger distance. The month commands M-} and M-{ move forward or backward by an entire
month. The year commands C-x] and C-x [move forward or backward a whole year.

Chapter 28: The Calendar and the Diary 319

The easiest way to remember these commands is to consider months and years analogous
to paragraphs and pages of text, respectively. But the commands themselves are not quite
analogous. The ordinary Emacs paragraph commands move to the beginning or end of a
paragraph, whereas these month and year commands move by an entire month or an entire
year, keeping the same date within the month or year.

All these commands accept a numeric argument as a repeat count. For convenience, the
digit keys and the minus sign specify numeric arguments in Calendar mode even without
the Meta modifier. For example, 100 C-f moves point 100 days forward from its present
location.

28.1.2 Beginning or End of Week, Month or Year

A week (or month, or year) is not just a quantity of days; we think of weeks (months, years)
as starting on particular dates. So Calendar mode provides commands to move to the start
or end of a week, month or year:

C-a Move point to start of week (calendar-beginning-of-week).

C-e Move point to end of week (calendar-end-of-week).

M-a Move point to start of month (calendar-beginning-of-month).

M-e Move point to end of month (calendar-end-of-month).

M-< Move point to start of year (calendar-beginning-of-year).

M-> Move point to end of year (calendar-end-of-year).

These commands also take numeric arguments as repeat counts, with the repeat count
indicating how many weeks, months, or years to move backward or forward.

By default, weeks begin on Sunday. To make them begin on Monday instead, set the
variable calendar-week-start-day to 1.

28.1.3 Specified Dates

Calendar mode provides commands for moving to a particular date specified in various
ways.

g d Move point to specified date (calendar-goto-date).

g D Move point to specified day of year (calendar-goto-day-of-year).

g w Move point to specified week of year (calendar-iso-goto-week).

o Center calendar around specified month (calendar-other-month).

. Move point to today’s date (calendar-goto-today).

g d (calendar-goto-date) prompts for a year, a month, and a day of the month, and
then moves to that date. Because the calendar includes all dates from the beginning of the
current era, you must type the year in its entirety; that is, type ‘1990’, not ‘90’.

g D (calendar-goto-day-of-year) prompts for a year and day number, and moves to
that date. Negative day numbers count backward from the end of the year. g w (calendar-
iso-goto-week) prompts for a year and week number, and moves to that week.

o (calendar-other-month) prompts for a month and year, then centers the three-month
calendar around that month.

You can return to today’s date with . (calendar-goto-today).

Chapter 28: The Calendar and the Diary 320

28.2 Scrolling in the Calendar

The calendar display scrolls automatically through time when you move out of the visible
portion. You can also scroll it manually. Imagine that the calendar window contains a
long strip of paper with the months on it. Scrolling the calendar means moving the strip
horizontally, so that new months become visible in the window.

> Scroll calendar one month forward (calendar-scroll-left).

< Scroll calendar one month backward (calendar-scroll-right).

C-v

NEXT Scroll three months forward (calendar-scroll-left-three-months).

M-v

PRIOR Scroll three months backward (calendar-scroll-right-three-months).

The most basic calendar scroll commands scroll by one month at a time. This means that
there are two months of overlap between the display before the command and the display
after. > scrolls the calendar contents one month forward in time. < scrolls the contents one
month backwards in time.

The commands C-v and M-v scroll the calendar by an entire “screenful”—three months—
in analogy with the usual meaning of these commands. C-v makes later dates visible and
M-v makes earlier dates visible. These commands take a numeric argument as a repeat
count; in particular, since C-u multiplies the next command by four, typing C-u C-v scrolls
the calendar forward by a year and typing C-u M-v scrolls the calendar backward by a year.

The function keys NEXT and PRIOR are equivalent to C-v and M-v, just as they are in
other modes.

28.3 Counting Days

M-= Display the number of days in the current region (calendar-count-days-
region).

To determine the number of days in a range, set the mark on one date using C-SPC,
move point to another date, and type M-= (calendar-count-days-region). The numbers
of days shown is inclusive; that is, it includes the days specified by mark and point.

28.4 Miscellaneous Calendar Commands

p d Display day-in-year (calendar-print-day-of-year).

C-c C-l Regenerate the calendar window (calendar-redraw).

SPC Scroll the next window up (scroll-other-window).

DEL Scroll the next window down (scroll-other-window-down).

q Exit from calendar (calendar-exit).

To display the number of days elapsed since the start of the year, or the number of
days remaining in the year, type the p d command (calendar-print-day-of-year). This
displays both of those numbers in the echo area. The count of days elapsed includes the
selected date. The count of days remaining does not include that date.

Chapter 28: The Calendar and the Diary 321

If the calendar window text gets corrupted, type C-c C-l (calendar-redraw) to redraw
it. (This can only happen if you use non-Calendar-mode editing commands.)

In Calendar mode, you can use SPC (scroll-other-window) and DEL (scroll-other-
window-down) to scroll the other window (if there is one) up or down, respectively. This is
handy when you display a list of holidays or diary entries in another window.

To exit from the calendar, type q (calendar-exit). This buries all buffers related to the
calendar, selecting other buffers. (If a frame contains a dedicated calendar window, exiting
from the calendar deletes or iconifies that frame depending on the value of calendar-

remove-frame-by-deleting.)

28.5 Writing Calendar Files

You can write calendars and diary entries to HTML and LaTEX files.

The Calendar HTML commands produce files of HTML code that contain calendar and
diary entries. Each file applies to one month, and has a name of the format ‘yyyy-mm.html’,
where yyyy and mm are the four-digit year and two-digit month, respectively. The variable
cal-html-directory specifies the default output directory for the HTML files.

Diary entries enclosed by < and > are interpreted as HTML tags (for example: this is
a diary entry with some red text). You can change the overall
appearance of the displayed HTML pages (for example, the color of various page elements,
header styles) via a stylesheet ‘cal.css’ in the directory containing the HTML files (see
the value of the variable cal-html-css-default for relevant style settings).

H m Generate a one-month calendar (cal-html-cursor-month).

H y Generate a calendar file for each month of a year, as well as an index page
(cal-html-cursor-year). By default, this command writes files to a yyyy
subdirectory - if this is altered some hyperlinks between years will not work.

If the variable cal-html-print-day-number-flag is non-nil, then the monthly calen-
dars show the day-of-the-year number. The variable cal-html-year-index-cols specifies
the number of columns in the yearly index page.

The Calendar LaTEX commands produce a buffer of LaTEX code that prints as a calen-
dar. Depending on the command you use, the printed calendar covers the day, week, month
or year that point is in.

t m Generate a one-month calendar (cal-tex-cursor-month).

t M Generate a sideways-printing one-month calendar (cal-tex-cursor-month-
landscape).

t d Generate a one-day calendar (cal-tex-cursor-day).

t w 1 Generate a one-page calendar for one week (cal-tex-cursor-week).

t w 2 Generate a two-page calendar for one week (cal-tex-cursor-week2).

t w 3 Generate an ISO-style calendar for one week (cal-tex-cursor-week-iso).

t w 4 Generate a calendar for one Monday-starting week (cal-tex-cursor-week-
monday).

Chapter 28: The Calendar and the Diary 322

t f w Generate a Filofax-style two-weeks-at-a-glance calendar (cal-tex-cursor-
filofax-2week).

t f W Generate a Filofax-style one-week-at-a-glance calendar (cal-tex-cursor-
filofax-week).

t y Generate a calendar for one year (cal-tex-cursor-year).

t Y Generate a sideways-printing calendar for one year (cal-tex-cursor-year-
landscape).

t f y Generate a Filofax-style calendar for one year (cal-tex-cursor-filofax-
year).

Some of these commands print the calendar sideways (in “landscape mode”), so it can
be wider than it is long. Some of them use Filofax paper size (3.75in x 6.75in). All of
these commands accept a prefix argument, which specifies how many days, weeks, months
or years to print (starting always with the selected one).

If the variable cal-tex-holidays is non-nil (the default), then the printed calendars
show the holidays in calendar-holidays. If the variable cal-tex-diary is non-nil (the
default is nil), diary entries are included also (in monthly, filofax, and iso-week calendars
only). If the variable cal-tex-rules is non-nil (the default is nil), the calendar displays
ruled pages in styles that have sufficient room. Consult the documentation of the individual
cal-tex functions to see which calendars support which features.

You can use the variable cal-tex-preamble-extra to insert extra LaTEX commands in
the preamble of the generated document if you need to.

28.6 Holidays

The Emacs calendar knows about many major and minor holidays, and can display them.
You can add your own holidays to the default list.

Mouse-3 Holidays

h Display holidays for the selected date (calendar-cursor-holidays).

x Mark holidays in the calendar window (calendar-mark-holidays).

u Unmark calendar window (calendar-unmark).

a List all holidays for the displayed three months in another window (calendar-
list-holidays).

M-x holidays

List all holidays for three months around today’s date in another window.

M-x list-holidays

List holidays in another window for a specified range of years.

To see if any holidays fall on a given date, position point on that date in the calendar
window and use the h command. Alternatively, click on that date with Mouse-3 and then
choose Holidays from the menu that appears. Either way, this displays the holidays for
that date, in the echo area if they fit there, otherwise in a separate window.

To view the distribution of holidays for all the dates shown in the calendar, use the
x command. This displays the dates that are holidays in a different face. See Section

Chapter 28: The Calendar and the Diary 323

“Calendar Customizing” in Specialized Emacs Features. The command applies both to the
currently visible months and to other months that subsequently become visible by scrolling.
To turn marking off and erase the current marks, type u, which also erases any diary marks
(see Section 28.10 [Diary], page 329). If the variable calendar-mark-holidays-flag is
non-nil, creating or updating the calendar marks holidays automatically.

To get even more detailed information, use the a command, which displays a separate
buffer containing a list of all holidays in the current three-month range. You can use SPC
and DEL in the calendar window to scroll that list up and down, respectively.

The command M-x holidays displays the list of holidays for the current month and the
preceding and succeeding months; this works even if you don’t have a calendar window. If
the variable calendar-view-holidays-initially-flag is non-nil, creating the calendar
displays holidays in this way. If you want the list of holidays centered around a different
month, use C-u M-x holidays, which prompts for the month and year.

The holidays known to Emacs include United States holidays and the major Bahá’́ı,
Chinese, Christian, Islamic, and Jewish holidays; also the solstices and equinoxes.

The command M-x holiday-list displays the list of holidays for a range of years. This
function asks you for the starting and stopping years, and allows you to choose all the
holidays or one of several categories of holidays. You can use this command even if you
don’t have a calendar window.

The dates used by Emacs for holidays are based on current practice, not historical fact.
For example Veteran’s Day began in 1919, but is shown in earlier years.

28.7 Times of Sunrise and Sunset

Special calendar commands can tell you, to within a minute or two, the times of sunrise
and sunset for any date.

Mouse-3 Sunrise/sunset

S Display times of sunrise and sunset for the selected date (calendar-sunrise-
sunset).

M-x sunrise-sunset

Display times of sunrise and sunset for today’s date.

C-u M-x sunrise-sunset

Display times of sunrise and sunset for a specified date.

M-x calendar-sunrise-sunset-month

Display times of sunrise and sunset for the selected month.

Within the calendar, to display the local times of sunrise and sunset in the echo area,
move point to the date you want, and type S. Alternatively, click Mouse-3 on the date, then
choose ‘Sunrise/sunset’ from the menu that appears. The command M-x sunrise-sunset

is available outside the calendar to display this information for today’s date or a specified
date. To specify a date other than today, use C-u M-x sunrise-sunset, which prompts for
the year, month, and day.

You can display the times of sunrise and sunset for any location and any date with
C-u C-u M-x sunrise-sunset. This asks you for a longitude, latitude, number of minutes

Chapter 28: The Calendar and the Diary 324

difference from Coordinated Universal Time, and date, and then tells you the times of
sunrise and sunset for that location on that date.

Because the times of sunrise and sunset depend on the location on earth, you need to
tell Emacs your latitude, longitude, and location name before using these commands. Here
is an example of what to set:

(setq calendar-latitude 40.1)

(setq calendar-longitude -88.2)

(setq calendar-location-name "Urbana, IL")

Use one decimal place in the values of calendar-latitude and calendar-longitude.

Your time zone also affects the local time of sunrise and sunset. Emacs usually gets
time zone information from the operating system, but if these values are not what you want
(or if the operating system does not supply them), you must set them yourself. Here is an
example:

(setq calendar-time-zone -360)

(setq calendar-standard-time-zone-name "CST")

(setq calendar-daylight-time-zone-name "CDT")

The value of calendar-time-zone is the number of minutes difference between your local
standard time and Coordinated Universal Time (Greenwich time). The values of calendar-
standard-time-zone-name and calendar-daylight-time-zone-name are the abbrevia-
tions used in your time zone. Emacs displays the times of sunrise and sunset corrected for
daylight saving time. See Section 28.13 [Daylight Saving], page 335, for how daylight saving
time is determined.

As a user, you might find it convenient to set the calendar location variables for your
usual physical location in your ‘.emacs’ file. If you are a system administrator, you may
want to set these variables for all users in a ‘default.el’ file. See Section 33.4 [Init File],
page 423.

28.8 Phases of the Moon

These calendar commands display the dates and times of the phases of the moon (new
moon, first quarter, full moon, last quarter). This feature is useful for debugging problems
that “depend on the phase of the moon”.

M Display the dates and times for all the quarters of the moon for the three-month
period shown (calendar-lunar-phases).

M-x lunar-phases

Display dates and times of the quarters of the moon for three months around
today’s date.

Within the calendar, use the M command to display a separate buffer of the phases of
the moon for the current three-month range. The dates and times listed are accurate to
within a few minutes.

Outside the calendar, use the command M-x lunar-phases to display the list of the
phases of the moon for the current month and the preceding and succeeding months. For
information about a different month, use C-u M-x lunar-phases, which prompts for the
month and year.

Chapter 28: The Calendar and the Diary 325

The dates and times given for the phases of the moon are given in local time (corrected
for daylight saving, when appropriate). See the discussion in the previous section. See
Section 28.7 [Sunrise/Sunset], page 323.

28.9 Conversion To and From Other Calendars

The Emacs calendar displayed is always the Gregorian calendar, sometimes called the “new
style” calendar, which is used in most of the world today. However, this calendar did not
exist before the sixteenth century and was not widely used before the eighteenth century;
it did not fully displace the Julian calendar and gain universal acceptance until the early
twentieth century. The Emacs calendar can display any month since January, year 1 of the
current era, but the calendar displayed is always the Gregorian, even for a date at which
the Gregorian calendar did not exist.

While Emacs cannot display other calendars, it can convert dates to and from several
other calendars.

28.9.1 Supported Calendar Systems

The ISO commercial calendar is often used in business.

The Julian calendar, named after Julius Caesar, was the one used in Europe throughout
medieval times, and in many countries up until the nineteenth century.

Astronomers use a simple counting of days elapsed since noon, Monday, January 1, 4713
B.C. on the Julian calendar. The number of days elapsed is called the Julian day number
or the Astronomical day number.

The Hebrew calendar is used by tradition in the Jewish religion. The Emacs calendar
program uses the Hebrew calendar to determine the dates of Jewish holidays. Hebrew
calendar dates begin and end at sunset.

The Islamic calendar is used in many predominantly Islamic countries. Emacs uses it
to determine the dates of Islamic holidays. There is no universal agreement in the Islamic
world about the calendar; Emacs uses a widely accepted version, but the precise dates of
Islamic holidays often depend on proclamation by religious authorities, not on calculations.
As a consequence, the actual dates of observance can vary slightly from the dates computed
by Emacs. Islamic calendar dates begin and end at sunset.

The French Revolutionary calendar was created by the Jacobins after the 1789 revolution,
to represent a more secular and nature-based view of the annual cycle, and to install a 10-
day week in a rationalization measure similar to the metric system. The French government
officially abandoned this calendar at the end of 1805.

The Maya of Central America used three separate, overlapping calendar systems, the long
count, the tzolkin, and the haab. Emacs knows about all three of these calendars. Experts
dispute the exact correlation between the Mayan calendar and our calendar; Emacs uses
the Goodman-Martinez-Thompson correlation in its calculations.

The Copts use a calendar based on the ancient Egyptian solar calendar. Their calendar
consists of twelve 30-day months followed by an extra five-day period. Once every fourth
year they add a leap day to this extra period to make it six days. The Ethiopic calendar is
identical in structure, but has different year numbers and month names.

The Persians use a solar calendar based on a design of Omar Khayyam. Their calendar
consists of twelve months of which the first six have 31 days, the next five have 30 days,

Chapter 28: The Calendar and the Diary 326

and the last has 29 in ordinary years and 30 in leap years. Leap years occur in a compli-
cated pattern every four or five years. The calendar implemented here is the arithmetical
Persian calendar championed by Birashk, based on a 2,820-year cycle. It differs from the
astronomical Persian calendar, which is based on astronomical events. As of this writing
the first future discrepancy is projected to occur on March 20, 2025. It is currently not
clear what the official calendar of Iran will be at that time.

The Chinese calendar is a complicated system of lunar months arranged into solar years.
The years go in cycles of sixty, each year containing either twelve months in an ordinary
year or thirteen months in a leap year; each month has either 29 or 30 days. Years, ordinary
months, and days are named by combining one of ten “celestial stems” with one of twelve
“terrestrial branches” for a total of sixty names that are repeated in a cycle of sixty.

The Bahá’́ı calendar system is based on a solar cycle of 19 months with 19 days each.
The four remaining “intercalary” days are placed between the 18th and 19th months.

28.9.2 Converting To Other Calendars

The following commands describe the selected date (the date at point) in various other
calendar systems:

Mouse-3 Other calendars

p o Display the selected date in various other calendars. (calendar-print-other-
dates).

p c Display ISO commercial calendar equivalent for selected day (calendar-iso-
print-date).

p j Display Julian date for selected day (calendar-julian-print-date).

p a Display astronomical (Julian) day number for selected day (calendar-astro-
print-day-number).

p h Display Hebrew date for selected day (calendar-hebrew-print-date).

p i Display Islamic date for selected day (calendar-islamic-print-date).

p f Display French Revolutionary date for selected day (calendar-french-print-
date).

p b Display Bahá’́ı date for selected day (calendar-bahai-print-date).

p C Display Chinese date for selected day (calendar-chinese-print-date).

p k Display Coptic date for selected day (calendar-coptic-print-date).

p e Display Ethiopic date for selected day (calendar-ethiopic-print-date).

p p Display Persian date for selected day (calendar-persian-print-date).

p m Display Mayan date for selected day (calendar-mayan-print-date).

Otherwise, move point to the date you want to convert, then type the appropriate
command starting with p from the table above. The prefix p is a mnemonic for “print”,
since Emacs “prints” the equivalent date in the echo area. p o displays the date in all
forms known to Emacs. You can also use Mouse-3 and then choose Other calendars from
the menu that appears. This displays the equivalent forms of the date in all the calendars
Emacs understands, in the form of a menu. (Choosing an alternative from this menu doesn’t
actually do anything—the menu is used only for display.)

Chapter 28: The Calendar and the Diary 327

28.9.3 Converting From Other Calendars

You can use the other supported calendars to specify a date to move to. This section
describes the commands for doing this using calendars other than Mayan; for the Mayan
calendar, see the following section.

g c Move to a date specified in the ISO commercial calendar (calendar-iso-goto-
date).

g w Move to a week specified in the ISO commercial calendar (calendar-iso-goto-
week).

g j Move to a date specified in the Julian calendar (calendar-julian-goto-date).

g a Move to a date specified with an astronomical (Julian) day number (calendar-
astro-goto-day-number).

g b Move to a date specified in the Bahá’́ı calendar (calendar-bahai-goto-date).

g h Move to a date specified in the Hebrew calendar (calendar-hebrew-goto-
date).

g i Move to a date specified in the Islamic calendar (calendar-islamic-goto-
date).

g f Move to a date specified in the French Revolutionary calendar (calendar-
french-goto-date).

g C Move to a date specified in the Chinese calendar (calendar-chinese-goto-
date).

g p Move to a date specified in the Persian calendar (calendar-persian-goto-
date).

g k Move to a date specified in the Coptic calendar (calendar-coptic-goto-date).

g e Move to a date specified in the Ethiopic calendar (calendar-ethiopic-goto-
date).

These commands ask you for a date on the other calendar, move point to the Gregorian
calendar date equivalent to that date, and display the other calendar’s date in the echo
area. Emacs uses strict completion (see Section 5.3.3 [Completion Exit], page 30) whenever
it asks you to type a month name, so you don’t have to worry about the spelling of Hebrew,
Islamic, or French names.

One common issue concerning the Hebrew calendar is the computation of the anniversary
of a date of death, called a “yahrzeit”. The Emacs calendar includes a facility for such calcu-
lations. If you are in the calendar, the command M-x calendar-hebrew-list-yahrzeits

asks you for a range of years and then displays a list of the yahrzeit dates for those years
for the date given by point. If you are not in the calendar, this command first asks you for
the date of death and the range of years, and then displays the list of yahrzeit dates.

28.9.4 Converting from the Mayan Calendar

Here are the commands to select dates based on the Mayan calendar:

g m l Move to a date specified by the long count calendar (calendar-mayan-goto-
long-count-date).

Chapter 28: The Calendar and the Diary 328

g m n t Move to the next occurrence of a place in the tzolkin calendar (calendar-
mayan-next-tzolkin-date).

g m p t Move to the previous occurrence of a place in the tzolkin calendar (calendar-
mayan-previous-tzolkin-date).

g m n h Move to the next occurrence of a place in the haab calendar (calendar-mayan-
next-haab-date).

g m p h Move to the previous occurrence of a place in the haab calendar (calendar-
mayan-previous-haab-date).

g m n c Move to the next occurrence of a place in the calendar round (calendar-mayan-
next-calendar-round-date).

g m p c Move to the previous occurrence of a place in the calendar round (calendar-
mayan-previous-calendar-round-date).

To understand these commands, you need to understand the Mayan calendars. The long
count is a counting of days with these units:

1 kin = 1 day 1 uinal = 20 kin 1 tun = 18 uinal
1 katun = 20 tun 1 baktun = 20 katun

Thus, the long count date 12.16.11.16.6 means 12 baktun, 16 katun, 11 tun, 16 uinal, and 6
kin. The Emacs calendar can handle Mayan long count dates as early as 7.17.18.13.3, but
no earlier. When you use the g m l command, type the Mayan long count date with the
baktun, katun, tun, uinal, and kin separated by periods.

The Mayan tzolkin calendar is a cycle of 260 days formed by a pair of independent cycles
of 13 and 20 days. Since this cycle repeats endlessly, Emacs provides commands to move
backward and forward to the previous or next point in the cycle. Type g m p t to go to the
previous tzolkin date; Emacs asks you for a tzolkin date and moves point to the previous
occurrence of that date. Similarly, type g m n t to go to the next occurrence of a tzolkin
date.

The Mayan haab calendar is a cycle of 365 days arranged as 18 months of 20 days each,
followed by a 5-day monthless period. Like the tzolkin cycle, this cycle repeats endlessly,
and there are commands to move backward and forward to the previous or next point in
the cycle. Type g m p h to go to the previous haab date; Emacs asks you for a haab date
and moves point to the previous occurrence of that date. Similarly, type g m n h to go to
the next occurrence of a haab date.

The Maya also used the combination of the tzolkin date and the haab date. This combi-
nation is a cycle of about 52 years called a calendar round. If you type g m p c, Emacs asks
you for both a haab and a tzolkin date and then moves point to the previous occurrence
of that combination. Use g m n c to move point to the next occurrence of a combination.
These commands signal an error if the haab/tzolkin date combination you have typed is
impossible.

Emacs uses strict completion (see Section 5.3.3 [Completion Exit], page 30) whenever it
asks you to type a Mayan name, so you don’t have to worry about spelling.

Chapter 28: The Calendar and the Diary 329

28.10 The Diary

The Emacs diary keeps track of appointments or other events on a daily basis, in conjunction
with the calendar. To use the diary feature, you must first create a diary file containing
a list of events and their dates. Then Emacs can automatically pick out and display the
events for today, for the immediate future, or for any specified date.

The name of the diary file is specified by the variable diary-file; ‘~/diary’ is the
default. Here’s an example showing what that file looks like:

12/22/2012 Twentieth wedding anniversary!!

&1/1. Happy New Year!

10/22 Ruth’s birthday.

* 21, *: Payday

Tuesday--weekly meeting with grad students at 10am

Supowit, Shen, Bitner, and Kapoor to attend.

1/13/89 Friday the thirteenth!!

&thu 4pm squash game with Lloyd.

mar 16 Dad’s birthday

April 15, 2013 Income tax due.

&* 15 time cards due.

This format is essentially the same as the one used by the separate calendar utility that is
present on some Unix systems. This example uses extra spaces to align the event descrip-
tions of most of the entries. Such formatting is purely a matter of taste.

Although you probably will start by creating a diary manually, Emacs provides a number
of commands to let you view, add, and change diary entries.

28.10.1 Displaying the Diary

Once you have created a diary file, you can use the calendar to view it. You can also
view today’s events outside of Calendar mode. In the following, key bindings refer to the
Calendar buffer.

Mouse-3 Diary

d Display all diary entries for the selected date (diary-view-entries).

s Display the entire diary file (diary-show-all-entries).

m Mark all visible dates that have diary entries (diary-mark-entries).

u Unmark the calendar window (calendar-unmark).

M-x diary-print-entries

Print hard copy of the diary display as it appears.

M-x diary Display all diary entries for today’s date.

M-x diary-mail-entries

Mail yourself email reminders about upcoming diary entries.

Displaying the diary entries with d shows in a separate window the diary entries for the
selected date in the calendar. The mode line of the new window shows the date of the diary
entries. Holidays are shown either in the buffer or in the mode line, depending on the display
method you choose (see Section “Diary Display” in Specialized Emacs Features). If you

Chapter 28: The Calendar and the Diary 330

specify a numeric argument with d, it shows all the diary entries for that many successive
days. Thus, 2 d displays all the entries for the selected date and for the following day.

Another way to display the diary entries for a date is to click Mouse-3 on the date,
and then choose Diary entries from the menu that appears. If the variable calendar-

view-diary-initially-flag is non-nil, creating the calendar lists the diary entries for
the current date (provided the current date is visible).

To get a broader view of which days are mentioned in the diary, use the m command.
This marks the dates that have diary entries in a different face. See Section “Calendar
Customizing” in Specialized Emacs Features.

This command applies both to the months that are currently visible and to those that
subsequently become visible after scrolling. To turn marking off and erase the current
marks, type u, which also turns off holiday marks (see Section 28.6 [Holidays], page 322).
If the variable calendar-mark-diary-entries-flag is non-nil, creating or updating the
calendar marks diary dates automatically.

To see the full diary file, rather than just some of the entries, use the s command.

The command M-x diary displays the diary entries for the current date, independently
of the calendar display, and optionally for the next few days as well; the variable diary-

number-of-entries specifies how many days to include. See Section “Diary Customizing”
in Specialized Emacs Features.

If you put (diary) in your ‘.emacs’ file, this automatically displays a window with the
day’s diary entries when you start Emacs.

Some people like to receive email notifications of events in their diary. To send such mail
to yourself, use the command M-x diary-mail-entries. A prefix argument specifies how
many days (starting with today) to check; otherwise, the variable diary-mail-days says
how many days.

28.10.2 The Diary File

Your diary file is a file that records events associated with particular dates. The name of the
diary file is specified by the variable diary-file; ‘~/diary’ is the default. The calendar

utility program supports a subset of the format allowed by the Emacs diary facilities, so
you can use that utility to view the diary file, with reasonable results aside from the entries
it cannot understand.

Each entry in the diary file describes one event and consists of one or more lines. An
entry always begins with a date specification at the left margin. The rest of the entry is
simply text to describe the event. If the entry has more than one line, then the lines after
the first must begin with whitespace to indicate they continue a previous entry. Lines that
do not begin with valid dates and do not continue a preceding entry are ignored.

You can also use a format where the first line of a diary entry consists only of the date
or day name (with no following blanks or punctuation). For example:

02/11/2012

Bill B. visits Princeton today

2pm Cognitive Studies Committee meeting

2:30-5:30 Liz at Lawrenceville

4:00pm Dentist appt

Chapter 28: The Calendar and the Diary 331

7:30pm Dinner at George’s

8:00-10:00pm concert

This entry will have a different appearance if you use the simple diary display (see Section
“Diary Display” in Specialized Emacs Features). The simple diary display omits the date
line at the beginning; only the continuation lines appear. This style of entry looks neater
when you display just a single day’s entries, but can cause confusion if you ask for more
than one day’s entries.

You can inhibit the marking of certain diary entries in the calendar window; to do this,
insert the string that diary-nonmarking-symbol specifies (default ‘&’) at the beginning of
the entry, before the date. This has no effect on display of the entry in the diary window;
it only affects marks on dates in the calendar window. Nonmarking entries are especially
useful for generic entries that would otherwise mark many different dates.

28.10.3 Date Formats

Here are some sample diary entries, illustrating different ways of formatting a date. The
examples all show dates in American order (month, day, year), but Calendar mode supports
European order (day, month, year) and ISO order (year, month, day) as options.

4/20/12 Switch-over to new tabulation system

apr. 25 Start tabulating annual results

4/30 Results for April are due

*/25 Monthly cycle finishes

Friday Don’t leave without backing up files

The first entry appears only once, on April 20, 2012. The second and third appear every
year on the specified dates, and the fourth uses a wildcard (asterisk) for the month, so it
appears on the 25th of every month. The final entry appears every week on Friday.

You can use just numbers to express a date, as in ‘month/day ’ or ‘month/day/year ’.
This must be followed by a nondigit. In the date itself, month and day are numbers of one
or two digits. The optional year is also a number, and may be abbreviated to the last two
digits; that is, you can use ‘11/12/2012’ or ‘11/12/12’.

Dates can also have the form ‘monthname day ’ or ‘monthname day, year ’, where the
month’s name can be spelled in full or abbreviated (with or without a period). The preferred
abbreviations for month and day names can be set using the variables calendar-abbrev-

length, calendar-month-abbrev-array, and calendar-day-abbrev-array. The default
is to use the first three letters of a name as its abbreviation. Case is not significant.

A date may be generic; that is, partially unspecified. Then the entry applies to all dates
that match the specification. If the date does not contain a year, it is generic and applies
to any year. Alternatively, month, day, or year can be ‘*’; this matches any month, day, or
year, respectively. Thus, a diary entry ‘3/*/*’ matches any day in March of any year; so
does ‘march *’.

If you prefer the European style of writing dates (in which the day comes before
the month), or the ISO style (in which the order is year, month, day), type M-x

calendar-set-date-style while in the calendar, or customize the variable calendar-

date-style. This affects how diary dates are interpreted, date display, and the order in
which some commands expect their arguments to be given.

Chapter 28: The Calendar and the Diary 332

You can use the name of a day of the week as a generic date which applies to any date
falling on that day of the week. You can abbreviate the day of the week as described above,
or spell it in full; case is not significant.

28.10.4 Commands to Add to the Diary

While in the calendar, there are several commands to create diary entries. The basic
commands are listed here; more sophisticated commands are in the next section (see
Section 28.10.5 [Special Diary Entries], page 332). Entries can also be based on non-
Gregorian calendars. See Section “Non-Gregorian Diary” in Specialized Emacs Features.

i d Add a diary entry for the selected date (diary-insert-entry).

i w Add a diary entry for the selected day of the week (diary-insert-weekly-
entry).

i m Add a diary entry for the selected day of the month (diary-insert-monthly-
entry).

i y Add a diary entry for the selected day of the year (diary-insert-yearly-
entry).

You can make a diary entry for a specific date by selecting that date in the calendar
window and typing the i d command. This command displays the end of your diary file in
another window and inserts the date; you can then type the rest of the diary entry.

If you want to make a diary entry that applies to a specific day of the week, select that
day of the week (any occurrence will do) and type i w. This inserts the day-of-week as a
generic date; you can then type the rest of the diary entry. You can make a monthly diary
entry in the same fashion: select the day of the month, use the i m command, and type the
rest of the entry. Similarly, you can insert a yearly diary entry with the i y command.

All of the above commands make marking diary entries by default. To make a nonmark-
ing diary entry, give a prefix argument to the command. For example, C-u i w makes a
nonmarking weekly diary entry.

When you modify the diary file, be sure to save the file before exiting Emacs. Saving the
diary file after using any of the above insertion commands will automatically update the
diary marks in the calendar window, if appropriate. You can use the command calendar-

redraw to force an update at any time.

28.10.5 Special Diary Entries

In addition to entries based on calendar dates, the diary file can contain sexp entries for
regular events such as anniversaries. These entries are based on Lisp expressions (sexps)
that Emacs evaluates as it scans the diary file. Instead of a date, a sexp entry contains
‘%%’ followed by a Lisp expression which must begin and end with parentheses. The Lisp
expression determines which dates the entry applies to.

Calendar mode provides commands to insert certain commonly used sexp entries:

i a Add an anniversary diary entry for the selected date (diary-insert-
anniversary-entry).

i b Add a block diary entry for the current region (diary-insert-block-entry).

Chapter 28: The Calendar and the Diary 333

i c Add a cyclic diary entry starting at the date (diary-insert-cyclic-entry).

If you want to make a diary entry that applies to the anniversary of a specific date, move
point to that date and use the i a command. This displays the end of your diary file in
another window and inserts the anniversary description; you can then type the rest of the
diary entry. The entry looks like this:

%%(diary-anniversary 10 31 1948) Arthur’s birthday

This entry applies to October 31 in any year after 1948; ‘10 31 1948’ specifies the date. (If
you are using the European or ISO calendar style, the input order of month, day and year
is different.) The reason this expression requires a beginning year is that advanced diary
functions can use it to calculate the number of elapsed years.

A block diary entry applies to a specified range of consecutive dates. Here is a block
diary entry that applies to all dates from June 24, 2012 through July 10, 2012:

%%(diary-block 6 24 2012 7 10 2012) Vacation

The ‘6 24 2012’ indicates the starting date and the ‘7 10 2012’ indicates the stopping date.
(Again, if you are using the European or ISO calendar style, the input order of month, day
and year is different.)

To insert a block entry, place point and the mark on the two dates that begin and end the
range, and type i b. This command displays the end of your diary file in another window
and inserts the block description; you can then type the diary entry.

Cyclic diary entries repeat after a fixed interval of days. To create one, select the
starting date and use the i c command. The command prompts for the length of interval,
then inserts the entry, which looks like this:

%%(diary-cyclic 50 3 1 2012) Renew medication

This entry applies to March 1, 2012 and every 50th day following; ‘3 1 2012’ specifies the
starting date. (If you are using the European or ISO calendar style, the input order of
month, day and year is different.)

All three of these commands make marking diary entries. To insert a nonmarking en-
try, give a prefix argument to the command. For example, C-u i a makes a nonmarking
anniversary diary entry.

Marking sexp diary entries in the calendar can be time-consuming, since every date
visible in the calendar window must be individually checked. So it’s a good idea to make
sexp diary entries nonmarking (with ‘&’) when possible.

Another sophisticated kind of sexp entry, a floating diary entry, specifies a regularly
occurring event by offsets specified in days, weeks, and months. It is comparable to a
crontab entry interpreted by the cron utility. Here is a nonmarking, floating diary entry
that applies to the fourth Thursday in November:

&%%(diary-float 11 4 4) American Thanksgiving

The 11 specifies November (the eleventh month), the 4 specifies Thursday (the fourth day of
the week, where Sunday is numbered zero), and the second 4 specifies the fourth Thursday
(1 would mean “first”, 2 would mean “second”, −2 would mean “second-to-last”, and so
on). The month can be a single month or a list of months. Thus you could change the 11
above to ‘’(1 2 3)’ and have the entry apply to the last Thursday of January, February,
and March. If the month is t, the entry applies to all months of the year.

Chapter 28: The Calendar and the Diary 334

Each of the standard sexp diary entries takes an optional parameter specifying the name
of a face or a single-character string to use when marking the entry in the calendar. Most
generally, sexp diary entries can perform arbitrary computations to determine when they
apply. See Section “Sexp Diary Entries” in Specialized Emacs Features.

28.11 Appointments

If you have a diary entry for an appointment, and that diary entry begins with a recognizable
time of day, Emacs can warn you in advance that an appointment is pending. Emacs alerts
you to the appointment by displaying a message in your chosen format, as specified by
the variable appt-display-format. If the value of appt-audible is non-nil, the warning
includes an audible reminder. In addition, if appt-display-mode-line is non-nil, Emacs
displays the number of minutes to the appointment on the mode line.

If appt-display-format has the value window, then the variable appt-display-

duration controls how long the reminder window is visible for; and the variables
appt-disp-window-function and appt-delete-window-function give the names of
functions used to create and destroy the window, respectively.

To enable appointment notification, type M-x appt-activate. With a positive argu-
ment, it enables notification; with a negative argument, it disables notification; with no
argument, it toggles. Enabling notification also sets up an appointment list for today from
the diary file, giving all diary entries found with recognizable times of day, and reminds you
just before each of them.

For example, suppose the diary file contains these lines:

Monday

9:30am Coffee break

12:00pm Lunch

Then on Mondays, you will be reminded at around 9:20am about your coffee break and
at around 11:50am about lunch. The variable appt-message-warning-time specifies how
many minutes (default 12) in advance to warn you. This is a default warning time. Each ap-
pointment can specify a different warning time by adding a piece matching appt-warning-

time-regexp (see that variable’s documentation for details).

You can write times in am/pm style (with ‘12:00am’ standing for midnight and ‘12:00pm’
standing for noon), or 24-hour European/military style. You need not be consistent; your
diary file can have a mixture of the two styles. Times must be at the beginning of diary
entries if they are to be recognized.

Emacs updates the appointments list from the diary file automatically just after mid-
night. You can force an update at any time by re-enabling appointment notification. Both
these actions also display the day’s diary buffer, unless you set appt-display-diary to
nil. The appointments list is also updated whenever the diary file (or a file it includes; see
Section “Fancy Diary Display” in Specialized Emacs Features) is saved.

You can also use the appointment notification facility like an alarm clock. The command
M-x appt-add adds entries to the appointment list without affecting your diary file. You
delete entries from the appointment list with M-x appt-delete.

Chapter 28: The Calendar and the Diary 335

28.12 Importing and Exporting Diary Entries

You can transfer diary entries between Emacs diary files and a variety of other formats.

You can import diary entries from Outlook-generated appointment messages. While
viewing such a message in Rmail or Gnus, do M-x diary-from-outlook to import the
entry. You can make this command recognize additional appointment message formats by
customizing the variable diary-outlook-formats.

The icalendar package allows you to transfer data between your Emacs diary file and
iCalendar files, which are defined in “RFC 2445—Internet Calendaring and Scheduling Core
Object Specification (iCalendar)” (as well as the earlier vCalendar format).

The command icalendar-import-buffer extracts iCalendar data from the current
buffer and adds it to your diary file. This function is also suitable for automatic extraction
of iCalendar data; for example with the Rmail mail client one could use:

(add-hook ’rmail-show-message-hook ’icalendar-import-buffer)

The command icalendar-import-file imports an iCalendar file and adds the results
to an Emacs diary file. For example:

(icalendar-import-file "/here/is/calendar.ics"

"/there/goes/ical-diary")

You can use an #include directive to add the import file contents to the main diary file, if
these are different files. See Section “Fancy Diary Display” in Specialized Emacs Features.

Use icalendar-export-file to interactively export an entire Emacs diary file to iCal-
endar format. To export only a part of a diary file, mark the relevant area, and call
icalendar-export-region. In both cases, Emacs appends the result to the target file.

28.13 Daylight Saving Time

Emacs understands the difference between standard time and daylight saving time—the
times given for sunrise, sunset, solstices, equinoxes, and the phases of the moon take that
into account. The rules for daylight saving time vary from place to place and have also
varied historically from year to year. To do the job properly, Emacs needs to know which
rules to use.

Some operating systems keep track of the rules that apply to the place where you are; on
these systems, Emacs gets the information it needs from the system automatically. If some
or all of this information is missing, Emacs fills in the gaps with the rules currently used
in Cambridge, Massachusetts. If the resulting rules are not what you want, you can tell
Emacs the rules to use by setting certain variables: calendar-daylight-savings-starts
and calendar-daylight-savings-ends.

These values should be Lisp expressions that refer to the variable year, and evaluate to
the Gregorian date on which daylight saving time starts or (respectively) ends, in the form
of a list (month day year). The values should be nil if your area does not use daylight
saving time.

Emacs uses these expressions to determine the starting date of daylight saving time for
the holiday list and for correcting times of day in the solar and lunar calculations.

The values for Cambridge, Massachusetts are as follows:

Chapter 28: The Calendar and the Diary 336

(calendar-nth-named-day 2 0 3 year)

(calendar-nth-named-day 1 0 11 year)

That is, the second 0th day (Sunday) of the third month (March) in the year specified by
year, and the first Sunday of the eleventh month (November) of that year. If daylight saving
time were changed to start on October 1, you would set calendar-daylight-savings-

starts to this:

(list 10 1 year)

If there is no daylight saving time at your location, or if you want all times in standard
time, set calendar-daylight-savings-starts and calendar-daylight-savings-ends

to nil.

The variable calendar-daylight-time-offset specifies the difference between day-
light saving time and standard time, measured in minutes. The value for Cambridge,
Massachusetts is 60.

Finally, the two variables calendar-daylight-savings-starts-time and calendar-

daylight-savings-ends-time specify the number of minutes after midnight local time
when the transition to and from daylight saving time should occur. For Cambridge, Mas-
sachusetts both variables’ values are 120.

28.14 Summing Time Intervals

The timeclock package adds up time intervals, so you can (for instance) keep track of how
much time you spend working on particular projects.

Use the M-x timeclock-in command when you start working on a project, and M-x

timeclock-out command when you’re done. Each time you do this, it adds one time
interval to the record of the project. You can change to working on a different project with
M-x timeclock-change.

Once you’ve collected data from a number of time intervals, you can use M-x

timeclock-workday-remaining to see how much time is left to work today (assuming a
typical average of 8 hours a day), and M-x timeclock-when-to-leave which will calculate
when you’re “done”.

If you want Emacs to display the amount of time “left” of your workday in the mode
line, either customize the timeclock-modeline-display variable and set its value to t, or
invoke the M-x timeclock-modeline-display command.

Terminating the current Emacs session might or might not mean that you have stopped
working on the project and, by default, Emacs asks you. You can, however, customize the
value of the variable timeclock-ask-before-exiting to nil to avoid the question; then,
only an explicit M-x timeclock-out or M-x timeclock-change will tell Emacs that the
current interval is over.

The timeclock functions work by accumulating the data in a file called ‘.timelog’
in your home directory. You can specify a different name for this file by customizing
the variable timeclock-file. If you edit the timeclock file manually, or if you change
the value of any of timeclock’s customizable variables, you should run the command M-x

timeclock-reread-log to update the data in Emacs from the file.

Chapter 29: Sending Mail 337

29 Sending Mail

To send an email message from Emacs, type C-x m. This switches to a buffer named
‘*unsent mail*’, where you can edit the text and headers of the message. When done,
type C-c C-s or C-c C-c to send it.

C-x m Begin composing mail (compose-mail).

C-x 4 m Likewise, in another window (compose-mail-other-window).

C-x 5 m Likewise, but in a new frame (compose-mail-other-frame).

C-c C-s In the mail buffer, send the message (message-send).

C-c C-c In the mail buffer, send the message and bury the buffer (message-send-and-
exit).

The mail buffer is an ordinary Emacs buffer, so you can switch to other buffers while
composing the mail. If you want to send another mail before finishing the current one,
type C-x m again to open a new mail buffer whose name has a different numeric suffix (see
Section 16.3 [Misc Buffer], page 141). If you invoke the command with a prefix argument,
C-u C-x m, Emacs switches back to the last mail buffer, and asks if you want to erase the
message in that buffer; if you answer no, this lets you pick up editing the message where
you left off.

The command C-x 4 m (compose-mail-other-window) does the same as C-x m, except
it displays the mail buffer in a different window. The command C-x 5 m (compose-mail-
other-frame) does it in a new frame.

When you type C-c C-c or C-c C-s to send the mail, Emacs may ask you how it should
deliver the mail—either directly via SMTP, or using some other method. See Section 29.4.1
[Mail Sending], page 340, for details.

29.1 The Format of the Mail Buffer

Here is an example of the contents of a mail buffer:

To: subotai@example.org

CC: mongol.soldier@example.net, rms@gnu.org

Subject: Re: What is best in life?

From: conan@example.org

--text follows this line--

To crush your enemies, see them driven before you, and to hear the

lamentation of their women.

At the top of the mail buffer is a set of header fields, which are used for specifying information
about the email’s recipient(s), subject, and so on. The above buffer contains header fields
for ‘To’, ‘Cc’, ‘Subject’, and ‘From’. Some header fields are automatically pre-initialized in
the mail buffer, when appropriate.

The line that says ‘--text follows this line--’ separates the header fields from the
body (or text) of the message. Everything above that line is treated as part of the headers;
everything below it is treated as the body. The delimiter line itself does not appear in the
message actually sent.

Chapter 29: Sending Mail 338

You can insert and edit header fields using ordinary editing commands. See Section 29.4.2
[Header Editing], page 341, for commands specific to editing header fields. Certain headers,
such as ‘Date’ and ‘Message-Id’, are normally omitted from the mail buffer and are created
automatically when the message is sent.

29.2 Mail Header Fields

A header field in the mail buffer starts with a field name at the beginning of a line, termi-
nated by a colon. Upper and lower case are equivalent in field names. After the colon and
optional whitespace comes the contents of the field.

You can use any name you like for a header field, but normally people use only standard
field names with accepted meanings.

The ‘From’ header field identifies the person sending the email (i.e. you). This should
be a valid mailing address, as replies are normally sent there. The default contents of
this header field are computed from the variables user-full-name (which specifies your
full name) and user-mail-address (your email address). On some operating systems,
Emacs initializes these two variables using environment variables (see Section C.4.1 [General
Variables], page 467). If this information is unavailable or wrong, you should customize the
variables yourself (see Section 33.1 [Easy Customization], page 398).

The value of the variable mail-from-style specifies how to format the contents of the
‘From’ field:

nil Use just the address, as in ‘king@grassland.com’.

parens Use both address and full name, as in:
‘king@grassland.com (Elvis Parsley)’.

angles Use both address and full name, as in:
‘Elvis Parsley <king@grassland.com>’.

any other value
Use angles normally. But if the address must be “quoted” to remain syntac-
tically valid under the angles format but not under the parens format, use
parens instead. This is the default.

Apart from ‘From’, here is a table of commonly-used fields:

‘To’ The mailing address(es) to which the message is addressed. To list more than
one address, use commas to separate them.

‘Subject’ The subject of the message.

‘CC’ Additional mailing address(es) to send the message to. This is like ‘To’, except
that these readers should not regard the message as directed at them.

‘BCC’ Additional mailing address(es) to send the message to, which should not appear
in the header of the message actually sent. “BCC” stands for blind carbon
copies.

‘FCC’ The name of a file, to which a copy of the sent message should be appended.
Emacs writes the message in mbox format, unless the file is in Babyl format
(used by Rmail before Emacs 23), in which case Emacs writes in Babyl format.

Chapter 29: Sending Mail 339

If an Rmail buffer is visiting the file, Emacs updates it accordingly. To specify
more than one file, use several ‘FCC’ fields, with one file name in each field.

‘Reply-to’
An address to which replies should be sent, instead of ‘From’. This is used if,
for some reason, your ‘From’ address cannot receive replies.

‘Mail-reply-to’
This field takes precedence over ‘Reply-to’. It is used because some mailing
lists set the ‘Reply-to’ field for their own purposes (a somewhat controversial
practice).

‘Mail-followup-to’
One of more address(es) to use as default recipient(s) for follow-up messages.
This is typically used when you reply to a message from a mailing list that you
are subscribed to, and want replies to go to the list without sending an extra
copy to you.

‘In-reply-to’
An identifier for the message you are replying to. Most mail readers use this
information to group related messages together. Normally, this header is filled
in automatically when you reply to a message in any mail program built into
Emacs.

‘References’
Identifiers for previous related messages. Like ‘In-reply-to’, this is normally
filled in automatically for you.

The ‘To’, ‘CC’, and ‘BCC’ fields can appear any number of times, and each such header
field can contain multiple addresses, separated by commas. This way, you can specify any
number of places to send the message. These fields can also have continuation lines: one or
more lines starting with whitespace, following the starting line of the field, are considered
part of the field. Here’s an example of a ‘To’ field with a continuation line:

To: foo@example.net, this@example.net,

bob@example.com

You can direct Emacs to insert certain default headers into the mail buffer by setting
the variable mail-default-headers to a string. Then C-x m inserts this string into the
message headers. For example, here is how to add a ‘Reply-to’ and ‘FCC’ header to each
message:

(setq mail-default-headers

"Reply-to: foo@example.com\nFCC: ~/Mail/sent")

If the default header fields are not appropriate for a particular message, edit them as
necessary before sending the message.

29.3 Mail Aliases

You can define mail aliases, which are short mnemonic names that stand for one or more
mailing addresses. By default, mail aliases are defined in the file ‘~/.mailrc’. You can
specify a different file name to use, by setting the variable mail-personal-alias-file.

To define an alias in ‘.mailrc’, write a line like this:

Chapter 29: Sending Mail 340

alias nick fulladdresses

This means that nick should expand into fulladdresses, where fulladdresses can be either a
single address, or multiple addresses separated with spaces. For instance, to make maingnu

stand for gnu@gnu.org plus a local address of your own, put in this line:

alias maingnu gnu@gnu.org local-gnu

If an address contains a space, quote the whole address with a pair of double quotes, like
this:

alias jsmith "John Q. Smith <none@example.com>"

Note that you need not include double quotes around individual parts of the address, such
as the person’s full name. Emacs puts them in if they are needed. For instance, it inserts
the above address as ‘"John Q. Smith" <none@example.com>’.

Emacs also recognizes “include” commands in ‘.mailrc’. They look like this:

source filename

The ‘.mailrc’ file is not unique to Emacs; many other mail-reading programs use it for mail
aliases, and it can contain various other commands. However, Emacs ignores everything
except alias definitions and include commands.

Mail aliases expand as abbrevs—that is to say, as soon as you type a word-separator
character after an alias (see Chapter 26 [Abbrevs], page 296). This expansion takes place
only within the ‘To’, ‘From’, ‘CC’, ‘BCC’, and ‘Reply-to’ header fields (plus their ‘Resent-’
variants); it does not take place in other header fields, such as ‘Subject’.

You can also insert an aliased address directly, using the command M-x

mail-abbrev-insert-alias. This reads an alias name, with completion, and inserts its
definition at point.

29.4 Mail Commands

The default major mode for the ‘*mail*’ buffer is called Message mode. It behaves like
Text mode in many ways, but provides several additional commands on the C-c prefix,
which make editing a message more convenient.

In this section, we will describe some of the most commonly-used commands available
in Message mode.

29.4.1 Mail Sending

C-c C-c Send the message, and bury the mail buffer (message-send-and-exit).

C-c C-s Send the message, and leave the mail buffer selected (message-send).

The usual command to send a message is C-c C-c (mail-send-and-exit). This sends
the message and then “buries” the mail buffer, putting it at the lowest priority for rese-
lection. If you want it to kill the mail buffer instead, change the variable message-kill-

buffer-on-exit to t.

The command C-c C-s (message-send) sends the message and leaves the buffer selected.
Use this command if you want to modify the message (perhaps with new recipients) and
send it again.

Chapter 29: Sending Mail 341

Sending a message runs the hook message-send-hook. It also marks the mail buffer as
unmodified, except if the mail buffer is also a file-visiting buffer (in that case, only saving
the file does that, and you don’t get a warning if you try to send the same message twice).

The variable send-mail-function controls how the message is delivered. Its value
should be one of the following functions:

sendmail-query-once

Query for a delivery method (one of the other entries in this list), and use that
method for this message; then save the method to send-mail-function, so
that it is used for future deliveries. This is the default, unless you have already
set the variables for sending mail via smtpmail-send-it (see below).

smtpmail-send-it

Send mail using the through an external mail host, such as your Internet service
provider’s outgoing SMTP mail server. If you have not told Emacs how to
contact the SMTP server, it prompts for this information, which is saved in
the smtpmail-smtp-server variable and the file ‘~/.authinfo’. See Section
“Emacs SMTP Library” in Sending mail via SMTP.

sendmail-send-it

Send mail using the system’s default sendmail program, or equivalent. This
requires the system to be set up for delivering mail directly via SMTP.

mailclient-send-it

Pass the mail buffer on to the system’s designated mail client. See the com-
mentary section in the file ‘mailclient.el’ for details.

feedmail-send-it

This is similar to sendmail-send-it, but allows you to queue messages for
later sending. See the commentary section in the file ‘feedmail.el’ for details.

When you send a message containing non-ASCII characters, they need to be encoded with
a coding system (see Section 19.6 [Coding Systems], page 174). Usually the coding system
is specified automatically by your chosen language environment (see Section 19.3 [Language
Environments], page 170). You can explicitly specify the coding system for outgoing mail
by setting the variable sendmail-coding-system (see Section 19.7 [Recognize Coding],
page 176). If the coding system thus determined does not handle the characters in a
particular message, Emacs asks you to select the coding system to use, showing a list of
possible coding systems.

29.4.2 Mail Header Editing

Message mode provides the following special commands to move to particular header fields
and to complete addresses in headers.

C-c C-f C-t

Move to the ‘To’ header (message-goto-to).

C-c C-f C-s

Move to the ‘Subject’ header (message-goto-subject).

C-c C-f C-c

Move to the ‘CC’ header (message-goto-cc).

Chapter 29: Sending Mail 342

C-c C-f C-b

Move to the ‘BCC’ header (message-goto-bcc).

C-c C-f C-r

Move to the ‘Reply-To’ header (message-goto-reply-to).

C-c C-f C-f

Move to the ‘Mail-Followup-To’ header field (message-goto-followup-to).

C-c C-f C-w

Add a new ‘FCC’ header field, with file-name completion (message-goto-fcc).

C-c C-b Move to the start of the message body (message-goto-body).

TAB Complete a mailing address (message-tab).

The commands to move point to particular header fields are all based on the prefix C-c

C-f (‘C-f’ is for “field”). If the field in question does not exist, the command creates one
(the exception is mail-fcc, which creates a new field each time).

The command C-c C-b (message-goto-body) moves point to just after the header sep-
arator line—that is, to the beginning of the body.

While editing a header field that contains addresses, such as ‘To:’, ‘CC:’ and ‘BCC:’,
you can complete an address by typing TAB (message-tab). This attempts to insert the
full name corresponding to the address based on a couple of methods, including EUDC, a
library that recognizes a number of directory server protocols (see Section “EUDC” in The
Emacs Unified Directory Client). Failing that, it attempts to expand the address as a mail
alias (see Section 29.3 [Mail Aliases], page 339). If point is on a header field that does not
take addresses, or if it is in the message body, then TAB just inserts a tab character.

29.4.3 Citing Mail

C-c C-y Yank the selected message from the mail reader, as a citation (message-yank-
original).

C-c C-q Fill each paragraph cited from another message (message-fill-yanked-
message).

You can use the command C-c C-y (message-yank-original) to cite a message that you
are replying to. This inserts the text of that message into the mail buffer. This command
works only if the mail buffer is invoked from a mail reader running in Emacs, such as Rmail.

By default, Emacs inserts the string ‘>’ in front of each line of the cited text; this
prefix string is specified by the variable message-yank-prefix. If you call message-yank-
original with a prefix argument, the citation prefix is not inserted.

After using C-c C-y, you can type C-c C-q (message-fill-yanked-message) to fill the
paragraphs of the cited message. One use of C-c C-q fills all such paragraphs, each one
individually. To fill a single paragraph of the quoted message, use M-q. If filling does not
automatically handle the type of citation prefix you use, try setting the fill prefix explicitly.
See Section 22.5 [Filling], page 202.

You can customize mail citation through the hook mail-citation-hook. For exam-
ple, you can use the Supercite package, which provides more flexible citation (see Section
“Introduction” in Supercite).

Chapter 29: Sending Mail 343

29.4.4 Mail Miscellany

You can attach a file to an outgoing message by typing C-c C-a (mml-attach-file) in the
mail buffer. Attaching is done using the Multipurpose Internet Mail Extensions (MIME)
standard.

The mml-attach-file command prompts for the name of the file, and for the attach-
ment’s content type, description, and disposition. The content type is normally detected
automatically; just type RET to accept the default. The description is a single line of text
that the recipient will see next to the attachment; you may also choose to leave this empty.
The disposition is either ‘inline’ (the default), which means the recipient will see a link
to the attachment within the message body, or ‘attachment’, which means the link will be
separate from the body.

The mml-attach-file command is specific to Message mode; in Mail mode use
mail-add-attachment instead. It will prompt only for the name of the file, and will
determine the content type and the disposition automatically. If you want to include some
description of the attached file, type that in the message body.

The actual contents of the attached file are not inserted into the mail buffer. Instead,
some placeholder text is inserted into the mail buffer, like this:

<#part type="text/plain" filename="~/foo.txt" disposition=inline>

<#/part>

When you type C-c C-c or C-c C-s to send the message, the attached file will be delivered
with it.

While composing a message, you can do spelling correction on the message text by typing
M-x ispell-message. If you have yanked an incoming message into the outgoing draft, this
command skips what was yanked, but it checks the text that you yourself inserted (it looks
for indentation or mail-yank-prefix to distinguish the cited lines from your input). See
Section 13.4 [Spelling], page 104.

Turning on Message mode (which C-x m does automatically) runs the normal hooks
text-mode-hook and message-mode-hook. Initializing a new outgoing message runs the
normal hook message-setup-hook; you can use this hook if you want to make changes to
the appearance of the mail buffer. See Section 33.2.2 [Hooks], page 408.

The main difference between these hooks is just when they are invoked. Whenever
you type C-x m, message-mode-hook runs as soon as the mail buffer is created. Then
the message-setup function inserts the default contents of the buffer. After these default
contents are inserted, message-setup-hook runs.

If you use C-x m to continue an existing composition, message-mode-hook runs imme-
diately after switching to the mail buffer. If the buffer is unmodified, or if you decide to
erase it and start again, message-setup-hook runs after the default contents are inserted.

29.5 Mail Signature

You can add a standard piece of text—your mail signature—to the end of every message.
This signature may contain information such as your telephone number or your physical
location. The variable mail-signature determines how Emacs handles the mail signature.

The default value of mail-signature is t; this means to look for your mail signature in
the file ‘~/.signature’. If this file exists, its contents are automatically inserted into the

Chapter 29: Sending Mail 344

end of the mail buffer. You can change the signature file via the variable mail-signature-

file.

If you change mail-signature to a string, that specifies the text of the signature directly.

If you change mail-signature to nil, Emacs will not insert your mail signature au-
tomatically. You can insert your mail signature by typing C-c C-w (message-insert-
signature) in the mail buffer. Emacs will look for your signature in the signature file.

By convention, a mail signature should be marked by a line whose contents are ‘-- ’. If
your signature lacks this prefix, it is added for you. The remainder of your signature should
be no more than four lines.

29.6 Mail Amusements

M-x spook adds a line of randomly chosen keywords to an outgoing mail message. The key-
words are chosen from a list of words that suggest you are discussing something subversive.

The idea behind this feature is the suspicion that the NSA1 and other intelligence agen-
cies snoop on all electronic mail messages that contain keywords suggesting they might find
them interesting. (The agencies say that they don’t, but that’s what they would say.) The
idea is that if lots of people add suspicious words to their messages, the agencies will get so
busy with spurious input that they will have to give up reading it all. Whether or not this
is true, it at least amuses some people.

You can use the fortune program to put a “fortune cookie” message into outgoing mail.
To do this, add fortune-to-signature to mail-setup-hook:

(add-hook ’mail-setup-hook ’fortune-to-signature)

You will probably need to set the variable fortune-file before using this.

29.7 Mail-Composition Methods

In this chapter we have described the usual Emacs mode for editing and sending mail—
Message mode. This is only one of several available modes. Prior to Emacs 23.2, the default
mode was Mail mode, which is similar to Message mode in many respects but lacks features
such as MIME support. Another available mode is MH-E (see Section “MH-E” in The
Emacs Interface to MH).

You can choose any of these mail user agents as your preferred method for editing and
sending mail. The commands C-x m, C-x 4 m and C-x 5 m use whichever agent you have
specified; so do various other parts of Emacs that send mail, such as the bug reporter (see
Section 34.3 [Bugs], page 433). To specify a mail user agent, customize the variable mail-

user-agent. Currently, legitimate values include message-user-agent (Message mode)
sendmail-user-agent (Mail mode), gnus-user-agent, and mh-e-user-agent.

If you select a different mail-composition method, the information in this chapter about
the mail buffer and Message mode does not apply; the other methods use a different format
of text in a different buffer, and their commands are different as well.

Similarly, to specify your preferred method for reading mail, customize the variable
read-mail-command. The default is rmail (see Chapter 30 [Rmail], page 345).

1 The US National Security Agency.

Chapter 30: Reading Mail with Rmail 345

30 Reading Mail with Rmail

Rmail is an Emacs subsystem for reading and disposing of mail that you receive. Rmail
stores mail messages in files called Rmail files. Reading the messages in an Rmail file is
done in a special major mode, Rmail mode, which redefines most letters to run commands
for managing mail.

30.1 Basic Concepts of Rmail

Using Rmail in the simplest fashion, you have one Rmail file ‘~/RMAIL’ in which all of your
mail is saved. It is called your primary Rmail file. The command M-x rmail reads your
primary Rmail file, merges new mail in from your inboxes, displays the first message you
haven’t read yet, and lets you begin reading. The variable rmail-file-name specifies the
name of the primary Rmail file.

Rmail displays only one message in the Rmail file at a time. The message that is shown
is called the current message. Rmail mode’s special commands can do such things as delete
the current message, copy it into another file, send a reply, or move to another message.
You can also create multiple Rmail files and use Rmail to move messages between them.

Within the Rmail file, messages are normally arranged sequentially in order of receipt;
you can specify other ways to sort them (see Section 30.12 [Rmail Sorting], page 358).
Messages are identified by consecutive integers which are their message numbers. The
number of the current message is displayed in Rmail’s mode line, followed by the total
number of messages in the file. You can move to a message by specifying its message
number with the j key (see Section 30.3 [Rmail Motion], page 346).

Following the usual conventions of Emacs, changes in an Rmail file become permanent
only when you save the file. You can save it with s (rmail-expunge-and-save), which also
expunges deleted messages from the file first (see Section 30.4 [Rmail Deletion], page 347).
To save the file without expunging, use C-x C-s. Rmail also saves the Rmail file after
merging new mail from an inbox file (see Section 30.5 [Rmail Inbox], page 348).

You can exit Rmail with q (rmail-quit); this expunges and saves the Rmail file, then
buries the Rmail buffer as well as its summary buffer, if present (see Section 30.11 [Rmail
Summary], page 355). But there is no need to “exit” formally. If you switch from Rmail to
editing in other buffers, and never switch back, you have exited. Just make sure to save the
Rmail file eventually (like any other file you have changed). C-x s is a suitable way to do
this (see Section 15.3.1 [Save Commands], page 119). The Rmail command b, rmail-bury,
buries the Rmail buffer and its summary without expunging and saving the Rmail file.

30.2 Scrolling Within a Message

When Rmail displays a message that does not fit on the screen, you must scroll through
it to read the rest. You could do this with C-v, M-v and M-<, but in Rmail scrolling is so
frequent that it deserves to be easier.

SPC Scroll forward (scroll-up-command).

DEL Scroll backward (scroll-down-command).

. Scroll to start of message (rmail-beginning-of-message).

Chapter 30: Reading Mail with Rmail 346

/ Scroll to end of message (rmail-end-of-message).

Since the most common thing to do while reading a message is to scroll through it by
screenfuls, Rmail makes SPC and DEL do the same as C-v (scroll-up-command) and M-v

(scroll-down-command) respectively.

The command . (rmail-beginning-of-message) scrolls back to the beginning of the
selected message. This is not quite the same as M-<: for one thing, it does not set the mark;
for another, it resets the buffer boundaries of the current message if you have changed
them. Similarly, the command / (rmail-end-of-message) scrolls forward to the end of the
selected message.

30.3 Moving Among Messages

The most basic thing to do with a message is to read it. The way to do this in Rmail is
to make the message current. The usual practice is to move sequentially through the file,
since this is the order of receipt of messages. When you enter Rmail, you are positioned
at the first message that you have not yet made current (that is, the first one that has the
‘unseen’ attribute; see Section 30.9 [Rmail Attributes], page 352). Move forward to see the
other new messages; move backward to re-examine old messages.

n Move to the next nondeleted message, skipping any intervening deleted mes-
sages (rmail-next-undeleted-message).

p Move to the previous nondeleted message (rmail-previous-undeleted-
message).

M-n Move to the next message, including deleted messages (rmail-next-message).

M-p Move to the previous message, including deleted messages (rmail-previous-
message).

C-c C-n Move to the next message with the same subject as the current one (rmail-
next-same-subject).

C-c C-p Move to the previous message with the same subject as the current one (rmail-
previous-same-subject).

j Move to the first message. With argument n, move to message number n
(rmail-show-message).

> Move to the last message (rmail-last-message).

< Move to the first message (rmail-first-message).

M-s regexp RET

Move to the next message containing a match for regexp (rmail-search).

- M-s regexp RET

Move to the previous message containing a match for regexp.

n and p are the usual way of moving among messages in Rmail. They move through the
messages sequentially, but skip over deleted messages, which is usually what you want to
do. Their command definitions are named rmail-next-undeleted-message and rmail-

previous-undeleted-message. If you do not want to skip deleted messages—for example,

Chapter 30: Reading Mail with Rmail 347

if you want to move to a message to undelete it—use the variants M-n and M-p (rmail-next-
message and rmail-previous-message). A numeric argument to any of these commands
serves as a repeat count.

In Rmail, you can specify a numeric argument by typing just the digits. You don’t need
to type C-u first.

The M-s (rmail-search) command is Rmail’s version of search. The usual incremental
search command C-s works in Rmail, but it searches only within the current message.
The purpose of M-s is to search for another message. It reads a regular expression (see
Section 12.5 [Regexps], page 91) nonincrementally, then searches starting at the beginning
of the following message for a match. It then selects that message. If regexp is empty, M-s
reuses the regexp used the previous time.

To search backward in the file for another message, give M-s a negative argument. In
Rmail you can do this with - M-s. This begins searching from the end of the previous
message.

It is also possible to search for a message based on labels. See Section 30.8 [Rmail
Labels], page 351.

The C-c C-n (rmail-next-same-subject) command moves to the next message with
the same subject as the current one. A prefix argument serves as a repeat count. With a
negative argument, this command moves backward, acting like C-c C-p (rmail-previous-
same-subject). When comparing subjects, these commands ignore the prefixes typically
added to the subjects of replies.

To move to a message specified by absolute message number, use j (rmail-show-
message) with the message number as argument. With no argument, j selects the first
message. < (rmail-first-message) also selects the first message. > (rmail-last-message)
selects the last message.

30.4 Deleting Messages

When you no longer need to keep a message, you can delete it. This flags it as ignorable,
and some Rmail commands pretend it is no longer present; but it still has its place in the
Rmail file, and still has its message number.

Expunging the Rmail file actually removes the deleted messages. The remaining mes-
sages are renumbered consecutively.

d Delete the current message, and move to the next nondeleted message (rmail-
delete-forward).

C-d Delete the current message, and move to the previous nondeleted message
(rmail-delete-backward).

u Undelete the current message, or move back to the previous deleted message
and undelete it (rmail-undelete-previous-message).

x Expunge the Rmail file (rmail-expunge).

There are two Rmail commands for deleting messages. Both delete the current message
and select another. d (rmail-delete-forward) moves to the following message, skipping
messages already deleted, while C-d (rmail-delete-backward) moves to the previous non-
deleted message. If there is no nondeleted message to move to in the specified direction, the

Chapter 30: Reading Mail with Rmail 348

message that was just deleted remains current. d with a prefix argument is equivalent to
C-d. Note that the Rmail summary versions of these commands behave slightly differently
(see Section 30.11.2 [Rmail Summary Edit], page 356).

Whenever Rmail deletes a message, it runs the hook rmail-delete-message-hook.
When the hook functions are invoked, the message has been marked deleted, but it is still
the current message in the Rmail buffer.

To make all the deleted messages finally vanish from the Rmail file, type x (rmail-
expunge). Until you do this, you can still undelete the deleted messages. The undeletion
command, u (rmail-undelete-previous-message), is designed to cancel the effect of a d

command in most cases. It undeletes the current message if the current message is deleted.
Otherwise it moves backward to previous messages until a deleted message is found, and
undeletes that message.

You can usually undo a d with a u because the u moves back to and undeletes the
message that the d deleted. But this does not work when the d skips a few already-deleted
messages that follow the message being deleted; then the u command undeletes the last of
the messages that were skipped. There is no clean way to avoid this problem. However,
by repeating the u command, you can eventually get back to the message that you intend
to undelete. You can also select a particular deleted message with the M-p command, then
type u to undelete it.

A deleted message has the ‘deleted’ attribute, and as a result ‘deleted’ appears in the
mode line when the current message is deleted. In fact, deleting or undeleting a message is
nothing more than adding or removing this attribute. See Section 30.9 [Rmail Attributes],
page 352.

30.5 Rmail Files and Inboxes

When you receive mail locally, the operating system places incoming mail for you in a file
that we call your inbox. When you start up Rmail, it runs a C program called movemail

to copy the new messages from your local inbox into your primary Rmail file, which also
contains other messages saved from previous Rmail sessions. It is in this file that you
actually read the mail with Rmail. This operation is called getting new mail. You can get
new mail at any time in Rmail by typing g.

The variable rmail-primary-inbox-list contains a list of the files that are inboxes
for your primary Rmail file. If you don’t set this variable explicitly, Rmail uses the MAIL

environment variable, or, as a last resort, a default inbox based on rmail-spool-directory.
The default inbox file depends on your operating system; often it is ‘/var/mail/username ’,
‘/var/spool/mail/username ’, or ‘/usr/spool/mail/username ’.

You can specify the inbox file(s) for any Rmail file for the current session with the
command set-rmail-inbox-list; see Section 30.6 [Rmail Files], page 349.

There are two reasons for having separate Rmail files and inboxes.

1. The inbox file format varies between operating systems and according to the other mail
software in use. Only one part of Rmail needs to know about the alternatives, and it
need only understand how to convert all of them to Rmail’s own format.

2. It is very cumbersome to access an inbox file without danger of losing mail, because it
is necessary to interlock with mail delivery. Moreover, different operating systems use

Chapter 30: Reading Mail with Rmail 349

different interlocking techniques. The strategy of moving mail out of the inbox once
and for all into a separate Rmail file avoids the need for interlocking in all the rest of
Rmail, since only Rmail operates on the Rmail file.

Rmail was originally written to use the Babyl format as its internal format. Since then,
we have recognized that the usual inbox format (‘mbox’) on Unix and GNU systems is
adequate for the job, and so since Emacs 23 Rmail uses that as its internal format. The
Rmail file is still separate from the inbox file, even though their format is the same.

When getting new mail, Rmail first copies the new mail from the inbox file to the Rmail
file; then it saves the Rmail file; then it clears out the inbox file. This way, a system crash
may cause duplication of mail between the inbox and the Rmail file, but cannot lose mail.
If rmail-preserve-inbox is non-nil, then Rmail does not clear out the inbox file when it
gets new mail. You may wish to set this, for example, on a portable computer you use to
check your mail via POP while traveling, so that your mail will remain on the server and
you can save it later on your workstation.

In some cases, Rmail copies the new mail from the inbox file indirectly. First it runs
the movemail program to move the mail from the inbox to an intermediate file called
‘.newmail-inboxname ’, in the same directory as the Rmail file. Then Rmail merges the
new mail from that file, saves the Rmail file, and only then deletes the intermediate file. If
there is a crash at the wrong time, this file continues to exist, and Rmail will use it again
the next time it gets new mail from that inbox.

If Rmail is unable to convert the data in ‘.newmail-inboxname ’ into mbox format, it
renames the file to ‘RMAILOSE.n ’ (n is an integer chosen to make the name unique) so that
Rmail will not have trouble with the data again. You should look at the file, find whatever
message confuses Rmail (probably one that includes the control-underscore character, octal
code 037), and delete it. Then you can use 1 g to get new mail from the corrected file.

30.6 Multiple Rmail Files

Rmail operates by default on your primary Rmail file, which is named ‘~/RMAIL’ and receives
your incoming mail from your system inbox file. But you can also have other Rmail files and
edit them with Rmail. These files can receive mail through their own inboxes, or you can
move messages into them with explicit Rmail commands (see Section 30.7 [Rmail Output],
page 350).

i file RET

Read file into Emacs and run Rmail on it (rmail-input).

M-x set-rmail-inbox-list RET files RET

Specify inbox file names for current Rmail file to get mail from.

g Merge new mail from current Rmail file’s inboxes (rmail-get-new-mail).

C-u g file RET

Merge new mail from inbox file file.

To run Rmail on a file other than your primary Rmail file, you can use the i

(rmail-input) command in Rmail. This visits the file in Rmail mode. You can use M-x

rmail-input even when not in Rmail, but it is easier to type C-u M-x rmail, which does
the same thing.

Chapter 30: Reading Mail with Rmail 350

The file you read with i should normally be a valid mbox file. If it is not, Rmail tries
to convert its text to mbox format, and visits the converted text in the buffer. If you save
the buffer, that converts the file.

If you specify a file name that doesn’t exist, i initializes a new buffer for creating a new
Rmail file.

You can also select an Rmail file from a menu. In the Classify menu, choose the Input
Rmail File item; then choose the Rmail file you want. The variables rmail-secondary-

file-directory and rmail-secondary-file-regexp specify which files to offer in the
menu: the first variable says which directory to find them in; the second says which files in
that directory to offer (all those that match the regular expression). If no files match, you
cannot select this menu item. These variables also apply to choosing a file for output (see
Section 30.7 [Rmail Output], page 350).

The inbox files to use are specified by the variable rmail-inbox-list, which is buffer-
local in Rmail mode. As a special exception, if you have specified no inbox files for your
primary Rmail file, it uses the MAIL environment variable, or your standard system inbox.

The g command (rmail-get-new-mail) merges mail into the current Rmail file from
its inboxes. If the Rmail file has no inboxes, g does nothing. The command M-x rmail also
merges new mail into your primary Rmail file.

To merge mail from a file that is not the usual inbox, give the g key a numeric argument,
as in C-u g. Then it reads a file name and merges mail from that file. The inbox file is
not deleted or changed in any way when g with an argument is used. This is, therefore, a
general way of merging one file of messages into another.

30.7 Copying Messages Out to Files

These commands copy messages from an Rmail file into another file.

o file RET

Append a full copy of the current message to the file file (rmail-output).

C-o file RET

Append a copy of the current message, as displayed, to the file file (rmail-
output-as-seen).

w file RET

Output just the message body to the file file, taking the default file name from
the message ‘Subject’ header.

The commands o and C-o copy the current message into a specified file, adding it at
the end. The two commands differ mainly in how much to copy: o copies the full message
headers, even if they are not all visible, while C-o copies exactly the headers currently
displayed and no more. See Section 30.13 [Rmail Display], page 358. In addition, o converts
the message to Babyl format (used by Rmail in Emacs version 22 and before) if the file is
in Babyl format; C-o cannot output to Babyl files at all.

If the output file is currently visited in an Emacs buffer, the output commands append
the message to that buffer. It is up to you to save the buffer eventually in its file.

Sometimes you may receive a message whose body holds the contents of a file. You can
save the body to a file (excluding the message header) with the w command (rmail-output-
body-to-file). Often these messages contain the intended file name in the ‘Subject’ field,

Chapter 30: Reading Mail with Rmail 351

so the w command uses the ‘Subject’ field as the default for the output file name. However,
the file name is read using the minibuffer, so you can specify a different name if you wish.

You can also output a message to an Rmail file chosen with a menu. In the Classify menu,
choose the Output Rmail File menu item; then choose the Rmail file you want. This outputs
the current message to that file, like the o command. The variables rmail-secondary-

file-directory and rmail-secondary-file-regexp specify which files to offer in the
menu: the first variable says which directory to find them in; the second says which files in
that directory to offer (all those that match the regular expression). If no files match, you
cannot select this menu item.

Copying a message with o or C-o gives the original copy of the message the ‘filed’
attribute, so that ‘filed’ appears in the mode line when such a message is current.

If you like to keep just a single copy of every mail message, set the variable rmail-

delete-after-output to t; then the o, C-o and w commands delete the original message
after copying it. (You can undelete it afterward if you wish.)

The variable rmail-output-file-alist lets you specify intelligent defaults for the out-
put file, based on the contents of the current message. The value should be a list whose
elements have this form:

(regexp . name-exp)

If there’s a match for regexp in the current message, then the default file name for output
is name-exp. If multiple elements match the message, the first matching element decides
the default file name. The subexpression name-exp may be a string constant giving the file
name to use, or more generally it may be any Lisp expression that returns a file name as a
string. rmail-output-file-alist applies to both o and C-o.

Rmail can automatically save messages from your primary Rmail file (the one
that rmail-file-name specifies) to other files, based on the value of the variable
rmail-automatic-folder-directives. This variable is a list of elements (‘directives’)
that say which messages to save where. Each directive is a list consisting of an output file,
followed by one or more pairs of a header name and a regular expression. If a message has
a header matching the specified regular expression, that message is saved to the given file.
If the directive has more than one header entry, all must match. Rmail checks directives
when it shows a message from the file rmail-file-name, and applies the first that matches
(if any). If the output file is nil, the message is deleted, not saved. For example, you can
use this feature to save messages from a particular address, or with a particular subject,
to a dedicated file.

30.8 Labels

Each message can have various labels assigned to it as a means of classification. Each
label has a name; different names are different labels. Any given label is either present
or absent on a particular message. A few label names have standard meanings and are
given to messages automatically by Rmail when appropriate; these special labels are called
attributes. All other labels are assigned only by users.

a label RET

Assign the label label to the current message (rmail-add-label).

Chapter 30: Reading Mail with Rmail 352

k label RET

Remove the label label from the current message (rmail-kill-label).

C-M-n labels RET

Move to the next message that has one of the labels labels (rmail-next-
labeled-message).

C-M-p labels RET

Move to the previous message that has one of the labels labels
(rmail-previous-labeled-message).

l labels RET

C-M-l labels RET

Make a summary of all messages containing any of the labels labels (rmail-
summary-by-labels).

The a (rmail-add-label) and k (rmail-kill-label) commands allow you to assign
or remove any label on the current message. If the label argument is empty, it means to
assign or remove the same label most recently assigned or removed.

Once you have given messages labels to classify them as you wish, there are three ways
to use the labels: in moving, in summaries, and in sorting.

C-M-n labels RET (rmail-next-labeled-message) moves to the next message that has
one of the labels labels. The argument labels specifies one or more label names, separated
by commas. C-M-p (rmail-previous-labeled-message) is similar, but moves backwards
to previous messages. A numeric argument to either command serves as a repeat count.

The command C-M-l labels RET (rmail-summary-by-labels) displays a summary
containing only the messages that have at least one of a specified set of labels. The
argument labels is one or more label names, separated by commas. See Section 30.11
[Rmail Summary], page 355, for information on summaries.

If the labels argument to C-M-n, C-M-p or C-M-l is empty, it means to use the last set
of labels specified for any of these commands.

See Section 30.12 [Rmail Sorting], page 358, for information on sorting messages with
labels.

30.9 Rmail Attributes

Some labels such as ‘deleted’ and ‘filed’ have built-in meanings, and Rmail assigns them
to messages automatically at appropriate times; these labels are called attributes. Here is
a list of Rmail attributes:

‘unseen’ Means the message has never been current. Assigned to messages when they
come from an inbox file, and removed when a message is made current. When
you start Rmail, it initially shows the first message that has this attribute.

‘deleted’ Means the message is deleted. Assigned by deletion commands and removed
by undeletion commands (see Section 30.4 [Rmail Deletion], page 347).

‘filed’ Means the message has been copied to some other file. Assigned by the o and
C-o file output commands (see Section 30.7 [Rmail Output], page 350).

Chapter 30: Reading Mail with Rmail 353

‘answered’
Means you have mailed an answer to the message. Assigned by the r command
(rmail-reply). See Section 30.10 [Rmail Reply], page 353.

‘forwarded’
Means you have forwarded the message. Assigned by the f command (rmail-
forward). See Section 30.10 [Rmail Reply], page 353.

‘edited’ Means you have edited the text of the message within Rmail. See Section 30.15
[Rmail Editing], page 360.

‘resent’ Means you have resent the message. Assigned by the command M-x

rmail-resend. See Section 30.10 [Rmail Reply], page 353.

‘retried’ Means you have retried a failed outgoing message. Assigned by the command
M-x rmail-retry-failure. See Section 30.10 [Rmail Reply], page 353.

All other labels are assigned or removed only by users, and have no standard meaning.

30.10 Sending Replies

Rmail has several commands to send outgoing mail. See Chapter 29 [Sending Mail],
page 337, for information on using Message mode, including certain features meant to
work with Rmail. What this section documents are the special commands of Rmail for
entering the mail buffer. Note that the usual keys for sending mail—C-x m, C-x 4 m, and
C-x 5 m—also work normally in Rmail mode.

m Send a message (rmail-mail).

c Continue editing the already started outgoing message (rmail-continue).

r Send a reply to the current Rmail message (rmail-reply).

f Forward the current message to other users (rmail-forward).

C-u f Resend the current message to other users (rmail-resend).

M-m Try sending a bounced message a second time (rmail-retry-failure).

The most common reason to send a message while in Rmail is to reply to the message
you are reading. To do this, type r (rmail-reply). This displays a mail composition
buffer in another window, much like C-x 4 m, but preinitializes the ‘Subject’, ‘To’, ‘CC’,
‘In-reply-to’ and ‘References’ header fields based on the message you are replying to.
The ‘To’ field starts out as the address of the person who sent the message you received,
and the ‘CC’ field starts out with all the other recipients of that message.

You can exclude certain recipients from being included automatically in replies, using
the variable mail-dont-reply-to-names. Its value should be a regular expression; any
recipients that match are excluded from the ‘CC’ field. They are also excluded from the ‘To’
field, unless this would leave the field empty. If this variable is nil, then the first time you
compose a reply it is initialized to a default value that matches your own address.

To omit the ‘CC’ field completely for a particular reply, enter the reply command with
a numeric argument: C-u r or 1 r. This means to reply only to the sender of the original
message.

Chapter 30: Reading Mail with Rmail 354

Once the mail composition buffer has been initialized, editing and sending the mail goes
as usual (see Chapter 29 [Sending Mail], page 337). You can edit the presupplied header
fields if they are not what you want. You can also use commands such as C-c C-y, which
yanks in the message that you are replying to (see Section 29.4 [Mail Commands], page 340).
You can also switch to the Rmail buffer, select a different message there, switch back, and
yank the new current message.

Sometimes a message does not reach its destination. Mailers usually send the failed mes-
sage back to you, enclosed in a failure message. The Rmail command M-m (rmail-retry-
failure) prepares to send the same message a second time: it sets up a mail composition
buffer with the same text and header fields as before. If you type C-c C-c right away, you
send the message again exactly the same as the first time. Alternatively, you can edit the
text or headers and then send it. The variable rmail-retry-ignored-headers, in the same
format as rmail-ignored-headers (see Section 30.13 [Rmail Display], page 358), controls
which headers are stripped from the failed message when retrying it.

Another frequent reason to send mail in Rmail is to forward the current message to other
users. f (rmail-forward) makes this easy by preinitializing the mail composition buffer
with the current message as the text, and a subject of the form [from: subject], where
from and subject are the sender and subject of the original message. All you have to do is
fill in the recipients and send. When you forward a message, recipients get a message which
is “from” you, and which has the original message in its contents.

Rmail offers two formats for forwarded messages. The default is to use MIME (see
Section 30.13 [Rmail Display], page 358) format. This includes the original message as a
separate part. You can use a simpler format if you prefer, by setting the variable rmail-

enable-mime-composing to nil. In this case, Rmail just includes the original message
enclosed between two delimiter lines. It also modifies every line that starts with a dash, by
inserting ‘- ’ at the start of the line. When you receive a forwarded message in this format, if
it contains something besides ordinary text—for example, program source code—you might
find it useful to undo that transformation. You can do this by selecting the forwarded
message and typing M-x unforward-rmail-message. This command extracts the original
forwarded message, deleting the inserted ‘- ’ strings, and inserts it into the Rmail file as a
separate message immediately following the current one.

Resending is an alternative similar to forwarding; the difference is that resending sends
a message that is “from” the original sender, just as it reached you—with a few added
header fields (‘Resent-From’ and ‘Resent-To’) to indicate that it came via you. To resend
a message in Rmail, use C-u f. (f runs rmail-forward, which invokes rmail-resend if
you provide a numeric argument.)

Use the m (rmail-mail) command to start editing an outgoing message that is not a
reply. It leaves the header fields empty. Its only difference from C-x 4 m is that it makes
the Rmail buffer accessible for C-c C-y, just as r does.

The c (rmail-continue) command resumes editing the mail composition buffer, to finish
editing an outgoing message you were already composing, or to alter a message you have
sent.

If you set the variable rmail-mail-new-frame to a non-nil value, then all the Rmail
commands to start sending a message create a new frame to edit it in. This frame is deleted
when you send the message.

Chapter 30: Reading Mail with Rmail 355

All the Rmail commands to send a message use the mail-composition method that you
have chosen (see Section 29.7 [Mail Methods], page 344).

30.11 Summaries

A summary is a buffer containing one line per message to give you an overview of the mail in
an Rmail file. Each line shows the message number and date, the sender, the line count, the
labels, and the subject. Moving point in the summary buffer selects messages as you move
to their summary lines. Almost all Rmail commands are valid in the summary buffer also;
when used there, they apply to the message described by the current line of the summary.

A summary buffer applies to a single Rmail file only; if you are editing multiple Rmail
files, each one can have its own summary buffer. The summary buffer name is made by
appending ‘-summary’ to the Rmail buffer’s name. Normally only one summary buffer is
displayed at a time.

30.11.1 Making Summaries

Here are the commands to create a summary for the current Rmail buffer. Once the Rmail
buffer has a summary, changes in the Rmail buffer (such as deleting or expunging messages,
and getting new mail) automatically update the summary.

h

C-M-h Summarize all messages (rmail-summary).

l labels RET

C-M-l labels RET

Summarize messages that have one or more of the specified labels (rmail-
summary-by-labels).

C-M-r rcpts RET

Summarize messages that match the specified recipients (rmail-summary-by-
recipients).

C-M-t topic RET

Summarize messages that have a match for the specified regexp topic in their
subjects (rmail-summary-by-topic).

C-M-s regexp RET

Summarize messages whose headers match the specified regular expression reg-
exp (rmail-summary-by-regexp).

C-M-f senders RET

Summarize messages that match the specified senders. (rmail-summary-by-
senders).

The h or C-M-h (rmail-summary) command fills the summary buffer for the current
Rmail buffer with a summary of all the messages in the buffer. It then displays and selects
the summary buffer in another window.

C-M-l labels RET (rmail-summary-by-labels) makes a partial summary mentioning
only the messages that have one or more of the labels labels. labels should contain label
names separated by commas.

Chapter 30: Reading Mail with Rmail 356

C-M-r rcpts RET (rmail-summary-by-recipients) makes a partial summary mention-
ing only the messages that have one or more recipients matching the regular expression
rcpts. You can use commas to separate multiple regular expressions. These are matched
against the ‘To’, ‘From’, and ‘CC’ headers (supply a prefix argument to exclude this header).

C-M-t topic RET (rmail-summary-by-topic) makes a partial summary mentioning
only the messages whose subjects have a match for the regular expression topic. You can
use commas to separate multiple regular expressions. With a prefix argument, the match
is against the whole message, not just the subject.

C-M-s regexp RET (rmail-summary-by-regexp) makes a partial summary that men-
tions only the messages whose headers (including the date and the subject lines) match the
regular expression regexp.

C-M-f senders RET (rmail-summary-by-senders) makes a partial summary that men-
tions only the messages whose ‘From’ fields match the regular expression senders. You can
use commas to separate multiple regular expressions.

Note that there is only one summary buffer for any Rmail buffer; making any kind of
summary discards any previous summary.

The variable rmail-summary-window-size says how many lines to use for the summary
window. The variable rmail-summary-line-count-flag controls whether the summary
line for a message should include the line count of the message. Setting this option to nil
might speed up the generation of summaries.

30.11.2 Editing in Summaries

You can use the Rmail summary buffer to do almost anything you can do in the Rmail
buffer itself. In fact, once you have a summary buffer, there’s no need to switch back to the
Rmail buffer.

You can select and display various messages in the Rmail buffer, from the summary
buffer, just by moving point in the summary buffer to different lines. It doesn’t matter
what Emacs command you use to move point; whichever line point is on at the end of the
command, that message is selected in the Rmail buffer.

Almost all Rmail commands work in the summary buffer as well as in the Rmail buffer.
Thus, d in the summary buffer deletes the current message, u undeletes, and x expunges.
(However, in the summary buffer, a numeric argument to d, C-d and u serves as a repeat
count. A negative argument reverses the meaning of d and C-d. Also, if there are no
more undeleted messages in the relevant direction, the delete commands go to the first or
last message, rather than staying on the current message.) o and C-o output the current
message to a FILE; r starts a reply to it; etc. You can scroll the current message while
remaining in the summary buffer using SPC and DEL.

M-u (rmail-summary-undelete-many) undeletes all deleted messages in the summary.
A prefix argument means to undelete that many of the previous deleted messages.

The Rmail commands to move between messages also work in the summary buffer, but
with a twist: they move through the set of messages included in the summary. They also
ensure the Rmail buffer appears on the screen (unlike cursor motion commands, which
update the contents of the Rmail buffer but don’t display it in a window unless it already
appears). Here is a list of these commands:

Chapter 30: Reading Mail with Rmail 357

n Move to next line, skipping lines saying ‘deleted’, and select its message (rmail-
summary-next-msg).

p Move to previous line, skipping lines saying ‘deleted’, and select its message
(rmail-summary-previous-msg).

M-n Move to next line and select its message (rmail-summary-next-all).

M-p Move to previous line and select its message (rmail-summary-previous-all).

> Move to the last line, and select its message (rmail-summary-last-message).

< Move to the first line, and select its message (rmail-summary-first-message).

j

RET Select the message on the current line (ensuring that the Rmail buffer appears
on the screen; rmail-summary-goto-msg). With argument n, select message
number n and move to its line in the summary buffer; this signals an error if
the message is not listed in the summary buffer.

M-s pattern RET

Search through messages for pattern starting with the current message; select
the message found, and move point in the summary buffer to that message’s line
(rmail-summary-search). A prefix argument acts as a repeat count; a nega-
tive argument means search backward (equivalent to rmail-summary-search-

backward.)

C-M-n labels RET

Move to the next message with at least one of the specified labels (rmail-
summary-next-labeled-message). labels is a comma-separated list of labels.
A prefix argument acts as a repeat count.

C-M-p labels RET

Move to the previous message with at least one of the specified labels (rmail-
summary-previous-labeled-message).

C-c C-n RET

Move to the next message with the same subject as the current message (rmail-
summary-next-same-subject). A prefix argument acts as a repeat count.

C-c C-p RET

Move to the previous message with the same subject as the current message
(rmail-summary-previous-same-subject).

Deletion, undeletion, and getting new mail, and even selection of a different message all
update the summary buffer when you do them in the Rmail buffer. If the variable rmail-

redisplay-summary is non-nil, these actions also bring the summary buffer back onto the
screen.

When you are finished using the summary, type Q (rmail-summary-wipe) to delete the
summary buffer’s window. You can also exit Rmail while in the summary: q (rmail-
summary-quit) deletes the summary window, then exits from Rmail by saving the Rmail
file and switching to another buffer. Alternatively, b (rmail-summary-bury) simply buries
the Rmail summary and buffer.

Chapter 30: Reading Mail with Rmail 358

30.12 Sorting the Rmail File

C-c C-s C-d

M-x rmail-sort-by-date

Sort messages of current Rmail buffer by date.

C-c C-s C-s

M-x rmail-sort-by-subject

Sort messages of current Rmail buffer by subject.

C-c C-s C-a

M-x rmail-sort-by-author

Sort messages of current Rmail buffer by author’s name.

C-c C-s C-r

M-x rmail-sort-by-recipient

Sort messages of current Rmail buffer by recipient’s names.

C-c C-s C-c

M-x rmail-sort-by-correspondent

Sort messages of current Rmail buffer by the name of the other correspondent.

C-c C-s C-l

M-x rmail-sort-by-lines

Sort messages of current Rmail buffer by number of lines.

C-c C-s C-k RET labels RET

M-x rmail-sort-by-labels RET labels RET

Sort messages of current Rmail buffer by labels. The argument labels should be
a comma-separated list of labels. The order of these labels specifies the order
of messages; messages with the first label come first, messages with the second
label come second, and so on. Messages that have none of these labels come
last.

The Rmail sort commands perform a stable sort : if there is no reason to prefer either one
of two messages, their order remains unchanged. You can use this to sort by more than one
criterion. For example, if you use rmail-sort-by-date and then rmail-sort-by-author,
messages from the same author appear in order by date.

With a prefix argument, all these commands reverse the order of comparison. This
means they sort messages from newest to oldest, from biggest to smallest, or in reverse
alphabetical order.

The same keys in the summary buffer run similar functions; for example, C-c C-s C-l

runs rmail-summary-sort-by-lines. Note that these commands always sort the whole
Rmail buffer, even if the summary is only showing a subset of messages.

Note that you cannot undo a sort, so you may wish to save the Rmail buffer before
sorting it.

30.13 Display of Messages

This section describes how Rmail displays mail headers, MIME sections and attachments,
URLs, and encrypted messages.

Chapter 30: Reading Mail with Rmail 359

t Toggle display of complete header (rmail-toggle-header).

Before displaying each message for the first time, Rmail reformats its header, hiding un-
interesting header fields to reduce clutter. The t (rmail-toggle-header) command toggles
this, switching between showing the reformatted header fields and showing the complete,
original header. With a positive prefix argument, the command shows the reformatted
header; with a zero or negative prefix argument, it shows the full header. Selecting the
message again also reformats it if necessary.

The variable rmail-ignored-headers holds a regular expression specifying the header
fields to hide; any matching header line will be hidden. The variable rmail-nonignored-

headers overrides this: any header field matching that regular expression is shown even
if it matches rmail-ignored-headers too. The variable rmail-displayed-headers is an
alternative to these two variables; if non-nil, this should be a regular expression specifying
which headers to display (the default is nil).

Rmail highlights certain header fields that are especially interesting—by default, the
‘From’ and ‘Subject’ fields. This highlighting uses the rmail-highlight face. The variable
rmail-highlighted-headers holds a regular expression specifying the header fields to
highlight; if it matches the beginning of a header field, that whole field is highlighted. To
disable this feature, set rmail-highlighted-headers to nil.

If a message is in MIME (Multipurpose Internet Mail Extensions) format and contains
multiple parts (MIME entities), Rmail displays each part with a tagline. The tagline sum-
marizes the part’s index, size, and content type. Depending on the content type, it may
also contain one or more buttons; these perform actions such as saving the part into a file.

RET Hide or show the MIME part at point (rmail-mime-toggle-hidden).

TAB Move point to the next MIME tagline button. (rmail-mime-next-item).

S-TAB Move point to the previous MIME part (rmail-mime-previous-item).

v Toggle between MIME display and raw message (rmail-mime).

Each plain-text MIME part is initially displayed immediately after its tagline, as part of
the Rmail buffer, while MIME parts of other types are represented only by their taglines,
with their actual contents hidden. In either case, you can toggle a MIME part between its
“displayed” and “hidden” states by typing RET anywhere in the part—or anywhere in its
tagline (except for buttons for other actions, if there are any). Type RET (or click with
the mouse) to activate a tagline button, and TAB to cycle point between tagline buttons.

The v (rmail-mime) command toggles between the default MIME display described
above, and a “raw” display showing the undecoded MIME data. With a prefix argument,
this command toggles the display of only an entity at point.

To prevent Rmail from handling MIME decoded messages, change the variable rmail-

enable-mime to nil. When this is the case, the v (rmail-mime) command instead creates
a temporary buffer to display the current MIME message.

If the current message is an encrypted one, use the command M-x rmail-epa-decrypt

to decrypt it, using the EasyPG library (see Section “EasyPG” in EasyPG Assistant User’s
Manual).

You can highlight and activate URLs in the Rmail buffer using Goto Address mode:

Chapter 30: Reading Mail with Rmail 360

(add-hook ’rmail-show-message-hook ’goto-address-mode)

Then you can browse these URLs by clicking on them with Mouse-2 (or Mouse-1 quickly)
or by moving to one and typing C-c RET. See Section 31.11.2 [Activating URLs], page 391.

30.14 Rmail and Coding Systems

Rmail automatically decodes messages which contain non-ASCII characters, just as
Emacs does with files you visit and with subprocess output. Rmail uses the standard
‘charset=charset ’ header in the message, if any, to determine how the message was
encoded by the sender. It maps charset into the corresponding Emacs coding system (see
Section 19.6 [Coding Systems], page 174), and uses that coding system to decode message
text. If the message header doesn’t have the ‘charset’ specification, or if charset is not
recognized, Rmail chooses the coding system with the usual Emacs heuristics and defaults
(see Section 19.7 [Recognize Coding], page 176).

Occasionally, a message is decoded incorrectly, either because Emacs guessed the wrong
coding system in the absence of the ‘charset’ specification, or because the specifica-
tion was inaccurate. For example, a misconfigured mailer could send a message with a
‘charset=iso-8859-1’ header when the message is actually encoded in koi8-r. When you
see the message text garbled, or some of its characters displayed as hex codes or empty
boxes, this may have happened.

You can correct the problem by decoding the message again using the right coding
system, if you can figure out or guess which one is right. To do this, invoke the M-x

rmail-redecode-body command. It reads the name of a coding system, and then redecodes
the message using the coding system you specified. If you specified the right coding system,
the result should be readable.

30.15 Editing Within a Message

Most of the usual Emacs key bindings are available in Rmail mode, though a few, such as
C-M-n and C-M-h, are redefined by Rmail for other purposes. However, the Rmail buffer is
normally read only, and most of the letters are redefined as Rmail commands. If you want
to edit the text of a message, you must use the Rmail command e.

e Edit the current message as ordinary text.

The e command (rmail-edit-current-message) switches from Rmail mode into Rmail
Edit mode, another major mode which is nearly the same as Text mode. The mode line
indicates this change.

In Rmail Edit mode, letters insert themselves as usual and the Rmail commands are not
available. You can edit the message body and header fields. When you are finished editing
the message, type C-c C-c to switch back to Rmail mode. Alternatively, you can return to
Rmail mode but cancel any editing that you have done, by typing C-c C-].

Entering Rmail Edit mode runs the hook text-mode-hook; then it runs the hook rmail-

edit-mode-hook (see Section 33.2.2 [Hooks], page 408). Returning to ordinary Rmail mode
adds the attribute ‘edited’ to the message, if you have made any changes in it.

Chapter 30: Reading Mail with Rmail 361

30.16 Digest Messages

A digest message is a message which exists to contain and carry several other messages.
Digests are used on some mailing lists; all the messages that arrive for the list during a
period of time such as one day are put inside a single digest which is then sent to the
subscribers. Transmitting the single digest uses less computer time than transmitting the
individual messages even though the total size is the same, because of the per-message
overhead in network mail transmission.

When you receive a digest message, the most convenient way to read it is to undigestify
it: to turn it back into many individual messages. Then you can read and delete the
individual messages as it suits you. To do this, select the digest message and type the
command M-x undigestify-rmail-message. This extracts the submessages as separate
Rmail messages, and inserts them following the digest. The digest message itself is flagged
as deleted.

30.17 Reading Rot13 Messages

Mailing list messages that might offend or annoy some readers are sometimes encoded in
a simple code called rot13—so named because it rotates the alphabet by 13 letters. This
code is not for secrecy, as it provides none; rather, it enables those who wish to to avoid
seeing the real text of the message. For example, a review of a film might use rot13 to hide
important plot points.

To view a buffer that uses the rot13 code, use the command M-x rot13-other-window.
This displays the current buffer in another window which applies the code when displaying
the text.

30.18 movemail program

Rmail uses the movemail program to move mail from your inbox to your Rmail file (see
Section 30.5 [Rmail Inbox], page 348). When loaded for the first time, Rmail attempts
to locate the movemail program and determine its version. There are two versions of the
movemail program: the native one, shipped with GNU Emacs (the “emacs version”) and
the one included in GNU mailutils (the “mailutils version”, see Section “movemail” in
GNU mailutils). They support the same command line syntax and the same basic subset
of options. However, the Mailutils version offers additional features.

The Emacs version of movemail is able to retrieve mail from the usual Unix mailbox
formats and from remote mailboxes using the POP3 protocol.

The Mailutils version is able to handle a wide set of mailbox formats, such as plain Unix
mailboxes, maildir and MH mailboxes, etc. It is able to access remote mailboxes using the
POP3 or IMAP4 protocol, and can retrieve mail from them using a TLS encrypted channel.
It also accepts mailbox arguments in URL form. The detailed description of mailbox URLs
can be found in Section “URL” in Mailbox URL Formats. In short, a URL is:

proto://[user[:password]@]host-or-file-name

where square brackets denote optional elements.

proto Specifies the mailbox protocol, or format to use. The exact semantics of the
rest of URL elements depends on the actual value of proto (see below).

Chapter 30: Reading Mail with Rmail 362

user User name to access the remote mailbox.

password User password to access the remote mailbox.

host-or-file-name
Hostname of the remote server for remote mailboxes or file name of a local
mailbox.

Proto can be one of:

mbox Usual Unix mailbox format. In this case, neither user nor pass are used,
and host-or-file-name denotes the file name of the mailbox file, e.g.,
mbox://var/spool/mail/smith.

mh A local mailbox in the MH format. User and pass are not used. Host-or-file-
name denotes the name of MH folder, e.g., mh://Mail/inbox.

maildir A local mailbox in the maildir format. User and pass are not used, and host-or-
file-name denotes the name of maildir mailbox, e.g., maildir://mail/inbox.

file Any local mailbox format. Its actual format is detected automatically by
movemail.

pop A remote mailbox to be accessed via POP3 protocol. User specifies the remote
user name to use, pass may be used to specify the user password, host-or-file-
name is the name or IP address of the remote mail server to connect to; e.g.,
pop://smith:guessme@remote.server.net.

imap A remote mailbox to be accessed via IMAP4 protocol. User specifies the remote
user name to use, pass may be used to specify the user password, host-or-file-
name is the name or IP address of the remote mail server to connect to; e.g.,
imap://smith:guessme@remote.server.net.

Alternatively, you can specify the file name of the mailbox to use. This is equivalent to
specifying the ‘file’ protocol:

/var/spool/mail/user ≡ file://var/spool/mail/user

The variable rmail-movemail-program controls which version of movemail to use. If
that is a string, it specifies the absolute file name of the movemail executable. If it is nil,
Rmail searches for movemail in the directories listed in rmail-movemail-search-path,
then in exec-path (see Section 31.3 [Shell], page 368), then in exec-directory.

30.19 Retrieving Mail from Remote Mailboxes

Some sites use a method called POP for accessing users’ inbox data instead of storing the
data in inbox files. By default, the Emacs movemail can work with POP (unless the Emacs
configure script was run with the option ‘--without-pop’).

Similarly, the Mailutils movemail by default supports POP, unless it was configured with
the ‘--disable-pop’ option.

Both versions of movemail only work with POP3, not with older versions of POP.

No matter which flavor of movemail you use, you can specify a POP inbox by using a
POP URL (see Section 30.18 [Movemail], page 361). A POP URL is a “file name” of the
form ‘pop://username@hostname ’, where hostname is the host name or IP address of the

Chapter 30: Reading Mail with Rmail 363

remote mail server and username is the user name on that server. Additionally, you may
specify the password in the mailbox URL: ‘pop://username:password@hostname ’. In this
case, password takes preference over the one set by rmail-remote-password (see below).
This is especially useful if you have several remote mailboxes with different passwords.

For backward compatibility, Rmail also supports an alternative way of specifying re-
mote POP mailboxes. Specifying an inbox name in the form ‘po:username:hostname ’ is
equivalent to ‘pop://username@hostname ’. If you omit the :hostname part, the MAILHOST

environment variable specifies the machine on which to look for the POP server.

Another method for accessing remote mailboxes is IMAP. This method is supported only
by the Mailutils movemail. To specify an IMAP mailbox in the inbox list, use the following
mailbox URL: ‘imap://username[:password]@hostname ’. The password part is optional,
as described above.

Accessing a remote mailbox may require a password. Rmail uses the following algorithm
to retrieve it:

1. If a password is present in the mailbox URL (see above), it is used.

2. If the variable rmail-remote-password-required is nil, Rmail assumes no password
is required.

3. If the variable rmail-remote-password is non-nil, its value is used.

4. Otherwise, Rmail will ask you for the password to use.

If you need to pass additional command-line flags to movemail, set the variable rmail-

movemail-flags a list of the flags you wish to use. Do not use this variable to pass the
‘-p’ flag to preserve your inbox contents; use rmail-preserve-inbox instead.

The movemail program installed at your site may support Kerberos authentication (the
Emacs movemail does so if Emacs was configured with the option --with-kerberos or
--with-kerberos5). If it is supported, it is used by default whenever you attempt to
retrieve POP mail when rmail-remote-password and rmail-remote-password-required

are unset.

Some POP servers store messages in reverse order. If your server does this, and you
would rather read your mail in the order in which it was received, you can tell movemail to
reverse the order of downloaded messages by adding the ‘-r’ flag to rmail-movemail-flags.

Mailutils movemail supports TLS encryption. If you wish to use it, add the ‘--tls’ flag
to rmail-movemail-flags.

30.20 Retrieving Mail from Local Mailboxes in Various
Formats

If your incoming mail is stored on a local machine in a format other than Unix mailbox, you
will need the Mailutils movemail to retrieve it. See Section 30.18 [Movemail], page 361, for
the detailed description of movemail versions. For example, to access mail from a inbox in
maildir format located in ‘/var/spool/mail/in’, you would include the following in the
Rmail inbox list:

maildir://var/spool/mail/in

Chapter 31: Miscellaneous Commands 364

31 Miscellaneous Commands

This chapter contains several brief topics that do not fit anywhere else: viewing “document
files”, reading Usenet news, running shell commands and shell subprocesses, using a single
shared Emacs for utilities that expect to run an editor as a subprocess, printing hardcopy,
sorting text, narrowing display to part of the buffer, editing binary files, saving an Emacs
session for later resumption, following hyperlinks, browsing images, emulating other editors,
and various diversions and amusements.

31.1 Gnus

Gnus is an Emacs package primarily designed for reading and posting Usenet news. It
can also be used to read and respond to messages from a number of other sources—email,
remote directories, digests, and so on. Here we introduce Gnus and describe several basic
features. For full details on Gnus, type C-h i and then select the Gnus manual.

31.1.1 Gnus Buffers

Gnus uses several buffers to display information and to receive commands. The three most
commonly-used Gnus buffers are the group buffer, the summary buffer and the article buffer.

The group buffer contains a list of article sources (e.g. newsgroups and email inboxes),
which are collectively referred to as groups. This is the first buffer Gnus displays when it
starts up. It normally displays only the groups to which you subscribe and that contain
unread articles. From this buffer, you can select a group to read.

The summary buffer lists the articles in a single group, showing one article per line. By
default, it displays each article’s author, subject, and line number. The summary buffer is
created when you select a group in the group buffer, and is killed when you exit the group.

From the summary buffer, you can choose an article to view. The article is displayed
in the article buffer. In normal Gnus usage, you view this buffer but do not select it—all
useful Gnus commands can be invoked from the summary buffer. But you can select the
article buffer, and execute Gnus commands from it, if you wish.

31.1.2 When Gnus Starts Up

If your system has been set up for reading Usenet news, getting started with Gnus is easy—
just type M-x gnus.

On starting up, Gnus reads your news initialization file: a file named ‘.newsrc’ in
your home directory which lists your Usenet newsgroups and subscriptions (this file is not
unique to Gnus; it is used by many other newsreader programs). It then tries to contact the
system’s default news server, which is typically specified by the NNTPSERVER environment
variable.

If your system does not have a default news server, or if you wish to use Gnus for reading
email, then before invoking M-x gnus you need to tell Gnus where to get news and/or mail.
To do this, customize the variables gnus-select-method and/or gnus-secondary-select-
methods. See the Gnus manual for details.

Once Gnus has started up, it displays the group buffer. By default, the group buffer
shows only a small number of subscribed groups. Groups with other statuses—unsubscribed,
killed, or zombie—are hidden. The first time you start Gnus, any group to which you are

Chapter 31: Miscellaneous Commands 365

not subscribed is made into a killed group; any group that subsequently appears on the
news server becomes a zombie group.

To proceed, you must select a group in the group buffer to open the summary buffer
for that group; then, select an article in the summary buffer to view its article buffer in a
separate window. The following sections explain how to use the group and summary buffers
to do this.

To quit Gnus, type q in the group buffer. This automatically records your group sta-
tuses in the files ‘.newsrc’ and ‘.newsrc.eld’, so that they take effect in subsequent Gnus
sessions.

31.1.3 Using the Gnus Group Buffer

The following commands are available in the Gnus group buffer:

SPC Switch to the summary buffer for the group on the current line.

l

A s In the group buffer, list only the groups to which you subscribe and which
contain unread articles (this is the default listing).

L

A u List all subscribed and unsubscribed groups, but not killed or zombie groups.

A k List killed groups.

A z List zombie groups.

u Toggle the subscription status of the group on the current line (i.e. turn a
subscribed group into an unsubscribed group, or vice versa). Invoking this on
a killed or zombie group turns it into an unsubscribed group.

C-k Kill the group on the current line. Killed groups are not recorded in the
‘.newsrc’ file, and they are not shown in the l or L listings.

DEL Move point to the previous group containing unread articles.

n Move point to the next unread group.

p Move point to the previous unread group.

q Update your Gnus settings, and quit Gnus.

31.1.4 Using the Gnus Summary Buffer

The following commands are available in the Gnus summary buffer:

SPC If there is no article selected, select the article on the current line and display its
article buffer. Otherwise, try scrolling the selected article buffer in its window;
on reaching the end of the buffer, select the next unread article.

Thus, you can read through all articles by repeatedly typing SPC.

DEL Scroll the text of the article backwards.

n Select the next unread article.

p Select the previous unread article.

Chapter 31: Miscellaneous Commands 366

s Do an incremental search on the selected article buffer, as if you switched to
the buffer and typed C-s (see Section 12.1 [Incremental Search], page 85).

M-s regexp RET

Search forward for articles containing a match for regexp.

q Exit the summary buffer and return to the group buffer.

31.2 Document Viewing

DocView mode is a major mode for viewing DVI, PostScript (PS), PDF, OpenDocument,
and Microsoft Office documents. It provides features such as slicing, zooming, and searching
inside documents. It works by converting the document to a set of images using the gs

(GhostScript) command and other external tools1, and displaying those images.

When you visit a document file that can be displayed with DocView mode, Emacs
automatically uses DocView mode2. As an exception, when you visit a PostScript file,
Emacs switches to PS mode, a major mode for editing PostScript files as text; however,
it also enables DocView minor mode, so you can type C-c C-c to view the document with
DocView. In either DocView mode or DocView minor mode, repeating C-c C-c (doc-view-
toggle-display) toggles between DocView and the underlying file contents.

You can explicitly enable DocView mode with the command M-x doc-view-mode. You
can toggle DocView minor mode with M-x doc-view-minor-mode.

When DocView mode starts, it displays a welcome screen and begins formatting the file,
page by page. It displays the first page once that has been formatted.

To kill the DocView buffer, type k (doc-view-kill-proc-and-buffer). To bury it,
type q (quit-window).

31.2.1 DocView Navigation

In DocView mode, you can scroll the current page using the usual Emacs movement keys:
C-p, C-n, C-b, C-f, and the arrow keys.

By default, the line-motion keys C-p and C-n stop scrolling at the beginning and end of
the current page, respectively. However, if you change the variable doc-view-continuous

to a non-nil value, then C-p displays the previous page if you are already at the beginning
of the current page, and C-n displays the next page if you are at the end of the current
page.

You can also display the next page by typing n, NEXT or C-x] (doc-view-next-page).
To display the previous page, type p, PRIOR or C-x [(doc-view-previous-page).

SPC (doc-view-scroll-up-or-next-page) is a convenient way to advance through the
document. It scrolls within the current page or advances to the next. DEL moves backwards
in a similar way (doc-view-scroll-down-or-previous-page).

1 gs is a hard requirement. For DVI files, dvipdf or dvipdfm is needed. For OpenDocument and Microsoft
Office documents, the unoconv tool is needed.

2 The needed external tools for the document type must be available, and Emacs must be running in a
graphical frame and have PNG image support. If any of these requirements is not fulfilled, Emacs falls
back to another major mode.

Chapter 31: Miscellaneous Commands 367

To go to the first page, type M-< (doc-view-first-page); to go to the last one, type
M-> (doc-view-last-page). To jump to a page by its number, type M-g M-g or M-g g

(doc-view-goto-page).

You can enlarge or shrink the document with + (doc-view-enlarge) and - (doc-view-
shrink). These commands work by reconverting the document at the new size. To specify
the default size for DocView, customize the variable doc-view-resolution.

31.2.2 DocView Searching

In DocView mode, you can search the file’s text for a regular expression (see Section 12.5
[Regexps], page 91). The interface for searching is inspired by isearch (see Section 12.1
[Incremental Search], page 85).

To begin a search, type C-s (doc-view-search) or C-r (doc-view-search-backward).
This reads a regular expression using a minibuffer, then echoes the number of matches found
within the document. You can move forward and back among the matches by typing C-s

and C-r. DocView mode has no way to show the match inside the page image; instead, it
displays a tooltip (at the mouse position) listing all matching lines in the current page. To
force display of this tooltip, type C-t (doc-view-show-tooltip).

To start a new search, use the search command with a prefix argument; i.e., C-u C-s for
a forward search or C-u C-r for a backward search.

31.2.3 DocView Slicing

Documents often have wide margins for printing. They are annoying when reading the
document on the screen, because they use up screen space and can cause inconvenient
scrolling.

With DocView you can hide these margins by selecting a slice of pages to display. A
slice is a rectangle within the page area; once you specify a slice in DocView, it applies to
whichever page you look at.

To specify the slice numerically, type s s (doc-view-set-slice); then enter the top left
pixel position and the slice’s width and height.

A more convenient graphical way to specify the slice is with s m (doc-view-set-slice-
using-mouse), where you use the mouse to select the slice.

To cancel the selected slice, type s r (doc-view-reset-slice). Then DocView shows
the entire page including its entire margins.

31.2.4 DocView Conversion

For efficiency, DocView caches the images produced by gs. The name of this directory is
given by the variable doc-view-cache-directory. You can clear the cache directory by
typing M-x doc-view-clear-cache.

To force reconversion of the currently viewed document, type r or g (revert-buffer).
To kill the converter process associated with the current buffer, type K (doc-view-kill-
proc). The command k (doc-view-kill-proc-and-buffer) kills the converter process and
the DocView buffer.

Chapter 31: Miscellaneous Commands 368

31.3 Running Shell Commands from Emacs

Emacs has commands for passing single command lines to shell subprocesses, and for run-
ning a shell interactively with input and output to an Emacs buffer, and for running a shell
in a terminal emulator window.

M-! cmd RET

Run the shell command cmd and display the output (shell-command).

M-| cmd RET

Run the shell command cmd with region contents as input; optionally replace
the region with the output (shell-command-on-region).

M-& cmd RET

Run the shell command cmd asynchronously, and display the output (async-
shell-command).

M-x shell Run a subshell with input and output through an Emacs buffer. You can then
give commands interactively.

M-x term Run a subshell with input and output through an Emacs buffer. You can then
give commands interactively. Full terminal emulation is available.

Whenever you specify a relative file name for an executable program (either in the cmd
argument to one of the above commands, or in other contexts), Emacs searches for the
program in the directories specified by the variable exec-path. The value of this variable
must be a list of directory names; the default value is initialized from the environment
variable PATH when Emacs is started (see Section C.4.1 [General Variables], page 467).

M-x eshell invokes a shell implemented entirely in Emacs. It is documented in its own
manual. See the Eshell Info manual, which is distributed with Emacs.

31.3.1 Single Shell Commands

M-! (shell-command) reads a line of text using the minibuffer and executes it as a shell
command, in a subshell made just for that command. Standard input for the command
comes from the null device. If the shell command produces any output, the output appears
either in the echo area (if it is short), or in an Emacs buffer named ‘*Shell Command

Output*’, displayed in another window (if the output is long).

For instance, one way to decompress a file named ‘foo.gz’ is to type M-! gunzip foo.gz

RET. That shell command normally creates the file ‘foo’ and produces no terminal output.

A numeric argument to shell-command, e.g. M-1 M-!, causes it to insert terminal output
into the current buffer instead of a separate buffer. It puts point before the output, and
sets the mark after the output. For instance, M-1 M-! gunzip < foo.gz RET would insert
the uncompressed form of the file ‘foo.gz’ into the current buffer.

Provided the specified shell command does not end with ‘&’, it runs synchronously, and
you must wait for it to exit before continuing to use Emacs. To stop waiting, type C-g to
quit; this sends a SIGINT signal to terminate the shell command (this is the same signal
that C-c normally generates in the shell). Emacs then waits until the command actually
terminates. If the shell command doesn’t stop (because it ignores the SIGINT signal), type
C-g again; this sends the command a SIGKILL signal, which is impossible to ignore.

Chapter 31: Miscellaneous Commands 369

A shell command that ends in ‘&’ is executed asynchronously, and you can continue to
use Emacs as it runs. You can also type M-& (async-shell-command) to execute a shell
command asynchronously; this is exactly like calling M-! with a trailing ‘&’, except that you
do not need the ‘&’. The output buffer for asynchronous shell commands is named ‘*Async
Shell Command*’. Emacs inserts the output into this buffer as it comes in, whether or not
the buffer is visible in a window.

M-| (shell-command-on-region) is like M-!, but passes the contents of the region as
the standard input to the shell command, instead of no input. With a numeric argument,
it deletes the old region and replaces it with the output from the shell command.

For example, you can use M-| with the gpg program to see what keys are in the buffer. If
the buffer contains a GnuPG key, type C-x h M-| gpg RET to feed the entire buffer contents
to gpg. This will output the list of keys to the ‘*Shell Command Output*’ buffer.

The above commands use the shell specified by the variable shell-file-name. Its
default value is determined by the SHELL environment variable when Emacs is started. If
the file name is relative, Emacs searches the directories listed in exec-path (see Section 31.3
[Shell], page 368).

To specify a coding system for M-! or M-|, use the command C-x RET c immediately
beforehand. See Section 19.11 [Communication Coding], page 180.

By default, error output is intermixed with the regular output in the output buffer. But
if you change the value of the variable shell-command-default-error-buffer to a string,
error output is inserted into a buffer of that name.

31.3.2 Interactive Subshell

To run a subshell interactively, type M-x shell. This creates (or reuses) a buffer named
‘*shell*’, and runs a shell subprocess with input coming from and output going to that
buffer. That is to say, any terminal output from the subshell goes into the buffer, advancing
point, and any terminal input for the subshell comes from text in the buffer. To give input
to the subshell, go to the end of the buffer and type the input, terminated by RET.

While the subshell is waiting or running a command, you can switch windows or buffers
and perform other editing in Emacs. Emacs inserts the output from the subshell into the
Shell buffer whenever it has time to process it (e.g. while waiting for keyboard input).

In the Shell buffer, prompts are displayed with the face comint-highlight-prompt, and
submitted input lines are displayed with the face comint-highlight-input. This makes it
easier to distinguish input lines from the shell output. See Section 11.8 [Faces], page 70.

To make multiple subshells, invoke M-x shell with a prefix argument (e.g. C-u M-x

shell). Then the command will read a buffer name, and create (or reuse) a subshell in
that buffer. You can also rename the ‘*shell*’ buffer using M-x rename-uniquely, then
create a new ‘*shell*’ buffer using plain M-x shell. Subshells in different buffers run
independently and in parallel.

To specify the shell file name used by M-x shell, customize the variable explicit-

shell-file-name. If this is nil (the default), Emacs uses the environment variable ESHELL
if it exists. Otherwise, it usually uses the variable shell-file-name (see Section 31.3.1
[Single Shell], page 368); but if the default directory is remote (see Section 15.13 [Remote
Files], page 135), it prompts you for the shell file name.

Chapter 31: Miscellaneous Commands 370

Emacs sends the new shell the contents of the file ‘~/.emacs_shellname ’ as input, if it
exists, where shellname is the name of the file that the shell was loaded from. For example,
if you use bash, the file sent to it is ‘~/.emacs_bash’. If this file is not found, Emacs tries
with ‘~/.emacs.d/init_shellname.sh’.

To specify a coding system for the shell, you can use the command C-x RET c immediately
before M-x shell. You can also change the coding system for a running subshell by typing
C-x RET p in the shell buffer. See Section 19.11 [Communication Coding], page 180.

Emacs sets the environment variable INSIDE_EMACS in the subshell to ‘version,comint’,
where version is the Emacs version (e.g. ‘24.1’). Programs can check this variable to
determine whether they are running inside an Emacs subshell. (It also sets the EMACS

environment variable to t, if that environment variable is not already defined. However,
this environment variable is deprecated; programs that use it should switch to using INSIDE_

EMACS instead.)

31.3.3 Shell Mode

The major mode for Shell buffers is Shell mode. Many of its special commands are bound to
the C-c prefix, and resemble the usual editing and job control characters present in ordinary
shells, except that you must type C-c first. Here is a list of Shell mode commands:

RET Send the current line as input to the subshell (comint-send-input). Any
shell prompt at the beginning of the line is omitted (see Section 31.3.4 [Shell
Prompts], page 372). If point is at the end of buffer, this is like submitting the
command line in an ordinary interactive shell. However, you can also invoke
RET elsewhere in the shell buffer to submit the current line as input.

TAB Complete the command name or file name before point in the shell buffer
(completion-at-point). This uses the usual Emacs completion rules (see
Section 5.3 [Completion], page 28), with the completion alternatives being file
names, environment variable names, the shell command history, and history
references (see Section 31.3.5.3 [History References], page 374).

The variable shell-completion-fignore specifies a list of file name extensions
to ignore in Shell mode completion. The default setting is nil, but some users
prefer ("~" "#" "%") to ignore file names ending in ‘~’, ‘#’ or ‘%’. Other related
Comint modes use the variable comint-completion-fignore instead.

M-? Display temporarily a list of the possible completions of the file name before
point (comint-dynamic-list-filename-completions).

C-d Either delete a character or send EOF (comint-delchar-or-maybe-eof).
Typed at the end of the shell buffer, this sends EOF to the subshell. Typed at
any other position in the buffer, this deletes a character as usual.

C-c C-a Move to the beginning of the line, but after the prompt if any (comint-bol-or-
process-mark). If you repeat this command twice in a row, the second time it
moves back to the process mark, which is the beginning of the input that you
have not yet sent to the subshell. (Normally that is the same place—the end
of the prompt on this line—but after C-c SPC the process mark may be in a
previous line.)

Chapter 31: Miscellaneous Commands 371

C-c SPC Accumulate multiple lines of input, then send them together. This command
inserts a newline before point, but does not send the preceding text as input to
the subshell—at least, not yet. Both lines, the one before this newline and the
one after, will be sent together (along with the newline that separates them),
when you type RET.

C-c C-u Kill all text pending at end of buffer to be sent as input (comint-kill-input).
If point is not at end of buffer, this only kills the part of this text that precedes
point.

C-c C-w Kill a word before point (backward-kill-word).

C-c C-c Interrupt the shell or its current subjob if any (comint-interrupt-subjob).
This command also kills any shell input pending in the shell buffer and not yet
sent.

C-c C-z Stop the shell or its current subjob if any (comint-stop-subjob). This com-
mand also kills any shell input pending in the shell buffer and not yet sent.

C-c C-\ Send quit signal to the shell or its current subjob if any (comint-quit-subjob).
This command also kills any shell input pending in the shell buffer and not yet
sent.

C-c C-o Delete the last batch of output from a shell command (comint-delete-
output). This is useful if a shell command spews out lots of output that just
gets in the way.

C-c C-s Write the last batch of output from a shell command to a file (comint-write-
output). With a prefix argument, the file is appended to instead. Any prompt
at the end of the output is not written.

C-c C-r

C-M-l Scroll to display the beginning of the last batch of output at the top of the
window; also move the cursor there (comint-show-output).

C-c C-e Scroll to put the end of the buffer at the bottom of the window (comint-show-
maximum-output).

C-c C-f Move forward across one shell command, but not beyond the current line
(shell-forward-command). The variable shell-command-regexp specifies how
to recognize the end of a command.

C-c C-b Move backward across one shell command, but not beyond the current line
(shell-backward-command).

M-x dirs Ask the shell for its working directory, and update the Shell buffer’s default
directory. See Section 31.3.6 [Directory Tracking], page 375.

M-x send-invisible RET text RET

Send text as input to the shell, after reading it without echoing. This is useful
when a shell command runs a program that asks for a password.

Please note that Emacs will not echo passwords by default. If you really want
them to be echoed, evaluate the following Lisp expression:

Chapter 31: Miscellaneous Commands 372

(remove-hook ’comint-output-filter-functions

’comint-watch-for-password-prompt)

M-x comint-continue-subjob

Continue the shell process. This is useful if you accidentally suspend the shell
process.3

M-x comint-strip-ctrl-m

Discard all control-M characters from the current group of shell output. The
most convenient way to use this command is to make it run automatically when
you get output from the subshell. To do that, evaluate this Lisp expression:

(add-hook ’comint-output-filter-functions

’comint-strip-ctrl-m)

M-x comint-truncate-buffer

This command truncates the shell buffer to a certain maximum number of lines,
specified by the variable comint-buffer-maximum-size. Here’s how to do this
automatically each time you get output from the subshell:

(add-hook ’comint-output-filter-functions

’comint-truncate-buffer)

Shell mode is a derivative of Comint mode, a general-purpose mode for communicating
with interactive subprocesses. Most of the features of Shell mode actually come from Comint
mode, as you can see from the command names listed above. The special features of Shell
mode include the directory tracking feature, and a few user commands.

Other Emacs features that use variants of Comint mode include GUD (see Section 24.6
[Debuggers], page 255) and M-x run-lisp (see Section 24.11 [External Lisp], page 268).

You can use M-x comint-run to execute any program of your choice in a subprocess
using unmodified Comint mode—without the specializations of Shell mode.

31.3.4 Shell Prompts

A prompt is text output by a program to show that it is ready to accept new user input.
Normally, Comint mode (and thus Shell mode) automatically figures out part of the buffer is
a prompt, based on the output of the subprocess. (Specifically, it assumes that any received
output line which doesn’t end with a newline is a prompt.)

Comint mode divides the buffer into two types of fields: input fields (where user input
is typed) and output fields (everywhere else). Prompts are part of the output fields. Most
Emacs motion commands do not cross field boundaries, unless they move over multiple
lines. For instance, when point is in the input field on a shell command line, C-a puts point
at the beginning of the input field, after the prompt. Internally, the fields are implemented
using the field text property (see Section “Text Properties” in the Emacs Lisp Reference
Manual).

If you change the variable comint-use-prompt-regexp to a non-nil value, then Comint
mode recognize prompts using a regular expression (see Section 12.5 [Regexps], page 91).

3 You should not suspend the shell process. Suspending a subjob of the shell is a completely different
matter—that is normal practice, but you must use the shell to continue the subjob; this command won’t
do it.

Chapter 31: Miscellaneous Commands 373

In Shell mode, the regular expression is specified by the variable shell-prompt-pattern.
The default value of comint-use-prompt-regexp is nil, because this method for recog-
nizing prompts is unreliable, but you may want to set it to a non-nil value in unusual
circumstances. In that case, Emacs does not divide the Comint buffer into fields, so the
general motion commands behave as they normally do in buffers without special text prop-
erties. However, you can use the paragraph motion commands to conveniently navigate the
buffer (see Section 22.3 [Paragraphs], page 200); in Shell mode, Emacs uses shell-prompt-
pattern as paragraph boundaries.

31.3.5 Shell Command History

Shell buffers support three ways of repeating earlier commands. You can use keys like those
used for the minibuffer history; these work much as they do in the minibuffer, inserting text
from prior commands while point remains always at the end of the buffer. You can move
through the buffer to previous inputs in their original place, then resubmit them or copy
them to the end. Or you can use a ‘!’-style history reference.

31.3.5.1 Shell History Ring

M-p

C-UP Fetch the next earlier old shell command.

M-n

C-DOWN Fetch the next later old shell command.

M-r Begin an incremental regexp search of old shell commands.

C-c C-x Fetch the next subsequent command from the history.

C-c . Fetch one argument from an old shell command.

C-c C-l Display the buffer’s history of shell commands in another window (comint-
dynamic-list-input-ring).

Shell buffers provide a history of previously entered shell commands. To reuse shell
commands from the history, use the editing commands M-p, M-n, M-r and M-s. These work
just like the minibuffer history commands (see Section 5.4 [Minibuffer History], page 32),
except that they operate within the Shell buffer rather than the minibuffer.

M-p fetches an earlier shell command to the end of the shell buffer. Successive use of
M-p fetches successively earlier shell commands, each replacing any text that was already
present as potential shell input. M-n does likewise except that it finds successively more
recent shell commands from the buffer. C-UP works like M-p, and C-DOWN like M-n.

The history search command M-r begins an incremental regular expression search of
previous shell commands. After typing M-r, start typing the desired string or regular ex-
pression; the last matching shell command will be displayed in the current line. Incremental
search commands have their usual effects—for instance, C-s and C-r search forward and
backward for the next match (see Section 12.1 [Incremental Search], page 85). When you
find the desired input, type RET to terminate the search. This puts the input in the
command line. Any partial input you were composing before navigating the history list is
restored when you go to the beginning or end of the history ring.

Often it is useful to reexecute several successive shell commands that were previously
executed in sequence. To do this, first find and reexecute the first command of the sequence.

Chapter 31: Miscellaneous Commands 374

Then type C-c C-x; that will fetch the following command—the one that follows the com-
mand you just repeated. Then type RET to reexecute this command. You can reexecute
several successive commands by typing C-c C-x RET over and over.

The command C-c . (comint-input-previous-argument) copies an individual argu-
ment from a previous command, like ESC . in Bash. The simplest use copies the last
argument from the previous shell command. With a prefix argument n, it copies the nth
argument instead. Repeating C-c . copies from an earlier shell command instead, always
using the same value of n (don’t give a prefix argument when you repeat the C-c . com-
mand).

These commands get the text of previous shell commands from a special history list, not
from the shell buffer itself. Thus, editing the shell buffer, or even killing large parts of it,
does not affect the history that these commands access.

Some shells store their command histories in files so that you can refer to commands
from previous shell sessions. Emacs reads the command history file for your chosen shell,
to initialize its own command history. The file name is ‘~/.bash_history’ for bash,
‘~/.sh_history’ for ksh, and ‘~/.history’ for other shells.

31.3.5.2 Shell History Copying

C-c C-p Move point to the previous prompt (comint-previous-prompt).

C-c C-n Move point to the following prompt (comint-next-prompt).

C-c RET Copy the input command at point, inserting the copy at the end of the buffer
(comint-copy-old-input). This is useful if you move point back to a previous
command. After you copy the command, you can submit the copy as input
with RET. If you wish, you can edit the copy before resubmitting it. If you use
this command on an output line, it copies that line to the end of the buffer.

Mouse-2 If comint-use-prompt-regexp is nil (the default), copy the old input com-
mand that you click on, inserting the copy at the end of the buffer (comint-
insert-input). If comint-use-prompt-regexp is non-nil, or if the click is
not over old input, just yank as usual.

Moving to a previous input and then copying it with C-c RET or Mouse-2 produces the
same results—the same buffer contents—that you would get by using M-p enough times to
fetch that previous input from the history list. However, C-c RET copies the text from the
buffer, which can be different from what is in the history list if you edit the input text in
the buffer after it has been sent.

31.3.5.3 Shell History References

Various shells including csh and bash support history references that begin with ‘!’ and ‘^’.
Shell mode recognizes these constructs, and can perform the history substitution for you.

If you insert a history reference and type TAB, this searches the input history for a
matching command, performs substitution if necessary, and places the result in the buffer
in place of the history reference. For example, you can fetch the most recent command
beginning with ‘mv’ with ! m v TAB. You can edit the command if you wish, and then
resubmit the command to the shell by typing RET.

Chapter 31: Miscellaneous Commands 375

Shell mode can optionally expand history references in the buffer when you send them
to the shell. To request this, set the variable comint-input-autoexpand to input. You
can make SPC perform history expansion by binding SPC to the command comint-magic-

space.

Shell mode recognizes history references when they follow a prompt. See Section 31.3.4
[Shell Prompts], page 372, for how Shell mode recognizes prompts.

31.3.6 Directory Tracking

Shell mode keeps track of ‘cd’, ‘pushd’ and ‘popd’ commands given to the subshell, in order
to keep the Shell buffer’s default directory (see Section 15.1 [File Names], page 115) the
same as the shell’s working directory. It recognizes these commands by examining lines of
input that you send.

If you use aliases for these commands, you can tell Emacs to recognize them also, by
setting the variables shell-pushd-regexp, shell-popd-regexp, and shell-cd-regexp to
the appropriate regular expressions (see Section 12.5 [Regexps], page 91). For example, if
shell-pushd-regexp matches the beginning of a shell command line, that line is regarded
as a pushd command. These commands are recognized only at the beginning of a shell
command line.

If Emacs gets confused about changes in the working directory of the subshell, type
M-x dirs. This command asks the shell for its working directory and updates the default
directory accordingly. It works for shells that support the most common command syntax,
but may not work for unusual shells.

You can also use Dirtrack mode, a buffer-local minor mode that implements an alter-
native method of tracking the shell’s working directory. To use this method, your shell
prompt must contain the working directory at all times, and you must supply a regular
expression for recognizing which part of the prompt contains the working directory; see
the documentation of the variable dirtrack-list for details. To use Dirtrack mode, type
M-x dirtrack-mode in the Shell buffer, or add dirtrack-mode to shell-mode-hook (see
Section 33.2.2 [Hooks], page 408).

31.3.7 Shell Mode Options

If the variable comint-scroll-to-bottom-on-input is non-nil, insertion and yank com-
mands scroll the selected window to the bottom before inserting. The default is nil.

If comint-scroll-show-maximum-output is non-nil, then arrival of output when point
is at the end tries to scroll the last line of text to the bottom line of the window, showing as
much useful text as possible. (This mimics the scrolling behavior of most terminals.) The
default is t.

By setting comint-move-point-for-output, you can opt for having point jump to the
end of the buffer whenever output arrives—no matter where in the buffer point was before.
If the value is this, point jumps in the selected window. If the value is all, point jumps
in each window that shows the Comint buffer. If the value is other, point jumps in all
nonselected windows that show the current buffer. The default value is nil, which means
point does not jump to the end.

If you set comint-prompt-read-only, the prompts in the Comint buffer are read-only.

Chapter 31: Miscellaneous Commands 376

The variable comint-input-ignoredups controls whether successive identical inputs are
stored in the input history. A non-nil value means to omit an input that is the same as
the previous input. The default is nil, which means to store each input even if it is equal
to the previous input.

Three variables customize file name completion. The variable comint-completion-

addsuffix controls whether completion inserts a space or a slash to indicate a
fully completed file or directory name (non-nil means do insert a space or slash).
comint-completion-recexact, if non-nil, directs TAB to choose the shortest possible
completion if the usual Emacs completion algorithm cannot add even a single character.
comint-completion-autolist, if non-nil, says to list all the possible completions
whenever completion is not exact.

Command completion normally considers only executable files. If you set
shell-completion-execonly to nil, it considers nonexecutable files as well.

You can configure the behavior of ‘pushd’. Variables control whether ‘pushd’ behaves like
‘cd’ if no argument is given (shell-pushd-tohome), pop rather than rotate with a numeric
argument (shell-pushd-dextract), and only add directories to the directory stack if they
are not already on it (shell-pushd-dunique). The values you choose should match the
underlying shell, of course.

31.3.8 Emacs Terminal Emulator

To run a subshell in a terminal emulator, use M-x term. This creates (or reuses) a buffer
named ‘*terminal*’, and runs a subshell with input coming from your keyboard, and
output going to that buffer.

The terminal emulator uses Term mode, which has two input modes. In line mode, Term
basically acts like Shell mode (see Section 31.3.3 [Shell Mode], page 370).

In char mode, each character is sent directly to the subshell, as “terminal input”. Any
“echoing” of your input is the responsibility of the subshell. The sole exception is the ter-
minal escape character, which by default is C-c (see Section 31.3.9 [Term Mode], page 377).
Any “terminal output” from the subshell goes into the buffer, advancing point.

Some programs (such as Emacs itself) need to control the appearance on the terminal
screen in detail. They do this by sending special control codes. The exact control codes
needed vary from terminal to terminal, but nowadays most terminals and terminal emulators
(including xterm) understand the ANSI-standard (VT100-style) escape sequences. Term
mode recognizes these escape sequences, and handles each one appropriately, changing the
buffer so that the appearance of the window matches what it would be on a real terminal.
You can actually run Emacs inside an Emacs Term window.

You can also Term mode to communicate with a device connected to a serial port. See
Section 31.3.11 [Serial Terminal], page 377.

The file name used to load the subshell is determined the same way as for Shell mode. To
make multiple terminal emulators, rename the buffer ‘*terminal*’ to something different
using M-x rename-uniquely, just as with Shell mode.

Unlike Shell mode, Term mode does not track the current directory by examining your
input. But some shells can tell Term what the current directory is. This is done automati-
cally by bash version 1.15 and later.

Chapter 31: Miscellaneous Commands 377

31.3.9 Term Mode

The terminal emulator uses Term mode, which has two input modes. In line mode, Term
basically acts like Shell mode (see Section 31.3.3 [Shell Mode], page 370). In char mode, each
character is sent directly to the subshell, except for the Term escape character, normally
C-c.

To switch between line and char mode, use these commands:

C-c C-j Switch to line mode (term-line-mode). Do nothing if already in line mode.

C-c C-k Switch to char mode (term-char-mode). Do nothing if already in char mode.

The following commands are only available in char mode:

C-c C-c Send a literal C-C to the sub-shell.

C-c char This is equivalent to C-x char in normal Emacs. For example, C-c o invokes
the global binding of C-x o, which is normally ‘other-window’.

Term mode has a page-at-a-time feature. When enabled, it makes output pause at the
end of each screenful:

C-c C-q Toggle the page-at-a-time feature. This command works in both line and char
modes. When the feature is enabled, the mode-line displays the word ‘page’,
and each time Term receives more than a screenful of output, it pauses and
displays ‘**MORE**’ in the mode-line. Type SPC to display the next screenful
of output, or ? to see your other options. The interface is similar to the more

program.

31.3.10 Remote Host Shell

You can login to a remote computer, using whatever commands you would from a regular
terminal (e.g. using the telnet or rlogin commands), from a Term window.

A program that asks you for a password will normally suppress echoing of the password,
so the password will not show up in the buffer. This will happen just as if you were using a
real terminal, if the buffer is in char mode. If it is in line mode, the password is temporarily
visible, but will be erased when you hit return. (This happens automatically; there is no
special password processing.)

When you log in to a different machine, you need to specify the type of terminal you’re
using, by setting the TERM environment variable in the environment for the remote login
command. (If you use bash, you do that by writing the variable assignment before the
remote login command, without a separating comma.) Terminal types ‘ansi’ or ‘vt100’
will work on most systems.

31.3.11 Serial Terminal

If you have a device connected to a serial port of your computer, you can communicate with
it by typing M-x serial-term. This command asks for a serial port name and speed, and
switches to a new Term mode buffer. Emacs communicates with the serial device through
this buffer just like it does with a terminal in ordinary Term mode.

The speed of the serial port is measured in bits per second. The most common speed is
9600 bits per second. You can change the speed interactively by clicking on the mode line.

Chapter 31: Miscellaneous Commands 378

A serial port can be configured even more by clicking on “8N1” in the mode line. By
default, a serial port is configured as “8N1”, which means that each byte consists of 8 data
bits, No parity check bit, and 1 stopbit.

If the speed or the configuration is wrong, you cannot communicate with your device
and will probably only see garbage output in the window.

31.4 Using Emacs as a Server

Various programs can invoke your choice of editor to edit a particular piece of text. For
instance, version control programs invoke an editor to enter version control logs (see
Section 25.1 [Version Control], page 269), and the Unix mail utility invokes an editor
to enter a message to send. By convention, your choice of editor is specified by the
environment variable EDITOR. If you set EDITOR to ‘emacs’, Emacs would be invoked,
but in an inconvenient way—by starting a new Emacs process. This is inconvenient
because the new Emacs process doesn’t share buffers, a command history, or other kinds
of information with any existing Emacs process.

You can solve this problem by setting up Emacs as an edit server, so that it “listens” for
external edit requests and acts accordingly. There are two ways to start an Emacs server:

• Run the command server-start in an existing Emacs process: either type M-x

server-start, or put the expression (server-start) in your init file (see Section 33.4
[Init File], page 423). The existing Emacs process is the server; when you exit Emacs,
the server dies with the Emacs process.

• Run Emacs as a daemon, using the ‘--daemon’ command-line option. See Section C.2
[Initial Options], page 464. When Emacs is started this way, it calls server-start

after initialization, and returns control to the calling terminal instead of opening an
initial frame; it then waits in the background, listening for edit requests.

Either way, once an Emacs server is started, you can use a shell command called
emacsclient to connect to the Emacs process and tell it to visit a file. You can then
set the EDITOR environment variable to ‘emacsclient’, so that external programs will use
the existing Emacs process for editing.4

You can run multiple Emacs servers on the same machine by giving each one a unique
“server name”, using the variable server-name. For example, M-x set-variable RET

server-name RET foo RET sets the server name to ‘foo’. The emacsclient program can
specify a server by name, using the ‘-s’ option (see Section 31.4.2 [emacsclient Options],
page 379).

If you have defined a server by a unique server name, it is possible to connect to the
server from another Emacs instance and evaluate Lisp expressions on the server, using the
server-eval-at function. For instance, (server-eval-at "foo" ’(+ 1 2)) evaluates the
expression (+ 1 2) on the ‘foo’ server, and returns 3. (If there is no server with that name,
an error is signaled.) Currently, this feature is mainly useful for developers.

31.4.1 Invoking emacsclient

The simplest way to use the emacsclient program is to run the shell command
‘emacsclient file ’, where file is a file name. This connects to an Emacs server, and tells

4 Some programs use a different environment variable; for example, to make TEX use ‘emacsclient’, set
the TEXEDIT environment variable to ‘emacsclient +%d %s’.

Chapter 31: Miscellaneous Commands 379

that Emacs process to visit file in one of its existing frames—either a graphical frame, or
one in a text terminal (see Chapter 18 [Frames], page 153). You can then select that frame
to begin editing.

If there is no Emacs server, the emacsclient program halts with an error message. If
the Emacs process has no existing frame—which can happen if it was started as a daemon
(see Section 31.4 [Emacs Server], page 378)—then Emacs opens a frame on the terminal in
which you called emacsclient.

You can also force emacsclient to open a new frame on a graphical display, or on a
text terminal, using the ‘-c’ and ‘-t’ options. See Section 31.4.2 [emacsclient Options],
page 379.

If you are running on a single text terminal, you can switch between emacsclient’s shell
and the Emacs server using one of two methods: (i) run the Emacs server and emacsclient

on different virtual terminals, and switch to the Emacs server’s virtual terminal after calling
emacsclient; or (ii) call emacsclient from within the Emacs server itself, using Shell mode
(see Section 31.3.2 [Interactive Shell], page 369) or Term mode (see Section 31.3.9 [Term
Mode], page 377); emacsclient blocks only the subshell under Emacs, and you can still
use Emacs to edit the file.

When you finish editing file in the Emacs server, type C-x # (server-edit) in its buffer.
This saves the file and sends a message back to the emacsclient program, telling it to exit.
Programs that use EDITOR usually wait for the “editor”—in this case emacsclient—to exit
before doing something else.

You can also call emacsclient with multiple file name arguments: ‘emacsclient file1

file2 ...’ tells the Emacs server to visit file1, file2, and so forth. Emacs selects the buffer
visiting file1, and buries the other buffers at the bottom of the buffer list (see Chapter 16
[Buffers], page 139). The emacsclient program exits once all the specified files are finished
(i.e., once you have typed C-x # in each server buffer).

Finishing with a server buffer also kills the buffer, unless it already existed in the Emacs
session before the server was asked to create it. However, if you set server-kill-new-

buffers to nil, then a different criterion is used: finishing with a server buffer kills it if
the file name matches the regular expression server-temp-file-regexp. This is set up to
distinguish certain “temporary” files.

Each C-x # checks for other pending external requests to edit various files, and selects
the next such file. You can switch to a server buffer manually if you wish; you don’t have
to arrive at it with C-x #. But C-x # is the way to tell emacsclient that you are finished.

If you set the value of the variable server-window to a window or a frame, C-x # always
displays the next server buffer in that window or in that frame.

31.4.2 emacsclient Options

You can pass some optional arguments to the emacsclient program, such as:

emacsclient -c +12 file1 +4:3 file2

The ‘+line ’ or ‘+line:column ’ arguments specify line numbers, or line and column num-
bers, for the next file argument. These behave like the command line arguments for Emacs
itself. See Section C.1 [Action Arguments], page 463.

The other optional arguments recognized by emacsclient are listed below:

Chapter 31: Miscellaneous Commands 380

‘-a command ’
‘--alternate-editor=command ’

Specify a command to run if emacsclient fails to contact Emacs. This is useful
when running emacsclient in a script.

As a special exception, if command is the empty string, then emacsclient

starts Emacs in daemon mode (as emacs --daemon) and then tries connecting
again.

The environment variable ALTERNATE_EDITOR has the same effect as the ‘-a’
option. If both are present, the latter takes precedence.

‘-c’ Create a new graphical client frame, instead of using an existing Emacs frame.
If you omit a filename argument while supplying the ‘-c’ option, the new frame
displays the ‘*scratch*’ buffer (see Chapter 16 [Buffers], page 139). See below
for the special behavior of C-x C-c in a client frame.

If Emacs is unable to create a new graphical frame (e.g. if it is unable to connect
to the X server), it tries to create a text terminal client frame, as though you
had supplied the ‘-t’ option instead (see below).

On MS-Windows, a single Emacs session cannot display frames on both graphi-
cal and text terminals, nor on multiple text terminals. Thus, if the Emacs server
is running on a text terminal, the ‘-c’ option, like the ‘-t’ option, creates a new
frame in the server’s current text terminal. See Section G.1 [Windows Startup],
page 490.

‘-F alist ’
‘--frame-parameters=alist ’

Set the parameters for a newly-created graphical frame (see Section 18.11
[Frame Parameters], page 162).

‘-d display ’
‘--display=display ’

Tell Emacs to open the given files on the X display display (assuming there is
more than one X display available).

‘-e’
‘--eval’ Tell Emacs to evaluate some Emacs Lisp code, instead of visiting some files.

When this option is given, the arguments to emacsclient are interpreted as a
list of expressions to evaluate, not as a list of files to visit.

‘-f server-file ’
‘--server-file=server-file ’

Specify a server file for connecting to an Emacs server via TCP.

An Emacs server usually uses an operating system feature called a “local socket”
to listen for connections. Some operating systems, such as Microsoft Windows,
do not support local sockets; in that case, Emacs uses TCP instead. When you
start the Emacs server, Emacs creates a server file containing some TCP in-
formation that emacsclient needs for making the connection. By default, the
server file is in ‘~/.emacs.d/server/’. On Microsoft Windows, if emacsclient
does not find the server file there, it looks in the ‘.emacs.d/server/’ subdirec-
tory of the directory pointed to by the APPDATA environment variable. You can

Chapter 31: Miscellaneous Commands 381

tell emacsclient to use a specific server file with the ‘-f’ or ‘--server-file’
option, or by setting the EMACS_SERVER_FILE environment variable.

Even if local sockets are available, you can tell Emacs to use TCP by setting
the variable server-use-tcp to t. One advantage of TCP is that the server
can accept connections from remote machines. For this to work, you must (i)
set the variable server-host to the hostname or IP address of the machine on
which the Emacs server runs, and (ii) provide emacsclient with the server file.
(One convenient way to do the latter is to put the server file on a networked
file system such as NFS.)

When the Emacs server is using TCP, the variable server-port determines
the port number to listen on; the default value, nil, means to choose a random
port when the server starts.

‘-n’
‘--no-wait’

Let emacsclient exit immediately, instead of waiting until all server buffers
are finished. You can take as long as you like to edit the server buffers within
Emacs, and they are not killed when you type C-x # in them.

‘--parent-id ID ’
Open an emacsclient frame as a client frame in the parent X window with
id ID, via the XEmbed protocol. Currently, this option is mainly useful for
developers.

‘-q’
‘--quiet’ Do not let emacsclient display messages about waiting for Emacs or connect-

ing to remote server sockets.

‘-s server-name ’
‘--socket-name=server-name ’

Connect to the Emacs server named server-name. The server name is given
by the variable server-name on the Emacs server. If this option is omitted,
emacsclient connects to the first server it finds. (This option is not supported
on MS-Windows.)

‘-t’
‘--tty’
‘-nw’ Create a new client frame on the current text terminal, instead of using an

existing Emacs frame. This is similar to the ‘-c’ option, above, except that
it creates a text terminal frame (see Section 18.19 [Non-Window Terminals],
page 166). If you omit a filename argument while supplying this option, the
new frame displays the ‘*scratch*’ buffer (see Chapter 16 [Buffers], page 139).
See below for the special behavior of C-x C-c in a client frame.

On MS-Windows, a single Emacs session cannot display frames on both graph-
ical and text terminals, nor on multiple text terminals. Thus, if the Emacs
server is using the graphical display, ‘-t’ behaves like ‘-c’ (see above); whereas
if the Emacs server is running on a text terminal, it creates a new frame in its
current text terminal. See Section G.1 [Windows Startup], page 490.

Chapter 31: Miscellaneous Commands 382

The new graphical or text terminal frames created by the ‘-c’ or ‘-t’ options are con-
sidered client frames. Any new frame that you create from a client frame is also considered
a client frame. If you type C-x C-c (save-buffers-kill-terminal) in a client frame, that
command does not kill the Emacs session as it normally does (see Section 3.2 [Exiting],
page 15). Instead, Emacs deletes the client frame; furthermore, if the client frame has an
emacsclient waiting to regain control (i.e. if you did not supply the ‘-n’ option), Emacs
deletes all other frames of the same client, and marks the client’s server buffers as finished,
as though you had typed C-x # in all of them. If it so happens that there are no remaining
frames after the client frame(s) are deleted, the Emacs session exits.

As an exception, when Emacs is started as a daemon, all frames are considered client
frames, and C-x C-c never kills Emacs. To kill a daemon session, type M-x kill-emacs.

Note that the ‘-t’ and ‘-n’ options are contradictory: ‘-t’ says to take control of the
current text terminal to create a new client frame, while ‘-n’ says not to take control of the
text terminal. If you supply both options, Emacs visits the specified files(s) in an existing
frame rather than a new client frame, negating the effect of ‘-t’.

31.5 Printing Hard Copies

Emacs provides commands for printing hardcopies of either an entire buffer or part of one.
You can invoke the printing commands directly, as detailed below, or using the ‘File’ menu
on the menu bar.

Aside from the commands described in this section, you can also print hardcopies from
Dired (see Section 27.7 [Operating on Files], page 307) and the diary (see Section 28.10.1
[Displaying the Diary], page 329). You can also “print” an Emacs buffer to HTML with
the command M-x htmlfontify-buffer, which converts the current buffer to a HTML
file, replacing Emacs faces with CSS-based markup. Furthermore, Org mode allows you
to “print” Org files to a variety of formats, such as PDF (see Section 22.9 [Org Mode],
page 212).

M-x print-buffer

Print hardcopy of current buffer with page headings containing the file name
and page number.

M-x lpr-buffer

Print hardcopy of current buffer without page headings.

M-x print-region

Like print-buffer but print only the current region.

M-x lpr-region

Like lpr-buffer but print only the current region.

On most operating system, the above hardcopy commands submit files for printing by
calling the lpr program. To change the printer program, customize the variable lpr-

command. To specify extra switches to give the printer program, customize the list variable
lpr-switches. Its value should be a list of option strings, each of which should start with
‘-’ (e.g. the option string "-w80" specifies a line width of 80 columns). The default is the
empty list, nil.

To specify the printer to use, set the variable printer-name. The default, nil, specifies
the default printer. If you set it to a printer name (a string), that name is passed to

Chapter 31: Miscellaneous Commands 383

lpr with the ‘-P’ switch; if you are not using lpr, you should specify the switch with
lpr-printer-switch.

The variable lpr-headers-switches similarly specifies the extra switches to use to
make page headers. The variable lpr-add-switches controls whether to supply ‘-T’ and
‘-J’ options (suitable for lpr) to the printer program: nil means don’t add them (this
should be the value if your printer program is not compatible with lpr).

31.5.1 PostScript Hardcopy

These commands convert buffer contents to PostScript, either printing it or leaving it in
another Emacs buffer.

M-x ps-print-buffer

Print hardcopy of the current buffer in PostScript form.

M-x ps-print-region

Print hardcopy of the current region in PostScript form.

M-x ps-print-buffer-with-faces

Print hardcopy of the current buffer in PostScript form, showing the faces used
in the text by means of PostScript features.

M-x ps-print-region-with-faces

Print hardcopy of the current region in PostScript form, showing the faces used
in the text.

M-x ps-spool-buffer

Generate and spool a PostScript image for the current buffer text.

M-x ps-spool-region

Generate and spool a PostScript image for the current region.

M-x ps-spool-buffer-with-faces

Generate and spool a PostScript image for the current buffer, showing the faces
used.

M-x ps-spool-region-with-faces

Generate and spool a PostScript image for the current region, showing the faces
used.

M-x ps-despool

Send the spooled PostScript to the printer.

M-x handwrite

Generate/print PostScript for the current buffer as if handwritten.

The ps-print-buffer and ps-print-region commands print buffer contents in Post-
Script form. One command prints the entire buffer; the other, just the region. The
commands ps-print-buffer-with-faces and ps-print-region-with-faces behave sim-
ilarly, but use PostScript features to show the faces (fonts and colors) of the buffer text.

Interactively, when you use a prefix argument (C-u), the command prompts the user for
a file name, and saves the PostScript image in that file instead of sending it to the printer.

The commands whose names have ‘spool’ instead of ‘print’, generate the PostScript
output in an Emacs buffer instead of sending it to the printer.

Chapter 31: Miscellaneous Commands 384

Use the command ps-despool to send the spooled images to the printer. This com-
mand sends the PostScript generated by ‘-spool-’ commands (see commands above) to
the printer. With a prefix argument (C-u), it prompts for a file name, and saves the
spooled PostScript image in that file instead of sending it to the printer.

M-x handwrite is more frivolous. It generates a PostScript rendition of the current
buffer as a cursive handwritten document. It can be customized in group handwrite. This
function only supports ISO 8859-1 characters.

31.5.2 Variables for PostScript Hardcopy

All the PostScript hardcopy commands use the variables ps-lpr-command and ps-lpr-

switches to specify how to print the output. ps-lpr-command specifies the command
name to run, ps-lpr-switches specifies command line options to use, and ps-printer-

name specifies the printer. If you don’t set the first two variables yourself, they take their
initial values from lpr-command and lpr-switches. If ps-printer-name is nil, printer-
name is used.

The variable ps-print-header controls whether these commands add header lines to
each page—set it to nil to turn headers off.

If your printer doesn’t support colors, you should turn off color processing by setting
ps-print-color-p to nil. By default, if the display supports colors, Emacs produces
hardcopy output with color information; on black-and-white printers, colors are emulated
with shades of gray. This might produce illegible output, even if your screen colors only use
shades of gray.

Alternatively, you can set ps-print-color-p to black-white to print colors on
black/white printers.

By default, PostScript printing ignores the background colors of the faces, unless the
variable ps-use-face-background is non-nil. This is to avoid unwanted interference with
the zebra stripes and background image/text.

The variable ps-paper-type specifies which size of paper to format for; legitimate val-
ues include a4, a3, a4small, b4, b5, executive, ledger, legal, letter, letter-small,
statement, tabloid. The default is letter. You can define additional paper sizes by
changing the variable ps-page-dimensions-database.

The variable ps-landscape-mode specifies the orientation of printing on the page. The
default is nil, which stands for “portrait” mode. Any non-nil value specifies “landscape”
mode.

The variable ps-number-of-columns specifies the number of columns; it takes effect in
both landscape and portrait mode. The default is 1.

The variable ps-font-family specifies which font family to use for printing ordinary
text. Legitimate values include Courier, Helvetica, NewCenturySchlbk, Palatino and
Times. The variable ps-font-size specifies the size of the font for ordinary text. It
defaults to 8.5 points.

Emacs supports more scripts and characters than a typical PostScript printer. Thus,
some of the characters in your buffer might not be printable using the fonts built into your
printer. You can augment the fonts supplied with the printer with those from the GNU
Intlfonts package, or you can instruct Emacs to use Intlfonts exclusively. The variable ps-

multibyte-buffer controls this: the default value, nil, is appropriate for printing ASCII

Chapter 31: Miscellaneous Commands 385

and Latin-1 characters; a value of non-latin-printer is for printers which have the fonts
for ASCII, Latin-1, Japanese, and Korean characters built into them. A value of bdf-font
arranges for the BDF fonts from the Intlfonts package to be used for all characters. Finally,
a value of bdf-font-except-latin instructs the printer to use built-in fonts for ASCII and
Latin-1 characters, and Intlfonts BDF fonts for the rest.

To be able to use the BDF fonts, Emacs needs to know where to find them. The variable
bdf-directory-list holds the list of directories where Emacs should look for the fonts;
the default value includes a single directory ‘/usr/local/share/emacs/fonts/bdf’.

Many other customization variables for these commands are defined and described in
the Lisp files ‘ps-print.el’ and ‘ps-mule.el’.

31.5.3 Printing Package

The basic Emacs facilities for printing hardcopy can be extended using the Printing package.
This provides an easy-to-use interface for choosing what to print, previewing PostScript files
before printing, and setting various printing options such as print headers, landscape or
portrait modes, duplex modes, and so forth. On GNU/Linux or Unix systems, the Printing
package relies on the ‘gs’ and ‘gv’ utilities, which are distributed as part of the GhostScript
program. On MS-Windows, the ‘gstools’ port of Ghostscript can be used.

To use the Printing package, add (require ’printing) to your init file (see Section 33.4
[Init File], page 423), followed by (pr-update-menus). This function replaces the usual
printing commands in the menu bar with a ‘Printing’ submenu that contains various
printing options. You can also type M-x pr-interface RET; this creates a ‘*Printing
Interface*’ buffer, similar to a customization buffer, where you can set the printing op-
tions. After selecting what and how to print, you start the print job using the ‘Print’
button (click mouse-2 on it, or move point over it and type RET). For further information
on the various options, use the ‘Interface Help’ button.

31.6 Sorting Text

Emacs provides several commands for sorting text in the buffer. All operate on the contents
of the region. They divide the text of the region into many sort records, identify a sort key
for each record, and then reorder the records into the order determined by the sort keys.
The records are ordered so that their keys are in alphabetical order, or, for numeric sorting,
in numeric order. In alphabetic sorting, all upper-case letters ‘A’ through ‘Z’ come before
lower-case ‘a’, in accord with the ASCII character sequence.

The various sort commands differ in how they divide the text into sort records and in
which part of each record is used as the sort key. Most of the commands make each line
a separate sort record, but some commands use paragraphs or pages as sort records. Most
of the sort commands use each entire sort record as its own sort key, but some use only a
portion of the record as the sort key.

M-x sort-lines

Divide the region into lines, and sort by comparing the entire text of a line. A
numeric argument means sort into descending order.

Chapter 31: Miscellaneous Commands 386

M-x sort-paragraphs

Divide the region into paragraphs, and sort by comparing the entire text of a
paragraph (except for leading blank lines). A numeric argument means sort
into descending order.

M-x sort-pages

Divide the region into pages, and sort by comparing the entire text of a page
(except for leading blank lines). A numeric argument means sort into descend-
ing order.

M-x sort-fields

Divide the region into lines, and sort by comparing the contents of one field
in each line. Fields are defined as separated by whitespace, so the first run of
consecutive non-whitespace characters in a line constitutes field 1, the second
such run constitutes field 2, etc.

Specify which field to sort by with a numeric argument: 1 to sort by field 1,
etc. A negative argument means count fields from the right instead of from the
left; thus, minus 1 means sort by the last field. If several lines have identical
contents in the field being sorted, they keep the same relative order that they
had in the original buffer.

M-x sort-numeric-fields

Like M-x sort-fields except the specified field is converted to an integer for
each line, and the numbers are compared. ‘10’ comes before ‘2’ when considered
as text, but after it when considered as a number. By default, numbers are
interpreted according to sort-numeric-base, but numbers beginning with ‘0x’
or ‘0’ are interpreted as hexadecimal and octal, respectively.

M-x sort-columns

Like M-x sort-fields except that the text within each line used for comparison
comes from a fixed range of columns. See below for an explanation.

M-x reverse-region

Reverse the order of the lines in the region. This is useful for sorting into
descending order by fields or columns, since those sort commands do not have
a feature for doing that.

For example, if the buffer contains this:

On systems where clash detection (locking of files being edited) is

implemented, Emacs also checks the first time you modify a buffer

whether the file has changed on disk since it was last visited or

saved. If it has, you are asked to confirm that you want to change

the buffer.

applying M-x sort-lines to the entire buffer produces this:

On systems where clash detection (locking of files being edited) is

implemented, Emacs also checks the first time you modify a buffer

saved. If it has, you are asked to confirm that you want to change

the buffer.

whether the file has changed on disk since it was last visited or

where the upper-case ‘O’ sorts before all lower-case letters. If you use C-u 2 M-x

sort-fields instead, you get this:

Chapter 31: Miscellaneous Commands 387

implemented, Emacs also checks the first time you modify a buffer

saved. If it has, you are asked to confirm that you want to change

the buffer.

On systems where clash detection (locking of files being edited) is

whether the file has changed on disk since it was last visited or

where the sort keys were ‘Emacs’, ‘If’, ‘buffer’, ‘systems’ and ‘the’.

M-x sort-columns requires more explanation. You specify the columns by putting point
at one of the columns and the mark at the other column. Because this means you cannot
put point or the mark at the beginning of the first line of the text you want to sort, this
command uses an unusual definition of “region”: all of the line point is in is considered part
of the region, and so is all of the line the mark is in, as well as all the lines in between.

For example, to sort a table by information found in columns 10 to 15, you could put
the mark on column 10 in the first line of the table, and point on column 15 in the last line
of the table, and then run sort-columns. Equivalently, you could run it with the mark on
column 15 in the first line and point on column 10 in the last line.

This can be thought of as sorting the rectangle specified by point and the mark, except
that the text on each line to the left or right of the rectangle moves along with the text
inside the rectangle. See Section 9.5 [Rectangles], page 58.

Many of the sort commands ignore case differences when comparing, if sort-fold-case
is non-nil.

31.7 Editing Binary Files

There is a special major mode for editing binary files: Hexl mode. To use it, use M-x

hexl-find-file instead of C-x C-f to visit the file. This command converts the file’s
contents to hexadecimal and lets you edit the translation. When you save the file, it is
converted automatically back to binary.

You can also use M-x hexl-mode to translate an existing buffer into hex. This is useful
if you visit a file normally and then discover it is a binary file.

Ordinary text characters overwrite in Hexl mode. This is to reduce the risk of acciden-
tally spoiling the alignment of data in the file. There are special commands for insertion.
Here is a list of the commands of Hexl mode:

C-M-d Insert a byte with a code typed in decimal.

C-M-o Insert a byte with a code typed in octal.

C-M-x Insert a byte with a code typed in hex.

C-x [Move to the beginning of a 1k-byte “page”.

C-x] Move to the end of a 1k-byte “page”.

M-g Move to an address specified in hex.

M-j Move to an address specified in decimal.

C-c C-c Leave Hexl mode, going back to the major mode this buffer had before you
invoked hexl-mode.

Other Hexl commands let you insert strings (sequences) of binary bytes, move by shorts
or ints, etc.; type C-h a hexl-RET for details.

Chapter 31: Miscellaneous Commands 388

31.8 Saving Emacs Sessions

Use the desktop library to save the state of Emacs from one session to another. Once you
save the Emacs desktop—the buffers, their file names, major modes, buffer positions, and
so on—then subsequent Emacs sessions reload the saved desktop.

You can save the desktop manually with the command M-x desktop-save. You can also
enable automatic saving of the desktop when you exit Emacs, and automatic restoration of
the last saved desktop when Emacs starts: use the Customization buffer (see Section 33.1
[Easy Customization], page 398) to set desktop-save-mode to t for future sessions, or add
this line in your init file (see Section 33.4 [Init File], page 423):

(desktop-save-mode 1)

If you turn on desktop-save-mode in your init file, then when Emacs starts, it looks
for a saved desktop in the current directory. (More precisely, it looks in the directories
specified by desktop-path, and uses the first desktop it finds.) Thus, you can have separate
saved desktops in different directories, and the starting directory determines which one
Emacs reloads. You can save the current desktop and reload one saved in another directory
by typing M-x desktop-change-dir. Typing M-x desktop-revert reverts to the desktop
previously reloaded.

Specify the option ‘--no-desktop’ on the command line when you don’t want it to reload
any saved desktop. This turns off desktop-save-mode for the current session. Starting
Emacs with the ‘--no-init-file’ option also disables desktop reloading, since it bypasses
the init file, where desktop-save-mode is usually turned on.

By default, all the buffers in the desktop are restored at one go. However, this may be
slow if there are a lot of buffers in the desktop. You can specify the maximum number of
buffers to restore immediately with the variable desktop-restore-eager; the remaining
buffers are restored “lazily”, when Emacs is idle.

Type M-x desktop-clear to empty the Emacs desktop. This kills all buffers except for
internal ones, and clears the global variables listed in desktop-globals-to-clear. If you
want this to preserve certain buffers, customize the variable desktop-clear-preserve-

buffers-regexp, whose value is a regular expression matching the names of buffers not to
kill.

If you want to save minibuffer history from one session to another, use the savehist

library.

31.9 Recursive Editing Levels

A recursive edit is a situation in which you are using Emacs commands to perform arbitrary
editing while in the middle of another Emacs command. For example, when you type C-r

inside of a query-replace, you enter a recursive edit in which you can change the current
buffer. On exiting from the recursive edit, you go back to the query-replace.

Exiting the recursive edit means returning to the unfinished command, which continues
execution. The command to exit is C-M-c (exit-recursive-edit).

You can also abort the recursive edit. This is like exiting, but also quits the unfinished
command immediately. Use the command C-] (abort-recursive-edit) to do this. See
Section 34.1 [Quitting], page 429.

Chapter 31: Miscellaneous Commands 389

The mode line shows you when you are in a recursive edit by displaying square brackets
around the parentheses that always surround the major and minor mode names. Every
window’s mode line shows this in the same way, since being in a recursive edit is true of
Emacs as a whole rather than any particular window or buffer.

It is possible to be in recursive edits within recursive edits. For example, after typing
C-r in a query-replace, you may type a command that enters the debugger. This begins
a recursive editing level for the debugger, within the recursive editing level for C-r. Mode
lines display a pair of square brackets for each recursive editing level currently in progress.

Exiting the inner recursive edit (such as with the debugger c command) resumes the
command running in the next level up. When that command finishes, you can then use
C-M-c to exit another recursive editing level, and so on. Exiting applies to the innermost
level only. Aborting also gets out of only one level of recursive edit; it returns immediately
to the command level of the previous recursive edit. If you wish, you can then abort the
next recursive editing level.

Alternatively, the command M-x top-level aborts all levels of recursive edits, returning
immediately to the top-level command reader. It also exits the minibuffer, if it is active.

The text being edited inside the recursive edit need not be the same text that you were
editing at top level. It depends on what the recursive edit is for. If the command that
invokes the recursive edit selects a different buffer first, that is the buffer you will edit
recursively. In any case, you can switch buffers within the recursive edit in the normal
manner (as long as the buffer-switching keys have not been rebound). You could probably
do all the rest of your editing inside the recursive edit, visiting files and all. But this could
have surprising effects (such as stack overflow) from time to time. So remember to exit or
abort the recursive edit when you no longer need it.

In general, we try to minimize the use of recursive editing levels in GNU Emacs. This
is because they constrain you to “go back” in a particular order—from the innermost level
toward the top level. When possible, we present different activities in separate buffers so
that you can switch between them as you please. Some commands switch to a new major
mode which provides a command to switch back. These approaches give you more flexibility
to go back to unfinished tasks in the order you choose.

31.10 Emulation

GNU Emacs can be programmed to emulate (more or less) most other editors. Standard
facilities can emulate these:

CRiSP/Brief (PC editor)
You can turn on key bindings to emulate the CRiSP/Brief editor with M-x

crisp-mode. Note that this rebinds M-x to exit Emacs unless you set the
variable crisp-override-meta-x. You can also use the command M-x

scroll-all-mode or set the variable crisp-load-scroll-all to emulate
CRiSP’s scroll-all feature (scrolling all windows together).

EDT (DEC VMS editor)
Turn on EDT emulation M-x edt-emulation-on; use M-x edt-emulation-off

to restore normal Emacs command bindings.

Most of the EDT emulation commands are keypad keys, and most standard
Emacs key bindings are still available. The EDT emulation rebindings are done

Chapter 31: Miscellaneous Commands 390

in the global keymap, so there is no problem switching buffers or major modes
while in EDT emulation.

TPU (DEC VMS editor)
M-x tpu-edt-on turns on emulation of the TPU editor emulating EDT.

vi (Berkeley editor)
Viper is the newest emulator for vi. It implements several levels of emulation;
level 1 is closest to vi itself, while level 5 departs somewhat from strict emulation
to take advantage of the capabilities of Emacs. To invoke Viper, type M-x

viper-mode; it will guide you the rest of the way and ask for the emulation
level. See Info file ‘viper’, node ‘Top’.

vi (another emulator)
M-x vi-mode enters a major mode that replaces the previously established ma-
jor mode. All of the vi commands that, in real vi, enter “input” mode are
programmed instead to return to the previous major mode. Thus, ordinary
Emacs serves as vi’s “input” mode.

Because vi emulation works through major modes, it does not work to switch
buffers during emulation. Return to normal Emacs first.

If you plan to use vi emulation much, you probably want to bind a key to the
vi-mode command.

vi (alternate emulator)
M-x vip-mode invokes another vi emulator, said to resemble real vi more thor-
oughly than M-x vi-mode. “Input” mode in this emulator is changed from
ordinary Emacs so you can use ESC to go back to emulated vi command mode.
To get from emulated vi command mode back to ordinary Emacs, type C-z.

This emulation does not work through major modes, and it is possible to switch
buffers in various ways within the emulator. It is not so necessary to assign a
key to the command vip-mode as it is with vi-mode because terminating insert
mode does not use it.

See Info file ‘vip’, node ‘Top’, for full information.

WordStar (old wordprocessor)
M-x wordstar-mode provides a major mode with WordStar-like key bindings.

31.11 Hyperlinking and Navigation Features

The following subsections describe convenience features for handling URLs and other types
of links occurring in Emacs buffer text.

31.11.1 Following URLs

M-x browse-url RET url RET

Load a URL into a Web browser.

The Browse-URL package allows you to easily follow URLs from within Emacs. Most
URLs are followed by invoking a web browser; ‘mailto:’ URLs are followed by invoking
the compose-mail Emacs command to send mail to the specified address (see Chapter 29
[Sending Mail], page 337).

Chapter 31: Miscellaneous Commands 391

The command M-x browse-url prompts for a URL, and follows it. If point is located
near a plausible URL, that URL is offered as the default. The Browse-URL package also
provides other commands which you might like to bind to keys, such as browse-url-at-

point and browse-url-at-mouse.

You can customize Browse-URL’s behavior via various options in the browse-url Cus-
tomize group. In particular, the option browse-url-mailto-function lets you define how
to follow ‘mailto:’ URLs, while browse-url-browser-function lets you define how to
follow other types of URLs. For more information, view the package commentary by typing
C-h P browse-url RET.

31.11.2 Activating URLs

M-x goto-address-mode

Activate URLs and e-mail addresses in the current buffer.

You can make Emacs mark out URLs specially in the current buffer, by typing M-x

goto-address-mode. When this buffer-local minor mode is enabled, it finds all the URLs in
the buffer, highlights them, and turns them into clickable buttons. You can follow the URL
by typing C-c RET (goto-address-at-point) while point is on its text; or by clicking with
Mouse-2, or by clicking Mouse-1 quickly (see Section 18.3 [Mouse References], page 155).
Following a URL is done by calling browse-url as a subroutine (see Section 31.11.1 [Browse-
URL], page 390).

It can be useful to add goto-address-mode to mode hooks and hooks for displaying an
incoming message (e.g. rmail-show-message-hook for Rmail, and mh-show-mode-hook for
MH-E). This is not needed for Gnus, which has a similar feature of its own.

31.11.3 Finding Files and URLs at Point

The FFAP package replaces certain key bindings for finding files, such as C-x C-f, with
commands that provide more sensitive defaults. These commands behave like the ordinary
ones when given a prefix argument. Otherwise, they get the default file name or URL from
the text around point. If what is found in the buffer has the form of a URL rather than
a file name, the commands use browse-url to view it (see Section 31.11.1 [Browse-URL],
page 390).

This feature is useful for following references in mail or news buffers, ‘README’ files,
‘MANIFEST’ files, and so on. For more information, view the package commentary by typing
C-h P ffap RET.

To enable FFAP, type M-x ffap-bindings. This makes the following key bindings, and
also installs hooks for additional FFAP functionality in Rmail, Gnus and VM article buffers.

C-x C-f filename RET

Find filename, guessing a default from text around point (find-file-at-
point).

C-x C-r ffap-read-only, analogous to find-file-read-only.

C-x C-v ffap-alternate-file, analogous to find-alternate-file.

C-x d directory RET

Start Dired on directory, defaulting to the directory name at point (dired-at-
point).

Chapter 31: Miscellaneous Commands 392

C-x C-d ffap-list-directory, analogous to list-directory.

C-x 4 f ffap-other-window, analogous to find-file-other-window.

C-x 4 r ffap-read-only-other-window, analogous to find-file-read-only-other-

window.

C-x 4 d ffap-dired-other-window, analogous to dired-other-window.

C-x 5 f ffap-other-frame, analogous to find-file-other-frame.

C-x 5 r ffap-read-only-other-frame, analogous to find-file-read-only-other-

frame.

C-x 5 d ffap-dired-other-frame, analogous to dired-other-frame.

M-x ffap-next

Search buffer for next file name or URL, then find that file or URL.

S-Mouse-3

ffap-at-mouse finds the file guessed from text around the position of a mouse
click.

C-S-Mouse-3

Display a menu of files and URLs mentioned in current buffer, then find the
one you select (ffap-menu).

31.12 Other Amusements

The animate package makes text dance (e.g. try M-x animate-birthday-present).

M-x blackbox, M-x mpuz and M-x 5x5 are puzzles. blackbox challenges you to determine
the location of objects inside a box by tomography. mpuz displays a multiplication puzzle
with letters standing for digits in a code that you must guess—to guess a value, type a
letter and then the digit you think it stands for. The aim of 5x5 is to fill in all the squares.

M-x bubbles is a game in which the object is to remove as many bubbles as you can in
the smallest number of moves.

M-x decipher helps you to cryptanalyze a buffer which is encrypted in a simple monoal-
phabetic substitution cipher.

M-x dissociated-press scrambles the text in the current Emacs buffer, word by word
or character by character, writing its output to a buffer named ‘*Dissociation*’. A
positive argument tells it to operate character by character, and specifies the number of
overlap characters. A negative argument tells it to operate word by word, and specifies the
number of overlap words. Dissociated Press produces results fairly like those of a Markov
chain, but is however, an independent, ignoriginal invention; it techniquitously copies several
consecutive characters from the sample text between random jumps, unlike a Markov chain
which would jump randomly after each word or character. Keep dissociwords out of your
documentation, if you want it to be well userenced and properbose.

M-x dunnet runs an text-based adventure game.

If you want a little more personal involvement, try M-x gomoku, which plays the game
Go Moku with you.

Chapter 31: Miscellaneous Commands 393

If you are a little bit bored, you can try M-x hanoi. If you are considerably bored, give
it a numeric argument. If you are very, very bored, try an argument of 9. Sit back and
watch.

M-x life runs Conway’s “Life” cellular automaton.

M-x landmark runs a relatively non-participatory game in which a robot attempts to
maneuver towards a tree at the center of the window based on unique olfactory cues from
each of the four directions.

M-x morse-region converts the text in the region to Morse code; M-x unmorse-region

converts it back. M-x nato-region converts the text in the region to NATO phonetic
alphabet; M-x denato-region converts it back.

M-x pong, M-x snake and M-x tetris are implementations of the well-known Pong,
Snake and Tetris games.

M-x solitaire plays a game of solitaire in which you jump pegs across other pegs.

The command M-x zone plays games with the display when Emacs is idle.

Finally, if you find yourself frustrated, try describing your problems to the famous psy-
chotherapist Eliza. Just do M-x doctor. End each input by typing RET twice.

Chapter 32: Emacs Lisp Packages 394

32 Emacs Lisp Packages

Emacs includes a facility that lets you easily download and install packages that implement
additional features. Each package is a separate Emacs Lisp program, sometimes including
other components such as an Info manual.

M-x list-packages brings up a buffer named ‘*Packages*’ with a list of all packages.
You can install or uninstall packages via this buffer. See Section 32.1 [Package Menu],
page 394.

The command C-h P (describe-package) prompts for the name of a package, and dis-
plays a help buffer describing the attributes of the package and the features that it imple-
ments.

By default, Emacs downloads packages from a package archive maintained by the Emacs
developers and hosted by the GNU project. Optionally, you can also download packages
from archives maintained by third parties. See Section 32.2 [Package Installation], page 395.

For information about turning an Emacs Lisp program into an installable package, See
Section “Packaging” in The Emacs Lisp Reference Manual. For information about finding
third-party packages and other Emacs Lisp extensions, See Section “Packages that do not
come with Emacs” in GNU Emacs FAQ.

32.1 The Package Menu Buffer

The command M-x list-packages brings up the package menu. This is a buffer listing all
the packages that Emacs knows about, one on each line, with the following information:

• The package name (e.g. ‘auctex’).

• The package’s version number (e.g. ‘11.86’).

• The package’s status—normally one of ‘available’ (can be downloaded from the pack-
age archive), ‘installed’, or ‘built-in’ (included in Emacs by default).

In some instances, the status can be ‘held’, ‘disabled’, or ‘obsolete’. See Section 32.2
[Package Installation], page 395.

• A short description of the package.

The list-packages command accesses the network, to retrieve the list of available packages
from the package archive server. If the network is unavailable, it falls back on the most
recently retrieved list.

The following commands are available in the package menu:

h Print a short message summarizing how to use the package menu (package-
menu-quick-help).

?

RET Display a help buffer for the package on the current line (package-menu-
describe-package), similar to the help window displayed by the C-h P com-
mand (see Chapter 32 [Packages], page 394).

i Mark the package on the current line for installation (package-menu-mark-
install). If the package status is ‘available’, this adds an ‘I’ character to
the start of the line; typing x (see below) will download and install the package.

Chapter 32: Emacs Lisp Packages 395

d Mark the package on the current line for deletion (package-menu-mark-
delete). If the package status is ‘installed’, this adds a ‘D’ character to the
start of the line; typing x (see below) will delete the package. See Section 32.3
[Package Files], page 396, for information about what package deletion entails.

u Remove any installation or deletion mark previously added to the current line
by an i or d command.

U Mark all package with a newer available version for “upgrading” (package-
menu-mark-upgrades). This places an installation mark on the new available
versions, and a deletion mark on the old installed versions.

x Download and install all packages marked with i, and their dependencies; also,
delete all packages marked with d (package-menu-execute). This also removes
the marks.

r Refresh the package list (package-menu-refresh). This fetches the list of
available packages from the package archive again, and recomputes the package
list.

For example, you can install a package by typing i on the line listing that package, followed
by x.

32.2 Package Installation

Packages are most conveniently installed using the package menu (see Section 32.1 [Package
Menu], page 394), but you can also use the command M-x package-install. This prompts
for the name of a package with the ‘available’ status, then downloads and installs it.

A package may require certain other packages to be installed, because it relies on func-
tionality provided by them. When Emacs installs such a package, it also automatically
downloads and installs any required package that is not already installed. (If a required
package is somehow unavailable, Emacs signals an error and stops installation.) A package’s
requirements list is shown in its help buffer.

By default, packages are downloaded from a single package archive maintained by the
Emacs developers. This is controlled by the variable package-archives, whose value is
a list of package archives known to Emacs. Each list element must have the form (id .

location), where id is the name of a package archive and location is the HTTP address or
directory name of the package archive. You can alter this list if you wish to use third party
package archives—but do so at your own risk, and use only third parties that you think you
can trust!

Once a package is downloaded and installed, it is loaded into the current Emacs session.
Loading a package is not quite the same as loading a Lisp library (see Section 24.8 [Lisp
Libraries], page 265); its effect varies from package to package. Most packages just make
some new commands available, while others have more wide-ranging effects on the Emacs
session. For such information, consult the package’s help buffer.

By default, Emacs also automatically loads all installed packages in subsequent Emacs
sessions. This happens at startup, after processing the init file (see Section 33.4 [Init File],
page 423). As an exception, Emacs does not load packages at startup if invoked with the
‘-q’ or ‘--no-init-file’ options (see Section C.2 [Initial Options], page 464).

Chapter 32: Emacs Lisp Packages 396

To disable automatic package loading, change the variable package-enable-at-startup
to nil.

The reason automatic package loading occurs after loading the init file is that user
options only receive their customized values after loading the init file, including user options
which affect the packaging system. In some circumstances, you may want to load packages
explicitly in your init file (usually because some other code in your init file depends on
a package). In that case, your init file should call the function package-initialize.
It is up to you to ensure that relevant user options, such as package-load-list (see
below), are set up prior to the package-initialize call. You should also set package-

enable-at-startup to nil, to avoid loading the packages again after processing the init
file. Alternatively, you may choose to completely inhibit package loading at startup, and
invoke the command M-x package-initialize to load your packages manually.

For finer control over package loading, you can use the variable package-load-list.
Its value should be a list. A list element of the form (name version) tells Emacs to
load version version of the package named name. Here, version should be a version string
(corresponding to a specific version of the package), or t (which means to load any installed
version), or nil (which means no version; this “disables” the package, preventing it from
being loaded). A list element can also be the symbol all, which means to load the latest
installed version of any package not named by the other list elements. The default value is
just ’(all).

For example, if you set package-load-list to ’((muse "3.20") all), then Emacs only
loads version 3.20 of the ‘muse’ package, plus any installed version of packages other than
‘muse’. Any other version of ‘muse’ that happens to be installed will be ignored. The ‘muse’
package will be listed in the package menu with the ‘held’ status.

32.3 Package Files and Directory Layout

Each package is downloaded from the package archive in the form of a single package
file—either an Emacs Lisp source file, or a tar file containing multiple Emacs Lisp source
and other files. Package files are automatically retrieved, processed, and disposed of by
the Emacs commands that install packages. Normally, you will not need to deal directly
with them, unless you are making a package (see Section “Packaging” in The Emacs Lisp
Reference Manual). Should you ever need to install a package directly from a package file,
use the command M-x package-install-file.

Once installed, the contents of a package are placed in a subdirectory of
‘~/.emacs.d/elpa/’ (you can change the name of that directory by changing the variable
package-user-dir). The package subdirectory is named ‘name-version ’, where name is
the package name and version is its version string.

In addition to package-user-dir, Emacs looks for installed packages in the directories
listed in package-directory-list. These directories are meant for system administrators
to make Emacs packages available system-wide; Emacs itself never installs packages there.
The package subdirectories for package-directory-list are laid out in the same way as
in package-user-dir.

Deleting a package (see Section 32.1 [Package Menu], page 394) involves deleting the
corresponding package subdirectory. This only works for packages installed in package-

Chapter 32: Emacs Lisp Packages 397

user-dir; if told to act on a package in a system-wide package directory, the deletion
command signals an error.

Chapter 33: Customization 398

33 Customization

This chapter describes some simple methods to customize the behavior of Emacs.

Apart from the methods described here, see Appendix D [X Resources], page 478 for
information about using X resources to customize Emacs, and see Chapter 14 [Keyboard
Macros], page 107 for information about recording and replaying keyboard macros. Making
more far-reaching and open-ended changes involves writing Emacs Lisp code; see The Emacs
Lisp Reference Manual.

33.1 Easy Customization Interface

Emacs has many settings which you can change. Most settings are customizable variables
(see Section 33.2 [Variables], page 406), which are also called user options. There is a huge
number of customizable variables, controlling numerous aspects of Emacs behavior; the
variables documented in this manual are listed in [Variable Index], page 553. A separate
class of settings are the faces, which determine the fonts, colors, and other attributes of text
(see Section 11.8 [Faces], page 70).

To browse and alter settings (both variables and faces), type M-x customize. This
creates a customization buffer, which lets you navigate through a logically organized list of
settings, edit and set their values, and save them permanently.

33.1.1 Customization Groups

Customization settings are organized into customization groups. These groups are collected
into bigger groups, all the way up to a master group called Emacs.

M-x customize creates a customization buffer that shows the top-level Emacs group. It
looks like this, in part:

To apply changes, use the Save or Set buttons.

For details, see [Saving Customizations] in the [Emacs manual].

__ [Search]

Operate on all settings in this buffer:

[Set for current session] [Save for future sessions]

[Undo edits] [Reset to saved] [Erase customizations] [Exit]

Emacs group: Customization of the One True Editor.

[State]: visible group members are all at standard values.

See also [Manual].

[Editing] : Basic text editing facilities.

[Convenience] : Convenience features for faster editing.

more second-level groups

The main part of this buffer shows the ‘Emacs’ customization group, which contains several
other groups (‘Editing’, ‘Convenience’, etc.). The contents of those groups are not listed
here, only one line of documentation each.

The state of the group indicates whether setting in that group has been edited, set or
saved. See Section 33.1.3 [Changing a Variable], page 399.

Chapter 33: Customization 399

Most of the customization buffer is read-only, but it includes some editable fields that
you can edit. For example, at the top of the customization buffer is an editable field for
searching for settings (see Section 33.1.2 [Browsing Custom], page 399). There are also
buttons and links, which you can activate by either clicking with the mouse, or moving
point there and typing RET. For example, the group names like ‘[Editing]’ are links;
activating one of these links brings up the customization buffer for that group.

In the customizable buffer, you can type TAB (widget-forward) to move forward to
the next button or editable field. S-TAB (widget-backward) moves back to the previous
button or editable field.

33.1.2 Browsing and Searching for Settings

From the top-level customization buffer created by M-x customize, you can follow the
links to the subgroups of the ‘Emacs’ customization group. These subgroups may contain
settings for you to customize; they may also contain further subgroups, dealing with yet
more specialized subsystems of Emacs. As you navigate the hierarchy of customization
groups, you should find some settings that you want to customize.

If you are interested in customizing a particular setting or customization group, you can
go straight there with the commands M-x customize-option, M-x customize-face, or M-x
customize-group. See Section 33.1.6 [Specific Customization], page 403.

If you don’t know exactly what groups or settings you want to customize, you can search
for them using the editable search field at the top of each customization buffer. Here, you
can type in a search term—either one or more words separated by spaces, or a regular
expression (see Section 12.5 [Regexps], page 91). Then type RET in the field, or activate
the ‘Search’ button next to it, to switch to a customization buffer containing groups and
settings that match those terms. Note, however, that this feature only finds groups and
settings that are loaded in the current Emacs session.

If you don’t want customization buffers to show the search field, change the variable
custom-search-field to nil.

The command M-x customize-apropos is similar to using the search field, except that it
reads the search term(s) using the minibuffer. See Section 33.1.6 [Specific Customization],
page 403.

M-x customize-browse is another way to browse the available settings. This command
creates a special customization buffer which shows only the names of groups and settings, in
a structured layout. You can show the contents of a group, in the same buffer, by invoking
the ‘[+]’ button next to the group name. When the group contents are shown, the button
changes to ‘[-]’; invoking that hides the group contents again. Each group or setting in this
buffer has a link which says ‘[Group]’, ‘[Option]’ or ‘[Face]’. Invoking this link creates
an ordinary customization buffer showing just that group, option, or face; this is the way
to change settings that you find with M-x customize-browse.

33.1.3 Changing a Variable

Here is an example of what a variable, or user option, looks like in the customization buffer:

[Hide] Kill Ring Max: 60

[State]: STANDARD.

Maximum length of kill ring before oldest elements are thrown away.

Chapter 33: Customization 400

The first line shows that the variable is named kill-ring-max, formatted as ‘Kill Ring

Max’ for easier viewing. Its value is ‘60’. The button labeled ‘[Hide]’, if activated, hides
the variable’s value and state; this is useful to avoid cluttering up the customization buffer
with very long values (for this reason, variables that have very long values may start out
hidden). If you use the ‘[Hide]’ button, it changes to ‘[Show Value]’, which you can
activate to reveal the value and state. On a graphical display, the ‘[Hide]’ and ‘[Show
Value]’ buttons are replaced with graphical triangles pointing downwards and rightwards
respectively.

The line after the variable name indicates the customization state of the variable: in this
example, ‘STANDARD’ means you have not changed the variable, so its value is the default
one. The ‘[State]’ button gives a menu of operations for customizing the variable.

Below the customization state is the documentation for the variable. This is the same
documentation that would be shown by the C-h v command (see Section 33.2.1 [Examining],
page 407). If the documentation is more than one line long, only one line may be shown.
If so, that line ends with a ‘[More]’ button; activate this to see the full documentation.

To enter a new value for ‘Kill Ring Max’, just move point to the value and edit it. For
example, type M-d to delete the ‘60’ and type in another number. As you begin to alter the
text, the ‘[State]’ line will change:

[State]: EDITED, shown value does not take effect until you

set or save it.

Editing the value does not make it take effect right away. To do that, you must set the
variable by activating the ‘[State]’ button and choosing ‘Set for Current Session’. Then
the variable’s state becomes:

[State]: SET for current session only.

You don’t have to worry about specifying a value that is not valid; the ‘Set for Current

Session’ operation checks for validity and will not install an unacceptable value.

While editing certain kinds of values, such as file names, directory names, and Emacs
command names, you can perform completion with C-M-i (widget-complete), or the equiv-
alent keys M-TAB or ESC TAB. This behaves much like minibuffer completion (see Section 5.3
[Completion], page 28).

Typing RET on an editable value field moves point forward to the next field or button,
like TAB. You can thus type RET when you are finished editing a field, to move on to the
next button or field. To insert a newline within an editable field, use C-o or C-q C-j.

For some variables, there is only a fixed set of legitimate values, and you are not allowed
to edit the value directly. Instead, a ‘[Value Menu]’ button appears before the value;
activating this button presents a choice of values. For a boolean “on or off” value, the
button says ‘[Toggle]’, and flips the value. After using the ‘[Value Menu]’ or ‘[Toggle]’
button, you must again set the variable to make the chosen value take effect.

Some variables have values with complex structure. For example, the value
of minibuffer-frame-alist is an association list. Here is how it appears in the
customization buffer:

[Hide] Minibuffer Frame Alist:

[INS] [DEL] Parameter: width

Value: 80

[INS] [DEL] Parameter: height

Value: 2

Chapter 33: Customization 401

[INS]

[State]: STANDARD.

Alist of parameters for the initial minibuffer frame. [Hide]

[. . .more lines of documentation. . .]

In this case, each association in the list consists of two items, one labeled ‘Parameter’ and
one labeled ‘Value’; both are editable fields. You can delete an association from the list
with the ‘[DEL]’ button next to it. To add an association, use the ‘[INS]’ button at the
position where you want to insert it; the very last ‘[INS]’ button inserts at the end of the
list.

When you set a variable, the new value takes effect only in the current Emacs session.
To save the value for future sessions, use the ‘[State]’ button and select the ‘Save for

Future Sessions’ operation. See Section 33.1.4 [Saving Customizations], page 402.

You can also restore the variable to its standard value by using the ‘[State]’ button and
selecting the ‘Erase Customization’ operation. There are actually four reset operations:

‘Undo Edits’
If you have modified but not yet set the variable, this restores the text in the
customization buffer to match the actual value.

‘Reset to Saved’
This restores the value of the variable to the last saved value, and updates the
text accordingly.

‘Erase Customization’
This sets the variable to its standard value. Any saved value that you have is
also eliminated.

‘Set to Backup Value’
This sets the variable to a previous value that was set in the customization
buffer in this session. If you customize a variable and then reset it, which
discards the customized value, you can get the discarded value back again with
this operation.

Sometimes it is useful to record a comment about a specific customization. Use the ‘Add
Comment’ item from the ‘[State]’ menu to create a field for entering the comment.

Near the top of the customization buffer are two lines of buttons:

[Set for Current Session] [Save for Future Sessions]

[Undo Edits] [Reset to Saved] [Erase Customization] [Exit]

Each of the first five buttons performs the stated operation—set, save, reset, etc.—on all the
settings in the buffer that could meaningfully be affected. They do not operate on settings
that are hidden, nor on subgroups that are hidden or not visible in the buffer.

The command C-c C-c (Custom-set) is equivalent using to the ‘[Set for Current

Session]’ button. The command C-x C-s (Custom-save) is like using the ‘[Save for

Future Sessions]’ button.

The ‘[Exit]’ button switches out of the customization buffer, and buries the buffer at
the bottom of the buffer list. To make it kill the customization buffer instead, change the
variable custom-buffer-done-kill to t.

Chapter 33: Customization 402

33.1.4 Saving Customizations

In the customization buffer, you can save a customization setting by choosing the ‘Save for

Future Sessions’ choice from its ‘[State]’ button. The C-x C-s (Custom-save) command,
or the ‘[Save for Future Sessions]’ button at the top of the customization buffer, saves
all applicable settings in the buffer.

Saving works by writing code to a file, usually your initialization file (see Section 33.4
[Init File], page 423). Future Emacs sessions automatically read this file at startup, which
sets up the customizations again.

You can choose to save customizations somewhere other than your initialization file. To
make this work, you must add a couple of lines of code to your initialization file, to set the
variable custom-file to the name of the desired file, and to load that file. For example:

(setq custom-file "~/.emacs-custom.el")

(load custom-file)

You can even specify different customization files for different Emacs versions, like this:

(cond ((< emacs-major-version 22)

;; Emacs 21 customization.
(setq custom-file "~/.custom-21.el"))

((and (= emacs-major-version 22)

(< emacs-minor-version 3))

;; Emacs 22 customization, before version 22.3.
(setq custom-file "~/.custom-22.el"))

(t

;; Emacs version 22.3 or later.
(setq custom-file "~/.emacs-custom.el")))

(load custom-file)

If Emacs was invoked with the ‘-q’ or ‘--no-init-file’ options (see Section C.2 [Initial
Options], page 464), it will not let you save your customizations in your initialization file.
This is because saving customizations from such a session would wipe out all the other
customizations you might have on your initialization file.

33.1.5 Customizing Faces

You can customize faces (see Section 11.8 [Faces], page 70), which determine how Emacs
displays different types of text. Customization groups can contain both variables and faces.

For example, in programming language modes, source code comments are shown with
font-lock-comment-face (see Section 11.12 [Font Lock], page 74). In a customization
buffer, that face appears like this:

[Hide] Font Lock Comment Face:[sample]

[State] : STANDARD.

Font Lock mode face used to highlight comments.

[] Font Family: --

[] Font Foundry: --

[] Width: --

[] Height: --

[] Weight: --

[] Slant: --

[] Underline: --

Chapter 33: Customization 403

[] Overline: --

[] Strike-through: --

[] Box around text: --

[] Inverse-video: --

[X] Foreground: Firebrick [Choose] (sample)

[] Background: --

[] Stipple: --

[] Inherit: --

[Hide Unused Attributes]

The first three lines show the name, ‘[State]’ button, and documentation for the face.
Below that is a list of face attributes. In front of each attribute is a checkbox. A filled
checkbox, ‘[X]’, means that the face specifies a value for this attribute; an empty checkbox,
‘[]’, means that the face does not specify any special value for the attribute. You can
activate a checkbox to specify or unspecify its attribute.

Most faces only specify a few attributes (in the above example, font-lock-comment-
face only specifies the foreground color). Emacs has a special face, default, whose at-
tributes are all specified; it determines the attributes left unspecified by other faces.

The ‘Hide Unused Attributes’ button, at the end of the attribute list, hides the un-
specified attributes of the face. When attributes are being hidden, the button changes to
‘[Show All Attributes]’, which reveals the entire attribute list. The customization buffer
may start out with unspecified attributes hidden, to avoid cluttering the interface.

When an attribute is specified, you can change its value in the usual ways.

Foreground and background colors can be specified using either color names or RGB
triplets (see Section 11.9 [Colors], page 71). You can also use the ‘[Choose]’ button to
switch to a list of color names; select a color with RET in that buffer to put the color name
in the value field.

Setting, saving and resetting a face work like the same operations for variables (see
Section 33.1.3 [Changing a Variable], page 399).

A face can specify different appearances for different types of displays. For example, a
face can make text red on a color display, but use a bold font on a monochrome display. To
specify multiple appearances for a face, select ‘For All Kinds of Displays’ in the menu
you get from invoking ‘[State]’.

33.1.6 Customizing Specific Items

M-x customize-option RET option RET

M-x customize-variable RET option RET

Set up a customization buffer for just one user option, option.

M-x customize-face RET face RET

Set up a customization buffer for just one face, face.

M-x customize-group RET group RET

Set up a customization buffer for just one group, group.

M-x customize-apropos RET regexp RET

Set up a customization buffer for all the settings and groups that match regexp.

M-x customize-changed RET version RET

Set up a customization buffer with all the settings and groups whose meaning
has changed since Emacs version version.

Chapter 33: Customization 404

M-x customize-saved

Set up a customization buffer containing all settings that you have saved with
customization buffers.

M-x customize-unsaved

Set up a customization buffer containing all settings that you have set but not
saved.

If you want to customize a particular user option, type M-x customize-option. This
reads the variable name, and sets up the customization buffer with just that one user option.
When entering the variable name into the minibuffer, completion is available, but only for
the names of variables that have been loaded into Emacs.

Likewise, you can customize a specific face using M-x customize-face. You can set up
a customization buffer for a specific customization group using M-x customize-group.

M-x customize-apropos prompts for a search term—either one or more words separated
by spaces, or a regular expression—and sets up a customization buffer for all loaded settings
and groups with matching names. This is like using the search field at the top of the
customization buffer (see Section 33.1.1 [Customization Groups], page 398).

When you upgrade to a new Emacs version, you might want to consider customizing new
settings, and settings whose meanings or default values have changed. To do this, use M-x

customize-changed and specify a previous Emacs version number using the minibuffer. It
creates a customization buffer which shows all the settings and groups whose definitions
have been changed since the specified version, loading them if necessary.

If you change settings and then decide the change was a mistake, you can use two
commands to revisit your changes. Use M-x customize-saved to customize settings that
you have saved. Use M-x customize-unsaved to customize settings that you have set but
not saved.

33.1.7 Custom Themes

Custom themes are collections of settings that can be enabled or disabled as a unit. You can
use Custom themes to switch easily between various collections of settings, and to transfer
such collections from one computer to another.

A Custom theme is stored an Emacs Lisp source file. If the name of the Custom theme
is name, the theme file is named ‘name-theme.el’. See Section 33.1.8 [Creating Custom
Themes], page 405, for the format of a theme file and how to make one.

Type M-x customize-themes to switch to a buffer named ‘*Custom Themes*’, which
lists the Custom themes that Emacs knows about. By default, Emacs looks for theme files
in two locations: the directory specified by the variable custom-theme-directory (which
defaults to ‘~/.emacs.d/’), and a directory named ‘etc/themes’ in your Emacs installation
(see the variable data-directory). The latter contains several Custom themes which are
distributed with Emacs, which customize Emacs’s faces to fit various color schemes. (Note,
however, that Custom themes need not be restricted to this purpose; they can be used to
customize variables too).

If you want Emacs to look for Custom themes in some other directory, add the directory
name to the list variable custom-theme-load-path. Its default value is (custom-theme-

directory t); here, the symbol custom-theme-directory has the special meaning of the

Chapter 33: Customization 405

value of the variable custom-theme-directory, while t stands for the built-in theme di-
rectory ‘etc/themes’. The themes listed in the ‘*Custom Themes*’ buffer are those found
in the directories specified by custom-theme-load-path.

In the ‘*Custom Themes*’ buffer, you can activate the checkbox next to a Custom theme
to enable or disable the theme for the current Emacs session. When a Custom theme is
enabled, all of its settings (variables and faces) take effect in the Emacs session. To apply
the choice of theme(s) to future Emacs sessions, type C-x C-s (custom-theme-save) or use
the ‘[Save Theme Settings]’ button.

When you first enable a Custom theme, Emacs displays the contents of the theme file and
asks if you really want to load it. Because loading a Custom theme can execute arbitrary
Lisp code, you should only say yes if you know that the theme is safe; in that case, Emacs
offers to remember in the future that the theme is safe (this is done by saving the theme
file’s SHA-256 hash to the variable custom-safe-themes; if you want to treat all themes as
safe, change its value to t). Themes that come with Emacs (in the ‘etc/themes’ directory)
are exempt from this check, and are always considered safe.

Setting or saving Custom themes actually works by customizing the variable custom-

enabled-themes. The value of this variable is a list of Custom theme names (as Lisp sym-
bols, e.g. tango). Instead of using the ‘*Custom Themes*’ buffer to set custom-enabled-

themes, you can customize the variable using the usual customization interface, e.g. with
M-x customize-option. Note that Custom themes are not allowed to set custom-enabled-
themes themselves.

Any customizations that you make through the customization buffer take precedence
over theme settings. This lets you easily override individual theme settings that you dis-
agree with. If settings from two different themes overlap, the theme occurring earlier in
custom-enabled-themes takes precedence. In the customization buffer, if a setting has
been changed from its default by a Custom theme, its ‘State’ display shows ‘THEMED’ in-
stead of ‘STANDARD’.

You can enable a specific Custom theme in the current Emacs session by typing M-x

load-theme. This prompts for a theme name, loads the theme from the theme file, and
enables it. If a theme file has been loaded before, you can enable the theme without loading
its file by typing M-x enable-theme. To disable a Custom theme, type M-x disable-theme.

To see a description of a Custom theme, type ? on its line in the ‘*Custom Themes*’
buffer; or type M-x describe-theme anywhere in Emacs and enter the theme name.

33.1.8 Creating Custom Themes

You can define a Custom theme using an interface similar to the customization buffer, by
typing M-x customize-create-theme. This switches to a buffer named ‘*Custom Theme*’.
It also offers to insert some common Emacs faces into the theme (a convenience, since
Custom themes are often used to customize faces). If you answer no, the theme will initially
contain no settings.

Near the top of the ‘*Custom Theme*’ buffer are editable fields where you can enter the
theme’s name and description. The name can be anything except ‘user’. The description
is the one that will be shown when you invoke M-x describe-theme for the theme. Its first
line should be a brief one-sentence summary; in the buffer made by M-x customize-themes,
this sentence is displayed next to the theme name.

Chapter 33: Customization 406

To add a new setting to the theme, use the ‘[Insert Additional Face]’ or ‘[Insert
Additional Variable]’ buttons. Each button reads a face or variable name using the
minibuffer, with completion, and inserts a customization entry for the face or variable. You
can edit the variable values or face attributes in the same way as in a normal customization
buffer. To remove a face or variable from the theme, uncheck the checkbox next to its name.

After specifying the Custom theme’s faces and variables, type C-x C-s (custom-
theme-write) or use the buffer’s ‘[Save Theme]’ button. This saves the theme file,
named ‘name-theme.el’ where name is the theme name, in the directory named by
custom-theme-directory.

From the ‘*Custom Theme*’ buffer, you can view and edit an existing Custom theme by
activating the ‘[Visit Theme]’ button and specifying the theme name. You can also add
the settings of another theme into the buffer, using the ‘[Merge Theme]’ button. You can
import your non-theme settings into a Custom theme by using the ‘[Merge Theme]’ button
and specifying the special theme named ‘user’.

A theme file is simply an Emacs Lisp source file, and loading the Custom theme works
by loading the Lisp file. Therefore, you can edit a theme file directly instead of using
the ‘*Custom Theme*’ buffer. See Section “Custom Themes” in The Emacs Lisp Reference
Manual, for details.

33.2 Variables

A variable is a Lisp symbol which has a value. The symbol’s name is also called the
variable name. A variable name can contain any characters that can appear in a file, but
most variable names consist of ordinary words separated by hyphens.

The name of the variable serves as a compact description of its role. Most variables also
have a documentation string, which describes what the variable’s purpose is, what kind of
value it should have, and how the value will be used. You can view this documentation using
the help command C-h v (describe-variable). See Section 33.2.1 [Examining], page 407.

Emacs uses many Lisp variables for internal record keeping, but the most interesting
variables for a non-programmer user are those meant for users to change—these are called
customizable variables or user options (see Section 33.1 [Easy Customization], page 398).
In the following sections, we will describe other aspects of Emacs variables, such as how to
set them outside Customize.

Emacs Lisp allows any variable (with a few exceptions) to have any kind of value. How-
ever, many variables are meaningful only if assigned values of a certain type. For exam-
ple, only numbers are meaningful values for kill-ring-max, which specifies the maximum
length of the kill ring (see Section 9.2.2 [Earlier Kills], page 53); if you give kill-ring-max

a string value, commands such as C-y (yank) will signal an error. On the other hand, some
variables don’t care about type; for instance, if a variable has one effect for nil values and
another effect for “non-nil” values, then any value that is not the symbol nil induces the
second effect, regardless of its type (by convention, we usually use the value t—a sym-
bol which stands for “true”—to specify a non-nil value). If you set a variable using the
customization buffer, you need not worry about giving it an invalid type: the customiza-
tion buffer usually only allows you to enter meaningful values. When in doubt, use C-h v

(describe-variable) to check the variable’s documentation string to see kind of value it
expects (see Section 33.2.1 [Examining], page 407).

Chapter 33: Customization 407

33.2.1 Examining and Setting Variables

C-h v var RET

Display the value and documentation of variable var (describe-variable).

M-x set-variable RET var RET value RET

Change the value of variable var to value.

To examine the value of a variable, use C-h v (describe-variable). This reads a
variable name using the minibuffer, with completion, and displays both the value and the
documentation of the variable. For example,

C-h v fill-column RET

displays something like this:

fill-column is a variable defined in ‘C source code’.

fill-column’s value is 70

Local in buffer custom.texi; global value is 70

Automatically becomes buffer-local when set in any fashion.

Automatically becomes buffer-local when set in any fashion.

This variable is safe as a file local variable if its value

satisfies the predicate ‘integerp’.

Documentation:

*Column beyond which automatic line-wrapping should happen.

Interactively, you can set the buffer local value using C-x f.

You can customize this variable.

The line that says “You can customize the variable” indicates that this variable is a user
option. C-h v is not restricted to user options; it allows non-customizable variables too.

The most convenient way to set a specific customizable variable is with M-x

set-variable. This reads the variable name with the minibuffer (with completion), and
then reads a Lisp expression for the new value using the minibuffer a second time (you can
insert the old value into the minibuffer for editing via M-n). For example,

M-x set-variable RET fill-column RET 75 RET

sets fill-column to 75.

M-x set-variable is limited to customizable variables, but you can set any variable
with a Lisp expression like this:

(setq fill-column 75)

To execute such an expression, type M-: (eval-expression) and enter the expression in
the minibuffer (see Section 24.9 [Lisp Eval], page 266). Alternatively, go to the ‘*scratch*’
buffer, type in the expression, and then type C-j (see Section 24.10 [Lisp Interaction],
page 267).

Setting variables, like all means of customizing Emacs except where otherwise stated,
affects only the current Emacs session. The only way to alter the variable in future sessions
is to put something in your initialization file (see Section 33.4 [Init File], page 423).

Chapter 33: Customization 408

33.2.2 Hooks

Hooks are an important mechanism for customizing Emacs. A hook is a Lisp variable which
holds a list of functions, to be called on some well-defined occasion. (This is called running
the hook.) The individual functions in the list are called the hook functions of the hook.
For example, the hook kill-emacs-hook runs just before exiting Emacs (see Section 3.2
[Exiting], page 15).

Most hooks are normal hooks. This means that when Emacs runs the hook, it calls each
hook function in turn, with no arguments. We have made an effort to keep most hooks
normal, so that you can use them in a uniform way. Every variable whose name ends in
‘-hook’ is a normal hook.

A few hooks are abnormal hooks. Their names end in ‘-hooks’ or ‘-functions’, instead
of ‘-hook’. What makes these hooks abnormal is the way its functions are called—perhaps
they are given arguments, or perhaps the values they return are used in some way. For
example, find-file-not-found-functions is abnormal because as soon as one hook func-
tion returns a non-nil value, the rest are not called at all (see Section 15.2 [Visiting],
page 116). The documentation of each abnormal hook variable explains how its functions
are used.

You can set a hook variable with setq like any other Lisp variable, but the recommended
way to add a function to a hook (either normal or abnormal) is to use add-hook, as shown
by the following examples. See Section “Hooks” in The Emacs Lisp Reference Manual, for
details.

Most major modes run one or more mode hooks as the last step of initialization. Mode
hooks are a convenient way to customize the behavior of individual modes; they are always
normal. For example, here’s how to set up a hook to turn on Auto Fill mode in Text mode
and other modes based on Text mode:

(add-hook ’text-mode-hook ’auto-fill-mode)

This works by calling auto-fill-mode, which enables the minor mode when no argument
is supplied (see Section 20.2 [Minor Modes], page 190). Next, suppose you don’t want Auto
Fill mode turned on in LaTEX mode, which is one of the modes based on Text mode. You
can do this with the following additional line:

(add-hook ’latex-mode-hook (lambda () (auto-fill-mode -1)))

Here we have used the special macro lambda to construct an anonymous function (see
Section “Lambda Expressions” in The Emacs Lisp Reference Manual), which calls auto-

fill-mode with an argument of -1 to disable the minor mode. Because LaTEX mode runs
latex-mode-hook after running text-mode-hook, the result leaves Auto Fill mode disabled.

Here is a more complex example, showing how to use a hook to customize the indentation
of C code:

(setq my-c-style

’((c-comment-only-line-offset . 4)

(c-cleanup-list . (scope-operator

empty-defun-braces

defun-close-semi))))

(add-hook ’c-mode-common-hook

(lambda () (c-add-style "my-style" my-c-style t)))

Chapter 33: Customization 409

Major mode hooks also apply to other major modes derived from the original mode
(see Section “Derived Modes” in The Emacs Lisp Reference Manual). For instance, HTML
mode is derived from Text mode (see Section 22.11 [HTML Mode], page 218); when HTML
mode is enabled, it runs text-mode-hook before running html-mode-hook. This provides
a convenient way to use a single hook to affect several related modes. In particular, if you
want to apply a hook function to any programming language mode, add it to prog-mode-

hook; Prog mode is a major mode that does little else than to let other major modes inherit
from it, exactly for this purpose.

It is best to design your hook functions so that the order in which they are executed
does not matter. Any dependence on the order is asking for trouble. However, the order is
predictable: the hook functions are executed in the order they appear in the hook.

If you play with adding various different versions of a hook function by calling add-hook

over and over, remember that all the versions you added will remain in the hook variable
together. You can clear out individual functions by calling remove-hook, or do (setq

hook-variable nil) to remove everything.

If the hook variable is buffer-local, the buffer-local variable will be used instead of the
global variable. However, if the buffer-local variable contains the element t, the global hook
variable will be run as well.

33.2.3 Local Variables

M-x make-local-variable RET var RET

Make variable var have a local value in the current buffer.

M-x kill-local-variable RET var RET

Make variable var use its global value in the current buffer.

M-x make-variable-buffer-local RET var RET

Mark variable var so that setting it will make it local to the buffer that is
current at that time.

Almost any variable can be made local to a specific Emacs buffer. This means that its
value in that buffer is independent of its value in other buffers. A few variables are always
local in every buffer. Every other Emacs variable has a global value which is in effect in all
buffers that have not made the variable local.

M-x make-local-variable reads the name of a variable and makes it local to the current
buffer. Changing its value subsequently in this buffer will not affect others, and changes in
its global value will not affect this buffer.

M-x make-variable-buffer-local marks a variable so it will become local automati-
cally whenever it is set. More precisely, once a variable has been marked in this way, the
usual ways of setting the variable automatically do make-local-variable first. We call
such variables per-buffer variables. Many variables in Emacs are normally per-buffer; the
variable’s document string tells you when this is so. A per-buffer variable’s global value is
normally never effective in any buffer, but it still has a meaning: it is the initial value of
the variable for each new buffer.

Major modes (see Section 20.1 [Major Modes], page 189) always make variables local
to the buffer before setting the variables. This is why changing major modes in one buffer
has no effect on other buffers. Minor modes also work by setting variables—normally, each

Chapter 33: Customization 410

minor mode has one controlling variable which is non-nil when the mode is enabled (see
Section 20.2 [Minor Modes], page 190). For many minor modes, the controlling variable
is per buffer, and thus always buffer-local. Otherwise, you can make it local in a specific
buffer like any other variable.

A few variables cannot be local to a buffer because they are always local to each display
instead (see Section 18.10 [Multiple Displays], page 162). If you try to make one of these
variables buffer-local, you’ll get an error message.

M-x kill-local-variable makes a specified variable cease to be local to the current
buffer. The global value of the variable henceforth is in effect in this buffer. Setting the
major mode kills all the local variables of the buffer except for a few variables specially
marked as permanent locals.

To set the global value of a variable, regardless of whether the variable has a local value
in the current buffer, you can use the Lisp construct setq-default. This construct is used
just like setq, but it sets variables’ global values instead of their local values (if any). When
the current buffer does have a local value, the new global value may not be visible until you
switch to another buffer. Here is an example:

(setq-default fill-column 75)

setq-default is the only way to set the global value of a variable that has been marked
with make-variable-buffer-local.

Lisp programs can use default-value to look at a variable’s default value. This function
takes a symbol as argument and returns its default value. The argument is evaluated;
usually you must quote it explicitly. For example, here’s how to obtain the default value of
fill-column:

(default-value ’fill-column)

33.2.4 Local Variables in Files

A file can specify local variable values to use when editing the file with Emacs. Visiting the
file checks for local variable specifications; it automatically makes these variables local to
the buffer, and sets them to the values specified in the file.

33.2.4.1 Specifying File Variables

There are two ways to specify file local variable values: in the first line, or with a local
variables list. Here’s how to specify them in the first line:

-*- mode: modename; var: value; ... -*-

You can specify any number of variable/value pairs in this way, each pair with a colon and
semicolon. The special variable/value pair mode: modename;, if present, specifies a major
mode. The values are used literally, and not evaluated.

You can use the command M-x add-file-local-variable-prop-line instead of adding
entries by hand. It prompts for a variable and value, and adds them to the first line in the
appropriate way. M-x delete-file-local-variable-prop-line prompts for a variable,
and deletes its entry from the line. M-x copy-dir-locals-to-file-locals-prop-line

copies directory-local variables to the first line (see Section 33.2.5 [Directory Variables],
page 413).

Here is an example first line that specifies Lisp mode and sets two variables with numeric
values:

Chapter 33: Customization 411

;; -*- mode: Lisp; fill-column: 75; comment-column: 50; -*-

Aside from mode, other keywords that have special meanings as file variables are coding,
unibyte, and eval. These are described below.

In shell scripts, the first line is used to identify the script interpreter, so you cannot put
any local variables there. To accommodate this, Emacs looks for local variable specifications
in the second line if the first line specifies an interpreter. The same is true for man pages
which start with the magic string ‘’\"’ to specify a list of troff preprocessors (not all do,
however).

Apart from using a ‘-*-’ line, you can define file local variables using a local variables
list near the end of the file. The start of the local variables list should be no more than
3000 characters from the end of the file, and must be on the last page if the file is divided
into pages.

If a file has both a local variables list and a ‘-*-’ line, Emacs processes everything in the
‘-*-’ line first, and everything in the local variables list afterward. The exception to this is
a major mode specification. Emacs applies this first, wherever it appears, since most major
modes kill all local variables as part of their initialization.

A local variables list starts with a line containing the string ‘Local Variables:’, and
ends with a line containing the string ‘End:’. In between come the variable names and
values, one set per line, like this:

/* Local Variables: */

/* mode: c */

/* comment-column: 0 */

/* End: */

In this example, each line starts with the prefix ‘/*’ and ends with the suffix ‘*/’. Emacs
recognizes the prefix and suffix by finding them surrounding the magic string ‘Local
Variables:’, on the first line of the list; it then automatically discards them from the
other lines of the list. The usual reason for using a prefix and/or suffix is to embed
the local variables list in a comment, so it won’t confuse other programs that the file is
intended for. The example above is for the C programming language, where comments
start with ‘/*’ and end with ‘*/’.

Instead of typing in the local variables list directly, you can use the command M-x

add-file-local-variable. This prompts for a variable and value, and adds them to
the list, adding the ‘Local Variables:’ string and start and end markers as necessary.
The command M-x delete-file-local-variable deletes a variable from the list.
M-x copy-dir-locals-to-file-locals copies directory-local variables to the list (see
Section 33.2.5 [Directory Variables], page 413).

As with the ‘-*-’ line, the variables in a local variables list are used literally, and are
not evaluated first. If you want to split a long string value across multiple lines of the file,
you can use backslash-newline, which is ignored in Lisp string constants; you should put
the prefix and suffix on each line, even lines that start or end within the string, as they will
be stripped off when processing the list. Here is an example:

Local Variables:

compile-command: "cc foo.c -Dfoo=bar -Dhack=whatever \

-Dmumble=blaah"

End:

Chapter 33: Customization 412

Some “variable names” have special meanings in a local variables list:

• mode enables the specified major mode.

• eval evaluates the specified Lisp expression (the value returned by that expression is
ignored).

• coding specifies the coding system for character code conversion of this file. See
Section 19.6 [Coding Systems], page 174.

• unibyte says to load or compile a file of Emacs Lisp in unibyte mode, if the value is
t. See Section 19.2 [Disabling Multibyte], page 169.

These four keywords are not really variables; setting them in any other context has no
special meaning.

Do not use the mode keyword for minor modes. To enable or disable a minor mode
in a local variables list, use the eval keyword with a Lisp expression that runs the mode
command (see Section 20.2 [Minor Modes], page 190). For example, the following local
variables list enables Eldoc mode (see Section 23.6.3 [Lisp Doc], page 243) by calling eldoc-

mode with no argument (calling it with an argument of 1 would do the same), and disables
Font Lock mode (see Section 11.12 [Font Lock], page 74) by calling font-lock-mode with
an argument of -1.

;; Local Variables:

;; eval: (eldoc-mode)

;; eval: (font-lock-mode -1)

;; End:

Note, however, that it is often a mistake to specify minor modes this way. Minor modes rep-
resent individual user preferences, and it may be inappropriate to impose your preferences
on another user who might edit the file. If you wish to automatically enable or disable a
minor mode in a situation-dependent way, it is often better to do it in a major mode hook
(see Section 33.2.2 [Hooks], page 408).

Use the command M-x normal-mode to reset the local variables and major mode of a
buffer according to the file name and contents, including the local variables list if any. See
Section 20.3 [Choosing Modes], page 192.

33.2.4.2 Safety of File Variables

File-local variables can be dangerous; when you visit someone else’s file, there’s no telling
what its local variables list could do to your Emacs. Improper values of the eval “variable”,
and other variables such as load-path, could execute Lisp code you didn’t intend to run.

Therefore, whenever Emacs encounters file local variable values that are not known to
be safe, it displays the file’s entire local variables list, and asks you for confirmation before
setting them. You can type y or SPC to put the local variables list into effect, or n to ignore
it. When Emacs is run in batch mode (see Section C.2 [Initial Options], page 464), it can’t
really ask you, so it assumes the answer n.

Emacs normally recognizes certain variable/value pairs as safe. For instance, it is safe to
give comment-column or fill-column any integer value. If a file specifies only known-safe
variable/value pairs, Emacs does not ask for confirmation before setting them. Otherwise,
you can tell Emacs to record all the variable/value pairs in this file as safe, by typing ! at

Chapter 33: Customization 413

the confirmation prompt. When Emacs encounters these variable/value pairs subsequently,
in the same file or others, it will assume they are safe.

Some variables, such as load-path, are considered particularly risky : there is seldom
any reason to specify them as local variables, and changing them can be dangerous. If a
file contains only risky local variables, Emacs neither offers nor accepts ! as input at the
confirmation prompt. If some of the local variables in a file are risky, and some are only
potentially unsafe, you can enter ! at the prompt. It applies all the variables, but only marks
the non-risky ones as safe for the future. If you really want to record safe values for risky
variables, do it directly by customizing ‘safe-local-variable-values’ (see Section 33.1
[Easy Customization], page 398).

The variable enable-local-variables allows you to change the way Emacs processes
local variables. Its default value is t, which specifies the behavior described above. If it is
nil, Emacs simply ignores all file local variables. :safe means use only the safe values and
ignore the rest. Any other value says to query you about each file that has local variables,
without trying to determine whether the values are known to be safe.

The variable enable-local-eval controls whether Emacs processes eval variables. The
three possibilities for the variable’s value are t, nil, and anything else, just as for enable-
local-variables. The default is maybe, which is neither t nor nil, so normally Emacs
does ask for confirmation about processing eval variables.

As an exception, Emacs never asks for confirmation to evaluate any eval form if that
form occurs within the variable safe-local-eval-forms.

33.2.5 Per-Directory Local Variables

Sometimes, you may wish to define the same set of local variables to all the files in a certain
directory and its subdirectories, such as the directory tree of a large software project. This
can be accomplished with directory-local variables.

The usual way to define directory-local variables is to put a file named ‘.dir-locals.el’1

in a directory. Whenever Emacs visits any file in that directory or any of its subdirectories,
it will apply the directory-local variables specified in ‘.dir-locals.el’, as though they had
been defined as file-local variables for that file (see Section 33.2.4 [File Variables], page 410).
Emacs searches for ‘.dir-locals.el’ starting in the directory of the visited file, and moving
up the directory tree. To avoid slowdown, this search is skipped for remote files.

The ‘.dir-locals.el’ file should hold a specially-constructed list, which maps major
mode names (symbols) to alists (see Section “Association Lists” in The Emacs Lisp Refer-
ence Manual). Each alist entry consists of a variable name and the directory-local value to
assign to that variable, when the specified major mode is enabled. Instead of a mode name,
you can specify ‘nil’, which means that the alist applies to any mode; or you can specify a
subdirectory name (a string), in which case the alist applies to all files in that subdirectory.

Here’s an example of a ‘.dir-locals.el’ file:

((nil . ((indent-tabs-mode . t)

(fill-column . 80)))

1 On MS-DOS, the name of this file should be ‘_dir-locals.el’, due to limitations of the DOS filesystems.
If the filesystem is limited to 8+3 file names, the name of the file will be truncated by the OS to
‘_dir-loc.el’.

Chapter 33: Customization 414

(c-mode . ((c-file-style . "BSD")))

(subdirs . nil)))

("src/imported"

. ((nil . ((change-log-default-name

. "ChangeLog.local"))))))

This sets ‘indent-tabs-mode’ and fill-column for any file in the directory tree, and the
indentation style for any C source file. The special subdirs element is not a variable, but
a special keyword which indicates that the C mode settings are only to be applied in the
current directory, not in any subdirectories. Finally, it specifies a different ‘ChangeLog’ file
name for any file in the ‘src/imported’ subdirectory.

Instead of editing the ‘.dir-locals.el’ file by hand, you can use the command
M-x add-dir-local-variable. This prompts for a mode or subdirectory name, and
for variable and value, and adds the entry defining the directory-local variable. M-x

delete-dir-local-variable deletes an entry. M-x copy-file-locals-to-dir-locals

copies the file-local variables in the current file into ‘.dir-locals.el’.

Another method of specifying directory-local variables is to define a group of vari-
ables/value pairs in a directory class, using the dir-locals-set-class-variables func-
tion; then, tell Emacs which directories correspond to the class by using the dir-locals-

set-directory-class function. These function calls normally go in your initialization
file (see Section 33.4 [Init File], page 423). This method is useful when you can’t put
‘.dir-locals.el’ in a directory for some reason. For example, you could apply settings to
an unwritable directory this way:

(dir-locals-set-class-variables ’unwritable-directory

’((nil . ((some-useful-setting . value)))))

(dir-locals-set-directory-class

"/usr/include/" ’unwritable-directory)

If a variable has both a directory-local and file-local value specified, the file-local value
takes effect. Unsafe directory-local variables are handled in the same way as unsafe file-local
variables (see Section 33.2.4.2 [Safe File Variables], page 412).

Directory-local variables also take effect in certain buffers that do not visit a file di-
rectly but perform work within a directory, such as Dired buffers (see Chapter 27 [Dired],
page 302).

33.3 Customizing Key Bindings

This section describes key bindings, which map keys to commands, and keymaps, which
record key bindings. It also explains how to customize key bindings, which is done by
editing your init file (see Section 33.3.6 [Init Rebinding], page 417).

33.3.1 Keymaps

As described in Section 2.3 [Commands], page 12, each Emacs command is a Lisp function
whose definition provides for interactive use. Like every Lisp function, a command has a
function name, which usually consists of lower-case letters and hyphens.

A key sequence (key, for short) is a sequence of input events that have a meaning as a
unit. Input events include characters, function keys and mouse buttons—all the inputs that

Chapter 33: Customization 415

you can send to the computer. A key sequence gets its meaning from its binding, which
says what command it runs.

The bindings between key sequences and command functions are recorded in data struc-
tures called keymaps. Emacs has many of these, each used on particular occasions.

The global keymap is the most important keymap because it is always in effect. The
global keymap defines keys for Fundamental mode (see Section 20.1 [Major Modes],
page 189); most of these definitions are common to most or all major modes. Each major
or minor mode can have its own keymap which overrides the global definitions of some
keys.

For example, a self-inserting character such as g is self-inserting because the global
keymap binds it to the command self-insert-command. The standard Emacs editing
characters such as C-a also get their standard meanings from the global keymap. Commands
to rebind keys, such as M-x global-set-key, work by storing the new binding in the proper
place in the global map (see Section 33.3.5 [Rebinding], page 416).

Most modern keyboards have function keys as well as character keys. Function keys
send input events just as character keys do, and keymaps can have bindings for them.
Key sequences can mix function keys and characters. For example, if your keyboard has a
HOME function key, Emacs can recognize key sequences like C-x HOME. You can even mix
mouse events with keyboard events, such as S-down-mouse-1.

On text terminals, typing a function key actually sends the computer a sequence of
characters; the precise details of the sequence depends on the function key and on the
terminal type. (Often the sequence starts with ESC [.) If Emacs understands your terminal
type properly, it automatically handles such sequences as single input events.

33.3.2 Prefix Keymaps

Internally, Emacs records only single events in each keymap. Interpreting a key sequence of
multiple events involves a chain of keymaps: the first keymap gives a definition for the first
event, which is another keymap, which is used to look up the second event in the sequence,
and so on. Thus, a prefix key such as C-x or ESC has its own keymap, which holds the
definition for the event that immediately follows that prefix.

The definition of a prefix key is usually the keymap to use for looking up the following
event. The definition can also be a Lisp symbol whose function definition is the following
keymap; the effect is the same, but it provides a command name for the prefix key that
can be used as a description of what the prefix key is for. Thus, the binding of C-x is the
symbol Control-X-prefix, whose function definition is the keymap for C-x commands.
The definitions of C-c, C-x, C-h and ESC as prefix keys appear in the global map, so these
prefix keys are always available.

Aside from ordinary prefix keys, there is a fictitious “prefix key” which represents the
menu bar; see Section “Menu Bar” in The Emacs Lisp Reference Manual, for special infor-
mation about menu bar key bindings. Mouse button events that invoke pop-up menus are
also prefix keys; see Section “Menu Keymaps” in The Emacs Lisp Reference Manual, for
more details.

Some prefix keymaps are stored in variables with names:

• ctl-x-map is the variable name for the map used for characters that follow C-x.

• help-map is for characters that follow C-h.

Chapter 33: Customization 416

• esc-map is for characters that follow ESC. Thus, all Meta characters are actually
defined by this map.

• ctl-x-4-map is for characters that follow C-x 4.

• mode-specific-map is for characters that follow C-c.

33.3.3 Local Keymaps

So far, we have explained the ins and outs of the global map. Major modes customize Emacs
by providing their own key bindings in local keymaps. For example, C mode overrides TAB
to make it indent the current line for C code. Minor modes can also have local keymaps;
whenever a minor mode is in effect, the definitions in its keymap override both the major
mode’s local keymap and the global keymap. In addition, portions of text in the buffer can
specify their own keymaps, which override all other keymaps.

A local keymap can redefine a key as a prefix key by defining it as a prefix keymap. If
the key is also defined globally as a prefix, its local and global definitions (both keymaps)
effectively combine: both definitions are used to look up the event that follows the prefix
key. For example, if a local keymap defines C-c as a prefix keymap, and that keymap defines
C-z as a command, this provides a local meaning for C-c C-z. This does not affect other
sequences that start with C-c; if those sequences don’t have their own local bindings, their
global bindings remain in effect.

Another way to think of this is that Emacs handles a multi-event key sequence by looking
in several keymaps, one by one, for a binding of the whole key sequence. First it checks the
minor mode keymaps for minor modes that are enabled, then it checks the major mode’s
keymap, and then it checks the global keymap. This is not precisely how key lookup works,
but it’s good enough for understanding the results in ordinary circumstances.

33.3.4 Minibuffer Keymaps

The minibuffer has its own set of local keymaps; they contain various completion and exit
commands.

• minibuffer-local-map is used for ordinary input (no completion).

• minibuffer-local-ns-map is similar, except that SPC exits just like RET.

• minibuffer-local-completion-map is for permissive completion.

• minibuffer-local-must-match-map is for strict completion and for cautious comple-
tion.

• minibuffer-local-filename-completion-map and minibuffer-local-filename-

must-match-map are like the two previous ones, but they are specifically for file name
completion. They do not bind SPC.

33.3.5 Changing Key Bindings Interactively

The way to redefine an Emacs key is to change its entry in a keymap. You can change
the global keymap, in which case the change is effective in all major modes (except those
that have their own overriding local bindings for the same key). Or you can change a local
keymap, which affects all buffers using the same major mode.

In this section, we describe how to rebind keys for the present Emacs session. See
Section 33.3.6 [Init Rebinding], page 417, for a description of how to make key rebindings
affect future Emacs sessions.

Chapter 33: Customization 417

M-x global-set-key RET key cmd RET

Define key globally to run cmd.

M-x local-set-key RET key cmd RET

Define key locally (in the major mode now in effect) to run cmd.

M-x global-unset-key RET key

Make key undefined in the global map.

M-x local-unset-key RET key

Make key undefined locally (in the major mode now in effect).

For example, the following binds C-z to the shell command (see Section 31.3.2 [Inter-
active Shell], page 369), replacing the normal global definition of C-z:

M-x global-set-key RET C-z shell RET

The global-set-key command reads the command name after the key. After you press
the key, a message like this appears so that you can confirm that you are binding the key
you want:

Set key C-z to command:

You can redefine function keys and mouse events in the same way; just type the function
key or click the mouse when it’s time to specify the key to rebind.

You can rebind a key that contains more than one event in the same way. Emacs keeps
reading the key to rebind until it is a complete key (that is, not a prefix key). Thus, if you
type C-f for key, that’s the end; it enters the minibuffer immediately to read cmd. But if
you type C-x, since that’s a prefix, it reads another character; if that is 4, another prefix
character, it reads one more character, and so on. For example,

M-x global-set-key RET C-x 4 $ spell-other-window RET

redefines C-x 4 $ to run the (fictitious) command spell-other-window.

You can remove the global definition of a key with global-unset-key. This makes the
key undefined; if you type it, Emacs will just beep. Similarly, local-unset-key makes a
key undefined in the current major mode keymap, which makes the global definition (or
lack of one) come back into effect in that major mode.

If you have redefined (or undefined) a key and you subsequently wish to retract the
change, undefining the key will not do the job—you need to redefine the key with its standard
definition. To find the name of the standard definition of a key, go to a Fundamental mode
buffer in a fresh Emacs and use C-h c. The documentation of keys in this manual also lists
their command names.

If you want to prevent yourself from invoking a command by mistake, it is better to
disable the command than to undefine the key. A disabled command is less work to invoke
when you really want to. See Section 33.3.11 [Disabling], page 422.

33.3.6 Rebinding Keys in Your Init File

If you have a set of key bindings that you like to use all the time, you can specify them
in your initialization file by writing Lisp code. See Section 33.4 [Init File], page 423, for a
description of the initialization file.

There are several ways to write a key binding using Lisp. The simplest is to use the
kbd macro, which converts a textual representation of a key sequence—similar to how we

Chapter 33: Customization 418

have written key sequences in this manual—into a form that can be passed as an argument
to global-set-key. For example, here’s how to bind C-z to the shell command (see
Section 31.3.2 [Interactive Shell], page 369):

(global-set-key (kbd "C-z") ’shell)

The single-quote before the command name, shell, marks it as a constant symbol rather
than a variable. If you omit the quote, Emacs would try to evaluate shell as a variable.
This probably causes an error; it certainly isn’t what you want.

Here are some additional examples, including binding function keys and mouse events:

(global-set-key (kbd "C-c y") ’clipboard-yank)

(global-set-key (kbd "C-M-q") ’query-replace)

(global-set-key (kbd "<f5>") ’flyspell-mode)

(global-set-key (kbd "C-<f5>") ’linum-mode)

(global-set-key (kbd "C-<right>") ’forward-sentence)

(global-set-key (kbd "<mouse-2>") ’mouse-save-then-kill)

Instead of using the kbd macro, you can use a Lisp string or vector to specify the key
sequence. Using a string is simpler, but only works for ASCII characters and Meta-modified
ASCII characters. For example, here’s how to bind C-x M-l to make-symbolic-link (see
Section 15.10 [Misc File Ops], page 132):

(global-set-key "\C-x\M-l" ’make-symbolic-link)

To put TAB, RET, ESC, or DEL in the string, use the Emacs Lisp escape sequences ‘\t’,
‘\r’, ‘\e’, and ‘\d’ respectively. Here is an example which binds C-x TAB to indent-rigidly

(see Chapter 21 [Indentation], page 195):

(global-set-key "\C-x\t" ’indent-rigidly)

When the key sequence includes function keys or mouse button events, or non-ASCII

characters such as C-= or H-a, you can use a vector to specify the key sequence. Each
element in the vector stands for an input event; the elements are separated by spaces and
surrounded by a pair of square brackets. If a vector element is a character, write it as a Lisp
character constant: ‘?’ followed by the character as it would appear in a string. Function
keys are represented by symbols (see Section 33.3.8 [Function Keys], page 419); simply write
the symbol’s name, with no other delimiters or punctuation. Here are some examples:

(global-set-key [?\C-=] ’make-symbolic-link)

(global-set-key [?\M-\C-=] ’make-symbolic-link)

(global-set-key [?\H-a] ’make-symbolic-link)

(global-set-key [f7] ’make-symbolic-link)

(global-set-key [C-mouse-1] ’make-symbolic-link)

You can use a vector for the simple cases too:

(global-set-key [?\C-z ?\M-l] ’make-symbolic-link)

Language and coding systems may cause problems with key bindings for non-ASCII

characters. See Section 33.4.5 [Init Non-ASCII], page 428.

As described in Section 33.3.3 [Local Keymaps], page 416, major modes and minor modes
can define local keymaps. These keymaps are constructed when the mode is used for the
first time in a session. If you wish to change one of these keymaps, you must use the mode
hook (see Section 33.2.2 [Hooks], page 408).

Chapter 33: Customization 419

For example, Texinfo mode runs the hook texinfo-mode-hook. Here’s how you can use
the hook to add local bindings for C-c n and C-c p in Texinfo mode:

(add-hook ’texinfo-mode-hook

’(lambda ()

(define-key texinfo-mode-map "\C-cp"

’backward-paragraph)

(define-key texinfo-mode-map "\C-cn"

’forward-paragraph)))

33.3.7 Modifier Keys

The default key bindings in Emacs are set up so that modified alphabetical characters are
case-insensitive. In other words, C-A does the same thing as C-a, and M-A does the same
thing as M-a. This concerns only alphabetical characters, and does not apply to “shifted”
versions of other keys; for instance, C-@ is not the same as C-2.

A CONTROL-modified alphabetical character is always considered case-insensitive:
Emacs always treats C-A as C-a, C-B as C-b, and so forth. The reason for this is historical.

For all other modifiers, you can make the modified alphabetical characters case-sensitive
when you customize Emacs. For instance, you could make M-a and M-A run different com-
mands.

Although only the CONTROL and META modifier keys are commonly used, Emacs
supports three other modifier keys. These are called SUPER, HYPER and ALT. Few
terminals provide ways to use these modifiers; the key labeled ALT on most keyboards
usually issues the META modifier, not ALT. The standard key bindings in Emacs do not
include any characters with these modifiers. However, you can customize Emacs to assign
meanings to them. The modifier bits are labeled as ‘s-’, ‘H-’ and ‘A-’ respectively.

Even if your keyboard lacks these additional modifier keys, you can enter it using C-x

@: C-x @ h adds the “hyper” flag to the next character, C-x @ s adds the “super” flag, and
C-x @ a adds the “alt” flag. For instance, C-x @ h C-a is a way to enter Hyper-Control-a.
(Unfortunately, there is no way to add two modifiers by using C-x @ twice for the same
character, because the first one goes to work on the C-x.)

33.3.8 Rebinding Function Keys

Key sequences can contain function keys as well as ordinary characters. Just as Lisp char-
acters (actually integers) represent keyboard characters, Lisp symbols represent function
keys. If the function key has a word as its label, then that word is also the name of the
corresponding Lisp symbol. Here are the conventional Lisp names for common function
keys:

left, up, right, down
Cursor arrow keys.

begin, end, home, next, prior
Other cursor repositioning keys.

select, print, execute, backtab
insert, undo, redo, clearline
insertline, deleteline, insertchar, deletechar

Miscellaneous function keys.

Chapter 33: Customization 420

f1, f2, . . . f35

Numbered function keys (across the top of the keyboard).

kp-add, kp-subtract, kp-multiply, kp-divide
kp-backtab, kp-space, kp-tab, kp-enter
kp-separator, kp-decimal, kp-equal

Keypad keys (to the right of the regular keyboard), with names or punctuation.

kp-0, kp-1, . . . kp-9

Keypad keys with digits.

kp-f1, kp-f2, kp-f3, kp-f4
Keypad PF keys.

These names are conventional, but some systems (especially when using X) may use
different names. To make certain what symbol is used for a given function key on your
terminal, type C-h c followed by that key.

See Section 33.3.6 [Init Rebinding], page 417, for examples of binding function keys.

Many keyboards have a “numeric keypad” on the right hand side. The numeric keys
in the keypad double up as cursor motion keys, toggled by a key labeled ‘Num Lock’. By
default, Emacs translates these keys to the corresponding keys in the main keyboard. For
example, when ‘Num Lock’ is on, the key labeled ‘8’ on the numeric keypad produces kp-8,
which is translated to 8; when ‘Num Lock’ is off, the same key produces kp-up, which is
translated to UP. If you rebind a key such as 8 or UP, it affects the equivalent keypad key
too. However, if you rebind a ‘kp-’ key directly, that won’t affect its non-keypad equivalent.
Note that the modified keys are not translated: for instance, if you hold down the META
key while pressing the ‘8’ key on the numeric keypad, that generates M-KP-8.

Emacs provides a convenient method for binding the numeric keypad keys, using the
variables keypad-setup, keypad-numlock-setup, keypad-shifted-setup, and keypad-

numlock-shifted-setup. These can be found in the ‘keyboard’ customization group (see
Section 33.1 [Easy Customization], page 398). You can rebind the keys to perform other
tasks, such as issuing numeric prefix arguments.

33.3.9 Named ASCII Control Characters

TAB, RET, BS, LFD, ESC and DEL started out as names for certain ASCII control charac-
ters, used so often that they have special keys of their own. For instance, TAB was another
name for C-i. Later, users found it convenient to distinguish in Emacs between these keys
and the “same” control characters typed with the CTRL key. Therefore, on most modern
terminals, they are no longer the same: TAB is different from C-i.

Emacs can distinguish these two kinds of input if the keyboard does. It treats the “spe-
cial” keys as function keys named tab, return, backspace, linefeed, escape, and delete.
These function keys translate automatically into the corresponding ASCII characters if they
have no bindings of their own. As a result, neither users nor Lisp programs need to pay
attention to the distinction unless they care to.

If you do not want to distinguish between (for example) TAB and C-i, make just one
binding, for the ASCII character TAB (octal code 011). If you do want to distinguish, make
one binding for this ASCII character, and another for the “function key” tab.

Chapter 33: Customization 421

With an ordinary ASCII terminal, there is no way to distinguish between TAB and C-i

(and likewise for other such pairs), because the terminal sends the same character in both
cases.

33.3.10 Rebinding Mouse Buttons

Emacs uses Lisp symbols to designate mouse buttons, too. The ordinary mouse events
in Emacs are click events; these happen when you press a button and release it without
moving the mouse. You can also get drag events, when you move the mouse while holding
the button down. Drag events happen when you finally let go of the button.

The symbols for basic click events are mouse-1 for the leftmost button, mouse-2 for the
next, and so on. Here is how you can redefine the second mouse button to split the current
window:

(global-set-key [mouse-2] ’split-window-below)

The symbols for drag events are similar, but have the prefix ‘drag-’ before the word
‘mouse’. For example, dragging the first button generates a drag-mouse-1 event.

You can also define bindings for events that occur when a mouse button is pressed down.
These events start with ‘down-’ instead of ‘drag-’. Such events are generated only if they
have key bindings. When you get a button-down event, a corresponding click or drag event
will always follow.

If you wish, you can distinguish single, double, and triple clicks. A double click means
clicking a mouse button twice in approximately the same place. The first click generates
an ordinary click event. The second click, if it comes soon enough, generates a double-click
event instead. The event type for a double-click event starts with ‘double-’: for example,
double-mouse-3.

This means that you can give a special meaning to the second click at the same place,
but it must act on the assumption that the ordinary single click definition has run when
the first click was received.

This constrains what you can do with double clicks, but user interface designers say that
this constraint ought to be followed in any case. A double click should do something similar
to the single click, only “more so”. The command for the double-click event should perform
the extra work for the double click.

If a double-click event has no binding, it changes to the corresponding single-click event.
Thus, if you don’t define a particular double click specially, it executes the single-click
command twice.

Emacs also supports triple-click events whose names start with ‘triple-’. Emacs does
not distinguish quadruple clicks as event types; clicks beyond the third generate additional
triple-click events. However, the full number of clicks is recorded in the event list, so if you
know Emacs Lisp you can distinguish if you really want to (see Section “Click Events” in
The Emacs Lisp Reference Manual). We don’t recommend distinct meanings for more than
three clicks, but sometimes it is useful for subsequent clicks to cycle through the same set
of three meanings, so that four clicks are equivalent to one click, five are equivalent to two,
and six are equivalent to three.

Emacs also records multiple presses in drag and button-down events. For example,
when you press a button twice, then move the mouse while holding the button, Emacs gets

Chapter 33: Customization 422

a ‘double-drag-’ event. And at the moment when you press it down for the second time,
Emacs gets a ‘double-down-’ event (which is ignored, like all button-down events, if it has
no binding).

The variable double-click-time specifies how much time can elapse between clicks and
still allow them to be grouped as a multiple click. Its value is in units of milliseconds. If
the value is nil, double clicks are not detected at all. If the value is t, then there is no
time limit. The default is 500.

The variable double-click-fuzz specifies how much the mouse can move between clicks
and still allow them to be grouped as a multiple click. Its value is in units of pixels on
windowed displays and in units of 1/8 of a character cell on text-mode terminals; the
default is 3.

The symbols for mouse events also indicate the status of the modifier keys, with the usual
prefixes ‘C-’, ‘M-’, ‘H-’, ‘s-’, ‘A-’ and ‘S-’. These always precede ‘double-’ or ‘triple-’,
which always precede ‘drag-’ or ‘down-’.

A frame includes areas that don’t show text from the buffer, such as the mode line
and the scroll bar. You can tell whether a mouse button comes from a special area of
the screen by means of dummy “prefix keys”. For example, if you click the mouse in the
mode line, you get the prefix key mode-line before the ordinary mouse-button symbol.
Thus, here is how to define the command for clicking the first button in a mode line to run
scroll-up-command:

(global-set-key [mode-line mouse-1] ’scroll-up-command)

Here is the complete list of these dummy prefix keys and their meanings:

mode-line

The mouse was in the mode line of a window.

vertical-line

The mouse was in the vertical line separating side-by-side windows. (If you use
scroll bars, they appear in place of these vertical lines.)

vertical-scroll-bar

The mouse was in a vertical scroll bar. (This is the only kind of scroll bar
Emacs currently supports.)

menu-bar The mouse was in the menu bar.

header-line

The mouse was in a header line.

You can put more than one mouse button in a key sequence, but it isn’t usual to do so.

33.3.11 Disabling Commands

Disabling a command means that invoking it interactively asks for confirmation from the
user. The purpose of disabling a command is to prevent users from executing it by accident;
we do this for commands that might be confusing to the uninitiated.

Attempting to invoke a disabled command interactively in Emacs displays a window
containing the command’s name, its documentation, and some instructions on what to
do immediately; then Emacs asks for input saying whether to execute the command as

Chapter 33: Customization 423

requested, enable it and execute it, or cancel. If you decide to enable the command, you
must then answer another question—whether to do this permanently, or just for the current
session. (Enabling permanently works by automatically editing your initialization file.) You
can also type ! to enable all commands, for the current session only.

The direct mechanism for disabling a command is to put a non-nil disabled property
on the Lisp symbol for the command. Here is the Lisp program to do this:

(put ’delete-region ’disabled t)

If the value of the disabled property is a string, that string is included in the message
displayed when the command is used:

(put ’delete-region ’disabled

"It’s better to use ‘kill-region’ instead.\n")

You can make a command disabled either by editing the initialization file directly, or with
the command M-x disable-command, which edits the initialization file for you. Likewise,
M-x enable-command edits the initialization file to enable a command permanently. See
Section 33.4 [Init File], page 423.

If Emacs was invoked with the ‘-q’ or ‘--no-init-file’ options (see Section C.2 [Initial
Options], page 464), it will not edit your initialization file. Doing so could lose information
because Emacs has not read your initialization file.

Whether a command is disabled is independent of what key is used to invoke it; disabling
also applies if the command is invoked using M-x. However, disabling a command has no
effect on calling it as a function from Lisp programs.

33.4 The Emacs Initialization File

When Emacs is started, it normally tries to load a Lisp program from an initialization file, or
init file for short. This file, if it exists, specifies how to initialize Emacs for you. Emacs looks
for your init file using the filenames ‘~/.emacs’, ‘~/.emacs.el’, or ‘~/.emacs.d/init.el’;
you can choose to use any one of these three names (see Section 33.4.4 [Find Init], page 428).
Here, ‘~/’ stands for your home directory.

You can use the command line switch ‘-q’ to prevent loading your init file, and ‘-u’ (or
‘--user’) to specify a different user’s init file (see Section C.2 [Initial Options], page 464).

There can also be a default init file, which is the library named ‘default.el’, found via
the standard search path for libraries. The Emacs distribution contains no such library;
your site may create one for local customizations. If this library exists, it is loaded whenever
you start Emacs (except when you specify ‘-q’). But your init file, if any, is loaded first; if
it sets inhibit-default-init non-nil, then ‘default’ is not loaded.

Your site may also have a site startup file; this is named ‘site-start.el’, if it exists.
Like ‘default.el’, Emacs finds this file via the standard search path for Lisp libraries.
Emacs loads this library before it loads your init file. To inhibit loading of this library, use
the option ‘--no-site-file’. See Section C.2 [Initial Options], page 464. We recommend
against using ‘site-start.el’ for changes that some users may not like. It is better to put
them in ‘default.el’, so that users can more easily override them.

You can place ‘default.el’ and ‘site-start.el’ in any of the directories which Emacs
searches for Lisp libraries. The variable load-path (see Section 24.8 [Lisp Libraries],

Chapter 33: Customization 424

page 265) specifies these directories. Many sites put these files in the ‘site-lisp’ subdirec-
tory of the Emacs installation directory, typically ‘/usr/local/share/emacs/site-lisp’.

Byte-compiling your init file is not recommended (see Section “Byte Compilation” in
the Emacs Lisp Reference Manual). It generally does not speed up startup very much, and
often leads to problems when you forget to recompile the file. A better solution is to use
the Emacs server to reduce the number of times you have to start Emacs (see Section 31.4
[Emacs Server], page 378). If your init file defines many functions, consider moving them
to a separate (byte-compiled) file that you load in your init file.

If you are going to write actual Emacs Lisp programs that go beyond minor customiza-
tion, you should read the Emacs Lisp Reference Manual.

33.4.1 Init File Syntax

The init file contains one or more Lisp expressions. Each of these consists of a function name
followed by arguments, all surrounded by parentheses. For example, (setq fill-column

60) calls the function setq to set the variable fill-column (see Section 22.5 [Filling],
page 202) to 60.

You can set any Lisp variable with setq, but with certain variables setq won’t do what
you probably want in the ‘.emacs’ file. Some variables automatically become buffer-local
when set with setq; what you want in ‘.emacs’ is to set the default value, using setq-

default. Some customizable minor mode variables do special things to enable the mode
when you set them with Customize, but ordinary setq won’t do that; to enable the mode
in your ‘.emacs’ file, call the minor mode command. The following section has examples of
both of these methods.

The second argument to setq is an expression for the new value of the variable. This
can be a constant, a variable, or a function call expression. In ‘.emacs’, constants are used
most of the time. They can be:

Numbers: Numbers are written in decimal, with an optional initial minus sign.

Strings: Lisp string syntax is the same as C string syntax with a few extra features. Use
a double-quote character to begin and end a string constant.

In a string, you can include newlines and special characters literally. But often
it is cleaner to use backslash sequences for them: ‘\n’ for newline, ‘\b’ for
backspace, ‘\r’ for carriage return, ‘\t’ for tab, ‘\f’ for formfeed (control-L),
‘\e’ for escape, ‘\\’ for a backslash, ‘\"’ for a double-quote, or ‘\ooo ’ for the
character whose octal code is ooo. Backslash and double-quote are the only
characters for which backslash sequences are mandatory.

‘\C-’ can be used as a prefix for a control character, as in ‘\C-s’ for ASCII

control-S, and ‘\M-’ can be used as a prefix for a Meta character, as in ‘\M-a’
for Meta-A or ‘\M-\C-a’ for Control-Meta-A.

See Section 33.4.5 [Init Non-ASCII], page 428, for information about including
non-ASCII in your init file.

Characters:
Lisp character constant syntax consists of a ‘?’ followed by either a character or
an escape sequence starting with ‘\’. Examples: ?x, ?\n, ?\", ?\). Note that

Chapter 33: Customization 425

strings and characters are not interchangeable in Lisp; some contexts require
one and some contexts require the other.

See Section 33.4.5 [Init Non-ASCII], page 428, for information about binding
commands to keys which send non-ASCII characters.

True: t stands for ‘true’.

False: nil stands for ‘false’.

Other Lisp objects:
Write a single-quote (’) followed by the Lisp object you want.

33.4.2 Init File Examples

Here are some examples of doing certain commonly desired things with Lisp expressions:

• Add a directory to the variable load-path. You can then put Lisp libraries that are
not included with Emacs in this directory, and load them with M-x load-library. See
Section 24.8 [Lisp Libraries], page 265.

(add-to-list ’load-path "/path/to/lisp/libraries")

• Make TAB in C mode just insert a tab if point is in the middle of a line.

(setq c-tab-always-indent nil)

Here we have a variable whose value is normally t for ‘true’ and the alternative is nil
for ‘false’.

• Make searches case sensitive by default (in all buffers that do not override this).

(setq-default case-fold-search nil)

This sets the default value, which is effective in all buffers that do not have local values
for the variable (see Section 33.2.3 [Locals], page 409). Setting case-fold-search with
setq affects only the current buffer’s local value, which is probably not what you want
to do in an init file.

• Specify your own email address, if Emacs can’t figure it out correctly.

(setq user-mail-address "cheney@torture.gov")

Various Emacs packages, such as Message mode, consult user-mail-address when
they need to know your email address. See Section 29.2 [Mail Headers], page 338.

• Make Text mode the default mode for new buffers.

(setq-default major-mode ’text-mode)

Note that text-mode is used because it is the command for entering Text mode. The
single-quote before it makes the symbol a constant; otherwise, text-mode would be
treated as a variable name.

• Set up defaults for the Latin-1 character set which supports most of the languages of
Western Europe.

(set-language-environment "Latin-1")

Chapter 33: Customization 426

• Turn off Line Number mode, a global minor mode.

(line-number-mode 0)

• Turn on Auto Fill mode automatically in Text mode and related modes (see
Section 33.2.2 [Hooks], page 408).

(add-hook ’text-mode-hook ’auto-fill-mode)

• Load the installed Lisp library named ‘foo’ (actually a file ‘foo.elc’ or ‘foo.el’ in a
standard Emacs directory).

(load "foo")

When the argument to load is a relative file name, not starting with ‘/’ or ‘~’, load
searches the directories in load-path (see Section 24.8 [Lisp Libraries], page 265).

• Load the compiled Lisp file ‘foo.elc’ from your home directory.

(load "~/foo.elc")

Here a full file name is used, so no searching is done.

• Tell Emacs to find the definition for the function myfunction by loading a Lisp library
named ‘mypackage’ (i.e. a file ‘mypackage.elc’ or ‘mypackage.el’):

(autoload ’myfunction "mypackage" "Do what I say." t)

Here the string "Do what I say." is the function’s documentation string. You specify
it in the autoload definition so it will be available for help commands even when the
package is not loaded. The last argument, t, indicates that this function is interactive;
that is, it can be invoked interactively by typing M-x myfunction RET or by binding it
to a key. If the function is not interactive, omit the t or use nil.

• Rebind the key C-x l to run the function make-symbolic-link (see Section 33.3.6 [Init
Rebinding], page 417).

(global-set-key "\C-xl" ’make-symbolic-link)

or

(define-key global-map "\C-xl" ’make-symbolic-link)

Note once again the single-quote used to refer to the symbol make-symbolic-link

instead of its value as a variable.

• Do the same thing for Lisp mode only.

(define-key lisp-mode-map "\C-xl" ’make-symbolic-link)

• Redefine all keys which now run next-line in Fundamental mode so that they run
forward-line instead.

(substitute-key-definition ’next-line ’forward-line

global-map)

• Make C-x C-v undefined.

(global-unset-key "\C-x\C-v")

One reason to undefine a key is so that you can make it a prefix. Simply defining C-x

C-v anything will make C-x C-v a prefix, but C-x C-v must first be freed of its usual
non-prefix definition.

• Make ‘$’ have the syntax of punctuation in Text mode. Note the use of a character
constant for ‘$’.

Chapter 33: Customization 427

(modify-syntax-entry ?\$ "." text-mode-syntax-table)

• Enable the use of the command narrow-to-region without confirmation.

(put ’narrow-to-region ’disabled nil)

• Adjusting the configuration to various platforms and Emacs versions.

Users typically want Emacs to behave the same on all systems, so the same init file
is right for all platforms. However, sometimes it happens that a function you use for
customizing Emacs is not available on some platforms or in older Emacs versions. To
deal with that situation, put the customization inside a conditional that tests whether
the function or facility is available, like this:

(if (fboundp ’blink-cursor-mode)

(blink-cursor-mode 0))

(if (boundp ’coding-category-utf-8)

(set-coding-priority ’(coding-category-utf-8)))

You can also simply disregard the errors that occur if the function is not defined.

(condition case ()

(set-face-background ’region "grey75")

(error nil))

A setq on a variable which does not exist is generally harmless, so those do not need
a conditional.

33.4.3 Terminal-specific Initialization

Each terminal type can have a Lisp library to be loaded into Emacs when it is run on that
type of terminal. For a terminal type named termtype, the library is called ‘term/termtype ’
and it is found by searching the directories load-path as usual and trying the suffixes ‘.elc’
and ‘.el’. Normally it appears in the subdirectory ‘term’ of the directory where most Emacs
libraries are kept.

The usual purpose of the terminal-specific library is to map the escape sequences used
by the terminal’s function keys onto more meaningful names, using input-decode-map (or
function-key-map before it). See the file ‘term/lk201.el’ for an example of how this is
done. Many function keys are mapped automatically according to the information in the
Termcap data base; the terminal-specific library needs to map only the function keys that
Termcap does not specify.

When the terminal type contains a hyphen, only the part of the name before the first
hyphen is significant in choosing the library name. Thus, terminal types ‘aaa-48’ and
‘aaa-30-rv’ both use the library ‘term/aaa’. The code in the library can use (getenv

"TERM") to find the full terminal type name.

The library’s name is constructed by concatenating the value of the variable term-

file-prefix and the terminal type. Your ‘.emacs’ file can prevent the loading of the
terminal-specific library by setting term-file-prefix to nil.

Emacs runs the hook term-setup-hook at the end of initialization, after both your
‘.emacs’ file and any terminal-specific library have been read in. Add hook functions to
this hook if you wish to override part of any of the terminal-specific libraries and to define
initializations for terminals that do not have a library. See Section 33.2.2 [Hooks], page 408.

Chapter 33: Customization 428

33.4.4 How Emacs Finds Your Init File

Normally Emacs uses the environment variable HOME (see Section C.4.1 [General Vari-
ables], page 467) to find ‘.emacs’; that’s what ‘~’ means in a file name. If ‘.emacs’ is
not found inside ‘~/’ (nor ‘.emacs.el’), Emacs looks for ‘~/.emacs.d/init.el’ (which,
like ‘~/.emacs.el’, can be byte-compiled).

However, if you run Emacs from a shell started by su, Emacs tries to find your own
‘.emacs’, not that of the user you are currently pretending to be. The idea is that you
should get your own editor customizations even if you are running as the super user.

More precisely, Emacs first determines which user’s init file to use. It gets your user name
from the environment variables LOGNAME and USER; if neither of those exists, it uses effective
user-ID. If that user name matches the real user-ID, then Emacs uses HOME; otherwise, it
looks up the home directory corresponding to that user name in the system’s data base of
users.

33.4.5 Non-ASCII Characters in Init Files

Language and coding systems may cause problems if your init file contains non-ASCII char-
acters, such as accented letters, in strings or key bindings.

If you want to use non-ASCII characters in your init file, you should put a
‘-*-coding: coding-system-*-’ tag on the first line of the init file, and specify a coding
system that supports the character(s) in question. See Section 19.7 [Recognize Coding],
page 176. This is because the defaults for decoding non-ASCII text might not yet be
set up by the time Emacs reads those parts of your init file which use such strings,
possibly leading Emacs to decode those strings incorrectly. You should then avoid
adding Emacs Lisp code that modifies the coding system in other ways, such as calls to
set-language-environment.

To bind non-ASCII keys, you must use a vector (see Section 33.3.6 [Init Rebinding],
page 417). The string syntax cannot be used, since the non-ASCII characters will be inter-
preted as meta keys. For instance:

(global-set-key [?char] ’some-function)

Type C-q, followed by the key you want to bind, to insert char.

Warning: if you change the keyboard encoding, or change between multibyte and unibyte
mode, or anything that would alter which code C-q would insert for that character, this key
binding may stop working. It is therefore advisable to use one and only one coding system,
for your init file as well as the files you edit. For example, don’t mix the ‘latin-1’ and
‘latin-9’ coding systems.

Chapter 34: Dealing with Common Problems 429

34 Dealing with Common Problems

If you type an Emacs command you did not intend, the results are often mysterious. This
chapter tells what you can do to cancel your mistake or recover from a mysterious situation.
Emacs bugs and system crashes are also considered.

34.1 Quitting and Aborting

C-g

C-BREAK (MS-DOS only)
Quit: cancel running or partially typed command.

C-] Abort innermost recursive editing level and cancel the command which invoked
it (abort-recursive-edit).

ESC ESC ESC

Either quit or abort, whichever makes sense (keyboard-escape-quit).

M-x top-level

Abort all recursive editing levels that are currently executing.

C-/

C-x u

C-_ Cancel a previously made change in the buffer contents (undo).

There are two ways of canceling a command before it has finished: quitting with C-g,
and aborting with C-] or M-x top-level. Quitting cancels a partially typed command, or
one which is still running. Aborting exits a recursive editing level and cancels the command
that invoked the recursive edit (see Section 31.9 [Recursive Edit], page 388).

Quitting with C-g is the way to get rid of a partially typed command, or a numeric
argument that you don’t want. Furthermore, if you are in the middle of a command that
is running, C-g stops the command in a relatively safe way. For example, if you quit out
of a kill command that is taking a long time, either your text will all still be in the buffer,
or it will all be in the kill ring, or maybe both. If the region is active, C-g deactivates
the mark, unless Transient Mark mode is off (see Section 8.7 [Disabled Transient Mark],
page 49). If you are in the middle of an incremental search, C-g behaves specially; it may
take two successive C-g characters to get out of a search. See Section 12.1 [Incremental
Search], page 85, for details.

On MS-DOS, the character C-BREAK serves as a quit character like C-g. The reason is
that it is not feasible, on MS-DOS, to recognize C-g while a command is running, between
interactions with the user. By contrast, it is feasible to recognize C-BREAK at all times. See
Section “MS-DOS Keyboard” in Specialized Emacs Features.

C-g works by setting the variable quit-flag to t the instant C-g is typed; Emacs Lisp
checks this variable frequently, and quits if it is non-nil. C-g is only actually executed as
a command if you type it while Emacs is waiting for input. In that case, the command it
runs is keyboard-quit.

On a text terminal, if you quit with C-g a second time before the first C-g is recognized,
you activate the “emergency escape” feature and return to the shell. See Section 34.2.7
[Emergency Escape], page 433.

Chapter 34: Dealing with Common Problems 430

There are some situations where you cannot quit. When Emacs is waiting for the oper-
ating system to do something, quitting is impossible unless special pains are taken for the
particular system call within Emacs where the waiting occurs. We have done this for the
system calls that users are likely to want to quit from, but it’s possible you will encounter a
case not handled. In one very common case—waiting for file input or output using NFS—
Emacs itself knows how to quit, but many NFS implementations simply do not allow user
programs to stop waiting for NFS when the NFS server is hung.

Aborting with C-] (abort-recursive-edit) is used to get out of a recursive editing level
and cancel the command which invoked it. Quitting with C-g does not do this, and could
not do this, because it is used to cancel a partially typed command within the recursive
editing level. Both operations are useful. For example, if you are in a recursive edit and
type C-u 8 to enter a numeric argument, you can cancel that argument with C-g and remain
in the recursive edit.

The sequence ESC ESC ESC (keyboard-escape-quit) can either quit or abort. (We de-
fined it this way because ESC means “get out” in many PC programs.) It can cancel a
prefix argument, clear a selected region, or get out of a Query Replace, like C-g. It can get
out of the minibuffer or a recursive edit, like C-]. It can also get out of splitting the frame
into multiple windows, as with C-x 1. One thing it cannot do, however, is stop a command
that is running. That’s because it executes as an ordinary command, and Emacs doesn’t
notice it until it is ready for the next command.

The command M-x top-level is equivalent to “enough” C-] commands to get you out
of all the levels of recursive edits that you are in; it also exits the minibuffer if it is active.
C-] gets you out one level at a time, but M-x top-level goes out all levels at once. Both
C-] and M-x top-level are like all other commands, and unlike C-g, in that they take effect
only when Emacs is ready for a command. C-] is an ordinary key and has its meaning only
because of its binding in the keymap. See Section 31.9 [Recursive Edit], page 388.

C-/ (undo) is not strictly speaking a way of canceling a command, but you can think of it
as canceling a command that already finished executing. See Section 13.1 [Undo], page 102,
for more information about the undo facility.

34.2 Dealing with Emacs Trouble

This section describes how to recognize and deal with situations in which Emacs does not
work as you expect, such as keyboard code mixups, garbled displays, running out of memory,
and crashes and hangs.

See Section 34.3 [Bugs], page 433, for what to do when you think you have found a bug
in Emacs.

34.2.1 If DEL Fails to Delete

Every keyboard has a large key, usually labeled BACKSPACE, which is ordinarily used to
erase the last character that you typed. In Emacs, this key is supposed to be equivalent to
DEL.

When Emacs starts up on a graphical display, it determines automatically which key
should be DEL. In some unusual cases, Emacs gets the wrong information from the system,
and BACKSPACE ends up deleting forwards instead of backwards.

Chapter 34: Dealing with Common Problems 431

Some keyboards also have a DELETE key, which is ordinarily used to delete forwards. If
this key deletes backward in Emacs, that too suggests Emacs got the wrong information—
but in the opposite sense.

On a text terminal, if you find that BACKSPACE prompts for a Help command, like
Control-h, instead of deleting a character, it means that key is actually sending the BS
character. Emacs ought to be treating BS as DEL, but it isn’t.

In all of those cases, the immediate remedy is the same: use the command M-x

normal-erase-is-backspace-mode. This toggles between the two modes that Emacs
supports for handling DEL, so if Emacs starts in the wrong mode, this should switch to
the right mode. On a text terminal, if you want to ask for help when BS is treated as
DEL, use F1; C-? may also work, if it sends character code 127.

To fix the problem in every Emacs session, put one of the following lines into your
initialization file (see Section 33.4 [Init File], page 423). For the first case above, where
BACKSPACE deletes forwards instead of backwards, use this line to make BACKSPACE
act as DEL:

(normal-erase-is-backspace-mode 0)

For the other two cases, use this line:

(normal-erase-is-backspace-mode 1)

Another way to fix the problem for every Emacs session is to customize the variable
normal-erase-is-backspace: the value t specifies the mode where BS or BACKSPACE
is DEL, and nil specifies the other mode. See Section 33.1 [Easy Customization], page 398.

34.2.2 Recursive Editing Levels

Recursive editing levels are important and useful features of Emacs, but they can seem like
malfunctions if you do not understand them.

If the mode line has square brackets ‘[...]’ around the parentheses that contain the
names of the major and minor modes, you have entered a recursive editing level. If you did
not do this on purpose, or if you don’t understand what that means, you should just get out
of the recursive editing level. To do so, type M-x top-level. See Section 31.9 [Recursive
Edit], page 388.

34.2.3 Garbage on the Screen

If the text on a text terminal looks wrong, the first thing to do is see whether it is wrong
in the buffer. Type C-l to redisplay the entire screen. If the screen appears correct after
this, the problem was entirely in the previous screen update. (Otherwise, see the following
section.)

Display updating problems often result from an incorrect terminfo entry for the terminal
you are using. The file ‘etc/TERMS’ in the Emacs distribution gives the fixes for known
problems of this sort. ‘INSTALL’ contains general advice for these problems in one of its
sections. If you seem to be using the right terminfo entry, it is possible that there is a bug
in the terminfo entry, or a bug in Emacs that appears for certain terminal types.

Chapter 34: Dealing with Common Problems 432

34.2.4 Garbage in the Text

If C-l shows that the text is wrong, first type C-h l to see what commands you typed to
produce the observed results. Then try undoing the changes step by step using C-x u, until
it gets back to a state you consider correct.

If a large portion of text appears to be missing at the beginning or end of the buffer,
check for the word ‘Narrow’ in the mode line. If it appears, the text you don’t see is
probably still present, but temporarily off-limits. To make it accessible again, type C-x n

w. See Section 11.5 [Narrowing], page 68.

34.2.5 Running out of Memory

If you get the error message ‘Virtual memory exceeded’, save your modified buffers with
C-x s. This method of saving them has the smallest need for additional memory. Emacs
keeps a reserve of memory which it makes available when this error happens; that should
be enough to enable C-x s to complete its work. When the reserve has been used, ‘!MEM
FULL!’ appears at the beginning of the mode line, indicating there is no more reserve.

Once you have saved your modified buffers, you can exit this Emacs session and start
another, or you can use M-x kill-some-buffers to free space in the current Emacs job.
If this frees up sufficient space, Emacs will refill its memory reserve, and ‘!MEM FULL!’ will
disappear from the mode line. That means you can safely go on editing in the same Emacs
session.

Do not use M-x buffer-menu to save or kill buffers when you run out of memory, because
the buffer menu needs a fair amount of memory itself, and the reserve supply may not be
enough.

34.2.6 Recovery After a Crash

If Emacs or the computer crashes, you can recover the files you were editing at the time of
the crash from their auto-save files. To do this, start Emacs again and type the command
M-x recover-session.

This command initially displays a buffer which lists interrupted session files, each with
its date. You must choose which session to recover from. Typically the one you want is the
most recent one. Move point to the one you choose, and type C-c C-c.

Then recover-session considers each of the files that you were editing during that
session; for each such file, it asks whether to recover that file. If you answer y for a file, it
shows the dates of that file and its auto-save file, then asks once again whether to recover
that file. For the second question, you must confirm with yes. If you do, Emacs visits the
file but gets the text from the auto-save file.

When recover-session is done, the files you’ve chosen to recover are present in Emacs
buffers. You should then save them. Only this—saving them—updates the files themselves.

As a last resort, if you had buffers with content which were not associated with any files,
or if the autosave was not recent enough to have recorded important changes, you can use
the ‘etc/emacs-buffer.gdb’ script with GDB (the GNU Debugger) to retrieve them from
a core dump–provided that a core dump was saved, and that the Emacs executable was not
stripped of its debugging symbols.

As soon as you get the core dump, rename it to another name such as ‘core.emacs’, so
that another crash won’t overwrite it.

Chapter 34: Dealing with Common Problems 433

To use this script, run gdb with the file name of your Emacs executable and the file
name of the core dump, e.g. ‘gdb /usr/bin/emacs core.emacs’. At the (gdb) prompt,
load the recovery script: ‘source /usr/src/emacs/etc/emacs-buffer.gdb’. Then type
the command ybuffer-list to see which buffers are available. For each buffer, it lists a
buffer number. To save a buffer, use ysave-buffer; you specify the buffer number, and
the file name to write that buffer into. You should use a file name which does not already
exist; if the file does exist, the script does not make a backup of its old contents.

34.2.7 Emergency Escape

On text terminals, the emergency escape feature suspends Emacs immediately if you type
C-g a second time before Emacs can actually respond to the first one by quitting. This is
so you can always get out of GNU Emacs no matter how badly it might be hung. When
things are working properly, Emacs recognizes and handles the first C-g so fast that the
second one won’t trigger emergency escape. However, if some problem prevents Emacs from
handling the first C-g properly, then the second one will get you back to the shell.

When you resume Emacs after a suspension caused by emergency escape, it asks two
questions before going back to what it had been doing:

Auto-save? (y or n)

Abort (and dump core)? (y or n)

Answer each one with y or n followed by RET.

Saying y to ‘Auto-save?’ causes immediate auto-saving of all modified buffers in which
auto-saving is enabled. Saying n skips this.

Saying y to ‘Abort (and dump core)?’ causes Emacs to crash, dumping core. This is to
enable a wizard to figure out why Emacs was failing to quit in the first place. Execution
does not continue after a core dump.

If you answer this question n, Emacs execution resumes. With luck, Emacs will ulti-
mately do the requested quit. If not, each subsequent C-g invokes emergency escape again.

If Emacs is not really hung, just slow, you may invoke the double C-g feature without
really meaning to. Then just resume and answer n to both questions, and you will get back
to the former state. The quit you requested will happen by and by.

Emergency escape is active only for text terminals. On graphical displays, you can use
the mouse to kill Emacs or switch to another program.

On MS-DOS, you must type C-BREAK (twice) to cause emergency escape—but there are
cases where it won’t work, when system call hangs or when Emacs is stuck in a tight loop
in C code.

34.3 Reporting Bugs

If you think you have found a bug in Emacs, please report it. We cannot promise to fix
it, or always to agree that it is a bug, but we certainly want to hear about it. The same
applies for new features you would like to see added. The following sections will help you
to construct an effective bug report.

Chapter 34: Dealing with Common Problems 434

34.3.1 Reading Existing Bug Reports and Known Problems

Before reporting a bug, if at all possible please check to see if it is already known about.
Indeed, it may already have been fixed in a later release of Emacs, or in the development
version. Here is a list of the main places you can read about known issues:

• The ‘etc/PROBLEMS’ file; type C-h C-p to read it. This file contains a list of particularly
well-known issues that have been encountered in compiling, installing and running
Emacs. Often, there are suggestions for workarounds and solutions.

• Some additional user-level problems can be found in Section “Bugs and problems” in
GNU Emacs FAQ.

• The GNU Bug Tracker at http://debbugs.gnu.org. Emacs bugs are filed in the
tracker under the ‘emacs’ package. The tracker records information about the status
of each bug, the initial bug report, and the follow-up messages by the bug reporter and
Emacs developers. You can search for bugs by subject, severity, and other criteria.

Instead of browsing the bug tracker as a webpage, you can browse it from Emacs using
the debbugs package, which can be downloaded via the Package Menu (see Chapter 32
[Packages], page 394). This package provides the command M-x debbugs-gnu to list
bugs, and M-x debbugs-gnu-search to search for a specific bug.

• The ‘bug-gnu-emacs’ mailing list (also available as the newsgroup ‘gnu.emacs.bug’).
You can read the list archives at http://lists.gnu.org/mailman/listinfo/bug-gnu-emacs.
This list works as a “mirror” of the Emacs bug reports and follow-up messages which
are sent to the bug tracker. It also contains old bug reports from before the bug
tracker was introduced (in early 2008).

If you like, you can subscribe to the list. Be aware that its purpose is to provide the
Emacs maintainers with information about bugs and feature requests, so reports may
contain fairly large amounts of data; spectators should not complain about this.

• The ‘emacs-pretest-bug’ mailing list. This list is no longer used, and is mainly of
historical interest. At one time, it was used for bug reports in development (i.e., not
yet released) versions of Emacs. You can read the archives for 2003 to mid 2007
at http://lists.gnu.org/archive/html/emacs-pretest-bug/. Nowadays, it is an
alias for ‘bug-gnu-emacs’.

• The ‘emacs-devel’ mailing list. Sometimes people report bugs to this mailing list.
This is not the main purpose of the list, however, and it is much better to send bug
reports to the bug list. You should not feel obliged to read this list before reporting a
bug.

34.3.2 When Is There a Bug

If Emacs accesses an invalid memory location (“segmentation fault”), or exits with an
operating system error message that indicates a problem in the program (as opposed to
something like “disk full”), then it is certainly a bug.

If the Emacs display does not correspond properly to the contents of the buffer, then
it is a bug. But you should check that features like buffer narrowing (see Section 11.5
[Narrowing], page 68), which can hide parts of the buffer or change how it is displayed, are
not responsible.

Taking forever to complete a command can be a bug, but you must make sure that it
is really Emacs’s fault. Some commands simply take a long time. Type C-g (C-BREAK on

http://debbugs.gnu.org
http://lists.gnu.org/mailman/listinfo/bug-gnu-emacs
http://lists.gnu.org/archive/html/emacs-pretest-bug/

Chapter 34: Dealing with Common Problems 435

MS-DOS) and then C-h l to see whether the input Emacs received was what you intended
to type; if the input was such that you know it should have been processed quickly, report a
bug. If you don’t know whether the command should take a long time, find out by looking
in the manual or by asking for assistance.

If a command you are familiar with causes an Emacs error message in a case where its
usual definition ought to be reasonable, it is probably a bug.

If a command does the wrong thing, that is a bug. But be sure you know for certain
what it ought to have done. If you aren’t familiar with the command, it might actually
be working right. If in doubt, read the command’s documentation (see Section 7.2 [Name
Help], page 38).

A command’s intended definition may not be the best possible definition for editing with.
This is a very important sort of problem, but it is also a matter of judgment. Also, it is easy
to come to such a conclusion out of ignorance of some of the existing features. It is probably
best not to complain about such a problem until you have checked the documentation in
the usual ways, feel confident that you understand it, and know for certain that what you
want is not available. Ask other Emacs users, too. If you are not sure what the command
is supposed to do after a careful reading of the manual, check the index and glossary for
any terms that may be unclear.

If after careful rereading of the manual you still do not understand what the command
should do, that indicates a bug in the manual, which you should report. The manual’s job
is to make everything clear to people who are not Emacs experts—including you. It is just
as important to report documentation bugs as program bugs.

If the built-in documentation for a function or variable disagrees with the manual, one
of them must be wrong; that is a bug.

34.3.3 Understanding Bug Reporting

When you decide that there is a bug, it is important to report it and to report it in a way
which is useful. What is most useful is an exact description of what commands you type,
starting with the shell command to run Emacs, until the problem happens.

The most important principle in reporting a bug is to report facts. Hypotheses and
verbal descriptions are no substitute for the detailed raw data. Reporting the facts is
straightforward, but many people strain to posit explanations and report them instead of
the facts. If the explanations are based on guesses about how Emacs is implemented, they
will be useless; meanwhile, lacking the facts, we will have no real information about the
bug. If you want to actually debug the problem, and report explanations that are more
than guesses, that is useful—but please include the raw facts as well.

For example, suppose that you type C-x C-f /glorp/baz.ugh RET, visiting a file which
(you know) happens to be rather large, and Emacs displays ‘I feel pretty today’. The
bug report would need to provide all that information. You should not assume that the
problem is due to the size of the file and say, “I visited a large file, and Emacs displayed
‘I feel pretty today’.” This is what we mean by “guessing explanations”. The problem
might be due to the fact that there is a ‘z’ in the file name. If this is so, then when we
got your report, we would try out the problem with some “large file”, probably with no ‘z’
in its name, and not see any problem. There is no way we could guess that we should try
visiting a file with a ‘z’ in its name.

Chapter 34: Dealing with Common Problems 436

You should not even say “visit a file” instead of C-x C-f. Similarly, rather than saying
“if I have three characters on the line”, say “after I type RET A B C RET C-p”, if that is the
way you entered the text.

If possible, try quickly to reproduce the bug by invoking Emacs with emacs -Q (so that
Emacs starts with no initial customizations; see Section C.2 [Initial Options], page 464),
and repeating the steps that you took to trigger the bug. If you can reproduce the bug
this way, that rules out bugs in your personal customizations. Then your bug report should
begin by stating that you started Emacs with emacs -Q, followed by the exact sequence of
steps for reproducing the bug. If possible, inform us of the exact contents of any file that
is needed to reproduce the bug.

Some bugs are not reproducible from emacs -Q; some are not easily reproducible at all.
In that case, you should report what you have—but, as before, please stick to the raw facts
about what you did to trigger the bug the first time.

34.3.4 Checklist for Bug Reports

Before reporting a bug, first try to see if the problem has already been reported (see
Section 34.3.1 [Known Problems], page 434).

If you are able to, try the latest release of Emacs to see if the problem has already been
fixed. Even better is to try the latest development version. We recognize that this is not
easy for some people, so do not feel that you absolutely must do this before making a report.

The best way to write a bug report for Emacs is to use the command M-x

report-emacs-bug. This sets up a mail buffer (see Chapter 29 [Sending Mail], page 337)
and automatically inserts some of the essential information. However, it cannot supply all
the necessary information; you should still read and follow the guidelines below, so you
can enter the other crucial information by hand before you send the message. You may
feel that some of the information inserted by M-x report-emacs-bug is not relevant, but
unless you are absolutely sure it is best to leave it, so that the developers can decide for
themselves.

When you have finished writing your report, type C-c C-c and it will be sent to the
Emacs maintainers at bug-gnu-emacs@gnu.org. (If you want to suggest an improvement
or new feature, use the same address.) If you cannot send mail from inside Emacs, you can
copy the text of your report to your normal mail client (if your system supports it, you can
type C-c m to have Emacs do this for you) and send it to that address. Or you can simply
send an email to that address describing the problem.

Your report will be sent to the ‘bug-gnu-emacs’ mailing list, and stored in the GNU Bug
Tracker at http://debbugs.gnu.org. Please include a valid reply email address, in case
we need to ask you for more information about your report. Submissions are moderated,
so there may be a delay before your report appears.

You do not need to know how the Gnu Bug Tracker works in order to report a bug, but
if you want to, you can read the tracker’s online documentation to see the various features
you can use.

All mail sent to the ‘bug-gnu-emacs’ mailing list is also gatewayed to the
‘gnu.emacs.bug’ newsgroup. The reverse is also true, but we ask you not to post bug
reports (or replies) via the newsgroup. It can make it much harder to contact you if we
need to ask for more information, and it does not integrate well with the bug tracker.

mailto:bug-gnu-emacs@gnu.org
http://debbugs.gnu.org

Chapter 34: Dealing with Common Problems 437

If your data is more than 500,000 bytes, please don’t include it directly in the bug report;
instead, offer to send it on request, or make it available by ftp and say where.

To enable maintainers to investigate a bug, your report should include all these things:

• The version number of Emacs. Without this, we won’t know whether there is any point
in looking for the bug in the current version of GNU Emacs.

M-x report-emacs-bug includes this information automatically, but if you are not
using that command for your report you can get the version number by typing M-x

emacs-version RET. If that command does not work, you probably have something
other than GNU Emacs, so you will have to report the bug somewhere else.

• The type of machine you are using, and the operating system name and version number
(again, automatically included by M-x report-emacs-bug). M-x emacs-version RET

provides this information too. Copy its output from the ‘*Messages*’ buffer, so that
you get it all and get it accurately.

• The operands given to the configure command when Emacs was installed (automat-
ically included by M-x report-emacs-bug).

• A complete list of any modifications you have made to the Emacs source. (We may
not have time to investigate the bug unless it happens in an unmodified Emacs. But
if you’ve made modifications and you don’t tell us, you are sending us on a wild goose
chase.)

Be precise about these changes. A description in English is not enough—send a context
diff for them.

Adding files of your own, or porting to another machine, is a modification of the source.

• Details of any other deviations from the standard procedure for installing GNU Emacs.

• The complete text of any files needed to reproduce the bug.

If you can tell us a way to cause the problem without visiting any files, please do so.
This makes it much easier to debug. If you do need files, make sure you arrange for
us to see their exact contents. For example, it can matter whether there are spaces at
the ends of lines, or a newline after the last line in the buffer (nothing ought to care
whether the last line is terminated, but try telling the bugs that).

• The precise commands we need to type to reproduce the bug. If at all possible, give a
full recipe for an Emacs started with the ‘-Q’ option (see Section C.2 [Initial Options],
page 464). This bypasses your personal customizations.

One way to record the input to Emacs precisely is to write a dribble file. To start the
file, use the M-x open-dribble-file RET command. From then on, Emacs copies all
your input to the specified dribble file until the Emacs process is killed.

• For possible display bugs, the terminal type (the value of environment variable TERM),
the complete termcap entry for the terminal from ‘/etc/termcap’ (since that file is not
identical on all machines), and the output that Emacs actually sent to the terminal.

The way to collect the terminal output is to execute the Lisp expression

(open-termscript "~/termscript")

using M-: or from the ‘*scratch*’ buffer just after starting Emacs. From then on,
Emacs copies all terminal output to the specified termscript file as well, until the Emacs
process is killed. If the problem happens when Emacs starts up, put this expression

Chapter 34: Dealing with Common Problems 438

into your Emacs initialization file so that the termscript file will be open when Emacs
displays the screen for the first time.

Be warned: it is often difficult, and sometimes impossible, to fix a terminal-dependent
bug without access to a terminal of the type that stimulates the bug.

• If non-ASCII text or internationalization is relevant, the locale that was current when
you started Emacs. On GNU/Linux and Unix systems, or if you use a Posix-style shell
such as Bash, you can use this shell command to view the relevant values:

echo LC_ALL=$LC_ALL LC_COLLATE=$LC_COLLATE LC_CTYPE=$LC_CTYPE \

LC_MESSAGES=$LC_MESSAGES LC_TIME=$LC_TIME LANG=$LANG

Alternatively, use the locale command, if your system has it, to display your locale
settings.

You can use the M-! command to execute these commands from Emacs, and then copy
the output from the ‘*Messages*’ buffer into the bug report. Alternatively, M-x getenv

RET LC_ALL RET will display the value of LC_ALL in the echo area, and you can copy its
output from the ‘*Messages*’ buffer.

• A description of what behavior you observe that you believe is incorrect. For example,
“The Emacs process gets a fatal signal”, or, “The resulting text is as follows, which I
think is wrong.”

Of course, if the bug is that Emacs gets a fatal signal, then one can’t miss it. But if
the bug is incorrect text, the maintainer might fail to notice what is wrong. Why leave
it to chance?

Even if the problem you experience is a fatal signal, you should still say so explicitly.
Suppose something strange is going on, such as, your copy of the source is out of sync,
or you have encountered a bug in the C library on your system. (This has happened!)
Your copy might crash and the copy here might not. If you said to expect a crash,
then when Emacs here fails to crash, we would know that the bug was not happening.
If you don’t say to expect a crash, then we would not know whether the bug was
happening—we would not be able to draw any conclusion from our observations.

• If the bug is that the Emacs Manual or the Emacs Lisp Reference Manual fails to
describe the actual behavior of Emacs, or that the text is confusing, copy in the text
from the online manual which you think is at fault. If the section is small, just the
section name is enough.

• If the manifestation of the bug is an Emacs error message, it is important to report
the precise text of the error message, and a backtrace showing how the Lisp program
in Emacs arrived at the error.

To get the error message text accurately, copy it from the ‘*Messages*’ buffer into the
bug report. Copy all of it, not just part.

To make a backtrace for the error, use M-x toggle-debug-on-error before the error
happens (that is to say, you must give that command and then make the bug hap-
pen). This causes the error to start the Lisp debugger, which shows you a backtrace.
Copy the text of the debugger’s backtrace into the bug report. See Section “The Lisp
Debugger” in the Emacs Lisp Reference Manual, for information on debugging Emacs
Lisp programs with the Edebug package.

This use of the debugger is possible only if you know how to make the bug happen
again. If you can’t make it happen again, at least copy the whole error message.

Chapter 34: Dealing with Common Problems 439

If Emacs appears to be stuck in an infinite loop or in a very long operation, typing
C-g with the variable debug-on-quit non-nil will start the Lisp debugger and show a
backtrace. This backtrace is useful for debugging such long loops, so if you can produce
it, copy it into the bug report.

If you cannot get Emacs to respond to C-g (e.g., because inhibit-quit is set), then
you can try sending the signal specified by debug-on-event (default SIGUSR2) from
outside Emacs to cause it to enter the debugger.

• Check whether any programs you have loaded into the Lisp world, including your
initialization file, set any variables that may affect the functioning of Emacs. Also,
see whether the problem happens in a freshly started Emacs without loading your
initialization file (start Emacs with the -Q switch to prevent loading the init files). If
the problem does not occur then, you must report the precise contents of any programs
that you must load into the Lisp world in order to cause the problem to occur.

• If the problem does depend on an init file or other Lisp programs that are not part
of the standard Emacs system, then you should make sure it is not a bug in those
programs by complaining to their maintainers first. After they verify that they are
using Emacs in a way that is supposed to work, they should report the bug.

• If you wish to mention something in the GNU Emacs source, show the line of code with
a few lines of context. Don’t just give a line number.

The line numbers in the development sources don’t match those in your sources. It
would take extra work for the maintainers to determine what code is in your version
at a given line number, and we could not be certain.

• Additional information from a C debugger such as GDB might enable someone to find
a problem on a machine which he does not have available. If you don’t know how to
use GDB, please read the GDB manual—it is not very long, and using GDB is easy.
You can find the GDB distribution, including the GDB manual in online form, in most
of the same places you can find the Emacs distribution. To run Emacs under GDB,
you should switch to the ‘src’ subdirectory in which Emacs was compiled, then do ‘gdb
emacs’. It is important for the directory ‘src’ to be current so that GDB will read the
‘.gdbinit’ file in this directory.

However, you need to think when you collect the additional information if you want it
to show what causes the bug.

For example, many people send just a backtrace, but that is not very useful by itself.
A simple backtrace with arguments often conveys little about what is happening inside
GNU Emacs, because most of the arguments listed in the backtrace are pointers to
Lisp objects. The numeric values of these pointers have no significance whatever; all
that matters is the contents of the objects they point to (and most of the contents are
themselves pointers).

To provide useful information, you need to show the values of Lisp objects in Lisp
notation. Do this for each variable which is a Lisp object, in several stack frames near
the bottom of the stack. Look at the source to see which variables are Lisp objects,
because the debugger thinks of them as integers.

To show a variable’s value in Lisp syntax, first print its value, then use the user-defined
GDB command pr to print the Lisp object in Lisp syntax. (If you must use another
debugger, call the function debug_print with the object as an argument.) The pr

Chapter 34: Dealing with Common Problems 440

command is defined by the file ‘.gdbinit’, and it works only if you are debugging a
running process (not with a core dump).

To make Lisp errors stop Emacs and return to GDB, put a breakpoint at Fsignal.

For a short listing of Lisp functions running, type the GDB command xbacktrace.

The file ‘.gdbinit’ defines several other commands that are useful for examining the
data types and contents of Lisp objects. Their names begin with ‘x’. These commands
work at a lower level than pr, and are less convenient, but they may work even when pr

does not, such as when debugging a core dump or when Emacs has had a fatal signal.

More detailed advice and other useful techniques for debugging Emacs are available
in the file ‘etc/DEBUG’ in the Emacs distribution. That file also includes instructions
for investigating problems whereby Emacs stops responding (many people assume that
Emacs is “hung”, whereas in fact it might be in an infinite loop).

To find the file ‘etc/DEBUG’ in your Emacs installation, use the directory name stored
in the variable data-directory.

Here are some things that are not necessary in a bug report:

• A description of the envelope of the bug—this is not necessary for a reproducible bug.

Often people who encounter a bug spend a lot of time investigating which changes to
the input file will make the bug go away and which changes will not affect it.

This is often time-consuming and not very useful, because the way we will find the
bug is by running a single example under the debugger with breakpoints, not by pure
deduction from a series of examples. You might as well save time by not searching for
additional examples. It is better to send the bug report right away, go back to editing,
and find another bug to report.

Of course, if you can find a simpler example to report instead of the original one, that is
a convenience. Errors in the output will be easier to spot, running under the debugger
will take less time, etc.

However, simplification is not vital; if you can’t do this or don’t have time to try, please
report the bug with your original test case.

• A core dump file.

Debugging the core dump might be useful, but it can only be done on your machine,
with your Emacs executable. Therefore, sending the core dump file to the Emacs
maintainers won’t be useful. Above all, don’t include the core file in an email bug
report! Such a large message can be extremely inconvenient.

• A system-call trace of Emacs execution.

System-call traces are very useful for certain special kinds of debugging, but in most
cases they give little useful information. It is therefore strange that many people seem
to think that the way to report information about a crash is to send a system-call trace.
Perhaps this is a habit formed from experience debugging programs that don’t have
source code or debugging symbols.

In most programs, a backtrace is normally far, far more informative than a system-call
trace. Even in Emacs, a simple backtrace is generally more informative, though to give
full information you should supplement the backtrace by displaying variable values and
printing them as Lisp objects with pr (see above).

Chapter 34: Dealing with Common Problems 441

• A patch for the bug.

A patch for the bug is useful if it is a good one. But don’t omit the other information
that a bug report needs, such as the test case, on the assumption that a patch is
sufficient. We might see problems with your patch and decide to fix the problem
another way, or we might not understand it at all. And if we can’t understand what
bug you are trying to fix, or why your patch should be an improvement, we mustn’t
install it.

• A guess about what the bug is or what it depends on.

Such guesses are usually wrong. Even experts can’t guess right about such things
without first using the debugger to find the facts.

34.3.5 Sending Patches for GNU Emacs

If you would like to write bug fixes or improvements for GNU Emacs, that is very helpful.
When you send your changes, please follow these guidelines to make it easy for the main-
tainers to use them. If you don’t follow these guidelines, your information might still be
useful, but using it will take extra work. Maintaining GNU Emacs is a lot of work in the
best of circumstances, and we can’t keep up unless you do your best to help.

• Send an explanation with your changes of what problem they fix or what improvement
they bring about. For a fix for an existing bug, it is best to reply to the relevant
discussion on the ‘bug-gnu-emacs’ list, or the bug entry in the GNU Bug Tracker at
http://debbugs.gnu.org. Explain why your change fixes the bug.

• Always include a proper bug report for the problem you think you have fixed. We
need to convince ourselves that the change is right before installing it. Even if it is
correct, we might have trouble understanding it if we don’t have a way to reproduce
the problem.

• Include all the comments that are appropriate to help people reading the source in the
future understand why this change was needed.

• Don’t mix together changes made for different reasons. Send them individually.

If you make two changes for separate reasons, then we might not want to install them
both. We might want to install just one. If you send them all jumbled together in a
single set of diffs, we have to do extra work to disentangle them—to figure out which
parts of the change serve which purpose. If we don’t have time for this, we might have
to ignore your changes entirely.

If you send each change as soon as you have written it, with its own explanation, then
two changes never get tangled up, and we can consider each one properly without any
extra work to disentangle them.

• Send each change as soon as that change is finished. Sometimes people think they are
helping us by accumulating many changes to send them all together. As explained
above, this is absolutely the worst thing you could do.

Since you should send each change separately, you might as well send it right away.
That gives us the option of installing it immediately if it is important.

• Use ‘diff -c’ to make your diffs. Diffs without context are hard to install reliably.
More than that, they are hard to study; we must always study a patch to decide
whether we want to install it. Unidiff format is better than contextless diffs, but not
as easy to read as ‘-c’ format.

http://debbugs.gnu.org

Chapter 34: Dealing with Common Problems 442

If you have GNU diff, use ‘diff -c -F’^[_a-zA-Z0-9$]+ *(’’ when making diffs of C
code. This shows the name of the function that each change occurs in.

• Avoid any ambiguity as to which is the old version and which is the new. Please make
the old version the first argument to diff, and the new version the second argument.
And please give one version or the other a name that indicates whether it is the old
version or your new changed one.

• Write the change log entries for your changes. This is both to save us the extra work
of writing them, and to help explain your changes so we can understand them.

The purpose of the change log is to show people where to find what was changed. So
you need to be specific about what functions you changed; in large functions, it’s often
helpful to indicate where within the function the change was.

On the other hand, once you have shown people where to find the change, you need not
explain its purpose in the change log. Thus, if you add a new function, all you need to
say about it is that it is new. If you feel that the purpose needs explaining, it probably
does—but put the explanation in comments in the code. It will be more useful there.

Please read the ‘ChangeLog’ files in the ‘src’ and ‘lisp’ directories to see what sorts
of information to put in, and to learn the style that we use. See Section 25.2 [Change
Log], page 285.

• When you write the fix, keep in mind that we can’t install a change that would break
other systems. Please think about what effect your change will have if compiled on
another type of system.

Sometimes people send fixes that might be an improvement in general—but it is hard
to be sure of this. It’s hard to install such changes because we have to study them very
carefully. Of course, a good explanation of the reasoning by which you concluded the
change was correct can help convince us.

The safest changes are changes to the configuration files for a particular machine. These
are safe because they can’t create new bugs on other machines.

Please help us keep up with the workload by designing the patch in a form that is
clearly safe to install.

34.4 Contributing to Emacs Development

If you would like to help pretest Emacs releases to assure they work well, or if you would
like to work on improving Emacs, please contact the maintainers at emacs-devel@gnu.org.
A pretester should be prepared to investigate bugs as well as report them. If you’d like to
work on improving Emacs, please ask for suggested projects or suggest your own ideas.

If you have already written an improvement, please tell us about it. If you have not yet
started work, it is useful to contact emacs-devel@gnu.org before you start; it might be
possible to suggest ways to make your extension fit in better with the rest of Emacs.

The development version of Emacs can be downloaded from the repository where
it is actively maintained by a group of developers. See the Emacs project page
http://savannah.gnu.org/projects/emacs/ for details.

For more information on how to contribute, see the ‘etc/CONTRIBUTE’ file in the Emacs
distribution.

mailto:emacs-devel@gnu.org
mailto:emacs-devel@gnu.org
http://savannah.gnu.org/projects/emacs/

Chapter 34: Dealing with Common Problems 443

34.5 How To Get Help with GNU Emacs

If you need help installing, using or changing GNU Emacs, there are two ways to find it:

• Send a message to the mailing list help-gnu-emacs@gnu.org, or post your request on
newsgroup gnu.emacs.help. (This mailing list and newsgroup interconnect, so it does
not matter which one you use.)

• Look in the service directory for someone who might help you for a fee. The service
directory is found in the file named ‘etc/SERVICE’ in the Emacs distribution.

mailto:help-gnu-emacs@gnu.org

Appendix A: GNU GENERAL PUBLIC LICENSE 444

Appendix A GNU GENERAL PUBLIC LICENSE

Version 3, 29 June 2007

Copyright c© 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU General Public License is a free, copyleft license for software and other kinds of
works.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, the GNU General Public License is
intended to guarantee your freedom to share and change all versions of a program—to make
sure it remains free software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to any other work
released this way by its authors. You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for them if you wish), that you receive source code or can get
it if you want it, that you can change the software or use pieces of it in new free programs,
and that you know you can do these things.

To protect your rights, we need to prevent others from denying you these rights or asking
you to surrender the rights. Therefore, you have certain responsibilities if you distribute
copies of the software, or if you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must pass on to the recipients the same freedoms that you received. You must make sure
that they, too, receive or can get the source code. And you must show them these terms so
they know their rights.

Developers that use the GNU GPL protect your rights with two steps: (1) assert copy-
right on the software, and (2) offer you this License giving you legal permission to copy,
distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains that there is no
warranty for this free software. For both users’ and authors’ sake, the GPL requires that
modified versions be marked as changed, so that their problems will not be attributed
erroneously to authors of previous versions.

Some devices are designed to deny users access to install or run modified versions of the
software inside them, although the manufacturer can do so. This is fundamentally incom-
patible with the aim of protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to use, which is pre-
cisely where it is most unacceptable. Therefore, we have designed this version of the GPL
to prohibit the practice for those products. If such problems arise substantially in other
domains, we stand ready to extend this provision to those domains in future versions of the
GPL, as needed to protect the freedom of users.

http://fsf.org/

Appendix A: GNU GENERAL PUBLIC LICENSE 445

Finally, every program is threatened constantly by software patents. States should not
allow patents to restrict development and use of software on general-purpose computers, but
in those that do, we wish to avoid the special danger that patents applied to a free program
could make it effectively proprietary. To prevent this, the GPL assures that patents cannot
be used to render the program non-free.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each
licensee is addressed as “you”. “Licensees” and “recipients” may be individuals or
organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting
work is called a “modified version” of the earlier work or a work “based on” the earlier
work.

A “covered work” means either the unmodified Program or a work based on the Pro-
gram.

To “propagate” a work means to do anything with it that, without permission, would
make you directly or secondarily liable for infringement under applicable copyright law,
except executing it on a computer or modifying a private copy. Propagation includes
copying, distribution (with or without modification), making available to the public,
and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other parties to make
or receive copies. Mere interaction with a user through a computer network, with no
transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate
copyright notice, and (2) tells the user that there is no warranty for the work (except
to the extent that warranties are provided), that licensees may convey the work under
this License, and how to view a copy of this License. If the interface presents a list
of user commands or options, such as a menu, a prominent item in the list meets this
criterion.

1. Source Code.

The “source code” for a work means the preferred form of the work for making modi-
fications to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined
by a recognized standards body, or, in the case of interfaces specified for a particular
programming language, one that is widely used among developers working in that
language.

Appendix A: GNU GENERAL PUBLIC LICENSE 446

The “System Libraries” of an executable work include anything, other than the work as
a whole, that (a) is included in the normal form of packaging a Major Component, but
which is not part of that Major Component, and (b) serves only to enable use of the
work with that Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A “Major Component”,
in this context, means a major essential component (kernel, window system, and so
on) of the specific operating system (if any) on which the executable work runs, or a
compiler used to produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to
modify the work, including scripts to control those activities. However, it does not
include the work’s System Libraries, or general-purpose tools or generally available
free programs which are used unmodified in performing those activities but which are
not part of the work. For example, Corresponding Source includes interface definition
files associated with source files for the work, and the source code for shared libraries
and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms
and other parts of the work.

The Corresponding Source need not include anything that users can regenerate auto-
matically from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the
Program, and are irrevocable provided the stated conditions are met. This License ex-
plicitly affirms your unlimited permission to run the unmodified Program. The output
from running a covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your rights of fair use
or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without
conditions so long as your license otherwise remains in force. You may convey covered
works to others for the sole purpose of having them make modifications exclusively
for you, or provide you with facilities for running those works, provided that you
comply with the terms of this License in conveying all material for which you do not
control copyright. Those thus making or running the covered works for you must do
so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship
with you.

Conveying under any other circumstances is permitted solely under the conditions
stated below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under
any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty
adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention
of such measures.

Appendix A: GNU GENERAL PUBLIC LICENSE 447

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights
under this License with respect to the covered work, and you disclaim any intention
to limit operation or modification of the work as a means of enforcing, against the
work’s users, your or third parties’ legal rights to forbid circumvention of technological
measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an
appropriate copyright notice; keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code; keep intact all
notices of the absence of any warranty; and give all recipients a copy of this License
along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from
the Program, in the form of source code under the terms of section 4, provided that
you also meet all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a
relevant date.

b. The work must carry prominent notices stating that it is released under this Li-
cense and any conditions added under section 7. This requirement modifies the
requirement in section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who
comes into possession of a copy. This License will therefore apply, along with any
applicable section 7 additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no permission to license
the work in any other way, but it does not invalidate such permission if you have
separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal
Notices; however, if the Program has interactive interfaces that do not display
Appropriate Legal Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which
are not by their nature extensions of the covered work, and which are not combined
with it such as to form a larger program, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the compilation and its resulting copyright are
not used to limit the access or legal rights of the compilation’s users beyond what the
individual works permit. Inclusion of a covered work in an aggregate does not cause
this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and
5, provided that you also convey the machine-readable Corresponding Source under
the terms of this License, in one of these ways:

Appendix A: GNU GENERAL PUBLIC LICENSE 448

a. Convey the object code in, or embodied in, a physical product (including a phys-
ical distribution medium), accompanied by the Corresponding Source fixed on a
durable physical medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physi-
cal distribution medium), accompanied by a written offer, valid for at least three
years and valid for as long as you offer spare parts or customer support for that
product model, to give anyone who possesses the object code either (1) a copy of
the Corresponding Source for all the software in the product that is covered by this
License, on a durable physical medium customarily used for software interchange,
for a price no more than your reasonable cost of physically performing this con-
veying of source, or (2) access to copy the Corresponding Source from a network
server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to
provide the Corresponding Source. This alternative is allowed only occasionally
and noncommercially, and only if you received the object code with such an offer,
in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for
a charge), and offer equivalent access to the Corresponding Source in the same
way through the same place at no further charge. You need not require recipients
to copy the Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source may be on
a different server (operated by you or a third party) that supports equivalent
copying facilities, provided you maintain clear directions next to the object code
saying where to find the Corresponding Source. Regardless of what server hosts
the Corresponding Source, you remain obligated to ensure that it is available for
as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other
peers where the object code and Corresponding Source of the work are being offered
to the general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Cor-
responding Source as a System Library, need not be included in conveying the object
code work.

A “User Product” is either (1) a “consumer product”, which means any tangible per-
sonal property which is normally used for personal, family, or household purposes, or
(2) anything designed or sold for incorporation into a dwelling. In determining whether
a product is a consumer product, doubtful cases shall be resolved in favor of coverage.
For a particular product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status of the par-
ticular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether
the product has substantial commercial, industrial or non-consumer uses, unless such
uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, autho-
rization keys, or other information required to install and execute modified versions of a
covered work in that User Product from a modified version of its Corresponding Source.

Appendix A: GNU GENERAL PUBLIC LICENSE 449

The information must suffice to ensure that the continued functioning of the modified
object code is in no case prevented or interfered with solely because modification has
been made.

If you convey an object code work under this section in, or with, or specifically for
use in, a User Product, and the conveying occurs as part of a transaction in which
the right of possession and use of the User Product is transferred to the recipient in
perpetuity or for a fixed term (regardless of how the transaction is characterized),
the Corresponding Source conveyed under this section must be accompanied by the
Installation Information. But this requirement does not apply if neither you nor any
third party retains the ability to install modified object code on the User Product (for
example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement
to continue to provide support service, warranty, or updates for a work that has been
modified or installed by the recipient, or for the User Product in which it has been
modified or installed. Access to a network may be denied when the modification itself
materially and adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with
this section must be in a format that is publicly documented (and with an implementa-
tion available to the public in source code form), and must require no special password
or key for unpacking, reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by mak-
ing exceptions from one or more of its conditions. Additional permissions that are
applicable to the entire Program shall be treated as though they were included in this
License, to the extent that they are valid under applicable law. If additional permis-
sions apply only to part of the Program, that part may be used separately under those
permissions, but the entire Program remains governed by this License without regard
to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any
additional permissions from that copy, or from any part of it. (Additional permissions
may be written to require their own removal in certain cases when you modify the
work.) You may place additional permissions on material, added by you to a covered
work, for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement
the terms of this License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15
and 16 of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions
in that material or in the Appropriate Legal Notices displayed by works containing
it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that mod-
ified versions of such material be marked in reasonable ways as different from the
original version; or

Appendix A: GNU GENERAL PUBLIC LICENSE 450

d. Limiting the use for publicity purposes of names of licensors or authors of the
material; or

e. Declining to grant rights under trademark law for use of some trade names, trade-
marks, or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who
conveys the material (or modified versions of it) with contractual assumptions
of liability to the recipient, for any liability that these contractual assumptions
directly impose on those licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within
the meaning of section 10. If the Program as you received it, or any part of it, con-
tains a notice stating that it is governed by this License along with a term that is a
further restriction, you may remove that term. If a license document contains a further
restriction but permits relicensing or conveying under this License, you may add to a
covered work material governed by the terms of that license document, provided that
the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a
notice indicating where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a sep-
arately written license, or stated as exceptions; the above requirements apply either
way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided un-
der this License. Any attempt otherwise to propagate or modify it is void, and will
automatically terminate your rights under this License (including any patent licenses
granted under the third paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, you do not qualify to receive new
licenses for the same material under section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the
Program. Ancillary propagation of a covered work occurring solely as a consequence of
using peer-to-peer transmission to receive a copy likewise does not require acceptance.

Appendix A: GNU GENERAL PUBLIC LICENSE 451

However, nothing other than this License grants you permission to propagate or modify
any covered work. These actions infringe copyright if you do not accept this License.
Therefore, by modifying or propagating a covered work, you indicate your acceptance
of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license
from the original licensors, to run, modify and propagate that work, subject to this
License. You are not responsible for enforcing compliance by third parties with this
License.

An “entity transaction” is a transaction transferring control of an organization, or
substantially all assets of one, or subdividing an organization, or merging organizations.
If propagation of a covered work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever licenses to the work
the party’s predecessor in interest had or could give under the previous paragraph, plus
a right to possession of the Corresponding Source of the work from the predecessor in
interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or
affirmed under this License. For example, you may not impose a license fee, royalty, or
other charge for exercise of rights granted under this License, and you may not initiate
litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent
claim is infringed by making, using, selling, offering for sale, or importing the Program
or any portion of it.

11. Patents.

A “contributor” is a copyright holder who authorizes use under this License of the
Program or a work on which the Program is based. The work thus licensed is called
the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by
the contributor, whether already acquired or hereafter acquired, that would be infringed
by some manner, permitted by this License, of making, using, or selling its contributor
version, but do not include claims that would be infringed only as a consequence of
further modification of the contributor version. For purposes of this definition, “con-
trol” includes the right to grant patent sublicenses in a manner consistent with the
requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license
under the contributor’s essential patent claims, to make, use, sell, offer for sale, import
and otherwise run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or com-
mitment, however denominated, not to enforce a patent (such as an express permission
to practice a patent or covenant not to sue for patent infringement). To “grant” such
a patent license to a party means to make such an agreement or commitment not to
enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corre-
sponding Source of the work is not available for anyone to copy, free of charge and under
the terms of this License, through a publicly available network server or other readily
accessible means, then you must either (1) cause the Corresponding Source to be so

Appendix A: GNU GENERAL PUBLIC LICENSE 452

available, or (2) arrange to deprive yourself of the benefit of the patent license for this
particular work, or (3) arrange, in a manner consistent with the requirements of this
License, to extend the patent license to downstream recipients. “Knowingly relying”
means you have actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work in a country,
would infringe one or more identifiable patents in that country that you have reason
to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey,
or propagate by procuring conveyance of, a covered work, and grant a patent license
to some of the parties receiving the covered work authorizing them to use, propagate,
modify or convey a specific copy of the covered work, then the patent license you grant
is automatically extended to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its cover-
age, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the
rights that are specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is in the business of
distributing software, under which you make payment to the third party based on the
extent of your activity of conveying the work, and under which the third party grants,
to any of the parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work conveyed by you (or
copies made from those copies), or (b) primarily for and in connection with specific
products or compilations that contain the covered work, unless you entered into that
arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable
patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions
of this License. If you cannot convey a covered work so as to satisfy simultaneously
your obligations under this License and any other pertinent obligations, then as a
consequence you may not convey it at all. For example, if you agree to terms that
obligate you to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this License would
be to refrain entirely from conveying the Program.

13. Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have permission to link or
combine any covered work with a work licensed under version 3 of the GNU Affero
General Public License into a single combined work, and to convey the resulting work.
The terms of this License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License, section 13,
concerning interaction through a network will apply to the combination as such.

14. Revised Versions of this License.

Appendix A: GNU GENERAL PUBLIC LICENSE 453

The Free Software Foundation may publish revised and/or new versions of the GNU
General Public License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that
a certain numbered version of the GNU General Public License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
numbered version or of any later version published by the Free Software Foundation.
If the Program does not specify a version number of the GNU General Public License,
you may choose any version ever published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU
General Public License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your
choosing to follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EX-
PRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, IN-
CIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR
INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that
most closely approximates an absolute waiver of all civil liability in connection with
the Program, unless a warranty or assumption of liability accompanies a copy of the
Program in return for a fee.

Appendix A: GNU GENERAL PUBLIC LICENSE 454

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively state the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see http://www.gnu.org/licenses/.

Also add information on how to contact you by electronic and paper mail.

If the program does terminal interaction, make it output a short notice like this when it
starts in an interactive mode:

program Copyright (C) year name of author

This program comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.

This is free software, and you are welcome to redistribute it

under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of
the General Public License. Of course, your program’s commands might be different; for a
GUI interface, you would use an “about box”.

You should also get your employer (if you work as a programmer) or school, if any, to
sign a “copyright disclaimer” for the program, if necessary. For more information on this,
and how to apply and follow the GNU GPL, see http://www.gnu.org/licenses/.

The GNU General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider it more
useful to permit linking proprietary applications with the library. If this is what you want
to do, use the GNU Lesser General Public License instead of this License. But first, please
read http://www.gnu.org/philosophy/why-not-lgpl.html.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://www.gnu.org/philosophy/why-not-lgpl.html

Appendix B: GNU Free Documentation License 455

Appendix B GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008, 2009 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released

http://fsf.org/

Appendix B: GNU Free Documentation License 456

under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF

and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

Appendix B: GNU Free Documentation License 457

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,

Appendix B: GNU Free Documentation License 458

be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their

Appendix B: GNU Free Documentation License 459

titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix B: GNU Free Documentation License 460

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix B: GNU Free Documentation License 461

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix B: GNU Free Documentation License 462

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Appendix C: Command Line Arguments for Emacs Invocation 463

Appendix C Command Line Arguments for Emacs
Invocation

Emacs supports command line arguments to request various actions when invoking Emacs.
These are for compatibility with other editors and for sophisticated activities. We don’t
recommend using them for ordinary editing (See Section 31.4 [Emacs Server], page 378, for
a way to access an existing Emacs job from the command line).

Arguments starting with ‘-’ are options, and so is ‘+linenum ’. All other arguments spec-
ify files to visit. Emacs visits the specified files while it starts up. The last file specified on
the command line becomes the current buffer; the other files are also visited in other buffers.
As with most programs, the special argument ‘--’ says that all subsequent arguments are
file names, not options, even if they start with ‘-’.

Emacs command options can specify many things, such as the size and position of the
X window Emacs uses, its colors, and so on. A few options support advanced usage, such
as running Lisp functions on files in batch mode. The sections of this chapter describe the
available options, arranged according to their purpose.

There are two ways of writing options: the short forms that start with a single ‘-’, and
the long forms that start with ‘--’. For example, ‘-d’ is a short form and ‘--display’ is
the corresponding long form.

The long forms with ‘--’ are easier to remember, but longer to type. However, you don’t
have to spell out the whole option name; any unambiguous abbreviation is enough. When
a long option takes an argument, you can use either a space or an equal sign to separate the
option name and the argument. Thus, you can write either ‘--display sugar-bombs:0.0’
or ‘--display=sugar-bombs:0.0’. We recommend an equal sign because it makes the
relationship clearer, and the tables below always show an equal sign.

Most options specify how to initialize Emacs, or set parameters for the Emacs session.
We call them initial options. A few options specify things to do, such as loading libraries or
calling Lisp functions. These are called action options. These and file names together are
called action arguments. The action arguments are stored as a list of strings in the variable
command-line-args. (Actually, when Emacs starts up, command-line-args contains all
the arguments passed from the command line; during initialization, the initial arguments
are removed from this list when they are processed, leaving only the action arguments.)

C.1 Action Arguments

Here is a table of action arguments:

‘file ’
‘--file=file ’
‘--find-file=file ’
‘--visit=file ’

Visit file using find-file. See Section 15.2 [Visiting], page 116.

When Emacs starts up, it displays the startup buffer in one window, and the
buffer visiting file in another window (see Chapter 17 [Windows], page 147).
If you supply more than one file argument, the displayed file is the last one
specified on the command line; the other files are visited but their buffers are
not shown.

Appendix C: Command Line Arguments for Emacs Invocation 464

If the startup buffer is disabled (see Section 3.1 [Entering Emacs], page 14),
then file is visited in a single window if one file argument was supplied; with
two file arguments, Emacs displays the files in two different windows; with more
than two file argument, Emacs displays the last file specified in one window,
plus a Buffer Menu in a different window (see Section 16.5 [Several Buffers],
page 143). To inhibit using the Buffer Menu for this, change the variable
inhibit-startup-buffer-menu to t.

‘+linenum file ’
Visit file using find-file, then go to line number linenum in it.

‘+linenum:columnnum file ’
Visit file using find-file, then go to line number linenum and put point at
column number columnnum.

‘-l file ’
‘--load=file ’

Load a Lisp library named file with the function load. If file is not an absolute
file name, Emacs first looks for it in the current directory, then in the directories
listed in load-path (see Section 24.8 [Lisp Libraries], page 265).

Warning: If previous command-line arguments have visited files, the current
directory is the directory of the last file visited.

‘-L dir ’
‘--directory=dir ’

Add directory dir to the variable load-path.

‘-f function ’
‘--funcall=function ’

Call Lisp function function. If it is an interactive function (a command), it
reads the arguments interactively just as if you had called the same function
with a key sequence. Otherwise, it calls the function with no arguments.

‘--eval=expression ’
‘--execute=expression ’

Evaluate Lisp expression expression.

‘--insert=file ’
Insert the contents of file into the ‘*scratch*’ buffer (see Section 24.10 [Lisp In-
teraction], page 267). This is like what M-x insert-file does (see Section 15.10
[Misc File Ops], page 132).

‘--kill’ Exit from Emacs without asking for confirmation.

‘--help’ Print a usage message listing all available options, then exit successfully.

‘--version’
Print Emacs version, then exit successfully.

C.2 Initial Options

The initial options specify parameters for the Emacs session. This section describes the
more general initial options; some other options specifically related to the X Window System
appear in the following sections.

Appendix C: Command Line Arguments for Emacs Invocation 465

Some initial options affect the loading of the initialization file. Normally, Emacs first
loads ‘site-start.el’ if it exists, then your own initialization file if it exists, and finally
the default initialization file ‘default.el’ if it exists (see Section 33.4 [Init File], page 423).
Certain options prevent loading of some of these files or substitute other files for them.

‘-chdir directory ’
‘--chdir=directory ’

Change to directory before doing anything else. This is mainly used by session
management in X so that Emacs starts in the same directory as it stopped.
This makes desktop saving and restoring easier.

‘-t device ’
‘--terminal=device ’

Use device as the device for terminal input and output. This option implies
‘--no-window-system’.

‘-d display ’
‘--display=display ’

Use the X Window System and use the display named display to open the
initial Emacs frame. See Section C.5 [Display X], page 471, for more details.

‘-nw’
‘--no-window-system’

Don’t communicate directly with the window system, disregarding the DISPLAY
environment variable even if it is set. This means that Emacs uses the terminal
from which it was launched for all its display and input.

‘-batch’
‘--batch’ Run Emacs in batch mode. Batch mode is used for running programs written in

Emacs Lisp from shell scripts, makefiles, and so on. To invoke a Lisp program,
use the ‘-batch’ option in conjunction with one or more of ‘-l’, ‘-f’ or ‘--eval’
(see Section C.1 [Action Arguments], page 463). See Section C.3 [Command
Example], page 467, for an example.

In batch mode, Emacs does not display the text being edited, and the standard
terminal interrupt characters such as C-z and C-c have their usual effect. Emacs
functions that normally print a message in the echo area will print to either the
standard output stream (stdout) or the standard error stream (stderr) in-
stead. (To be precise, functions like prin1, princ and print print to stdout,
while message and error print to stderr.) Functions that normally read key-
board input from the minibuffer take their input from the terminal’s standard
input stream (stdin) instead.

‘--batch’ implies ‘-q’ (do not load an initialization file), but ‘site-start.el’
is loaded nonetheless. It also causes Emacs to exit after processing all the
command options. In addition, it disables auto-saving except in buffers for
which auto-saving is explicitly requested.

‘--script file ’
Run Emacs in batch mode, like ‘--batch’, and then read and execute the Lisp
code in file.

Appendix C: Command Line Arguments for Emacs Invocation 466

The normal use of this option is in executable script files that run Emacs. They
can start with this text on the first line

#!/usr/bin/emacs --script

which will invoke Emacs with ‘--script’ and supply the name of the script file
as file. Emacs Lisp then treats the ‘#!’ on this first line as a comment delimiter.

‘-q’
‘--no-init-file’

Do not load any initialization file (see Section 33.4 [Init File], page 423). When
Emacs is invoked with this option, the Customize facility does not allow options
to be saved (see Section 33.1 [Easy Customization], page 398). This option does
not disable loading ‘site-start.el’.

‘--no-site-file’
Do not load ‘site-start.el’ (see Section 33.4 [Init File], page 423). The ‘-Q’
option does this too, but other options like ‘-q’ do not.

‘--no-site-lisp’
Do not include the ‘site-lisp’ directories in load-path (see Section 33.4 [Init
File], page 423). The ‘-Q’ option does this too.

‘--no-splash’
Do not display a startup screen. You can also achieve this effect by setting the
variable inhibit-startup-screen to non-nil in your initialization file (see
Section 3.1 [Entering Emacs], page 14).

‘-Q’
‘--quick’ Start emacs with minimum customizations. This is similar to using ‘-q’,

‘--no-site-file’, ‘--no-site-lisp’, and ‘--no-splash’ together. This also
stops Emacs from processing X resources by setting inhibit-x-resources to
t (see Section D.1 [Resources], page 478).

‘-daemon’
‘--daemon’

Start Emacs as a daemon—after Emacs starts up, it starts the Emacs server and
disconnects from the terminal without opening any frames. You can then use
the emacsclient command to connect to Emacs for editing. See Section 31.4
[Emacs Server], page 378, for information about using Emacs as a daemon.

‘-daemon=SERVER-NAME ’
Start emacs in background as a daemon, and use SERVER-NAME as the server
name.

‘--no-desktop’
Do not reload any saved desktop. See Section 31.8 [Saving Emacs Sessions],
page 388.

‘-u user ’
‘--user=user ’

Load user’s initialization file instead of your own1.

1 This option has no effect on MS-Windows.

Appendix C: Command Line Arguments for Emacs Invocation 467

‘--debug-init’
Enable the Emacs Lisp debugger for errors in the init file. See Section “Entering
the Debugger on an Error” in The GNU Emacs Lisp Reference Manual.

C.3 Command Argument Example

Here is an example of using Emacs with arguments and options. It assumes you have a
Lisp program file called ‘hack-c.el’ which, when loaded, performs some useful operation
on the current buffer, expected to be a C program.

emacs --batch foo.c -l hack-c -f save-buffer >& log

This says to visit ‘foo.c’, load ‘hack-c.el’ (which makes changes in the visited file), save
‘foo.c’ (note that save-buffer is the function that C-x C-s is bound to), and then exit
back to the shell (because of ‘--batch’). ‘--batch’ also guarantees there will be no problem
redirecting output to ‘log’, because Emacs will not assume that it has a display terminal
to work with.

C.4 Environment Variables

The environment is a feature of the operating system; it consists of a collection of variables
with names and values. Each variable is called an environment variable; environment
variable names are case-sensitive, and it is conventional to use upper case letters only. The
values are all text strings.

What makes the environment useful is that subprocesses inherit the environment auto-
matically from their parent process. This means you can set up an environment variable in
your login shell, and all the programs you run (including Emacs) will automatically see it.
Subprocesses of Emacs (such as shells, compilers, and version control programs) inherit the
environment from Emacs, too.

Inside Emacs, the command M-x getenv reads the name of an environment variable, and
prints its value in the echo area. M-x setenv sets a variable in the Emacs environment, and
C-u M-x setenv removes a variable. (Environment variable substitutions with ‘$’ work in
the value just as in file names; see [File Names with $], page 115.) The variable initial-

environment stores the initial environment inherited by Emacs.

The way to set environment variables outside of Emacs depends on the operating system,
and especially the shell that you are using. For example, here’s how to set the environment
variable ORGANIZATION to ‘not very much’ using Bash:

export ORGANIZATION="not very much"

and here’s how to do it in csh or tcsh:

setenv ORGANIZATION "not very much"

When Emacs is using the X Window System, various environment variables that control
X work for Emacs as well. See the X documentation for more information.

C.4.1 General Variables

Here is an alphabetical list of environment variables that have special meanings in Emacs.
Most of these variables are also used by some other programs. Emacs does not require any
of these environment variables to be set, but it uses their values if they are set.

Appendix C: Command Line Arguments for Emacs Invocation 468

CDPATH Used by the cd command to search for the directory you specify, when you
specify a relative directory name.

EMACSDATA

Directory for the architecture-independent files that come with Emacs. This is
used to initialize the Lisp variable data-directory.

EMACSDOC Directory for the documentation string file, which is used to initialize the Lisp
variable doc-directory.

EMACSLOADPATH

A colon-separated list of directories2 to search for Emacs Lisp files. If set, it
overrides the usual initial value of the load-path variable (see Section 24.8
[Lisp Libraries], page 265).

EMACSPATH

A colon-separated list of directories to search for executable files. If set, Emacs
uses this in addition to PATH (see below) when initializing the variable exec-

path (see Section 31.3 [Shell], page 368).

EMAIL Your email address; used to initialize the Lisp variable user-mail-address,
which the Emacs mail interface puts into the ‘From’ header of outgoing messages
(see Section 29.2 [Mail Headers], page 338).

ESHELL Used for shell-mode to override the SHELL environment variable (see
Section 31.3.2 [Interactive Shell], page 369).

HISTFILE The name of the file that shell commands are saved in between logins. This
variable defaults to ‘~/.bash_history’ if you use Bash, to ‘~/.sh_history’ if
you use ksh, and to ‘~/.history’ otherwise.

HOME The location of your files in the directory tree; used for expansion of file
names starting with a tilde (‘~’). On MS-DOS, it defaults to the directory
from which Emacs was started, with ‘/bin’ removed from the end if it was
present. On Windows, the default value of HOME is the ‘Application Data’
subdirectory of the user profile directory (normally, this is ‘C:/Documents and

Settings/username/Application Data’, where username is your user name),
though for backwards compatibility ‘C:/’ will be used instead if a ‘.emacs’ file
is found there.

HOSTNAME The name of the machine that Emacs is running on.

INCPATH A colon-separated list of directories. Used by the complete package to search
for files.

INFOPATH A colon-separated list of directories in which to search for Info files.

2 Here and below, whenever we say “colon-separated list of directories”, it pertains to Unix and
GNU/Linux systems. On MS-DOS and MS-Windows, the directories are separated by semi-colons
instead, since DOS/Windows file names might include a colon after a drive letter.

Appendix C: Command Line Arguments for Emacs Invocation 469

LC_ALL

LC_COLLATE

LC_CTYPE

LC_MESSAGES

LC_MONETARY

LC_NUMERIC

LC_TIME

LANG The user’s preferred locale. The locale has six categories, specified by the
environment variables LC_COLLATE for sorting, LC_CTYPE for character encod-
ing, LC_MESSAGES for system messages, LC_MONETARY for monetary formats,
LC_NUMERIC for numbers, and LC_TIME for dates and times. If one of these
variables is not set, the category defaults to the value of the LANG environment
variable, or to the default ‘C’ locale if LANG is not set. But if LC_ALL is specified,
it overrides the settings of all the other locale environment variables.

On MS-Windows, if LANG is not already set in the environment when Emacs
starts, Emacs sets it based on the system-wide default language, which you can
set in the ‘Regional Settings’ Control Panel on some versions of MS-Windows.

The value of the LC_CTYPE category is matched against entries in
locale-language-names, locale-charset-language-names, and locale-

preferred-coding-systems, to select a default language environment and
coding system. See Section 19.3 [Language Environments], page 170.

LOGNAME The user’s login name. See also USER.

MAIL The name of your system mail inbox.

NAME Your real-world name. This is used to initialize the variable user-full-name

(see Section 29.2 [Mail Headers], page 338).

NNTPSERVER

The name of the news server. Used by the mh and Gnus packages.

ORGANIZATION

The name of the organization to which you belong. Used for setting the ‘Orga-
nization:’ header in your posts from the Gnus package.

PATH A colon-separated list of directories containing executable files. This is used to
initialize the variable exec-path (see Section 31.3 [Shell], page 368).

PWD If set, this should be the default directory when Emacs was started.

REPLYTO If set, this specifies an initial value for the variable mail-default-reply-to

(see Section 29.2 [Mail Headers], page 338).

SAVEDIR The name of a directory in which news articles are saved by default. Used by
the Gnus package.

SHELL The name of an interpreter used to parse and execute programs run from inside
Emacs.

SMTPSERVER

The name of the outgoing mail server. This is used to initialize the variable
smtpmail-smtp-server (see Section 29.4.1 [Mail Sending], page 340).

Appendix C: Command Line Arguments for Emacs Invocation 470

TERM The type of the terminal that Emacs is using. This variable must be set unless
Emacs is run in batch mode. On MS-DOS, it defaults to ‘internal’, which
specifies a built-in terminal emulation that handles the machine’s own display.

TERMCAP The name of the termcap library file describing how to program the terminal
specified by TERM. This defaults to ‘/etc/termcap’.

TMPDIR

TMP

TEMP These environment variables are used to initialize the variable temporary-

file-directory, which specifies a directory in which to put temporary files
(see Section 15.3.2 [Backup], page 120). Emacs tries to use TMPDIR first; if that
is unset, it tries TMP, then TEMP, and finally ‘/tmp’. But on MS-Windows and
MS-DOS, Emacs tries TEMP, then TMPDIR, then TMP, and finally ‘c:/temp’.

TZ This specifies the current time zone and possibly also daylight saving time in-
formation. On MS-DOS, if TZ is not set in the environment when Emacs starts,
Emacs defines a default value as appropriate for the country code returned by
DOS. On MS-Windows, Emacs does not use TZ at all.

USER The user’s login name. See also LOGNAME. On MS-DOS, this defaults to ‘root’.

VERSION_CONTROL

Used to initialize the version-control variable (see Section 15.3.2.1 [Backup
Names], page 121).

C.4.2 Miscellaneous Variables

These variables are used only on particular configurations:

COMSPEC On MS-DOS and MS-Windows, the name of the command interpreter to use
when invoking batch files and commands internal to the shell. On MS-DOS
this is also used to make a default value for the SHELL environment variable.

NAME On MS-DOS, this variable defaults to the value of the USER variable.

EMACSTEST

On MS-DOS, this specifies a file to use to log the operation of the internal
terminal emulator. This feature is useful for submitting bug reports.

EMACSCOLORS

On MS-DOS, this specifies the screen colors. It is useful to set them this way,
since otherwise Emacs would display the default colors momentarily when it
starts up.

The value of this variable should be the two-character encoding of the fore-
ground (the first character) and the background (the second character) colors
of the default face. Each character should be the hexadecimal code for the
desired color on a standard PC text-mode display. For example, to get blue
text on a light gray background, specify ‘EMACSCOLORS=17’, since 1 is the code
of the blue color and 7 is the code of the light gray color.

The PC display usually supports only eight background colors. However, Emacs
switches the DOS display to a mode where all 16 colors can be used for the
background, so all four bits of the background color are actually used.

Appendix C: Command Line Arguments for Emacs Invocation 471

PRELOAD_WINSOCK

On MS-Windows, if you set this variable, Emacs will load and initialize the
network library at startup, instead of waiting until the first time it is required.

emacs_dir

On MS-Windows, emacs_dir is a special environment variable, which indicates
the full path of the directory in which Emacs is installed. If Emacs is installed in
the standard directory structure, it calculates this value automatically. It is not
much use setting this variable yourself unless your installation is non-standard,
since unlike other environment variables, it will be overridden by Emacs at
startup. When setting other environment variables, such as EMACSLOADPATH,
you may find it useful to use emacs_dir rather than hard-coding an absolute
path. This allows multiple versions of Emacs to share the same environment
variable settings, and it allows you to move the Emacs installation directory,
without changing any environment or registry settings.

C.4.3 The MS-Windows System Registry

On MS-Windows, the installation program addpm.exe adds values for emacs_

dir, EMACSLOADPATH, EMACSDATA, EMACSPATH, EMACSDOC, SHELL and TERM to the
‘HKEY_LOCAL_MACHINE’ section of the system registry, under ‘/Software/GNU/Emacs’. It
does this because there is no standard place to set environment variables across different
versions of Windows. Running addpm.exe is no longer strictly necessary in recent versions
of Emacs, but if you are upgrading from an older version, running addpm.exe ensures that
you do not have older registry entries from a previous installation, which may not be
compatible with the latest version of Emacs.

When Emacs starts, as well as checking the environment, it also checks the System
Registry for those variables and for HOME, LANG and PRELOAD_WINSOCK.

To determine the value of those variables, Emacs goes through the following procedure.
First, the environment is checked. If the variable is not found there, Emacs looks for registry
keys by that name under ‘/Software/GNU/Emacs’; first in the ‘HKEY_CURRENT_USER’ section
of the registry, and if not found there, in the ‘HKEY_LOCAL_MACHINE’ section. Finally, if
Emacs still cannot determine the values, compiled-in defaults are used.

In addition to the environment variables above, you can also add many of the settings
which on X belong in the ‘.Xdefaults’ file (see Appendix D [X Resources], page 478) to
the ‘/Software/GNU/Emacs’ registry key.

C.5 Specifying the Display Name

The environment variable DISPLAY tells all X clients, including Emacs, where to display
their windows. Its value is set by default in ordinary circumstances, when you start an X
server and run jobs locally. You can specify the display yourself; one reason to do this is if
you want to log into another system and run Emacs there, and have the window displayed
at your local terminal.

DISPLAY has the syntax ‘host:display.screen ’, where host is the host name of the X
Window System server machine, display is an arbitrarily-assigned number that distinguishes
your server (X terminal) from other servers on the same machine, and screen is a field that

Appendix C: Command Line Arguments for Emacs Invocation 472

allows an X server to control multiple terminal screens. The period and the screen field are
optional. If included, screen is usually zero.

For example, if your host is named ‘glasperle’ and your server is the first (or perhaps
the only) server listed in the configuration, your DISPLAY is ‘glasperle:0.0’.

You can specify the display name explicitly when you run Emacs, either by changing
the DISPLAY variable, or with the option ‘-d display ’ or ‘--display=display ’. Here is
an example:

emacs --display=glasperle:0 &

You can inhibit the use of the X window system with the ‘-nw’ option. Then Emacs uses
its controlling text terminal for display. See Section C.2 [Initial Options], page 464.

Sometimes, security arrangements prevent a program on a remote system from displaying
on your local system. In this case, trying to run Emacs produces messages like this:

Xlib: connection to "glasperle:0.0" refused by server

You might be able to overcome this problem by using the xhost command on the local
system to give permission for access from your remote machine.

C.6 Font Specification Options

You can use the command line option ‘-fn font ’ (or ‘--font’, which is an alias for ‘-fn’)
to specify a default font:

‘-fn font ’
‘--font=font ’

Use font as the default font.

When passing a font name to Emacs on the command line, you may need to “quote” it,
by enclosing it in quotation marks, if it contains characters that the shell treats specially
(e.g. spaces). For example:

emacs -fn "DejaVu Sans Mono-12"

See Section 18.8 [Fonts], page 158, for details about font names and other ways to specify
the default font.

C.7 Window Color Options

You can use the following command-line options to specify the colors to use for various parts
of the Emacs display. Colors may be specified using either color names or RGB triplets (see
Section 11.9 [Colors], page 71).

‘-fg color ’
‘--foreground-color=color ’

Specify the foreground color, overriding the color specified by the default face
(see Section 11.8 [Faces], page 70).

‘-bg color ’
‘--background-color=color ’

Specify the background color, overriding the color specified by the default

face.

Appendix C: Command Line Arguments for Emacs Invocation 473

‘-bd color ’
‘--border-color=color ’

Specify the color of the border of the X window. This has no effect if Emacs is
compiled with GTK+ support.

‘-cr color ’
‘--cursor-color=color ’

Specify the color of the Emacs cursor which indicates where point is.

‘-ms color ’
‘--mouse-color=color ’

Specify the color for the mouse cursor when the mouse is in the Emacs window.

‘-r’
‘-rv’
‘--reverse-video’

Reverse video—swap the foreground and background colors.

‘--color=mode ’
Set the color support mode when Emacs is run on a text terminal. This option
overrides the number of supported colors that the character terminal advertises
in its termcap or terminfo database. The parameter mode can be one of the
following:

‘never’
‘no’ Don’t use colors even if the terminal’s capabilities specify color

support.

‘default’
‘auto’ Same as when ‘--color’ is not used at all: Emacs detects at startup

whether the terminal supports colors, and if it does, turns on col-
ored display.

‘always’
‘yes’
‘ansi8’ Turn on the color support unconditionally, and use color commands

specified by the ANSI escape sequences for the 8 standard colors.

‘num ’ Use color mode for num colors. If num is -1, turn off color support
(equivalent to ‘never’); if it is 0, use the default color support for
this terminal (equivalent to ‘auto’); otherwise use an appropriate
standard mode for num colors. Depending on your terminal’s ca-
pabilities, Emacs might be able to turn on a color mode for 8, 16,
88, or 256 as the value of num. If there is no mode that supports
num colors, Emacs acts as if num were 0, i.e. it uses the terminal’s
default color support mode.

If mode is omitted, it defaults to ansi8.

For example, to use a coral mouse cursor and a slate blue text cursor, enter:

emacs -ms coral -cr ’slate blue’ &

You can reverse the foreground and background colors through the ‘-rv’ option or with
the X resource ‘reverseVideo’.

Appendix C: Command Line Arguments for Emacs Invocation 474

The ‘-fg’, ‘-bg’, and ‘-rv’ options function on text terminals as well as on graphical
displays.

C.8 Options for Window Size and Position

Here is a list of the command-line options for specifying size and position of the initial
Emacs frame:

‘-g widthxheight [{+-}xoffset{+-}yoffset]]’
‘--geometry=widthxheight [{+-}xoffset{+-}yoffset]]’

Specify the size width and height (measured in character columns and lines),
and positions xoffset and yoffset (measured in pixels). The width and height
parameters apply to all frames, whereas xoffset and yoffset only to the initial
frame.

‘-fs’
‘--fullscreen’

Specify that width and height shall be the size of the screen. Normally no
window manager decorations are shown.

‘-mm’
‘--maximized’

Specify that the Emacs frame shall be maximized. This normally means that
the frame has window manager decorations.

‘-fh’
‘--fullheight’

Specify that the height shall be the height of the screen.

‘-fw’
‘--fullwidth’

Specify that the width shall be the width of the screen.

In the ‘--geometry’ option, {+-} means either a plus sign or a minus sign. A plus sign
before xoffset means it is the distance from the left side of the screen; a minus sign means it
counts from the right side. A plus sign before yoffset means it is the distance from the top
of the screen, and a minus sign there indicates the distance from the bottom. The values
xoffset and yoffset may themselves be positive or negative, but that doesn’t change their
meaning, only their direction.

Emacs uses the same units as xterm does to interpret the geometry. The width and
height are measured in characters, so a large font creates a larger frame than a small font.
(If you specify a proportional font, Emacs uses its maximum bounds width as the width
unit.) The xoffset and yoffset are measured in pixels.

You do not have to specify all of the fields in the geometry specification. If you omit both
xoffset and yoffset, the window manager decides where to put the Emacs frame, possibly by
letting you place it with the mouse. For example, ‘164x55’ specifies a window 164 columns
wide, enough for two ordinary width windows side by side, and 55 lines tall.

The default frame width is 80 characters and the default height is 40 lines. You can omit
either the width or the height or both. If you start the geometry with an integer, Emacs

Appendix C: Command Line Arguments for Emacs Invocation 475

interprets it as the width. If you start with an ‘x’ followed by an integer, Emacs interprets
it as the height. Thus, ‘81’ specifies just the width; ‘x45’ specifies just the height.

If you start with ‘+’ or ‘-’, that introduces an offset, which means both sizes are omitted.
Thus, ‘-3’ specifies the xoffset only. (If you give just one offset, it is always xoffset.) ‘+3-3’
specifies both the xoffset and the yoffset, placing the frame near the bottom left of the
screen.

You can specify a default for any or all of the fields in your X resource file (see Section D.1
[Resources], page 478), and then override selected fields with a ‘--geometry’ option.

Since the mode line and the echo area occupy the last 2 lines of the frame, the height of
the initial text window is 2 less than the height specified in your geometry. In non-X-toolkit
versions of Emacs, the menu bar also takes one line of the specified number. But in the X
toolkit version, the menu bar is additional and does not count against the specified height.
The tool bar, if present, is also additional.

Enabling or disabling the menu bar or tool bar alters the amount of space available for
ordinary text. Therefore, if Emacs starts up with a tool bar (which is the default), and
handles the geometry specification assuming there is a tool bar, and then your initialization
file disables the tool bar, you will end up with a frame geometry different from what you
asked for. To get the intended size with no tool bar, use an X resource to specify “no tool
bar” (see Section D.2 [Table of Resources], page 479); then Emacs will already know there’s
no tool bar when it processes the specified geometry.

When using one of ‘--fullscreen’, ‘--maximized’, ‘--fullwidth’ or ‘--fullheight’
there may be some space around the frame anyway. That is because Emacs rounds the sizes
so they are an even number of character heights and widths.

Some window managers have options that can make them ignore both program-specified
and user-specified positions. If these are set, Emacs fails to position the window correctly.

C.9 Internal and External Borders

An Emacs frame has an internal border and an external border. The internal border is
an extra strip of the background color around the text portion of the frame. Emacs itself
draws the internal border. The external border is added by the window manager outside
the frame; depending on the window manager you use, it may contain various boxes you
can click on to move or iconify the window.

‘-ib width ’
‘--internal-border=width ’

Specify width as the width of the internal border (between the text and the
main border), in pixels.

‘-bw width ’
‘--border-width=width ’

Specify width as the width of the main border, in pixels.

When you specify the size of the frame, that does not count the borders. The frame’s
position is measured from the outside edge of the external border.

Use the ‘-ib n ’ option to specify an internal border n pixels wide. The default is 1. Use
‘-bw n ’ to specify the width of the external border (though the window manager may not
pay attention to what you specify). The default width of the external border is 2.

Appendix C: Command Line Arguments for Emacs Invocation 476

C.10 Frame Titles

An Emacs frame may or may not have a specified title. The frame title, if specified,
appears in window decorations and icons as the name of the frame. If an Emacs frame has
no specified title, the default title has the form ‘invocation-name@machine ’ (if there is
only one frame) or the selected window’s buffer name (if there is more than one frame).

You can specify a title for the initial Emacs frame with a command line option:

‘-T title ’
‘--title=title ’

Specify title as the title for the initial Emacs frame.

The ‘--name’ option (see Section D.1 [Resources], page 478) also specifies the title for
the initial Emacs frame.

C.11 Icons

‘-iconic’
‘--iconic’

Start Emacs in an iconified (“minimized”) state.

‘-nbi’
‘--no-bitmap-icon’

Disable the use of the Emacs icon.

Most window managers allow you to “iconify” (or “minimize”) an Emacs frame, hiding
it from sight. Some window managers replace iconified windows with tiny “icons”, while
others remove them entirely from sight. The ‘-iconic’ option tells Emacs to begin running
in an iconified state, rather than showing a frame right away. The text frame doesn’t appear
until you deiconify (or “un-minimize”) it.

By default, Emacs uses an icon containing the Emacs logo. On desktop environments
such as Gnome, this icon is also displayed in other contexts, e.g. when switching into an
Emacs frame. The ‘-nbi’ or ‘--no-bitmap-icon’ option tells Emacs to let the window
manager choose what sort of icon to use—usually just a small rectangle containing the
frame’s title.

C.12 Other Display Options

‘--parent-id ID ’
Open Emacs as a client X window via the XEmbed protocol, with ID as the
parent X window id. Currently, this option is mainly useful for developers.

‘-vb’
‘--vertical-scroll-bars’

Enable vertical scroll bars.

‘-lsp pixels ’
‘--line-spacing=pixels ’

Specify pixels as additional space to put between lines, in pixels.

Appendix C: Command Line Arguments for Emacs Invocation 477

‘-nbc’
‘--no-blinking-cursor’

Disable the blinking cursor on graphical displays.

‘-D’
‘--basic-display’

Disable the menu-bar, the tool-bar, the scroll-bars, and tool tips, and turn off
the blinking cursor. This can be useful for making a test case that simplifies
debugging of display problems.

The ‘--xrm’ option (see Section D.1 [Resources], page 478) specifies additional X resource
values.

Appendix D: X Options and Resources 478

Appendix D X Options and Resources

You can customize some X-related aspects of Emacs behavior using X resources, as is usual
for programs that use X.

When Emacs is compiled with GTK+ support, the appearance of various graphical wid-
gets, such as the menu-bar, scroll-bar, and dialog boxes, is determined by “GTK resources”.
When Emacs is built without GTK+ support, the appearance of these widgets is determined
by additional X resources.

On MS-Windows, you can customize some of the same aspects using the system registry
(see Section C.4.3 [MS-Windows Registry], page 471).

D.1 X Resources

Programs running under the X Window System organize their user options under a hierarchy
of classes and resources. You can specify default values for these options in your X resource
file, usually named ‘~/.Xdefaults’ or ‘~/.Xresources’. Changes in this file do not take
effect immediately, because the X server stores its own list of resources; to update it, use
the command xrdb—for instance, ‘xrdb ~/.Xdefaults’.

(MS-Windows systems do not support X resource files; on such systems,
Emacs looks for X resources in the Windows Registry, first under the key
‘HKEY_CURRENT_USER\SOFTWARE\GNU\Emacs’, which affects only the cur-
rent user and override the system-wide settings, and then under the key
‘HKEY_LOCAL_MACHINE\SOFTWARE\GNU\Emacs’, which affects all users of the sys-
tem. The menu and scroll bars are native widgets on MS-Windows, so they are only
customizable via the system-wide settings in the Display Control Panel. You can also set
resources using the ‘-xrm’ command line option, as explained below.)

Each line in the X resource file specifies a value for one option or for a collection of
related options. The order in which the lines appear in the file does not matter. Each
resource specification consists of a program name and a resource name. Case distinctions
are significant in each of these names. Here is an example:

emacs.cursorColor: dark green

The program name is the name of the executable file to which the resource applies. For
Emacs, this is normally ‘emacs’. To specify a definition that applies to all instances of
Emacs, regardless of the name of the Emacs executable, use ‘Emacs’.

The resource name is the name of a program setting. For instance, Emacs recognizes a
‘cursorColor’ resource that controls the color of the text cursor.

Resources are grouped into named classes. For instance, the ‘Foreground’ class contains
the ‘cursorColor’, ‘foreground’ and ‘pointerColor’ resources (see Section D.2 [Table of
Resources], page 479). Instead of using a resource name, you can use a class name to specify
the default value for all resources in that class, like this:

emacs.Foreground: dark green

Emacs does not process X resources at all if you set the variable inhibit-x-resources

to a non-nil value. If you invoke Emacs with the ‘-Q’ (or ‘--quick’) command-line option,
inhibit-x-resources is automatically set to t (see Section C.2 [Initial Options], page 464).

Appendix D: X Options and Resources 479

D.2 Table of X Resources for Emacs

This table lists the X resource names that Emacs recognizes, excluding those that control
the appearance of graphical widgets like the menu bar:

background (class Background)
Background color (see Section 11.9 [Colors], page 71).

bitmapIcon (class BitmapIcon)
Tell the window manager to display the Emacs icon if ‘on’; don’t do so if ‘off’.
See Section C.11 [Icons X], page 476, for a description of the icon.

cursorColor (class Foreground)
Text cursor color. If this resource is specified when Emacs starts up, Emacs sets
its value as the background color of the cursor face (see Section 11.8 [Faces],
page 70).

cursorBlink (class CursorBlink)
If the value of this resource is ‘off’ or ‘false’ or ‘0’ at startup, Emacs disables
Blink Cursor mode (see Section 11.20 [Cursor Display], page 81).

font (class Font)
Font name for the default face (see Section 18.8 [Fonts], page 158). You can
also specify a fontset name (see Section 19.14 [Fontsets], page 182).

fontBackend (class FontBackend)
Comma-delimited list of backend(s) to use for drawing fonts, in order of prece-
dence. For instance, the value ‘x,xft’ tells Emacs to draw fonts using the X
core font driver, falling back on the Xft font driver if that fails. Normally, you
should leave this resource unset, in which case Emacs tries using all available
font backends.

foreground (class Foreground)
Default foreground color for text.

geometry (class Geometry)
Window size and position. The value should be a size and position specification,
of the same form as in the ‘-g’ or ‘--geometry’ command-line option (see
Section C.8 [Window Size X], page 474).

The size applies to all frames in the Emacs session, but the position applies
only to the initial Emacs frame (or, in the case of a resource for a specific frame
name, only that frame).

Be careful not to specify this resource as ‘emacs*geometry’, as that may affect
individual menus as well as the main Emacs frame.

fullscreen (class Fullscreen)
The desired fullscreen size. The value can be one of fullboth, maximized,
fullwidth or fullheight, which correspond to the command-line options
‘-fs’, ‘-mm’, ‘-fw’, and ‘-fh’ (see Section C.8 [Window Size X], page 474).
Note that this applies to the initial frame only.

lineSpacing (class LineSpacing)
Additional space between lines, in pixels.

Appendix D: X Options and Resources 480

menuBar (class MenuBar)
If the value of this resource is ‘off’ or ‘false’ or ‘0’, Emacs disables Menu Bar
mode at startup (see Section 18.14 [Menu Bars], page 163).

pointerColor (class Foreground)
Color of the mouse cursor. This has no effect in many graphical desktop envi-
ronments, as they do not let Emacs change the mouse cursor this way.

title (class Title)
Name to display in the title bar of the initial Emacs frame.

toolBar (class ToolBar)
If the value of this resource is ‘off’ or ‘false’ or ‘0’, Emacs disables Tool Bar
mode at startup (see Section 18.15 [Tool Bars], page 164).

useXIM (class UseXIM)
Disable use of X input methods (XIM) if ‘false’ or ‘off’. This is only relevant
if your Emacs is built with XIM support. It might be useful to turn off XIM
on slow X client/server links.

verticalScrollBars (class ScrollBars)
Give frames scroll bars if ‘on’; don’t have scroll bars if ‘off’.

You can also use X resources to customize individual Emacs faces (see Section 11.8
[Faces], page 70). For example, setting the resource ‘face.attributeForeground’ is equiv-
alent to customizing the ‘foreground’ attribute of the face face. However, we recommend
customizing faces from within Emacs, instead of using X resources. See Section 33.1.5 [Face
Customization], page 402.

D.3 GTK resources

If Emacs is compiled with GTK+ toolkit support, the simplest way to customize its GTK+

widgets (e.g. menus, dialogs, tool bars and scroll bars) is to choose an appropriate GTK+

theme, for example with the GNOME theme selector.

In GTK+ version 2, you can also use GTK+ resources to customize the appearance
of GTK+ widgets used by Emacs. These resources are specified in either the file
‘~/.emacs.d/gtkrc’ (for Emacs-specific GTK+ resources), or ‘~/.gtkrc-2.0’ (for general
GTK+ resources). We recommend using ‘~/.emacs.d/gtkrc’, since GTK+ seems to ignore
‘~/.gtkrc-2.0’ when running GConf with GNOME. Note, however, that some GTK
themes may override customizations in ‘~/.emacs.d/gtkrc’; there is nothing we can do
about this. GTK+ resources do not affect aspects of Emacs unrelated to GTK+ widgets,
such as fonts and colors in the main Emacs window; those are governed by normal X
resources (see Section D.1 [Resources], page 478).

The following sections describe how to customize GTK+ resources for
Emacs. For details about GTK+ resources, see the GTK+ API document at
http://developer.gnome.org/doc/API/2.0/gtk/gtk-Resource-Files.html.

In GTK+ version 3, GTK+ resources have been replaced by a completely
different system. The appearance of GTK+ widgets is now determined by
CSS-like style files: ‘gtk-3.0/gtk.css’ in the GTK+ installation directory, and
‘~/.themes/theme/gtk-3.0/gtk.css’ for local style settings (where theme is the name

http://developer.gnome.org/doc/API/2.0/gtk/gtk-Resource-Files.html

Appendix D: X Options and Resources 481

of the current GTK+ theme). Therefore, the description of GTK+ resources in this
section does not apply to GTK+ 3. For details about the GTK+ 3 styling system, see
http://developer.gnome.org/gtk3/3.0/GtkCssProvider.html.

D.3.1 GTK Resource Basics

In a GTK+ 2 resource file (usually ‘~/.emacs.d/gtkrc’), the simplest kinds of resource
settings simply assign a value to a variable. For example, putting the following line in the
resource file changes the font on all GTK+ widgets to ‘courier-12’:

gtk-font-name = "courier 12"

Note that in this case the font name must be supplied as a GTK font pattern (also called a
Pango font name), not as a Fontconfig-style font name or XLFD. See Section 18.8 [Fonts],
page 158.

To customize widgets you first define a style, and then apply the style to the widgets.
Here is an example that sets the font for menus (‘#’ characters indicate comments):

Define the style ‘my_style’.
style "my_style"

{

font_name = "helvetica bold 14"

}

Specify that widget type ‘*emacs-menuitem*’ uses ‘my_style’.
widget "*emacs-menuitem*" style "my_style"

The widget name in this example contains wildcards, so the style is applied to all widgets
matching ‘*emacs-menuitem*’. The widgets are named by the way they are contained,
from the outer widget to the inner widget. Here is another example that applies ‘my_style’
specifically to the Emacs menu bar:

widget "Emacs.pane.menubar.*" style "my_style"

Here is a more elaborate example, showing how to change the parts of the scroll bar:

style "scroll"

{

fg[NORMAL] = "red" # Arrow color.
bg[NORMAL] = "yellow" # Thumb and background around arrow.
bg[ACTIVE] = "blue" # Trough color.
bg[PRELIGHT] = "white" # Thumb color when the mouse is over it.

}

widget "*verticalScrollBar*" style "scroll"

D.3.2 GTK widget names

A GTK+ widget is specified by a widget name and a widget class. The widget name refers
to a specific widget (e.g. ‘emacs-menuitem’), while the widget class refers to a collection
of similar widgets (e.g. ‘GtkMenuItem’). A widget always has a class, but need not have a
name.

Absolute names are sequences of widget names or widget classes, corresponding to hi-
erarchies of widgets embedded within other widgets. For example, if a GtkWindow named
top contains a GtkVBox named box, which in turn contains a GtkMenuBar called menubar,
the absolute class name of the menu-bar widget is GtkWindow.GtkVBox.GtkMenuBar, and
its absolute widget name is top.box.menubar.

http://developer.gnome.org/gtk3/3.0/GtkCssProvider.html

Appendix D: X Options and Resources 482

GTK+ resource files can contain two types of commands for specifying widget appear-
ances:

widget specifies a style for widgets based on the class name, or just the class.

widget_class

specifies a style for widgets based on the class name.

See the previous subsection for examples of using the widget command; the widget_class

command is used similarly. Note that the widget name/class and the style must be enclosed
in double-quotes, and these commands must be at the top level in the GTK+ resource file.

As previously noted, you may specify a widget name or class with shell wildcard syntax:
‘*’ matches zero or more characters and ‘?’ matches one character. This example assigns a
style to all widgets:

widget "*" style "my_style"

D.3.3 GTK Widget Names in Emacs

The GTK+ widgets used by an Emacs frame are listed below:

Emacs (class GtkWindow)

pane (class GtkVBox)

menubar (class GtkMenuBar)

[menu item widgets]

[unnamed widget] (class GtkHandleBox)

emacs-toolbar (class GtkToolbar)

[tool bar item widgets]

emacs (class GtkFixed)

verticalScrollBar (class GtkVScrollbar)

The contents of Emacs windows are drawn in the emacs widget. Note that even if there are
multiple Emacs windows, each scroll bar widget is named verticalScrollBar.

For example, here are two different ways to set the menu bar style:

widget "Emacs.pane.menubar.*" style "my_style"

widget_class "GtkWindow.GtkVBox.GtkMenuBar.*" style "my_style"

For GTK+ dialogs, Emacs uses a widget named emacs-dialog, of class GtkDialog. For
file selection, Emacs uses a widget named emacs-filedialog, of class GtkFileSelection.

Because the widgets for pop-up menus and dialogs are free-standing windows and not
“contained” in the Emacs widget, their GTK+ absolute names do not start with ‘Emacs’.
To customize these widgets, use wildcards like this:

widget "*emacs-dialog*" style "my_dialog_style"

widget "*emacs-filedialog* style "my_file_style"

widget "*emacs-menuitem* style "my_menu_style"

If you want to apply a style to all menus in Emacs, use this:

widget_class "*Menu*" style "my_menu_style"

Appendix D: X Options and Resources 483

D.3.4 GTK styles

Here is an example of two GTK+ style declarations:

pixmap_path "/usr/share/pixmaps:/usr/include/X11/pixmaps"

style "default"

{

font_name = "helvetica 12"

bg[NORMAL] = { 0.83, 0.80, 0.73 }

bg[SELECTED] = { 0.0, 0.55, 0.55 }

bg[INSENSITIVE] = { 0.77, 0.77, 0.66 }

bg[ACTIVE] = { 0.0, 0.55, 0.55 }

bg[PRELIGHT] = { 0.0, 0.55, 0.55 }

fg[NORMAL] = "black"

fg[SELECTED] = { 0.9, 0.9, 0.9 }

fg[ACTIVE] = "black"

fg[PRELIGHT] = { 0.9, 0.9, 0.9 }

base[INSENSITIVE] = "#777766"

text[INSENSITIVE] = { 0.60, 0.65, 0.57 }

bg_pixmap[NORMAL] = "background.xpm"

bg_pixmap[INSENSITIVE] = "background.xpm"

bg_pixmap[ACTIVE] = "background.xpm"

bg_pixmap[PRELIGHT] = "<none>"

}

style "ruler" = "default"

{

font_name = "helvetica 8"

}

The style ‘ruler’ inherits from ‘default’. This way you can build on existing styles.
The syntax for fonts and colors is described below.

As this example shows, it is possible to specify several values for foreground and back-
ground depending on the widget’s state. The possible states are:

NORMAL This is the default state for widgets.

ACTIVE This is the state for a widget that is ready to do something. It is also for the
trough of a scroll bar, i.e. bg[ACTIVE] = "red" sets the scroll bar trough to
red. Buttons that have been pressed but not released yet (“armed”) are in this
state.

PRELIGHT This is the state for a widget that can be manipulated, when the mouse pointer
is over it—for example when the mouse is over the thumb in the scroll bar or
over a menu item. When the mouse is over a button that is not pressed, the
button is in this state.

SELECTED This is the state for data that has been selected by the user. It can be selected
text or items selected in a list. This state is not used in Emacs.

Appendix D: X Options and Resources 484

INSENSITIVE

This is the state for widgets that are visible, but they can not be manipulated
in the usual way—for example, buttons that can’t be pressed, and disabled
menu items. To display disabled menu items in yellow, use fg[INSENSITIVE]

= "yellow".

Here are the things that can go in a style declaration:

bg[state] = color

This specifies the background color for the widget. Note that editable text
doesn’t use bg; it uses base instead.

base[state] = color

This specifies the background color for editable text. In Emacs, this color is
used for the background of the text fields in the file dialog.

bg_pixmap[state] = "pixmap"

This specifies an image background (instead of a background color). pixmap
should be the image file name. GTK can use a number of image file formats,
including XPM, XBM, GIF, JPEG and PNG. If you want a widget to use the
same image as its parent, use ‘<parent>’. If you don’t want any image, use
‘<none>’. ‘<none>’ is the way to cancel a background image inherited from a
parent style.

You can’t specify the file by its absolute file name. GTK looks for the pixmap
file in directories specified in pixmap_path. pixmap_path is a colon-separated
list of directories within double quotes, specified at the top level in a ‘gtkrc’
file (i.e. not inside a style definition; see example above):

pixmap_path "/usr/share/pixmaps:/usr/include/X11/pixmaps"

fg[state] = color

This specifies the foreground color for widgets to use. It is the color of text in
menus and buttons, and the color for the arrows in the scroll bar. For editable
text, use text.

text[state] = color

This is the color for editable text. In Emacs, this color is used for the text fields
in the file dialog.

font_name = "font"

This specifies the font for text in the widget. font is a GTK-style (or Pango)
font name, like ‘Sans Italic 10’. See Section 18.8 [Fonts], page 158. The
names are case insensitive.

There are three ways to specify a color: a color name, an RGB triplet, or a GTK-style
RGB triplet. See Section 11.9 [Colors], page 71, for a description of color names and RGB
triplets. Color names should be enclosed with double quotes, e.g. ‘"red"’. RGB triplets
should be written without double quotes, e.g. ‘#ff0000’. GTK-style RGB triplets have the
form { r, g, b }, where r, g and b are either integers in the range 0-65535 or floats in the
range 0.0-1.0.

Appendix E: Emacs 23 Antinews 485

Appendix E Emacs 23 Antinews

For those users who live backwards in time, here is information about downgrading to Emacs
version 23.4. We hope you will enjoy the greater simplicity that results from the absence of
many Emacs 24.1 features.

• Support for displaying and editing “bidirectional” text has been removed. Text is now
always displayed on the screen in a single consistent direction—left to right—regardless
of the underlying script. Similarly, C-f and C-b always move the text cursor to the
right and left respectively. Also, RIGHT and LEFT are now equivalent to C-f and C-b,
as you might expect, rather than moving forward or backward based on the underlying
“paragraph direction”.

Users of “right-to-left” languages, like Arabic and Hebrew, may adapt by reading
and/or editing text in left-to-right order.

• The Emacs Lisp package manager has been removed. Instead of using a “user interface”
(M-x list-packages), additional Lisp packages must now be installed by hand, which
is the most flexible and “Lispy” method anyway. Typically, this just involves editing
your init file to add the package installation directory to the load path and defining some
autoloads; see each package’s commentary section and/or README file for details.

• The option delete-active-region has been deleted. When the region is active, typing
DEL or DELETE no longer deletes the text in the region; it deletes a single character
instead.

• We have reworked how Emacs handles the clipboard and the X primary selection.
Commands for killing and yanking, like C-w and C-y, use the primary selection and
not the clipboard, so you can use these commands without interfering with “cutting”
or “pasting” in other programs. The ‘Cut’/‘Copy’/‘Paste’ menu items are bound to
separate clipboard commands, not to the same commands as C-w/M-w/C-y.

Selecting text by dragging with the mouse now puts the text in the kill ring, in addition
to the primary selection. But note that selecting an active region with C-SPC does not
alter the kill ring nor the primary selection, even though the text highlighting is visually
identical.

• In Isearch, C-y and M-y are no longer bound to isearch-yank-kill and isearch-

yank-pop respectively. Instead, C-y yanks the rest of the current line into the search
string (isearch-yank-line), whereas M-y does isearch-yank-kill. The mismatch
with the usual meanings of C-y and M-y is unintended.

• Various completion features have been simplified. The options completion-cycle-

threshold and completion-category-overrides have been removed. Due to the
latter removal, Emacs uses a single consistent scheme to generate completions, instead
of using a separate scheme for (say) buffer name completion. Several major modes,
such as Shell mode, now implement their own inline completion commands instead of
using completion-at-point.

• We have removed various options for controlling how windows are used, e.g. display-
buffer-base-action, display-buffer-alist, window-combination-limit, and
window-combination-resize.

• The command M-x customize-themes has been removed. Emacs no longer comes with
pre-defined themes (you can write your own).

Appendix E: Emacs 23 Antinews 486

• Emacs no longer adapts various aspects of its display to GTK+ settings, opting instead
for a uniform toolkit-independent look. GTK+ scroll bars are placed on the left, the
same position as non-GTK+ X scroll bars. Emacs no longer refers to GTK+ to set the
default region face, nor for drawing tooltips.

• Setting the option delete-by-moving-to-trash to a non-nil now causes all file dele-
tions to use the system trash, even temporary files created by Lisp programs; further-
more, the M-x delete-file and M-x delete-directory commands no longer accept
prefix arguments to force true deletion.

• On GNU/Linux and Unix, the default method for sending mail (as specified by send-

mail-function) is to use the sendmail program. Emacs no longer asks for a delivery
method the first time you try to send mail, trusting instead that the system is configured
for mail delivery, as it ought to be.

• Several VC features have been removed, including the C-x v + and C-x v m commands
for pulling and merging on distributed version control systems, and the ability to view
inline log entries in the log buffers made by C-x v L.

• To keep up with decreasing computer memory capacity and disk space, many other
functions and files have been eliminated in Emacs 23.4.

Appendix F: Emacs and Mac OS / GNUstep 487

Appendix F Emacs and Mac OS / GNUstep

This section describes the peculiarities of using Emacs built with the GNUstep libraries
on GNU/Linux or other operating systems, or on Mac OS X with native window system
support. On Mac OS X, Emacs can be built either without window system support, with
X11, or with the Cocoa interface; this section only applies to the Cocoa build. This does
not support versions of Mac OS X earlier than 10.4.

For various historical and technical reasons, Emacs uses the term ‘Nextstep’ internally,
instead of “Cocoa” or “Mac OS X”; for instance, most of the commands and variables
described in this section begin with ‘ns-’, which is short for ‘Nextstep’. NeXTstep was
an application interface released by NeXT Inc during the 1980s, of which Cocoa is a direct
descendant. Apart from Cocoa, there is another NeXTstep-style system: GNUstep, which
is free software. As of this writing, Emacs GNUstep support is alpha status (see Section F.4
[GNUstep Support], page 489), but we hope to improve it in the future.

F.1 Basic Emacs usage under Mac OS and GNUstep

By default, the ALT and OPTION keys are the same as META. The Mac CMD key is
the same as SUPER, and Emacs provides a set of key bindings using this modifier key
that mimic other Mac / GNUstep applications (see Section F.3 [Mac / GNUstep Events],
page 488). You can change these bindings in the usual way (see Section 33.3 [Key Bindings],
page 414).

The variable ns-right-alternate-modifier controls the behavior of the right ALT and
OPTION keys. These keys behave like the left-hand keys if the value is left (the default).
A value of control, meta, alt, super, or hyper makes them behave like the corresponding
modifier keys; a value of none tells Emacs to ignore them.

S-Mouse-1 adjusts the region to the click position, just like Mouse-3 (mouse-save-then-
kill); it does not pop up a menu for changing the default face, as S-Mouse-1 normally
does (see Section 11.11 [Text Scale], page 74). This change makes Emacs behave more like
other Mac / GNUstep applications.

When you open or save files using the menus, or using the Cmd-o and Cmd-S bindings,
Emacs uses graphical file dialogs to read file names. However, if you use the regular Emacs
key sequences, such as C-x C-f, Emacs uses the minibuffer to read file names.

On GNUstep, in an X-windows environment you need to use Cmd-c instead of one of the
C-w or M-w commands to transfer text to the X primary selection; otherwise, Emacs will
use the “clipboard” selection. Likewise, Cmd-y (instead of C-y) yanks from the X primary
selection instead of the kill-ring or clipboard.

F.1.1 Grabbing environment variables

Many programs which may run under Emacs, like latex or man, depend on the settings of
environment variables. If Emacs is launched from the shell, it will automatically inherit
these environment variables and its subprocesses will inherit them from it. But if Emacs is
launched from the Finder it is not a descendant of any shell, so its environment variables
haven’t been set, which often causes the subprocesses it launches to behave differently than
they would when launched from the shell.

Appendix F: Emacs and Mac OS / GNUstep 488

For the PATH and MANPATH variables, a system-wide method of setting PATH is rec-
ommended on Mac OS X 10.5 and later, using the ‘/etc/paths’ files and the ‘/etc/paths.d’
directory.

F.2 Mac / GNUstep Customization

Emacs can be customized in several ways in addition to the standard customization buffers
and the Options menu.

F.2.1 Font and Color Panels

The standard Mac / GNUstep font and color panels are accessible via Lisp commands. The
Font Panel may be accessed with M-x ns-popup-font-panel. It will set the default font in
the frame most recently used or clicked on.

You can bring up a color panel with M-x ns-popup-color-panel and drag the color you
want over the Emacs face you want to change. Normal dragging will alter the foreground
color. Shift dragging will alter the background color. To discard the settings, create a new
frame and close the altered one.

Useful in this context is the listing of all faces obtained by M-x list-faces-display.

F.2.2 Customization options specific to Mac OS / GNUstep

The following customization options are specific to the Nextstep port.

ns-auto-hide-menu-bar

Non-nil means the menu-bar is hidden by default, but appears if you move the
mouse pointer over it. (Requires Mac OS X 10.6 or later.)

F.3 Windowing System Events under Mac OS / GNUstep

Nextstep applications receive a number of special events which have no X equivalent. These
are sent as specially defined “keys”, which do not correspond to any sequence of keystrokes.
Under Emacs, these “key” events can be bound to functions just like ordinary keystrokes.
Here is a list of these events.

NS-OPEN-FILE
This event occurs when another Nextstep application requests that Emacs open
a file. A typical reason for this would be a user double-clicking a file in the
Finder application. By default, Emacs responds to this event by opening a new
frame and visiting the file in that frame (ns-find-file). As an exception, if
the selected buffer is the ‘*scratch*’ buffer, Emacs visits the file in the selected
frame.

You can change how Emacs responds to a ns-open-file event by changing the
variable ns-pop-up-frames. Its default value, ‘fresh’, is what we have just
described. A value of t means to always visit the file in a new frame. A value
of nil means to always visit the file in an existing frame.

NS-OPEN-TEMP-FILE
This event occurs when another application requests that Emacs open a tempo-
rary file. By default, this is handled by just generating a ns-open-file event,
the results of which are described above.

Appendix F: Emacs and Mac OS / GNUstep 489

NS-OPEN-FILE-LINE
Some applications, such as ProjectBuilder and gdb, request not only a particular
file, but also a particular line or sequence of lines in the file. Emacs handles
this by visiting that file and highlighting the requested line (ns-open-file-
select-line).

NS-DRAG-FILE
This event occurs when a user drags files from another application into an
Emacs frame. The default behavior is to insert the contents of all the dragged
files into the current buffer (ns-insert-files). The list of dragged files is
stored in the variable ns-input-file.

NS-DRAG-COLOR
This event occurs when a user drags a color from the color well (or some other
source) into an Emacs frame. The default behavior is to alter the foreground
color of the area the color was dragged onto (ns-set-foreground-at-mouse).
If this event is issued with a SHIFT modifier, Emacs changes the background
color instead (ns-set-background-at-mouse). The name of the dragged color
is stored in the variable ns-input-color.

NS-CHANGE-FONT
This event occurs when the user selects a font in a Nextstep font panel (which
can be opened with Cmd-t). The default behavior is to adjust the font of the se-
lected frame (ns-respond-to-changefont). The name and size of the selected
font are stored in the variables ns-input-font and ns-input-fontsize, re-
spectively.

NS-POWER-OFF
This event occurs when the user logs out and Emacs is still running, or when
‘Quit Emacs’ is chosen from the application menu. The default behavior is to
save all file-visiting buffers.

Emacs also allows users to make use of Nextstep services, via a set of commands
whose names begin with ‘ns-service-’ and end with the name of the service. Type M-x

ns-service-TAB to see a list of these commands. These functions either operate on marked
text (replacing it with the result) or take a string argument and return the result as a string.
You can also use the Lisp function ns-perform-service to pass arbitrary strings to arbi-
trary services and receive the results back. Note that you may need to restart Emacs to
access newly-available services.

F.4 GNUstep Support

Emacs can be built and run under GNUstep, but there are still issues to be addressed.
Interested developers should contact emacs-devel@gnu.org.

mailto:emacs-devel@gnu.org

Appendix G: Emacs and Microsoft Windows/MS-DOS 490

Appendix G Emacs and Microsoft Windows/MS-
DOS

This section describes peculiarities of using Emacs on Microsoft Windows. Some of these
peculiarities are also relevant to Microsoft’s older MS-DOS “operating system” (also known
as “MS-DOG”). However, Emacs features that are relevant only to MS-DOS are described
in a separate manual (see Section “MS-DOS” in Specialized Emacs Features).

The behavior of Emacs on MS-Windows is reasonably similar to what is documented in
the rest of the manual, including support for long file names, multiple frames, scroll bars,
mouse menus, and subprocesses. However, a few special considerations apply, and they are
described here.

G.1 How to Start Emacs on MS-Windows

There are several ways of starting Emacs on MS-Windows:

1. From the desktop shortcut icon: either double-click the left mouse button on the icon,
or click once, then press RET. The desktop shortcut should specify as its “Target”
(in the “Properties” of the shortcut) the full absolute file name of ‘runemacs.exe’, not
of ‘emacs.exe’. This is because ‘runemacs.exe’ hides the console window that would
have been created if the target of the shortcut were ‘emacs.exe’ (which is a console
program, as far as Windows is concerned). If you use this method, Emacs starts in
the directory specified by the shortcut. To control where that is, right-click on the
shortcut, select “Properties”, and in the “Shortcut” tab modify the “Start in” field to
your liking.

2. From the Command Prompt window, by typing emacs RET at the prompt. The Com-
mand Prompt window where you did that will not be available for invoking other
commands until Emacs exits. In this case, Emacs will start in the current directory of
the Windows shell.

3. From the Command Prompt window, by typing runemacs RET at the prompt. The
Command Prompt window where you did that will be immediately available for in-
voking other commands. In this case, Emacs will start in the current directory of the
Windows shell.

4. Via ‘emacsclient.exe’ or ‘emacsclientw.exe’, which allow you to invoke Emacs from
other programs, and to reuse a running Emacs process for serving editing jobs required
by other programs. See Section 31.4 [Emacs Server], page 378. The difference between
‘emacsclient.exe’ and ‘emacsclientw.exe’ is that the former is a console program,
while the latter is a Windows GUI program. Both programs wait for Emacs to signal
that the editing job is finished, before they exit and return control to the program that
invoked them. Which one of them to use in each case depends on the expectations of the
program that needs editing services. If that program is itself a console (text-mode) pro-
gram, you should use ‘emacsclient.exe’, so that any of its messages and prompts ap-
pear in the same command window as those of the invoking program. By contrast, if the
invoking program is a GUI program, you will be better off using ‘emacsclientw.exe’,
because ‘emacsclient.exe’ will pop up a command window if it is invoked from a GUI
program. A notable situation where you would want ‘emacsclientw.exe’ is when you
right-click on a file in the Windows Explorer and select “Open With” from the pop-up
menu. Use the ‘--alternate-editor=’ or ‘-a’ options if Emacs might not be running

Appendix G: Emacs and Microsoft Windows/MS-DOS 491

(or not running as a server) when emacsclient is invoked—that will always give you
an editor. When invoked via emacsclient, Emacs will start in the current directory
of the program that invoked emacsclient.

Note that, due to limitations of MS-Windows, Emacs cannot have both GUI and text-
mode frames in the same session. It also cannot open text-mode frames on more than a
single Command Prompt window, because each Windows program can have only one console
at any given time. For these reasons, if you invoke emacsclient with the ‘-c’ option, and
the Emacs server runs in a text-mode session, Emacs will always create a new text-mode
frame in the same Command Prompt window where it was started; a GUI frame will be
created only if the server runs in a GUI session. Similarly, if you invoke emacsclient with
the ‘-t’ option, Emacs will create a GUI frame if the server runs in a GUI session, or a
text-mode frame when the session runs in text mode in a Command Prompt window. See
Section 31.4.2 [emacsclient Options], page 379.

G.2 Text Files and Binary Files

GNU Emacs uses newline characters to separate text lines. This is the convention used on
GNU, Unix, and other Posix-compliant systems.

By contrast, MS-DOS and MS-Windows normally use carriage-return linefeed, a two-
character sequence, to separate text lines. (Linefeed is the same character as newline.)
Therefore, convenient editing of typical files with Emacs requires conversion of these end-
of-line (EOL) sequences. And that is what Emacs normally does: it converts carriage-return
linefeed into newline when reading files, and converts newline into carriage-return linefeed
when writing files. The same mechanism that handles conversion of international character
codes does this conversion also (see Section 19.6 [Coding Systems], page 174).

One consequence of this special format-conversion of most files is that character positions
as reported by Emacs (see Section 4.9 [Position Info], page 22) do not agree with the file
size information known to the operating system.

In addition, if Emacs recognizes from a file’s contents that it uses newline rather than
carriage-return linefeed as its line separator, it does not perform EOL conversion when
reading or writing that file. Thus, you can read and edit files from GNU and Unix systems on
MS-DOS with no special effort, and they will retain their Unix-style end-of-line convention
after you edit them.

The mode line indicates whether end-of-line translation was used for the current buffer.
If MS-DOS end-of-line translation is in use for the buffer, the MS-Windows build of Emacs
displays a backslash ‘\’ after the coding system mnemonic near the beginning of the mode
line (see Section 1.3 [Mode Line], page 8). If no EOL translation was performed, the string
‘(Unix)’ is displayed instead of the backslash, to alert you that the file’s EOL format is not
the usual carriage-return linefeed.

To visit a file and specify whether it uses DOS-style or Unix-style end-of-line, specify a
coding system (see Section 19.10 [Text Coding], page 179). For example, C-x RET c unix

RET C-x C-f foobar.txt visits the file ‘foobar.txt’ without converting the EOLs; if some
line ends with a carriage-return linefeed pair, Emacs will display ‘^M’ at the end of that line.
Similarly, you can direct Emacs to save a buffer in a specified EOL format with the C-x RET

f command. For example, to save a buffer with Unix EOL format, type C-x RET f unix

Appendix G: Emacs and Microsoft Windows/MS-DOS 492

RET C-x C-s. If you visit a file with DOS EOL conversion, then save it with Unix EOL
format, that effectively converts the file to Unix EOL style, like the dos2unix program.

When you use NFS, Samba, or some other similar method to access file systems that
reside on computers using GNU or Unix systems, Emacs should not perform end-of-line
translation on any files in these file systems—not even when you create a new file. To
request this, designate these file systems as untranslated file systems by calling the function
add-untranslated-filesystem. It takes one argument: the file system name, including a
drive letter and optionally a directory. For example,

(add-untranslated-filesystem "Z:")

designates drive Z as an untranslated file system, and

(add-untranslated-filesystem "Z:\\foo")

designates directory ‘\foo’ on drive Z as an untranslated file system.

Most often you would use add-untranslated-filesystem in your ‘.emacs’ file, or in
‘site-start.el’ so that all the users at your site get the benefit of it.

To countermand the effect of add-untranslated-filesystem, use the function remove-

untranslated-filesystem. This function takes one argument, which should be a string
just like the one that was used previously with add-untranslated-filesystem.

Designating a file system as untranslated does not affect character set conversion, only
end-of-line conversion. Essentially, it directs Emacs to create new files with the Unix-style
convention of using newline at the end of a line. See Section 19.6 [Coding Systems], page 174.

Some kinds of files should not be converted at all, because their contents are not really
text. Therefore, Emacs on MS-Windows distinguishes certain files as binary files. (This
distinction is not part of MS-Windows; it is made by Emacs only.) Binary files include
executable programs, compressed archives, etc. Emacs uses the file name to decide whether
to treat a file as binary: the variable file-name-buffer-file-type-alist defines the
file-name patterns that indicate binary files. If a file name matches one of the patterns
for binary files (those whose associations are of the type (pattern . t), Emacs reads and
writes that file using the no-conversion coding system (see Section 19.6 [Coding Systems],
page 174) which turns off all coding-system conversions, not only the EOL conversion.
file-name-buffer-file-type-alist also includes file-name patterns for files which are
known to be Windows-style text files with carriage-return linefeed EOL format, such as
‘CONFIG.SYS’; Emacs always writes those files with Windows-style EOLs.

If a file that belongs to an untranslated file system matches one of the file-name patterns
in file-name-buffer-file-type-alist, the EOL conversion is determined by file-name-

buffer-file-type-alist.

G.3 File Names on MS-Windows

MS-Windows and MS-DOS normally use a backslash, ‘\’, to separate name units within a
file name, instead of the slash used on other systems. Emacs on MS-DOS/MS-Windows
permits use of either slash or backslash, and also knows about drive letters in file names.

On MS-DOS/MS-Windows, file names are case-insensitive, so Emacs by default ignores
letter-case in file names during completion.

The variable w32-get-true-file-attributes controls whether Emacs should issue ad-
ditional system calls to determine more accurately file attributes in primitives like file-

Appendix G: Emacs and Microsoft Windows/MS-DOS 493

attributes and directory-files-and-attributes. These additional calls are needed to
report correct file ownership, link counts and file types for special files such as pipes. With-
out these system calls, file ownership will be attributed to the current user, link counts will
be always reported as 1, and special files will be reported as regular files.

If the value of this variable is local (the default), Emacs will issue these additional
system calls only for files on local fixed drives. Any other non-nil value means do this even
for removable and remote volumes, where this could potentially slow down Dired and other
related features. The value of nil means never issue those system calls. Non-nil values
are more useful on NTFS volumes, which support hard links and file security, than on FAT,
FAT32, and XFAT volumes.

G.4 Emulation of ls on MS-Windows

Dired normally uses the external program ls to produce the directory listing displayed in
Dired buffers (see Chapter 27 [Dired], page 302). However, MS-Windows and MS-DOS
systems don’t come with such a program, although several ports of gnu ls are available.
Therefore, Emacs on those systems emulates ls in Lisp, by using the ‘ls-lisp.el’ package.
While ‘ls-lisp.el’ provides a reasonably full emulation of ls, there are some options and
features peculiar to that emulation; for more details, see the documentation of the variables
whose names begin with ls-lisp.

G.5 HOME and Startup Directories on MS-Windows

The Windows equivalent of the HOME directory is the user-specific application data
directory. The actual location depends on the Windows version; typical values are
‘C:\Documents and Settings\username\Application Data’ on Windows 2K/XP/2K3,
‘C:\Users\username\AppData\Roaming’ on Windows Vista/7/2K8, and either
‘C:\WINDOWS\Application Data’ or ‘C:\WINDOWS\Profiles\username\Application
Data’ on the older Windows 9X/ME systems. If this directory does not exist or cannot be
accessed, Emacs falls back to ‘C:\’ as the default value of HOME.

You can override this default value of HOME by explicitly setting the environment variable
HOME to point to any directory on your system. HOME can be set either from the command
shell prompt or from ‘Properties’ dialog of ‘My Computer’. HOME can also be set in the
system registry, see Section C.4.3 [MS-Windows Registry], page 471.

For compatibility with older versions of Emacs1, if there is a file named ‘.emacs’ in
‘C:\’, the root directory of drive ‘C:’, and HOME is set neither in the environment nor in
the Registry, Emacs will treat ‘C:\’ as the default HOME location, and will not look in the
application data directory, even if it exists. Note that only ‘.emacs’ is looked for in ‘C:\’;
the older name ‘_emacs’ (see below) is not. This use of ‘C:\.emacs’ to define HOME is
deprecated.

Whatever the final place is, Emacs sets the internal value of the HOME environment
variable to point to it, and it will use that location for other files and directories it normally
looks for or creates in your home directory.

You can always find out what Emacs thinks is your home directory’s location by typing
C-x d ~/ RET. This should present the list of files in the home directory, and show its full

1 Older versions of Emacs didn’t check the application data directory.

Appendix G: Emacs and Microsoft Windows/MS-DOS 494

name on the first line. Likewise, to visit your init file, type C-x C-f ~/.emacs RET (assuming
the file’s name is ‘.emacs’).

The home directory is where your init file is stored. It can have any name mentioned in
Section 33.4 [Init File], page 423.

Because MS-DOS does not allow file names with leading dots, and older Windows sys-
tems made it hard to create files with such names, the Windows port of Emacs supports
an init file name ‘_emacs’, if such a file exists in the home directory and ‘.emacs’ does not.
This name is considered obsolete.

G.6 Keyboard Usage on MS-Windows

This section describes the Windows-specific features related to keyboard input in Emacs.

Many key combinations (known as “keyboard shortcuts”) that have conventional uses
in MS-Windows programs conflict with traditional Emacs key bindings. (These Emacs
key bindings were established years before Microsoft was founded.) Examples of conflicts
include C-c, C-x, C-z, C-a, and W-SPC. You can redefine some of them with meanings more
like the MS-Windows meanings by enabling CUA Mode (see Section 9.6 [CUA Bindings],
page 59).

The F10 key on Windows activates the menu bar in a way that makes it possible to use
the menus without a mouse. In this mode, the arrow keys traverse the menus, RET selects
a highlighted menu item, and ESC closes the menu.

See Info file ‘emacs’, node ‘Windows Keyboard’, for information about additional
Windows-specific variables in this category.

The variable w32-apps-modifier controls the effect of the APPS key (usually located
between the right ALT and the right CTRL keys). Its value can be one of the symbols
hyper, super, meta, alt, control, or shift for the respective modifier, or nil to appear
as the key apps. The default is nil.

The variable w32-lwindow-modifier determines the effect of the left Windows key (usu-
ally labeled with START and the Windows logo). If its value is nil (the default), the key
will produce the symbol lwindow. Setting it to one of the symbols hyper, super, meta, alt,
control, or shift will produce the respective modifier. A similar variable w32-rwindow-

modifier controls the effect of the right Windows key, and w32-scroll-lock-modifier

does the same for the SCRLOCK key. If these variables are set to nil, the right Windows
key produces the symbol rwindow and SCRLOCK produces the symbol scroll.

Emacs compiled as a native Windows application normally turns off the Windows feature
that tapping the ALT key invokes the Windows menu. The reason is that the ALT serves
as META in Emacs. When using Emacs, users often press the META key temporarily and
then change their minds; if this has the effect of bringing up the Windows menu, it alters
the meaning of subsequent commands. Many users find this frustrating.

You can re-enable Windows’s default handling of tapping the ALT key by setting w32-

pass-alt-to-system to a non-nil value.

G.7 Mouse Usage on MS-Windows

This section describes the Windows-specific variables related to the mouse.

Appendix G: Emacs and Microsoft Windows/MS-DOS 495

The variable w32-mouse-button-tolerance specifies the time interval, in milliseconds,
for faking middle mouse button press on 2-button mice. If both mouse buttons are depressed
within this time interval, Emacs generates a middle mouse button click event instead of a
double click on one of the buttons.

If the variable w32-pass-extra-mouse-buttons-to-system is non-nil, Emacs passes
the fourth and fifth mouse buttons to Windows.

The variable w32-swap-mouse-buttons controls which of the 3 mouse buttons generates
the mouse-2 events. When it is nil (the default), the middle button generates mouse-2 and
the right button generates mouse-3 events. If this variable is non-nil, the roles of these
two buttons are reversed.

G.8 Subprocesses on Windows 9X/ME and Windows
NT/2K/XP

Emacs compiled as a native Windows application (as opposed to the DOS version) includes
full support for asynchronous subprocesses. In the Windows version, synchronous and
asynchronous subprocesses work fine on both Windows 9X/ME and Windows NT/2K/XP
as long as you run only 32-bit Windows applications. However, when you run a DOS
application in a subprocess, you may encounter problems or be unable to run the application
at all; and if you run two DOS applications at the same time in two subprocesses, you may
have to reboot your system.

Since the standard command interpreter (and most command line utilities) on Windows
9X are DOS applications, these problems are significant when using that system. But
there’s nothing we can do about them; only Microsoft can fix them.

If you run just one DOS application subprocess, the subprocess should work as expected
as long as it is “well-behaved” and does not perform direct screen access or other unusual
actions. If you have a CPU monitor application, your machine will appear to be 100% busy
even when the DOS application is idle, but this is only an artifact of the way CPU monitors
measure processor load.

You must terminate the DOS application before you start any other DOS application
in a different subprocess. Emacs is unable to interrupt or terminate a DOS subprocess.
The only way you can terminate such a subprocess is by giving it a command that tells its
program to exit.

If you attempt to run two DOS applications at the same time in separate subprocesses,
the second one that is started will be suspended until the first one finishes, even if either or
both of them are asynchronous.

If you can go to the first subprocess, and tell it to exit, the second subprocess should
continue normally. However, if the second subprocess is synchronous, Emacs itself will be
hung until the first subprocess finishes. If it will not finish without user input, then you have
no choice but to reboot if you are running on Windows 9X. If you are running on Windows
NT/2K/XP, you can use a process viewer application to kill the appropriate instance of
NTVDM instead (this will terminate both DOS subprocesses).

If you have to reboot Windows 9X in this situation, do not use the Shutdown command
on the Start menu; that usually hangs the system. Instead, type CTL-ALT-DEL and then
choose Shutdown. That usually works, although it may take a few minutes to do its job.

Appendix G: Emacs and Microsoft Windows/MS-DOS 496

The variable w32-quote-process-args controls how Emacs quotes the process argu-
ments. Non-nil means quote with the " character. If the value is a character, Emacs uses
that character to escape any quote characters that appear; otherwise it chooses a suitable
escape character based on the type of the program.

G.9 Printing and MS-Windows

Printing commands, such as lpr-buffer (see Section 31.5 [Printing], page 382) and
ps-print-buffer (see Section 31.5.1 [PostScript], page 383) work in MS-DOS and
MS-Windows by sending the output to one of the printer ports, if a Posix-style lpr

program is unavailable. The same Emacs variables control printing on all systems, but in
some cases they have different default values on MS-DOS and MS-Windows.

Emacs on MS Windows attempts to determine your default printer automatically (using
the function default-printer-name). But in some rare cases this can fail, or you may
wish to use a different printer from within Emacs. The rest of this section explains how to
tell Emacs which printer to use.

If you want to use your local printer, then set the Lisp variable lpr-command to "" (its
default value on Windows) and printer-name to the name of the printer port—for example,
"PRN", the usual local printer port, or "LPT2", or "COM1" for a serial printer. You can also
set printer-name to a file name, in which case “printed” output is actually appended to
that file. If you set printer-name to "NUL", printed output is silently discarded (sent to
the system null device).

You can also use a printer shared by another machine by setting printer-name to the
UNC share name for that printer—for example, "//joes_pc/hp4si". (It doesn’t matter
whether you use forward slashes or backslashes here.) To find out the names of shared
printers, run the command ‘net view’ from the command prompt to obtain a list of servers,
and ‘net view server-name ’ to see the names of printers (and directories) shared by that
server. Alternatively, click the ‘Network Neighborhood’ icon on your desktop, and look for
machines that share their printers via the network.

If the printer doesn’t appear in the output of ‘net view’, or if setting printer-name

to the UNC share name doesn’t produce a hardcopy on that printer, you can use the ‘net
use’ command to connect a local print port such as "LPT2" to the networked printer. For
example, typing net use LPT2: \\joes_pc\hp4si2 causes Windows to capture the LPT2

port and redirect the printed material to the printer connected to the machine joes_pc.
After this command, setting printer-name to "LPT2" should produce the hardcopy on the
networked printer.

With some varieties of Windows network software, you can instruct Windows to cap-
ture a specific printer port such as "LPT2", and redirect it to a networked printer via the
Control Panel->Printers applet instead of ‘net use’.

If you set printer-name to a file name, it’s best to use an absolute file name. Emacs
changes the working directory according to the default directory of the current buffer, so if
the file name in printer-name is relative, you will end up with several such files, each one
in the directory of the buffer from which the printing was done.

2 Note that the ‘net use’ command requires the UNC share name to be typed with the Windows-style
backslashes, while the value of printer-name can be set with either forward- or backslashes.

Appendix G: Emacs and Microsoft Windows/MS-DOS 497

If the value of printer-name is correct, but printing does not produce the hardcopy
on your printer, it is possible that your printer does not support printing plain text (some
cheap printers omit this functionality). In that case, try the PostScript print commands,
described below.

The commands print-buffer and print-region call the pr program, or use special
switches to the lpr program, to produce headers on each printed page. MS-DOS and MS-
Windows don’t normally have these programs, so by default, the variable lpr-headers-

switches is set so that the requests to print page headers are silently ignored. Thus, print-
buffer and print-region produce the same output as lpr-buffer and lpr-region, re-
spectively. If you do have a suitable pr program (for example, from GNU Coreutils), set
lpr-headers-switches to nil; Emacs will then call pr to produce the page headers, and
print the resulting output as specified by printer-name.

Finally, if you do have an lpr work-alike, you can set the variable lpr-command to "lpr".
Then Emacs will use lpr for printing, as on other systems. (If the name of the program
isn’t lpr, set lpr-command to the appropriate value.) The variable lpr-switches has its
standard meaning when lpr-command is not "". If the variable printer-name has a string
value, it is used as the value for the -P option to lpr, as on Unix.

A parallel set of variables, ps-lpr-command, ps-lpr-switches, and ps-printer-name

(see Section 31.5.2 [PostScript Variables], page 384), defines how PostScript files should be
printed. These variables are used in the same way as the corresponding variables described
above for non-PostScript printing. Thus, the value of ps-printer-name is used as the name
of the device (or file) to which PostScript output is sent, just as printer-name is used for
non-PostScript printing. (There are two distinct sets of variables in case you have two
printers attached to two different ports, and only one of them is a PostScript printer.)

The default value of the variable ps-lpr-command is "", which causes PostScript output
to be sent to the printer port specified by ps-printer-name; but ps-lpr-command can also
be set to the name of a program which will accept PostScript files. Thus, if you have a non-
PostScript printer, you can set this variable to the name of a PostScript interpreter program
(such as Ghostscript). Any switches that need to be passed to the interpreter program are
specified using ps-lpr-switches. (If the value of ps-printer-name is a string, it will be
added to the list of switches as the value for the -P option. This is probably only useful if
you are using lpr, so when using an interpreter typically you would set ps-printer-name

to something other than a string so it is ignored.)

For example, to use Ghostscript for printing on the system’s default printer, put this in
your ‘.emacs’ file:

(setq ps-printer-name t)

(setq ps-lpr-command "D:/gs6.01/bin/gswin32c.exe")

(setq ps-lpr-switches ’("-q" "-dNOPAUSE" "-dBATCH"

"-sDEVICE=mswinpr2"

"-sPAPERSIZE=a4"))

(This assumes that Ghostscript is installed in the ‘D:/gs6.01’ directory.)

G.10 Specifying Fonts on MS-Windows

Starting with Emacs 23, fonts are specified by their name, size and optional properties. The
format for specifying fonts comes from the fontconfig library used in modern Free desktops:

Appendix G: Emacs and Microsoft Windows/MS-DOS 498

[Family[-PointSize]][:Option1=Value1[:Option2=Value2[...]]]

The old XLFD based format is also supported for backwards compatibility.

Emacs 23 and later supports a number of font backends. Currently, the gdi and
uniscribe backends are supported on Windows. The gdi font backend is available on all
versions of Windows, and supports all fonts that are natively supported by Windows. The
uniscribe font backend is available on Windows 2000 and later, and supports TrueType
and OpenType fonts. Some languages requiring complex layout can only be properly
supported by the Uniscribe backend. By default, both backends are enabled if supported,
with uniscribe taking priority over gdi. To override that and use the GDI backend
even if Uniscribe is available, invoke Emacs with the -xrm Emacs.fontBackend:gdi

command-line argument, or add a Emacs.fontBackend resource with the value gdi

in the Registry under either the ‘HKEY_CURRENT_USER\SOFTWARE\GNU\Emacs’ or the
‘HKEY_LOCAL_MACHINE\SOFTWARE\GNU\Emacs’ key (see Section D.1 [Resources], page 478).

Optional properties common to all font backends on MS-Windows are:

weight Specifies the weight of the font. Special values light, medium, demibold, bold,
and black can be specified without weight= (e.g., Courier New-12:bold).
Otherwise, the weight should be a numeric value between 100 and 900, or one
of the named weights in font-weight-table. If unspecified, a regular font is
assumed.

slant Specifies whether the font is italic. Special values roman, italic and oblique

can be specified without slant= (e.g., Courier New-12:italic). Otherwise,
the slant should be a numeric value, or one of the named slants in font-slant-

table. On Windows, any slant above 150 is treated as italics, and anything
below as roman.

family Specifies the font family, but normally this will be specified at the start of the
font name.

pixelsize

Specifies the font size in pixels. This can be used instead of the point size
specified after the family name.

adstyle Specifies additional style information for the font. On MS-Windows, the values
mono, sans, serif, script and decorative are recognized. These are most
useful as a fallback with the font family left unspecified.

registry Specifies the character set registry that the font is expected to cover. Most
TrueType and OpenType fonts will be Unicode fonts that cover several na-
tional character sets, but you can narrow down the selection of fonts to those
that support a particular character set by using a specific registry from w32-

charset-info-alist here.

spacing Specifies how the font is spaced. The p spacing specifies a proportional font,
and m or c specify a monospaced font.

foundry Not used on Windows, but for informational purposes and to prevent problems
with code that expects it to be set, is set internally to raster for bitmapped
fonts, outline for scalable fonts, or unknown if the type cannot be determined
as one of those.

Appendix G: Emacs and Microsoft Windows/MS-DOS 499

Options specific to GDI fonts:

script Specifies a Unicode subrange the font should support.

The following scripts are recognized on Windows: latin, greek, coptic,
cyrillic, armenian, hebrew, arabic, syriac, nko, thaana, devanagari,
bengali, gurmukhi, gujarati, oriya, tamil, telugu, kannada, malayam,
sinhala, thai, lao, tibetan, myanmar, georgian, hangul, ethiopic,
cherokee, canadian-aboriginal, ogham, runic, khmer, mongolian,
symbol, braille, han, ideographic-description, cjk-misc, kana,
bopomofo, kanbun, yi, byzantine-musical-symbol, musical-symbol, and
mathematical.

antialias

Specifies the antialiasing method. The value none means no antialiasing,
standard means use standard antialiasing, subpixel means use subpixel
antialiasing (known as Cleartype on Windows), and natural means use
subpixel antialiasing with adjusted spacing between letters. If unspecified, the
font will use the system default antialiasing.

G.11 Miscellaneous Windows-specific features

This section describes miscellaneous Windows-specific features.

The variable w32-use-visible-system-caret is a flag that determines whether to make
the system caret visible. The default when no screen reader software is in use is nil, which
means Emacs draws its own cursor to indicate the position of point. A non-nil value means
Emacs will indicate point location with the system caret; this facilitates use of screen reader
software, and is the default when such software is detected when running Emacs. When
this variable is non-nil, other variables affecting the cursor display have no effect.

See Info file ‘emacs’, node ‘Windows Misc’, for information about additional Windows-
specific variables in this category.

The GNU Manifesto 500

The GNU Manifesto

The GNU Manifesto which appears below was written by Richard Stallman at
the beginning of the GNU project, to ask for participation and support. For
the first few years, it was updated in minor ways to account for developments,
but now it seems best to leave it unchanged as most people have seen it.

Since that time, we have learned about certain common misunderstandings that
different wording could help avoid. Footnotes added in 1993 help clarify these
points.

For up-to-date information about available GNU software, please see our web
site, http://www.gnu.org. For software tasks and other ways to contribute,
see http://www.gnu.org/help.

What’s GNU? Gnu’s Not Unix!

GNU, which stands for Gnu’s Not Unix, is the name for the complete Unix-compatible
software system which I am writing so that I can give it away free to everyone who can use
it.1 Several other volunteers are helping me. Contributions of time, money, programs and
equipment are greatly needed.

So far we have an Emacs text editor with Lisp for writing editor commands, a source
level debugger, a yacc-compatible parser generator, a linker, and around 35 utilities. A
shell (command interpreter) is nearly completed. A new portable optimizing C compiler
has compiled itself and may be released this year. An initial kernel exists but many more
features are needed to emulate Unix. When the kernel and compiler are finished, it will be
possible to distribute a GNU system suitable for program development. We will use TEX
as our text formatter, but an nroff is being worked on. We will use the free, portable X
window system as well. After this we will add a portable Common Lisp, an Empire game, a
spreadsheet, and hundreds of other things, plus on-line documentation. We hope to supply,
eventually, everything useful that normally comes with a Unix system, and more.

GNU will be able to run Unix programs, but will not be identical to Unix. We will make
all improvements that are convenient, based on our experience with other operating sys-
tems. In particular, we plan to have longer file names, file version numbers, a crashproof file
system, file name completion perhaps, terminal-independent display support, and perhaps
eventually a Lisp-based window system through which several Lisp programs and ordinary
Unix programs can share a screen. Both C and Lisp will be available as system program-
ming languages. We will try to support UUCP, MIT Chaosnet, and Internet protocols for
communication.

1 The wording here was careless. The intention was that nobody would have to pay for permission to use
the GNU system. But the words don’t make this clear, and people often interpret them as saying that
copies of GNU should always be distributed at little or no charge. That was never the intent; later on,
the manifesto mentions the possibility of companies providing the service of distribution for a profit.
Subsequently I have learned to distinguish carefully between “free” in the sense of freedom and “free” in
the sense of price. Free software is software that users have the freedom to distribute and change. Some
users may obtain copies at no charge, while others pay to obtain copies—and if the funds help support
improving the software, so much the better. The important thing is that everyone who has a copy has
the freedom to cooperate with others in using it.

http://www.gnu.org
http://www.gnu.org/help

The GNU Manifesto 501

GNU is aimed initially at machines in the 68000/16000 class with virtual memory, be-
cause they are the easiest machines to make it run on. The extra effort to make it run on
smaller machines will be left to someone who wants to use it on them.

To avoid horrible confusion, please pronounce the ‘G’ in the word ‘GNU’ when it is the
name of this project.

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share it with other
people who like it. Software sellers want to divide the users and conquer them, making each
user agree not to share with others. I refuse to break solidarity with other users in this way.
I cannot in good conscience sign a nondisclosure agreement or a software license agreement.
For years I worked within the Artificial Intelligence Lab to resist such tendencies and other
inhospitalities, but eventually they had gone too far: I could not remain in an institution
where such things are done for me against my will.

So that I can continue to use computers without dishonor, I have decided to put together
a sufficient body of free software so that I will be able to get along without any software
that is not free. I have resigned from the AI lab to deny MIT any legal excuse to prevent
me from giving GNU away.

Why GNU Will Be Compatible with Unix

Unix is not my ideal system, but it is not too bad. The essential features of Unix seem to
be good ones, and I think I can fill in what Unix lacks without spoiling them. And a system
compatible with Unix would be convenient for many other people to adopt.

How GNU Will Be Available

GNU is not in the public domain. Everyone will be permitted to modify and redistribute
GNU, but no distributor will be allowed to restrict its further redistribution. That is to
say, proprietary modifications will not be allowed. I want to make sure that all versions of
GNU remain free.

Why Many Other Programmers Want to Help

I have found many other programmers who are excited about GNU and want to help.

Many programmers are unhappy about the commercialization of system software. It
may enable them to make more money, but it requires them to feel in conflict with other
programmers in general rather than feel as comrades. The fundamental act of friendship
among programmers is the sharing of programs; marketing arrangements now typically used
essentially forbid programmers to treat others as friends. The purchaser of software must
choose between friendship and obeying the law. Naturally, many decide that friendship is
more important. But those who believe in law often do not feel at ease with either choice.
They become cynical and think that programming is just a way of making money.

By working on and using GNU rather than proprietary programs, we can be hospitable
to everyone and obey the law. In addition, GNU serves as an example to inspire and a
banner to rally others to join us in sharing. This can give us a feeling of harmony which

The GNU Manifesto 502

is impossible if we use software that is not free. For about half the programmers I talk to,
this is an important happiness that money cannot replace.

How You Can Contribute

I am asking computer manufacturers for donations of machines and money. I’m asking
individuals for donations of programs and work.

One consequence you can expect if you donate machines is that GNU will run on them
at an early date. The machines should be complete, ready to use systems, approved for use
in a residential area, and not in need of sophisticated cooling or power.

I have found very many programmers eager to contribute part-time work for GNU.
For most projects, such part-time distributed work would be very hard to coordinate; the
independently-written parts would not work together. But for the particular task of re-
placing Unix, this problem is absent. A complete Unix system contains hundreds of utility
programs, each of which is documented separately. Most interface specifications are fixed
by Unix compatibility. If each contributor can write a compatible replacement for a single
Unix utility, and make it work properly in place of the original on a Unix system, then
these utilities will work right when put together. Even allowing for Murphy to create a few
unexpected problems, assembling these components will be a feasible task. (The kernel will
require closer communication and will be worked on by a small, tight group.)

If I get donations of money, I may be able to hire a few people full or part time. The
salary won’t be high by programmers’ standards, but I’m looking for people for whom
building community spirit is as important as making money. I view this as a way of enabling
dedicated people to devote their full energies to working on GNU by sparing them the need
to make a living in another way.

Why All Computer Users Will Benefit

Once GNU is written, everyone will be able to obtain good system software free, just like
air.2

This means much more than just saving everyone the price of a Unix license. It means
that much wasteful duplication of system programming effort will be avoided. This effort
can go instead into advancing the state of the art.

Complete system sources will be available to everyone. As a result, a user who needs
changes in the system will always be free to make them himself, or hire any available
programmer or company to make them for him. Users will no longer be at the mercy of one
programmer or company which owns the sources and is in sole position to make changes.

Schools will be able to provide a much more educational environment by encouraging all
students to study and improve the system code. Harvard’s computer lab used to have the
policy that no program could be installed on the system if its sources were not on public
display, and upheld it by actually refusing to install certain programs. I was very much
inspired by this.

2 This is another place I failed to distinguish carefully between the two different meanings of “free.” The
statement as it stands is not false—you can get copies of GNU software at no charge, from your friends
or over the net. But it does suggest the wrong idea.

The GNU Manifesto 503

Finally, the overhead of considering who owns the system software and what one is or is
not entitled to do with it will be lifted.

Arrangements to make people pay for using a program, including licensing of copies,
always incur a tremendous cost to society through the cumbersome mechanisms necessary
to figure out how much (that is, which programs) a person must pay for. And only a
police state can force everyone to obey them. Consider a space station where air must be
manufactured at great cost: charging each breather per liter of air may be fair, but wearing
the metered gas mask all day and all night is intolerable even if everyone can afford to
pay the air bill. And the TV cameras everywhere to see if you ever take the mask off are
outrageous. It’s better to support the air plant with a head tax and chuck the masks.

Copying all or parts of a program is as natural to a programmer as breathing, and as
productive. It ought to be as free.

Some Easily Rebutted Objections to GNU’s Goals

“Nobody will use it if it is free, because that means they can’t rely on any
support.”

“You have to charge for the program to pay for providing the support.”

If people would rather pay for GNU plus service than get GNU free without service,
a company to provide just service to people who have obtained GNU free ought to be
profitable.3

We must distinguish between support in the form of real programming work and mere
handholding. The former is something one cannot rely on from a software vendor. If your
problem is not shared by enough people, the vendor will tell you to get lost.

If your business needs to be able to rely on support, the only way is to have all the
necessary sources and tools. Then you can hire any available person to fix your problem;
you are not at the mercy of any individual. With Unix, the price of sources puts this out of
consideration for most businesses. With GNU this will be easy. It is still possible for there
to be no available competent person, but this problem cannot be blamed on distribution
arrangements. GNU does not eliminate all the world’s problems, only some of them.

Meanwhile, the users who know nothing about computers need handholding: doing
things for them which they could easily do themselves but don’t know how.

Such services could be provided by companies that sell just hand-holding and repair
service. If it is true that users would rather spend money and get a product with service, they
will also be willing to buy the service having got the product free. The service companies
will compete in quality and price; users will not be tied to any particular one. Meanwhile,
those of us who don’t need the service should be able to use the program without paying
for the service.

“You cannot reach many people without advertising, and you must charge for
the program to support that.”

“It’s no use advertising a program people can get free.”

There are various forms of free or very cheap publicity that can be used to inform numbers
of computer users about something like GNU. But it may be true that one can reach more

3 Several such companies now exist.

The GNU Manifesto 504

microcomputer users with advertising. If this is really so, a business which advertises the
service of copying and mailing GNU for a fee ought to be successful enough to pay for its
advertising and more. This way, only the users who benefit from the advertising pay for it.

On the other hand, if many people get GNU from their friends, and such companies
don’t succeed, this will show that advertising was not really necessary to spread GNU. Why
is it that free market advocates don’t want to let the free market decide this?4

“My company needs a proprietary operating system to get a competitive edge.”

GNU will remove operating system software from the realm of competition. You will
not be able to get an edge in this area, but neither will your competitors be able to get an
edge over you. You and they will compete in other areas, while benefiting mutually in this
one. If your business is selling an operating system, you will not like GNU, but that’s tough
on you. If your business is something else, GNU can save you from being pushed into the
expensive business of selling operating systems.

I would like to see GNU development supported by gifts from many manufacturers and
users, reducing the cost to each.5

“Don’t programmers deserve a reward for their creativity?”

If anything deserves a reward, it is social contribution. Creativity can be a social contri-
bution, but only in so far as society is free to use the results. If programmers deserve to be
rewarded for creating innovative programs, by the same token they deserve to be punished
if they restrict the use of these programs.

“Shouldn’t a programmer be able to ask for a reward for his creativity?”

There is nothing wrong with wanting pay for work, or seeking to maximize one’s income,
as long as one does not use means that are destructive. But the means customary in the
field of software today are based on destruction.

Extracting money from users of a program by restricting their use of it is destructive
because the restrictions reduce the amount and the ways that the program can be used.
This reduces the amount of wealth that humanity derives from the program. When there
is a deliberate choice to restrict, the harmful consequences are deliberate destruction.

The reason a good citizen does not use such destructive means to become wealthier
is that, if everyone did so, we would all become poorer from the mutual destructiveness.
This is Kantian ethics; or, the Golden Rule. Since I do not like the consequences that
result if everyone hoards information, I am required to consider it wrong for one to do so.
Specifically, the desire to be rewarded for one’s creativity does not justify depriving the
world in general of all or part of that creativity.

“Won’t programmers starve?”

I could answer that nobody is forced to be a programmer. Most of us cannot manage
to get any money for standing on the street and making faces. But we are not, as a result,
condemned to spend our lives standing on the street making faces, and starving. We do
something else.

4 The Free Software Foundation raises most of its funds from a distribution service, although it is a charity
rather than a company. If no one chooses to obtain copies by ordering from the FSF, it will be unable
to do its work. But this does not mean that proprietary restrictions are justified to force every user to
pay. If a small fraction of all the users order copies from the FSF, that is sufficient to keep the FSF
afloat. So we ask users to choose to support us in this way. Have you done your part?

5 A group of computer companies recently pooled funds to support maintenance of the GNU C Compiler.

The GNU Manifesto 505

But that is the wrong answer because it accepts the questioner’s implicit assumption:
that without ownership of software, programmers cannot possibly be paid a cent. Suppos-
edly it is all or nothing.

The real reason programmers will not starve is that it will still be possible for them to
get paid for programming; just not paid as much as now.

Restricting copying is not the only basis for business in software. It is the most common
basis because it brings in the most money. If it were prohibited, or rejected by the customer,
software business would move to other bases of organization which are now used less often.
There are always numerous ways to organize any kind of business.

Probably programming will not be as lucrative on the new basis as it is now. But that
is not an argument against the change. It is not considered an injustice that sales clerks
make the salaries that they now do. If programmers made the same, that would not be an
injustice either. (In practice they would still make considerably more than that.)

“Don’t people have a right to control how their creativity is used?”

“Control over the use of one’s ideas” really constitutes control over other people’s lives;
and it is usually used to make their lives more difficult.

People who have studied the issue of intellectual property rights6 carefully (such as
lawyers) say that there is no intrinsic right to intellectual property. The kinds of supposed
intellectual property rights that the government recognizes were created by specific acts of
legislation for specific purposes.

For example, the patent system was established to encourage inventors to disclose the
details of their inventions. Its purpose was to help society rather than to help inventors. At
the time, the life span of 17 years for a patent was short compared with the rate of advance
of the state of the art. Since patents are an issue only among manufacturers, for whom
the cost and effort of a license agreement are small compared with setting up production,
the patents often do not do much harm. They do not obstruct most individuals who use
patented products.

The idea of copyright did not exist in ancient times, when authors frequently copied other
authors at length in works of non-fiction. This practice was useful, and is the only way many
authors’ works have survived even in part. The copyright system was created expressly for
the purpose of encouraging authorship. In the domain for which it was invented—books,
which could be copied economically only on a printing press—it did little harm, and did
not obstruct most of the individuals who read the books.

All intellectual property rights are just licenses granted by society because it was thought,
rightly or wrongly, that society as a whole would benefit by granting them. But in any
particular situation, we have to ask: are we really better off granting such license? What
kind of act are we licensing a person to do?

The case of programs today is very different from that of books a hundred years ago.
The fact that the easiest way to copy a program is from one neighbor to another, the

6 In the 80s I had not yet realized how confusing it was to speak of “the issue” of “intellectual property.”
That term is obviously biased; more subtle is the fact that it lumps together various disparate laws which
raise very different issues. Nowadays I urge people to reject the term “intellectual property” entirely,
lest it lead others to suppose that those laws form one coherent issue. The way to be clear is to discuss
patents, copyrights, and trademarks separately. See http://www.gnu.org/philosophy/not-ipr.xhtml

for more explanation of how this term spreads confusion and bias.

http://www.gnu.org/philosophy/not-ipr.xhtml

The GNU Manifesto 506

fact that a program has both source code and object code which are distinct, and the fact
that a program is used rather than read and enjoyed, combine to create a situation in
which a person who enforces a copyright is harming society as a whole both materially and
spiritually; in which a person should not do so regardless of whether the law enables him
to.

“Competition makes things get done better.”

The paradigm of competition is a race: by rewarding the winner, we encourage everyone
to run faster. When capitalism really works this way, it does a good job; but its defenders
are wrong in assuming it always works this way. If the runners forget why the reward is
offered and become intent on winning, no matter how, they may find other strategies—such
as, attacking other runners. If the runners get into a fist fight, they will all finish late.

Proprietary and secret software is the moral equivalent of runners in a fist fight. Sad
to say, the only referee we’ve got does not seem to object to fights; he just regulates them
(“For every ten yards you run, you can fire one shot”). He really ought to break them up,
and penalize runners for even trying to fight.

“Won’t everyone stop programming without a monetary incentive?”

Actually, many people will program with absolutely no monetary incentive. Program-
ming has an irresistible fascination for some people, usually the people who are best at it.
There is no shortage of professional musicians who keep at it even though they have no
hope of making a living that way.

But really this question, though commonly asked, is not appropriate to the situation.
Pay for programmers will not disappear, only become less. So the right question is, will
anyone program with a reduced monetary incentive? My experience shows that they will.

For more than ten years, many of the world’s best programmers worked at the Artificial
Intelligence Lab for far less money than they could have had anywhere else. They got many
kinds of non-monetary rewards: fame and appreciation, for example. And creativity is also
fun, a reward in itself.

Then most of them left when offered a chance to do the same interesting work for a lot
of money.

What the facts show is that people will program for reasons other than riches; but if
given a chance to make a lot of money as well, they will come to expect and demand it.
Low-paying organizations do poorly in competition with high-paying ones, but they do not
have to do badly if the high-paying ones are banned.

“We need the programmers desperately. If they demand that we stop helping
our neighbors, we have to obey.”

You’re never so desperate that you have to obey this sort of demand. Remember: millions
for defense, but not a cent for tribute!

“Programmers need to make a living somehow.”

In the short run, this is true. However, there are plenty of ways that programmers
could make a living without selling the right to use a program. This way is customary now
because it brings programmers and businessmen the most money, not because it is the only
way to make a living. It is easy to find other ways if you want to find them. Here are a
number of examples.

The GNU Manifesto 507

A manufacturer introducing a new computer will pay for the porting of operating systems
onto the new hardware.

The sale of teaching, hand-holding and maintenance services could also employ program-
mers.

People with new ideas could distribute programs as freeware7, asking for donations from
satisfied users, or selling hand-holding services. I have met people who are already working
this way successfully.

Users with related needs can form users’ groups, and pay dues. A group would contract
with programming companies to write programs that the group’s members would like to
use.

All sorts of development can be funded with a Software Tax:

Suppose everyone who buys a computer has to pay x percent of the price as a
software tax. The government gives this to an agency like the NSF to spend on
software development.

But if the computer buyer makes a donation to software development himself,
he can take a credit against the tax. He can donate to the project of his own
choosing—often, chosen because he hopes to use the results when it is done.
He can take a credit for any amount of donation up to the total tax he had to
pay.

The total tax rate could be decided by a vote of the payers of the tax, weighted
according to the amount they will be taxed on.

The consequences:

• The computer-using community supports software development.

• This community decides what level of support is needed.

• Users who care which projects their share is spent on can choose this for
themselves.

In the long run, making programs free is a step toward the post-scarcity world, where
nobody will have to work very hard just to make a living. People will be free to devote
themselves to activities that are fun, such as programming, after spending the necessary
ten hours a week on required tasks such as legislation, family counseling, robot repair and
asteroid prospecting. There will be no need to be able to make a living from programming.

We have already greatly reduced the amount of work that the whole society must do
for its actual productivity, but only a little of this has translated itself into leisure for
workers because much nonproductive activity is required to accompany productive activity.
The main causes of this are bureaucracy and isometric struggles against competition. Free
software will greatly reduce these drains in the area of software production. We must do
this, in order for technical gains in productivity to translate into less work for us.

7 Subsequently we have discovered the need to distinguish between “free software” and “free-
ware”. The term “freeware” means software you are free to redistribute, but usually you
are not free to study and change the source code, so most of it is not free software. See
http://www.gnu.org/philosophy/words-to-avoid.html for more explanation.

http://www.gnu.org/philosophy/words-to-avoid.html

Glossary 508

Glossary

Abbrev An abbrev is a text string that expands into a different text string when present
in the buffer. For example, you might define a few letters as an abbrev for a long
phrase that you want to insert frequently. See Chapter 26 [Abbrevs], page 296.

Aborting Aborting means getting out of a recursive edit (q.v.). The commands C-] and
M-x top-level are used for this. See Section 34.1 [Quitting], page 429.

Alt Alt is the name of a modifier bit that a keyboard input character may have. To
make a character Alt, type it while holding down the ALT key. Such characters
are given names that start with Alt- (usually written A- for short). (Note
that many terminals have a key labeled ALT that is really a META key.) See
Section 2.1 [User Input], page 11.

Argument See [Glossary - Numeric Argument], page 523.

ASCII character
An ASCII character is either an ASCII control character or an ASCII printing
character. See Section 2.1 [User Input], page 11.

ASCII control character
An ASCII control character is the Control version of an upper-case letter, or
the Control version of one of the characters ‘@[\]^_?’.

ASCII printing character
ASCII printing characters include letters, digits, space, and these punctuation
characters: ‘!@#$%^&*()_-+=|\~‘{}[]:;"’<>,.?/’.

Auto Fill Mode
Auto Fill mode is a minor mode (q.v.) in which text that you insert is automat-
ically broken into lines of a given maximum width. See Section 22.5 [Filling],
page 202.

Auto Saving
Auto saving is the practice of periodically saving the contents of an Emacs
buffer in a specially-named file, so that the information will be preserved if the
buffer is lost due to a system error or user error. See Section 15.5 [Auto Save],
page 126.

Autoloading
Emacs can automatically load Lisp libraries when a Lisp program requests a
function from those libraries. This is called ‘autoloading’. See Section 24.8
[Lisp Libraries], page 265.

Backtrace A backtrace is a trace of a series of function calls showing how a program
arrived at a certain point. It is used mainly for finding and correcting bugs
(q.v.). Emacs can display a backtrace when it signals an error or when you
type C-g (see [Glossary - Quitting], page 524). See Section 34.3.4 [Checklist],
page 436.

Glossary 509

Backup File
A backup file records the contents that a file had before the current editing
session. Emacs makes backup files automatically to help you track down or
cancel changes you later regret making. See Section 15.3.2 [Backup], page 120.

Balancing Parentheses
Emacs can balance parentheses (or other matching delimiters) either manually
or automatically. You do manual balancing with the commands to move over
parenthetical groupings (see Section 23.4.2 [Moving by Parens], page 238). Au-
tomatic balancing works by blinking or highlighting the delimiter that matches
the one you just inserted, or inserting the matching delimiter for you (see
Section 23.4.3 [Matching Parens], page 238).

Balanced Expressions
A balanced expression is a syntactically recognizable expression, such as a
symbol, number, string constant, block, or parenthesized expression in C. See
Section 23.4.1 [Expressions], page 237.

Balloon Help
See [Glossary - Tooltips], page 528.

Base Buffer
A base buffer is a buffer whose text is shared by an indirect buffer (q.v.).

Bidirectional Text
Some human languages, such as English, are written from left to right. Oth-
ers, such as Arabic, are written from right to left. Emacs supports both of
these forms, as well as any mixture of them—this is ‘bidirectional text’. See
Section 19.20 [Bidirectional Editing], page 187.

Bind To bind a key sequence means to give it a binding (q.v.). See Section 33.3.5
[Rebinding], page 416.

Binding A key sequence gets its meaning in Emacs by having a binding, which is a
command (q.v.), a Lisp function that is run when you type that sequence. See
Section 2.3 [Commands], page 12. Customization often involves rebinding a
character to a different command function. The bindings of all key sequences
are recorded in the keymaps (q.v.). See Section 33.3.1 [Keymaps], page 414.

Blank Lines
Blank lines are lines that contain only whitespace. Emacs has several commands
for operating on the blank lines in the buffer. See Section 4.7 [Blank Lines],
page 21.

Bookmark Bookmarks are akin to registers (q.v.) in that they record positions in buffers to
which you can return later. Unlike registers, bookmarks persist between Emacs
sessions. See Section 10.7 [Bookmarks], page 63.

Border A border is a thin space along the edge of the frame, used just for spacing,
not for displaying anything. An Emacs frame has an ordinary external border,
outside of everything including the menu bar, plus an internal border that
surrounds the text windows, their scroll bars and fringes, and separates them

Glossary 510

from the menu bar and tool bar. You can customize both borders with options
and resources (see Section C.9 [Borders X], page 475). Borders are not the same
as fringes (q.v.).

Buffer The buffer is the basic editing unit; one buffer corresponds to one text being
edited. You normally have several buffers, but at any time you are editing
only one, the ‘current buffer’, though several can be visible when you are using
multiple windows or frames (q.v.). Most buffers are visiting (q.v.) some file.
See Chapter 16 [Buffers], page 139.

Buffer Selection History
Emacs keeps a buffer selection history that records how recently each Emacs
buffer has been selected. This is used for choosing a buffer to select. See
Chapter 16 [Buffers], page 139.

Bug A bug is an incorrect or unreasonable behavior of a program, or inaccurate or
confusing documentation. Emacs developers treat bug reports, both in Emacs
code and its documentation, very seriously and ask you to report any bugs you
find. See Section 34.3 [Bugs], page 433.

Button Down Event
A button down event is the kind of input event (q.v.) generated right away
when you press down on a mouse button. See Section 33.3.10 [Mouse Buttons],
page 421.

By Default
See [Glossary - Default], page 513.

Byte Compilation
See [Glossary - Compilation], page 511.

C- C- in the name of a character is an abbreviation for Control. See Section 2.1
[User Input], page 11.

C-M- C-M- in the name of a character is an abbreviation for Control-Meta. If your
terminal lacks a real META key, you type a Control-Meta character by typing
ESC and then typing the corresponding Control character. See Section 2.1
[User Input], page 11.

Case Conversion
Case conversion means changing text from upper case to lower case or vice
versa. See Section 22.6 [Case], page 206.

Character Characters form the contents of an Emacs buffer. Also, key sequences (q.v.)
are usually made up of characters (though they may include other input events
as well). See Section 2.1 [User Input], page 11.

Character Set
Emacs supports a number of character sets, each of which represents a particular
alphabet or script. See Chapter 19 [International], page 167.

Character Terminal
See [Glossary - Text Terminal], page 528.

Glossary 511

Click Event
A click event is the kind of input event (q.v.) generated when you press a mouse
button and release it without moving the mouse. See Section 33.3.10 [Mouse
Buttons], page 421.

Client See [Glossary - Server], page 527.

Clipboard A clipboard is a buffer provided by the window system for transferring text
between applications. On the X Window System, the clipboard is provided in
addition to the primary selection (q.v.); on MS-Windows and Mac, the clip-
board is used instead of the primary selection. See Section 9.3.1 [Clipboard],
page 55.

Coding System
A coding system is an encoding for representing text characters in a file or in
a stream of information. Emacs has the ability to convert text to or from a
variety of coding systems when reading or writing it. See Section 19.6 [Coding
Systems], page 174.

Command A command is a Lisp function specially defined to be able to serve as a key
binding in Emacs. When you type a key sequence (q.v.), its binding (q.v.)
is looked up in the relevant keymaps (q.v.) to find the command to run. See
Section 2.3 [Commands], page 12.

Command History
See [Glossary - Minibuffer History], page 522.

Command Name
A command name is the name of a Lisp symbol that is a command (see
Section 2.3 [Commands], page 12). You can invoke any command by its name
using M-x (see Chapter 6 [Running Commands by Name], page 35).

Comment A comment is text in a program which is intended only for humans reading
the program, and which is specially marked so that it will be ignored when the
program is loaded or compiled. Emacs offers special commands for creating,
aligning and killing comments. See Section 23.5 [Comments], page 239.

Common Lisp
Common Lisp is a dialect of Lisp (q.v.) much larger and more powerful than
Emacs Lisp. Emacs provides a subset of Common Lisp in the CL package. See
Section “Overview” in Common Lisp Extensions.

Compilation
Compilation is the process of creating an executable program from source code.
Emacs has commands for compiling files of Emacs Lisp code (see Section “Byte
Compilation” in the Emacs Lisp Reference Manual) and programs in C and
other languages (see Section 24.1 [Compilation], page 250).

Complete Key
A complete key is a key sequence that fully specifies one action to be performed
by Emacs. For example, X and C-f and C-x m are complete keys. Complete
keys derive their meanings from being bound (q.v.) to commands (q.v.). Thus,

Glossary 512

X is conventionally bound to a command to insert ‘X’ in the buffer; C-x m is
conventionally bound to a command to begin composing a mail message. See
Section 2.2 [Keys], page 11.

Completion
Completion is what Emacs does when it automatically expands an abbreviation
for a name into the entire name. Completion is done for minibuffer (q.v.)
arguments when the set of possible valid inputs is known; for example, on
command names, buffer names, and file names. Completion usually occurs
when TAB, SPC or RET is typed. See Section 5.3 [Completion], page 28.

Continuation Line
When a line of text is longer than the width of the window, it normally (but
see [Glossary - Truncation], page 529) takes up more than one screen line when
displayed. We say that the text line is continued, and all screen lines used for
it after the first are called continuation lines. See Section 4.8 [Continuation
Lines], page 21. A related Emacs feature is ‘filling’ (q.v.).

Control Character
A control character is a character that you type by holding down the CTRL
key. Some control characters also have their own keys, so that you can type
them without using CTRL. For example, RET, TAB, ESC and DEL are all
control characters. See Section 2.1 [User Input], page 11.

Copyleft A copyleft is a notice giving the public legal permission to redistribute and
modify a program or other work of art, but requiring modified versions to
carry similar permission. Copyright is normally used to keep users divided and
helpless; with copyleft we turn that around to empower users and encourage
them to cooperate.

The particular form of copyleft used by the GNU project is called the GNU
General Public License. See Appendix A [Copying], page 444.

CTRL The CTRL or “control” key is what you hold down in order to enter a control
character (q.v.). See [Glossary - C-], page 510.

Current Buffer
The current buffer in Emacs is the Emacs buffer on which most editing com-
mands operate. You can select any Emacs buffer as the current one. See
Chapter 16 [Buffers], page 139.

Current Line
The current line is the line that point is on (see Section 1.1 [Point], page 6).

Current Paragraph
The current paragraph is the paragraph that point is in. If point is between two
paragraphs, the current paragraph is the one that follows point. See Section 22.3
[Paragraphs], page 200.

Current Defun
The current defun is the defun (q.v.) that point is in. If point is between defuns,
the current defun is the one that follows point. See Section 23.2 [Defuns],
page 231.

Glossary 513

Cursor The cursor is the rectangle on the screen which indicates the position (called
point; q.v.) at which insertion and deletion takes place. The cursor is on or
under the character that follows point. Often people speak of ‘the cursor’
when, strictly speaking, they mean ‘point’. See Section 1.1 [Point], page 6.

Customization
Customization is making minor changes in the way Emacs works, to reflect your
preferences or needs. It is often done by setting variables (see Section 33.2 [Vari-
ables], page 406) or faces (see Section 33.1.5 [Face Customization], page 402),
or by rebinding key sequences (see Section 33.3.1 [Keymaps], page 414).

Cut and Paste
See [Glossary - Killing], page 520, and [Glossary - Yanking], page 530.

Daemon A daemon is a standard term for a system-level process that runs in the back-
ground. Daemons are often started when the system first starts up. When
Emacs runs in daemon-mode, it runs in the background and does not open
a display. You can then connect to it with the emacsclient program. See
Section 31.4 [Emacs Server], page 378.

Default Argument
The default for an argument is the value that will be assumed if you do not
specify one. When the minibuffer is used to read an argument, the default
argument is used if you just type RET. See Chapter 5 [Minibuffer], page 26.

Default A default is the value that is used for a certain purpose when you do not
explicitly specify a value to use.

Default Directory
When you specify a file name that does not start with ‘/’ or ‘~’, it is interpreted
relative to the current buffer’s default directory. (On MS systems, file names
that start with a drive letter ‘x:’ are treated as absolute, not relative.) See
Section 5.1 [Minibuffer File], page 26.

Defun A defun is a major definition at the top level in a program. The name ‘defun’
comes from Lisp, where most such definitions use the construct defun. See
Section 23.2 [Defuns], page 231.

DEL DEL is a character that runs the command to delete one character of text before
the cursor. It is typically either the DELETE key or the BACKSPACE key,
whichever one is easy to type. See Section 4.3 [Erasing], page 19.

Deletion Deletion means erasing text without copying it into the kill ring (q.v.). The
alternative is killing (q.v.). See Chapter 9 [Killing], page 50.

Deletion of Files
Deleting a file means erasing it from the file system. (Note that some systems
use the concept of a “trash can”, or “recycle bin”, to allow you to “undelete”
files.) See Section 15.10 [Miscellaneous File Operations], page 132.

Deletion of Messages
Deleting a message (in Rmail, and other mail clients) means flagging it to be
eliminated from your mail file. Until you expunge (q.v.) the Rmail file, you can

Glossary 514

still undelete the messages you have deleted. See Section 30.4 [Rmail Deletion],
page 347.

Deletion of Windows
Deleting a window means eliminating it from the screen. Other windows expand
to use up the space. The text that was in the window is not lost, and you can
create a new window with the same dimensions as the old if you wish. See
Chapter 17 [Windows], page 147.

Directory File directories are named collections in the file system, within which you can
place individual files or subdirectories. They are sometimes referred to as “fold-
ers”. See Section 15.7 [Directories], page 129.

Directory Local Variable
A directory local variable is a local variable (q.v.) that applies to all the files
within a certain directory. See Section 33.2.5 [Directory Variables], page 413.

Dired Dired is the Emacs facility that displays the contents of a file directory and
allows you to “edit the directory”, performing operations on the files in the
directory. See Chapter 27 [Dired], page 302.

Disabled Command
A disabled command is one that you may not run without special confirmation.
The usual reason for disabling a command is that it is confusing for beginning
users. See Section 33.3.11 [Disabling], page 422.

Down Event
Short for ‘button down event’ (q.v.).

Drag Event
A drag event is the kind of input event (q.v.) generated when you press a mouse
button, move the mouse, and then release the button. See Section 33.3.10
[Mouse Buttons], page 421.

Dribble File
A dribble file is a file into which Emacs writes all the characters that you type
on the keyboard. Dribble files can be used to make a record for debugging
Emacs bugs. Emacs does not make a dribble file unless you tell it to. See
Section 34.3 [Bugs], page 433.

Echo Area The echo area is the bottom line of the screen, used for echoing the arguments to
commands, for asking questions, and showing brief messages (including error
messages). The messages are stored in the buffer ‘*Messages*’ so you can
review them later. See Section 1.2 [Echo Area], page 7.

Echoing Echoing is acknowledging the receipt of input events by displaying them (in
the echo area). Emacs never echoes single-character key sequences; longer key
sequences echo only if you pause while typing them.

Electric We say that a character is electric if it is normally self-inserting (q.v.), but
the current major mode (q.v.) redefines it to do something else as well. For
example, some programming language major modes define particular delimiter
characters to reindent the line, or insert one or more newlines in addition to
self-insertion.

Glossary 515

End Of Line
End of line is a character or a sequence of characters that indicate the end of a
text line. On GNU and Unix systems, this is a newline (q.v.), but other systems
have other conventions. See Section 19.6 [Coding Systems], page 174. Emacs
can recognize several end-of-line conventions in files and convert between them.

Environment Variable
An environment variable is one of a collection of variables stored by the operat-
ing system, each one having a name and a value. Emacs can access environment
variables set by its parent shell, and it can set variables in the environment it
passes to programs it invokes. See Section C.4 [Environment], page 467.

EOL See [Glossary - End Of Line], page 514.

Error An error occurs when an Emacs command cannot execute in the current cir-
cumstances. When an error occurs, execution of the command stops (unless
the command has been programmed to do otherwise) and Emacs reports the
error by displaying an error message (q.v.).

Error Message
An error message is output displayed by Emacs when you ask it to do something
impossible (such as, killing text forward when point is at the end of the buffer),
or when a command malfunctions in some way. Such messages appear in the
echo area, accompanied by a beep.

ESC ESC is a character used as a prefix for typing Meta characters on keyboards
lacking a META key. Unlike the META key (which, like the SHIFT key, is held
down while another character is typed), you press the ESC key as you would
press a letter key, and it applies to the next character you type.

Expression
See [Glossary - Balanced Expression], page 509.

Expunging
Expunging an Rmail, Gnus newsgroup, or Dired buffer is an operation that
truly discards the messages or files you have previously flagged for deletion.

Face A face is a style of displaying characters. It specifies attributes such as font fam-
ily and size, foreground and background colors, underline and strike-through,
background stipple, etc. Emacs provides features to associate specific faces
with portions of buffer text, in order to display that text as specified by the
face attributes. See Section 11.8 [Faces], page 70.

File Local Variable
A file local variable is a local variable (q.v.) specified in a given file. See
Section 33.2.4 [File Variables], page 410, and [Glossary - Directory Local Vari-
able], page 514.

File Locking
Emacs uses file locking to notice when two different users start to edit one file
at the same time. See Section 15.3.4 [Interlocking], page 123.

File Name A file name is a name that refers to a file. File names may be relative or
absolute; the meaning of a relative file name depends on the current directory,

Glossary 516

but an absolute file name refers to the same file regardless of which directory
is current. On GNU and Unix systems, an absolute file name starts with a
slash (the root directory) or with ‘~/’ or ‘~user/’ (a home directory). On MS-
Windows/MS-DOS, an absolute file name can also start with a drive letter and
a colon, e.g. ‘d:’.

Some people use the term “pathname” for file names, but we do not; we use
the word “path” only in the term “search path” (q.v.).

File-Name Component
A file-name component names a file directly within a particular directory. On
GNU and Unix systems, a file name is a sequence of file-name components,
separated by slashes. For example, ‘foo/bar’ is a file name containing two
components, ‘foo’ and ‘bar’; it refers to the file named ‘bar’ in the directory
named ‘foo’ in the current directory. MS-DOS/MS-Windows file names can
also use backslashes to separate components, as in ‘foo\bar’.

Fill Prefix The fill prefix is a string that should be expected at the beginning of each line
when filling is done. It is not regarded as part of the text to be filled. See
Section 22.5 [Filling], page 202.

Filling Filling text means adjusting the position of line-breaks to shift text between
consecutive lines, so that all the lines are approximately the same length. See
Section 22.5 [Filling], page 202. Some other editors call this feature “line wrap-
ping”.

Font Lock Font Lock is a mode that highlights parts of buffer text in different faces, ac-
cording to the syntax. Some other editors refer to this as “syntax highlighting”.
For example, all comments (q.v.) might be colored red. See Section 11.12 [Font
Lock], page 74.

Fontset A fontset is a named collection of fonts. A fontset specification lists character
sets and which font to use to display each of them. Fontsets make it easy to
change several fonts at once by specifying the name of a fontset, rather than
changing each font separately. See Section 19.14 [Fontsets], page 182.

Formfeed Character
See [Glossary - Page], page 523.

Frame A frame is a rectangular cluster of Emacs windows. Emacs starts out with one
frame, but you can create more. You can subdivide each frame into Emacs
windows (q.v.). When you are using a window system (q.v.), more than one
frame can be visible at the same time. See Chapter 18 [Frames], page 153.
Some other editors use the term “window” for this, but in Emacs a window
means something else.

Free Software
Free software is software that gives you the freedom to share, study and modify
it. Emacs is free software, part of the GNU project (q.v.), and distributed
under a copyleft (q.v.) license called the GNU General Public License. See
Appendix A [Copying], page 444.

Glossary 517

Free Software Foundation
The Free Software Foundation (FSF) is a charitable foundation dedicated to
promoting the development of free software (q.v.). For more information, see
the FSF website.

Fringe On a graphical display (q.v.), there’s a narrow portion of the frame (q.v.) be-
tween the text area and the window’s border. These “fringes” are used to dis-
play symbols that provide information about the buffer text (see Section 11.14
[Fringes], page 77). Emacs displays the fringe using a special face (q.v.) called
fringe. See Section 11.8 [Faces], page 70.

FSF See [Glossary - Free Software Foundation], page 516.

FTP FTP is an acronym for File Transfer Protocol. This is one standard method for
retrieving remote files (q.v.).

Function Key
A function key is a key on the keyboard that sends input but does not corre-
spond to any character. See Section 33.3.8 [Function Keys], page 419.

Global Global means “independent of the current environment; in effect throughout
Emacs”. It is the opposite of local (q.v.). Particular examples of the use of
‘global’ appear below.

Global Abbrev
A global definition of an abbrev (q.v.) is effective in all major modes that do
not have local (q.v.) definitions for the same abbrev. See Chapter 26 [Abbrevs],
page 296.

Global Keymap
The global keymap (q.v.) contains key bindings that are in effect everywhere,
except when overridden by local key bindings in a major mode’s local keymap
(q.v.). See Section 33.3.1 [Keymaps], page 414.

Global Mark Ring
The global mark ring records the series of buffers you have recently set a mark
(q.v.) in. In many cases you can use this to backtrack through buffers you have
been editing, or in which you have found tags (see [Glossary - Tags Table],
page 528). See Section 8.5 [Global Mark Ring], page 48.

Global Substitution
Global substitution means replacing each occurrence of one string by another
string throughout a large amount of text. See Section 12.9 [Replace], page 96.

Global Variable
The global value of a variable (q.v.) takes effect in all buffers that do not
have their own local (q.v.) values for the variable. See Section 33.2 [Variables],
page 406.

GNU GNU is a recursive acronym for GNU’s Not Unix, and it refers to a Unix-
compatible operating system which is free software (q.v.). See [Manifesto],
page 500. GNU is normally used with Linux as the kernel since Linux works
better than the GNU kernel. For more information, see the GNU website.

http://fsf.org/
http://www.gnu.org/

Glossary 518

Graphic Character
Graphic characters are those assigned pictorial images rather than just names.
All the non-Meta (q.v.) characters except for the Control (q.v.) characters are
graphic characters. These include letters, digits, punctuation, and spaces; they
do not include RET or ESC. In Emacs, typing a graphic character inserts that
character (in ordinary editing modes). See Section 4.1 [Inserting Text], page 16.

Graphical Display
A graphical display is one that can display images and multiple fonts. Usually
it also has a window system (q.v.).

Highlighting
Highlighting text means displaying it with a different foreground and/or back-
ground color to make it stand out from the rest of the text in the buffer.

Emacs uses highlighting in several ways. It highlights the region whenever it
is active (see Chapter 8 [Mark], page 44). Incremental search also highlights
matches (see Section 12.1 [Incremental Search], page 85). See [Glossary - Font
Lock], page 516.

Hardcopy Hardcopy means printed output. Emacs has various commands for printing the
contents of Emacs buffers. See Section 31.5 [Printing], page 382.

HELP HELP is the Emacs name for C-h or F1. You can type HELP at any time to
ask what options you have, or to ask what a command does. See Chapter 7
[Help], page 36.

Help Echo Help echo is a short message displayed in the echo area (q.v.) when the mouse
pointer is located on portions of display that require some explanations. Emacs
displays help echo for menu items, parts of the mode line, tool-bar buttons, etc.
On graphical displays, the messages can be displayed as tooltips (q.v.). See
Section 18.17 [Tooltips], page 165.

Home Directory
Your home directory contains your personal files. On a multi-user GNU or Unix
system, each user has his or her own home directory. When you start a new
login session, your home directory is the default directory in which to start. A
standard shorthand for your home directory is ‘~’. Similarly, ‘~user ’ represents
the home directory of some other user.

Hook A hook is a list of functions to be called on specific occasions, such as saving
a buffer in a file, major mode activation, etc. By customizing the various
hooks, you can modify Emacs’s behavior without changing any of its code. See
Section 33.2.2 [Hooks], page 408.

Hyper Hyper is the name of a modifier bit that a keyboard input character may have.
To make a character Hyper, type it while holding down the HYPER key. Such
characters are given names that start with Hyper- (usually written H- for short).
See Section 2.1 [User Input], page 11.

Iff “Iff” means “if and only if”. This terminology comes from mathematics. Try
to avoid using this term in documentation, since many are unfamiliar with it
and mistake it for a typo.

Glossary 519

Inbox An inbox is a file in which mail is delivered by the operating system. Rmail
transfers mail from inboxes to Rmail files in which the mail is then stored per-
manently or until explicitly deleted. See Section 30.5 [Rmail Inbox], page 348.

Incremental Search
Emacs provides an incremental search facility, whereby Emacs begins searching
for a string as soon as you type the first character. As you type more characters,
it refines the search. See Section 12.1 [Incremental Search], page 85.

Indentation
Indentation means blank space at the beginning of a line. Most programming
languages have conventions for using indentation to illuminate the structure
of the program, and Emacs has special commands to adjust indentation. See
Chapter 21 [Indentation], page 195.

Indirect Buffer
An indirect buffer is a buffer that shares the text of another buffer, called its
base buffer (q.v.). See Section 16.6 [Indirect Buffers], page 145.

Info Info is the hypertext format used by the GNU project for writing documenta-
tion.

Input Event
An input event represents, within Emacs, one action taken by the user on
the terminal. Input events include typing characters, typing function keys,
pressing or releasing mouse buttons, and switching between Emacs frames. See
Section 2.1 [User Input], page 11.

Input Method
An input method is a system for entering non-ASCII text characters by typ-
ing sequences of ASCII characters (q.v.). See Section 19.4 [Input Methods],
page 171.

Insertion Insertion means adding text into the buffer, either from the keyboard or from
some other place in Emacs.

Interlocking
See [Glossary - File Locking], page 515.

Isearch See [Glossary - Incremental Search], page 519.

Justification
Justification means adding extra spaces within lines of text in order to adjust
the position of the text edges. See Section 22.5.2 [Fill Commands], page 203.

Key Binding
See [Glossary - Binding], page 509.

Keyboard Macro
Keyboard macros are a way of defining new Emacs commands from sequences
of existing ones, with no need to write a Lisp program. You can use a macro
to record a sequence of commands, then play them back as many times as you
like. See Chapter 14 [Keyboard Macros], page 107.

Glossary 520

Keyboard Shortcut
A keyboard shortcut is a key sequence (q.v.) that invokes a command. What
some programs call “assigning a keyboard shortcut”, Emacs calls “binding a
key sequence”. See [Glossary - Binding], page 509.

Key Sequence
A key sequence (key, for short) is a sequence of input events (q.v.) that are
meaningful as a single unit. If the key sequence is enough to specify one action,
it is a complete key (q.v.); if it is not enough, it is a prefix key (q.v.). See
Section 2.2 [Keys], page 11.

Keymap The keymap is the data structure that records the bindings (q.v.) of key se-
quences to the commands that they run. For example, the global keymap binds
the character C-n to the command function next-line. See Section 33.3.1
[Keymaps], page 414.

Keyboard Translation Table
The keyboard translation table is an array that translates the character codes
that come from the terminal into the character codes that make up key se-
quences.

Kill Ring The kill ring is where all text you have killed (see [Glossary - Killing], page 520)
recently is saved. You can reinsert any of the killed text still in the ring; this is
called yanking (q.v.). See Section 9.2 [Yanking], page 52.

Killing Killing means erasing text and saving it on the kill ring so it can be yanked
(q.v.) later. Some other systems call this “cutting”. Most Emacs commands
that erase text perform killing, as opposed to deletion (q.v.). See Chapter 9
[Killing], page 50.

Killing a Job
Killing a job (such as, an invocation of Emacs) means making it cease to exist.
Any data within it, if not saved in a file, is lost. See Section 3.2 [Exiting],
page 15.

Language Environment
Your choice of language environment specifies defaults for the input method
(q.v.) and coding system (q.v.). See Section 19.3 [Language Environments],
page 170. These defaults are relevant if you edit non-ASCII text (see Chapter 19
[International], page 167).

Line Wrapping
See [Glossary - Filling], page 516.

Lisp Lisp is a programming language. Most of Emacs is written in a dialect of
Lisp, called Emacs Lisp, which is extended with special features that make it
especially suitable for text editing tasks.

List A list is, approximately, a text string beginning with an open parenthesis and
ending with the matching close parenthesis. In C mode and other non-Lisp
modes, groupings surrounded by other kinds of matched delimiters appropriate
to the language, such as braces, are also considered lists. Emacs has special

Glossary 521

commands for many operations on lists. See Section 23.4.2 [Moving by Parens],
page 238.

Local Local means “in effect only in a particular context”; the relevant kind of context
is a particular function execution, a particular buffer, or a particular major
mode. It is the opposite of ‘global’ (q.v.). Specific uses of ‘local’ in Emacs
terminology appear below.

Local Abbrev
A local abbrev definition is effective only if a particular major mode is selected.
In that major mode, it overrides any global definition for the same abbrev. See
Chapter 26 [Abbrevs], page 296.

Local Keymap
A local keymap is used in a particular major mode; the key bindings (q.v.) in
the current local keymap override global bindings of the same key sequences.
See Section 33.3.1 [Keymaps], page 414.

Local Variable
A local value of a variable (q.v.) applies to only one buffer. See Section 33.2.3
[Locals], page 409.

M- M- in the name of a character is an abbreviation for META, one of the modifier
keys that can accompany any character. See Section 2.1 [User Input], page 11.

M-C- M-C- in the name of a character is an abbreviation for Control-Meta; it means
the same thing as ‘C-M-’ (q.v.).

M-x M-x is the key sequence that is used to call an Emacs command by name. This
is how you run commands that are not bound to key sequences. See Chapter 6
[Running Commands by Name], page 35.

Mail Mail means messages sent from one user to another through the computer
system, to be read at the recipient’s convenience. Emacs has commands for
composing and sending mail, and for reading and editing the mail you have
received. See Chapter 29 [Sending Mail], page 337. See Chapter 30 [Rmail],
page 345, for one way to read mail with Emacs.

Mail Composition Method
A mail composition method is a program runnable within Emacs for editing
and sending a mail message. Emacs lets you select from several alternative
mail composition methods. See Section 29.7 [Mail Methods], page 344.

Major Mode
The Emacs major modes are a mutually exclusive set of options, each of which
configures Emacs for editing a certain sort of text. Ideally, each programming
language has its own major mode. See Section 20.1 [Major Modes], page 189.

Margin The space between the usable part of a window (including the fringe) and the
window edge.

Mark The mark points to a position in the text. It specifies one end of the region
(q.v.), point being the other end. Many commands operate on all the text
from point to the mark. Each buffer has its own mark. See Chapter 8 [Mark],
page 44.

Glossary 522

Mark Ring
The mark ring is used to hold several recent previous locations of the mark, in
case you want to move back to them. Each buffer has its own mark ring; in
addition, there is a single global mark ring (q.v.). See Section 8.4 [Mark Ring],
page 47.

Menu Bar The menu bar is a line at the top of an Emacs frame. It contains words you can
click on with the mouse to bring up menus, or you can use a keyboard interface
to navigate it. See Section 18.14 [Menu Bars], page 163.

Message See [Glossary - Mail], page 521.

Meta Meta is the name of a modifier bit which you can use in a command character.
To enter a meta character, you hold down the META key while typing the char-
acter. We refer to such characters with names that start with Meta- (usually
written M- for short). For example, M-< is typed by holding down META and
at the same time typing < (which itself is done, on most terminals, by holding
down SHIFT and typing ,). See Section 2.1 [User Input], page 11.

On some terminals, the META key is actually labeled ALT or EDIT.

Meta Character
A Meta character is one whose character code includes the Meta bit.

Minibuffer The minibuffer is the window that appears when necessary inside the echo area
(q.v.), used for reading arguments to commands. See Chapter 5 [Minibuffer],
page 26.

Minibuffer History
The minibuffer history records the text you have specified in the past for
minibuffer arguments, so you can conveniently use the same text again. See
Section 5.4 [Minibuffer History], page 32.

Minor Mode
A minor mode is an optional feature of Emacs, which can be switched on or off
independently of all other features. Each minor mode has a command to turn
it on or off. Some minor modes are global (q.v.), and some are local (q.v.). See
Section 20.2 [Minor Modes], page 190.

Minor Mode Keymap
A minor mode keymap is a keymap that belongs to a minor mode and is active
when that mode is enabled. Minor mode keymaps take precedence over the
buffer’s local keymap, just as the local keymap takes precedence over the global
keymap. See Section 33.3.1 [Keymaps], page 414.

Mode Line
The mode line is the line at the bottom of each window (q.v.), giving status
information on the buffer displayed in that window. See Section 1.3 [Mode
Line], page 8.

Modified Buffer
A buffer (q.v.) is modified if its text has been changed since the last time the
buffer was saved (or since it was created, if it has never been saved). See
Section 15.3 [Saving], page 118.

Glossary 523

Moving Text
Moving text means erasing it from one place and inserting it in another. The
usual way to move text is by killing (q.v.) it and then yanking (q.v.) it. See
Chapter 9 [Killing], page 50.

MULE MULE refers to the Emacs features for editing multilingual non-ASCII text
using multibyte characters (q.v.). See Chapter 19 [International], page 167.

Multibyte Character
A multibyte character is a character that takes up several bytes in a buffer.
Emacs uses multibyte characters to represent non-ASCII text, since the number
of non-ASCII characters is much more than 256. See Section 19.1 [International
Chars], page 167.

Named Mark
A named mark is a register (q.v.), in its role of recording a location in text so
that you can move point to that location. See Chapter 10 [Registers], page 61.

Narrowing Narrowing means creating a restriction (q.v.) that limits editing in the current
buffer to only a part of the text. Text outside that part is inaccessible for
editing (or viewing) until the boundaries are widened again, but it is still there,
and saving the file saves it all. See Section 11.5 [Narrowing], page 68.

Newline Control-J characters in the buffer terminate lines of text and are therefore also
called newlines. See [Glossary - End Of Line], page 514.

nil nil is a value usually interpreted as a logical “false”. Its opposite is t, inter-
preted as “true”.

Numeric Argument
A numeric argument is a number, specified before a command, to change the
effect of the command. Often the numeric argument serves as a repeat count.
See Section 4.10 [Arguments], page 23.

Overwrite Mode
Overwrite mode is a minor mode. When it is enabled, ordinary text characters
replace the existing text after point rather than pushing it to one side. See
Section 20.2 [Minor Modes], page 190.

Package A package is a collection of Lisp code that you download and automatically
install from within Emacs. Packages provide a convenient way to add new
features. See Chapter 32 [Packages], page 394.

Page A page is a unit of text, delimited by formfeed characters (ASCII control-L,
code 014) at the beginning of a line. Some Emacs commands are provided for
moving over and operating on pages. See Section 22.4 [Pages], page 201.

Paragraph Paragraphs are the medium-size unit of human-language text. There are spe-
cial Emacs commands for moving over and operating on paragraphs. See
Section 22.3 [Paragraphs], page 200.

Parsing We say that certain Emacs commands parse words or expressions in the text
being edited. Really, all they know how to do is find the other end of a word
or expression.

Glossary 524

Point Point is the place in the buffer at which insertion and deletion occur. Point is
considered to be between two characters, not at one character. The terminal’s
cursor (q.v.) indicates the location of point. See Section 1.1 [Point], page 6.

Prefix Argument
See [Glossary - Numeric Argument], page 523.

Prefix Key
A prefix key is a key sequence (q.v.) whose sole function is to introduce a set
of longer key sequences. C-x is an example of prefix key; any two-character se-
quence starting with C-x is therefore a legitimate key sequence. See Section 2.2
[Keys], page 11.

Primary Selection
The primary selection is one particular X selection (q.v.); it is the selection that
most X applications use for transferring text to and from other applications.

The Emacs kill commands set the primary selection and the yank command
uses the primary selection when appropriate. See Chapter 9 [Killing], page 50.

Prompt A prompt is text used to ask you for input. Displaying a prompt is called
prompting. Emacs prompts always appear in the echo area (q.v.). One kind
of prompting happens when the minibuffer is used to read an argument (see
Chapter 5 [Minibuffer], page 26); the echoing that happens when you pause in
the middle of typing a multi-character key sequence is also a kind of prompting
(see Section 1.2 [Echo Area], page 7).

Query-Replace
Query-replace is an interactive string replacement feature provided by Emacs.
See Section 12.9.4 [Query Replace], page 98.

Quitting Quitting means canceling a partially typed command or a running command,
using C-g (or C-BREAK on MS-DOS). See Section 34.1 [Quitting], page 429.

Quoting Quoting means depriving a character of its usual special significance. The most
common kind of quoting in Emacs is with C-q. What constitutes special signif-
icance depends on the context and on convention. For example, an “ordinary”
character as an Emacs command inserts itself; so in this context, a special
character is any character that does not normally insert itself (such as DEL,
for example), and quoting it makes it insert itself as if it were not special. Not
all contexts allow quoting. See Section 4.1 [Inserting Text], page 16.

Quoting File Names
Quoting a file name turns off the special significance of constructs such as ‘$’,
‘~’ and ‘:’. See Section 15.14 [Quoted File Names], page 136.

Read-Only Buffer
A read-only buffer is one whose text you are not allowed to change. Normally
Emacs makes buffers read-only when they contain text which has a special
significance to Emacs; for example, Dired buffers. Visiting a file that is write-
protected also makes a read-only buffer. See Chapter 16 [Buffers], page 139.

Rectangle A rectangle consists of the text in a given range of columns on a given range
of lines. Normally you specify a rectangle by putting point at one corner and

Glossary 525

putting the mark at the diagonally opposite corner. See Section 9.5 [Rectangles],
page 58.

Recursive Editing Level
A recursive editing level is a state in which part of the execution of a command
involves asking you to edit some text. This text may or may not be the same as
the text to which the command was applied. The mode line indicates recursive
editing levels with square brackets (‘[’ and ‘]’). See Section 31.9 [Recursive
Edit], page 388.

Redisplay Redisplay is the process of correcting the image on the screen to correspond to
changes that have been made in the text being edited. See Chapter 1 [Screen],
page 6.

Regexp See [Glossary - Regular Expression], page 525.

Region The region is the text between point (q.v.) and the mark (q.v.). Many com-
mands operate on the text of the region. See Chapter 8 [Mark], page 44.

Register Registers are named slots in which text, buffer positions, or rectangles can be
saved for later use. See Chapter 10 [Registers], page 61. A related Emacs
feature is ‘bookmarks’ (q.v.).

Regular Expression
A regular expression is a pattern that can match various text strings; for ex-
ample, ‘a[0-9]+’ matches ‘a’ followed by one or more digits. See Section 12.5
[Regexps], page 91.

Remote File
A remote file is a file that is stored on a system other than your own. Emacs can
access files on other computers provided that they are connected to the same
network as your machine, and (obviously) that you have a supported method
to gain access to those files. See Section 15.13 [Remote Files], page 135.

Repeat Count
See [Glossary - Numeric Argument], page 523.

Replacement
See [Glossary - Global Substitution], page 517.

Restriction
A buffer’s restriction is the amount of text, at the beginning or the end of the
buffer, that is temporarily inaccessible. Giving a buffer a nonzero amount of
restriction is called narrowing (q.v.); removing a restriction is called widening
(q.v.). See Section 11.5 [Narrowing], page 68.

RET RET is a character that in Emacs runs the command to insert a newline into
the text. It is also used to terminate most arguments read in the minibuffer
(q.v.). See Section 2.1 [User Input], page 11.

Reverting Reverting means returning to the original state. Emacs lets you revert a buffer
by re-reading its file from disk. See Section 15.4 [Reverting], page 125.

Glossary 526

Saving Saving a buffer means copying its text into the file that was visited (q.v.) in
that buffer. This is the way text in files actually gets changed by your Emacs
editing. See Section 15.3 [Saving], page 118.

Scroll Bar A scroll bar is a tall thin hollow box that appears at the side of a window. You
can use mouse commands in the scroll bar to scroll the window. The scroll bar
feature is supported only under windowing systems. See Section 18.12 [Scroll
Bars], page 163.

Scrolling Scrolling means shifting the text in the Emacs window so as to see a different
part of the buffer. See Section 11.1 [Scrolling], page 65.

Searching Searching means moving point to the next occurrence of a specified string or the
next match for a specified regular expression. See Chapter 12 [Search], page 85.

Search Path
A search path is a list of directory names, to be used for searching for files for
certain purposes. For example, the variable load-path holds a search path for
finding Lisp library files. See Section 24.8 [Lisp Libraries], page 265.

Secondary Selection
The secondary selection is one particular X selection (q.v.); some X applications
can use it for transferring text to and from other applications. Emacs has
special mouse commands for transferring text using the secondary selection.
See Section 9.3.3 [Secondary Selection], page 56.

Selected Frame
The selected frame is the one your input currently operates on. See Chapter 18
[Frames], page 153.

Selected Window
The selected window is the one your input currently operates on. See
Section 17.1 [Basic Window], page 147.

Selecting a Buffer
Selecting a buffer means making it the current (q.v.) buffer. See Section 16.1
[Select Buffer], page 139.

Selection Windowing systems allow an application program to specify selections whose
values are text. A program can also read the selections that other programs
have set up. This is the principal way of transferring text between window
applications. Emacs has commands to work with the primary (q.v.) selection
and the secondary (q.v.) selection, and also with the clipboard (q.v.).

Self-Documentation
Self-documentation is the feature of Emacs that can tell you what any command
does, or give you a list of all commands related to a topic you specify. You ask
for self-documentation with the help character, C-h. See Chapter 7 [Help],
page 36.

Self-Inserting Character
A character is self-inserting if typing that character inserts that character in
the buffer. Ordinary printing and whitespace characters are self-inserting in
Emacs, except in certain special major modes.

Glossary 527

Sentences Emacs has commands for moving by or killing by sentences. See Section 22.2
[Sentences], page 199.

Server Within Emacs, you can start a ‘server’ process, which listens for connections
from ‘clients’. This offers a faster alternative to starting several Emacs in-
stances. See Section 31.4 [Emacs Server], page 378, and [Glossary - Daemon],
page 513.

Sexp A sexp (short for “s-expression”) is the basic syntactic unit of Lisp in its textual
form: either a list, or Lisp atom. Sexps are also the balanced expressions (q.v.)
of the Lisp language; this is why the commands for editing balanced expressions
have ‘sexp’ in their name. See Section 23.4.1 [Expressions], page 237.

Simultaneous Editing
Simultaneous editing means two users modifying the same file at once. Simul-
taneous editing, if not detected, can cause one user to lose his or her work.
Emacs detects all cases of simultaneous editing, and warns one of the users to
investigate. See Section 15.3.4 [Simultaneous Editing], page 123.

SPC SPC is the space character, which you enter by pressing the space bar.

Speedbar The speedbar is a special tall frame that provides fast access to Emacs buffers,
functions within those buffers, Info nodes, and other interesting parts of text
within Emacs. See Section 18.9 [Speedbar], page 161.

Spell Checking
Spell checking means checking correctness of the written form of each one of
the words in a text. Emacs can use various external spelling-checker programs
to check the spelling of parts of a buffer via a convenient user interface. See
Section 13.4 [Spelling], page 104.

String A string is a kind of Lisp data object that contains a sequence of characters.
Many Emacs variables are intended to have strings as values. The Lisp syntax
for a string consists of the characters in the string with a ‘"’ before and another
‘"’ after. A ‘"’ that is part of the string must be written as ‘\"’ and a ‘\’ that is
part of the string must be written as ‘\\’. All other characters, including new-
line, can be included just by writing them inside the string; however, backslash
sequences as in C, such as ‘\n’ for newline or ‘\241’ using an octal character
code, are allowed as well.

String Substitution
See [Glossary - Global Substitution], page 517.

Syntax Highlighting
See [Glossary - Font Lock], page 516.

Syntax Table
The syntax table tells Emacs which characters are part of a word, which char-
acters balance each other like parentheses, etc. See Section “Syntax Tables” in
The Emacs Lisp Reference Manual.

Super Super is the name of a modifier bit that a keyboard input character may have.
To make a character Super, type it while holding down the SUPER key. Such

Glossary 528

characters are given names that start with Super- (usually written s- for short).
See Section 2.1 [User Input], page 11.

Suspending
Suspending Emacs means stopping it temporarily and returning control to its
parent process, which is usually a shell. Unlike killing a job (q.v.), you can
later resume the suspended Emacs job without losing your buffers, unsaved
edits, undo history, etc. See Section 3.2 [Exiting], page 15.

TAB TAB is the tab character. In Emacs it is typically used for indentation or
completion.

Tags Table
A tags table is a file that serves as an index to the function definitions in one
or more other files. See Section 25.3 [Tags], page 286.

Termscript File
A termscript file contains a record of all characters sent by Emacs to the ter-
minal. It is used for tracking down bugs in Emacs redisplay. Emacs does not
make a termscript file unless you tell it to. See Section 34.3 [Bugs], page 433.

Text ‘Text’ has two meanings (see Chapter 22 [Text], page 198):

• Data consisting of a sequence of characters, as opposed to binary numbers,
executable programs, and the like. The basic contents of an Emacs buffer
(aside from the text properties, q.v.) are always text in this sense.

• Data consisting of written human language (as opposed to programs), or
following the stylistic conventions of human language.

Text Terminal
A text terminal, or character terminal, is a display that is limited to displaying
text in character units. Such a terminal cannot control individual pixels it
displays. Emacs supports a subset of display features on text terminals.

Text Properties
Text properties are annotations recorded for particular characters in the buffer.
Images in the buffer are recorded as text properties; they also specify formatting
information. See Section 22.13.3 [Editing Format Info], page 221.

Theme A theme is a set of customizations (q.v.) that give Emacs a particular appear-
ance or behavior. For example, you might use a theme for your favorite set of
faces (q.v.).

Tool Bar The tool bar is a line (sometimes multiple lines) of icons at the top of an Emacs
frame. Clicking on one of these icons executes a command. You can think of
this as a graphical relative of the menu bar (q.v.). See Section 18.15 [Tool Bars],
page 164.

Tooltips Tooltips are small windows displaying a help echo (q.v.) text, which explains
parts of the display, lists useful options available via mouse clicks, etc. See
Section 18.17 [Tooltips], page 165.

Top Level Top level is the normal state of Emacs, in which you are editing the text
of the file you have visited. You are at top level whenever you are not in a

Glossary 529

recursive editing level (q.v.) or the minibuffer (q.v.), and not in the middle of a
command. You can get back to top level by aborting (q.v.) and quitting (q.v.).
See Section 34.1 [Quitting], page 429.

Transposition
Transposing two units of text means putting each one into the place formerly
occupied by the other. There are Emacs commands to transpose two adja-
cent characters, words, balanced expressions (q.v.) or lines (see Section 13.2
[Transpose], page 103).

Trash Can See [Glossary - Deletion of Files], page 513.

Truncation
Truncating text lines in the display means leaving out any text on a line that
does not fit within the right margin of the window displaying it. See Section 4.8
[Continuation Lines], page 21, and [Glossary - Continuation Line], page 512.

TTY See [Glossary - Text Terminal], page 528.

Undoing Undoing means making your previous editing go in reverse, bringing back the
text that existed earlier in the editing session. See Section 13.1 [Undo], page 102.

Unix Unix is a class of multi-user computer operating systems with a long history.
There are several implementations today. The GNU project (q.v.) aims to
develop a complete Unix-like operating system that is free software (q.v.).

User Option
A user option is a face (q.v.) or a variable (q.v.) that exists so that you can
customize Emacs by setting it to a new value. See Section 33.1 [Easy Cus-
tomization], page 398.

Variable A variable is an object in Lisp that can store an arbitrary value. Emacs uses
some variables for internal purposes, and has others (known as ‘user options’;
q.v.) just so that you can set their values to control the behavior of Emacs.
The variables used in Emacs that you are likely to be interested in are listed
in the Variables Index in this manual (see [Variable Index], page 553). See
Section 33.2 [Variables], page 406, for information on variables.

Version Control
Version control systems keep track of multiple versions of a source file.
They provide a more powerful alternative to keeping backup files (q.v.). See
Section 25.1 [Version Control], page 269.

Visiting Visiting a file means loading its contents into a buffer (q.v.) where they can be
edited. See Section 15.2 [Visiting], page 116.

Whitespace
Whitespace is any run of consecutive formatting characters (space, tab, newline,
and backspace).

Widening Widening is removing any restriction (q.v.) on the current buffer; it is the
opposite of narrowing (q.v.). See Section 11.5 [Narrowing], page 68.

Window Emacs divides a frame (q.v.) into one or more windows, each of which can
display the contents of one buffer (q.v.) at any time. See Chapter 1 [Screen],

Glossary 530

page 6, for basic information on how Emacs uses the screen. See Chapter 17
[Windows], page 147, for commands to control the use of windows. Some other
editors use the term “window” for what we call a ‘frame’ (q.v.) in Emacs.

Window System
A window system is software that operates on a graphical display (q.v.), to
subdivide the screen so that multiple applications can have their] own windows
at the same time. All modern operating systems include a window system.

Word Abbrev
See [Glossary - Abbrev], page 508.

Word Search
Word search is searching for a sequence of words, considering the punctuation
between them as insignificant. See Section 12.3 [Word Search], page 89.

Yanking Yanking means reinserting text previously killed (q.v.). It can be used to undo
a mistaken kill, or for copying or moving text. Some other systems call this
“pasting”. See Section 9.2 [Yanking], page 52.

Key (Character) Index 531

Key (Character) Index

!
! (Dired) . 309

"
" (TEX mode) . 214

#
(Dired) . 304

$
$ (Dired) . 312

%
% & (Dired) . 304
% C (Dired) . 310
% d (Dired) . 304
% g (Dired) . 307
% H (Dired) . 310
% l (Dired) . 310
% m (Dired) . 306
% R (Dired) . 310
% S (Dired) . 310
% u (Dired) . 310

*
* ! (Dired) . 306
* % (Dired) . 306
* * (Dired) . 305
* / (Dired) . 305
* ? (Dired) . 306
* @ (Dired) . 305
* c (Dired) . 306
* C-n (Dired) . 306
* C-p (Dired) . 306
* DEL (Dired) . 306
* m (Dired) . 305
* s (Dired) . 305
* t (Dired) . 306
* u (Dired) . 306

+
+ (Dired) . 316
+ (DocView mode) . 367

-
- (DocView mode) . 367

.

. (Calendar mode) . 319

. (Dired) . 304

. (Rmail) . 346

/
/ (Rmail) . 346

:
:d (Dired) . 308
:e (Dired) . 309
:s (Dired) . 308
:v (Dired) . 308

<
< (Calendar mode) . 320
< (Dired) . 312
< (Rmail) . 347

=
= (Dired) . 311

>
> (Calendar mode) . 320
> (Dired) . 312
> (Rmail) . 347

?
? (completion) . 29

^
^ (Dired) . 305

~
~ (Dired) . 304

A
a (Calendar mode) . 323
A (Dired) . 309
a (Rmail) . 352

Key (Character) Index 532

A k (Gnus Group mode) . 365
A s (Gnus Group mode) . 365
A u (Gnus Group mode) . 365
A z (Gnus Group mode) . 365

B
B (Dired) . 309
b (Rmail summary) . 357
b (Rmail) . 345

C
C (Dired) . 307
c (Rmail) . 354
C-/ . 102
C-@ . 44
C-] . 430
C-_ . 102
C-_ (Dired). 307
C-\ . 173
C-a . 17
C-a (Calendar mode) . 319
C-b . 17
C-b (Calendar mode) . 318
C-c , j . 245
C-c , J . 245
C-c , l . 245
C-c , SPC . 245
C-c . (C mode) . 236
C-c . (Shell mode) . 373
C-c / (SGML mode) . 219
C-c < (GUD) . 258
C-c > (GUD) . 258
C-c ? (SGML mode) . 218
C-c @ (Outline minor mode) 208
C-c @ C-h . 243
C-c @ C-l . 243
C-c @ C-M-h . 243
C-c @ C-M-s . 243
C-c @ C-r . 243
C-c @ C-s . 243
C-c [(Enriched mode) . 222
C-c [(Org Mode) . 213
C-c] (Enriched mode) . 222
C-c { (TEX mode) . 215
C-c } (TEX mode) . 215
C-c 8 (SGML mode) . 219
C-c C-\ (C mode) . 248
C-c C-\ (Shell mode) . 371
C-c C-a (C mode) . 247
C-c C-a (Log Edit mode) . 276
C-c C-a (Message mode) . 343
C-c C-a (Outline mode) . 210
C-c C-a (SGML mode) . 218
C-c C-a (Shell mode) . 370
C-c C-b (Help mode) . 40
C-c C-b (Message mode) . 342

C-c C-b (Outline mode) . 209
C-c C-b (SGML mode) . 218
C-c C-b (Shell mode) . 371
C-c C-b (TEX mode) . 216
C-c C-c (C mode) . 240
C-c C-c (customization buffer) 401
C-c C-c (Edit Abbrevs) . 299
C-c C-c (Edit Tab Stops) . 196
C-c C-c (Message mode) . 340
C-c C-c (Outline mode) . 210
C-c C-c (Shell mode) . 371
C-c C-c (TEX mode) . 218
C-c C-d (C Mode) . 247
C-c C-d (GUD) . 257
C-c C-d (Log Edit mode) . 275
C-c C-d (Org Mode) . 213
C-c C-d (Outline mode) . 210
C-c C-d (SGML mode) . 218
C-c C-DEL (C Mode) . 247
C-c C-DELETE (C Mode) . 247
C-c C-e (C mode) . 248
C-c C-e (LaTEX mode) . 215
C-c C-e (Org mode) . 213
C-c C-e (Outline mode) . 210
C-c C-e (Shell mode) . 371
C-c C-f (GUD) . 258
C-c C-f (Log Edit mode) . 275
C-c C-f (Outline mode) . 209
C-c C-f (SGML mode) . 218
C-c C-f (Shell mode) . 371
C-c C-f (TEX mode) . 217
C-c C-f C-b (Message mode) 342
C-c C-f C-c (Message mode) 342
C-c C-f C-f (Message mode) 342
C-c C-f C-r (Message mode) 342
C-c C-f C-s (Message mode) 342
C-c C-f C-t (Message mode) 342
C-c C-f C-w (Message mode) 342
C-c C-i (GUD) . 257
C-c C-i (Outline mode) . 210
C-c C-j (Term mode) . 377
C-c C-k (Outline mode) . 210
C-c C-k (Term mode) . 377
C-c C-k (TEX mode) . 217
C-c C-l (C mode) . 247
C-c C-l (Calendar mode) . 320
C-c C-l (GUD) . 257
C-c C-l (Outline mode) . 210
C-c C-l (Shell mode) . 373
C-c C-l (TEX mode) . 217
C-c C-n (C mode) . 246
C-c C-n (GUD) . 257
C-c C-n (Outline mode) . 209
C-c C-n (Rmail) . 347
C-c C-n (SGML mode) . 218
C-c C-n (Shell mode) . 374
C-c C-o (LaTEX mode) . 215
C-c C-o (Outline mode) . 210

Key (Character) Index 533

C-c C-o (Shell mode) . 371
C-c C-p (C mode) . 246
C-c C-p (GUD) . 257
C-c C-p (Outline mode) . 209
C-c C-p (Rmail) . 347
C-c C-p (Shell mode) . 374
C-c C-p (TEX mode) . 216
C-c C-q (C mode) . 235
C-c C-q (Message mode) . 342
C-c C-q (Outline mode) . 210
C-c C-q (Term mode) . 377
C-c C-r (GUD) . 257
C-c C-r (Shell mode) . 371
C-c C-r (TEX mode) . 217
C-c C-s (C mode) . 249
C-c C-s (GUD) . 257
C-c C-s (Message mode) . 340
C-c C-s (Org Mode) . 213
C-c C-s (Outline mode) . 210
C-c C-s (Shell mode) . 371
C-c C-t (GUD) . 257
C-c C-t (Org Mode) . 213
C-c C-t (Outline mode) . 210
C-c C-t (SGML mode) . 218
C-c C-u (C mode) . 246
C-c C-u (GUD) . 258
C-c C-u (Outline mode) . 209
C-c C-u (Shell mode) . 371
C-c C-v (SGML mode) . 219
C-c C-v (TEX mode) . 216
C-c C-w (Message mode) . 344
C-c C-w (Shell mode) . 371
C-c C-x . 211
C-c C-x (Shell mode) . 373
C-c C-y (Message mode) . 342
C-c C-z . 211
C-c C-z (Shell mode) . 371
C-c DEL (C Mode) . 247
C-c DELETE (C Mode) . 247
C-c RET (Goto Address mode) 391
C-c RET (Shell mode) . 374
C-c TAB (SGML mode) . 219
C-c TAB (TEX mode) . 217
C-d (Rmail) . 347
C-d (Shell mode) . 370
C-Down-Mouse-1 . 146
C-e . 17
C-e (Calendar mode) . 319
C-f . 17
C-f (Calendar mode) . 318
C-g . 429
C-g (Incremental search) . 87
C-h . 36
C-h . 43
C-h a . 39
C-h b . 42
C-h c . 38
C-h C . 175

C-h C-\ . 173
C-h C-c . 42
C-h C-d . 42
C-h C-e . 42
C-h C-f . 42
C-h C-h . 36
C-h C-m . 42
C-h C-n . 42
C-h C-o . 42
C-h C-p . 42
C-h C-t . 42
C-h C-w . 42
C-h d . 39
C-h e . 42
C-h f . 38
C-h F . 39
C-h g . 42
C-h h . 168
C-h i . 41
C-h I . 173
C-h k . 38
C-h K . 38
C-h l . 42
C-h L . 171
C-h m . 42, 190
C-h p . 41
C-h P . 41
C-h S . 42, 242
C-h t . 16
C-h v . 39
C-h w . 38
C-j . 195
C-j (and major modes) . 189
C-j (indenting source code) 233
C-j (Lisp Interaction mode) 267
C-j (TEX mode) . 215
C-k . 51
C-k (Gnus Group mode) . 365
C-l . 66
C-LEFT . 18
C-M-% . 99
C-M-. 293
C-M-/ . 300
C-M-@ . 46, 237
C-M-\ . 196
C-M-a . 232
C-M-b . 237
C-M-c . 388
C-M-d . 238
C-M-d (Dired) . 312
C-M-e . 232
C-M-f . 237
C-M-f (Rmail) . 356
C-M-h . 232
C-M-h (C mode) . 232
C-M-i . 244
C-M-i (customization buffer) 400
C-M-j . 241

Key (Character) Index 534

C-M-k . 237
C-M-l . 67
C-M-l (Rmail) . 355
C-M-l (Shell mode) . 371
C-M-n . 238
C-M-n (Dired) . 312
C-M-n (Rmail) . 352
C-M-o . 195
C-M-p . 238
C-M-p (Dired) . 312
C-M-p (Rmail) . 352
C-M-q . 234
C-M-q (C mode) . 235
C-M-r . 90
C-M-r (Rmail) . 355
C-M-s . 90
C-M-s (Rmail) . 356
C-M-SPC . 237
C-M-t . 237
C-M-t (Rmail) . 356
C-M-u . 238
C-M-u (Dired) . 312
C-M-v . 149
C-M-w . 54
C-M-w (Incremental search) . 88
C-M-x (Emacs Lisp mode) . 267
C-M-x (Lisp mode) . 268
C-M-x (Scheme mode) . 268
C-M-y (Incremental search) . 88
C-Mouse-1 . 156
C-Mouse-2 . 156
C-mouse-2 (mode line) . 157
C-Mouse-2 (mode line) . 148
C-Mouse-2 (scroll bar) . 148
C-Mouse-3 . 156
C-Mouse-3 (when menu bar is disabled) 164
C-n . 17
C-n (Calendar mode) . 318
C-n (Dired). 303
C-o . 21
C-o (Dired). 305
C-o (Occur mode) . 100
C-o (Rmail) . 350
C-p . 17
C-p (Calendar mode) . 318
C-p (Dired). 303
C-q . 16
C-r . 86
C-RIGHT . 17
C-s . 85
C-S-backspace . 51
C-S-Mouse-3 (FFAP) . 392
C-SPC . 44
C-SPC C-SPC . 47
C-SPC C-SPC . 49
C-t . 103
C-t d (Image-Dired) . 315
C-TAB . 136

C-u . 23
C-u C-/ . 102
C-u C-SPC . 47
C-u C-x C-x . 49
C-u C-x v = . 277
C-u M-; . 240
C-u TAB . 234
C-v . 65
C-v (Calendar mode) . 320
C-w . 52
C-w (Incremental search) . 88
C-x # . 379
C-x $. 79
C-x (. 108
C-x) . 108
C-x + . 150
C-x - . 150
C-x . 204
C-x ; . 241
C-x < . 68
C-x = . 23, 168
C-x > . 68
C-x [. 201
C-x [(Calendar mode) . 318
C-x [(DocView mode) . 366
C-x] . 201
C-x] (Calendar mode) . 318
C-x] (DocView mode) . 366
C-x ^ . 150
C-x ‘ . 252
C-x } . 150
C-x 0 . 150
C-x 1 . 150
C-x 2 . 147
C-x 3 . 148
C-x 4 . 149
C-x 4 . 293
C-x 4 0 . 150
C-x 4 a . 285
C-x 4 b . 140
C-x 4 b (Iswitchb mode) . 146
C-x 4 c . 145
C-x 4 C-o . 149
C-x 4 C-o (Iswitchb mode) . 146
C-x 4 d . 302
C-x 4 f . 117
C-x 4 f (FFAP) . 392
C-x 4 m . 337
C-x 5 . 157
C-x 5 . 293
C-x 5 0 . 158
C-x 5 1 . 158
C-x 5 2 . 157
C-x 5 b . 140
C-x 5 b (Iswitchb mode) . 146
C-x 5 d . 302
C-x 5 f . 118
C-x 5 f (FFAP) . 392

Key (Character) Index 535

C-x 5 m . 337
C-x 5 o . 158
C-x 5 r . 157
C-x 6 1 . 229
C-x 6 2 . 228
C-x 6 b . 228
C-x 6 d . 229
C-x 6 RET . 228
C-x 6 s . 228
C-x 8 . 186
C-x 8 RET . 16
C-x a g . 297
C-x a i g . 297
C-x a i l . 297
C-x a l . 297
C-x b . 140
C-x b (Iswitchb mode) . 146
C-x C-+ . 74
C-x C-- . 74
C-x C-= . 74
C-x C-0 . 74
C-x C-a (GUD) . 257
C-x C-a C-j (GUD) . 258
C-x C-a C-w (GUD) . 263
C-x C-b . 141
C-x C-c . 15
C-x C-c (customization buffer) 401
C-x C-d . 129
C-x C-e . 267
C-x C-f . 116
C-x C-f (FFAP) . 391
C-x C-k b . 112
C-x C-k C-a . 110
C-x C-k C-c . 110
C-x C-k C-e . 113
C-x C-k C-f . 110
C-x C-k C-i . 110
C-x C-k C-k . 109
C-x C-k C-n . 109
C-x C-k C-p . 109
C-x C-k e . 113
C-x C-k l . 113
C-x C-k n . 112
C-x C-k r . 108
C-x C-k RET . 113
C-x C-k SPC . 113
C-x C-l . 206
C-x C-n . 18
C-x C-o . 21
C-x C-p . 201
C-x C-q . 141
C-x C-r . 117
C-x C-r (FFAP) . 391
C-x C-s . 119
C-x C-s (Custom Themes buffer) 405
C-x C-SPC . 48
C-x C-t . 103
C-x C-u . 206

C-x C-v . 117
C-x C-v (FFAP) . 391
C-x C-w . 120
C-x C-x . 45
C-x C-z . 268
C-x d . 302
C-x d (FFAP) . 391
C-x DEL . 199
C-x e . 108
C-x ESC ESC . 34
C-x f . 203
C-x h . 46
C-x i . 133
C-x k . 142
C-x l . 201
C-x LEFT . 140
C-x m . 337
C-x n d . 69
C-x n n . 69
C-x n p . 69
C-x n w . 69
C-x o . 148
C-x q . 111
C-x r + . 63
C-x r b . 63
C-x r c . 59
C-x r d . 59
C-x r f . 62
C-x r i . 62
C-x r j . 61
C-x r k . 59
C-x r l . 64
C-x r m . 63
C-x r n . 63
C-x r N . 59
C-x r o . 59
C-x r r . 62
C-x r s . 62
C-x r SPC . 61
C-x r t . 59
C-x r w . 62
C-x r y . 59
C-x RET . 168
C-x RET c . 179
C-x RET C-\ . 173
C-x RET f . 179
C-x RET F . 181
C-x RET k . 182
C-x RET p . 180
C-x RET r . 180
C-x RET t . 182
C-x RET x . 180
C-x RET X . 180
C-x RIGHT . 140
C-x s . 119
C-x SPC . 257
C-x TAB . 196
C-x TAB (Enriched mode) . 222

Key (Character) Index 536

C-x u . 102
C-x v + . 283
C-x v = . 277
C-x v ~ . 277
C-x v d . 280
C-x v D . 277
C-x v g . 277
C-x v i . 276
C-x v l . 279
C-x v u . 280
C-x v v . 273
C-x w b . 76
C-x w h . 76
C-x w i . 76
C-x w l . 76
C-x w r . 76
C-x z . 24
C-y . 53
C-y (Incremental search) . 88
C-z . 15
C-z (X windows) . 158

D
d (Calendar mode) . 329
d (Dired) . 303
D (Dired) . 308
D (GDB Breakpoints buffer) 261
D (GDB speedbar) . 263
d (GDB threads buffer) . 261
d (Rmail) . 347
DEL (and major modes) . 189
DEL (Dired). 303
DEL (DocView mode) . 366
DEL (Gnus Group mode) . 365
DEL (Gnus Summary mode) 365
DEL (programming modes) . 230
DEL (Rmail) . 346
DEL (View mode) . 69
DOWN . 17
DOWN (minibuffer history) . 33

E
e (Dired) . 305
e (Rmail) . 360
e (View mode) . 69
END . 17
ESC ESC ESC . 430

F
f (Dired) . 305
f (GDB threads buffer) . 261
f (Rmail) . 354
F1 . 36
F10 . 9
F10 (MS-Windows) . 494

F2 1 . 229
F2 2 . 228
F2 b . 228
F2 d . 229
F2 RET . 228
F2 s . 228
F3 . 107
F4 . 107

G
g (Dired) . 313
G (Dired) . 308
g (Rmail) . 350
g char (Calendar mode) . 327
g d (Calendar mode) . 319
g D (Calendar mode) . 319
g m (Calendar mode) . 328
g w (Calendar mode) . 319

H
h (Calendar mode) . 322
H (Dired) . 308
h (Rmail) . 355
Help . 36
HOME . 17

I
i (Dired) . 311
i (Rmail) . 349
i a (Calendar mode) . 333
i b (Calendar mode) . 333
i c (Calendar mode) . 333
i d (Calendar mode) . 332
i m (Calendar mode) . 332
i w (Calendar mode) . 332
i y (Calendar mode) . 332
INSERT . 191

J
j (Dired) . 303
j (Rmail) . 347

K
k (Dired) . 313
k (Rmail) . 352

L
l (Dired) . 313
L (Dired) . 309
l (GDB threads buffer) . 261
l (Gnus Group mode) . 365
L (Gnus Group mode) . 365

Key (Character) Index 537

l (Rmail) . 355
LEFT . 17

M
m (Calendar mode) . 330
M (Calendar mode) . 324
m (Dired) . 305
M (Dired) . 308
m (Rmail) . 354
M-! . 368
M-$. 105
M-$ (Dired). 312
M-% . 98
M-% (Incremental search) . 87
M-& . 368
M-’ . 298
M-* . 293
M-, . 293
M-- . 23
M-- M-c . 104
M-- M-l . 104
M-- M-u . 104
M-. 292
M-/ . 300
M-: . 267
M-; . 240
M-< . 18
M-< (Calendar mode) . 319
M-< (DocView mode) . 366
M-<down> (Org Mode) . 212
M-<left> (Org Mode) . 212
M-<right> (Org Mode) . 212
M-<up> (Org Mode) . 212
M-= . 22
M-= (Calendar mode) . 320
M-= (Dired). 311
M-> . 18
M-> (Calendar mode) . 319
M-> (DocView mode) . 366
M-? (Nroff mode) . 219
M-? (Shell mode) . 370
M-@ . 46, 199
M-^ . 196
M-‘ . 9
M-{ . 200
M-{ (Calendar mode) . 318
M-{ (Dired). 306
M-} . 200
M-} (Calendar mode) . 318
M-} (Dired). 306
M-\ . 51
M-| . 369
M-~ . 119
M-1 . 23
M-a . 199
M-a (C mode) . 246
M-a (Calendar mode) . 319

M-b . 17, 198
M-c . 206
M-d . 198
M-DEL . 199
M-DEL (Dired) . 306
M-Drag-Mouse-1 . 56
M-e . 199
M-e (C mode) . 246
M-e (Calendar mode) . 319
M-e (Incremental search) . 86
M-f . 17, 198
M-g g . 18
M-g M-g . 18
M-g M-n . 252
M-g n . 252
M-h . 200
M-i . 195
M-j . 241
M-j b (Enriched mode) . 223
M-j c (Enriched mode) . 223
M-j l (Enriched mode) . 223
M-j r (Enriched mode) . 223
M-j u (Enriched mode) . 223
M-k . 199
M-l . 206
M-LEFT . 18
M-m . 195
M-m (Rmail) . 354
M-Mouse-1 . 56
M-Mouse-2 . 56
M-Mouse-3 . 56
M-n (Incremental search) . 86
M-n (Log Edit mode) . 276
M-n (Man mode) . 242
M-n (minibuffer history) . 33
M-n (Nroff mode) . 219
M-n (Rmail) . 346
M-n (Shell mode) . 373
M-o b (Enriched mode) . 221
M-o d (Enriched mode) . 221
M-o i (Enriched mode) . 221
M-o l (Enriched mode) . 221
M-o M-s (Text mode) . 203
M-o o (Enriched mode) . 221
M-o u (Enriched mode) . 221
M-p (Incremental search) . 86
M-p (Log Edit mode) . 276
M-p (Man mode) . 242
M-p (minibuffer history) . 33
M-p (Nroff mode) . 219
M-p (Rmail) . 346
M-p (Shell mode) . 373
M-q . 203
M-q (C mode) . 248
M-r . 18
M-r (Log Edit mode) . 276
M-r (minibuffer history) . 33
M-r (Shell mode) . 373

Key (Character) Index 538

M-RIGHT . 17
M-S (Enriched mode) . 223
M-s (Gnus Summary mode) 366
M-s (Log Edit mode) . 276
M-s (minibuffer history) . 33
M-s (Rmail) . 347
M-s a C-s (Dired) . 316
M-s a M-C-s (Dired) . 316
M-s C-e (Incremental search) 88
M-s f C-s (Dired) . 303
M-s f M-C-s (Dired) . 303
M-s o . 100
M-s w . 90
M-SPC . 51
M-t . 103
M-TAB . 244
M-TAB (customization buffer) 400
M-TAB (Incremental search) . 87
M-TAB (Text mode) . 207
M-u . 206
M-v . 65
M-v (Calendar mode) . 320
M-w . 52
M-x . 35
M-y . 53
M-y (Incremental search) . 88
M-z . 52
Mouse-1 . 153
Mouse-1 (mode line) . 157
Mouse-1 (on buttons) . 155
Mouse-1 (scroll bar) . 157
Mouse-2 . 153
Mouse-2 (GDB Breakpoints buffer) 261
Mouse-2 (mode line) . 157
Mouse-2 (on buttons) . 155
Mouse-3 . 153
Mouse-3 (mode line) . 157

N
n (DocView mode) . 366
n (Gnus Group mode) . 365
n (Gnus Summary mode) . 365
n (Rmail) . 346
next . 65

O
o (Calendar mode) . 319
o (Dired) . 305
O (Dired) . 308
o (Occur mode) . 100
o (Rmail) . 350

P
p (Calendar mode) . 326
P (Dired) . 308

p (DocView mode) . 366
p (Gnus Group mode) . 365
p (Gnus Summary mode) . 365
p (Rmail) . 346
p d (Calendar mode) . 320
PageDown . 65
PageUp . 65
prior . 65

Q
q (Calendar mode) . 321
q (Dired) . 302
Q (Dired) . 309
q (Gnus Group mode) . 365
q (Gnus Summary mode) . 366
q (Rmail summary) . 357
Q (Rmail summary) . 357
q (Rmail) . 345
q (VC Directory) . 281
q (View mode) . 69

R
R (Dired) . 308
r (GDB threads buffer) . 262
r (Rmail) . 353
RET . 16
RET (completion in minibuffer) 30
RET (Dired) . 305
RET (GDB Breakpoints buffer) 261
RET (GDB speedbar) . 263
RET (Help mode) . 40
RET (Occur mode) . 100
RET (Shell mode) . 370
RIGHT . 17

S
s (Calendar mode) . 330
S (Calendar mode) . 323
s (Dired) . 313
S (Dired) . 308
s (Gnus Summary mode) . 365
s (Rmail) . 345
s (View mode) . 69
S-Mouse-2 . 243
S-Mouse-3 (FFAP) . 392
S-TAB (customization buffer) 399
S-TAB (Help mode) . 41
S-TAB (Org Mode) . 212
SPC (Calendar mode) . 321
SPC (completion) . 29
SPC (Dired) . 303
SPC (DocView mode) . 366
SPC (GDB Breakpoints buffer) 261
SPC (Gnus Group mode) . 365
SPC (Gnus Summary mode) 365

Key (Character) Index 539

SPC (Rmail) . 346
SPC (View mode) . 69

T
t (Calendar mode) . 321
t (Dired) . 306
T (Dired) . 308
t (Rmail) . 359
TAB (and major modes) . 189
TAB (completion) . 28, 29
TAB (customization buffer) . 399
TAB (GUD) . 258
TAB (Help mode) . 41
TAB (indentation) . 195
TAB (Message mode) . 342
TAB (Org Mode) . 212
TAB (programming modes) . 233
TAB (Shell mode) . 370
TAB (Text mode) . 207

U
u (Calendar mode) . 322
u (Dired deletion) . 303
u (Dired) . 306

U (Dired) . 306
u (Gnus Group mode) . 365
u (Rmail) . 348
UP . 17
UP (minibuffer history) . 33

V
v (Dired) . 305
v (Rmail) . 359

W
w (Dired) . 316
w (Rmail) . 350

X
x (Calendar mode) . 322
x (Dired) . 303
X (Dired) . 309
x (Rmail) . 348

Z
Z (Dired) . 308

Command and Function Index 540

Command and Function Index

2
2C-associate-buffer . 228
2C-dissociate . 229
2C-merge . 229
2C-newline . 228
2C-split . 228
2C-two-columns . 228

5
5x5 . 392

A
abbrev-mode . 296
abbrev-prefix-mark . 298
abort-recursive-edit . 430
add-change-log-entry-other-window 285
add-change-log-entry-other-window, in Diff

mode . 132
add-dir-local-variable . 414
add-file-local-variable 411
add-file-local-variable-prop-line 410
add-global-abbrev . 297
add-hook . 408
add-mode-abbrev . 297
add-name-to-file . 133
add-untranslated-filesystem 492
animate-birthday-present 392
append-next-kill . 54
append-to-buffer . 57
append-to-file . 57
append-to-register . 62
apply-macro-to-region-lines 108
appt-activate . 334
appt-add . 334
appt-delete . 334
apropos . 39
apropos-command . 39
apropos-documentation . 39
apropos-value . 39
apropos-variable . 39
ask-user-about-lock . 123
async-shell-command . 368
auto-compression-mode . 134
auto-fill-mode . 202
auto-revert-mode . 125
auto-revert-tail-mode . 125
auto-save-mode . 127

B
back-to-indentation . 195
backward-button . 41

backward-char . 17
backward-delete-char-untabify 230
backward-kill-sentence . 199
backward-kill-word . 199
backward-list . 238
backward-page . 201
backward-paragraph . 200
backward-sentence . 199
backward-sexp . 237
backward-text-line . 219
backward-up-list . 238
backward-word . 17, 198
balance-windows . 150
beginning-of-buffer . 18
beginning-of-defun . 232
beginning-of-visual-line 83
bibtex-mode . 214
binary-overwrite-mode . 191
blackbox . 392
blink-cursor-mode . 82
bookmark-delete . 64
bookmark-insert . 64
bookmark-insert-location 64
bookmark-jump . 63
bookmark-load . 64
bookmark-save . 63
bookmark-set . 63
bookmark-write . 64
browse-url . 41, 390
browse-url-at-mouse . 390
browse-url-at-point . 390
bs-show . 146
bubbles . 392
buffer-menu . 143
buffer-menu-other-window 143

C
c-backslash-region . 248
c-backward-conditional . 246
c-beginning-of-defun . 246
c-beginning-of-statement 246
c-context-line-break . 248
c-electric-backspace . 230
c-end-of-defun . 246
c-end-of-statement . 246
c-fill-paragraph . 248
c-forward-conditional . 246
c-guess . 236
c-guess-install . 236
c-hungry-delete-backwards 247
c-hungry-delete-forward 247
c-indent-command . 233, 235
c-indent-defun . 235
c-indent-exp . 235

Command and Function Index 541

c-macro-expand . 248
c-mark-function . 232
c-set-style . 236
c-show-syntactic-information 249
c-toggle-auto-newline . 247
c-toggle-electric-state 247
c-toggle-hungry-state . 247
c-up-conditional . 246
calendar . 318
calendar-astro-goto-day-number 327
calendar-astro-print-day-number 326
calendar-backward-day . 318
calendar-backward-month 318
calendar-backward-week . 318
calendar-bahai-goto-date 327
calendar-bahai-print-date 326
calendar-beginning-of-month 319
calendar-beginning-of-week 319
calendar-beginning-of-year 319
calendar-chinese-goto-date 327
calendar-chinese-print-date 326
calendar-coptic-goto-date 327
calendar-coptic-print-date 326
calendar-count-days-region 320
calendar-cursor-holidays 322
calendar-end-of-month . 319
calendar-end-of-week . 319
calendar-end-of-year . 319
calendar-ethiopic-goto-date 327
calendar-ethiopic-print-date 326
calendar-forward-day . 318
calendar-forward-month . 318
calendar-forward-week . 318
calendar-forward-year . 318
calendar-french-goto-date 327
calendar-french-print-date 326
calendar-goto-date . 319
calendar-goto-day-of-year 319
calendar-goto-today . 319
calendar-hebrew-goto-date 327
calendar-hebrew-list-yahrzeits 327
calendar-hebrew-print-date 326
calendar-islamic-goto-date 327
calendar-islamic-print-date 326
calendar-iso-goto-date . 327
calendar-iso-goto-week 319, 327
calendar-iso-print-date 326
calendar-julian-goto-date 327
calendar-julian-print-date 326
calendar-list-holidays . 323
calendar-lunar-phases . 324
calendar-mark-holidays . 322
calendar-mayan-goto-long-count-date 328
calendar-mayan-next-calendar-round-date

. 328
calendar-mayan-next-haab-date 328
calendar-mayan-next-tzolkin-date 328
calendar-mayan-previous-haab-date 328

calendar-mayan-previous-tzolkin-date 328
calendar-mayan-print-date 326
calendar-other-month . 319
calendar-persian-goto-date 327
calendar-persian-print-date 326
calendar-print-day-of-year 320
calendar-print-other-dates 326
calendar-redraw . 320
calendar-scroll-left . 320
calendar-scroll-left-three-months 320
calendar-scroll-right . 320
calendar-scroll-right-three-months 320
calendar-set-date-style 331
calendar-sunrise-sunset 323
calendar-unmark . 322
capitalize-word . 206
cd . 115
center-line . 203
change-log-merge . 285
change-log-mode . 285
check-parens . 236
choose-completion . 29
clean-buffer-list . 142
clear-rectangle . 59
clipboard-kill-region . 55
clipboard-kill-ring-save 55
clipboard-yank . 55
clone-indirect-buffer . 145
clone-indirect-buffer-other-window 145
column-number-mode . 79
comint-bol-or-process-mark 370
comint-continue-subjob . 372
comint-copy-old-input . 374
comint-delchar-or-maybe-eof 370
comint-delete-output . 371
comint-dynamic-list-filename... 370
comint-dynamic-list-input-ring 373
comint-get-next-from-history 373
comint-history-isearch-backward-regexp . . 373
comint-input-previous-argument 373
comint-interrupt-subjob 371
comint-kill-input . 371
comint-magic-space . 374
comint-next-input . 373
comint-next-prompt . 374
comint-previous-input . 373
comint-previous-prompt . 374
comint-quit-subjob . 371
comint-run . 372
comint-send-input . 370
comint-show-maximum-output 371
comint-show-output . 371
comint-stop-subjob . 371
comint-strip-ctrl-m . 372
comint-truncate-buffer . 372
comint-write-output . 371
comment-dwim . 240
comment-indent-new-line 241

Command and Function Index 542

comment-kill . 240
comment-region . 240
comment-set-column . 241
compare-windows . 130
compilation-next-error . 252
compilation-next-file . 252
compilation-previous-error 252
compilation-previous-file 252
compile . 250
compile-goto-error . 251
completion-at-point 244, 370
compose-mail . 337
compose-mail-other-frame 337
compose-mail-other-window 337
copy-dir-locals-to-file-locals 411
copy-dir-locals-to-file-locals-prop-line

. 410
copy-directory . 133
copy-file . 133
copy-file-locals-to-dir-locals 414
copy-rectangle-to-register 62
copy-to-buffer . 57
copy-to-register . 62
count-lines-page . 201
count-text-lines . 219
count-words . 22
count-words-region . 22
cpp-highlight-buffer . 248
create-fontset-from-fontset-spec 184
crisp-mode . 389
cua-mode . 59
Custom-save . 401
Custom-set . 401
customize . 398
customize-apropos . 404
customize-browse . 399
customize-changed . 404
customize-create-theme . 405
customize-face . 404
customize-group . 404
customize-option . 404
customize-saved . 404
customize-themes . 404
customize-unsaved . 404
cwarn-mode . 249

D
dabbrev-completion . 300
dabbrev-expand . 300
dbx . 255
debug_print . 439
decipher . 392
default-value . 410
define-abbrevs . 300
define-global-abbrev . 297
define-key . 418
define-mode-abbrev . 297

delete-backward-char . 50
delete-blank-lines . 21
delete-char . 50
delete-dir-local-variable 414
delete-file . 132
delete-file-local-variable 411
delete-file-local-variable-prop-line 410
delete-frame . 158
delete-horizontal-space . 51
delete-indentation . 196
delete-other-frames . 158
delete-other-windows . 150
delete-rectangle . 59
delete-selection-mode . 47
delete-trailing-whitespace 78
delete-whitespace-rectangle 59
delete-window . 150
describe-bindings . 42
describe-categories . 95
describe-character-set . 187
describe-coding-system . 175
describe-copying . 42
describe-distribution . 42
describe-function . 38
describe-gnu-project . 42
describe-input-method . 173
describe-key . 38
describe-key-briefly . 38
describe-language-environment 171
describe-mode . 42, 190
describe-no-warranty . 42
describe-package . 41, 394
describe-prefix-bindings 42
describe-text-properties 221
describe-theme . 405
describe-variable . 39
desktop-change-dir . 388
desktop-clear . 388
desktop-revert . 388
desktop-save . 388
diary . 330
diary-anniversary . 333
diary-block . 333
diary-cyclic . 333
diary-float . 333
diary-insert-anniversary-entry 333
diary-insert-block-entry 333
diary-insert-cyclic-entry 333
diary-insert-entry . 332
diary-insert-monthly-entry 332
diary-insert-weekly-entry 332
diary-insert-yearly-entry 332
diary-mail-entries . 330
diary-mark-entries . 330
diary-show-all-entries . 330
diary-view-entries . 329
diff . 130

Command and Function Index 543

diff-add-change-log-entries-other-window

. 132
diff-apply-hunk . 131
diff-auto-refine-mode . 131
diff-backup . 130
diff-buffer-with-file . 130
diff-context->unified . 132
diff-ediff-patch . 132
diff-file-kill . 131
diff-file-next . 131
diff-file-prev . 131
diff-goto-source . 131
diff-hunk-kill . 131
diff-hunk-next . 131
diff-hunk-prev . 131
diff-mode . 131
diff-refine-hunk . 131, 132
diff-restrict-view . 132
diff-reverse-direction . 132
diff-split-hunk . 132
diff-unified->context . 132
digit-argument . 23
dir-locals-set-class-variables 414
dir-locals-set-directory-class 414
dired . 302
dired-at-point . 391
dired-backup-diff . 311
dired-change-marks . 306
dired-clean-directory . 304
dired-compare-directories 316
dired-copy-filename-as-kill 316
dired-create-directory . 316
dired-diff . 311
dired-display-file . 305
dired-do-byte-compile . 309
dired-do-chgrp . 308
dired-do-chmod . 308
dired-do-chown . 308
dired-do-compress . 308
dired-do-copy . 307
dired-do-copy-regexp . 310
dired-do-delete . 308
dired-do-flagged-delete 303
dired-do-hardlink . 308
dired-do-hardlink-regexp 310
dired-do-isearch . 316
dired-do-isearch-regexp 316
dired-do-kill-lines . 313
dired-do-load . 309
dired-do-print . 308
dired-do-query-replace-regexp 309
dired-do-redisplay . 313
dired-do-rename . 308
dired-do-rename-regexp . 310
dired-do-search . 309
dired-do-shell-command . 309
dired-do-symlink . 308
dired-do-symlink-regexp 310

dired-do-touch . 308
dired-downcase . 310
dired-find-file . 305
dired-find-file-other-window 305
dired-flag-auto-save-files 304
dired-flag-backup-files 304
dired-flag-file-deletion 303
dired-flag-files-regexp 304
dired-flag-garbage-files 304
dired-goto-file . 303
dired-hide-all . 312
dired-hide-subdir . 312
dired-isearch-filenames 303
dired-isearch-filenames-regexp 303
dired-mark . 305
dired-mark-directories . 305
dired-mark-executables . 305
dired-mark-files-containing-regexp 307
dired-mark-files-regexp 306
dired-mark-subdir-files 305
dired-mark-symlinks . 305
dired-maybe-insert-subdir 311
dired-mouse-find-file-other-window 305
dired-next-dirline . 312
dired-next-marked-file . 306
dired-next-subdir . 312
dired-other-frame . 302
dired-other-window . 149, 302
dired-prev-dirline . 312
dired-prev-marked-file . 306
dired-prev-subdir . 312
dired-sort-toggle-or-edit 313
dired-toggle-marks . 306
dired-tree-down . 312
dired-tree-up . 312
dired-undo . 307
dired-unmark . 306
dired-unmark-all-files . 306
dired-unmark-all-marks . 306
dired-unmark-backward . 306
dired-up-directory . 305
dired-upcase . 310
dired-view-file . 305
dirs . 375
dirtrack-mode . 375
disable-command . 423
disable-theme . 405
display-battery-mode . 80
display-buffer . 149, 151
display-local-help . 43
display-time . 80
dissociated-press . 392
do-auto-save . 127
doc-view-clear-cache . 367
doc-view-enlarge . 367
doc-view-first-page . 366
doc-view-goto-page . 366
doc-view-kill-proc . 367

Command and Function Index 544

doc-view-kill-proc-and-buffer 367
doc-view-last-page . 366
doc-view-mode . 366
doc-view-next-page . 366
doc-view-previous-page . 366
doc-view-reset-slice . 367
doc-view-scroll-down-or-previous-page . . . 366
doc-view-scroll-up-or-next-page 366
doc-view-search . 367
doc-view-search-backward 367
doc-view-set-slice . 367
doc-view-set-slice-using-mouse 367
doc-view-show-tooltip . 367
doc-view-shrink . 367
doc-view-toggle-display 366
doctex-mode . 214
doctor . 393
down-list . 238
downcase-region . 206
downcase-word . 206
dunnet . 392

E
edit-abbrevs . 299
edit-kbd-macro . 113
edit-tab-stops . 196
edt-emulation-off . 389
edt-emulation-on . 389
eldoc-mode . 243
electric-indent-mode . 197
electric-layout-mode . 245
electric-nroff-mode . 219
electric-pair-mode . 239
emacs-lisp-mode . 266
emacs-version . 435
enable-command . 423
enable-theme . 405
end-of-buffer . 18
end-of-defun . 232
end-of-visual-line . 83
enlarge-window . 150
enlarge-window-horizontally 150
enriched-mode . 220
epa-dired-do-decrypt . 308
epa-dired-do-encrypt . 309
epa-dired-do-sign . 308
epa-dired-do-verify . 308
eval-buffer . 267
eval-defun . 267
eval-expression . 267
eval-last-sexp . 267
eval-print-last-sexp . 267
eval-region . 267
exchange-point-and-mark . 45
execute-extended-command 35
exit-calendar . 321
exit-recursive-edit . 388

expand-abbrev . 297
expand-region-abbrevs . 298

F
facemenu-remove-all . 221
facemenu-remove-face-props 221
facemenu-set-background 222
facemenu-set-bold . 221
facemenu-set-bold-italic 221
facemenu-set-default . 221
facemenu-set-face . 221
facemenu-set-foreground 222
facemenu-set-italic . 221
facemenu-set-underline . 221
ff-find-related-file . 249
ffap . 391
ffap-menu . 391
ffap-mode . 391
ffap-next . 391
file-cache-add-directory 136
file-cache-minibuffer-complete 136
file-name-shadow-mode . 26
filesets-add-buffer . 138
filesets-init . 137
filesets-remove-buffer . 138
fill-individual-paragraphs 204
fill-nonuniform-paragraphs 205
fill-paragraph . 203
fill-region . 203
fill-region-as-paragraph 203
find-alternate-file . 117
find-dired . 314
find-file . 116
find-file-at-point . 391
find-file-literally . 118
find-file-other-frame . 118
find-file-other-window 117, 149
find-file-read-only . 117
find-file-read-only-other-frame 157
find-grep . 254
find-grep-dired . 314
find-name-dired . 314
find-tag . 292
find-tag-other-frame . 293
find-tag-other-window 149, 293
find-tag-regexp . 293
finder-by-keyword . 41
flush-lines . 100
flyspell-mode . 106
flyspell-prog-mode . 106
foldout-exit-fold . 211
foldout-zoom-subtree . 211
follow-mode . 70
font-lock-add-keywords . 75
font-lock-mode . 74
font-lock-remove-keywords 75
format-decode-buffer . 220

Command and Function Index 545

fortune-to-signature . 344
forward-button . 41
forward-char . 17
forward-list . 238
forward-page . 201
forward-paragraph . 200
forward-sentence . 199
forward-sexp . 237
forward-text-line . 219
forward-word . 17, 198
frame-configuration-to-register 62
fringe-mode . 77

G
gdb . 255
gdb-delete-breakpoint . 261
gdb-display-disassembly-for-thread 261
gdb-display-locals-for-thread 261
gdb-display-registers-for-thread 262
gdb-display-stack-for-thread 261
gdb-edit-value . 263
gdb-frames-select . 262
gdb-goto-breakpoint . 261
gdb-many-windows . 260
gdb-restore-windows . 260
gdb-select-thread . 261
gdb-toggle-breakpoint . 261
gdb-var-delete . 263
getenv . 467
global-auto-revert-mode 125
global-cwarn-mode . 249
global-font-lock-mode . 74
global-hl-line-mode . 82
global-set-key . 416
global-unset-key . 416
global-visual-line-mode . 83
gnus . 364
gnus-group-exit . 365
gnus-group-kill-group . 365
gnus-group-list-all-groups 365
gnus-group-list-groups . 365
gnus-group-next-unread-group 365
gnus-group-prev-unread-group 365
gnus-group-read-group . 365
gnus-group-unsubscribe-current-group 365
gnus-summary-isearch-article 365
gnus-summary-next-unread-article 365
gnus-summary-prev-page . 365
gnus-summary-prev-unread-article 365
gnus-summary-search-article-forward 366
gomoku . 392
goto-address-at-point . 391
goto-address-mode . 391
goto-char . 18
goto-followup-to . 342
goto-line . 18, 140
goto-reply-to . 342

gpm-mouse-mode . 166
grep . 254
grep-find . 254
gud-cont . 257
gud-def . 258
gud-down . 258
gud-finish . 258
gud-gdb . 255
gud-gdb-complete-command 258
gud-jump . 258
gud-next . 257
gud-print . 257
gud-refresh . 257
gud-remove . 257
gud-step . 257
gud-stepi . 257
gud-tbreak . 257
gud-tooltip-mode . 256
gud-until . 258
gud-up . 258
gud-watch . 263

H
handwrite . 384
hanoi . 392
help-command . 36
help-follow . 40
help-for-help . 36
help-go-back . 40
help-with-tutorial . 16
hi-lock-find-patterns . 76
hi-lock-mode . 75
hi-lock-write-interactive-patterns 76
hide-body . 210
hide-entry . 210
hide-ifdef-mode . 249
hide-leaves . 210
hide-other . 210
hide-sublevels . 210
hide-subtree . 210
highlight-changes-mode . 75
highlight-lines-matching-regexp 76
highlight-regexp . 76
hl-line-mode . 82
holidays . 323
how-many . 100
hs-hide-all . 243
hs-hide-block . 243
hs-hide-level . 243
hs-minor-mode . 243
hs-show-all . 243
hs-show-block . 243
hs-show-region . 243
html-mode . 218
htmlfontify-buffer . 382

Command and Function Index 546

I
icalendar-export-file,

icalendar-export-region 335
icalendar-import-buffer 335
icalendar-import-file . 335
icomplete-mode . 32
ielm . 267
image-dired-display-thumbs 315
image-mode . 137
image-toggle-animation . 137
image-toggle-display . 137
imenu . 232
imenu-add-menubar-index 232
increase-left-margin . 222
increment-register . 63
indent-code-rigidly . 234
indent-for-tab-command 195, 233
indent-line-function . 233
indent-pp-sexp . 234
indent-region . 196
indent-relative . 195
indent-rigidly . 196
info . 41
Info-goto-emacs-command-node 39
Info-goto-emacs-key-command-node 38
info-lookup-file . 242
info-lookup-symbol . 42, 242
insert-abbrevs . 300
insert-file . 133
insert-file-literally . 133
insert-kbd-macro . 112
insert-register . 62
inverse-add-global-abbrev 297
inverse-add-mode-abbrev 297
isearch-backward . 86
isearch-backward-regexp . 90
isearch-del-char . 88
isearch-forward . 85
isearch-forward-regexp . 90
isearch-forward-word . 90
isearch-toggle-input-method 87
isearch-toggle-specified-input-method 87
isearch-yank-char . 88
isearch-yank-kill . 88
isearch-yank-line . 88
isearch-yank-pop . 88
isearch-yank-word-or-char 88
iso-gtex2iso . 218
iso-iso2gtex . 218
iso-iso2tex . 218
iso-tex2iso . 218
ispell . 105
ispell-buffer . 105
ispell-change-dictionary 106
ispell-complete-word . 106
ispell-kill-ispell . 106
ispell-message . 343
ispell-region . 105

ispell-word . 105
iswitchb-mode . 146

J
jdb . 255
jump-to-register . 61
just-one-space . 51

K
kbd . 417
kbd-macro-query . 111
keep-lines . 100
keyboard-escape-quit . 430
keyboard-quit . 429
kill-all-abbrevs . 297
kill-buffer . 142
kill-buffer-and-window . 150
kill-compilation . 251
kill-emacs . 15
kill-line . 51
kill-local-variable . 410
kill-matching-buffers . 142
kill-rectangle . 59
kill-region . 52
kill-ring-save . 52
kill-sentence . 199
kill-sexp . 237
kill-some-buffers . 142
kill-whole-line . 51
kill-word . 198
kmacro-add-counter . 110
kmacro-bind-to-key . 112
kmacro-cycle-ring-next . 109
kmacro-cycle-ring-previous 109
kmacro-edit-lossage . 113
kmacro-edit-macro . 113
kmacro-end-and-call-macro 107
kmacro-end-macro . 108
kmacro-end-or-call-macro 107
kmacro-end-or-call-macro-repeat 109
kmacro-insert-counter . 110
kmacro-name-last-macro . 112
kmacro-set-counter . 110
kmacro-set-format . 110
kmacro-start-macro . 108
kmacro-start-macro-or-insert-counter 107
kmacro-step-edit-macro . 113

L
landmark . 393
latex-electric-env-pair-mode 215
latex-mode . 214
left-char . 17
left-word . 18
lgrep . 254

Command and Function Index 547

life . 393
line-number-mode . 79
linum-mode . 191
lisp-eval-defun . 268
lisp-interaction-mode . 267
list-abbrevs . 298
list-bookmarks . 63
list-buffers . 141
list-character-sets . 187
list-charset-chars . 187
list-coding-systems . 175
list-colors-display . 71
list-command-history . 33
list-directory . 129
list-faces-display . 70
list-holidays . 323
list-input-methods . 174
list-matching-lines . 100
list-packages . 394
list-tags . 294
load . 265
load-file . 265
load-library . 265
load-theme . 405
local-set-key . 416
local-unset-key . 416
locate . 314
locate-with-filter . 314
log-edit-done . 275
log-edit-insert-changelog 276
log-edit-show-diff . 275
log-edit-show-files . 275
log-view-toggle-entry-display 279
lpr-buffer . 382
lpr-region . 382
lunar-phases . 324

M
mail-abbrev-insert-alias 340
mail-add-attachment . 343
mail-fill-yanked-message 342
mail-other-window . 149
mail-text . 342
make-frame-command . 157
make-frame-on-display . 162
make-indirect-buffer . 145
make-local-variable . 409
make-symbolic-link . 133
make-variable-buffer-local 409
manual-entry . 242
mark-defun . 232
mark-page . 201
mark-paragraph . 200
mark-sexp . 46, 237
mark-whole-buffer . 46
mark-word . 46, 199
menu-bar-mode . 163

menu-bar-open . 9
message-goto-bcc . 342
message-goto-cc . 342
message-goto-fcc . 342
message-goto-subject . 342
message-goto-to . 342
message-insert-signature 344
message-send . 340
message-send-and-exit . 340
message-tab . 342
message-yank-original . 342
message-yank-prefix . 342
minibuffer-complete . 29
minibuffer-complete-and-exit 30
minibuffer-complete-word 29
minibuffer-inactive-mode 28
mml-attach-file . 343
mode, Glasses . 244
mode, Org . 212
mode, thumbs . 137
morse-region . 393
mouse-avoidance-mode . 165
mouse-buffer-menu . 146
mouse-choose-completion . 29
mouse-save-then-kill . 154
mouse-secondary-save-then-kill 56
mouse-set-point . 153
mouse-set-region . 153
mouse-set-secondary . 56
mouse-start-secondary . 56
mouse-wheel-mode . 154
mouse-yank-at-click . 154
mouse-yank-primary . 154
mouse-yank-secondary . 56
move-beginning-of-line . 17
move-end-of-line . 17
move-to-window-line-top-bottom 18
mpuz . 392
msb-mode . 146
multi-occur . 100
multi-occur-in-matching-buffers 100

N
narrow-to-defun . 69
narrow-to-page . 69
narrow-to-region . 69
nato-region . 393
negative-argument . 23
newline-and-indent . 195, 233
next-buffer . 140
next-completion . 29
next-error . 252
next-error-follow-minor-mode 252
next-file . 294
next-history-element . 33
next-line . 17
next-logical-line . 83

Command and Function Index 548

next-matching-history-element 33
normal-erase-is-backspace-mode 431
normal-mode . 194
not-modified . 119
nroff-mode . 219
number-to-register . 63
nxml-mode . 198, 219

O
occur . 100
open-dribble-file . 437
open-line . 21
open-rectangle . 59
open-termscript . 437
Org mode . 212
org-agenda . 213
org-agenda-file-to-front 213
org-cycle . 212
org-deadline . 213
org-export . 213
org-metadown . 212
org-metaleft . 212
org-metaright . 212
org-metaup . 212
org-mode . 212
org-schedule . 213
org-shifttab . 212
org-todo . 213
other-frame . 158
other-window . 148
outline-backward-same-level 209
outline-forward-same-level 209
outline-minor-mode . 207
outline-mode . 207
outline-next-visible-heading 209
outline-previous-visible-heading 209
outline-up-heading . 209
overwrite-mode . 191

P
package-initialize . 396
package-install . 395
package-install-file . 396
paragraph-indent-minor-mode 207
paragraph-indent-text-mode 207
partial completion . 31
pdb . 255
perldb . 255
plain-tex-mode . 214
point-to-register . 61
pong . 393
pop-global-mark . 48
pop-tag-mark . 293
pr-interface . 385
prefer-coding-system . 176
prepend-to-buffer . 57

prepend-to-register . 62
previous-buffer . 140
previous-completion . 29
previous-history-element 33
previous-line . 17
previous-logical-line . 83
previous-matching-history-element 33
print-buffer . 382
print-buffer (MS-DOS) . 497
print-region . 382
print-region (MS-DOS) . 497
ps-despool . 383
ps-print-buffer . 383
ps-print-buffer (MS-DOS) 497
ps-print-buffer-with-faces 383
ps-print-region . 383
ps-print-region-with-faces 383
ps-spool-buffer . 383
ps-spool-buffer (MS-DOS) 497
ps-spool-buffer-with-faces 383
ps-spool-region . 383
ps-spool-region-with-faces 383
pwd . 115

Q
quail-set-keyboard-layout 174
quail-show-key . 174
query-replace . 98
query-replace-regexp . 99
quietly-read-abbrev-file 299
quit-window . 281, 302
quoted-insert . 16

R
re-search-backward . 91
re-search-forward . 91
read-abbrev-file . 299
recenter . 67
recenter-top-bottom . 66
recentf-edit-list . 137
recentf-mode . 137
recentf-save-list . 137
recode-file-name . 181
recode-region . 180
recompile . 251
recover-file . 127
recover-session . 128
rectangle . 59
remove-hook . 409
remove-untranslated-filesystem 492
rename-buffer . 141
rename-file . 133
rename-uniquely . 141
repeat . 24
repeat-complex-command . 34
replace-regexp . 97

Command and Function Index 549

replace-string . 97
report-emacs-bug . 436
reposition-window . 67
reveal-mode . 210
revert-buffer . 125
revert-buffer (Dired) . 313
revert-buffer-with-coding-system 180
rgrep . 254
right-char . 17
right-word . 17
rmail . 345
rmail-add-label . 352
rmail-beginning-of-message 346
rmail-bury . 345
rmail-continue . 354
rmail-delete-backward . 347
rmail-delete-forward . 347
rmail-edit-current-message 360
rmail-end-of-message . 346
rmail-epa-decrypt . 359
rmail-expunge . 348
rmail-expunge-and-save . 345
rmail-first-message . 347
rmail-forward . 354
rmail-get-new-mail . 350
rmail-input . 349
rmail-kill-label . 352
rmail-last-message . 347
rmail-mail . 354
rmail-mime . 359
rmail-mime-next-item . 359
rmail-mime-previous-item 359
rmail-mime-toggle-hidden 359
rmail-mode . 345
rmail-next-labeled-message 352
rmail-next-message . 346
rmail-next-same-subject 347
rmail-next-undeleted-message 346
rmail-output . 350
rmail-output-as-seen . 350
rmail-output-body-to-file 350
rmail-previous-labeled-message 352
rmail-previous-message . 346
rmail-previous-same-subject 347
rmail-previous-undeleted-message 346
rmail-quit . 345
rmail-redecode-body . 360
rmail-reply . 353
rmail-resend . 354
rmail-retry-failure . 354
rmail-search . 347
rmail-show-message . 347
rmail-sort-by-author . 358
rmail-sort-by-correspondent 358
rmail-sort-by-date . 358
rmail-sort-by-labels . 358
rmail-sort-by-lines . 358
rmail-sort-by-recipient 358

rmail-sort-by-subject . 358
rmail-summary . 355
rmail-summary-bury . 357
rmail-summary-by-labels 355
rmail-summary-by-recipients 355
rmail-summary-by-regexp 356
rmail-summary-by-senders 356
rmail-summary-by-topic . 356
rmail-summary-quit . 357
rmail-summary-undelete-many 356
rmail-summary-wipe . 357
rmail-toggle-header . 359
rmail-undelete-previous-message 348
rot13-other-window . 361
run-lisp . 268
run-scheme . 268

S
save-buffer . 119
save-buffers-kill-terminal 15
save-some-buffers . 119
scheme-mode . 268
scroll-all-mode . 389
scroll-bar-mode . 163
scroll-down-command . 65
scroll-down-line . 66
scroll-left . 68
scroll-other-window . 149
scroll-right . 68
scroll-up-command . 65
scroll-up-line . 66
sdb . 255
search-backward . 89
search-forward . 89
select-frame-by-name . 166
send-invisible . 371
serial-term . 377
server-edit . 379
server-eval-at . 378
server-start . 378
set-buffer-file-coding-system 179
set-buffer-process-coding-system 180
set-face-background . 71
set-face-foreground . 71
set-file-modes . 133
set-file-name-coding-system 181
set-fill-column . 203
set-fill-prefix . 204
set-fontset-font . 185
set-frame-name . 166
set-fringe-style . 77
set-goal-column . 18
set-input-method . 173
set-justification-center 223
set-justification-full . 223
set-justification-left . 223
set-justification-none . 223

Command and Function Index 550

set-justification-right 223
set-keyboard-coding-system 182
set-language-environment 170
set-left-margin . 222
set-locale-environment . 170
set-mark-command . 44
set-next-selection-coding-system 180
set-right-margin . 222
set-selection-coding-system 180
set-selective-display . 79
set-terminal-coding-system 182
set-variable . 407
set-visited-file-name . 120
setenv . 467
setq-default . 410
sgml-attributes . 218
sgml-close-tag . 219
sgml-delete-tag . 218
sgml-mode . 218
sgml-name-8bit-mode . 219
sgml-name-char . 218
sgml-skip-tag-backward . 218
sgml-skip-tag-forward . 218
sgml-tag . 218
sgml-tag-help . 218
sgml-tags-invisible . 219
sgml-validate . 219
shadow-initialize . 124
shell . 369
shell-backward-command . 371
shell-command . 368
shell-command-on-region 369
shell-forward-command . 371
shell-pushd-dextract . 376
shell-pushd-dunique . 376
shell-pushd-tohome . 376
show-all . 210
show-branches . 210
show-children . 210
show-entry . 210
show-paren-mode . 239
show-subtree . 210
shrink-window-horizontally 150
shrink-window-if-larger-than-buffer 150
size-indication-mode . 79
slitex-mode . 214
smerge-mode . 130
snake . 393
solitaire . 393
sort-columns . 387
sort-fields . 385
sort-lines . 385
sort-numeric-fields . 385
sort-pages . 385
sort-paragraphs . 385
split-line . 195
split-window-below . 147
split-window-right . 148

spook . 344
standard-display-8bit . 186
string-insert-rectangle . 59
string-rectangle . 59
substitute-key-definition 426
subword-mode . 248
sunrise-sunset . 323
suspend-frame . 15, 158
switch-to-buffer . 140
switch-to-buffer-other-frame 140
switch-to-buffer-other-window 140, 149
switch-to-completions . 29

T
tab-to-tab-stop . 195
tabify . 197
table-backward-cell . 225
table-capture . 226
table-fixed-width-mode . 223
table-forward-cell . 225
table-generate-source . 228
table-heighten-cell . 225
table-insert . 224
table-insert-column . 226
table-insert-row . 226
table-insert-sequence . 228
table-justify . 226
table-narrow-cell . 226
table-query-dimension . 227
table-recognize . 224
table-recognize-cell . 225
table-recognize-region . 225
table-recognize-table . 225
table-release . 227
table-shorten-cell . 225
table-span-cell . 225
table-split-cell . 225
table-split-cell-horizontally 225
table-split-cell-vertically 225
table-unrecognize . 224
table-unrecognize-cell . 225
table-unrecognize-region 225
table-unrecognize-table 225
table-widen-cell . 225
tags-apropos . 294
tags-loop-continue . 293
tags-query-replace . 293
tags-search . 293
term . 376
term-char-mode . 377
term-line-mode . 377
term-pager-toggle . 377
tetris . 393
tex-bibtex-file . 217
tex-buffer . 216
tex-close-latex-block . 215
tex-compile . 218

Command and Function Index 551

tex-file . 217
tex-insert-braces . 215
tex-insert-quote . 214
tex-kill-job . 217
tex-latex-block . 215
tex-mode . 214
tex-print . 216
tex-recenter-output-buffer 217
tex-region . 217
tex-terminate-paragraph 215
tex-validate-region . 215
tex-view . 216
text-mode . 207
text-scale-adjust . 74
text-scale-decrease . 74
text-scale-increase . 74
text-scale-mode . 74
text-scale-set . 74
thumbs-mode . 137
time-stamp . 125
timeclock-change . 336
timeclock-in . 336
timeclock-modeline-display 336
timeclock-out . 336
timeclock-reread-log . 336
timeclock-when-to-leave 336
timeclock-workday-remaining 336
tmm-menubar . 9
toggle-debug-on-error . 438
toggle-enable-multibyte-characters 170
toggle-gdb-all-registers 262
toggle-input-method . 173
toggle-read-only . 141
toggle-scroll-bar . 163
toggle-truncate-lines . 82
tool-bar-mode . 164
tooltip-mode . 165
top-level . 430
tpu-edt-on . 390
transient-mark-mode . 49
transpose-chars . 103
transpose-lines . 103
transpose-sexps . 237
transpose-words . 103
tty-suppress-bold-inverse-default-colors

. 84

U
ucs-insert . 16
uncomment-region . 240
undigestify-rmail-message 361
undo . 102
undo-only . 102
unexpand-abbrev . 298
unforward-rmail-message 354
unhighlight-regexp . 76
universal-argument . 23

universal-coding-system-argument 179
unmorse-region . 393
untabify . 197
up-list . 215
upcase-region . 206
upcase-word . 206

V
vc-annotate . 277
vc-diff . 277
vc-dir . 280
vc-dir-mark . 282
vc-dir-mark-all-files . 282
vc-next-action . 273
vc-print-log . 279
vc-print-root-log . 279
vc-pull . 283
vc-register . 276
vc-revert . 280
vc-revision-other-window 277
vc-root-diff . 277
vi-mode . 390
view-buffer . 69
view-echo-area-messages . 42
view-emacs-debugging . 42
view-emacs-FAQ . 42
view-emacs-news . 42
view-emacs-problems . 42
view-emacs-todo . 42
View-exit . 69
view-external-packages . 42
view-file . 69
view-hello-file . 168
view-lossage . 42
view-order-manuals . 42
View-quit . 69
view-register . 61
vip-mode . 390
viper-mode . 390
visit-tags-table . 291
visual-line-mode . 83

W
wdired-change-to-wdired-mode 314
wdired-finish-edit . 314
what-cursor-position 23, 168
what-line . 22
what-page . 201
where-is . 38
which-function-mode . 233
whitespace-mode . 78
widen . 69
widget-backward . 399
widget-complete . 400
widget-forward . 399
windmove-default-keybindings 152

Command and Function Index 552

windmove-right . 152
window-configuration-to-register 62
winner-mode . 152
woman . 243
word-search-backward . 90
word-search-forward . 90
wordstar-mode . 390
write-abbrev-file . 299
write-file . 120
write-region . 133

X
xdb . 255

Y

yank . 53

yank-pop . 53

yank-rectangle . 59

Z

zap-to-char . 52

zone . 393

zrgrep . 254

Variable Index 553

Variable Index

A
abbrev-all-caps . 297
abbrev-file-name . 299
adaptive-fill-first-line-regexp 205
adaptive-fill-function . 206
adaptive-fill-mode . 205
adaptive-fill-regexp . 205
add-log-always-start-new-record 285
add-log-keep-changes-together 285
ange-ftp-default-user . 135
ange-ftp-gateway-host . 135
ange-ftp-generate-anonymous-password 135
ange-ftp-make-backup-files 135
ange-ftp-smart-gateway . 135
appt-audible . 334
appt-delete-window-function 334
appt-disp-window-function 334
appt-display-diary . 334
appt-display-duration . 334
appt-display-format . 334
appt-display-mode-line . 334
appt-message-warning-time 334
appt-warning-time-regexp 334
apropos-do-all . 40
apropos-documentation-sort-by-scores 40
apropos-sort-by-scores . 40
auto-coding-alist . 177
auto-coding-functions . 177
auto-coding-regexp-alist 177
auto-compression-mode . 134
auto-hscroll-mode . 68
auto-mode-alist . 192
auto-mode-case-fold . 193
auto-revert-check-vc-info 273
auto-revert-interval . 125
auto-save-default . 127
auto-save-file-name-transforms 126
auto-save-interval . 127
auto-save-list-file-prefix 128
auto-save-timeout . 127
auto-save-visited-file-name 127

B
backup-by-copying . 122
backup-by-copying-when-linked 122
backup-by-copying-when-mismatch 122
backup-by-copying-when-privileged-mismatch

. 122
backup-directory-alist . 121
backup-enable-predicate 121
battery-mode-line-format 80
bdf-directory-list . 385
bidi-display-reordering 188

bidi-paragraph-direction 188
blink-cursor-alist . 82
blink-matching-delay . 238
blink-matching-paren . 238
blink-matching-paren-distance 238
bookmark-save-flag . 64
bookmark-search-size . 64
browse-url-browser-function 391
browse-url-mailto-function 391
buffer-file-coding-system 178
buffer-read-only . 141

C
c-default-style . 236
c-hungry-delete-key . 247
c-mode-hook . 230
c-tab-always-indent . 235
cal-html-css-default . 321
calendar-date-style . 331
calendar-daylight-savings-ends 335
calendar-daylight-savings-ends-time 336
calendar-daylight-savings-starts 335
calendar-daylight-time-offset 336
calendar-daylight-time-zone-name 324
calendar-latitude . 324
calendar-location-name . 324
calendar-longitude . 324
calendar-mark-diary-entries-flag 330
calendar-mark-holidays-flag 322
calendar-remove-frame-by-deleting 321
calendar-standard-time-zone-name 324
calendar-time-zone . 324
calendar-view-diary-initially-flag 329
calendar-view-holidays-initially-flag . . . 322
calendar-week-start-day 319
case-fold-search . 96
case-replace . 98
change-log-version-info-enabled 285
change-log-version-number-regexp-list . . . 285
change-major-mode-with-file-name 194
clone-indirect-buffer-hook 145
coding . 178
colon-double-space . 203
comint-completion-addsuffix 376
comint-completion-autolist 376
comint-completion-fignore 370
comint-completion-recexact 376
comint-input-autoexpand 374
comint-input-ignoredups 375
comint-move-point-for-output 375
comint-prompt-read-only 375
comint-scroll-show-maximum-output 375
comint-scroll-to-bottom-on-input 375
comint-use-prompt-regexp 372

Variable Index 554

command-history . 34
command-line-args . 463
comment-column . 241
comment-end . 241
comment-indent-function 241
comment-multi-line . 241
comment-padding . 241
comment-start . 241
comment-start-skip . 241
compare-ignore-case . 130
compare-ignore-whitespace 130
compilation-auto-jump-to-first-error 251
compilation-context-lines 252
compilation-environment 251
compilation-error-regexp-alist 252
compilation-scroll-output 250
compilation-skip-threshold 252
compile-command . 250
completion-auto-help . 32
completion-category-overrides 31
completion-cycle-threshold 32
completion-ignored-extensions 32
completion-styles . 30
confirm-kill-emacs . 15
confirm-nonexistent-file-or-buffer 30
crisp-override-meta-x . 389
ctl-arrow . 81
ctl-x-4-map . 416
ctl-x-map . 415
cua-enable-cua-keys . 59
cua-mode . 59
current-input-method . 173
current-language-environment 170
cursor-in-non-selected-windows 82
cursor-type . 81
custom-buffer-done-kill 401
custom-enabled-themes . 405
custom-file . 402
custom-safe-themes . 405
custom-search-field . 399
custom-theme-directory 404, 406
custom-theme-load-path . 404

D
dabbrev-abbrev-char-regexp 301
dabbrev-abbrev-skip-leading-regexp 301
dabbrev-case-fold-search 301
dabbrev-case-replace . 301
dabbrev-check-all-buffers 300
dabbrev-ignored-buffer-regexps 300
dabbrev-limit . 300
dbx-mode-hook . 258
debug-on-event . 439
debug-on-quit . 438
default-directory . 115
default-input-method . 173
default-justification . 223

delete-active-region . 47
delete-auto-save-files . 127
delete-by-moving-to-trash 132, 304
delete-old-versions . 122
desktop-clear-preserve-buffers-regexp . . . 388
desktop-globals-to-clear 388
desktop-path . 388
desktop-restore-eager . 388
desktop-save-mode . 388
diary-file . 330
diary-mail-days . 330
diary-nonmarking-symbol 331
diary-outlook-formats . 335
diff-switches . 130
diff-update-on-the-fly . 131
directory-abbrev-alist . 128
directory-free-space-args 129
directory-free-space-program 129
dired-auto-revert-buffer 313
dired-chown-program . 308
dired-copy-preserve-time 307
dired-dwim-target . 307
dired-garbage-files-regexp 304
dired-isearch-filenames 303
dired-kept-versions . 304
dired-listing-switches . 302
dired-recursive-copies . 307
dired-recursive-deletes 303
dired-use-ls-dired . 302
dirtrack-list . 375
display-battery-mode . 80
display-buffer-reuse-frames 151
display-hourglass . 83
display-time-24hr-format 80
display-time-mail-directory 80
display-time-mail-face . 80
display-time-mail-file . 80
display-time-use-mail-icon 80
dnd-open-file-other-window 163
doc-view-cache-directory 367
doc-view-continuous . 366
doc-view-resolution . 367
double-click-fuzz . 422
double-click-time . 422

E
echo-keystrokes . 83
emacs-lisp-mode-hook . 230
enable-local-eval . 413
enable-local-variables . 413
enable-multibyte-characters 170
enable-recursive-minibuffers 28
enriched-translations . 220
eol-mnemonic-dos . 80
eol-mnemonic-mac . 80
eol-mnemonic-undecided . 80
eol-mnemonic-unix . 80

Variable Index 555

esc-map . 416
eval-expression-debug-on-error 267
eval-expression-print-length 267
eval-expression-print-level 267
exec-path . 368
exit-language-environment-hook 171
explicit-shell-file-name 369

F
ff-related-file-alist . 249
file-coding-system-alist 176
file-name-buffer-file-type-alist 492
file-name-coding-system 181
fill-column . 203
fill-nobreak-predicate . 203
fill-prefix . 205
find-file-existing-other-name 128
find-file-hook . 118
find-file-not-found-functions 118
find-file-run-dired . 117
find-file-suppress-same-file-warnings . . . 128
find-file-visit-truename 128
find-file-wildcards . 117
find-ls-option . 314
find-tag-marker-ring-length 293
focus-follows-mouse . 158
foldout-mouse-modifiers 212
font-lock-beginning-of-syntax-function . . . 75
font-lock-maximum-decoration 74
font-slant-table (MS-Windows) 498
font-weight-table (MS-Windows) 498

G
gdb-delete-out-of-scope 263
gdb-gud-control-all-threads 264
gdb-many-windows . 259
gdb-mode-hook . 258
gdb-non-stop-setting . 264
gdb-show-changed-values 263
gdb-show-threads-by-default 261
gdb-speedbar-auto-raise 263
gdb-stopped-hooks . 264
gdb-switch-reasons . 264
gdb-switch-when-another-stopped 264
gdb-thread-buffer-addresses 261
gdb-thread-buffer-arguments 261
gdb-thread-buffer-locations 261
gdb-thread-buffer-verbose-names 261
gdb-use-colon-colon-notation 263
global-cwarn-mode . 249
global-font-lock-mode . 74
global-mark-ring-max . 48
grep-find-ignored-directories 254
grep-regexp-alist . 252
gud-gdb-command-name . 259
gud-tooltip-echo-area . 256

gud-xdb-directories . 255

H
help-at-pt-display-when-idle 43
help-map . 415
hi-lock-exclude-modes . 77
hi-lock-file-patterns-policy 76
hide-ifdef-shadow . 249
highlight-nonselected-windows 44
history-delete-duplicates 33
history-length . 33
hourglass-delay . 83
hs-hide-comments-when-hiding-all 244
hs-isearch-open . 244
hs-special-modes-alist . 244
hscroll-margin . 68
hscroll-step . 68

I
image-dired-external-viewer 315
imenu-auto-rescan . 232
imenu-sort-function . 232
indent-tabs-mode . 197
indicate-buffer-boundaries 77
indicate-empty-lines . 78
inferior-lisp-program . 268
inhibit-eol-conversion . 177
inhibit-iso-escape-detection 177
inhibit-startup-buffer-menu 463
inhibit-startup-screen 14, 466
initial-environment . 467
initial-scratch-message 267
input-method-highlight-flag 173
input-method-verbose-flag 173
insert-default-directory 27, 115
interpreter-mode-alist . 192
isearch-allow-scroll . 88
isearch-lazy-highlight . 86
isearch-mode-map . 87
isearch-resume-in-command-history 34
ispell-complete-word-dict 106
ispell-dictionary . 106
ispell-local-dictionary 106
ispell-personal-dictionary 106

J
jdb-mode-hook . 258

K
kept-new-versions . 122
kept-old-versions . 122
keyboard-coding-system . 182
kill-buffer-hook . 142

Variable Index 556

kill-do-not-save-duplicates 52
kill-read-only-ok . 52
kill-ring . 53
kill-ring-max . 53
kill-whole-line . 51
kmacro-ring-max . 109

L
large-file-warning-threshold 117
latex-block-names . 215
latex-mode-hook . 218
latex-run-command . 216
latin1-display . 185
line-move-visual . 18
line-number-display-limit 79
line-number-display-limit-width 80
lisp-body-indent . 235
lisp-indent-offset . 235
lisp-interaction-mode-hook 230
lisp-mode-hook . 230
list-colors-sort . 71
list-directory-brief-switches 129
list-directory-verbose-switches 129
load-dangerous-libraries 266
load-path . 265
locale-charset-language-names 170
locale-coding-system . 181
locale-language-names . 170
locale-preferred-coding-systems 171
locate-command . 314
lpr-add-switches . 383
lpr-command (MS-DOS) . 497
lpr-commands . 382
lpr-headers-switches . 383
lpr-headers-switches (MS-DOS) 497
lpr-printer-switch . 382
lpr-switches . 382
lpr-switches (MS-DOS) . 497

M
magic-fallback-mode-alist 193
magic-mode-alist . 193
mail-citation-hook . 342
mail-default-headers . 339
mail-dont-reply-to-names 353
mail-from-style . 338
mail-mode-hook . 343
mail-personal-alias-file 339
mail-setup-hook . 343
mail-signature . 343
mail-signature-file . 343
mail-user-agent . 344
major-mode . 189
make-backup-file-name-function 122
make-backup-files . 120
make-pointer-invisible 83, 165

Man-switches . 242
mark-even-if-inactive . 47
mark-ring-max . 48
max-mini-window-height . 27
menu-bar-mode . 163
message-kill-buffer-on-exit 340
message-log-max . 7
message-send-hook . 340
midnight-hook . 143
midnight-mode . 143
minibuffer-local-completion-map 416
minibuffer-local-filename-completion-map

. 416
minibuffer-local-filename-must-match-map

. 416
minibuffer-local-map . 416
minibuffer-local-must-match-map 416
minibuffer-local-ns-map 416
minibuffer-prompt-properties 73
mode-line-in-non-selected-windows 80
mode-require-final-newline 123
mode-specific-map . 416
mouse-1-click-in-non-selected-windows . . . 156
mouse-autoselect-window 149
mouse-avoidance-mode . 165
mouse-drag-copy-region . 154
mouse-highlight . 155
mouse-scroll-min-lines . 154
mouse-wheel-follow-mouse 154
mouse-wheel-progressive-speed 154
mouse-wheel-scroll-amount 154
mouse-yank-at-point . 154

N
next-error-highlight . 252
next-line-add-newlines . 19
next-screen-context-lines 65
nobreak-char-display . 81
normal-erase-is-backspace 431
nroff-mode-hook . 219
ns-pop-up-frames . 488
ns-standard-fontset-spec 183

O
open-paren-in-column-0-is-defun-start . . . 231
org-agenda-files . 213
org-publish-project-alist 213
org-todo-keywords . 213
outline-level . 209
outline-minor-mode-prefix 207
outline-mode-hook . 207
outline-regexp . 208
overflow-newline-into-fringe 77
overline-margin . 84

Variable Index 557

P
package-archives . 395
package-directory-list . 396
package-enable-at-startup 395
package-load-list . 396
package-user-dir . 396
page-delimiter . 202
paragraph-separate . 201
paragraph-start . 201
pdb-mode-hook . 258
perldb-mode-hook . 258
plain-tex-mode-hook . 218
pop-up-frames . 151
print-region-function (MS-DOS) 497
printer-name . 382
printer-name, (MS-DOS/MS-Windows) 496
prog-mode-hook . 190
ps-font-family . 384
ps-font-info-database . 384
ps-font-size . 384
ps-landscape-mode . 384
ps-lpr-command . 384
ps-lpr-command (MS-DOS) 497
ps-lpr-switches . 384
ps-lpr-switches (MS-DOS) 497
ps-multibyte-buffer . 384
ps-number-of-columns . 384
ps-page-dimensions-database 384
ps-paper-type . 384
ps-print-color-p . 384
ps-print-header . 384
ps-printer-name . 384
ps-printer-name (MS-DOS) 497
ps-use-face-background . 384

R
read-buffer-completion-ignore-case 31
read-file-name-completion-ignore-case 31
read-mail-command . 344
read-quoted-char-radix . 16
recenter-positions . 66
recenter-redisplay . 67
recentf-mode . 137
require-final-newline . 123
resize-mini-windows . 27
revert-without-query . 125
rmail-automatic-folder-directives 351
rmail-decode-mime-charset 177
rmail-delete-after-output 351
rmail-delete-message-hook 348
rmail-displayed-headers 359
rmail-edit-mode-hook . 360
rmail-enable-mime . 359
rmail-enable-mime-composing 354
rmail-file-coding-system 177
rmail-file-name . 345
rmail-highlighted-headers 359

rmail-ignored-headers . 359
rmail-inbox-list . 350
rmail-mail-new-frame . 354
rmail-mode-hook . 345
rmail-movemail-flags . 363
rmail-movemail-program . 362
rmail-movemail-search-path 362
rmail-nonignored-headers 359
rmail-output-file-alist 351
rmail-preserve-inbox . 349
rmail-primary-inbox-list 348
rmail-redisplay-summary 357
rmail-remote-password . 363
rmail-remote-password-required 363
rmail-retry-ignored-headers 354
rmail-secondary-file-directory 350
rmail-secondary-file-regexp 350
rmail-summary-line-count-flag 356
rmail-summary-window-size 356

S
safe-local-eval-forms . 413
safe-local-variable-values 413
same-window-buffer-names 151
same-window-regexps . 151
save-abbrevs . 299
save-interprogram-paste-before-kill 55
scheme-mode-hook . 230
scroll-all-mode . 152
scroll-bar-mode . 163
scroll-bar-width . 163
scroll-conservatively . 67
scroll-down . 66
scroll-down-aggressively 67
scroll-error-top-bottom . 65
scroll-margin . 67
scroll-preserve-screen-position 66
scroll-step . 67
scroll-up . 66
scroll-up-aggressively . 67
sdb-mode-hook . 258
search-whitespace-regexp 90
select-active-regions . 56
selective-display-ellipses 79
send-mail-function . 341
sendmail-coding-system 178, 341
sentence-end . 200
sentence-end-double-space 200
sentence-end-without-period 200
server-host . 380
server-kill-new-buffers 379
server-name . 378
server-port . 381
server-temp-file-regexp 379
server-use-tcp . 380
server-window . 379
set-language-environment-hook 171

Variable Index 558

set-mark-command-repeat-pop 48
sgml-xml-mode . 219
shell-cd-regexp . 375
shell-command-default-error-buffer 369
shell-command-regexp . 371
shell-completion-execonly 376
shell-completion-fignore 370
shell-file-name . 369
shell-input-ring-file-name 374
shell-popd-regexp . 375
shell-prompt-pattern . 372
shell-pushd-regexp . 375
show-trailing-whitespace 78
slitex-mode-hook . 218
small-temporary-file-directory 121
sort-fold-case . 387
sort-numeric-base . 385
split-height-threshold . 151
split-width-threshold . 151
split-window-keep-point 148
standard-fontset-spec . 183
standard-indent . 222
suggest-key-bindings . 35

T
tab-always-indent . 197
tab-stop-list . 196
tab-width . 81, 197
table-cell-horizontal-chars 224
table-cell-intersection-char 224
table-cell-vertical-char 224
table-detect-cell-alignment 226
tags-apropos-additional-actions 294
tags-apropos-verbose . 294
tags-case-fold-search . 294
tags-file-name . 291
tags-table-list . 292
tags-tag-face . 294
temporary-file-directory 121
term-file-prefix . 427
term-setup-hook . 427
tex-bibtex-command . 217
tex-default-mode . 214
tex-directory . 216
tex-dvi-print-command . 216
tex-dvi-view-command . 216
tex-main-file . 217
tex-mode-hook . 218
tex-run-command . 216
tex-shell-hook . 218
tex-start-commands . 217
tex-start-options . 217
text-mode-hook . 190, 207
timeclock-ask-before-exiting 336
timeclock-file . 336
timeclock-modeline-display 336
tool-bar-mode . 164

tool-bar-style . 164
tooltip-delay . 165
track-eol . 19
truncate-lines . 82
truncate-partial-width-windows 82, 148

U
underline-minimum-offset 84
undo-limit . 103
undo-outer-limit . 103
undo-strong-limit . 103
unibyte-display-via-language-environment

. 186
uniquify-buffer-name-style 145
use-dialog-box . 164
use-file-dialog . 164
user-full-name . 338
user-mail-address . 338, 425
user-mail-address, initialization 468

V
vc-diff-switches . 277
vc-directory-exclusion-list 281
vc-log-mode-hook . 275
vc-log-show-limit . 280
vc-make-backup-files . 120
vc-revert-show-diff . 280
version-control . 121
visible-bell . 83
visible-cursor . 81

W
w32-apps-modifier . 494
w32-charset-info-alist . 498
w32-get-true-file-attributes 492
w32-lwindow-modifier . 494
w32-mouse-button-tolerance 494
w32-pass-alt-to-system . 494
w32-pass-extra-mouse-buttons-to-system . . 495
w32-quote-process-args . 495
w32-rwindow-modifier . 494
w32-scroll-lock-modifier 494
w32-standard-fontset-spec 183
w32-swap-mouse-buttons . 495
w32-use-visible-system-caret 499
which-func-modes . 233
whitespace-line-column . 78
whitespace-style . 78
window-min-height . 150
window-min-width . 150
write-region-inhibit-fsync 123

X
x-gtk-file-dialog-help-text 164

Variable Index 559

x-gtk-show-hidden-files 164
x-gtk-use-system-tooltips 165
x-mouse-click-focus-ignore-position 153
x-select-enable-clipboard 55
x-select-enable-clipboard-manager 55
x-select-enable-primary . 55
x-select-request-type . 180

x-stretch-cursor . 82
x-underline-at-descent-line 84
xdb-mode-hook . 258

Y
yank-pop-change-selection 55

Concept Index 560

Concept Index

$
$ in file names . 115

(
(in leftmost column . 231

*
‘*Messages*’ buffer . 7

-
–/—/.-./.../. 393

.
‘.dir-locals.el’ file . 413
.emacs file . 423
‘.mailrc’ file . 339
‘.newsrc’ file . 364
‘.timelog’ file . 336

/
// in file name . 26

?
‘?’ in display . 168

‘_emacs’ init file, MS-Windows 494

~
~/.emacs file . 423
‘~/.emacs.d/gtkrc’ file . 480
‘~/.gtkrc-2.0’ file . 480
‘~/.Xdefaults’ file . 478
‘~/.Xresources’ file . 478

7
7z . 134

8
8-bit display . 186
8-bit input . 186

A
abbrev file . 299
Abbrev mode . 296
abbrevs . 296
abnormal hook . 408
aborting recursive edit . 430
accented characters . 186
accessible portion . 68
accumulating scattered text . 57
action options (command line) 463
active region . 44
adaptive filling . 205
Adding to the kill ring in Dired. 316
addpm, MS-Windows installation program 471
adjust buffer face height . 74
aggressive scrolling . 67
alarm clock . 334
alignment for comments . 239
Alt key invokes menu (Windows) 494
ALTERNATE_EDITOR environment variable 380
ange-ftp . 135
animate . 392
animated images . 137
anonymous FTP . 135
appending kills in the ring . 54
appointment notification . 334
apropos . 39
apropos search results, order by score 40
arc . 134
Arch . 270
Archive mode . 134
arguments (command line) 463
arguments to commands . 23
arrow keys . 17
ASCII . 11
ASCII art . 198
Asm mode . 249
assembler mode . 249
astronomical day numbers . 325
attached frame (of speedbar) 161
attribute (Rmail) . 351
attributes of mode line, changing 80
Auto Compression mode . 134
Auto Fill mode . 202
Auto Save mode . 126
Auto-Revert mode . 125
auto-save for remote files . 126
autoload . 266
autoload Lisp libraries . 426
avoiding mouse in the way of your typing 165
AWK mode . 246

Concept Index 561

B
back end (version control) . 269
back reference, in regexp . 94
back reference, in regexp replacement 97
background color . 70
background color, command-line argument 472
background mode, on xterm 469
background syntax highlighting 75
BACKSPACE vs DEL . 430
backtrace for bug reports . 439
backup file . 120
backup, and user-id . 122
backups for remote files . 135
Bahá’́ı calendar . 326
balanced expression . 237
balloon help . 43
base buffer . 145
base direction of paragraphs 188
batch mode . 465
Bazaar . 270
bidirectional editing . 187
binary files, on MS-DOS/MS-Windows 492
binding . 12
binding keyboard macros . 112
binding keys . 416
blank lines . 21
blank lines in programs . 241
blinking cursor . 82
blinking cursor disable, command-line argument

. 477
body lines (Outline mode) . 208
bookmarks . 63
border color, command-line argument 473
borders (X Window System) 475
boredom . 392
brace in column zero and fontification 75
braces, moving across . 238
branch (version control) . 283
Brief emulation . 389
Browse-URL . 390
buffer definitions index . 232
buffer list, customizable . 146
buffer menu . 143, 146
buffer size display . 79
buffer size, maximum . 139
buffer-local hooks . 409
buffers . 139
bug tracker . 434
bugs . 433
building programs . 250
built-in package . 394
button down events . 421
buttons . 155
buttons (customization buffer) 398
buttons at buffer position . 221
bypassing init and ‘default.el’ file 466
byte code . 265
byte-compiling several files (in Dired) 309

bzr . 270

C
C editing . 230
C mode . 246
C++ class browser, tags . 287
C++ mode . 246
C- . 11
C-c C-c (Log Edit mode) . 275
cache of file names . 136
calendar . 318
calendar and HTML . 321
calendar and LaTEX . 321
calendar, first day of week . 319
call Lisp functions, command-line argument . . . 464
camel case . 244
capitalizing words . 206
case conversion . 206
case in completion . 31
case-sensitivity and completion 31
case-sensitivity and tags search 294
categories of characters . 95
cells, for text-based tables . 224
Celtic . 167
centering . 203
centralized version control . 272
change buffers . 139
change Emacs directory . 465
change log . 285
Change Log mode . 285
changes, undoing . 102
changeset-based version control 271
changing file group (in Dired) 308
changing file owner (in Dired) 308
changing file permissions (in Dired) 308
changing file time (in Dired) 308
character set (keyboard) . 11
character set of character at point 168
character syntax . 424
characters (in text) . 81
characters in a certain charset 187
characters which belong to a specific language . . 95
characters with no font glyphs 81
characters, inserting by name or code-point 16
charsets . 187
checking out files . 270
checking spelling . 104
checking syntax . 254
Chinese . 167
Chinese calendar . 326
choosing a major mode . 192
choosing a minor mode . 192
ciphers . 392
citing mail . 342
class browser, C++ . 287
click events . 421
client frame . 380

Concept Index 562

client-side fonts . 161
clipboard . 55
clipboard manager . 55
coding systems . 174
collision . 123
color emulation on black-and-white printers . . . 384
color name . 71
color of window, from command line 472
color scheme . 404
Column Number mode . 79
columns (and rectangles) . 58
columns (indentation) . 195
columns, splitting . 228
Comint mode . 372
comint-highlight-input face 369
comint-highlight-prompt face 369
command . 12
command history . 33
command line arguments . 463
comments . 239
comments on customized settings 401
Common Lisp . 268
compare files (in Dired) . 311
comparing 3 files (diff3) . 130
comparing files . 130
compilation buffer, keeping point at end 250
compilation errors . 250
Compilation mode . 251
complete key . 11
completion . 28
completion (Lisp symbols) . 244
completion (symbol names) 244, 294
completion alternative . 28
completion list . 29
completion style . 30
compose character . 186
compressing files (in Dired) 308
compression . 134
Conf mode . 230
confirming in the minibuffer 30
conflicts . 284
connecting to remote host . 377
continuation line . 21
contributing to Emacs . 442
Control . 11
control character . 11
control characters on display 81
converting text to upper or lower case 206
Coptic calendar . 325
copy . 55
copying files . 133
copying files (in Dired) . 307
copying text . 52
CORBA IDL mode . 246
correcting spelling . 104
CPerl mode . 230
crashes . 126
create a text-based table . 224

creating files . 116
creating frames . 157
CRiSP mode . 389
cryptanalysis . 392
CSSC . 270
CUA key bindings . 59
current buffer . 139
current function name in mode line 233
cursor . 6
cursor color, command-line argument 473
cursor face . 70, 81
cursor in non-selected windows 82
cursor location . 22
cursor location, on MS-DOS 491
cursor motion . 17
cursor, blinking . 82
custom themes . 404
custom themes, creating . 405
customizable variable . 398
customization . 398
customization buffer . 398
customization groups . 398
customization of menu face . 73
customizing faces . 402
customizing Lisp indentation 234
customizing variables . 400
cut . 55
cut and paste . 513
cutting text . 50
CVS . 270
CWarn mode . 249
Cyrillic . 167
Czech . 167

D
daemon, Emacs . 378
day of year . 320
daylight saving time . 335
DBX . 255
dead character . 186
debbugs package . 434
debuggers . 255
debugging Emacs, tricks and techniques 440
decentralized version control 272
decoding mail messages (Rmail) 360
decoding non-ASCII keyboard input on X 181
decrease buffer face height . 74
decrypting files (in Dired) . 308
default argument . 26
default directory . 26, 115
default face . 70
default file name . 115
default-frame-alist . 162
‘default.el’ file, not loading 466
‘default.el’, the default init file 423
defining keyboard macros . 107
defuns . 231

Concept Index 563

DEL vs BACKSPACE . 430
Delete Selection mode . 47
deleting auto-save files . 304
deleting blank lines . 21
deleting characters and lines 19
deleting files (in Dired) . 303
deleting rows and column in text-based tables

. 226
deleting some backup files . 304
deletion . 50
deletion (of files) . 132
deletion (Rmail) . 347
Delphi mode . 230
desktop . 388
desktop shortcut, MS-Windows 490
Devanagari . 167
device for Emacs terminal I/O 465
dialog boxes . 164
diary . 329
diary file . 330
Diff Auto-Refine mode . 131
Diff mode . 131
digest message . 361
directional window selection 152
directories in buffer names . 145
directory header lines . 312
directory listing . 129
directory name abbreviation 128
directory tracking . 375
directory where Emacs starts on MS-Windows

. 490
directory-local variables . 413
Dired . 302
Dired and version control . 316
Dired sorting . 313
Dired, and MS-Windows/MS-DOS 493
Dirtrack mode . 375
disable window system . 465
disabled command . 422
disabling remote files . 135
DISPLAY environment variable 471
display for Emacs frame . 465
display name (X Window System) 471
display of buffer size . 79
display of line number . 79
distributed version control . 272
DNS mode . 230
doc-view-minor-mode . 366
DocTEX mode . 214
document viewer (DocView) 366
documentation string . 38
DocView mode . 366
DOS applications, running from Emacs 495
DOS-style end-of-line display 177
DOS-to-Unix conversion of files 491
double clicks . 421
double slash in file name . 26
down events . 421

downcase file names . 310
drag and drop . 163
drag and drop, Dired . 317
drag events . 421
drastic changes . 125
dribble file . 437
DSSSL mode . 230
Dutch . 167
DVI file . 366

E
Ebrowse . 287
echo area . 7
echo area message . 7
echoing . 7
EDE (Emacs Development Environment) 295
Edebug . 438
editable fields (customization buffer) 398
editing binary files . 387
editing level, recursive . 388
EDITOR environment variable 378
EDT . 389
Eldoc mode . 243
Electric Indent mode . 197
Electric Pair mode . 239
Eliza . 393
Emacs as a server . 378
Emacs Development Environment 295
EMACS environment variable 370
Emacs icon, a gnu . 476
Emacs initialization file . 423
Emacs Lisp mode . 266
Emacs Lisp package . 394
Emacs Lisp package archive 394
emacs-internal, coding system 176
EMACS_SERVER_FILE environment variable 380
emacsclient . 378
emacsclient invocation . 378
emacsclient options . 379
emacsclient, on MS-Windows 491
emacsclient.exe . 490
emacsclientw.exe . 490
email . 337
emulating other editors . 389
emulation of Brief . 389
encoding of characters . 167
encrypted mails (reading in Rmail) 359
encrypting files (in Dired) . 309
end-of-line convention, mode-line indication 8
end-of-line conversion . 175
end-of-line conversion on MS-DOS/MS-Windows

. 491
Enriched mode . 220
enriched text . 220
entering Emacs . 14
environment variables . 467
environment variables for subshells 369

Concept Index 564

environment variables in file names 115
erasing characters and lines . 19
error log . 250
error message . 7
errors in init file . 467
ESC replacing META key . 11
escape sequences in files . 177
ESHELL environment variable 369
etags . 286
etags program . 289
Ethiopic . 167
Ethiopic calendar . 325
Euro sign . 170
European character sets . 186
evaluate expression, command-line argument . . 464
exiting . 15
exiting recursive edit . 388
expanding subdirectories in Dired 311
expansion (of abbrevs) . 296
expansion of C macros . 248
expansion of environment variables 115
expression . 237
expunging (Rmail) . 347

F
face at point . 168
face colors, setting . 71
faces . 70
faces for highlighting query replace 99
faces for highlighting search matches 85
faces, customizing . 402
failed merges . 130
Feedmail . 341
FFAP minor mode . 391
file archives . 134
file comparison (in Dired) . 311
file database (locate) . 314
file dates . 123
file directory . 129
file local variables . 410
file management . 302
file modes . 133
file name caching . 136
file names . 115
file names on MS-Windows 492
file names with non-ASCII characters 181
file names, quote special characters 136
file ownership, and backup . 122
file permissions . 133
file selection dialog . 118
file selection dialog, how to disable 164
file shadows . 124
file truenames . 128
file version in change log entries 285
file, warning when size is large 117
file-based version control . 271
file-name completion, on MS-Windows 492

files . 115
files, visiting and saving . 116
filesets . 137
filesets, VC . 273
fill prefix . 204
filling text . 202
find . 136
find and Dired . 314
find Info manual by its file name 41
finder . 41
finding file at point . 391
finding files containing regexp matches (in Dired)

. 307
finding strings within text . 85
firewall, and accessing remote files 135
fixing incorrectly decoded mail messages 360
flagging files (in Dired) . 303
flagging many files for deletion (in Dired) 304
Flyspell mode . 106
folding editing . 211
Follow mode . 70
font antialiasing (MS Windows) 499
font backend selection (MS-Windows) 498
Font Lock mode . 74
font name (X Window System) 472
font of character at point . 168
font properties (MS Windows gdi backend) . . . 499
font properties (MS Windows) 498
font scripts (MS Windows) 499
font specification (MS Windows) 497
font Unicode subranges (MS Windows) 499
fontconfig . 159
fonts . 158
fonts and faces . 402
fonts for PostScript printing 384
fonts for various scripts . 182
fontsets . 182
fontsets, modifying . 185
foreground color, command-line argument 472
formfeed character . 201
fortune cookies . 344
forwarding a message . 354
frame . 6
frame size, specifying default 162
frame title, command-line argument 476
frames . 153
French Revolutionary calendar 325
fringe face . 73
fringes . 77
fringes, and continuation lines 21
fringes, and unused line indication 78
fringes, for debugging . 260
FTP . 135
fullheight, command-line argument 474
fullscreen, command-line argument 474
fullwidth, command-line argument 474
function key . 415
function, move to beginning or end 232

Concept Index 565

G
gateway, and remote file access with ange-ftp

. 135
GDB . 255
GDB User Interface layout . 259
geometry of Emacs window 474
geometry, command-line argument 474
German . 167
getting help with keys . 21
Ghostscript, use for PostScript printing 497
git . 270
Glasses mode . 244
Global Auto-Revert mode . 125
global keymap . 415
global mark . 60
global mark ring . 48
global substitution . 96
glyphless characters . 81
GNU Arch . 270
Gnus . 364
GNUstep . 487
Go Moku . 392
Goto Address mode . 391
graphic characters . 16
Greek . 167
Gregorian calendar . 325
growing minibuffer . 27
GTK font pattern . 159
GTK styles . 483
GTK widget classes . 482
GTK widget names . 481, 482
GTK+ resources . 480
GUD interaction buffer . 256
GUD library . 255
GUD Tooltip mode . 256
gzip . 134

H
handwriting . 384
hard links (creation) . 133
hard links (in Dired) . 308
hard links (visiting) . 128
hard newline . 220
hardcopy . 382
header (TEX mode) . 217
header line (Dired) . 312
headers (of mail message) . 338
heading lines (Outline mode) 208
Hebrew . 167
Hebrew calendar . 325
height of minibuffer . 27
help . 36
help text, in GTK+ file chooser 164
help, viewing web pages . 41
hex editing . 387
Hexl mode . 387
hg . 270

Hi Lock mode . 75
hidden files, in GTK+ file chooser 164
Hide-ifdef mode . 249
Hideshow mode . 243
hiding subdirectories (Dired) 312
Highlight Changes mode . 75
highlight current line . 82
highlighting by matching . 75
highlighting lines of text . 76
highlighting matching parentheses 239
highlighting region . 49
Hindi . 167
history of commands . 33
history of minibuffer input . 32
history reference . 374
holidays . 322
HOME directory on MS-Windows 493
home directory shorthand . 26
hook . 408
horizontal scrolling . 68
hourglass pointer display . 83
HTML mode . 218
hungry deletion (C Mode) . 247
hunk, diff . 131
hyperlink . 40
hyperlinks . 155

I
iCalendar support . 335
Icomplete mode . 32
Icon mode . 230
iconifying . 15
icons (X Window System) . 476
icons, toolbar . 164
IDL mode . 246
ignored file names, in completion 32
image animation . 137
image-dired . 315
image-dired mode . 315
ImageMagick support . 137
images, viewing . 137
IMAP mailboxes . 363
in-situ subdirectory (Dired) 311
inbox file . 348
incorrect fontification . 75
increase buffer face height . 74
incremental search . 85
incremental search, input method interference

. 173
indentation . 195
indentation for comments . 239
indentation for programs . 233
index of buffer definitions . 232
indirect buffer . 145
indirect buffers and outlines 211
inferior process . 250
Info . 41

Concept Index 566

init file . 423
init file ‘.emacs’ on MS-Windows 494
init file, and non-ASCII characters 169
init file, not loading . 466
initial options (command line) 463
initial-frame-alist . 162
input event . 11
input methods . 171
input methods, X . 480
input with the keyboard . 11
insert file contents, command-line argument . . . 464
insert Unicode character . 16
inserted subdirectory (Dired) 311
inserting blank lines . 21
inserting matching parentheses 239
inserting rows and columns in text-based tables

. 226
insertion . 16
INSIDE_EMACS environment variable 370
Integrated development environment 295
interactive highlighting . 75
internal border width, command-line argument

. 475
international characters in ‘.emacs’ 428
international files from DOS/Windows systems

. 174
international scripts . 167
Intlfonts for PostScript printing 384
Intlfonts package, installation 182
invisible lines . 207
invocation (command line arguments) 463
invoking Emacs from Windows Explorer 490
IPA . 167
isearch . 85
Islamic calendar . 325
ISO commercial calendar . 325
ISO Latin character sets . 186
iso-ascii library . 186
iso-transl library . 186
ispell program . 106
Iswitchb mode . 146

J
Japanese . 167
jar . 134
Java class archives . 134
Java mode . 246
Javascript mode . 230
JDB . 255
Julian calendar . 325
Julian day numbers . 325
just-in-time (JIT) font-lock . 75
justification . 203
justification in text-based tables 226

K
Kerberos POP authentication 363
key . 11
key bindings . 414
key rebinding, permanent . 423
key rebinding, this session . 416
key sequence . 11
keyboard input . 11
keyboard macro . 107
keyboard shortcuts . 519
keyboard, MS-Windows . 494
keymap . 414
keypad . 420
keys stolen by window manager 11
kill DOS application . 495
kill ring . 52
killing buffers . 142
killing characters and lines . 19
killing Emacs . 15
killing expressions . 237
killing rectangular areas of text 58
killing text . 50
Korean . 167

L
label (Rmail) . 351
landmark game . 393
language environments . 170
Lao . 167
LaTEX mode . 214
Latin . 167
Latin-1 TEX encoding . 218
lazy search highlighting . 86
leaving Emacs . 15
libraries . 265
Life . 393
line endings . 175
line number commands . 22
line number display . 79
line spacing . 479
line spacing, command-line argument 476
line truncation, and fringes 21, 82
line wrapping . 21
lines, highlighting . 76
links . 155
links (customization buffer) 398
Linum mode . 191
Lisp character syntax . 424
Lisp editing . 230
Lisp files byte-compiled by XEmacs 266
Lisp files, and multibyte operation 169
Lisp mode . 268
Lisp object syntax . 425
Lisp string syntax . 424
Lisp symbol completion . 244
lisp-indent-function property 235
list commands . 238

Concept Index 567

listing current buffers . 141
listing system fonts . 161
load init file of another user 466
load path for Emacs Lisp . 265
loading Lisp code . 265
loading Lisp libraries automatically 426
loading Lisp libraries, command-line argument

. 464
loading several files (in Dired) 309
local keymap . 416
local variables . 409
local variables in files . 410
local variables, for all files in a directory 413
locale, date format . 125
locales . 170
location of point . 22
locking files . 123
locking-based version . 271
locus . 251
Log Edit mode . 275
log File, types of . 272
logging keystrokes . 437
logical order . 187
looking for a subject in documentation 36
lpr usage under MS-DOS . 497
LRM . 188
ls emulation . 493
lzh . 134

M
M- . 11
M4 mode . 230
Mac OS X . 487
Macintosh . 487
Macintosh end-of-line conversion 175
Macintosh key bindings . 389
macro expansion in C . 248
mail . 337
mail (on mode line) . 80
mail aliases . 339
MAIL environment variable . 348
Mail mode . 344
mail signature . 343
mail-composition methods . 344
Mailclient . 341
MAILHOST environment variable 362
mailrc file . 339
main border width, command-line argument . . 475
major modes . 189
make . 250
Makefile mode . 230
man page . 242
man pages, and local file variables 411
manipulating paragraphs . 200
manipulating sentences . 199
manipulating text . 198
manual pages, on MS-DOS/MS-Windows 243

manuals, on-line . 41
Marathi . 167
mark . 44
mark rectangle . 58
mark ring . 47
marking executable files (in Dired) 305
marking many files (in Dired) 305
marking sections of text . 45
marking subdirectories (in Dired) 305
marking symbolic links (in Dired) 305
matching parentheses . 238
matching parenthesis and braces, moving to . . . 238
maximized, command-line argument 474
maximum buffer size exceeded, error message . . 117
Mayan calendar . 325
Mayan calendar round . 328
Mayan haab calendar . 328
Mayan long count . 328
Mayan tzolkin calendar . 328
memory full . 432
menu bar . 9, 480
menu bar access using keyboard (MS-Windows)

. 494
menu bar appearance . 73
Menu Bar mode . 163
menu face, no effect if customized 73
Mercurial . 270
merges, failed . 130
merging changes . 284
merging-based version . 271
message . 337
Message mode . 340
Message mode for sending mail 344
message number . 345
messages saved from echo area 7
Meta . 11
Meta commands and words 198
Metafont mode . 230
MH mail interface . 344
Microsoft Office file . 366
Microsoft Windows . 490
Midnight mode . 143
MIME . 343
MIME messages (Rmail) . 359
minibuffer . 7, 26
minibuffer confirmation . 30
minibuffer history . 32
minibuffer history, searching 89
minibuffer keymaps . 416
minibuffer-prompt face . 73
minimizing . 15
minimizing a frame at startup 476
minor mode keymap . 416
minor modes . 190
mistakes, correcting . 102
mode commands for minor modes 190
mode hook . 190, 230
mode line . 8

Concept Index 568

mode line, 3D appearance . 80
mode line, mouse . 156
mode, Abbrev . 296
mode, archive . 134
mode, Auto Compression . 134
mode, Auto Fill . 202
mode, Auto Save . 126
mode, Auto-Revert . 125
mode, AWK . 246
mode, C . 246
mode, C++ . 246
mode, Column Number . 79
mode, Comint . 372
mode, Compilation . 251
mode, CORBA IDL . 246
mode, CRiSP . 389
mode, Delete Selection . 47
mode, Diff Auto-Refine . 131
mode, Dirtrack . 375
mode, DocTEX . 214
mode, DocView . 366
mode, Electric Indent . 197
mode, Emacs Lisp . 266
mode, Enriched . 220
mode, Flyspell . 106
mode, Follow . 70
mode, Font Lock . 74
mode, Global Auto-Revert . 125
mode, Goto Address . 391
mode, GUD Tooltip . 256
mode, Hexl . 387
mode, Hideshow . 243
mode, HTML . 218
mode, Iswitchb . 146
mode, Java . 246
mode, LaTEX . 214
mode, Lisp . 268
mode, Log Edit . 275
mode, Mail . 344
mode, major . 189
mode, Menu Bar . 163
mode, Message . 340
mode, minor . 190
mode, Mouse Wheel . 154
mode, MSB . 146
mode, nXML . 198, 219
mode, Objective C . 246
mode, Occur . 100
mode, Occur Edit . 100
mode, Outline . 207
mode, Overwrite . 191
mode, Paragraph-Indent Text 207
mode, Pike . 246
mode, Scheme . 268
mode, Scroll Bar . 163
mode, Scroll-all . 152
mode, Semantic . 245
mode, SGML . 218

mode, Shell . 370
mode, SliTEX . 214
mode, tar . 134
mode, Term . 377
mode, TEX . 214
mode, Text . 207
mode, Tool Bar . 164
mode, Transient Mark . 49
mode, View . 69
mode, Whitespace . 78
mode, Winner . 152
mode, XML . 198
modes for programming languages 230
modification dates . 125
modified (buffer) . 116
modifier keys . 11, 419
Modula2 mode . 230
moon, phases of . 324
Morse code . 393
Motif key bindings . 389
mouse avoidance . 165
mouse button events . 421
mouse buttons (what they do) 153
mouse on mode line . 156
mouse pointer . 83
mouse pointer color, command-line argument . . 473
mouse support . 166
mouse wheel . 154
Mouse Wheel minor mode . 154
mouse, and MS-Windows . 494
mouse, dragging . 153
mouse, selecting text using 153
move to beginning or end of function 232
movemail . 362
movemail program . 361
movement . 17
moving files (in Dired) . 308
moving inside the calendar . 318
moving point . 17
moving text . 52
moving the cursor . 17
MS-DOS end-of-line conversion 175
MS-Windows keyboard shortcuts 494
MS-Windows, and primary selection 56
MS-Windows, Emacs peculiarities 490
MSB mode . 146
MULE . 167
multibyte characters . 167
multibyte operation, and Lisp files 169
multiple displays . 162
multiple views of outline . 211
multiple windows in Emacs 147
multiple-file search and replace 293
Multipurpose Internet Mail Extensions 343
Multithreaded debugging in GDB 263

Concept Index 569

N
narrowing . 68
narrowing, and line number display 79
‘net use’, and printing on MS-Windows 496
networked printers (MS-Windows) 496
newline . 16
newlines, hard and soft . 220
newsreader . 364
Next Error Follow mode . 252
NFS and quitting . 429
nil . 523
no-conversion, coding system 176
non-ASCII characters in ‘.emacs’ 428
non-ASCII keys, binding . 428
non-breaking hyphen . 81
non-breaking space . 81
non-greedy regexp matching 92
non-integral number of lines in a window 80
non-selected windows, mode line appearance . . . 80
Non-stop debugging in GDB 263
nonincremental search . 89
normal hook . 408
nroff . 219
NSA . 344
numeric arguments . 23
nXML mode . 198, 219

O
Objective C mode . 246
Occur Edit mode . 100
Occur mode . 100
octal escapes . 81
Octave mode . 230
on-line manuals . 41
open file . 116
open-parenthesis in leftmost column 231
OpenDocument file . 366
operating on files in Dired . 307
operations on a marked region 46
options (command line) . 463
Org agenda . 213
Org exporting . 213
organizer . 212
other editors . 389
out of memory . 432
Outline mode . 207
outline with multiple views 211
overlays at character position 221
override character terminal color support 473
Overwrite mode . 191

P
Package . 394
Package archive . 394
package directory . 396
package file . 396

package menu . 394
package requirements . 395
pages . 201
paging in Term mode . 377
paragraph, base direction . 188
Paragraph-Indent Text mode 207
paragraphs . 200
parentheses, displaying matches 238
parentheses, moving across 238
parenthesis in column zero and fontification 75
parenthetical groupings . 238
paste . 55
pasting . 52
patches, editing . 131
patches, sending . 441
PC key bindings . 389
PC selection . 389
PDB . 255
PDF file . 366
per-buffer variables . 409
per-directory local variables 413
Perl mode . 230
Perldb . 255
Persian calendar . 325
phases of the moon . 324
Pike mode . 246
planner . 212
point . 6
point location . 22
point location, on MS-DOS 491
Polish . 167
Pong game . 393
POP mailboxes . 362
position and size of Emacs frame 474
PostScript file . 366
PostScript mode . 230
prefix arguments . 23
prefix key . 11
preprocessor highlighting . 248
pretty-printer . 233
primary Rmail file . 345
primary selection . 45, 56
printing . 382
printing character . 81
printing files (in Dired) . 308
Printing package . 385
Prog mode . 408
program building . 250
program editing . 230, 408
Prolog mode . 230
prompt . 26
prompt, shell . 372
PS file . 366
puzzles . 392
Python mode . 230

Concept Index 570

Q
query replace . 98
quitting . 429
quitting (in search) . 87
quitting Emacs . 15
quoting . 16
quoting file names . 136

R
rar . 134
raw-text, coding system . 175
RCS . 270
read-only buffer . 141
read-only text, killing . 52
reading mail . 345
rebinding keys, permanently 423
rebinding major mode keys 417
rebinding mouse buttons . 421
rebinding non-ASCII keys . 428
rectangle . 58
rectangle highlighting . 60
recursive copying . 307
recursive deletion . 303
recursive editing level . 388
recycle bin . 132
redefining keys, this session 416
redo . 102
refreshing displayed files . 313
regexp . 91
regexp search . 90
region . 44
region highlighting . 49
registered file . 270
registers . 61
registry, setting environment variables

(MS-Windows) . 471
registry, setting resources (MS-Windows) 478
regular expression . 91
related files . 249
reload files . 388
remember editing session . 388
remote file access . 135
remote host . 377
remote host, debugging on . 256
remove indentation . 196
renaming files . 133
renaming files (in Dired) . 308
repeating a command . 24
replacement . 96
reply to a message . 353
reporting bugs . 436
repository . 270
reread a file . 125
resizing minibuffer . 27
resolving conflicts . 284
resource files for GTK . 480
resources . 478

restore session . 388
restriction . 68
retrying a failed message . 354
reverse order in POP inboxes 363
reverse video, command-line argument 473
revision . 270
revision ID . 270
revision ID in version control 275
RGB triplet . 71
right-to-left text . 187
risky variable . 413
RLM . 188
Rlogin . 377
Rmail . 345
Rmail file sorting . 358
Romanian . 167
rot13 code . 361
Ruby mode . 230
runemacs.exe . 490
running a hook . 408
running Lisp functions . 250

S
saved echo area messages . 7
saving a setting . 401
saving file name in a register 63
saving files . 116
saving keyboard macros . 112
saving number in a register . 63
saving position in a register . 61
saving rectangle in a register 62
saving sessions . 388
saving text in a register . 61
saving window configuration in a register 62
SCCS . 270
Scheme mode . 268
screen . 6
screen reader software, MS-Windows 499
script mode . 465
Scroll Bar mode . 163
Scroll-all mode . 152
scroll-command property . 66
scrolling . 65
scrolling all windows . 389
scrolling in the calendar . 320
scrolling windows together . 152
SDB . 255
search and replace in multiple files 293
search and replace in multiple files (in Dired) . . 309
search for a regular expression 90
search multiple files (in Dired) 309
search ring . 86
search-and-replace commands 96
searching . 85
searching Dired buffers . 303
searching documentation efficiently 36
searching in Rmail . 347

Concept Index 571

searching multiple files via Dired 316
secondary selection . 56
sections of manual pages . 242
select all . 46
selected buffer . 139
selected window . 147
selecting buffers in other windows 149
selection, primary . 56
selective display . 79
selective undo . 102
self-documentation . 36
Semantic mode . 245
Semantic package . 245
sending mail . 337
sending patches for GNU Emacs 441
Sendmail . 341
sentences . 199
server file . 380
server, using Emacs as . 378
server-side fonts . 161
set buffer face height . 74
setting a mark . 44
setting variables . 407
settings . 398
settings, how to save . 401
sexp . 237
SGML mode . 218
shadow files . 124
shell commands . 368
shell commands, Dired . 309
SHELL environment variable 369
Shell mode . 370
shell scripts, and local file variables 411
Shell-script mode . 230
shelves in version control . 282
shift-selection . 45, 48
Show Paren mode . 239
showing hidden subdirectories (Dired) 312
shy group, in regexp . 94
signing files (in Dired) . 308
Simula mode . 230
simulation of middle mouse button 494
simultaneous editing . 123
site init file . 423
‘site-start.el’ file, not loading 466
‘site-start.el’, the site startup file 423
size of file, warning when visiting 117
size of minibuffer . 27
slashes repeated in file name 26
SliTEX mode . 214
Slovak . 167
Slovenian . 167
slow display during scrolling 75
Smerge mode . 130
SMTP . 341
Snake . 393
soft hyphen . 81
soft newline . 220

solitaire . 393
sorting . 385
sorting Dired buffer . 313
sorting Rmail file . 358
Spanish . 167
specific version control system 275
specify default font from the command line . . . 472
specify end-of-line conversion 179
specifying fullscreen for Emacs frame 474
speedbar . 161
spell-checking the active region 105
spelling, checking and correcting 104
splash screen . 466
splitting columns . 228
splitting table cells . 225
standard colors on a character terminal 473
standard fontset . 183
start directory, MS-Windows 490
start iconified, command-line argument 476
starting Emacs . 14
starting Emacs on MS-Windows 490
startup (command line arguments) 463
startup (init file) . 423
startup fontset . 183
startup message . 466
startup screen . 14
stashes in version control . 282
string substitution . 96
string syntax . 424
style (for indentation) . 235
subdirectories in Dired . 311
subprocesses on MS-Windows 495
subscribe groups . 365
subshell . 368
subtree (Outline mode) . 210
Subversion . 270
summary (Rmail) . 355
summing time intervals . 336
sunrise and sunset . 323
suspending . 15
suspicious constructions in C, C++ 249
SVN . 270
switch buffers . 139
switches (command line) . 463
symbolic links (creation in Dired) 308
symbolic links (creation) . 133
symbolic links (visiting) . 128
synchronizing windows . 70
syntax highlighting and coloring 74
syntax of regexps . 91
system-wide packages . 396

T
t . 523
tab stops . 196
table creation . 224
table dimensions . 227

Concept Index 572

table for HTML and LaTeX 228
table mode . 223
table recognition . 224
table to text . 226
tabs . 195
tags and tag tables . 286
tags, C++ . 287
tags-based completion . 244
Tar mode . 134
Tcl mode . 230
Telnet . 377
TERM environment variable . 437
Term mode . 377
terminal emulators, mouse support 166
terminal, serial . 377
termscript file . 437
Tetris . 393
TEX encoding . 218
TEX mode . 214
TEXEDIT environment variable 378
TEXINPUTS environment variable 216
text . 198
text and binary files on MS-DOS/MS-Windows

. 491
text buttons . 155
text colors, from command line 472
text cursor . 81
Text mode . 207
text properties at point . 168
text properties of characters 221
text terminal . 166
text to table . 226
text-based tables . 223
text-based tables, splitting cells 225
text/enriched MIME format 220
Thai . 167
Tibetan . 167
time (on mode line) . 80
time intervals, summing . 336
time stamps . 125
timeclock . 336
TLS encryption (Rmail) . 363
TODO item . 213
toggling marks (in Dired) . 306
tool bar . 480
Tool Bar mode . 164
Tool Bar position . 164
Tool Bar style . 164
tooltips . 43, 165
top level . 8
tower of Hanoi . 392
TPU . 390
trailing whitespace . 78
Tramp . 135
Transient Mark mode . 49
transposition of expressions 237
trash . 132
triple clicks . 421

truenames of files . 128
truncation . 21, 82
Turkish . 167
turn multibyte support on or off 169
two directories (in Dired) . 307
two-column editing . 228
types of log file . 272
typos, fixing . 102

U
unbalanced parentheses and quotes 236
uncompression . 134
undecided, coding system . 175
undeletion (Rmail) . 348
undigestify . 361
undisplayable characters . 168
undo . 102
undo limit . 103
undoing window configuration changes 152
Unibyte operation . 186
unibyte operation, and Lisp files 169
Unicode . 167
Unicode characters, inserting 16
unique buffer names . 145
unmarking files (in Dired) . 306
unsubscribe groups . 365
untranslated file system . 492
unused lines . 78
unzip archives . 134
upcase file names . 310
updating Dired buffer . 313
URL, viewing in help . 41
URLs . 390
URLs, activating . 391
use-hard-newlines . 220
Usenet news . 364
user name for remote file access 135
user option . 398
user options, changing . 400
UTF-8 . 170

V
variable . 406
variables, changing . 400
VC Directory buffer . 280
VC filesets . 273
VC mode line indicator . 272
verifying digital signatures on files (in Dired) . . 308
version control . 269
version control log . 272
version control status . 272
VERSION_CONTROL environment variable 121
vertical scroll bars, command-line argument . . . 476
VHDL mode . 230
vi . 389
Vietnamese . 167

Concept Index 573

View mode . 69
viewing web pages in help . 41
views of an outline . 211
visiting files . 116
visiting files, command-line argument 463
Visual Line mode . 83
visual order . 187

W
Watching expressions in GDB 263
wdired mode . 314
Web . 390
web pages, viewing in help . 41
weeks, which day they start on 319
whitespace character . 195
Whitespace mode . 78
whitespace, trailing . 78
wide block cursor . 82
widening . 68
widgets at buffer position . 221
width and height of Emacs frame 474
width of the scroll bar . 163
wildcard characters in file names 117
Windmove package . 152
window configuration changes, undoing 152
window manager, keys stolen by 11
windows in Emacs . 147
Windows system menu . 494
windows, synchronizing . 70
Winner mode . 152
word processing . 220
word search . 89
word wrap . 22, 83
words . 198

words, case conversion . 206
WordStar . 389
work file . 270
working tree . 270
World Wide Web . 390
wrapping . 21
WYSIWYG . 220

X
X cutting and pasting . 56
X defaults file . 158
X input methods . 480
X Logical Font Description 160
X resources . 478
X resources file . 158
X selection . 56
XDB . 255
XIM . 480
XLFD . 160
XML schema . 219
xterm . 166

Y
yahrzeits . 327
yanking . 52
yanking previous kills . 53

Z
zip . 134
Zmacs mode . 49
zoo . 134

	Preface
	Distribution
	Acknowledgments

	Introduction
	The Organization of the Screen
	Point
	The Echo Area
	The Mode Line
	The Menu Bar

	Characters, Keys and Commands
	Kinds of User Input
	Keys
	Keys and Commands

	Entering and Exiting Emacs
	Entering Emacs
	Exiting Emacs

	Basic Editing Commands
	Inserting Text
	Changing the Location of Point
	Erasing Text
	Undoing Changes
	Files
	Help
	Blank Lines
	Continuation Lines
	Cursor Position Information
	Numeric Arguments
	Repeating a Command

	The Minibuffer
	Minibuffers for File Names
	Editing in the Minibuffer
	Completion
	Completion Example
	Completion Commands
	Completion Exit
	How Completion Alternatives Are Chosen
	Completion Options

	Minibuffer History
	Repeating Minibuffer Commands
	Entering passwords

	Running Commands by Name
	Help
	Documentation for a Key
	Help by Command or Variable Name
	Apropos
	Help Mode Commands
	Keyword Search for Packages
	Help for International Language Support
	Other Help Commands
	Help Files
	Help on Active Text and Tooltips

	The Mark and the Region
	Setting the Mark
	Commands to Mark Textual Objects
	Operating on the Region
	The Mark Ring
	The Global Mark Ring
	Shift Selection
	Disabling Transient Mark Mode

	Killing and Moving Text
	Deletion and Killing
	Deletion
	Killing by Lines
	Other Kill Commands
	Options for Killing

	Yanking
	The Kill Ring
	Yanking Earlier Kills
	Appending Kills

	``Cut and Paste'' Operations on Graphical Displays
	Using the Clipboard
	Cut and Paste with Other Window Applications
	Secondary Selection

	Accumulating Text
	Rectangles
	CUA Bindings

	Registers
	Saving Positions in Registers
	Saving Text in Registers
	Saving Rectangles in Registers
	Saving Window Configurations in Registers
	Keeping Numbers in Registers
	Keeping File Names in Registers
	Bookmarks

	Controlling the Display
	Scrolling
	Recentering
	Automatic Scrolling
	Horizontal Scrolling
	Narrowing
	View Mode
	Follow Mode
	Text Faces
	Colors for Faces
	Standard Faces
	Text Scale
	Font Lock mode
	Interactive Highlighting
	Window Fringes
	Displaying Boundaries
	Useless Whitespace
	Selective Display
	Optional Mode Line Features
	How Text Is Displayed
	Displaying the Cursor
	Line Truncation
	Visual Line Mode
	Customization of Display

	Searching and Replacement
	Incremental Search
	Basics of Incremental Search
	Repeating Incremental Search
	Errors in Incremental Search
	Special Input for Incremental Search
	Isearch Yanking
	Scrolling During Incremental Search
	Searching the Minibuffer

	Nonincremental Search
	Word Search
	Regular Expression Search
	Syntax of Regular Expressions
	Backslash in Regular Expressions
	Regular Expression Example
	Searching and Case
	Replacement Commands
	Unconditional Replacement
	Regexp Replacement
	Replace Commands and Case
	Query Replace

	Other Search-and-Loop Commands

	Commands for Fixing Typos
	Undo
	Transposing Text
	Case Conversion
	Checking and Correcting Spelling

	Keyboard Macros
	Basic Use
	The Keyboard Macro Ring
	The Keyboard Macro Counter
	Executing Macros with Variations
	Naming and Saving Keyboard Macros
	Editing a Keyboard Macro
	Stepwise Editing a Keyboard Macro

	File Handling
	File Names
	Visiting Files
	Saving Files
	Commands for Saving Files
	Backup Files
	Single or Numbered Backups
	Automatic Deletion of Backups
	Copying vs. Renaming

	Customizing Saving of Files
	Protection against Simultaneous Editing
	Shadowing Files
	Updating Time Stamps Automatically

	Reverting a Buffer
	Auto-Saving: Protection Against Disasters
	Auto-Save Files
	Controlling Auto-Saving
	Recovering Data from Auto-Saves

	File Name Aliases
	File Directories
	Comparing Files
	Diff Mode
	Miscellaneous File Operations
	Accessing Compressed Files
	File Archives
	Remote Files
	Quoted File Names
	File Name Cache
	Convenience Features for Finding Files
	Filesets

	Using Multiple Buffers
	Creating and Selecting Buffers
	Listing Existing Buffers
	Miscellaneous Buffer Operations
	Killing Buffers
	Operating on Several Buffers
	Indirect Buffers
	Convenience Features and Customization of Buffer Handling
	Making Buffer Names Unique
	Switching Between Buffers using Substrings
	Customizing Buffer Menus

	Multiple Windows
	Concepts of Emacs Windows
	Splitting Windows
	Using Other Windows
	Displaying in Another Window
	Deleting and Rearranging Windows
	Displaying a Buffer in a Window
	How display-buffer works

	Convenience Features for Window Handling

	Frames and Graphical Displays
	Mouse Commands for Editing
	Mouse Commands for Words and Lines
	Following References with the Mouse
	Mouse Clicks for Menus
	Mode Line Mouse Commands
	Creating Frames
	Frame Commands
	Fonts
	Speedbar Frames
	Multiple Displays
	Frame Parameters
	Scroll Bars
	Drag and Drop
	Menu Bars
	Tool Bars
	Using Dialog Boxes
	Tooltips
	Mouse Avoidance
	Non-Window Terminals
	Using a Mouse in Text Terminals

	International Character Set Support
	Introduction to International Character Sets
	Disabling Multibyte Characters
	Language Environments
	Input Methods
	Selecting an Input Method
	Coding Systems
	Recognizing Coding Systems
	Specifying a File's Coding System
	Choosing Coding Systems for Output
	Specifying a Coding System for File Text
	Coding Systems for Interprocess Communication
	Coding Systems for File Names
	Coding Systems for Terminal I/O
	Fontsets
	Defining fontsets
	Modifying Fontsets
	Undisplayable Characters
	Unibyte Editing Mode
	Charsets
	Bidirectional Editing

	Major and Minor Modes
	Major Modes
	Minor Modes
	Choosing File Modes

	Indentation
	Indentation Commands
	Tab Stops
	Tabs vs. Spaces
	Convenience Features for Indentation

	Commands for Human Languages
	Words
	Sentences
	Paragraphs
	Pages
	Filling Text
	Auto Fill Mode
	Explicit Fill Commands
	The Fill Prefix
	Adaptive Filling

	Case Conversion Commands
	Text Mode
	Outline Mode
	Format of Outlines
	Outline Motion Commands
	Outline Visibility Commands
	Viewing One Outline in Multiple Views
	Folding Editing

	Org Mode
	Org as an organizer
	Org as an authoring system

	TeX{} Mode
	TeX{} Editing Commands
	LaTeX{} Editing Commands
	TeX{} Printing Commands
	TeX{} Mode Miscellany

	SGML and HTML Modes
	Nroff Mode
	Enriched Text
	Enriched Mode
	Hard and Soft Newlines
	Editing Format Information
	Faces in Enriched Text
	Indentation in Enriched Text
	Justification in Enriched Text
	Setting Other Text Properties

	Editing Text-based Tables
	What is a Text-based Table?
	Creating a Table
	Table Recognition
	Commands for Table Cells
	Cell Justification
	Table Rows and Columns
	Converting Between Plain Text and Tables
	Table Miscellany

	Two-Column Editing

	Editing Programs
	Major Modes for Programming Languages
	Top-Level Definitions, or Defuns
	Left Margin Convention
	Moving by Defuns
	Imenu
	Which Function Mode

	Indentation for Programs
	Basic Program Indentation Commands
	Indenting Several Lines
	Customizing Lisp Indentation
	Commands for C Indentation
	Customizing C Indentation

	Commands for Editing with Parentheses
	Expressions with Balanced Parentheses
	Moving in the Parenthesis Structure
	Matching Parentheses

	Manipulating Comments
	Comment Commands
	Multiple Lines of Comments
	Options Controlling Comments

	Documentation Lookup
	Info Documentation Lookup
	Man Page Lookup
	Emacs Lisp Documentation Lookup

	Hideshow minor mode
	Completion for Symbol Names
	Glasses minor mode
	Semantic
	Other Features Useful for Editing Programs
	C and Related Modes
	C Mode Motion Commands
	Electric C Characters
	Hungry Delete Feature in C
	Other Commands for C Mode

	Asm Mode

	Compiling and Testing Programs
	Running Compilations under Emacs
	Compilation Mode
	Subshells for Compilation
	Searching with Grep under Emacs
	Finding Syntax Errors On The Fly
	Running Debuggers Under Emacs
	Starting GUD
	Debugger Operation
	Commands of GUD
	GUD Customization
	GDB Graphical Interface
	GDB User Interface Layout
	Source Buffers
	Breakpoints Buffer
	Threads Buffer
	Stack Buffer
	Other GDB Buffers
	Watch Expressions
	Multithreaded Debugging

	Executing Lisp Expressions
	Libraries of Lisp Code for Emacs
	Evaluating Emacs Lisp Expressions
	Lisp Interaction Buffers
	Running an External Lisp

	Maintaining Large Programs
	Version Control
	Introduction to Version Control
	Understanding the problems it addresses
	Supported Version Control Systems
	Concepts of Version Control
	Merge-based vs lock-based Version Control
	Changeset-based vs File-based Version Control
	Decentralized vs Centralized Repositories
	Types of Log File

	Version Control and the Mode Line
	Basic Editing under Version Control
	Basic Version Control with Merging
	Basic Version Control with Locking
	Advanced Control in C-x v v

	Features of the Log Entry Buffer
	Registering a File for Version Control
	Examining And Comparing Old Revisions
	VC Change Log
	Undoing Version Control Actions
	VC Directory Mode
	The VC Directory Buffer
	VC Directory Commands

	Version Control Branches
	Switching between Branches
	Pulling Changes into a Branch
	Merging Branches
	Creating New Branches

	Change Logs
	Change Log Commands
	Format of ChangeLog

	Tags Tables
	Source File Tag Syntax
	Creating Tags Tables
	Etags Regexps
	Selecting a Tags Table
	Finding a Tag
	Searching and Replacing with Tags Tables
	Tags Table Inquiries

	Emacs Development Environment

	Abbrevs
	Abbrev Concepts
	Defining Abbrevs
	Controlling Abbrev Expansion
	Examining and Editing Abbrevs
	Saving Abbrevs
	Dynamic Abbrev Expansion
	Customizing Dynamic Abbreviation

	Dired, the Directory Editor
	Entering Dired
	Navigation in the Dired Buffer
	Deleting Files with Dired
	Flagging Many Files at Once
	Visiting Files in Dired
	Dired Marks vs. Flags
	Operating on Files
	Shell Commands in Dired
	Transforming File Names in Dired
	File Comparison with Dired
	Subdirectories in Dired
	Moving Over Subdirectories
	Hiding Subdirectories
	Updating the Dired Buffer
	Dired and find
	Editing the Dired Buffer
	Viewing Image Thumbnails in Dired
	Other Dired Features

	The Calendar and the Diary
	Movement in the Calendar
	Motion by Standard Lengths of Time
	Beginning or End of Week, Month or Year
	Specified Dates

	Scrolling in the Calendar
	Counting Days
	Miscellaneous Calendar Commands
	Writing Calendar Files
	Holidays
	Times of Sunrise and Sunset
	Phases of the Moon
	Conversion To and From Other Calendars
	Supported Calendar Systems
	Converting To Other Calendars
	Converting From Other Calendars
	Converting from the Mayan Calendar

	The Diary
	Displaying the Diary
	The Diary File
	Date Formats
	Commands to Add to the Diary
	Special Diary Entries

	Appointments
	Importing and Exporting Diary Entries
	Daylight Saving Time
	Summing Time Intervals

	Sending Mail
	The Format of the Mail Buffer
	Mail Header Fields
	Mail Aliases
	Mail Commands
	Mail Sending
	Mail Header Editing
	Citing Mail
	Mail Miscellany

	Mail Signature
	Mail Amusements
	Mail-Composition Methods

	Reading Mail with Rmail
	Basic Concepts of Rmail
	Scrolling Within a Message
	Moving Among Messages
	Deleting Messages
	Rmail Files and Inboxes
	Multiple Rmail Files
	Copying Messages Out to Files
	Labels
	Rmail Attributes
	Sending Replies
	Summaries
	Making Summaries
	Editing in Summaries

	Sorting the Rmail File
	Display of Messages
	Rmail and Coding Systems
	Editing Within a Message
	Digest Messages
	Reading Rot13 Messages
	movemail program
	Retrieving Mail from Remote Mailboxes
	Retrieving Mail from Local Mailboxes in Various Formats

	Miscellaneous Commands
	Gnus
	Gnus Buffers
	When Gnus Starts Up
	Using the Gnus Group Buffer
	Using the Gnus Summary Buffer

	Document Viewing
	DocView Navigation
	DocView Searching
	DocView Slicing
	DocView Conversion

	Running Shell Commands from Emacs
	Single Shell Commands
	Interactive Subshell
	Shell Mode
	Shell Prompts
	Shell Command History
	Shell History Ring
	Shell History Copying
	Shell History References

	Directory Tracking
	Shell Mode Options
	Emacs Terminal Emulator
	Term Mode
	Remote Host Shell
	Serial Terminal

	Using Emacs as a Server
	Invoking emacsclient
	emacsclient Options

	Printing Hard Copies
	PostScript Hardcopy
	Variables for PostScript Hardcopy
	Printing Package

	Sorting Text
	Editing Binary Files
	Saving Emacs Sessions
	Recursive Editing Levels
	Emulation
	Hyperlinking and Navigation Features
	Following URLs
	Activating URLs
	Finding Files and URLs at Point

	Other Amusements

	Emacs Lisp Packages
	The Package Menu Buffer
	Package Installation
	Package Files and Directory Layout

	Customization
	Easy Customization Interface
	Customization Groups
	Browsing and Searching for Settings
	Changing a Variable
	Saving Customizations
	Customizing Faces
	Customizing Specific Items
	Custom Themes
	Creating Custom Themes

	Variables
	Examining and Setting Variables
	Hooks
	Local Variables
	Local Variables in Files
	Specifying File Variables
	Safety of File Variables

	Per-Directory Local Variables

	Customizing Key Bindings
	Keymaps
	Prefix Keymaps
	Local Keymaps
	Minibuffer Keymaps
	Changing Key Bindings Interactively
	Rebinding Keys in Your Init File
	Modifier Keys
	Rebinding Function Keys
	Named ASCII Control Characters
	Rebinding Mouse Buttons
	Disabling Commands

	The Emacs Initialization File
	Init File Syntax
	Init File Examples
	Terminal-specific Initialization
	How Emacs Finds Your Init File
	Non-ASCII Characters in Init Files

	Dealing with Common Problems
	Quitting and Aborting
	Dealing with Emacs Trouble
	If DEL Fails to Delete
	Recursive Editing Levels
	Garbage on the Screen
	Garbage in the Text
	Running out of Memory
	Recovery After a Crash
	Emergency Escape

	Reporting Bugs
	Reading Existing Bug Reports and Known Problems
	When Is There a Bug
	Understanding Bug Reporting
	Checklist for Bug Reports
	Sending Patches for GNU Emacs

	Contributing to Emacs Development
	How To Get Help with GNU Emacs

	GNU GENERAL PUBLIC LICENSE
	GNU Free Documentation License
	Command Line Arguments for Emacs Invocation
	Action Arguments
	Initial Options
	Command Argument Example
	Environment Variables
	General Variables
	Miscellaneous Variables
	The MS-Windows System Registry

	Specifying the Display Name
	Font Specification Options
	Window Color Options
	Options for Window Size and Position
	Internal and External Borders
	Frame Titles
	Icons
	Other Display Options

	X Options and Resources
	X Resources
	Table of X Resources for Emacs
	GTK resources
	GTK Resource Basics
	GTK widget names
	GTK Widget Names in Emacs
	GTK styles

	Emacs 23 Antinews
	Emacs and Mac OS / GNUstep
	Basic Emacs usage under Mac OS and GNUstep
	Grabbing environment variables

	Mac / GNUstep Customization
	Font and Color Panels
	Customization options specific to Mac OS / GNUstep

	Windowing System Events under Mac OS / GNUstep
	GNUstep Support

	Emacs and Microsoft Windows/MS-DOS
	How to Start Emacs on MS-Windows
	Text Files and Binary Files
	File Names on MS-Windows
	Emulation of ls on MS-Windows
	HOME and Startup Directories on MS-Windows
	Keyboard Usage on MS-Windows
	Mouse Usage on MS-Windows
	Subprocesses on Windows 9X/ME and Windows NT/2K/XP
	Printing and MS-Windows
	Specifying Fonts on MS-Windows
	Miscellaneous Windows-specific features

	The GNU Manifesto
	What's GNU? Gnu's Not Unix!
	Why I Must Write GNU
	Why GNU Will Be Compatible with Unix
	How GNU Will Be Available
	Why Many Other Programmers Want to Help
	How You Can Contribute
	Why All Computer Users Will Benefit
	Some Easily Rebutted Objections to GNU's Goals

	Glossary
	Key (Character) Index
	Command and Function Index
	Variable Index
	Concept Index

