
Quantum Circuit Complexity1Andrew Chi-Chih YaoDepartment of Computer SciencePrinceton UniversityPrinceton, New Jersey 08544AbstractWe study a complexity model of quantum circuits analogous to the standard (acyclic)Boolean circuit model. It is shown that any function computable in polynomial time by aquantum Turing machine has a polynomial-size quantum circuit. This result also enablesus to construct a universal quantum computer which can simulate, with a polynomialfactor slowdown, a broader class of quantum machines than that considered by Bernsteinand Vazirani [BV93], thus answering an open question raised in [BV93]. We also developa theory of quantum communication complexity, and use it as a tool to prove that themajority function does not have a linear-size quantum formula.Keywords. Boolean circuit complexity, communication complexity, quantum communi-cation complexity, quantum computationAMS subject classi�cations. 68Q05, 68Q15
1This research was supported in part by the National Science Foundation under grant CCR-9301430.

1 IntroductionOne of the most intriguing questions in computation theroy (see e.g. Feynman [Fe82])is whether computing devices based on quantum theory can perform computations fasterthan the standard Turing machines. Deutsch proposed a Turing-like model [De85] forquantum computations, and constructed a universal quantum computer that can simulateany given quantum machine (but with a possible exponential slowdown). He subsequentlyconsidered a network-like model, called quantum computational networks, and establishedsome of their basic properties [De89]. His discussions, however, centered mostly on thecomputability issue without regard to the complexity (i.e. cost) issue.A signi�cant step towards better understanding the complexity issue in the quantumTuring model was taken by Bernstein and Vazirani [BV93], who constructed an e�cientuniversal quantum computer which can simulate a large class of quantum Turing machineswith only a polynomial factor slowdown. In classical computation, Boolean circuit com-plexity has provided an important alternative framework than Turing complexity. It isthus of interest to develop an analogous quantum model to address the question whetherquantum devices can perform computations faster than the classical Boolean devices.A natural place to start is the framework of quantum computational networks as dis-cussed in [De89]; these networks may be viewed as the quantum analog of conventionallogical circuits (with feedback). In this paper, we single out the subclass of acyclic net-works, and develop a complexity theory of quantum circuits analogous to the standard(acyclic) Boolean circuit model. We show that any function computable in polynomialtime by a quantum Turing machine has a polynomial-size quantum circuit. This result,somewhat unexpectedly, also allows us to construct a universal quantum computer whichcan simulate, with a polynomial factor slowdown, a broader class of quantum machinesthan that considered by Bernstein and Vazirani [BV93], thus answering an open questionraised in [BV93]. We also develop a theory of quantum communication complexity, anduse it as a tool to prove that the majority function does not have a linear-size quantumformula.For other developments on quantum complexity, see Berthiaume and Brassard [BB92]and Jozsa [Jo91]. Qquantum e�ects have also been studied in the context of cryptographicprotocols by Wiesner, Bennett, Brassard, Cr�epeau, and others; for more information onthis subject, see [Br93] for an up-to-date survey and the references in the recent paper[BCJL93]. For work in quantum systems from the perspective of information theory, seefor example, Kholevo [Kh73] and Schumacher [Schu90].2

2 Quantum Boolean CircuitsIn Deutsch [De89], a quantum computation model di�erent from that of quantum Turingmachines was introduced. This is the quantum analog to the classical sequential logical cir-cuits. In essence, some set of elementary gates is chosen as a basis, where each elementarygate is some `-input `-output device speci�ed by a 2`� 2` unitary matrix U . The functionof the gate needs to be understood in the context of quantum computation (see [De89]).We summarize it brie
y. Let Cd denote the vector space of d-tuples of complex numbers,equipped with an inner product < u; v >=P1�i�d u�i vi for u; v 2 Cd. The length of a vec-tor u is given by (< u; u >)1=2. We say that u; v are orthogonal if < u; v >= 0. Let d = 2`.Identify each of the d natural unit vectors (those with a single 1 in one component and0 in all other components) with one of the elements in f0; 1g`. The matrix U transformsany vector u 2 Cd into another vector u0 as follows. For an input � = P~x2f0;1g` c~x ~x, theoutput is given by � = P~x2f0;1g` c~x U~x;~y ~y. In the above formulas, ~x; ~y are interpreted asunit vectors in Cd (and not as an `-tuple of numbers), and multiplications (by constants)and summations are with respect to operations in the vector space Cd. By de�nition, aunitary matrix transforms mutually orthogonal unit vectors into mutually orthogonal unitvectors.A computational network is composed of elementary gates connected together by wires,with suitably chosen time delays as in the classical sequential circuits. The network hasa set of external input wires and output wires. A computation is carried out by settingsome of the input wires to variables, repetitions allowed, x1; x2; � � � ; xn (the rest set toconstants 0; 1), and designate some of the output wires as containing the output variablesy1; y2; � � � ; ym to be sampled at a speci�ed time. We will not give a detailed illustration ofhow such networks function, since we are mainly interested in a restricted class of networkswhich are analogs of acyclic Boolean circuits. >From now on, by circuits we mean acycliccircuits.Let �m denote the set of all m-input m-output quantum gates. Deutsch showed [De89]that, for n � 3, any unitary transformation in C2n (as induced by n Boolean variables)can be computed by a computational network using �3 as a basis, and with only n wires(initially each wire contains one distinct input variable). It turns out that one can showthat the feedback loops can be avoided (as in classical sequential circuits), but at theprice of adding additional wires (called dummy wires) which are set to constants (0 or1) initially and take on the same constant values again at the output end. Note thatthe same phenomenon arose in reversible computing networks for the classical Booleancomputation (To�oli [To81]). 3

Theorem 1 Let n � 1. Any unitary transformation in in C2n (as induced by n Booleanvariables) can be computed by a quantum Boolean circuit using 2O(n) elementary gatesfrom �3, and with O(n) auxiliary wires.We use �3 as the basis, and consider quantum Boolean circuits built from these gates.Since the circuits are acyclic, we don't need to specify the delay time for various gatesand wires. For any quantum Boolean circuit K, with input variables x1; x2; � � � ; xn andoutput variables y1; y2; � � � ; ym (which is a subset of output wires), we associate with eachinput ~x 2 f0; 1gn a probability distribution �~x over f0; 1gm. The probability is de�ned inthe normal way for quantum computations. For input ~x, write the �nal quantum state vcorresponding to all the output wires (not just the output variables yi) as v =P~y2f0;1gm v~y,where v~y is the projection of v when the output variables are set to the values ~y. Then�~x(~y) is equal to the square of the length kv~yk2. We say that f�~x j ~x 2 f0; 1gng is thedistribution generated by K.The case m = 1 is of special interest, in which case the distribution is speci�ed by areal number p~x = �~x(1) for each ~x 2 f0; 1gn. We say that a string ~x 2 f0; 1gn is acceptedby the circuit K if p~x > 2=3, and rejected by K if p~x < 1=3. If every ~x 2 f0; 1gn is eitheraccepted or rejected, we say that K computes the language f~x j ~x is accepted by K g.The size of a quantum Boolean circuit is the number of elementary gates in the circuit,and the depth is the maximum length of any (directed) path from any input wire to anyoutput wire. A circuit is a formula if every input wire is connected to a unique outputvariable yi, and that the path connecting them is unique. Note that due to the unitarynature of quantum computation, the entire circuit cannot look like a forest. The de�nitionhere expresses the condition that, when one looks at only the part of circuit connected bydirected paths to output variables, one sees a forest. (See Figure 1.)For any language L � f0; 1gn, let CQ(L); DQ(L) be the minimum circuit size, circuitdepth for any quantum circuit computing L. Let FQ(L) be the minimum size of anyquantum formula for computing L.To illustrate how elementary gates from �3 transform inputs, we consider an example.For each real number �, let D� denote the 3-input 3-output elementary gate, with itsassociated unitary matrix given byMa0b0c0;abc = �aa0�bb0 [(1� ab)�cc0 + iabhcc0];where �ij = 1 if i = j and 0 otherwise, hcc0 = cos(��=2) if c+ c0 is even and �i sin(��=2)if c + c0 is odd. (See Figure 2 for the matrix explicitly exihibited.) This family of gateswas introduced by Deutsch [De89] as an extension of the To�oli gates (To�oli [To81])4

for classical Boolean circuits. Just as To�oli gates are complete for reversible (classical)Boolean circuits, Deutsch showed that the family D� are su�cient to implement all quan-tum connection networks in the sense that any single D� with � irrational is universal inthe sense that any computational network can be approximated by networks built fromD�. For additional interesting members of �3, see Deutsch [De89].3 Relationships with Turing MachinesA quantum Boolean circuit K with n input variables is said to (n; t)-simulate a quantumTuring machine M , if the family of probability distributions p~x, ~x 2 f0; 1gn generated byK is identical to the distribution of the con�guration of M after t steps with ~x as input.For de�niteness, the con�guration is encoded as a list of the tape symbols from cell �tto t, followed by the state and the position of the head, all naturally encoded as binarystrings.Theorem 2 Let M be a quantum Turing machine and n; t be positive integers. Thereexists a quantum Boolean circuit K of size poly(n; t) that (n; t)-simulates Q.Corollary If L 2 P , then CQ(Ln) = O(nk) for some �xed k. (Ln is the set of stringsin L of length n.)This is the quantum analog of the simulation of deterministic Turing machines byclassical Boolean circuits (see Savage [Sa72], Schnorr [Schn76], Pippenger and Fischer[PF79]). The proof for the quantum version involves subtler arguments. A sketch of themain steps in the proof is given in Section 6.4 A Universal Quantum Turing MachineAs noted in [BV93], the simulation of quantum machines is a nontrivial problem, andneeds careful discussions even for the subclass of deterministic reversible machines (see[Be73] for discussions of such machines). In this section, we answer an open questionabout simulating quantum machines raised by Berstein and Vazirani [BV93]. In [BV93],it was shown that there is a univeral quantum Turing machine (with a polynomial slow-down) for the class of quantum Turing machines in which the read/write head must moveeither to the right or to the left at each step. It was asked whether there is a universalmachine with only a polynomial slow-down when the head is not required to move. This5

is an interesting question, as it would be an uncomfortable situation in which one mayproduce quantum machines but cannot execute them as programs on a general computere�ciently, if the answer turns out to be negative. The next result gives a positive answer.In this extended abstract, by quantum Turing machines we mean one-tape machineswith its head allowed to move in each quantum step either to the right, or to the left, orstay in the same place. (For a formal speci�cation, see [BV93].) Theorems 1 and 2 can beextended to the standard variations of this model. (This will be discussed in the completepaper.)Theorem 3 There exists a universal quantum Turing machine that can simulate anygiven quantum Turing machine with only a polynomial slow-down.The proof of Theorem 3 uses Theorem 2. Basically, the universal machine �rst con-structs a quantum circuit K to simulate the given Turing machine, then follows the circuitdiagram deterministically and uses quantum steps to simulate computation of successiveelementary gates. One complication is that since a universal machine has only a �nite setof transitions, one needs to perform approximate computations in the same way as wasdone in [BV93]. We omit the details in this extended abstract.5 Quantum Communication ComplexityInteracting quantum machines can be de�ned in several ways. We will only introducea special model here which can be used to prove lower bounds on circuit complexity.An interacting pair (M1;M2) of quantum Boolean circuits is a partition of a quantumBoolean circuit such that M1 and M2 have disjoint sets of input variables, and all theoutput variables are contained in one side. The communication cost of (M1;M2) is thenumber of wires passing between M1 and M2.Analogous to the standard notion of communication complexity (see [Ya79]), the quan-tum communication complexity of a function f(~x; ~y) is de�ned to be the minimum com-munication cost of any interacting pair of quantum Boolean circuit for computing f with~x, ~y being the respective inputs to M1;M2. It is possible to generalize this concept toother models, such as the multi-party case with shared variables (Chandra, Furst and Lip-ton [CFL83]) and the communication complexity for relations (Karchmer and Wigderson[KW90]). One can also de�ne quantum communication complexity with no error allowed,or with quantum help bits, etc. We discuss these matters further in the complete paper.6

The determination of communication complexity is more di�cult in the quantum case,we discuss here only one result here. It will be applied to prove a lower bound result aboutquantum formula size.Let ~x = (x1; x2; � � � ; xn), ~y = (y1; y2; � � � ; yn) be n-tuples of Boolean variables. Letf(~x; ~y) = 1 if there are at least n 1's among the 2n arguments, and 0 otherwise.Theorem 4 The quantum communication complexity of f is �
(log log n).A proof of Theorem 4 is given in Section 7. Let MAJn be the majority function of nvariables. We show that MAJn have no linear-size quantum formula.Theorem 5 FQ(MAJn)=n!1.To prove Theorem 5, we reduce the problem to one of communication complexity(using a Ramsey-type argument similar to those used by Hodes and Specker [HS68]), andthen apply Theorem 4. We omit the proofs here.6 Proof of Theorem 2LetM be a quantum Turing machine with alphabet set �, set of states Q, and transitionalcoe�ecients �(q; a; �; q0; a0) with � 2 f ; �;!g; the symbols ;!; � are interpreted asmoving to the left, to the right, and staying stationary. As is in the notation of [BV93],� is the amplitude of M to change state to q0, print a0 and move according to � , if themachine is currently in state q and reading tape symbol a.We construct a quantum circuit which is the concatenation of T identical subcircuits.Each subcircuit, denoted by K, performs one step of the simulation.The encoding for the con�guration can be chosen di�erently from the one speci�ed inSection 3. As long as it is polynomial-time equivalent to the required format, one can addan encoding and decoding unit to the front and back ends of the solution to obtain therequired �nal network.For our solution, we use ` = O(2 + dlog2(jQj+ 1)e + dlog2 j�je) wires for each of the2t + 1 cells (numbered from 0 to 2t instead of from �t to t). The current values of thewires for cell i will be denoted by si; qi; ai, where si 2 f0; 1; 2; 3g (two wires), qi 2 Q[f;g(dlog2(jQj + 1)e wires) and ai 2 � (dlog2 j�je wires). The variable si takes on value 07

when the head is not at cell i, value 1 when the head is at cell i and has not been activelyinvoked in the simulation, and 2 when the head has been used in the simulation and isnow at cell i.The subcircuit K is constructed as follows. The basic building block is a circuit Gwith 3` wires. We build K by cascading 2t� 1 units of G, each shifting right by ` wires,and at the end, adding a circuit I whose function is to change all si with values 2 to 1and 1 to 2. Denote the i-th unit of G by Gi. (See Figure 3.)Clearly, I is unitary, and can be constructed with O(t) elementary gates. We nowdescribe how to construct the unitary G.The central idea is as follows. Think of G as having 3` inputs describing the contents ofthree consecutive cells (including the information whether the head is there). We want Gto transform the contents of these cells if the head is at the middle cell and the simulatedstep has not occurred (i.e. si = 1 if cell i is the middle cell), according to how the simulatedmachine would transform the contents. The obvious �rst try for designing G would be tolet G do nothing when si 6= 1. This would not work since some linear combinations ofcon�gurations with si 6= 1 can lead to the same output as when si = 1, and G would not beunitary. The idea is for G to leave all the realizable linear combinations of con�gurationswith si 6= 1 untouched, but allowed to alter the values of wires for situations that do notarise in any computation. This turns out to give enough freedom for a unitary G to exist(and constructible).Let us formalize the above conditions. We write down the conditions for the i + 1stunit G (with wires from cells i� 1; i; i+ 1). Let H denote the subspace of C23` spannedby three types of vectors:(i) jsi�1; qi�1; ai�1; si; qi; ai; si+1; qi+1; ai+1 >where si 6= 1 and none of si�1; si; si+1 is equal to 2;(ii) vqi�1 ;ai�1 ;ai;ai+1 for all possible values of these parameters, wherevqi�1 ;ai�1 ;ai;ai+1 =Xq0;a0 �(qi�1; ai�1; �; q0; a0)j2; q0; a0; 0; ;; ai; 0; ;; ai+1 > +Xq0;a0 �(qi�1; ai�1;!; q0; a0)j0; ;; a0; 2; q0; ai; 0; ;; ai+1 > ;(iii) uqi�2 ;ai�2 ;a0;ai�1;ai for all possible values of these parameters, whereuqi�2 ;ai�2 ;a0;ai�1 ;ai =Xq0 �(qi�2; ai�2;!; q0; a0)j2; q0; ai�1; 0; ;; ai; 0; ;; ai+1 > :8

Type (i) vectors and their linear combinations are distinct from, and in fact orthogonalto, any possible resulted vector when the Turing machine takes a step with head at cell i.Type (ii) vectors are vectors resulted when the Turing machine takes a step with head atcell i� 1 and, afterwards, with the head resting at cell i � 1 or i. Type (iii) vectors arevectors resulted when the Turing machine takes a step with head at cell i � 2 and withthe head resting at cell i� 1. >From the viewpoint of G, the only input con�gurations arelinear combinations of two kinds of vectors: those with si = 1, and those from H . Clearly,these two kinds of vectors are orthogonal. The next lemma states the crucial propertythat, for an input w with si = 1 (a vector of the former kind), the execution of one stepof the simulated Turing machine takes w to w0 which will still be orthogonal to H . Writew as j0; ;; ai�1; 1; qi; ai; 0; ;; ai+1 >.Lemma 1 For all possible values of ai�1; qi; ai; ai+1, the following vectors are mutuallyorthogonal unit vectors and are orthogonal to the subspace H :Xq0;a0 �(qi; ai; ; q0; a0)j2; q0; ai�1; 0; ;; a0; 0; ;; ai+1 >+Xq0;a0 �(qi; ai; �; q0; a0)j0; ;; ai�1; 2; q0; a0; 0; ;; ai+1 >+Xq0 ;a0 �(qi; ai;!; q0; a0)j0; ;; ai�1; 0; ;; a0; 2; q0; ai+1 > :Proof By a careful check of the unitarity constraints on the quantum Turing machineM . Details omitted from this abstract. 2We put the following requirements on G:(a) For each v 2 H , G(v) = v.(b) Gj0; ;; ai�1; 1; qi; ai; 0; ;; ai+1 >=Xq0;a0 �(qi; ai; ; q0; a0)j2; q0; ai�1; 0; ;; a0; 0; ;; ai+1 >+Xq0;a0 �(qi; ai; �; q0; a0)j0; ;; ai�1; 2; q0; a0; 0; ;; ai+1 >+Xq0 ;a0 �(qi; ai;!; q0; a0)j0; ;; ai�1; 0; ;; a0; 2; q0; ai+1 > :Lemma 2 There exists a unitary G satisfying the above requirements. Furthermore,the matrix entries of G are rational functions of entries of transitional coe�cients of thesimulated Turing machine.Proof The requirements state that all the vectors in the subspace H remain �xed byG, and that a set of unit vectors mutually orthogonal and orthogonal toH are transformed9

by G into unit vectors that are mutually orthogonal and orthogonal to H . Such G existsand can be found by solving a set of linear equations. 2By Theorem 1, G can be implemented as a quantum Boolean circuit using 2O(`) el-ementary gates. We have thus speci�ed how K is built as an O(t2O(`))-size quantumBoolean circuit. It remains to prove that K correctly simulates one step of the operationof the given quantum Turing machine M .It su�ces to prove that K correctly simulates one step of M when the head is at celli for 1 � i � 2t� 1. For each Turing machine (pure) con�guration , let �() denote thecorresponding unit vector js0; q0; a0; s1; q1; a1; � � � ; s2t; q2t; a2t > 2 C(2t+1)`.Let 0 be any (pure) con�guration of M with head at some cell 1 � i � 2t � 1. Let 0 !P c after one step of execution by M . We show that, for input �(0) to K, theoutput of K is P c �().Let �(0) = k0; k1; � � � ; k2t�1, where ki is the vector in C2(2t+1)` corresponding to thewire values in K after Gi has just been passed by. We would like to show that k2t�1 isessentially equal to P c �() (except that the values of sj would be 2 when they shouldbe 1).Clearly, for j = 1; 2; � � � ; i�1, the 3-cell segments input toGj belongs toH (in fact type(i)), and hence no modi�cations of wire values take place. Thus, kj = k0 for 0 � j � i� 1.At Gi, since si = 1, ki is obtained from ki�1 according to item (b) in the requirements forG (see the paragraph before Lemma 2). This is almostP c �(), except that the valuesof sj would be 2 when they should be 1. We only need to show that this vector remainsthe same through the rest of the G units (i.e. Gi+1; � � � ; G2t�1).At Gi+1, we can calculate ki+1 as follows. Write ki = k0i + k00i , where k0i is the portionwith the head at cell i � 1 and k00i is the portion with the head at cell i and i + 1. Wecan examine how Gi+1 modi�es k0i and k00i separately and add the resulted vectors. It iseasy to see that the 3-cell segment of k0i input to Gi+1 is a vector in H (in fact a linearcombination of vectors of type (i)), and hence k0i will not be changed by Gi+1. It is alsoeasy to see that the 3-cell segment of k00i input to Gi+2 is a vector in H of type (ii), andhence k00i will also not be changed by Gi+1. We conclude the ki+1 = ki. A similar argumentshows that Gi+2 does not change its input in any way and hence ki+2 = ki+1 = ki.Note that ki is a linearcombination of vectors of the form js0; q0; a0; s1; q1; a1; � � � ; s2t; q2t; a2t) >2 C2(2t+1)` withsj = 2 for some j 2 fi � 1; i; i+ 1g and all other sr = 0. It follows that, by induction,each Gj (j > i+2) sees only 3-cell segments belonging to H (type (i) vectors), and hencekj = ki. This completes the proof of Theorem 2.10

7 Proof of Theorem 4Let (M1;M2) be a pair of interacting quantum Boolean circuit that computes f with errorprobability less than 1=3. We will show that t �
(log log n), where t is the number ofwires crossing between M1 and M2.Without loss of generality, we can assume that the t cross wires go alternately fromone machine to the other, with the �rst wire being from M1 to M2, and the last from M2to M1. The last wire carries the result of the computation, with the answer being 1 if thethe wire is in state j1 >. Let � = fj0 >; j1 >g. By de�nition, � is a computational basisfor the signal space of every wire, and the Hilbert space of the circuit is the direct productof these signal spaces.LetM1 andM2 contain k+1 and ` wires, respectively. The Hilbert space of the circuitcan be regarded as the direct product of three Hilbert spaces H1, H2, and H3, where H1and H2 come from the wires in M1 and M2, and H3 is the signal space of one wire whichgoes from M1 to M2 and back t times. Clearly, H1 and H2 have dimensions 2k and 2`,and H3 has dimension 2.Let ~e = (e1; e2; � � � ; et) 2 �t, where ei denotes the state of the i-th cross wire. For anyinput x 2 f0; 1gn to M1, let ax;~e 2 H1 be the output state of M1 obtained from the inputstate as follows: at cross wire # 1, project the current state s00 2 H1 � H3 to s1 2 H1by restricting the component of s00 in H3 to e1; then at cross wire # 2, with s1 havingevolved within M1 to state s01, force the # 2 cross wire state to be e2, i.e. make the stateof the circuit on the M1 side s2 = s01
 e2; following the circuit to the point of cross wire# 3, project the current state s02 2 H1 � H3 (s2 having evolved into s02) to s3 2 H1 byrestricting the component of s02 in H3 to e3; � � �, etc. In a similar way, for any y 2 f0; 1gn,let by;~e 2 H2 be the output state of M2 obtained by the circuit from input y.It is clear that, for input (x; y) to the circuit (M1;M2), the output state is equal toX~e=(e1;���;et)2�t ax;~e
 by;~e
 et:Thus, the probability of the circuit accepting input (x; y) ispx;y = kX~e2E ax;~e
 by;~ek2;where E = �t�1 � fj1 >g.The idea of the proof is to show that, if t is not large enough, then there will betwo y; y0 2 f0; 1gn with di�erent number of 1's in them, say n1 and n2, but with similarfeatures in by;~e; by0;~e such that px;y � px;y0 for all x. This leads to a contradiction if we11

select an x with its number of 1's between n � n1 and n � n2, since the circuit shouldaccept exactly one of the pairs (x; y), (x; y0). We now make it precise.For every e; e0 2 E, let âx;e;e0 =< ax;e; ax;e0 >, and b̂y;e;e0 =< by;e; by;e0 >.Lemma 3 px;y =Pe;e02E âx;e;e0 b̂y;e;e0 for all x; y.Proof Omitted. 2For each y, de�ne the feature vector of y byvy = ((m;m0) j e; e0 2 E);where m = bRe(b̂y;e;e0)(log2 n)3c and m0 = bIm(b̂y;e;e0)(log2 n)3c. Clearly, there are atmost (((log2 n)3) + 1)2E2 distinct possible feature vectors.Assume that t < (log2 log2 n � log2 log2 log2 n� 10)=2. We will derive a contradiction(for large n). Clearly, E = 2t�1 < (log2 n=20 log2 log2 n)1=2. Thus, there are at most((log2 n)3 + 1)2E2 < n di�erent feature vectors. It follows that there are two y; y0 withdi�erent number of 1's, say n1 > n2, but with vy = vy0 .Using Lemma 3, we have for any xjpx;y � px;y0 j � Xe;e02E âx;e;e0 ĵby;e;e0 � b̂y0;e;e0j� Xe;e02E âx;e;e02(log2 n)�3� 2E2=(log2 n)3� (log2 n)�1:Let x 2 f0; 1gn be a string with its number of 1's being in the interval [n�n1; n�n2]. Thenone of px;y; px;y0 should be less than 1=3 and the other greater than 2=3, since exactly oneof the pairs (x; y), (x; y0) is accepted by the circuit. This is a contradiction. This provesthe theorem.8 ConclusionsWe have initiated a study of Boolean circuit and communication complexity in the quan-tum computation context. It is hoped that this line of investigation leads to interestingnew mathematical questions, and perhaps sheds light on other aspects of quantum com-putation such as the quantum Turing machine model. The results presented here seem tobe encouraging. 12

References[Be73] C. Bennett, \Logical reversibility of computation," IBM J. Res. Develop. 17(1973), 525-532.[BB92] A. Berthiaume and G. Brassard, \The quantum challenge to structural com-plexity theory," Proceedings of 7th IEEE Conference on Structure in ComplexityTheory, 1992.[BV93] E. Bernstein and U. Vazirani, \Quantum complexity theory," Proceedings of1993 ACM Symposium on Theory of Computing, 1993.[Br93] G. Brassard, \Cryptology column - quantum cryptology: a bibliography," SigactNews, vol. 24, no. 3, 1993, 16-20.[BCJL93] G. Brassard, C. Cr�epeau, R. Jozsa, and D. Langlois, \A quantum bit commit-ment scheme provably unbreakable by both parties," Proceedings of 1993 IEEESymposium on Foundations of Computer Science, 1993.[CFL83] A. Chandra, M. Furst, and R. Lipton, \Multi-party protocols," Proceedings of1983 ACM Symposium on Theory of Computing (1983), 94-99.[De85] D. Deutsch, \Quantum theory, the Church-Turing principle and the universalquantum computer," Proceedings of the Royal Society of London, VolumeA400(1985), 97-117.[De89] D. Deutsch, \Quantum computational networks," Proceedings of the Royal So-ciety of London, Volume A425 (1989), 73-90.[Fe82] R. Feynman, \Simulating physics with computers," International Journal ofTheoretical Physics 21 (1982), 467-488.[HS68] L. Hodes and E. Specker, \Lengths of formulas and elimination of quanti�ersI," in Contributions to Mathematical Logic, edited by H. Schmidt, K Schutteand H. Thiele, North-Holland (1968), 175-188.[Jo91] R. Jozsa, \Characterizing classes of functions computable by quantum paral-lelism," Proceedings of the Royal Society of London A435 (1991), 563-574.[KW90] M. Karchmer and A. Wigderson, \Monotone circuits for connectivity requiresuper-logarithmic depth," SIAM Journal on Discrete Mathematics 3 (1990),255-265. 13

[Kh73] A. Kholevo, \Bounds for the quantity of information transmitted by a quantumcommunication channel," Problemy Peredachi Informatsii 9 (1973), 3-11. En-glish translation of the journal by IEEE under the title Problems of InformationTransfer.[PF79] N. Pippenger and M. Fischer, \Relations among complexity measures," Journalof ACM 26 (1979), 361-381.[Sa72] J. Savage, \Computational work and time on �nite functions," Journal of ACM19 (1972), 660-674.[Schn76] C. Schnorr, \The network complexity and Turing machine complexity of �nitefunctions," Acta Informatica 7 (1976), 95-107.[Schu90] B. Schumacher, \Information from quantum measurements," in Complexity,Entropy, and the Physics of Information, Santa Fe Institute Studies in theSciences of Complexity, Volume VIII, edited by W. Zurek, Addison-Wesley,1990, 29-38.[To81] T. To�oli, \Bicontinuous extensions of invertible combinatorial functions,"Mathematical Systems Theory 14 (1981), 13-23.[Ya79] A. Yao, \Some questions on the complexity of distributive computing," Proc.1979 STOC, 1979, 209-213.

14

