Probability and Randomized Algorithms
 Prof. Zeph Grunschlag

Discrete Random

Variable

DEF: A discrete random variable is a set X together with an assignment of a nonnegative probability $\operatorname{Pr}[\mathbf{X}=x]$ that \mathbf{X} takes value x; furthermore, the sum over all possible $x \in X$ of the probability that \mathbf{X} takes value x must equal 1 .

- If \mathbf{X} is clearly fixed from context, may abbreviate $\operatorname{Pr}[\mathbf{X}=x]$ to $\operatorname{Pr}[x]$ or p_{x}.

Joint and Conditional Probability

- Let \mathbf{X}, \mathbf{Y} be random variables over the resp. sets X, Y. (Note, X, Y may/may not be same)

DEF: Joint probability $\operatorname{Pr}[x, y]$ is the probability that $(\mathbf{X}, \mathbf{Y})=(x, y)$. (Probability of both occurring simultaneously)

DEF: Conditional probability is defined by $\operatorname{Pr}[x \mid y]=\operatorname{Pr}[x, y] / \operatorname{Pr}[y]$ - assuming that $\operatorname{Pr}[y]>0$.

Independent Variables

- Random variables are independent if their probabilities don't depend on each others values:

DEF: \mathbf{X} and \mathbf{Y} are independent if $\operatorname{Pr}[x, y]=\operatorname{Pr}[x] \operatorname{Pr}[y]$ for all x, y.

LEMMA: Equivalently, \mathbf{X} and \mathbf{Y} are independent if (excluding 0-prob. y)

$$
\forall x \in X, \forall y \in Y, \operatorname{Pr}[x \mid y]=\operatorname{Pr}[x]
$$

Baye's Theorem

THM: If $\operatorname{Pr}[y]>0$ then

$$
\operatorname{Pr}[x \mid y]=\operatorname{Pr}[y \mid x] \cdot \operatorname{Pr}[x] / \operatorname{Pr}[y]
$$

Binomial Rand.Var.

DEF: The product of random variables \mathbf{X}, \mathbf{Y} is the random variable $\mathbf{X} \times \mathbf{Y}$ defined on $X \times Y$ with distribution $\operatorname{Pr}[(x, y)]=\operatorname{Pr}[x] \operatorname{Pr}[y]$.

- Assume X a random variable on $\{0, I\}$ and let $p=\operatorname{Pr}[\mathbf{X}=1], q=\operatorname{Pr}[\mathbf{X}=0]$
- Repeat experiment n times. l.e., take n independent copies: $\mathrm{X}_{1} \times \mathrm{X}_{2} \times \cdots \times \mathrm{X}_{n}$
- result called Binomial random variable

Bernoulli's Thm:

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i}=k\right]=\binom{n}{k} p^{k} q^{n-k}
$$

Expectation

- The average value taken on by a function f on probability distribution \mathbf{X}

DEF: The expectation of f is defined by:

$$
E(f)=\sum_{x \in X} f(x) \cdot p_{x}
$$

THM: $\quad E(f+g)=E(f)+E(g)$
COR: For n repetitions of a Binomial random variable \mathbf{X} consider sum S which counts the number outcomes $=1$. Then $E(S)=n p$

Chernoff Bound

- Estimates probability that sum of Binomial experiment deviate from expected sum $n p$

THM:

$$
\operatorname{Pr}[S \geq(1+\theta) p n] \leq e^{-\frac{\theta^{2}}{3} p n}
$$

Note: probability that sum too big falls off exponentially with n

Randomized Algorithms

Equivalent formulations:

- Turing machine with "coin flips" at every step of computation
- Non-deterministic Turing machine with probability distribution over computation branches
Nomenclature (varies from author to author):
- Monte-Carlo:
- Colloquially any randomized algorithm
- Complexity theory: NO's always right
- Las-Vegas: always correct, but may fail
- BPP: answers correct most of the time

Monte Carlo Algorithm

- False negative allowed, but no false positives

DEF: A poly-time Monte Carlo algorithm for the decision problem P is a poly-time nondeterministic Turing machine (NDTM) s.t.

$$
\operatorname{Pr}[x \text { is accepted }]: \begin{cases}\geq \frac{1}{2} & x \in P \\ =0 & x \notin P\end{cases}
$$

- Probability measured over "coin-flips" in TM or equivalently, by taking the ratio of accepting branches in NTM to total number
- Defines complexity class RP "Rand-Poly"

Las Vegas Algorithm

- Symmetric version of Monte Carlo - no false negatives nor false positives but can "fail"

DEF: A poly-time Las Vegas algorithm is a poly-time NDTM with a constant $\epsilon>0$ for which $\operatorname{Pr}[$ fail $] \leq \epsilon$ for all inputs.

- Repeat algorithm to make ϵ arbitrarily small
- Gives class ZPP "Zero-Prob-of-error-Poly"
- $\mathrm{ZPP}=\mathrm{RP} \cap \operatorname{co-RP}$

Class BPP

- BPP = "Bounded-Prob-of-error-Poly"
- Most general class - allow false negatives and positives. Compensate by insisting answer correct significantly more than half the time

DEF: A poly-time randomized algorithm for the decision problem P is a poly-time NDTM with a constant $\epsilon>0$ for which

$$
\operatorname{Pr}[x \text { is accepted }]: \begin{cases}\geq \frac{1}{2}+\varepsilon & x \in P \\ \leq \frac{1}{2}-\varepsilon & x \notin P\end{cases}
$$

Chernoff bound implies may assume $\epsilon=0.25$

Pseudo Random

Sequence

"DEF": A pseudo random sequence is a deterministic algorithm from finite bitstrings to infinite bitstrings whose outputs cannot be distinguished from a random strings by any BPP algorithm.

ϵ-bias Detector

- Given: A black box f which is known apriori to have some built-in bias ϵ in an unknown direction.
- Decide: Which direction the bias is in.
$n=\frac{2}{\left(\frac{1}{2}-\varepsilon\right) \varepsilon^{2}}$
$\mathbf{x}=$ output of length n from f
$c=$ number of $1^{\prime} s$ in x
return ($c>n / 2$) $/ 1$ "YES" if 1 -bias, "NO" if 0 -bias
- $\operatorname{Pr}[$ output is correct] $>3 / 4$ therefore this problem is in BPP so ϵ-bias sequences are not pseudorandom.

