
Knowledge in Learning
AIMA - Chapter 19

R. Moeller
Hamburg University of Technology

Slides adapted from an AIMA presentation by Reijer Grimbergen
http://boole.cs.iastate.edu/book/1-Science/1-ComputerScience/2-Book/Machine%20learning/

Logical description of learning

• Examples are composed of descriptions and
classifications
 Object of inductive learning is to find a hypothesis that

explains the classification of the examples, given their
descriptions

• Entailment constraint

Hypothesis ∧ Descriptions ╞ Classifications

 With Descriptions the conjunction of all the example
descriptions and Classifications the conjunction of all the
example classifications

 Example: a decision tree that is consistent with all the
examples will satisfy the entailment constraint

 Note: Use Ockham’s razor to avoid Hypothesis =
Classifications

Using prior knowledge

Prior
knowledge

Knowledge-based
inductive learning

Observations

Hypothesis

Predictions

Cumulative or Incremental Development

• To use background knowledge, a method to obtain
background knowledge is needed

• This must be a learning process
• Use knowledge to learn more effectively
• Question: How to do this?
• Examples where use of background knowledge is

vital
 Caveman Zog and the lizard on a stick
 Generalizing from one Brazilian
 Density and conductance of copper can be generalized,

but not mass
 Inferring a general rule about antibiotic being effective for

a particular type of infections

Caveman Zog

Adding Background Knowledge

• Explanation-based learning (EBL)
• Relevance-based learning (RBL)
• Knowledge-based inductive learning

(KBIL)

• Use explanation of success to infer a general rule
• General rule follows logically from the background

knowledge

Hypothesis ∧ Descriptions ╞ Classifications
Background ╞ Hypothesis

• Does not learn anything factually new
 Converting first-principles theories into useful, special

purpose knowledge

Explanation-based Learning

• The prior knowledge concerns the relevance of a
set of features to the goal predicate

• Example: In a given country most people speak the
same language, but do not have the same name

Hypothesis ∧ Descriptions ╞ Classifications
Background ∧ Descriptions ∧ Classifications ╞
Hypothesis

• Deductive learning: Makes use of the observations,
but does not produce hypothesis beyond the
background knowledge and the observations

Relevance-based Learning

Knowledge-based Inductive Learning

• The background knowledge and the new
hypothesis combine to explain the examples

• Example
 Inferring disease D from the symptoms is not

enough to explain the prescription of medicine M
 A rule that M is effective against D is needed

Background ∧ Hypothesis ∧ Descriptions ╞ Classifications

Inductive Logic Programming

• Main field of study for KBIL algorithms
• Prior knowledge plays two key roles

 The effective hypothesis space is reduced to include only
those theories that are consistent with what is already
known

 Prior knowledge can be used to reduce the size of the
hypothesis explaining the observations
 Smaller hypotheses are easier to find

• ILP systems can formulate hypotheses in first-order
logic
 Can learn in environments not understood by simpler

systems

Explanation-based Learning

• Extracting general rules from individual
observations

• Example: differentiating and simplifying algebraic
expressions
 Differentiate X2 with respect to X to get 2X
 Logical reasoning system

Ask(Derivative(X2, X)=d, KB) with solution d = 2X
 Solving this for the first time using standard rules of

differentiation gives 1 × (2 × (X (2-1)))
 Takes a first-time program 136 proof steps with 99 dead

end branches
• Memoization

 Speed up by saving the results of computation
 Create a database of input/output pairs

Creating general rules

• Memoization in explanation-based learning
 Create general rules that cover an entire class of cases
 Example: extract the general rule

ArithmeticUnknown(u) ⇒ Derivative(u2, u) = 2u
• Once something is understood, it can be generalized and

reused in other circumstances
 “Civilization advances by extending the number of important

operations that we can do without thinking about them”
• Explaining why something is a good idea is much easier than

coming up with the idea in the first place
 Watch caveman Zog roast his lizard vs. thinking about putting

the lizard on a stick

Extracting rules from examples

• Basic idea behind EBL
 Construct an explanation of the observation using prior

knowledge
 Establish a definition of the class of cases for which the

same explanation can be used
• Example: simplifying 1 × (0 + X) using a knowledge

base with the following rules
 Rewrite(u, v) ∧ Simplify(v, w) ⇒ Simplify(u, w)
 Primitive(u) ⇒ Simplify(u, u)
 ArithmeticUnknown(u) ⇒ Primitive(u)
 Number(u) ⇒ Primitive(u)
 Rewrite(1 × u, u)
 Rewrite(0 + u, u)
 …

Proof tree for original problem

Simplify(1 × (0 + X), w)

Rewrite(1 × (0 + X), v) Simplify(0 + X, w)

Rewrite(0 + X, v’) Simplify(X, w)

Primitive(X)

ArithmeticUnkown(X)

Yes, {v / 0 + X}

Yes, {v’ / X} {w / X}

Yes, {}

Generalized proof tree

Simplify(x × (y + z), w)

Rewrite(x × (y + z), v) Simplify(y + z, w)

Rewrite(y + z, v’) Simplify(z, w)

Primitive(z)

ArithmeticUnkown(z)

Yes, {x / 1, v/ y + z}

Yes, {y / 0, v’ / z} {w / z}

Yes, {}

Generalizing proofs

• The variabilized proof proceeds using exactly the same rule
applications
 May lead to variable instantiation

• Take the leaves of the generalized proof tree to get the
general rule

Rewrite(1 × (0 + z), 0 + z) ∧ Rewrite(0 + z, z) ∧
ArithmeticUnknown(z) ⇒ Simplify(1 × (0 + z), z)

 The first two conditions are independent of z, so this becomes
 ArithmeticUnknown(z) ⇒ Simplify(1 × (0 + z), z)

• Recap
 Use background knowledge to construct a proof for the example
 In parallel, construct a generalized proof tree
 New rule is the conjunction of the leaves of the proof tree and

the variabilized goal
 Drop conditions that are true regardless of the variables in the

goal

Improving efficiency

• Pruning the proof tree to get more general
rules

Primitive(z) ⇒ Simplify(1 × (0 + z), z)
Simplify(y + z, w) ⇒ Simplify(1 × (y + z), w)

• Problem: Which rules to choose?
 Adding large numbers of rules to the knowledge

base slows down the reasoning process
(increases the branching factor of the search
space)

 To compensate, the derived rules must offer
significant speed increases

 Derived rules should be as general as possible to
apply to the largest possible set of cases

Improving efficiency

• Operationality of subgoals in the rule
 A subgoal must be “easy” to solve
 Primitive(z) is easy to solve, but Simplify(y + z, w) leads to an

arbitrary amount of inference
 Keep operational subgoals and prune the rest of the tree

• Trade-off between operationality and generality
 More specific subgoals are easier to solve but cover fewer cases
 How many steps are still called operational?
 Cost of a subgoal depends on the rules in the knowledge base

Maximizing the efficiency of an initial knowledge base
is a complex optimization problem

Improving efficiency

• Empirical analysis of efficiency
 Average-case complexity on a population of

problems that needs to be solved
• By generalizing from past example

problems, EBL makes the knowledge base
more efficient for the kind of problems that
it is reasonable to expect
 Works if the distribution of past problems is

roughly the same as for future problems
 Can lead to great improvement

 Swedish to English translator was made 1200 times
faster by using EBL

Relevance-based Learning

• Functional dependencies or determinations
 Background knowledge in Brazil example

 Therefore, from

it follows

• Special syntax

() () () ()lyLanguagelxLanguagenyyNationalitnxyNationalitlnyx ,,,,
,,,

!""#

() ()PortugueseFernandoLanguageBrazilFernandoyNationalit ,, !

() ()PortuguesexLanguageBrazilxyNationalitx ,, !"

() ()lxLanguagenxyNationalit ,, f

Determining the hypothesis space

• Determinations limit the hypothesis space
 No possible conclusions about all nationalities from a

single example
 Only consider the important features (i.e. not day of the

week, hair style of David Beckham)
• Determinations specify a sufficient basis vocabulary

from which to construct hypotheses
• Reduction of the hypothesis space makes it easier

to learn the target predicate
 For Boolean functions log(|H|) examples are needed in a

|H| size hypothesis space
 Without restrictions, this is O(2n) examples
 If the determination contains d predicates on the left, only

O(2d) examples are needed
 Reduction of size O(2n–d)

Learning relevance information

• Prior knowledge also needs to be learned
• Learning algorithm for determinations

 Find the simplest determination consistent with the
observations

 A determination says that if examples match P they
must also match Q

 A determination is consistent with a set of examples if
every pair that matches on the predicates on the left-hand
side also matches on the target predicate

QP f

Learning relevance information

• Minimal consistent determination

• Non-minimal consistent determination

0.054Lead2624S4
0.042Lead10012S3
0.052Lead2612S3
0.596Copper2624S2
0.573Copper10012S1
0.593Copper2612S1

ConductanceSizeMaterialTempMassSample

cenConductaeTemperaturMaterial f!

cenConductaeTemperaturSizeMass f!!

Learning relevance information

function Minimimal-Consistent-Det(E, A) returns a determination
inputs: E, a set of examples

 A, a set of attributes, of size n
for i ← 0, …, n do

for each subset Ai of A of size i do
if Consistent-Det?(Ai ,E) then return Ai

end
end

function Consistent-Det?(A, E) returns a truth-value
inputs: A, a set of attributes

 E, a set of examples
local variables: H, a hash table
for each example e in E do

if some example in H has the same value as e for the attributes A but a
different classification then return False

store the class of e in H, indexed by the values for attributes A of the
example e
end
return True

Complexity

• Time complexity depends on the size of the
minimal consistent determination
 In case of p attributes and a total of n attributes, the

algorithm has to search all subsets of A of size p
 There are O(np) of these, so the algorithm is exponential
 The general problem is NP-complete
 In most domains there is sufficient local structure to

make p small

Relevance-based Decision Tree Learning

function RBDTL(E, A, v) returns a decision tree
return DTL(E, Minimal-Consistent-Det(E,A), v)

Exploiting Knowledge

• RBDTL simultaneously learns and uses relevance
information to minimize its hypothesis space

• Declarative bias
 How can prior knowledge be used to identify the

appropriate hypothesis space to search for the correct
target definition?

 Unanswered questions
 How to handle noise?
 How to use other kinds of prior knowledge besides

determinations?
 How can the algorithms be generalized to cover any first-

order theory?

RBDTL vs. DTL

Inductive Logic Programming

• Combines inductive methods with the
power of first-order representations

• Offers a rigorous approach to the
general KBIL problem

• Offers complete algorithms for
inducing general, first-order theories
from examples

ILP: An example

• General knowledge-based induction problem
Background ∧ Hypothesis ∧ Descriptions ╞ Classifications

• Example: Learning family relations from examples
 Observations are an extended family tree

 Mother, Father and Married relations
 Male and Female properties

 Target predicates: Grandparent, BrotherInLaw, Ancestor

Example

George == Mum

Spencer == Kydd Elizabeth == Philip Margaret

Diana == Charles Anne == Mark Andrew == Sarah Edward

William Harry Peter Zara Beatrice Eugenie

Example

• Descriptions include facts like
 Father(Philip, Charles)
 Mother(Mum, Margaret)
 Married(Diana, Charles)
 Male(Philip)
 Female(Beatrice)

• Sentences in Qualifications depend on the target concept
 Grandparent(Mum, Charles)
 ¬Grandparent(Mum, Harry)

• Goal: find a set of sentences for Hypothesis such that the
entailment constraint is satisfied
 Without background knowledge this is for example

() () ()[]
() ()[]
() ()[]
() ()[]yzFatherzxFather

yzMotherzxFather

yzFatherzxMother

yzMotherzxMotheryxtGrandparen

z

z

z

z

,,

,,

,,

,,,

!"#

!"#

!"#

!"$

Why Attribute-based Learning Fails

• Decision-Tree-Learning will get nowhere
 To express Grandparent as an attribute, pairs of people

need to be objects
Grandparent(<Mum,Charles>)

 But then the example descriptions can not be represented
FirstElementIsMotherOfElizabeth(<Mum,Charles>)

 A large disjunction of specific cases without any hope of
generalization to new examples

Attribute-based learning algorithms are incapable
of learning relational predicates

Background knowledge

• A little bit of background knowledge
helps a lot
 Background knowledge contains

 Grandparent is now reduced to

• Constructive induction algorithm
 Create new predicates to facilitate the

expression of explanatory hypotheses
 Example: introduce a predicate Parent to simplify

the definitions of the target predicates

() () ()[]yxFatheryxMotheryxParent ,,, !"

() () ()[]yzParentzxParentyxtGrandparen z ,,, !"#

Top-down learning methods

• Top-down learning method
 Decision-tree learning: start from the

observations and work backwards
 Decision tree is gradually grown until it is

consistent with the observations
 Top-down learning: start from a general

rule and specialize it

FOIL

• Split positive and negative examples
 Positive: <George, Anne>, <Philip, Peter>, <Spencer, Harry>
 Negative: <George, Elizabeth>, <Harry, Zara>, <Charles,

Philip>
• Construct a set of Horn clauses with Grandfather(x,y) as

the head with the positive examples instances of the
Grandfather relationship
 Start with a clause with an empty body

⇒ Grandfather(x,y)
 All examples are now classified as positive, so specialize

1) Father(x,y) ⇒ Grandfather(x,y)
2) Parent(x,z) ⇒ Grandfather(x,y)
3) Father(x,z) ⇒ Grandfather(x,y)

 The first one incorrectly classifies the positive examples
 The second one is incorrect on a larger part of the negative

examples
 Prefer the third clause and specialize

Father(x,z) ∧ Parent(z,y) ⇒ Grandfather(x,y)

FOIL

function Foil(examples, target) returns a set of Horn clauses
inputs: examples, set of examples

target, a literal for the goal predicate
local variables: clauses, set of clauses, initially empty
while examples contains positive examples do

clause ← New-Clause(examples, target)
remove examples covered by clause from examples
add clause to clauses

return clauses

FOIL

function New-Clause(examples, target) returns a Horn clause
local variables:

clause, a clause with target as head and an empty body
l, a literal to be added to the clause
extended-examples, a set of examples with values for new
 variables

extended-examples ← examples
while extended-examples contains negative examples do

l ← Choose-Literal(New-Literals(clause), extended-examples)
append l to the body of clause
extended-examples ← set of examples created by applying
 Extend-Example to each example in extended-examples

return clause

FOIL

function Extend-Example(example, literal) returns
if example satisfies literal

then return the set of examples created
 by extending example with each
 possible constant value for each new
 variable in literal

else return the empty set

FOIL

• New-Literals
 Takes a clause and constructs all possible “useful”

literals
• Example: Father(x,z) ⇒ Grandfather(x,y)

 Add literals using predicates
 Negated or unnegated
 Use any existing predicate (including the goal)
 Arguments must be variables
 Each literal must include at least one variable from an

earlier literal or from the head of the clause
 Valid: Mother(z,u), Married(z,z), Grandfather(v,x)
 Invalid: Married(u.v)

 Equality and inequality literals
 E.g. z ≠ x, empty list

 Arithmetic comparisons
 E.g. x > y, threshold values

FOIL

• The way New-Literal changes the clauses leads to a
very large branching factor

• Improve performance by using type information
 E.g., Parent(x,n) where x is a person and n is a number

• Choose-Literal uses a heuristic similar to
information gain

• Ockham’s razor to eliminate hypotheses
 If the clause becomes longer than the total length of the

positive examples that the clause explains, this clause is
not a valid hypothesis

• Most impressive demonstration
 Learn the correct definition of list-processing functions in

Prolog from a small set of examples, using previously
learned functions as background knowledge

Inverse Resolution

• Inverse resolution
 Classifications follows from

Background ∧ Hypothesis ∧ Descriptions
 This can be proven by resolution
 Run the proof backwards to find

Hypothesis
 Problem: How to run the proof

backwards?

Generating Inverse Proofs

• Ordinary resolution
 Take two clauses C1 and C2 and resolve

them to produce the resolvent C
• Inverse resolution

 Take resolvent C and produce two clauses
C1 and C2

 Take C and C1 and produce C2

Generating Inverse Proofs

True ⇒ Grandparent(George, Anne)

True ⇒False

Grandparent(George, Anne) ⇒ False

True ⇒ Parent(Elizabeth, Anne)Parent(Elizabeth, y) ⇒
Grandparent(George, y)

[y/Anne]

Generating Inverse Proofs

• Inverse resolution is a search
 For any C and C1 there can be several or even an infinite

number of clauses C2
 Instead of Parent(Elizabeth,y) ⇒ Grandparent(George,y) there

were numerous alternatives
Parent(Elizabeth,Anne) ⇒ Grandparent(George,Anne)
Parent(z,Anne) ⇒ Grandparent(George,Anne)
Parent(z,y) ⇒ Grandparent(George,y)

 The clauses C1 that participate in each step can be chosen
from Background, Descriptions, Classifications or from
hypothesized clauses already generated

• ILP needs restrictions to make the search manageable
 Eliminate function symbols
 Generate only the most specific hypotheses
 Use Horn clauses
 All hypothesized clauses must be consistent with each other
 Each hypothesized clause must agree with the observations

New Predicates and New Knowledge

• An inverse resolution procedure is a
complete algorithm for learning first-order
theories
 If some unknown Hypothesis generates a set of

examples, then an inverse resolution procedure
can generate Hypothesis from the examples

• Can inverse resolution infer the law of
gravity from examples of falling bodies?
 Yes, given suitable background mathematics

• Monkey and typewriter problem: How to
overcome the large branching factor and the
lack of structure in the search space?

New Predicates and New Knowledge

• Inverse resolution is capable of
generating new predicates
 Resolution of C1 and C2 into C eliminates

a literal that C1 and C2 share
 This literal might contain a predicate that

does not appear in C
 When working backwards, one possibility

is to generate a new predicate from which
to construct the missing literal

New Predicates and New Knowledge

• P can be used in later inverse resolution steps
 Example: Mother(x,y) ⇒ P(x,y) or Father(x,y) ⇒ P(x,y) leading to the

“Parent” relationship
• Inventing new predicates is important to reduce the size of the

definition of the goal predicate
 Some of the deepest revolutions in science come from the invention of

new predicates (e.g. Galileo’s invention of acceleration)

Father(George,y) ⇒ Ancestor(George,y)

Father(George,y) ⇒ P(x,y) P(George,y) ⇒ Ancestor(George,y)

[x/George]

Applications

• ILP systems have outperformed
knowledge-free methods in a number
of domains
 Molecular biology: the GOLEM system has

been able to generate high-quality
predictions of protein structures and the
therapeutic efficacy of various drugs

 GOLEM is a completely general-purpose
program that is able to make use of
background knowledge about any domain

Knowledge in Learning: Summary

• Cumulative learning
 Improve learning ability as new knowledge is acquired

• Prior knowledge helps to eliminate hypothesis and fills in
explanations, leading to shorter hypotheses

• Entailment constraints
 Logical definition of different learning types

• Explanation-based learning (EBL)
 Explain the examples and generalize the explanation

• Relevance-base learning (RBL)
 Use prior knowledge in the form of determinations to identify the

relevant attributes
• Knowledge-based inductive learning (KBIL)

 Finds inductive hypotheses that explain sets of observations
• Inductive logic programming (ILP)

 Perform KBIL using knowledge expressed in first-order logic
 Generates new predicates with which concise new theories can be

expressed

