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Abstract. This paper discusses the application of evolutionary multiobjective 
optimization (EMO) to association rule mining. We focus our attention espe-
cially on classification rule mining where the consequent part of each rule is a 
class label. First we briefly explain evolutionary multiobjective classification 
rule mining techniques. Those techniques are roughly categorized into two ap-
proaches. In one approach, each classification rule is handled as an individual. 
An EMO algorithm is used to search for Pareto-optimal rules with respect to 
some rule evaluation criteria such as support and confidence. In the other ap-
proach, each rule set is handled as an individual. An EMO algorithm is used to 
search for Pareto-optimal rule sets with respect to some rule set evaluation cri-
teria such as accuracy and complexity. Next we explain evolutionary multiob-
jective rule selection as a post-processing procedure in classification rule min-
ing. Pareto-optimal rule sets are found from a large number of candidate classi-
fication rules, which are extracted from a database using an association rule 
mining technique. Finally we report experimental results where the effect of 
evolutionary multiobjective rule selection is examined. We also examine the re-
lation between Pareto-optimal rules and Pareto-optimal rule sets. 

1   Introduction 

Data mining is a very active and rapidly growing research area in the field of com-
puter science. The task of data mining is to extract useful knowledge for human users 
from a database. Whereas the application of evolutionary computation to data mining 
is not always easy due to its heavy computation load especially in the case of a large 
database [3], [4], [9], many evolutionary approaches have been proposed in the litera-
ture [6], [16], [31], [33], [36]. Evolutionary multiobjective optimization (EMO) has 
also been applied to data mining in some studies [10]-[12], [17], [21], [22], [35]. In 
the field of fuzzy logic, multiobjective formulations have frequently been used for 
knowledge extraction [5], [18]-[20], [24], [26], [38], [39]. This is because the inter-
pretability-accuracy tradeoff analysis is a very important research issue in the design 
of fuzzy rule-based systems [5]. Multiobjective formulations have also been used in 
non-fuzzy genetics-based machine learning [25], [27], [30]. 

Association rule mining [1] is one of the most well-known data mining techniques. 
In its basic form [1], all association rules satisfying the minimum support and confi-



dence are efficiently extracted from a database. The application of association rule 
mining to classification problems is often referred to as classification rule mining or 
associative classification [28], [29], [32], [37]. Classification rule mining usually 
consists of two phases: rule discovery and rule selection. In the rule discovery phase, 
a large number of classification rules are extracted from a database using an associa-
tion rule mining technique. All classification rules satisfying the minimum support 
and confidence are usually extracted from a database. A part of extracted classifica-
tion rules are selected to design a classifier in the rule selection phase using a heuris-
tic rule sorting criterion. The accuracy of the designed classifier usually depends on 
the specification of the minimum support and confidence. Their tuning was discussed 
for classification data mining in [7], [8]. 

Whereas the basic form of association rule mining is to extract all association rules 
that satisfy the minimum support and confidence [1], other rule evaluation measures 
have been proposed to qualify the interestingness or goodness of an association rule. 
Among them are gain, variance, chi-squared value, entropy gain, gini, laplace, lift, 
and conviction [2]. It is shown in [2] that the best rule according to any of the above-
mentioned measures is a Pareto-optimal rule with respect to support and confidence. 
Motivated by this study, the use of an EMO algorithm was proposed to search for 
Pareto-optimal classification rules with respect to support and confidence for partial 
classification [10]-[12], [35]. Similar formulations were used to search for Pareto-
optimal association rules [17] and Pareto-optimal fuzzy association rules [26]. EMO 
algorithms were also used to search for Pareto-optimal rule sets in classification rule 
mining [21], [22] where the accuracy of rule sets was maximized and their complex-
ity was minimized. The same idea was also used in the multiobjective design of fuzzy 
rule-based classifiers [18], [19], [24]. 

In this paper, we empirically examine the effect of evolutionary multiobjective rule 
selection through computational experiments for some well-known benchmark data 
sets from the UCI machine learning repository. We also examine the relation between 
Pareto-optimal rules and Pareto-optimal rule sets in the classifier design. This exami-
nation is performed by depicting selected rules in Pareto-optimal rule sets together 
with candidate classification rules in the support-confidence plain. Our interest is to 
check whether selected rules in Pareto-optimal rule sets are close to the Pareto front 
with respect to support and confidence.  

This paper is organized as follows. First we briefly explain some basic concepts in 
classification rule mining in Section 2. Next we briefly explain two approaches in 
evolutionary multiobjective classification rule mining in Section 3. One approach 
handles each classification rule as an individual to search for Pareto-optimal rules. In 
the other approach, each rule set is handled as an individual. An EMO algorithm is 
used to search for Pareto-optimal rule sets. Then we explain evolutionary multiobjec-
tive rule selection as a post-processing procedure in the rule selection phase of classi-
fication rule mining in Section 4. Pareto-optimal rule sets are found from a large 
number of candidate classification rules, which are extracted from a database using an 
association rule mining technique in the rule discovery phase. Finally we report ex-
perimental results on some well-known benchmark data sets. Experimental results 
demonstrate the effect of evolutionary multiobjective rule selection. The relation 
between Pareto-optimal rules and Pareto-optimal rule sets is also demonstrated. 



2   Classification Rule Mining 

Let us assume that we have m training patterns xp = (xp1, xp2, ..., xpn), p = 1, 2, ..., m 
from M classes in the n-dimensional continuous pattern space where xpi is the attrib-
ute value of the p-th training pattern for the i-th attribute. We denote the set of these 
m training patterns by D. For our pattern classification problem, we use classification 
rules of the following type: 

Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  then Class qC  with qCF , (1) 

where Rq is the label of the q-th rule, x = (x1, x2, ..., xn) is an n-dimensional pattern 
vector, Aqi is an antecedent interval for the i-th attribute, Cq is a class label, and CFq 
is a rule weight (i.e., certainty grade). We denote the classification rule Rq in (1) as 
“Aq ⇒ Cq” where Aq = (Aq1, Aq2, ..., Aqn). Each antecedent condition “xi is Aqi” in 
(1) means the inclusion relation “xi∈Aqi”. It should be noted that classification rules 
of the form in (1) do not always have n antecedent conditions. Some rules may have 
only a few conditions while others may have many conditions. 

In the field of association rule mining, two rule evaluation measures called support 
and confidence have often been used [1], [2]. Let us denote the support count of the 
classification rule Aq ⇒ Cq by SUP(Aq ⇒ Cq), which is the number of patterns com-
patible with both the antecedent part Aq and the consequent class Cq. SUP(Aq) and 
SUP(Cq) are also defined in the same manner, which are the number of patterns com-
patible with Aq and Cq, respectively. The support of the classification rule Aq ⇒ Cq 
is defined as  

||
)(

)(
D

CSUP
CSupport qq

qq
⇒

=⇒
A

A , 
(2) 

where |D| is the cardinality of the data set D (i.e., |D| = m). On the other hand, the 
confidence of Aq ⇒ Cq is defined as 
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In partial classification [10]-[12], [35], the coverage is often used instead of the 
support: 
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Since the consequent class is fixed in partial classification (i.e., since the denominator 
of (4) is constant), the maximization of the coverage is the same as that of the support. 



In classification rule mining [28], [29], [32], [37], an association rule mining tech-
nique such as Apriori [1] is used in the rule discovery phase to efficiently extract all 
classification rules that satisfy the minimum support and confidence. These two pa-
rameters are prespecified by users. Then a part of extracted classification rules are 
selected to design a classifier in the rule selection phase. 

Let S be a set of selected classification rules. That is, S is a classifier. When a new 
pattern xp is to be classified by S, we choose a single winner rule with the maximum 
rule weight among compatible rules with xp in S. The consequent class of the winner 
rule is assigned to xp . When multiple compatible rules with different consequent 
classes have the same maximum rule weight, the classification of xp is rejected in 
evolutionary multiobjective rule selection in this paper. Only when the accuracy of 
the finally obtained rule set is to be evaluated, we use a random tiebreak among those 
classes with the same maximum rule weight in computational experiments. 

3   Evolutionary Multiobjective Classification Rule Mining 

Evolutionary multiobjective techniques in classification rule mining can be roughly 
categorized into two approaches. In one approach, each rule is evaluated according to 
multiple rule evaluation criteria such as support and confidence. An EMO algorithm 
is used to search for Pareto-optimal classification rules. In the other approach, each 
rule set is evaluated according to multiple rule set evaluation criteria such as accuracy 
and complexity. An EMO algorithm is used to search for Pareto-optimal rule sets. In 
this section, we briefly explain these two approaches. 

3.1   Techniques to Search for Pareto-Optimal Classification Rules 

It is shown in [2] that the set of Pareto-optimal rules with respect to support and con-
fidence includes the best rule according to any of the following rule evaluation crite-
ria: gain, variance, chi-squared value, entropy gain, gini, laplace, lift, and conviction. 
Thus it is an important research issue to search for Pareto-optimal rules with respect 
to support and confidence in association rule mining. The use of NSGA-II [13], [14] 
for this task was proposed by de la Iglesia et al. [10], [12] where they applied NSGA-
II to the following two-objective optimization problem for partial classification. 

Maximize { )(RCoverage , )(RConfidence }, (5) 

where R denotes a classification rule. It should be noted that the maximization of the 
coverage means that of the support since the consequent class is fixed in partial clas-
sification. The use of a dissimilarity measure between classification rules instead of 
the crowding distance in NSGA-II was examined in [11] in order to search for a set of 
Pareto-optimal classification rules with a large diversity. The Pareto-dominance rela-
tion in NSGA-II was modified in [35] in order to search for not only Pareto-optimal 
classification rules but also dominated (but interesting) classification rules. 



Ghosh and Nath [17] used an EMO algorithm to search for Pareto-optimal associa-
tion rules with respect to confidence, comprehensibility and interestingness. That is, 
association rule mining was formulated as a three-objective optimization problem in 
[17]. A similar three-objective optimization problem was formulated in Kaya [26] 
where an EMO algorithm was used to search for Pareto-optimal fuzzy association 
rules with respect to support, confidence and comprehensibility. 

3.2   Techniques to Search for Pareto-Optimal Rule Sets 

In classification rule mining [28], [29], [32], [37], first an association mining tech-
nique such as Apriori [1] is used in the rule discovery phase to efficiently extract all 
classification rules that satisfy the minimum support and confidence. Then a part of 
extracted classification rules are selected using a heuristic rule sorting criterion in the 
rule selection phase to design a classifier. Evolutionary multiobjective rule selection 
was proposed in [21], [22] to search for Pareto-optimal rule sets with respect to accu-
racy and complexity in the rule selection phase of classification rule mining. 

Genetic algorithm-based rule selection was first proposed for the design of accu-
rate and comprehensible fuzzy rule-based classifiers in [23] where a weighted sum 
fitness function was used to maximize the classification accuracy and minimize the 
number of fuzzy rules. An EMO algorithm was used to search for Pareto-optimal 
fuzzy rule-based classifiers with respect to these two objectives in [18]. The total 
number of antecedent conditions was introduced as the third objective in [19] to 
minimize not only the number of fuzzy rules but also their length while maximizing 
the classification accuracy of fuzzy rule-based classifies. The use of a memetic EMO 
algorithm was examined to search for Pareto-optimal fuzzy rule-based classifiers with 
respect to these three objectives in [24]. Fuzzy rule selection techniques in these stud-
ies were used for non-fuzzy classification rule mining in [21], [22]. 

4   Evolutionary Multiobjective Rule Selection 

Let us assume that we have already extracted N classification rules in the rule discov-
ery phase of classification rule mining. These N classification rules are used as candi-
date rules in rule selection. Let S be a subset of the N candidate rules (i.e., S is a clas-
sifier). We use a binary string of length N to represent S where “1” and “0” mean the 
inclusion in S and the exclusion from S of the corresponding candidate rule.  

As in our former studies [21], [22], we use the following three objectives:  

)(1 Sf : The number of correctly classified training patterns by S, 
)(2 Sf : The number of selected rules in S, 
)(3 Sf : The total number of antecedent conditions over selected rules in S. 

The first objective is maximized while the second and third objectives are minimized. 
The third objective can be viewed as the minimization of the total rule length since 
the number of antecedent conditions of each rule is often referred to as the rule length. 



We use NSGA-II [13], [14] to search for Pareto-optimal rule sets (i.e., Pareto-optimal 
subsets of the N candidate rules) with respect to these three objectives. We also use a 
single-objective genetic algorithm (SOGA) with the (µ+λ)-ES generation update 
mechanism to optimize the weighted sum fitness function of the three objectives for 
comparison in our computational experiments. 

5   Computational Experiments 

In this section, we demonstrate how SOGA and NSGA-II can decrease the number of 
extracted rules and their rule length without severely degrading their classification 
accuracy through computational experiments on some well-known benchmark data 
sets with continuous attributes in the UCI machine learning repository. We also ex-
amine the relation between Pareto-optimal rules and Pareto-optimal rule sets by de-
picting selected rules in the support-confidence plain. 

5.1   Conditions of Computational Experiments 

We used seven data sets in Table 1 (whereas we do not report experimental results on 
all of these data sets in this paper due to the page limitation). We did not use incom-
plete patterns with missing values. All attribute values were handled as real numbers. 
The domain of each attribute was divided into multiple intervals using an optimal 
splitting method [15] based on the class entropy measure [34]. Since the choice of an 
appropriate number of intervals is not easy, we simultaneously used four different 
partitions with two, three, four, and five intervals (i.e., 14 antecedent intervals in total 
for each attribute). As a result, various candidate classification rules were examined 
in the rule discovery phase using overlapping antecedent intervals of various widths 
for each attribute. 

 

Table 1. Data sets used in computational experiments. 

Data set Attributes Patterns Classes

Breast W 9 683* 2 
Glass 9 214 6 

Heart C 13 297* 5 
Iris 4 150 3 

Pendig 16 10992 10 
Shuttle 9 58000 7 
Wine 13 178 3 

* Incomplete patterns with missing values are not included. 

We extracted candidate classification rules with three or less antecedent conditions 
using prespecified values of the minimum support and confidence. This restriction on 



the number of antecedent conditions is to find rule sets with high understandability 
(i.e., because it is very difficult for human users to intuitively understand long classi-
fication rules with many antecedent conditions). We examined 4× 4 combinations of 
the following four specifications of each threshold for the seven data sets in Table 1: 

Minimum support: 1%, 2%, 5%, 10%, 
Minimum confidence: 60%, 70%, 80%, 90%. 

All the extracted classification rules for each combination of the two threshold val-
ues were used in evolutionary rule selection as candidate rules. NSGA-II was exe-
cuted with the following parameter values: 

Population size: 200 strings, 
Crossover probability: 0.9 (uniform crossover), 
Mutation probability: 0.05 ( 01→ ) and 1/N ( 10→ ) where N is the string length, 
Termination conditions: 1000 generations. 

We also used SOGA to maximize the following weighted sum fitness function: 

Maximize )()()()( 332211 SfwSfwSfwSf ⋅−⋅−⋅= , (6) 

where w = (w1, w2, w3) is a non-negative weight vector, which was specified as w = 
(2, 1, 1) in our computational experiments.  

The classification accuracy on test patterns of candidate rules and selected rules 
was examined by iterating the two-fold cross-validation procedure with 50% training 
patterns and 50% test patterns five times for each data set. We report average results 
over its five iterations in the next subsection. In some computational experiments, we 
show experimental results of only a single run of NSGA-II. In other computational 
experiments, all the given patterns in each data set were used as training patterns for 
examining the relation between Pareto-optimal rules and Pareto-optimal rule sets.  

5.2   Experimental Results 

First we show some experimental results by SOGA to clearly demonstrate the effect 
of genetic rule selection. Experimental results on the Wisconsin breast cancer data set 
were summarized in Fig. 1. Each plot in the right-hand side was obtained by applying 
SOGA to candidate classification rules in the corresponding plot in the left-hand side. 
For example, about six rules were selected by SOGA in Fig. 1 (b) from thousands of 
candidate rules in Fig. 1 (a). The deterioration in the classification rates on training 
patterns by genetic rule selection from Fig. 1 (c) to Fig. 1 (d) was less than 1%. When 
the minimum support was 0.10 (i.e., the right-most row), the classification rates on 
training patterns were increased by genetic rule selection from Fig. 1 (c) to Fig. 1 (d). 
The deterioration in the classification rates on test patterns by genetic rule selection 
from Fig. 1 (e) to Fig. 1 (f) was about 1% - 2%. The average rule length was de-
creased by genetic rule selection from about 3 in Fig. 1 (g) to less than 2 in Fig. 1 (h). 
These observations show that only a small number of simple classification rules were 
selected by SOGA without severely deteriorating the classification accuracy. 
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     (a) Number of rules before rule selection.             (b) Number of rules after rule selection. 
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(c) Training data accuracy before rule selection.   (d) Training data accuracy after rule selection. 
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    (e) Test data accuracy before rule selection.          (f) Test data accuracy after rule selection. 
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   (g) Average rule length before rule selection.         (h) Average rule length after rule selection. 

Fig. 1. Experimental results by SOGA on the Wisconsin breast cancer data set. 



We also applied evolutionary multiobjective rule selection to the Wisconsin breast 
cancer data set in the following manner. First the given 683 patterns were randomly 
divided into 342 training patterns and 341 test patterns. Next candidate rules were 
extracted from the 342 training patterns using the minimum support 0.01 and the 
minimum confidence 0.6. As a result, 17070 classification rules were extracted. Then 
NSGA-II was applied to the extracted classification rules. From its single run, 15 
non-dominated rule sets were obtained. Finally each of the obtained rule sets was 
evaluated for the training and test patterns. The classification rates of obtained rule 
sets are shown in Fig. 2 (a) for the training patterns and Fig. 2 (b) for the test patterns. 
Some of the obtained rule sets (i.e., a rule set with only a single rule) are not shown 
because their classification rates are out of the range of the vertical axis of each plot 
in Fig. 2. We can observe a clear tradeoff relation between the number of selected 
rules and the classification rates on the training patterns in Fig. 2 (a). A similar trade-
off relation is also observed for the test patterns in Fig. 2 (b).  

While we observed very similar tradeoff relations between the accuracy on train-
ing patterns and the number of selected rules for all the seven data sets, we obtained 
totally different results on test patterns. For example, experimental results on the 
Cleveland heart disease data set are shown in Fig. 3 where we observe a clear degrade 
in the accuracy on test patterns due to the increase in the number of selected rules. 
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       (a) Classification rates on training patterns.             (b) Classification rates on test patterns. 

Fig. 2. Experimental results by NSGA-II on the Wisconsin breast cancer data set. 
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       (a) Classification rates on training patterns.             (b) Classification rates on test patterns. 

Fig. 3. Experimental results by NSGA-II on the Cleveland heart disease data set. 



Finally we examined the relation between Pareto-optimal rules and Pareto-optimal 
rule sets for the Cleveland heart disease data set. First we extracted 12206 classifica-
tion rules from all the 297 patterns using the minimum support 0.01 and the minimum 
confidence 0.6. Next we applied NSGA-II to the extracted classification rules. Then 
we chose two rule sets from the obtained non-dominated rule sets. One is the most 
complicated rule set with the highest accuracy on the training patterns. The other is 
the simplest rule set among those rule sets with only two rules. This computational 
experiment was iterated ten times. Candidate classification rules and selected rules in 
each rule set are shown in Fig. 4. We can see that Pareto-optimal rule sets do not 
necessarily consist of Pareto-optimal rules with respect to support and confidence. 
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               (a) Rules in the simplest rule sets.              (b) Rules in the most complicated rule sets. 

Fig. 4. Locations of selected rules in the support-confidence plain (results of ten runs). 

6   Conclusions 

In this paper, first we briefly explained two approaches in evolutionary multiobjective 
classification rule mining. One is to search for Pareto-optimal rules and the other is to 
search for Pareto-optimal rule sets. Next we demonstrated the effect of GA-based rule 
selection as a post-processing procedure in the second phase of classification rule 
mining. Then we showed the accuracy-complexity tradeoff of non-dominated rule 
sets obtained by evolutionary multiobjective rule selection. Finally we examined the 
relation between Pareto-optimal rules and Pareto-optimal rule sets. 

This work was partially supported by Grant-in-Aid for Scientific Research on Pri-
ority Areas: KAKENHI (18049065). 
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