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The Dual Linear Program
When a solution is obtained for a linear program with the revised simplex method, the
solution to a second model, called the dual problem, is readily available and provides
useful information for sensitivity analysis as we have just seen.  There are several bene-
fits to be gained from studying the dual problem, not the least of which is that it often has
a practical interpretation that enhances the understanding of the original model.
Moreover, it is sometimes easier to solve than the original model, and likewise provides
the optimal solution to the latter at no extra cost.  Duality also has important implications
for the theoretical basis of mathematical programming algorithms.  In this section, the
dual problem is defined, the properties that link it to the original (called the primal) are
listed, and the procedure for identifying the dual solution from the tableau is presented.

Definition of the Dual LP Model

In discussing duality, it is common to depart from the standard equality
form of the LP given in Section 4.1 in order to highlight the symmetry of
the primal-dual relationships.  The dual model is derived by construction
from the standard inequality form of linear programming model as shown
in Tables 1 and 2.  All constraints of the primal model are written as less
than or equal to, and right-hand-side constants may be either positive or
negative.  In the primal model there are assumed to be n decision variables
and m constraints, thus c and x are n- dimensional vectors.  The matrix of
structural coefficients, A, has m rows and n columns.  The dual model uses
the same arrays of coefficients but arranged in a symmetric fashion.  The
dual vector  has m components.

Table 1.  Matrix definition of primal and dual problems

(P) Maximize zP = cx

subject to Ax ≤ b

x ≥ 0

(D) Minimize  zD = b

subject to A ≥ c

 ≥ 0

Table 2.  Algebraic definition of primal and dual problems

(P) Maximize  zP = c1x1 + c2x2 + ... + cnxn (D) Minimize zD = b1π1+b2π2+...+bmπm

subject to a11x1 + a12x2 + … +a1nxn ≤ b1 subject to a11π1+a21π2+...+am1πm ≥ c1

a21x1 + a22x2 + ... +a2nxn ≤ b2 a12π1+a22π2+...+am2πm ≥ c2

. . . . . . . .

. . . . . . . .

. . . . . . . .
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am1x1 +am2x2+...+amnxn ≤ bm a1nπ1+a2nπ2+...+amnπm ≥ cn

x1 ≥ 0, x2 ≥ 0, … , xn ≥ 0 π1 ≥ 0, π2 ≥ 0, … , πm ≥ 0

Example 4

 (P)Maximize zP = 2x1 + 3x2

subject to – x1 + x2 ≤  5

x1 + 3x2 ≤ 35

x1 ≤ 20

x1 ≥ 0,  x2 ≥ 0

(D) Minimize zD =5π1+ 35π2+ 20π3

subject to – π1 + π2 + π3  ≥ 2

π1+ 3π2  ≥ 3

π1 ≥ 0, π2 ≥ 0, π3 ≥ 0

The optimal solution to the primal including slacks is x* = (20, 5, 20, 0,
0)T with zP = 55.  The corresponding dual solution including slacks is * =

(0, 1, 1, 0, 0) with zD = 55.  Note that zP = zD.  This is always the case as

will be shown presently.

From an algorithmic point of view, solving the primal problem
with the dual simplex method is equivalent to solving the dual problem
with the primal simplex method.  When written in inequality form, the
primal and dual models are related in the following ways.

a. When the primal has n variables and m constraints, the dual has m
variables and n constraints.

b. The constraints for the primal are all less than or equal to, while the
constraints for the dual are all greater than or equal to.

c. The objective for the primal is to maximize, while the objective for the
dual is to minimize.

d. All variables for either problem are restricted to be nonnegative.

a. For every primal constraint, there is a dual variable.  Associated with
the ith primal constraint is dual variable πi.  The dual objective

function coefficient for πi is the right-hand side of the ith primal

constraint, bi.

f. For every primal variable, there is a dual constraint.  Associated with
primal variable xj is the jth dual constraint whose right-hand side is the

primal objective function coefficient cj.
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g. The number aij is, in the primal, the coefficient of xj in the ith con-

straint, while in the dual, aij is the coefficient of πi in the jth constraint.

Modifications to Inequality Form

It is rare that a linear program is given in inequality form.  This is
especially true when the model has definitional constraints that are
introduced for convenience, or when it has been prepared for the tableau
simplex method where all RHS constants must be positive.  Nevertheless,
no matter how the primal is stated, its dual can always be found by first
converting the primal to the inequality form in Table 1 and then writing
the dual accordingly.  For example, given an LP in standard equality form

Maximize  zP = cx

subject to Ax = b, x ≥ 0

we can replace the constraints Ax = b with two inequalities: Ax ≤ b and

– Ax ≥ – b so the coefficient matrix becomes 



 A

– A
 and the right-hand-side

vector becomes (b, – b)T.  Introducing a partitioned dual row vector ( 1,

2) with 2m components, the corresponding dual is

Minimize zD = 1b – 2b

subject to 1A – 2A ≤ c

1 ≥ 0, 2  ≥ 0

Letting  = 1 – 2 we may simplify the representation of this problem to

obtain the pair given in Table 3.

Table 3.  Equality form of primal-dual models
(P) Maximize zP =cx (D) Minimize zD = b

subject to Ax = b subject to A ≥ c

x ≥ 0

This is the asymmetric form of the duality relation.  Similar
transformations can be worked out for any linear program by first putting
the primal into inequality form, constructing the dual, and then simplifying
the latter to account for special structure.  We say two LPs are equivalent
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if one can be transformed into another so that feasible solutions, optimal
solutions and corresponding dual solutions are preserved; e.g., the
inequality form in Table 1 and the equality form in Table 3 are equivalent
primal-dual representations.  This suggests the following result which can
be proven by constructing the appropriate models.

Proposition 1: Duals of equivalent problems are equivalent.  Let (P) refer to an

LP and let (D) be its dual.  Let (^P) be an LP that is equivalent to (P).  Let ( ^D) be

the dual of (^P).  Then ( ^D) is equivalent to (D), that is, they have the same optimal
objective function values or they are both infeasible.

Table 4 describes more general relations between the primal and
dual that can be easily derived from the standard definition.  They relate
the sense of constraint i in the primal with the sign restriction for πi in the

dual, and sign restriction of xj in the primal with the sense of constraint j in

the dual.  Note that when these alternative definitions are allowed there are
many ways to write the primal and dual problems; however, they are all
equivalent.

Table 4. Modifications in the primal-dual formulations

Primal model Dual model

Constraint i is ≤ πi ≥ 0

Constraint i is = πi is unrestricted

Constraint i is ≥ πi ≤ 0

xj ≥ 0 Constraint j is ≥

xj is unrestricted Constraint j is =

xj ≤ 0 Constraint j is ≤

Example 5

 (P) Maximize  zP = – 3x1 – 2x2

subject to –x1 – x2 =   8

x1 + 2x2 ≥ 13

x1 ≥ 0,  x2 unrestricted

(D) Minimize  zD = 8π1+ 13π2

subject to – π1 + π2  ≥  – 3

– π1 + 2π2  =  – 2

π1 unrestricted, π2 ≤ 0
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Relations between Primal and Dual Objective Function Values

There are a number of relationships between solutions to the primal and
dual problems that are interesting to theoreticians, useful to algorithm
developers, and important to analysts for interpreting solutions.  We
present these relationships as theorems and proven them for the
primal–dual pair in Table 1; however, they are true for all primal-dual
formulations.  In what follows, x refers to any feasible solution of the
primal and  to any feasible solution of the dual; x* and * are the
respective optimal solutions if they exist.

Theorem 1 (Weak Duality) In a primal-dual pair of LPs, let x be a primal feasible
solution and zP(x) the corresponding value of the primal objective function that is

to be maximized.  Let  be a dual feasible solution and zD( ) the corresponding

dual objective function that is to be minimized.  Then zP(x) ≤ zD( ).

This theorem shows that the objective value for a feasible solution to the
dual will always be greater than or equal to the objective function for a
feasible solution to the primal.  The following sequence demonstrates this
result.

1. The primal solution is feasible by hypothesis: Ax ≤ b

2. Premultiply both sides by : Dx ≤ b

3. The dual solution is feasible by hypothesis: A ≥ c

4. Postmultiply both sides by x: Ax ≥ cx

5. Combine the results of 2 and 4: cx ≤ Ax ≤ b or

zP(x) ≤ zD( )

There are a number of useful relationships that can be derived from
Theorem 1.  In particular,

• The value of zP(x) for any feasible x is a lower bound to zD( *).

• The value of zD( ) for any feasible  is an upper bound to zP(x*).

• If there exists a feasible x and the primal problem is unbounded, there

is no feasible .
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• If there exists a feasible  and the dual problem is unbounded, there is

no feasible x.

• It is possible that there is no feasible x and no feasible .

The last point is demonstrated by the following example.

Maximize  z  = x1 + 3x2

subject to x1 – x2 ≤   3

– x1 + x2 ≤ – 5

x1, x2 unrestricted

Minimize  zD = 3π1 – 5π2

subject to π1 – π2 =  1

– π1 + π2 =  3

π1 ≥ 0,  π2 ≥ 0

Theorem 2 (Sufficient Optimality Criterion) In a primal-dual pair of LPs, let zP(x)

be the primal objective function and zD( ) be the dual objective function.  If (x̂, ^)

is a pair of primal and dual feasible solutions satisfying zP(x̂) = zD(^), then x̂ is an

optimal solution of the primal and ^  is an optimal solution of the dual.

The proof can be seen in the following steps:

1. Definition of optimality for primal: zP(x̂) ≤ zP(x*)

2. Feasible dual solution bound on zP: zP(x*) ≤ zD( *)

3. Definition of optimality for dual: zD( *) ≤ zD(^)

4. Combine the results of 1, 2 and 3: zP(x̂) ≤ zP(x*) ≤ zD( *) ≤ zD(^)

5. Objectives are equal by hypothesis: zP(x̂) = zD(^)

6. Combine 4 and 5: zP(x̂) = zP(x*) = zD( *) = zD(^)

Therefore, x̂ and ^  are optimal.

This theorem states that equality of objective values implies
optimality; moreover, we have:

h. Given feasible solutions x and  for a primal-dual pair, if the objective
values are equal, they are both optimal.
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i. If x* is an optimal solution to the primal, a finite optimal solution
exists for the dual with objective value zP(x*).

j. If * is an optimal solution to the dual, a finite optimal solution exists
for the primal with objective value zD( *).

Taking these results one step farther lead to the Fundamental Duality
Theorem.

Theorem 3 (Strong Duality) In a primal-dual pair of LPs, if either the primal or
the dual problem has an optimal feasible solution, then the other does also and the
two optimal objective values are equal.

We will prove the result for the primal and dual problems given in Table
3.  Solving the primal problem by the simplex algorithm yields an optimal

solution xB =  B–1b, xN = 0 with  -c = cBB–1N – cN ≥ 0, which can be

written [cB, cN – cBB–1(B, N)] = cBB–1A – c ≥ 0.  Now if we define  =

cBB–1 we have A ≥ c and zP(x) = cBxB = cBB–1b = b = zD( ).  By the

sufficient optimality criterion, Theorem 2,  is a dual optimal solution.

This completes the proof when the primal and dual are as stated.

In general, every LP can be transformed into an equivalent
problem in standard equality form.  This equivalent problem is of the same
type as the primal in Table 3, hence the proof applies.  Also, by
Proposition 1, the dual of the equivalent problem in standard form is
equivalent to the dual of the original problem.  Thus the theorem must
hold for it too.

Complementary Solutions

For purposes of this section it is helpful to repeat the definition of the
primal and dual problems given in Table 1 in a slightly different but
equivalent form.  Table 5 contains the modified representation, where Im

is an m × m identity matrix and xs = (xs1, … , xsm)T an m-dimensional

vector of slack variables.

Table 5.  Equivalent primal-dual pair

(P) Maximize  zP = cx

subject to (A1,… , An)x + Imxs = b

x ≥ 0, xs ≥ 0

(D) Minimize  zD = b

subject to Aj ≥ cj,  j = 1, … , n

 ≥ 0
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Each structural variable xj is associated with the dual constraint j, and each

slack variable xsi is associated with dual variable πi.  Recall that a

basic solution is found selecting a set of basic variables, constructing the
basis matrix B, and setting the nonbasic variables to zero.  This gives the
primal solution

xB = B–1b  with  zP = cBB–1b.

The complementary dual solution associated with this basis is defined to
be

 = cBB–1  with  zD = b = cBB–1b.

Every basis defines complementary primal and dual solutions with iden-
tical objective function values.

Theorem 4 (Optimality of Feasible Complementary Solutions) Given the solution
xB determined from the basis B, when xB is optimal to the primal, the
complementary solution  = cBB–1 is optimal to the dual.

The proof of Theorem 4 can be seen in the following sequence.

1. Primal and dual objective values are equal by construction:

zP(xB) = cBxB = cBB–1b

 zD( ) = b = cBB–1b

2. Primal objective value for a basic solution when nonbasic variable xk is

allowed to increase: zP = cBB–1b – ( Ak – ck)xk

3. Since the primal solution is optimal:

-ck = Ak – ck ≥ 0  or

Ak ≥ ck

4. From 3, when xk is a structural variable, dual constraint k is satisfied:

Ak ≥ ck
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5. From 3, when the nonbasic variable is a slack variable xsi, πi is

nonnegative: csi = 0 and Asi = ei so i ≥ 0

6. For basic variables: cB – B = cB – cBB–1B = 0

7. From 6, when xk is a structural variable and basic, the kth dual

constraint is satisfied as an equality: ck – Ak = 0

8. From 6, when xsi is a slack variable and basic, πi is zero:

csi = 0 and Asi = ei so πi = 0

All constraints are satisfied so  is feasible.  By Theorem 2 it must be
optimal.

From Step 3 of the proof, it can be inferred that the reduced cost, -c

k, for the primal variable xk is equivalent to the dual slack, πsk, for dual

constraint k.  Moreover, Steps 7 and 8 illustrate an important property
known as complementary slackness.  Given the primal-dual pair in Table
1, we have the following.

Complementary solutions property: For a given basis, when a
primal structural variable is basic, the corresponding dual
constraint is satisfied as an equality (the dual slack variable is
zero), and when a primal slack variable is basic (the primal
constraint is loose), the corresponding dual variable is zero.

This property holds whether or not the primal and dual solutions are
feasible.  We have already seen this in the simplex tableau.  That is, when
a primal structural variable is basic, its reduce cost (dual slack) is zero;
when a primal slack variable is basic, the corresponding structural dual
variables is zero (Step 8 of proof).

Illustration of Complementary Solutions

Tables 6 and 7 respectively show the 10 basic solutions for the primal and
dual problems given in Example 4.  In equality form, the primal problem
has 5 variables and 3 constraints, while the dual has 5 variables and 2

constraints.  Thus there are  
n
m  =  

5
3  =  

5
2  = 10 potential bases in each

case.  The numbers in the leftmost column of the tables identify the
complementary solutions; e.g., No. 1 in Table 6 is complementary to No. 1
in Table 7.  Note that for No. 7, no solution exists because the columns
associated with the variables (xs1, xs2, x2) as well as the columns

associated with (πs1, π3) do not form a basis.
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Table 6. Basic solutions for primal problem

Basic Nonbasic Primal
No. variables variables x1 x2 xs1 xs2 xs3 zP status

1 xs1, xs2, xs3 x1, x2 0 0 5 35 20 0 Feasible

2 x1, xs2, xs3 x2, xs1 –5 0 0 40 25 –10 Infeasibl
e

3 x2, xs2, xs3 x1, xs1 0 5 0 20 20 15 Feasible

4 xs1, x1, xs3 x2, xs2 35 0 40 0 –15 70 Infeasibl
e

5 xs1, x2, xs3 x1, xs2 0 11.67 –6.67 0 20 35 Infeasibl
e

6 xs1, xs2, x1 x2, xs3 20 0 25 15 0 40 Feasible

7 xs1, xs2, x2 x1, xs3 No solution

8 x1, x2, xs3 xs1, xs2 5 10 0 0 15 40 Feasible

9 x1, xs2, x2 xs1, xs3 20 25 0 –60 0 115 Infeasibl
e

10 xs1, x1, x2 xs2, xs3 20 5 20 0 0 55 Feasible
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Table 7. Basic solutions for dual problem

Basic Nonbasic Dual
No. variables variables πs1 πs2 π1 π2 π3 zD status

1 πs1, πs2 π1, π2, π3 – 2 –3 0 0 0 0 Infeasibl
e

2 πs2, π1 πs1, π2, π3 0 –5 – 2 0 0 – 10 Infeasibl
e

3 πs1, π1 πs2, π2, π3 – 5 0 3 0 0 15 Infeasibl
e

4 πs2, π2 π1, πs1, π3 0 3 0 2 0 70 Feasible

5 πs1, π2 π1, πs2, π3 – 1 0 0 1 0 35 Infeasibl
e

6 πs2, π3 π1, π2, πs1 0 – 3 0 0 2 40 Infeasibl
e

7 πs1, π3 π1, π2, πs2 No solution

8 π1, π2 πs1, πs2, π3 0 0 – 0.75 1.25 0 40 Infeasibl
e

9 π1, π3 πs1, π2, πs2 0 0 3 0 5 115 Feasible

10 π2, π3 π1, πs1, πs2 0 0 0 1 1 55 Feasible

The conditions derived in this section are illustrated by the data in
the tables.  Fig. 1 shows the objective function values for the solutions that
are feasible for the primal and dual problems.  As can be seen, the ob-
jective value for every primal feasible solution provides a lower bound for
the optimal dual objective (zD = 55).  The objective value for every feasi-

ble dual solution provides an upper bound for the optimal primal objective
(zP = 55).  These bounds converge to the optimum as might be expected;

however, zP = zD for all points.

The complementary solutions property is similarly exhibited by all
points.  For example, consider No. 9.  Here, x1 is basic in the primal and

πs1 is nonbasic in the dual so the first dual constraint is satisfied as an

equality.  Also, xs2 is basic and π2, the corresponding dual variable, is

nonbasic.  These two observations can be written mathematically as x1πs1

= 0 and xs2π2 = 0.  In the next section, we provide a general statement of

this result for all complementary pairs.
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Figure 1.  Objective values of primal and dual solutions

Finding Complementary Solutions for Standard Inequality Forms

The simplex algorithm solves the primal and dual problems simulta-
neously.  This is obvious for the revised simplex method which uses the
complementary dual solution directly in the computations.  When the
primal and dual problems are in the standard inequality form given in
Table 1, the tableau method provides all dual values in row 0.  Fig. 2
shows row 0 of the general tableau.  Note that the x's are labels but the
entries in row 0 are numbers corresponding the values of the dual
variables.  The dual slacks appear under the primal structural variable
labels, and the dual structural variables appear under the primal slack
variable labels.

Row Basic Coefficients
no. variables z x1 x2 ... xn xs1 xs2 ... xsm RHS

0 z 1 πs1 πs2 ... πsn π1 π2 ... πm zD = zP

Figure 2.  Dual variables shown in the simplex tableau

To illustrate, solution No. 3 from Tables 6 and 7 is displayed in the
tableau below.  The primal solution is shown as the RHS vector.  The
complementary dual solution is given in row 0.  In particular, πs1 = – 5, π1
= 3 and zD = 15, while all other dual variables are zero.
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Coefficients
Row Basic RHS

0 1 –5 0 3 0 0 15
1 0 –1 1 1 0 0 5
2 0 4 0 –3 1 0 20
3 0 1 0 0 0 1 20

x1z
z

x2 xs1 xs2

xs2

xs3

x2

xs3

The optimal tableau for the example is shown next.  From this
tableau we can read both the primal and dual solutions.  For the dual
problem the optimum is π*

2  = π*
3  = 1, and π*

s1 = π*
s2 = π*

s3 = 0.

Coefficients
Row Basic RHS

0 1 0 0 0 1 1 55
1 0 0 1 0 1/3 –1/3 5
2 0 1 0 0 0 1 20
3 0 0 0 1 –1/3 4/3 20

x1z
z

x2 xs1 xs2 xs3

x2

x1
xs1

Finding Complementary Solutions for Nonstandard Forms

When the primal linear programming problem is in a nonstandard form
with equality or greater than or equal to constraints, the dual variables do
not appear directly in the tableau.  For an equality in the primal, there is no
slack variable in the tableau; however, if a unit vector is inserted in phase
1 to represent the artificial variable for that constraint in the initial tableau,
the dual variable will appear in row 0 under that artificial variable
(assuming the artificial is given a zero objective coefficient in phase 2).
For a greater than or equal to constraint the dual variable associated with
that constraint is the negative of the value appearing in row 0 of the
column of the slack variable for the constraint.  Finally, because the primal
simplex method requires that all variables be restricted to be nonnegative,
nonstandard forms that contain unrestricted variables or variables
constrained to be nonpositive are not allowed.

The foregoing developments are neatly summarized in the
following theorem.
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Theorem 5 (Necessary and Sufficient Optimality Conditions) Consider a primal-
dual pair of LPs.  Let x and  be the primal and dual variables and let zP(x) and

zD( ) be the corresponding objective functions.  If x is a primal feasible solution,

it is optimal iff there exists a dual feasible solution  satisfying zP(x) = zD( ).

The “if” (sufficient) part of the proof follows directly from the sufficient
optimality conditions of Theorem 2.  The “only” (necessary) part follows
from the optimality of complementary solutions stated in Theorem 4.  It
also follows from the Fundamental Duality Theorem.

Complementary Slackness

We have observed the complementary slackness property of com-
plementary basic solutions which holds for all bases whether optimal or
not.  To present this property in mathematical terms, we first recast the
primal and dual problems given in Table 1 by introducing slack variables.
Table 8 defines the revised models.

Table 8. Primal and dual problems with slack variables added

(P) Maximize zP = cx

subject to Ax + Imxs = b

x ≥ 0, xs ≥ 0

(D) Minimize  zD = b

subject to A – sIn = c

 ≥ 0, s ≥ 0

The vector of slacks for the primal is xs = (xs1, xs2, … , xsm), with

xsi the slack variable for the ith constraint.  The vector of slacks for the

dual is s = (πs1, s2, … , πsn), with πsj the slack variable for the jth

constraint.  Im and In are identity matrices of size m and n, respectively.

Both problems in equality form have n + m variables.

The primal and dual variables are linked by identifying n + m pairs
with one variable in the pair from each problem.

Pair (xj, πsj) for j = 1 to n:  The primal variable xj is paired with the

slack variable πsj associated with the jth dual constraint.

Pair (xsi, πi) for i = 1 to m:  The dual variable πi is paired with the

slack variable xsi associated with the ith primal constraint.

Complementary slackness is the condition that at least one member of
each pair is zero.  For a particular pair (xj, πsj), the property implies that
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either xj is zero or the corresponding dual constraint is satisfied as an

equality.  For the pair (xsi, πi), it implies that either primal constraint i is

satisfied as an equality, or the corresponding dual variable is zero.

Theorem 6 (Complementary Slackness) The pairs (x, xs) and ( , s) of primal and

dual feasible solutions are optimal to their respective problems iff whenever a
slack variable in one problem is strictly positive, the value of the associated
nonnegative variable of the other problem is zero.

For the primal-dual pair in Table 8, the theorem has the following
interpretation.  Whenever

xsi  = bi –  ∑
j=1

n

 aijxj > 0 we have πi = 0 (3)

πsj = ∑
i=1

m

 aijπi – cj > 0 we have xj = 0 (4)

Alternatively, we have

πixsi =  πi








bi – ∑
j=1

n

 aijxj  = 0, i = 1, . . . , m (5)

xjπsj = xj








∑
i=1

m

 aijπi – cj  = 0, j = 1, . . . , n (6)

The proof of the theorem is left as an exercise.  In vector notation (5) and
(6) can be written collectively as xs = 0 and x s = 0, respectively.

Conditions (3) or (5) only require that if xsi > 0, then πi = 0.  They do not

require that if xsi = 0, then πi must be > 0; that is, both xsi and πi could be

zero and the conditions of the theorem would be satisfied.  Moreover,
conditions (3) or (5) automatically imply that if πi > 0, then xsi = 0. The

same is true for (4) or (6).  For instance, if xj > 0, then πsj = 0.

The complementary slackness theorem does not say anything about
the values of unrestricted variables (corresponding to equality constraints
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in the other problem) in a pair of optimal feasible solutions.  This is the
situation, for example, when the primal is written in equality form as in
Table 3.  It is concerned only with nonnegative variables of one problem
and the slack variables corresponding to the associated inequality
constraints in the other problem.

Economic Interpretation

Consider the primal-dual pair given in Table 1.  Assume that the primal
problem represents a chemical manufacturer that is under direction to limit
its output of toxic wastes.  Suppose that over a given period of time it
produces n different types of chemicals that return a unit profit of cj each

for j = 1, . . . , n, and that no more than bi units of toxic waste i can result

from the manufacturing process, i = 1, . . . , m.  Let aij be the amount of

byproduct i generated by the manufacture of one unit of chemical j. The
problem is to decide how many units of j to produce, denoted by xj, so that

no toxic waste levels are exceeded.  These constraints can be written as

Σn
j=1aijxj ≤ bi.for all i.

To derive an equivalent dual problem, let πi ≥ 0 be the unit

contribution to profit associated with byproduct i. Thus πi can be

interpreted as the amount the company should be willing to pay to be

allowed to generate one unit of toxic waste i.  Consequently, the term Σm
i=1

πiaij represents the implied contribution to profit associated with the

current mix of toxic wastes when one unit of chemical j is produced.
Because the same mix of wastes could probably be generated in other
ways as well, no alternative use should be considered if it is less profitable

than chemical j.  This leads to the constraint Σm
i=1πiaij ≥ cj for all j;

however, if a strict inequality holds for some j giving Σm
i=1πiaij > cj, better

use of the permissible toxic waste levels can be found so it is optimal to
set xj = 0.  If xj > 0, the implied value of the toxic waste mix should be just

equal to the unit profit for chemical j, giving Σm
i=1πiaij = cj.

Similarly, if Σn
j=1aijxj < bi for some i, the marginal contribution to

profit associated with the ith toxic waste limit is zero so we should set πi =

0.  If πi > 0 the manufacturer should be generating as much byproduct i as

permissible, implying Σn
j=1aijxj = bi.  These conditions are nothing more

than complementary slackness in Eqs. (3) and (4).  When they are
satisfied, there is no incentive for the manufacturer to alter its production
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plan or to change the implied price structure.
  The objective of the dual problem is to minimize pollution costs

which can be interpreted as minimizing the total implicit value of toxic
wastes generated in the manufacturing process.  At optimality, the
minimum cost incurred is exactly the maximum revenue realized in the
primal.  This results in an economic equilibrium where cost = revenue, or

Σm
i=1πibi = Σn

j=1cjxj.


