
A Many-to-Many tutorial for Rails

September 4th, 2005

Creative Commons: Attribution-ShareAlike 2.5
Originally by Jeffrey Hicks @ http://jrhicks.net

Introduction

This brief tutorial is a start-to-finish example of the Model, View, and Controller required
for a many-to-many relationship.

This is a follow-along tutorial for a finance application so go ahead and create your rails
app, configure your database.yml, and start your server.

I. Model

Our example application will model financial expenses and tags. To work with rail’s
default expectations we follow a strict naming convention for the database table names
and fields.

Notice the required naming conventions.

• expenses is the plural form of expense
• tags is the plural form of tag
• both primary fields use the lowercase id
• the relating table is in alphabetical order expenses_tags
• the field relating to a tag’s id is tag_id
• the field relating to an expense’s id is expense_id

Create your database using the following schema.

CREATE TABLE `expenses` (
 `id` int(11) NOT NULL auto_increment,
 `amount` float NOT NULL default '0',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

CREATE TABLE `tags` (
 `id` int(11) NOT NULL auto_increment,
 `name` varchar(100) NOT NULL default '',
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

CREATE TABLE `expenses_tags` (
 `expense_id` int(11) NOT NULL default '0',
 `tag_id` int(11) NOT NULL default '0'
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

Generate your Scaffold for the expense and tag models.

Edit expense.rb to tell your expense model that it has_and_belongs_to_many
:tags

2. View

To allow our web visitors to relate an expense with many tags, we are going to
use multiple checkboxes. This is how it will look.

Our form will generate dynamically from the tags in the database. Execute the
following SQL to populate our example database.

Insert into tags(name) values ('food');
Insert into tags(name) values ('restaurant');
Insert into tags(name) values ('lodging');

Our view should depend on the expenses_controller to load the tags. Add the
@tags=Tag.find_all line to both the new and edit methods as depicted in line 17
& 32 below.

Now we will actually customize our edit and new views. We can do this in one
location; edit your expenses_form.rhtml to include lines 7 through 13.

The tags of existing expenses should be checked when we edit. To enable this
we add the following if statement to line 12.

 <%if @expense.tags.include? tag%>checked="checked"<%end%>

We will also edit the list view, so that we will be able to view our tags. Add the
code on lines 8 and 17-19 to your list.rhtml

3. Controller

The expense_controller’s update and create method receive the requests from the edit
and new view. To store the relationship we need to convert the tag_ids to actual Tag
objects with Tag.find(@params[:tag_ids]) if @params[:tag_ids].

The if @params[:tag_ids] prevents a nil object error when the user doesn’t select
any tag.

Add the lines 22 & 38 to expenses_controller.rb

Optionally

If you intention was to force the user to select a tag, I’ve been told to add this to
the expense model. (expense_controller.rb)

def validate
 if tags.blank?
 errors.add_to_base("You must specify a tag")
 end
end

Conclusion

Add an expense with multiple tags.

View the stored tags after you hit the Create button.

Edit the new expense to see stored tags as checked.

Check out the database entries in the expenses_tags table.

Thanks

August 9, 2005 - Sheldon Hearn noticed a transactional condition with the database.
Where @expense.tags.clear and @expense.tags<<Tag.find(params[:tag_ids]) should
be replaced with a single @expense.tags=Tag.find(params[:tag_ids])

August 9, 2005 – Ecow pointed out multiple documentation errors where I failed to
provide the tags table schema, missing code for assigning attributes on expense
creation, and multiple incorrect references to view and controller methods.

August 11, 2005 – Spiralis pointed out that when editing existing tags … the existing
tags should be checked.

August 17, 2005 – Brian NG suggested a fix for allowing existing tags to be checked.

August 25 – Brandt proposed a solution to the nil object error received when the user
doesn’t select a tag.

