

Tutorials Point, Simply Easy Learning

1 | P a g e

Ruby Tutorial

Tutorialspoint.com

Ruby is a scripting language designed by Yukihiro Matsumoto, also known as Matz.

Ruby runs on a variety of platforms, such as Windows, Mac OS, and the various
versions of UNIX. This tutorial gives an initial push to start you with Ruby. For more
detail kindly check tutorialspoint.com/ruby

What is Ruby ?

Ruby is a pure object oriented programming language. It was created in 1993 by Yukihiro

Matsumoto of Japan. Ruby is a general-purpose, interpreted programming language like PERL
and Python.

What is IRb ?

Interactive Ruby (IRb) provides a shell for experimentation. Within the IRb shell, you can
immediately view expression results, line by line.

This tool comes along with Ruby installation so you have nothing to do extra to have IRb
working. Just type irb at your command prompt and an Interactive Ruby Session will start.

Ruby Syntax:

 Whitespace characters such as spaces and tabs are generally ignored in Ruby code,

except when they appear in strings.

 Ruby interprets semicolons and newline characters as the ending of a statement.
However, if Ruby encounters operators, such as +, -, or backslash at the end of a line,

they indicate the continuation of a statement.

 Identifiers are names of variables, constants, and methods. Ruby identifiers are case
sensitive. It mean Ram and RAM are two different itendifiers in Ruby.

 Ruby comments start with a pound/sharp (#) character and go to EOL.

Reserved words:

The following list shows the reserved words in Ruby. These reserved words should not be used
as constant or variable names in your program, however, be used as method names.

BEGIN do next then

END else nill true

alias elsif not undef

and end or unless

begin ensure redo until

break false rescue when

case for retry while

class if return while

def in self __FILE__

http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/ruby

Tutorials Point, Simply Easy Learning

2 | P a g e

defined? module super __LINE__

Here Docs in Ruby:

Here are different examples:

#!/usr/bin/ruby -w

print <<EOF

 This is the first way of creating

 her document ie. multiple line string.

EOF

print <<"EOF"; # same as above

 This is the second way of creating

 her document ie. multiple line string.

EOF

print <<`EOC` # execute commands

 echo hi there

 echo lo there

EOC

print <<"foo", <<"bar" # you can stack them

 I said foo.

foo

 I said bar.

bar

Ruby Data Types:

Basic types are numbers, strings, ranges, arrays, and hashes.

Integer Numbers in Ruby:

123 # Fixnum decimal

1_6889 # Fixnum decimal with underline

-5000 # Negative Fixnum

0377 # octal

0xee # hexadecimal

0b1011011 # binary

?b # character code for 'b'

?\n # code for a newline (0x0a)

12345678901234567890 # Bignum

Float Numbers in Ruby:

1023.4 # floating point value

1.0e6 # scientific notation

4E20 # dot not required

4e+20 # sign before exponential

String Literals:

Ruby strings are simply sequences of 8-bit bytes and they are objects of class String.

 'VariableName': No interpolation will be done

 "#{VariableName} and Backslashes \n:" Interpolation will be done

 %q(VariableName): No interpolation will be done

 %Q(VariableName and Backslashes \n): Interpolation will be done

 %(VariableName and Backslashes \n): Interpolation will be done

Tutorials Point, Simply Easy Learning

3 | P a g e

 `echo command interpretation with interpolation and backslashes`

 %x(echo command interpretation with interpolation and backslashes)

Backslash Notations:

Following is the list of Backslash notations supported by Ruby:

Notation Character represented

\n Newline (0x0a)

\r Carriage return (0x0d)

\f Formfeed (0x0c)

\b Backspace (0x08)

\a Bell (0x07)

\e Escape (0x1b)

\s Space (0x20)

\nnn Octal notation (n being 0-7)

\xnn Hexadecimal notation (n being 0-9, a-f, or A-F)

\cx, \C-x Control-x

\M-x Meta-x (c | 0x80)

\M-\C-x Meta-Control-x

\x Character x

Ruby Arrays:

Literals of Ruby Array are created by placing a comma-separated series of object references
between square brackets. A trailing comma is ignored.

Example:

#!/usr/bin/ruby

ary = ["Ali", 10, 3.14, "This is a string", "last element",]

ary.each do |i|

 puts i

end

This will produce following result:

Ali

10

3.14

This is a string

last element

Ruby Hashes:

A literal Ruby Hash is created by placing a list of key/value pairs between braces, with either a
comma or the sequence => between the key and the value. A trailing comma is ignored.

Tutorials Point, Simply Easy Learning

4 | P a g e

Example:

#!/usr/bin/ruby

hsh = colors = { "red" => 0xf00, "green" => 0x0f0 }

hsh.each do |key, value|

 print key, " is ", value, "\n"

end

This will produce following result:

green is 240

red is 3840

Ruby Ranges:

A Range represents an interval.a set of values with a start and an end. Ranges may be
constructed using the s..e and s...e literals, or with Range.new.

Ranges constructed using .. run from the start to the end inclusively. Those created using ...
exclude the end value. When used as an iterator, ranges return each value in the sequence.

A range (1..5) means it includes 1, 2, 3, 4, 5 values and a range (1...5) means it includes 2, 3,
4 values.

Example:

#!/usr/bin/ruby

(10..15).each do |n|

 print n, ' '

end

This will produce following result:

10 11 12 13 14 15

Variable Types:

 $global_variable

 @@class_variable

 @instance_variable

 [OtherClass::]CONSTANT

 local_variable

Ruby Pseudo-Variables:

They are special variables that have the appearance of local variables but behave like constants.
You can not assign any value to these variables.

 self: The receiver object of the current method.

 true: Value representing true.

 false: Value representing false.

 nil: Value representing undefined.

 __FILE__: The name of the current source file.

 __LINE__: The current line number in the source file.

Tutorials Point, Simply Easy Learning

5 | P a g e

Ruby Predefined Variables:

Following table lists all the Ruby's predefined variables.

Variable Name Description

$! The last exception object raised. The exception object can also be
accessed using => in rescue clause.

$@ The stack backtrace for the last exception raised. The stack backtrace
information can retrieved by Exception#backtrace method of the last
exception.

$/ The input record separator (newline by default). gets, readline, etc.,
take their input record separator as optional argument.

$\ The output record separator (nil by default).

$, The output separator between the arguments to print and Array#join
(nil by default). You can specify separator explicitly to Array#join.

$; The default separator for split (nil by default). You can specify
separator explicitly for String#split.

$. The number of the last line read from the current input file. Equivalent

to ARGF.lineno.

$< Synonym for ARGF.

$> Synonym for $defout.

$0 The name of the current Ruby program being executed.

$$ The process pid of the current Ruby program being executed.

$? The exit status of the last process terminated.

$: Synonym for $LOAD_PATH.

$DEBUG True if the -d or --debug command-line option is specified.

$defout The destination output for print and printf ($stdout by default).

$F The variable that receives the output from split when -a is specified.
This variable is set if the -a command-line option is specified along with
the -p or -n option.

$FILENAME The name of the file currently being read from ARGF. Equivalent to
ARGF.filename.

$LOAD_PATH An array holding the directories to be searched when loading files with
the load and require methods.

$SAFE The security level

 0 --> No checks are performed on externally supplied (tainted)
data. (default)

 1 --> Potentially dangerous operations using tainted data are

forbidden.

 2 --> Potentially dangerous operations on processes and files

are forbidden.

 3 --> All newly created objects are considered tainted.

 4 --> Modification of global data is forbidden.

Tutorials Point, Simply Easy Learning

6 | P a g e

$stdin Standard input (STDIN by default).

$stdout Standard output (STDOUT by default).

$stderr Standard error (STDERR by default).

$VERBOSE True if the -v, -w, or --verbose command-line option is specified.

$- x The value of interpreter option -x (x=0, a, d, F, i, K, l, p, v). These
options are listed below

$-0 The value of interpreter option -x and alias of $/.

$-a The value of interpreter option -x and true if option -a is set. Read-
only.

$-d The value of interpreter option -x and alias of $DEBUG

$-F The value of interpreter option -x and alias of $;.

$-i The value of interpreter option -x and in in-place-edit mode, holds the
extension, otherwise nil. Can enable or disable in-place-edit mode.

$-I The value of interpreter option -x and alias of $:.

$-l The value of interpreter option -x and true if option -lis set. Read-only.

$-p The value of interpreter option -x and true if option -pis set. Read-only.

$_ The local variable, last string read by gets or readline in the current
scope.

$~ The local variable, MatchData relating to the last match. Regex#match
method returns the last match information.

$ n ($1, $2, $3...) The string matched in the nth group of the last pattern match.
Equivalent to m[n], where m is a MatchData object.

$& The string matched in the last pattern match. Equivalent to m[0],
where m is a MatchData object.

$` The string preceding the match in the last pattern match. Equivalent to
m.pre_match, where m is a MatchData object.

$' The string following the match in the last pattern match. Equivalent to
m.post_match, where m is a MatchData object.

$+ The string corresponding to the last successfully matched group in the
last pattern match.

$+ The string corresponding to the last successfully matched group in the

last pattern match.

Ruby Predefined Constants:

The following table lists all the Ruby's Predefined Constants.

NOTE: TRUE, FALSE, and NIL are backward-compatible. It's preferable to use true, false, and
nil.

Constant Name Description

TRUE Synonym for true.

FALSE Synonym for false.

NIL Synonym for nil.

Tutorials Point, Simply Easy Learning

7 | P a g e

ARGF An object providing access to virtual concatenation of files passed as
command-line arguments or standard input if there are no command-
line arguments. A synonym for $<.

ARGV An array containing the command-line arguments passed to the
program. A synonym for $*.

DATA An input stream for reading the lines of code following the __END__
directive. Not defined if __END__ isn't present in code.

ENV A hash-like object containing the program's environment variables. ENV
can be handled as a hash.

RUBY_PLATFORM A string indicating the platform of the Ruby interpreter.

RUBY_RELEASE_DATE A string indicating the release date of the Ruby interpreter

RUBY_VERSION A string indicating the version of the Ruby interpreter.

STDERR Standard error output stream. Default value of $stderr.

STDIN Standard input stream. Default value of $stdin.

STDOUT Standard output stream. Default value of $stdout.

TOPLEVEL_BINDING A Binding object at Ruby's top level.

Regular Expressions:

Syntax:

/pattern/

/pattern/im # option can be specified

%r!/usr/local! # general delimited regular expression

Modifiers:

Modifier Description

i Ignore case when matching text.

o Perform #{} interpolations only once, the first time the regexp literal is
evaluated.

x Ignores whitespace and allows comments in regular expressions

m Matches multiple lines, recognizing newlines as normal characters

u,e,s,n Interpret the regexp as Unicode (UTF-8), EUC, SJIS, or ASCII. If none
of these modifiers is specified, the regular expression is assumed to use
the source encoding.

Various patterns:

Pattern Description

^ Matches beginning of line.

$ Matches end of line.

. Matches any single character except newline. Using m option allows it
to match newline as well.

Tutorials Point, Simply Easy Learning

8 | P a g e

[...] Matches any single character in brackets.

[^...] Matches any single character not in brackets

re* Matches 0 or more occurrences of preceding expression.

re+ Matches 0 or 1 occurrence of preceding expression.

re{ n} Matches exactly n number of occurrences of preceding expression.

re{ n,} Matches n or more occurrences of preceding expression.

re{ n, m} Matches at least n and at most m occurrences of preceding expression.

a| b Matches either a or b.

(re) Groups regular expressions and remembers matched text.

(?imx) Temporarily toggles on i, m, or x options within a regular expression. If

in parentheses, only that area is affected.

(?-imx) Temporarily toggles off i, m, or x options within a regular expression. If
in parentheses, only that area is affected.

(?: re) Groups regular expressions without remembering matched text.

(?imx: re) Temporarily toggles on i, m, or x options within parentheses.

(?-imx: re) Temporarily toggles off i, m, or x options within parentheses.

(?#...) Comment.

(?= re) Specifies position using a pattern. Doesn't have a range.

(?! re) Specifies position using pattern negation. Doesn't have a range.

(?> re) Matches independent pattern without backtracking.

\w Matches word characters.

\W Matches nonword characters.

\s Matches whitespace. Equivalent to [\t\n\r\f].

\S Matches nonwhitespace.

\d Matches digits. Equivalent to [0-9].

\D Matches nondigits.

\A Matches beginning of string.

\Z Matches end of string. If a newline exists, it matches just before
newline.

\z Matches end of string.

\G Matches point where last match finished.

\b Matches word boundaries when outside brackets. Matches backspace
(0x08) when inside brackets.

\B Matches nonword boundaries.

\n, \t, etc. Matches newlines, carriage returns, tabs, etc.

\1...\9 Matches nth grouped subexpression.

\10 Matches nth grouped subexpression if it matched already. Otherwise
refers to the octal representation of a character code.

Tutorials Point, Simply Easy Learning

9 | P a g e

File I/O:

Common methods include:

 File.join(p1, p2, ... pN) => "p1/p2/.../pN" platform independent paths

 File.new(path, modestring="r") => file

 File.new(path, modenum [, permnum]) => file

 File.open(fileName, aModeString="r") {|file| block} -> nil

 File.open(fileName [, aModeNum [, aPermNum]]) {|file| block} -> nil

 IO.foreach(path, sepstring=$/) {|line| block}

 IO.readlines(path) => array

Here is a list of the different modes of opening a file:

Modes Description

r Read-only mode. The file pointer is placed at the beginning of the file. This is the
default mode.

r+ Read-write mode. The file pointer will be at the beginning of the file.

w Write-only mode. Overwrites the file if the file exists. If the file does not exist, creates
a new file for writing.

w+ Read-write mode. Overwrites the existing file if the file exists. If the file does not exist,
creates a new file for reading and writing.

a Write-only mode. The file pointer is at the end of the file if the file exists. That is, the
file is in the append mode. If the file does not exist, it creates a new file for writing.

a+ Read and write mode. The file pointer is at the end of the file if the file exists. The file

opens in the append mode. If the file does not exist, it creates a new file for reading
and writing.

Operators and Precedence:

Top to bottom:

:: .

[]

**

-(unary) +(unary) ! ~

* / %

+ -

<< >>

&

| ^

> >= < <=

<=> == === != =~ !~

&&

||

.. ...

=(+=, -=...)

not

and or

All of the above are just methods except these:

Tutorials Point, Simply Easy Learning

10 | P a g e

=, ::, ., .., ..., !, not, &&, and, ||, or, !=, !~

In addition, assignment operators(+= etc.) are not user-definable.

Control Expressions:

S.N. Control Expression

1 if bool-expr [then]

 body

elsif bool-expr [then]

 body

else

 body

end

2 unless bool-expr [then]

 body

else

 body

end

3 expr if bool-expr

4 expr unless bool-expr

5 case target-expr

 when comparison [, comparison]... [then]

 body

 when comparison [, comparison]... [then]

 body

 ...

[else

 body]

end

6 loop do

 body

end

7 while bool-expr [do]

 body

end

8 until bool-expr [do]

 body

end

9 begin

 body

end while bool-expr

10 begin

 body

end until bool-expr

11 for name[, name]... in expr [do]

 body

end

12 expr.each do | name[, name]... |

 body

end

Tutorials Point, Simply Easy Learning

11 | P a g e

13 expr while bool-expr

14 expr until bool-expr

 break terminates loop immediately.

 redo immediately repeats w/o rerunning the condition.

 next starts the next iteration through the loop.

 retry restarts the loop, rerunning the condition.

Defining a Class:

Class names begin w/ capital character.

class Identifier [< superclass]

 expr..

end

Singleton classes, add methods to a single instance

class << obj

 expr..

end

Defining a Module:

Following is the general syntax to define a module in ruby

module Identifier

 expr..

end

Defining a Method:

Following is the general syntax to define a method in ruby

def method_name(arg_list, *list_expr, &block_expr)

 expr..

end

singleton method

def expr.identifier(arg_list, *list_expr, &block_expr)

 expr..

end

 All items of the arg list, including parens, are optional.

 Arguments may have default values (name=expr).

 Method_name may be operators (see above).

 The method definitions can not be nested.

 Methods may override following operators:
o .., |, ^, &, <=>, ==, ===, =~,
o >, >=, <, <=,
o +, -, *, /, %, **, <<, >>,
o ~, +@, -@, [], []= (2 args)

Tutorials Point, Simply Easy Learning

12 | P a g e

Access Restriction:

 public - totally accessible.

 protected - accessible only by instances of class and direct descendants. Even through

hasA relationships. (see below)

 private - accessible only by instances of class (must be called nekkid no "self." or
anything else).

Example:

class A

 protected

 def protected_method

 # nothing

 end

end

class B < A

 public

 def test_protected

 myA = A.new

 myA.protected_method

 end

end

b = B.new.test_protected

Raising and Rescuing Exceptions:

Following is the syntax:

raise ExceptionClass[, "message"]

begin

 expr..

[rescue [error_type [=> var],..]

 expr..]..

[else

 expr..]

[ensure

 expr..]

end

Catch and Throw Exceptions:

 catch (:label) do ... end

 throw :label jumps back to matching catch and terminates the block.

 + can be external to catch, but has to be reached via calling scope.

 + Hardly ever needed.

Exceptions Classes:

Following is the class hierarchy of Exception class:

 Exception

o NoMemoryError
o ScriptError

 LoadError

 NotImplementedError

 SyntaxError

Tutorials Point, Simply Easy Learning

13 | P a g e

o SignalException

 Interrupt

o StandardError (default for rescue)

 ArgumentError

 IOError

 EOFError

 IndexError

 LocalJumpError

 NameError

 NoMethodError

 RangeError

 FloatDomainError

 RegexpError

 RuntimeError (default for raise)

 SecurityError

 SystemCallError

 Errno::*

 SystemStackError

 ThreadError

 TypeError

 ZeroDivisionError
o SystemExit
o fatal

Ruby Command Line Options:

$ ruby [options] [.] [programfile] [arguments ...]

The interpreter can be invoked with any of the following options to control the environment and
behavior of the interpreter.

Option Description

-a Used with -n or -p to split each line. Check -n and -p options.

-c Checks syntax only, without executing program.

-C dir Changes directory before executing (equivalent to -X).

-d Enables debug mode (equivalent to -debug).

-F pat Specifies pat as the default separator pattern ($;) used by split.

-e prog Specifies prog as the program from the command line. Specify multiple -e options
for multiline programs.

-h Displays an overview of command-line options.

-i [ext] Overwrites the file contents with program output. The original file is saved with the
extension ext. If ext isn't specified, the original file is deleted.

-I dir Adds dir as the directory for loading libraries.

-K [
kcode]

Specifies the multibyte character set code (e or E for EUC (extended Unix code); s
or S for SJIS (Shift-JIS); u or U for UTF-8; and a, A, n, or N for ASCII).

-l Enables automatic line-end processing. Chops a newline from input lines and
appends a newline to output lines.

-n Places code within an input loop (as in while gets; ... end).

-0[octal] Sets default record separator ($/) as an octal. Defaults to \0 if octal not specified.

-p Places code within an input loop. Writes $_ for each iteration.

Tutorials Point, Simply Easy Learning

14 | P a g e

-r lib Uses require to load lib as a library before executing.

-s Interprets any arguments between the program name and filename arguments
fitting the pattern -xxx as a switch and defines the corresponding variable.

-T [level] Sets the level for tainting checks (1 if level not specified).

-v Displays version and enables verbose mode

-w Enables verbose mode. If programfile not specified, reads from STDIN.

-x [dir] Strips text before #!ruby line. Changes directory to dir before executing if dir is
specified.

-X dir Changes directory before executing (equivalent to -C).

-y Enables parser debug mode.

--
copyright

Displays copyright notice.

--debug Enables debug mode (equivalent to -d).

--help Displays an overview of command-line options (equivalent to -h).

--version Displays version.

--verbose Enables verbose mode (equivalent to -v). Sets $VERBOSE to true

--yydebug Enables parser debug mode (equivalent to -y).

Ruby Environment Variables:

Ruby interpreter uses the following environment variables to control its behavior. The ENV
object contains a list of all the current environment variables set.

Variable Description

DLN_LIBRARY_PATH Search path for dynamically loaded modules.

HOME Directory moved to when no argument is passed to Dir::chdir. Also
used by File::expand_path to expand "~".

LOGDIR Directory moved to when no arguments are passed to Dir::chdir and

environment variable HOME isn't set.

PATH Search path for executing subprocesses and searching for Ruby
programs with the -S option. Separate each path with a colon

(semicolon in DOS and Windows).

RUBYLIB Search path for libraries. Separate each path with a colon (semicolon

in DOS and Windows).

RUBYLIB_PREFIX Used to modify the RUBYLIB search path by replacing prefix of library
path1 with path2 using the format path1;path2 or path1path2.

RUBYOPT Command-line options passed to Ruby interpreter. Ignored in taint
mode (Where $SAFE is greater than 0).

RUBYPATH With -S option, search path for Ruby programs. Takes precedence over
PATH. Ignored in taint mode (where $SAFE is greater than 0).

RUBYSHELL Specifies shell for spawned processes. If not set, SHELL or COMSPEC
are checked.

Ruby File I/O and Directories

Tutorials Point, Simply Easy Learning

15 | P a g e

Ruby provides a whole set of I/O-related methods implemented in the Kernel module. All the
I/O methods are derived from the class IO.

The class IO provides all the basic methods, such as read, write, gets, puts, readline, getc, and
printf.

This chapter will cover all ithe basic I/O functions available in Ruby. For more functions please
refere to Ruby Class IO.

The puts Statement:

In previous chapters, you assigned values to variables and then printed the output using puts
statement.

The puts statement instructs the program to display the value stored in the variable. This will
add a new line at the end of each line it writes.

Example:

#!/usr/bin/ruby

val1 = "This is variable one"

val2 = "This is variable two"

puts val1

puts val2

This will produce following result:

This is variable one

This is variable two

The gets Statement:

The gets statement can be used to take any input from the user from standard screen called
STDIN.

Example:

The following code shows you how to use the gets statement. This code will prompt the user to
enter a value, which will be stored in a variable val and finally will be printed on STDOUT.

#!/usr/bin/ruby

puts "Enter a value :"

val = gets

puts val

This will produce following result:

Enter a value :

This is entered value

This is entered value

Tutorials Point, Simply Easy Learning

16 | P a g e

The putc Statement:

Unlike the puts statement, which outputs the entire string onto the screen, the putc statement
can be used to output one character at a time.

Example:

The output of the following code is just the character H:

#!/usr/bin/ruby

str="Hello Ruby!"

putc str

This will produce following result:

H

The print Statement:

The print statement is similar to the puts statement. The only difference is that the puts

statement goes to the next line after printing the contents, whereas with the print statement
the cursor is positioned on the same line.

Example:

#!/usr/bin/ruby

print "Hello World"

print "Good Morning"

This will produce following result:

Hello WorldGood Morning

Opening and Closing Files:

Until now, you have been reading and writing to the standard input and output. Now we will see
how to play with actual data files.

The File.new Method:

You can create a File object using File.new method for reading, writing, or both, according to the
mode string. Finally you can use File.close method to close that file.

Syntax:

aFile = File.new("filename", "mode")

 # ... process the file

aFile.close

The File.open Method:

Tutorials Point, Simply Easy Learning

17 | P a g e

You can use File.open method to create a new file object and assign that file object to a file.
However, there is one difference in between File.open and File.new methods. The difference is

that the File.open method can be associated with a block, whereas you cannot do the same
using the File.new method.

File.open("filename", "mode") do |aFile|

 # ... process the file

end

Here is a list of The Different Modes of Opening a File:

Modes Description

r Read-only mode. The file pointer is placed at the beginning of the file. This is the

default mode.

r+ Read-write mode. The file pointer will be at the beginning of the file.

w Write-only mode. Overwrites the file if the file exists. If the file does not exist, creates

a new file for writing.

w+ Read-write mode. Overwrites the existing file if the file exists. If the file does not exist,

creates a new file for reading and writing.

a Write-only mode. The file pointer is at the end of the file if the file exists. That is, the

file is in the append mode. If the file does not exist, it creates a new file for writing.

a+ Read and write mode. The file pointer is at the end of the file if the file exists. The file

opens in the append mode. If the file does not exist, it creates a new file for reading

and writing.

Reading and Writing Files:

The same methods that we've been using for 'simple' I/O are available for all file objects. So,
gets reads a line from standard input, and aFile.gets reads a line from the file object aFile.

However, I/O objects provides additional set of access methods to make our lives easier.

The sysread Method:

You can use the method sysread to read the contents of a file. You can open the file in any of
the modes when using the method sysread. For example :

#!/usr/bin/ruby

aFile = File.new("/var/www/tutorialspoint/ruby/test", "r")

if aFile

 content = aFile.sysread(20)

 puts content

else

Tutorials Point, Simply Easy Learning

18 | P a g e

 puts "Unable to open file!"

end

This statement will output the first 20 characters of the file. The file pointer will now be placed
at the 21st character in the file.

The syswrite Method:

You can use the method syswrite to write the contents into a file. You need to open the file in
write mode when using the method syswrite. For example :

#!/usr/bin/ruby

aFile = File.new("/var/www/tutorialspoint/ruby/test", "r+")

if aFile

 aFile.syswrite("ABCDEF")

else

 puts "Unable to open file!"

end

This statement will write "ABCDEF" into the file.

The each_byte Method:

This method belongs to the class File. The method each_byte is always associated with a block.
Consider the following code sample: :

#!/usr/bin/ruby

aFile = File.new("/var/www/tutorialspoint/ruby/test", "r")

if aFile

 aFile.syswrite("ABCDEF")

 aFile.each_byte {|ch| putc ch; putc ?. }

else

 puts "Unable to open file!"

end

Characters are passed one by one to the variable ch and then displayed on the screen as
follows:

T.h.i.s. .i.s. .l.i.n.e. .o.n.e.

.T.h.i.s. .i.s. .l.i.n.e. .t.w.o.

.T.h.i.s. .i.s. .l.i.n.e. .t.h.r.e.e.

.A.n.d. .s.o. .o.n.......

The IO.readlines Method:

The class File is a subclass of the class IO. The class IO also has some methods which can be
used to manipulate files.

One of the IO class methods is IO.readlines. This method returns the contents of the file line by
line. The following code displays the use of the method IO.readlines:

#!/usr/bin/ruby

Tutorials Point, Simply Easy Learning

19 | P a g e

arr = IO.readlines("/var/www/tutorialspoint/ruby/test")

puts arr[0]

puts arr[1]

In this code, the variable arr is an array. Each line of the file test will be an element in the array

arr. Therefore, arr[0] will contain the first line, whereas arr[1] will contain the second line of the
file.

The IO.foreach Method:

This method also returns output line by line. The difference between the method foreach and
the method readlines is that the method foreach is associated with a block. However, unlike the
method readlines, the method foreach does not return an array. For example:

#!/usr/bin/ruby

IO.foreach("test"){|block| puts block}

This code will pass the contents of the file test line by line to the variable block, and then the
output will be displayed on the screen.

Renaming and Deleting Files:

You can rename and delete files programmatically with Ruby with the rename and delete
methods.

Following is the example to rename an existing file test1.txt:

#!/usr/bin/ruby

Rename a file from test1.txt to test2.txt

File.rename("test1.txt", "test2.txt")

Following is the example to delete an existing file test2.txt:

#!/usr/bin/ruby

Delete file test2.txt

File.delete("text2.txt")

File Modes and Ownership:

Use the chmod method with a mask to change the mode or permissions/access list of a file:

Following is the example to change mode of an existing file test.txt to a mask value:

#!/usr/bin/ruby

file = File.new("test.txt", "w")

file.chmod(0755)

Tutorials Point, Simply Easy Learning

20 | P a g e

Following is the table which can help you to choose different mask for chmod method:

Mask Description

0700 rwx mask for owner

0400 r for owner

0200 w for owner

0100 x for owner

0070 rwx mask for group

0040 r for group

0020 w for group

0010 x for group

0007 rwx mask for other

0004 r for other

0002 w for other

0001 x for other

4000 Set user ID on execution

2000 Set group ID on execution

1000 Save swapped text, even after use

File Inquiries:

The following command tests whether a file exists before opening it:

#!/usr/bin/ruby

File.open("file.rb") if File::exists?("file.rb")

Tutorials Point, Simply Easy Learning

21 | P a g e

The following command inquire whether the file is really a file:

#!/usr/bin/ruby

This returns either true or false

File.file?("text.txt")

The following command finds out if it given file name is a directory:

#!/usr/bin/ruby

a directory

File::directory?("/usr/local/bin") # => true

a file

File::directory?("file.rb") # => false

The following command finds whether the file is readable, writable or executable:

#!/usr/bin/ruby

File.readable?("test.txt") # => true

File.writable?("test.txt") # => true

File.executable?("test.txt") # => false

The following command finds whether the file has zero size or not:

#!/usr/bin/ruby

File.zero?("test.txt") # => true

The following command returns size of the file :

#!/usr/bin/ruby

File.size?("text.txt") # => 1002

The following command can be used to find out a type of file :

#!/usr/bin/ruby

File::ftype("test.txt") # => file

The ftype method identifies the type of the file by returning one of the following: file, directory,
characterSpecial, blockSpecial, fifo, link, socket, or unknown.

The following command can be used to find when a file was created, modified, or last accessed :

#!/usr/bin/ruby

File::ctime("test.txt") # => Fri May 09 10:06:37 -0700 2008

Tutorials Point, Simply Easy Learning

22 | P a g e

File::mtime("text.txt") # => Fri May 09 10:44:44 -0700 2008

File::atime("text.txt") # => Fri May 09 10:45:01 -0700 2008

Directories in Ruby:

All files are contained within various directories, and Ruby has no problem handling these too.
Whereas the File class handles files, directories are handled with the Dir class.

Navigating Through Directories:

To change directory within a Ruby program, use Dir.chdir as follows. This example changes the
current directory to /usr/bin.

Dir.chdir("/usr/bin")

You can find out what the current directory is with Dir.pwd:

puts Dir.pwd # This will return something like /usr/bin

You can get a list of the files and directories within a specific directory using Dir.entries:

puts Dir.entries("/usr/bin").join(' ')

Dir.entries returns an array with all the entries within the specified directory. Dir.foreach
provides the same feature:

Dir.foreach("/usr/bin") do |entry|

 puts entry

end

An even more concise way of getting directory listings is by using Dir's class array method:

Dir["/usr/bin/*"]

Creating a Directory:

The Dir.mkdir can be used to create directories:

Dir.mkdir("mynewdir")

You can also set permissions on a new directory (not one that already exists) with mkdir:

NOTE: The mask 755 sets permissions owner, group, world [anyone] to rwxr-xr-x where r =
read, w = write, and x = execute.

Dir.mkdir("mynewdir", 755)

Deleting a Directory:

Tutorials Point, Simply Easy Learning

23 | P a g e

The Dir.delete can be used to delete a directory. The Dir.unlink and Dir.rmdir perform exactly
the same function and are provided for convenience.

Dir.delete("testdir")

Creating Files & Temporary Directories:

Temporary files are those that might be created briefly during a program's execution but aren't
a permanent store of information.

Dir.tmpdir provides the path to the temporary directory on the current system, although the
method is not available by default. To make Dir.tmpdir available it's necessary to use require
'tmpdir'.

You can use Dir.tmpdir with File.join to create a platform-independent temporary file:

require 'tmpdir'

 tempfilename = File.join(Dir.tmpdir, "tingtong")

 tempfile = File.new(tempfilename, "w")

 tempfile.puts "This is a temporary file"

 tempfile.close

 File.delete(tempfilename)

This code creates a temporary file, writes data to it, and deletes it. Ruby's standard library also
includes a library called Tempfile that can create temporary files for you:

require 'tempfile'

 f = Tempfile.new('tingtong')

 f.puts "Hello"

 puts f.path

 f.close

Built-in Functions:

Here is the complete list of ruby buil-in functions to process files and directories:

 File Class and Methods.

 Dir Class and Methods.

Ruby Exceptions

The execution and the exception always go together. If you are opening a file which does not

exist then if you did not handle this situation properly then your program is considered to be of
bad quality.

The program stops if an exception occurs. So exceptions are used to handle various type of
errors which may occur during a program execution and take appropriate action instead of
halting program completely.

Ruby provide a nice mechanism to handle exceptions. We enclose the code that could raise an
exception in a begin/end block and use rescue clauses to tell Ruby the types of exceptions we
want to handle.

Syntax :

http://www.tutorialspoint.com/ruby/ruby_file_methods.htm
http://www.tutorialspoint.com/ruby/ruby_dir_methods.htm

Tutorials Point, Simply Easy Learning

24 | P a g e

begin

-

rescue OneTypeOfException

-

rescue AnotherTypeOfException

-

else

Other exceptions

ensure

Always will be executed

end

Everything from begin to rescue is protected. If an exception occurs during the execution of this
block of code, control is passed to the block between rescue and end.

For each rescue clause in the begin block, Ruby compares the raised Exception against each of
the parameters in turn. The match will succeed if the exception named in the rescue clause is
the same as the type of the currently thrown exception, or is a superclass of that exception.

In an event that an exception does not match any of the error types specified, we are allowed to
use an else clause after all the rescue clauses.

Example:

#!/usr/bin/ruby

begin

 file = open("/unexistant_file")

 if file

 puts "File opened successfully"

 end

rescue

 file = STDIN

end

print file, "==", STDIN, "\n"

This will produce following result. You can see that STDIN is substituted to file because open
failed.

#<IO:0xb7d16f84>==#<IO:0xb7d16f84>

Using retry Statement:

You can capture an exception using rescue block and then use retry statement to execute begin
block from the beginning.

Syntax:

begin

 # Exceptions raised by this code will

 # be caught by the following rescue clause

rescue

 # This block will capture all types of exceptions

 retry # This will move control to the beginning of begin

end

Tutorials Point, Simply Easy Learning

25 | P a g e

Example:

#!/usr/bin/ruby

begin

 file = open("/unexistant_file")

 if file

 puts "File opened successfully"

 end

rescue

 fname = "existant_file"

 retry

end

The following is the flow of the process:

 an exception occurred at open

 went to rescue. fname was re-assigned

 by retry went to the beginning of the begin

 this time file opens successfully

 continued the essential process.

NOTE: Notice that if the file of re-substituted name does not exist this example code retries
infinitely. Be careful if you use retry for an exception process.

Using raise Statement:

You can use raise statement to raise an exception. The following method raises an exception
whenever it's called. It's second message will never be printed. Program

Syntax:

raise

OR

raise "Error Message"

OR

raise ExceptionType, "Error Message"

OR

raise ExceptionType, "Error Message" condition

The first form simply reraises the current exception (or a RuntimeError if there is no current

exception). This is used in exception handlers that need to intercept an exception before passing
it on.

The second form creates a new RuntimeError exception, setting its message to the given string.
This exception is then raised up the call stack.

The third form uses the first argument to create an exception and then sets the associated
message to the second argument.

Tutorials Point, Simply Easy Learning

26 | P a g e

The third form is similar to third form but you can add any conditional statement like unless to
raise an exception.

Example:

#!/usr/bin/ruby

begin

 puts 'I am before the raise.'

 raise 'An error has occurred.'

 puts 'I am after the raise.'

rescue

 puts 'I am rescued.'

end

puts 'I am after the begin block.'

This will produce following result:

I am before the raise.

I am rescued.

I am after the begin block.

One more example showing usage of raise:

#!/usr/bin/ruby

begin

 raise 'A test exception.'

rescue Exception => e

 puts e.message

 puts e.backtrace.inspect

end

This will produce following result:

A test exception.

["test.rb:4"]

Using ensure Statement:

Sometimes you need to guarantee that some processing is done at the end of a block of code,

regardless of whether an exception was raised. For example, you may have a file open on entry
to the block, and you need to make sure it gets closed as the block exits.

The ensure clause does just this. ensure goes after the last rescue clause and contains a chunk
of code that will always be executed as the block terminates. It doesn't matter if the block exits
normally, if it raises and rescues an exception, or if it is terminated by an uncaught exception .
the ensure block will get run.

Syntax:

begin

 #.. process

 #..raise exception

rescue

Tutorials Point, Simply Easy Learning

27 | P a g e

 #.. handle error

ensure

 #.. finally ensure execution

 #.. This will always execute.

end

Example:

begin

 raise 'A test exception.'

rescue Exception => e

 puts e.message

 puts e.backtrace.inspect

ensure

 puts "Ensuring execution"

end

This will produce following result:

A test exception.

["test.rb:4"]

Ensuring execution

Using else Statement:

If the else clause is present, it goes after the rescue clauses and before any ensure.

The body of an else clause is executed only if no exceptions are raised by the main body of
code.

Syntax:

begin

 #.. process

 #..raise exception

rescue

 # .. handle error

else

 #.. executes if there is no exception

ensure

 #.. finally ensure execution

 #.. This will always execute.

end

Example:

begin

 # raise 'A test exception.'

 puts "I'm not raising exception"

rescue Exception => e

 puts e.message

 puts e.backtrace.inspect

else

 puts "Congratulations-- no errors!"

ensure

 puts "Ensuring execution"

Tutorials Point, Simply Easy Learning

28 | P a g e

end

This will produce following result:

I'm not raising exception

Congratulations-- no errors!

Ensuring execution

Raised error message can be captured using $! variable.

Catch and Throw:

While the exception mechanism of raise and rescue is great for abandoning execution when

things go wrong, it's sometimes nice to be able to jump out of some deeply nested construct
during normal processing. This is where catch and throw come in handy.

The catch defines a block that is labeled with the given name (which may be a Symbol or a
String). The block is executed normally until a throw is encountered.

Syntax:

throw :lablename

#.. this will not be executed

catch :lablename do

#.. matching catch will be executed after a throw is encountered.

end

OR

throw :lablename condition

#.. this will not be executed

catch :lablename do

#.. matching catch will be executed after a throw is encountered.

end

Example:

The following example uses a throw to terminate interaction with the user if '!' is typed in
response to any prompt.

def promptAndGet(prompt)

 print prompt

 res = readline.chomp

 throw :quitRequested if res == "!"

 return res

end

catch :quitRequested do

 name = promptAndGet("Name: ")

 age = promptAndGet("Age: ")

 sex = promptAndGet("Sex: ")

 # ..

 # process information

end

promptAndGet("Name:")

Tutorials Point, Simply Easy Learning

29 | P a g e

This will produce following result:

Name: Ruby on Rails

Age: 3

Sex: !

Name:Just Ruby

Class Exception:

Ruby's standard classes and modules raise exceptions. All the exception classes form a
hierarchy, with the class Exception at the top. The next level contains seven different types:

 Interrupt

 NoMemoryError

 SignalException

 ScriptError

 StandardError

 SystemExit

There is one other exception at this level, Fatal, but the Ruby interpreter only uses this
internally.

Both ScriptError and StandardError have a number of subclasses, but we do not need to go into
the details here. The important thing is that if we create our own exception classes, they need
to be subclasses of either class Exception or one of its descendants.

Let's look at an example:

class FileSaveError < StandardError

 attr_reader :reason

 def initialize(reason)

 @reason = reason

 end

end

Now look at the following example which will use this exception:

File.open(path, "w") do |file|

begin

 # Write out the data ...

rescue

 # Something went wrong!

 raise FileSaveError.new($!)

end

end

The important line here is raise FileSaveError.new($!). We call raise to signal that an exception

has occurred, passing it a new instance of FileSaveError, with the reason being that specific
exception caused the writing of the data to fail.

Ruby/DBI Tutorial

This session will teach you how to access a database using Ruby. The Ruby DBI module

provides a database-independent interface for Ruby scripts similar to that of the Perl DBI
module.

Tutorials Point, Simply Easy Learning

30 | P a g e

DBI stands for Database independent interface for Ruby which means DBI provides an
abstraction layer between the Ruby code and the underlying database, allowing you to switch

database implementations really easily. It defines a set of methods, variables, and conventions
that provide a consistent database interface, independent of the actual database being used.

DBI can interface with the following:

 ADO (ActiveX Data Objects)

 DB2

 Frontbase

 mSQL

 MySQL

 ODBC

 Oracle

 OCI8 (Oracle)

 PostgreSQL

 Proxy/Server

 SQLite

 SQLRelay

Architecture of a DBI Application

DBI is independent of any database available in backend. You can use DBI whether you are
working with Oracle, MySQL or Informix etc. This is clear from the following architure diagram.

The general architecture for Ruby DBI uses two layers:

 The database interface (DBI) layer. This layer is database independent and provides a

set of common access methods that are used the same way regardless of the type of
database server with which you're communicating.

 The database driver (DBD) layer. This layer is database dependent; different drivers

provide access to different database engines. There is one driver for MySQL, another for
PostgreSQL, another for InterBase, another for Oracle, and so forth. Each driver
interprets requests from the DBI layer and maps them onto requests appropriate for a
given type of database server.

Prerequisites:

If you want to write Ruby scripts to access MySQL databases, you'll need to have the Ruby
MySQL module installed.

This module acts as a DBD as explained above and can be downloaded from
http://www.tmtm.org/en/mysql/ruby/

Tutorials Point, Simply Easy Learning

31 | P a g e

Obtaining and Installing Ruby/DBI:

You can download and install the Ruby DBI module from the following location:

http://rubyforge.org/projects/ruby-dbi/

Before starting this installation make sure you have root privilege. Now following the following
steps:

Step 1

Unpacked the downloaded file using the following command:

$ tar zxf dbi-0.2.0.tar.gz

Step 2

Go in distrubution directory dbi-0.2.0 and configure it using the setup.rb script in that directory.
The most general configuration command looks like this, with no arguments following the config
argument. This command configures the distribution to install all drivers by default.

$ ruby setup.rb config

To be more specific, provide a --with option that lists the particular parts of the distribution you

want to use. For example, to configure only the main DBI module and the MySQL DBD-level
driver, issue the following command:

$ ruby setup.rb config --with=dbi,dbd_mysql

Step 3

Final step is to build the driver and install it using the following commands.

$ ruby setup.rb setup $ ruby setup.rb install

Database Connection:

Assuming we are going to work with MySQL database. Before connecting to a database make
sure followings:

 You have created a database TESTDB.

 You have created EMPLOYEE in TESTDB.

 This table is having fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.

 User ID "testuser" and password "test123" are set to access TESTDB

 Ruby Module DBI is installed properly on your machine.

 You have gone through MySQL tutorial to understand MySQL Basics.

http://rubyforge.org/projects/ruby-dbi/

Tutorials Point, Simply Easy Learning

32 | P a g e

Following is the example of connecting with MySQL database "TESTDB"

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 # get server version string and display it

 row = dbh.select_one("SELECT VERSION()")

 puts "Server version: " + row[0]

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

While running this script, its producing following result at my Linux machine.

Server version: 5.0.45

If a connection is established with the datasource then a Database Handle is returned and saved

into dbh for further use otherwise dbh is set to nill value and e.err and e::errstr return error
code and an error string respectively.

Finally before coming out it ensures that database connection is closed and resources are
released.

INSERT Operation:

INSERT operation is required when you want to create your records into a database table.

Once a database connection is established, we are ready to create tables or records into the
database tables using do method or prepare and execute method.

Using do Statement:

Statements that do not return rows can be issued by invoking the do database handle method.
This method takes a statement string argument and returns a count of the number of rows
affected by the statement.

dbh.do("DROP TABLE IF EXISTS EMPLOYEE")

dbh.do("CREATE TABLE EMPLOYEE (

 FIRST_NAME CHAR(20) NOT NULL,

 LAST_NAME CHAR(20),

 AGE INT,

 SEX CHAR(1),

 INCOME FLOAT)");

Similar way you can execute SQL INSERT statement to create a record into EMPLOYEE table.

Tutorials Point, Simply Easy Learning

33 | P a g e

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 dbh.do("INSERT INTO EMPLOYEE(FIRST_NAME,

 LAST_NAME,

 AGE,

 SEX,

 INCOME)

 VALUES ('Mac', 'Mohan', 20, 'M', 2000)")

 puts "Record has been created"

 dbh.commit

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

 dbh.rollback

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

Using prepare and execute:

You can use prepare and execute methods of DBI class to execute SQL statement through Ruby
code.

Record creation takes following steps

 Prearing SQL statement with INSERT statement. This will be done using prepare

method.

 Executing SQL query to select all the results from the database. This will be done using
execute method.

 Releasing Stattement handle. This will be done using finish API

 If everything goes fine then commit this operation otherwise you can rollback
complete transaction.

Following is the syntax to use these two methods:

sth = dbh.prepare(statement)

sth.execute

 ... zero or more SQL operations ...

sth.finish

These two methods can be used to pass bind values to SQL statements. There may be a case

when values to be entered is not given in advance. In such case binding values are used. A
question mark (?) is used in place of actual value and then actual values are passed through
execute() API.

Following is the example to create two records in EMPLOYEE table.

#!/usr/bin/ruby -w

Tutorials Point, Simply Easy Learning

34 | P a g e

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 sth = dbh.prepare("INSERT INTO EMPLOYEE(FIRST_NAME,

 LAST_NAME,

 AGE,

 SEX,

 INCOME)

 VALUES (?, ?, ?, ?, ?)")

 sth.execute('John', 'Poul', 25, 'M', 2300)

 sth.execute('Zara', 'Ali', 17, 'F', 1000)

 sth.finish

 dbh.commit

 puts "Record has been created"

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

 dbh.rollback

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

If there are multiple INSERTs at a time then preparing a statement first and then executing it
multiple times within a loop is more efficient than invoking do each time through the loop

READ Operation:

READ Operation on any databasse means to fetch some useful information from the database.

Once our database connection is established, we are ready to make a query into this database.
We can use either do method or prepare and execute methods to fetech values from a
database table.

Record fetching takes following steps

 Prearing SQL query based on required conditions. This will be done using prepare

method.

 Executing SQL query to select all the results from the database. This will be done using
execute method.

 Fetching all the results one by one and printing those results. This will be done using
fetch method.

 Releasing Stattement handle. This will be done using finish method.

Following is the procedure to query all the records from EMPLOYEE table having salary more
than 1000.

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

Tutorials Point, Simply Easy Learning

35 | P a g e

 "testuser", "test123")

 sth = dbh.prepare("SELECT * FROM EMPLOYEE

 WHERE INCOME > ?")

 sth.execute(1000)

 sth.fetch do |row|

 printf "First Name: %s, Last Name : %s\n", row[0], row[1]

 printf "Age: %d, Sex : %s\n", row[2], row[3]

 printf "Salary :%d \n\n", row[4]

 end

 sth.finish

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

This will produce following result:

First Name: Mac, Last Name : Mohan

Age: 20, Sex : M

Salary :2000

First Name: John, Last Name : Poul

Age: 25, Sex : M

Salary :2300

There are more shot cut methods to fecth records from the database. If you are interested then
go through Fetching the Result otherwise proceed to next section.

Update Operation:

UPDATE Operation on any databasse means to update one or more records which are already

available in the database. Following is the procedure to update all the records having SEX as 'M'.
Here we will increase AGE of all the males by one year. This will take three steps

 Prearing SQL query based on required conditions. This will be done using prepare

method.

 Executing SQL query to select all the results from the database. This will be done using
execute method.

 Releasing Stattement handle. This will be done using finish method.

 If everything goes fine then commit this operation otherwise you can rollback
complete transaction.

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 sth = dbh.prepare("UPDATE EMPLOYEE SET AGE = AGE + 1

 WHERE SEX = ?")

http://www.tutorialspoint.com/ruby/ruby_dbi_fetching_results.htm

Tutorials Point, Simply Easy Learning

36 | P a g e

 sth.execute('M')

 sth.finish

 dbh.commit

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

 dbh.rollback

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

DELETE Operation:

DELETE operation is required when you want to delete some records from your database.
Following is the procedure to delete all the records from EMPLOYEE where AGE is more than 20.
This operation will take following steps.

 Prearing SQL query based on required conditions. This will be done using prepare

method.

 Executing SQL query to delete required records from the database. This will be done

using execute method.

 Releasing Stattement handle. This will be done using finish method.

 If everything goes fine then commit this operation otherwise you can rollback
complete transaction.

#!/usr/bin/ruby -w

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 sth = dbh.prepare("DELETE FROM EMPLOYEE

 WHERE AGE > ?")

 sth.execute(20)

 sth.finish

 dbh.commit

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

 dbh.rollback

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

Performing Transactions:

Transactions are a mechanism that ensures data consistency. Transactions should have the
following four properties:

 Atomicity: Either a transaction completes or nothing happens at all.

Tutorials Point, Simply Easy Learning

37 | P a g e

 Consistency: A transaction must start in a consistent state and leave the system is a

consistent state.

 Isolation: Intermediate results of a transaction are not visible outside the current

transaction.

 Durability: Once a transaction was committed, the effects are persistent, even after a
system failure.

The DBI provides two methods to either commit or rollback a transaction. There is one more
method called transaction which can be used to implement transactions. There are two simple
approaches to implement transactions:

Approach I:

The first approach uses DBI's commit and rollback methods to explicitly commit or cancel the
transaction:

 dbh['AutoCommit'] = false # Set auto commit to false.

 begin

 dbh.do("UPDATE EMPLOYEE SET AGE = AGE+1

 WHERE FIRST_NAME = 'John'")

 dbh.do("UPDATE EMPLOYEE SET AGE = AGE+1

 WHERE FIRST_NAME = 'Zara'")

 dbh.commit

 rescue

 puts "transaction failed"

 dbh.rollback

 end

 dbh['AutoCommit'] = true

Approach II:

The second approach uses the transaction method. This is simpler, because it takes a code block

containing the statements that make up the transaction. The transaction method executes the
block, then invokes commit or rollback automatically, depending on whether the block succeeds
or fails:

 dbh['AutoCommit'] = false # Set auto commit to false.

 dbh.transaction do |dbh|

 dbh.do("UPDATE EMPLOYEE SET AGE = AGE+1

 WHERE FIRST_NAME = 'John'")

 dbh.do("UPDATE EMPLOYEE SET AGE = AGE+1

 WHERE FIRST_NAME = 'Zara'")

 end

 dbh['AutoCommit'] = true

COMMIT Operation:

Commit is the operation which gives a green signal to database to finalize the changes and after
this operation no change can be reverted back.

Here is a simple example to call commit method.

 dbh.commit

ROLLBACK Operation:

Tutorials Point, Simply Easy Learning

38 | P a g e

If you are not satisfied with one or more of the changes and you want to revert back those
changes completely then use rollback method.

Here is a simple example to call rollback metho.

 dbh.rollback

Disconnecting Database:

To disconnect Database connection, use disconnect API.

 dbh.disconnect

If the connection to a database is closed by the user with the disconnect method, any

outstanding transactions are rolled back by the DBI. However, instead of depending on any of
DBI's implementation details, your application would be better off calling commit or rollback
explicitly.

Handling Errors:

There are many sources of errors. A few examples are a syntax error in an executed SQL

statement, a connection failure, or calling the fetch method for an already canceled or finished
statement handle.

If a DBI method fails, DBI raises an exception. DBI methods may raise any of several types of

exception but the two most important exception classes are DBI::InterfaceError and
DBI::DatabaseError.

Exception objects of these classes have three attributes named err, errstr, and state, which
represent the error number, a descriptive error string, and a standard error code. The attributes
are explained below:

 err: Returns an integer representation of the occurred error or nil if this is not

supported by the DBD.The Oracle DBD for example returns the numerical part of an
ORA-XXXX error message.

 errstr: Returns a string representation of the occurred error.

 state: Returns the SQLSTATE code of the occurred error.The SQLSTATE is a five-
character-long string. Most DBDs do not support this and return nil instead.

You have seen following code above in most of the examples:

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

 dbh.rollback

ensure

 # disconnect from server

 dbh.disconnect if dbh

end

To get debugging information about what your script is doing as it executes, you can enable

tracing. To do this, you must first load the dbi/trace module and then call the trace method that
controls the trace mode and output destination:

Tutorials Point, Simply Easy Learning

39 | P a g e

require "dbi/trace"

..............

trace(mode, destination)

The mode value may be 0 (off), 1, 2, or 3, and the destination should be an IO object. The
default values are 2 and STDERR, respectively.

Code Blocks with Methods

There are some methods which creates handles. These methods can be invoked with a code

block. The advantage of using code block along with methods is that they provide the handle to
the code block as its parameter and automatically clean up the handle when the block
terminates. There are few examples to understand the concept

 DBI.connect : This method generates a database handle and it is recommended to call
disconnect at the end of the block to disconnect the database.

 dbh.prepare : This method generates a statement handle and it is recommended to

finish at the end of the block. Within the block, you must invoke execute method to
execute the statement.

 dbh.execute : This method is similar except we don't need to invoke execute within
the block. The statement handle is automatically executed.

Example 1:

DBI.connect can take a code block, passes the database handle to it, and automatically
disconnects the handle at the end of the block as follows.

dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123") do |dbh|

Example 2:

dbh.prepare can take a code block, passes the statement handle to it, and automatically calls
finish at the end of the block as follows.

dbh.prepare("SHOW DATABASES") do |sth|

 sth.execute

 puts "Databases: " + sth.fetch_all.join(", ")

end

Example 3:

dbh.execute can take a code block, passes the statement handle to it, and automatically calls
finish at the end of the block as follows:

dbh.execute("SHOW DATABASES") do |sth|

 puts "Databases: " + sth.fetch_all.join(", ")

end

DBI transaction method also takes a code block which has been described in above.

Driver-specific Functions and Attributes:

Tutorials Point, Simply Easy Learning

40 | P a g e

The DBI lets database drivers provide additional database-specific functions, which can be called
by the user through the func method of any Handle object.

Driver-specific attributes are supported and can be set or gotten using the []= or [] methods.

DBD::Mysql implements the following driver-specific functions:

S.N. Functions with Description

1 dbh.func(:createdb, db_name)

Creates a new database

2 dbh.func(:dropdb, db_name)

Drops a database

3 dbh.func(:reload)

Performs a reload operation

4 dbh.func(:shutdown)

Shut down the server

5 dbh.func(:insert_id) => Fixnum

Returns the most recent AUTO_INCREMENT value for a connection.

6 dbh.func(:client_info) => String

Returns MySQL client information in terms of version.

7 dbh.func(:client_version) => Fixnum

Returns client information in terms of version. Its similar to :client_info but it return a

fixnum instead of sting.

8 dbh.func(:host_info) => String

Returns host information

9 dbh.func(:proto_info) => Fixnum

Returns protocol being used for the communication

10 dbh.func(:server_info) => String

Returns MySQL server information in terms of version.

11 dbh.func(:stat) => String

Returns current stat of the database

12 dbh.func(:thread_id) => Fixnum

Return current thread ID.

Example:

Tutorials Point, Simply Easy Learning

41 | P a g e

#!/usr/bin/ruby

require "dbi"

begin

 # connect to the MySQL server

 dbh = DBI.connect("DBI:Mysql:TESTDB:localhost",

 "testuser", "test123")

 puts dbh.func(:client_info)

 puts dbh.func(:client_version)

 puts dbh.func(:host_info)

 puts dbh.func(:proto_info)

 puts dbh.func(:server_info)

 puts dbh.func(:thread_id)

 puts dbh.func(:stat)

rescue DBI::DatabaseError => e

 puts "An error occurred"

 puts "Error code: #{e.err}"

 puts "Error message: #{e.errstr}"

ensure

 dbh.disconnect if dbh

end

This will produce following result:

5.0.45

50045

Localhost via UNIX socket

10

5.0.45

150621

Uptime: 384981 Threads: 1 Questions: 1101078 Slow queries: 4 \

Opens: 324 Flush tables: 1 Open tables: 64 \

Queries per second avg: 2.860

Further Detail:

Refer to the link http://www.tutorialspoint.com/ruby

List of Tutorials from TutorialsPoint.com
 Learn JSP

 Learn Servlets

 Learn log4j

 Learn iBATIS

 Learn Java

 Learn JDBC

 Java Examples

 Learn Best Practices

 Learn Python

 Learn Ruby

 Learn Ruby on Rails

 Learn ASP.Net

 Learn HTML

 Learn HTML5

 Learn XHTML

 Learn CSS

 Learn HTTP

 Learn JavaScript

 Learn jQuery

 Learn Prototype

 Learn script.aculo.us

 Web Developer's Guide

http://www.tutorialspoint.com/ruby
http://www.tutorialspoint.com/
http://www.tutorialspoint.com/jsp
http://www.tutorialspoint.com/servlets/index.htm
http://www.tutorialspoint.com/log4j/index.htm
http://www.tutorialspoint.com/ibatis/index.htm
http://www.tutorialspoint.com/java/index.htm
http://www.tutorialspoint.com/jdbc/index.htm
http://www.tutorialspoint.com/javaexamples/index.htm
http://www.tutorialspoint.com/developers_best_practices/index.htm
http://www.tutorialspoint.com/python/index.htm
http://www.tutorialspoint.com/ruby/index.htm
http://www.tutorialspoint.com/ruby-on-rails-2.1/index.htm
http://www.tutorialspoint.com/asp.net/index.htm
http://www.tutorialspoint.com/html/index.htm
http://www.tutorialspoint.com/html5/index.htm
http://www.tutorialspoint.com/xhtml/index.htm
http://www.tutorialspoint.com/css/index.htm
http://www.tutorialspoint.com/http/index.htm
http://www.tutorialspoint.com/javascript/index.htm
http://www.tutorialspoint.com/jquery/index.htm
http://www.tutorialspoint.com/prototype/index.htm
http://www.tutorialspoint.com/script.aculo.us/index.htm
http://www.tutorialspoint.com/web_developers_guide/index.htm

Tutorials Point, Simply Easy Learning

42 | P a g e

 Learn SQL

 Learn MySQL

 Learn AJAX

 Learn C Programming

 Learn C++ Programming

 Learn CGI with PERL

 Learn DLL

 Learn ebXML

 Learn Euphoria

 Learn GDB Debugger

 Learn Makefile

 Learn Parrot

 Learn Perl Script

 Learn PHP Script

 Learn Six Sigma

 Learn SEI CMMI

 Learn WiMAX

 Learn Telecom Billing

 Learn RADIUS

 Learn RSS

 Learn SEO Techniques

 Learn SOAP

 Learn UDDI

 Learn Unix Sockets

 Learn Web Services

 Learn XML-RPC

 Learn UML

 Learn UNIX

 Learn WSDL

 Learn i-Mode

 Learn GPRS

 Learn GSM

 Learn WAP

 Learn WML

 Learn Wi-Fi

webmaster@TutorialsPoint.com

http://www.tutorialspoint.com/sql/index.htm
http://www.tutorialspoint.com/mysql/index.htm
http://www.tutorialspoint.com/ajax/index.htm
http://www.tutorialspoint.com/ansi_c/index.htm
http://www.tutorialspoint.com/cplusplus/index.htm
http://www.tutorialspoint.com/perl/perl_cgi.htm
http://www.tutorialspoint.com/dll/index.htm
http://www.tutorialspoint.com/ebxml/index.htm
http://www.tutorialspoint.com/euphoria/index.htm
http://www.tutorialspoint.com/gnu_debugger/index.htm
http://www.tutorialspoint.com/makefile/index.htm
http://www.tutorialspoint.com/parrot/index.htm
http://www.tutorialspoint.com/perl/index.htm
http://www.tutorialspoint.com/php/index.htm
http://www.tutorialspoint.com/six_sigma/index.htm
http://www.tutorialspoint.com/cmmi/index.htm
http://www.tutorialspoint.com/wimax/index.htm
http://www.tutorialspoint.com/telecom-billing/index.htm
http://www.tutorialspoint.com/radius/index.htm
http://www.tutorialspoint.com/rss/index.htm
http://www.tutorialspoint.com/seo/index.htm
http://www.tutorialspoint.com/soap/index.htm
http://www.tutorialspoint.com/uddi/index.htm
http://www.tutorialspoint.com/unix_sockets/index.htm
http://www.tutorialspoint.com/webservices/index.htm
http://www.tutorialspoint.com/xml-rpc/index.htm
http://www.tutorialspoint.com/uml/index.htm
http://www.tutorialspoint.com/unix/index.htm
http://www.tutorialspoint.com/wsdl/index.htm
http://www.tutorialspoint.com/i-mode/index.htm
http://www.tutorialspoint.com/gprs/index.htm
http://www.tutorialspoint.com/gsm/index.htm
http://www.tutorialspoint.com/wap/index.htm
http://www.tutorialspoint.com/wml/index.htm
http://www.tutorialspoint.com/wi-fi/index.htm
http://www.tutorialspoint.com/

