
Knowledge in Learning
AIMA - Chapter 19

R. Moeller
Hamburg University of Technology

Slides adapted from an AIMA presentation by Reijer Grimbergen
http://boole.cs.iastate.edu/book/1-Science/1-ComputerScience/2-Book/Machine%20learning/

Logical description of learning

• Examples are composed of descriptions and
classifications
 Object of inductive learning is to find a hypothesis that

explains the classification of the examples, given their
descriptions

• Entailment constraint

Hypothesis ∧ Descriptions ╞ Classifications

 With Descriptions the conjunction of all the example
descriptions and Classifications the conjunction of all the
example classifications

 Example: a decision tree that is consistent with all the
examples will satisfy the entailment constraint

 Note: Use Ockham’s razor to avoid Hypothesis =
Classifications

Using prior knowledge

Prior
knowledge

Knowledge-based
inductive learning

Observations

Hypothesis

Predictions

Cumulative or Incremental Development

• To use background knowledge, a method to obtain
background knowledge is needed

• This must be a learning process
• Use knowledge to learn more effectively
• Question: How to do this?
• Examples where use of background knowledge is

vital
 Caveman Zog and the lizard on a stick
 Generalizing from one Brazilian
 Density and conductance of copper can be generalized,

but not mass
 Inferring a general rule about antibiotic being effective for

a particular type of infections

Caveman Zog

Adding Background Knowledge

• Explanation-based learning (EBL)
• Relevance-based learning (RBL)
• Knowledge-based inductive learning

(KBIL)

• Use explanation of success to infer a general rule
• General rule follows logically from the background

knowledge

Hypothesis ∧ Descriptions ╞ Classifications
Background ╞ Hypothesis

• Does not learn anything factually new
 Converting first-principles theories into useful, special

purpose knowledge

Explanation-based Learning

• The prior knowledge concerns the relevance of a
set of features to the goal predicate

• Example: In a given country most people speak the
same language, but do not have the same name

Hypothesis ∧ Descriptions ╞ Classifications
Background ∧ Descriptions ∧ Classifications ╞
Hypothesis

• Deductive learning: Makes use of the observations,
but does not produce hypothesis beyond the
background knowledge and the observations

Relevance-based Learning

Knowledge-based Inductive Learning

• The background knowledge and the new
hypothesis combine to explain the examples

• Example
 Inferring disease D from the symptoms is not

enough to explain the prescription of medicine M
 A rule that M is effective against D is needed

Background ∧ Hypothesis ∧ Descriptions ╞ Classifications

Inductive Logic Programming

• Main field of study for KBIL algorithms
• Prior knowledge plays two key roles

 The effective hypothesis space is reduced to include only
those theories that are consistent with what is already
known

 Prior knowledge can be used to reduce the size of the
hypothesis explaining the observations
 Smaller hypotheses are easier to find

• ILP systems can formulate hypotheses in first-order
logic
 Can learn in environments not understood by simpler

systems

Explanation-based Learning

• Extracting general rules from individual
observations

• Example: differentiating and simplifying algebraic
expressions
 Differentiate X2 with respect to X to get 2X
 Logical reasoning system

Ask(Derivative(X2, X)=d, KB) with solution d = 2X
 Solving this for the first time using standard rules of

differentiation gives 1 × (2 × (X (2-1)))
 Takes a first-time program 136 proof steps with 99 dead

end branches
• Memoization

 Speed up by saving the results of computation
 Create a database of input/output pairs

Creating general rules

• Memoization in explanation-based learning
 Create general rules that cover an entire class of cases
 Example: extract the general rule

ArithmeticUnknown(u) ⇒ Derivative(u2, u) = 2u
• Once something is understood, it can be generalized and

reused in other circumstances
 “Civilization advances by extending the number of important

operations that we can do without thinking about them”
• Explaining why something is a good idea is much easier than

coming up with the idea in the first place
 Watch caveman Zog roast his lizard vs. thinking about putting

the lizard on a stick

Extracting rules from examples

• Basic idea behind EBL
 Construct an explanation of the observation using prior

knowledge
 Establish a definition of the class of cases for which the

same explanation can be used
• Example: simplifying 1 × (0 + X) using a knowledge

base with the following rules
 Rewrite(u, v) ∧ Simplify(v, w) ⇒ Simplify(u, w)
 Primitive(u) ⇒ Simplify(u, u)
 ArithmeticUnknown(u) ⇒ Primitive(u)
 Number(u) ⇒ Primitive(u)
 Rewrite(1 × u, u)
 Rewrite(0 + u, u)
 …

Proof tree for original problem

Simplify(1 × (0 + X), w)

Rewrite(1 × (0 + X), v) Simplify(0 + X, w)

Rewrite(0 + X, v’) Simplify(X, w)

Primitive(X)

ArithmeticUnkown(X)

Yes, {v / 0 + X}

Yes, {v’ / X} {w / X}

Yes, {}

Generalized proof tree

Simplify(x × (y + z), w)

Rewrite(x × (y + z), v) Simplify(y + z, w)

Rewrite(y + z, v’) Simplify(z, w)

Primitive(z)

ArithmeticUnkown(z)

Yes, {x / 1, v/ y + z}

Yes, {y / 0, v’ / z} {w / z}

Yes, {}

Generalizing proofs

• The variabilized proof proceeds using exactly the same rule
applications
 May lead to variable instantiation

• Take the leaves of the generalized proof tree to get the
general rule

Rewrite(1 × (0 + z), 0 + z) ∧ Rewrite(0 + z, z) ∧
ArithmeticUnknown(z) ⇒ Simplify(1 × (0 + z), z)

 The first two conditions are independent of z, so this becomes
 ArithmeticUnknown(z) ⇒ Simplify(1 × (0 + z), z)

• Recap
 Use background knowledge to construct a proof for the example
 In parallel, construct a generalized proof tree
 New rule is the conjunction of the leaves of the proof tree and

the variabilized goal
 Drop conditions that are true regardless of the variables in the

goal

Improving efficiency

• Pruning the proof tree to get more general
rules

Primitive(z) ⇒ Simplify(1 × (0 + z), z)
Simplify(y + z, w) ⇒ Simplify(1 × (y + z), w)

• Problem: Which rules to choose?
 Adding large numbers of rules to the knowledge

base slows down the reasoning process
(increases the branching factor of the search
space)

 To compensate, the derived rules must offer
significant speed increases

 Derived rules should be as general as possible to
apply to the largest possible set of cases

Improving efficiency

• Operationality of subgoals in the rule
 A subgoal must be “easy” to solve
 Primitive(z) is easy to solve, but Simplify(y + z, w) leads to an

arbitrary amount of inference
 Keep operational subgoals and prune the rest of the tree

• Trade-off between operationality and generality
 More specific subgoals are easier to solve but cover fewer cases
 How many steps are still called operational?
 Cost of a subgoal depends on the rules in the knowledge base

Maximizing the efficiency of an initial knowledge base
is a complex optimization problem

Improving efficiency

• Empirical analysis of efficiency
 Average-case complexity on a population of

problems that needs to be solved
• By generalizing from past example

problems, EBL makes the knowledge base
more efficient for the kind of problems that
it is reasonable to expect
 Works if the distribution of past problems is

roughly the same as for future problems
 Can lead to great improvement

 Swedish to English translator was made 1200 times
faster by using EBL

Relevance-based Learning

• Functional dependencies or determinations
 Background knowledge in Brazil example

 Therefore, from

it follows

• Special syntax

() () () ()lyLanguagelxLanguagenyyNationalitnxyNationalitlnyx ,,,,
,,,

!""#

() ()PortugueseFernandoLanguageBrazilFernandoyNationalit ,, !

() ()PortuguesexLanguageBrazilxyNationalitx ,, !"

() ()lxLanguagenxyNationalit ,, f

Determining the hypothesis space

• Determinations limit the hypothesis space
 No possible conclusions about all nationalities from a

single example
 Only consider the important features (i.e. not day of the

week, hair style of David Beckham)
• Determinations specify a sufficient basis vocabulary

from which to construct hypotheses
• Reduction of the hypothesis space makes it easier

to learn the target predicate
 For Boolean functions log(|H|) examples are needed in a

|H| size hypothesis space
 Without restrictions, this is O(2n) examples
 If the determination contains d predicates on the left, only

O(2d) examples are needed
 Reduction of size O(2n–d)

Learning relevance information

• Prior knowledge also needs to be learned
• Learning algorithm for determinations

 Find the simplest determination consistent with the
observations

 A determination says that if examples match P they
must also match Q

 A determination is consistent with a set of examples if
every pair that matches on the predicates on the left-hand
side also matches on the target predicate

QP f

Learning relevance information

• Minimal consistent determination

• Non-minimal consistent determination

0.054Lead2624S4
0.042Lead10012S3
0.052Lead2612S3
0.596Copper2624S2
0.573Copper10012S1
0.593Copper2612S1

ConductanceSizeMaterialTempMassSample

cenConductaeTemperaturMaterial f!

cenConductaeTemperaturSizeMass f!!

Learning relevance information

function Minimimal-Consistent-Det(E, A) returns a determination
inputs: E, a set of examples

 A, a set of attributes, of size n
for i ← 0, …, n do

for each subset Ai of A of size i do
if Consistent-Det?(Ai ,E) then return Ai

end
end

function Consistent-Det?(A, E) returns a truth-value
inputs: A, a set of attributes

 E, a set of examples
local variables: H, a hash table
for each example e in E do

if some example in H has the same value as e for the attributes A but a
different classification then return False

store the class of e in H, indexed by the values for attributes A of the
example e
end
return True

Complexity

• Time complexity depends on the size of the
minimal consistent determination
 In case of p attributes and a total of n attributes, the

algorithm has to search all subsets of A of size p
 There are O(np) of these, so the algorithm is exponential
 The general problem is NP-complete
 In most domains there is sufficient local structure to

make p small

Relevance-based Decision Tree Learning

function RBDTL(E, A, v) returns a decision tree
return DTL(E, Minimal-Consistent-Det(E,A), v)

Exploiting Knowledge

• RBDTL simultaneously learns and uses relevance
information to minimize its hypothesis space

• Declarative bias
 How can prior knowledge be used to identify the

appropriate hypothesis space to search for the correct
target definition?

 Unanswered questions
 How to handle noise?
 How to use other kinds of prior knowledge besides

determinations?
 How can the algorithms be generalized to cover any first-

order theory?

RBDTL vs. DTL

Inductive Logic Programming

• Combines inductive methods with the
power of first-order representations

• Offers a rigorous approach to the
general KBIL problem

• Offers complete algorithms for
inducing general, first-order theories
from examples

ILP: An example

• General knowledge-based induction problem
Background ∧ Hypothesis ∧ Descriptions ╞ Classifications

• Example: Learning family relations from examples
 Observations are an extended family tree

 Mother, Father and Married relations
 Male and Female properties

 Target predicates: Grandparent, BrotherInLaw, Ancestor

Example

George == Mum

Spencer == Kydd Elizabeth == Philip Margaret

Diana == Charles Anne == Mark Andrew == Sarah Edward

William Harry Peter Zara Beatrice Eugenie

Example

• Descriptions include facts like
 Father(Philip, Charles)
 Mother(Mum, Margaret)
 Married(Diana, Charles)
 Male(Philip)
 Female(Beatrice)

• Sentences in Qualifications depend on the target concept
 Grandparent(Mum, Charles)
 ¬Grandparent(Mum, Harry)

• Goal: find a set of sentences for Hypothesis such that the
entailment constraint is satisfied
 Without background knowledge this is for example

() () ()[]
() ()[]
() ()[]
() ()[]yzFatherzxFather

yzMotherzxFather

yzFatherzxMother

yzMotherzxMotheryxtGrandparen

z

z

z

z

,,

,,

,,

,,,

!"#

!"#

!"#

!"$

Why Attribute-based Learning Fails

• Decision-Tree-Learning will get nowhere
 To express Grandparent as an attribute, pairs of people

need to be objects
Grandparent(<Mum,Charles>)

 But then the example descriptions can not be represented
FirstElementIsMotherOfElizabeth(<Mum,Charles>)

 A large disjunction of specific cases without any hope of
generalization to new examples

Attribute-based learning algorithms are incapable
of learning relational predicates

Background knowledge

• A little bit of background knowledge
helps a lot
 Background knowledge contains

 Grandparent is now reduced to

• Constructive induction algorithm
 Create new predicates to facilitate the

expression of explanatory hypotheses
 Example: introduce a predicate Parent to simplify

the definitions of the target predicates

() () ()[]yxFatheryxMotheryxParent ,,, !"

() () ()[]yzParentzxParentyxtGrandparen z ,,, !"#

Top-down learning methods

• Top-down learning method
 Decision-tree learning: start from the

observations and work backwards
 Decision tree is gradually grown until it is

consistent with the observations
 Top-down learning: start from a general

rule and specialize it

FOIL

• Split positive and negative examples
 Positive: <George, Anne>, <Philip, Peter>, <Spencer, Harry>
 Negative: <George, Elizabeth>, <Harry, Zara>, <Charles,

Philip>
• Construct a set of Horn clauses with Grandfather(x,y) as

the head with the positive examples instances of the
Grandfather relationship
 Start with a clause with an empty body

⇒ Grandfather(x,y)
 All examples are now classified as positive, so specialize

1) Father(x,y) ⇒ Grandfather(x,y)
2) Parent(x,z) ⇒ Grandfather(x,y)
3) Father(x,z) ⇒ Grandfather(x,y)

 The first one incorrectly classifies the positive examples
 The second one is incorrect on a larger part of the negative

examples
 Prefer the third clause and specialize

Father(x,z) ∧ Parent(z,y) ⇒ Grandfather(x,y)

FOIL

function Foil(examples, target) returns a set of Horn clauses
inputs: examples, set of examples

target, a literal for the goal predicate
local variables: clauses, set of clauses, initially empty
while examples contains positive examples do

clause ← New-Clause(examples, target)
remove examples covered by clause from examples
add clause to clauses

return clauses

FOIL

function New-Clause(examples, target) returns a Horn clause
local variables:

clause, a clause with target as head and an empty body
l, a literal to be added to the clause
extended-examples, a set of examples with values for new
 variables

extended-examples ← examples
while extended-examples contains negative examples do

l ← Choose-Literal(New-Literals(clause), extended-examples)
append l to the body of clause
extended-examples ← set of examples created by applying
 Extend-Example to each example in extended-examples

return clause

FOIL

function Extend-Example(example, literal) returns
if example satisfies literal

then return the set of examples created
 by extending example with each
 possible constant value for each new
 variable in literal

else return the empty set

FOIL

• New-Literals
 Takes a clause and constructs all possible “useful”

literals
• Example: Father(x,z) ⇒ Grandfather(x,y)

 Add literals using predicates
 Negated or unnegated
 Use any existing predicate (including the goal)
 Arguments must be variables
 Each literal must include at least one variable from an

earlier literal or from the head of the clause
 Valid: Mother(z,u), Married(z,z), Grandfather(v,x)
 Invalid: Married(u.v)

 Equality and inequality literals
 E.g. z ≠ x, empty list

 Arithmetic comparisons
 E.g. x > y, threshold values

FOIL

• The way New-Literal changes the clauses leads to a
very large branching factor

• Improve performance by using type information
 E.g., Parent(x,n) where x is a person and n is a number

• Choose-Literal uses a heuristic similar to
information gain

• Ockham’s razor to eliminate hypotheses
 If the clause becomes longer than the total length of the

positive examples that the clause explains, this clause is
not a valid hypothesis

• Most impressive demonstration
 Learn the correct definition of list-processing functions in

Prolog from a small set of examples, using previously
learned functions as background knowledge

Inverse Resolution

• Inverse resolution
 Classifications follows from

Background ∧ Hypothesis ∧ Descriptions
 This can be proven by resolution
 Run the proof backwards to find

Hypothesis
 Problem: How to run the proof

backwards?

Generating Inverse Proofs

• Ordinary resolution
 Take two clauses C1 and C2 and resolve

them to produce the resolvent C
• Inverse resolution

 Take resolvent C and produce two clauses
C1 and C2

 Take C and C1 and produce C2

Generating Inverse Proofs

True ⇒ Grandparent(George, Anne)

True ⇒False

Grandparent(George, Anne) ⇒ False

True ⇒ Parent(Elizabeth, Anne)Parent(Elizabeth, y) ⇒
Grandparent(George, y)

[y/Anne]

Generating Inverse Proofs

• Inverse resolution is a search
 For any C and C1 there can be several or even an infinite

number of clauses C2
 Instead of Parent(Elizabeth,y) ⇒ Grandparent(George,y) there

were numerous alternatives
Parent(Elizabeth,Anne) ⇒ Grandparent(George,Anne)
Parent(z,Anne) ⇒ Grandparent(George,Anne)
Parent(z,y) ⇒ Grandparent(George,y)

 The clauses C1 that participate in each step can be chosen
from Background, Descriptions, Classifications or from
hypothesized clauses already generated

• ILP needs restrictions to make the search manageable
 Eliminate function symbols
 Generate only the most specific hypotheses
 Use Horn clauses
 All hypothesized clauses must be consistent with each other
 Each hypothesized clause must agree with the observations

New Predicates and New Knowledge

• An inverse resolution procedure is a
complete algorithm for learning first-order
theories
 If some unknown Hypothesis generates a set of

examples, then an inverse resolution procedure
can generate Hypothesis from the examples

• Can inverse resolution infer the law of
gravity from examples of falling bodies?
 Yes, given suitable background mathematics

• Monkey and typewriter problem: How to
overcome the large branching factor and the
lack of structure in the search space?

New Predicates and New Knowledge

• Inverse resolution is capable of
generating new predicates
 Resolution of C1 and C2 into C eliminates

a literal that C1 and C2 share
 This literal might contain a predicate that

does not appear in C
 When working backwards, one possibility

is to generate a new predicate from which
to construct the missing literal

New Predicates and New Knowledge

• P can be used in later inverse resolution steps
 Example: Mother(x,y) ⇒ P(x,y) or Father(x,y) ⇒ P(x,y) leading to the

“Parent” relationship
• Inventing new predicates is important to reduce the size of the

definition of the goal predicate
 Some of the deepest revolutions in science come from the invention of

new predicates (e.g. Galileo’s invention of acceleration)

Father(George,y) ⇒ Ancestor(George,y)

Father(George,y) ⇒ P(x,y) P(George,y) ⇒ Ancestor(George,y)

[x/George]

Applications

• ILP systems have outperformed
knowledge-free methods in a number
of domains
 Molecular biology: the GOLEM system has

been able to generate high-quality
predictions of protein structures and the
therapeutic efficacy of various drugs

 GOLEM is a completely general-purpose
program that is able to make use of
background knowledge about any domain

Knowledge in Learning: Summary

• Cumulative learning
 Improve learning ability as new knowledge is acquired

• Prior knowledge helps to eliminate hypothesis and fills in
explanations, leading to shorter hypotheses

• Entailment constraints
 Logical definition of different learning types

• Explanation-based learning (EBL)
 Explain the examples and generalize the explanation

• Relevance-base learning (RBL)
 Use prior knowledge in the form of determinations to identify the

relevant attributes
• Knowledge-based inductive learning (KBIL)

 Finds inductive hypotheses that explain sets of observations
• Inductive logic programming (ILP)

 Perform KBIL using knowledge expressed in first-order logic
 Generates new predicates with which concise new theories can be

expressed

