

Molecular & Cell Biology

Lecture 1

© 2004 Prof. David Fitch Department of Biology New York University david.fitch@nyu.edu http://www.nyu.edu/projects/fitch/

What is life?

Self-sustained <u>heritability</u>

- Functionality is *limited* by the **genome**
- Life cannot be explained entirely by functionality ("design")
 - Why do snakes have femurs?
 - Why do humans have 5 fingers per hand?
 - Why do mitochondria and chloroplasts have their own rDNA and genetic codes?
- Because of heredity, **history** is the explanation for **current patterns**
 - "Historical constraint" (phylogenetic or genomic constraint)
- History of life = evolution

What is evolution?

• Evolution is a *result*: heredity + variation

- "Descent with modification"
- Fact: evolution has occurred
 - Began as a hypothesis
 - Not falsified, though falsifiable
- Theory: evolution is a body of explanatory principles
 - **Embodies a mechanism**: natural selection, itself a *result* of:
 - Variation in fitness (ability to survive to reproduce)
 - Heredity (ability to pass alleles to progeny)
 - Reproduction / multiplication (ability for population to grow)
 - Explains a variety of phenomena
 - Adaptations
 - Shared nonadaptive features

• "Origin of species" vs. origin of life

- Difficulty of historical reconstruction increases with elapsed time
- Not possible to reconstruct actual events before heredity originated

Origin of Life

- Precellular, Cellular
- Testing hypotheses
 - A priori assumptions (often not stated) may themselves be tested
 - Hypotheses must make falsifiable "predictions"
 - "Null" hypothesis: chance alone is responsible
 - **Predictions** are confirmed (consistent with) or refuted by **data**
 - "Parsimony" distinguishes between alternative, unfalsified, working hypotheses
 - "Burden of proof" for less parsimonious (more complex) hypotheses

Alternative hypotheses

- Intelligent design
 - Least parsimonious (requires a creator)
 - Lack of evidence for "design" does not falsify existence of intelligence
- Extraterrestrial origin
- Spontaneous self-organization and natural selection
 - Also embodies many alternative hypotheses

Precellular evolution

- "Prebiotic synthesis"
 - Hypothesis: The molecules of life can be formed spontaneously under under "prebiotic conditions"
 - Assumptions: Prebiotic conditions, "uniformitarianism"
 - (NOT that humans should arise "continuously" from chimpanzees!)
 - Predictions
 - Amino acids and purines from prebiotic mixtures (Harold & Urey 1953)
 - Ribose from formaldehyde ("formose" reaction; Butlerow 1861)
 - Polymerization of "activated" nucleoside monomers without proteins

The "RNA World"

- Hypothesis: RNA preceded proteins and DNA as a primordial, information-bearing, catalytic molecule
- Assumptions: Heredity, uniformitarianism
- **Predictions**:
 - Conserved roles for RNA in fundamental machinery of life
 - At least some RNAs should demonstrate elementary catalytic activity
 - Role for RNA as precursor to DNA may be conserved

Prebiotic conditions? (*a priori* assumptions)

- **Molecules** (potentially available from atmosphere, deep ocean rifts, benthic clays)
 - $H_2, CH_4, NH_3, CO, H_2S$
 - Mineral catalysts (phosphorus, pyrite, clays)
- **Energy**—potential sources (cal cm⁻² yr⁻¹)
 - Solar radiation 2.6×10^5
 - UV at wavelengths:
 - 300-400 nm 3.4×10^3 • 250-300 nm 5.6×10^2 4.1 x 10¹ • 200-250 nm • <150 nm 1.7 – Electrical discharges 4.0 Shock waves 1.1 – Radiactivity 8 x 10¹ - Volcanoes 1.3 x 10⁻¹ – Cosmic rays 1.5 x 10⁻³

Reasonable energy levels for organic synthesis

Oparin & Haldane (1920) hypothesis

- Hypothesis: The origin of life was prebiotic
- Prediction: Molecules of life should arise spontaneously in prebiotic conditions
- Test (Stanley Miller & Harold Urey 1953)
- Results:
 - >10% of C from CH₄ was in organic molecules
 - These included amino acids and precursors
 - Amino acids (G, A, D, V, L)
 - HCN and other cyano compounds
 - Aldehydes

Precursors to amino acids

- "Strecker synthesis"
 - Overall reaction:

$$\begin{array}{c} O \\ \parallel \\ R - CH + HC \equiv N + H_2O \longrightarrow H_2N - C - C \\ H \end{array} \xrightarrow{R} O \\ H OH \end{array}$$

- In atmosphere:

In ocean:

Precursors to purines

Precursors to ribose

- "Formose" synthesis (Butlerow 1861)
 - Series of condensations beginning with formaldehyde

Origin of polymers

Model for formation of RNA by activated nucleosides

Self-assembly of macromolecules

- Order and complexity result from self-assembly
 - Proteinoid microspheres with internal structure
 - Multisphere assemblages
 - Membrane-like bilayers with "junctions"

• Novel microenvironments allow:

- Selective permeability via lipid or proteinoid "membranes"
- Novel (high) concentrations and enhancement of interactions
- Chained reactions (concentrated products available as substrates)
- Localized precipitation and organization (compartmentalization)
- Entropy can *decrease* in subsystems (**not** a violation of the 2nd Law of Thermodynamics)

"RNA World" hypothesis

RNA preceded proteins & DNA (Orgel, Crick, Woese, 1960s)

- RNA has the essential role in peptide assembly
 - mRNA, tRNA, rRNA (which can promote translation even missing some proteins)
 - snRNAs (e.g., U1, U2, U4/6, U5)
- RNA is required for DNA replication and synthesis
 - Primer RNAs required for DNA replication
 - Telomerase RNA required for telomere synthesis
 - Deoxyribonucleotides are *derivatives* of ribonucleotides
 - Reverse transcriptase copies DNA from RNA template
- RNAs are key cofactors
 - 7S RNA (protein secretion), ATP, Coenzyme A
- Some RNAs are catalytic
 - Catalytic unit of RNase P (processes *E. coli* pre-tRNA^{Tyr})
 - Self-splicing of introns
- Some RNAs are regulatory
 - miRNAs

Group 1 self-splicing introns

Processing occurs as a series of transesterifications

Conservation of Group 1 introns

- Common ancestry allows comparative analysis of function
 - Functionally important sequences/structures are often conserved
 - Group 1 intron structures are conserved:
 - in different genes
 - in different species (slime molds, mitochondria, chloroplasts, some bacteriophage

- Group 2 self-splicing a precursor to eukaryotic spliceosome?
 - Note that Group 2 does not require a cofactor and makes a "lariat"
- Trans-splicing also occurs (all mRNAs of trypanosomes, many in *C. elegans*)
 - Important implications for "exon shuffling"

RNA as polymerase

- "L-19" RNA can direct template-dependent extension
 - Depends only on availability of (spontaneous) oligos

RNA as nuclease and ligase

- Nuclease activity is similar to splicing, but site-specific
- Ligase activity is energetically the reverse

RNA as regulator of gene expression

Ambros, 2001

"RNA World" hypothesis

RNA preceded proteins & DNA (Orgel, Crick, Woese, 1960s)

- RNA has the essential role in peptide assembly
 - mRNA, tRNA, rRNA (which can promote translation even missing some proteins)
 - snRNAs (e.g., U1, U2, U4/6, U5)
- RNA is required for DNA replication and synthesis
 - Primer RNAs required for DNA replication
 - Telomerase RNA required for telomere synthesis
 - Deoxyribonucleotides are *derivatives* of ribonucleotides
 - Reverse transcriptase copies DNA from RNA template
- RNAs are key cofactors
 - 7S RNA (protein secretion), ATP, Coenzyme A
- Some RNAs are catalytic
 - Catalytic unit of RNase P (processes *E. coli* pre-tRNA^{Tyr})
 - Self-splicing of introns
- Some RNAs are regulatory
 - miRNAs

RNA genome

- Early RNA genome could probably self-replicate
 - Template-dependent synthesis, ligation
- Self-splicing would have allowed rapid evolution
 - Different combinations of sequences and thus functions
- Early protein synthesis was directed by RNAs
 - tRNAs, rRNA
- Early gene expression could be regulated by RNAs
 - miRNAs
- Evolution of the Genetic Code
 - Once the codons began to be set up, and complexity of the code increased, it would be difficult to change (historical constraint)
 - Order to codon groupings suggests a possible stepwise adoption of codon assignments...

Genetic code

1st	2nd position				3rd position
position	U	C	A	G	poortion
	Phe	Ser	Tyr	Cys	U
U	Phe	Ser	Tyr	Cys	С
	Leu	Ser	STOP	STOP	Α
	Leu	Ser	STOP	Trp	G
	Leu	Pro	His	Arg	U
C	Leu	Pro	His	Arg	С
8	Leu	Pro	Gln	Arg	Α
	Leu	Pro	Gln	Arg	G
	lle	Thr	Asn	Ser	U
Α	lle	Thr	Asn	Ser	С
	lle	Thr	Lys	Arg	Α
	Met	Thr	Lys	Arg	G
	Val	Ala	Asp	Gly	U
G	Val	Ala	Asp	Gly	С
	Val	Ala	Glu	Gly	A
	Val	Ala	Glu	Gly	G
Hydrophobic Hydrophilic					

Genetic code

- The code is "degenerate"
 - Third codon position is often completely **synonymous**
 - Perhaps the original machinery used only 1st & 2nd positions?
- Second position determines hydrophobicity/hydrophilicity
 - If pyrimidine, codon is hydrophobic; if purine, codon is hydrophilic
- Easiest non-enzymatic RNA synthesis encodes protein order (β-sheets)
 - RYR-YRY-RYR...: hydrophobic-hydrophilic-hydrophobic...
- Heritable order is subject to Darwinian selection
 - The stepwise process of selection will always lead to adaptations
 - Novel features arise by (duplication and) modification

Precellular evolution

- "Prebiotic synthesis"
 - Hypothesis: The molecules of life can be formed spontaneously under under "prebiotic conditions"
 - Assumptions: Prebiotic conditions, "uniformitarianism"
 - (NOT that humans should arise continuously from chimpanzees!)
 - Predictions
 - Amino acids and purines from prebiotic mixtures (Harold & Urey 1953)
 - Ribose from formaldehyde ("formose" reaction; Butlerow 1861)
 - Polymerization of "activated" nucleoside monomers without proteins

The "RNA World"

- Hypothesis: RNA preceded proteins and DNA as a primordial, information-bearing, catalytic molecule
- Assumptions: Heredity, uniformitarianism
- **Predictions**:
 - · Conserved roles for RNA in fundamental machinery of life
 - At least some RNAs should demonstrate elementary catalytic activity
 - Role for RNA as precursor to DNA may be conserved

Next time

- Cellular evolution
 - Molecular systematics
 - The evolution of plastids
 - Rooting the tree of life with gene duplications
 - The evolution of introns: recent or ancient?
 - Exon shuffling in the evolution of novel functions