
1

Time in Distributed Systems

n no common clock in distributed system

n physical clock design

n coordinated universal time (UTC)

n synchronizing physical clocks

u Cristian’s algorithm

u Berkeley’s algorithm

n network time protocol (NTP)

n compensating for clock drift

2

Inherent Limitations of a
Distributed System

n A distributed system is a set of computers that communicate
over a network, and do not share a common memory or a
common clock

n Absence of a common (global) clock

u No concept of global time

u It’s difficult to reason about the temporal ordering of events

F Cooperation between processes (e.g.,
producer/consumer, client/server)

F Arrival of requests to the OS (e.g., for resources)

F Collecting up-to-date global state

u It’s difficult to design and debug algorithms in a distributed
system

F Mutual exclusion

F Synchronization

F Deadlock

3

Inherent Limitations of a
Distributed System (cont.)

n Absence of shared memory

u “State” is distributed throughout system

u One process can get either:

F a coherent but partial view of the system,

F or an incoherent but complete (global) view of the
system

u where coherent means:

F all processes make their observations at the same time

u where complete (or global) includes:

F all local views of the state, plus

F any messages that are in transit

åIt is very difficult for each process to get a complete and
coherent view of the global state

u Example: one person has two bank accounts, and is in
process of transferring $50 between the two accounts 4

Why do we care about time in
distributed system

n May need to know the time of day some event happened on a
specific computer

u Need to synchronize that computer’s clock with some
external authoritative source of time (external clock
synchronization)

F How hard is this to do?

n May need to know the time interval, or relative order, between
two events that happened on different computers

u If their clocks are synchronized to some known degree of
accuracy, we can measure time relative to each local clock
(internal clock synchronization)

F Is this always consistent?

n Will ignore relativistic effects

u Cannot ignore network’s unpredictability

5

Physical clocks in a distributed system

n Every computer contains a physical clock

u A clock (also called a timer) is an electronic device that
counts oscillations in a crystal at a particular frequency

F Count is typically divided and stored in a counter
register

u Clock can be programmed to generate interrupts at regular
intervals (e.g., at time interval required by a CPU
scheduler)

n Counter can be scaled to get time of day

u This value can be used to timestamp an event on that
computer

F Two events will have different timestamps only if clock
resolution is sufficiently small

u Many applications are interested only in the order of the
events, not the exact time of day at which they occurred,
so this scaling is often not necessary

6

Coordinated universal time

n The output of the atomic clocks is called International Atomic
Time

u Coordinated Universal Time (UTC) is an international
standard based on atomic time, with an occasional leap
second added or deleted

n UTC signals are synchronized and broadcast regularly by
various radio stations (e.g., WWV in the US) and satellites
(e.g., GEOS, GPS)

u Have propagation delay due to speed of light, distance
from broadcast source, atmospheric conditions, etc.

u Received value is only accurate to 0.1–10 milliseconds

n Unfortunately, most workstations and PCs don’t have UTC
receivers

7

Synchronizing physical clocks

n Use a time server with a UTC receiver
n Centralized algorithms

u Client sets time to Tserver + Dtrans
F Tserver = server’s time
F Dtrans = transmission delay

• Unpredictable due to network traffic
u Cristian’s algorithm (1989):

F Send request to time server, measure time Dtrans taken to receive
reply Tserver

F Set local time to Tserver + (Dtrans / 2)
• Accuracy is ± ((Dtrans / 2) – Dmin)
• Improvement: make several requests, take average Tserver

value
F Assumptions:

• Network delay is fairly consistent
• Request & reply take equal amount of time

F Problems:
• Doesn’t work if time server fails
• Not secure against malfunctioning time server, or malicious

impostor time server
8

Synchronizing physical clocks (cont.)

n Centralized algorithms (cont.)

u Berkeley (Gusella & Zatti) algorithm (1989):

F Choose a coordinator computer to act as the master

F Master periodically polls the slaves — the other computers
whose clocks should be synchronized to the master

• Slaves send their clock value to master

F Master observes transmission delays, and estimates their local
clock times

• Master averages everyone’s clock times (including its own)

– Master takes a fault-tolerant average — it ignores
readings from clocks that have drifted badly, or that have
failed and are producing readings far outside the range
of the other clocks

• Master sends to each slave the amount (positive or
negative) by which it should adjust its clock

n Distributed algorithms (see text…)

9

Synchronizing physical clocks -
network time service protocol (NTP)

n Provides time service on the Internet

n Hierarchical network of servers:

u Primary servers (100s) — connected directly to a time source

u Secondary servers (1000s) — connected to primary servers in
hierarchical fashion

F ns.mcs.kent.edu runs a time server

u Servers at higher levels are presumed to be more accurate than at
lower levels

n Several synchronization modes:

u Multicast — for LANs, low accuracy

u Procedure call — similar to Cristian’s algorithm, higher accuracy (file
servers)

u Symmetric mode — exchange detailed messages, maintain history

n All built on top of UDP (connectionless)
10

Compensating for clock drift

n Compare time Ts provided by time server to time Tc at computer C

n If Ts > Tc (e.g., 9:07am vs 9:05am)

u Could advance C’s time to Ts

u May miss some clock ticks; probably OK

n If Ts < Tc (e.g., 9:07am vs 9:10am)

u Can’t roll back C’s time to Ts

F Many applications (e.g., make) assume that time always
advances!

u Can cause C’s clock to run slowly until it resynchronizes with the
time server

F Can’t change the clock oscillator rate, so have to change the
software interpreting the clock’s counter register

F Tsoftware = a Thardware + b

F Can determine constants a and b

11

Is It Enough to
Synchronize Physical Clocks?

n Summary:

u In a distributed system, there is no common clock, so we have to:

F Use atomic clocks to minimize clock drift

F Synchronize with time servers that have UTC receivers, trying to
compensate for unpredictable network delay

n Is this sufficient?

u Value received from UTC receiver is only accurate to within 0.1–10
milliseconds

F At best, we can synchronize clocks to within 10–30 milliseconds
of each other

F We have to synchronize frequently, to avoid local clock drift

u In 10 ms, a 100 MIPS machine can execute 1 million instructions

F Accurate enough as time-of-day

åNot sufficiently accurate to determine the relative order of
events on different computers in a distributed system

