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Discrete Random 
Variable

DEF:  A discrete random variable is a set 
X together with an assignment of a non-
negative probability Pr[X=x] that X takes 
value x; furthermore, the sum over all possible  
x ε X of the probability that X takes value x 
must equal 1.

• If X is clearly fixed from context, may 
abbreviate Pr[X=x] to Pr[x] or     .px
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Joint and Conditional 
Probability

• Let X, Y be random variables over the resp. 
sets X,  Y.  (Note, X, Y may/may not be same) 

DEF:  Joint probability Pr[x,y] is the 
probability that (X,Y) = (x,y).  (Probability of 
both occurring simultaneously)

DEF:  Conditional probability is defined 
by Pr[x|y] = Pr[x,y] / Pr[y]  - assuming that 
Pr[y] > 0.
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Independent Variables

• Random variables are independent if their 
probabilities don’t depend on each others 
values:

DEF:  X and Y are independent if        
Pr[x,y] = Pr[x]Pr[y] for all x, y.

LEMMA:  Equivalently, X and Y are 
independent if (excluding 0-prob. y)

∀x ∈ X ,∀y ∈ Y,Pr[x|y] = Pr[x]
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Baye’s Theorem

THM:  If Pr[y] > 0 then 

Pr[x|y] = Pr[y|x] ⋅ Pr[x] / Pr[y]
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Binomial Rand. Var.
DEF:  The product of random variables X, Y is 
the random variable X×Y defined on X×Y 
with distribution Pr[(x,y)] = Pr[x]Pr[y].

• Assume X a random variable on {0,1} and 
let p = Pr[X=1], q = Pr[X=0]

• Repeat experiment n times.  I.e., take n 
independent copies:

• result called Binomial random variable

Bernoulli’s Thm: 

X1×X2× · · ·×Xn

Pr

[
n

!
i=1
Xi = k

]
=

(
n

k

)
pkqn−k
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Expectation
• The average value taken on by a function f 

on probability distribution X

DEF:  The expectation of f is defined by:

THM: 

COR:  For n repetitions of a Binomial random 
variable X consider sum S which counts the 
number outcomes = 1.  Then E(S) = np

E( f ) = !
x∈X

f (x) · px
E( f +g) = E( f )+E(g)
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Chernoff Bound

• Estimates probability that sum of Binomial 
experiment deviate from expected sum np

THM:

Note:  probability that sum too big falls off 
exponentially with n

Pr

[
S≥ (1+!)pn

]
≤ e−

!2

3
pn
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Randomized Algorithms
Equivalent formulations:

• Turing machine with “coin flips” at every 
step of computation

• Non-deterministic Turing machine with 
probability distribution over computation 
branches

Nomenclature (varies from author to author):

• Monte-Carlo:  

• Colloquially any randomized algorithm

• Complexity theory:  NO’s always right

• Las-Vegas:  always correct, but may fail

• BPP:  answers correct most of the time
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Monte Carlo Algorithm
• False negative allowed, but no false positives

DEF:  A poly-time Monte Carlo algorithm 
for the decision problem P is a poly-time non-
deterministic Turing machine (NDTM) s.t.

• Probability measured over “coin-flips” in TM 
or equivalently, by taking the ratio of 
accepting branches in NTM to total number

• Defines complexity class RP “Rand-Poly”

Pr[x is accepted] :

{
≥ 1

2
x ∈ P

= 0 x #∈ P
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Las Vegas Algorithm
• Symmetric version of Monte Carlo - no false 

negatives nor false positives but can “fail”

DEF:  A poly-time Las Vegas algorithm is 
a poly-time NDTM with a constant ε>0 for 
which Pr[fail] ≤ ε for all inputs.

• Repeat algorithm to make ε arbitrarily small

• Gives class ZPP “Zero-Prob-of-error-Poly”

• ZPP= RP∩ co-RP



12

Class BPP
• BPP = “Bounded-Prob-of-error-Poly” 

• Most general class - allow false negatives and 
positives.  Compensate by insisting answer 
correct significantly more than half the time

DEF:  A poly-time randomized algorithm for 
the decision problem P is a poly-time NDTM 
with a constant ε>0 for which 

Chernoff bound implies may assume ε=0.25

Pr[x is accepted] :

{
≥ 1

2
+ ! x ∈ P

≤ 1
2
− ! x %∈ P
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Pseudo Random 
Sequence

“DEF”:  A pseudo random sequence is a 
deterministic algorithm from finite bitstrings 
to infinite bitstrings whose outputs cannot be 
distinguished from a random strings by any 
BPP algorithm.
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ε-bias Detector
• Given:  A black box f which is known a-

priori to have some built-in bias ε in an 
unknown direction.

• Decide:  Which direction the bias is in.
n = 

x = output of length n from f
c = number of 1’s in x
return (c > n/2) // “YES” if 1-bias, “NO” if 0-bias

• Pr[output is correct] > 3/4 therefore 
this problem is in BPP so ε-bias 
sequences are not pseudorandom.

2

(1
2
− !)!2


