
Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

1

Chapter 11: PERT for Project Planning and Scheduling

PERT, the Project Evaluation and Review Technique, is a network-based aid for planning and
scheduling the many interrelated tasks in a large and complex project. It was developed during
the design and construction of the Polaris submarine in the USA in the 1950s, which was one of
the most complex tasks ever attempted at the time. Nowadays PERT techniques are routinely
used in any large project such as software development, building construction, etc. Supporting
software such as Microsoft Project, among others, is readily available. It may seem odd that
PERT appears in a book on optimization, but it is frequently necessary to optimize time and
resource constrained systems, and the basic ideas of PERT help to organize such an optimization.

PERT uses a network representation to capture the precedence or parallel relationships among
the tasks in the project. As an example of a precedence relationship, the frame of a house must
first be constructed before the roof can go on. On the other hand, some activities can happen in
parallel: the electrical system can be installed by one crew at the same time as the plumbing
system is installed by a second crew.

The PERT formalism has these elements and rules:

• Directed arcs represent activities, each of which has a specified duration. This is the
“activity on arc” formalism; there is also a less-common “activity on node” formalism.
Note that activities are considered to be uninterruptible once started.

• Nodes are events or points in time.

• The activities (arcs) leaving a node cannot begin until all of the activities (arcs) entering a
node are completed. This is how precedence is shown. You can also think of the node as
enforcing a rendezvous: no-one can leave until everyone has arrived.

• There is a single starting node which has only outflow arcs, and a single ending node that
has only inflow arcs.

• There are no cycles in the network. You can see the difficulty here. If an outflow
activity cannot begin until all of the inflow activities have been completed, a cycle means
that the system can never get started!

Consider the example given in Figure 11.1. Perhaps the pouring of the concrete foundation
(activity A-B), happens at the same time as the pre-assembly of the roof trusses (activity A-D).
However, the finalization of the roof (activity D-E), cannot begin until both A-D and B-D
(assembly of the house frame), are done. Of course B-D cannot start until the concrete
foundation has been poured (A-B). All of this precedence and parallelism information is neatly
captured in the PERT diagram.

There are two major questions about any project:

• What is the shortest time for completion of the project?

Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

2

• Which activities must be completed on time in order for the project to finish in the
shortest possible time? These activities constitute the critical path through the PERT
diagram.

The process of finding the critical path answers the first question as well as the second. Of
course we need to know how long each individual activity will take in order to answer these
questions. This is why the arcs in Figure 11.1 are labelled with numbers: the numbers show the
amount of time that each activity is expected to take (in days, let’s say).

The critical path is
of great interest to
project managers.
The activities on
the critical path
are the ones which
absolutely must
be done on time in
order for the
whole project to
complete on time.
If any of the
activities on the
critical path are
late, then the entire project will finish late! For this reason, the critical path activities receive the
greatest attention from management. The non-critical activities have some leeway to be late
without affecting the overall project completion time.

The following steps find the critical path and calculate other useful information about the project.

Step 1. Make a forward pass through the diagram, calculating the earliest time (TE) for each
event (node). In other words, what is the earliest time at which all of the activities entering a
node will have finished? To find TE, look at all of the activities which enter a node. TE is the
latest of the arrival times for entering arcs, i.e. TE = max [(TE of node at tail of arc) + (arc
duration)] over all of the entering arcs. By definition, TE of the starting node is zero.

Step 2. Make a backward pass through the diagram, calculating the latest time (TL) for each
event (node). In other words, what is the latest time that the outflow activities can begin without
causing a late arrival at the next node for one of those activities? To find TL, look at all of the
activities which exit a node. TL is the earliest of the leaving times for the exiting arcs, i.e. TL =
min [(TL of node at head of arc) − (arc duration)] over all of the exiting arcs. By definition, the
TL of the ending node equals its TE.

Step 3. Calculate the node slack time (SN) for each node (event). This is the amount of time by
which an event could be adjusted later than its TE without causing problems downstream. SN =
TL − TE for each node.

A

D

B C

E

F

G

H
3

4

5

9

7

8

5 4

6

10

3

7

3

5

Figure 11.1: An example of a PERT diagram.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

3

Step 4. Calculate the total arc slack time (SA) for each arc (activity). This is the amount of time
by which an activity could be adjusted later than the TE of the node at its tail without causing
problems later. SA = (TL of node at arc head) − (TE of node at arc tail) − (arc duration).

Step 5. The critical path connects the nodes at which SN = 0 via the arcs at which SA = 0.

It should be no surprise that the critical path connects the nodes and arcs which have no slack. If
there is slack, then the activity does not need to be done on time, which is exactly the opposite
definition of the critical path!

As an example, let’s find the critical path for the PERT diagram in Figure 11.1. Note that there
is an implied order in which the TE’s can be calculated in Step 1. For example, the TE of node D
cannot be found until the TE of node B is known. The starting node in Figure 11.1 is node A,
and by definition the TE of the starting node is 0. To calculate TE at a node, we need to know the
TE of the node at the tail of every entering arc, so we can next only calculate the TE of node B.
This is simple since there is only one inflow arc, from node A, so TE(B) = TE(A) + (duration of
A-B) = 0 + 4 = 4. The complete set of TE calculations follows:

TE(A) = Starting node = 0

TE(B) = TE(A)+(duration A-B) = 0+4 = 4

TE(D) = max{TE(A)+(duration A-D), TE(B)+(duration B-D)} = max{0+4, 4+5} = 9

TE(C) = TE(B)+(duration B-C) = 4+5 = 9

TE(E) = max{TE(D)+(duration D-E), TE(B)+(duration B-E),
 TE(C)+(duration C-E)}

= max{9+7, 4+8, 9+6} = 16

TE(F) = max{TE(D)+(duration D-F), TE(E)+(duration E-F)} = max{9+9, 16+10} = 26

TE(G) = max{TE(E)+(duration E-G), TE(C)+(duration C-G)} = max{16+7, 9+4} = 23

TE(H) = max{TE(F)+(duration F-H), TE(E)+(duration E-H),
 TE(G)+(duration G-H)}

= max{26+3, 16+3, 23+5}
= 29

The shortest time in which the project can be completed is now known: it is the same as the TE of
the ending node, node H, i.e. 29 days. But we still need to complete the remaining 4 steps of the
algorithm to positively identify the critical path.

The backwards pass in Step 2 begins with the ending node H. By definition, the TL of the ending
node is equal to its TE so TE(H) = 29. This makes sense: otherwise the whole project would be
pushed later! As for the forward pass, there is an implied order in which the node TL values can
be found, determined by the outflow arcs for which TL is known. The complete set of
calculations follows.

TL(H) = ending node = TE(H) = 29

Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

4

TL(F) = TL(H)−(duration F-H) = 29−3 = 26

TL(G) = TL(H)−(duration G-H) = 29−5 = 24

TL(E) = min{TL(F)−(duration E-F), TL(H)−(duration E-H),
 TL(G)−(duration E-G)}

= min{26−10, 29−3, 24−7}
= 16

TL(C) = min{TL(E)−(duration C-E), TL(G)−(duration C-G)} = min{16−6, 24−4} = 10

TL(D) = min{TL(F)−(duration D-F), TL(E)−(duration D-E)} = min{26−9, 16−7} = 9

TL(B) = min{TL(D)−(duration B-D), TL(E)−(duration B-E),
 TL(C)−(duration B-C)}

= min{9−5, 16−8, 10−5}
= 4

TL(A) = min{TL(D)−(duration A-D), TL(B)−(duration A-B)} = min{9−3, 4−4} = 0

It’s no surprise that TL of the starting node is 0. If it wasn’t it would mean that we could start the
whole project late and yet still finish on time!

In Step 3 we find the node slack time (SN) for each node (event) as shown below:

Node A B C D E F G H
SN 0 0 1 0 0 0 1 0

This small PERT diagram is quite tight: only two of the nodes have nonzero slack. Larger
diagrams with many parallel activities often have much more slack in the nodes.

In Step 4 we find total arc slack time (SA) for each arc (activity) as shown below.

Arc AB AD BC BD BE CE CG DE DF EF EG EH FH GH
SA 0 6 1 0 4 1 11 0 8 0 1 10 0 1

The arcs have quite a bit more slack time than the nodes in this small example. Later we will see
how this slack can be put to good use in adjusting resource demands.

Finally, in Step 5, we find the critical path by linking the nodes having no slack via the arcs
having no slack. Figure 11.2 shows the critical path for our example PERT diagram. The nodes
and arcs having no slack are shown in boldface. If you’ve been watching closely, you might
have noticed that the critical path through the PERT diagram is actually the longest path through
the network. If you only needed the critical path and its length, it’s easy to convert Dijkstra’s
shortest route algorithm to a longest route algorithm to find it.

Sometimes a situation arises in which one activity must precede two different events. How can
this happen when a single arc can terminate only at a single event node? The solution lies in the
use of dummy arcs which have a duration of zero. Dummy arcs are normally shown as dashed
lines, as in the diagram fragment in Figure 11.3, in which activity A-B is the immediate
predecessor of both event C and event D.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

5

The
determination of
the critical path
and hence of the
duration of the
entire project

obviously
depends very
heavily on

accurately
assessing the
duration of each

individual
activity. How is

this done in practice? There are two main approaches: direct estimates, and the three-estimate
method.

In direct estimation, a single number is stated directly, perhaps based on
long experience with similar projects. In the three-estimate approach, 3
estimates with specific properties are used in a weighted average. m is the
most likely value, obtained in a manner similar to the direct estimate. a is
an optimistic estimate, i.e. the time needed if everything goes just right (the
weather is good, building materials arrive on time, crew is on time). Finally
b is the pessimistic estimate, i.e. the time needed if everything goes wrong
(it’s raining, materials are late, crew books off sick, etc.). Given these three
estimates, the final duration is set as (a+4m+b)/6.

Probabilistic PERT

Estimating is an inexact art, so we expect that our initial duration estimates have some error in
them. What we would really like to know is how much this error is going to affect our estimate
of the total project duration. Fortunately, with a few assumptions and very little extra work we
can make some judgments about the likely amount of variation in the total project time. To do
this we start with the three-estimate approach to estimating the activity durations. Next we make
the following assumptions:

• The activity durations fit a Beta distribution.

• The range from a to b in the three-estimate approach covers 6 standard deviations.

• The activity durations are statistically independent.

• The critical path now means the path that has the longest expected value of total project
time.

• The overall project duration has a normal distribution.

A

B

C D

5

0 0

Figure 11.3:
Dummy arcs.

A

D

B C

E

F

G

H
3

4

5

9

7

8

5 4

6

10

3

7

3

5

Figure 11.2: The critical path.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

6

Given these assumptions, the expected value of each activity duration is given in exactly the
same way as for the three-estimate approach: (a+4m+b)/6. The variance of each activity
duration in this model is [(b−a)/6]2.

Now the expected value of the total project duration is the sum of the expected activity durations
along the critical path, which is found in the usual way. Finally the payoff: the variance of the
total project duration is the sum of the variances of the activity durations for the activities in the
critical path. This is very useful information for the managers: now they have some idea of how
much the total project time might vary.

Resource Leveling

The method shown previously for determining the minimum amount of time to complete a
project assumes that you have all the resources that you need. For example, it assumes that you
have several crews to carry out activities simultaneously where the activities run in parallel in the
PERT diagram. But suppose two activities should be done at the same time, but both require the
use of the bulldozer, and you only have one bulldozer? If this happens the project may take
longer to complete because the two activities must now be done in sequence, instead of in
parallel. I say may take longer, because there may be slack in the two arcs which allows them to
be shifted apart in time so that they no longer compete for the bulldozer, without lengthening the
overall project time. As you see, the time and resources needed to complete a project interact in

fundamental ways.

We will explore this concept of using the slack time
in the activities to move resource demands around.
To keep things manageable, we will use a small
piece of the PERT diagram from Figure 11.1, as
shown in Figure 11.4.

There are actually two kinds of slack associated with
an arc, e.g. arc B-C in Figure 11.4. The total arc
slack, as we have seen before, is given in this case by
TL(C) – TE(B) – (duration B-C) = 10 – 4 – 5 = 1.
The free arc slack is given in this case by TE(C) –
TE(B) – (duration B-C) = 9 – 4 – 5 = 0.

The total arc slack is the maximum amount of slack time available. If you start an activity later
than the TE of the node at its tail, by an amount equal to the total arc slack, this pushes the node
at the head of the arc to its latest time. This has consequences downstream: activities later than
the head node event time may now not be able to use their total slack. It’s always OK to use up
the free arc slack because this has no downstream consequences. However if you wish to push
an activity later by any amount of time between the free slack and the total slack, you must be
careful that there are no negative downstream consequences. In other words, you can schedule
actvity B-C to begin at any time between TE(B) and TE(B) + (free slack B-C) without fear.
However if you want to schedule activity B-C to start sometime between TE(B) + (free slack B-
C) and TE(B) + (total slack B-C), then there may be downstream consequences because node C
will be pushed later than TE(C).

A

D

B C

E

3

4

5

7

8

5

6

Figure 11.4: A small part of Figure 11.1.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

7

The table below summarizes the total and free slack for all of the non-critical activities. Why do
we list only the non-critical activities? Because the slack, both total and free, is always zero for
the critical activities, by definition.

Activity Total slack Free slack
A-D 6 6
B-E 4 4
B-C 1 0
C-E 1 1

Now suppose that each activity, including the critical activities, must be staffed by certain
numbers of employees, as shown in the following table:

Activity Employees needed
A-B 3
B-D 2
D-E 3
A-D 4
B-E 3
B-C 2
C-E 2

Now we will try a few simple scenarios to see the effect that using the slack time in different
ways has on the total number of employees needed at any point in the project. Remember that

Figure 11.5: Every activity scheduled as late as possible.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

8

each activity can be scheduled individually within the parameters of its free and total slack.
However, to keep things simple, we will try these two scenarios: all activities scheduled as early
as possible, and all activities scheduled as late as possible.

The scenario in which all activities are scheduled as late as possible is shown in Figure 11.5.
The top part of Figure 11.5 is a Gantt chart, which shows the timing of each activity as a solid
line. For example, activity A-D starts at time 6 and runs to time 9. The dashed extensions on the
A-D line indicate the range of other possible starting times for A-D. The length of the dotted
section is the amount of total slack available to the activity. There is no slack for the critical path
activities.

 The Gantt chart shows when each activity takes place, and we know how many employees are
needed for each activity, so we can calculate the number of employees needed every day. For
example, between time 8 and time 9 there are four activities taking place simultaneously: activity
B-D (2 employees), activity A-D (4 employees), activity B-E (3 employees) and activity B-C (2
employees) for a total of 11 employees, the peak demand over the whole 16 day period. The
demand for employees is charted in the bottom part of Figure 11.5.

The resource demands in Figure 11.5 are very uneven. Few employees are needed over the first
6 days, but then the demand shoots up quickly to a peak of 11 employees at time 8 to 9 before
settling back to a need for 8 employees. This is a real problem if the company is operating with
8-person crews. For the first several days, most of the employees have nothing to do except
drink coffee, while at time 8-9 the company will need to hire extra people or to pay overtime.
For reasons such as these, managers usually want to level out the demand for resources, and this
is referred to as resource leveling. What we’d like to do in Figure 11.5 is to somehow move
some of the resource demand from the later part of the project to the earlier part of the project.
This can be done by rescheduling some of the activities which have slack.

Figure 11.6 shows a second scenario, this time with all of the activities scheduled as early as
possible. This scenario eliminates the peak of demand for employees that was seen in Figure
11.5. In fact, this is a schedule which can be accomplished without overtime using an 8-
employee crew, so it is much preferred by management.

Note that many other scheduling scenarios are possible, using any combination of the possible
starting times for the non-critical activities. For example, in Figure 11.6 we could shift activity
C-E one day later in order to remove part of the 3-day period that requires 8 employees. Now it
might be cheaper to run the project with a 7-employee crew and pay two days of overtime. Note
that you must be careful with events such as C which have node slack. As you see in both Gantt
charts, the ending C in activity B-C is offset from the starting C in activity C-E, indicating the
possible ending and starting times of the two activities. However, if activity B-C uses its total
slack, then C is pushed to its latest time, which means that activity C-E cannot start any earlier
than that.

Common questions related to resource leveling include: Can I complete the project on time with
a limited amount of resource (e.g. 8 employees)? What is the minimum amount of resource
needed to complete this project on time? Given that I have only a set amount of resource, what
is the minimum amount of time in which the project can be completed? Note that this last

Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

9

question takes the resource limit as fixed, and instead allows the project to take more time to
complete. As an example, consider a project in which there is exactly one unit of resource (e.g.
one employee) and each activity requires 1 employee. Now how long will it take the complete
the project? The answer is simple: since there is no possibility of doing any of the activities in

parallel, the time needed to complete the project is the simple sum of all of the activity durations!

We have considered a simple case in which there is only a single type of resource (employees).
In more complex projects there can be numerous resource types, e.g. bulldozers, graders, cement
mixers, electricians, plumbers, dump trucks, front-end loaders, excavators, etc. Now you will
have numerous interrelated resource leveling problems since a single activity will likely involve
some subset of several of these resources.

Leveling resources to minimize the maximum amount of resource needed at any point in time is
a very difficult combinatorially explosive problem, so it is solved via heuristics. Every
commercial vendor of project planning software uses different proprietary heuristics, which
means that the same resource leveling problem submitted to several different software packages
will probably give you several different solutions. One heuristic I am aware of was developed
by Pierre Paulin for the Ph.D. thesis in the Electronics Department here at Carleton University.
His problem involved implementing a series of instructions on a chip which had a limited
number of devices such as adders, buffers etc., so it was a classic multi-resource leveling
problem. He developed the “force-directed” method which first works out the average rate of
resource usage, and then conceptually adds “springs” to pull the valleys in the resource diagram
up towards the average level and pull down the peaks. You then seek a kind of force balance

Figure 11.6: Every activity scheduled as early as possible.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

10

between the “spring constants” which is achieved when the peaks and valleys are smoothed out
as much as possible.

Time-Cost Tradeoffs

In real applications it is sometimes possible to reduce the amount of time that an individual
activity takes by paying more, e.g. for overtime, for faster computers, for courier delivery, etc. If
the project takes longer to complete than you have available, then you will have to spend some
money to speed things up. But which activities should you speed up? Obviously those on the
critical path, but if you speed up one activity on the critical path, the critical path itself may
change to some other set of activities. And which activity on the critical path should you speed
up, since some may be more expensive than others? And how much should you speed it up?

This is a complicated problem. You really can’t solve it by looking at the activities one at a time
– you need to consider them all simultaneously. Fortunately there is a nifty optimization
formulation which addresses this issue. Here we will show a linear programming formulation,
but the extension to nonlinear programming should be obvious.

The fundamental element in the linear programming
formulation is a simple model showing how time and
money trade off for each activity, as shown in Figure 11.7.
In Figure 11.7, the “normal point” shows the length of
time (Dij, large D for large duration) and cost (CDij) when
activity ij is run in the normal manner. The “crash point”
shows the length of time (dij, small d for small duration)
and cost (Cdij) when the activity is “crashed”, or sped up to
the maximum extent possible. Note that the cost for the
activity goes up as the duration goes down – money is
exchanged for time. We assume that any amount of
speedup between Dij and dij is possible. Kij is just the
value on the cost axis reached by extending the time-cost
tradeoff line for the activity; it makes the formulation a
little simpler.

Now every activity can have a duration somewhere dij and Dij. The unknown duration for
activity ij is represented by the variable xij. We also define the constant Cij = (Cdij – CDij)/(Dij −
dij), which is just the negative of the slope of the time-cost tradeoff line. Cij allows us to
compactly express the cost of any intermediate value on the time-cost tradeoff line as Kij – Cijxij,
where dij ≤ xij ≤ Dij.

The objective is to minimize the total costs of speeding up activities while meeting a specified
deadline, i.e. to minimize ∑ij(Kij – Cijxij). However we can always drop constants which appear
in objective functions, so it can be rewritten as minimize ∑ij(–Cijxij), which is the same as
maximize ∑ijCijxij.

We also need to capture the precedence relationships in the PERT diagram. This seems difficult
because we don’t know the event times, let alone the durations of the activities. We define the

Crash point

Normal point

Dij dij

CDij

Cdij

Kij

time

cost

Figure 11.7: Time-cost tradeoff for
activity ij.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2009
http://www.sce.carleton.ca/faculty/chinneck/po.html

11

variables yk to represent the unknown event times. Now how do we capture the
precedence relationships? The main idea is to make sure that no activity
leaving an event node begins before all of the activities entering the event node
have terminated. For example, consider Figure 11.8. How do we make sure
that y7, the event time for node 7, is later than the latest arrival time of activities
4-7 and 5-7? The behaviour we want is y7 = max{y4+x47, y5+x57}. This is
easily achieved by using two inequalities: y4+x47 ≤ y7 and y5+x57 ≤ y7.

Now we are almost ready to set up the entire linear program. For the starting
event, define y1 = 0 and for the ending event, define yn ≤ T. Note that T, the

project deadline, should be less than the shortest project time if every activity is run in normal
time, otherwise the solution is obvious: just run every activity in normal time.

Now we can summarize the entire formulation:

maximize ∑ijCijxij
subject to: dij ≤ xij ≤ Dij for all activities (arcs)

 yi + xij – yj ≤ 0 for all events (nodes)

 y1 = 0

 yn ≤ T

 xij, yk ≥ 0

The minimum cost for speeding up the project is not given directly by the optimum value of the
objective function, but it is easy to calculate it once the xij values are known.

As you can see, the same general formulation can be used when the time-cost tradeoff curve is
nonlinear, with the exception that the objective function will not be linear. I have used a
nonlinear version of this formulation in a transistor-sizing optimization. The idea is to keep the
signal propagation time below a certain limit. The propagation time is given by the critical path
through the transistor network. However the propagation time through an individual transistor
depends on the sizes of the transistor and its neighbours. “Cost” in this instance is transistor size,
where larger transistors are faster. The idea is to make sure that the signal propagates in a time
below the stated limit while keeping the total transistor area as small as possible. The objective
function in this case was nonlinear, as were the constraints defining the xij.

4

5

7

Figure 11.8:
Capturing

precedence.

	Chapter 11: PERT for Project Planning and Scheduling
	Probabilistic PERT
	Resource Leveling
	Time-Cost Tradeoffs

