Time in Distributed Systems

Inherent Limitations of a

Distributed System

= no common clock in distributed system
= physical clock design N
= coordinated universal time (UTC)
= synchronizing physical clocks
+ Cristian’s algorithm
+ Berkeley’s algorithm
= network time protocol (NTP)
= compensating for clock drift

Inherent Limitations of a
Distributed System (cont.)

= Absence of shared memory N
+ “State” is distributed throughout system
+ One process can get either:
+ acoherent but partial view of the system,
+ or anincoherent but complete (global) view of the
system
+ where coherent means:
+ all processes make their observations at the same time
+ where complete (or global) includes:
+ all local views of the state, plus
+ any messages that are in transit

|t is very difficult for each process to get a complete and
coherent view of the global state

+ Example: one person has two bank accounts, and is in
process of transferring $50 between the two accounts

Physical clocks in a distributed system

= Every computer contains a physical clock N
+ Aclock (also called a timer) is an electronic device that
counts oscillations in a crystal at a particular frequency
+ Count is typically divided and stored in a counter
register
+ Clock can be programmed to generate interrupts at regular L]
intervals (e.g., at time interval required by a CPU
scheduler)
= Counter can be scaled to get time of day
+ This value can be used to timestamp an event on that
computer
+ Two events will have different timestamps only if clock .
resolution is sufficiently small
+ Many applications are interested only in the order of the
events, not the exact time of day at which they occurred,
so this scaling is often not necessary

A distributed system is a set of computers that communicate
over a network, and do not share a common memory or a
common clock

Absence of a common (global) clock

+ No concept of global time

« It's difficult to reason about the temporal ordering of events
+ Cooperation between processes (e.qg.,

producer/consumer, client/server)

+ Arrival of requests to the OS (e.g., for resources)
+ Collecting up-to-date global state

« It's difficult to design and debug algorithms in a distributed

system

+ Mutual exclusion
+ Synchronization
+ Deadlock 2

Whty_do we care about time in
distri

buted system

May need to know the time of day some event happened on a
specific computer

+ Need to synchronize that computer’s clock with some
external authoritative source of time (external clock
synchronization)

+ How hard is this to do?
May need to know the time interval, or relative order, between
two events that happened on different computers

« If their clocks are synchronized to some known degree of
accuracy, we can measure time relative to each local clock
(internal clock synchronization)

+ Is this always consistent?
Will ignore relativistic effects
+ Cannot ignore network’s unpredictability

Coordinated universal time

The output of the atomic clocks is called International Atomic
Time
+ Coordinated Universal Time (UTC) is an international
standard based on atomic time, with an occasional leap
second added or deleted
UTC signals are synchronized and broadcast regularly by
various radio stations (e.g., WWV in the US) and satellites
(e.g., GEOS, GPS)
+ Have propagation delay due to speed of light, distance
from broadcast source, atmospheric conditions, etc.
+ Received value is only accurate to 0.1-10 milliseconds
Unfortunately, most workstations and PCs don’t have UTC
receivers

Synchronizing physical clocks

= Use atime server with a UTC receiver
= Centralized algorithms
+ Client sets time t0 Tgger + Dyans

+ Terver = SEIVEr's time

+ Dyans = transmission delay
« Unpredictable due to network traffic

+ Cristian’s algorithm (1989):
+ Send request to time server, measure time D, taken to receive
reply Tserver

+ Set local time t0 Tegyer + (Dyans / 2)
« Accuracy is * ((Dyans / 2) — Diin)
< Improvement: make several requests, take average T. e

value

+ Assumptions:
« Network delay is fairly consistent
« Request & reply take equal amount of time

+ Problems:
« Doesn’t work if time server fails
« Not secure against malfunctioning time server, or malicioys

impostor time server

Synchronizing physical clocks -
network time service protocol (NTP)

Provides time service on the Internet
= Hierarchical network of servers:
+ Primary servers (100s) — connected directly to a time source

+ Secondary servers (1000s) — connected to primary servers in
hierarchical fashion
+ ns.mcs.kent.edu runs a time server
+ Servers at higher levels are presumed to be more accurate than at
lower levels
= Several synchronization modes:
+ Multicast — for LANSs, low accuracy
+ Procedure call — similar to Cristian’s algorithm, higher accuracy (file
servers)
+ Symmetric mode — exchange detailed messages, maintain history
= All built on top of UDP (connectionless)

9

Is It Enoughto
Synchronize Physical Clocks?

= Summary:
+ In adistributed system, there is no common clock, so we have to:
+ Use atomic clocks to minimize clock drift

+ Synchronize with time servers that have UTC receivers, trying to
compensate for unpredictable network delay
= s this sufficient?
+ Value received from UTC receiver is only accurate to within 0.1-10
milliseconds

+ At best, we can synchronize clocks to within 10-30 milliseconds
of each other

+ We have to synchronize frequently, to avoid local clock drift
¢ In 10 ms, a 100 MIPS machine can execute 1 million instructions
+ Accurate enough as time-of-day

>Not sufficiently accurate to determine the relative order of
events on different computers in a distributed system 1

Synchronizing physical clocks (cont.)

Centralized algorithms (cont.)
+ Berkeley (Gusella & Zatti) algorithm (1989):
+ Choose a coordinator computer to act as the master

+ Master periodically polls the slaves — the other computers
whose clocks should be synchronized to the master

« Slaves send their clock value to master

+ Master observes transmission delays, and estimates their local
clock times
« Master averages everyone’s clock times (including its own)
— Master takes a fault-tolerant average — it ignores
readings from clocks that have drifted badly, or that have
failed and are producing readings far outside the range
of the other clocks

« Master sends to each slave the amount (positive or
negative) by which it should adjust its clock

Distributed algorithms (see text...) 8

Compensating for clock drift

Compare time T provided by time server to time T, at computer C
IfTg>T, (e.g., 9:07am vs 9:05am)

+ Could advance C's time to T

+ May miss some clock ticks; probably OK
IfTg< T, (e.g., 9:07am vs 9:10am)

¢ Can'troll back C's time to T

+ Many applications (e.g., make) assume that time always
advances!

+ Can cause C's clock to run slowly until it resynchronizes with the
time server

+ Can't change the clock oscillator rate, so have to change the
software interpreting the clock’s counter register

+ Tsotware = @ Thardware + D

+ Can determine constants a and b

