WS Choreography

Version 0-1, 13 June 2003

This version:
TBD
Latest version:
TBD
Previous Version:
Not Applicable
Authors (alphabetically):
David Burdett, Commerce One
Dan Gannon, Commerce One
Contributors (alphabetically):
Qiming Chen, Commerce One

Copyright © 2003 Commerce One Operations Inc

Copyright

Commerce One Operations, Inc. (“Commerce One”) hereby grants you a nonexclusive,
royalty-free, worldwide license to a) publish, copy and distribute this specification; b) use the
documentation in the design, development and operation of software solutions that conform to
this specification. If you publish, copy or distribute all or a portion of the specifications, you
must insert the above copyright notice in acknowledgment of Commerce One’s intellectual
property interest in the specifications. No other rights are granted.

These specifications are provided "as is" without any express or implied warranty. Commerce
One expressly disclaims any and all warranties regarding this specification, including the
warranty that this specification and/or implementations thereof do not violate the rights of
others, fithess for a particular purposes and any other statutory warranties which would
otherwise apply.

In no event will Commerce One be liable to you or any party for any direct, indirect, special or
consequential damages for any use of this specification, including, without limitation, any lost
profits, business interruption, loss of programs or other data on your information handling
system or otherwise, even if Commerce One is expressly advised of the possibility of such
damages.

http://www.commerceone.com/developers/download/
http://www.commerceone.com/

Web Services - Choreography

Abstract

This specification describes a formal method of defining a Choreography using a
Choreography Definition Language. Choreographies describe the sequence and conditions in
which messages are exchanged between independent processes, parties or organizations in
order to realize some useful purpose, for example placing an order.

This differs from a Process Execution Language that can be used when there is a single
organization or process in control that can issue commands to other processes to carry out all
the actions or activities required.

If Choreographies are not defined and agreed between the organizations or processes
involved, then those organizations and processes will not be able to successfully interoperate
to realize their shared objectives.

(Note that this specification is a draft with some sections omitted.)

Status of this Document

This is the first version of the WS Choreography specification. Comments on this document
are welcome ...

This document may be updated, replaced or obsoleted by other documents at any time.

Table of Contents

N [1€ 0T LU T3 1T o PP 5
1.1 Notational CONVENLIONSccoieiieeee e e e e e e e eeeeees 5
1.2 NAMESPACES ... ettt ettt e e et e e e et e e e e e et e e e e eata e e e e eaaa e e e enaa e eanans 6
1.3 What's MISSING ...coiiiiiiieeee e 6
1.4 Contents of this Document ... 6

P2 © =Y oSSR 7
FZ00t B I 1= o o]] =1 o o SRR 7
P =T | (1] =TT 7

2.2.1 Reusability of Choreography Definitionsccooovviiiiiiiiiiiiceee e, 8
2.2.2 State Driven Choreography Definitionsoooviiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeee 9
2.2.3 Interactions, Reliable Messaging and Signals............ooovviiiiiiiiiiiieeecieee e 10
2.24 Cooperative OrganizationsS.ceueeiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee e 11
2.2.5 Checking Choreography Progresscccoeeiiiiiiiiiiiiiii e 11
226 Multi-party Choreographies.........ccoooo oo 12
227 Importing DefinitioNSccooiiii e 12
2.2.8 Extending Choreography Definitions ... 12

Copyright © 2003, Commerce One, Inc Page 2

Web Services - Choreography

2.29 Choreography Dependenciesccouuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 12
2.3 SemantiC DefiNitiONS.uu e 13
3 Choreography XML SErUCKUIE..........uuiiiiiii e 13
4 ProCesSING RUIES.......... ittt e e et e e e e et s e e e e et e e e eetaaeeaene 15
SRS Ted 1= T 0 g F= T B TSl o] (o o 15
ST B O s To (= ToTo | ¢=1 o] 1)N PP RRRRPPRPPP 15
51.1 Choreography@defaultLanguage ... 16
5.1.2 EXAMIPIE e 16
5.2 ChoreographyDefinitioN.......... ... 16
5.2.1 ChoreographyDefinition@nName............ccoooeeiiiiiiiiiiie e 17
5.2.2 ChoreographyDefinition@UIN...........cooviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 17
5.2.3 EXAMIPIE e 17

S TRC T ©'o To 11 o] 0 F= 1 =1 To [17
5.3.1 ConditionalENd@Stateccooeeiiiei e 18
53.2 D= 0 0] o] = P EPPPRRRR 18
5.4 DependsOnChore0graphyccccooo oo 18
54.1 DependsOnChoreography@UIMccoooeeiieeieeeeeeeeeeee e 18
54.2 EXAMIPIE e 18
TR T D 1= o1 4] 1o o 18
5.5.1 Description@Ianguage............uuiiiiiiii e 19
5.5.2 DescriptioN@Irefcoooeeeeeeee 19
5.5.3 EXAMIPIE e 19

S TG = o Vo R 19
5.6.1 ENA@SIAteo e 20
5.6.2 D= 0 0] o] = PRSPPI 20
5.7 EXtendsChoreography....... ..o 20
5.7.1 ExtendsChoreography@UIN.........oooo i 20
5.7.2 EXAMPIE ..o e 20
ST T 210 Yo o (SRR 20
5.8.1 IMPOrt@NAMESPACE i i e e e e e e 21
5.8.2 IMPOrt@IOCAtION ... 21
5.8.3 EXAMIPIE e 21

C TR TR [01 (=T = Vo 1o o 21
5.9.1 INteractioNn@NaAmME........coi i 22
59.2 D= 0 0]] = SRR 22
510 INtEractionNDeEf.........ue e 22
5.10.1 InteractionDef@Nameoooo i 22
5.10.2 InteractionDef@fromROIE..........ccooommimiiiiiii e 22
5.10.3 InteractionDef@IOROIE...........oeiiiiiiiiiie e 22
5.10.4 InteractionDef@messageFamilyccooooiiiiiiiiiiiiiiii e 23
5.10.5 EXAMPIE ... 23
511 InteractioNENASTateso 23
5.11.1 InteractionEndStates@fromState...........ccccooiiiiii 23
5.11.2 InteractionEndStates@toState............ccoeiiiiiiiiiii 23
ot I G T = o o] = S 24
512 MeSSageFamilycooooiiiiiiii i aaaaaan 24

Copyright © 2003, Commerce One, Inc Page 3

Web Services - Choreography

5121 MessageFamily@Namecooeiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee et 24
5.12.2 MessageFamily@UINouuuiiiiiiieeeeeee e e 24
5123 EXAMPIE ... 24
513 PreCoONitioNee e 25
5.13.1 PreCondition@CONAItIONoeviiiiiiiiiiiiiiiiiiiieeeeee et 25
5.13.2 EXAMIPIE e 25
ot o o Yo =1 25
5141 ProCeSS@NAIMEccooiiiiiiiiiie e e et e e e e ettt e e e e e e e e e e s e e e e e e e e e e eaaaa s 25
5.14.2 ProCeSS@IOIEoeiiiiiiiiiiiiiiiiiiiteee ettt ettt ettt e e e e e eeeees 26
5.14.3 EXAMIPIE o 26
515 ProcessENASIAte.coooiiiiiiiiie 26
5.15.1 ProcessEndState@state..........ccoovemmiiiiiiiiiii e 26
T R T2 5 = o1 o] = S 26
BB RO .. nnnnns 26
ST G Tt B (o (=T @) =T o PP 27
5.16.2 EXAMIPIE oo 27
STt I A - o TR 27
5471 Start@State cooveee e 27

S A 5 €= o1 o] = U 27
518 StartENASIateSeieiii e 27
ST < T I = o1 o] = P 28
ST S S - (- 28
T R I IS = (=120 = 0 1= PP PPPPPPPPPP 28
5.19.2 EXAMIPIE oo 29

I = (=1 (=] T USSR 29
Appendix A Choreography Schema (Normative)ooovviiiiiiiiiiiice e, 29
A.1 Choreography Schema ... 29
A.2 DeSCription SChEMIAoiiiiiiii ittt e e e e e e eens 34
A3 IMPOrtType SChEMA e e e eeeeeees 35
A.4 InteractionDefType SChema............oooei i 35
A5 MessageFamilyType Schema ... 36
A6 ROIETYPE SCREMA......u i e e e e e e e e e e e e e e eeeannnas 37
Appendix B Example Choreography Definition (non-normative)..........cccccccevvvviiiiiiinnnnn. 39
B.1 Order Management 1 ... ——————— 39
B.2 Order Management 2ooooiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee ettt 40
= 2 B O 1= Tod [@] [T S = | (1 PP 40
B.4 Resend Order RESPONSE........ouuuiiii e 41
B.5 EXAMPIE XMLottt ettt e e e e e e e aeees 41

Copyright © 2003, Commerce One, Inc Page 4

Web Services - Choreography

1 Introduction

This specification describes a formal method of defining a Choreography using a
Choreography Definition Language. Choreographies describe the sequence and conditions in
which messages are exchanged between independent processes, parties or organizations in
order to realize some useful purpose, for example placing an order.

Choreographies need to be defined when two or more organizations or processes need to
cooperate as no single organization or process controls or manages the complete process.
For example a Buyer cannot directly control what a Seller does and vice versa.

Note that this differs from a Process Execution Language that can be used when there is a
single organization or process in control that can issue commands to other processes to carry
out all the actions or activities required.

If Choreographies are not defined and agreed between the organizations or processes
involved, then those organizations and processes will not be able to successfully interoperate
to realize their shared objectives.

By providing a formal representation of a Choreography in an XML format, this specification
allows the definition to be shared and therefore followed by all the organizations or processes
that use it.

This specification is in two main parts:

» The first part describes how to define a Choreography in an abstract way that is
independent of:
— The format and packaging of the messages being exchanged, and
— The technology used at each end to send and receive messages

» The second part describes how to bind the messages in a Choreography to WSDL and
SOAP (Ed: required but not included in this version spec).

Although bindings to WSDL and SOAP are provided, other bindings to other messaging
technologies are possible although not described. This means that the abstract Choreography
definition could be used to bind to messages in other formats such voice, paper or fax. These
types of bindings are outside the scope of this specification.

1.1 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [RFC2119].

Copyright © 2003, Commerce One, Inc Page 5

1.2 Namespaces

The namespaces used within this specification are as follows

Web Services - Choreography

Prefix Namespace Definition

tns com conmer ceone. schemas/ chor eogr aphy/ chor | Namespace for the WS Choreography
eogr aphydefi ni ti ons/ chor eographydefiniti o | schema definitions
ns. xsd

xsd http://ww. w3. or g/ 2001/ XM_Schema XML Schema Namespace

1.3 What's missing

Ed: The following is a partial list of items missing from this draft of the specification:
* Bindings to WSDL and SOAP

» Generalized error handling, e.g. Message (document) errors, Process timeouts,
transmission errors

» Composing new choreographies out of existing choreographies

* Relationships to Reliable Messaging and other protocols such as BTP and WS
Transaction.

1.4 Contents of this Document

The remainder of the specification provides:

* An Overview of the problems that this specification solves and the features of the WS-
Choreography specification that help solve them

* An overview of the Choreography XML Structure. This provides a high-level overview of
each of the components of a Choreography

» A description of the Processing Rules that apply

» A description of the type and semantics of each element and attribute in the Choroegraphy

Schema

Appendices contain:

» The Choreography XML Schema definition

* An example XML Choreography Definition

Copyright © 2003, Commerce One, Inc

Page 6

http://www.w3.org/2001/XMLSchema

Web Services - Choreography

2 Overview

2.1 The Problem

Two or more processes that need to co-operate by exchanging messages, must exchange
messages in the same sequence if interoperability is to occur.

For example if a buyer sends a seller an order, the seller needs to know how to respond.
Should they: a) return an order response message indicating the extent to which they can
meet the order, b) just ship the goods and send an invoice or ¢) do something different.
Interoperability problems will occur if the buyer is expecting an order response but gets an
invoice instead.

This Choreography specification solves this problem by defining in an exchangeable XML
format, the sequence, conditions and dependencies of sending one or more messages
between the two or more processes or organizations involved in order to support some useful
purpose.

2.2 Features

This rest of this section describes how to define choreographies that have the following
features:

* Reusability. The same choreography definition is usable by different organizations
operating in different contexts (industry, locale, etc) with different software (e.g. application
software) and different message formats.

» State Driven. The specification defines how processes or organizations that take part in
choreographies maintain where they are in the choreography by recording their state

» Cooperative Organizations. Choreographies define the sequence of exchanging messages
between two (or more) independent organizations or processes by describing how they
should cooperate

» Verifiable. The organizations or processes involved in a Choreography can use the
Choreography definition to verify that a Choreography is being followed correctly. (Ed: not
defined in this spec but needed)

* Multi-Party. The specification allows Choreography Definitions with any number of
organizations or processes involved

* Modular. The Choreography specification includes an "import" facility that allows
components of a specification that are defined separately to be imported

Each of these features is discussed in more detail in the following sections.

Copyright © 2003, Commerce One, Inc Page 7

Web Services - Choreography

2.2.1 Reusability of Choreography Definitions

In an actual implementation messages flow between real services operated by real
organizations. However this specification describes choreography definitions in a more
abstract way that allows the choreography to be reused. The abstract concepts used include:

Roles. A Role describes the type of behavior taken by the processes or organizations
involved. For example an organization could take the role of a Buyer or a Seller when
goods are being purchased.

States. A State identifies the condition of a Role at a point in time. For example a Buyer
State could be OrderSent after sending an Order message to a Seller.

Interactions. An Interaction is the act of communicating information from one Role to
another for a reason. For example sending an Order message from a Buyer to a Seller to
request a purchase of goods or services

Message Families. Message Families identify the set of messages that serve the same or
similar purpose. For example a RosettaNet Order, a UBL Order, an EDI Order, all contain
a request to purchase goods or services

Processes. A process occurs as a result of some event such as a change of State. For
example if a Seller's State becomes OrderReceived as a result of receiving an Order
Message from a Buyer, then the change in state would trigger the Seller to carry out a
process to check the Order.

Using these terms provides for reuse in multiple different contexts as follows:

Roles can be mapped to specific organizations and processes, such as a specific Web
Service.

States can be mapped to specific conditions that occur in an organization, process or
perhaps to specific values of an element in a message.

Interactions allow the same message to be sent for multiple different reasons in multiple
different choreographies. For example an Order could be sent to a Seller to request a
purchase. It could also be sent to an archiving service for long-term retention. In both
instances, the format of the message could be the same.

Message Families can be mapped to specific message formats, for example the "Order"
message family could be mapped to either a UBL or a RosettaNet Order Message

Processes can be mapped to specific Web Services implemented by an organization

Without this type of abstraction, it will be necessary to define different choreographies for each
implementation even if the basic purpose and the sequence of exchanging messages is the
same, for example placing an Order.

Copyright © 2003, Commerce One, Inc Page 8

Web Services - Choreography

2.2.2 State Driven Choreography Definitions

This specification assumes that:

* Each Role (e.g. a process or organization) participating in a choreography keeps records
of their progress through the choreography by maintaining State information.

* The States values and their associated semantics, that each Role can take are defined in
the Choreography definition and therefore can be shared by the organizations and roles
involved

» State Changes can drive activities, for example: sending a message, or carrying out a
process

* Changes in State are caused by events, for example: sending or receiving a message, or,
carrying out a process.

The following example provides an illustration.

Buyer ~ Seller

1

1 1

: :

New Order
Created LT | Send Order Ord.e ' Check Order
Sent Received /

1 1 \4

1 1

1 1

1

1

i Order Order Checked
! Checked OK Rejected

1

Order Checked
Error

Order Error
Sent
1

1

1

1

1

1

i

Order Error Process Order| Gl (S

Message Checked Error S — Send Order Error

i
Legend

| Interaction > [State] Process

Figure 1: lllustration of the use of Roles, States, Processes and Interactions

This example illustrates the three main components of a choreography: Interactions,
Processes and States in an example where a Buyer Role places an order with a Seller Role.
In this example there are just two Interactions:

* SendOrder. The Buyer sends an order to a seller, and
» SendOrderError. The Seller sends the Buyer an order error if there is a problem.
A more detailed explanation follows:

» The Buyer identifies a need to place an order. This results in a NewOrderCreated state
occurring at the Buyer. How this state arrives is beyond the scope of this specification.

» The occurrence of a NewOrderCreated state results in the sending of a SendOrder
message (called an Interaction) from the Buyer to the Seller.

Copyright © 2003, Commerce One, Inc Page 9

Web Services - Choreography

Once the SendOrder message is sent, the following state changes occur:

— The Buyer state is changed to OrderSent once the SendOrder message is sent

— The Seller state is changed to OrderReceived once the SendOrder message is
received

The occurrence of an OrderReceived state at the Seller causes the CheckOrder process to
be executed by the Seller

Once the CheckOrder process is complete, the Seller state is changed to one of the
following:

— OrderCheckedOK which means that no problems were found with the order and the
Seller can satisfy the order,

— OrderCheckedRejected which means that technically the Order was OK but it could not
be satisfied by the Seller, or

— OrderCheckedError which means there was some technical error with the Order that
prevented the Order from being successfully processed.

The occurrence of an OrderCheckedError state at the Seller causes the Seller to send a
SendOrderError message to the Buyer
Once the SendOrderError message is sent, the following state changes occur:

— The Seller state is changed to OrderErrorSent once the SendOrderError message is
sent

— The Buyer state is changed to OrderErrorReceived once the SendOrderError message
is received

The occurrence of an OrderErrorReceived state at the Buyer causes the
ProcessOrderError process to execute at the Buyer

Once the ProcessOrderError process is complete, the Buyer state is changed to
OrderErrorMessageChecked.

At this point the choreography is complete.

Note that the XML Choreography definition for this example is provided in Appendix B.1

2.2.3 Interactions, Reliable Messaging and Signals

Interactions describe the sending of a Message from one Role to another that result in a
change of State. In practice, multiple additional messages may be exchanged between the
roles as part of the binding of the choreography to a particular technology. Examples of these
additional messages include:

Reliable Messaging — These protocols involve the recipient of a message sending an
acknowledgement to indicate the message was received as well as the sender re-sending
the original message if no acknowledgement occurs.

Signals — These are additional messages sent by the recipient of a message that indicate
the processing of a message, for example that it has been validated or that processing has

Copyright © 2003, Commerce One, Inc Page 10

Web Services - Choreography

started. They are general-purpose messages in that the same type of message can be
sent as a response to many different Interactions.

Examples of these types of additional messages are shown in the diagram below.

Buyer ~ Seller
i Interaction i
%I::tr | Send Order Check Order
| | I
Reliable ' — — — — Reliable Messaging Ack.__ _ _ L _I 1
Messaglng Message Checked OK j_ !
_____________ o T T T T A
Slgnals ‘_ — — — _Message Processing Started __ __ _E_ _____ |
— — — Message Processing Complete__ L _I_

Figure 2: Interactions, Reliable Messaging and Signals

In this specification, only the first message — in this example the Send Order message —
defined as part of the Choreography. The other messages are part of the binding to the
choreography to an implementation.

2.2.4 Cooperative Organizations

Internal Processes are executed by a single "Domain of Control" i.e. they are executed under
single management control. Examples of single "Domains of Control" include:

* The processes running on a single hardware system or application

» A set of processes running on different hardware but controlled by a single set of rules
defined in a Process Execution Language and executed by some Business Process
Management software operated by an organization.

Choreographies differ from Internal Processes in that there are multiple Domains of Control.
For example a Buyer would not normally allow a Seller to control how the Buyer's systems
work and vice versa.

The consequence of this is that Choreographies specify how organizations must co-operate
where no single organization is control.

2.2.5 Checking Choreography Progress

As no single organization or process is in control of a choreography it means each participant
or process in a choreography must check that the choreography is progressing correctly by
monitoring the messages that are being exchanged to ensure that they are being exchanged
in the correct sequence.

This is achieved by:

Copyright © 2003, Commerce One, Inc Page 11

Web Services - Choreography

» Carrying additional metadata in a message that identifies the interaction in a
Choreography that is being sent

» Allowing one Role to inquire of another Role the state that they have reached.

If a Role discovers that a Choreography is not being followed correctly, then successful
completion of the Choreography is not possible. In this case the Role that discovers a
Choreography is not being followed informs the other Role(s) of the error.

(Ed: Note, none of this is defined in this spec but all are needed)

2.2.6 Multi-party Choreographies

Although many Choreographies involve just two organizations or processes, for example a
Buyer and a Seller, this specification allows any number of different organizations or
processes to take part.

2.2.7 Importing Definitions

The Choreography specification defines an Import facility that allows separately defined
Roles, Message Families and Interactions to be imported and reused. This makes it easier to
import choreography definitions defined elsewhere, for example by other organizations or
standards bodies. (Ed: We should probably include Process Definitions as something that can
be imported as well)

2.2.8 Extending Choreography Definitions

The Choreography specification allows one Choreography Definition to reference another
Choreography Definition that it extends. The extension consists of adding additional
Interactions and Processes to an existing Choreography definition. An example of an
"extended" Choreography Definition is given in Appendix B.2 (Ed: Not sure that this type of
extensibility is the ideal way to go. Some type of Choreography composition would probably
be a better alternative)

2.2.9 Choreography Dependencies

The Choreography Specification describes how Choreography Definition can specify that it
can only be used if some earlier Choreography Definition has been followed. For example,
you could specify that an Order Status Inquiry Choreography can only be followed if an earlier
Order Placement Choreography had been followed that the Order Status Inquiry could
reference. An example of this type of Choreography dependency is given in Appendix B.3

Copyright © 2003, Commerce One, Inc Page 12

Web Services - Choreography

2.3 Semantic Definitions

One of the features of this specification is to allow Choreography reuse by allowing the

Choreography to be bound to solutions implemented by multiple different organizations using

multiple different technologies.

For this to succeed an implementer needs clear definitions of what each part of the
Choreography means otherwise the risk of incorrect implementations will significantly
increase.

To solve this problem, this specification uses a Description element in many places so that the

semantics of the Choreography are clear.
Full and proper use of the Description element is strongly recommended.

3 Choreography XML Structure

The following diagram illustrates the structure of a Choreography definition. It expands on the

ideas of Roles, States, Interactions, Message Families and Processes described earlier.

The cardinality of each element or attribute is indicated as, for example, 0. . n. Cardinalities of

1. . 1 are the default. Note that this is not valid XML and is designed solely to provide an
overview of the structure of a Choreography definition.

<Chor eogr aphy def aul t Language="Def aul t | anguage"
<Descri ption | anguage="The | anguage of the content of the description"0..1
ref="URL of nore detailed docunentation"0..1 >0..n
Description of the choreography in specified | anguage
</ Descri ption>
<Descri ption | anguage="Alternate | anguage for content of the description"0..1
ref="URL of nore detailed docunentation"0..1 >
Description of the choreography in an alternate |anguage
</ Descri ption>

<l-- | MPORTS -->
<I-- Inports, Roles, Message Fam lies and Interactions - can occur in any order -->
<l nport namespace="URl of nanespace of inported definitions"
|l ocation="URL to be used as a hint to retrieve inports” 0..1/>0..n
<lmport ... />

<l-- ROLES -->
<Rol e nane="Name of the role">0..n
<Descri pti on>Semantics of the rol e</Description>0..n
<State nane="The nanme of a state the role can take">0..n
<Descri pti on>Semantics of the state</Description>0..n
</ St at e>
<State ... >

</ St at e>
</ Rol e>
<Role ... >

</ Rol e>

Copyright © 2003, Commerce One, Inc Page 13

Web Services - Choreography

NCCCAC CAMA LI CC

-1 ~
<MessageFani | y nane="Nane of the Message Fam |y"
urn="URN of the Message Fam |y">
<Descri pti on>Sermanti cs of the Message Fami |l y</Description>0..n
</ MessageFani | y>
<MessageFanmily ... >

</ i\/E:ssageFam | y>

<! -- | NTERACTI ON DEFI NI TI ONS - - >
<I nteracti onDef name="Nane of the Interaction Definition"
fronRol e="Name of Rol e of sender of nessage"
t oRol e="Name of Rol e of receiver of nessage"
nessageFami | y="Nane of the Message Family in the interaction">0..n
<Descri pti on>Semantics of the Interaction Definition</Description>0..n
<l nteracti onEndSt at es
fronState="State of the sending Role after nessage sent"
toState="State of the receiving Role after nmessage received"/>
</InteractionDef>0..n
<InteractionDef ... >

</ I nt eracti onDef >

<! -- CHOREOGRAPHY DEFI NI TIONS -->
<I-- One or nore Choreography definitions are defined after definitions of roles, nessage
famlies and interactions -->
<Chor eogr aphyDefi ni ti on name="Name of the Choreography Definition"
urn="URN for the Choreography Definition">0..n
<Descri pti on>Sermanti cs/ expl anati on of the Choreography Definition</Description>0..n
<Ext endsChor eogr aphy urn="URN of the Choreography Definition being extended"/>0..1
<DependsOnChor eogr aphy urn="URN of another Choreography Definition of which nust have
occurred before this Choreography Definition can start"/>0..1
<St art EndSt at es>
<Start state="Nane of a Start State"/>1..n
<Condi ti onal End state="Name of a Conditional End State"/>0..n
<Condtional End .../>

<End state="Nane of an End State"/>0..n
<End .../>

</ St art EndSt at es>
<-- Interactions and Processes can occur in any order -->
<Interacti on name="Nane of an Interaction Definition">0..n
<Descri pti on>Semanti cs of the Interaction</Description>0..n
<PreCondi ti on Condition="Bool ean conbi nati on of states which if present, cause Interaction
to occur."/>
</Interaction>
<Process nane="Nanme of the process"
rol e="Name of the role that executes the process">0..n
<Descri pti on>Senmanti cs of the process</Description>0..n
<PreCondi ti on conditi on="Bool ean conbi nati on of states which if present, cause the Process
to occur."/>
<ProcessEndState state="State of the Role after the process is conplete"/>1..n
</ Process>
<Process ... >

</ Process>
<Interaction ... >

</Interaction>

</ dbreographyDefi nition>
<Chor eogr aphyDefinition ...>

Copyright © 2003, Commerce One, Inc Page 14

Web Services - Choreography

~1 Ml +i nl A HChAarAanaranhiy NMAf i ni + i Aane Aara Al l AanmAd i n AanAa CharAanar anhyvy AAacaAari nt i AN ~
</ Chor eogr aphyDef i ni ti on>

</tﬁbreography>

4 Processing Rules

(Ed: To be completed. Sections to include:

» Validation rules — over and above the schema validation
* How imports work

* How bindings work.

Also need a section on WSDL binding.)

5 Schema Description

This section describes the elements within the Choreography Schema in alphabetical order.

5.1 Choreography

A single Choreography XML document contains definitions of common Roles, Message
Families and Interactions that are used by one or more Choreography Definitions.

Recording more than one Choreography Definition in a Choreography file allows multiple
Choreography Definitions to share the same Roles, Message Families and Interactions.

For example a simple order placement choreography could consist of sending an order from a
Buyer to a Supplier with the Supplier just returning an error if the order could not be
processed.

A more complex example could consist of the same messages but optionally followed by a
ChangeOrder message that allows the Buyer to change the order after it was originally
placed.

Both these variations of placing an order could accept the same Message Families, and use
the same Interactions between the same Roles.

At a high level a Choreography contains:

» Arequired defaultLanguage attribute that specifies the default language used within
Description elements within the Choreography

» Zero or more Description elements that provide an overall description of the complete
Choreography

» Zero or more of the following elements in any order:

Copyright © 2003, Commerce One, Inc Page 15

Web Services - Choreography

— An Import element that allows Role, Message Family or Interaction definitions to be
included from a remote location

— A Role element that defines the Roles that take part in the Choreographies being
defined and the States that the Roles are allowed to take

— A MessageFamily element that defines a Message Family that is used within the
Choreography

— An InteractionDef element that defines an interaction between the Roles

A valid Choreography file must have at least two Roles, one Message Family and one
InteractionDef.

5.1.1 Choreography@defaultLanguage

The detaultLanguage attribute is of type xsd: | anguage. It defines the default language to be
used by all the Description elements within the Choreography document unless over-ridden by
the language attribute in a Description element.

5.1.2 Example

The following is an example of a Choreography element.
<Chor eogr aphy def aul t Language="us-en" xm ns="..."
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" >

</ dwbr eogr aphy>

5.2 ChoreographyDefinition

The Choreography Definition element defines a single Choreography. The Choreography
Definition element contains:

* Arequired name attribute that is a unique identifier for the Choreography Definition within
the Choreography. This can be used as an abbreviation when referencing the
Choreography Definition from elsewhere in the Choreography

» Arequired urn attribute that contains a URI that uniquely identifies the Choreography
Definition

» Zero or more Description elements that SHOULD contain definitions of the semantics of
the Choreography Definition

* An optional ExtendsChoreography element that identifies another Choreography Definition
that this Choreography Definition extends

* An optional DependsOnChoreography element that identifies another Choreography
Definition that must have been followed before this Choreography Definition can be
followed.

Copyright © 2003, Commerce One, Inc Page 16

mailto:Choreography@defaultLanguage

Web Services - Choreography

» Arequired StartEndStates element that defines the States that cause the start or indicate
the end of the Choreography Definition

* One or more Interaction and Process elements in any order that indicate the sequence and
conditions of sending and processing of the messages in the Choreography Definition

It is strongly RECOMMENDED that every Choreography Definition should include a clearly
worded Description element to define the semantics.

5.2.1 ChoreographyDefinition@name

The name attribute is of type xsd: | D. It uniquely identifies the Choreography Definition within
the Choreography.

5.2.2 ChoreographyDefinition@urn

The urn attribute is of type xsd: uri . It contains a URI that uniquely identifies the
Choreography Definition.

5.2.3 Example

The following is an example of the ChoreographyDefinition element.

<Chor eogr aphyDefi ni ti on name="0O der Managenent Chor eogr aphy1"
urn="http://exanpl e. com chor eogr aphi es/ Or der Managenent 1" >
<Descri pti on>A sinple Order Managenent Choreography that includes the sending of an order from
a Buyer to a Seller and the Seller returning an error if a problemis found. </ Description>
<St art EndSt at es>

</ St ;’il’t EndSt at es>
</ Chor eogr aphyDefi ni ti on>

5.3 ConditionalEnd

The ConditionalEnd element is a child of the StartEndStates element.

The ConditionalEnd element identifies a State that may be the final State for a Role in a
choreography.

For example, if a Buyer sends an Order to a Seller (see Figure 1:) then the Buyer's state
becomes OrderSent. This may be the final state for the Buyer unless the seller discovered a
problem with the Order Message. In this case, OrderSent is a "Conditional" end state for the
Buyer as the state might but need not change. See also the End element.

Copyright © 2003, Commerce One, Inc Page 17

mailto:ChoreographyDefinition@name
mailto:ChoreographyDefinition@urn

Web Services - Choreography

5.3.1 ConditionalEnd@state

The state attribute is of type xsd: | Dr ef . It contains the value of a name attribute on a State
element of a role.

5.3.2 Example

The following is an example of the ConditionalEnd element.

<Condi ti onal End state="OrderSent"/>

5.4 DependsOnChoreography
The DependsOnChoreography element identifies another Choreography Definition that must
have been followed before this Choreography Definition can be followed.

For example, you can specify that an Order Status Inquiry Choreography can only be followed
if an earlier Order Placement Choreography had been followed that could be referenced. An
example of this type of dependency is given in Appendix B.3

5.4.1 DependsOnChoreography@urn

The urn attribute is of type xsd: uri . It contains the value of a urn attribute on a
Choreography Definition.

5.4.2 Example

The following is an example of the DependsOnChoreography element.

<DependsOnChor eogr aphy urn=" http://exanpl e. conl chor eogr aphi es/ Or der Managenent 1"/ >

5.5 Description

The Description element is used to provide descriptions and semantics of the following
elements in a Choreography: Choreography, Roles, States, Message Families, Interaction
Definitions, Choreography Definitions, Interactions and Processes.

The Description element contains:
» An optional language attribute that specifies the language used in the element content

* An optional ref attribute that contains a URL to a more detailed human readable
description or specification of the choreography component

Copyright © 2003, Commerce One, Inc Page 18

mailto:ConditionalEnd@state
mailto:DependsOnChoreography@urn

Web Services - Choreography

» Element content that contains human readable description of the element

If no language attribute is present then the content of the Description element MUST contain a
description in the language specified by the defaultLanguage attribute on the Choreography
element.

Whenever the Description element is included in the definition of a component, it can occur
zero or more times. The inclusion of at least one Description element is strongly
recommended. If more than one Description element is present within a Choreography
component, then each Description element should have a different value for the language
attribute.

5.5.1 Description@language

The language attribute is of type xsd: | anguage. It defines the language to be used by the
element content of the Description element.

5.5.2 Description@ref

The ref attribute is of type xsd: uri . It contains a URL to a more detailed human readable
description or specification of the Choreography component.

If present, the ref attribute should also reference a human readable document in the same
language as the element content.

5.5.3 Example

The following is an example of the Description element.

<Descri ption | anguage="en- uk"
ref="http://ww. exanpl e. con’ Chor eogr aphySpecs/ en- uk/ Or der Managenent . ht ni' >
Thi s section contains a set of choreographies for Order Managenent
</ Descri pti on>

56 End

The End element is a child element of the StartEndStates element.
The End element identifies a state that is a final state for a role in a choreography.

For example, if a Seller processes a SendOrder message received from a Buyer (see Figure
1:) and the SendOrder is valild, then the Seller's state becomes OrderCheckedOK. This is an
"end" state as no further processes are dependent on it. See also the ConditionalEnd
element.

Copyright © 2003, Commerce One, Inc Page 19

mailto:Description@language
mailto:Description@ref

Web Services - Choreography

5.6.1 End@state

The state attribute is of type xsd: | Dr ef . It contains the value of a name attribute on a State
element of a role.

5.6.2 Example

The following is an example of the End element.

<End st at e=" Or der CheckedK"/ >

5.7 ExtendsChoreography
The ExtendsChoreography element identifies another Choreography Definition that this
Choreography Definition extends. An extended choreography works by:

* Including the Roles, States, Interactions and Processes of the referenced Choreography
Definition

» Specifying additional Roles, States, Interactions and Processes that extend the original
Choreography Definition

» Specifying a new set of StartEndStates that applies to the combined Choreography
Definitions.

An example of this type of dependency is given in Appendix B.2.

5.7.1 ExtendsChoreography@urn

The urn attribute is of type xsd: uri . It contains the value of a urn attribute on a
Choreography Definition.

5.7.2 Example

The following is an example of the ExtendsChoreography element.

<Ext endsChor eogr aphy urn="htt p://exanpl e. com chor eogr aphi es/ Or der Managenent 1"/ >

5.8 Import
The Import element allows Role, Message Family or Interaction Definitions to be imported into

a Choreography. It works in essentially the same way as the Import capability of WSDL. The
Import element contains:

Copyright © 2003, Commerce One, Inc Page 20

mailto:Ebd@state
mailto:ExtendsChoreography@urn

Web Services - Choreography

* A namespace attribute that identifies the namespace used for the imported definitions, and
* A location attribute that provides a hint for the physical location of the definitions.

(Ed: Issue, how do you handle conflicts when the name attribute on an imported definition is
the same as the name attribute on another imported definition or directly included definition)

5.8.1 Import@namespace

The namespace attribute is of type xsd: uri . It contains the namespace of the imported
definitions.

5.8.2 Import@location

The location attribute is of type xsd: uri . It contains a hint for the physical location of the
definitions.

5.8.3 Example

The following is an example of the Import element.

<l nport nanmespace="htt p://exanpl e. conf chor eogr aphi es/ Or der Managenent / Rol es"
| ocati on="http://exanpl e. com chor eogr aphi es/ Or der Managenent / Rol es"/ >

5.9 Interaction

An Interaction element describes:
* The sending of a message in a Message Family from one Role to another, and
* The PreConditions that must exist before the Interaction can occur.

An Interaction always results in a change of state of the Roles that send and receive the
message. Interactions do not include additional messages associated with the binding of an
Interaction to an implementation. See section 2.2.3

It contains:

» A required name attribute that identifies the InteractionDefinition that describes the
Message Family of the message being sent as well as the resulting states of the FromRole
and the ToRole of the roles that send and receive the message

» Zero or more Description elements that provide a description of the semantics of the
Interaction.

* Arequired PreCondition element that defines the conditions that must exist before the
Interaction can occur.

Copyright © 2003, Commerce One, Inc Page 21

mailto:Import@namespace
mailto:Import@location

Web Services - Choreography

5.9.1 Interaction@name

The urn attribute is of type xsd: uri . It contains the value of a urn attribute on a
Choreography Definition.

5.9.2 Example

The following is an example of the Interaction element.

<l nteracti on nane="SendOrder">
<Descri pti on>Send the order to the seller</Description>
<PreCondi ti on conditi on="NewO der Creat ed"/ >
</Interaction>

5.10 InteractionDef

An InreractionDef element provides a reusable definition of an Interaction — i.e. the sending of
a message from one role to another. It contains:

* The sending and receiving Roles, using the fromRole and toRole attributes
» The Message Family of the message being sent using the messageFamily attribute,

» Zero or more Description elements that provide a description of the semantics of the
Interaction Definition

» The state of the sending and receiving roles using the InteractionEndStates element.

5.10.1 InteractionDef@name

The name attribute is of type xsd: | D. It uniquely identifies the Interaction Definition within the
Choreography.

5.10.2 InteractionDef@fromRole

The fromRole attribute is of type xsd: | Dr ef . It contains a reference to the Role that is
sending the message.

5.10.3 InteractionDef@toRole

The toRole attribute is of type xsd: | Dr ef . It contains a reference to the Role that is to
receive the message.

Copyright © 2003, Commerce One, Inc Page 22

mailto:Interaction@name

Web Services - Choreography

5.10.4 InteractionDef@messageFamily

The messageFamily attribute is of type xsd: | Dr ef . It contains a reference to the Message
Family that is being sent in the Interaction.

5.10.5 Example

The following is an example of the InteractionDef element.

<I nteracti onDef name="SendCrder" fronRol e="Buyer" toRole="Seller" nessageFam | y="0Order">
<Descri pti on>Send the order Fromthe Buyer to the Sell er</Description>
<I nteracti onEndSt ates fronttate="COrderSent" toState="0OderReceived"/>

</InteractionDef >

5.11 InteractionEndStates

The InteractionEndStates element defines the state of the fromRole and toRole that result
from the Interaction occurring. It contains:

* Arequired fromState attribute that defines the state of the fromRole, and

» Arequired foState attribute that defines the state of the toRole.

(Ed: We might want to extend the idea of InteractionEndStates to include additional "error”
States, such as: TransmissionErrorState, i.e. the Message could not be sent,
DeliveryErrorState, i.e. the message could not be delivered with certainty as, for example, a
reliable messaging acknowledgement was not received, and TimeoutErrorState, i.e. the
expected response message was not received within some time.)

5.11.1 InteractionEndStates@fromState

The fromState attribute is of type xsd: | Dr ef . It contains a reference to the State the
fromRole takes after the message has been sent.

The fromState must be a state that belongs to the fromRole.

5.11.2 InteractionEndStates@toState

The toState attribute is of type xsd: | Dr ef . It contains a reference to the State the toRole
takes after the message has been received.

The toState must be a state that belongs to the toRole.

Copyright © 2003, Commerce One, Inc Page 23

mailto:InteractionEndStates@fromState

Web Services - Choreography

5.11.3 Example

The following is an example of the InteractionEndStates element.

<Interacti onEndSt ates fronState="COrderSent" toState="O der Received"/>

5.12 MessageFamily

A Message Family identifies a set of messages that serve the same purpose. For example a
RosettaNet Order, a UBL Order, an EDI Order, etc are all requests to purchase goods or
services.

Interaction Definitions use Message Families as they allow the same Choreography Definition
to be reused with different detailed message content.

The Message Family element contains:

» A required name attribute that is a unique identifier for the Message Family within the XML
Choreography Document. This can be used as an abbreviation for the Message Family
elsewhere

* Arequired urn attribute that contains a URI that uniquely identifies the Message Family

» Zero or more Description elements that SHOULD contain definitions of the semantics of
the Message Family.

5.12.1 MessageFamily@name

The name attribute is of type xsd: | D. It uniquely identifies the Message Family within the
Choreography XML document.

5.12.2 MessageFamily@urn

The urn attribute is of type xsd: uri . It contains a URN that uniquely identifies the Message
Family.

5.12.3 Example

The following is an example of the MessageFamily element.

<MessageFani |y nanme="Order" urn="http://exanpl e. com MessageFani | i es/ O der Managenent / Or der " >
<Descri pti on>Messages in this famly contain information to convey a request to purchase goods

or services</Description>

</ MessageFani | y>

Copyright © 2003, Commerce One, Inc Page 24

Web Services - Choreography

5.13 PreCondition

The PreCondition element describes the conditions that must exist before an Interaction or a
Process can occur. It contains a Boolean expression consisting of a combination of States
that must be true. For example " Or der Sent and O der St at usCheckRequi red".

(Ed: need to provide a precise grammar of what Boolean operations, parentheses, eftc, are
allowed)

5.13.1 PreCondition@condition

The condition attribute is of type xsd: st ri ng. It contains a Boolean expression consisting of
a combination of States.

5.13.2 Example

The following is an example of the PreCondition element.

<PreCondi ti on condition="OderSent and Order St at usCheckRequired"/>

5.14 Process

A Process element describes an activity or other process carried out by a Role. Processes
occur as a result of a change of State. For example if a Seller's state becomes OrderReceived
as a result of receiving an Order Message, then the Seller would carry out a process to check
the Order.

The Process element contains:

* Arequired name attribute that identifies the Process within the Choreography
» Arequired role attribute that identifies the Role that carries out the process

» Zero or more Description elements that provide the semantics of the process

» Arequired PreCondition element that describes the conditions that must exist before the
process can start, and

* One or more ProcessEndState elements that describe the possible states of the Role once
the Process is complete.

5.14.1 Process@name

The name attribute is of type xsd: I D. It uniquely identifies the Process within the
Choreography XML document.

Copyright © 2003, Commerce One, Inc Page 25

Web Services - Choreography

5.14.2 Process@role

The role attribute is of tyle xsd: | Dr ef . It identifies the Role that carries out the Process.

5.14.3 Example

The following is an example of the Process element.

<Process nane="ProcessO der St at usRequest"” rol e="Sel l er">

<Descri pti on>Process the Order Status Request and check if it is OK or in error</Description>

<PreCondi ti on condition="Order St at usRequest Recei ved"/ >
<ProcessEndSt at e st at e="Or der St at usRequest ProcessedCK"/ >
<ProcessEndSt at e st ate="Or der St at usRequest ProcessedError"/ >

</ Process>

5.15 ProcessEndState.

The ProcessEndState element defines one of the possible states of a Process once it is
complete. It consists of a single required state attribute.

(Ed: Do we want to extend ProcessEndState to include error states such as
ProcessFailedState — the state of the Choreography if the process failed or crashed, and
ProccessTimeoutError — the state of the Choreography if the process did not respond after
some time.)

5.15.1 ProcessEndState@state

The state attribute is of type xsd: | Dr ef . It references the name attribute on a State element.
The State element referenced must be one of the states of the Role that executes the Process

5.15.2 Example

The following is an example of the ProcessEndState element.

<ProcessEndSt at e st ate="Or der St at usRequest ProcessedError"/ >

5.16 Role

A Role identifies the type of activity taken by one of the organizations or processes that are
participating in the Choreography Definition, for example a Buyer or Seller.

A Role consists of:

Copyright © 2003, Commerce One, Inc Page 26

mailto:ProcessEndState@state

Web Services - Choreography

» A required name attribute that identifies a Role within the Choreography
e Zero or more Description elements that defines the semantics of the Role

* One or more State elements that list the possible states that the Role may take.

5.16.1 Role@name

The name attribute is of type xsd: | D. It uniquely identifies the Role within the Choreography.

5.16.2 Example

The following is an example of a Role element.

<Rol e nanme="Sel |l er">
<Description>This role represents the seller of goods or services</Description>
<State nanme="Or der Recei ved"/ >
<St at e nane=" O der CheckedOK"/ >

</ Rol e>

5.17 Start

The Start element identifies a State that, if it occurs, causes the Choreography to start. There
must be at least one Start State in every Choreography Definition.

5.17.1 Start@state

The state attribute is of type xsd: | Dr ef . It references a name attribute of a State element.

5.17.2 Example

The following is an example of a Start element.

<Start state="NewO derCreated"/>

5.18 StartEndStates

The StartEndStates element identifies the states that indicate when the Choreography
Definition must start as well as the states that indicate the Choreography Definition is
complete.

It contains:

Copyright © 2003, Commerce One, Inc Page 27

Web Services - Choreography

» Zero or more Description elements, to provide additional explanation about the Start and
End States

* One or more Start elements that indicate the states that cause the Choreography
Definition to start

» Zero or more ConditionalEnd elements that indicate a state that may be the final state of
the Choreography Definition, and

o Zero or more End elements that indicate a state that, if reached, is a final state of the
Choreography Definition.

Note that there must be at least one ConditionalEnd or End state for each Role that
participates in the Choreography.

5.18.1 Example

The following is an example of the StartEndStates element.

<St art EndSt at es>
<Start state="NewOr derCreated"/>
<Condi t i onal End st at e="Accept Order Sent"/ >
<Condi ti onal End st ate="Rej ect Order Sent"/ >

<End state="OrderErrorSent"/>
<End st at e=" Or der CheckedK"/ >

</ St art EndSt at es>

5.19 State

A State element describes one of the states or conditions that a Role can take when
participating in a Choreography Definition. For example a Buyer could have the state
OrderSent after they send an order to a Seller.

It contains:
* A name attribute that uniquely identifies the State within the Choreography

e Zero or more Description elements that provide the semantics of the State.

5.19.1 State@name

The name attribute is of type xsd: | D. It uniquely identifies the State within the Choreography.

Copyright © 2003, Commerce One, Inc Page 28

Web Services - Choreography

5.19.2 Example

The following is an example of the State element.

<St at e nanme="Or der Sent "/ >

6 References

[RFC2119] IETF RFC 2119. Key words for use in RFCs to Indicate Requirement Levels.
S. Bradner, Harvard University, March 1997 http://www.ietf.org/rfc/rfc2119.txt

To be completed

Appendix A Choreography Schema (Normative)

The definitions for the Choreography Schema follow. The Schema Definition is in six parts:
» Choreography

* Description

* ImportType

* InteractionDefType

* MessageFamilyType

* RoleType

The last three "type" schema definitions are designed so that InteractionDefTypes,
MessageFamily Types and RoleTypes can be independently defined and included using
Import definitions.

The DescriptionType is separately defined so that a common Description element definition
can be included in all the Schema definitions.

A.1 Choreography Schema

The following contains the Choreography Schema definition.

<?xm version="1.0" encodi ng="UTF- 8" ?>

<I-- edited with XM_ Spy v4.4 U (http://ww. xm spy. con) by David Burdett (Comerce One) -->
<!-- David Burdett & Daniel Gannon (Conmerce One) -->

<I-- Copyright Conmerce One Operations Inc. (c) 2003. Al rights reserved -->

Copyright © 2003, Commerce One, Inc Page 29

http://www.ietf.org/rfc/rfc2119.txt

Web Services - Choreography

<xsd: schema
t ar get Nanespace="com conmner ceone. schenmas/ chor eogr aphy/ chor eogr aphydefi ni ti ons/ chor eogr aphydefin
tions. xsd"
xm ns="com conmmer ceone. schemas/ chor eogr aphy/ chor eogr aphydefi ni ti ons/ chor eogr aphydefi ni ti ons. xsd"
<xsd: annot ati on>
<xsd: docunent ati on xm : | ang="en">
Schena for Choreographi es.
</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: i ncl ude schemalLocati on="Descri ption. xsd"/>
<xsd: i ncl ude schemalLocati on="Rol eType. xsd"/ >
<xsd: i ncl ude schemalLocati on="MessageFanm | yType. xsd"/>
<xsd: i ncl ude schemalLocati on="1Interacti onDef Type. xsd"/ >
<xsd: conpl exType nane="I nport Type">
<xsd: annot at i on>
<xsd: docunent ati on>Schema for inporting external definitions of Roles and Message
Fami | i es</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: attribute nanme="nanespace" type="xsd:anyURl" use="required"/>
<xsd: attri bute nane="I|ocati on" type="xsd: anyURlI " use="optional"/>
</ xsd: conpl exType>
<xsd: el enent nane=" Chor eogr aphy" >
<xsd: annot at i on>
<xsd: docunent ati on>A Chor eogr aphy can contain one or nore Choreography Definitions
describing the interactions that can occur sent between rol es. </xsd: docunment ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="Chor eogr aphyType" >
<xsd: attri bute name="def aul t Language" type="xsd: | anguage" use="required">
<xsd: annot at i on>
<xsd: docunent ati on>Defaul t | anguage for all Description el enents unless overi dden on
t he i ndividual el enment</xsd: docunent ati on>
</ xsd: annot ati on>
</xsd:attri but e>
</ xsd: ext ensi on>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: conpl exType nane="Chor eogr aphyType" >
<xsd: annot ati on>
<xsd: document ati on>Cont ai ns the high | evel definitions of Roles, Message Fanmilies and
Interactions. There nmust be at |east two Roles and one Message Family in a Choreography file
Rol e and Message Fanmily definitions can be "inported" fromfiles referenced by an I nport
el ement . </ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="Descri ption" type="DescriptionType" m nCccurs="0" maxCccurs="unbounded" >
<xsd: annot at i on>
<xsd: docunent ati on>Descri bes i nformation regarding the whole definition of the conplete
chor eography file.</xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: choi ce maxCccur s="unbounded" >
<xsd: el ement nanme="Inport" type="InportType" m nCccurs="0">
<xsd: annot at i on>
<xsd: docunent ati on>l nport specifies a file containing either Role, Message Fanmily or
Interaction definitions.</xsd: docunmentati on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el ement nanme="Rol e" type="Rol eType" m nCccurs="0">
<xsd: annot ati on>

Copyright © 2003, Commerce One, Inc Page 30

Web Services - Choreography

<xsd: docunent ati on>Contai ns the Roles that can take part in the choreographies
D B I D T I N S

</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el ement name="MessageFani | y" type="MessageFam | yType" mi nCccurs="0">
<xsd: annot at i on>
<xsd: docunent ati on>Cont ai ns definitions of the nmessage fanmlies, e.g. an Order Message
Fam ly. A Message Family is a general name that can represent nmessages of different structures
that serve the same purpose. .</xsd:docunentation>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el ement nanme="Interacti onDef" type="InteractionDefType" mi nCccurs="0">
<xsd: annot at i on>
<xsd: docunent ati on>An | nteracti on defines the sending of a nessage fromone role to
anot her. </ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
</ xsd: choi ce>
<xsd: el ement name=" Chor eogr aphyDefi ni ti on" maxOccur s="unbounded" >
<xsd: annot at i on>
<xsd: docunent ati on>Cont ai ns definitions of sequences of exchanges of interactions
(messages) between Rol es and the processes that create or process them </xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="Chor eogr aphyDefiniti onType"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nane=" Chor eogr aphyDefi ni ti onType" >
<xsd: annot at i on>
<xsd: docunent ati on>Defi nes: a) the start and end states of the choreography, b) the
interactions between the roles and c) the processes executed by the rol es</xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent nanme="Descri ption" type="DescriptionType" m nCccurs="0" maxCccurs="unbounded" >
<xsd: annot at i on>
<xsd: docunent ati on>A narrative that explains the purpose of the Choreography
Defini tion. </ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: el ement nanme="Ext endsChor eogr aphy" type="Ext endsChor eogr aphyType" m nCccurs="0">
<xsd: annot at i on>
<xsd: docunent ati on>l denti fi es anot her choreography that this choreography definition
extends. Al the interactions and processes in the identified choreography are automatically
included in this choreography. </ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: el ement name="DependsOnChor eogr aphy" type="DependsOnChor eogr aphyType" m nCccurs="0">
<xsd: annot at i on>
<xsd: docunent ati on>l denti fi es anot her choreography an instance of which rmust have
occurred before this choreography can start. </xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: el ement name="Start EndSt at es” type="Start EndSt at esType" >
<xsd: annot at i on>
<xsd: docunent ati on>l dentifies the states that causes the Choreography to start and the
states which indicate the Choreography is finished</xsd:docunentation>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: choi ce maxCccur s="unbounded" >

Copyright © 2003, Commerce One, Inc Page 31

Web Services - Choreography

<xsd: annot at i on>
<xsd: docunent ati on>An i nteracti on sends a nessage between two roles identifying the
MessageFam |y exchanged. An interaction only occurs if certain preconditions
exi st . </ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent name="Descri ption" type="DescriptionType" m nCccurs="0"
maxQccur s="unbounded" / >
<xsd: el ement nanme="PreCondi ti on" type="PreConditionType">
<xsd: annot at i on>
<xsd: docunent ati on>Cont ai ns a | ogi cal expression consisting of a conbination of
role states that, if they evaluate to true, then the Interaction should
occur </ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd: attribute name="nane" type="xsd:|DREF" use="required"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement name="Process" type="ProcessType">
<xsd: annot at i on>
<xsd: docunent ati on>Descri bes a process executed by a role in terns of the preconditions
t hat nust exist before the process can occur and the states that the role may have once the
process i s conpl et e</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >
</ xsd: choi ce>
</ xsd: sequence>
<xsd: attri bute nane="nane" type="xsd:|D' use="required">
<xsd: annot at i on>
<xsd: docunentati on>ls a descriptive nane for the choreography. Choreography Names nust be
uni que within the Choreography Fil e</xsd: docunentation>
</ xsd: annot at i on>
</ xsd:attri bute>
<xsd: attribute name="urn" type="xsd:anyURl " use="required"/>
</ xsd: conpl exType>
<xsd: conpl exType nane="Ext endsChor eogr aphyType" >
<xsd: annot at i on>
<xsd: docunment ati on>l dentifies a choreography that this choreography
ext ends</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement nanme="Descri ption" type="DescriptionType" m nCccurs="0" maxCccurs="unbounded"/ >
</ xsd: sequence>
<xsd: attribute name="urn" type="xsd:anyURl " use="required"/>
</ xsd: conpl exType>
<xsd: conpl exType nane="DependsOnChor eogr aphyType" >
<xsd: annot at i on>
<xsd: docunent ati on>l dentifies a choreography that an instance of this choreography is
dependent on</xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="Descri ption" type="DescriptionType" m nCccurs="0" maxCccurs="unbounded"/ >
</ xsd: sequence>
<xsd: attribute name="urn" type="xsd:anyURl " use="required"/>
</ xsd: conpl exType>
<xsd: conpl exType nane="St art EndSt at esType" >
<xsd: annot at i on>
<xsd: docunent ati on> Defines the start and end states of a Choreography
Defi ni ti on</xsd: docunent ati on>
</ xsd: annot at i on>

Copyright © 2003, Commerce One, Inc Page 32

Web Services - Choreography

<xsd: el ement name="Descri ption" type="DescriptionType" m nCccurs="0" maxCccur s="unbounded"/ >

<xsd: el enent nane xQccur s="unbounded" >
<xsd: annot at i on>
<xsd: docunentati on>l dentifies a state which, if it exists, will trigger the start of the

chor eogr aphy</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: attribute name="state" type="xsd:|DREF' use="required"/>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nane="Condi ti onal End" mi nCccurs="0" maxCccur s="unbounded" >
<xsd: annot at i on>
<xsd: docunment ati on>l dentifies a state which MAY be a final or end state of the
chor eography. Additional interactions or processes can occur once this state is reached but need
not . </ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: attribute name="state" type="xsd:|DREF' use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el enent name="End" m nCccurs="0" maxCccur s="unbounded" >
<xsd: annot at i on>
<xsd: docunentati on>l dentifies a state which is a final or end state of the choreography.
No additional interactrions or process can validly occur once this state is
reached. </ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: attri bute name="state" type="xsd:|DREF" use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nane="ProcessType">
<xsd: annot ati on>
<xsd: docunent ati on>Defi nes a process</xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nanme="Descri ption" type="DescriptionType" m nCccurs="0" maxCccurs="unbounded" >
<xsd: annot at i on>
<xsd: docunent ati on>Descri bes the process executed by the rol e</xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: el ement nanme="PreCondition">
<xsd: annot ati on>
<xsd: docunent ati on>Cont ai ns a | ogi cal expression consisting of a conbination of role
states that, if they evaluate to true, then the Process should be executed by the
rol e</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd: ext ensi on base="PreCondi ti onType"/>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nanme="ProcessEndSt ate" maxCccur s="unbounded" >
<xsd: annot at i on>
<xsd: docunent ati on>Ref erences an internal state the role that executed the process can
have once the process is conpl ete</xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="Descri ption" m nCccurs="0" maxCccur s="unbounded"/ >

Copyright © 2003, Commerce One, Inc Page 33

Web Services - Choreography

R N S N N

<xsd: attri bute name="state" type="xsd:|DREF" use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd: attribute name="nane" type="xsd:|ID' use="required"/>
<xsd: attribute name="rol e" type="xsd: | DREF" use="required"/>
</ xsd: conpl exType>
<xsd: conpl exType nane="PreConditi onType">
<xsd: annot at i on>
<xsd: docunent ati on>Descri bes the pre-conditions that apply to an Interaction or
Process</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="Descri ption” type="DescriptionType" m nCccurs="0" maxCccurs="unbounded"/>
</ xsd: sequence>
<xsd: attribute name="condition" type="xsd:string" use="required"/>
</ xsd: conpl exType>
</ xsd: schema>

A.2 Description Schema

The following contains the Description Schema.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<I-- edited with XM_ Spy v4.4 U (http://ww. xm spy.con) by David Burdett (Commerce One) -->
<l'-- Copyright Conmerce One Operations Inc. (c) 2003. Al rights reserved -->
<xsd: schema
t ar get Nanespace="com comrer ceone. schemas/ chor eogr aphy/ chor eogr aphydefi ni ti ons/ chor eogr aphydefin
tions. xsd"
xm ns="com commrer ceone. schemas/ chor eogr aphy/ chor eogr aphydefi ni ti ons/ chor eogr aphydefi ni ti ons. xsd"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" el enent For nDef aul t =" qual i fi ed"
attri but eFor mDef aul t ="unqual i fi ed" >
<xsd: conpl exType nane="Descri ptionType" m xed="true">
<xsd: annot at i on>
<xsd: docunent ati on>Descri bes a component of the Choreography</xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: attri bute nanme="| anguage" type="xsd: | anguage" use="optional ">
<xsd: annot at i on>
<xsd: docunent ati on>Overi des the default |anguage for the content of the
Descri pti on</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attri bute>
<xsd: attribute nane="ref" type="xsd:anyURI " use="optional ">
<xsd: annot at i on>
<xsd: docunent ati on>Contai ns the URL that can be resolved to di scover further information
about what is being described</xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
</ xsd: conpl exType>
</ xsd: schema>

Copyright © 2003, Commerce One, Inc Page 34

Web Services - Choreography

A.3 ImportType Schema

The following contains the ImportType Schema.

<?xm version="1.0" encodi ng="UTF- 8" 2>
<I-- edited with XM_ Spy v4.4 U (http://ww. xm spy. con) by Dani el Gannon (Comerce One) -->
<I-- Copyright Conmerce One Operations Inc. (c) 2003. Al rights reserved -->
<xsd: schema
t ar get Nanespace="com conmer ceone. schemas/ chor eogr aphy/ chor eogr aphydefi ni ti ons/ chor eogr aphydefin
tions. xsd" xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns="com conmer ceone. schemas/ chor eogr aphy/ i nport/i nporttype. xsd"
el ement For nDef aul t =" qual i fi ed" >
<xsd: conpl exType nane="I| nport Type">

<xsd: annot at i on>

<xsd: docunent ati on>Schena for inporting external definitions</xsd:docunentation>

</ xsd: annot at i on>

<xsd: attri bute nanme="nanespace" type="xsd:anyURl" use="required"/>

<xsd: attribute nanme="I|ocation" type="xsd: anyUR " use="optional "/>
</ xsd: conpl exType>
</ xsd: schema>

A.4 InteractionDefType Schema

The following contains the InteractionDefType Schema.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<I-- edited with XM_. Spy v4.4 U (http://ww. xm spy. con) by David Burdett (Commerce One) -->
<I-- Copyright Conmerce One Operations Inc. (c) 2003. Al rights reserved -->
<xsd: schema
t ar get Nanmespace="com commrer ceone. schemas/ chor eogr aphy/ chor eogr aphydef i ni t i ons/ chor eogr aphydef i ni
tions. xsd" xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns="com commrer ceone. schemas/ chor eogr aphy/ chor eogr aphydef i ni ti ons/ chor eogr aphydefi ni ti ons. xsd"
el ement For nDef aul t =" qual i fi ed" attri but eFornDefaul t="unqualified">
<xsd: i ncl ude schemalLocati on="Descri ption. xsd"/>
<xsd: el ement name="|nteracti onDef Li st">
<xsd: annot at i on>
<xsd: docunentati on>A list of Interaction Definitions in a Choreography that may be | nported
into a Choreography Definition</xsd:docunmentation>
</ xsd: annot ati on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="I|nteracti onDef" type="InteractionDef Type" maxCccurs="unbounded">
<xsd: annot ati on>
<xsd: docunent ati on>Descri bes an Interaction in a Choreography. </xsd:docunentation>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: conpl exType nane="Int eracti onDef Type" >
<xsd: annot at i on>
<xsd: docunent ati on>Defi nes an interacti on between two rol es. </xsd: docunentati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement name="Descri ption" type="DescriptionType" m nCccurs="0" maxCccurs="unbounded"/ >
<xsd: el ement nanme="|nt eracti onEndSt at es" >
<xsd: annot at i on>

Copyright © 2003, Commerce One, Inc Page 35

Web Services - Choreography

<xsd: docunent ati on>Defines the states that the fromand to rol es have once the

HE N N et] H mmmmnl At Al iAadD AAaAiiimaniat A L A~

<] xsd: annot at i on>
<xsd: conpl exType>
<xsd: attribute name="frontState" type="xsd:|DREF" use="required"/>
<xsd: attribute name="toState" type="xsd:|DREF" use="required"/>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
<xsd: attribute nane="nane" type="xsd:|D' use="required">
<xsd: annot at i on>
<xsd: docunentati on>This is the identifier for the interaction. It must be unique within a
Chor eogr aphy Fi | e</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attri bute>
<xsd: attribute name="fronRol e" type="xsd: | DREF" use="required">
<xsd: annot at i on>
<xsd: docunent ati on>I ndi cates the role that is sending the nmessage by referencing the Nane
attribute for the rol e</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: attri bute>
<xsd: attribute nane="t oRol e" type="xsd:|DREF" use="required">
<xsd: annot ati on>
<xsd: docunent ati on>l ndi cates the role that is receiving the nessage by referenceing the
Name attribute for the Rol e</xsd: docunentati on>
</ xsd: annot at i on>
</ xsd: attri bute>
<xsd: attribute nanme="nessageFam | y" type="xsd: | DREF" use="required">
<xsd: annot ati on>
<xsd: docunent ati on>l ndi cates the MessageFanily that is used in the interaction by
referencing the nane attribute of the Message Fami | y</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: attri bute>
</ xsd: conpl exType>
</ xsd: schema>

A.5 MessageFamilyType Schema

The following contains the MessageFamilyType Schema.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<I-- edited with XM_ Spy v4.4 U (http://ww. xm spy. con) by David Burdett (Comerce One) -->
<l -- Copyright Conmerce One Operations Inc. (c) 2003. Al rights reserved -->
<xsd: schema
t ar get Nanespace="com conmner ceone. schenas/ chor eogr aphy/ chor eogr aphydefi ni ti ons/ chor eogr aphydefin
tions. xsd"
xm ns="com conmmer ceone. schemas/ chor eogr aphy/ chor eogr aphydefi ni ti ons/ chor eogr aphydefi ni ti ons. xsd"
xm ns: xsd="htt p://ww. wW3. or g/ 2001/ XM_Schema" el enent For nDef aul t =" qual i fi ed" >
<xsd: i ncl ude schemalLocati on="Descri ption. xsd"/>
<xsd: el ement name="MessageFam | yLi st">
<xsd: annot at i on>
<xsd: docunentati on>A |ist of Message Fanmilies in a Choreography that may be Inported into a
Chor eogr aphy Defi nition</xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="MessageFani | y" type="MessageFam | yType" >
<xsd: annot ati on>

Copyright © 2003, Commerce One, Inc Page 36

Web Services - Choreography

<xsd: docunent ati on>A Message Fam ly is used to group together nessages that serve a
sim | ar purpose. For exanple various different XML schena that each define an order would all be

e L L] R | R P Trme [om0l apes ddla Ales monmema et oodb 5 cnencs

</ xsd: annot at i on>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: conpl exType nane="MessageFam | yType" >
<xsd: annot at i on>
<xsd: docunent ati on>The Message Family Type defines the structure of the Message
Fam | y</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent nanme="Descri ption" type="DescriptionType" m nCccurs="0" maxCccurs="unbounded" >
<xsd: annot at i on>
<xsd: docunent ati on>Thi s describes information regarding the MessageFam |y, and what type
of information is included in the nessage</xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el ement >
</ xsd: sequence>
<xsd: attribute nanme="nane" type="xsd:|D' use="required">
<xsd: annot at i on>
<xsd: docunent ati on>This is a descriptive name of the MessageFamily. It nust be unique
within all Message Fanmilies within the Choreography. </ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: attri bute>
<xsd: attribute nanme="urn" type="xsd:anyURl " use="required">
<xsd: annot at i on>
<xsd: docunentati on>This is the unique identifier for this MessageFamn | y</xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
</ xsd: conpl exType>
</ xsd: schema>

A.6 RoleType Schema

The following contains the RoleType Schema.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<I-- edited with XM_. Spy v4.4 U (http://ww. xm spy. con) by David Burdett (Commerce One) -->
<I'-- Copyright Conmerce One Operations Inc. (c) 2003. Al rights reserved -->
<xsd: schema
t ar get Nanespace="com conmer ceone. schenas/ chor eogr aphy/ chor eogr aphydefi ni ti ons/ chor eogr aphydef i ni
tions. xsd"
xm ns="com commrer ceone. schemas/ chor eogr aphy/ chor eogr aphydef i ni ti ons/ chor eogr aphydefi ni ti ons. xsd"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" el enent For nDef aul t =" qual i fi ed"
attri but eFor mDef aul t ="unqual i fi ed">
<xsd: i ncl ude schemalLocati on="Descri ption. xsd"/>
<xsd: el enent nanme="Rol eLi st">
<xsd: annot at i on>
<xsd: docunentati on>A |list of Roles in a Choreography that may be Inported into a
Chor eogr aphy Defi nition</xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="Rol e" type="Rol eType" nmaxCccurs="unbounded" >
<xsd: annot at i on>

Copyright © 2003, Commerce One, Inc Page 37

Web Services - Choreography

<xsd: docunent ati on>Descri bes a Role in a Choreography Definition and the states it may

wimAds AAaAiiimaniat A L A~

</iéd:annotation>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: conpl exType nane="Rol eType" >
<xsd: annot ati on>
<xsd: document ati on>Cont ai ns the structure of the Rol e</xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent name="Descri ption" type="DescriptionType" m nCccurs="0">
<xsd: annot at i on>
<xsd: docunent ati on>Descri bes the role, e.g. a buyer role is an organization or individua
t hat purchases goods or services</xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el ement >
<xsd: el ement nanme="State" type="StateType" maxOccurs="unbounded" >
<xsd: annot at i on>
<xsd: docunentati on>A state identifies the progress that has been reached in a
choreography. States arise as a result of sending, receiving or processing a
nessage. </ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el ement >
</ xsd: sequence>
<xsd: attri bute nane="nane" type="xsd:|D' use="required">
<xsd: annot at i on>
<xsd: docunent ati on>Nanme is a descriptive nane for the role, e.g Buyer. Rol eNanes MJST be
uni que wi thin a Choreography</xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
</ xsd: conpl exType>
<xsd: conpl exType nane="St at eType" >
<xsd: sequence m nCccurs="0">
<xsd: el ement name="Descri ption" type="DescriptionType"/>
</ xsd: sequence>
<xsd: attribute nanme="nane" type="xsd:|D' use="required">
<xsd: annot ati on>
<xsd: docunent ati on>The names of a state nust be uni que within a Choreography
Fi | e. </ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd:attribute>
</ xsd: conpl exType>
</ xsd: schema>

Copyright © 2003, Commerce One, Inc Page 38

Web Services - Choreography

Appendix B Example Choreography Definition
(non-normative)

This appendix provides an example of a Choreography. It consists of four related
Choreography Definitions in one XML document.

The following diagrams illustrate each of these choreographies using the following
conventions.

Legend

[Interaction >
Other
Process [State] Choreograph

Note that these conventions are purely illustrative. Other alternative graphical representations
of the choreographies may be used.

B.1 Order Management 1

Buyer : Seller

\
1 1
: :

New Order
Created ey | Send Order Ord.e ! Check Order
Sent Received /

| | 3
1 1
1

]

i Order Order Checked
! Checked OK Rejected

1

Order Checked
Error

Order Error
Sent
1

1
]
1
1
1
i
Order Error ¢ Process Order| e
Message Checked Error Received Send Order Error
1
1
]

Figure 3: Order Create and Error Response

Order Management 1 consists of the sending of a single Order with an Error Message sent in
reply only if a problem is detected.

Copyright © 2003, Commerce One, Inc Page 39

Web Services - Choreography

B.2 Order Management 2

Buyer Seller

Order
Management
1

Accept Order
Checked OK |W~ Check Accept Order

Accept Order
. Send Accept Order | Order
Accept Order
Accept Order K P Recoied Sent Checked OK

Checked Error

Reject Order
Checked OK J¥~ Check Reject Order

K Reject Order Received

Order Checked
Rejected

Reject Order
Sent

Send Reject Order

Reject Order
Checked Error

jj

: ; Process Reject :
Reject Order T Reject Order Reject Order
P Eror Sent | seidliRe/eoderdeREmon > Error Received Order Error Error Checked
[l
1

1
1
Process Accept
Accept Order Accept Order Accept Order
I Error Sent | Sendiceepti@ra o > Error Received Order Error Error Checked

Figure 4: Order Create and Single Order Response — Extends Order Management 1

Order Management 2 "extends" Order Management 1 by adding the sending of either an
“Accept Order” or a “Reject Order” message and associated error messages. As it is an
“‘extension” it means that all the messages in Order Management 1 are included by reference.

B.3 Check Order Status

Order
Management
lor2

Order
Sent

AND Order Status

Order Status RequesESent
Check Required

Buyer Seller

1

Order Status Process Order

Sl S Reguesi Request Received| Status Request
1

Ot S Process Order

raer Status Order Status

Response Status Response Send Order Status Response Oy SEE Order Status
Processed Response Received Response Sent Request

Processed OK

Process Order Order Status
Order Status Order Status Order Status
Error Processed Status Error Error Received Send Order Status Emor Error Sent Proc'z:gg?érror

j

Copyright © 2003, Commerce One, Inc Page 40

Web Services - Choreography

Figure 5: Check Order Status — Depends on Order Management 1 or Order Management
2

Check Order Status is a separate Choreography that is “dependent” on Order Management 1
or Order Management 2 choreography being followed earlier. It is used to determine the
status of an order. As it is “dependent” on another choreography, it means that it can only be
followed if an instance of the other choreography has already occurred.

B.4 Resend Order Response

Buyer ~ Seller

Order
Management
2

Process Resend
Order Response
Request

Resend Order Resend Order
Response | Resend Order Response Request Response

AND
Order Response

E’}

Not Received E
1
|
- E
(
Accept Order Accept Order Resend Accept
Received Send Accept Order |k Sent M Order
]]
Order Reject Order { Reject Order R d Reject
Management g Send Reject Order | ™ S
2 Received ¢ Sent rder
1 1
p)
Order Error Order Error Resend Order
Received Send Order Error |\ Sent <+ Siar
1 1
1 1
]]
1 1
]]
1 1
]]
1 1
: :
Process I \
Resend Order Resend Order Resend Order (Resend Order Resend Order
Response Error Response Error Resend Order Response Error | Response Error Response
Processed Response Error| Received 1§ Sent Request Error

Figure 6: Resend Order Response — depends on Order Management 2

Resend Order Response is also a dependent Choreography that depends on Order
Management 2. It is used to request the resending of the message sent by the seller in
response to the original order.

B.5 Example XML
This section contains sample XML for the four related choreographies described above.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<I-- edited with XM_. Spy v4.4 U (http://ww. xm spy. con) by David Burdett (Commerce One) -->
<I-- Copyright Conmerce One Operations Inc, (c) 2003. Al rights reserved. -->

Copyright © 2003, Commerce One, Inc Page 41

Web Services - Choreography

<Chor eogr aphy def aul t Language="us-en"

xm ns="com conmmer ceone. schemas/ chor eogr aphy/ chor eogr aphydefi ni ti ons/ chor eogr aphydefi ni ti ons. xsd"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xsi : schemalLocat i on="com comer ceone. schenmas/ chor eogr aphy/ chor eogr aphydefi ni ti ons/ chor eogr aphydef

C. \ XML\ Test Schermas\ Schemas\ CHOREO~1\ Chor eogr aphy. xsd" >
<Descri pti on>This section contains a set of choreographies for O der Minagenent </ Descri ption>
<I-- ROLES -->
<Rol e nane="Buyer">

<Description>This role represents the purchaser of goods or services</Description>

<I-- Order Placenent States -->

<St at e name="NewOr der Cr eat ed" >

<Descri ption>Each definition of a state can have a description which can be used to

precisely explain the semantics of the state. They have been onmitted fromthis
exanpl e. </ Descri pti on>

</ St at e>

<State nane="Order Sent "/ >

<St at e nane="Accept Or der Recei ved"/ >

<St at e nane="Accept Or der CheckedOK"/ >

<St at e nane="Accept Or der CheckedError"/>

<St at e nane="Accept OrderErrorSent"/>

<St at e nane="Rej ect Or der Recei ved"/ >

<St at e nane="Rej ect Or der CheckedK"/ >

<St at e nane="Rej ect Or der CheckedError"/>

<State nane="Rej ect OrderErrorSent"/>

<St at e nane="Or der Err or Recei ved"/ >

<St at e nane="Or der Err or MessageChecked"/ >

<l-- Order Status States -->

<St at e nane="Or der St at usCheckRequi red"/ >

<St at e nane="Or der St at usRequest Sent "/ >

<St at e nane="Or der St at usResponseRecei ved"/ >

<St at e nane="Or der St at usResponsePr ocessed"/ >

<St ate nanme="Order St at usError Recei ved"/ >

<Stat e nane="Order St at usError Processed"/ >

<I-- Resend Order Response States -->

<St at e nane="O der ResponseNot Recei ved"/ >

<St at e nane="ResendOr der ResponseRequest Sent "/ >

<St at e nane="ResendOr der ResponseError Recei ved"/ >

<St at e nane="ResendOr der ResponseErr or Processed"/ >
</ Rol e>
<Rol e name="Sel |l er">

<Description>This role represents the seller of goods or services</Description>

<l-- Order Placenent States -->

<St at e nane="Or der Recei ved"/>

<St ate name="Or der Checked(K"/ >

<St at e nane="Accept Order Sent "/ >

<St at e nane="Accept Or der Err or Recei ved"/ >

<St at e nane="Accept Or der Err or Checked"/ >

<St at e nane=" O der CheckedRej ect ed"/ >

<St at e nane="Rej ect Order Sent "/ >

<St at e nane="Rej ect Order Error Recei ved"/ >

<St at e nane="Rej ect Order Err or Checked"/ >

<St at e nane="O der CheckedError"/ >

<State nanme="OrderErrorSent"/>

<l-- Order Status States -->

<Stat e nanme="O der St at usRequest Recei ved"/ >

<St at e nane="Or der St at usRequest ProcessedCK"/ >

<St at e nane="Or der St at usResponseSent "/ >

<St at e nane="Or der St at usRequest ProcessedError"/ >

<State nanme="Order Stat usError Sent"/>

<l -- Resend Order Response States -->

<St at e nane="ResendOr der ResponseRequest Recei ved"/ >

<St at e nane="ResendAccept O der"/ >

Copyright © 2003, Commerce One, Inc Page 42

Web Services - Choreography

DY o S RSN T . SRR | o I S PN T NS

<St ate nanme="ResendOrderError"/>
<St at e nane="ResendOr der ResponseRequest Error "/ >
<St at e nane="ResendOr der ResponseError Sent"/ >
</ Rol e>
<!-- MESSACES- - >
<! -- ORDER MANAGEMENT MESSAGES - ->
<MessageFam | y name="Order"
urn="rrn: org. xchl / messagef am | i es/ xcbl nessagef am | i es/v1l_0/ Or der MessageFam | y. xm ">
<Descri pti on>Messages in this famly contain infornmation to convey a request to purchase goods
or services</Description>
</ MessageFanmi | y>
<MessageFam | y name=" O der Response"
urn="rrn: org. xchl / messagef am | i es/ xcbl nessagef ani | i es/vl_0/ Or der ResponseMessageFam | y. xm " >
<Descri pti on>Messages in this famly contain information that is a response to a request to
purchase goods or services</Description>
</ MessageFami | y>
<!-- ORDER STATUS MESSAGES -->
<MessageFam | y name=" O der St at usRequest "
urn="rrn: org. xchl / messagef am | i es/ xcbl nessagef ami | i es/ vl _0/ Or der St at usRequest MessageFamni | y. xm ">
<Descri pti on>Messages in this famly request the status of the processing of an Order Message
sent earlier</Description>
</ MessageFami | y>
<MessageFam | y name=" O der St at usResponse”
urn="rrn: org. xchl / messagef am | i es/ xchl nessagef ani | i es/ vl _0/ Order St at usResponseMessageFam | y. xm "
>
<Descri pti on>Messages in this famly provide information on the status of the processing of an
Order Message sent earlier</Description>
</ MessageFami | y>
<! -- RESEND AN EARLI ER REQUEST MESSAGES - ->
<MessageFam | y name="ResendMessageRequest "
urn="rrn: org. xchl / messagef am | i es/ xcbl nessagef ani | i es/vl_0/ ResendMessageRequest MessageFam | y. xmi
">
<Descri pti on>Messages in this fam |y request the resending of a nmessage sent
earlier</Description>
</ MessageFami | y>
<!'-- ERROR MESSAGES -->
<MessageFam | y name="Error Message”
urn="rrn: org. xchl / messagef am | i es/ xcbl nessagef ani | i es/v1l_0/ Err or ResponseMessageFam | y. xm ">
<Descri pti on>Messages in this fam|ly report errors detected in other nmessages which prevent
t hat nessage from bei ng proccessed properly</Description>
</ MessageFami | y>
<!'-- | NTERACTI ON DEFI NI TI ONS - - >
<! -- ORDER MANAGEMENT | NTERACTI ONS - - >
<I nteractionDef name="SendOrder" fronRol e="Buyer" toRol e="Seller" nessageFani|y="0Order">
<Descri pti on>Send the order Fromthe Buyer to the Sell er</Description>
<I nteracti onEndSt ates fronttate="COrderSent" toState="0O derReceived"/>
</InteractionDef >
<I nteractionDef name="SendAccept Order" fromRol e="Seller" toRol e="Buyer"
nmessageFani | y="Or der Response" >
<Descri pti on>The order is OK - send Order Response</Description>
<I nteracti onEndStates fronttate="Accept OrderSent" toState="Accept O derReceived"/>
</ I nteractionDef >
<I nteractionDef nanme="SendRej ect Order" fronRol e="Seller" toRol e="Buyer"
nessageFam | y="Or der Response" >
<Descri pti on>The order was rejected - send Order Response</Descri ption>
<I nteracti onEndSt ates fronttate="Reject OrderSent" toState="RejectO derReceived"/>
</InteractionDef >
<I nteractionDef name="SendOrderError" fronRol e="Seller" toRol e="Buyer"
nmessageFam | y="Error Message" >
<Descri ption>The order was in error - send Error Message</Description>
<Interacti onEndStates fronfttate="COrderErrorSent" toState="0Or derErrorReceived"/>
</InteractionDef >

Copyright © 2003, Commerce One, Inc Page 43

Web Services - Choreography

<I nteractionDef name="SendAccept OrderError" fronRol e="Buyer" toRole="Seller"

——— i~~~ ATA P Tl PP Y AP '

<Descri Et; on>Accept Order ﬁesponse in error - send Error Message</ Description>
<I nteracti onEndStates fronState="Accept OrderErrorSent" toState="Accept OrderErrorReceived"/>
</InteractionDef >
<I nteractionDef nanme="SendRej ect OrderError" fronRol e="Buyer" toRole="Seller"
nmessageFam | y="Error Message" >
<Descri pti on>Rej ect Order Response in error - send Error Message</ Descri ption>
<Interacti onEndStates fronttate="RejectOrderErrorSent" toState="RejectO derErrorRecei ved"/>
</InteractionDef >
<l -- ORDER STATUS REQUEST | NTERACTI ONS - - >
<I nteractionDef name="SendOrder St at usRequest” fronRol e="Buyer" toRol e="Seller"
messageFam | y="Cr der St at usRequest " >
<I nteracti onEndSt at es fronttate="0Order St at usRequest Sent "
t oSt at e=" Or der St at usRequest Recei ved"/ >
</InteractionDef >
<I nteractionDef name="SendOrder St at usResponse” fronRol e="Sel |l er" toRol e="Buyer"
nessageFam | y="Or der St at usResponse" >
<I nteracti onEndSt at es fronttate="0Crder St at usResponseSent "
t oSt at e=" Or der St at usResponseRecei ved"/ >
</InteractionDef >
<I nteractionDef name="SendOrder StatusError" fronRol e="Seller" toRol e="Buyer"
nessageFam | y="Error Message" >
<I nteracti onEndSt ates fronttate="CrderStatusErrorSent" toState="0O der StatusErrorRecei ved"/ >
</InteractionDef >
<! -- RESEND ORDER RESPONSE | NTERACTI ONS - - >
<I nteractionDef nanme="ResendO der ResponseRequest” fronRol e="Buyer" toRol e="Seller"
nmessageFani | y=" ResendMessageRequest " >
<I nteracti onEndSt at es fronStat e="ResendO der ResponseRequest Sent "
t oSt at e=" ResendOr der ResponseRequest Recei ved"/ >
</InteractionDef >
<I nteractionDef name="ResendOrder ResponseError" fronRol e="Seller" toRol e="Buyer"
nessageFam | y="Error Message" >
<I nteracti onEndSt at es fronttat e="ResendO der ResponseEr r or Sent "
t oSt at e=" ResendOr der ResponseEr r or Recei ved"/ >
</InteractionDef>
<! -- CHOREOGRAPHY DEFI NI TI ONS - - >
<I-- ORDER MANAGEMENT 1 -->
<Chor eogr aphyDefi ni ti on nane="O der Managenent Chor eogr aphy1"
urn="rrn:org. xchl : chor eogr aphi es/ or der managenent / v1l_0/ or der managenent chor eogr aphyl. xm " >
<Description>In this Choreography Definition, a Buyer sends an Order to a Seller. The Seller
returns an Error Message, if the Order cannot be processed</Description>
<St art EndSt at es>
<Start state="NewO derCreated"/>
<Condi ti onal End state="Order Sent"/>
<End st at e="Or der CheckedK"/ >
<End st at e=" O der CheckedRej ect ed"/ >
<End state="OrderErrorSent"/>
<End st at e="Order Err or MessageChecked"/ >
</ St art EndSt at es>
<I nteraction name="SendCrder">
<Descri ption>Send the order to the seller</Description>
<PreCondi ti on conditi on="NewOr der Creat ed"/ >
</Interaction>
<Process name="CheckOrder" role="Seller">
<Descri pti on>The sell er checks the order.</Description>
<PreCondi ti on condition="O derRecei ved"/>
<Pr ocessEndSt at e stat e="O der CheckedOK"/ >
<ProcessEndSt at e st at e="O der CheckedRej ect ed"/ >
<ProcessEndSt at e state="Order CheckedError"/>
</ Process>
<l nteracti on name="SendO der Error">
<Descri pti on>The order was in error - send an error</Description>

Copyright © 2003, Commerce One, Inc Page 44

Web Services - Choreography

Y o WP SIQUR T e T A TS P, IR PR | S TR BN

</l nteraction>
<Process name="ProcessOr der Error Message" rol e="Buyer">
<Descri pti on>Buyer Processes Order Error Message</ Description>
<PreCondi ti on condition="OderErrorReceived"/>
<ProcessEndSt at e state="Or der Error MessageChecked"/ >
</ Process>
</ Chor eogr aphyDefi ni ti on>
<I-- ORDER MANAGEMENT 2 -->
<Chor eogr aphyDefi ni ti on nane="O der Managenent Chor eogr aphy2"
urn="rrn:org. xchl : chor eogr aphi es/ or der managenent / vl_0/ or der managenent chor eogr aphyl. xm " >
<Descri pti on>Thi s choreography allows a Buyer to send an Order nessage to a Seller and receive
either an Order Response Message or an Error Message in return. If the Order Response Message is
in error, then the Buyer sends an Error Message to the Seller.</Description>
<Ext endsChor eogr aphy
urn="rrn: org. xchl : chor eogr aphi es/ or der managenent /v1l_0/ or der managenent chor eogr aphyl. xm "/ >
<St art EndSt at es>
<Start state="NewOrderCreated"/>
<Condi ti onal End st at e=" Accept Or der Sent "/ >
<Condi ti onal End st at e="Rej ect Order Sent"/ >
<End state="OrderErrorSent"/>
<End st at e="Or der CheckedOK"/ >
<End st at e="Or der CheckedRej ect ed"/ >
<End state="RejectOrderErrorSent"/>
<End st ate="Accept OrderErrorSent"/>
<End st at e="Rej ect Or der Er r or Checked"/ >
<End st at e=" Accept Or der Er r or Checked"/ >
</ St art EndSt at es>
<I nteracti on nane="SendAccept Or der">
<Descri pti on>Accept the Order</Description>
<PreCondi ti on condition="0rder CheckedOK"/ >
</Interaction>
<I nteracti on nane="SendRej ect Order">
<Descri pti on>Rej ect the Order</Description>
<PreCondi ti on conditi on="0COr der CheckedRej ect ed"/ >
</Interaction>
<Process nane="CheckAccept Order" rol e="Buyer">
<Descri pti on>Buyer Checks Accept Order Response</Description>
<PreCondi ti on condition="Accept O der Recei ved"/ >
<ProcessEndSt at e st at e="Accept Or der CheckedOK"/ >
<ProcessEndSt at e st at e="Accept Or der CheckedError"/ >
</ Process>
<Process nane="CheckRej ect Order" rol e="Buyer">
<Descri pti on>Buyer Checks Reject Order Response</Description>
<PreCondi ti on condition="Reject Order Recei ved"/ >
<ProcessEndSt at e st at e="Rej ect Or der CheckedOK"/ >
<ProcessEndSt at e st at e="Rej ect Or der CheckedError"/>
</ Process>
<I nteraction name="SendAccept OrderError">
<PreCondi ti on conditi on="CheckAccept OrderError"/>
</Interaction>
<Process nane="ProcessAcceptOrderError" role="Seller">
<Descri pti on>Sel | er processes the Send Accept Order Error Message</Descri ption>
<PreCondi ti on condition="Accept O der Error Recei ved"/ >
<ProcessEndSt at e st at e="Accept Or der Err or Checked"/ >
</ Process>
<I nteraction name="SendRej ect OrderError">
<PreCondi ti on conditi on="CheckRej ect OrderError"/>
</Interaction>
<Process nanme="ProcessRejectOrderError" role="Seller">
<Descri ption>Sel | er processes the Send Reject Order Error Message</Description>
<PreCondi ti on condition="Reject O derErrorRecei ved"/>
<ProcessEndSt at e st at e="Rej ect Order Err or Checked"/ >

Copyright © 2003, Commerce One, Inc Page 45

Web Services - Choreography

<! -- CHECK ORDER STATUS- - >
<Chor eogr aphyDef i ni ti on nane=" O der Managenent CheckOr der St at us”
urn="rrn: org. xchl : chor eogr aphi es/ or der managenent / vl_0/ or der managenment checkor der st at us. xm " >
<Descri pti on>Thi s choreography allows a Buyer to check on the status of the processing of an
order sent to the seller earlier.</Description>
<DependsOnChor eogr aphy
urn="rrn: org. xchl : chor eogr aphi es/ or der managenent /v1l_0/ or der managemnment chor eogr aphy1. xm "/ >
<St art EndSt at es>
<Start state="OrderStatusCheckRequired"/>
<End st at e="Order St at usResponseSent "/ >
<End state="Order StatusErrorSent"/>
<End st ate="Order St at usResponseProcessed"/ >
<End st ate="Order St at usErrorProcessed"/ >
</ St art EndSt at es>
<I nteraction name="SendOr der St at usRequest ">
<Descri pti on>The sending of an Order Status is al so dependent on an Order being
sent . </ Descri ption>
<PreCondi ti on condition="OrderSent and O der St at usCheckRequi red"/>
</l nteracti on>
<Process name="ProcessO der St at usRequest"” rol e="Sel l er">
<PreCondi ti on condi ti on="COrder St at usRequest Recei ved"/ >
<ProcessEndSt at e st at e="Or der St at usRequest ProcessedCK"/ >
<ProcessEndSt at e state="0Or der St at usRequest ProcessedError"/ >
</ Process>
<I nteraction nanme="SendOr der St at usResponse" >
<PreCondi ti on condition="0O der St at usRequest ProcessedK"/ >
</l nteraction>
<I nteraction name="SendOrder St at usError" >
<PreCondi ti on condi ti on="Or der St at usRequest ProcessedError"/ >
</Interaction>
<Process nane="ProcessO der St at usResponse" rol e="Buyer">
<PreCondi ti on condi ti on="0Order St at usResponseRecei ved"/ >
<ProcessEndSt at e st at e="Or der St at usResponseProcessed"/ >
</ Process>
<Process nanme="ProcessOrder StatusError" rol e="Buyer">
<PreCondi ti on condition="0Order St at uskrror Recei ved"/ >
<ProcessEndSt at e state="Order St at uskrrorProcessed"/ >
</ Process>
</ Chor eogr aphyDefi ni ti on>
<!-- RESEND ORDER RESPONSE- - >
<Chor eogr aphyDefi ni ti on
urn="rrn:org. xchl : chor eogr aphi es/ or der managenent/v1l_0/ or der managenent r ecovery. xm "
name=" Or der Managenent Recover y" >
<Descri pti on>Thi s choreography allows a Buyer to recover the processing of an order if a
nmessage is not received. It includes: checking the state of the processing at the seller
followed by a request to resend the | atest order information.</Description>

<DependsOnChor eogr aphy
urn="rrn: org. xchl : chor eogr aphi es/ or der managenent /vl _0/ or der managemnment chor eogr aphy2. xm "/ >
<St art EndSt at es>
<Start state="O der ResponseNot Recei ved"/ >
<End st at e="Accept Order Sent"/ >
<End st ate="Rej ect Order Sent"/>
<End state="OrderErrorSent"/>
<End st at e="ResendOr der ResponseError Sent "/ >
<End st at e="ResendOr der ResponseErr or Processed"/ >
</ St art EndSt at es>
<I nteraction name="ResendO der ResponseRequest ">
<Descri ption>This interaction is dependent on an order being sent with no nessage received
in response</Description>
<PreCondi ti on condition="Oder Sent and O der ResponseNot Recei ved"/ >

Copyright © 2003, Commerce One, Inc Page 46

Web Services - Choreography

Y L DS

<Process nane="ProcessResendOr der ResponseRequest” rol e="Sel |l er">
<PreCondi ti on condition="ResendOr der ResponseRequest Recei ved"/ >
<ProcessEndSt at e st at e="ResendAccept Order"/ >
<ProcessEndSt at e st at e="ResendRej ect Order"/ >
<ProcessEndSt at e state="ResendOrderError"/>
<ProcessEndSt at e st at e=" ResendOr der ResponseRequest Error "/ >
</ Process>
<I nteraction name="SendAccept Or der ">
<PreCondi ti on condition="ResendAccept Order"/>
</Interaction>
<I nteraction name="SendRej ect Order">
<PreCondi ti on condition="ResendRej ect Order"/>
</l nteraction>
<I nteraction name="SendOrderError">
<PreCondi ti on condition="ResendOrderError"/>
</Interaction>
<I nteraction name="ResendOr der ResponseError" >
<PreCondi ti on condition="ResendO der ResponseRequest Error"/ >
</l nteraction>
</ Chor eogr aphyDefi ni ti on>
</ Chor eogr aphy>

Copyright © 2003, Commerce One, Inc Page 47

	Introduction
	Notational Conventions
	Namespaces
	What's missing
	Contents of this Document

	Overview
	The Problem
	Features
	Reusability of Choreography Definitions
	State Driven Choreography Definitions
	Interactions, Reliable Messaging and Signals
	Cooperative Organizations
	Checking Choreography Progress
	Multi-party Choreographies
	Importing Definitions
	Extending Choreography Definitions
	Choreography Dependencies

	Semantic Definitions

	Choreography XML Structure
	Processing Rules
	Schema Description
	Choreography
	Choreography@defaultLanguage
	Example

	ChoreographyDefinition
	ChoreographyDefinition@name
	ChoreographyDefinition@urn
	Example

	ConditionalEnd
	ConditionalEnd@state
	Example

	DependsOnChoreography
	DependsOnChoreography@urn
	Example

	Description
	Description@language
	Description@ref
	Example

	End
	End@state
	Example

	ExtendsChoreography
	ExtendsChoreography@urn
	Example

	Import
	Import@namespace
	Import@location
	Example

	Interaction
	Interaction@name
	Example

	InteractionDef
	InteractionDef@name
	InteractionDef@fromRole
	InteractionDef@toRole
	InteractionDef@messageFamily
	Example

	InteractionEndStates
	InteractionEndStates@fromState
	InteractionEndStates@toState
	Example

	MessageFamily
	MessageFamily@name
	MessageFamily@urn
	Example

	PreCondition
	PreCondition@condition
	Example

	Process
	Process@name
	Process@role
	Example

	ProcessEndState.
	ProcessEndState@state
	Example

	Role
	Role@name
	Example

	Start
	Start@state
	Example

	StartEndStates
	Example

	State
	State@name
	Example

	References

