The Fourier Integral Theorem 

The mathematically more precise statement of this theorem is as follows: 

Theorem 23.1 (Fourier's Integral Theorem) 


Given:(i)
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is function piecewise continuous on every bounded closed interval of the -axis. 

(ii)

At each point [image: image2.png]
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has both a left derivative [image: image4.png]


and a right derivative [image: image5.png]


, 

(iii)
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is absolutely integrable along the [image: image8.png]


-axis: 
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Conclusion:
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Comments: 

1. This result can be restated as a Fourier transform pair, 
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is continuous. 

3. By interchanging integration order and letting [image: image14.png]K=1/a



one has 
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4. This equation holds for all continuous functions [image: image16.png]f € L} (~o0,00)
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is another delta convergent sequence: 
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5. It is of course understood that one first do the integration over [image: image19.png]


before taking to the indicated limit. 

6. Either one of the two equations, Eq.(2.42) or (2.43), is a generalized completeness relation for the set of ``wave train'' functions, 
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However, these functions are not normalizable, i.e., they [image: image21.png]&L



. Instead, as Eq.(2.43) implies, they are said to be ``[image: image22.png]


 -function normalized''. 

Proof of the Fourier integral theorem: 

The proof of the Fourier integral theorem presupposes that the Fourier amplitude [image: image23.png]


is well-defined for each [image: image24.png]


. That this is indeed the case follows from the finiteness of [image: image25.png]1£(k)]



: 
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The last inequality is an expression of the fact that [image: image27.png]f € L} (~o0,00)
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is well-defined indeed. 

The proof of the Fourier integral theorem runs parallel to the Fourier series theorem on page 

. We shall show that 
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where 
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The evaluation of the integrals is done by shifting the integration variable. For the second integral one obtains 
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Using the fact that 
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and the fact that 
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is piecewise continuous everywhere, including at [image: image41.png]


, where 
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is the right hand derivative of [image: image43.png]


at [image: image44.png]


, one finds that 
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with the help the Riemann-Lebesgue lemma. 

A similar analysis yields 
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The sum of the last two equations yields 
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This validates Fourier's integral theorem.

