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ABSTRACT

The finite state transducer (FST) approach [1] has been widely
used recently as an effective and flexible framework for speech
systems. In this framework, a speech recognizer is represented
as the composition of a series of FSTs combining various knowl-
edge sources across sub-lexical and high-level linguisticlayers.
In this paper, we use this FST framework to explore some sub-
lexical modelling approaches, and propose a hybrid model that
combines anANGIE [2] morpho-phonemic model with a lexicon-
based phoneme network model. These sub-lexical models are con-
verted to FST representations and can be conveniently composed
to build the recognizer. Our preliminary perplexity experiments
show that the proposed hybrid model has the advantage of impos-
ing strong constraints to the in-vocabulary words as well asprovid-
ing detailed sub-lexical syllabification and morphology analysis of
the out-of-vocabulary (OOV) words. Thus it has the potential of
offering good performance and can better handle the OOV prob-
lem in speech recognition.

1. INTRODUCTION

Currently, typical conversational systems are built for specific do-
mains, with a predefined vocabulary for the domain. Usually the
recognizer is constrained by a strict lexical network generated from
the vocabulary. Each word in the vocabulary is represented by
a pronunciation network and these networks are combined into a
single lexical network. While such a scheme provides strongsub-
lexical constraints for in-vocabulary words, the recognizer usually
suffers great performance degradation when the utterancescontain
OOV words. This problem demands a better balanced sub-lexical
modelling approach that can account for both the in-vocabulary
and OOV words. In this paper, we will try to integrate sub-lexical
morpho-phonemic structure described by theANGIE [2] system
into the recognizer, and compare it with several other models. Sim-
ilar architecture can also be used to incorporate higher-level se-
mantic knowledge into the recognizer, resulting in a uniform rep-
resentation across different linguistic hierarchical layers.

In this work, we will mainly focus on the word to phoneme
sub-lexical structure mappings. In order to facilitate theconstruc-
tion and exploration of different sub-lexical models, we use the
FST recognizer framework. It can integrate acoustic segmenta-
tion, application of acoustic models, context-dependent relabel-1This research was supported by a contract from the Industrial Tech-
nology Research Institute, and by DARPA under contract N66001-99-1-
8904 monitored through Naval Command, Control and Ocean Surveillance
Center.

ing, application of phonological rules, lexicon, languagemodel
and potentially high-level linguistic knowledge etc. intoa single
weighted FST by composing a series of FSTs. By constructing dif-
ferent sub-lexical model FSTs and composing them with the rest
of the FSTs in the recognizer, one can easily build the recognizer
with different sub-lexical models.

We have implemented anANGIE [2] morpho-phonemic model
and a novel hybrid model which combines theANGIE model with
a lexicon-based phoneme network model by constructing an FST
with an in-vocabulary branch and anANGIE OOV branch. The
same topology for the hybrid model was used in [4] except that
the OOV branch is now modeled byANGIE morpho-phonemic
rules. We have compared theANGIE-based models with some
other models including a simple lexicon-based phoneme network
model, a phoneme network model with fillers and a phonemen-
gram model. We also demonstrated the feasibility of using this
flexible FST framework to construct different sub-lexical models.

In the next sections, we will describe the FST framework, and
the concepts and implementations of the different sub-lexical mod-
els using such a framework. Perplexity results of these models are
then given. Finally, conclusions and future work are presented.

2. THE FINITE STATE TRANSDUCER FRAMEWORK

In this section, we will first introduce the FST framework forthe
complete recognizer, and then elaborate on the FST representation
of sub-lexical models.

2.1. Recognizer Architecture

The speech recognizer we use is the MITSUMMIT [6] segment
based recognition system. The recognizer’s search space isdefined
as the following cascade of FSTs:S Æ A Æ C Æ P Æ L ÆG (1)

whereS is the acoustic segmentation;A is the application of acous-
tic models,C is the context-dependent relabelling,P represents
the phonological rules,L is the lexicon, andG is the language
model. The compositionsS Æ A andC Æ P Æ L Æ G are usually
precomputed and optimized, and the composition ofS Æ A withC Æ P Æ L Æ G is computed on-the-fly by the decoder. Thus the
decoder only sees asingle composedC Æ P Æ L Æ G FST, allow-
ing very flexible construction and manipulation of both sub-lexical
modelling and language modelling.



2.2. Word to Phoneme Level Sub-lexical Modelling

To more clearly explain the word to phoneme level sub-lexical
modelling, we can further decompose the lexicon FSTL described
above into the following two FSTs:L =M Æ V (2)

whereM is the phoneme level sub-lexical model, which defines
the phoneme level sub-lexical structures, andV is the vocabu-
lary FST. The phoneme level sub-lexical model could be a sim-
ple lexicon-based phoneme network model, a phoneme network
model with fillers, a phonemen-gram model, or anANGIE morpho-
phonemic model, for example. No matter how the sub-lexical
models are constructed, they will be represented by a singleFSTM . V is constructed from the recognizer’s vocabulary, which
maps sequences of phonemes to words. It has two branches, thein-
vocabulary branch and the OOV branch, which allow the phoneme
to word mapping for any arbitrary phoneme sequences. The weights
for these two branches are assigned to reflect an OOV penalty.
Throughout the work in this paper, the weight (�, shown in fig-
ure 1) for in-vocabulary branch is chosen to be 0.95, and the weight
for OOV branch is assigned to 0.05. These weights define the op-
eration point of the recognizer (false alarm rate and OOV detection
rate). Figure 1 gives the topology of the vocabulary FSTV .
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Fig. 1. The topology of the vocabulary FSTV .

3. SUB-LEXICAL MODELLING

In this section, we will introduce several different sub-lexical mod-
els. As we see, the need to model OOV words is one driving factor
in exploring these models. Another key point here is the needto
derive sub-lexical structures of the new words. This information
is crucial for the effort of automatically incorporating new words
into the recognizer.

3.1. Lexicon-based Phoneme Network Model

This is the simplest model, and is the typical model for most do-
main dependent speech recognition systems with a predefinedvo-
cabulary. It provides the strongest restriction on the acceptable
phoneme sequences for the recognizer. It performs well if the user
uses in-vocabulary words only. However, the recognizer performs
significantly worse when OOV words are included.

3.2. Phoneme Network Model With Fillers

In order to allow OOV words in the recognizer, one approach is
to use phoneme fillers to model and detect the OOV and partial
words, with unique filler path for each phoneme. This is similar
to another model for OOV words [4], in which a bigram model
is used in the OOV branch. This model accepts any arbitrary

phoneme sequence through fillers, which are also used in a stan-
dard keyword spotting system. The operation point (the false alarm
and OOV detection rate) can be controlled by a penalty for de-
tecting OOV words. It can also provide phoneme hypothesis se-
quences for OOV words, thus allowing a subsequent post proces-
sor to further hypothesize the sub-lexical structure of theOOV
word. Although this approach maintains tight constraints over in-
vocabulary words, the phoneme fillers do not represent any sub-
lexical morpho-phonemic knowledge by themselves, and the con-
straints for OOV words are generally loose.

3.3. Phoneme N-gram Model

Another feasible compromise is to build the sub-lexical models us-
ing solely statistical knowledge. For example, we can use phoneme
n-gram models to model both the in-vocabulary and OOV words.
With a large amount of training data, statistical models cancapture
the underlying sub-lexical morpho-phonemic knowledge by learn-
ing the probabilities of different phoneme connections. Compared
with the phoneme filler approach, this method can better model the
OOV words and partial words, because it learns statistically about
the legitimate phoneme sequences, and assigns different probabil-
ities for different connections based on the training data.The dis-
advantage of this approach compared to the previous filler model
is that it also relaxes the constraints for in-vocabulary words at the
same time.

3.4. ANGIE Morpho-phonemic Model

In this work, we will focus on the solution where the morpho-
phonemic knowledge is encoded explicitly into the sub-lexical mod-
els. we useANGIE hierarchical rules to model the sub-lexical
structures of words.ANGIE is a stand-alone application devel-
oped in our group, which incorporates multiple sub-lexicallin-
guistic phenomena (including phonology, syllabification and mor-
phology) into a single framework for representing speech and lan-
guage. It has recently been used to support flexible vocabulary
speech understanding [3]. Figure 2 illustrates the word to phoneme
part of theANGIE sub-lexical hierarchy. As we can see, the word
“introduce” is comprised of a stressed root, an unstressed root fol-
lowed by another stressed root. The lower layers show the syl-
labification and the phonemes. To incorporateANGIE into our
FST framework, we use an FST representation of the morpho-
phonemic rules. Thus this sub-lexical model itself knows about
the sub-lexical word-to-phoneme hierarchy. The FST representa-
tion of morpho-phonemic rules is trained using the same standard
FST training tool used to train other types of sub-lexical models.
Here we can see the uniform FST framework provides great flexi-
bility of constructing, training and evaluating differentsub-lexical
models. Compared to the phonemen-gram models, thisANGIE

model provides stronger constraints for both in-vocabulary words
and OOV words, due to the combination of low level linguistic
knowledge and statistical learning from large amounts of training
data. For in vocabulary words, this model is still more relaxed than
the lexicon-based phoneme network model. However, it is a better
balance for in-vocabulary and OOV words.

3.5. Lexicon and ANGIE Hybrid Models

We also investigated a novel idea of combining theANGIE sub-
lexical model with the lexicon-based phoneme network model,
which has the potential to maintain the strong constraint provided
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Fig. 2. TheANGIE hierarchical structure of the word “introduce”.
The bottom layer shows the phoneme labels.

by the lexicon phoneme network, as well as to impose relatively
tight constraint over the OOV words. The details of the model
implementations are presented in the next section.

4. FST IMPLEMENTATION OF SUB-LEXICAL MODELS

Now we will give the detailed construction of FSTM mentioned
in equation (2) for different phoneme level sub-lexical models. Af-
ter constructingM , we can compose it with the rest of the FSTs
to build a recognizer conveniently. There may be computational
issues, however, because some settings ofM may result in non-
linear increase in the size of the composed FST. We will then
need to compromise the complexity ofM accordingly. The FSTs
are trained using a straightforward EM algorithm for simplefinite
state networks, or an inside-outside algorithm for recursive transi-
tion networks (RTNs), such as FSTs built from rules written in the
form of a context free grammar.

4.1. Lexicon-based Phoneme Network Model

The lexicon-based phoneme network model is equivalent to our
currentSUMMIT baseline system. Only phoneme sequences that
form legitimate in-vocabulary words are allowed. Figure 3 gives
the topology of FSTM for this model.

W1 nW...

aa+

b!

Fig. 3. The topology of FSTM for the lexicon-based phoneme
network model.

4.2. Phoneme Network Model With Fillers

The phoneme network model with fillers is our first attempt to ad-
dress the problem of OOV words. It has an OOV branch that con-
tains phoneme loops to accept arbitrary phoneme sequences.This
branch is essentially equivalent to a phoneme uni-gram model af-
ter training. The other branch is the same as the phoneme network
model mentioned above, which accepts in-vocabulary words only.
Figure 4 gives FSTM ’s topology for this model. Note that it is
similar to the topology of FSTV shown in figure 1. The differ-
ence is thatM is a trained network, and it models the sub-lexical
phoneme structures rather than the phoneme-to-word mapping. In
practice, they can be directly combined instead of composing.
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Fig. 4. The topology of FSTM for the phoneme network model
with fillers.

4.3. Phoneme N-gram Model

The phonemen-gram model tries to model both in-vocabulary
words and OOV words by learning the phoneme connection prob-
abilities within a short history context. This is the equivalent FST
representation of the widely usedn-gram model. Note that smooth-
ing is represented by proper weighted back-off arcs, which are
used to alleviate the sparse data problem. Figure 5 gives an ex-
ample of the topology of FSTM for the phoneme bi-gram model.
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Fig. 5. The topology of FSTM for the phonemen-gram model.

4.4. ANGIE Morpho-phonemic Model

The ANGIE mopho-phonemic hierarchy knowledge is written in
the form of a context free grammar. However, the underlying lan-
guage specified by the grammar is actually a regular languagein
this case. The context free grammar is compiled into an RTN,
which is a natural representation for context free grammars. Com-
piling into RTNs also makes it easier to deal with real context free
languages when necessary. The compiled RTNs are then trained,
and composed with other FSTs of the recognizer. Figure 6 illus-
trates this model.
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Fig. 6. The topology of FST(RTN)M for the ANGIE morpho-
phonemic model.

4.5. Lexicon and ANGIE Hybrid Models

We also present here a novel approach of combining the lexicon-
based phoneme network model with theANGIE morpho-phonemic
model. Since the lexicon model has the strongest constraintover



in-vocabulary words, andANGIE model can better handle OOV
words, we construct an in-vocabulary-only branch using thelex-
icon model and an OOV branch using theANGIE model. This
is similar to the phoneme filler model setting mentioned above,
expect that the OOV words are now modeled byANGIE morpho-
phonemic rules rather than the phoneme uni-gram fillers. Figure 7
shows this model’s topology.
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Fig. 7. The topology of FST(partially RTN)M for the lexicon and
ANGIE hybrid model.

5. CORPUS AND EXPERIMENTAL RESULTS

The sub-lexical models described above are trained and evaluated
in the JUPITER[5] English weather domain. The training set con-
sists of phoneme transcriptions of 99,062 utterances, and the inde-
pendent test set consists of phoneme transcriptions of 2,443 utter-
ances, of which 2,297 utterances do not contain OOV words.

We have evaluated the sub-lexical models in terms of perplex-
ity results on the full test set and its subset which containsonly
in-vocabulary words. The perplexity numbers are obtained using
an FST-based tool which essentially composes the input phoneme
strings with different sub-lexical FSTs, searches the mostlikely
path, and then computes the average log probability per phoneme.
Table1 shows the results.

Sub-lexical
Models

Perplexity on
Test Set with
OOV Words

Perplexity on
Test Set without

OOV Words

Lexicon-based
Phoneme Network

1 2.638

Phoneme Network
with Fillers

9.344 2.643

Phoneme bi-gram 6.334 5.955
ANGIE

Morpho-phonemic
3.733 3.654

Lexicon and
ANGIE hybrid

3.602 2.843

Table 1. Perplexity results of different sub-lexical models on the
full test set and its in-vocabulary-only subset.

From the results we see that the lexicon-based phoneme net-
work model has the lowest perplexity number on the in-vocabulary-
only test set. However, it fails to model any OOV word. Thus, on
the test set containing OOV words, its perplexity is infinite. The
phoneme network with fillers model has a high perplexity on the
OOV test set, due to its inadequate ability to make use of sub-
lexical structural information. The phoneme bi-gram models can

model both in-vocabulary and OOV words, but it has a signifi-
cantly higher perplexity on the in-vocabulary test set thanthe pre-
vious two models. OurANGIE model successfully reduced the
perplexity on both test sets with or without OOV words. Finally
the proposed lexicon andANGIE hybrid model is able to combine
the benefits and has a better overall perplexity result.

6. CONCLUSIONS AND FUTURE WORK

This work described in this paper shows the feasibility of incorpo-
rating ANGIE sub-lexical linguistic knowledge into speech recog-
nition using the FST framework. The advantages of usingANGIE

sub-lexical linguistic knowledge include better constraint over OOV
words and the ability to analyze the sub-lexical hierarchy of OOV
words, which is absent for phoneme fill or phonemen-gram mod-
els. This ability is quite useful in many ways. For example, it can
lead to easy hypotheses of new word spellings according the sub-
lexical analysis, and help automatically incorporate new words.
We also see that the lexicon andANGIE hybrid model has an over-
all better performance than other settings.

In this paper, we showed preliminary perplexity results forthe
proposedANGIE-based sub-lexical models. Future work include
the evaluation of their speech recognition performance, along with
their receiver operating characteristics.

It is also very interesting to explore the use of similar FST ar-
chitectures at higher levels of the language processing hierarchy.
For example, we can try to incorporate some natural languagepro-
cessing procedures directly into the recognizer, rather than inter-
facing the speech recognizer and a separate natural language pro-
cessing module with anN-best list. This results in a tightly cou-
pled speech recognition and natural language processing system,
where the high-level linguistic knowledge is incorporatedat very
early stages of speech recognition. However, since the linguis-
tic phenomena at higher levels are much more complicated than
at the sub-lexical level, proper adaptations may be necessary for
using the FST framework.
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