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ABSTRACT

The finite state transducer (FST) approach [1] has beenwidel
used recently as an effective and flexible framework for epee
systems. In this framework, a speech recognizer is repreden
as the composition of a series of FSTs combining various know
edge sources across sub-lexical and high-level linguiagiers.

In this paper, we use this FST framework to explore some sub-
lexical modelling approaches, and propose a hybrid mods th
combines amNGIE [2] morpho-phonemic model with a lexicon-
based phoneme network model. These sub-lexical modelsare ¢
verted to FST representations and can be conveniently cesapo
to build the recognizer. Our preliminary perplexity expeents
show that the proposed hybrid model has the advantage ofsimpo
ing strong constraints to the in-vocabulary words as wetiragid-

ing detailed sub-lexical syllabification and morphologwkysis of

the out-of-vocabulary (OOV) words. Thus it has the potérdfa
offering good performance and can better handle the OOV-prob
lem in speech recognition.

1. INTRODUCTION
Currently, typical conversational systems are built foeafic do-
mains, with a predefined vocabulary for the domain. Usudiéy t
recognizer is constrained by a strict lexical network gatest from
the vocabulary. Each word in the vocabulary is represented b
a pronunciation network and these networks are combinedaint
single lexical network. While such a scheme provides sty
lexical constraints for in-vocabulary words, the recogniasually
suffers great performance degradation when the utterarm#ain
OOV words. This problem demands a better balanced subadlexic
modelling approach that can account for both the in-voaaiyul
and OQV words. In this paper, we will try to integrate subitek
morpho-phonemic structure described by #meGIE [2] system
into the recognizer, and compare it with several other ned&im-
ilar architecture can also be used to incorporate highestlse-
mantic knowledge into the recognizer, resulting in a umfaep-
resentation across different linguistic hierarchicaldiesy

In this work, we will mainly focus on the word to phoneme
sub-lexical structure mappings. In order to facilitate to@struc-
tion and exploration of different sub-lexical models, we uke
FST recognizer framework. It can integrate acoustic segaren
tion, application of acoustic models, context-dependetabel-
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ing, application of phonological rules, lexicon, languagedel
and potentially high-level linguistic knowledge etc. irdsingle
weighted FST by composing a series of FSTs. By construcifrg d
ferent sub-lexical model FSTs and composing them with tlse re
of the FSTs in the recognizer, one can easily build the reizegn
with different sub-lexical models.

We have implemented axNGIE [2] morpho-phonemic model
and a novel hybrid model which combines thiecIE model with
a lexicon-based phoneme network model by constructing danh FS
with an in-vocabulary branch and amGie OOV branch. The
same topology for the hybrid model was used in [4] except that
the OOV branch is now modeled WNGIE morpho-phonemic
rules. We have compared thenGIE-based models with some
other models including a simple lexicon-based phoneme ar&tw
model, a phoneme network model with fillers and a phoneme
gram model. We also demonstrated the feasibility of using th
flexible FST framework to construct different sub-lexicabdels.

In the next sections, we will describe the FST framework, and
the concepts and implementations of the different suteéxnod-
els using such a framework. Perplexity results of these fsaate
then given. Finally, conclusions and future work are présgn

2. THE FINITE STATE TRANSDUCER FRAMEWORK

In this section, we will first introduce the FST framework the
complete recognizer, and then elaborate on the FST repegizen
of sub-lexical models.

2.1. Recognizer Architecture

The speech recognizer we use is the MiTMMIT [6] segment
based recognition system. The recognizer’s search spdeéined
as the following cascade of FSTs:

SoAoCoPoLoG 1)
whereS is the acoustic segmentatias;is the application of acous-
tic models,C is the context-dependent relabelling, represents
the phonological rulesL is the lexicon, and> is the language
model. The composition§ o A andC o P o L o G are usually
precomputed and optimized, and the compositiors ef A with

C o Po Lo G is computed on-the-fly by the decoder. Thus the
decoder only seessingle composed” o P o L o G FST, allow-
ing very flexible construction and manipulation of both dekical
modelling and language modelling.



2.2. Word to Phoneme L evel Sub-lexical M odelling phoneme sequence through fillers, which are also used ima sta

dard keyword spotting system. The operation point (theefalarm

and OQV detection rate) can be controlled by a penalty for de-

tecting OOV words. It can also provide phoneme hypothesis se

guences for OOV words, thus allowing a subsequent post groce

sor to further hypothesize the sub-lexical structure of @@V
L=MoV @ word. Although this approach maintains tight constrairtsran-

where M is the phoneme level sub-lexical model, which defines vocabulary words, the phoneme fillers do not represent ahy su

the phoneme level sub-lexical structures, dnds the vocabu- lexical morpho-phonemic knowledge by themselves, and dine ¢

lary FST. The phoneme level sub-lexical model could be a sim- straints for OOV words are generally loose.

ple lexicon-based phoneme network model, a phoneme network

model W?th fillers, a phoneme-gram model, or aaNGIE morpho- . 3.3. Phoneme N-gram Model

phonemic model, for example. No matter how the sub-lexical

models are constructed, they will be represented by a siR§E Another feasible compromise is to build the sub-lexical eiedis-

M. V is constructed from the recognizer’s vocabulary, which ing solely statistical knowledge. Forexample, we can usapme

maps sequences of phonemes to words. It has two branchés, the Nn-gram models to model both the in-vocabulary and OOV words.

vocabulary branch and the OOV branch, which allow the phanem With a large amount of training data, statistical models cagpture

to word mapping for any arbitrary phoneme sequences. Thghigei  the underlying sub-lexical morpho-phonemic knowledgedayrh-

for these two branches are assigned to reflect an OOV penalty.ing the probabilities of different phoneme connectionsmpared

Throughout the work in this paper, the weighk, shown in fig- with the phoneme filler approach, this method can better iirtbde

ure 1) for in-vocabulary branch is chosen to be 0.95, and iglw OOV words and partial words, because it learns statisyiebut

for OOV branch is assigned to 0.05. These weights define the op the legitimate phoneme sequences, and assigns differeioalipit-

To more clearly explain the word to phoneme level sub-ldxica
modelling, we can further decompose the lexicon FSdescribed
above into the following two FSTSs:

eration point of the recognizer (false alarm rate and OO\éctén ities for different connections based on the training datse dis-
rate). Figure 1 gives the topology of the vocabulary R&T advantage of this approach compared to the previous filleteino
is that it also relaxes the constraints for in-vocabularydsat the

same time.

3.4. ANGIE Morpho-phonemic Model

In this work, we will focus on the solution where the morpho-
phonemic knowledge is encoded explicitly into the subdakimod-
els. we useaNGIE hierarchical rules to model the sub-lexical
structures of words.ANGIE is a stand-alone application devel-
. oped in our group, which incorporates multiple sub-lexital
Fig. 1. The topology of the vocabulary FST. guistic phenomena (including phonology, syllabificatiom anor-
phology) into a single framework for representing speedhlan-
guage. It has recently been used to support flexible vocabula

3. SUB-LEXICAL MODELLING speech understanding [3]. Figure 2 illustrates the wordhtmpme
part of theANGIE sub-lexical hierarchy. As we can see, the word
In this section, we will introduce several different sulsital mod- “introduce” is comprised of a stressed root, an unstressetffol-

els. As we see, the need to model OOV words is one driving facto lowed by another stressed root. The lower layers show the syl
in exploring these models. Another key point here is the rteed  labification and the phonemes. To incorporateGIE into our

derive sub-lexical structures of the new words. This infation FST framework, we use an FST representation of the morpho-
is crucial for the effort of automatically incorporatingwevords phonemic rules. Thus this sub-lexical model itself knowstab
into the recognizer. the sub-lexical word-to-phoneme hierarchy. The FST repnes

tion of morpho-phonemic rules is trained using the samedstah
FST training tool used to train other types of sub-lexicaldels.
Here we can see the uniform FST framework provides great flexi
This is the simplest model, and is the typical model for mast d  bility of constructing, training and evaluating differesub-lexical
main dependent speech recognition systems with a predaftaed models. Compared to the phonemgram models, thiaNGIE

3.1. Lexicon-based Phoneme Network M odel

cabulary. It provides the strongest restriction on the ptatde model provides stronger constraints for both in-vocalyulaords
phoneme sequences for the recognizer. It performs welkitider and OQV words, due to the combination of low level linguistic
uses in-vocabulary words only. However, the recognizefopers knowledge and statistical learning from large amounts aifitng
significantly worse when OOV words are included. data. Forin vocabulary words, this model is still more reldkhan

the lexicon-based phoneme network model. However, it idteibe
3.2, Phoneme Network Model With Fillers balance for in-vocabulary and OOV words.

In order to allow OOV words in the recognizer, one approach is : :

to use phoneme fillers to model and detect the OOV and partial 35. Lexicon and ANGIE Hybrid Models

words, with unique filler path for each phoneme. This is shmil  We also investigated a novel idea of combining thesIE sub-

to another model for OOV words [4], in which a bigram model lexical model with the lexicon-based phoneme network model
is used in the OOV branch. This model accepts any arbitrary which has the potential to maintain the strong constraioviged
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Fig. 2. TheANGIE hierarchical structure of the word “introduce”. @
The bottom layer shows the phoneme labels.

Fig. 4. The topology of FSTM for the phoneme network model
by the lexicon phoneme network, as well as to impose relgtive  with fillers.
tight constraint over the OOV words. The details of the model

implementations are presented in the next section.
4.3. Phoneme N-gram Model

4. FST IMPLEMENTATION OF SUB-LEXICAL MODELS The phonemen-gram model tries to model both in-vocabulary
words and OOV words by learning the phoneme connection prob-

Now we will give the detailed construction of FSIl mentioned  apilities within a short history context. This is the equérst FST

in equation (2) for different phoneme level sub-lexical raksd Af- representation of the widely useejram model. Note that smooth-

ter constructingV, we can compose it with the rest of the FSTs ing is represented by proper weighted back-off arcs, whieh a

to build a recognizer conveniently. There may be computalio  ysed to alleviate the sparse data problem. Figure 5 givex-an e

issues, however, because some settingd/afay result in non-  ample of the topology of FSH/ for the phoneme bi-gram model.
linear increase in the size of the composed FST. We will then
need to compromise the complexity bf accordingly. The FSTs e e ——
are trained using a straightforward EM algorithm for simfitéte A ,W/@
state networks, or an inside-outside algorithm for remersiansi- d'/ ) gy ¢
tion networks (RTNSs), such as FSTs built from rules writtethie \kaia* \’:@
—44 £
form of a context free grammar. \:@2 /
4.1. Lexicon-based Phoneme Network M odel Fig. 5. The topology of FSTM for the phoneme-gram model.

The lexicon-based phoneme network model is equivalent to ou
currentsumMMIT baseline system. Only phoneme sequences that _
form legitimate in-vocabulary words are allowed. Figureigeg 4.4. ANGIE Morpho-phonemic Model

the topology of FSTM for this model. The ANGIE mopho-phonemic hierarchy knowledge is written in

the form of a context free grammar. However, the underlyang |
guage specified by the grammar is actually a regular langirage
this case. The context free grammar is compiled into an RTN,
which is a natural representation for context free gramm@amn-
piling into RTNs also makes it easier to deal with real cohfese
languages when necessary. The compiled RTNs are thendraine
and composed with other FSTs of the recognizer. Figure 6-illu
trates this model.

Fig. 3. The topology of FSTM for the lexicon-based phoneme <word>:
network model. NG iie me@ﬁr"iﬁbﬁmﬁ,@
_~i<sroot>
<coda>: ch
4.2. Phoneme Network Model With Fillers co t@ N s E)
The phoneme network model with fillers is our first attemptde a Nw,g b

dress the problem of OOV words. It has an OOV branch that con-

tains phoneme loops to accept arbitrary phoneme sequefisiss. ~ Fig. 6. The topology of FST(RTNJ for the ANGIE morpho-
branch is essentially equivalent to a phoneme uni-gram hafde ~ Phonemic model.

ter training. The other branch is the same as the phonemerietw
model mentioned above, which accepts in-vocabulary wontis o
Figure 4 gives FSTM's topology for this model. Note that it is
similar to the topology of FST shown in figure 1. The differ-
ence is thatV/ is a trained network, and it models the sub-lexical We also present here a novel approach of combining the lexico
phoneme structures rather than the phoneme-to-word mgpirin based phoneme network model with #reG1E morpho-phonemic
practice, they can be directly combined instead of comgpsin model. Since the lexicon model has the strongest constaart

4.5. Lexicon and ANGIE Hybrid Models



in-vocabulary words, andNGIE model can better handle OOV
words, we construct an in-vocabulary-only branch usingléxe
icon model and an OOV branch using theGIE model. This
is similar to the phoneme filler model setting mentioned ahov
expect that the OOV words are now modeledAwGIE morpho-
phonemic rules rather than the phoneme uni-gram fillersurgi@
shows this model’s topology.

:@di@j T

Fig. 7. The topology of FST(partially RTN)/ for the lexicon and
ANGIE hybrid model.

5. CORPUSAND EXPERIMENTAL RESULTS

The sub-lexical models described above are trained andaeal
in the JuPITER[5] English weather domain. The training set con-
sists of phoneme transcriptions of 99,062 utterances, l@nhtle-
pendent test set consists of phoneme transcriptions 082jttdr-
ances, of which 2,297 utterances do not contain OOV words.
We have evaluated the sub-lexical models in terms of perplex
ity results on the full test set and its subset which containy
in-vocabulary words. The perplexity numbers are obtaingidgl
an FST-based tool which essentially composes the inputgrhen
strings with different sub-lexical FSTs, searches the nliksty
path, and then computes the average log probability pergsghen
Tablel shows the results.

-lexi Perplexity on Perplexity on
S-ledcd Test Stwith | Test Set without
OOV Words OOV Words
Lexicon-based
Phoneme Network o0 2.638
Phon_eme_ Network 0.344 > 643
with Fillers
Phoneme bi-gram 6.334 5.955
ANGIE
Morpho-phonemic 3.733 3.654
Lexicon and
ANGIE hybrid 3.602 2.843

Table 1. Perplexity results of different sub-lexical models on the
full test set and its in-vocabulary-only subset.

From the results we see that the lexicon-based phoneme net{s] V. Zue, et al

work model has the lowest perplexity number on the in-votaaiyu
only test set. However, it fails to model any OOV word. Thus, o
the test set containing OOV words, its perplexity is infiniiehe
phoneme network with fillers model has a high perplexity om th
OOV test set, due to its inadequate ability to make use of sub-
lexical structural information. The phoneme bi-gram medzdn

model both in-vocabulary and OOV words, but it has a signifi-
cantly higher perplexity on the in-vocabulary test set ttrenpre-
vious two models. OurnNGIE model successfully reduced the
perplexity on both test sets with or without OOV words. Fipal
the proposed lexicon aneNGIE hybrid model is able to combine
the benefits and has a better overall perplexity result.

6. CONCLUSIONS AND FUTURE WORK

This work described in this paper shows the feasibility abipo-
rating ANGIE sub-lexical linguistic knowledge into speech recog-
nition using the FST framework. The advantages of ugingIE
sub-lexical linguistic knowledge include better consttaiver OOV
words and the ability to analyze the sub-lexical hierarch@ @V
words, which is absent for phoneme fill or phonemrgram mod-
els. This ability is quite useful in many ways. For exampl&ain
lead to easy hypotheses of new word spellings accordingutire s
lexical analysis, and help automatically incorporate newrds.
We also see that the lexicon aadGIE hybrid model has an over-
all better performance than other settings.

In this paper, we showed preliminary perplexity resultstfa
proposedaNGIE-based sub-lexical models. Future work include
the evaluation of their speech recognition performanamaivith
their receiver operating characteristics.

It is also very interesting to explore the use of similar F$T a
chitectures at higher levels of the language processingiiey.
For example, we can try to incorporate some natural langpeme
cessing procedures directly into the recognizer, rathen tinter-
facing the speech recognizer and a separate natural laaguag
cessing module with aN-best list. This results in a tightly cou-
pled speech recognition and natural language processbstgray
where the high-level linguistic knowledge is incorporatgdiery
early stages of speech recognition. However, since thelibag
tic phenomena at higher levels are much more complicated tha
at the sub-lexical level, proper adaptations may be nepeésa
using the FST framework.
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