
NCSSM Statistics Leadership Institute Notes  Experimental Design 

Completely Randomized Design 
 
 Suppose we have 4 different diets which we want to compare.  The diets are 
labeled Diet A, Diet B, Diet C, and Diet D.  We are interested in how the diets affect the 
coagulation rates of rabbits.  The coagulation rate is the time in seconds that it takes for a 
cut to stop bleeding.   We have 16 rabbits available for the experiment, so we will use 4 
on each diet.  How should we use randomization to assign the rabbits to the four 
treatment groups?  The 16 rabbits arrive and are placed in a large compound until you are 
ready to begin the experiment, at which time they will be transferred to cages. 
 
Possible Assignment Plans 
 
Method 1:  We assume that rabbits will be caught "at random".  Catch four rabbits and 
assign them to Diet A.  Catch the next four rabbits and assign them to Diet B.  Continue 
with Diets C and D.  Since the rabbits were "caught at random", this would produce a 
completely randomized design.    Analyze the results as a completely randomized design. 
 
 Method 1 is faulty.  The first rabbits caught could be the slowest and weakest 
rabbits, those least able to escape capture.  This would bias the results.  If the 
experimental results came out to the disadvantage of Diet A, there would be no way to 
determine if the results were a consequence of Diet A or the fact that the weakest rabbits 
were placed on that diet by our "randomization process".    
 
Method 2:  Catch all the rabbits and label them 1-16.  Select four numbers 1-16 at random 
(without replacement) and put them in a cage to receive Diet A.  Then select another four 
numbers at random and put them in a cage to receive Diet B.  Continue until you have 
four cages with four rabbits each.  Each cage receives a different diet, and the experiment 
is analyzed as a completely randomized experiment. 
 
 Method 2 is a completely randomized design, but it has a serious flaw.  The 
experiment lacks replication.  There are 16 rabbits, but the rabbits in each cage are not 
independent.  If one rabbit eats a lot, the others in that cage have less to eat.  The 
experimental unit is the smallest unit of experimental matter to which the treatment is 
applied at random.  In this case, the cages are the experimental units.  For a completely 
randomized design, each rabbit must live in its own cage. 
 
Method 3:  Have a bowl with the letters A, B, C, and D printed on separate slips of paper.  
Catch the first rabbit, pick a slip at random from the bowl and assign the rabbit to the diet 
letter on the slip.  Do not replace the slip.  Catch the second rabbit and select another slip 
from the remaining three slips.  Assign that diet to the second rabbit.  Continue until the 
first four rabbits are assigned one of the four diets.  In this way, all of the slow rabbits 
have different diets.  Replace the slips and repeat the procedure until all 16 rabbits are 
assigned to a diet.  Analyze the results as a completely randomized design.   
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 Method 3 is not a completely randomized design.  Since you have selected the 
rabbits in blocks of 4, one assigned to each of the diets A-D, the analysis should be for a 
randomized block design.  The treatment is Diet but you have blocked on "catchability". 
 
Method 4:  Catch all the rabbits and label them 1-16.  Put 16 slips of paper in a bowl, four 
each with the letters A, B, C, and D.  Put another 16 slips of paper numbered 1-16 in a 
second bowl.   Pick a slip from each bowl.  The rabbit with the selected number is given 
the selected diet.  To make it easy to remember which rabbit gets which diet, the cages 
are arranged  as shown below. 
 

 
 
 Method 4 has some deficiencies.  The assignment of rabbits to treatment is a 
completely randomized design.  However, the arrangement of the cages for convenience 
creates a bias in the results.  The heat in the room rises, so the rabbits receiving Diet A 
will be living in a very different environment than those receiving Diet D.  Any observed 
difference cannot be attributed to diet, but could just as easily be a result of cage 
placement.    
 Cage placement is not a part of the treatment, but must be taken into account.  In a 
completely randomized design, every rabbit must have the same chance of receiving any 
diet at any location in the matrix of cages.   
 
A Completely Randomized Design 
 
 Label the cages 1-16.  In a bowl put 16 strips of paper each with one of the 
integers 1-16 written on it.  In a second bowl put 16 strips of paper, four each labeled A, 
B, C, and D.  Catch a rabbit.  Select a number and a letter from each bowl.  Place the 
rabbit in the location indicated by the number and feed it the diet assigned by the letter.  
Repeat without replacement until all rabbits have been assigned a diet and cage.   
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If, for example, the first number selected was 7 and the first letter B, then the first rabbit 
would be placed in location 7 and fed diet B.  An example of the completed cage 
selection is shown below. 

 
  

Notice that the completely randomized design does not account for the difference in 
heights of the cages.   It is just as the name suggests, a completely random assignment.  In 
this case, we see that the rabbits with Diet A are primarily on the bottom and those with 
Diet D are on the top.  A completely randomized design assumes that these locations will 
not produce a systematic difference in response (coagulation time).  If we do believe the 
location is an important part of the process, we should use a randomized block design.  
For this example, will continue to use a completely randomized design.   
 
One-Way ANOVA 
 
 To analyze the results of the experiment, we use a one-way analysis of variance.  
The measured coagulation times for each diet are given below: 
 

 Diet A Diet B Diet C Diet D 
 62 63 68 56 
 60 67 66 62 
 63 71 71 60 
 59 64 67 61 
     
Mean 61 66.25 68 59.75 

 
The null hypothesis is  
   H A B C D0:µ µ µ µ= = =  (all treatment means the same)  
and the alternative is  
   Ha:  at least one mean different. 
 
The ANOVA Table is given below: 
 
Response: Coagulation Time 
Analysis of Variance 
Source  DF Sum of Squares Mean Square F Ratio 
Model  3 191.50000  63.8333 9.1737 
Error  12 83.50000  6.9583  Prob>F 
Total  15 275.00000    0.0020 
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From the computer output, we see that there is a statistically significant difference in 
coagulation time ( = 0.0020)p .  Just what is being measured by these sums of squares 
and mean squares?  In this section we will consider the theory of ANOVA. 
 

The Theory of ANOVA 
 
 There is a lot of technical notation in Analysis of Variance.  The notation we will 
use is consistent with the notation of Box, Hunter, and Hunter's classic text, Statistics for 
Experimenters.   
 
Some Notation 

 
k =  number of treatments 
 In our example, there are 4 treatment classes, Diet A, Diet B, Diet C, and Diet D. 
 

tn =  number of observations for treatment t . 

 Each of the treatments in this experiment have four observations,  
n n n n1 2 3 4 4= = = = .  
 
Yt i =  ith observation in the tth treatment class  

 In our example, Y1 1 62, ,=  Y1 3 63, ,=  Y3 1 68, ,=  and Y4 4 61, = .   

 
N =  total number of observations 

N nt
t

=
=
∑

1

4

.   In this case, N = 16. 

 

t t i
i

Y Y= =∑g sum of observations in the ith treatment class 

In our example, 
4

1 1,
1

62 60 63 59 244j
j

Y Y
=

= = + + + =∑g , 2 265,Y =g  3 272,Y =g  and 

4 239Y =g . 
 

tY =g mean of the observations in the tth treatment class 

 Here, 1 2 361, 66.25, 68,Y Y Y= = =g g g and 4 59.75Y =g . 

 
Y =gg total of all observations (overall total) 

 In our example, 
4 4

,
1 1

62 60 63 62 60 61 1020i j
t i

Y Y
= =

= = + + + + + + =∑∑gg L  

Y =gg overall mean 
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Y

Y
N

= gg
gg  where N nt

t

= ∑ .   Here, we have
1020

63.75
16

Y
N

= =gg . 

 
The ANOVA Model:   
 

t i t t iY µ ε= +  or ( )t i t t i t tY µ τ ε µ µ τ= + + = +  

 
Parameter Estimate Values in Example 

µ  
t i

t i

t
t

Y
Y

n
=

∑∑
∑gg  

1020
63.75

16
y
N

= =gg  

tµ  
t i

i
t

t

Y
Y

n
=

∑
g  

1 61y =g    2 66.25y =g  

 3 68y =g    4 59.75y =g . 

tτ  tY Y−g  $ .τ 1 2 75= −    $ .τ 2 2 5=  
$ .τ 3 4 25=    $ .τ 4 4 0= −  

t iε  
t i tY Y− g  $

,ε1 1 1=      $ .,ε 2 1 3 25= −     $ ,ε 3 1 0=    $ .,ε 4 1 3 75= −  

$
,ε1 2 1= −   $ .,ε 2 2 75=         $ ,ε 3 2 2= −  $ .,ε 4 2 2 25=    

$
,ε1 3 2=     $ .,ε 2 3 4 75=      $ ,ε 3 3 3=     $ .,ε 4 3 25=    

$
,ε1 4 2= −   $ .,ε 2 4 2 25= −   $ ,ε 3 4 1= −    $ .,ε 4 4 125=  

 
  
ANOVA as a Comparison of Estimates of Variance 

Analysis of variance gets its name because it compares two different estimates of 
the variance.  If the null hypothesis is true, and there is no treatment effect, then the two 
estimates of variance should be comparable, that is, their ratio should be one.  The farther 
is the ratio of variances from one, the more doubt is placed on the null hypothesis. 
 

If the null hypothesis is true and all samples can be considered to come from one 
population, we can estimate the variance in three different ways.  All assume that the 
observations are distributed about a common mean µ  with variance 2σ .   

 
The first estimate considers the observations as a single set of data. Here we 

compute the variance using the standard formula.  The sum of squared deviations from 
the overall mean is 

( ) ( )2

1 1

total
tnk

t i
t i

SS Y Y
= =

= −∑∑ gg  

If we divide this quantity by 
1 1t

t

n N− = −∑  
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we have an estimate of variance over all units, ignoring treatments.   This is just the 
sample variance of the combined observations.  In our example, ( )total 275SS =  and 

s2 275
15

18 333= = . . 

 
The second method of estimating the variance is to infer the value of σ 2  from sY

2 , 

where sY
2  is the observed variance of the sample means.  We calculate this by considering 

the means of the four treatments.  If the null hypothesis is true, these have a variance of 
2

4
σ

 since they are the means of samples of size 4 drawn at random from a population 

with variance 2σ .  In general, the treatment means have variance 
2

tn
σ

.  Consequently, 

their sum of squares of deviations from the overall mean, ( )2

t
t

y y−∑ g gg , divided by the 

degrees of freedom, 1k − , is an estimate of  
2

tn
σ

.  So the product of tn  times 

( )2

1

t
t

y y

k

−

−

∑ g gg

 is an estimate of 2σ  if the null hypothesis is true.  So, the mean square 

treatment ( )
( )2

2trt
1

t t
t

n y y
MS

k
σ

−
=

−

∑ g gg

B  when H0  is true.   

 
The numerator sum of squared deviations due to treatments (which also has 

experimental unit differences) is computed using 

( ) ( )2
trt t t

t

SS n y y= −∑ g gg .  

If all nt  are the same, then 2(trt) ( )t t
t

SS n y y= −∑ g gg .  In our example, we have  

( ) ( ) ( ) ( ) ( )2 2 2 2
trt 4 61 63.75 4 66.25 63.75 4 68 63.75 4 59.75 63.75 191.5SS = − + − + − + − =

 
 
The mean square for treatment is this sum of squares divided by the degrees of freedom.  

In our example, MS( )
.

.trt = =
1915

3
63833, so 63.833 is another estimate of the population 

variance under the null hypothesis.  This is known as the estimated variance between 
treatments since it was computed using the differences in treatment means. 
 
 The sum of squared deviations about the treatment mean is  
 

( ) ( ) ( ) ( )2 2 2error total trti t t i i t
t i t i t

SS y y y n y SS SS= − = − = −∑∑ ∑∑ ∑g g . 

In our example, this is  
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2 2 2 2(error) (62 61) (60 61) (60 59.75) (61 59.75) 83.5SS = − + − + + − + − =L  

 
If we divide this sum of squares by the degrees of freedom, N k− , we have the pooled 

variance for the four groups of observations, 
835

16 4
6 95833

.
.

−
= .  The variance for Diet A 

is 3.3333, the variance for Diet B is 12.9167, the variance for Diet C is 4.6667, and the 
variance for Diet D is 6.9167.  Since each of these is based on four observations,  
 

sp
2 3 33333 3 12 9167 3 4 6667 3 6 9167

12
6 95833=

+ + +
=

( . ) ( . ) ( . ) ( . )
. . 

 
This is our third estimate of variance and is an estimate of the variance within treatments 
since the pooled variance takes into account the treatment groups.  Random variation can 

be characterized by this pooled variance as measured by ( ) ( )residual
residual

SS
MS

N k
=

−
.  

The standard deviation of a treatment mean, ( )
2

t
t

sd Y
n
σ

=g , is estimated by 

( ) ( )residual
t

t

MS
se Y

n
=g .  (The estimated standard deviation is called the standard 

error.) 
  
The F-Statistic 

It can be shown that, in general, whether or not the null hypothesis is true, 

( )errorMS  estimates 2σ  and MS(trt) estimates 

2

2

1

t t
t

n

k

τ
σ +

−

∑
 (see Appendix A).  If 

tn n=  for all tn , then MS(trt) estimates 

2

2

1

t
t

n

k

τ
σ +

−

∑
.  If the null hypothesis is true, then 

0tτ =  for all t, so MS(trt) estimates 2 20 .σ σ+ =  The F-score is the ratio of  the mean 

square treatment to the mean square residual.  If the treatment effects, τ t , are zero, this 
ratio should be equal to one.   

( )
( )

trt

error

MS
F

MS
=  estimates 

2

2

2

2 2

1
1 1

t t
tt t

t

n
n

k
k

τ
τ

σ

σ σ

 
 
 −+  
 − = +

∑
∑

 

 
If 0H  is true, calcF has an F-distribution with 1k −  and N k−  degrees of freedom.  The 

larger the value of the F-score, the greater the estimated treatment effect.  A large F-score 
corresponds to a small p-value, which casts doubt on the validity of the null hypothesis of 
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equal means.  The null hypothesis of equal means is equivalent to a null hypothesis of all 
treatment effects being zero.  
 

0 :H  all tµ  are equal 0 :H⇔  all 0tτ =  

 
In our example of the rabbit diets, 3,12 9.1737F = .  This is quite large.  An F-score this 

large would happen by chance only 2 out of 1,000 times when the null hypothesis is true.  
This is strong evidence against the null hypothesis that all 0tτ = .  Thus rejected the null 

hypothesis in favor of the alternative   at least one of the treatment means differed from 
another.   
 
The ANOVA Table and Partitioning of Variance 
 
 The ANOVA table consolidates most of these computations, giving the essential 
sums of squares and degrees of freedom for our estimates of variance.  The standard table 
is shown below.  This is the form of the computer output seen earlier. 
 

Source df SS MS F  Prob>F 
Total 

Treatment 
Error 

1N −  
1k −  

N k−  

SS(total) 
SS(trt) 

SS(error) 

----- 
MS(trt) 

MS(error) 

 
MS

MS
( )

( )

trt

error
 

 

 
* 
 

 
In our example, we have  
 

Source df SS MS F  Prob>F 
Total 

Treatment 
Residual 

15 
3 
12 

275 
191.5 
83.5 

----- 
63.833 
6.9583 

 
9.1737 

 

 
0.002 

 
 
Notice that Total SS = Treatment SS + Residual SS.  The total sums of squares has been 
partitioned into two parts, the Treatment Sums of Squares and the Residual, or Error, 
Sums of Squares.  A proof that this will always be the case is given in Appendix B.  The 
Treatment Sums of Squares is a measure of the variation among the treatment groups, 
which includes the variation of the rabbits.  The Residual Sums of Squares is a measure 
of the variation among the rabbits within each treatment group.   Some texts suggest that 
the MS(Treatment) is "explained" variance and MS(Residual) is "unexplained" variance.   
The variance estimated by MS(Treatment) is explained by the fact that the observations 
may come from different populations while the MS(Residual) cannot be explained by 
variance in population parameters and is therefore considered as random or chance 
variation (see Wonnacott and Wonnacott).  In this terminology, the F-statistic is the ratio 

of explained variance to unexplained variance, F =
explained variance

unexplained variance
. 
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We can make this partition even finer by including the individual treatments in 

our table.  
 

Source df SS MS F  Prob>F 
Total 
     Treatment (among Diets) 
     Residual (among 
Rabbits) 
          Within Diet A 
          Within Diet B 
          Within Diet C 
          Within Diet D 

 

15 
3 
12 
3 
3 
3 
3 

275 
191.5 
83.5 
10 

38.75 
14 

20.75 

----- 
63.833 
6.9583 
3.3333 
12.9167 
4.6667 
6.9167 

 
9.1737 

 

 
0.002 

 

 
In this table, notice that the SS(Residual) is the sum of the Within Diet sums of squares;   

 
83.5 10 38.75 14 20.75= + + + . 

 
Also, the MS(Residual) is the pooled variance based on mean squares Within Diets; 
 

( ) ( ) ( ) ( )3 3.3333 3 12.9167 3 4.6667 3 6.9167
6.958

12

+ + +
= . 

 
 
What Affects Power? 
 
Recall that the power of a statistical test is the probability of rejecting the null hypothesis.  
Also recall that for the 1-way analysis of variance  

F estimates 

2

2

2

2 2

1
1 1

t t
tt t

t

n
n

k
k

τ
τ

σ

σ σ

 
 
 −+  
 − = +

∑
∑

. 

The larger the value of F, the greater the probability of rejecting the null hypothesis. 
Consequently,  

• if  σ 2  decreases the power increases.   
• if n increases, the power increases.  
• if tτ  increases (the size of the treatment effects) then the power increases.    

 
This leads to the following design strategy priorities to increase power.   
 
1. Reduce 2σ  (e.g. by blocking) 
2. Increase tn  
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3. Settle for reduced power 
Assumptions 

 
 Like all hypothesis tests, the one-way ANOVA has several criteria that must be 
satisfied (at least approximately) for the test to be valid.  These criteria are usually 
described as assumptions that must be satisfied, since one often cannot verify them 
directly.  These assumptions are listed below: 
  
1. The population distribution of the response variable Y must be normal within each 
class. 
 
2. Independence of observed values within and among groups. 
 
3. The population variances of Y values must be equal for all k classes 
( 2 2 2

1 2 kσ σ σ= = =L ) 

 
How important are the assumptions? 

 
1. Normality is not critical.  Problems tend to arise if the distributions are highly 
skewed and the design is unbalanced.  The problems are aggravated if the sample sizes 
are small. 
 
2. The assumption of independence is critical.   
 
3. The assumption of equal variance is important.  However, the design of the 
experiment with random assignment helps balance the variance.  This is a greater 
problem in observational studies.   
 
4. The methods are sensitive to outliers.  If there are outliers, we can use a 
transformation, exclude the outlier and limit the domain of inference, perform the 
analysis with and without the outlier and report all findings, or use non-parametric 
techniques.  Non-parametric techniques suffer from a lack of power. 
 

Multiple Comparisons 
 
 Why don't we just compare treatments by repeatedly performing t-tests?  Let's 
think about this in terms of confidence intervals.  A test of the hypothesis that two 
treatment means are equal at the 5% significance level is rejected if and only if a 95% 
confidence interval on the difference in the two means does not cover 0.   If we have k 

treatments, there are 
2

k
r

 
=  

 
 possible confidence intervals (or comparisons) between 

treatment means.  Although each confidence interval would have a 0.95 probability of 
covering the true difference in treatment means, the frequency with which all of the 
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intervals would simultaneously capture their true parameters is smaller than 95%.  In fact, 
it can be no larger than 95% and no smaller than ( )100 1 0.05 %r− . 

 
 One consequence of this is that as the number of treatments increases, we are 
increasingly likely to declare at least two treatment means different even if no differences 
exist!  To avoid this, several approaches have been suggested.  One is to set 

0.05
100 1 %

r
 − 
 

 confidence intervals on the difference in two treatment means for each 

of the r comparisons.  Then the probability that all r confidence intervals capture their 
parameters is at least 95%.  This is a conservative approach.   
 
 Another approach is to use the F-test in the Analysis of Variance as a guide.  
Comparisons are made between treatment means only if the F-test is significant.  This is 
the approach most widely used in most disciplines.   
 
 Another approach is to use the method of Least Significant Difference.  Compared 
to other methods, the LSD procedure is more likely to call a difference significant and 
therefore prone to Type I errors, but it is easy to use and is based on principles that 
students already understand.   
 
 
The LSD Procedure 
  
 We know that if two random samples of size n are selected from a normal 
distribution with variance σ 2 , then the variance of the difference in the two sample 
means is  

σ
σ σ σ

D n n n
2

2 2 22
= + = .    

 
In the case of ANOVA, we do not know σ 2 , but we estimate it with s MSE2 = .  So 
when two random samples of size n are taken from a population whose variance is 
estimated by MSE , the standard error of the difference between the two means is 

2 22⋅
=

⋅s
n

MSE
n

.  Two means will be considered significantly different at the 0.05 

significance level if they differ by more than t
MSE
n

∗ ⋅2
, where t ∗  is the t-value for a 

95% confidence interval with the degrees of freedom associated with MSE.  The value  

LSD t
MSE
n

=
⋅∗ 2

  

 
is called the Least Significant Difference.  If the two samples do not contain the same 
number of entries, then  
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LSD t MSE
n nA B

= +∗ 1 1
.   

 
The number of degrees of freedom for t ∗  is always that of MSE .  The LSD is used only 
when the F-test indicates a significant difference exists. 
 
 In our example, the mean square error is 6.9583 and the error degrees of freedom 
are 12. By using the method of Least Significant Difference, we find that 

LSD =
⋅

=2 179
2 6 9583

4
4 064.

.
. .  Any difference in means greater than 4.1 is considered 

significant.  Recall that the means for Diets A, B, C, and D are 61, 66.25, 68, and 59.75.  
Diet B and Diet C are indistinguishable, as are Diet A and Diet D.  However, Diets B and 
C have larger mean coagulation times than Diets A and D. 
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