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CHAPTER 1

Group Theory

1. Day 1

Definition 1.1. The Cartesian product of two nonempty sets S and T is

S × T = {(s, t) | s ∈ S, t ∈ T}.

Definition 1.2. A binary operation on a set S 6= ∅ is a function µ : S×S → S.

Definition 1.3. A semigroup is a nonempty set S coupled with an associative
binary operation S × S → S denoted (s, s′) 7→ ss′.

Definition 1.4. A monoid is a semigroup M with a two-sided identity element
eM , sometimes denoted e.

Example 1.5. M = {0, 1, 2, . . .} under +. This is a monoid.

Example 1.6. M = {0, 1, 2, . . . , n} where n is fixed, under +̇ where a+̇b :=
min{a+ b, n}. This is a monoid.

Definition 1.7. Fix a set S 6= ∅ and set

M(S) = {formal words s1s2 · · · sr | s1, s2, . . . , sr ∈ S and r > 0}
where the case r = 0 produses the “empty word” denoted e. (Formally, M(S) =
(∪∞r=1S

r) ∪ {e} ⊆ S(N) ∪ {e}.) Define multiplication on M(S) by concatenation
(s1s2 · · · sr)(s′1s′2 · · · s′r′) := s1s2 · · · srs′1s′2 · · · s′r′ and e(s1s2 · · · sr) = s1s2 · · · sr =
(s1s2 · · · sr)e. (The second part is automatic.) This gives M(S) the structure of
a monoid with identity element e, called the free monoid on S. We consider S as
a subset of M(S) by thinking of S as the set of all words in M(S) with a single
character.

Definition 1.8. A homomorphism of monoids is a function f : M → N where
M and N are monoids such that f preserves multiplication and identities. Abbre-
viations: hom, hom of monoids, or monoid hom.

Proposition 1.9. Let S be a nonempty set and M a monoid. Given a function
f : S →M , there exists a unique monoid homomorphism F : M(S)→M such that
F (s) = f(s) for all s ∈ S, that is, such that F |S = f , that is, such that the following
diagram commutes:

S //

f

��

M(S)

∃!F||x
x

x
x

M.

Proof. Define F (e) = eM and F (s1s2 · · · sr) = f(s1)f(s2) · · · f(sr). Check
that this is a well-defined function satisfying the desired properties. �
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8 1. GROUP THEORY

Proposition 1.10. The identity element of a monoid is unique.

Proof. e = ee′ = e′. �

Definition 1.11. A group is a monoid G such that every element a ∈ G has a
two-sided inverse in G. A group is abelian if its operation is commutative.

Proposition 1.12. Let S be a semigroup. If S admits a left identity and every
element of S admits a left inverse, then S is a group.

Proof. Let e ∈ S be a left identity and fix a ∈ G. There exists elements
b, c ∈ S such that ba = e = cb. Then

b(ab) = (ba)b = eb = b

and so

ab = e(ab) = (cb)(ab) = ((cb)a)b = (c(ba))b = (ce)b = c(eb) = cb = e.

Thus, b is a two-sided inverse for a. Furthermore,

ae = a(ba) = (ab)a = ea = a

and so e is a two-sided inverse for S. �

The next example shows that we have to be careful about applying the previous
result.

Example 1.13. Let X be a set and M = {functions f : X → X}. Then M is a
monoid under composition of functions. An element f ∈M has a left inverse if and
only if f is injective, and f has a right inverse if and only if f is onto. In particular,
there are elements of M which have a left inverse but not a right inverse, and vice
versa.

Exercise 1.14. Let G be a group and fix a, b, c ∈ G.

(a) If ab = ac, then b = c.
(b) If ba = ca, then b = c.
(c) The inverse of a in G is unique. [Assume that b and b′ are inverses for a, and

show b = b′.] [Once this is shown, we write a−1 for the unique inverse of a
in G.]

(d) (a−1)−1 = a.
(e) (ab)−1 = b−1a−1.
(f) If a2 = a, then a = e.

2. Day 2

Exercise 2.1. Let G be a group. If a2 = e for all a ∈ G, then G is abelian.

Remark 2.2. Let S be a semgroup. Given elements a, b, c ∈ S, the product abc
is unambiguous because of the associative law: a(bc) = (ab)c. What about more
general products like abcd and so on?
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Definition 2.3. Let S be a semigroup and fix elements a1, . . . , an ∈ S. The
product a1 . . . an =

∏n
i=1 ai is defined inductively:

0∏
i=1

ai = e

1∏
i=1

ai := a1

n∏
i=1

ai :=

(
n−1∏
i=1

ai

)
an for n > 1.

Remark 2.4. Pages 27–28 of Hungerford’s text discuss the issue of “mean-
ingful products” and Theorem 1.6 of Hungerford’s text shows that the product
a1 . . . an =

∏n
i=1 ai can be computed with any order of parentheses. This is called

the Generalized Associative Law. Read this part of the text. Also, read 1.8 and
1.9, which discuss exponentiation.

Exercise 2.5. (Generalized Commutative Law) Let S be a commutative semi-
group and fix elements a1, . . . , an ∈ S. For any permutation i1, . . . , in of 1, . . . , n
show that ai1 . . . ain = a1 . . . an.

Definition 2.6. A homomorphism of groups is a function f : G→ H where G
and H are groups and f(gg′) = f(g)f(g′) for all g, g′ ∈ G.

Remark 2.7. Note that we do not require that f preserves identities or inverses.
We’ll show next that this is automatic.

Theorem 2.8. If f : G→ H is a homomorphism of groups, then f(eG) = eH ,
and f(a−1) = f(a)−1 for all a ∈ G.

Proof. We have f(eG)2 = f(eG)f(eG) = f(eGeG) = f(eG), and so Exer-
cise 1.14(f) implies f(eG) = eH . Hence, we have f(a)f(a−1) = f(aa−1) = f(eG) =
eH which shows that f(a−1) satisfies the defining property of f(a)−1, that is,
f(a−1) = f(a)−1. �

Remark 2.9. (False “proof” of f(eG) = eH .) We have f(eG)f(a) = f(eGa) =
f(a), so f(eG) = eH . This doesn’t work because f is not surjective.

Note that this proof can be fixed: f(eG)f(a) = f(a) implies

f(eG) = f(eG)f(a)f(a)−1 = f(a)f(a)−1 = eH .

This is essentially the proof of a2 = a =⇒ a = e, so this is essentially the same
proof as the one above.

Proposition 2.10. Let M be a monoid and set

G = {m ∈M | m has a two-sided inverse in M}.

Then G is a group under the operation on M .

Proof. First, we note that G 6= ∅ because eM ∈ G: e−1
M = eM .

Next, observe that G is closed under the operation on M . This is the case
because, for all x, y ∈ G the proof of Exercise 1.14(e) shows that the product xy
has a two-sided inverse in M , namely the element y−1x−1. Thus, xy ∈ G.
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The associativity of the operation on G is inherited from M . The fact that eM
is an identity on G follows from the fact that eM is the identity on M .

For each x ∈ G, we have x−1 ∈M and (x−1)−1 = x ∈M =⇒ x−1 ∈ G. �

Example 2.11. Let k be a field, e.g., k = Q or R or C. The set of n × n
matrices M = Mn(k) with entries in k is a monoid under matrix multiplication. In
the notation of Proposition 2.10, the group G of invertible n×n matrices is denoted
G = GLn(k), and is called the general linear group.

Definition 2.12. Let S be a semigroup and T ⊂ S a nonempty subset. For
an element s ∈ S, define the left and right cosets of s to be

sT := {st ∈ S | t ∈ T} Ts := {ts ∈ S | t ∈ T}

and for s, s′ ∈ S, define
sTs′ := {sts′ ∈ S | t ∈ T}.

Remark 2.13. Let S be a semigroup and T ⊂ S a nonempty subset. For
elements s1, . . . , sm, s

′
1, . . . , s

′
n ∈ S the Generalized Associative Law (2.4) shows

that the set s1 · · · smTa′1 · · · s′n is unambiguous.

Definition 2.14. Let G be a group. A subgroup of G is a subset H ⊆ G which
is itself a group under the operation for G. If H is a subgroup of G, we write
H 6 G. If H is a subgroup of G and H 6= G, then H is a proper subgroup of G, and
we write H < G. If H 6 G and, for all h ∈ H and all g ∈ G we have ghg−1 ∈ H,
then H is a normal subgroup of G, and we write H P G. When H is a proper
normal subgroup of G, we write H CG.

Exercise 2.15. If H 6 G, then eH = eG, and for all h ∈ H the inverse of h in
H is the same as the inverse of h in G.

Theorem 2.16. If H 6 G, then the following conditions are equivalent:
(i) H P G;
(ii) for all g ∈ G, we have gHg−1 ⊆ H;
(iii) for all g ∈ G, we have gHg−1 = H;
(iv) for all g ∈ G, we have gH = Hg;
(v) for all g ∈ G, there exist h, k ∈ G such that gH = Hh and Hg = kH.

Proof. The implications (i) =⇒ (ii) and (iii) =⇒ (iv) =⇒ (v) are clear.
(ii) =⇒ (iii). H = gg−1Hgg−1 ⊆ gHg−1 ⊆ H implies equality at each step.
(v) =⇒ (i). Set e = eG = eH . Fix g ∈ G and h ∈ H. Then there exists

k ∈ G such that gH = Hk. Since e ∈ H, we have g = ge = h1k for some h1 ∈ H,
and so k = h−1

1 g. Since gh = h2k for some h2 ∈ H, we have ghg−1 = h2kg
−1 =

h2h
−1
1 gg−1 = h2h

−1
1 ∈ H. �

3. Day 3

Example 3.1. If G is abelian, then H 6 G if and only if H P G.
{e} P G and G P G.
For each integer n, we have nZ P Z.

Proposition 3.2. Let G be a group. A nonempty subset H ⊆ G is a subgroup
if and only if gh−1 ∈ H for all g, h ∈ H.
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Proof. We first show eG ∈ H. Since H 6= ∅, there exists g ∈ H, and so our
assumption implies eG = gg−1 ∈ H.

It follows easily that eG is an identity on H under the multiplication from G.
To see that H is closed under inverses, fix g ∈ H. Since eG ∈ H, our assumption

implies g−1 = eGg
−1 ∈ H.

To see that H is closed under the operation of G, fix g, h ∈ H. Since h−1 ∈ H,
our assumption implies gh = g(h−1)−1 ∈ H.

Finally, H inherits associativity from G. �

Definition 3.3. Assume H P G. We obtain an relation ∼ on G given by a ∼ b
if and only if ab−1 ∈ H.

Exercise 3.4. Assume H 6 G and fix a, b ∈ G. Recall that a ∼ b if and only
if ab−1 ∈ H.

(a) The relation ∼ is an equivalence relation.
(b) a ∼ b if and only if b ∈ aH.
(c) If H P G, then the following conditions are equivalent:

(i) a ∼ b;
(ii) Ha = Hb.
(iii) aH = bH;

Definition 3.5. Assume H P G. Let G/H be the set of equivalence classes
of G under ∼, and let g ∈ G/H denote the equivalence class of g:

g = {a ∈ G | a ∼ g}.
Equivalently, Exercise 3.4(b) shows that G/H is the collection of cosets of the form
gH and g = gH.

Note the following:
g ∈ g.
g = a if and only if g ∼ a.
g = e if and only if g ∈ H.

Theorem 3.6. Assume H P G. The assignment gh := gh in G/H is well-
defined and makes G/H into a group with eG/H = eG and (g)−1 = g−1.

Proof. To show well-definedness of the multiplication, fix g, h, a, b ∈ G such
that g = a and h = b. We need to show gh = ab. The condition g = a implies
g ∼ a, and so ga−1 ∈ H. Writing α = ga−1 ∈ H, we have g = αa. Similarly, with
β = hb−1 ∈ H, we have h = βb. Since H P G and β ∈ H, we have aβa−1 ∈ H,
and so

gh(ab)−1 = ghb−1a−1 = αaβbb−1a−1 = α︸︷︷︸
∈H

aβa−1︸ ︷︷ ︸
∈H

∈ H.

It follows that gh ∼ ab and so gh = g′h′.
Associativity is inherited from G:

g(hk) = ghk = g(hk) = (gh)k = ghk = (gh)k.

The identity in G/H is eG:

g eG = geG = g eG g = eGg = g.

And we have (g)−1 = g−1:

gg−1 = gg−1 = eG = eG/H g−1g = g−1g = eG = eG/H .
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�

Definition 3.7. Let f : G → H be a group homomorphism. The kernel of f
is Ker(f) = f−1(eH). The homomorphism f is a monomorphism if it is injective.
The homomorphism f is an epimorphism if it is surjective. The homomorphism f
is an isomorphism if it is bijective. If there is an isomorphism g : G→ H, then we
say that G and H are isomorphic and write G ∼= H.

Exercise 3.8. [First Isomorphism Theorem] Let f : G→ H be a group homo-
morphism.

(a) Ker(f) P G and Im(f) 6 H.
(b) The function f : G/Ker(f) → Im(f) given by g 7→ f(g) is a well-defined

group isomorphism and so Im(f) ∼= G/Ker(f).
(c) f is a monomorphism if and only if Ker(f) = {eG}.

Exercise 3.9. Let G be a group, and let {Hλ | λ ∈ Λ} be a collection of
subgroups of G.

(a) ∩λHλ 6 G.
(b) If Hλ P G for all λ ∈ Λ}, then ∩λHλ P G.
(c) Give an example of a group G with subgroups H and K such that H ∪K is

not a subgroup of G.

Definition 3.10. Let G be a group and X ⊆ G a subset. The subgroup of G
generated by X, denoted 〈X〉, is the intersection of all subgroups H 6 G such that
X ⊆ H. If X = {x1, . . .}, we write 〈X〉 = 〈x1, . . .〉. The group G is cyclic if there
exists g ∈ G such that G = 〈g〉.

Example 3.11. If G is a group, then 〈∅〉 = {e} and 〈G〉 = G.

4. Day 4

Example 4.1. Let H P G.

(a) The function π : G→ G/H given by g 7→ g is a well-defined epimorphism of
groups with Ker(π) = H. (E.g., Z→ Z/nZ.)

(b) π is an isomorphism if and only if H = {eG}.
(c) An example of a group G and a normal subgroup {eG} 6= H P G such that

G/H ∼= G: Let G = Z⊕ Z⊕ Z⊕ · · · and H = {0} ⊕ Z⊕ Z⊕ · · · .

Proposition 4.2. Let G be a group and X ⊆ G a subset.

(a) X ⊆ 〈X〉 6 G.
(b) 〈X〉 is the unique smallest subgroup of G containing X.
(c) 〈X〉 = {

∏r
i=1 xi | r > 0 and xi ∈ X or x−1

i ∈ X for i = 1, . . . , r}.

Proof. (a) This follows from the definition of 〈X〉 and Exercise 3.9(a).
(b) Let X ⊆ H 6 G. It suffices to show that 〈X〉 ⊆ H. This is immediate from

the definition because H is among the subgroups intersected to obtain 〈X〉.
(c) Set H = {

∏r
i=1 xi | r > 0 and xi ∈ X or x−1

i ∈ X for i = 1, . . . , r}.
To show 〈X〉 ⊆ H, it suffices to show that H is a subgroup of G containing

X; then apply part (b). We have H 6= ∅ because e =
∏0
i=1 xi ∈ H. Fix elements∏r

i=1 xi,
∏s
i=1 yi ∈ H with xi ∈ X or x−1

i ∈ X for i = 1, . . . , r and yi ∈ X or
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y−1
i ∈ X for i = 1, . . . , s. We see easily that(

r∏
i=1

xi

)(
s∏
i=1

yi

)−1

=

(
r∏
i=1

xi

)(
s∏
i=1

y−1
s−i

)
∈ H.

Hence, Proposition 3.2 implies H 6 G. And X ⊆ H because x1 ∈ X implies
x1 =

∏1
i=1 xi ∈ H.

Next, we show 〈X〉 ⊇ H. We know X ⊆ 〈X〉. Since 〈X〉 is a subgroup,
xi ∈ X ⊆ 〈X〉 implies x−1

i ∈ 〈X〉. Since 〈X〉 is closed under products, this implies
that elements

∏r
i=1 xi are in 〈X〉. That is, H ⊆ 〈X〉. �

Exercise 4.3. If H 6 Z, then H = nZ = 〈n〉 for some n > 0.

Theorem 4.4. Let G be a group. If g ∈ G, then either 〈g〉 ∼= Z or 〈g〉 ∼= Z/nZ
for some n > 1.

Proof. Let f : Z → 〈g〉 be given by m 7→ gm. This is a well-defined group
epimorphism, so Exercise 3.8(b) implies Z/Ker(f) ∼= Im(f) = 〈g〉.

The condition Ker(f) 6 Z implies Ker(f) = nZ for some n > 0, by Exercise 4.3.
If n = 0, then 〈g〉 ∼= Z/Ker(f) = Z/{0} ∼= Z. If n > 0, then 〈g〉 ∼= Z/Ker(f) =
Z/nZ. �

Definition 4.5. Let G be a group and H 6 G. The order of G is the cardi-
nality |G|. The index of H in G is

[G : H] = the number of distinct cosets of H in G.

Theorem 4.6 (Lagrange’s Theorem). Let G be a finite group. If H 6 G, then
|G| = [G : H]|H|; in particular, |H| | |G|.

5. Day 5

Proof. We first show, for all g ∈ G, that |gH| = |H|. Let ϕg : H → gH be
given by h 7→ gh. By definition, ϕg is onto, and it is 1-1 because gh = gh′ =⇒
h = h′.

Let G/H = {gH | g ∈ G}. (Note that we’re not assuming that H is a normal
subgroup, so G/H is just a set.) Since ∼ is an equivalence relation, G is the disjoint
union of its cosets:

G =
⋃

gH∈G/H

gH.

Thus, we have

|G| =
∑

gH∈G/H

|gH| =
∑

gH∈G/H

|H| = [G : H]|H|.

�

Definition 5.1. Let G be a group, and fix a subset ∅ 6= S ⊆ G. The normalizer
of S in G is

NS = {x ∈ G | xSx−1 = S}.
If S = {x}, then we write NS = Nx.

Theorem 5.2. Let G be a group. If ∅ 6= S ⊆ G, then NS 6 G.
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Proof. We have e ∈ S since eSe−1 = eSe = S.
For x, y ∈ NS , we have xy ∈ NS because

xyS(xy)−1 = xySy−1x−1 = xSx−1 = S.

For x ∈ NS , we have x−1 ∈ NS because

x−1S(x−1)−1 = x−1Sx = x−1xSx−1x = S.

Now apply Proposition 3.2. �

Definition 5.3. If G is a group with subgroups H,K 6 G, then

HK = {hk | h ∈ H and k ∈ K}.

Example 5.4. If G is a group with subgroups H,K 6 G, then HK may not
be a subgroup of G.

For each integer n > 1, the symmetric group on n letters is

Sn = {bijections f : {1, . . . , n} → {1, . . . , n}}.
In S3, set σ = (1 2) and δ = (2 3). Check that

H := 〈σ〉 = {(1), σ}
K := 〈δ〉 = {(1), δ}

HK = {(1), σ, δ, σδ} = {(1), (1 2), (2 3), (1 2 3)}
Then HK is not a group because δ, σ ∈ HK and δσ = (1 3 2) 6∈ HK.

Theorem 5.5. Let G be a group with subgroups H,K 6 G. If H ⊆ NK , then
HK 6 G.

Proof. Since e ∈ H and e ∈ K, we have e = ee ∈ HK.
For h1k1, h2k2 ∈ HK, we have

h1k1(h2k2)−1 = h1k1k
−1
2 h−1

2 = h1h
−1
2︸ ︷︷ ︸

∈H

h2k1k
−1
2 h−1

2︸ ︷︷ ︸
∈K

∈ HK.

Now apply Proposition 3.2. �

Example 5.6. If G is abelian, then NS = G for all ∅ 6= S ⊆ G, and so HK P G
for all H,K 6 G.

Theorem 5.7. Let G be a finite group with subgroups H,K 6 G. Then |HK| =
|H||K|/|H ∩K|.

Proof. Define µ : H × K → HK by the formula (h, k) 7→ hk. This map is
onto by definition.

Claim: µ(h1, k1) = µ(h2, k2) if and only if h2 = h1a
−1 and k2 = ak1 for some

a ∈ H ∩K.
(⇐= ) If such an a ∈ H ∩K exists, then

µ(h2, k2) = µ(h1a
−1, ak1) = h1a

−1ak1 = h1k1 = µ(h1, k1).

( =⇒ ) If µ(h1, k1) = µ(h2, k2), then h1k1 = h2k2 and so h−1
2 h1︸ ︷︷ ︸
∈H

= k2k
−1
1︸ ︷︷ ︸

∈K

. Set

a = h−1
2 h1 = k2k

−1
1 which is in H ∩K, and check that h2 = h1a

−1 and k2 = ak1.
For all h ∈ H and k ∈ K, set

Lh,k = {(ha−1, ak) | a ∈ H ∩K}.
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The claim implies
|HK| = the number of distinct Lh,k.

Also, H ×K is the disjoint union of the Lh,k. Also,

|Lh,k| = |H ∩K|.
Hence,

|H||K| = |H ×K| =
∑

distinct

Lh,k

|Lh,k| =
∑

distinct

Lh,k

|H ∩K| = |HK||H ∩K|.

�

6. Days 6 and 7

Example 6.1. Let G and H be groups. The Cartesian product G × H is a
group under the “coordinatewise” operation

(g, h)(g′, h′) = (gg′, hh′)

with eG×H = (eG, eH) and (g, h)−1 = (g−1, h−1).
Let iG : G→ G×H be given as iG(g) = (g, eH). Then iG is a group monomor-

phism. Furthermore, Im(iG) P G×H and (G×H)/ Im(iG) ∼= H.
Let iH : H → G×H be given as iH(h) = (eG, h). Then iH is a group monomor-

phism. Furthermore, Im(iH) P G×H and (G×H)/ Im(iH) ∼= G.
(We often identify G and H with their images in G × H, in which case the

isomorphisms read (G×H)/G ∼= H and (G×H)/H ∼= G.

Example 6.2. Let G and H be groups.
Let idG : G → G be given by idG(g) = g. This is the identity isomorphism on

G; it is a group isomorphism.
Let f : G→ H be given by f(g) = eH for all g ∈ G; it is a group homorphism.

Definition 6.3. Let G be a group, and fix a subset ∅ 6= S ⊆ G. The centralizer
of S in G is

ZS = {g ∈ G | gs = sg for all s ∈ S}.
The center of G is

Z(G) = ZG = {g ∈ G | gg′ = g′g for all g′ ∈ G}.

Theorem 6.4. Let G be a group, and fix a subset ∅ 6= S ⊆ G. Then ZS 6 G
and Z(G) P G.

Proof. e ∈ ZS because es = s = se.
For x, y ∈ ZS we have xy ∈ ZS because xys = xsy = sxy.
For x ∈ ZS , we have x−1 ∈ ZS because

x−1sx = x−1xs = s = sx−1x

and so cancellation implies x−1x = sx−1.
It follows that Z(G) = ZG 6 G, so we need to check normalcy: for x ∈ Z(G)

and g ∈ G, we have xg = gx and so gxg−1 = xgg−1 = x ∈ Z(G). �

Example 6.5. Let G be a group, and fix a subset ∅ 6= S ⊆ G. Then ZS 6 NS .

Theorem 6.6 (Second Isomorphism Theorem). Let H,K P G with K ⊆ H.



16 1. GROUP THEORY

(a) K P H
(b) H/K P G/K
(c) The function τ : G/K → G/H given by τ(gH) = gK is a well defined group

epimorphism with Ker(τ) = H/K. In particular, (G/K)/(H/K) ∼= G/H.

Proof. (a) easy.
(b) It is straightforward to show that H 6 G implies H/K 6 G/K: H/K

is nonempty because H is; it is closed under the operation in G/K because H is
closed under the operation in G; and it is closed under inverses in G/K because H
is closed under inverses in G.

For h ∈ H and g ∈ G, we have ghg−1 ∈ H because H P G, and so

ghg−1 = ghg−1 = ghg−1 ∈ H/K.

(c) Well-definedness. If gK = aK, then ga−1 ∈ K ⊆ H, and so gH = aH.
It is straightforward to check that τ is a group epimorphism. For the kernel:

gK ∈ Ker(τ) if and only if gH = eH = H if and only if g ∈ H if and only if
gK ∈ H/K. The final statement follows from the First Isomorphism Theorem 3.8:

G/H = Im(τ) ∼= (G/K)/Ker(τ) = (G/K)/(H/K).

�

Theorem 6.7. Let H,K 6 G with H ⊆ NK .
(a) K P HK
(b) H ∩K P H
(c) The function φ : H/(H ∩K)→ (HK)/K given by φ(h(H ∩K)) = hK is a well

defined group isomorphism. In particular, H/(H ∩K) ∼= (HK)/K.

Proof. (a) Recall that HK 6 G because H ⊆ NK by Theorem 5.5. Since
e ∈ H, we have K = eK ⊆ HK. It follows easily that K 6 HK. For normalcy, fix
hk ∈ HK and k′ ∈ K. Then

hkk′(hk)−1 = h kk′k−1︸ ︷︷ ︸
∈K

h−1 ⊆ hKh−1 = K

where the last equality comes from h ∈ H ⊆ NK .
(b) and (c) As above, we have H 6 HK 6 G. Let π : H → (HK)/K be given

by π(h) = hK. One checks readily that π is a well-defined group homomoprhism.
We claim that π is surjective with Ker(π) = H ∩K. Once this is done, we will

have H ∩ K P H by Exercise 3.8(a). Furthermore, Exercise 3.8(b) then implies
that the function τ : H/(H ∩K)→ (HK)/K given by τ(h(H ∩K)) = π(h) = hK
is a well-defined group isomorphism and so H/(H ∩K) ∼= (HK)/K.

π is surjective: for each hk ∈ HK, we have

hkK = hK = π(h).

To see Ker(π) ⊇ H ∩K, fix k ∈ H ∩K:

π(k) = kK = K = eHK/K .

To see Ker(π) ⊆ H ∩K, fix x ∈ Ker(π) ⊆ H. Then x ∈ H and π(x) = eHK/K ,
that is, xK = K. Hence, x ∈ K and so x ∈ H ∩K. �

Day 7
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Theorem 6.8. Let H,K 6 G such that H∩K = {e} and HK = G. If H ⊆ ZK
(that is, if hk = kh for all h ∈ H and all k ∈ K), then the function f : H ×K → G
given by f(h, k) = hk is an isomorphism,

Proof. The function is well-defined. It is surjective because G = HK. It is a
homomorphism because

f((h, k)(h′, k′)) = f(hh′, kk′) = hh′kk′ = hkh′k′ = f(h, k)f(h′, k′).

The first equality in the next sequence is by definition:

Ker(f) = {(h, k) ∈ H ×K | hk = e} = {(e, e)} = {eH×K}.

For the second equality, the containment ⊇ is easy. For the containment ⊆, if
hk = e, then k−1 = h ∈ H ∩K = {e} implies h = e and k = h−1 = e−1 = e.

Hence, f is injective by Exercise 1 in assignment 2, that is, Exercise 3.8(c). �

Exercise 6.9. Let f : G→ G′ be a group homomorphism.

(a) If H ′ 6 G′, then f−1(H ′) 6 G.
(b) If H ′ P G′, then f−1(H ′) P G.
(c) If H ′ P G′, then the function f : G/f−1(H ′) → G′/H ′ is a well-defined group

monomorphism

Theorem 6.10. Let K P G and let π : G → G/K be the group epimorphism
π(g) = gK.

(a) There is a 1-1 correspondence

{H 6 G | K ⊆ H} ←→ {H ′ 6 G/K}

given by

H 7−→ H/K

π−1(H ′)←− [ H ′

(b) There is a 1-1 correspondence

{H P G | K ⊆ H} ←→ {H ′ P G/K}

given by

H 7−→ H/K

π−1(H ′)←− [ H ′

Proof. This follows from the Second Isomorphism Theorem 6.6 (and the ideas
in its proof) and Exercise 6.9. �

Definition 6.11. A group G 6= {e} is simple if its only normal subgroups are
G and {e}. See Example 3.1.

Exercise 6.12. If G is a simple abelian group, then G ∼= Z/pZ for some prime
number p.
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7. Day 8

Definition 7.1. Let G be a group. A tower of subgroups of G (or a normal
series in G) is a chain {e} = Gn P Gn−1 P · · · P G0 = G. Each group Gk/Gk+1 is
a factor of the series. The series is abelian if each factor is abelian. The series is
cyclic if each factor is cyclic. If each nontrivial factor is simple, then the series is
called a composition series. A normal series {e} = Hm P Hm−1 P · · · P H0 = G
is a refinement of the original series if there is a sequence k1 < k2 < · · · < kn such
that Hkj = Gj for j = 1, . . . , n.

The group G is solvable if it has an abelian normal series.
Two normal series in G are equivalent if they have the same nontrivial factors

up to reordering and isomorphism.

Lemma 7.2. Let H,H ′,K 6 G. If H ′ P H ⊆ NK , then H ′K P HK.

Proof. Theorem 5.5 implies H ′K 6 G and HK 6 G, and so the containment
H ′K ⊆ HK implies H ′K 6 HK. By Theorem 6.7(a), it suffices to show H ⊆ NH′K
because then we will have H ′K P HH ′K = HK.

Fix h ∈ H. Because H ′ P H, we have hH ′h−1 = H ′. And H ⊆ NK implies
hKh−1 = K. Hence, we have

hH ′Kh−1 = hH ′h−1hKh−1 = H ′K

and so H ′K P HK. �

Theorem 7.3 (Jordan-Hölder Theorem). If G is a group, then any two normal
series have equivalent refinements.

Proof. Consider normal series

(7.3.1) {e} = Gn P Gn−1 P · · · P G0 = G

and

(7.3.2) {e} = Hm P Hm−1 P · · · P H0 = G.

The plan is to augment (7.3.1) by inserting a sequence of the following form at each
step:

Gk+1 = (Hm ∩Gk)Gk+1 P (Hm−1 ∩Gk)Gk+1 P · · · P (H0 ∩Gk)Gk+1 = Gk.

This will be a refinement of (7.3.1). We will then find a similar refinement of (7.3.2)
which and we will show that these refinements are equivalent.

For each k = 0, . . . , n− 1, we have a normal series

{e} = Hm ∩Gk P Hm−1 ∩Gk P · · · P H0 ∩Gk = Gk

by Exercise 3.9(b).
The condition Gk+1 P Gk implies Hi−1 ∩ Gk ⊆ Gk ⊆ NGk+1 . Hence, we may

apply Lemma 7.2 with H ′ = Hi ∩Gk P Hi−1 ∩Gk = H and K = Gk+1 in order to
conclude

(Hi ∩Gk)Gk+1 P (Hi−1 ∩Gk)Gk+1.

Furthermore, we have

Gk+1 = {e}Gk+1 = (Hm ∩Gk)Gk+1 and Gk = GkGk+1 = (H0 ∩Gk)Gk+1

and so

Gk+1 = (Hm ∩Gk)Gk+1 P (Hm−1 ∩Gk)Gk+1 P · · · P (H0 ∩Gk)Gk+1 = Gk.
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Putting these sequences together for k = 0, . . . , n− 1 yields a refinement

(7.3.3) {e} = (Hm ∩Gn−1)Gn P · · · P (H1 ∩G0)G1 P (H0 ∩G0)G1 = G0 = G

of the normal series (7.3.1).
Similarly, the series

(7.3.4) {e} = (Hm−1 ∩Gn)Hm P · · · P (H0 ∩G1)H1 P (H0 ∩G0)H1 = H0 = G

is a refinement of the normal series (7.3.2).
To show that the series (7.3.3) and (7.3.4) are equivalent, it suffices to show

(Gi ∩Hj)Gi+1

(Gi ∩Hj+1)Gi+1

∼=
(Hj ∩Gi)Hj+1

(Hj ∩Gi+1)Hj+1

since this will give the bijection between the factors.
Set H = Gi ∩Hj and K = (Gi ∩Hj+1)Gi+1. Then

HK = (Gi ∩Hj)(Gi ∩Hj+1)Gi+1 = (Gi ∩Hj)Gi+1

and so Theorem 6.7(c) implies

(Gi ∩Hj)Gi+1

(Gi ∩Hj+1)Gi+1
=
HK

K
∼=

H

H ∩K
=

Gi ∩Hj

(Gi ∩Hj+1)Gi+1 ∩Gi ∩Hj
.

Similarly, we have
(Gi ∩Hj)Hj+1

(Gi+1 ∩Hj)Hj+1

∼=
Gi ∩Hj

(Gi+1 ∩Hj)Hj+1 ∩Gi ∩Hj

so it suffices to show

(Gi ∩Hj+1)Gi+1 ∩Gi ∩Hj = (Gi+1 ∩Hj)Hj+1 ∩Gi ∩Hj .

“⊆” Fix an element

α ∈ (Gi ∩Hj+1)Gi+1 ∩Gi ∩Hj ⊆ (Gi ∩Hj+1)Gi+1 = Gi+1(Gi ∩Hj+1).

The last equality holds because Gi ∩Hj+1 ⊆ Gi ⊆ NGi+1 . It follows that α = βγ
for some β ∈ Gi+1 and γ ∈ Gi ∩Hj+1. Then β = αγ−1 ∈ Hj because α ∈ Hj and
γ−1 ∈ Hj+1 ⊆ Hj . It follows that

α = βγ ∈ (Gi+1 ∩Hj)Hj+1 ∩Gi ∩Hj .

This establishes “⊆”, and “⊇” is verified similarly. �

8. Day 9

Corollary 8.1. If G is a group, then any two composition series in G are
equivalent.

Proof. By Theorem 7.3 it suffices to show that any composition series

{e} = Gn P Gn−1 P · · · P G0 = G

is equivalent to any refinement of itself. Suppose that the refinement has one
additional subgroup

Gk+1 P H P Gk.

Since H/Gk+1 P Gk/Gk+1 and Gk/Gk+1 is simple, we have either H/Gk+1 =
{eGk/Gk+1} or H/Gk+1 = Gk/Gk+1. That is, we have H = Gk+1 or H = Gk, so no
new nontrivial factors were introduced.

The result follows by induction on the number of new subgroups introduced to
make the refinement. �
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Every group has a normal series: {e} P G. The next example show that not
every group has a composition series.

Example 8.2. The subgroups of Z are all of the form nZ with n > 0, and
Z/nZ is simple if and only if n is prime. If n > 1, then nZ ∼= Z. Hence, given a
normal series

{0} = nmZ P nm−1Z P · · · P n0Z = Z
if nm−1 6= 0 then

nm−1Z/nmZ = nm−1Z/{0} ∼= nm−1Z ∼= Z
and this group is not simple. Hence the normal series is not a composition series.

Corollary 8.3. Assume that G is solvable. If G has a composition series
{e} = Gn P Gn−1 P · · · P G0 = G, then there exist prime numbers p1, . . . , pn such
that Gi−1/Gi ∼= Z/pZ for i = 1, . . . , n.

Proof. Since G is solvable, it has an abelian series. By Theorem 7.3 the
abelian series and composition series have equivalent refinements. However, the
composition series has only trivial refinements, so the factors in the composition
series are all abelian and simple. Exercise 6.12 gives the desired conclusion. �

Definition 8.4. Let G be a group. A commutator in G is an element of the
form xyx−1y−1 for some x, y ∈ G. If X is the collection of commutators in G, then
the commutator subgroup is G(1) = [G,G] = 〈X〉.

An automorphism of G is an isomorphism G→ G.

Theorem 8.5. Let G be a group.
(a) If ϕ is an automorphism of G, then ϕ([G,G]) = [G,G].
(b) [G,G] P G.
(c) G/[G,G] is abelian.
(d) G is abelian if and only if [G,G] = {e}.

Proof. (a) For x, y ∈ G, we have ϕ(xyx−1y−1) = ϕ(x)ϕ(y)ϕ(x)−1ϕ(y)−1.
Hence, ϕ(X) ⊆ X, and it follows that ϕ([G,G]) = ϕ(〈X〉) ⊆ 〈X〉 = [G,G].

Exercise 4(a) from assignment 3 shows that ϕ−1 is an automorphism of G, and
so the previous paragraph implies ϕ−1([G,G]) ⊆ [G,G] and so

[G,G] = ϕ(ϕ−1([G,G])) ⊆ ϕ([G,G]) ⊆ [G,G]

and hence ϕ([G,G]) = [G,G].
(b) Fix an element x ∈ G. We need to show x[G,G]x−1 = [G,G]. Let φx : G→

G be given by φx(y) = xyx−1. Exercise 4(a) from assignment 3 shows that φx is
an automorphism of G, and hence part (a) implies

x[G,G]x−1 = φx([G,G]) = [G,G].

(c) For x, y ∈ G/[G,G], we have

x y x−1y−1 = xyx−1y−1 = e

and so x y = y x.
(d) If G is abelian, then xyx−1y−1 = {e} for all x, y ∈ G and so [G,G] =

〈xyx−1y−1〉 = 〈e〉 = {e}.
Conversely, if [G,G] = {e}, then G/[G,G] = G/{e} ∼= G. Part (c) says that

G/[G,G] is abelian, so the isomorphism G/[G,G] ∼= G implies that G is abelian. �
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Remark 9.1. We sometimes call G/[G,G] the “abelianization” of G.

Lemma 9.2 (Universal property for group quotients). Let f : G → H be a
homomorphism of groups, and let K P G. TFAE.

(i) K ⊆ Ker(f);
(ii) The function f : G/K → H given by f(g) = f(g) is well-defined.

When these conditions are satisfied, the map f is a group homomorphism.

Proof. (i) =⇒ (ii) If g = h, then gh−1 ∈ K ⊆ Ker(f) and so

eH = f(gh−1) = f(g)f(h)−1

which implies f(g) = f(h).
(ii) =⇒ (i) If k ∈ K, then k = eG ∈ G/K and so

f(k) = f(k) = f(eG) = f(eG) = eH)

which implies k ∈ Ker(f).
It is straightforward to show that f is a group homomorphism. �

Remark 9.3. Let π : G→ G/K be the canonical epimorphism. In condition (ii)
we say “f factors through π”. In symbols, this mean f = fπ, in which case we say
that the following diagram commutes

G
π //

f !!DDDDDDDD G/K

f

��
H.

It is straightforward to show that f is the unique function g such that f = gπ. A
compact way to write the existence and uniqueness statements is with a dashed
arrow.

G
π //

f !!DDDDDDDD G/K

∃!f
���
�
�

H

Theorem 9.4 (Universal property for the abelianization of a group). Let G be
a group, and let π : G→ G/[G,G] be the canonical epimorphism. For each abelian
group A and each group homomorphism f : G → A there exists a unique group
homomorphism f : G/[G,G]→ A making the following diagram commute.

G
π //

f
##HHHHHHHHHH G/[G,G]

∃!f
���
�
�

A

Proof. By Lemma 9.2 and Remark 9.3, it suffices to show [G,G] ⊆ Ker(f).
For this, it suffices to show that, for each x, y ∈ G, we have xyx−1y−1 ∈ Ker(f),
which we show in the following computation:

f(xyx−1y−1) = f(x)f(y)f(x)−1f(y)−1 = f(y)f(x)f(x)−1f(y)−1

= f(y)f(y)−1 = eA.
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�

Lemma 9.5. If H P G such that G/H is abelian, then [G,G] ⊆ H.

Proof. Let f : G → G/H and π : G → G/[G,G] be the canonical epimor-
phisms. Because G/H is abelian, Theorem 9.4 implies that there exists a unique
group homomorphism f : G/[G,G] → G/H making the following diagram com-
mute.

G
π //

f ##GGGGGGGGG G/[G,G]

∃!f
���
�
�

G/H.

The fact that the diagram commutes says that f(g) = f(g), so Lemma 9.2 implies
[G,G] ⊆ H. �

Definition 9.6. Set G(0) = G. Recall that G(1) = [G,G]. For n > 2, induc-
tively define G(n) = [G(n−1), G(n−1)].

Remark 9.7. G(n) P G(n−1), and G(n−1)/G(n) is abelian by Theorem 8.5.

Theorem 9.8. A group G is solvable if and only if G(n) = {e} for some n.

Proof. First assume that G(n) = {e} for some n. Then the sequence

{e} = G(n) P G(n−1) P · · · P G(0) = G

is normal abelian series, and so G is solvable.
Now, assume that G is solvable and let

{e} = Gn P Gn−1 P · · · P G0 = G

be an abelian normal series. Assume without loss of generality that Gi 6= Gi−1 for
each i.

Claim: G(i) ⊆ Gi for i = 0, . . . , n. (Once this is shown, we are done since then
{e} ⊆ G(n) ⊆ Gn = {e} implies G(n) = {e}.)

Proof of claim: By induction. The case i = 0 is by definition: G(0) = G = G0.
For the inductive step, assume G(k) ⊆ Gk. Then we have

G(k+1) = [G(k), G(k)] ⊆ [Gk, Gk] ⊆ Gk+1.

The first containment is by definition. The second containment follows from the
hypothesis G(k) ⊆ Gk. The third containment is from Lemma 9.5. �

Definition 9.9. G is perfect if G(1) = G.

Theorem 9.10. If G is simple and non-abelian, then G is perfect.

Proof. We have G(1) P G. Since G is simple, this implies either G(1) = G or
G(1) = {e}. Because G is non-abelian, Theorem 8.5(d) implies G(1) 6= {e} and so
G(1) = G. �
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Theorem 10.1. Let H P G and let {e} = Gn P Gn−1 P · · · P G0 = G.
(a) We have {e} = H ∩ Gn P H ∩ Gn−1 P · · · P H ∩ G0 = H ∩ G = H and

H ∩Gi P Gi for all i.
(b) (H ∩Gi)/(H ∩Gi+1) is isomorphic to a normal subgroup of Gi/Gi+1.
(c) If Gi/Gi+1 is simple, then (H ∩Gi)/(H ∩Gi+1) is simple or trivial.
(d) If Gi/Gi+1 is abelian, then (H ∩Gi)/(H ∩Gi+1) is abelian.

Proof. (a) Argue as in Exercise 3.9(b) to show that H P G and Gi+1 P Gi
imply H ∩Gi+1 P H ∩Gi P Gi.

(b) We have H ∩ Gi P Gi by part (a), and we have Gi ⊆ NGi+1 because
Gi+1 P Gi. Hence, Lemma 7.2 implies (H∩Gi)Gi+1 P GiGi+1 = Gi. Furthermore,
Theorem 6.7(c) implies

H ∩Gi
H ∩Gi+1

=
H ∩Gi

(H ∩Gi) ∩Gi+1

∼=
(H ∩Gi)Gi+1

Gi+1
P

Gi
Gi+1

where the last bit is from Theorem 6.10(b).
(c) and (d) From part (b). �

Theorem 10.2. Let H P G and let {e} = Gn P Gn−1 P · · · P G0 = G.
(a) H P GiH for each i.
(b) {e} = (GnH)/H P (Gn−1H)/H P · · · P (G0H)/H = (GH)/H = G/H.
(c) There exists a group epimorphism F : Gi/Gi+1 → [(GiH)/H]/[(Gi+1H)/H].
(d) If Gi/Gi+1 is simple, then [(GiH)/H]/[(Gi+1H)/H] is simple or trivial.
(e) If Gi/Gi+1 is abelian, then [(GiH)/H]/[(Gi+1H)/H] is abelian.

Proof. (a) We have {e} P Gi ⊆ NH because H P G. Thus, Lemma 7.2
implies H = {e}H P GiH.

(b) We have Gi+1 P Gi ⊆ NH because H P G. Thus, Lemma 7.2 implies
Gi+1H P GiH. Theorem 6.10(b) implies (Gi+1H)/H P (GiH)/H.

(c) Theorem 6.6(c) gives the first isomorphism in the next sequence

(GiH)/H
(Gi+1H)/H

∼=
GiH

Gi+1H
=
Gi(Gi+1H)
Gi+1H

∼=
Gi

Gi ∩Gi+1H
.

The second isomorphism is from Theorem 6.7(c). This yields an isomorphism
h : Gi/(Gi ∩Gi+1H)→ [(GiH)/H]/[(Gi+1H)/H].

We have Gi+1 ⊆ Gi ∩Gi+1H ⊆ Gi, and Gi+1 P Gi. Hence, Lemma 9.2 implies
that the function f : Gi/Gi+1 → Gi/(Gi ∩Gi+1H) given by g 7→ g is a well-defined
group homomorphism. This map is also clearly onto and hence is an epimorphism.
It follows that the composition F = hf : Gi/Gi+1 → [(GiH)/H]/[(Gi+1H)/H] is a
group epimorphism.

(d) Since Gi/Gi+1 is simple and Ker(F ) P Gi/Gi+1, we have either Ker(F ) =
Gi/Gi+1 or Ker(F ) = {e}. In either case, we have

Gi/(Gi ∩Gi+1H) = Im(F ) ∼= (Gi/Gi+1)/Ker(F ).

If Ker(F ) = {e}, then

Gi/(Gi ∩Gi+1H) ∼= (Gi/Gi+1)/Ker(F ) = (Gi/Gi+1)/{e} ∼= Gi/Gi+1

which is simple. If Ker(F ) = Gi/Gi+1, then

Gi/(Gi ∩Gi+1H) ∼= (Gi/Gi+1)/Ker(F ) = (Gi/Gi+1)/(Gi/Gi+1) ∼= {e}
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which is trivial.
(e) Because Gi/Gi+1 is abelian and F is an epimorphism, it follows that

[(GiH)/H]/[(Gi+1H)/H] is abelian. �

Theorem 10.3. Let H P G.
(a) G has a composition series if and only if H and G/H have composition

series.
(b) G is solvable if and only if H and G/H are solvable.

Proof. (a) “⇐= ” Assume that H and G/H have composition series

{e} = Hn P Hn−1 P · · · P H0 = H

{e} = Km P Km−1 P · · · P K0 = G/H

Theorem 6.10(b) implies that K1 = G1/H for some G1 P G, and Theorem 6.6(c)
implies

(G/H)/K1 = (G/H)/(G1/H) ∼= G/G1.

Hence, G/G1 is simple or trivial. Similarly, Kj = Gj/H for some Gj P Gj−1, and
Gj−1/Gj is simple or trivial. It follows that the concatenated series

{e} = Hn P Hn−1 P · · · P H0 = H = Gm P Gm−1 P · · · P G0 = G

is a composition series for G.
“ =⇒ ” Assume that G has a composition series

{e} = Gn P Gn−1 P · · · P G0 = G.

Theorem 10.1(a) and (c) show that H has a composition series. Theorem 10.2(b)
and (d) show that G/H has a composition series.

(b) is proved similarly. �

Theorem 10.4. If G is a finite group, then G has a composition series.

Proof. We proceed by strong induction on n = |G|. The case n = 1 is trivial.
Let n > 1 and assume that every finite groupG′ with |G′| < n has a composition

series. If G is simple, then the normal series {e} P G is a composition series. If
G is not simple, then there is a normal subgroup H P G such that H 6= {e}
and H 6= G. Since H ( G, we have |H| < |G| = n, so H has a composition
series by our induction hypothesis. On the other hand, Lagrange’s theorem implies
|G/H| = |G|/|H| < |G| = n and so G/H also has a composition series by our
induction hypothesis. Now apply Theorem 10.3(a). �

11. Day 12

Group actions.

Definition 11.1. Let G be a group and S a set. A (left) group action of G on
S is a function µ : G × S → S (written gs = µ(g, s)) such that g(hs) = (gh)s and
es = s for all g, h ∈ G and all s ∈ S. When there is a group action of G on S, we
say “G acts on S” or “S is a G-set”.

Assume that G acts on S. The orbit of an element s ∈ S is the set orb(s) =
Gs = {gs ∈ S | g ∈ G} ⊆ S. The stabilizer of an element s ∈ S is the set
Gs = {g ∈ G | gs = s} ⊆ G. Note that Gs 6 G for all s ∈ S.

Group actions are everywhere.
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Example 11.2. Sn acts on {1, 2, . . . , n} by τk = τ(k)

Example 11.3. G acts on G by gh = gh.

Example 11.4. G acts on G by conjugation: g · h = ghg−1. The orbit of h
under this action is the conjugacy class of h and is denoted C(h).

This can also be described in terms of the conjugacy relation on G: h′ ∼ h if
and only if h′ = ghg−1 for some g ∈ G. When h ∼ h′ we say that h and h′ are
conjugate. This is an equivalence relation, and the equivalence class of h is exactly
C(h).

Example 11.5. If H P G, then G acts on H by conjugation: g · h = ghg−1.

Example 11.6. If S = {subgroups of G}, then G acts on S by conjugation.

Example 11.7. If H 6 G and G/H = {left cosets of H in G}, then G acts on
G/H by g(hH) = (gh)H. (Note that we are not assuming H P G.)

Proposition 11.8. If G acts on a set S, then there is a 1-1 correspondence
Gs↔ G/Gs given by gs↔ gGs.

Proof. The following argument shows well-definedness and bijectivity of the
correspondences: gs = hs if and only if s = g−1hs if and only if g−1h ∈ Gs if and
only if hGs = gGs. �

Proposition 11.9. If G is a finite group acting on a set S, then for all s ∈ S
we have |Gs| | |G|.

Proof. Proposition 11.8 implies |Gs| is the number of distinct cosets of Gs in
G. That is, |Gs| = [G,Gs], and so Lagrange’s Theorem says |G| = |Gs|[G,Gs] =
|Gs||Gs|. �

Definition 11.10. Let G be a group acting on sets S and S′. A func-
tion ϕ : S → S′ is a homomorphism of G-sets or “preserves the action of G” if
ϕ(gs) = gϕ(s) for all g ∈ G and all s ∈ S. An isomorphism of G-sets is a bijective
homomorphism of G-sets.

Proposition 11.11. Let S be a G-set and fix s ∈ S. There is an isomorphism
of G-sets ϕ : Gs→ G/Gs given by gs 7→ gGs.

Proof. Proposition 11.8 shows that ϕ is a well-defined bijection. We need to
show that ϕ is a homomorphism of G-sets:

ϕ(g(g′s)) = ϕ((gg′)s) = (gg′)Gs = g(g′Gs) = gϕ(g′s).

�

Proposition 11.12. If S is a G-set, then S is the disjoint union of its distinct
orbits.

Proof. Since es = s for all s ∈ S, we have s ∈ Gs ⊆ ∪t∈SGt, and so S ⊂
∪t∈SGt ⊆ S which implies S = ∪t∈SGt.

Claim: Gs ∩ Gs′ 6= ∅ =⇒ Gs = Gs′. (This will complete the proof.) If
gs = g′s′, then for all h ∈ G, we have hs = hg−1gs = hg−1g′s′ ∈ Gs′. Hence, we
have Gs ⊆ Gs′. By symmetry, we have Gs′ ⊆ Gs and so Gs = Gs′. �

Theorem 11.13 (Class equation). Let G be a finite group.
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(a) |G| =
∑
|C(g)| where the sum is taken over all distinct conjugacy classes in

G.
(b) |G| = |Z(G)| +

∑
|C(g)| where the sum is taken over all distinct conjugacy

classes C(g) 6= {g} in G.

Proof. (a) By Example 11.4 and Proposition 11.12, G is the disjoint union of
its distinct conjugacy classes.

(b) From part (a) it suffices to show that C(g) = {g} if and only if g ∈ Z(g). If
C(g) = {g}, then hgh−1 = g for all h ∈ G and so g ∈ Z(G). The converse is even
easier. �

Definition 11.14. Let p be a prime number. A finite group G is a p-group if
|G| = pn for some integer n.

Corollary 11.15. If G 6= {e} is a finite p-group, then Z(G) 6= {e}.

Proof. Suppose Z(G) = {e}. Each conjugacy class C(g) is an orbit of a G-
action on G. Hence, Proposition 11.11 and Lagrange’s theorem imply |C(g)| =
|G/Gg| = [G,Gg] = |G|/|Gg| = png for some ng. If C(g) 6= {g}, then |C(g)| > 1
and so p | |C(g)|. The class equation says |G| = |Z(G)|+

∑
|C(g)| where the sum

is taken over all distinct conjugacy classes C(g) 6= {g} in G and so

pn = |G| = |Z(G)|+
∑
|C(g)| = |Z(G)|+ pk = 1 + pk

for some integer k. This is impossible. �

12. Day 13

Definition 12.1. Let H,K 6 G and set

[H,K] = 〈hkh−1k−1 | h ∈ H and k ∈ K〉.
Set G(0) = G and G(1) = G(1). For n > 2, inductively define

G(n) = [G,G(n−1)] = 〈xyx−1y−1 | x ∈ G and y ∈ G(n−1)〉.
G is nilpotent if G(n) = {e} for some n.

Theorem 12.2. Let H 6 G. Then [G,H] = {e} if and only if H ⊆ Z(G). In
particular, if G 6= {e} is nilpotent, then Z(G) 6= {e}.

Proof. Assume H ⊆ Z(G). Then, for all h ∈ H and all g ∈ G, we have
ghg−1h−1 = e and so [G,H] = 〈e〉 = {e}.

Assume [G,H] = {e}. Let h ∈ H. Then, for all and all g ∈ G, we have
ghg−1h−1 ∈ [G,H] = {e} and so ghg−1h−1 = e and gh = hg. This holds for all
g ∈ G, and so h ∈ Z(G). This holds for all h ∈ H, and so H ⊆ Z(G).

Assume G is nilpotent and let m = min{n > 1 | G(n) = {e}}. Then {e} =
G(m) = [G,G(m−1)] implies {e} 6= G(m−1) ⊆ Z(G). �

We’ll see in an exercise that nilpotent implies solvable. The next example shows
that the converse fails to hold in general.

Example 12.3. S3 is solvable by an exercise. But S3 is not nilpotent because
Z(S3) = {(1)}.

If A is abelian, then A(1) = [A,A] = {e} and so A is nilpotent.

Lemma 12.4. G(n+1) ⊆ G(n) P G for all n > 0, and so G(n+1) P G(n).
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Proof. By induction on n.
Base case n = 0: G(1) = [G,G] ⊆ G = G(0).
Induction step. Assume n > 0 and G(n+1) ⊆ G(n) P G. Then

G(n+2) = [G,G(n+1)] ⊆ [G,G(n)] = G(n+1).

For g ∈ G and h ∈ G(n+1) we have

ghg−1h−1 ∈ [G,G(n+1)]G(n+1) = G(n+2)G(n+1) = G(n+1)

and so G(n+1) P G. �

Exercise 12.5. If ϕ : G → H is a group epimorphism, then ϕ(G(n)) = H(n)

and ϕ(G(n)) = H(n) for each n > 0. In other words, if K P G, then (G/K)(n) =
{gK ∈ G/K | g ∈ G(n)} and (G/K)(n) = {gK ∈ G/K | g ∈ G(n)}.

The next result shows, in particular, that G(n)/G(n+1) is abelian.

Lemma 12.6. G(n)/G(n+1) ⊆ Z(G/G(n+1)).

Proof.

[G/G(n+1), G(n)/G(n+1)] = [G,G(n)]/G(n+1) = G(n+1)/G(n+1) = {e}

and so Theorem 12.2 implies G(n)/G(n+1) ⊆ Z(G/G(n+1)). �

Definition 12.7. Let Z0(G) = {e} and for k > 1 let Zk(G) be the unique nor-
mal subgroup ofG containing Zk−1(G) such that Zk(G)/Zk−1(G) = Z(G/Zk−1(G)).
This makes sense by Theorem 6.10(b) because Z(G/Zk−1(G)) P G/Zk−1(G).

Remark 12.8. The construction of Zn(G) yields a “tower”

{e} = Z0(G) P Z1(G) P · · ·

such that each quotient Zn+1(G)/Zn(G) = Z(G/Zn(G)) is abelian. Lemmas 12.4
and 12.6 yield another “tower”

· · · P G(1) P G(0) = G

such that the quotient G(n)/G(n+1) ⊆ Z(G/G(n+1)) is abelian. We will see in
Theorem 13.5 that the first tower terminates at G if and only if the second tower
terminates at {e}.

Lemma 12.9. For k,m > 0, we have Zk+m(G)/Zm(G) = Zk(G/Zm(G)).

Proof. Use induction on k.
Base case, k = 0: Z0(G/Zm(G)) = {Zm(G)} = Zm(G)/Zm(G).
Base case, k = 1: Z1(G/Zm(G)) = Z(G/Zm(G)) = Zm+1(G)/Zm(G).
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Inductive step: Assume r > 1 and Zr+m(G)/Zm(G) = Zr(G/Zm(G)) for all
m > 0 and all groups G. Then

Zr+1(G/Zm(G))
Z1(G/Zm(G))

= Zr

(
G/Zm(G)

Z1(G/Zm(G))

)
[inductive hypothesis]

= Zr

(
G/Zm(G)

Z1+m(G)/Zm(G)

)
[base case k = 1]

∼= Zr

(
G

Z1+m(G)

)
[isomorphsim theorem]

=
Zr+1+m(G)
Z1+m(G)

[inductive hypothesis]

∼=
Zr+1+m(G)/Zm(G)
Z1+m(G)/Zm(G)

[isomorphsim theorem]

=
Zr+1+m(G)/Zm(G)
Z1(G/Zm(G))

[base case k = 1].

Tracing through the isomorphisms, this gives

Zr+1(G/Zm(G))
Z1(G/Zm(G))

=
Zr+1+m(G)/Zm(G)
Z1(G/Zm(G))

and so Theorem 6.10(a) implies Zr+1(G/Zm(G)) = Zr+1+m(G)/Zm(G). �

13. Day14

Lemma 13.1. If G(n) = {e} and G(n−1) 6= {e}, then G(n−j) ⊆ Zj(G) for
j = 0, . . . , n.

Proof. By induction on j.
Base case j = 0: G(n) = {e} = Z0(G).
Induction step Assume j > 0 and G(n−j) ⊆ Zj(G). Lemma 12.6 says

G(n−j−1)/G(n−j) ⊆ Z(G/G(n−j))

and this yields the containment

〈G(n−j−1)/G(n−j), Zj(G)/G(n−j)〉
Zj(G)/G(n−j)

⊆ Z
(

G/G(n−j)

Zj(G)/G(n−j)

)
∼= Z

(
G

Zj(G)

)
[isomorphism theorem]

∼=
Zj+1(G)
Zj(G)

[definition]

∼=
Zj+1(G)/G(n−j)

Zj(G)/G(n−j)
[isomorphism theorem].

Tracing through the isomorphisms, we have

G(n−j−1)/G(n−j) ⊆ Zj+1(G)/G(n−j)

and so G(n−j−1) ⊆ Zj+1(G). �

Lemma 13.2. If G(n) = {e} and G(n−1) 6= {e}, then Zn(G) = G and Zj(G) 6= G
for j = 0, . . . , n− 1.
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Proof. By Lemma 13.1, we know Zn(G) = G.
Set n = n(G) = min{m > 0 | G(m) = {e}}. We proceed by induction on n(G).
Base case n(G) = 0: trivial.
Assume n > 1 and that the result holds for all groups H such that n(H) < n.
Claim: n(G/Z(G)) < n. Lemma 13.1 implies G(n−1) ⊆ Z1(G) = Z(G), so

(G/Z(G))(n−1) = {gZ(G) ∈ G/Z(G) | g ∈ G(n−1)} [Exercise 12.5]

= {Z(G)} [G(n−1) ⊆ Z(G)]

= {e}.

This proves the claim.
Claim: n(G/Z(G)) = n − 1. It suffices to show that j < n − 1 implies

(G/Z(G))(j) 6= {e}. (This is vacuous if n = 1.) Assume j < n − 1 and suppose
(G/Z(G))(j) = {e}. Then

{e} = (G/Z(G))(j) = {gZ(G) ∈ G/Z(G) | g ∈ G(j)}

implies G(j) ⊆ Z(G) and so G(j+1) = [G,G(j)] = {e} by Theorem 12.2. This
implies j + 1 > n and so j > n− 1, a contradiction.

Now, our induction hypothesis applied to G/Z(G) implies Zj(G/Z(G)) 6=
G/Z(G) for all j < n − 1. Hence, Lemma 12.9 yields the second equality in the
next sequence

G/Z(G) 6= Zj(G/Z(G)) = Zj(G/Z1(G)) = Zj+1(G)/Z1(G) = Zj+1(G)/Z(G)

and so Zj+1(G) ( G when j < n− 1. �

Lemma 13.3. If Zn(G) = G and Zn−1 6= G, then G(j) ⊆ Zn−j(G) for j =
0, . . . , n.

Proof. By induction on j.
Base case j = 0: G(0) = G = Zn(G).
Induction step. Assume j > 0 and G(j) ⊆ Zn−j(G). By definition we have

Zn−j(G)/Zn−j−1(G) = Z(G/Zn−j−1(G)) and so

{e} = [G/Zn−j−1(G), Zn−j(G)/Zn−j−1(G)]

= 〈gzg−1z−1Zn−j−1(G) ∈ G/Zn−j−1(G) | g ∈ G, z ∈ Zn−j(G)〉.

It follows that all such gzg−1z−1 are in Zn−j−1(G), and so

Zn−j−1(G) ⊇ [G,Zn−j(G)] ⊇ [G,G(j)] = G(j+1)

as desired. �

Lemma 13.4. If Zn(G) = G and Zn−1 6= G, then G(n) = {e} and G(j) 6= {e}
for j = 0, . . . , n− 1.

Proof. By Lemma 13.3, we know G(n) = {e}. Let j < n and suppose that
G(j) = {e}. Then Lemma 13.2 implies Zj(G) = G and hence Zn−1(G) = G, a
contradiction. Thus, we have G(j) 6= {e} for j = 0, . . . , n− 1. �

Theorem 13.5. Let G be a group. G(k) = {e} if and only if Zk(G) = G.

Proof. Lemmas 13.2 and 13.4. �

Corollary 13.6. G is nilpotent if and only if Zk(G) = G for some k.
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Proof. G is nilpotent if and only if G(k) = {e} for some k if and only if
Zk(G) = G for some k. �

Corollary 13.7. Every finite p-group G is nilpotent.

Proof. We need to show Zk(G) = G for some k. If Z1(G) = G, then we’re
done. If Z1(G) 6= G, then p 6 |Z1(G)| < |G| = pn. It follows that G/Z1(G) is a
p-group of order less than pn. By induction on |G|, we have

Zk(G)/Z1(G) = Zk−1(G/Z1(G)) = G/Z1(G)

for some k, and so Zk(G) = G. �

14. Day 15

Symmetric and alternating groups.

Definition 14.1. Let n > k > 1. A cycle of length k or a k-cycle in Sn is
an element of the form (m1 m2 . . . mk) ∈ Sn. Two cycles (m1 m2 . . . mk) and
(m′1 m

′
2 . . . m′k′) in Sn are disjoint if {m1,m2, . . . ,mk} ∩ {m′1,m′2, . . . ,m′k′} = ∅.

If σ1 and σ2 are disjoint cycles, then σ1σ2 = σ2σ1. We say the number s occurs in
the cycle (m1 m2 . . . mk) if s = mi for some i.

Every element σ ∈ Sn has a disjoint cycle decomposition: There exist cycles
σ1, σ2, · · · , σr ∈ Sn such that

(1) σ = σ1σ2 · · ·σr;
(2) the cycles σi and σj are disjoint whenever i 6= j;
(3) each s = 1, . . . , n occurs in (exactly) one of the σi.

Such a decomposition is unique up to the order of the factors.

Remark 14.2. The proof of existence and uniqueness of disjoint cycle decom-
positions is a tedious exercise in bookkeeping. See Hungerford, p. 47, Theorem 6.3.
It follows from the existence that Sn is generated by its cycles.

Example 14.3. Compute a disjoint cycle decomposition for some σ ∈ S8.

Proposition 14.4. Two elements in Sn are conjugate if and only if their dis-
joint cycle decompositions have the same number of k-cycles for each k.

Proof. ( =⇒ ) Let σ, τ ∈ Sn where τ has disjoint cycle decomposition

τ = (m1,1 m1,2 . . . m1,k1)(m2,1 m2,2 . . . m2,k2) · · · (mr,1 mr,2 . . . mr,kr ).

We claim that στσ−1 has the following disjoint cycle decomposition:

στσ−1 = (σ(m1,1) σ(m1,2) . . . σ(m1,k1)) · · · (σ(mr,1) σ(mr,2) . . . σ(mr,kr )).

This follows in part from the next computation:

στσ−1(σ(ks,t)) = σ(τ(ks,t)) =

{
σ(τ(ks,t+1)) if t < ks

σ(τ(ks,1)) if t = ks.

Furthermore, this decomposition is disjoint as σ is bijective: σ(mi,j) = σ(mi′,j′) if
and only if mi,j = mi′,j′ . It follows that the disjoint cycle decompositions of τ and
στσ−1 have exactly the same number of k-cycles for each k.
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( ⇐= ) Let σ, τ ∈ Sn, and assume that the disjoint cycle decompositions of σ
and τ have the same number of k-cycles for each k:

τ = (m1,1 m1,2 . . . m1,k1)(m2,1 m2,2 . . . m2,k2) · · · (mr,1 mr,2 . . . mr,kr )

σ = (l1,1 l1,2 . . . l1,k1)(l2,1 l2,2 . . . l2,k2) · · · (lr,1 lr,2 . . . lr,kr ).

Define δ ∈ Sn by the formula δ(mi,j) = li,j . Because we have disjoint cycle de-
compositions, δ is a well defined bijection of {m1,1,m1,2, . . .mr,kr} = {1, 2, . . . , n}
to itself. Furthermore, the computation of the previous paragraph shows that
σ = δτδ−1, so that σ and τ are conjugate. �

Corollary 14.5. In S4, let

H = {(1), (12)(34), (13)(24), (14)(23)}.
Then H P S4.

Proof. Check by hand that H 6 G. Proposition 14.4 implies that H =
C((1 2)(3 4))∪ {(1)}, and furthermore that δC((1 2)(3 4))δ−1 = C((1 2)(3 4)) and
δ{(1)}δ−1 = {(1)} for each δ ∈ S4. It follows that δHδ−1 = H for each δ ∈ S4, and
so H P S4. �

Proposition 14.6. Sn is generated by 2-cycles.

Proof. We know that Sn is generated by its cycles, so we need to show that
each cycle (m1 m2 . . . mk) ∈ Sn can be written as a product of cycles:

(m1 m2 . . . mk) = (m1 m2)(m2 m3) · · · (mk−1 mk).

�

Proposition 14.7. Sn is generated by 2-cycles of the form (k k + 1).

Proof. By Proposition 14.6 it suffices to show that every 2-cycle (l m) can
be written as a product of 2-cycles of the form (k k + 1). Assume without loss of
generality that l < m: otherwise rewrite (l m) = (m l).

Proceed by induction on m − l. The case m − l = 1 is trivial, so assume that
m− l > 1. Then

(l m) = (m− 1 m)(l m− 1)(m− 1 m).
Our induction hypothesis implies that (l m − 1) can be written as a product of
2-cycles of the form (k k + 1), and so the display shows that the same is true of
(l m). �

Lemma 14.8. Let n > 5, and let H P G 6 Sn. If G contains all the 3-cycles
of Sn and G/H is abelian, then H contains all the 3-cycles of Sn.

Proof. For distinct k1, . . . , k5 between 1 and n, we have

(k1 k2 k3) = (k1 k4 k3)(k3 k2 k5)(k1 k3 k4)(k3 k5 k2)

= (k1 k4 k3)(k2 k2 k5)(k1 k4 k3)−1(k3 k5 k2)−1

∈ [G,G]
⊆ H

where the containment ⊆ is because G/H is abelian; see Lemma 9.5. �

Theorem 14.9. If n > 5, then Sn is not solvable.
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Proof. Suppose that G is solvable and fix an abelian tower

{e} = Gn P Gn−1 P G1 P G0 = G.

By induction on i, Lemma 14.8 implies that each Gi contains all the 3-cycles, and
so (123) ∈ Gn, a contradiction. �

15. Day 16

Definition 15.1. Define an action of Sn on the polynomial ring C[X1, . . . , Xn]
by the formula

(σf)(X1, . . . , Xn) = f(Xσ−1(1), . . . , Xσ−1(n))

and set
F (X1, . . . , Xn) =

∏
j<k(Xj −Xk).

Then for σ ∈ Sn we have

(σF )(X1, . . . , Xn) =
∏
j<k(Xσ−1(j) −Xσ−1(k)) = ±F (X1, . . . , Xn).

It follows that Sn acts on the set {F,−F} in the same manner. Define the alter-
nating group on n letters to be the stabilizer of F in Sn:

An = (Sn)F = {σ ∈ Sn | σF = F}.

Theorem 15.2. An is a subgroup of Sn such that [Sn : An] = 2, and so
An P Sn. Furthermore, An contains no 2-cycles.

Proof. Since An is the stabilizer of a group action, it follows that An 6 Sn;
see Definition 11.1. Furthermore, Proposition 11.8 implies

[Sn : An] = |Sn/An| = |Sn{F}| = |{F,−F}| = 2

and it follows from an exercise that An P Sn.
One checks readily that (1 2)F = −F and so (1 2) 6∈ An. For each (l m) such

that l 6= m, we know that (l m) is conjugate to (1 2) by Proposition 14.4. Since
(1 2) 6∈ An P Sn, it follows that (l m) 6∈ An. �

Theorem 15.3. Let n > 2.
(a) Let σ ∈ Sn and let σ = τ1 · · · τr = π1 · · ·πs where each τi and πj is a 2-cycle.

Then r and s have the same parity, that is, r is even if and only if s is even.
(b) σ ∈ An if and only if σ is a product of an even number of 2-cycles.
(c) An is generated by the set of products of two 2-cycles.
(d) An is generated by {products of two disjoint 2-cycles} ∪ {3-cycles}.

Proof. (a) Proposition 14.6 shows that σ can be written as a product of 2-
cycles. Theorem 15.2 implies τiF = −F = πjF for each i, and so

σF = τ1 · · · τrF = (−1)rF

and similarly, σF = (−1)sF . Hence, (−1)r = (−1)s and so r and s have the same
parity.

(b) σ ∈ An if and only if σF = F . Hence the proof of part (a) shows that
σ ∈ An if and only if (−1)rF = F if and only if r is even.

Part (c) now follows. Part (d) also follows because each product of two 2-cycles
is either disjoint, or a 3-cycle, or the identity. �



15. DAY 16 33

Lemma 15.4. Let n > 5, and let {(1)} 6= N P An. If σ ∈ N such that σ moves
five or more elements, then there exists δ ∈ N such that δ 6= (1) and δ moves fewer
elements than σ.

Proof. Let σ = τ1 · · · τk be a decomposition into disjoint cycles.
Case 1: τj is an s-cycle for some j and some s > 5, say τj = (m1 m2 . . . ms).

Set γj = (m2 m1 m3 . . . ms−2 ms ms−1), and for r 6= j set γr = τr. It follows that
the permutation

α = γ1 · · · γk = (m1 m2)(ms−1 ms)σ(m1 m2)(ms−1 ms) ∈ N

because (m1 m2)(ms−1 ms) ∈ An and σ ∈ N P An. The element δ = σα ∈ N
satisfies the desired conditions:

First, δ(m1) = σ(α(m1)) = σ(m3) = m4 and so δ 6= (1).
Also, δ(m2) = σ(α(m2)) = σ(m1) = m2. By construction, δ only differs from σ

by what happens to m1, . . . ,ms. Also, σ moves each m1, . . . ,ms. Hence, it follows
that δ moves fewer elements than σ.

Case 2: τj is a 4-cycle for some j, say τj = (m1 m2 m3 m4). Set γj =
(m1 m3 m4 m2), and for r 6= j set γr = τr. As above, it follows that

α = γ1 · · · γk = (m3 m4 m2)σ(m3 m2 m4) ∈ N

and the element δ = σα ∈ N satisfies the desired conditions.
Case 3: Each τr has length 6 3, and two distinct τr have length 3. Since

the τr are disjoint, assume that τ1 = (m1 m2 m3) and τ2 = (m4 m5 m6). Set
γ1 = (m1 m2 m4) and γ2 = (m3 m6 m5), and for r > 2 set γr = τr. As above, set
α = γ1 · · · γk, and the element δ = σα ∈ N satisfies the desired conditions.

Case 4: Each τr has length 6 3, and there is a unique τj of length 3, say
τ1 = (m1 m2 m3). Since σ moves at least five elements and each τr 6= τ1 is a 2-
cycle and σ ∈ An, we know that σ contains at least two 2-cycles: say τ2 = (m4 m5)
and τ3 = (m6 m7). Set γ1 = (m1 m3 m2) and γ2 = (m4 m6) and γ3 = (m5 m7),
and for r > 3 set γr = τr. As above, set α = γ1 · · · γk, and the element δ = σα ∈ N
satisfies the desired conditions.

Case 5: Each τr has length 6 2. Since σ moves at least five elements, we know
k > 3. Since σ ∈ An, Theorem 15.3 implies k > 4, say τ1 = (m1 m2), τ2 = (m3 m4),
τ3 = (m5 m6), and τ4 = (m7 m8). Set α = (m1 m2 m3)σ(m1 m3 m2), and the
element δ = σα ∈ N satisfies the desired conditions. �

Lemma 15.5. Let n > 5, and let {(1)} 6= N P An. Then N contains either a
3-cycle or a disjoint product of two 2-cycles.

Proof. By repeated application of Lemma 15.4 we see that N contains a
permutation σ 6= (1) that moves at most four elements. It follows that σ is either a
2-cycle, a 3-cycle, a 4-cycle, or a disjoint product of two 2-cycles. Since σ is in An,
Theorem 15.3 implies that σ is a 3-cycle or a disjoint product of two 2-cycles. �

Theorem 15.6. If n > 5, then An is simple.

Proof. Assume {(1)} 6= N P An. We want to proveN = An. By Lemma 15.5,
we have two cases.

Case 1: N contains a 3-cycle (m1 m2 m3) ∈ N . Since n > 5 we can choose
m4,m5 6 n distinct from m1,m2,m3.
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Claim (a): N contains all 3-cycles τ ∈ Sn. Proof: Proposition 14.4 implies that
τ = σ(m1 m2 m3)σ−1 for some σ ∈ Sn. If σ ∈ An, then τ ∈ N because N P An.
If σ 6∈ An, then σ(m4 m5) ∈ An, and so

τ = σ(m1 m2 m3)σ−1

= σ(m4 m5)(m4 m5)(m1 m2 m3)σ−1

= σ(m4 m5)(m1 m2 m3)(m4 m5)σ−1

= (σ(m4 m5))(m1 m2 m3)(σ(m4 m5))−1

∈ N.

This proves the claim.
Claim (b): N contains all disjoint products of two 2-cycles. Proof: Ifm1,m2,m3,m4

are distinct, then the previous claim implies

(m1 m2)(m3 m4) = (m1 m2 m3)(m2 m3 m4) ∈ N.

Now, Theorem 15.3 says that An is generated by the set of all products of two
2-cycles. This says that An is generated by

X = {disjoint products of two 2-cycles in Sn} ∪ {all 3-cycles in Sn}

Our two claims show X ⊆ N and so An = 〈X〉 ⊆ N ⊆ An. This concludes the
proof for case 1.

Case 2: N contains a disjoint product of two 2-cycles (m1 m2)(m3 m4) ∈ N .
The proof of Claim (a) above shows that N contains every disjoint product of two
2-cycles. In particular,

(1 5 2) = (1 2)(3 4)(3 4)(1 5) ∈ N

and we are done by Case 1. �

16. Day 17

Sylow Theorems.

Definition 16.1. Let G be a finite group. Let p be a (positive) prime number,
and write |G| = pnm where p - m. A p-Sylow subgroup or Sylow p-subgroup of G is
a subgroup H 6 G such that |H| = pn.

Definition 16.2. The order of an element g ∈ G is

|g| = |〈g〉| = inf{n > 1 | gn = e}.

In other words, |g| = ∞ if gn 6= e for all n > 1, and |g| = m < ∞ if gm = e and
gn 6= e when 1 6 n < m.

If |G| < ∞, then |g| < ∞ for all g ∈ G, and Lagrange’s Theorem implies
|g| | |G| and moreover |G/〈g〉| = |G|/|g|.

If |G| =∞, then G may contain elements of finite order and elements of infinite
order, e.g., if G = Z× Z/2Z.

Lemma 16.3. If G is a finite abelian group and p is a positive prime number
such that p | |G|, then G contains an element of order p.
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Proof. Proof by induction on |G|/p.
Base case: |G|/p = 1. Then |G| = p and so G ∼= Z/pZ. Thus, any generator of

G has order p.
Induction step: Assume the result holds for all finite groups G′ such that p | |G′|

and |G′|/p < |G|/p. Fix e 6= g ∈ G. If p | |g|, then g|g|/p has order p. So, assume
p - |g|. Then p | |G|/|g| = |G/〈g〉|. Also, g 6= e =⇒ |G/〈g〉| < |G|, and so
|G/〈g〉|/p < |G|/p. The induction hypothesis implies that there exists an element
h ∈ G such that h ∈ G/〈g〉 has order p. Lagrange’s Theorem can be used to show
p = |h| | |h|. Hence, h|h|/p has order p. �

Theorem 16.4 (Sylow Theorem I). If G is a finite group and p is a positive
prime number, then G has a p-Sylow subgroup P 6 G.

Proof. Write |G| = pnm where p - m.
Step 0. If n = 0, then P = {e} works. If m = 1, then P = G works.
Step 1. G is cyclic, say, G = 〈a〉. Then the subgroup P = 〈am〉 works.
Step 2. We prove the result by induction on |G|/p. The base case |G|/p = 1

follows from Step 0.
Induction step: Assume the result holds for all finite groups G′ such that p | |G′|

and |G′|/p < |G|/p. If G has a proper subgroup H < G such that pn | |H|, then the
induction hypothesis implies that H has a subgroup P such that |P | = pn; then H
is also a p-Sylow subgroup of G. So, assume that pn - |H| for all proper subgroups
H < G. Lagrange’s Theorem implies that p | [G : H] for all proper subgroups
H < G, and so p | [G : Zg] for all g ∈ G − Z(G). Recall that Zg is the centralizer
of g from 6.3. This is exactly the stabilizer Gg of g under the conjugation action.
Hence, Proposition 11.8 implies

[G : Zg] = [G : Gg] = |G/Gg| = | orbG(g)| = |C(g)|.
It follows that p | |C(g)| for all g ∈ Gr Z(G). Hence, the Class Equation 11.13(b)
implies p | |Z(G)|. Lemma 16.3 yields an element g ∈ Z(G) of order p. Hence,
we have {e} 6= 〈g〉 P G. Since |〈g〉| = p, Lagrange’s Theorem implies |G/〈g〉| =
pn−1m. Hence, the induction hypothesis provides a subgroup H 6 G/〈g〉 of order
pn−1. (Unless n = 1, in which case we can use H = {e}.) Then H = P/〈g〉
for some subgroup P 6 G containing g. Finally, Lagrange’s Theorem implies
|P | = |H||〈g〉| = pn. �

Theorem 16.5 (Sylow Theorem ). Let G be a finite group, and let P be a
p-Sylow subgroup of G. Then a subgroup Q 6 G is a p-Sylow subgroup of G if and
only if Q is conjugate to P .

Proof. (⇐= ) If Q is conjugate to P , then |Q| = |P |, and so Q is a p-Sylow
subgroup of G.

( =⇒ ) Assume that Q is a p-Sylow subgroup of G, and let S denote the set of
conjugates of P . Then G and Q both act on S by conjugation. We need to show
Q ∈ S.

Claim: There exists an element P ′ ∈ S such that Q ⊆ NP ′ . Proof of claim:
Proposition 11.8 shows S = orbG(P ) ↔ G/GP = G/NP . Hence, we have |S| =
[G : NP ], and since P ⊆ NP we know that p - |S|. However, since Q acts on
S, Proposition 11.8 shows that orbQ(P ′)↔ Q/QP ′ , and so every Q-orbit in S has
either 1 element or the number of elements is divisible by p by Lagrange’s Theorem.
Since S is the disjoint union of its Q-orbits, we see that there exists an element
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P ′ ∈ S such that the Q-orbit of P ′ has exactly one element, namely P ′. Hence,
Q ⊆ NP ′ .

From Theorem 5.5 we have Q 6 QP ′ 6 G, and Theorem 5.7 implies |QP ′| =
|Q||P ′|/|Q ∩ P ′|. It follows that

pn | |QP ′| | |Q||P ′| = p2n.

Hence |QP ′| = pk for some n 6 k 6 2n. However, QP ′ 6 G implies |QP ′| | |G| =
pnm; since gcd(m, p) = 1, we have |QP ′| = pn. We have Q ⊆ QP ′ and |Q| = pn =
|QP ′|, and so Q = QP ′. Also, we have P ′ ⊆ QP ′ = Q and |P ′| = pn = |Q|, and so
Q = P ′ ∈ S, and we are done. �

17. Days 18 and 19

Theorem 17.1 (Sylow Theorem III). Let G be a finite group and p a positive
prime number. Write |G| = pnm where p - m, and let r be the number of p-Sylow
subgroups of G. Then r ≡ 1 (mod p) and r

∣∣m.

Proof. Let P be a fixed p-Sylow subgroup of G and let S denote the set of
conjugates of P , that is, S is the set of all p-Sylow subgroups of G. Let P act on
S by conjugation.

Claim: P is the unique fixed point in S under this action. In other words, for
each a ∈ G, we have b(aPa−1)b−1 = aPa−1 for all b ∈ P if and only if aPa−1 = P .

Proof of claim: (⇐= ) If aPa−1 = P , then, for all b ∈ P we have b(aPa−1)b−1 =
bPb−1 = P = aPa−1. ( =⇒ ) Assume b(aPa−1)b−1 = aPa−1 for all b ∈ P . Then
P ⊆ NaPa−1 and so the argument of Theorem 16.5 implies P = aPa−1. This proves
the claim.

Since S is the disjoint union of its orbits, we have

r = 1 +
∑
| orbP (Q)|

where the sum is taken over all distinct P -orbits orbP (Q) 6= {P}. Proposition 11.8
shows | orbP (Q)| = [P : PQ], and so p

∣∣| orbP (Q)| for each orbP (Q) 6= {P}. The
displayed equation shows r = 1 + pk for some k, and so r ≡ 1 (mod p).

Letting G act on S, we have S = orbG(P ) and so

r = | orbG(P )| = [G : GP ]
∣∣|G|. = pnm.

The congruence r ≡ 1 (mod p) implies gcd(r, p) = 1 and so r
∣∣m. �

Theorem 17.2. If G is a finite group and H 6 G is a p-subgroup, then there
exists a p-sylow subgroup P 6 G such that H 6 P .

Proof. Let S be the set of p-sylow subgroups of G and let H act on S by
conjugation. There is at least one fixed point under this action, call it P . (If there
is no fixed point, then the proof of Theorem 17.1 shows p

∣∣| orbH(Q)| for each Q ∈ S
and so p

∣∣|S| = 1 + pk; contradiction.) It follows that H 6 NP and so HP 6 G. As
in the proof of Theorem 16.5 we have HP = P , and so H ⊆ HP = P . �

The next result generalizes one of our favorite exercises: If H 6 G and [G :
H] = 2, then H P G.

Proposition 17.3. Let G 6= {e} be a finite group, and let p be the smallest
positive prime number dividing |G|. If H 6 G and [G : H] = p, then H P G.
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Proof. Suppose that H is not a normal subgroup of G. Let S be the set of
conjugates of H in G, and let Perm(S) denote the set of permutations of S. For
all g ∈ G, let φg : S → S be given by K 7→ gKg−1. It is routine to show that each
φg ∈ Perm(S) and that the map φ : G → Perm(S) given by g 7→ φg is a group
homomorphism.

Proposition 11.8 shows |S| = [G : NH ]. Since H ⊆ NH , we have p = [G : H] >
[G : NH ]. Because [G : NH ]

∣∣|G|, this implies [G : NH ] = 1 or [G : NH ] = p. Since
H is not a normal subgroup of G, we have NH 6= G; hence

p = [G : NH ] 6 [G : H] = p

and so |S| = [G : NH ] = p. Thus, there is an isomorphism Ψ: Perm(S)→ Sp.
The equality p = [G : NH ] = [G : H] implies NH = H. It follows that, for all

g ∈ G−H we have gHg−1 6= H. In particular, for all g ∈ G−H we have φg 6= idS
and so Ker(φ) ⊆ H.

Claim: Ker(φ) = H. Suppose not. Then Ker(φ) ( H, and so

[G : Ker(φ)] = [G : H][H : Ker(φ)] = p[H : Ker(φ)].

The composition Ψφ : G → Sp shows that the group G/Ker(φ) = G/Ker(Ψφ) is
isomorphic to Im(Ψφ) 6 Sp. In particular, we have

p[H : Ker(φ)] = [G : Ker(φ)] = |G/Ker(φ)|
∣∣|Sp| = p!.

It follows that [H : Ker(φ)]
∣∣(p− 1)!. Since [H : Ker(φ)] 6= 1, there is a prime q < p

such that q
∣∣[H : Ker(φ)]

∣∣G. It follows that q
∣∣|G|, contradicting the minimality of

p.
It follows that H = Ker(φ) P G, a contradiction. �

The next result generalizes Lemma 16.3.

Proposition 17.4. If G is a finite group and p is a prime number such that
p
∣∣|G|, then G contains an element of order p.

Proof. Let P 6 G be a p-Sylow subgroup. By Corollary 11.15, we know
Z(P ) 6= {e}. Lagrange’s Theorem implies |Z(P )|

∣∣|P | = pk, and so the condition
|Z(P )| > 1 implies p

∣∣|Z(P )|. Lemma 16.3 shows that Z(P ) contains an element of
order p, and this is an element of G of order p. �

Proposition 17.5. Let N and H be normal subgroups of a finite group G. If
gcd(|N |, |H|) = 1, then nh = hn for all n ∈ N and all h ∈ H.

Proof. For all n ∈ N and all h ∈ H, we have nhn−1 ∈ H because H P G,
and so nhn−1h−1 ∈ H. Lagrange’s Theorem implies |nhn−1h−1|

∣∣|H|. Similarly,
hn−1h−1 ∈ N =⇒ nhn−1h−1 ∈ N =⇒ |nhn−1h−1|

∣∣|N |. It follows that
|nhn−1h−1|

∣∣ gcd(|N |, |H|) = 1, and so nhn−1h−1 = e. �

Proposition 17.6. Let p and q be prime numbers such that 1 < p < q and
|G| = pq. Let s denote the number of p-Sylow subgroups of G.
(a) There is a homorphism ψ : Z/pZ→ Aut(Z/qZ) such that G ∼= Z/qZ×ψ Z/pZ.
(b) If s 6= q, then G ∼= Z/(pq)Z.

Proof. (a) Let P 6 G be a p-Sylow subgroup, and let Q 6 G be a q-Sylow
subgroup. Since |P | = p, we have P ∼= Z/pZ, and similarly we have Q ∼= Z/qZ.
In particular, every nonidentity element of P has order p, and every nonidentity
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element of Q has order q. Because p and q are distinct primes, it follows that
P ∩Q = {e}.

Since [G,Q] = p and p is the smallest prime number dividing |G|, Proposi-
tion 17.3 implies Q P G. In particular, P ⊆ NQ and so PQ 6 G. Moreover,

|PQ| = |P ||Q|/|P ∩Q| = |P ||Q| = pq = |G|

and so G = PQ.
Since Q P G an exercise yields the following. For each x ∈ P the map φx : Q→

Q given by y 7→ xyx−1 is a well-defined automorphism of Q. The assignment
φ(x) = φx describes a homorphism φ : P → Aut(Q), and G ∼= Q ×φ P . The
isomorphisms P ∼= Z/pZ and Q ∼= Z/qZ yield the desired conclusion.

(b) Theorem 17.1 implies

s
∣∣|G|/|P | = pq/p = q.

Since s 6= q, we have s = 1. Hence P P G, and Proposition 17.5 implies xy = yx
for all x ∈ P and all y ∈ Q. In particular, the homomorphism φ from the proof of
part (a) satisfies φx = idQ for all x. The exercise on semi-direct products implies

G ∼= Q×φ P ∼= Q× P ∼= Z/qZ× Z/pZ ∼= Z/(pq)Z

where the last isomorphism follows from the fact that gcd(p, q) = 1. �

Structure theorems for finitely generated abelian groups.

Remark 17.7. When G is an abelian group, we will use additive notation for
the operation. Hence, we write g+ h instead of gh for the operation, −g instead of
g−1 for the inverse of g, 0 instead of e for the identity in G, and ng instead of gn

when n ∈ Z.

Definition 17.8. Let {Gα}α∈A be a set of abelian groups. The product∏
α∈AGα is the cartesian product with operation defined coordinatewise. In other

words, ∏
α∈AGα = {sequences (gα) such that gα ∈ Gα for each α ∈ A}

(gα) + (hα) = (gα + hα)

−(gα) = (−gα)

0Q
α∈AGα

= (0Gα)

These operations are well-defined and endow
∏
α∈AGα with the structure of an

abelian group. The direct sum is the subgroup

⊕α∈AGα = {(gα) ∈
∏
α∈AGα | gα = 0 for all but finitely many α ∈ A} 6

∏
α∈AGα.

If A = ∅, then
∏
α∈∅Gα = ⊕α∈∅Gα = {0}. If A is finite, then

∏
α∈AGα = ⊕α∈AGα.

18. Day 20

Definition 18.1. Let G be an abelian group and {Gα}α∈A a set of subgroups
of G. Set

∑
α∈AGα = 〈∪α∈AGα〉 6 G.

Proposition 18.2. Let G be an abelian group and {Gα}α∈A a set of subgroups
of G. Assume that G =

∑
α∈AGα. Assume that, for all n ∈ N and all distinct

elements α0, α1, . . . , αn ∈ A we have Gα0 ∩
∑n
i=1Gαi = {0}. Then G ∼= ⊕α∈AGα.
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Proof. Define ϕ : ⊕α∈A Gα → G by the formula ϕ((gα)) =
∑
α gα. The fact

that only finitely many of the gα are nonzero says that the sum is finite. Check
that this is a well-defined abelian group homomorphism.

ϕ is surjective: Let g ∈ G. The assumption G =
∑
α∈AGα implies that there

exist n ∈ N and α1, . . . , αn ∈ A and gαi ∈ Gαi such that g =
∑
i gαi . For α ∈ A

such that α 6∈ {α1, . . . , αn} set gα = 0. It follows that

ϕ((gα)) =
∑
α gα =

∑
i gαi = g

and so ϕ is surjective.
ϕ is injective: Let (gα) ∈ Ker(ϕ) and suppose (gα) 6= (0). Let gα0 , . . . , gαn

be the distinct nonzero components of (gα). Note that n > 1 because otherwise
0 6= g0 =

∑
α∈A gα = 0, a contradiction. Then

gα0 = −
∑n
i=1 gαi ∈ Gα0 ∩

∑n
i=1Gαi = {0}

and so g0 = 0, a contradiction. Thus, (gα) = (0) and so ϕ is injective. �

Definition 18.3. Given any set A and any abelian groupG, setG(A) = ⊕α∈AG
the direct sum of A many copies of G. An abelian group G is free if there exists a
set A such that G ∼= Z(A) = ⊕α∈AZ. In Z(A), for each β ∈ A, let eβ = (δαβ) where

δαβ =

{
1 if α = β

0 if α 6= β.

That is, eβ is the sequence with 1 in the β spot and 0 everywhere else.

Be warned that a free group is not usually the same as a free abelian group.

Definition 18.4. Let G be an abelian group. A basis for G is a subset B ⊆ G
such that, for all 0 6= g ∈ G there exist unique m ∈ N, distinct b1, . . . , bm ∈ B, and
nb1 , . . . , nbm ∈ Z − {0} such that g =

∑m
i=1 nbibi. We sometimes write

∑finite
b nbb

in place of
∑m
i=1 nbibi.

Example 18.5. Let A be a set. The set {eβ | β ∈ A} is a basis for Z(A).

Be warned that not every abelian group has a basis.

Example 18.6. If n is an integer n > 2, then Z/nZ does not have a basis.
Indeed, for each element m ∈ Z/nZ, we have nm = 0 and so no subset of Z/nZ is
linearly independent over Z.

The next proposition contains the universal property for free abelian groups
and the fact that the universal property characterizes free abelian groups up to
isomorphism.

Proposition 18.7. For an abelian group G and a function ε : A ↪→ G, TFAE:
(i) there is an isomorphism ϕ : Z(A) → G such that ϕ(eα) = ε(α) for each α ∈ A;
(ii) ε(A) is a basis for G;

(iii) for each abelian group H and each function f : A → H, there is a unique
abelian group homomorphism F : G→ H making the following diagram com-
mute:

A
ε //

f   AAAAAAAA G

∃!F
���
�
�

H.
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Proof. (i) =⇒ (ii). Let ϕ : Z(A) → G be such an isomorphism. The set
{eα | α ∈ A} ⊆ Z(A) is a basis for Z(A). Because ϕ is an isomorphism, the set

ε(A) = ϕ({eα | α ∈ A}) ⊆ G
is a basis for G.

(ii) =⇒ (iii). Define F : G→ H by the formula

F
(∑finite

α nαε(α)
)

=
∑finite
α nαf(α).

The fact that ε(A) is a basis for G shows that F is a well-defined abelian group
homomorphism. The next computation shows that the diagram commutes: for
β ∈ A, we have

F (ε(β)) = F (
∑
α δαβε(α)) =

∑
α δαβf(α) = f(β).

For the uniqueness, assume that F ′ : G → H is another homomorphism such that
F ′(ε(β)) = f(β) for all β ∈ A. Then

F ′
(∑finite

α nαε(α)
)

=
∑finite
α nαF

′(ε(α)) =
∑finite
α nαf(α) = F

(∑finite
α nαε(α)

)
(iii) =⇒ (i). Let f : A → Z(A) be given by f(α) = eα. Condition (iii) yields

an abelian group homomorphism F : G→ Z(A) such that F (ε(β)) = f(β) = eβ for

all β ∈ A. Hence, F
(∑finite

α nαε(α)
)

=
∑finite
α nαeα. Because Z(A) has a basis

{eα}α∈A, the implication (ii) =⇒ (iii) shows that there exists a unique abelian
group homomorphism ϕ : Z(A) → G such that ϕ(eα) = ε(α) for each α ∈ A.

It follows that ϕF = idG because of the uniqueness condition in (iii): The map
ϕF : G→ G satisfies

(ϕF )(ε(α)) = ϕ(F (ε(α))) = ϕ(eα) = ε(α).

In other words, the following diagrams commute:

A
ε //

ε
��@@@@@@@ G

ϕF

���
�
� A

ε //

ε
  AAAAAAA G

idG

���
�
�

G G.

Since there is a unique abelian group homomorphism making the diagram commute,
we have ϕF = idG. Similarly, applying condition (iii) to Z(A), the uniqueness
statement shows Fϕ = idZ(A) and so F and ϕ are inverse isomorphisms. �

19. Day 21

Here is a restatement of the universal property for clarification.

Corollary 19.1. Let G be a free abelian group, and let B ⊆ G be a basis
for G. For every abelian group H and every subset {hb}b∈B ⊆ H, there exists a
unique abelian group homomorphism F : G→ H such that, for each b ∈ B, we have
F (b) = hb. �

Definition 19.2. Let G be an abelian group. G is torsion if, for each g ∈ G
there exists n ∈ N such that ng = 0. G is torsion-free if, for each 0 6= g ∈ G the
map N→ G given by n 7→ ng is injective.

Note that there are groups that are not torsion and not torsion-free: Z⊕(Z/2Z).
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Theorem 19.3. Let G be a torsion group. For each prime number p, set
Gp = {g ∈ G | png = 0 for some n ∈ N}. Then each Gp 6 G and G ∼= ⊕pGp.

Proof. First we show Gp 6 G. Because pj0 = 0 for all j ∈ N, we have 0 ∈ Gp.
Fix g, h ∈ Gp and let m,n ∈ N such that pmg = 0 = pnh. With r = max{m,n},
we have prg = 0 = prh. Hence, pr(g− h) = prg− prh = 0 and so g− h ∈ Gp. Now
apply the subgroup test.

Next we show G ∼= ⊕pGp. We will use Proposition 18.2, so there are two things
to check.

(1) G =
∑
pGp. Fix g ∈ G. Because G is torsion, there exists n > 2 such

that ng = 0. Write n = prm where p - m. Then gcd(pr,m) = 1 and so there are
integers a, b ∈ Z such that apr + bm = 1. It follows that aprg + bmg = g and
m(aprg) = 0 = pr(bmg). That is, we can write g = gp + g′ where gp ∈ Gp and
mg′ = 0.

Using the Fundamental Theorem of Arithmetic, write n = pr11 · · · prmm where
the pi are distinct primes. By induction on m, using the previous paragraph, we
can write g = gp1 + . . .+ gpm for some gpi ∈ Gpi . This shows G =

∑
pGp.

(2) For all n ∈ N and all distinct prime numbers p0, p1, . . . , pn we have Gp0 ∩∑n
i=1Gpi = {0}. Suppose g0 ∈ Gp0∩

∑n
i=1Gpi , say g0 =

∑n
i=1 gi with gi ∈ Gpi . For

each i = 0, . . . , n there exists ai > 1 such that paii gi = 0. Let m = pa1
1 · · · pann and

note that gcd(pa0
0 ,m) = 1. Hence, there are integers c, d ∈ Z such that cpa0

0 +dm =
1. By construction and assumption, we have

mg0 = m
∑n
i=1 gi = 0 = pa0

0 g0

and so
g0 = 1g0 = (cpa0

0 + dm)g0 = cpa0
0 g0 + dmg0 = 0

as desired. �

Corollary 19.4. If G is a finite abelian group, then G ∼= Gp1 ⊕ · · · ⊕ Gpn
where p1, . . . , pn are the distinct prime factors of |G|.

Proof. G is finite, so every element of G has finite order. Hence, G is torsion
and so G ∼= ⊕pGp. If p - |G|, then Gp = {0}: otherwise, there exists an element
0 6= g ∈ Gp and so p

∣∣|g|∣∣|G|, a contradiction. �

Here’s something important that does not follow from the “usual” axioms of
set theory. See Hungerford pp. 12-15 for a discussion.

The Axiom of Choice. The Cartesian product of a family of nonempty sets
indexed over a nonempty set is nonempty.

For an important reformulation, we need some terminology.

Definition 19.5. A partially ordered set is a nonempty set A with a relation
6 (called a partial ordering on A) which is reflexive (for all a ∈ A, we have a 6 a),
transitive (for all a, b, c ∈ A, if a 6 b and b 6 c, then a 6 c) and antisymmetric (for
all a, b ∈ A, if a 6 b and b 6 a, then a = b).

Example 19.6. If A ⊆ R, then A is a partially ordered set under the usually
ordering 6.

If S is a set and A is a set of subsets of S, then A is a partially ordered set
under inclusion.
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Definition 19.7. Assume that A is a partially ordered set. Two elements
a, b ∈ A are comparable if either a 6 b or b 6 a. An element c ∈ A is maximal in A
if, for every a ∈ A which is comparable to c, we have a 6 c. If ∅ 6= B ⊆ A, then an
upper bound of B in A is an element a ∈ A such that, for all b ∈ B, we have b 6 a.
B is a chain if every two elements in B are comparable.

Assuming the “usual” axioms of set theory, the following is equivalent to the
Axiom of Choice. For a proof, consult a book on set theory.

Zorn’s Lemma Let A be a nonempty partially ordered set such that every
chain in A has an upper bound in A. Then A contains a maximal element.

Here is a useful application of Zorn’s Lemma.

Lemma 19.8. Let G be an abelian group and G′ 6 G. The set H = {H 6 G |
G′ ∩H = {0}} has a maximal element.

Proof. First, we have {0} ∈ H, and so H 6= ∅. The set H is partially ordered
with respect to inclusion, so it suffices to show that every chain C in H has an upper
bound in H.

We claim that K = ∪H∈CH is an upper bound for C in H. (Then the result
will follow from Zorn’s Lemma.) There are three things to check:

(1) K 6 G: We use the subgroup test. C is a chain, so it is nonempty. For
each H ∈ C, we have H 6 G and so 0 ∈ H ⊆ K implies 0 ∈ K. Let h, h′ ∈ K. We
need to show h−h′ ∈ K. By definition, there exist H,H ′ ∈ C such that h ∈ H and
h′ ∈ H ′. Since C is a chain, either H ⊆ H ′ or H ′ ⊆ H. Assume that H ⊆ H ′. (The
other case is similar.) Then h ∈ H ⊆ H ′ and h′ ∈ H ′ and so h− h′ ∈ H ′ ⊆ K.

(2) G′∩K = {0}: G′∩K = G′∩ (∪H∈CH) = ∪H∈C(G′∩H) = ∪H∈C{0} = {0}.
(3) For all H ′ ∈ C, we have H ′ ⊆ K. This is true by the definition: H ′ ∈ C

implies H ′ ⊆ ∪H∈CH = K. �

20. Day 22

Theorem 20.1. Let G be an abelian group. Assume that p is a prime number
such that pnG = {0} and pn−1G 6= {0} for some n > 1. Then there exists H 6 G
such that G ∼= Z/pnZ⊕H.

Proof. By the choice of p and n, there exists 0 6= g ∈ G such that |g| = pn.
Hence 〈g〉 ∼= Z/pnZ and so it suffices to find H 6 G such that G ∼= 〈g〉 ⊕ H. By
Proposition 18.2 it suffices to find H 6 G such that G = 〈g〉+H and 〈g〉∩H = {0}.

Lemma 19.8 implies that the set H = {H 6 G | 〈g〉 ∩ H = {0}} contains a
maximal element H with respect to inclusion. By construction, we have 〈g〉 ∩H =
{0}.

Suppose G ) 〈g〉+H, and fix k ∈ G− (〈g〉+H).
Suppose pk ∈ 〈g〉+H. Then we have pk = rg + h for some r ∈ Z and h ∈ H.

Then

0 = pnk = pn−1(pk) = pn−1rg + pn−1h

and so

pn−1rg = −pn−1h ∈ 〈g〉 ∩H = {0}
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and so pn−1rg = 0. Since |g| = pn, it follows that p
∣∣r. Write r = ps for some s ∈ Z.

Then
pk = rg + h = psg + h.

Let k′ = k−sg. Then k′ 6∈ 〈g〉+H: otherwise k′, sg ∈ 〈g〉+H implies k = k′+sg ∈
〈g〉+H, a contradiction. Also,

pk′ = pk − psg = pk − rg = h ∈ H.

Claim: (〈k′〉+H) ∩ 〈g〉 = {0}.
An element of (〈k′〉 + H) ∩ 〈g〉 has the form tk′ + h′ = ug with h′ ∈ H and

t, u ∈ Z. We need to show ug = 0. We have

tk′ = ug − h′ ∈ 〈g〉+H.

Also,
tk′ = tk − tsg =⇒ tk = tk′ + tsg ∈ 〈g〉+H

and so p
∣∣t; say t = pv with v ∈ Z. Then

ug = h′ + tk′ = h′ + pvk′ = h′ + vh ∈ H.

Since ug ∈ 〈g〉 we have ug ∈ 〈g〉 ∩H = {0} and so ug = 0.
Since k′ 6∈ H, we have H ( 〈k′〉+H, so the claim violates the maximality of H.

Thus, pk 6∈ 〈g〉 + H. Since pnG = 0, there exists m ∈ N such that pmk ∈ 〈g〉 + H
and pm−1k 6∈ 〈g〉+H. That is, z = pm−1k is an element of G such that z 6∈ 〈g〉+H
and pz ∈ 〈g〉 + H. Thus, the above argument again yields a contradiction, and so
the element k cannot exist. �

Proposition 20.2. Every subgroup of Zn is free of rank 6 n.

Proof. By induction on n. If n = 1, then every subgroup H 6 Z is H = mZ
for some m ∈ Z. Therefore,

H =

{
{0} ∼= Z0 if m = 0
mZ ∼= Z1 if m 6= 0.

Assume n > 1 and assume that every subgroup of Zn−1 is free of rank 6 n−1. Let
K 6 Zn, and define f : Zn → Z by the formula f(a1, . . . , an) = an. Check that f is
a homomorphism with Ker(f) = Zn−1 ⊕ {0} ∼= Zn−1. It follows that f(K) 6 Z, so
f(K) = mZ for some m ∈ Z. If m = 0, then K ⊆ Ker(f) = Zn−1, so our induction
hypothesis implies that K is free of rank 6 n− 1. So, we assume that m 6= 0. Fix
an element k ∈ K such that f(k) = m.

Claim: K = (K ∩Zn−1) + 〈k〉. The containment “⊇” is clear. For the contain-
ment “⊆” fix an element h ∈ K. Then f(h) = rm for some r ∈ Z, so f(h−rk) = 0.
Hence, we have h− rk ∈ Ker(f) ∩K = Zn−1 ∩K, and so h ∈ (K ∩ Zn−1) + 〈k〉.

Claim: (K ∩ Zn−1) ∩ 〈k〉 = {0}. Write k = (k1, . . . , kn), and let

h = (h1, . . . , hn−1, 0) ∈ (K ∩ Zn−1) ∩ 〈k〉.

Since h ∈ 〈k〉, we have

(h1, . . . , hn−1, 0) = h = sk = (sk1, . . . , skn)

for some s ∈ Z, and so 0 = skn = sm. Since m 6= 0, we have s = 0 and so
h = sk = 0.
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Using the two claims, Proposition 18.2 implies K ∼= (K ∩ Zn−1) ⊕ 〈k〉. Since
K ∩ Zn−1 6 Zn−1, we have K ∩ Zn−1 ∼= Zk−1 for some k − 1 6 n− 1. Also, since
k 6= 0, we have 〈k〉 ∼= Z and so

K ∼= (K ∩ Zn−1)⊕ 〈k〉 ∼= Zk−1 ⊕ Z1 ∼= Zk

as desired. �

21. Day 23

Remark 21.1. Fix integers n, k > 1 and let h : Zk → Zn be a group homomor-
phism. We can represent h by an n× k matrix with entries in Z as follows. Write
elements of Zk and Zn as column vectors with entries in Z. Let e1, . . . , ek ∈ Zk be
the standard basis. For j = 1, . . . , k write

h(ej) =


a1,j

...
ai,j

...
an,j

 .

Then h is represented by the n× k matrix

[f ] = (ai,j) =


a1,1 ··· a1,j ··· a1,k

...
...

...
ai,1 ··· ai,j ··· ai,k
...

...
...

an,1 ··· an,j ··· an,k


in the following sense: For each vector(

r1
...
rk

)
∈ Zk

we have

h

(
r1
...
rk

)
= h(

∑
j rjej) =

∑
j rjh(ej) =

∑
j rj

( a1,j

...
an,j

)
=

( a1,1 ··· a1,k

...
...

an,1 ··· an,k

)(
r1
...
rk

)
.

We have elementary basis operations on the ej :
(1) Replace ej with −ej ;
(2) Interchange ej and el;
(3) Replace ej with ej + rel for some r ∈ Z and l 6= j.

These correspond to the appropriate elementary column operations on the matrix
(ai,j), in the following sense. Applying one of the elementary basis operations to the
ej yields an isomorphism Φ: Zk → Zk such that the following diagram commutes

Zk
(ai,j) //

Φ ∼=
��

Zn

=

��
Zk

(bi,j) // Zn

where (bi,j) is the matrix obtained by applying the corresponding elementary col-
umn operation to the matrix (ai,j). And, conversely, if (bi,j) is obtained from
(ai,j) by an elementary column operation, then the corresponding elementary basis
operations on the ej yields a commutative diagram as above.



21. DAY 23 45

Let f1, . . . , fn ∈ Zn be the standard basis. The elementary basis operations on
the fj correspond similarly to the elementary row operations on the matrix (ai,j).

Furthermore, if we repeatedly apply elementary row and column operations to
the matrix (ai,j) to obtain the matrix (ci,j), then this yields a commutative diagram

Zk
(ai,j) //

Φ ∼=
��

Zn

Ψ ∼=
��

Zk
(ci,j) // Zn.

We say that an n × k matrix (di,j) with integer entries is equivalent to (ai,j) if it
can be obtained from (ai,j) using a (finite) sequence of elementary row and column
operations.

Proposition 21.2. Fix integers n > k > 1 and let h : Zk → Zn be a group
monomorphism. There exists a commutative diagram of group homomorphisms

Zk
h //

Φ ∼=
��

Zn

Ψ ∼=
��

Zk
h′ // Zn

such that the matrix representing h′ is “diagonal”, that is, [h′] = (di,j) where di,j =
0 when i 6= j. Furthermore, (di,j) may be constructed so that d1,1

∣∣d2,2

∣∣ · · · ∣∣dk,k.

Proof. Let [h] = (ai,j), and let A denote the set of all s ∈ N such that a finite
number of elementary row and column operations applied to (ai,j) yields a matrix
with s in the upper left corner.

Claim: A 6= ∅. Because h is a monomorphism, there is a nonzero entry in the
first column of (ai,j). Hence, matrix operations can be applied to yield a matrix
with a positive entry in the first column, and then to yield a matrix with a positive
entry in the 1, 1 entry.

Because A is a nonempty set of natural numbers, it has a minimal element.
Apply the necessary row and column operations to yield a new matrix (bi,j) such
that b1,1 is the smallest element of A.

Claim: b1,1 6 |bi,j | for all bi,j 6= 0. Suppose not, say 0 < |bi,j | < b1,1. Elemen-
tary matrix operations would then yield an equivalent matrix with |bi,j | in the i, j
spot, and then an equivalent matrix with |bi,j | in the 1, 1 spot. This contradicts
the minimality of b1,1 in A.

Claim: b1,1
∣∣bi,j for all i, j. Use the division algorithm to find integers q, r such

that bi,j = qb1,1 + r and 0 6 r < b1,1. If r 6= 0, then elementary matrix operations
can be applied to yield an equivalent matrix with r in the 1, 1 spot; this would
contradict the minimality of b1,1 in A. Hence, r = 0 and so b1,1

∣∣bi,j .
It follows that elementary matrix operations yield an equivalent matrix (ci,j)

such that r 6= 1 implies c1,r = 0 and cr,1 = 0 and such that c1,1
∣∣ci,j for each i, j.

Repeating this process to appropriate “submatrices” of (ci,j) yields the desired
matrix, and Remark 21.1 yields the desired commutative diagram. �
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Proposition 21.3. Let h : K → N and h′ : K ′ → N ′ be abelian group homo-
morphisms. Given a commutative diagram of group homomorphisms

K
h //

Φ ∼=
��

N

Ψ ∼=
��

K ′
h′ // N ′

there is an isomorphism α : N/ Im(h)
∼=−→ N ′/ Im(h′).

Proof. Let α : N/ Im(h)→ N ′/ Im(h′) be given by

α(x+ Im(h)) = Ψ(x) + Im(h′).

Claim: α is well-defined. Fix x, y ∈ N such that x + Im(h) = y + Im(h). Then
x− y ∈ Im(h), say x− y = h(z) with z ∈ K. Then

Ψ(x)−Ψ(y) = Ψ(x− y) = Ψ(h(z)) = h′(Φ(z)) ∈ Im(h′)

and so Ψ(x) + Im(h′) = Ψ(y) + Im(h′).
Since Ψ is a group homomorphism, one checks readily that α is also a group

homomorphism. (The fact that α is a well-defined group homomorphism can also
be shown using the universal property for group quotients in Lemma 9.2.)

Since Ψ and Φ are isomorphism, we have a second commutative diagram of
abelian group homomorphisms

K ′
h′ //

Φ−1 ∼=
��

N ′

Ψ−1 ∼=
��

K
h // N

Indeed, for k′ ∈ K ′ we have

Ψ(h(Φ−1(k′))) = h′(Φ(Φ−1(k′))) = h′(k′) = Ψ(Ψ−1(h′(k′)))

and so h(Φ−1(k′)) = Ψ−1(h′(k′)).
Thus, the above argument shows that the map β : N ′/ Im(h′)→ N/ Im(h) given

by β(x′+Im(h′)) = Ψ−1(x′)+Im(h) is a well-defined abelian group homomorphism.
Direct computation shows βα = idN/ Im(h) and αβ = idN ′/ Im(h′). Hence, α is an
isomorphism with inverse β. �

22. Day 24

Here is the Fundamental Theorem for Finitely Generated Abelian Groups.

Theorem 22.1. If G is a finitely generated abelian group, then G is a direct
sum of cyclic groups. Moreover, there is an isomorphism

G ∼= Z/d1Z⊕ · · · ⊕ Z/dkZ⊕ Zn−k

such that each di > 1 and d1

∣∣d2

∣∣ · · · ∣∣dk.

Proof. Let {g1, . . . , gn} ⊆ G be a generating set for G. The map f : Zn → G
given by f(m1, . . . ,mn) =

∑
imigi is a well-defined group epimorphism. We have

Ker(f) 6 Zn, so Proposition 20.2 yields an isomorphism h1 : Zk
∼=−→ Ker(f) for

some k 6 n. Let ε : Ker(f)→ Zn be the natural inclusion, and set h = εh1 : Zk →
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Zn. Since h1 is an isomorphism and ε is a monomorphism, we know that h is a
monomorphism.

Proposition 21.2 yields a commutative diagram of group homomorphisms

Zk
h //

Φ ∼=
��

Zn

Ψ ∼=
��

Zk
h′ // Zn

such that [h′] = (di,j) where di,j = 0 when i 6= j and d1,1

∣∣d2,2

∣∣ · · · ∣∣dk,k. Let
f1, . . . , fn ∈ Zn be the standard basis. Then we have

G ∼= Zn/Ker(f) first isomorphism theorem

= Zn/ Im(h) construction of h
∼= Zn/ Im(h′) Proposition 21.3

= Zn/〈d1,1f1, . . . , dk,kfk〉 assumptions on h′

∼= Z/d1,1Z⊕ · · · ⊕ Z/dk,kZ⊕ Zn−k Exercise.

This is the desired conclusion. �

Corollary 22.2. Let G be a finitely generated abelian group and set Gtor =
{g ∈ G | ng = 0 for some n ∈ Z}. If G is generated by n elements, then there exists
an integer 0 6 l 6 n such that G ∼= Gtor ⊕ Zl.

Proof. Using Theorem 22.1 we have

ϕ : Z/d1Z⊕ · · · ⊕ Z/dkZ⊕ Zn−k
∼=−→ G

such that each di > 1 and d1

∣∣d2

∣∣ · · · ∣∣dk.
Note that (g1, . . . , gk, gk+1, . . . , gn) ∈ (⊕ki=1Z/diZ)⊕Zn−k is a torsion element

if and only if gk+1 = · · · = gn = 0. That is, we have

((⊕ki=1Z/diZ)⊕ Zn−k)tor = (⊕ki=1Z/diZ)⊕ {0}
Since ϕ is an isomorphism, we have

Gtor = ϕ(((⊕ki=1Z/diZ)⊕ Zn−k)tor) = ϕ((⊕ki=1Z/diZ)⊕ {0})
and so

G = ϕ((⊕ki=1Z/diZ)⊕ Zn−k) ∼= ϕ(⊕ki=1Z/diZ)⊕ ϕ(Zn−k) ∼= Gtor ⊕ Zn−k

as desired. �

Given a finitely generated abelian group, there are several ways to write Gtor.
Each one has its own utility. Since Gtor is finite (exercise) the final results from
this chapter show some of the ways.

Proposition 22.3. Let G be a finite abelian group. If p is a prime number
such that pnG = {0} for some n > 1, then there exist n1, . . . , nr ∈ N such that
G ∼= Z/pn1Z⊕ · · · ⊕ Z/pnrZ.

Proof. By induction on |G|, using Theorem 20.1. �

Corollary 22.4. Let G be a finite abelian group and p1, . . . , ps the distinct
prime divisors of |G|. There are n1,1, . . . , n1,r1 , n2,1, . . . , n2,r2 , . . . , ns,1, . . . , ns,rs ∈
N such that G ∼= ⊕si=1 ⊕

nj,rj
j=1 Z/pni,ji Z.



48 1. GROUP THEORY

Proof. By Theorems 19.3 and Proposition 22.3. �

Corollary 22.5. If G is a finite abelian group, then there are d1, . . . , dk ∈ N
such that

G ∼= Z/d1Z⊕ · · · ⊕ Z/dkZ
and d1

∣∣d2

∣∣ · · · ∣∣dk.

Proof. By Theorem 22.1, using the fact that a finite group cannot have an
infinite direct summand. �



CHAPTER 2

Category Theory

1. Day 1

Definition 1.1. A category C is a collection (or class) Ob(C) of “objects”
such that, for every pair A,B in Ob(C) there is an associated set MorC(A,B) of
“morphisms” satisfying the following properties:
(1) If A,B,C,D are in Ob(C), and either A 6= C or B 6= D, then MorC(A,B) and

MorC(C,D) are disjoint;
(2) IfA,B,C are in Ob(C), there is a map MorC(B,C)×MorC(A,B)→ MorC(A,C),

called a law of composition and denoted (f, g) 7→ f ◦ g;
(3) The law of composition is associative; and
(4) For each A in Ob(C), there is an element iA ∈ MorC(A,A) such that for all

f ∈ MorC(A,B) and g ∈ MorC(C,A) we have f ◦ iA = f and iA ◦ g = g.
Instead of writing f ∈ MorC(A,B), we often write “f : A→ B is a morphism in C”.

Example 1.2. The category of sets: sets is the category whose collection of
objects is exactly the collection of all sets and such that, for sets A,B the set
Morsets(A,B) is the set of all functions f : A → B. We set iA = idA : A → A and
f ◦ g is the composition of functions.

Example 1.3. The category of groups: gps is the category whose collection of
objects is exactly the collection of all groups and such that, for groups A,B the
set Morgps(A,B) is the set of all group homomorphisms f : A → B. We set iA =
idA : A→ A and f ◦ g is the composition of functions. Note that, in verifying that
gps is a category, we use the fact that the composition of two group homomorphisms
is another group homomorphism.

Example 1.4. The category of abelian groups: ab is the category whose col-
lection of objects is exactly the collection of all abelian groups and such that, for
abelian groups A,B the set Morab(A,B) is the set of all (abelian) group homo-
morphisms f : A → B. We set iA = idA : A → A and f ◦ g is the composition
of functions. (Similarly, we have the categories of finite groups, finitely generated
groups, finitely generated abelian groups, finite abelian groups, etc.)

Example 1.5. The category of topological spaces: top is the category whose
collection of objects is exactly the collection of all topological spaces and such that,
for topological spaces A,B the set Mortop(A,B) is the set of all continuous functions
f : A → B. We set iA = idA : A → A and f ◦ g is the composition of functions.
Note that, in verifying that top is a category, we use the fact that the composition
of two continuous functions is another continuous function.

Example 1.6. The category of complex manifolds: man is the category whose
collection of objects is exactly the collection of all complex manifolds and such

49
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that, for complex manifolds A,B the set Morman(A,B) is the set of all complex
differentiable functions f : A → B. We set iA = idA : A → A and f ◦ g is the
composition of functions. Note that, in verifying that top is a category, we use the
fact that the composition of two differentiable functions is differentiable function.

Example 1.7. Categories with one object correspond precisely to monoids.
LetM be a monoid. Let C be the category with Ob(C) = {M} and MorC(M,M) =

M . This is a category with one object.
Conversely, let D be a category with one object A. Then MorC(A,A) is a

monoid with multiplication given by the law of composition.

Example 1.8. Categories C such that Ob(C) is a set and |MorC(A,B)| 6 1 for
all A,B ∈ Ob(C) correspond precisely to partially ordered sets.

Let S be a set partially ordered by 6. Let C be the category such that Ob(C) =
S and

MorC(A,B) =

{
{(A,B)} if A 6 B
∅ if A 66 B.

Let the law of composition be given by (A,B) ◦ (B,C) = (A,C) when A 6 B 6 C.
Conversely, let D be a category such that Ob(D) is a set and |MorD(A,B)| 6 1

for all A,B ∈ Ob(D). We make Ob(D) into a partially ordered set by declaring
A 6 B when MorD(A,B) 6= ∅.

2. Day 2

Definition 2.1. The opposite category: If C is a category with law of compo-
sition ◦, define Cop as Ob(Cop) = Ob(C) and MorCop(A,B) = MorC(B,A) with law
of composition f ∗ g := g ◦ f . Note that Cop = (Cop)op.

Definition 2.2. Functors: Functors are “maps” between categories that re-
spect the structure of the categories. Let C and D be categories.

A covariant functor F : C → D is a “rule of assignment”:
(1) for each object A in Ob(C), the rule F associates an object F (A) in Ob(D);
(2) for each morphism f : A→ B in MorC(A,B), the rule F associates a morphism

F (f) : F (A)→ F (B) in MorD(F (A), F (B));
(3) for each object A in Ob(C), if iA is the identity morphism in MorC(A,A), then

F (iA) = iF (A), the identity morphism in MorD(F (A), F (A));
(4) for all objects A,B,C in Ob(C) and all morphisms g : A → B in MorC(A,B)

and f : B → C in MorC(B,C), we have F (f ◦ g) = F (f) ◦F (g); in other words,
given a commutative diagram in C

A
g //

f◦g ��@@@@@@@ B

f

��
C

the associated diagram in D also commutes:

F (A)
F (g) //

F (f◦g) ##HHHHHHHHH
F (B)

F (f)

��
F (C).
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Condition (4) is the “functoriality” of F . Condition (2) (do not reverse the direction
of the arrows) is what makes F covariant.

A contravariant functor G : C → D is a “rule of assignment”:

(1) for each object A in Ob(C), the rule G associates an object G(A) in Ob(D);
(2) for each morphism f : A→ B in MorC(A,B), the rule G associates a morphism

G(f) : G(B)→ G(A) in MorD(G(B), G(A));
(3) for each object A in Ob(C), if iA is the identity morphism in MorC(A,A), then

G(iA) = iG(A), the identity morphism in MorD(G(A), G(A));
(4) for all objects A,B,C in Ob(C) and all morphisms g : A → B in MorC(A,B)

and f : B → C in MorC(B,C), we have G(f ◦ g) = G(g) ◦G(f); in other words,
given a commutative diagram in C

A
g //

f◦g ��@@@@@@@ B

f

��
C

the associated diagram in D also commutes:

G(A) G(B)
G(g)oo

G(C).
G(f◦g)

ccHHHHHHHHH
G(f)

OO

Condition (4) is the “functoriality” of G. Condition (2) (reverse the direction of
the arrows) is what makes D contravariant.

Example 2.3. Forgetful functors: we define a rule of association F : gps→ sets
that associates, to each group G, the underlying set F (G) where we “forget” the
group operation. For each homomorphism f : G → H in Morgps(G,H), we let
F (f) : F (G) → F (G) in Morsets(F (G), F (H)) denote the underlying set-theoretic
function where we “forget” that f respects the groups operations: remember that
we have forgot the group structures. This is a covariant functor.

Similar forgetful functors are constructed ab→ gps (forget the commutativity
of the operation), man → top (forget the manifold structure and only remember
the topological structure), etc.

Example 2.4. The abelianization functor F : gps → ab: For each group G,
set F (G) = G/[G,G] where [G,G] is the commutator subgroup; see Section 1.9.
For each group homomorphism ϕ : G→ H, Theorem 9.4 implies that the following
function is a well-defined abelian group homomorphism: G/[G,G] → H/[H,H]
given by g 7→ f(g). Denote this map by F (ϕ) : F (G)→ F (H).

This is a covariant functor, as follows. We have verified conditions (1) and (2)
from Definition 2.2. It remains to check conditions (3) and (4).

(3) Let idG : G → G be the identity homomorphism on a group G. We show
that F (idG) = idF (G) : F (G)→ F (G): for each g ∈ F (G) = G/[G,G], we have

F (idG)(g) = idG(g) = g = idF (G)(g).
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(4) Let ϕ : G → H and ψ : H → K be group homomorphisms. We show that
F (ψ ◦ ϕ) = F (ψ) ◦ F (ϕ):

F (ψ ◦ ϕ)(g) = (ψ ◦ ϕ)(g) = ψ(ϕ(g))

F (ψ) ◦ F (ϕ)(g) = F (ψ)(F (ϕ)(g)) = F (ψ)(ϕ(g)) = ψ(ϕ(g)).

Example 2.5. Hom functors: Let C be a category and fix an object A in C.
We define a covariant functor FA : C → sets. For each object B in Ob(C), we

set FA(B) = MorC(A,B). For each morphism f : B → C in MorC(B,C), the law
of composition yields a function FA(f) : MorC(A,B) → MorC(A,C) by the rule
g 7→ f ◦ g; this is how we define FA(f) : FA(B)→ FA(C). The fact that iB ◦ g = g
for all G ∈ MorC(A,B) shows that FA(iB) = iFA(B). The associativity of the law of
composition justifies the functoriality of FA: FA(f ◦g) = FA(f)◦FA(g). In practice
we write HomC(A,−) = FA: HomC(A,B) = FA(B) and HomC(A, f) = FA(f).

We define a contravariant functor GA : C → sets. For each object B in Ob(C),
we set GA(B) = MorC(B,A). For each morphism f : B → C in MorC(B,C), the
law of composition yields a function GA(f) : MorC(C,A)→ MorC(B,A) by the rule
g 7→ g ◦ f ; this is how we define GA(f) : GA(C) → GA(B). In practice we write
HomC(A,−) = GA: HomC(A,B) = GA(B) and HomC(A, f) = GA(f).

Example 2.6. A “non-functor”: For each group G, let Z(G) denote the cen-
ter of G. We show that this operation cannot be made into a covariant functor
Z : gps → ab. Let h : Z/2Z → S3 be given by h(0) = (1) and h(1) = (1 2). This
is a group homomorphism. Let g : S3 → S3/A3 be the natural epimorphism, and
let f : S3/A3 → Z/2Z be the (unique) isomorphism. With f ′ = f ◦ g, we have
f ′ ◦ h = idZ/2Z.

Since Z/2Z is abelian, we have Z(Z/2Z) = Z/2Z. On the other hand, we have
seen that Z(S3) = {(1)}. Suppose that there is a covariant functor Z : gps → ab
such that Z(G) is the center of G for each group G. The homomorphisms f ′ and h
yield a commutative diagram in gps

Z/2Z h //

idZ/2Z ##HHHHHHHHH
S3

f ′

��
Z/2Z.

Since Z is a functor, we have a commutative diagram in ab

Z(Z/2Z)
Z(h) //

Z(idZ/2Z) &&LLLLLLLLLL
Z(S3)

Z(f ′)

��
Z(Z/2Z)

Z/2Z
Z(h) //

idZ/2Z ##HHHHHHHHH
{0}

Z(f ′)

��
Z/2Z.

Since the target of Z(h) is {0}, we have Z(h) = 0; and similarly, we have Z(f ′) = 0.
Hence, the functoriality of Z yields

idZ/2Z = Z(idZ/2Z) = Z(f ′ ◦ h) = Z(f ′) ◦ Z(h) = 0 ◦ 0 = 0.

This is a contradiction, and so there is no way to make Z into a functor.



CHAPTER 3

Ring Theory

1. Day 1

Definition 1.1. A ring is a nonempty set R with two binary operations “+”
and “·” such that (R,+) is an abelian group, (R, ·) is a semigroup, and (R,+, ·)
satisfies both distributive laws:

r(s+ t) = rs+ rt (r + s)t = st+ st.

A ring R is commutative if the multiplication · is commutative.
A ring R has identity if there is a (two-sided) multiplicative identity 1R ∈ R.

(Note that we do not assume the existence of multiplicative inverses.)
A field is a commutative ring with identity 1R 6= 0R such that every nonzero

element in R has a (two-sided) multiplicative inverse in R.

Example 1.2. Under the usual addition and multiplication of integers, Z is a
commutative ring with identity; it is not a field.

Under the usual addition and multiplication, Q, R, and C are fields.
Under the usual addition and multiplication of matrices, M2(R) is a ring with

identity that is not commutative. (More generally, this holds for Mn(R) where
n > 2 and R is any commutative ring with identity.)

Under the usual addition and multiplication of integers, 2Z is a commutative
ring without identity.

Example 1.3. Fix an integer n > 2. Define multiplication in Z/nZ by the
formula a · b = ab. (Note that this is well-defined.) Under the usual addition in
Z/nZ, this multiplication endows Z/nZ with the structure of a commutative ring
with identity. Furthermore, Z/nZ is a field if and only if n is prime. (Exercise.)

Proposition 1.4. Let R be a ring.

(a) The additive identity in R is unique.
(b) If R has (multiplicative) identity, then the multiplicative identity in R is

unique.
(c) For each r ∈ R, we have 0Rr = 0R = r0R.
(d) Assume that R has identity. Then R = {0R} if and only if 1R = 0R.

Proof. (a) and (b): Proposition 1.1.10.
(c) 0r = (0+0)r = 0r+0r =⇒ 0 = 0r. The other equality is verified similarly.
(d) The implication “ =⇒ ” is immediate. For “⇐= ” assume 1 = 0. For each

r ∈ R, we have r = 1r = 0r = 0. �

Example 1.5. Group rings: Let G be a group with operation written multi-
plicatively, and let R be a ring with identity. Let R[G] be the group R(G), written

53
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additively. The elements of R[G] are finite formal sums
∑
g∈G rgg with the rg ∈ R,

and addition is given by

(
∑
g∈G rgg) + (

∑
g∈G sgg) =

∑
g∈G(rg + sg)g.

Define multiplication on R[G] by the formula

(
∑
g∈G rgg)(

∑
h∈G shh) =

∑
g,h∈G(rgsh)(gh).

This is a ring with identity 1R[G] = 1ReG. The ring R[G] is commutative if and
only if R is commutative and G is abelian. (Exercise.)

Definition 1.6. Let R and S be rings. A function f : R → S is a homomor-
phism of rings or ring homomorphism if it respects the addition and multiplication
on the rings: for all r, r′ ∈ R, we have f(r+r′) = f(r)+f(r′) and f(rr′) = f(r)f(r′).

If R and S are rings with identity, then f is a homomorphism of rings with
identity if it is a ring homomorphism and f(1R) = 1S .

Example 1.7. When f : R→ S is a ring homomorphism and the rings R and
S both have identity, we may have f(1R) 6= 1S . For example, this is so for the ring
homomorphism f : R→M2(R) given by f(r) = ( r 0

0 0 ).

Example 1.8. Direct products of rings; see Definition 1.17.8. Let {Rλ}λ∈Λ be
a nonempty set of nonzero rings.

The product
∏
λRλ is a ring with addition and multiplication defined coordi-

natewise: (rλ) + (r′λ) = (rλ + r′λ) and (rλ)(r′λ) = (rλr′λ).
The product

∏
λRλ has identity if and only if each Rλ has identity. ⇐= : If

1Rλ ∈ Rλ is a multiplicative identity, then the sequence (1Rλ) is a multiplicative
identity for

∏
λRλ. =⇒ : If (rλ) is a multiplicative identity for

∏
λRλ, then rλ is

a multiplicative identity for Rλ.
Similarly, the product

∏
λRλ is commutative if and only if each Rλ is commu-

tative.

2. Day 2

Proposition 2.1. Let R be a ring and let r, s, t ∈ R.
(a) If r + s = r + t, then s = t.
(b) r has a unique additive inverse in R, denoted −r.
(c) −(−r) = r.
(d) (−r)s = −(rs) = r(−s).
(e) If R has identity, then (−1R)r = −r = r(−1R).
(f) (−r)(−s) = rs.
(g) For all a1, . . . , am, b1, . . . , bn ∈ R, we have

(
∑m
i=1 ai)(

∑n
j=1 bj) =

∑m
i=1

∑n
j=1 aibj .

Proof. (a) Exercise 1.1.14(a).
(b) Exercise 1.1.14(c).
(c) r + (−r) = 0, so r satisfies the defining property for −(−r). Now use

part (b).
(d) rs + (−r)s = (r + (−r))s = 0s = 0. This explains the first equality, and

the second one is explained similarly.
(e) −r = −(1r) = (−1)r by part (d). This explains the first equality, and the

second one is explained similarly.
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(f) (−r)(−s) = r(−(−s)) = rs.
(g) First, we show a(

∑n
j=1 bj) = (

∑n
j=1 abj) by induction on n: For n > 2, we

have

a(
∑n
j=1 bj) = a(b1 +

∑n
j=2 bj) = ab1 +a

∑n
j=2 bj) = ab1 +

∑n
j=2 abj) = (

∑n
j=1 abj).

Next, we show (
∑m
i=1 ai)(

∑n
j=1 bj) =

∑m
i=1

∑n
j=1 aibj by induction on m. The

base case m = 1 is in the previous paragraph. For m > 2, we have

(
∑m
i=1 ai)(

∑n
j=1 bj) = (a1 +

∑m
i=2 ai)(

∑n
j=1 bj)

= a1(
∑n
j=1 bj) + (

∑m
i=2 ai)(

∑n
j=1 bj)

=
∑n
j=1 a1bj +

∑m
i=2

∑n
j=1 aibj

=
∑m
i=1

∑n
j=1 aibj .

�

Definition 2.2. Let R be a ring. For r, s ∈ R, define r − s = r + (−s).
A subset S ⊆ R is a subring if it is a ring with respect to the addition, sub-

traction, and multiplication on R.

Example 2.3. nZ is a subring of Z.

Example 2.4. Let S = { ( r 0
0 r ) ∈M2(R)| r ∈ R} ⊂M2(R). Then S is a subring

of M2(R).

Remark 2.5. If S is a subring of R, then 0S = 0R as follows: s ∈ S =⇒ 0R =
s − s ∈ S, and since 0R is an additive identity on R it is also an additive identity
on S.

Example 2.6. Let S = { ( r 0
0 0 ) ∈M2(R)| r ∈ R} ⊂M2(R). Then S is a subring

of M2(R). Note that S and M2(R) are both rings with identity, but they do not
have the same identity.

Proposition 2.7. (Subring test) Let R be a ring and S ⊆ R a subset. Then
S is a subring of R if and only if it satisfies the following conditions:

(1) S 6= ∅;
(2) S is closed under the subtraction from R;
(3) S is closed under the multiplication from R.

Proof. Like the subgroup test, Proposition 1.4.2. �

Proposition 2.8. If f : R → T is a ring homomorphism, then Im(f) is a
subring of T .

Proof. Use the Subring Test as in the proof of Exercise 1.3.8(a). �

Definition 2.9. Let R be a ring. A subset I ⊆ R is a (two-sided) ideal if
(I,+) 6 (R,+) and, for all a ∈ I and all r ∈ R, we have ar ∈ I and ra ∈ I.
In particular, when I is a two-sided ideal of R, the quotient R/I is a well-defined
additive abelian group.

Example 2.10. For each integer n, the set nZ is a two-sided ideal in Z.
In Q, the set Z is a subring; it is not an ideal.
The only ideals of Q are {0} and Q. More generally, if k is a field, then the

only two-sided ideals of k are {0} and k. (Exercise.)
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Remark 2.11. If I is an ideal in R, then 0R ∈ I because s ∈ S =⇒ 0R =
s− s ∈ S.

Proposition 2.12. (Ideal test) Let R be a ring and I ⊆ R a subset. Then I
is an ideal of R if and only if it satisfies the following conditions:

(1) I 6= ∅;
(2) I is closed under the subtraction from R;
(3) For all r ∈ R and all a ∈ I, we have ra ∈ I and ar ∈ I.

Proof. Like the Subring Test. �

Proposition 2.13. If f : R → T is a ring homomorphism, then Ker(f) is an
ideal of R.

Proof. Use the Ideal Test as in the proof of Exercise 1.3.8(a). �

Proposition 2.14. Let R be a ring and I ⊆ R a two-sided ideal.

(a) Define a product on the quotient R/I by the formula r · s = rs. This is
well-defined and makes R/I into a ring.

(b) If R is commutative, then so is R/I.
(c) If R has identity 1R, then R/I has identity 1R/I = 1R.
(d) The natural map π : R→ R/I given by r 7→ r is a surjective ring homomor-

phism with kernel I.
(e) If R has identity, then π is a homomorphism of rings with identity.

Proof. (a) If r = r′ and s = s′, then r − r′, s− s′ ∈ I and so

rs− r′s′ = rs− r′s+ r′s− r′s′ = (r − r′)︸ ︷︷ ︸
∈I

s

︸ ︷︷ ︸
∈I

+ r′ (s− s′)︸ ︷︷ ︸
∈I︸ ︷︷ ︸
∈I︸ ︷︷ ︸

∈I

∈ I

which implies rs = r′s′. The remaining properties of R/I follow from the corre-
sponding properties for R. For instance, once half of distributivity:

r(s+ t) = r(s+ t) = rs+ rt = rs+ rt.

(b) See Exercises 2.
(c) 1r = 1r = r etc.
(d) π is a well-defined surjective additive abelian group homomorphism by

Example 1.4.1(a). And it is a ring homomorphism because π(rs) = rs = r · s =
π(r)π(s).

(e) 1R/I = 1R = π(1R). �

Proposition 2.15 (First Isomorphism Theorem). Let f : R → S be a ring
homomorphism.

(a) The function f : R/Ker(f) → Im(f) given by r 7→ f(r) is a well-defined
isomorphism of rings and so Im(f) ∼= R/Ker(f).

(b) f is a monomorphism if and only if Ker(f) = {0R}.

Proof. As in Exercise 1.3.8. �
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3. Day 3

Here is the ideal correspondence for quotients, and the third isomorphism the-
orem.

Theorem 3.1. Let R be a ring and I ⊆ R an ideal. Let π : R → R/I be the
ring epimorphism π(r) = r. There is a 1-1 correspondence

{ideals J ⊆ R | I ⊆ J} ←→ {ideals J ′ ⊆ R/I}

given by

J 7−→ J/I

π−1(J ′)←− [ J ′

If J is an ideal of R such that I ⊆ J , then the function τ : R/I → R/J given
by τ(r + I) = r + J is a well-defined ring epimorphism with Ker(τ) = J/I; in
particular, there is a (well-defined) ring isomorphism (R/I)/(J/I)

∼=−→ R/J .

Proof. As in Theorems 1.6.6 and 1.6.10. �

Example 3.2. Let n > 2. The ideals of Z/nZ are exactly the sets of the form
mZ/nZ = {a | m

∣∣a} for some m
∣∣n. And (Z/nZ)/(mZ/nZ) ∼= Z/mZ.

Here are three important ways to combine ideals.

Proposition 3.3. If {Iλ}λ∈Λ is a nonempty set of ideals in a ring R, then
∩λ∈ΛIλ is an ideal in R. In particular, if I, J are ideals of R, then so is I ∩ J .

Proof. As in Exercise 1.3.9. �

Example 3.4. If m,n ∈ Z, then mZ ∩ nZ = lcm(m,n)Z.

Definition 3.5. Let X be a subset of a ring R. The ideal generated by X is the
intersection of all ideals of R containing X; it is denoted (X). If X = {x1, . . . , xn},
then we write (X) = (x1, . . . , xn).

Proposition 3.6. Let X be a subset of a ring R.

(a) The set (X) is an ideal of R that contains X.
(b) (X) is the smallest ideal of R containing X.
(c) Assume that R has identity. Then

(X) = {finite sums of the form
∑
i

∑
j ai,jxibi,j | ai,j , bi,j ∈ R and xi ∈ X}.

In particular, if x ∈ R, then

(x) = {finite sums of the form
∑
j ajxbj | aj , bj ∈ R}.

(d) Assume that R is commutative and has identity. Then

(X) = {finite sums of the form
∑
i cixi | ci ∈ R and xi ∈ X}.

In particular, if x ∈ R, then

(x) = {cx | c ∈ R}.
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Proof. (a) The set of all ideals of R containing X is nonempty because R is
an ideal of R containing X. Now apply Proposition 3.3.

(b) If J is an ideal of R containing X, then J is one of the ideals in the
intersection defining (X). Hence (X) ⊆ J .

(c) For the first equality, set

I = {finite sums of the form
∑
i

∑
j ai,jxibi,j | ai,j , bi,j ∈ R and xi ∈ X}.

We need to show (X) = I.
“⊇” For each ideal J containing X, the fact that J is an ideal implies that

every finite sum of the form
∑
i

∑
j ai,jxibi,j is in J . In particular, every such sum

is in the intersection of all the ideals of R containing X. Hence, the containment.
“⊆” It is straightforward to show that I is an ideal of R. Because R has identity,

we have X ⊆ I. Hence, I is one of the ideals in the intersection defining (X), and
so (X) ⊆ I.

The second equality is a special case of the first one.
(d) The first equality follows from part (c) and the following computation:∑

i

∑
j ai,jxibi,j =

∑
i

∑
j(ai,jbi,jxi) =

∑
i(
∑
j ai,jbi,j︸ ︷︷ ︸
ci

)xi.

The first equality uses the commutativity of R, and the second one uses the gener-
alized distributive law from Proposition 2.1(g).

The second equality is a special case of the first one. �

Example 3.7. In Z, we have (n) = nZ. If m,n ∈ Z, then (m,n) = gcd(m,n)Z.

Definition 3.8. Let I1, . . . , In be ideals of a ring R. Their sum is∑
j Ij = I1 + · · ·+ In = {

∑
j aj | aj ∈ Ij , j = 1, . . . , n}.

In particular, for ideals I and J , we set

I + J = {a+ b | a ∈ I, b ∈ J}.

Proposition 3.9. Let I1, . . . , In be ideals of a ring R.
(a) The sum

∑
j Ij is an ideal of R.

(b) The sum
∑
j Ij contains Ik for each k = 1, . . . , n

(c) We have
∑
j Ij = (∪jIj). In particular,

∑
j Ij is the smallest ideal of R

containing ∪jIj.
(d) For ideals I, J,K in R, we have (I + J) +K == I + J +K = I + (J +K).

Proof. (a) Use the ideal test and the generalized distributive law.
(b) Use the fact that 0R ∈ Ik for each k.
(c) Let z ∈

∑
j Ij . Then there exist aj ∈ Ij such that z =

∑
j aj . Each

aj ∈ ∪jIj ⊆ (∪jIj), so the fact that (∪jIj) is closed under sums implies z =∑
j aj ∈ (∪jIj). Hence

∑
j Ij ⊆ (∪jIj).

For the reverse containment, note that
∑
j Ij ⊇ Il for each l, and therefore∑

j Ij ⊆ ∪jIj . Since (∪jIj) is the smallest ideal containing ∪jIj , it follows that∑
j Ij ⊇ (∪jIj).

The second statement follows from the first one by Proposition 3.6(b).
(d) This follows from the associativity and (generalized) commutativity of ad-

dition. �
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Example 3.10. In Z, we have mZ + nZ = (m,n) = gcd(m,n)Z.

Definition 3.11. Let I1, . . . , In be ideals of a ring R. Their product is∏
j Ij = I1 · · · In

= {finite sums of elements of the form a1 · · · an | aj ∈ Ij , j = 1, . . . , n}.

In particular, for ideals I and J , we set

IJ = {finite sums of elements of the form ab | a ∈ I, b ∈ J}.

4. Day 4

Proposition 4.1. Let I1, . . . , In be ideals of a ring R.
(a) The product

∏
j Ij is an ideal of R.

(b) We have
∏
j Ij = ({a1 · · · an | aj ∈ Ij , j = 1, . . . , n}). In particular,

∏
j Ij is

the smallest ideal of R containing the set {a1 · · · an | aj ∈ Ij , j = 1, . . . , n}.
(c) For ideals I, J,K in R, we have (IJ)K = I(JK) = IJK.
(d) If J is an ideal of R, then J(

∑
j Ij) =

∑
j(JIj) and (

∑
j Ij)J =

∑
j(IjJ).

(e) If R is commutative and σ ∈ Sn, then
∏
j Ij =

∏
j Iσ(j).

Proof. (a) Use the ideal test and the generalized distributive law.
(b) Let cj ∈ Ij for j = 1, . . . , n. Then

c1 · · · cn ∈ {a1 · · · an | aj ∈ Ij , j = 1, . . . , n}
⊆ ({a1 · · · an | aj ∈ Ij , j = 1, . . . , n}) = J.

Since ({a1 · · · an | aj ∈ Ij , j = 1, . . . , n}) is closed under finite sums, it follows that
every finite sum of elements of the form c1 · · · cn is in J . From the definition of∏
j Ij , we conclude

∏
j Ij ⊆ J .

On the other hand,
∏
j Ij is an ideal that contains each product c1 · · · cn with

cj ∈ Ij . Since J is the smallest such ideal, it follows that
∏
j Ij ⊇ J .

The second statement follows from the first one by Proposition 3.6(b).
(c) Check (IJ)K ⊆ IJK directly from the definitions using associativity of

multiplication. Check (IJ)K ⊇ IJK by showing that every generator of IJK is in
(IJ)K. The equality I(JK) = IJK is verified similarly.

(d) To show J(
∑
j Ij) ⊆

∑
j(JIj), show that every generator of J(

∑
j Ij) is in∑

j(JIj). For J(
∑
j Ij) ⊇

∑
j(JIj), show directly that every element of

∑
j(JIj)

is in J(
∑
j Ij) using the (generalized) distributive law. The equality (

∑
j Ij)J =∑

j(IjJ) is verified similarly.
(e) This follows similarly from the (generalized) commutative law. �

Example 4.2. If m,n ∈ Z, then (mZ)(nZ) = mnZ.

Definition 4.3. Let R be a ring and P ⊆ R an ideal. P is prime if P 6= R
and, for all ideals I, J ⊆ R, if IJ ⊆ P , then either I ⊆ P or J ⊆ P .

Example 4.4. 0Z is a prime ideal of Z. If 0 6= m ∈ Z, then mZ is a prime
ideal of Z if and only if m is a prime number. (These are the prototypes.)

Proposition 4.5. Let R be a ring and P ( R an ideal.
(a) Assume that, for all a, b ∈ R, if ab ∈ P , then either a ∈ P or b ∈ P . Then

P is prime.
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(b) If R is commutative and P is prime, then, for all a, b ∈ R, if ab ∈ P , then
either a ∈ P or b ∈ P .

Proof. (a) Let I, J ⊆ R be ideals such that IJ ⊆ P and I 6⊆ P . We need to
show that J ⊆ P . Let a ∈ I − P . For all b ∈ J , we have ab ∈ IJ ⊆ P ; since a 6∈ P ,
our hypothesis implies b ∈ P . Thus, J ⊆ P .

(b) Let a, b ∈ R and assume that ab ∈ P . Since P is an ideal, we have (ab) ⊆ P .
Since R is commutative, we have (a)(b) = (ab) ⊆ P ; Exercise. Since P is prime,
either (a) ⊆ P or (b) ⊆ P , and so either a ∈ P or b ∈ P . �

Definition 4.6. An integral domain is a nonzero commutative ring with iden-
tity such that, for all 0 6= a, b ∈ R we have ab 6= 0.

Example 4.7. Z is an integral domain. Every field is an integral domain, e.g.,
Q, R and C.

Proposition 4.8. Let R be a nonzero commutative ring with identity. An ideal
I ⊆ R is prime if and only if R/I is an integral domain.

Proof. “ =⇒ ” Assume that I is prime. Then I ( R and so R/I 6= 0. Also,
because R is commutative with identity, so is R/I. Let 0 6= a + I, b + i ∈ R/I.
Then a, b 6∈ I and so ab 6∈ I because I is prime. Hence (a+ I)(b+ I) = ab+ I 6= 0
and so R/I is an integral domain.

“⇐= ” Assume R/I is an integral domain. In particular, we have R/I 6= 0 and
so I ( R. Let a, b ∈ R− P . Then 0 6= a+ I, b+ I ∈ R/I. Since R/I is an integral
domain, we have 0 6= (a + I)(b + I) = ab + I and so ab 6∈ I. Proposition 4.5(a)
implies that I is prime. �

Definition 4.9. An ideal m ⊆ R is maximal if m 6= R and m is a maximal
element in the set of all proper ideals, partially ordered by inclusion. In other
words, m is maximal if and only if m 6= R and, for all ideals I ⊆ R, if m ⊆ I, then
either I = m or I = R.

Example 4.10. 0Z and 6Z are not maximal ideals of Z because 0Z ( 6Z (
3Z ( Z. In fact, mZ is maximal if and only if m is prime.

5. Day 5

Proposition 5.1. Let R be a nonzero ring with identity. For every ideal I ( R,
there is a maximal ideal m ( R such that I ⊆ m. In particular, R has at least one
maximal ideal.

Proof. Fix an ideal I ( R. We use Zorn’s Lemma to show that I is contained
in some maximal ideal m of R. Let A denote the set of all ideals J such that
I ⊆ J ( R. Partially order A by inclusion. Since I 6= R, we have I ∈ A and so
A 6= ∅. In order to be able to invoke Zorn’s lemma, we need to show that every
chain C in A has an upper bound in A.

Let K = ∪J∈CJ . We will be done once we show that K is an ideal of R such
that K 6= R. Indeed, then K ⊇ J ⊇ I for all J ∈ C and so K ∈ A and K is an
upper bound for C in A.

We use the ideal test to show that K is an ideal of R. Since 0 ∈ I ⊆ K, we
have K 6= ∅. Let a, a′ ∈ K = ∪J∈CJ . Then there are J, J ′ ∈ C such that a ∈ J
and a′ ∈ J ′. Since C is a chain, either J ⊆ J ′ or J ′ ⊆ J . Assume without loss of
generality that J ⊆ J ′. Then a, a′ ∈ J ′ and so a− a′ ∈ J ′ ⊆ K since J ′ is an ideal.
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Now let r ∈ R and b ∈ K. There is an ideal J ′′ ∈ C such that b ∈ J ′′. Since J ′′

is an ideal, we have rb ∈ J ′′ ⊆ K. Similarly, we see that br ∈ K, and so K is an
ideal.

Suppose K = R. Then 1R ∈ K. It follows that 1R ∈ J ′′′ for some J ′′′ ∈ C and
so J ′′′ = R by an exercise. This contradicts the fact that J ′′′ ∈ C.

Zorn’s Lemma implies that C has a maximal element m. It is straightforward
to check that m is a maximal ideal of R that contains I.

For the final statement, note that (0) 6= R and so (0) is contained in some
maximal ideal m′. Hence, R has at least one maximal ideal. �

Proposition 5.2. Let R be a nonzero commutative ring with identity.
(a) An ideal I is maximal if and only if R/I is a field.
(b) Every maximal ideal of R is prime.

Proof. (a) If I is maximal, then there are no ideals J such that I ( J ( R.
The ideal correspondence shows that R/I has only two ideals, I/I and R/I. Hence,
R/I is a field by an exercise.

Conversely, assume thatR/I is a field and let J be an ideal such that I ⊆ J ⊆ R.
Hence, J/I is an ideal of R/I. Since R/I is a field, the same exercise shows that
R/I has only two ideals, I/I and R/I. Hence, either J/I = I/I or J/I = R/I.
That is, either J = I or J = R, so I is maximal.

(b) If m ( R is a maximal ideal, then R/m is a field. Hence, R/m is an integral
domain and so m is prime. �

Proposition 5.3. Let R be a nonzero commutative ring with identity. Let
I ( R be an ideal and let π : R→ R/I be the ring epimorphism π(r) = r.

(a) There is a 1-1 correspondence

{prime ideals P ( R | I ⊆ P} ←→ {prime ideals P ′ ( R/I}

given by

P 7−→ P/I

π−1(P ′)←− [ P ′.

In other words, the ideal J/I ⊆ R/I is prime if and only if J is a prime ideal
of R.

(b) There is a 1-1 correspondence

{maximal ideals m ( R | I ⊆ m} ←→ {maximal ideals m′ ( R/I}

given by

m 7−→ m/I

π−1(m′)←− [ m′.

In other words, the ideal J/I ⊆ R/I is maximal if and only if J is a maximal
ideal of R.

Proof. (a) Using the ideal correspondence, it suffices to verify the last state-
ment. The ideal J/I ⊆ R/I is prime if and only if (R/I)/(J/I) ∼= R/J is an integral
domain, and this is so if and only if J is prime. The isomorphism comes from the
Third Isomorphism Theorem.
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(b) As in part (a), changing “prime” to “maximal” and “integral domain” to
“field”. �

Example 5.4. The prime ideals of Z/42Z are 2Z/42Z, 3Z/42Z, 7Z/42Z because
42 = (2)(3)(7). These are exactly the maximal ideals of Z/42Z as well.

Next: Chinese Remainder Theorem. But first, a lemma.

Lemma 5.5. Let R be a nonzero commutative ring with identity, and fix ideals
I1, . . . , In ⊆ R. If Ij + Ik = R for all j 6= k, then Ij + ∩k 6=jIk = R for all j.

Proof. We prove the case j = 1; the other cases are obtained by rearranging.
Assume without loss of generality that n > 3.

We prove that I1 + ∩lk=2Ik = R by induction on l. (The case l = n will give
the desired result.) The base case l = 2 holds by assumption. Assume l > 3 and
I1 + ∩l−1

k=2Ik = R. The induction hypothesis implies that there exist a ∈ I1 and
b ∈ ∩l−1

k=2Ik such that 1 = a + b. Our assumption implies that there exist a′ ∈ I1
and b′ ∈ Il such that 1 = a′ + b′. Since a, a′ ∈ I1, we have aa′, ab′, a′b ∈ I1 and so
aa′ + ab′ + a′b ∈ I1. Since b ∈ ∩l−1

k=2Ik we have bb′ ∈ ∩l−1
k=2Ik; and since b′ ∈ Il, we

have bb′ ∈ Il; hence bb′ ∈ ∩lk=2Ik Hence, we have

1 = 1 · 1 = (a+ b)(a′ + b′) = (aa′ + ab′ + a′b)︸ ︷︷ ︸
∈I1

+ bb′︸︷︷︸
∈∩lk=2Ik

∈ I1 + ∩lk=2Ik

and it follows that I1 + ∩lk=2Ik = R. �

Example 5.6. For instance, the lemma says that 3Z + (5Z ∩ 7Z) = Z because
3Z + 5Z = Z and 3Z + 7Z = Z.

Theorem 5.7 (Chinese Remainder Theorem, version 1). Let R be a nonzero
commutative ring with identity, and let I1, . . . , In be ideals of R.

(a) The function θ : R/(∩nj=1Ij)→
∏n
j=1R/Ij given by r 7→ (r+I1, . . . , r+In) is

well-defined. Furthermore, it is a 1-1 homomorphism of rings with identity.
(b) If Ij+Ik = R for all j 6= k, then θ is an isomorphism and ∩nj=1Ij =

∏n
j=1 Ij.

Proof. (a) The map Φ: R →
∏n
j=1R/Ij given by r 7→ (r + I1, . . . , r + In)

is a well-defined homomorphism of rings with identity. From the definition, it
follows that Ker(Φ) = ∩nj=1Ij . Hence, the result follows from the First Isomorphism
Theorem.

(b) For the first conclusion, it suffices to show that Φ is surjective. Let (r1 +
I1, . . . , rn + In) ∈

∏n
j=1R/Ij . For each j = 1, . . . , n, the previous lemma shows

that there exist aj ∈ Ij and bj ∈ ∩k 6=jIk such that rj = aj + bj . Since aj ∈ Ij , we
have rj + Ij = bj + Ij . For l 6= j, since bj ∈ ∩k 6=jIk ⊆ Il, we have bj + Il = 0 + Il.
With b = b1 + . . . + bn it follows that b + Ij = rj + Ij for each j, and so Φ(b) =
(r1 + I1, . . . , rn + In).

For the second conclusion, we argue by induction on n. The case n = 1 is
trivial, so assume that n > 2 and ∩n−1

j=1 Ij =
∏n−1
j=1 Ij . From the previous lemma,
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we know R = ∩n−1
j=1 Ij + In =

∏n−1
j=1 Ij + In, and so

∩nj=1Ij = (∩n−1
j=1 Ij) ∩ In

= (
∏n−1
j=1 Ij) ∩ In

= R[(
∏n−1
j=1 Ij) ∩ In]

= [
∏n−1
j=1 Ij + In][(

∏n−1
j=1 Ij) ∩ In]

= [
∏n−1
j=1 Ij ][(

∏n−1
j=1 Ij) ∩ In] + [In][(

∏n−1
j=1 Ij) ∩ In]

⊆ [
∏n−1
j=1 Ij ][In] + [In][(

∏n−1
j=1 Ij)]

⊆ [
∏n
j=1 Ij ] + [(

∏n
j=1 Ij)]

=
∏n
j=1 Ij .

From a homework exercise, we know
∏n
j=1 Ij ⊆ ∩nj=1Ij so we have equality. �

6. Day 6

Definition 6.1. If I is an ideal in R, we write a ≡ b (mod I) if a − b ∈ I.
This is an equivalence relation on R.

Corollary 6.2 (Chinese Remainder Theorem, version 2). Let R be a nonzero
commutative ring with identity, and let I1, . . . , In be ideals of R such that Ij+Ik = R
for all j 6= k. For all r1, . . . , rn ∈ R there exists b ∈ R such that b ≡ rj (mod Ij)
for j = 1, . . . , n. Furthermore, b is uniquely determined up to congruence modulo
the ideal ∩nj=1Ij =

∏n
j=1 Ij.

Proof. The first statement is a reformulation of the surjectivity of θ in the
previous theorem. The second statement corresponds to the injectivity of θ. �

The “traditional” Chinese Remainder Theorem is the special case where R = Z.
Note that the proof of Theorem 5.7(b) gives an algorithm for solving a system of
congruences.

Corollary 6.3 (Chinese Remainder Theorem, version 2). Let m1, . . . ,mn ∈ Z
such that gcd(mj ,mk) = 1 for each j 6= k. For all r1, . . . , rn ∈ Z there exists b ∈ Z
such that b ≡ rj (mod mj) for j = 1, . . . , n. Furthermore, b is uniquely determined
up to congruence modulo m = m1 · · ·mn. �

Here is one way that integral domains are like fields. Note that we are not
assuming that a has a multiplicative inverse.

Proposition 6.4. Let R be an integral domain. If a, b, c ∈ R such that ab = ac,
then either a = 0, then b = c.

Proof. ab = ac implies a(b − c) = 0. Since R is an integral domain, either
a = 0 or b− c = 0. �

Definition 6.5. Let R be a nonzero commutative ring with identity. An
element u ∈ R is a unit if it has a multiplicative inverse in R. An element p ∈ R is
prime if it is a nonzero nonunit and (p) is a prime ideal in R. An element q ∈ R is
irreducible if it is a nonzero nonunit and, q has only trivial factors, that is, for all
a, b ∈ R, if q = ab then either a or b is a unit.
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For elements a, b ∈ R, we say a is a factor of b or a divides b if there exists
c ∈ R such that b = ac; when a divides b, we write a

∣∣b.
An ideal I is principal if it can be generated by a single element, that is, if

there exists an element r ∈ R such that I = (r).

Example 6.6. The units in Z are ±1. The prime elements are exactly the
prime numbers (positive and negative), and same for the irreducible elements.

In a field, every nonzero element is a unit. Hence, a field has no prime elements
and no irreducible elements.

In Z/(6), the units are 1, 5 = −1; the prime elements are 2, 3, 4 = −2. The
element 2 is not irreducible because 2 = 2 · 4. The element 3 is not irreducible
because 3 = 3 · 3. The element 4 is not irreducible because 4 = 2 · 2.

Exercise 6.7. Let R be a nonzero commutative ring with identity, and let
a, b ∈ R. The following conditions are equivalent:

(a) a
∣∣b;

(b) b ∈ (a);
(c) (b) ⊆ (a).

Proposition 6.8. Let R be a nonzero commutative ring with identity. Let
x ∈ R be a nonzero nonunit. Then x is prime if and only if, for all a, b ∈ R, if
p
∣∣ab, then p

∣∣a or p
∣∣b.

Proof. From the characterization of prime ideals from Proposition 4.5: (p) is
prime if and only if for all a, b ∈ R, if ab ∈ (p), then either a ∈ (p) or b ∈ (p). Now
use Exercise 6.7. �

7. Day 7

Proposition 7.1. Let R be an integral domain. If p ∈ R is prime, then p is
irreducible.

Proof. Assume that p is prime, and suppose p = ab for some a, b ∈ R. Then
p
∣∣ab, so the fact that p is prime implies p

∣∣a or p
∣∣b. Assume p

∣∣a; we need to show
that b is a unit. Since p

∣∣a and a
∣∣p, we have (a) = (p) = (ab). Since R is an integral

domain, an exercise implies that b is a unit. �

Remark 7.2. Example 6.6 shows that the assumption “R is an integral do-
main” is necessary: In Z/(6), the element 2 is prime but not irreducible.

Example 7.3. Not every irreducible element is prime, even in an integral do-
main. To see this, let R[x2, x3] be the set of polynomials of the form a0 + a2x

2 +
a3x

3 + a4x
4 + · · · with a0, a2, a3, a4, . . . ∈ R. That is, R[x2, x3] is the set of all

polynomials with real-number coefficients and zero linear term. This is an integral
domain. (Use the subring test to show that R[x2, x3] is a subring of the ring of
polynomials R[x] with real number coefficients. Because R[x] is an integral domain,
it follows readily that R[x2, x3] is also an integral domain. We will deal with poly-
nomial rings more thoroughly below.) In R[x2, x3] the element x2 is irreducible,
but it is not prime. To see that x2 is not prime, note that x2x4 = x6 = x3x3 and
so x2

∣∣x3x3; however, x2 - x3 because x 6∈ R[x2, x3].
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Definition 7.4. Let R be an integral domain. If every nonzero nonunit of R
can be written as a (finite) product of prime elements, then R is a unique factoriza-
tion domain or UFD for short. If every ideal of R is principal, then R is a principal
ideal domain or PID for short.

Example 7.5. Z is a PID and a UFD. A field k is a PID and a UFD. We will
see below that every PID is a UFD, but not every UFD is a PID.

Proposition 7.6. Let R be an integral domain. Prime factorization in R is
unique up to order and multiplication by units: Let p1, . . . , pk, q1, . . . , qm be primes
elements of R such that p1 · · · pk = q1 · · · qm, then m = k and there is a permutation
σ ∈ Sk and there are units u1, . . . , uk in R such that pi = uiqσ(i) for i = 1, . . . , k.

Proof. We proceed by induction on k.
Base case: k = 1. We need to show m = 1, so suppose m > 1. Then

p1 = q1 · · · qm and so p1

∣∣qi for some i because p1 is prime. Reorder the qj to
assume p1

∣∣q1. Since q1

∣∣q1 · · · qm = p1, we also have q1

∣∣p1. Hence, we have (q1) =
(p1) = (q1q2 · · · qm) and so q2 · · · qm is a unit. This implies that some qj is a unit,
contradicting the fact that qj is prime.

Induction step. Assuming that p1 · · · pk = q1 · · · qm and k > 2, we have
p1

∣∣p1 · · · pk and so p1

∣∣q1 · · · qm. Since p1 is prime, p1

∣∣qj for some j. As above,
reorder the qi to assume p1

∣∣q1, and use the fact that q1 is prime to conclude that
p1 = u1q1 for some unit u1. It follows that p2 · · · pk = u−1

1 q2 · · · qm, so the rest of
the result follows by induction. �

Proposition 7.7. If R is a UFD, then every irreducible element of R is prime.

Proof. Fix an irreducible element x ∈ R. Since R is a UFD, we can write
x = p1 · · · pk where each pi ∈ R is prime. In particular, no pi is a unit. Suppose
k > 1. Then x = p1(p2 · · · pk). Since x is irreducible, either p1 is a unit or p2 · · · pk
is a unit. This contradicts the fact that no pi is a unit, so we must have k = 1.
That is x = p1 is prime. �

Here we reconcile our definition of UFD with Hungerford’s definition, which is
condition (iii).

Proposition 7.8. Let R be an integral domain. TFAE.

(i) R is a UFD;
(ii) Every irreducible element of R is prime, and every nonzero nonunit of R

can be written as a finite product of irreducible elements;
(iii) Every nonzero nonunit of R can be written as a finite product of irreducible

elements and such a factorization is unique up to order and multiplication
by units.

Proof. (ii) =⇒ (i) Definition of UFD.
(i) =⇒ (iii) This follows from the definition of UFD and Propositions 7.1

and 7.6.
(iii) =⇒ (ii) It suffices to show that every irreducible element x ∈ R is prime.

Suppose that a, b ∈ R and x
∣∣ab. We need to show that x

∣∣a or x
∣∣b. There is an

element c ∈ R such that ab = xc. If a = 0, then a = 0 = x0 =⇒ x
∣∣a. So assume

a 6= 0, and similarly assume b 6= 0. Note that this implies c 6= 0.
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If a is a unit, then b = x(a−1c) =⇒ x
∣∣b. So, assume that a is not a unit, and

similarly assume that b is not a unit. If c is a unit, then x = (c−1a)b; since x is
irreducible, either c−1a is a unit or b is a unit. That is, either a is a unit or b is a
unit, a contradiction.

Since a, b, c are nonzero nonunits, there are irreducible elements

a1, . . . , ak, b1, . . . , bl, c1, . . . , cm ∈ R
such that a = a1 · · · ak, b = b1 · · · bl and c = c1 · · · cm. The equation xc = ab implies

xc1 · · · cm = a1 · · · akb1 · · · bl.
The uniqueness condition for factorizations implies that x is a unit multiple of one
of the elements a1, . . . , ak, b1, . . . , bl. If x = ubi, then

b = b1 · · · bl = u−1b1 · · · bi−1(ubi)bi+1 · · · bl = u−1b1 · · · bi−1xbi+1 · · · bl
and so x

∣∣b. Similarly, if x = uaj , then x
∣∣a. Hence x is prime. �

8. Day 8

Example 8.1. Factorization into products of irreducibles is not unique if R is
not a UFD. For example, in the ring R[x2, x3], the elements x2, x3 are irreducible
and x2x2x2 = x3x3. Hence, the number of irreducible factors need not be the same,
and the factors need not be unit multiples of each other.

The next lemma says that every PID is noetherian. More on this later.

Lemma 8.2. Let R be a PID. Given a chain of ideals I1 ⊆ I2 ⊆ · · · ⊆ R, there
exists an integer N > 1 such that, for every n > N we have In = IN .

Proof. Each ideal Ij is principal, say Ij = (aj). As in the proof of Proposi-
tion 5.1, since the ideals Ij form a chain, the union I = ∪j>1Ij is an ideal of R.
Hence I = (a) for some a ∈ I = ∪j>1Ij , say a ∈ IN . For each n > N , we have

IN ⊆ In ⊆ I = (a) ⊆ IN
and so In = IN . �

We will see below that the converse to the next result fails: If k is a field, then
the polynomial ring k[x, y] is a UFD and not a PID.

Theorem 8.3. Every PID is a UFD.

Proof. Let R be a PID.
Step 1. Every irreducible element x ∈ R is prime; moreover, the ideal (x) is

maximal. Let I be an ideal such that (x) ⊆ I ⊆ R. There is an element a ∈ I such
that I = (a), and so (x) ⊆ (a). By an exercise, this means a

∣∣x, say x = ab. Since x
is irreducible, either a or b is a unit. If a is a unit, then I = (a) = R. If b is a unit,
then I = (a) = (ab) = (x). Thus, (x) is maximal. Proposition 5.2(b) implies that
(x) is prime, hence x is prime.

Step 2. Every nonzero nonunit y ∈ R has an irreducible factor. If y is irre-
ducible, then y is an irreducible factor of y and we are done. So, assume y is not
irreducible. Then y = y1z1 where y1, z1 are nonzero nonunits. If y1 is irreducible,
then it is an irreducible factor of y and we are done. So, assume y1 is not irre-
ducible. Then y1 = y2z2 where y2, z2 are nonzero nonunits. Continue this process,
writing yn = yn+1zn+1. Eventually, yn will be irreducible, as follows.
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Suppose yn = yn+1zn+1 for n = 1, 2, . . . where yi, zi are nonzero nonunits for
each i. Then yn+1

∣∣yn for each n, and so we have

(y1) ⊆ (y2) ⊆ (y3) ⊆ · · · .

By Lemma 8.2, we have (yN ) = (yN+1) for some N > 1. Since yN = yN+1zN+1,
this implies zN+1 is a unit, a contradiction.

Step 3. Every nonzero nonunit z ∈ R can be written as a finite product of
irreducible elements. By Step 2, we know that z has an irreducible factor z1, say
z = z1w1. If w1 is a unit, then z is irreducible and we are done. So, assume that w1

is a nonunit, necessarily nonzero because z 6= 0. Then w1 has an irreducible factor
z2, say w1 = z2w2. Continuing this process, we see that the argument of Step 2
implies that the process terminates in finitely many steps, yielding a factorization
z = z1 · · · zN with each zi irreducible.

Now apply Proposition 7.8 to conclude that R is a UFD. �

Definition 8.4. An integral domain R is a Euclidean domain or ED for short
if there exists a function ϕ : R− {0} → N satisfying the following property: for all
a, b ∈ R, if b 6= 0, then there exist q, r ∈ R such that a = bq+ r and either r = 0 or
ϕ(r) < ϕ(b).

Example 8.5. In Z let ϕ(n) = |n|. This is the division algorithm.

Theorem 8.6. Every ED is a PID.

Proof. Let R be an ED and fix an ideal 0 6= I ⊆ R. We need to find an
element b ∈ I such that I = (b). The set

{ϕ(a) | 0 6= a ∈ I}

is a nonempty subset of N and hence has a minimal element. That is, there is an
element 0 6= b ∈ I such that ϕ(b) 6 ϕ(c) for all c ∈ I.

Claim: I = (b). Since b ∈ I, we know I ⊇ (b). For the containment I ⊆ (b),
fix an element a ∈ I. By assumption, there exist q, r ∈ R such that a = bq + r
and either r = 0 or ϕ(r) < ϕ(b). Notice that a, bq ∈ I and so r = a − bq ∈ I. If
r 6= 0, then ϕ(r) < ϕ(b); however, the minimality of ϕ(b) implies ϕ(r) > ϕ(b), a
contradiction. Hence r = 0 and so a = bq ∈ (b). �

Remark 8.7. In summary, we have the following: ED
(8.6)
=⇒ PID

(8.3)
=⇒ UFD and

ED
Z[
√
−19/2]

6⇐= PID
k[x,y]

6⇐= UFD. We will see below that, if R is a UFD, then the poly-
nomial ring R[x1, . . . , xn] is a UFD. In particular, if k is a field, then k[x1, . . . , xn]
is a UFD. However, if n > 1, then R[x1, . . . , xn] is a PID if and only if R is a field
and n = 1 if and only if R[x1, . . . , xn] is an ED.

Exercise 8.8. Read about GCD’s in Hungerford: p. 140. See also Defini-
tion 13.1.

Now we formally treat polynomial rings.

Definition 8.9. Let R be a ring. We define the polynomial ring in one inde-
terminate over R as follows: Let R[x] denote the additive abelian group

R(N) = {(r0, r1, r2, . . .) | rj ∈ R for all j > 0 and rj = 0 for j � 0}.
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Hence, addition and subtraction are defined coordinatewise

(r0, r1, r2, . . .) + (s0, s1, s2, . . .) = (r0 + s0, r1 + s1, r2 + s2, . . .)

(r0, r1, r2, . . .)− (s0, s1, s2, . . .) = (r0 − s0, r1 − s1, r2 − s2, . . .)
0R[x] = (0R, 0R, 0R, . . .).

Define multiplication via the formula

(r0, r1, r2, . . .)(s0, s1, s2, . . .) = (c0, c1, c2, . . .)

where
cj =

∑j
i=0 risj−i =

∑
m+n=j rmsn.

Computations:

(0, . . . , 0, ri, ri+1, ri+2, . . . , rd, 0, . . .)(0, . . . , 0, sj , sj+1, sj+2, . . . , se, 0, . . .)

= (0, . . . , 0, risj , risj+1 + ri+1sj , risj+2 + ri+1sj+1 + ri+2sj , . . . , rdse, 0, . . .).

and
(r0, r1, r2, . . .)(s, 0, 0, . . .) = (r0s, r1s, r2s, . . .)

9. Day 9

Theorem 9.1. Let R be a ring.
(a) With the above operations, R[x] is a ring.
(b) The function f : R → R[x] given by f(r) = (r, 0, 0, . . .) is a monomorphism

of rings.
(c) R is commutative if and only if R[x] is commutative.
(d) R has identity if and only if R[x] has identity.
(e) R is an integral domain if and only if R[x] is an integral domain.

Proof. (a) We already know that R[x] is an additive abelian group, so it re-
mains to show that multiplication is well-defined, associative, and distributive. For
well-definedness, we only need to check closure. Fix (r0, r1, r2, . . .), (s0, s1, s2, . . .) ∈
R[x]. The element cj =

∑j
i=0 risj−i is a finite sum of products of elements of R

and, hence, is in R. And the above computation shows that cj = 0 for j � 0. The
proofs of associativity and distributivity are exercises.

(b) By definition, we have

f(r + s) = (r + s, 0, 0, . . .) = (r, 0, 0, . . .) + (s, 0, 0, . . .) = f(r) + f(s)

f(rs) = (rs, 0, 0, . . .) = (r, 0, 0, . . .)(s, 0, 0, . . .) = f(r)f(s).
To see that f is a monomorphism: f(r) = 0 if and only if (r, 0, 0, . . .) = (0, 0, 0, . . .)
if and only if r = 0.

(c) ( =⇒ ) Assume that R is commutative. Then∑
m+n=j

rmsn =
∑

m+n=j

smrn.

The left-hand side is the jth entry of the product (r0, r1, r2, . . .)(s0, s1, s2, . . .), and
the right-hand side is the jth entry of the product (s0, s1, s2, . . .)(r0, r1, r2, . . .).

( ⇐= ) Assume that R[x] is commutative. For r, s ∈ R, we have f(rs) =
f(r)f(s) = f(s)f(r) = f(sr). Since f is 1-1, this implies rs = sr.

(d) ( =⇒ ) Assume that R has identity 1. Then (1, 0, 0, . . .) is a multiplicative
identity for R[x]:

(1, 0, 0, . . .)(r0, r1, r2, . . .) = (1r0, 1r1, 1r2, . . .) = (r0, r1, r2, . . .)
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and similarly for (r0, r1, r2, . . .)(1, 0, 0, . . .).
( ⇐= ) Assume that R[x] has identity (e0, e1, e2, . . .). It follows that, for all

r ∈ R, we have

(r, 0, 0, . . .) = (r, 0, 0, . . .)(e0, e1, e2, . . .) = (re0, re1, re2, . . .)

and so re0 = r. Similarly, we have e0r = r and so e0 is a multiplicative identity for
R.

(e) ( =⇒ ) Assume that R is an integral domain. Then R is a nonzero
commutative ring with identity, and so the same is true of R[x]. Fix elements
0 6= (r0, r1, r2, . . .), (s0, s1, s2, . . .) ∈ R. Then there exist i, j > 0 such that ri 6= 0
and rm = 0 for all m < i and sj 6= 0 and sn = 0 for all n < j. Then, we have
risj 6= 0 and so

(r0, r1, r2, . . .)(s0, s1, s2, . . .)

= (0, . . . , 0, ri, ri+1, ri+2, . . .)(0, . . . , 0, sj , sj+1, sj+2, . . .)

= (0, . . . , 0, risj , risj+1 + ri+1sj , risj+2 + ri+1sj+1 + ri+2sj , . . . , rdse, 0, . . .)
6= 0

( ⇐= ) Assume that R[x] is an integral domain. Then R[x] is a nonzero
commutative ring with identity, and so the same is true of R. Suppose 0 6= r, s ∈ R.
Then f(r), f(s) 6= 0 and so

f(rs) = f(r)f(s) 6= 0

and so rs 6= 0. �

Remark 9.2. We frequently identify R with its image in R[x]. This yields
formulas like:

r(r0, r1, r2, . . .) = (rr0, rr1, rr2, . . .).

Here is a more familiar presentation:

Proposition 9.3. Let R be a ring with identity and set x = (0, 1, 0, 0, . . .) in
R[x].

(a) For each n > 1, we have xn = (0, 0, . . . , 0︸ ︷︷ ︸
n

, 1, 0, 0, . . .).

(b) For each r ∈ R and each n > 1, we have

rxn = (0, 0, . . . , 0︸ ︷︷ ︸
n

, r, 0, 0, . . .) = xnr.

(c) For each f ∈ R[x] there is an integer d > 0 and elements r0, r1, . . . , rd ∈ R
such that

f =
∑d
i=0 rix

i = r0 + r1x+ r2x
2 + · · ·+ rdx

d.

Proof. (a) Exercise. By induction on n.
(b) From part (a).
(c) We have

f = (r0, r1, r2, . . . , rd, 0, 0, . . .)

= r0(1, 0, 0, . . .) + r1(0, 1, 0, . . .) + · · ·+ rd(0, 0, . . . , 0, 1, 0, . . .)

= r0 + r1x+ r2x
2 + · · ·+ rdx

d.

�



70 3. RING THEORY

Definition 9.4. Let R be a ring. The polynomial ring in two indeterminates
over R is the ring

R[x, y] = R[x][y] or R[x1, x2] = R[x1][x2].

Inductively, the polynomial ring in n indeterminates over R is the ring

R[x1, . . . , xn] = R[x1, . . . , xn−1][xn].

The next result follows from the previous ones using induction on n. See also
Hungerford pp. 151-152.

Proposition 9.5. Let R be a ring and n > 1.
(a) R[x1, . . . , xn] is a ring.
(b) Assume that R has identity. Let f ∈ R[x1, . . . , xn]. For each element a =

(a1, . . . , an) ∈ Nn there is an element ra ∈ R such that ra = 0 for all but
finitely many a ∈ Nn and

f =
∑

a∈Nn rax
a1
1 · · ·xann .

(c) Assume that R has identity. The function f : R → R[x1, . . . , xn] given by
f(r) = rx0

1 · · ·x0
n is a monomorphism of rings.

(d) R is commutative if and only if R[x1, . . . , xn] is commutative.
(e) R has identity if and only if R[x1, . . . , xn] has identity.
(f) R is an integral domain if and only if R[x1, . . . , xn] is an integral domain.
(g) For each k such that 1 < k < n, there is an isomorphism R[x1, . . . , xn] ∼=

R[x1, . . . , xk][xk+1, . . . , xn].
(h) For each σ ∈ Sn there is an isomorphism R[x1, . . . , xn] ∼= R[xσ(1), . . . , xσ(n)].
(i) Assume that R has identity. For all r, s ∈ R and all a1, . . . , an, b1, . . . , bn ∈ N,

we have

(rxa1
1 · · ·xann )(sxb11 · · ·xbnn ) = rsxa1+b1

1 · · ·xan+bn
n .

�

10. Day 10

Definition 10.1. If S is a ring, then the center of S is

Z(S) = {s ∈ S | ss′ = s′s for all s′ ∈ S}.

Using the subring test, we see that the center Z(S) is a subring of S.
Let R be a commutative ring with identity. For each r ∈ R, set r0 = 1.
An R-algebra is a ring S with identity equipped with a homomorphism of rings

with identity f : R→ S such that Im(f) ⊆ Z(S).
Let S and T be R-algebras via the maps f : R → S and g : R → T . A homo-

morphism of R-algebras from S to T is a ring homomorphism h : S → T making
the following diagram commute.

R
f //

g
��@@@@@@@ S

∃!h
���
�
�

T

Note that, because f(1) = 1 and g(1) = 1, we have h(1) = 1.
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Example 10.2. Let R be a commutative ring with identity.
R is an R-algebra via the identity map R→ R.
The polynomial ring R[x1, . . . , xn] is an R-algebra via the natural map R →

R[x1, . . . , xn].
The ring Mn(R) of n× n matrices with entries from R is an R-algebra via the

map R→Mn(R) given by

r 7→ rIn =

( r 0 ··· 0
0 r ··· 0
...

...
. . .

...
0 0 ··· r

)
.

Here is the universal property for polynomial rings. It includes the prototype
for R-algebra homomorphisms. The maps h are often called evaluation homomor-
phisms: they are given by P (x1, . . . , xn) 7→ P (s1, . . . , sn).

Proposition 10.3. Let R be a commutative ring with identity, and let f : R→
R[x1, . . . , xn] be the natural map. Let S be an R-algebra via the homomorphism
g : R→ S. For each list s1, . . . , sn ∈ Z(S) there exists a unique homomorphism of
R-algebras h : R[x1, . . . , xn]→ S such that h(xi) = si for each i. In particular, the
following diagrams commute

R
f //

g

%%KKKKKKKKKKKK R[x1, . . . , xn]

∃!h
���
�
�

{x1, . . . , xn} //

((QQQQQQQQQQQQQQ
R[x1, . . . , xn]

��
S S

and S is an R[x1, . . . , xn]-algebra.

Proof. Define h by the following formula:

h(
∑

a∈Nn rax
a1
1 · · ·xann ) =

∑
a∈Nn g(ra)sa1

1 · · · sann

where a = (a1, . . . , an). The uniqueness of representation of polynomials shows
that this is well-defined. It is routine to check that h is a ring homomorphism with
the desired properties. For instance, the first diagram commutes because

h(f(r)) = h(rx0
1 · · ·x0

n) = g(r)s0
1 · · · s0

n = g(r)1s = g(r).

For the uniqueness of h, suppose that H : R[x1, . . . , xn] → S is another homomor-
phism of R-algebras such that H(xi) = si for each i. For each a ∈ Nn and each
ra ∈ R, we then have

H(raxa1
1 · · ·xann ) = H(f(ra))H(x1)a1 · · ·H(xn)an = g(ra)sa1

1 · · · sann = h(raxa1
1 · · ·xann ).

Since H preserves finite sums, it follows that

h(
∑

a∈Nn rax
a1
1 · · ·xann ) =

∑
a∈Nn g(ra)sa1

1 · · · sann = H(
∑

a∈Nn rax
a1
1 · · ·xann )

and so H = h. �

Corollary 10.4. Let R be a commutative ring with identity, and let f : R→
R[x1, . . . , xn] be the natural map. For each list r1, . . . , rn ∈ R there exists a unique
homomorphism of R-algebras h : R[x1, . . . , xn]→ r such that h(xi) = ri for each i.
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In particular, the following diagrams commute:

R
f //

id
%%KKKKKKKKKKKK R[x1, . . . , xn]

∃!h
���
�
�

{x1, . . . , xn} //

((QQQQQQQQQQQQQ
R[x1, . . . , xn]

��
R R.

Given a polynomial P = P (x1, . . . , xn) we write h(P ) = P (r1, . . . , rn). �

Proposition 10.5. Let R be a commutative ring with identity and let 0 6=
f, g ∈ R[x].

(a) If fg 6= 0, then deg(fg) 6 deg(f) + deg(g).
(b) If the leading coefficient of f is not a zero-divisor (e.g., if the leading co-

efficient of f is a unit or if R is an integral domain), then deg(fg) =
deg(f) + deg(g).

(c) If f + g 6= 0, then deg(f + g) 6 max{deg(f),deg(g)}.
(d) If deg(f) 6= deg(g), then f + g 6= 0 and deg(f + g) = max{deg(f),deg(g)}.

Proof. (a) and (b). Let d = deg(f) and e = deg(g). The computation of
Definition 8.9 shows that deg(fg) 6 d + e = deg(f) + deg(g). Furthermore, the
coefficient of xd+e in fg is the product of the leading coefficients of f and g. So,
equality holds if the product of the leading coefficients of f and g is nonzero.

(c) and (d) follow from similar computations. �

Here is the division algorithm for polynomial rings. As with the division algo-
rithm in Z, this is the key to all the factorization properties in R[x].

Theorem 10.6. Let R be a commutative ring with identity, and fix a polynomial
f = a0 + a1x+ · · ·+ anx

n ∈ R[x] such that an is a unit in R. For each polynomial
g ∈ R[x] there exist unique q, r ∈ R[x] such that g = qf + r and either r = 0 or
deg(r) < deg(f).

Proof. First, we deal with existence.
Because an is a unit in R, we may assume without loss of generality that an = 1.

We may also assume without loss of generality that f is not a constant polynomial.
In particular, we have deg(f) > 1.

If g = 0 or deg(g) < deg(f), then the polynomials q = 0 and r = g satisfy the
desired conclusions.

We assume that g 6= 0 and proceed by induction on d = deg(g). The base case
d = 0 follows from the previous paragraph, as do the cases d < deg(f). Therefore,
assume that d > deg(f) and that the result holds for all polynomials h ∈ R[x]
such that deg(h) < d. Let bd be the leading coefficient of g. Then the polynomial
h = g − bdxd−nf is either 0 or has deg(h) < d. Hence, the induction hypothesis
provides polynomials q1, r ∈ R[x] such that

q1f + r = h = g − bdxd−nf
and either r = 0 or deg(r) < deg(f). It follows that

g = [q1 + bdx
d−n]f + r

so the polynomials q = q1 + bdx
d−n and r satisfy the desired properties.

Now for uniqueness. Assume qf + r = g = q2f + r2 where (1) either r = 0 or
deg(r) < deg(f), and (2) either r2 = 0 or deg(r2) < deg(f). Then r−r2 = (q2−q)f .
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The leading coefficient of f is a unit. If q 6= q2, then r − r2 = (q2 − q)f 6= 0. In
particular, either r 6= 0 or r2 6= 0. If r, r2 6= 0, then Proposition 10.5 implies

deg(f) 6 deg(f) + deg(q2 − q) = deg((q2 − q)f)

= deg(r − r2) 6 max{deg(r),deg(r2)} < deg(f)

a contradiction. The cases where r = 0 or r2 = 0 similarly yield contradictions.
Thus, we have q = q2 and r − r2 = (q2 − q)f = 0 and so r = r2. �

Corollary 10.7 (Remainder Theorem). Let R be a commutative ring with
identity, and fix s ∈ R. For each polynomial g ∈ R[x] there exist unique q ∈ R[x]
such that g = q · (x− r) + g(s).

Proof. Apply the division algorithm. It suffices to show that r = g(s). Be-
cause either r = 0 or deg(r) < deg(x − s) = 1, we know that r is constant. The
evaluation homomorphism yields

g(s) = q(s)(s− s) + r(s) = 0 + r = r

as desired. �

11. Day 11

Definition 11.1. Let R be a commutative ring with identity and P ∈ R[x].
An element r ∈ R is a root of P if P (r) = 0.

Proposition 11.2. Let S be an integral domain and R ⊆ S a nonzero subring
such that R has identity.

(a) Then R is an integral domain and 1S = 1R.
(b) If 0 6= f ∈ R[x] and deg(f) = n, then f has at most n roots in S; in

particular, f has at most n roots in R.

The conclusions in this result fail if S is not an integral domain.

Proof. (a) It is straightforward to show that R is an integral domain. To see
that 1R = 1S , note that 1S1R = 1R = 1R1R, so that cancellation implies 1S = 1R.

(b) Proceed by induction on n = deg(f). If n = 0, then f is a nonzero constant
and therefore has no roots.

Inductively, assume that the result holds for polynomials of degree < n. If f
has no roots in S, then we are done. So assume that s ∈ S is a root of f . The
Remainder Theorem implies that there is a unique q ∈ S[x] such that f = (x− s)q.
By Proposition 10.5(b) we have deg(q) = deg(f) − 1 = n − 1 < n, and so the
induction hypothesis implies that q has at most n− 1 roots in S.

Let t ∈ S be a root of f . Since the map S[x] → S given by P 7→ P (t) is a
ring homomorphism, it implies that 0 = f(t) = (t − s)q(t). Since S is an integral
domain, either t− s = 0 or q(t) = 0. That is, either t = s or t is a root of q. Since
q has at most n− 1 roots, this implies that f has at most n roots. �

Example 11.3. Let R = R[x]/(x2) and set x = x + (x2) ∈ R. Then the
polynomial y2 ∈ R[y] has infinitely many roots, namely, every element of the form
λx for some λ ∈ R.
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Remark 11.4. Here is a word of warning. Let P ∈ R[x]. From calculus/college
algebra we know that P = 0 if and only if P (r) = 0 for all r ∈ R. This can fail if
R is replaced with an arbitrary ring R, even when R is a field.

For example, let p be a positive prime integer and set R = Z/pZ. It is a fact
that, for each n ∈ R, we have np = n. (This is called Fermat’s Little Theorem;
see Corollary 11.8.) In particular, every element of R is a root of the polynomial
xp − x, even though this polynomial is nonzero. This shows the importance of dis-
tinguishing between the polynomial P and the function R→ R given by evaluating
the polynomial P .

Note, however, that this is only a problem with finite fields as the following
can by shown relatively easily using Proposition 11.2(b): If k is an infinte field and
P ∈ k[x] has infinitely many roots in k, then P = 0.

Remark 11.5. Let R be a commutative ring with identity and set R× =
{units in R}. It is straightforward to show that R× is an abelian group under
multiplication. In particular, if k is a field, then k× = k − {0}.

Proposition 11.6. Let k be a field. Then any finite subgroup G 6 k× is cyclic.

Proof. Assume G 6= {1}. Then G is a finite abelian group, so the fundamental
theorem of finitely generated abelian groups implies that there exist (not necessarily
distinct) prime integers p1, . . . , pr > 2 and positive integers a1, . . . , ar such that
G ∼= ⊕ri=1Z/paii Z.

Note that G is written multiplicatively and the Z/paii Z are written additively.
Identify each Z/paii Z with a subgroup of ⊕ri=1Z/paii Z in the natural way. Note that,
under this identification, we have Z/paii Z∩Z/pajj Z = {0} when i 6= j. There are pi
distinct elements n ∈ Z/paii Z such that pin = 0, namely pai−1

i , 2pai−1
i , . . . , pip

ai−1
i =

0. Thus, there are pi elements g ∈ G such that gpi = 1.
Suppose that pi = pj for some i 6= j. The previous paragraph shows that there

are at least 2pi − 1 > pi elements g ∈ G such that gpi = 1. This shows that the
polynomial xpi−1 ∈ k[x] has more than pi roots, contradicting Proposition 11.2(b).

Thus, we have gcd(pi, pj) = 1 for all i 6= j, and it follows that

G ∼= ⊕ri=1Z/paii Z ∼= Z/(pa1
1 · · · parr )Z.

That is G is cyclic. �

Corollary 11.7. If p is a positive prime integer, then (Z/pZ)× ∼= Z/(p−1)Z.

Proof. The group (Z/pZ)× is cyclic and has exactly p− 1 elements. �

Corollary 11.8 (Fermat’s Little Theorem). Let p be a positive prime integer.
(a) For each n ∈ Z/pZ, we have np = n.
(b) In Z/pZ[x] we have

∏
n∈Z/pZ(x− n) = xp − x.

Proof. (a) The case where n = 0 is easy. For the remaining cases, use the
isomorphism (Z/pZ)× ∼= Z/(p − 1)Z: Since (p − 1)(n + (p − 1)Z) = 0 + (p − 1)Z,
this translates to np−1 = 1 for all n 6= 0 in Z/pZ, and so np = n.

(b) From part (a) we know that each element of Z/pZ is a root of the polynomial
xp − x ∈ Z/pZ[x]. Repeatedly apply the Remainder Theorem to write

xp − x = q
∏
n∈Z/pZ(x− n)
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for some q ∈ Z/pZ[x]. Proposition 11.2(b) shows that deg(q) = 0, and so q is a
constant. Multiplying out, we see that the product is monic, as q times the product,
and so we have q = 1. �

Definition 11.9. Let R be an integral domain. For each positive integer n
and each r ∈ R, recall that nr = r + · · ·+ r︸ ︷︷ ︸

n

.

For a polynomial f =
∑d
i=0 rix

i ∈ R[x] define the formal derivative of f to be
the polynomial

f ′ =
∑d
i=1 irix

i−1 = r1 + 2r2x+ 3r3x
2 + · · ·+ drdx

d−1.

The derivative is “formal” because no limits were involved.

Remark 11.10. Let R be an integral domain. It is straightforward to show
that formal differentiation satisfies the following properties: for all r ∈ R and all
f, g ∈ R[x] and all n > 0, we have

(rf)′ = rf ′ (f + g)′ = f ′ + g′

(fg)′ = f ′g + fg′ (fn)′ = nfn−1f ′

Remark 11.11. Let R be a commutative ring with identity. Let r ∈ R and
f ∈ R[x] with d = deg(f). From the Remainder Theorem we see that r is a root of
f if and only if (x− r)

∣∣f , that is, if and only if there exists a polynomial q ∈ R[x]
such that f = (x− r)q.

Assume that R is an integral domain and that r is a root of f . Hence the
Remainder Theorem implies that there exists a polynomial q ∈ R[x] such that
f = (x − r)q. Proposition 11.2(b) implies deg(q) = deg(f) − 1. This shows that
(x − r)d+1 - f , and so there exists an integer e > 1 such that (x − r)e

∣∣f and
(x − r)e+1 - f . The integer e is called the multiplicity of the root r of f . We say
that r is a simple root of f if e = 1; otherwise f is a multiple root of f .

Note that the above argument shows that e 6 d. Furthermore, the argument
of Proposition 11.2(b) shows the following: if R is a subring of an integral domain
S, then f has at most d roots in S counted with multiplicity. In other words, if
s1, . . . , sn ∈ S are the distinct roots of f in S and ei is the multiplicity of the root
si of f , then d >

∑
i ei.

Proposition 11.12. Let R and S be integral domains such that R is a subring
of S, and let s ∈ S. Then s is a multiple root of f if and only if f(s) = 0 = f ′(s).

Proof. Assume that s is a root of f . It suffices to show that s is a multiple
root of f if and only if f ′(s) = 0. Since s is a root of f , the Remainder Theorem
allows us to write f = (x − s)q for some q ∈ S[x]. (Notice that we are implicitly
using the fact that R[x] is a subring of S[x].) The product rule for formal derivatives
implies

f ′ = [(x− s)q]′ = q + (x− s)q′

and so f ′(s) = q(s). Thus, f ′(s) = 0 if and only if q(s) = 0; this is so if and only if
(x− s)

∣∣q which is so if and only if (x− s)2
∣∣f because f = (x− s)q. The last “iff”

uses the fact that S is an integral domain. �

Definition 11.13. Let K be a field. A subfield of K is a subring k ⊆ K such
that k is a field under the operations from K. When k is a subfield of K, we also
say that K is a field extension of k.
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Example 11.14. C is a field extension of R, and R is a field extension of Q.

Now we construct the field of quotients of an integral domain. It is modeled on
the construction of Q from Z. The elements of Q are of the form r/s where r, s ∈ Z
and s 6= 0.

Construction 11.15. Let R be an integral domain and consider the Cartesian
product R×(R−{0}). Define a relation on R×(R−{0}) as follows: (r, s) ∼ (r′, s′)
if and only if rs′ = r′s. This is an equivalence relation on R×(R−{0}), and the set
of equivalence classes is denoted Q(R). The equivalence class of an element (r, s) in
Q(R) is denoted r/s or r

s . If 0 6= t ∈ R, then the definition implies (r, s) ∼ (rt, st);
this translates to the cancellation formula rt

st = r
s .

For elements r/s, t/u ∈ Q(R), set

r

s
+
t

u
=
ru+ ts

su
and

r

s

t

u
=
rt

su
.

Proposition 11.16. With notation as in Construction 11.15:

(a) In Q(R), we have r/s = 0/t if and only if r = 0.
(b) In Q(R), we have r/s = t/t if and only if r = s.
(c) Q(R) is a field with 0Q(R) = 0R/1R and 1Q(R) = 1R/1R = r/r and (r/s)−1 =

s/r.
(d) The assignment f : R→ Q(R) given by r 7→ r/1 is a monomorphism of rings

with identity.

Proof. (a) r/s = 0/t if and only if rt = s0 if and only if r = 0; the last
equivalence is from the fact that R is an integral domain.

(b) r/s = t/t if and only if rt = st if and only if r = s; the last equivalence is
by cancellation.

(c) The main point is to show that the addition and multiplication on Q(R) are
well-defined; the other field-axioms are then easily verified. Assume that r/s = r′/s′

and t/u = t′/u′, that is, rs′ = r′s and tu′ = t′u. Then

ru+ ts

su
=

(ru+ ts)s′u′

(su)s′u′
=
rs′uu′ + tu′ss′

ss′uu′
=
r′suu′ + t′uss′

ss′uu′

=
(r′u′ + t′s)us

(u′s′)us
=
r′u′ + t′s

u′s′

so addition is well-defined. The equality rt
su = r′t′

s′u′ is even easier to verify, showing
that multiplication is well-defined.

We have the correct additive identity because

r

s
+

0
1

=
r1 + s0
s1

=
r

s

and the multiplicative identity is even easier. The other axioms showing that Q(R)
is a commutative ring with identity are straightforward but tedious.

To see that Q(R) is nonzero, we need to show 0/1 6= 1/1: this follows from
parts (a) and (c).

Finally, if r/s 6= 0/1 then r 6= 0 and so s/r ∈ Q(R). It is straightforward to
check that r

s
s
r = 1

1 , and so (r/s)−1 = s/r.
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(d) The function is well-defined. It is straightforward to show that it is a
homomorphism of rings with identity: for instance

r

1
+
r′

1
=
r1 + 1r′

1 · 1
=
r + r′

1
.

The fact that f is a monomorphism, follows from part (a). �

We generally identify R with its image in Q(R).

Example 11.17. Q(Z) ∼= Q.
If k is a field and we set k(x1, . . . , xn) = Q(k[x1, . . . , xn]), then k(x1, . . . , xn)

is a field extension of k. More generally, if k is a field and R is an integral domain
containing k as a subring, then Q(R) is a field extension of k.

We will see more field extension constructions later.

Definition 11.18. Let R be a commutative ring with identity. An element
r ∈ R is nilpotent if rn = 0 for some n > 1. An element s ∈ R is a zerodivisor if
there exists 0 6= t ∈ R such that st = 0.

Example 11.19. If r ∈ R is nilpotent, then r is a zerodivisor.
In Z/8Z, the element 2 is nilpotent.
In Z/6Z, the element 2 is a zerodivisor. Note that Z/6Z has no nonzero nilpo-

tent elements, so not every zerodivisor is nilpotent.
An R is an integral domain if and only if the only zerodivisor in R is 0. In

particular, the only nilpotent element element of an integral domain is 0.

12. Day 12

Exercise 12.1. Let R be a commutative ring with identity, and let f = a0 +
a1x+ · · ·+ adx

nd ∈ R[x].
(a) Show that f is nilpotent if and only if each ai is nilpotent.
(b) Show that f is a unit in R[x] if and only if a0 is a unit and a1, . . . , ad are

nilpotent. In particular, if k is a field, then the units of k[x] are precisely the
nonzero constant polynomials.

(c) Show that f is a zerodivisor in R[x] if and only if there exists an element
0 6= r ∈ R such that rai=0 for each i. for polynomials in n variables.

Theorem 12.2. Let k be a field and L ⊇ k a field extension. Let f ∈ k[x], and
assume that f is irreducible in k[x]. If f has a multiple root in L, then f ′ = 0.

Proof. Let a ∈ L be a multiple root of f , and suppose f ′ 6= 0. Proposi-
tion 11.12 implies f(a) = 0 = f ′(a). Notice that deg(f ′) < deg(f).

Claim: f ′ and f have no common factors in R[x], other than the units. To see
this, suppose that g

∣∣f ′ and g
∣∣f . Since g

∣∣f ′, we have deg(g) 6 deg(f ′) < deg(f).
Since g

∣∣f , we have f = gh. Because f is irreducible, either g is a unit or h is
a unit. If h were a unit, then it would be constant, that is deg(h) = 0 and so
deg(g) = deg(f), a contradiction. Hence, g is a unit.

Since k[x] is a PID and f, f ′ have no nontrivial common factors, we see that
(f, f ′) = (1). Hence, there are P,Q ∈ R[x] such that 1 = Pf + Qf ′. Then
1 = P (a)f(a) +Q(a)f ′(a) = 0, a contradiction. Hence, f ′ = 0. �

Example 12.3. If f ∈ Q[x] is irreducible, then f has no multiple roots in C.
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Definition 12.4. Let R be a UFD and 0 6= f = a0 +a1x+ · · ·+adxd ∈ R[x]. A
content of f is a greatest common divisor of {a0, a1, . . . , ad} in R. The polynomial
f is primitive if 1 is a content for f , that is, if the coefficients of f are relatively
prime.

Remark 12.5. Let R be a UFD and 0 6= f = a0 + a1x+ · · ·+ adx
d ∈ R[x].

Recall that greatest common divisors are not uniquely defined. Specifically,
if r and s are greatest common divisors of {a0, a1, . . . , ad} in R, then there is a
unit u ∈ R such that s = ur. Conversely, if r is a greatest common divisor of
{a0, a1, . . . , ad} in R and u ∈ R is a unit, then ur is a greatest common divisor of
{a0, a1, . . . , ad} in R.

We say that r, s ∈ R are associates if there is a unit u ∈ R such that s = ur.
Write r ≈ s when r and s are associates in R. The relation ≈ is an equivalence
relation, and the equivalence class of r under this relation is denoted [r]. By defi-
nition, [r] is the set of all unit multiples of r in R. Note that [r] = [1] if and only
if r is a unit in R.

If r, s are contents of f , then the above discussion implies [r] = [s], and we write
C(f) = [r]. (This notation is not standard. However, most books write C(f) = r
or C(f) ≈ r, which is not well defined.) Conversely, if r is a content for f and
[r] = [s], then s is a content for f . Also, if f is constant f = a0, then C(f) = [a0].

If r ≈ r1 and s ≈ s1, then rs ≈ r1s1. Hence, the assignment [r][s] = [rs] is
well-defined.

Exercise 12.6. Let R be a UFD and 0 6= f = a0 + a1x+ · · ·+ adx
d ∈ R[x].

(a) Show that C(tf) = [t]C(f) for each t ∈ R.
(b) Show that, if C(f) = [r], then there is a primitive polynomial g such that

f = rg.

The following few results are due to Gauss.

Lemma 12.7. Let R be a UFD and let 0 6= f, g ∈ R[x].
(a) If f and g are primitive, then so is fg.
(b) C(fg) = C(f)C(g).

Proof. (a) Assume that f and g are primitive and let C(fg) = [r]. We want
[r] = [1], that is, we want to show that r is a unit. Note that r 6= 0: since R is an
integral domain, so is R[s] and so fg 6= 0.

Suppose that r is not a unit. Since R is a UFD, this implies that r has a
prime factor p. The function τ : R[x] → (R/(p))[x] given by τ(

∑
i aix

i) =
∑
i aix

i

is a well-defined epimorphism of rings with identity. Check this using the universal
property for polynomial rings with the following diagram as your guide:

R //

��

R[x]

τ

���
�
�

R/(p) // (R/(p))[x].

Since p
∣∣r and C(fg) = [r], we see that p divides each coefficient of fg and so

τ(fg) = 0. On the other hand, since f is primitive, we know that p does not divide
at least one coefficient of f , and so τ(f) 6= 0. Similarly, we have τ(g) 6= 0. Since p
is prime, the ring R/(p) is an integral domain, and hence so is (R/(p))[x]. It follows
that 0 6= τ(f)τ(g) = τ(fg), a contradiction.



13. DAY 13 79

(b) Write C(f) = [r] and C(g) = [s]. Use Exercise 12.6(b) to find primitive
polynomials f1, g1 ∈ R[x] such that f = rf1 and g = sg1. Note that part (a) implies
C(f1g1) = [1]. This explains the third equality in the next sequence:

C(fg) = C((rs)(f1g1)) = [rs]C(f1g1) = [rs] = [r][s] = C(f)C(g).

The first equality is by our choice of f1 and g1; the second equality is by Exer-
cise 12.6(a); the remaining equalities are by definition. �

Lemma 12.8. Let R be a UFD and let 0 6= f, g ∈ R[x] and 0 6= r ∈ R.

(a) fg is primitive if and only if f and g are primitive.
(b) rf is primitive if and only if f is primitive and r is a unit.
(c) If f is irreducible in R[x], then f is either constant or primitive.

Proof. (a) (⇐= ) Lemma 12.7(a).
( =⇒ ) Assume that fg is primitive. With C(f) = [r] and C(g) = [s], we have

[1] = C(fg) = C(f)C(g) = [r][s] = [rs].

It follows that rs is a unit in R, and so r and s are units in R. Hence f and g are
primitive.

(b) This is the special case of part (a) where g = r.
(c) Assume that f is irreducible and not constant. Suppose C(f) = [r] where r

is not a unit in R. Then there exists a nonconstant primitive polynomial f1 ∈ R[x]
such that f = rf1. This gives a factorization of f as a product of two nonunits,
contradicting the assumption that f is irreducible. �

13. Day 13

This next stuff should all go before this primitive-business.

Definition 13.1. Let R be a UFD, and let r1, . . . , rn ∈ R, not all zero. An
element r ∈ R is a greatest common divisor (GCD) of {r1, . . . , rn} if (a) r

∣∣ri for
each i, and (b) if s ∈ R and s

∣∣ri for each i, then s
∣∣r; we write gcd(r1, . . . , rn) = [r].

We say that r1, . . . , rn are relatively prime if gcd(r1, . . . , rn) = [1].
An element t ∈ R is a least common multiple (LCM) of {r1, . . . , rn} if (a) ri

∣∣t for
each i, and (b) if s ∈ R and ri

∣∣s for each i, then t
∣∣s; we write lcm(r1, . . . , rn) = [t].

Lemma 13.2. Let R be a UFD, and let r0, . . . , rd ∈ R, not all zero.

(a) There are prime elements p1, . . . , pn ∈ R and elements u0, . . . , ud ∈ R×∪{0}
and ki,j ∈ N for i = 0, . . . , d and j = 1, . . . , n such that (1) [pj ] 6= [pj′ ] when
j 6= j′, and (2) ri = uip

ki,1
1 · · · pki,nn for each i. If ri = 0, we may take ui = 0

and ki,j = 0 for each j.
(b) With notation as in part (a), assume r0, r1 6= 0. Then r0

∣∣r1 if and only if
k0,j 6 k1,j for each j.

(c) With notation as in part (a), assume r0 6= 0. Then r0 is a unit if and only
if k0,j = 0 for each j.

(d) With notation as in part (a), set mj = min{ki,j | ri 6= 0}. Then the element
r = pm1

1 · · · pmnn ∈ R is a GCD for {r0, . . . , rd}.
(e) With notation as in part (a), set Mj = maxi{ki,j}. Then the element t =

pM1
1 · · · pMn

n ∈ R is an LCM for {r0, . . . , rd}.
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Proof. (a) Bookkeeping nightmare: Use the existence of prime factorizations
and the uniqueness of prime factorizations.

(b) “ =⇒ ” Assume r0

∣∣r1. We will show that k0,1 6 k1,1, by induction on k0,1.
(The other cases follow by commutativity of multiplication.)

The base case k0,1 = 0 is straightforward because k1,1 > 0.
So, assume that k0,1 > 1.
We will first show that k1,1 > 1. Our assumption implies p1

∣∣r0, and since r0

∣∣r1,
this implies p1

∣∣r1. Since p1 is prime, this implies p1

∣∣u1 or p1

∣∣pk1,jj for some j. Since

u1 is a unit, we have p1 - u1, and so p1

∣∣pk1,jj for some j. Then p
k1,j
j is not a unit,

and so k1,j > 1. It follows that p1

∣∣pj . Since pj is prime, it is irreducible, so its only
factors are the units and the unit multiples of pj . Since p1 is not a unit, we conclude
that [p1] = [pj ] and so 1 = j by assumption. In particular, we have k1,1 > 1.

Let r′0 = u0p
k0,1−1
1 · · · pk0,nn and r′1 = u0p

k1,1−1
1 · · · pk1,nn . Because pr′0 = r0

∣∣r1 =
pr′1, the fact that R is an integral domain implies that r′0 = r′1. By induction, we
conclude k0,1 − 1 6 k1,1 − 1, and so k0,1 6 k1,1.

“⇐= ” Assuming that k0,j 6 k1,j for each j, we have

r′1 = u−1
0 u1p

k1,1−k0,1
1 · · · pk1,n−k0,nn ∈ R

and

r0r
′
1 = u0p

k0,1
1 · · · pk0,nn u−1

0 u1p
k1,1−k0,1
1 · · · pk1,n−k0,nn = u1p

k1,1
1 · · · pk1,nn = r1

and so r0

∣∣r1.
(c) Write 1 = 1 · p0

1 · · · p0
n. Then r0 is a unit if and only if r0

∣∣1 if and only if
k0,j 6 0 for each j by part (b) if and only if k0,j = 0.

(d) First, we need to show that r
∣∣ri for each i. If ri = 0, then ri = 0 = r0 =⇒

t
∣∣ri. So, assume ri 6= 0. By assumption, we have ki,j > mj for each j, and so

part (b) implies r
∣∣ri.

Next, we need to assume that s ∈ R and s
∣∣ri for each i, and show s

∣∣r. Since
at least one ri 6= 0, we know s 6= 0. If s is a unit, then s

∣∣r easily. So, assume that s
is a nonunit. Write s = uql11 · · · q

lh
h where u is a unit, q1, . . . , qh ∈ R are prime and

l1, . . . , lh > 1 and [qj ] 6= [qj′ ] when j 6= j′.
Note that each qj

∣∣s and s
∣∣ri = uip

ki,1
1 · · · pki,nn and so qj

∣∣pj′ for some j′. Because
pj′ is irreducible and qj is not a unit, we conclude that qj is a unit multiple of pj′ .
Thus, after reordering the qj we may write s = vpl11 · · · plnn where v is a unit. Now,
the assumption

vpl11 · · · plnn = s
∣∣ri = uip

ki,1
1 · · · pki,nn

for each i such that ri 6= 0 implies lj 6 ki,j by part b, and so lj 6 mj . Another
application of part (b) implies s

∣∣r.
(e) Similar to part (d). �

Lemma 13.3. Let R be a UFD, and let r0, . . . , rd ∈ R, not all zero.
(a) Let r be a GCD for {r0, . . . , rd}. Then r′ is a GCD for {r0, . . . , rd} if and

only if r′ = ur for some u ∈ R×.
(b) Let t be a LCM for {r0, . . . , rd}. Then t′ is an LCM for {r0, . . . , rd} if and

only if t′ = ut for some u ∈ R×.
(c) With notation as in Lemma 13.2(d), the elements r0, . . . , rd are relatively

prime if and only if mj = 0 for each j.
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(d) If gcd(r0, . . . , rd) = [r], then ri/r ∈ R for all i and gcd(r0/r, . . . , rd/r) = [1].

Proof. (a) “ =⇒ ” Assume that r′ is a GCD for {r0, . . . , rd}. Since r is also
a GCD for {r0, . . . , rd}, we have r

∣∣r′ and r′
∣∣r. Hence, [r] = [r′] because R is a

domain.
“⇐= ” Assume r′ = ur where u is a unit. Since r

∣∣ri for all i, we have r′ = ur
∣∣ri

for all i. Also, if s
∣∣ri for all i, then s

∣∣r and r
∣∣r′, so s

∣∣r′. Thus r′ is a GCD for
{r0, . . . , rd}.

(b) Similar to part (a).
(c) Let r be as in Lemma 13.2(d). Then gcd(r0, . . . , rd) = [r]. If r0, . . . , rd are

relatively prime if and only if gcd(r0, . . . , rd) = [1] if and only if [r] = [1] if and only
if r is a unit if and only if each mj = 0 by Lemma 13.2(c).

(d) For each i, we have r
∣∣ri, so we write ri = rr′i for some r′i ∈ R. The

cancellation property shows that r′i is the unique element of R with this property
(in fact, it is the unique element of Q(R) with this property) and so we write
ri/r = r′i.

In the notation of Lemma 13.2, write ri = uip
ki,1
1 · · · pki,nn for each i and r =

upm1
1 · · · pmnn ∈ R. Then ri/r = uiu

−1p
ki,1−m1
1 · · · pki,n−mnn for each i. For each i

and j where ri 6= 0, we have ki,j > mj , and so ki,j −mj > 0. And for each j, there
is an i such that ri 6= 0 and ki,j = mj . It follows that min{ki,j−mj | ri/r 6= 0} = 0
for each j, and so p0

1 · · · p0
n = 1 is a GDC for {r0/r, . . . , rd/r}. �

14. Day 14

Lemma 14.1. Let R be a UFD and set K = Q(R).
(a) Each element of K can be written in the form a/b so that a and b are relatively

prime.
(b) Let 0 6= a/b ∈ K with a, b ∈ R. In the notation of Lemma 13.2 write

a = upk11 · · · pknn and b = vpl11 · · · plnn . Then a/b ∈ R if and only if kj > lj for
all j.

(c) Given elements a0
b0
, a1
b1
, . . . , adbd ∈ K, there exists an element 0 6= b ∈ K such

that baibi ∈ R for each i and gcd(ba0
b0
, ba1
b1
, . . . , badbd ) = [1].

(d) Given elements a0, a1, . . . , ad ∈ R such that gcd(a0, a1, . . . , ad) = [1], if c ∈ K
such that cai ∈ R for each i, then c ∈ R.

Proof. (a) Let c/d ∈ K with c, d ∈ R. If c/d = 0 then c/d = 0/1 has the
desired form. Assume that c/d 6= 0 and let [r] = gcd(c, d). (Essentially, we will
“divide the top and bottom” of c

d by gcd(c, d) in order to put the fraction in the
desired form.) Then a = c/r and b = d/r are elements of R, and Lemma 13.3(d)
implies gcd(a, b) = [1]. Furthermore, ab = ar

br = c
d .

(b) Write c = a/b and note that our assumptions imply

c =
a

b
= vw−1pk1−l11 · · · pkn−lnn .

“ ⇐= ” If kj > lj for all j, then kj − lj > 0 and so the above display implies
a/b ∈ R.

“ =⇒ ” Assume c = a/b ∈ R, and suppose that kj < lj for some j. Reorder
the pj to assume that k1 − l1, . . . , kt − lt < 0 and kt+1 − lt+1, . . . , kn − ln > 0. The
displayed equality implies

pl1−k11 · · · plt−ktt c = vw−1p
kt+1−lt+1
t+1 · · · pkn−lnn .
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Since p1 divides the left-hand side, it divides the right-hand side. Thus, p1

∣∣pj for
some j > 1, contradicting our assumption [p1] 6= [pj ].

(c) We use the notation of Lemma 13.2: There are prime elements p1, . . . , pn ∈
R and elements u0, . . . , ud, v0, . . . , vd ∈ R× ∪ {0} and ki,j , li,j ∈ N for i = 0, . . . , d
and j = 1, . . . , n such that (1) [pj ] 6= [pj′ ] when j 6= j′, and (2) ai = uip

ki,1
1 · · · pki,nn

and bi = vip
li,1
1 · · · pli,nn for each i. If ai = 0, we may take ui = 0, vi = 1 and

ki,j = 0 = li,j for each j. Furthermore,
ai
bi

= uiv
−1
i p

ki,1−li,1
1 · · · pki,n−li,nn ∈ K.

Write Mj = maxi{li,j − ki,j} and set

b = pM1
1 · · · pMn

n .

It follows that we have

b
ai
bi

= uiv
−1
i p

M1+ki,1−li,1
1 · · · pMn+ki,n−li,n

n .

To finish the proof we have two things to show.
baibi ∈ R for each i. For this, it suffices to show Mj + ki,j − li,j > 0 for each j.

This inequality follows from the fact that Mj > li,j − ki,j .
gcd(ba0

b0
, ba1
b1
, . . . , badbd ) = [1]. For this, it suffices to show, for each j, there is an

i such that Mj +ki,j − li,j = 0; then apply Lemma 13.3(c). Fix j and choose i such
that Mj = li,j − ki,j . This i works.

(d) Write c = r/s so that gcd(r, s) = [1]. Assume without loss of generality that
r/s 6= 0. There are prime elements p1, . . . , pn ∈ R and elements u0, . . . , ud, v, w ∈
R× ∪ {0} and ki,j , lj ,mj ∈ N for i = 0, . . . , d and j = 1, . . . , n such that (1)
[pj ] 6= [pj′ ] when j 6= j′, and (2) ai = uip

ki,1
1 · · · pki,nn for each i and r = vpl11 · · · plnn

and s = wpm1
1 · · · pmnn . If ai = 0, we may take ui = 0 and ki,j = 0 for each j. Note

that, for each j, either lj = 0 or mj = 0 or both. We have

c =
r

s
= vw−1pl1−m1

1 · · · pln−mnn

and, for each i

cai =
r

s
ai = vw−1uip

ki,1+l1−m1
1 · · · pki,n+ln−mn

n

The proof will be complete once we show lj > mj for each j. Our assumption
cai ∈ R implies ki,j + lj −mj > 0 for each i, j by part (b); that is lj > mj − ki,j .
The assumption gcd(a0, a1, . . . , ad) = [1] implies that, for each j there is an i such
that ki,j = 0. This choice of i yields lj > mj − 0 = mj . �

15. Day 15

Exercise 15.1. Let R be a UFD. If a, b, c ∈ R and a
∣∣bc and gcd(a, b) = [1],

then a
∣∣c.

Lemma 15.2. Let R be a UFD and set K = Q(R). Let 0 6= f ∈ K[x].
(a) There exists an element 0 6= b ∈ Q(R) such that bf ∈ R[x] and C(bf) = [1].
(b) If c ∈ K and 0 6= F ∈ R[x] is primitive such that cF ∈ R[x], then c ∈ R.
(c) If h ∈ R[x] is primitive and fh ∈ R[x], then f ∈ R[x].
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Proof. (a) Write f = a0
b0

+ a1
b1
x+ · · ·+ ad

bd
xd with each ai, bi ∈ R and bi 6= 0.

Lemma 14.1(c) shows that there exists an element b ∈ K such that baibi ∈ R for
each i and gcd(ba0

b0
, ba1
b1
, . . . , badbd ) = [1]. In particular, we have bf ∈ R[x] and

C(bf) = [1].
(b) Write F = a0 +a1x+ · · ·+adx

d. Since gcd(a0, a1, . . . , ad) = [1] and cai ∈ R
for each i, Lemma 14.1(d) implies that c ∈ R.

(c) Write g = fh ∈ R[x] and set [r] = C(g). Let g1 ∈ R[x] be primitive such
that g = rg1. Use part (a) to find an element 0 6= c ∈ Q(R) such that cf ∈ R[x]
and C(cf) = [1]. Then (cr)g1 = cg = (cf)h ∈ R[x] and the fact that g1 is primitive
implies cr ∈ R. Hence

[cr] = [cr]C(g1) = C(crg1) = C((cf)h) = C(cf)C(h) = [1][1] = [1]

and it follows that cr is a unit in R. Write cr = u. In K, it follows that c−1 =
ru−1 ∈ R and so

f = c−1︸︷︷︸
∈R

(cf)︸︷︷︸
∈R[x]

∈ R[x]

as desired. �

Theorem 15.3. Let R be a UFD with quotient field K = Q(R). Let f ∈ R[x]
be primitive. Then f is irreducible in R[x] if and only if it is irreducible in K[x].

Proof. (⇐= ) Assume that f is irreducible in K[x], and suppose that f = gh
with g, h ∈ R[x] ⊆ K[x]. Since f is irreducible in K[x], either g or h is a unit in
K[x]. Using Exercise 12.1(b), we conclude that either g or h is a constant. By
symmetry, assume that g is constant, say g = r ∈ R. By Lemma 12.8(b), since
rh = f which is primitive, we know that r is a unit in R, and so g is a unit in R[x].

( =⇒ ) Assume that f is not irreducible in K[x]. We will show that f is not
irreducible in R[x].

If f is a unit in K[x], then it is constant say f = r. Since f is primitive in
R[x], we have [1] = C(f) = [r]. Hence r is a unit in R and so f = r is a unit in
R[x]. Thus, in this case, f is not irreducible in R[x].

Assume that f is not a unit in K[x]. Since f is nonzero and is not irreducible,
there exist nonconstant polynomials g, h ∈ K[x] such that f = gh.

Lemma 15.2(a) implies that there is an element 0 6= b ∈ K such that bh ∈ R[x]
and C(bh) = [1], that is, h1 = bh is primitive. Write g1 = 1

b g ∈ K[x] so that we
have f = gh = (1

b g)(bh) = g1h1. Lemma 15.2(c) implies g1 ∈ R[x]. That is, we
have written f = g1h1 where g1, h1 are nonconstant polynomials in R[x]. Hence f
is not irreducible in R[x]. �

Theorem 15.4. If R is a UFD, then R[x] is a UFD.

Proof. Set K = Q(R).
We first show that every nonzero nonunit f ∈ R[x] can be written as a product

of irreducible polynomials in R[x]. Since f is a nonzero nonunit, set C(f) = [c] and
find a primitive polynomial f1 ∈ R[x] such that f = cf1.

Since K[x] is a UFD, we can write f1 = p1 · · · pm where each pi ∈ K[x] is
irreducible. Arguing as in Lemma 15.2(c), we can use Lemma 15.2(a) find elements
0 6= b1, . . . , bm ∈ K such that each qi = bipi is a primitive polynomial in R[x] and
f1 = q1 · · · qm. Notice that bi is a unit in K[x], so each qi is irreducible in K[x].
Hence, Theorem 15.3 implies that each qi is irreducible in R[x].
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Since R is a UFD, either c is a unit or a product of irreducible elements of R. If
c is a unit, then f = cf1 = (cq1)q2 · · · qm is a factorization of f in R[x] into a product
of irreducibles. If c is not a unit, then there are irreducible elements r1, . . . , rk ∈ R
such that c = r1 · · · rk. It is straightforward to show that each ri is irreducible in
R[x]: the only way factor a constant polynomial over an integral domain is with
constant factors. Hence f = cf1 = r1 · · · rkq1 · · · qm is a factorization of f in R[x]
into a product of irreducibles.

Next we show that an irreducible element f ∈ R[x] is prime. Lemma 12.8(c),
implies that f is either primitive or constant. If f is constant, then the fact that
it is irreducible in R[x] implies that it is irreducible in R. Since R is a UFD, f is
then prime in R. It is straightforward to show that this implies that f is prime in
R[x]: since f is prime in R, the ring R/fR is an integral domain, and hence so is
(R/fR)[x] ∼= R[x]/(fR[x]).

Assume that f is primitive. Note that f is irreducible in K[x] by Theorem 15.3.
Hence, the fact that K[x] is a UFD implies that f is prime in K[x]. Let g, h ∈ R[x]
such that f

∣∣gh in R[x]. It follows that f
∣∣gh in K[x], and so either f

∣∣g or f
∣∣h in

K[x] because f is prime in K[x]. Assume that f
∣∣g in K[x] and write g = fg1 for

some g1 ∈ K[x]. Arguing as in Theorem 15.3, we see that g1 is in R[x], and so f
∣∣g

in R[x], as desired. �

Corollary 15.5. If R is a UFD, then R[x1, . . . , xn] is a UFD.

Proof. Induction on n. �

16. Day 16

Theorem 16.1 (Rational Root Theorem). Let R be a UFD with K = Q(R).
Let f = a0 + a1x + · · · + adx

d ∈ R[x] and assume that r = a/b ∈ K is a root of f
with gcd(a, b) = [1]. Then a

∣∣a0 and b
∣∣ad. In particular, if f is monic, then r ∈ R.

Proof. We have

0 = f(a/b)

= a0 + a1(a/b) + · · ·+ ad(a/b)d

0 = a0b
d + a1ab

d−1 + · · ·+ ad−1a
d−1b+ ada

d

ada
d = −(a0b

d + a1ab
d−1 + · · ·+ ad−1a

d−1b)

= −b(a0b
d−1 + a1ab

d−2 + · · ·+ ad−1a
d−1)

and so b
∣∣adad. Because gcd(a, b) = [1], Exercise 15.1 implies b

∣∣ad.
Similarly, we have

a0b
d = −(a1ab

d−1 + · · ·+ ad−1a
d−1b+ ada

d)

= −a(a1b
d−1 + · · ·+ ad−1a

d−2b+ ada
d−1)

and so a
∣∣a0b

d and a
∣∣a0.

If f is monic, then ad = 1 and so b
∣∣1. This implies that b is a unit, so r =

ab−1 ∈ R. �

Example 16.2. The only possible roots of 3x7 − 7x+ 2 in Q are ±1,±2,±1/3
or ±2/3.
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Lemma 16.3. Let R be an integral domain, and let P ⊂ R be a prime ideal.
Let f ∈ R[x] be monic, and let f be the polynomial in R/P [x] obtained by reducing
the coefficients of f modulo P . If f is irreducible in R/P [x], then f is irreducible
in R[x].

Proof. Observe first that R/P [x] is an integral domain. Since f is monic, so
is f , and deg(f) = deg(f). Since f is irreducible and monic, we have deg(f) > 0.
Suppose that f = gh for some g, h ∈ R[x]. Since R is an integral domain, we know
that the leading coefficient of f is the product of the leading coefficients of g and
h. Since f is monic, it follows that the the leading coefficients of g and h are units.

It follows that the leading coefficients of g and h are units, and deg(g) = deg(g)
and deg(h) = deg(h). Since f is irreducible, we conclude that either g or h is a
unit in R/P [x]. Assume by symmetry that g is a unit. Since R/P is an integral
domain, this implies that g is a constant, and so deg(g) = deg(g) = 0. That is, g
is a constant, necessarily equal to its leading coefficient, which is a unit. It follows
that g is a unit in R[x], so that f is irreducible. �

Definition 16.4. Let I be an ideal in a ring R. Set I0 = R, I1 = I, and
inductively In+1 = IIn for n > 1.

Proposition 16.5. Let R be a UFD with quotient field K = Q(R), and let
P ⊂ R be a prime ideal. Let f = anx

n + · · · + a0 ∈ R[x] with n > 1, and assume
that a0, . . . , an−1 ∈ P and a0 6∈ P 2 and an 6∈ P . Then f is irreducible in K[x]. If
f is primitive, then f is irreducible in R[x].

Proof. Case 1: f is primitive. By Gauss’ Lemma, it suffices to show that f
is irreducible in R[x]. Write f = gh for some g, h ∈ R[x]. We need to show that
either g or h is a unit in R[x]. Set k = deg(g) and l = deg(h).

Case 1a: k = 0. Then g = b0 is constant. Since f = gh = b0h is primitive,
Lemma 12.8(b) implies that b0 is a unit in R, and so g is a unit in R[x].

Case 1b: l = 0. Similar to Case 1a.
Case 1c: k, l > 1. Write g = bkx

k + · · ·+ b0 and h = clx
l + · · ·+ c0. Since R is

an integral domain, we have n = k + l. Our assumptions on the ai imply

bkclx
n + · · ·+ b0c0 = gh = anx

n 6= 0.

in R/P [x]. It follows that 0 6= an = bkcl = bkcl in R/P . Hence bkcl 6∈ P and so
bk, cl 6∈ P . Let r, s be the smallest integers such that r 6 k and s 6 l and br 6∈ P
and cs 6∈ P .

Suppose that r + s = n. Since r 6 k and s 6 l, this implies r = k and s = l,
and so b0, . . . , bk−1, c0, . . . , cl−1 ∈ P . It follows that g = bkx

k and h = clx
l. It

follows that b0, c0 ∈ P and so a0 = b0c0 ∈ P 2, a contradiction.
Thus, we have r + s < n. It follows that

0 = ar+s =
∑
i+j=r+s bicj .

For i < r, we have bi = 0 by the choice of r and so bicj = 0. Similarly, for j < s,
we have bicj = 0. It follows that

brcs = −
∑

i+j=r+s,i6=r

bicj = 0

in R/P . Since P is a prime ideal, it follows that either br ∈ P or cs ∈ P , a
contradiction.
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Case 2: f is not primitive. By assumption, we have an 6∈ P and so an 6= 0
and deg(f) = n > 1. Set C(f) = [c]. For each i, set a∗i = ai/c ∈ R, and set
f∗ = a∗nx

n + · · · + a∗0 ∈ R[x]. It follows that f∗ is primitive, ca∗i = ai for each i
and cf∗ = f . In particular, since ca∗n = an 6∈ P , we have c, a∗n 6∈ P . For i < n, we
have ca∗i = ai ∈ P ; since P is prime and c 6∈ P , this implies a∗i ∈ P . Furthermore,
if a∗0 ∈ P 2, then a0 = ca∗0 ∈ P 2, a contradiction. In particular, it follows that f∗

satisfies the hypotheses of the result. By Case 1, it follows that f∗ is irreducible
in K[x]. The fact that f = cf∗ is a unit multiple of f∗ in K[x], implies that f is
irreducible in K[x]. �

Corollary 16.6 (Eisenstein’s Criterion). Let R be a UFD with quotient field
K = Q(R), and let p ∈ R be a prime element. Let f = anx

n + · · ·+ a0 ∈ R[x] with
n > 1, and assume that p

∣∣ai for i = 0, . . . , n− 1 and p2 - a0 and p - an. Then f is
irreducible in K[x]. If f is primitive, then f is irreducible in R[x].

Proof. Use the prime ideal P = (p) in Proposition 16.5. �

Example 16.7. The polynomial x42 − 37 is irreducible in Q[x] and in Z[x],
using p = 37.

Example 16.8. Let p > 2 be a prime number. Then the cyclotomic polynomial
f = xp−1 + xp−2 + · · · + 1 is irreducible in Q[x] and in Z[x], as follows. It is
straightforward to show that (x − 1)f = xp − 1 and so f = (xp − 1)/(x − 1). It
follows that

f(x+ 1) =
(x+ 1)p − 1
(x+ 1)− 1

=
xp +

(
p
1

)
xp−1 + · · ·+

(
p
i

)
xp−i + · · ·+

(
p
p−1

)
x

x

= xp−1 +
(
p

1

)
xp−2 + · · ·+

(
p

i

)
xp−i−1 + · · ·+

(
p

p− 1

)
.

Now, recall that p
∣∣(p
i

)
whenever 1 < i < p, and furthermore that

(
p
p−1

)
= p. It

follows from Eisenstein’s criterion that f(x + 1) is irreducible over Q and over Z,
and it is straightforward to show that this implies that f is irreducible over Q and
over Z as well.



CHAPTER 4

Module Theory I

1. Day 1

Definition 1.1. Let R be a ring. A (left) R-module is an additive abelian
group M equipped with a map R ×M → M (denoted (r,m) 7→ rm) such that
(r+ s)m = rm+ sm, r(m+ n) = rm+ rn, and (rs)m = r(sm) for all r, s ∈ R and
all m,n ∈M .

If R has identity, then a left R-module M is unital if 1m = m for all m ∈M .
If k is a field, then a k-vector space is a unital left k-module.

Example 1.2. An abelian group is the same as a unital Z-module.

Example 1.3. Let R be a ring. The additive abelian group Rn, consisting of
all column vectors of size n with entries in R, is an R-module via the following
action

r

s1

...
sn

 =

rs1

...
rsn


The set of m × n matrices with entries in R is denoted Mm,n(R). It is also an
R-module, with similar coordinate-wise action.

Assume that R has identity. For j = 1, . . . , n let ej ∈ Rn be the vector with
ith entry δi,j . (We call ej the jth standard basis vector of Rn.) In this case the
R-modules Rn and Mm,n(R) are unital.

Example 1.4. Let R be a ring, and let I ⊆ R be an ideal. Then I is an
R-module via the multiplication from R. In particular, R is an R-module. Also,
the quotient R/I is an R-module via the action rs := rs. (Check that this is well-
defined. The other properties are straightforward.) If R has identity, then I and
R/I are unital R-modules. Note that I does not need to be a two-sided ideal here.

Remark 1.5. The previous examples motivate module theory, in that it gives
a unification of the theory of abelian groups, the theory of vector spaces, the theory
of ideals and the theory of quotients by ideals.

Example 1.6. Let R be a ring, and let {Mλ}λ∈Λ be a set of R-modules. Then
the abelian groups

∏
λMλ and ⊕λMλ are R-modules via the coordinate-wise action

r(mλ) = (rmλ). (See Remark 1.8 to see why ⊕λMλ is closed under this action.) If
R has identity and each Mλ is unital, then

∏
λMλ and ⊕λMλ are unital.

Example 1.7. Let ϕ : R → S be a ring homomorphism. Then S is an R-
module via the following action: rs := ϕ(r)s. If ϕ is a homomorphism of rings
with identity, then this action makes S into a unital R-module. (Note that this
subsumes part of Example 1.4.)

87
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More generally, if M is an S-module, then M has a well-defined R-module
structure defined by rm := ϕ(r)m. If ϕ is a homomorphism of rings with identity
and M is a unital S-module, then this action makes M into a unital R-module.

In particular, if I ⊂ R is a two-sided ideal and M is an R/I-module, then M
is an R-module via the action rm := rm. In particular (R/I)n is an R-module; it
is unital when R has identity.

Other examples include:
(R[x1, . . . , xm])n is an R-module. It is unital when R has identity.
If R is an integral domain with quotient field K = Q(R), then Kn is a unital

R-module.

Remark 1.8. Let R be a ring and M an R-module. The following properties
are straightforward to show:

r0M = 0M for all r ∈ R;
0Rm = 0M for all m ∈M ;
(−r)m = −(rm) = r(−m) for all r ∈ R and all m ∈M ;
n(rm) = (nr)m = r(nm) for all n ∈ Z, all r ∈ R and all m ∈M .

Definition 1.9. Let R be a ring and let M and N be R-modules. An additive
group homomorphism f : M → N is an R-module homomorphism if f(rm) = rf(m)
for all r ∈ R and all m ∈ M . An R-module homomorphism is a monomorphism if
it is 1-1; it is an epimorphism if it is onto; and it is an isomorphism if it is 1-1 and
onto.

The set of all R-module homomorphisms M → N is denoted HomR(M,N).
The category of R-modules and R-module homomorphisms is denoted RM.

If R is a field and M and N are R-vector spaces, then f : M → N is a linear
transformation if it is an R-module homomorphism.

Example 1.10. Let G and H be abelian groups with the natural Z-module
structure. A function f : G → H is a Z-module homomorphism if and only if it is
a group homomorphism.

Example 1.11. Let R be a ring, and let M and N be R-modules. The zero
map M → N given by m 7→ 0 is an R-module homomorphism. The identity
map idM : M → M given by m 7→ m is an R-module homomorphism. When R
is commutative, for each r ∈ R, the multiplication map µr : M → M given by
m 7→ rm is an R-module homomorphism. The map µr is called a homothety.

2. Day 2

Example 2.1. Let R be a commutative ring with identity. Let Rn and Rm

have the natural R-module structure. There is a bijection Φ: HomR(Rn, Rm) →
Mm,n(R). Given an R-module homomorphism f : Rn → Rm, the associated matrix
Φ(f) is the matrix whose jth column is f(ej). To see that this is a bijection, we
define an inverse Ψ: Mm,n(R)→ HomR(Rn, Rm). Given anm×nmatrix (ai,j) with
entries in R, the corresponding R-module homomorphism Ψ(ai,j) is the function
f : Rn → Rm given by matrix multiplication f(v) = (ai,j)v.

In particular, the set HomR(R,R) is in bijection with R. That is, the R-
module homomorphisms f : R → R are exactly the homotheties µr : R → R given
by s 7→ rs.
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Example 2.2. Let R be a ring and I ⊂ R a two-sided ideal. Let M and N
be R/I-modules, and consider them as R-modules via ϕ. Then HomR(M,N) =
HomR/I(M,N). In other words f : M → N is an R-module homomorphism if and
only if it is an R-module homomorphism.

Assume thatR/I is commutative. Then there is an equality HomR(R/I,R/I) =
HomR/I(R/I,R/I) which is naturally identified with R/I. That is, the R-module
homomorphisms f : R/I → R/I are exactly the homotheties µr : R/I → R/I given
by s 7→ rs = rs.

Example 2.3. Let ϕ : R → S be a ring homomorphism. If we give S the
R-module structure induced by ϕ, then this makes ϕ into an R-module homomor-
phism.

Let M and N be S-modules and consider them as R-modules via ϕ. Then
HomS(M,N) ⊆ HomR(M,N), but we may not have equality; that is, every S-
module homomorphism M → N is also an R-module homomorphism, but not
necessarily vice versa.

For instance, let S = R[x] and let ϕ : R → R[x] be the natural inclusion. The
function f : R[x] → R[x] given by

∑
i aix

i 7→ a0 is an R-module homomorphism
but is not an R[x]-module homomorphism.

Proposition 2.4. Let R be a ring, M an R-module and Λ a set. Given a
subset {mλ}λ∈Λ, the map f : R(Λ) →M given by (rλ) 7→

∑
λ rλmλ is a well-defined

R-module homomorphism.

Proof. It is straightforward to show that f is a well-defined additive group
homomorphism. It is an R-module homomorphism because

f(r(rλ)) = f((rrλ)) =
∑
λ(rrλ)mλ =

∑
λ r(rλmλ) = r(

∑
λ rλmλ) = rf(rλ)

�

Definition 2.5. Let R be a ring and let M be an R-module. A R-submodule
of M is an additive subgroup N ⊆ M such that, for all r ∈ R and all n ∈ N , we
have rn ∈ N . If k is a field and M is a k-vector space, then a k-submodule of M
is called a k-subspace.

Example 2.6. Let G be an abelian group considered as a unital Z-module. A
subset H ⊆ G is a Z-submodule of G if and only if it is a subgroup.

Example 2.7. Let R be a ring and let M and N be R-modules. The subsets
{0} ⊆ M and M ⊆ M are R-submodules. If f ∈ HomR(M,N), then Ker(f) ⊆ M
and Im(f) ⊆ N are R-submodules. If N ′ ⊆ N is an R-submodule, then f−1(N ′) ⊆
M is an R-submodule. If M ′ ⊆ M is an R-submodule, then f(M ′) ⊆ N is an
R-submodule.

Assume that R is commutative. If r ∈ R, then (0 :M r) = {m ∈ M | rm =
0} ⊆ M is an R-submodule, and rM = {rm | m ∈ M} ⊆ M is an R-submodule.
This follows from the previous paragraph because the homothety µr : M → M is
an R-module homomorphism.

Example 2.8. Let R be a ring considered as an R-module via its internal
multiplication. A subset I ⊆ R is an R-submodule if and only if it is a left ideal.

Example 2.9. Let R be a ring, and let {Mλ}λ∈Λ be a set of R-modules. Then
⊕λMλ ⊆

∏
λMλ is an R-submodule.
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Example 2.10. Let R be a ring and I ⊂ R a two-sided ideal. Let M be an
R/I-module, and consider M as an R-module via the natural surjection R→ R/I.
Then the R/I-submodules of M are exactly the R-submodules of M . In particular,
the R-submodules of R/I are exactly the left ideals of R/I, that is, the set of all
quotients J/I where J is a left ideal of R such that I ⊆ J .

Example 2.11. Let ϕ : R → S be a ring homomorphism, and let M be an
S-module. Consider M as an R-module via ϕ. Then every S-submodule of M is
an R-submodule, but not vice versa.

For instance, let S = R[x] and let ϕ : R→ R[x] be the natural inclusion. Then
R ∼= Im(ϕ) ⊂ R[x] is an R-submodule but is not an R[x]-submodule.

Remark 2.12. Let R be a ring and M an R-module. If R has identity and M
is unital, then every submodule of M is unital.

Example 2.13. Let R be a ring and M an R-module. If {Mλ}λ∈Λ is a set of R-
submodules of M , then ∩λMλ is an R-submodule of M ; it is also an R-submodule
of Mµ for each µ ∈ Λ.

Definition 2.14. Let R be a ring, M an R-module and X ⊆M a subset. The
submodule of M generated by X or spanned by X, denoted (X), is the intersection
of all submodules of M containing X. If X = {x1, . . . , xn}, then we write (X) =
(x1, . . . , xn). If (X) = M , then we say that X generates or spans M as an R-
module.

If M has a finite generating set, then it is finitely generated. If M can be
generated by a single element, then it is cyclic.

If {Mλ}λ∈Λ is a set of submodules of M , then (∪λMλ) is denoted
∑
λMλ.

3. Day 3

Remark 3.1. LetR be a ring, M anR-module, andX ⊆M a subset. Then (X)
is the smallest submodule of M containing X. The R-module M has a generating
set, namely M itself.

Example 3.2. Let G be an abelian group with the natural unital Z-module
structure. The Z-submodule of G generated by a subset X is equal to the subgroup
generated by X. In particular G is generated by X as an Z-module if and only if
it is generated by X as an abelian group.

Example 3.3. If R is a ring and M is an R-module, then (∅) = {0}.
Example 3.4. If R is a ring with identity, then Rn = (e1, . . . , en).

Example 3.5. Let R be a ring and I ⊂ R a two-sided ideal. Let M be
an R/I-module with the R-module structure coming from the natural surjection
R→ R/I. For each subset X ⊆M , the R-submodule of M generated by X equals
the R/I-submodule of M generated by X. In particular M is generated by X as
an R-module if and only if it is generated by X as an R/I-module.

Proposition 3.6. Let R be a ring with identity and M a unital R-module.
(a) Let X ⊆M . There is an equality

(X) = {
∑finite
x∈X rxx | rx ∈ R, x ∈ X}.

The function f : R(X) → (X) given by
∑finite
x rxex 7→

∑finite
x rxx is a well-

defined R-module epimorphism.
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(b) For each m1, . . . ,mn ∈M , we have

(m1, . . . ,mn) = {
∑n
i=1 rimi | r1, . . . , rn ∈ R}

and the function f : Rn → (m1, . . . ,mn) given by

(
r1
...
rn

)
7→
∑n
i=1 rimi is a

well-defined R-module epimorphism.
(c) Given a set {Mλ}λ∈Λ of submodules of M , there is an equality∑

λMλ = {
∑finite
λ mλ | mλ ∈Mλ}

and the function f : ⊕λ Mλ →
∑
λMλ given by (mλ) 7→

∑
λmλ is a well-

defined R-module epimorphism.

Proof. (a) Set N = {
∑finite
x rxx | rx ∈ R, x ∈ X}. It is straightforward to

show that N is an R-submodule of M containing X, and so (X) ⊆ N . For the
reverse containment, we have x ∈ X ⊆ (X) for each i; since (X) is an R-module,
we have rxx ∈ (X) for each rx ∈ R and furthermore

∑finite
x rxx ∈ (X). This shows

(X) ⊇ N and so (X) = N .
The function f is a well-defined R-module homomorphism by Proposition 2.4,

and it is surjective by the description of (X).
Part (b) is a special case of (a) using X = {m1, . . . ,mn}. Part (c) is proved

like (a). �

Example 3.7. Let R be a ring with identity and let f : M → N be a homo-
morphism of unital R-modules. If M = (X), then f(M) = (f(X)). More generally,
for each subset X ⊆M , we have f((X)) = (f(X)).

Example 3.8. Let ϕ : R → S be a ring homomorphism. Let M be an S-
module with the R-module structure coming from ϕ. For each subset X ⊆M , the
R-submodule of M generated by X is contained in the S-submodule of M generated
by X, however they may not be equal.

For instance, let R be a commutative ring with identity. The R-submodule of
R[x] generated by 1 is R, and the R[x]-submodule of R[x] generated by 1 is R[x].

Proposition 3.9. Let R be a ring, M an R-module and N ⊆ M an R-
submodule. The quotient group M/N has a well-defined R-module structure via
the action r(m+N) := (rm)+N . If M is unital, then M/N is unital. The natural
surjection π : M →M/N is an R-module homomorphism with Ker(π) = N .

Proof. First, show that the action is well-defined: Let r ∈ R and m,m′ ∈M
such that m+N = m′ +N . Then m−m′ ∈ N and so rm− rm′ = r(m−m′) ∈ N
which implies rm+N = rm′ +N .

The R-module axioms for M/N now follow from the R-module axioms for M .
For instance, associativity:

r(s(m+N)) = r(sm+N) = r(sm) +N = (rs)m+N = (rs)(m+N).

The distributive laws are verified similarly. When R has identity and M is unital,
it follows similarly that M/N is unital.

The fact that π is an R-module homomorphism is proved next:

π(rm) = (rm) +N = r(m+N) = rπ(n).

The equality Ker(π) = N was shown in Chapter 1. �
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Proposition 3.9 gives one of the best ways to construct R-modules.

Example 3.10. Let R be a commutative ring with identity, and let (ai,j) ∈
Mm,n(R). The matrix (ai,j) determines an R-module homomorphism f : Rn → Rm.
It follows that Im(f) ⊆ Rm is an R-submodule, namely the submodule generated
by the columns of (ai,j), and so Rm/ Im(f) is an R-module. Proposition 4.1 shows
that, in a sense, this is the only way to construct R-modules.

Proposition 3.11. Let R be a ring, f : M → N an R-module homomorphism,
and M ′ ⊆ Ker(f) an R-submodule.

(a) There is a unique R-module homomorphism f : M/M ′ → N making the fol-
lowing diagram commute

M
π //

f
##FFFFFFFFF M/M ′

∃!f
���
�
�

N

that is, such that f(m+M ′) = f(m).
(b) We have Im(f) = Im(f) and Ker(f) = Ker(f)/M ′.
(c) f is onto if and only if f is onto.
(d) f is 1-1 if and only if M ′ = Ker(f).
(e) f is an isomorphism if and only if f is onto and M ′ = Ker(f). In particular,

Im(f) ∼= M/Ker(f).

Proof. (a) Chapter 1 shows that there is a unique group homomorphism
making the diagram commute, so we need only show that f is an R-module homo-
morphism:

f(r(m+M ′)) = f(rm+M ′) = f(rm) = rf(m) = rf(m+M ′).

(b)–(e) These follow from Chapter 1 because they do not depend on the R-
module structure. �

4. Day 4

Proposition 4.1. Let R be a ring with identity and M a unital R-module.
(a) There is a set Λ and an R-module epimorphism π : R(Λ) → M . If M is

finitely generated, then Λ can be chosen to be finite.
(b) There are sets Λ and Γ and an R-module homomorphism f : R(Γ) → R(Λ)

such that M ∼= R(Λ)/ Im(f). If M is finitely generated, then Λ can be chosen
to be finite.

Proof. (a) Let Λ be a generating set for R, which exists by Remark 3.1. Note
that, if M is finitely generated, then Λ can be chosen to be finite. Proposition 3.6 (a)
provides an R-module epimorphism π : R(Λ) → (Λ) = M .

(b) Let Λ and π be as in part (a). Then Ker(π) is an R-module, so part (a)
implies that there is a set Γ and an R-module epimorphism τ : R(Γ) → Ker(π). Let
ι : Ker(π)→ R(Λ) be the natural inclusion. Then ι is an R-module homomorphism
because Ker(π) ⊆ R(Λ) is an R-submodule. It follows that the composition f =
ιτ : R(Γ) → R(Λ) is an R-module homomorphism and Im(f) = Ker(π). This gives
the equality in the next sequence

M ∼= R(Λ)/Ker(π) = R(Λ)/ Im(f)
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while the isomorphism is from Proposition 3.11(e). �

The next proposition follows from Chapter 1 material like Proposition 3.11.

Proposition 4.2. Let R be a ring, M an R-module and M ′,M ′′ ⊆ M sub-
modules.

(a) There is an R-module isomorphism M ′/(M ′ ∩M ′′) ∼= (M ′ +M ′′)/M ′′.
(b) If M ′′ ⊆ M ′, then M ′/M ′′ ⊆ M/M ′′ is a submodule, and there is an R-

module isomorphism (M/M ′′)/(M ′/M ′′) ∼= M/M ′.
(c) Let π : M → M/M ′′ be the R-module epimorphism π(m) = m+M ′′. There

is a 1-1 correspondence

{submodules N ⊆M |M ′′ ⊆ N} ←→ {N ′ ⊆M/M ′′}

given by

N 7−→ N/M ′′

π−1(N ′)←− [ N ′.

(d) If M = M ′ +M ′′ and M ′ ∩M ′′ = 0, then M ∼= M ′ ⊕M ′′. �

Definition 4.3. Let R be a ring and M an R-module. A subset X ⊆ M is
linear independent over R if, for every n ∈ N and every list of distinct elements
x1, . . . , xn ∈ X, given r1, . . . , rn ∈ R such that

∑
i rixi = 0, we have ri = 0 for

i = 1, . . . , n.
Assume that R has identity. A subset of X ⊆M is an R-basis for M if it spans

M as an R-module and is linearly independent over R. If M has a basis, then it is
free.

Example 4.4. Let G be an abelian group with the natural unital Z-module
structure. A subset X ⊆ G is a Z-basis for G if and only if it is a basis for G as an
abelian group. In particular G is free as a Z-module if and only if it is free as an
abelian group.

Example 4.5. If R is a ring with identity and M is a unital R-module, then ∅
is an R-basis for {0}.

Example 4.6. If R is a ring with identity, then {e1, . . . , en} ⊆ Rn is an R-basis.
Hence Rn is a free R-module. More generally, if Λ is a set, then {eλ}λ∈Λ ⊆ R(Λ)

is an R-basis. Hence R(Λ) is a free R-module. We shall see below that, up to
isomorphism, these are the only free R-modules.

Most R-modules are not free:

Example 4.7. The unital Z-module Z/2Z is not free. Indeed, a generating set
X ⊆ Z/2Z must be nonempty because Z/2Z 6= 0. However, for each x ∈ X, we
have 2x = 0 in Z/2Z even though 2 6= 0 in Z; hence X is not linearly independent
over Z.

More generally, if R is a ring with identity and 0 6= I ( R is an ideal, then R/I
is not a free R-module. In particular, this shows that quotients of free R-modules
need not be free.

Submodules of free R-modules need not be free.
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Example 4.8. Every subgroup of Zn is free as an abelian group by Proposi-
tion 1.20.2. In other words, every Z-submodule of Zn is free as a Z-module.

Over different rings, though, the analogous result need not be true. Indeed, the
Z/6Z-module M = Z/6Z is free as a Z/6Z-module. However, the Z/6Z-submodule
3Z/6Z ⊆ Z/6Z is not free as a Z/6Z-module. (Argue as in Example 4.7.)

For another example, let k be a field and consider the polynomial ring R =
k[x, y]. Then R is a free R-module, and the ideal (x, y) ⊂ R is a submodule. The
submodule (x, y) is generated by the set {x, y} but this set is not a basis over R
because yx − xy = 0 and y 6= 0. (We will see below that this shows that (x, y) is
not free as an R-module.)

Example 4.9. Let R be a ring with identity. The polynomial ring R[x], con-
sidered as an R-module via the natural inclusion R→ R[x] is a free R-module with
basis {1, x, x2, . . .}.

The next result is proved like Proposition 118.7.

Proposition 4.10. Let R be a ring with identity and M a unital R-module.
For a function ε : A ↪→M , the following conditions are equivalent:

(i) there is an R-module isomorphism ϕ : R(A) → M such that ϕ(eα) = ε(α)
for each α ∈ A;

(ii) ε(A) is a basis for M ;
(iii) for each unital R-module N and each function f : A→ N , there is a unique

R-module homomorphism F : M → N making the following diagram com-
mute:

A
ε //

f   AAAAAAAA M

∃!F
���
�
�

N.

�

Lemma 4.11. Let k be a field and V a k-vector space.
(a) Let X ⊆ V , and let Y ⊆ X be a linearly independent subset that is maximal

among all linearly independent subsets of V contained in X, with respect to
inclusion. Then Y is a basis for (X).

(b) Let Y ⊆ V be a linearly independent subset that is maximal among all linearly
independent subsets of V , with respect to inclusion. Then Y spans V and so
Y is a basis for V .

Proof. (a) The condition Y ⊆ X implies (Y ) ⊆ (X). The desired conclusion
will follow once we show (Y ) = (X), because then Y will be a linearly independent
spanning set for (X). So, suppose (Y ) ⊂ (X).

Claim: X 6⊆ (Y ). If not, then X ⊆ (Y ) and so (X) ⊆ ((Y )) = (Y ) ⊆ (X)
which implies (X) = (Y ), a contradiction.

Fix an element v ∈ X r (Y ), and set Y ′ = Y ∪ {v}. We will show that
Y ′ is linearly independent, and this will contradict the maximality of X. Let
r, r1, . . . , rn ∈ k and y1, . . . , yn ∈ Y such that rv +

∑
i riyi = 0. If r 6= 0, then

v =
∑
i(−r−1ri)yi ∈ (Y ) ⊆ (X), a contradiction. It follows that r = 0 and so∑

i riyi = 0. Since Y is linearly independent, it follows that ri = 0 for each i.
Hence Y ′ is linearly independent.

(b) This is the special case X = V of part (a). �
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5. Day 5

Theorem 5.1. Let k be a field and V a k-vector space. Every linearly inde-
pendent subset of V is contained in a basis for V . In particular V has a basis and
is therefore free.

Proof. The second statement is the special case X = ∅ of the first statement,
so we prove the first statement.

Let X ⊆ V be a linearly independent subset. Set

Σ = {linearly independent Z ⊆ V | X ⊆ Z}

and partially order Σ by inclusion. Since X ∈ Σ, we have Σ 6= ∅. We will apply
Zorn’s Lemma to show that Σ contains a maximal element Y . This will be a linearly
independent subset of V that is maximal among all linearly independent subsets
of V , with respect to inclusion, that contains X. Then Lemma 4.11(b) will imply
that Y is a basis for V containing X.

Let C be a chain in Σ. That is C ⊆ Σ such that, for all Z,Z ′ ∈ C, either
Z ⊆ Z ′ or Z ′ ⊆ Z. It is straightforward to show that the set ∪Z∈CZ is a linearly
independent subset of V such that X ⊆ ∪Z∈CZ, that is, we have ∪Z∈CZ ∈ Σ. It
follows immediately that ∪Z∈CZ is an upper bound for C in Σ. Thus Σ satisfies the
hypotheses of Zorn’s Lemma. �

Theorem 5.2. Let k be a field and V a k-vector space. Every spanning set for
V contains a basis for V .

Proof. Let X ⊆ V be a spanning set for V . Set

Σ = {linearly independent Z ⊆ X}

and partially order Σ by inclusion. Since ∅ ∈ Σ, we have Σ 6= ∅. As in the
proof of Theorem 5.1, the set Σ contains a maximal element Y . This is a linearly
independent subset of V that is maximal among all linearly independent subsets
of V contained in X, with respect to inclusion. Lemma 4.11(a) implies that Y is a
basis for (X) = V contained in X. �

Example 5.3. Let m,n > 1. In Chapter 1 we showed that, if Zm ∼= Zn,
then m = n. If we replace Z with an arbitrary ring R with identity, though, the
analogous statement can be false. (See Hungerford Exercise IV.2.13.) We will see,
however, that when R is commutative with identity, this is OK.

First we show that free modules with infinite bases are always OK.

Lemma 5.4. Let R be a ring with identity and F a free R-module. If X is a
basis for F and X ′ ⊂ X, then X ′ does not span F .

Proof. Let x ∈ X rX ′. We claim that x 6∈ (X ′). (Then x ∈ F r (X ′) and so
X ′ does not span F .) Suppose x ∈ (X ′) and write x =

∑m
i=1 rix

′
i with the ri ∈ R

and x′i ∈ X. Then the nontrivial linear dependence relation −x +
∑m
i=1 rix

′
i = 0

contradicts the linear independence of X. �

Lemma 5.5. Let R be a ring with identity and F a free R-module. If X spans
F and Y is a finite subset of F , then there is a finite subset X ′ ⊆ X such that
(Y ) ⊆ (X ′).
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Proof. Write Y = {y1, . . . , ym} ⊆ F = (X). For each i = 1, . . . ,m there exists
ni ∈ N and xi,1, . . . , xi,ni ∈ X and ri,1, . . . , ri,ni ∈ R such that yi =

∑ni
j=1 ri,jxi,j .

Consider the finite set X ′ = {xi,j | i = 1, . . . , n; j = 1, . . . , ni} ⊆ X. It follows that
Y ⊆ (X ′) and so (Y ) ⊆ ((X ′)) = (X ′). �

Lemma 5.6. Let R be a ring with identity and F a free R-module. If F has an
infinite basis, then every spanning set (and hence every basis) for F is infinite.

Proof. Let X be an infinite basis for F , and let Y be a spanning set for F .
By way of contradiction, suppose that Y is a finite set. By Lemma 5.5 there is a
finite subset X ′ ⊆ X such that F = (Y ) ⊆ (X ′) ⊆ F . Hence (X ′) = F and so X ′

spans F . On the other hand, X is infinite and X ′ is a finite subset. Hence X ′ ⊂ X,
and so Lemma 5.4 says that X ′ cannot span F , a contradiction. �

Lemma 5.7. Let R be a ring with identity and F an R-module. Let X be
a linearly independent subset of F and let X ′, X ′′ ⊆ X. If (X ′) ⊆ (X ′′), then
X ′ ⊆ X ′′.

Proof. Suppose that x′ ∈ X ′ r X ′′. Since x′ ∈ X ′ ⊆ (X ′) ⊆ (X ′′) we have
x′ =

∑
i rix

′′
i for some ri ∈ R and distinct x′′i ∈ X ′′. Since x′ is distinct from the

x′′i , this yields a nontrivial linear dependence relation in X, a contradiction. �

Remark 5.8. Let R be a ring with identity and F a free R-module. Let Y be a
basis for F , and let K(Y ) denote the set of all finite subsets of Y . Let X ⊆ F , and
define a function f : X → K(Y ) as follows: for each x ∈ X let f(x) = {y1, . . . , yn}
where there exist r1, . . . , rn ∈ R such that each ri 6= 0 and x =

∑n
i=1 riyi. Since Y

is a basis for F , the yi are uniquely determined by x, so this function is well-defined.

Lemma 5.9. Let R be a ring with identity and F a free R-module. Assume that
X and Y are infinite bases for F , and let K(Y ) denote the set of all finite subsets
of Y . Let f : X → K(Y ) be the function from Remark 5.8.

(a) The set ∪S∈Im(f)S ⊆ Y spans F , and so ∪S∈Im(f)S = Y .
(b) The set Im(f) is infinite.
(c) For each T ∈ K(Y ), the set f−1(T ) is finite.

Proof. (a) For each x ∈ X, we have x ∈ (f(x)) by definition of f . Hence X ⊆
(∪S∈Im(f)S) and so F = (X) ⊆ (∪S∈Im(f)S) ⊆ F which implies (∪S∈Im(f)S) = F .
Since Y is a basis for F and ∪S∈Im(f)S is a spanning set for F contained in Y ,
Lemma 5.4 implies ∪S∈Im(f)S = Y .

(b) Suppose that Im(f) is finite. Since each element of Im(f) is a finite subset
of Y , it follows that Y ′ = ∪S∈Im(f)S is a finite subset of Y . Part (a) says that Y ′

spans F . On the other hand, Y is infinite and Y ′ is a finite subset. Hence Y ′ ⊂ Y ,
and so Lemma 5.4 says that Y ′ cannot span F , a contradiction.

(c) Note that f−1(T ) ⊆ X. If T 6∈ Im(f), then f−1(T ) = ∅ which is a finite set.
Assume that T ∈ Im(f). If x ∈ f−1(T ), then x ∈ (T ) by definition of f . It follows
that f−1(T ) ⊆ (T ). On the other hand, Lemma 5.5 implies that there is a finite
subset X ′ ⊂ X such that (T ) ⊆ (X ′) and so (f−1(T )) ⊆ (T ) ⊆ (X ′). Since f−1(T )
and X ′ are subsets of X, Lemma 5.7 implies f−1(T ) ⊆ X ′. Since X ′ is finite, the
same is true of f−1(T ). �
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6. Day 6

Here are some highlights of Hungerford section 0.8.

Definition 6.1. Let X and Y be sets. If there is a 1-1 function X → Y , then
we write |X| 6 |Y |. If there is a bijection X → Y , then we say that X and Y have
the same cardinality and write |X| = |Y |. A set X is countable if |X| = |N|.

Example 6.2. When X and Y are finite sets, they have the same cardinality
if and only if they contain the same number of elements.

Fact 6.3. (Schroeder-Bernstein Theorem) Let X and Y be sets. If |X| 6 |Y |
and |Y | 6 |X|, then |X| = |Y |. In other words, if there are 1-1 functions X → Y
and Y → X, then there is a bijection X → Y .

Fact 6.4. Let X be an infinite set. Then |X ×N| = |X|. If K(X) denotes the
set of all finite subsets of X, then |K(X)| = |X|.

Theorem 6.5. Let R be a ring with identity and F a free R-module with an
infinite basis X. Then every basis for F has the same cardinality as X. Specifically,
if Y is another basis for F , then there is a bijection X → Y .

Proof. Let Y be another basis for F . Lemma 5.6 implies that Y is infinite.
Let K(Y ) denote the set of all finite subsets of Y . Let f : X → K(Y ) be the
function from Remark 5.8. Note that X is the disjoint union X = ∪T∈Im(f)f

−1(T ).
For each T ∈ Im(f) order the elements of f−1(T ), say x1, . . . , xn are the distinct

elements of f−1(T ). Define a function gT : f−1(T )→ N by setting gT (xi) = i.
Define h : X → K(Y ) × N by the assignment h(x) = (f(x), gf(x)(x)). One

checks readily that h is well-defined and 1-1. Using Fact 6.4 this implies

|X| 6 |K(Y )× N| = |K(Y )| = |Y |.

By symmetry we have |Y | 6 |X|, so the Schroeder-Bernstein Theorem implies
|X| = |Y |, as desired. �

Lemma 6.6. Let k be a field and let F be a k-vector space. Fix elements
x1, . . . , xj , yj , . . . , yn ∈ F where 1 6 j < n, and assume that F is spanned by
{x1, . . . , xj−1, yj , . . . , yn}. If {x1, . . . , xj} is linearly independent, then the yi’s can
be reindexed so that F = (x1, . . . , xj−1, xj , yj+1, . . . , yn).

Proof. Case 1: j = 1. Our assumptions translate as: F = (y1, . . . , yn) and
x1 6= 0. Since x1 ∈ F = (y1, . . . , yn) we have x1 = r1y1 + · · · rnyn for some ri ∈ R.
Since x1 6= 0, we have rk 6= 0 for some k. Reorder the yi’s to assume that r1 6= 0.
Since k is a field, we have

y1 = r−1
1 x1 +

∑n
i=2(−r−1

1 ri)yi

and so y1 ∈ (x1, y2, . . . , yn). Since we also have yi ∈ (x1, y2, . . . , yn) for each
i = 2, . . . , n, we have

F = (y1, y2, . . . , yn) ⊆ (x1, y2, . . . , yn) ⊆ F

and so F = (x1, y2, . . . , yn).
Case 2: j > 2. We have F = (x1, . . . , xj−1, yj , . . . , yn), and the set {x1, . . . , xj}

is linearly independent. Since xj ∈ F = (x1, . . . , xj−1, yj , . . . , yn) we have xj =∑j−1
i=1 rixi +

∑n
i=j riyi for some ri ∈ R.
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Suppose that ri = 0 for i = j, . . . , n, then xj =
∑j−1
i=1 rixi ∈ (x1, . . . , xj−1),

which is impossible since {x1, . . . , xj−1, xj} is linearly independent. This implies
that ri 6= 0 for some i = j, . . . , n. Reorder the yi’s to assume that rj 6= 0. Since
k is a field, the argument of Case 1 shows that yj ∈ (x1, . . . , xj−1, xj , yj+1, . . . , yn)
and further that F = (x1, . . . , xj−1, xj , yj+1, . . . , yn) as desired. �

Theorem 6.7. Let k be a field and let F be a k-vector space. If X and Y are
two bases for F , then |X| = |Y |.

Proof. If either X or Y is infinite, then this follows from Theorem 6.5. Hence
we assume that X and Y are both finite. If X is empty, then it is straightforward to
show that Y is empty, and conversely. so we assume that X,Y 6= ∅. Let x1, . . . , xm
be the distinct elements of X and let y1, . . . , yn be the distinct elements of Y .

Claim: n > m. (Once this is shown, a symmetric argument will imply m > n
and so m = n and we are done.) Suppose n < m. Lemma 6.6 implies that the yi’s
can be reordered so that F = (x1, y2, . . . , yn). By induction on j, Lemma 6.6 im-
plies that the remaining yi’s can be reordered so that F = (x1, . . . , xj , yj+1, . . . , yn)
for each j = 1, . . . , n. The case j = n says that F = (x1, . . . , xn). In partic-
ular, we have (x1, . . . , xn, xn+1, . . . , xm) ⊆ (x1, . . . , xn). Lemma 6.6 implies that
{x1, . . . , xn, xn+1, . . . , xm} ⊆ {x1, . . . , xn} and so xm ∈ {x1, . . . , xn}. Since m > n
and {x1, . . . , xm} is linearly independent, this is impossible. �

Lemma 6.8. Let R be a ring with identity and I ⊂ R a two-sided ideal. Let F be
a free R-module with basis X, and let π : F → F/IF be the canonical epimorphism.
Then F/IF is a free R/I-module with basis π(X), and |π(X)| = |X|.

Proof. Step 1: π(X) generates F/IF . This follows from Example 3.7 since π
is an R-module epimorphism.

Step 2: Fix distinct elements x1, . . . , xn ∈ X and suppose that r1, . . . , rn ∈ R
such that

∑n
i=1(ri + I)π(xi) = 0. We show that each ri ∈ I. We have

IF =
∑n
i=1(ri + I)(xi + IF ) =

∑n
i=1(rixi + IF ) = (

∑n
i=1 rixi) + IF

and so
∑n
i=1 rixi ∈ IF . Write

∑n
i=1 rixi =

∑
j ajfj for some aj ∈ I and fj ∈ F .

Write each fj =
∑
k rj,kxj,k for some rj,k ∈ R and xj,k ∈ X. Then∑n

i=1 rixi =
∑
j ajfj =

∑
j aj(

∑
k rj,kxj,k) =

∑
j,k(ajrj,k)xj,k.

Thus, we have written the element
∑n
i=1 rixi in the form

∑
l slx

′
l for some sl ∈ I and

x′l ∈ X. Re-index if necessary and add terms of the form 0xi and 0x′l if necessary
to write ∑n

i=1 rixi =
∑n
i=1 sixi

with the si ∈ I. This implies

0 =
∑n
i=1(ri − si)xi

so the fact that X is linearly independent implies ri = si ∈ I for each i.
Step 3: π(X) is linearly independent over R/I. (This will show that F/IF

is a free R/I-module with basis π(X).) Fix distinct elements x1, . . . , xn ∈ X and
suppose that r1, . . . , rn ∈ R such that

∑n
i=1(ri + I)π(xi) = 0. Step 2 shows that

each ri ∈ I, and so each coefficient ri + I = I = 0R/I .
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Step 4: |π(X)| = |X|. The map π : X → π(X) is surjective by design. We need
to show that it is 1-1. Suppose that x, x′ ∈ X such that x 6= x′ and π(x) = π(x′).
Then

(1 + I)π(x) + (−1 + I)π(x′) = 0
and so Step 2 implies that 1,−1 ∈ I. This implies I = R, contradicting our
assumption I ⊂ R. �

7. Day 7

Definition 7.1. Let R be a ring with identity. R satisfies the invariant basis
property if: for every free R-module F , any two bases of F have the same cardinality.
If R has the invariant basis property and F is a free R-module, the rank of F is

rankR(F ) =

{
n if F has a finite basis with exactly n elements
∞ if F has an infinite basis.

Every field k has the invariant basis property by Theorem 6.7. The rank of a k-
vector space V is often called the dimension of V , denoted dimk(V ) = rankk(V ).
Note that this definition differs from Hungerford’s definition.

Theorem 7.2. If R is a commutative ring with identity, then R has the in-
variant basis property.

Proof. Let F be a free R-module with bases X and Y . Let m ⊂ R be a max-
imal ideal. Let π : F → F/mF be the canonical epimorphism. Lemma 6.8 implies
that F/mF is a vector space over R/m with bases π(X) and π(Y ). Theorem 6.7
then provides the second inequality in the following sequence

|X| = |π(X)| = |π(Y )| = |Y |
while the first and third equalities are from Lemma 6.8. �

Now we focus on the basic properties of dimension.

Theorem 7.3. Let k be a field. Let V be a k-vector space and let W ⊆ V be a
k-subspace.

(a) dimk(W ) 6 dimk(V ).
(b) If dimk(W ) = dimk(V ) and dimk(V ) <∞, then W = V .
(c) dimk(V ) = dimk(W ) + dimk(V/W ).

Proof. Let Y be a k-basis for W . Theorem 5.1 provides a basis X for V such
that Y ⊆ X.

(a) If dimk(V ) =∞, then we are done, so assume that dimk(V ) <∞. Then X
is finite, and it follows that Y is finite and

dimk(W ) = |Y | 6 |X| = dimk(V ).

(b) Since dimk(V ) < ∞, we know that X is finite, and so Y is finite. Since
dimk(W ) = dimk(V ), we see that Y is a subset of the finite set X with the same
number of elements of X, and so Y = X. Thus W = (Y ) = (X) = V .

(c) Claim: The set Z = {x + W ∈ V/W | x ∈ X r Y } is a k-basis for
V/W . To see that Z spans V/W , let v + W ∈ V/W . Since v ∈ V , we write
v =

∑
i rixi +

∑
j sjyj with ri, sj ∈ R, xi ∈ X rY and yj ∈ Y . Then

∑
j sjyj ∈W

and so

v +W = (
∑
i rixi +

∑
j sjyj) +W = (

∑
i rixi) +W ∈ ({xi +W}) ⊆ (Z).
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This shows that V/W ⊆ (Z). Since Z ⊆ V/W , we have (Z) ⊆ V/W and so
(Z) = V/W .

Note that, for x, x′ ∈ X r Y we have x = x′ if and only if x + W = x′ + W .
The forward implication is straightforward. For the reverse implication, assume
x+W = x′ +W . This implies x− x′ ∈W = (Y ) and so x− x′ =

∑
i riyi for some

ri ∈ k and yi ∈ Y . Since the set X is linearly independent, this linearly dependence
relation implies x = x′.

To see that Z is linearly independent over k, let x1 +W, . . . , xn+W be distinct
elements of V/W and let r1, . . . , rn ∈ k such that

∑
i ri(xi + W ) = 0. Then∑

i rixi ∈W , so there are distinct elements y1, . . . , ym ∈ Y and s1, . . . , sm ∈ k such
that ∑

i rixi =
∑
j sjyj .

The elements x1, . . . , xn, y1, . . . , ym ∈ X are distinct since Y ∩ (X r Y ) = ∅, using
the previous paragraph. Hence, the displayed linearly dependence relation implies
that each ri, sj = 0. This establishes the claim.

If dimk(V ) =∞, then X is infinite, and so either Y or XrY is infinite; in this
case, the formula dimk(V ) = dimk(W ) + dimk(V/W ) is satisfied. If dimk(V ) <∞,
then

dimk(V ) = |X| = |Y |+ |X r Y | = dimk(W ) + dimk(V/W )

as desired. �

Here is the tower rule.

Theorem 7.4. Let K ⊆ L be a field extension and let V be an L-vector space.
Then dimK(V ) = dimK(L) dimL(V ). Furthermore dimK(V ) is finite if and only if
dimK(L) and dimL(V ) are both finite.

Proof. Note first that K is a subring of L such that 1K = 1L, and so L
is a K-vector space via the multiplication in L. Also V is a K-vector space by
restriction of scalars.

Let X be a K-basis of L, and let Y be an L basis of V . Note that, for each
x, x′ ∈ X and y, y′ ∈ Y , if xy = x′y′, then x = x′ and y = y′. This follows from the
fact that x, x′ ∈ X ⊆ L and Y is linearly independent over L.

Claim: The set Z = {xy ∈ L | x ∈ X, y ∈ Y } is a K-basis for V . We first show
that Z is linearly independent. Note that any linear dependence relation in Z can
be written in the form ∑

i

∑
j ri,jxjyi = 0

for some distinct elements x1, . . . , xn ∈ X and distinct elements y1, . . . , yn ∈ Y and
ri,j ∈ R. Since

∑
j ri,jxj ∈ L and Y is linearly independent over L, the displayed

equation implies that
∑
j ri,jxj = 0 for each i. Since ri,j ∈ k and X is linearly

independent over L, this equation tells us that each ri,j = 0.
Next we show that Z spans V as a K-vector space. Let v ∈ V . Since Y is

an L-basis for V , we have v =
∑
i tiyi for some ti ∈ L and yi ∈ Y . Since X is a

K-basis for L, for each i we have ti =
∑
j ui,jxi,j for some ui,j ∈ K and xi,j ∈ X.

Hence
v =

∑
i tiyi = v =

∑
i(
∑
j ui,jxi,j)yi =

∑
i,j ui,j(xi,jyi).

The desired conclusions follow from the claim since |Z| = |X × Y |. �
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Corollary 7.5. Let k be a field and let f : V →W be a linear transformation
of k-vector spaces. Then

dimk(V ) = dimk(Im(f)) + dimk(Ker(f)).

Proof. We have an isomorphism Im(f) ∼= V/Ker(f) and so Theorem 7.3(c)
yields the desired equality. �





CHAPTER 5

Galois Theory

1. Day 1

Definition 1.1. Let R be a ring and let X ⊆ R be a subset. The subring of
R generated by X is the intersection of all subrings of R containing X.

Remark 1.2. The subring test can be used to show that the subring generated
by a subset X ⊆ R is a subring of R. It is the unique smallest subring of R
containing X. If R is commutative, then so is the subring generated by X. If R has
identity and 1R ∈ X, then the subring generated by X is a subring with identity
1R. If R is an integral domain and 1R ∈ X, then the subring generated by X is an
integral domain.

Definition 1.3. Let R be a commutative ring with identity and let A ⊆ R
be a subring with identity 1A = 1R. Let X ⊆ R be a subset. The subring of R
generated by X over A is the subring of R generated by X ∪A; it is denoted A[X].
If X = {r1, . . . , rn}, then we write A[r1, . . . , rn] for A[X]. If R = A[r1, . . . , rn] for
some r1, . . . , rn ∈ R, then we say that R is finitely generated as an A-algebra.

Remark 1.4. Let R be a commutative ring with identity and let A ⊆ R be a
subring with identity 1A = 1R. Let X ⊆ R be a subset.

The notation A[r1, . . . , rn] does not mean that this is a polynomial ring. When
we are dealing with polynomial rings, we will say so explicitly.

If R is finitely generated as an A-module, then it is finitely generated as an A-
algebra. The converse does not hold in general: the polynomial ring A[x] is finitely
generated as an A-algebra (see Example 1.8) but it is not finitely generated as an
A-module.

Since R is commutative with identity and 1 ∈ A ⊆ A ∪X, we see that A[X] is
a commutative ring with identity such that 1A[X] = 1R.

Remark 1.5. Let R be a commutative ring with identity and let A ⊆ R be a
subring with identity 1A = 1R. Let r1, . . . , rn ∈ R.

(a) For each permutation σ ∈ Sn, we have A[rσ(1), . . . , rσ(n)] = A[r1, . . . , rn].
(b) We have A[r1, . . . , rn−1][rn] = A[r1, . . . , rn].

Theorem 1.6. Let R be a commutative ring with identity and let A ⊆ R be a
subring with identity 1A = 1R. Let X ⊆ R. For each n > 1 let A[x1, . . . , xn] be the
polynomial ring in n variables.

(a) A[X] = {f(r1, . . . , rn) ∈ R | n > 1, f ∈ A[x1, . . . , xn] and r1, . . . , rn ∈ X}.
(b) Fix an integer n > 1. If r1, . . . , rn ∈ R, then

A[r1, . . . , rn] = {f(r1, . . . , rn) ∈ R | f ∈ A[x1, . . . , xn]}.
The map ϕ : A[x1, . . . , xn] → A[r1, . . . , rn] given by f 7→ f(r1, . . . , rn) is
an epimorphism of commutative rings with identity. Hence A[r1, . . . , rn] ∼=

103
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A[x1, . . . , xn]/I where I is the two-sided ideal I = Ker(ϕ). It follows that
R is finitely generated as an A-algebra if and only if it is isomorphic to a
quotient of a polynomial ring over A in finitely many variables.

(c) For each finite subset Y ⊆ A[X], there is a finite subset X ′ ⊆ X such that
A[Y ] ⊆ A[X ′].

Proof. (a) Set

B = {f(r1, . . . , rn) ∈ R | n > 1, f ∈ A[x1, . . . , xn] and r1, . . . , rn ∈ X}.

Each subring C ⊆ R such that A∪X ⊆ C must contain every product arm1
1 · · · rmnn

with a ∈ A and ri ∈ X and mi > 0, since it is closed under multiplication; because
C is closed under addition, it must contain every finite sum of such elements. Hence
B ⊆ C and so B ⊆ A[X]. On the other hand, the subring test can be used to show
that B is a subring of R that contains X ∪A, and so B ⊇ A[X].

(b) The displayed equality is a special case of part (a). The function ϕ is a well-
defined homomorphism of commutative rings with identity by Proposition 3.10.3,
and ϕ is surjective by the displayed equality.

(c) Write Y = {y1, . . . , ym}. By parts (a) and (b), for each yi there are
xi,1, . . . , xi,ni ∈ X such that yi ∈ A[xi,1, . . . , xi,ni ]. SetX ′ = {xi,j | i = 1, . . . ,m; j =
1, . . . , ni} ⊆ X. It follows that A ∪ Y ⊆ A[X ′] and so A[Y ] ⊆ A[X ′]. �

Example 1.7. The ring Z[
√

10] = {a+b
√

10 ∈ R | a, b ∈ Z} is the subring of R
generated by

√
10 over Z. The ring of Gaussian integers Z[i] = {a+bi ∈ C | a, b ∈ Z}

is the subring of C generated by i over Z.

Example 1.8. Let R be a commutative ring with identity and let R[x1, . . . , xn]
be the polynomial ring in n variables. The subring of R[x1, . . . , xn] generated by
x1, . . . , xn over R is exactly R[x1, . . . , xn]. In a sense, this justifies the similarity in
notation between rings generated by elements and polynomial rings.

2. Day 2

Definition 2.1. The degree of a field extension K ⊆ L is [L : K] = dimK(L).
The extension is finite if [L : K] <∞. If F is a field such that K ⊆ F and F ⊆ L
are subfields, then F is an intermediate field of K and L.

The tower rule translates to the following.

Corollary 2.2. If k ⊆ K ⊆ L are field extensions, then [L : k] = [L : K][K :
k], and the extension k ⊆ L is finite if and only if the extensions k ⊆ K and K ⊆ L
are both finite. �

Definition 2.3. Let K be a field and let Y ⊆ K be a subset. The subfield of
K generated by Y is the intersection of all subfields of K containing Y .

Remark 2.4. If K is a field and Y ⊆ K is a subset, then the subfield generated
by Y is a subfield of K, moreover, it is the unique smallest subfield of K that
contains Y .

Definition 2.5. Let k ⊆ K be a field extension and let X ⊆ K be a subset.
The subfield of K generated by X over k is the subfield of K generated by X ∪ k;
it is denoted k(X). If X = {r1, . . . , rn}, then we write k(r1, . . . , rn) for k(X). If
K = k(r1, . . . , rn) for some r1, . . . , rn ∈ K, we say that K is a finitely generated
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field extension of k. If K = k(r) for some r ∈ K, we say that K is a simple field
extension of k.

Remark 2.6. The notation k(r1, . . . , rn) does not mean that this is the field of
quotients of a polynomial ring; see Section 3.11. When we are dealing with quotient
fields of polynomial rings, we will do so explicitly.

If the field extension k ⊆ K is finite, then it is finitely generated. The converse
does not hold in general: the field of fractions k(x) of the polynomial ring k[x]
is finitely generated as a field extension of k (see Example 3.2) but the extension
k ⊆ k(x) is not finite.

Remark 2.7. Let k ⊆ K be a field extension and let r1, . . . , rn ∈ K.

(a) For each permutation σ ∈ Sn, we have k(rσ(1), . . . , rσ(n)) = k(r1, . . . , rn).
(b) We have k(r1, . . . , rn−1)(rn) = k(r1, . . . , rn).

Lemma 2.8. Let ϕ : R → K be a homomorphism of commutative rings with
identity where K is a field.

(a) If R is a field, then ϕ is a monomorphism.
(b) If ϕ is a monomorphism, then R is an integral domain.
(c) Ker(ϕ) ⊂ R is a prime ideal.
(d) There is a well-defined monomorphism of fields ψ : Q(R/Ker(ϕ))→ K given

by ψ(r/s) = ϕ(r)ϕ(s)−1.

Proof. (a) Ker(ϕ) ⊆ R is an ideal of R. Since R is a field, either Ker(ϕ) = R
or Ker(ϕ) = (0). Since ϕ(1) = 1 6= 0, we have Ker(ϕ) 6= R and so Ker(ϕ) = (0).

(b) Im(ϕ) is a subring of K with the same multiplicative identity as K. Hence
Im(ϕ) is an integral domain. Since ϕ is a monomorphism, we have R ∼= Im(ϕ) ⊆ K,
and so R is an integral domain.

(c) The map ϕ induces a well-defined monomorphism of commutative rings
with identity ϕ : R/Ker(ϕ) → K given by ϕ(r) = ϕ(r). Part (b) implies that
R/Ker(ϕ) is an integral domain, and so Ker(ϕ) ⊂ R is a prime ideal.

(d) Case 1: ϕ is a monomorphism. Note that part (b) implies, in this case,
that R is an integral domain. We show that the map ψ : Q(R) → K given by
ψ(r/s) = ϕ(r)ϕ(s)−1 is a well-defined homomorphism of commutative rings with
identity; then part (a) implies that ψ is a monomorphism.

Well-defined: Let r/s = r′/s′ ∈ Q(R). Then s, s′ 6= 0 and rs′ = r′s. We have

ϕ(r)ϕ(s′) = ϕ(rs′) = ϕ(r′s) = ϕ(r′)ϕ(s).

Since ϕ is a monomorphism, we have ϕ(s), ϕ(s′) 6= 0. Since K is a field, the
displayed equations imply

ϕ(r)ϕ(s)−1 = ϕ(r′)ϕ(s′)−1

and so ψ is well-defined.
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ψ is a homomorphism of commutative rings with identity:

ψ

(
r

s
+
t

u

)
= ψ

(
ru+ ts

su

)
=
ϕ(ru+ ts)
ϕ(su)

=
ϕ(r)ϕ(u) + ϕ(t)ϕ(s)

ϕ(s)ϕ(u)

=
ϕ(r)
ϕ(s)

+
ϕ(t)
ϕ(u)

= ψ
(r
s

)
+ ψ

(
t

u

)
ψ

(
r

s

t

u

)
= ψ

(
rt

su

)
=
ϕ(rt)
ϕ(su)

=
ϕ(r)ϕ(t)
ϕ(s)ϕ(u)

=
ϕ(r)
ϕ(s)

ϕ(t)
ϕ(u)

= ψ
(r
s

)
ψ

(
t

u

)
ψ(1Q(R)) = ψ

(
1R
1R

)
=
ϕ(1R)
ϕ(1R)

=
1K
1K

= 1K

Case 2: in general. The map ϕ induces a well-defined monomorphism of commuta-
tive rings with identity ϕ : R/Ker(ϕ)→ K given by ϕ(r) = ϕ(r). Part (b) implies
that R/Ker(ϕ) is an integral domain. Case 1 implies that there is a well-defined
monomorphism of fields ψ : Q(R/Ker(ϕ)) → K given by ψ(r/s) = ϕ(r)ϕ(s)−1.
Since ϕ(r)ϕ(s)−1 = ϕ(r)ϕ(s)−1, we have the desired monomorphism. �

Theorem 2.9. Let k ⊆ K be a field extension and let X ⊆ K.

(a)

k(X) =
{
f(r1, . . . , rn)
g(r1, . . . , rn)

∈ K
∣∣∣∣ n > 1; f, g ∈ k[x1, . . . , xn];
r1, . . . , rn ∈ X; and g(r1, . . . , rn) 6= 0

}
.

(b) Fix an integer n > 1. Let k[x1, . . . , xn] be the polynomial ring in n variables.
If r1, . . . , rn ∈ R, then

k(r1, . . . , rn) =
{
f(r1, . . . , rn)
g(r1, . . . , rn)

∈ K
∣∣∣∣ f, g ∈ k[x1, . . . , xn]

and g(r1, . . . , rn) 6= 0

}
.

Let ϕ : k[x1, . . . , xn]→ k(r1, . . . , rn) be the evaluation map given by the rule
f 7→ f(r1, . . . , rn). Then Ker(ϕ) ⊂ k[x1, . . . , xn] is a prime ideal, and ϕ
induces an isomorphism k(r1, . . . , rn) ∼= Q(k[x1, . . . , xn]/Ker(ϕ)). It fol-
lows that the extension k ⊆ K is finitely generated if and only if K ∼=
Q(k[x1, . . . , xn]/P ) for some n > 0 and some prime ideal P ⊂ k[x1, . . . , xn].

(c) For each finite subset Y ⊆ k(X), there is a finite subset X ′ ⊆ X such that
k(Y ) ⊆ k(X ′).

Proof. (a) Set

B =
{
f(r1, . . . , rn)
g(r1, . . . , rn)

∈ K
∣∣∣∣ n > 1; f, g ∈ k[x1, . . . , xn];
r1, . . . , rn ∈ X; and g(r1, . . . , rn) 6= 0

}
.

Each subfield L ⊆ K such that k∪X ⊆ L must contain every product arm1
1 · · · rmnn

with a ∈ k and ri ∈ X and mi > 0, since it is closed under multiplication; because L
is closed under addition, it must contain every finite sum of such elements; because
L is closed under multiplicative inverses of nonzero elements, it must contain every
quotient of such sums, provided the denominator is nonzero. Hence B ⊆ L and so
B ⊆ k(X). On the other hand, the subring test can be used to show that B is a
subring of R that contains X ∪ k, and so B ⊇ k(X).

(b) The displayed equality is a special case of part (a). The map ϕ is a well-
defined homomorphism of commutative rings with identity by Proposition 3.10.3.
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Hence, Ker(ϕ) ⊂ k[x1, . . . , xn] is a prime ideal by Lemma 2.8(c). Lemma 2.8(d)
provides a well-defined monomorphism of fields

ψ : Q(k[x1, . . . , xn]/Ker(ϕ))→ k(r1, . . . , rn)

ψ(f/g) = ϕ(f)ϕ(g)−1 = f(r1, . . . , rn)g(r1, . . . , rn)−1.

This map is onto by the explicit description of k(r1, . . . , rn), and hence is an iso-
morphism.

(c) Write Y = {y1, . . . , ym}. By parts (a) and (b), for each yi there are
xi,1, . . . , xi,ni ∈ X such that yi ∈ k(xi,1, . . . , xi,ni). SetX ′ = {xi,j | i = 1, . . . ,m; j =
1, . . . , ni} ⊆ X. It follows that k ∪ Y ⊆ k(X ′) and so k(Y ) ⊆ k(X ′). �

3. Day 3

Example 3.1. We have C = R(i). The containment C ⊇ R(i) is by definition:
R(i) is the smallest subfield of C that contains R and i. For the containment
C ⊆ R(i), note that R(i) is closed under addition and multiplication. Hence, each
element of C, which has the form a+ bi is in R(i).

Example 3.2. Let k be a field and let k[x1, . . . , xn] be the polynomial ring
in n variables. The subring of Q(k[x1, . . . , xn]) generated by x1, . . . , xn over k is
exactly k(x1, . . . , xn). In a sense, this justifies the similarity in notation between
subfields generated by elements and fields of fractions of polynomial rings. In the
future, we’ll call k(x1, . . . , xn) the field of rational functions in n variables over k.

Definition 3.3. Let K ⊆ L be a field extension. An element u ∈ L is algebraic
over K if there exists a polynomial 0 6= f ∈ K[x] such that f(u) = 0. If u ∈ L is
not algebraic over K, it is transcendental over K. The extension K ⊆ L is algebraic
if every element of L is algebraic over K; it is transcendental if it is not algebraic.

Remark 3.4. Let K ⊆ K ′ ⊆ L be field extensions. Every element of K is
algebraic over K, and so K ⊆ K is an algebraic extension. If the element u ∈ L is
algebraic over K, then u is algebraic over K ′ since K[x] ⊆ K ′[x]. If L is algebraic
over K, then L is algebraic over K ′. If u ∈ L is algebraic over K, then u is a root
of a monic polynomial f ∈ K[x].

Example 3.5. The extension R ⊆ C is algebraic: each complex number a+bi ∈
C is a root of the polynomial (x−(a+bi))(x−(a−bi)) = x2−2ax+(a2 +b2) ∈ R[x].
We will see below that this can be deduced directly from the fact that i is algebraic
over R and C = R(i).

The extension Q ⊆ R is transcendental because e and π are transcendental over
Q. (This is a highly nontrivial fact.) Notice that R does contain nontrivial elements
that are algebraic over Q, for instance

√
2. Thus, if K ⊆ L is a transcendental

extension, then L may contain a mix of algebraic and transcendental elements.

Example 3.6. Let k be a field, and let k(x1, . . . , xn) be the field of rational
functions in n variables over k. The extension k ⊆ k(x1, . . . , xn) is transcendental.
In fact, every element of k(x1, . . . , xn) r k is transcendental over k.

Simple extensions are divided into two cases: those generated by a transcen-
dental element and those generated by an algebraic element.

Theorem 3.7. Let K ⊆ L be a field extension, and let u ∈ L be algebraic over
K. Let K[x] be the polynomial ring in one variable over K, and let α : K → K[x]
be the natural monomorphism.
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(a) Then K(u) = K[u].
(b) The evaluation map ϕ : K[x]→ K(u) given by f 7→ f(u) is an epimorphism

with Ker(ϕ) = (g) for a unique irreducible (non-constant) monic polynomial
g ∈ K[x].

(c) There is an isomorphism of fields ψ : K[x]/(g)→ K(u) which is the identity
on K, that is, such that the following diagram commutes

K[x]

π

��

K
αoo

��
K[x]/(g)

ψ

∼=
// K(u)

where π is the natural epimorphism and the unlabeled arrow is inclusion.

Proof. The map ϕ is a homomorphism of commutative rings with identity.
Since K(u) is a field, Lemma 2.8(c) implies that Ker(ϕ) ⊆ K[x] is a prime ideal.
Since u is algebraic over K, we have Ker(ϕ) 6= 0. The ring K[x] is a PID, and
so Ker(ϕ) = (g) for some g ∈ K[x]. Since Ker(ϕ) = (g) is prime and nonzero, it
follows that g is irreducible. Since K is a field, we may multiply g by the inverse
of its leading coefficient to assume that g is monic. The proof of Theorem 3.8.3
shows that Ker(ϕ) = (g) is maximal, and so K[x]/(g) is a field. It follows that
Im(ϕ) ∼= K[x]/(g) is a subfield of K(u) that contains K and u. Since K(u) is
the unique smallest such subfield, we have K[x]/(g) ∼= Im(ϕ) = K(u). From
Theorem 1.6(b) we know K[u] = Im(ϕ) = K(u). This establishes parts (a) and (c).

To finish the proof of part (b), we need to show that g is unique. Suppose that
h ∈ K[x] is an irreducible monic polynomial such that (h) = (g). It follows that g

∣∣h
and h

∣∣g. Since K[x] is an integral domain, we conclude that h = vg for some unit
v ∈ K[x], that is, for a nonzero element v ∈ K. It follows that deg(h) = deg(g).
Comparing leading coefficients of g and h, we have 1 = 1v and so v = 1, which
implies h = g. �

Definition 3.8. With the assumptions of Theorem 3.7: The irreducible monic
polynomial g is the minimal polynomial or irreducible polynomial of u. The degree
of u over K is [K(u) : K].

4. Day 4

Theorem 4.1. Let K ⊆ L be a field extension, and let u ∈ L be algebraic over
K. Let K[x] be the polynomial ring in one variable over K. Let g ∈ K[x] be the
minimal polynomial of u, and set n = deg(g) > 1.

(a) If f ∈ K[x] and f(u) = 0, then g
∣∣f in K[x].

(b) The set {1, u, u2, . . . , un−1} is a K-basis for K(u).
(c) The degree of u over K is [K(u) : K] = deg(g) = n.

Proof. (a) This is a restatement of the condition Ker(ϕ) = (g) from Theo-
rem 3.7(b).

(b) We first show that the set {1, u, u2, . . . , un−1} spans K(u) as a K-vector
space. Let v ∈ K(u) = K[u]. Then v = f(u) for some f ∈ K[x]. The division
algorithm in K[x] yields q, r ∈ K[x] such that f = qg + r and either r = 0 or
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deg(r) < deg(g). In other words, we have r = a0 + a1x+ · · ·+ an−1x
n−1 for some

ai ∈ K. Since g(u) = 0, we have

v = f(u) = q(u)g(u) + r(u) = 0g(u) + r(u) = a0 + a1u+ · · ·+ an−1u
n−1

and so v is in the K-span of {1, u, u2, . . . , un−1}. Since v is an arbitrary element
of K(u), we have K(u) ⊆ (1, u, u2, . . . , un−1) ⊆ K(u), and so {1, u, u2, . . . , un−1}
spans K(u).

Next we show that the set {1, u, u2, . . . , un−1} is linearly independent over K.
Suppose that

∑n−1
i=0 biu

i = 0 for some bi ∈ K. Set f =
∑n−1
i=0 bix

i ∈ K[x]. We
need to show that f = 0. Note that f(u) = 0 by construction, and so g

∣∣f in K[x]
by part (a). However, if f 6= 0, then deg(f) < deg(g), which is impossible. Hence
f = 0, and the set {1, u, u2, . . . , un−1} is a basis.

(c) This follows immediately from part (b). �

Example 4.2. The minimal polynomial of i ∈ C over R is x2 + 1 because i
is a root of this monic polynomial and is not a root of any polynomial of smaller
degree. Hence, we have C = R(i) = R[i] ∼= R[x]/(x2 + 1). Similarly, we have

Q(i) = Q[i] = {a+ bi ∈ C | a, b ∈ Q} ∼= Q[x]/(x2 + 1)

and

Q(
√

2) = Q[
√

2] = {a+ b
√

2 ∈ R | a, b ∈ Q} ∼= Q[x]/(x2 − 2).

The previous results show how to use the division algorithm to find inverses
and such.

Example 4.3. Consider the polynomial f = x3 + 2x2 + 2x + 2 ∈ Z[x], which
has no rational roots by the rational root theorem. Since deg(f) = 3, we conclude
that f is irreducible over Q. However, since f has odd degree, one can show that
f has a root u ∈ R. Thus we have

Q(u) = Q[u] = {a+ bu+ cu2 ∈ R | a, b, c ∈ Q} ∼= Q[x]/(x3 + 2x2 + 2x+ 2).

Even without having an explicit expression for u, we can do some arithmetic.
(a) Write the element u4 as a Q-linear combination a+ bu+ cu2.
Method 1: In Q(u), we have u3 = −2u2 − 2u− 2 and so

u4 = uu3 = −2u3 − 2u2 − 2u = −2(−2u2 − 2u− 2)− 2u2 − 2u

= 4u2 + 4u+ 4− 2u2 − 2u = 2u2 + 2u+ 4

Method 2: Use the division algorithm to write x4 = (x− 2)f + 2x2 + 2x+ 4 and so

u4 = (u− 2) f(u)︸︷︷︸
=0

+2u2 + 2u+ 4 = 2u2 + 2u+ 4.

(b) Compute u−4 = (u4)−1 in Q(u).
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Method 1: Linear algebra. We have u4 = 2u2 + 2u + 4 6= 0. We know that
u−4 = au2 + bu+ c:

1 = u4u−4 = (2u2 + 2u+ 4)(au2 + bu+ c)

0u2 + 0u+ 1 = 2au4 + (2b+ 2a)u3 + (2c+ 2b+ 4a)u2 + (2c+ 4b)u+ 4c

0u2 + 0u+ 1 = 2a(2u2 + 2u+ 4) + (2b+ 2a)(−2u2 − 2u− 2)

+ (2c+ 2b+ 4a)u2 + (2c+ 4b)u+ 4c

0u2 + 0u+ 1 = (2c− 2b+ 4a)u2 + (2c)u+ (4a− 4b+ 4c)
c = 0

0u2 + 0u+ 1 = (−2b+ 4a)u2 + 0u+ (4a− 4b)
0 = −2b+ 4a
b = 2a
1 = 4a− 4b = 4a− 8a = −4a

a = − 1
4

b = − 1
2

u−4 = − 1
4u

2 − 1
2u.

Check this:

u4[− 1
4u

2 − 1
2u] = − 1

4u
3(u3 + 2u2) = − 1

4u
3(−2u− 2)

= 1
2 (u4 + u3) = 1

2 (2u2 + 2u+ 4 + u3)

= 1
2 (2) = 1X

Method 2: Euclidean algorithm, i.e., repeated application of the division algorithm.
Find polynomials g, h ∈ Q[x] such that 1 = (2x2 + 2x+ 4)g+ (x3 + 2x2 + 2x+ 2)h.

x3 + 2x2 + 2x+ 2 = ( 1
2x+ 1

2 )(2x2 + 2x+ 4)− x
2x2 + 2x+ 4 = (−2x− 2)(−x) + 4

back-substitute

4 = (2x2 + 2x+ 4) + (2x+ 2)(−x)

= (2x2 + 2x+ 4)

+ (2x+ 2)[−( 1
2x+ 1

2 )(2x2 + 2x+ 4) + (x3 + 2x2 + 2x+ 2)]

= (1)(2x2 + 2x+ 4)− (2x+ 2)( 1
2x+ 1

2 )(2x2 + 2x+ 4)

+ (2x+ 2)(x3 + 2x2 + 2x+ 2)

= (−x2 − 2x)(2x2 + 2x+ 4) + (2x+ 2)(x3 + 2x2 + 2x+ 2)

1 = 1
4 (−x2 − 2x)(2x2 + 2x+ 4) + 1

4 (2x+ 2)(x3 + 2x2 + 2x+ 2)

evaluate at x = u

1 = 1
4 (−u2 − 2u)(2u2 + 2u+ 4) + 1

4 (2u+ 2) (u3 + 2u2 + 2u+ 2)︸ ︷︷ ︸
=f(u)=0

1 = (− 1
4u

2 − 1
2u)(2u2 + 2u+ 4)

Hence, we have u−4 = (2u2 + 2u+ 4)−1 = − 1
4u

2 − 1
2u.
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Definition 4.4. Let K ⊆ L and K ⊆ L′ be field extensions. A homomorphism
of fields φ : L → L′ is a K-homomorphism if it is also K-linear, that is, if φ(ab) =
aφ(b) for all a ∈ K and all b ∈ L. If φ is also bijective, then it is a K-isomorphism.
Note that, if φ is a K-homomorphism, then φ(a) = a for all a ∈ K because

φ(a) = φ(a · 1) = 1φ(1) = a · 1 = a.

In other words, φ|K = idK .

Example 4.5. The isomorphism ψ : K[x]/(g)→ K(u) from Theorem 3.7(c) is
a K-isomorphism, if one identifies K with its image in K[x]/(g).

Theorem 4.6. Let K ⊆ L be a field extension. Let K(x) be the field of rational
functions is one variable over K, and identify K with its image in K(x) via the
natural monomorphism α : K → K(x). If u ∈ L is transcendental over K, then
there is a K-isomorphism of fields ψ : K(x) → K(u) such that ψ(x) 7→ u; in
particular, the following diagram commutes

K

α

||zzzzzzzz

""DDDDDDDD

K(x)
ψ

∼=
// K(u)

where the unlabeled arrow is inclusion.

Proof. The evaluation map ϕ : K[x]→ K(u) given by f 7→ f(u) is a monomor-
phism because u is transcendental over K. Hence, the map ψ : K(x)→ K(u) from
Theorem 2.9(b), given by f/g 7→ f(u)/g(u) is a well-defined isomorphism of fields.
It follows from the definition of ψ that ψ is the identity on K. �

5. Day 5

Next we discuss the following problem: Given field extensions K ⊆ L and K ′ ⊆
L′, if φ : K → K ′ is an isomorphism, when does this “extend” to an isomorphism
Φ: L → L′? That is, when does there exist an isomorphism of fields Φ: L → L′

making the following diagram commute:

K
φ //

��

K ′

��
L

Φ // L′

For example, when φ = idK : K → K, Theorems 3.7 and 4.6 showcase certain
situations when such a map can be constructed.

Theorem 5.1. Let K ⊆ L and K ′ ⊆ L′ be field extensions, and fix u ∈ L
and u′ ∈ L′. Let φ : K → K ′ be an isomorphism of fields, and assume that u is
transcendental over K and that u′ is transcendental over K ′. Then φ extends to an
isomorphism Φ: K(u)→ K ′(u′) such that Φ(u) = u′.
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Proof. The following diagram is our guide:

K //

φ ∼=
��

K[x] //

φ̂ ∼=
��

K(x)

φ̃ ∼=
��

K(u)
ψ−1

∼=
oo

Φ=ψ′φ̃ψ−1∼=
���
�
�

K ′ // K ′[x] // K ′(x)
ψ′

∼=
// K ′(u)

Let φ̂ : K[x] → K ′[x] be the induced isomorphism on polynomial rings given by∑
i aix

i 7→
∑
i φ(ai)xi. Since φ̂ is an isomorphism of integral domains, it induces

an isomorphism of quotient fields φ̃ : K(x) → K ′(x) by the formula φ̃(f/g) =
φ̂(f)/φ̂(g). Theorem 4.6 provides isomorphisms ψ : K(x)→ K(u) and ψ′ : K ′(x)→
K ′(u′) such that ψ(a) = a for all a ∈ K and ψ′(a′) = a′ for all a′ ∈ K ′ and
ψ(x) = u and ψ′(x) = u′. Check that the composition Φ = ψ′φ̃ψ−1 has the desired
properties. �

Theorem 5.2. Let K ⊆ L and K ′ ⊆ L′ be field extensions, and fix u ∈ L and
u′ ∈ L′. Let φ : K → K ′ be an isomorphism of fields, and let φ̂ : K[x]→ K ′[x] be the
induced isomorphism on polynomial rings. Assume that u is a root of an irreducible
polynomial f ∈ K[x] and that u′ is a root of the polynomial f ′ = φ̂(f) ∈ K[x]. Then
φ extends to an isomorphism Φ: K(u)→ K ′(u′) such that Φ(u) = u′.

Proof. The following diagram is our guide:

K //

φ ∼=
��

K[x] //

φ̂ ∼=
��

K[x]/(f)

φ̃ ∼=
��

K(u)
ψ−1

∼=
oo

Φ=ψ′φ̃ψ−1∼=
���
�
�

K ′ // K ′[x] // K ′[x]/(f ′)
ψ′

∼=
// K ′(u)

Since φ̂ is an isomorphism, we know that f ′ is irreducible over K ′ and that φ̂ induces
an isomorphism of quotients φ̃ : K[x]/(f)→ K ′[x]/(f ′) by the formula φ̃(g) = φ̂(g).
Theorem 3.7 provides isomorphisms ψ : K[x]/(f) → K(u) and ψ′ : K ′[x]/(f ′) →
K ′(u′) such that ψ(a) = a for all a ∈ K and ψ′(a′) = a′ for all a′ ∈ K ′ and
ψ(x) = u and ψ′(x) = u′. Check that the composition Φ = ψ′φ̃ψ−1 has the desired
properties. �

Corollary 5.3. Let L and L′ be extensions of K, and let u ∈ L and u′ ∈ L′
be algebraic over K. Then u and u′ are roots of the same irreducible polynomial
f ∈ K[x] if and only if there is a K-isomorphism Φ: K(u) → K(u′) such that
Φ(u) = u′.

Proof. =⇒ : This is the special case φ = idK of Theorem 5.2.
⇐= : Fix an isomorphism Φ: K(u)→ K(u′) such that Φ(u) = u′ and Φ(a) = a

for all a ∈ K. Let g =
∑
i aix

i ∈ K[x] be the minimal polynomial of u over K.
Then

0 = Φ(0) = Φ(f(u)) = Φ(
∑
i aiu

i) =
∑
i Φ(ai)Φ(u)i =

∑
i ai(u

′)i = f(u′)

�

Example 5.4. The elements i,−i ∈ C are roots of the irreducible polynomial
x2 + 1 ∈ R[x]. Thus, the conjugation map φ : C→ C given by φ(a+ bi) = a− bi is
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a well-defined R-isomorphism. Conversely, if ψ : C→ C is an R-isomorphism, then
either ψ = idC or ψ = φ.

Theorem 5.5. Let K be a field and f ∈ K[x] a polynomial of degree n > 1.
There exists a simple extension K ⊆ K(u) such that
1. u is a root of f ;
2. [K(u) : K] 6 n with equality holding if and only if f is irreducible over K; and
3. If f is irreducible over K, then K(u) is unique up to K-isomorphism, that is, if
K ⊆ K(u′) is a simple extension such that u′ is a root of f and [K(u) : K] = n,
then there is a K-isomorphism Φ: K(u)→ K(u′) such that Φ(u) = u′.

Proof. Assume without loss of generality that n > 1, and write f =
∑
i aix

i.
Case 1: f is irreducible. Since K[x] is a PID and f 6= 0, the ideal (f) ⊂ K[x]

is maximal. Hence, the quotient K[x]/(f) is a field. The composition of natural
maps φ : K ε−→ K[x] π−→ K[x]/(f) is a homomorphism of fields, so is in particular a
monomorphism. Identify K with Im(φ) ⊆ K[x]/(f) and let u = π(x). Then u is a
root of f because

f(u) =
∑
i aiu

i =
∑
i aiπ(x)i = π(

∑
i aix

i) = π(f) = 0.

Since f is irreducible, it is a constant multiple of the minimal polynomial of u over
K. Hence, Theorem 4.1(c) implies that [K(u) : K] = n. The uniqueness statement
follows from Corollary 5.3.

Case 2: f is reducible. Let g be an irreducible factor of f , and construct the
field K(u) = K[x]/(g) as in Case 1. In particular, we have g(u) = 0. Since g

∣∣f ,
this implies f(u) = 0. Since f is reducible, we have n = deg(f) > deg(g) = [K(u) :
K]. �

Now we discuss more general algebraic field extensions.

Theorem 5.6. Let K ⊆ L be a finite field extension. Then K ⊆ L is finitely
generated and algebraic.

Proof. Let [L : K] = n. If u1, . . . , un ∈ L form a K-basis for L, then
L = K(u1, . . . , un), and so the extension is finitely generated. To see that it is
algebraic, let u ∈ L. The set {1, u, u2, . . . , un} cannot be linearly independent over
K, and so we must have

∑n
i=0 aiu

i = 0 for some ai ∈ K. It follows that u is
algebraic over K. �

6. Day 6

The next result contains the converse to Theorem 5.6.

Theorem 6.1. Let K ⊆ K(r1, . . . , rn) be a finitely generated field extension.
The following conditions are equivalent:

(i) The elements r1, . . . , rn are algebraic over K;
(ii) The extension K ⊆ K(r1, . . . , rn) is finite;
(iii) The extension K ⊆ K(r1, . . . , rn) is algebraic.

Proof. (i) =⇒ (ii) In the following tower of field extensions, each individual
extension is simple and generated by an algebraic element

K ⊆ K(r1) ⊆ K(r1, r2) ⊆ · · · ⊆ K(r1, . . . , rn).
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Hence, each individual extension in the tower is finite by Theorem 4.1(c). The
tower law implies that the extension K ⊆ K(r1, . . . , rn) is also finite.

(ii) =⇒ (iii) Theorem 5.6.
(iii) =⇒ (i) Each r1 ∈ K(r1, . . . , rn) is algebraic over K. �

Theorem 6.2. Let K ⊆ L be a field extension, and let X ⊆ L be a subset such
that L = K(X). The extension K ⊆ L is algebraic if and only if each r ∈ X is
algebraic over K.

Proof. ( =⇒ ) Each r ∈ X ⊆ L is algebraic over K.
( ⇐= ) Assume that each r ∈ X is algebraic over K. Let u ∈ K(X). By

Theorem 2.9(c) there is a finite list r1, . . . , rn ∈ X such that u ∈ K(r1, . . . , rn).
Since each ri is algebraic over K, Theorem 6.1 implies that the extension K ⊆
K(r1, . . . , rn) is algebraic, and so u ∈ K(r1, . . . , rn) is algebraic over K. Thus, the
extension K ⊆ L is algebraic. �

Theorem 6.3. Let K ⊆ L and L ⊆ F be field extensions. Then the extension
K ⊆ F is algebraic if and only if the extensions K ⊆ L and L ⊆ F are algebraic.

Proof. ( =⇒ ) Straightforward using the containment K[x] ⊆ L[x].
(⇐= ) Let u ∈ F . Since u is algebraic over L, it is a root of some polynomial∑n

i=0 aix
i ∈ L[x]. Thus, we have ai ∈ L and

∑n
i=0 aiu

i = 0. It follows that u
is algebraic over the field K(a0, . . . , an). Theorem 6.1 implies that the extension
K(a0, . . . , an) ⊆ K(a0, . . . , an)(u) = K(a0, . . . , an, u) is finite. Since each ai is
algebraic over K, the extension K ⊆ K(a0, . . . , an) is finite, so the tower rule
implies that the extension K ⊆ K(a0, . . . , an, u) is finite. Theorem 5.6 implies
that the extension K ⊆ K(a0, . . . , an, u) is algebraic. Since u ∈ K(a0, . . . , an, u),
we conclude that u is algebraic over K. Since u is an arbitrary element of F , we
conclude that the extension K ⊆ F is algebraic. �

Theorem 6.4. Let K ⊆ L be a field extension, and set

K = {r ∈ L | r is algebraic over K}.
(a) K is an intermediate field of K and L
(b) The extension K ⊆ K is algebraic. Moreover, K is the unique maximal

subfield of L that is algebraic over K.
(c) Every element of L−K is transcendental over K, and hence over K.

Proof. (a) Let u, v ∈ K. The extension K ⊆ K(u, v) is algebraic by Theo-
rem 6.1. Hence, the element u−v ∈ K(u, v) is algebraic over K; that is, u−v ∈ K.
If v 6= 0, then uv−1 ∈ K(u, v) is algebraic over K; that is, uv−1 ∈ K. It follows
readily that K is a subfield of L. Since K ⊆ K, we have the desired conclusion.

(b) By definition, every element of K is algebraic over K, and so the extension
K ⊆ K is algebraic. Since K consists of all the elements of L that are algebraic
over K, it is the unique maximal subfield of L that is algebraic over K.

(c) If u ∈ L −K, then u is not algebraic over K. Hence, it is transcendental
over K. If u were algebraic over K, then K(u) would be algebraic over K. Since K
is algebraic over K, this would imply that K ⊆ K(u) is algebraic by Theorem 6.3,
and so u is algebraic over K, a contradiction. �

Lemma 6.5. Let k be a field and let V be a finite dimensional k-vector space.
Let f : V → V be a linear transformation. The following conditions are equivalent:
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(i) f is 1-1;
(ii) f is onto;

(iii) f is an isomorphism.

Proof. The implications (iii) =⇒ (i) and (iii) =⇒ (ii) are trivial.
(i) =⇒ (iii) Since f is a monomorphism, we have V ∼= Im(f), and so

dimk(V/ Im(f)) = dimk(V )− dimk(Im(f)) = dimk(V )− dimk(V ) = 0.

It follows that V/ Im(f) = 0. Hence V = Im(f) and so f is onto.
(ii) =⇒ (iii) Since V is onto, we have

V = Im(f) ∼= V/Ker(f).

A similar analysis as above shows that Ker(f) = 0 and so f is 1-1. �

Remark 6.6. This result fails if V is infinite-dimensional. The linear transfor-
mation f : k(N) → k(N) given by f(r0, r1, . . .) = (0, r0, r1, . . .) is 1-1 and not onto.
The linear transformation g : k(N) → k(N) given by g(r0, r1, . . .) = (r1, r2, . . .) is onto
and not 1-1.

Theorem 6.7. Let ϕ : k → R be a homomorphism of commutative rings with
identity such that k is a field and R is an integral domain. If dimk(R) < ∞, then
R is a field.

Proof. Let 0 6= r ∈ R and consider the map f : R → R given by f(s) = rs.
Since r 6= 0 and R is an integral domain, this map is 1-1. It is straightforward to
show that f is a k-linear transformation. Hence, Lemma 6.5 implies that f is an
isomorphism. In particular, there is an element u ∈ R such that 1 = f(u) = ru.
Hence u is a unit in R. Since u is an arbitrary nonzero element of R, this shows
that R is a field. �

Remark 6.8. This conclusion fails to hold if R is infinite-dimensional. The
natural inclusion ϕ : k → k[x] into the polynomial ring is a homomorphism of
commutative rings with identity such that k is a field and k[x] is an integral domain.
However k[x] is not a field.

This conclusion fails to hold if R is not an integral domain. The natural in-
clusion ϕ : k → k[x]/(x2) is a homomorphism of commutative rings with identity
such that k is a field and dimk(k[x]/(x2)) = 2 < ∞. However, k[x]/(x2) is not an
integral domain and hence is not a field.

Note that we also need the integral domain hypothesis in the next result, as
Z/6 is a finite commutative ring with identity that is not a field.

Theorem 6.9. Every finite integral domain is a field.

Proof. (Essentially the same proof as Theorem 6.7.) Let R be a finite integral
domain. Let 0 6= r ∈ R and consider the map f : R→ R given by f(s) = rs. Since
r 6= 0 and R is an integral domain, this map is 1-1. Since R is finite and f is 1-1,
the pigeon-hole principle implies that f is onto. Hence r is a unit in R. �

Theorem 6.10. Let k be a field and fix polynomials f1, . . . , fn ∈ k[x] of positive
degree. There is a finite field extension k ⊆ K such that fi has a root in K for
i = 1, . . . , n. Moreover, there is a field extension k ⊆ L such that each fi splits into
linear factors in L[x].
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Proof. Set f = f1 · · · fn. It suffices to show that there is a field extension
k ⊆ L such that each f splits into linear factors in L[x]. (This uses the fact that
L[x] is a unique factorization domain.) We proceed by induction on d = deg(f) > 1.
The base case d = 1 is trivial with L = k. Inductively, assume that d > 1 and that
the result holds for polynomials of degree < d. By Theorem 5.5 there is a finite
field extension k ⊆ k(u) such that u is a root of f . This implies that x − u | f
in k(u)[x]. Since k(u)[x] is a UFD, we can write f = (x − u)mg for some m > 1
and some g ∈ k(u)[x] such that x − u - g. If deg(g) = 0, then we are done with
K = k(u). So, assume that deg(g) > 1. Since deg(g) = d −m < d, our induction
hypothesis implies that there is a finite field extension k(u) ⊆ L such that g splits
into linear factors in L[x]. It follows that the extension k ⊆ L is finite and that
f = (x− u)mg splits into linear factors in L[x]. �

7. Day 7

We begin by showing that direct limits exist in the category of fields.

Proposition 7.1. Let K1,K2, . . . be fields, and for i > 1 let fi : Ki → Ki+1

be a homomorphism of fields. There exists a field K with homomorphisms of fields
gi : Ki → K satisfying the following properties:

(1) For each i > 1, the following diagram commutes

Ki
fi //

gi
""EEEEEEEE Ki+1

gi+1

��
K.

(2) Let L be a field with homomorphisms of fields hi : Ki → L such that, for each
i > 1, the following diagram commutes

Ki
fi //

hi ""EEEEEEEE Ki+1

hi+1

��
L.

Then there exists a unique homomorphism of fields H : K → L making each
of the following diagrams commute:

Ki
gi //

hi   AAAAAAAA K

H

��
L.

Proof. Note that, if there is a field F such that K1 ⊆ K2 ⊆ · · · ⊆ F and
each map fi is the inclusion, then K = ∪iKi works. Moreover, if there is a field F
with homomorphisms of fields φi : Ki → F such that, for each i > 1, the following
diagram commutes

Ki
fi //

φi ""EEEEEEEEE Ki+1

φi+1

��
F
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then K = ∪i Im(φi) works. (See Proposition 8.2.) The problem in general, though,
is that we do not yet know that such a field F exists.

For integers j > i > 1, define fi,j : Ki → Kj as

fi,j =


idKi : Ki → Ki if j = i

fi : Ki → Ki+1 if j = i+ 1
fj−1 ◦ · · · ◦ fi+1 ◦ fi : Ki → Kj if j > i+ 1.

Let
A = {(m, a) | m ∈ N, a ∈ Kn}.

(To be clear, one may think of this as an appropriate subset of N×K1×K2×· · · .)
Define an equivalence relation ∼ on A by: (m, a) ∼ (n, b) when either (1) m 6 n
and b = fm,n(a), or (2) m > n and a = fn,m(b). Check that this is an equivalence
relation on A. Set K = A/ ∼, that is, K is the set of equivalence classes under ∼.
For each (m, a) ∈ A, denote the corresponding equivalence class [m, a] ∈ K.

For each i > 1, define gi : Ki → K as gi(a) = [i, a]. We show that gi is 1-1.
Let a, b ∈ Ki such that gi(a) = gi(b). Then [i, a] = [i, b], and so (i, a) ∼ (i, b). This
means b = fi,i(a) = idKi(a) = a.

For (m, a), (n, b) ∈ K define

(m, a) + (n, b) =

{
(n, fm,n(a) + b) if n > m
(m, a+ fn,m(b)) if n 6 m.

Note that (m, a)+(n, b) = (n, b)+(m, a). Fix elements (m, a), (m′, a′), (n, b), (n′, b′) ∈
A such that (m, a) ∼ (m′, a′) and (n, b) ∼ (n′, b′).

Claim: (m, a) + (n, b) ∼ (m′, a′) + (n′, b′). To this end, we show that (m, a) +
(n, b) ∼ (m′, a′) + (n, b). (A similar argument then shows that (m′, a′) + (n, b) ∼
(m′, a′) + (n′, b′), and hence the claim.) Assume that m 6 m′. By definition of ∼,
this implies a′ = fm,m′(a). Consider three cases:

Case 1: n 6 m 6 m′.

(m, a) + (n, b) = (m, a+ fn,m(b))

∼ (m′, fm,m′(a+ fn,m(b))

= (m′, fm,m′(a) + fm,m′(fn,m(b)))

= (m′, a′ + fn,m′(b))

= (m′, a′) + (n, b)

The other two cases (m 6 n 6 m′ and m 6 m′ 6 n) are handled similarly.
For [m, a], [n, b] ∈ K define

[m, a] + [n, b] =

{
[n, fm,n(a) + b] if n > m
[m, a+ fn,m(b)] if n 6 m

[m, a][n, b] =

{
[n, fm,n(a)b] if n > m
[m, afn,m(b)] if n 6 m.

The above claim shows that this addition is well-defined. A similar argument
shows that this multiplication is well-defined. Check that the element [1, 0] ∈ K is
an additive identity. Check that the element [1, 1] ∈ K is a multiplicative identity.
Since g1 is 1-1, we know that [1, 0] 6= [1, 1] in K. Check that, for each [m, a] ∈ K,
the element [m,−a] ∈ K is an additive inverse for [m, a] in K. Check that, for
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each [m, a] ∈ K with a 6= 0, the element [m, a−1] ∈ K is a multiplicative inverse for
[m, a] in K. (Since gm is 1-1, we know that [m, a] 6= [m, 0] = [1, 0] in K.) Check
that K is a field.

Check that each map gi : Ki → K is a homomorphism of fields. Check that
gi+1fi = gi for each i > 1. This shows that condition (1) is satisfied.

For condition (2), let L be a field with homomorphisms of fields hi : Ki → L
such that, for each i > 1, the following diagram commutes

Ki
fi //

hi ""EEEEEEEE Ki+1

hi+1

��
L.

Define h : A → L by the formula h(m, a) = hm(a). Check that, when (m, a) ∼
(n, b), we have h(m, a) = h(n, b). It follows that the function H : K → L given
by the formula H([m, a]) = h(m, a) = hm(a) is well-defined. Check that H is a
homomorphism of fields making each of the following diagrams commute:

Ki
gi //

hi   AAAAAAAA K

H

��
L.

For the uniqueness of H, suppose that H ′ : K → L is another homomorphism of
fields making each of the following diagrams commute:

Ki
gi //

hi   AAAAAAAA K

H′

��
L.

For each [m, a] ∈ K, it follows that

H ′([m, a]) = H ′(gm(a)) = hm(a) = H([m, a])

and so H ′ = H. �

8. Day 8

Here is a uniqueness statement for the previous result.

Proposition 8.1. Let K1,K2, . . . be fields, and for i > 1 let fi : Ki → Ki+1 be
a homomorphism of fields. Let K and K ′ be fields with homomorphisms of fields
gi : Ki → K and g′i : Ki → K ′ satisfying conditions (1) and (2) from Proposi-
tion 7.1. That is, assume that

(1) for each i > 1, the following diagrams commute

Ki
fi //

gi
""EEEEEEEE Ki+1

gi+1

��

Ki
fi //

g′i ""EEEEEEEE Ki+1

g′i+1

��
K K ′
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(2) for each field L with homomorphisms of fields hi : Ki → L such that, for each
i > 1, the following diagram commutes

Ki
fi //

hi ""EEEEEEEEE Ki+1

hi+1

��
L

there exists unique homomorphisms of fields H : K → L and H ′ : K ′ → L
making each of the following diagrams commute:

Ki
gi //

hi   AAAAAAAA K

H

��

Ki

g′i //

hi !!BBBBBBBB K ′

H′

��
L L.

Then there are isomorphisms of fields Φ: K → K ′ and Φ′ : K ′ → K making each
of the following diagrams commute:

Ki
gi //

g′i !!BBBBBBBB K

Φ

��

Ki

g′i //

gi
!!BBBBBBBB K ′

Φ′

��
K ′ K.

Proof. Conditions (1) and (2) provide homomorphisms of fields Φ: K → K ′

and Φ′ : K ′ → K making each of the following diagrams commute:

Ki
gi //

g′i !!BBBBBBBB K

Φ

��

Ki

g′i //

gi
!!BBBBBBBB K ′

Φ′

��
K ′ K.

We need to show that Φ and Φ′ are isomorphisms. The above diagrams combine
to provide the first commutative diagram in the next display

Ki
gi //

gi   AAAAAAAA K

Φ′Φ

��

Ki
gi //

gi !!BBBBBBBB K

idK

��
K K.

Since the second diagram also commutes, the uniqueness condition in (2) implies
that Φ′Φ = idK . A similar argument shows that ΦΦ′ = idK . Hence Φ and Φ′ are
isomorphisms. �

Proposition 8.2. Let K1,K2, . . . be fields, and for i > 1 let fi : Ki → Ki+1 be a
homomorphism of fields. Let K be a field with homomorphisms of fields gi : Ki → K
satisfying conditions (1) and (2) from Proposition 7.1. Then ∪i(Im(gi)) = K. In
other words, for each a ∈ K, there exists i > 1 and ai ∈ Ki such that a = gi(ai).

Proof. Exercise. Show that K ′ = ∪i Im(gi) is a subfield of K, and that there
are homomorphisms of fields g′i : Ki → K ′ that satisfy conditions (1) and (2) from
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Proposition 7.1. Then argue as in the proof of Proposition 8.1 to show that the
inclusion K ′ ⊆ K must be an isomorphism. �

Theorem 8.3. Let K be a field. TFAE:
(i) Every polynomial f ∈ k[x] with positive degree has a root in k;
(ii) Every polynomial f ∈ k[x] with positive degree splits into linear factors in

k[x];
(iii) If k ⊆ K is an algebraic extension, then k = K.

Proof. (i) =⇒ (ii) Let f ∈ k[x] with deg(f) > 1. By assumption, f has a
root a ∈ k, and so f = (x− a)g for some g ∈ k[x]. Note that deg(g) = deg(f)− 1,
so an induction argument shows that f splits into linear factors in k[x].

(ii) =⇒ (iii) Let k ⊆ K be an algebraic extension. Let u ∈ K, which is
necessarily algebraic over k. Let f ∈ k[x] be the minimal polynomial of u over k.
By assumption, f splits into linear factors in k[x]. However, f is irreducible by
assumption, and so f is linear. Since f is monic, it is of the form f = x − v for
some v ∈ k. Since u is a root of f = x − v, we have u = v ∈ k. Thus, we have
K ⊆ k ⊆ K and so k = K.

(iii) =⇒ (i) Let f ∈ k[x] with deg(f) > 1. Theorem 5.5 yields a field extension
k ⊆ k(u) such that u is a root of f . Theorem 6.2 implies that this extension is
algebraic, so our assumption implies k = k(u). Hence, u ∈ k is a root of f . �

Definition 8.4. A field k is algebraically closed if it satisfies the equivalent
conditions of Theorem 8.3. If k ⊆ K is an algebraic field extension such that K is
algebraically closed, then K is an algebraic closure of k.

9. Day 9

It is time to start being precise.

Definition 9.1. Fix a homomorphism of commutative rings with identity
φ : R → S, let φ̂ : R[x] → S[x] denote the homomorphism of polynomial rings
given by φ̂(

∑
i aix

i) =
∑
i φ(ai)xi. An element a ∈ S is a root of f ∈ R[x] if a is a

root of φ̂(f) ∈ S[x].
We say that S is generated as an R-algebra by a set X ⊆ S if S = Im(φ)[X].

Definition 9.2. A field extension is a homomorphism of fields φ : K → L.
Note that φ is a monomorphism, and so K ∼= Im(φ) ⊆ L.

A field extension φ : K → L is algebraic if Im(φ) ⊆ L is algebraic; it is tran-
scendental if Im(φ) ⊆ L is transcendental; the field L is generated as a field over
K by a set X ⊆ L if L = Im(φ)(X).

Let φ : K → L and φ′ : K → L′ be field extensions. A map ψ : L → L′ is a
K-homomorphism of fields if it is a homomorphism of fields making the following
diagram commute:

K
φ //

φ′   BBBBBBBB L

ψ

��
L′.

Definition 9.3. If φ : K → L is an algebraic field extension such that K is
algebraically closed, then L is an algebraic closure of K.
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We will show below that every field has an algebraic closure. First we need
another tool: polynomial rings in infinitely many variables.

Remark 9.4. Let R be a commutative ring with identity and let S be a set.
There exists a ring P = R[{xs | s ∈ S}] of polynomials where the set of variables
{xs | s ∈ S} is in bijection with S. Every element of R[{xs | s ∈ S}] is of the
form f(xs1 , xs2 , . . . , xsn) for some polynomial f ∈ R[y1, . . . , yn], that is, of the
form

∑finite
i1,...,in∈N ai1,...,inx

i1
s1 · · ·x

in
sn for some ai1,...,in ∈ R. Furthermore, the set of

monomials {xi1s1 · · ·x
in
sn | s1, . . . , sn ∈ S; i1, . . . , in ∈ N} is linearly independent, i.e.,

forms a basis for R[{xs | s ∈ S}] as an R-module. Addition and multiplication
are defined in the natural way. If S is finite, then R[{xs | s ∈ S}] ∼= R[x1, . . . , xn]
where n = |S|. The inclusion of constant polynomials defines a monomorphism of
commutative rings with identity ι : R→ R[{xs | s ∈ S}].

The ring P has the following universal mapping property: Let φ : R → T be
a homomorphism of commutative rings with identity. For each subset {ts ∈ T |
s ∈ S} there exists a unique homomorphism of commutative rings with identity
Φ: R[{xs | s ∈ S}] → T such that Φ(xs) = tt for each s ∈ S and Φ(a) = a for all
a ∈ R, that is, such that the following diagram commutes:

R
ι //

φ
&&LLLLLLLLLLLLL R[{xs | s ∈ S}]

Φ

��

xs_

��
T ts.

See Hungerford, Exercise III.5.4 for details of the construction.

Lemma 9.5. Let K be a field. There is an algebraic field extension φ : K → K ′

such that, for every polynomial f ∈ K[x] of positive degree, the field K ′ contains a
root of f .

Proof. Let S = {f ∈ K[x] | deg(f) > 1}. Let X denote a set of variables,
indexed by the set S. For each f ∈ S, let xf ∈ X denote the variable in X
corresponding to f . Consider the polynomial ring K[X] = K[{xf | f ∈ S}], and let

I = ({f(xf ) | f ∈ S}) ⊆ K[X]

which is an ideal in K[X]. Note that the coset xf + I ∈ K[X]/I is a root of f .
Claim: 1 6∈ I. Suppose that 1 ∈ I. then there exist polynomials f1, . . . , fn ∈ S

and g1, . . . , gn ∈ K[X] such that 1 =
∑
i gif(xfi). By Theorem 6.10, there is

a field extension α : K → L such that each fi has a root ai ∈ L. Remark 9.4
yields a homomorphism of commutative rings with identity ψ : K[X] → L such
that ψ(xfi) = ai for i = 1, . . . , n and ψ(xf ) = 0 for f 6= fi. In particular, we have
ψ(1) = 1 6= 0. However, we have

1 = ψ(1) = ψ(
∑
i gif(xfi)) =

∑
i ψ(gi)ψ(f(xfi)) =

∑
i ψ(gi)f(ai) =

∑
i ψ(gi)0 = 0

a contradiction. This establishes the claim.
The claim implies that I ( K[X], and so there is a maximal ideal m ⊂ K[X]

such that I ⊆ m. Since xf + I ∈ K[X]/I is a root of f in K[X]/I and I ⊆ m,
it follows that xf + m ∈ K[X]/m is a root of f in the field K ′ = K[X]/m. Let
φ : K → K ′ denote the composition K → K[X] → K[X]/m = K ′. Note that K ′

is generated as a K-algebra (and therefore as a field extension of K) by the set
{xf + m | f ∈ S}. Since every element of this set is algebraic, it follows that the
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extension K → K ′ is algebraic, and that every polynomial in S has a root in K ′.
That is, the homomorphism φ has the desired properties. �

10. Day 10

Theorem 10.1. Every field K has an algebraic closure.

Proof. Set K1 = K. Lemma 9.5 provides a homomorphism of fields φ1 : K1 →
K2 such that the extension Im(φ1) ⊆ K2 is algebraic and for every polynomial
f ∈ K1[x] of positive degree, the field K2 contains a root of φ̂1(f). Inductively, for
each i > 1 there is a homomorphism of fields φi : Ki → Ki+1 such that the extension
Im(φi) ⊆ Ki+1 is algebraic and for every polynomial f ∈ Ki[x] of positive degree,
the field Ki+1 contains a root of φ̂i(f).

Propositions 7.1 and 8.2 say that there exists a field K with homomorphisms
of fields gi : Ki → K satisfying the following properties:

(1) For each i > 1, the following diagram commutes

Ki
φi //

gi ""DDDDDDDD Ki+1

gi+1

��
K.

(2) For each a ∈ K, there exists i > 1 and ai ∈ Ki such that a = gi(ai).

For integers j > i > 1, define φi,j : Ki → Kj as

φi,j =


idKi : Ki → Ki if j = i

φi : Ki → Ki+1 if j = i+ 1
φj−1 ◦ · · · ◦ φi+1 ◦ φi : Ki → Kj if j > i+ 1.

Claim: K is algebraically closed. Let f =
∑d
i=0 bix

i ∈ K[x] be a polynomial
with deg(f) > 1. We will show that f has a root in K. Condition (2) implies
that, for i = 0, . . . , d there exists ji and ci ∈ Kji such that bi = gji(ci). Let
j = max{j0, . . . , jd}. For i = 0, . . . , d set ui = φji,j(ci). Condition (1) implies that
bi = gj(ui) for each i. Set f̃ =

∑d
i=0 uix

i ∈ Kj [x]. This is a polynomial with
deg(f̃) = deg(f) > 1 and ĝj(f̃) = f . By construction, the field Kj+1 contains a
root v of f̃ . It follows that the element gj+1(v) ∈ K is a root of f .

Claim: K is an algebraic closure for K = K1. Because of the previous claim,
it suffices to show that the extension g1 : K1 → K is algebraic. Let u ∈ K. Condi-
tion (2) implies that there exists i > 1 and v ∈ Ki such that u = gi(v). Since Kj

is algebraic over Kj−1 for each j > 2, an induction argument using Theorem 6.3
shows that each Kj is algebraic over K1 = K. Thus, the element v ∈ Ki is algebraic
over K1, and it follows that u is also algebraic over K1. �

Here is a “universal mapping property” for algebraic closures. Note that we do
not claim that the map γ in this result is unique.

Theorem 10.2. Let K be a field. Let φ : K → K be an algebraic closure of K,
and let ψ : K → L be an algebraic field extension. Then there is a K-homomorphism
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of fields γ : L → K, that is, there is a homomorphism of fields γ : L → K making
the following diagram commute

K
ψ //

φ   AAAAAAAA L

∃γ
���
�
�

K.

Proof. Case 1: We have K ⊆ L where φ is the inclusion. Let Σ denote the
set of all ordered pairs (F, α) such that K is an intermediate field of K and L and
such that α : F → K is a K-homomorphism of fields. Partially order Σ as follows:
(F, α) 6 (F ′, α′) when F ⊆ F ′ and α′|F = α. Verify that this is a partial order on
Σ. Note that Σ 6= ∅ because (K,φ) ∈ Σ.

Claim: Σ contains a maximal element (K ′, φ′). To show this, we show that Σ
satisfies the hypotheses of Zorn’s Lemma. Let C be a chain in Σ. Then each element
of C is an ordered pair (F, α). In particular, the set C′ = {F | (F, α) ∈ C for some α}
is a chain of intermediate fields of K and L. It follows from an exercise that
E = ∪(F,α)∈CF is an intermediate field of K and L.

Define a function β : E → K as follows. For e ∈ E, we have e ∈ F for some
(F, α) ∈ C, so we set β(e) = α(e). To see that this is well-defined, suppose that
e ∈ F ′ for some (F ′, α′) ∈ C. We need to show that α(e) = α′(e). Since C is a
chain, we have either (F, α) 6 (F ′, α′) or (F ′, α′) 6 (F, α). By symmetry, assume
that (F, α) 6 (F ′, α′). By definition, this entails F ⊆ F ′ and α′|F = α. It follows
that α(e) = α′|F (e) = α′(e), as desired.

Since each map α is a K-homomorphism of fields, it is straightforward to show
that β : E → K is a K-homomorphism of fields. Hence (E, β) ∈ Σ. Furthermore,
by construction, if (F, α) ∈ C, then F ⊆ E and β |F= α: hence, (F, α) 6 (E, β).
That is, (E, β) is an upper bound for C in Σ. Thus, Σ satisfies the hypotheses of
Zorn’s Lemma, and so Σ contains a maximal element (K ′, φ′).

Claim: K ′ = L. (Once we show this, we will be done since then φ′ : L → K
will satisfy the desired conclusions.) Suppose K ′ 6= L, that is K ′ ( L, and let
u ∈ L − K ′. Since L is algebraic over K and K ⊆ K ′ ⊂ L, we know that u
is algebraic over K ′. We will show that there is a K-homomorphism of fields
γ : K ′(u)→ K such that γ |K′= φ′. This will contradict the maximality of (K ′, φ′)
in Σ, thus completing the proof in this case.

Let f ∈ K ′[x] be the minimal polynomial of u. Since φ′ : K ′ → K is a field
extension and K is algebraically closed, we know that K contains a root v of f .
Theorem 5.2 provides an isomorphism δ : K ′(u) → Im(φ′)(v) such that δ |K′= φ′.
In particular, this is a K-homomorphism such that δ |K′= φ′. Letting γ be the
composition of δ with the natural injection Im(φ′)(v) ⊆ K, we have the desired
map.

Case 2: The general case. Let K1 = Im(ψ) ⊆ L. This is an algebraic extension,
so Case 1 provides a K-homomorphism γ1 : K1 → K. Letting γ be the composition
of γ1 with the isomorphism K → Im(ψ) = K1 induced by ψ, we have the desired
map. �

11. Day 11

We put the words “universal mapping property” in quotes because the map γ
may not be unique, as the following example shows.
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Example 11.1. We shall see that C is an algebraic closure of R via the nat-
ural inclusion R ⊂ C. With L = C = K in the previous result, there are two
R-isomorphisms γ : C → C, namely, the identity and complex conjugation. See
Example 5.4.

In spite of the lack of uniqueness, we show below that the algebraic closure of
a field K is unique up to K-isomorphism. First, some preliminaries.

Lemma 11.2. Let K be a field, and let φ : K → L and φ′ : K → L′ be algebraic
field extensions. Let ψ : L → L′ be a K-homomorphism. For each u ∈ L with
minimal polynomial f ∈ K[x], the element ψ(u) ∈ L′ is a root of f .

Proof. Write f =
∑
i aix

i. If we think of K as a subfield of L and L′, then
we have

f(ψ(u)) =
∑
i aiψ(u)i = ψ(

∑
i aiu

i) = ψ(f(u)) = ψ(0) = 0.

If we remember the homomorphisms, then we write

f(ψ(u)) =
∑
i φ
′(ai)ψ(u)i =

∑
i ψ(φ(ai))ψ(u)i = ψ(

∑
i φ(ai)ui) = ψ(f(u)) = ψ(0) = 0.

�

Theorem 11.3. Let K be a field, and let φ : K → L be an algebraic extension.
If ψ : L→ L is a K-homomorphism, then ψ is an isomorphism.

Proof. We know that ψ is injective, so it remains to show that ψ is surjective.
Let u ∈ L with minimal polynomial f ∈ K[x]. Let u = u1, . . . , un ∈ L be the
distinct roots of f in L. Lemma 11.2 implies that, for each i, there is a j such
that ψ(ui) = uj . In other words, ψ restricts to a function ψ′ : {u1, . . . , un} →
{u1, . . . , un}. Since ψ is 1-1, the same is true of ψ′. Hence, the Pigeonhole Principle
implies that ψ′ is onto. Hence, there is a j such that ψ(uj) = u1 = u. Thus ψ is
onto. �

The next example shows that the conclusion of the previous result fails if L is
not algebraic over K.

Example 11.4. Let k be a field and let k(x) be the field of rational functions
over k in one variable. Theorem 5.1 provides a k-homomorphism φ : k(x) → k(x)
such that φ(x) = x2. A homework exercise shows that this is not an isomorphism.

Theorem 11.5. Let K be a field, and let φ : K → L and φ′ : K → L′ be alge-
braic closures. There is a K-isomorphism ψ : L

∼=−→ L′. Every K-homomorphism
ψ : L

∼=−→ L′ is an isomorphism.

Proof. Theorem 10.2 provides K-homomorphisms ψ : L → L′ and ψ′ : L′ →
L. The composition ψψ′ : L′ → L′ is a K-homomorphism. Since the extension
φ : K → L is algebraic, Theorem 11.3 implies that ψψ′ is bijective. It follows
that ψ is onto. Since we already know that ψ is 1-1, we conclude that it is an
isomorphism. �

Now we start counting K-homomorphisms L→ K.

Lemma 11.6. Let φ : K → K(u) be a finite simple field extension, and let
ψ : K → K be an algebraic closure. If α, α′ : K(u) → K are K-homomorphisms
such that α(u) = α′(u), then α = α′.
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Proof. We have K(u) = K[u] by Theorem 3.7(a), and Theorem 4.1(b) implies
{1, u, u2, . . . , un−1} is a K-basis for K(u) where n = [K(u) : K].

First, we think of K as a subfield of K(u) and K. For each
∑
i aiu

i ∈ K(u),
our assumptions imply

α′(
∑
i aiu

i) =
∑
i aiα

′(u)i =
∑
i aiα(u)i = α′(

∑
i aiu

i)

and so α′ = α.
When we remember the homomorphisms, an arbitrary element of K(u) has the

form
∑
i φ(ai)ui with the ai ∈ K, and we have

α′(
∑
i φ(ai)ui) =

∑
i α
′(φ(ai))α′(u)i =

∑
i ψ(ai)α′(u)i =

∑
i ψ(ai)α(u)i

=
∑
i α(φ(ai))α(u)i = α′(

∑
i φ(ai)ui)

and so α′ = α. �

Lemma 11.7. Let φ : K → K(u) be a simple finite field extension, and let
ψ : K → K be an algebraic extension. The number of K-homomorphisms K(u)→
K is equal to the number of distinct roots of u in K, and this is at most [K(u) : K].

Proof. Let S = {K-homomorphisms K(u)→ K}. Let f ∈ K[x] be the mini-
mal polynomial for u, and let u1, . . . , um ∈ K be the distinct roots of f in K. We
show that |S| = m. It then follows that |S| = m 6 deg(f) = [K(u) : K].

For i = 1, . . . ,m there is a K-homomorphism αi : K(u) → K(ui) ⊆ K such
that αi(u) = ui. Since ui 6= uj when i 6= j, we have m distinct K-homomorphisms,
and so |S| > m.

On the other hand, let α : K(u) → K be a K-homomorphism. Lemma 11.2
implies that α(u) is a root of f , and so α(u) = ui for some i. Lemma 11.6 implies
that α is unique with this property, and so |S| 6 m. �

Lemma 11.8. Let ψ : K → K and φ : K → L and ρ : L → M be field ex-
tensions. Let T denote the set of ordered pairs (α, β) such that α : L → K is a
K-homomorphism, and β : M → K is an L-homomorphism where the L-algebra
structure for K is determined by α. Then T is in bijection with the set of K-
homomorphisms M → K.

Proof. Identify L with its image in M , and identify K with its image in
L ⊆M . Let S = {K-homomorphisms M → K}. We construct bijections S ↔ T .

To define Φ: T → S, let (α, β) ∈ T . So α : L → K and β : M → K are such
that αφ = ψ and βρ = α, i.e., such that ψ = α|K and α = β|L. It follows that
β|K = β|L|K = α|K , and so β is a K-homomorphism. That is, we may define
Φ(α, β) = β.

To define Ψ: S → T , let γ : M → K be a K-homomorphism. It follows that
γ|L : L → K is a K-homomrophism, and so we can define Ψ(γ) = (γ|L, γ). Check
that Φ and Ψ are inverses and hence bijections. �

12. Day 12

Theorem 12.1. Let φ : K → L be a field extension with n = [L : K] <∞, and
let ψ : K → K be an algebraic closure. The number of K-homomorphisms L→ K
is at most n.
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Proof. Write L = K(u1, . . . , um). We proceed by induction on m. The base
case m = 1 is in Lemma 11.7.

For the induction step, assume that m > 1 and write

L = K(u1, . . . , um) = K(u1, . . . , um−1)(um).

Lemma 11.8 implies that everyK-homomorphism β : K(u1, . . . , um)→ K is uniquely
obtained from the following procedure:

(1) Choose a K-homomorphism α : K(u1, . . . , um−1) → K (there are at most
[K(u1, . . . , um−1) : K] many choices by induction);

(2) Choose a K(u1, . . . , um−1)-homomorphism β : K(u1, . . . , um−1)(um) → K
(there are at most [K(u1, . . . , um) : K(u1, . . . , um−1)] many choices for β
(for each choice of α)).

It follows that the total number of choices for β is at most

[K(u1, . . . , um−1) : K][K(u1, . . . , um) : K(u1, . . . , um−1)] = [K(u1, . . . , um) : K]

= [L : K]

by the Tower Law. �

Corollary 12.2. Let φ : K → L be a finite field extension, and let K → K
be an algebraic closure. Fix a K-homomorphism L → K and identify L with its
image in K. Then

|{K-homomorphisms L→ L}| 6 |{K-homomorphisms L→ K}| 6 [L : K]

where K → K is an algebraic closure. Furthermore, the first inequality is an
equality if and only if, for all K-homomorphisms ρ : L→ K, we have Im(ρ) = L.

Proof. Each K-homomorphism L → L uniquely determines a K-homomor-
phism L → K by composing with the inclusion L ⊆ K. It follows that the num-
ber of K-homomorphisms L → L is at most the number of K-homomorphisms
L → K, which is at most n by Theorem 12.1. This argument gives a 1-1 map
{K-homomorphisms L→ L} ↪→ {K-homomorphisms L→ K}. Since these sets
are finite, the map is a bijection if and only if the sets have the same cardinal-
ity. �

The next examples show that each inequality in the corollary can be strict.

Example 12.3. We can have

|{K-homomorphisms L→ K}| < [L : K].

Let k = Z/(2). Let L = k(t) be the field of rational functions in one variable
over k = Z/(2). Let K = k(t2) ⊆ k(t) = L. Then t ∈ k(t) − k(t2), and so
[k(t) : k(t2)] > 2. On the other hand t is a root of the polynomial x2− t2 ∈ k(t2)[x],
and so [k(t) : k(t2)] 6 2. Hence, we have [k(t) : k(t2)] = 2, that is [L : K] = 2.

We claim that there is only one K-homomorphism L→ K. To see this, use the
fact that L = K(t) in Lemma 11.7 to see that the number of K-homomorphisms
L → K is the same as the number of distinct roots of x2 − t2 in K. However, if
T ∈ K is a root of x2 − t2, then we have 0 = T 2 − t2 and so

x2 − t2 = x2 − T 2 = x2 − 2Tx+ T 2 = (x− T )2.

Since K[x] is a UFD, it follows that the only root of x2 − t2 in K is T .
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Example 12.4. We can have

|{K-homomorphisms L→ L}| < |{K-homomorphisms L→ K}|.

Let K = Q and L = Q( 3
√

2). The irreducible polynomial of 3
√

2 over Q is f = x3−2.
The field L only contains one root of f , namely 3

√
2. Let K ⊆ K be an algebraic

closure such that K ⊆ C. Then K contains three distinct roots for f , namely
3
√

2, 3
√

2e2πi/3 = 3
√

2(−1 +
√

3i)/2, 3
√

2e4πi/3 = 3
√

2(−1−
√

3i)/2. Thus, we have

|{K-homomorphisms L→ L}| = 1 < 3 = |{K-homomorphisms L→ K}|

by Lemma 11.7.

Definition 12.5. Let φ : K → L be a finite field extension. The Galois group
of L over K is

Gal(L : K) = {K-homomorphisms L→ L}.
This is a group under composition since each K-homomorphism L → L is an
isomorphism.

The extension φ : K → L is Galois if |Gal(L : K)| = [L : K].
The field L is a splitting field for a polynomial f ∈ K[x] if f splits into linear

factors in L[x] and L = K(u1, . . . , un) where u1, . . . , un are roots of f in L.

Proposition 12.6. Let φ : K → L be a finite field extension, and let ψ : K → K
be an algebraic closure. Fix a K-homomorphism L → K and identify L with its
image in K. The extension φ : K → L is Galois if and only if it satisfies the
following conditions:

(1) For each K-homomorphisms ρ : L→ K, we have Im(ρ) = L; and
(2) The number of K-homomorphisms ρ : L→ K is exactly [L : K].

Proof. Corollary 12.2 says that condition (1) is equivalent to the condition

|{K-homomorphisms L→ L}| = |{K-homomorphisms L→ K}|.

Condition (2) is exactly the equality

|{K-homomorphisms L→ K}| = [L : K].

Thus, the result follows from the inequalities in Corollary 12.2. �

Remark 12.7. Examples 12.3 and 12.4 show how each condition in Proposi-
tion 12.6 can fail.

13. Day 13

The next result analyzes condition (1) from Proposition 12.6.

Theorem 13.1. Let φ : K → L be a finite field extension, and let ψ : K → K
be an algebraic closure. Fix a K-homomorphism L → K and identify L with its
image in K. The following conditions are equivalent:

(i) For each K-homomorphisms ρ : L→ K, we have Im(ρ) = L;
(ii) For each K-homomorphisms ρ : L→ K, we have Im(ρ) ⊆ L;

(iii) Every irreducible polynomial over K with a root in L splits into linear fac-
tors in L[x];

(iv) L is a splitting field for some polynomial f ∈ K[x].
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Proof. (i) =⇒ (ii). Straightforward.
(ii) =⇒ (i). By Theorem 11.3: since K → L is algebraic and ρ describes a

K-homomorphism L→ L, we know that ρ maps onto L.
(ii) =⇒ (iii). Let f ∈ K[x] be irreducible and let u1, . . . , un be the roots of f in

K. Assume that u1 ∈ L. It suffices to show that each ui ∈ L. Let φi : K(u1)→ K
be a K-homomorphism such that φi(u1) = ui. The extension K → L is finite, so
the intermediate extension K(u1) ⊆ L is algebraic. Hence, Theorem 10.2 provides
a K(u1)-homomorphism ψi : L → K, that is, ψi is a K-homomorphism such that
ψ|K(u1) = φi. By assumption (ii), we have ui ∈ Im(φi) ⊆ Im(ψi) ⊆ L, as desired.

(iii) =⇒ (iv). Since L is finite over K, we have L = K(u1, . . . , un) for some
ui ∈ L. Let fi ∈ K[x] be the minimal polynomial for ui and set f = f1 · · · fn. Since
each ui is a root of f , it suffices to show that f splits into linear factors in L[x].
Since fi is irreducible and has a root in L, condition (iii) says that fi splits into
linear factors in L[x]. Hence, the same is true for f .

(iv) =⇒ (ii). Assume that L is a splitting field for f ∈ K[x], and let u1, . . . , un ∈
L be roots of f such that L = K(u1, . . . , un). Let ρ : L→ K be aK-homomorphism.
By assumption, f splits into linear factors in L[x], and so L contains every root of
f in K. Thus, we assume that u1, . . . , un is a complete list of the distinct roots of
f in K. Since ρ(ui) ∈ K is a root of f , we have ρ(ui) ∈ L for each i.

Each element of L is of the form
∑
i

∑
j ai,ju

j
i . The previous paragraph tells

us ρ(ui) ∈ L for each i, and so

ρ(
∑
i

∑
j ai,ju

j
i ) =

∑
i

∑
j ai,jρ(ui)j ∈ L.

Since this is so for an arbitrary element of L, we conclude that Im(ρ) ⊆ L, as
desired. �

Definition 13.2. A finite field extension satisfying the equivalent conditions
of Theorem 13.1 is a normal extension.

Example 13.3. The example Q ⊆ Q( 3
√

2) from 12.4 is not normal because the
polynomial x3− 2 ∈ Q[x] is irreducible and has a root in Q( 3

√
2), but does not split

into linear factors in Q( 3
√

2)[x].

Example 13.4. Let φ : K → L be a field extension with [L : K] = 2. We claim
that this extension is normal. Identify K with its image in L. Since [L : K] = 2,
we have L = K(u) for each u ∈ L−K. The minimal polynomial f ∈ K[x] of u has
degree 2. Since u ∈ L is a root of f , we have f = (x− u)g for some g ∈ L[x]. Since
deg(f) = 2, we have deg(g) = 1 and so g = x − v ∈ L[x]. That is, L contains the
other root v of f . Thus, L is a splitting field for f over K, and so the extension is
normal.

In particular, the extension Z/(2)(t2) ⊆ Z/(2)(t) from Example 12.3 is normal.

Proposition 13.5. Let K be a field and fix a polynomial f ∈ K[x] of positive
degree. Then f has a splitting field over K, and any two splitting fields of f are
K-isomorphic.

Proof. Theorem 6.10 shows that there is a field extension K → L such that
f splits into linear factors in L[x]. (The proof actually shows how to construct a
splitting field.) To find a splitting field of f , let u1, . . . , un be all the roots of f in
L. Then the field K(u1, . . . , un) is a splitting field of f .
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Let φ : K → L and φ′ : K → L′ be splitting fields for f . Let u1, . . . , un be
all the roots of f in L. Let h1 ∈ K[x] be the minimal polynomial of u1. Then
h1

∣∣f and so L′ contains a root of h1, call it u′1 ∈ L′. Theorem 5.2 provides a
K-isomorphism ψ1 : K(u1)→ K(u′1). Inductively, for each i, there is a root u′i ∈ L
of f and a K-isomorphism ψi : K(u1, . . . , ui) → K(u′1, . . . , u

′
i). Hence, there are

roots of u′1, . . . , u
′
n ∈ L′ of f and a K-isomorphism ψn : L = K(u1, . . . , un) →

K(u′1, . . . , u
′
n) ⊆ L′. This yields a K-homomorphism ψ : L → L′. Similarly, we

construct a K-homomorphism ψ′ : L′ → L. Since L′ is algebraic over K, the
composition ψψ′ : L′ → L′ is an isomorphism by Theorem 11.5. It follows that ψ
is onto, and hence is an isomorphism. �

14. Day 14

Proposition 14.1. Let K be a field and fix a polynomial f ∈ K[x] of degree
n > 1. If φ : K → L is a splitting field of f , then [L : K] 6 n!.

Proof. Let u1, . . . , um be the distinct roots of f in L, and note that m 6 n.
We have [K(u1) : K] 6 n because the minimal polynomial of u1 in K[x] divides
f . We have [K(u1, u2) : K(u1)] 6 n − 1 because the minimal polynomial of u2 in
K(u1)[x] divides f/(x− u1). Similarly, we have

[K(u1, . . . , ui, ui+1) : K(u1, . . . , ui)] 6 n− i

for each i. Hence we have

[L : K] = [K(u1, . . . , um) : K] =
∏m−1
i=0 [K(u1, . . . , ui, ui+1) : K(u1, . . . , ui)]

6
∏n−1
i=0 (n− i) = n!

by the Tower Law. �

Definition 14.2. Let K be a field and let φ : Z→ K be given by

φ(n) =


∑n
i=1 1K if n > 1∑|n|
i=1−1K if n 6 1

0K if n = 0.

Check that φ is a homomorphism of commutative rings with identity. It follows
that Ker(φ) ⊂ Z is a prime ideal, and so Ker(φ) = (n) for some integer n > 0, either
0 or prime. The number n is the characteristic of K, and we write char(K) = n.
We call φ the characteristic function for K.

Example 14.3. We have char(Q) = char(R) = char(C) = 0, and char(Z/(p)) =
p for each prime p > 0.

Exercise 14.4. Let K be a field.
(a) Show that char(K) = 0 if and only if there is a homomorphism of fields Q→ K.
(b) Show that char(K) = p > 0 if and only if there is a homomorphism of fields

Z/(p)→ K.

Exercise 14.5. (Freshman dream) Let K be a field with char(K) = p > 0.
Show that, for all a, b ∈ K we have (a+ b)p

n

= ap
n

+ bp
n

for each integer n > 1.

We next analyze condition (2) from Proposition 12.6.
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Theorem 14.6. Let K be a field, and let ψ : K → K be an algebraic closure.
Identify K with its image in K. Let u ∈ K −K, and let f ∈ K[x] be the minimal
polynomial of u. The following conditions are equivalent:

(i) |{K-homomorphisms ρ : K(u)→ K}| < [K(u) : K];
(ii) f has a multiple (repeated) root in K;

(iii) f ′ = 0;
(iv) char(K) = p > 0 and there is an (irreducible, monic) polynomial g ∈ K[x]

such that f = g(xp);
(v) char(K) = p > 0 and (x− u)p

∣∣f in K[x];
(vi) u is a multiple (repeated) root of f .

Proof. (i)⇐⇒ (ii). Lemma 11.7 says that the number of K-homomorphisms
ρ : K(u)→ K is equal to the the number of distinct roots of f in K. Since f splits
into linear factors in K[x], this number is less than [K(u) : K] = deg(f) if and only
if f has a repeated root in K.

(ii) =⇒ (iii). Let v ∈ K be a repeated root of f . Proposition 3.11.12 implies
that f(v) = 0 = f ′(v) where f ′ is the formal derivative of f . Suppose that f ′ 6= 0.
It follows that deg(f ′) < deg(f). Since f is monic and irreducible and has v as a
root, we see that f is the minimal polynomial of v. Since v is a root of f ′ ∈ K[x],
it follows that f

∣∣f ′. This implies deg(f) 6 deg(f ′), a contradiction.
(iii) =⇒ (iv). Let d = deg(f) and write f =

∑d
i=0 aix

i. Since f is monic, we
have ad = 1. Let φ : Z→ K be the characteristic function for K.

Claim: p = char(K) > 0 and, if ai 6= 0, then p
∣∣i. We have 0 = f ′ =∑d

i=1 iaix
i−1. Since the elements 1, x, x2, . . . form a linearly independent set, it

follows that each coefficient iai = 0. In other words, we have φ(i)ai = 0. When
i = d, this says 0 = φ(d)1 = φ(d), and so 0 6= d ∈ Ker(φ). This implies that
Ker(φ) 6= 0, and so char(K) > 0. Set p = char(K). If ai 6= 0, then the equality
φ(i)ai = 0 implies that 0 = a−1

i φ(i)ai = φ(i); hence, we have i ∈ Ker(φ) = pZ and
so p

∣∣i.
It follows that we have

f = a0 + a1x+ · · ·+ ad−1x
d−1 + xd

= a0 + apx
p + a2px

2p + · · ·+ a(e−1)px
(e−1)p + xep

= a0 + ap(xp)1 + a2p(xp)2 + · · ·+ a(e−1)p(xp)e−1 + (xp)e.

The polynomial g = a0 + apx
1 + a2px

2 + · · · + a(e−1)px
e−1 + xe, is monic, and

the above display implies f = g(xp). Also g is irreducible: if g = g1g2 with each
deg(gj) > 1, then f = g(xp) = g1(xp)g2(xp) with each deg(gi(xp)) > p > 1; this
contradicts the fact that f is irreducible.

(iv) =⇒ (v). By construction, we have g(xp) = f , and so g(up) = f(u) = 0.
It follows that x− up

∣∣g in K[x], so there exists h ∈ K[x] such that g = (x− up)h.
Then we have

f = g(xp) = (xp − up)h(xp) = (x− u)ph(xp)

where the last step is from the Freshman Dream. It follows that (x−u)p
∣∣f in K[x].

(v) =⇒ (vi) =⇒ (ii). Straightforward. �
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15. Day 15

Definition 15.1. Let K be a field, and let ψ : K → K be an algebraic closure.
Identify K with its image in K. Let u ∈ K, and let f ∈ K[x] be the minimal
polynomial of u.

The element u is separable over K if f has no repeated roots in K. The element
u is inseparable over K if u 6∈ K and f has a repeated root in K.

An irreducible polynomial g is separable over K if it has no repeated roots in
K. In general, a polynomial h is separable over K if its irreducible factors are all
separable. An algebraic extension φ : K → L is separable if every element v ∈ L is
separable over K.

Remark 15.2. Let K be a field, and let ψ : K → K be an algebraic closure.
Identify K with its image in K. Let u ∈ K −K, and let f ∈ K[x] be the minimal
polynomial of u.

The element u is inseparable over K if and only if it satisfies the equivalent
conditions of Theorem 14.6. Thus, if u is inseparable over K, then every root of f
is a repeated root with multiplicity at least p = char(K).

If u ∈ K, then u is separable over K.
Let g ∈ K[x] be irreducible. Then g is separable over K if and only if g′ 6= 0.

If g ∈ K[x] is separable (and irreducible), then g has no multiple roots in any
extension of K.

If char(K) = 0, then every algebraic extension K → L is separable. In partic-
ular, every algebraic extension Q ⊆ L is separable.

Example 15.3. Consider the extension k(t2) ⊆ k(t) where t is a variable and
k = Z/(2); see Example 12.3. This extension is not separable because the element
t ∈ k(t) is inseparable over k(t2). Indeed, we saw that the minimal polynomial of t
in k(t2)[x] is f = x2 − t2. In k(t2)[x] this factors as (x− t)2, and so t is a multiple
root of f in k(t2).

Proposition 15.4. Let φ : K → L and ψ : L→M be algebraic field extensions.
If M is separable over K, then L is separable over K and M is separable over L.

Proof. Let M → M be an algebraic closure, and identify M with its image
in M . Identify L with its image in M , and identify K with its image in L. Thus,
we have K ⊆ L ⊆ M ⊆ M . By assumption, each of these extensions is algebraic,
and so M is an algebraic closure for K and for L.

Assume that M is separable over K. Then every element of M is separable
over K. Thus, every element of L ⊆ M is separable over K, and so L is separable
over K.

Let u ∈M . Let f ∈ K[x] be the minimal polynomial over K, and let g ∈ L[x]
be the minimal polynomial over L. Since u is separable over K, we know that f
has no multiple roots in M . Since f ∈ K[x] ⊆ L[x] and f(u) = 0, the fact that g is
the minial polynomial for u over L implies that g

∣∣f . Since f has no multiple roots
in M , it follows that g has no multiple roots in M . Thus u is separable over L.
Since u is an arbitrary element of M , we conclude that M is separable over L. �

Theorem 15.5. Let φ : K → L be a finite field extension, and let ψ : K → K
be an algebraic closure. Let L→ K be a K-homomorphism and identify L with its
image in K. The following conditions are equivalent:
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(i) L is separable over K;
(ii) L = K(u1, . . . , un) where each ui is separable over K;

(iii) |{K-homomorphisms L→ K}| = [L : K].

Proof. (i) =⇒ (ii). Since the extension K → L is finite, we have L =
K(u1, . . . , un) for some ui ∈ L. Since the extension is separable, each ui is separable
over K.

(ii) =⇒ (iii). We proceed by induction on n. The base case n = 1 follows from
Theorem 14.6.

For the induction step, assume that n > 1 and that the implication holds for
extensions generated by n − 1 elements. Note that the proof of Proposition 15.4
shows that un is separable over K(u1, . . . , un−1). Our induction hypothesis implies
that

|{K-homomorphisms K(u1, . . . , un−1)→ K}| = [K(u1, . . . , un−1) : K].

Given a K-homomorphism K(u1, . . . , un−1)→ K our base case implies that

|{K(u1, . . . , un−1)-homomorphisms L→ K}| = [L : K(u1, . . . , un−1)].

This uses the fact that L = K(u1, . . . , un−1)(un). Lemma 11.8 provides the first
equality in the following sequence

|{K-homs L→ K}|
= |{K-homs K(u1, . . . , un−1)→ K}||{K(u1, . . . , un−1)-homs L→ K}|
= [K(u1, . . . , un−1) : K][L : K(u1, . . . , un−1)]

= [L : K].

The second equality is from the previous two displays, and the third equality is
from the Tower Law.

(iii) =⇒ (i). Let u ∈ L and suppose that u is not separable over K. Then
Theorem 14.6 implies

|{K-homomorphisms K(u)→ K}| < [K(u) : K].

We also have

|{K(u)-homomorphisms L→ K}| 6 [L : K(u)]

and so we have

|{K-homs L→ K}| = |{K-homs K(u)→ K}||{K(u)-homs L→ K}|
< [K(u) : K][L : K(u)]

= [L : K].

This is a contradiction. �

16. Day 16

Theorem 16.1. Let φ : K → L and ψ : L→M be finite field extensions. Then
M is separable over K if and only if L is separable over K and M is separable over
L.
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Proof. The forward implication is Proposition 15.4. For the reverse implica-
tion, assume that L is separable over K and M is separable over L. Thorem 15.5
implies that

|{K-homs L→ K}| = [L : K]

and

|{L-homs M → K}| = [M : L].

Thus, Lemma 11.8 provides the first equality in the following sequence

|{K-homs M → K}| = |{K-homs L→ K}||{L-homs M → K}|
= [L : K][M : L]

= [M : K].

The second equality is from the previous two displays, and the third equality is
from the Tower Law. Thus, Thorem 15.5 implies that M is separable over K. �

We are now going to show that every finite separable extension is simple. First
some preliminaries.

Lemma 16.2. Let K → L be a finite field extension. If K is finite, then
L = K(u) for some u ∈ K.

Proof. Since K is finite and [L : K] < ∞, we know that L is finite. Hence,
Proposition 11.6 implies that the multiplicative group L× is cyclic. That is, there is
an element u ∈ L such that L = {um | m ∈ N}∪{0}. It follows that L = K(u). �

Note that the following result can be used for a previous homework exercise
where we find all intermediate fields of Q ⊆ Q(u).

Lemma 16.3. Let K ⊆ L = K(u) be a simple finite field extension. Let f ∈
K[x] be the minimal polynomial of u, and let F be an intermediate field of the
extension K ⊆ L = K(u). There exists a monic polynomial gF =

∑d
i=0 aix

i ∈ L[x]
such that gF

∣∣f in L[x] and F = K(a0, . . . , ad).

Proof. Let gF =
∑d
i=0 aix

i ∈ F [x] be the minimal polynomial of u. Since
f ∈ K[x] ⊆ F [x] and f(u) = 0, we conclude that gF

∣∣f . By definition, each ai ∈ F ,
and so K(a0, . . . , ad) ⊆ F . Since L = K(u) and K ⊆ F ⊆ L, we have L = F (u).
Since gF is the minimal polynomial of u over F , we have

[L : F ] = [F (u) : F ] = deg(gF ) = d.

Similarly, we have L = K(a0, . . . , ad)(u). Since K(a0, . . . , ad) ⊆ L and gF ∈
K(a0, . . . , ad)[x] and gF is irreducible in F [x] ⊇ K(a0, . . . , ad)[x], we conclude that
gF is irreducible in K(a0, . . . , ad)[x]. Since gF (u) = 0 and gF is monic, we conclude
that gF is the minimal polynomial of u over K(a0, . . . , ad). Thus, as above we have

[L : K(a0, . . . , ad)] = d.

the Tower Law implies that

d = [L : K(a0, . . . , ad)] = [L : F ][F : K(a0, . . . , ad)] = d[F : K(a0, . . . , ad)].

We conclude that [F : K(a0, . . . , ad)] = 1 and so F = K(a0, . . . , ad). �
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Theorem 16.4 (Primitive Element Theorem). Let K → L be a finite field
extension, and identify K with its image in L. The following conditions are equiv-
alent:

(i) There are only finitely many intermediate fields for the extension K ⊆ L;
(ii) L = K(u) for some u ∈ L.

Proof. (i) =⇒ (ii). Assume that there are only finitely many intermediate
fields for the extension K ⊆ L. Since the extension K ⊆ L is finite, there are
algebraic elements u1, . . . , un ∈ L such that L = K(u1, . . . , un). We prove that
L = K(u) for some u ∈ L by induction on n. Since the case where K is finite is
covered by Lemma 16.2, we assume that K is infinite.

Base case: n = 2. Then L = K(v, w) for some v, w ∈ L. For each a ∈ L, the
field K(v + aw) is an intermediate field of the extension K ⊆ L. Since there are
only finitely many intermediate extensions and K is infinite, there are a, b ∈ L such
that a 6= b and K(v+aw) = K(v+bw). Thus, we have v+aw, v+bw ∈ K(v+aw),
and so

(a− b)w = (v + aw)− (v + bw) ∈ K(v + aw).
Since 0 6= a− b ∈ K, this implies

w = (a− b)−1(a− b)w ∈ K(v + aw).

Since a ∈ K and w, a+ aw ∈ K(v + aw), this implies that

v = (v + aw)− aw ∈ K(v + aw).

That is, we have v, w ∈ K(v + aw); since K ⊆ K(v + aw), this implies

L = K(v, w) ⊆ K(v + aw) ⊆ L
and so the element u = v + aw works.

Induction step. Assume that n > 2 and that the implication holds for field
extensions generated by n − 1 elements. Since there are only finitely many inter-
mediate fields for the extension K ⊆ L, it follows that, there are only finitely many
intermediate fields for the extension K ⊆ K(u1, . . . , un−1). Our induction hypoth-
esis implies that K(u1, . . . , un−1) = K(v) for some v ∈ K(u1, . . . , un−1). It follows
that

L = K(u1, . . . , un−1)(un) = K(v)(un) = K(v, un).
Since there are only finitely many intermediate fields for the extension K ⊆ L =
K(v, un), the base case implies that L = K(u) for some u ∈ L.

(ii) =⇒ (i). Assume that L = K(u) for some u ∈ L. Let f ∈ K[x] be
the minimal polynomial of u. Let F be an intermediate field of the extension
K ⊆ L = K(u).

For each intermediate field F of the extension K ⊆ L, Lemma 16.3 provides
a monic polynomial gF =

∑d
i=0 aix

i ∈ L[x] such that gF
∣∣f in L[x] and F =

K(a0, . . . , ad). The assignment F 7→ gF describes a function

Φ: {intermed fields F of the extension K ⊆ L} → {monic factors of f in L[x]}.
Furthermore, the map Φ is 1-1. To see this, assume that gF = gF ′ . Write gF =∑d
i=0 aix

i and gF ′ =
∑d′

i=0 a
′
ix
i. The equality gF = gF ′ implies that d = d′ and

F = K(a0, . . . , ad) = K(a′0, . . . , a
′
d) = F ′

as desired.
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Since the number of monic factors of f in L[x] is finite, it follows that the set
of intermediate fields of the extension K ⊆ L is also finite. �

17. Day 17

Theorem 17.1. Let K → L be a finite field extension. If L is separable over
K, then L = K(u) for some u ∈ L.

Proof. The case where K is finite is covered by Lemma 16.2, so we assume
that K is infinite. Furthermore, we assume that L = K(v, w) for some v, w ∈ L.
(The general case follows by induction as in the proof of the implication (i) =⇒ (ii)
in Theorem 16.4.) Let K → K be an algebraic closure, and let L → K be a K-
homomorphism. Identify L with its image in K, and identify K with its image in
L.

Let σ1, . . . , σn be the distinct K-homomorphisms L → K. (Recall that n 6
[L : K] by Theorem 12.1.) Consider the polynomial

P =
∏
i 6=j [(σi(v) + σi(w)x)− (σj(v) + σj(w)x)] ∈ K[x].

Claim: P 6= 0. If P = 0, then σi(v) + σi(w)x = σj(v) + σj(w)x for some
i 6= j. By equating coefficients, we see that σi(v) = σj(v) and σi(w) = σj(w).
Since σi, σj : L = K(v, w) → K is a K-homomorphism, this implies that σi = σj ,
contradicting the condition i 6= j.

Now, the polynomial P has finitely many roots in K. Since K is infinite, this
implies that there is an element a ∈ K such that P (a) 6= 0. Thus, for all i 6= j, we
have

σi(v) + σi(w)a 6= σj(v) + σj(w)a.

Since σi and σj are K-homomorphisms and a ∈ K, this reads as

σi(v) + σi(wa) 6= σj(v) + σj(wa)

σi(v + wa) 6= σj(v + wa)

which holds for all i 6= j.
Claim: L = K(v + wa). Suppose not. Then we have K(v + wa) ( L, and so

1 < [L : K(v + wa)] < ∞. Since L is separable over K, Proposition 15.4 implies
that L is separable over K(v + wa). Hence, Theorem 15.5 implies that

|{K(v + wa)-homs L→ K}| = [L : K(v + wa)] > 1.

Let σ : L → K be a non-identity K(v + wa)-homomorphism. Then σ is a K-
homomorphism L → K, and so σ = σi for some i. Also, the identity idL : L →
L ⊆ K is a K-homomorphism, and so idL = σj for some j 6= i. Since σi is a
K(v + wa)-homomorphism, we have

σi(v + wa) = v + wa = σj(v + wa)

contradicting the previous paragraph. �

Here is an example of a finite field extension that is not simple.

Example 17.2. Let p be a prime integer and set k = Z/(p). Let L = k(s, t) de-
note the field of rational functions in two variables s and t, and set K = k(sp, tp) ⊆
K(s, t) = L. The element s ∈ L is not in K, and is a root of the polynomial
f = xp − sp ∈ K[x]. In L[x], this polynomial splits as f = xp − sp = (x− s)p.
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Claim: f = xp − sp is irreducible in K[x]. Let g ∈ K[x] be the minimal
polynomial for s. Since s 6∈ K, we know d = deg(g) > 1. Since f(s) = 0, we
know g

∣∣f in K[x]. This implies that g
∣∣f = (x − s)p in L[x], and so g = (x − s)d.

This implies that s is a multiple root of g in K, and so Theorem 14.6 implies that
(x − s)p

∣∣g in K[x]. Thus, we have p 6 d 6 p and so p = d, which implies that
g = f .

It follows that the extension K ⊆ K(s) has degree p. A similar argument shows
that the extension K(s) ⊆ K(s, t) = L has degree p. Hence, the Tower Law implies
that [L : K] = p2.

Suppose that there exists u ∈ L such that K(s, t) = L = K(u). Then we
can write u = v(s, t)/w(s, t) for some v, w ∈ k[x, y]. It follows from the Freshman
Dream that up = v(sp, tp)/w(sp, tp) ∈ K, and so [K(u) : K] 6 p < p2. Since
[L : K] = p2, we cannot have L = K(u).

Lemma 17.3. A finite field extension K ⊆ L is Galois if and only if it is normal
and separable.

Proof. Combine Proposition 12.6 and Theorems 13.1 and 15.5. �

Theorem 17.4. Let p > 0 be a prime integer and let n > 1 be an integer. Then
there exists a field k such that |k| = pn, and k is unique up to isomorphism. Also,
k is a splitting field of the polynomial Xpn −X over Z/(p), and we have ap

n

= a
for all a ∈ k. Also, the extension Z/(p) ⊆ k is Galois.

Proof. Case 1: n = 1. The field Z/(p) has order p. Use the characteristic
homomorphism to show that, if k is a field of order p, then k ∼= Z/(p). We know
that ap = a for all a ∈ k = Z/(p) by Fermat’s Little Theorem. It follows that k is
a splitting field of the polynomial Xp −X over Z/(p).

Case 2: n > 1. Let k be a the splitting field of the polynomial Xpn −X over
Z/(p). Let K = {a ∈ k | apn = a}. Use the Freshman Dream to show that K is
a subfield of k. By definition, we know that every element of K is a root of the
polynomial Xpn −X. Since k is generated over Z/(p) by the roots of Xpn −X, we
conclude that K = k. Hence, the extension Z/(p) ⊆ k is normal.

We have (Xpn − X)′ = −1, and so Xpn − X has no multiple roots in any
extension of Z/(p). It follows that Xpn−X has exactly pn roots in k. Since k = K,
it follows that |k| = pn. It follows that the extension Z/(p) ⊆ k is separable and
hence Galois.

Let L be a field with |L| = pn. We know that the multiplicative group L× is
cyclic of order pn−1. It follows that bp

n−1 = 1 for all b ∈ L×, and so cp
n

= c for all
c ∈ L. Since L has exactly pn elements, that is, the number of roots of Xpn −X, it
follows that L is a splitting field of Xpn −X over Z/(p). Since splitting fields are
unique up to isomorphism, we have L ∼= K. �

18. Day 18

Now we go for the Galois correspondence.

Lemma 18.1. Let K ⊆ L be a finite separable field extension, and let n > 1.
Assume that, for every element a ∈ L, there is a polynomial f ∈ K[x] such that
f(a) = 0 and deg(f) 6 n. Then [L : K] 6 n.
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Proof. The separability assumption implies that L = K(u) for some u ∈ L.
The polynomial hypothesis implies that the minimal polynomial of u over K has
degree 6 n, and so [L : K] 6 n. �

Definition 18.2. Let L be a field, and letH be a finite group of automorphisms
L→ L. The fixed field of H is

LH = {a ∈ L | f(a) = a for all f ∈ H}.
It is straightforward to show that LH is a subfield of L. If H is a group of K-
automorphisms, where K is a subfield of L, then LH is an intermediate field of the
extension K ⊆ L.

Remark 18.3. Let K ⊆ L be a finite field extension, and recall that the Galois
group of this extension is the group

Gal(L : K) = {K-homomorphisms L→ L}.
This is a group under composition since each K-homomorphism L → L is an
isomorphism. It is also finite because |Gal(L : K) 6 [L : K] <∞.

Let F be an intermediate field of the extension K ⊆ L. Then we have

Gal(L : F ) 6 Gal(L : K)

because every F -homomorphism L → L is also a K-homomorphism, and because
the operation on each group is composition.

The Galois correspondence says that, if the extension K ⊆ L is Galois, then
there is a 1-1 correspondence

{intermediate fields K ⊆ F ⊆ L} ←→ {subgroups H 6 Gal(L : K)}

given by

F 7−→ Gal(L : F )

LH ←− [ H.

It also says more, but we’ll get to that later.

Lemma 18.4. Let K ⊆ L be a finite field extension, and let H 6 Gal(L : K)
with fixed field LH . Then |H| = [L : LH ], the extension LH ⊆ L is Galois, and
Gal(L : LH) = H.

Proof. We have subfields K ⊆ LH ⊆ L. Since K ⊆ L is finite, it follows that
LH ⊆ L is finite. By definition, we have H ⊆ Gal(L : LH), and so |H| 6 |Gal(L :
LH)|.

Let a ∈ L, and let f1(a), . . . , fk(a) ∈ L be the distinct images of a under H.
Assume without loss of generality that f1 = idL, and so f1(a) = a. For each g ∈ H,
the list g(f1(a)), . . . , g(fk(a)) ∈ L is a list of distinct images of a under H. (They
are images under H because g, fi ∈ H implies that gfi ∈ H. They are distinct
because f is 1-1.) It follows that the list g(f1(a)), . . . , g(fk(a)) is a permutation of
the list f1(a), . . . , fk(a).

Set h = (x − f1(a)) · · · (x − fk(a)) ∈ L[x] which has degree k 6 |H|. The
automorphism g permutes the roots of h, and so g fixes the coefficients of h. That
is, the coefficients of h are in LH . Since f1(a) = a, it follows that a is a root of h.
Since the roots of h are distinct, it follows that the roots of the minimal polynomial
of a over LH are distinct, and so the extension LH ⊆ L is separable. Since this
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extension is finite and every element of L satisfies a polynomial with coefficients in
LH of degree 6 |H|, Lemma 18.1 implies [L : LH ] 6 |H|. With the first paragraph
and Corollary 12.2, this implies

|H| 6 |Gal(L : LH)| 6 |{LH -homs L→ LH}| 6 [L : LH ] 6 |H|.
It follows that we have equality at each step of the display. Equality at the first
step implies that Gal(L : LH) = H. Equality at the second and third steps imply
that the extension LH ⊆ L is Galois. Equality at the fourth step implies that
|H| = [L : LH ]. �

Theorem 18.5 (Galois Correspondence, part 1). Let K ⊆ L be a finite Galois
extension. There is a 1-1 containment-reversing correspondence

{intermediate fields K ⊆ F ⊆ L} ←→ {subgroups H 6 Gal(L : K)}

given by

F 7−→ Gal(L : F )

LH ←− [ H.

If F is an intermediate field of the extension K ⊆ L, then the extension F ⊆ L is
Galois and the extension K ⊆ F is separable.

Proof. Let

S = {subgroups H 6 Gal(L : K)}
I = {intermediate fields K ⊆ F ⊆ L}.

0. For each F ∈ I, the extension K ⊆ F is separable by Theorem 16.1. Also,
the extension F ⊆ L is Galois, as follows. The extension K ⊆ L is separable, and
so the extension F ⊆ L is separable by Theorem 16.1. The extension K ⊆ L is
normal, and so L is a splitting field over K for some polynomial f ∈ K[x]. It follows
that L is a splitting field over F for the same polynomial f ∈ K[x] ⊆ F [x], and so
the extension F ⊆ L is normal.

1. Check that, if H,H ′ ∈ S and H ⊆ H ′, then LH
′ ⊆ LH .

2. Check that, if F, F ′ ∈ I and F ⊆ F ′, then Gal(L : F ′) ⊆ Gal(L : F ).
3. Let G : I → S be given by G(F ) = Gal(L : F ). Let F : S → I be given by

F(H) = LH . We need to show that F(G(F )) = F for all F ∈ I and G(F(H)) = H
for all H ∈ S.

4. Lemma 18.4 implies that, for each H ∈ S, we have H = Gal(L : LH) =
G(LH) = G(F(H)).

5. Part 1 translates as: If H,H ′ ∈ S and H ⊆ H ′, then F(H ′) ⊆ F(H).
6. Part 2 translates as: If F, F ′ ∈ I and F ⊆ F ′, then G(F ′) ⊆ G(F ).
7. If F ∈ I, then F(G(F )) ⊇ F . Indeed, each g ∈ Gal(L : F ) = G(F ) fixes F

and so F ⊆ LG(F ) = F(G(F )).
8. For each F ∈ I, we have G(F(G(F ))) = G(F ): use H = G(F ) in part 4.
9. For each H ∈ S and each F ∈ I, we have H ⊆ G(F ) if and only if F ⊆ F(H).

Indeed, if H ⊆ G(F ), then H fixes every element of F , and so F ⊆ F(H). On the
other hand, if F ⊆ F(H), then F is fixed by every element of H, and so H ⊆ G(F ).

10. F(G(F )) = F for all F ∈ I. The extension F ⊆ L is Galois by part 0.
Hence, we have

|G(F )| = |Gal(L : F )| = [L : F ].
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Part 8 implies G(F(G(F ))) = G(F ). Part 7 says F ⊆ F(G(F )) ⊆ L, and so

[L : F(G(F ))] > |G(F(G(F )))| = |G(F )| = [L : F ] > [L : F(G(F ))].

It follows that we have equality at each step. Equality at the last step, with the
Tower Law, implies F(G(F )) = F . �

19. Day 19

Lemma 19.1. Let K ⊆ L be a finite Galois extension, and let F be an intermedi-
ate field of the extension K ⊆ L. Let H = Gal(L : F ) 6 Gal(L : K) be the subgroup
corresponding to F under the Galois correspondence, and let g ∈ Gal(L : K). Then
the subgroup of Gal(L : K) corresponding to g(F ) ⊆ L under the Galois correspon-
dence is exactly gHg−1.

Proof. By construction, we need to show that

Gal(L : g(F )) = gGal(L : F )g−1.

⊇: Let h ∈ Gal(L : F ). We need to show that ghg−1 ∈ Gal(L : g(F )), that
is, we need to show that ghg−1 is a K-homomorphism L → L that fixes g(F ).
Since g, h ∈ Gal(L : K) and Gal(L : K) is a group, we know that ghg−1 is a
K-homomorphism L→ L. To see that ghg−1 fixes g(L), let g(y) ∈ g(L). Then we
have

ghg−1(g(y)) = gh(y) = g(y)

where the first equality is by definition. The second equality is from the fact that
h ∈ Gal(L : F ), which means that h fixes every element of F .
⊆: From the previous paragraph, we have

Gal(L : g(F )) = g(g−1 Gal(L : g(F ))g)g−1

⊆ gGal(L : g−1(g(F )))g−1 = gGal(L : F )g−1

�

Lemma 19.2. Let K ⊆ L be a finite Galois extension, and let F be an inter-
mediate field of the extension K ⊆ L. The extension K ⊆ F is normal if and only
if, for each g ∈ Gal(L : K), we have g(F ) = F (equivalently, g(F ) ⊆ F ).

Proof. Assume that K ⊆ F ⊆ L ⊆ K where K is an algebraic closure for K.
=⇒ : Assume that K ⊆ F is normal, and let g ∈ Gal(L : K). Then g is a

K-homomorphism L → L ⊆ K. Thus, g restricts to a K-homomorphism F → K.
Since K ⊆ F is normal, we have g(F ) = F by Theorem 13.1.

⇐= : Assume that, for each g ∈ Gal(L : K), we have g(F ) ⊆ F . Let h : F →
K be a K-homomorphism. By Theorem 13.1 we need to show that h(F ) ⊆ F .
Theorem 10.2 implies that there is a field homomorphism H : L → K making the
following diagram commute:

F //

h   AAAAAAA L

H

��
K.

Here, the unlabeled map is the inclusion. Since h is a K-homomorphism, it follows
that H is a K-homomorphism. The extension K ⊆ L is Galois, hence normal, and
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so H(L) = L. In other words, we have H ∈ Gal(L : K), so our assumption implies
that h(F ) = H(F ) ⊆ F as desired. �

Lemma 19.3. Let K ⊆ L be a finite Galois extension, and let F be an inter-
mediate field of the extension K ⊆ L. The extension K ⊆ F is normal if and only
if, for each g ∈ Gal(L : K), we have gGal(L : F )g−1 = Gal(L : F ) (equivalently,
gGal(L : F )g−1 ⊆ Gal(L : F )).

Proof. =⇒ : Assume that K ⊆ F is normal, and let g ∈ Gal(L : K). By
Lemma 19.2 we have g(F ) = F . Lemma 19.1 implies that

gGal(L : F )g−1 = Gal(L : g(F )) = Gal(L : F ).

⇐= : Assume that gGal(L : F )g−1 ⊆ Gal(L : F ) for each g ∈ Gal(L : K); it
follows from standard group theory that we have gGal(L : F )g−1 = Gal(L : F ).
By Lemma 19.2 we need to show that, for each g ∈ Gal(L : K), we have g(F ) ⊆ F .
Let g ∈ Gal(L : K). Lemma 19.1 implies

Gal(L : g(F )) = gGal(L : F )g−1 = Gal(L : F ).

Theorem 18.5 implies that

g(F ) = LGal(L:g(F )) = LGal(L:F ) = F

as desired. �

Theorem 19.4 (Galois Correspondence, part 2). Let K ⊆ L be a finite Galois
extension, and let F be an intermediate field of the extension K ⊆ L.
(a) The extension K ⊆ F is normal (i.e., Galois) if and only if Gal(L : F ) P

Gal(L : K).
(b) We have [F : K] = [Gal(L : K) : Gal(L : F )].
(c) If K ⊆ F is normal, then Gal(F : K) ∼= Gal(L : K)/Gal(L : F ).

Proof. (a) This is precisely Lemma 19.3.
(b) Since K ⊆ L is Galois, we have [L : K] = |Gal(L : K)|. Lemma 18.4

implies

[L : K] = |Gal(L : K)|
[L : F ][F : K] = |Gal(L : F )|[Gal(L : K) : Gal(L : F )]

|Gal(L : F )|[F : K] = |Gal(L : F )|[Gal(L : K) : Gal(L : F )]

[F : K] = [Gal(L : K) : Gal(L : F )]

(c) Assume that K ⊆ F is normal. Lemma 19.2 implies that g(F ) = F for each
g ∈ Gal(L : K). In other words, for each g ∈ Gal(L : K), the restriction g|F is a
K-homomorphism F → F .

Define Φ: Gal(L : K)→ Gal(F : K) by restriction: Φ(g) = g|F . The previous
paragraph implies that this is well-defined. It is straightfoward to show that Φ is a
group homomorphism.

Claim: Φ is onto. Let h ∈ Gal(F : K). Theorem 10.2 implies that there is a
field homomorphism H : L→ K making the following diagram commute:

F //

h   AAAAAAA L

H

��
K.
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Here, the unlabeled map is the inclusion. Since h is a K-homomorphism, it follows
that H is a K-homomorphism. The extension K ⊆ L is Galois, hence normal, and
so H(L) = L. In other words, we have H ∈ Gal(L : K). The commutativity of the
diagram implies that h = H|F = Φ(H), establishing the claim.

Claim: Ker(Φ) = Gal(L : F ). (Once we show this, then the isomorphism fol-
lows from your favorite isomorphism theorem: Gal(F : K) ∼= Gal(L : K)/Ker(Φ).)
A K-homomorphism g ∈ Gal(L : K) is in Ker(Φ) if and only if g|F = idF ,
that is, if and only if g is an F -homomorphism L → L, that is, if and only if
g ∈ Gal(L : F ). �

20. Day 20

Now we compute some Galois groups and some intermediate fields. Part (d)
of the next result shows how knowledge of the Galois group gives you information
about the structure of the intermediate fields of an extension.

Proposition 20.1. Let K ⊆ L be an extension of finite fields.

(a) Then |K| = pn = q where p = char(K) > 1 and n > 1. Also, |L| = qd where
d = [L : K] > 1.

(b) The extension K ⊆ L is Galois with cyclic Galois group Gal(L : K) = 〈g〉 ∼=
Z/(d) where g : L→ L is given by a 7→ aq.

(c) The intermediate fields of this extension are exactly the fields of the form Fk =
{a ∈ L | aqk = a} with k = 1, . . . , d. (Note that these fields are not necessarily
distinct.)

(d) Under the Galois correspondence, the field Fk corresponds to the cyclic subgroup
〈gk〉 6 Gal(L : K).

Proof. (a). Since K is finite, it cannot contain a copy of Q. It follows from
an exercise that char(K) 6= 0 and so char(K) = p > 1. Since K is then a finite
extension of Z/(p), we have |K| = pn = q where n = [K : Z/(p)]. Since L is finite
and an extension of K, it is a finite extension of K, so we have |L| = qd where
d = [L : K] > 1.

(b). From Theorem 17.4 we know that the extension Z ⊆ K is Galois, as is
the extension Z/(p) ⊆ L. Since K is an intermediate field of the Galois extension
Z/(p) ⊆ L, Theorem 18.5 implies that the extension K ⊆ L is Galois.

Let g : L → L be given by a 7→ aq. The Freshman Dream implies that g is a
field homomorphism. From Theorem 17.4 we know that aq = a for all a ∈ K. In
other words, we have g(a) = a for all a ∈ K, and so g ∈ Gal(L : K). Note that, for
each r ∈ N we have gr(a) = aq

r

for all a ∈ L. It follows that |g| 6 d in Gal(L : K)
because gd(a) = aq

d

= a for all a ∈ L; the last equality follows from Theorem 17.4
because |L| = qd.

Claim: |g| = d in Gal(L : K). Suppose that 0 < r 6 d and gr = idL. Then
a = gr(a) = aa

r

for all a ∈ L. In other words, every element of L is a root of
the nonconstant polynomial xq

r − x. this polynomial has at most qr roots, and so
qd = |L| 6 qr. It follows that d 6 r, and since r 6 d by assumption, we have r = d.
This completes the proof of the claim.

The extension K ⊆ L is Galois, and so

|Gal(L : K)| = [L : K] = d.
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We have just shown that g ∈ Gal(L : K) is an element of order d. It follows that
Gal(L : K) is cyclic generated by g.

(c) and (d). The subgroups of Gal(L : K) = 〈g〉 are all of the form 〈gk〉 for k =
1, . . . , d. It is straightforward to show that Fk is the fixed field of 〈gk〉. The fact that
these are the only intermediate fields follows from the Galois correspondence. �

Recall that every finite group G is isomorphic to a subgroup of Sn where n =
|G|. Here is a similar result for Galois groups. Note that the conclusion of part (b)
holds without the separable hypothesis.

Proposition 20.2. Let K be a field and let f ∈ K[x] be a polynomial of degree
n > 1. Let L be a splitting field of f over K.
(a) The action of Gal(L : K) on the set of roots of f yields a monomorphism of

groups Gal(L : K) ↪→ Sn.
(b) If the extension K ⊆ L is separable (e.g., if char(K) = 0), then [L : K]

∣∣n!.

Proof. (a) Let a1, . . . , ad ∈ L be the distinct roots of f in L. Since d 6 n,
there is a monomorphism of groups Sd ↪→ Sn. Hence, it suffices to construct a
monomorphism of groups φ : Gal(L : K) ↪→ Sd.

Let g ∈ Gal(L : K). For each i, the element g(ai) is a root of f . Furthermore,
if i 6= j, then g(ai) 6= g(aj) since g is 1-1. Hence, g permutes the roots of f . That
is, there is an element σg ∈ Sd such that g(ai) = aσg(i) for each i.

For each g, h ∈ Gal(L : K) and each i, we have

aσhg(i) = h(g(ai)) = h(aσg(i)) = aσh(σg(i)).

Since the aj are distinct, this implies that σhg = σhσg. Hence the assignment
g 7→ σg describes a group homomorphism φ : Gal(L : K)→ Sd. It remains to show
that φ is 1-1.

Let g ∈ Ker(φ). Then g(ai) = ai for i = 1, . . . , d. Since L is a splitting field
for K, we have L = K(a1, . . . , ad), and so the K-homomorphism g : L → L is
completely determined by its action on the ai. It follows that g = idL, and so φ is
1-1.

(b) Assume that the extension K ⊆ L is separable, i.e. Galois. Then we have

[L : K] = |Gal(L : K)|
∣∣|Sn| = n!

as desired. �

The next example shows that the map Gal(L : K) ↪→ Sn need not be surjective,
even when f is irreducible and the extension K ⊆ L is Galois.

Example 20.3. Let L ⊆ C be a splitting field over K = Q of the cyclotomic
polynomial f = x4 + x3 + x2 + x + 1 ∈ Q[x]. Recall that f is irreducible by
Eisenstein’s criterion. The extension K ⊆ L is normal because L is a splitting field
over K, and it is separable because char(K) = 0. Let w = e2πi/5 ∈ C. Then the
distinct roots of f in L are w,w2, w3, w4 so we have L = K(w,w2, w3, w4) = K(w).
It follows that [L : K] = deg(f) = 4.

Proposition 20.2 gives a group monomorphism φ : Gal(L : K) ↪→ S4. The
extension K ⊆ L is Galois, so we have

|Gal(L : K)| = [L : K] = 4 < 4! = |S4|.
Hence the map φ cannot be onto. In fact, since |Gal(L : K)| = 4, we know that
Gal(L : K) 6∼= Sn for all n.
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Theorem 20.4. Let G be a finite group. There exists a finite Galois extension
K ⊆ L such that Gal(L : K) ∼= G.

Proof. Case 1: G = Sn. Let L = Q(x1, . . . , xn), the field of rational func-
tions in n variables over Q. Each g ∈ Sn induces a Q-isomorphism φg : L → L by
permuting the variables. Furthermore, the set H = {φg | g ∈ Sn} is a group of iso-
morphisms L→ L and that the assignment g 7→ φg describes a group isomorphism
Sn → H. Let K = LSn be the fixed field.

Let f = (x − x1)(x − x2) · · · (x − xn) ∈ L[x]. Since the elements of H only
permute the roots of f , we see that the coefficients of f are fixed by H. In other
words, we have f ∈ K[x]. Since each generator xi ∈ L is a root of f , we see
that the extension K ⊆ L is finite. By construction, we have H 6 Gal(L : K),
and so Lemma 18.4 implies that the extension K ⊆ L is Galois with Galois group
Gal(L : K) = G ∼= Sn.

Case 2: The general case. Identify G with a subgroup of Sn for some n. By case
1, there is a finite Galois extension K ⊆ L such that Gal(L : K) ∼= Sn. Lemma 18.4
implies that the extension LG ⊆ L is Galois with Galois group Gal(L : LG) ∼= G. �

Here is a very big open question in the area. The answer is known when G is
solvable, but not in general.

Question 20.5. Let G be a finite group. Does there exists a finite Galois
extension Q ⊆ L such that Gal(L : Q) ∼= G?

21. Day 21

Theorem 21.1 (Fundamental Thm. of Algebra). The field C is algebraically
closed.

Proof. Claim 1: There are no finite extensions R ⊆ L of odd degree. The
primitive element theorem implies that L = R(a) for some a ∈ L. If [L : R] is odd,
then so is the degree of the minimal polynomial f of a over R (since these numbers
are equal). The Intermediate Value Theorem from calculus implies that f has a
real root, so it is not irreducible, a contradiction.

Claim 2: There is no extension C ⊆ E of degree 2. Suppose that [E : C] = 2. It
follows that E = C[u] for some u ∈ E, in fact, for each u ∈ E−C. Since [E : C] = 2,
the minimal polynomial of u in C[x] has degree 2. Write it as f = x2 + bx + c. It
is straightforward to show that C contains a square root of b2 − 4c. Let w ∈ C be
such a quare root. It is straightforward to show that the elements −b±w2 ∈ C is a
root of f , contradicting the fact that f is irreducible.

Let C ⊆ F be a finite field extension. It suffices to show that C = F .
Case 1: The extension R ⊆ F is Galois. Let G = Gal(L : R). Theorem 18.5

implies that the extension C ⊆ F is Galois.
Claim 3: |G| = 2k for some k. Suppose not. Let H 6 G be a 2-Sylow

subgroup, and let FH ⊆ F be the fixed field of H. Theorem 19.4(b) implies that
[FH : R] = [G : H] which is odd. This contradicts the first claim.

Suppose that C 6= F . The previous claim implies that [F : R] = 2k and so
|Gal(F : C)| = [F : C] = 2k−1 > 1. Fix a subgroup K 6 Gal(F : C) such that
[Gal(F : C) : K] = 2. (Use the fact that the center Z(Gal(F : C)) is nontrivial and
argue by induction on k.) Since [Gal(F : C) : K] = 2, we know that K P Gal(F :
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C). We now employ Theorem 19.4. The corresponding fixed field FK is a Galois
extension of C because K P Gal(F : C). Hence, it satisfies

[FK : C] = |Gal(FK : C)| = |Gal(F : C)/K| = [Gal(F : C) : K] = 2.

This contradicts Claim 2.
Case 2: The general case. Let F = R(a1, . . . , an), and let fi ∈ R[x] be the

minimal polynomial of ai. Let f = f1 · · · fn and let F ′ be a splitting field of f over
F . Then F ′ is a splitting field of f over R, so the extension R ⊆ F ′ is normal. It
is separable because char(R) = 0, so it is a finite Galois extension. Case 1 implies

C ⊆ F ⊆ F ′ = C
so we have equality at each step. �

There are several important areas of Galois Theory that we do not have time
to discuss. Here is a summary.

Galois Theory can be used to show that the general polynomial of degree 5
cannot be solved by radicals. Here is a sketch of how. There is a polynomial
f ∈ Q[x] of degree 5 such that the splitting field Q ⊆ F has Galois group Gal(F :
Q) ∼= S5. The group S5 is not solvable. If f could be solved by radicals, then the
Galois group Gal(F : Q) would necessarily be solvable.

Galois Theory can be used to show some theorems in geometry. For instance,
there is not algorithm for trisecting an arbitrary angle using a ruler and compass.
Specifically, the angle 60◦ cannot be trisected. If it could, then we could construct
cos 20◦. If cos 20◦ could be constructed, then its minimal polynomial over Q would
have to have degree equal to a power of 2. However, the minimal polynomial
of cos 20◦ has degree 3. This idea can also be used to show that 3

√
2 cannot be

constructed using a ruler and compass, that is, one cannot duplicate a cube of side
length 1.

Definition 21.2. Let K be a field and f ∈ K[x] a polynomial. The Galois
group of f over K is the group Gal(L : K) where L is a splitting field of f over K.

Another aspect of Galois Theory is the computation of Galois groups of certain
classes of polynomials. We have dome some of this already. Other special cases are
considered in Hungerford V.7–9.



CHAPTER 6

Module Theory II

1. Day 1

Remark 1.1. Let R be a ring and let M and N be left R-modules. Recall
that the set HomR(M,N) of all R-module homomorphisms M → N is an additive
abelian group under pointwise addition (f + g)(m) = f(m) + g(m). If R is com-
mutative, then HomR(M,N) is a left R-module via the action (rf)(m) = rf(m) =
f(rm).

Definition 1.2. Let R be a ring and let φ : M → M ′ and ψ : N → N ′ be
homomorphisms of left R-modules. Define the function

HomR(M,ψ) : HomR(M,N)→ HomR(M,N ′) as f 7→ ψ ◦ f.

Define the function

HomR(φ,N) : HomR(M ′, N)→ HomR(M,N) as g 7→ g ◦ φ.

Let R-mod denote the category of left R-modules.

Recall that Ab is the category of abelian groups.

Proposition 1.3. Let R be a ring and let M be a left R-module.

(a) The operator HomR(M,−) describes a covariant functor R-mod→ Ab. If R
is commutative, then this describes a covariant functor R-mod→ R-mod.

(b) The operator HomR(−,M) describes a contravariant functor R-mod → Ab.
If R is commutative, then this operator describes a contravariant functor
R-mod→ R-mod.

Proof. We will verify part (b). Part (a) is similar, and easier.
Using Remark 1.1, there are four things to show.
1. HomR(φ,M) is a group homomorphism for each φ : N → N ′: We need to

show that

HomR(φ,M)(f + g) = HomR(φ,M)(f) + HomR(φ,M)(g)

for each f, g ∈ HomR(N ′,M). In other words, we need to show that

(f + g) ◦ φ = (f ◦ φ) + (g ◦ φ).

These are functions N →M , so we check this on elements m ∈M :

((f + g) ◦ φ)(m) = (f + g)(φ(m)) = f(φ(m)) + g(φ(m)) = (f ◦ φ+ g ◦ φ)(m)

2. HomR(idN ,M) = idHomR(N,M) for all N :

HomR(idN ,M)(g) = g ◦ idN = g.

145
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3. HomR(φ ◦ ψ,M) = HomR(ψ,M) ◦HomR(φ,M):

HomR(φ ◦ ψ,M)(g) = g ◦ (φ ◦ ψ) = (g ◦ φ) ◦ ψ = HomR(ψ,M)(g ◦ φ)

= HomR(ψ,M)(HomR(φ,M)(g))

= (HomR(ψ,M) ◦HomR(φ,M))(g).

4. Assuming that R is commutative, HomR(φ,M) is an R-module homomor-
phism for each φ : N → N ′: It remains to show that

HomR(φ,M)(rg) = r(HomR(φ,M)(g))

for each r ∈ R and each g ∈ HomR(M ′, N). In other words, we need

(rg) ◦ φ = r(g ◦ φ).

As in part 1, we check this on elements m ∈M :

((rg) ◦ φ)(m) = (rg)(φ(m)) = r(g(φ(m))) = (r(g ◦ φ))(m).

�

Proposition 1.4. Let R be a ring and let φ : M →M ′ be a homomorphism of
left R-modules. Let n ∈ N.

(a) HomR(Rn,M) is a left R-module by the action (rf)(v) = f(vr). If R has
identity, then this action is unital.

(b) The map HomR(Rn, φ) : HomR(Rn,M)→ HomR(Rn,M ′) is a left R-module
homomorphism.

(c) HomR(M,Rn) is a right R-module by the action (ψr)(v) = φ(v)r. If R has
identity, then this action is unital.

(d) The map HomR(φ,Rn) : HomR(M ′, Rn) → HomR(M,Rn) is a right R-
module homomorphism.

Proof. We will prove parts (a) and (b). The other parts are proved similarly.
(a) We already know that HomR(Rn,M) is an additive abelian group. So, we

have four things to check.
1. r(f + g) = (rf) + (rg) for all r ∈ R and all f, g ∈ HomR(Rn,M). We check

this on elements v ∈ Rn:

(r(f + g))(v) = (f + g)(vr) = f(vr) + g(vr) = (rf)(v) + (rg)(v) = (rf + rg)(v).

2. (r+ s)f = (rf) + (sf) for all r, s ∈ R and all f ∈ HomR(Rn,M). Check this
on elements v ∈ Rn as in part 1.

3. (rs)f = r(sf) for all r, s ∈ R and all f ∈ HomR(Rn,M). Check this on
elements v ∈ Rn as in part 1.

4. If R has identity, then 1f = f for all f ∈ HomR(Rn,M). Check this on
elements v ∈ Rn as in part 1.

(b) We need to check that HomR(Rn, φ)(rf) = r(HomR(Rn, φ)(f)) for all r ∈ R
and all f ∈ HomR(Rn,M). In other words, we need φ ◦ (rf) = r(φf). We check
this on elements v ∈ Rn:

(φ ◦ (rf))(v) = φ((rf)(v)) = φ(f(vr)) = (φf)(vr) = (r(φf))(v)

�

Proposition 1.5. Let R be a ring with identity and let φ : M → N be a homo-
morphism of unitary left R-modules. Let n ∈ N and let e1, . . . , en ∈ Rn be a basis.
Define ΦM : HomR(Rn,M)→Mn by the formula ΦM (f) = (f(e1), . . . , f(en)).
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(a) The map ΦM is an isomorphism of left R-modules.
(b) There is a commutative diagram

HomR(Rn,M)
HomR(Rn,φ) //

ΦM ∼=
��

HomR(Rn, N)

ΦN ∼=
��

Mn
φn // Nn

where φn(m1, . . . ,mn) = (φ(m1), . . . , φ(mn)).

Proof. (a) It is straightforward to show that ΦM is an R-module homomor-
phism. To see that it is onto, let (m1, . . . ,mn) ∈ Mn. Proposition 4.2.4 says
that the map f : Rn → M given by f(r1, . . . , rn) =

∑
i rimi is a well-defined R-

module homomorphism. By definition, we have f(ei) = mi for each i, and so
ΦM (f) = (m1, . . . ,mn).

To see that ΦM is 1-1, assume that ΦM (f) = 0. That is, f(ei) = 0 for each
i. It follows that for each

∑
i riei ∈ Rn, we have f(

∑
i riei) =

∑
i ri0 = 0. Thus

f = 0 and ΦM is bijective.
(b) For f ∈ HomR(Rn,M), we compute:

ΦN (HomR(Rn, φ)(f)) = ΦN (φ ◦ f) = (φ(f(e1)), . . . , φ(f(en)))

φn(ΦM (f)) = φn(f(e1), . . . , f(en)) = (φ(f(e1)), . . . , φ(f(en)))

as desired. �

2. Day 2

The previous result says that the functors (−)n and HomR(Rn,−) are “natu-
rally isomorphic”.

Definition 2.1. Let C and D be categories, and let F,G : C → D be covariant
functors. A natural transformation from T : F → G is a function that assigns
to each object C in C a morphism TC : F (C) → G(C) in D such that, for every
morphism f : C → C ′ in C, the following diagram commutes:

F (C)
F (f) //

TC

��

F (C ′)

TC′

��
G(C)

G(f) // G(C ′).

A natural transformation T : F → G is a natural isomorphism if, for every object
C in C, the map TC : F (C)→ G(C) is an isomorphism in D.

Definition 2.2. Let R be a ring. A sequence of left R-module homomorphisms

M2
f2−→M1

f1−→M0

is exact if Ker(f1) = Im(f2). More generally, a A sequence of left R-module homo-
morphisms

· · · fi+1−−−→Mi
fi−→Mi−1

fi−1−−−→ · · ·
is exact if Ker(fi) = Im(fi+1) for all i. A short exact sequence is an exact sequence
of the form

0→M ′ →M →M ′′ → 0.
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Remark 2.3. Given an sequence of left R-module homomorphisms

· · · fi+1−−−→Mi
fi−→Mi−1

fi−1−−−→ · · ·
we have Ker(fi) ⊇ Im(fi+1) if and only if fifi+1 = 0.

Example 2.4. Let M ′,M ′′ be left R-modules. Then the sequence

0→M ′
f−→M ′ ⊕M ′′ g−→M ′′ → 0

is exact. Here f(m′) = (m′, 0) and g(m′,m′′) = m′′.

Example 2.5. Let R be a ring and let I ⊆ R be an ideal. Then the sequence

0→ I
f−→ R

g−→ R/I → 0

is exact. Here f is the inclusion and g is the natural surjection.
More generally, let M be a left R-module, and let M ′ ⊆ M be submodule.

Then the sequence
0→M ′

f−→M
g−→M/M ′ → 0

is exact. Here f is the inclusion and g is the natural surjection.

Proposition 2.6. Let R be a ring.

(a) The sequence 0→M ′
f−→M is exact if and only if f is 1-1.

(b) The sequence M
g−→M ′′ → 0 is exact if and only if g is onto.

Proof. f is 1-1 if and only if Ker(f) = 0 = Im(0→M ′). g is onto if and only
if Im(g) = M ′′ = Ker(M ′′ → 0). �

Definition 2.7. Let R be a ring, and consider two exact sequence of left
R-module homomorphisms

M• = · · · fi+1−−−→Mi
fi−→Mi−1

fi−1−−−→ · · ·
and

N• = · · · gi+1−−−→ Ni
gi−→ Ni−1

gi−1−−−→ · · · .
A homomorphism from M• to N• is a sequence of maps h• = {hn : Mn → Nn | n ∈
Z} such that hn−1fn = gnhn for all n ∈ Z. In other words, the maps hn make the
following “ladder diagram” commute.

M•

h•

��

· · ·
fi+1 // Mi

fi //

hi

��

Mi−1
fi−1 //

hi−1

��

· · ·

N• · · ·
gi+1 // Ni

gi // Ni−1
gi−1 // · · · .

The homomorphism h• is an isomorphism from M• to N• if it has a two-sided
inverse, that is, if there exists a homomorphism k• : N• → M• such that hnkn =
idNn and knhn = idMn

for all n.

Remark 2.8. Let R be a ring, and consider two exact sequence of left R-module
homomorphisms

M• = · · · fi+1−−−→Mi
fi−→Mi−1

fi−1−−−→ · · ·
N• = · · · gi+1−−−→ Ni

gi−→ Ni−1
gi−1−−−→ · · · .

Let h• : M• → N• be a homomorphism of exact sequences. Show that h• is an
isomorphism if and only if each hn is an isomorphism.
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Example 2.9. Given two integers m and n with n 6= 0, here is a homomorphism
of short exact sequences of abelian groups:

0 // Z n //

n

��

Z //

��

Z/nZ //

��

0

0 // nZ/mnZ // Z/mnZ // Z/nZ // 0.

Here the unlabeled maps are the natural inclusions and surjections. This homo-
morphism is an isomorphism if and only if m = 0.

3. Day 3

Proposition 3.1 (Short Five Lemma). Let R be a ring, and consider a homo-
morphism of exact sequences

0 // M ′
f //

h

��

M
g //

k

��

M ′′ //

l

��

0

0 // N ′
F // N

G // N ′′ // 0

(a) If h and l are 1-1, then k is 1-1.
(b) If h and l are onto, then k is onto.

Proof. (a) Assume that h and l are 1-1. Let m ∈ Ker(k) ⊆M . Commutativ-
ity of the diagram implies that

l(g(m)) = G(k(m)) = G(0) = 0.

Since l is 1-1, we have g(m) = 0. The exactness of the top row of the diagram
implies that m ∈ Ker(g) = Im(f) and so m = f(m′) for some m′ ∈ M ′. It follows
that

0 = k(m) = k(f(m′)) = F (h(m′)).
Since F and h are 1-1, it follows that m′ = 0 and so m = f(m′) = f(0) = 0.

(b) Assume that h and l are onto. Let n ∈ N . Since l is onto, there exists
m′′ ∈ M ′′ such that l(m′′) = G(n). Since g is onto, there exists m ∈ M such that
g(m) = m′′, and so

G(k(m)) = l(g(m)) = l(m′′) = G(n).

(We would like to conclude that k(m) = n, but this may not be true.) Instead,
the displayed equation implies that G(k(m) − n) = G(k(m)) − G(n) = 0 and so
k(m) − n ∈ Ker(G) = Im(F ). Write k(m) − n = F (n′) for some n′ ∈ N ′. Since h
is onto, there exists m′ ∈M ′ such that h(m′) = n′. It follows that

k(f(m′)) = F (h(m′)) = F (n′) = k(m)− n
and sok(m− f(m′)) = n. Thus, n ∈ Im(k) and so k is onto. �

Definition 3.2. Let R be a ring. An exact sequence

0→M ′ →M →M ′′ → 0

is split if it is isomorphic to the sequence

0→M ′
f−→M ′ ⊕M ′′ g−→M ′′ → 0
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where f(m′) = (m′, 0) and g(m′,m′′) = m′′. In particular, if the given sequence is
split, then M ∼= M ′ ⊕M ′′.

Here is a classification of split exact sequences.

Proposition 3.3. Let R be a ring, and consider an exact sequence

0→M ′
f−→M

g−→M ′′ → 0.

TFAE.
(i) The exact sequence is split;
(ii) There is an R-module homomorphism f1 : M →M ′ such that f1◦f = idM ′ ;

(iii) There is an R-module homomorphism g1 : M ′′ →M such that g◦g1 = idM ′′ .

Proof. We will prove (i)⇐⇒ (ii). The proof of (i)⇐⇒ (iii) is similar.
(i) =⇒ (ii) Assume that the given sequence is split. Then there is a commuta-

tive diagram

0 // M ′
f //

h ∼=
��

M
g //

k ∼=
��

M ′′ //

l ∼=
��

0

0 // M ′
i // M ′ ⊕M ′′ t // M ′′ // 0

where i(m′) = (m′, 0) and t(m′,m′′) = m′′. Let i1 : M ′ ⊕M ′′ → M ′ be given by
i1(m′,m′′) = m′. We will show that the map f1 = h−1 ◦ i1 ◦ k : M → M ′ satisfies
the desired property.

We first compute:

i ◦h ◦ f1 ◦ f = i ◦h ◦h−1 ◦ i1 ◦ k ◦ f = i ◦ i1 ◦ k ◦ f = i ◦ i1 ◦ i ◦h = i ◦ idM ′ ◦h = i ◦h.

The third equality follows from the commutativity of the diagram. The remaining
equalities are by definition. Thus, we have

(i ◦ h) ◦ (f1 ◦ f) = i ◦ h = (i ◦ h) ◦ idM ′ .

Since i and h are 1-1, it follows that f1 ◦ f = idM ′ as desired.
(i) ⇐= (ii) Assume that there is an R-module homomorphism f1 : M → M ′

such that f1 ◦f = idM ′ . Let F : M →M ′⊕M ′′ be given by F (m) = (f1(m), g(m)).
We will show that the following diagram commutes

0 // M ′
f //

idM′ ∼=
��

M
g //

F ∼=
��

M ′′ //

idM′′ ∼=
��

0

0 // M ′
i // M ′ ⊕M ′′ t // M ′′ // 0

where i(m′) = (m′, 0) and t(m′,m′′) = m′′. The Short Five Lemma will then imply
that F is an isomorphism, so that the displayed diagram is an isomorphism of exact
sequences; by definition, it then follows that the original sequence is split.

We compute: for m′ ∈M ′ and m ∈M we have

F (f(m′)) = (f1(f(m′)), g(f(m′))) = (m′, 0) = i(m′).

t(F (m)) = t(f1(m), g(m)) = g(m).

�
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Corollary 3.4. Let R be a ring with identity, and consider an exact sequence

0→M ′
f−→M

g−→M ′′ → 0

of unitary R-modules. If M ′′ is free, then this sequence is split.

Proof. It suffices to find an R-module homomorphism g1 : M ′′ → M such
that gg1 = idM ′′ . Since M ′′ is free, it has a basis B ⊆ M ′′. g is surjective, so for
each b ∈ B, there exists mb ∈ M such that g(mb) = b. Define g1 : M ′′ → M by
the formula g1(

∑
b abb) =

∑
b abmb. Proposition 4.2.4 says that f1 is a well-defined

R-module homomorphism. We compute:

g(g1(
∑
b abb)) = g(

∑
b abmb) =

∑
b abg(mb) =

∑
b abb

which shows that g ◦ g1 = idM ′′ , as desired. �

Corollary 3.5. Let R be a ring with identity, and consider an exact sequence

0→ Rm
f−→ Rn

g−→ Rp → 0.

Then n = m+ p.

Proof. Corollary 3.4 implies that the given sequence splits. In particular,
we have Rn ∼= Rm ⊕ Rp ∼= Rm+p. The invariant basis property implies that
n = m+ p. �

4. Day 4

Definition 4.1. Let R be a ring. A left R-module M is noetherian if it satisfies
the ascending chain condition (ACC) on submodules: For every ascending chain of
submodules M1 ⊆ M2 ⊆ · · · ⊆ M , we have Mn = Mn+1 = Mn+2 = · · · for some
n > 1.

Slogan: every ascending chain of submodules stabilizes.
The ring R is (left) noetherian if it is noetherian as an R-module, that is, if it

satisfies ACC on left ideals.

Example 4.2. Every field k is a noetherian ring because the only ideals are
(0) and k. More generally, every PID is noetherian by Lemma 3.8.2.

Theorem 4.3. Let R be a ring and M an R-module. The following conditions
are equivalent:

(i) M is noetherian as an R-module;
(ii) every left submodule of M is finitely generated;

(iii) every nonempty set of left submodules of M has a maximal element.

Proof. (i) =⇒ (ii). Assume that M is noetherian and let N ⊆ M be a
left submodule. Suppose that N is not finitely generated. In particular, we have
N 6= (0). Let 0 6= x1 ∈ N . Since N is not finitely generated, we have (x1) ( N , so
we have x2 ∈ N − (x1). It follows that (x1) ( (x1, x2) because x2 ∈ (x1, x2)− (x1).
SinceN is not finitely generated, we have (x1, x2) ( N , so we have x3 ∈ N−(x1, x2).
It follows that (x1) ( (x1, x2) ( (x1, x2, x3) because x3 ∈ (x1, x2, x3) − (x1, x2).
Continue inductively to find construct an ascending chain of left submodules

(x1) ( (x1, x2) ( (x1, x2, x3) ( · · · ( (x1, x2, . . . , xn) ( (x1, x2, . . . , xn, xn+1) ( · · ·
This chain never stabilizes, contradicting our noetherian assumption. Thus, N is
finitely generated.
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(ii) =⇒ (iii). Assume that every left submodule of M is finitely generated, and
let S be a nonempty set of left submodules of M . We need to show that S has a
maximal element N , that is, a submodule N in S with the following property: If
P is a submodule in S such that N ⊆ P , then N = P .

We employ Zorn’s Lemma. For this, we need to show that every chain in S
has an upper bound in S. Let C be a chain of submodules in S. As usual the
union N = ∪P∈CP is a left submodule of R. We need to show that N is in S. By
assumption, the submodule N is finitely generated, say N = (a1, . . . , an). Since
each ai ∈ N = ∪P∈CP , we have ai ∈ Pi for some Pi ∈ C. Since C is a chain, there
is an index j such that Pi ⊆ Pj for each i. Hence, we have ai ∈ Pj for each i, and
so

N = (a1, . . . , an) ⊆ Pj ⊆ N.
It follows that N = Pj ∈ S, as desired.

(iii) =⇒ (i). Assume every nonempty set of left submodules ofM has a maximal
element, and consider a chain of left submodules M1 ⊆ M2 ⊆ · · · ⊆ M . We
need to show that the chain stabilizes. By assumption, the set S = {M1,M2, . . .}
has a maximal element, say it is Mn. For each i > 1 we have Mn ⊆ Mn+i, so
the maximality of Mn implies Mn = Mn+i. Thus, the chain stabilizes and M is
noetherian. �

Corollary 4.4. Let R be a ring. The following conditions are equivalent:
(i) R is noetherian;

(ii) every left ideal of R is finitely generated;
(iii) every nonempty set of left ideals of R has a maximal element.

Proof. This is the special case M = R of Theorem 4.3. �

This characterization shows how to construct a ring that is not noetherian.

Example 4.5. Let k be a field and let R = k[x1, x2, . . .] be a polynomial ring
in infinitely many variables. The ideal (x1, x2, . . .) ⊂ R is not finitely generated
and so R is not noetherian.

Theorem 4.6 (Hilbert Basis Theorem). Let R be a commutative ring with
identity. The polynomial ring R[x] is noetherian.

Proof. Let I ⊆ R[x] be an ideal. We will show that I is finitely generated.
For each r = 0, 1, 2, . . . let

Ir = {a ∈ R | ∃a0 + a1x+ . . .+ ar−1x
r−1 + axr ∈ I}.

Since I is an ideal in R[x], it follows readily that Ir is an ideal in R. Furthermore,
we have I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ R: If a ∈ Ir then there exists a polynomial
f = a0 + a1x + . . . + ar−1x

r−1 + axr ∈ I; since I is an ideal the polynomial
xf = a0x+ a1x

2 + . . .+ ar−1x
r + axr+1 ∈ I, and so a ∈ Ir+1.

Since R is noetherian, there exists J > 0 such that, for every j > J we have Ij =
IJ . Furthermore, every Ir is finitely generated, say, Ir = (ar,1, . . . , ar,kr ). Thus,
there exist fr,1, . . . , fr,kr ∈ I such that fr,i = ar,i,0 + ar,i,1x + . . . + ar,i,r−1x

r−1 +
ar,ix

r.
Claim: I = ({fr,i | r = 0, . . . , J ; i = 1, . . . , kr}). (Once this is proved, we are

done.) Set I ′ = ({fr,i | r = 0, . . . , J ; i = 1, . . . , kr}). The containment I ⊇ I ′ holds
because each fr,i ∈ I. for the containment I ⊆ I ′, let f ∈ I. Since 0 ∈ I ′, we
assume that f 6= 0 and set s = deg(f). We show that f ∈ I ′ by induction on s.
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Base case: s = 0. Here we see that f is constant, and so f = a0 ∈ R. Since
f ∈ I, we conclude that f ∈ I0 = (a0,1, . . . , a0,k0) = (f0,1, . . . , f0,k0) ⊆ I ′.

Inductive step: Assume that s > 1 and that, for every polynomial g ∈ I with
deg(g) < s, we have g ∈ I ′. Write f = b0 + · · ·+ bsx

s.
Case 1: s 6 J . Then bs ∈ Is = (as,1, . . . , as,ks). Write bs =

∑ks
i=1 cias,i

with each ci ∈ R. The polynomial g = f −
∑ks
i=1 cifs,ix

r−s ∈ I is either 0 or has
deg(g) < s. Furthermore, we have f − g =

∑ks
i=1 cifs,ix

r−s ∈ (fs,1, . . . , fs,ks) ⊆ I ′,
and so f ∈ I ′ if and only if g ∈ I ′. By our induction hypothesis, we have g ∈ I ′,
and so f ∈ I ′, as desired.

Case 2: s > J . Then bs ∈ Is = IJ = (aJ,1, . . . , aJ,kJ ). Write bs =
∑kJ
i=1 ciaJ,i

with each ci ∈ R. The polynomial g = f −
∑kJ
i=1 cifJ,ix

r−J ∈ I is either 0 or has
deg(g) < s. Furthermore, we have f − g =

∑kJ
i=1 cifJ,ix

r−J ∈ I ′, and so f ∈ I ′ if
and only if g ∈ I ′. By our induction hypothesis, we have g ∈ I ′, and so f ∈ I ′, as
desired. �

5. Day 5

The Hilbert Basis Theorem gives a lot of examples of noetherian rings.

Corollary 5.1. Let R be a commutative ring with identity. Every finitely
generated R-algebra is noetherian. In particular, each polynomial ring in finitely
many variables R[x1, . . . , xn] is noetherian.

Proof. For polynomial rings, the result follows from the Hilbert Basis The-
orem by induction on the number of variables. In general, each finitely generated
R-algebra is (isomorphic to a ring) of the form R[x1, . . . , xn]/J . Since R is noether-
ian, the same is true of the polynomial ring R[x1, . . . , xn], and an exercise shows
that the same is true for the quotient R[x1, . . . , xn]/J . �

Theorem 5.2. Let R be a ring and consider an exact sequence of R-modules:

0→M ′
f−→M

g−→M ′′ → 0.

Then M is noetherian if and only if M ′ and M ′′ are noetherian.

Proof. Assume that M ′ and M ′′ are noetherian. To see that M is noetherian,
consider an ascending chain M1 ⊆ M2 ⊆ · · · ⊆ M . Since M ′ is noetherian, the
ascending chain f−1(M1) ⊆ f−1(M2) ⊆ · · · ⊆ M ′ stabilizes. Since M ′′ is noether-
ian, the ascending chain g(M1) ⊆ g(M2) ⊆ · · · ⊆M ′′ stabilizes. Thus, there exists
n > 1 such that f−1(Mn) = f−1(Mn+1) = · · · and g(Mn) = g(Mn+1) = · · · .

We show that Mn = Mn+1 = · · · . For this, it suffices to show that Mn+i ⊆Mn

for each i > 1. Let m ∈ Mn+i. Then g(m) ∈ g(Mn+i) = g(Mn), so there exists
m1 ∈Mn such that g(m1) = g(m). Then m−m1 ∈ Ker(g) = Im(f), so there exists
m′ ∈M ′ such that g(m′) = m−m1. Note that m ∈Mn+i and m1 ∈Mn ⊆Mn+i,
and so m −m1 ∈ Mn+i. It follows that m′ ∈ f−1(Mn+i) = f−1(Mn). Hence, we
have m−m1 = f(m′) ∈Mn and so m = m1 + f(m′) ∈Mn, as desired.

The converse is an exercise. �

Theorem 5.3. Let R be a ring with identity. Then R is a noetherian ring if
and only if every finitely generated R-module is noetherian.
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Proof. If every finitely generated R-module is noetherian, then the R-module
R is noetherian; that is, R is a noetherian ring.

Conversely, assume that R is a noetherian ring. For each n > 0, the module
Rn is noetherian. This is true for n = 0, 1 by hypothesis. For n > 2, use induction
applied to the exact sequence

0→ R→ Rn → Rn−1 → 0

along with Theorem 5.2.
Now let M be a finitely generated R-module. Then there is an integer n > 0

and an epimorphism τ : Rn →M . Since Rn is noetherian, Theorem 5.2 shows that
M ∼= Rn/Ker(τ) is also noetherian. �

The next result compares to Proposition 1.20.2.

Proposition 5.4. Let R be a PID. Every submodule of Rn is free of rank 6 n.

Proof. By induction on n. If n = 1, then every submodule M ⊆ R is M = rR
for some r ∈ R. Therefore,

M =

{
{0} ∼= R0 if r = 0
rR ∼= R1 if r 6= 0.

Assume n > 1 and assume that every submodule of Rn−1 is free of rank 6 n−1. Let
K ⊆ Rn be a submodule, and define t : Rn → R by the formula t(a1, . . . , an) = an.
Check that t is a homomorphism with Ker(t) = Rn−1 ⊕ {0} ∼= Rn−1. It follows
that t(K) ⊆ R, so t(K) = rR for some r ∈ R. If r = 0, then K ⊆ Ker(t) = Rn−1,
so our induction hypothesis implies that K is free of rank 6 n− 1. So, we assume
that r 6= 0.

Define g : K → t(K) by the formula g(k) = t(k). Then g is an R-module
epimorphism. It is straightforward to verify that

Ker(g) = Ker(t) ∩K = Rn−1 ∩K ⊆ Rn−1.

By our induction hypothesis, we have Ker(g) ∼= Rm for some m 6 n− 1.
There is an exact sequence

0→ Ker(g)→ K
g−→ t(K)→ 0.

Since t(K) is free, this sequence splits, so we have

K ∼= Ker(g)⊕ t(K) ∼= Rm ⊕R ∼= Rm+1.

Since m+ 1 6 n, this is the desired result. �

The next discussion compares to Remark 1.21.1.

Remark 5.5. Let R be a commutative ring with identity, and fix integers n, k >
1. Recall that we have HomR(Rk, Rn) ∼= Mn×k(R). Specifically, let h : Rk → Rn

be an R-module homomorphism. Write elements of Rk and Rn as column vectors
with entries in R. Let e1, . . . , ek ∈ Rk be the standard basis. For j = 1, . . . , k write

h(ej) =


a1,j

...
ai,j

...
an,j

 .
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Then h is represented by the n× k matrix

[f ] = (ai,j) =


a1,1 ··· a1,j ··· a1,k

...
...

...
ai,1 ··· ai,j ··· ai,k
...

...
...

an,1 ··· an,j ··· an,k


in the following sense: For each vector(

r1
...
rk

)
∈ Rk

we have

h

(
r1
...
rk

)
=

( a1,1 ··· a1,k

...
...

an,1 ··· an,k

)(
r1
...
rk

)
.

We have elementary basis operations on the ej :
(1) Replace ej with uej where u ∈ R is a unit;
(2) Interchange ej and el;
(3) Replace ej with ej + rel for some r ∈ R and l 6= j.

These correspond to the appropriate elementary column operations on the matrix
(ai,j), in the following sense. Applying one of the elementary basis operations to the
ej yields an isomorphism Φ: Rk → Rk such that the following diagram commutes

Rk
(ai,j) //

Φ ∼=
��

Rn

=

��
Rk

(bi,j) // Rn

where (bi,j) is the matrix obtained by applying the corresponding elementary col-
umn operation to the matrix (ai,j). And, conversely, if (bi,j) is obtained from
(ai,j) by an elementary column operation, then the corresponding elementary basis
operations on the ej yields a commutative diagram as above.

Let f1, . . . , fn ∈ Rn be the standard basis. The elementary basis operations on
the fj correspond similarly to the elementary row operations on the matrix (ai,j).

Furthermore, if we repeatedly apply elementary row and column operations to
the matrix (ai,j) to obtain the matrix (ci,j), then this yields a commutative diagram

Rk
(ai,j) //

Φ ∼=
��

Rn

Ψ ∼=
��

Rk
(ci,j) // Rn.

We say that an n × k matrix (di,j) with entries in R is equivalent to (ai,j) if it
can be obtained from (ai,j) using a (finite) sequence of elementary row and column
operations.

6. Day 6

The next result compares to Proposition 1.21.2.
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Proposition 6.1. Let R be a PID. Fix integers n > k > 1 and let h : Rk → Rn

be an R-module monomorphism. There exists a commutative diagram of group
homomorphisms

Rk
h //

Φ ∼=
��

Rn

Ψ ∼=
��

Rk
h′ // Rn

such that the matrix representing h′ is “diagonal”, that is, [h′] = (di,j) where di,j =
0 when i 6= j.

Proof. Let [h] = (ai,j), and let A denote the set of all s ∈ R such that a finite
number of elementary row and column operations applied to (ai,j) yields a matrix
with s in the upper left corner. The set S = {sR | s ∈ A} is a nonempty set of
ideals of R. Since R is a PID, it is noetherian, and so S has a maximal element.
Apply the necessary row and column operations to yield a new matrix (bi,j) such
that b1,1R is a maximal element of S.

Note that b1,1 6= 0. Indeed, since h is a monomorphism, the matrix (bi,j) is
nonzero. It follows that a finite number of row and column operations will yield
a matrix with a nonzero element s 6= 0 in the upper left corner. If b1,1 = 0, then
b1,1R = (0) ( sR, contradicting the maximality of b1,1 in S.

Claim: b1,1
∣∣b1,2. Suppose not. Then b1,2 6∈ b1,1R. It follows that b1,1R (

(b1,1, b1,2)R. Since R is a PID, there is an element d ∈ R such that (b1,1, b1,2)R =
dR. Thus, we have

(0) ( b1,1R ( (b1,1, b1,2)R = dR.

In particular, we have d 6= 0. We will derive a contradiction by showing that d ∈ A;
the relation b1,1R ( dR will then contradict the maximality of b1,1R in S.

Since d ∈ dR = (b1,1, b1,2)R, there are elements u, v ∈ R such that d = ub1,1 +
vb1,2. On the other hand, we have b1,1, b1,2 ∈ (b1,1, b1,2)R = dR and so there are
elements x, y ∈ R such that b1,1 = xd and b1,2 = yd. This yields

1d = d = ub1,1 + vb1,2 = uxd+ vyd = (ux+ vy)d

and so ux+ vy = 1 because d 6= 0.
Consider the following matrix multiplication: b1,1 b1,2 ··· b1,k

b2,1 b2,2 ··· b2,k
...

...
...

bn,1 bn,2 ··· bn,k



u −y 0 ··· 0
v x 0 ··· 0
0 1 1 ··· 0
...

...
...

...
0 0 0 ··· 1

 =

 d ∗ ··· ∗
∗ ∗ ··· ∗
...

...
...

∗ ∗ ··· ∗


Because ux + vy = 1, it can be shown that the second matrix corresponds to a
change of basis. It follows that d ∈ A, as desired.

A similar argument shows that b1,1
∣∣b1,i for i = 2, . . . , k and b1,1

∣∣bj,1 for j =
2, . . . , n. Thus, we may use elementary row and column operations to find an
matrix (ci,j) equivalent to (bi,j) and hence equivalent to (ai,j) such that r 6= 1
implies c1,r = 0 and cr,1 = 0: 

c1,1 0 0 ··· 0
0 c2,2 c2,3 ··· c2,k
0 c3,2 c3,3 ··· c3,k
...

...
...

...
0 cn,2 cn,3 ··· cn,k
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Repeating this process to appropriate “submatrices” of (ci,j) yields the desired
matrix, and Remark 5.5 yields the desired commutative diagram. �

The next result compares to Proposition 1.21.3.

Proposition 6.2. Let R be a ring, and let h : K → N and h′ : K ′ → N ′ be
R-module homomorphisms. Given a commutative diagram of R-module homomor-
phisms

K
h //

Φ ∼=
��

N

Ψ ∼=
��

K ′
h′ // N ′

there is an R-module isomorphism α : N/ Im(h)
∼=−→ N ′/ Im(h′).

Proof. Let α : N/ Im(h) → N ′/ Im(h′) be given by α(x) = Ψ(x). Proposi-
tion 1.21.3 shows that α is a well-defined abelian group isomorphism. From the
definition, it is straightforward to show that α is an R-module homomorphism. �

Here is the Fundamental Theorem for Finitely Generated Modules over a PID.
Compare to Theorem 1.22.1.

Theorem 6.3. Let R be a PID and let M be a finitely generated R-modle.
Then G is a direct sum of cyclic R-modules:

M ∼= R/d1R⊕ · · · ⊕R/dkR⊕Rn−k.

Proof. Let {m1, . . . ,mn} ⊆M be a generating set for M . The map f : Rn →
M given by f(r1, . . . , rn) =

∑
i rimi is a well-defined group epimorphism. We have

Ker(f) ⊆ Rn, so Proposition 5.4 yields an isomorphism h1 : Rk
∼=−→ Ker(f) for some

k 6 n. Let ε : Ker(f) → Rn be the natural inclusion, and set h = εh1 : Rk →
Rn. Since h1 is an isomorphism and ε is a monomorphism, we know that h is a
monomorphism.

Proposition 6.1 yields a commutative diagram of group homomorphisms

Rk
h //

Φ ∼=
��

Rn

Ψ ∼=
��

Rk
h′ // Rn

such that [h′] = (di,j) where di,j = 0 when i 6= j. Let f1, . . . , fn ∈ Zn be the
standard basis. Then we have

M ∼= Rn/Ker(f) first isomorphism theorem

= Rn/ Im(h) construction of h
∼= Rn/ Im(h′) Proposition 6.2

= Rn/〈d1,1f1, . . . , dk,kfk〉 assumptions on h′

∼= R/d1,1R⊕ · · · ⊕R/dk,kR⊕ Zn−k Exercise.

This is the desired conclusion. �



158 6. MODULE THEORY II

Definition 6.4. Let R be a ring and let F : R-mod → Ab be a covariant
functor. The functor F is additive if, for each pair of R-module homomorphisms
f, g : M → N , we have

F (f + g) = F (f) + F (g) : F (M)→ F (N).

In other words, F is additive if, for every pair of R-modules, the map

FM,N : HomR(M,N)→ HomAb(F (M), F (N))

is an abelian group homomorphism.
Let G : R-mod → Ab be a contravariant functor. The functor G is additive if,

for each pair of R-module homomorphisms f, g : M → N , we have

G(f + g) = G(f) +G(g) : G(N)→ G(M).

In other words, G is additive if, for every pair of R-modules, the map

GM,N : HomR(M,N)→ HomAb(G(N), G(M))

is an abelian group homomorphism.

Remark 6.5. Let R be a ring and let F : R-mod → Ab be a functor, either
covariant or contravariant. Then F (0) = 0.

Example 6.6. Let R be a ring and let M be an R-module. The functor
HomR(M,−) is covariant and additive. The functor HomR(−,M) is contravariant
and additive.

7. Day 7

Definition 7.1. Let R be a ring and let F : R-mod → Ab be a covariant
additive functor.

The functor F is exact if, for every exact sequence

M ′
f−→M

g−→M ′′

the induced sequence

F (M ′)
F (f)−−−→ F (M)

F (g)−−−→ F (M ′′)

is also exact.
The functor F is left exact if, for every exact sequence

0→M ′
f−→M

g−→M ′′

the induced sequence

0→ F (M ′)
F (f)−−−→ F (M)

F (g)−−−→ F (M ′′)

is also exact.
The functor F is right exact if, for every exact sequence

M ′
f−→M

g−→M ′′ → 0

the induced sequence

F (M ′)
F (f)−−−→ F (M)

F (g)−−−→ F (M ′′)→ 0

is also exact.
Let G : R-mod→ Ab be a contravariant additive functor.
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The functor G is exact if, for every exact sequence

M ′
f−→M

g−→M ′′

the induced sequence

G(M ′′)
G(g)−−−→ G(M)

G(f)−−−→ G(M ′)

is also exact.
The functor G is left exact if, for every exact sequence

M ′
f−→M

g−→M ′′ → 0

the induced sequence

0→ G(M ′′)
G(g)−−−→ G(M)

G(f)−−−→ G(M ′)

is also exact.
The functor G is right exact if, for every exact sequence

0→M ′
f−→M

g−→M ′′

the induced sequence

G(M ′′)
G(g)−−−→ G(M)

G(f)−−−→ G(M ′)→ 0

is also exact.

Theorem 7.2. Let R be a ring and let N be an R-module. Then the functors
HomR(N,−) : R-mod→ Ab and HomR(−, N) : R-mod→ Ab are left exact.

Proof. We will show that HomR(N,−) is left exact. The verification for
HomR(−, N) is similar.

Consider an exact sequence

0→M ′
f−→M

g−→M ′′.

We need to show that the induced sequence

0→ HomR(N,M ′)
HomR(N,f)−−−−−−−→ HomR(N,M)

HomR(N,g)−−−−−−−→ HomR(N,M ′′)

is exact.
1. HomR(N, f) is 1-1. Let φ ∈ Ker(HomR(N, f)) ⊆ HomR(N,M ′). Then

0 = HomR(N, f)(φ) = f ◦ φ. Since f is 1-1, it follows that φ = 0.
2. Ker(HomR(N, g)) ⊇ Im(HomR(N, f)). The fact that HomR(N,−) is a

functor provides the first equality in the following sequence

HomR(N, g) ◦HomR(N, f) = HomR(N, g ◦ f) = HomR(N, 0) = 0.

The second equality follows from the exactness of the original sequence. The third
equality is straightforward.

3. Ker(HomR(N, g)) ⊆ Im(HomR(N, f)). Let φ ∈ Ker(HomR(N, g)) ⊆ HomR(N,M).
Then 0 = HomR(N, g)(φ) = g ◦ φ and it follows that Im(φ) ⊆ Ker(g) = Im(f). For
every n ∈ N , this implies that φ(n) = f(m′n) for some m′n ∈M ′. Furthermore, since
f is 1-1, the element m′n is the unique element m′ ∈M ′ such that φ(n) = f(m′).

Define ψ : N →M ′ by the rule ψ(n) = m′n. This is well-defined by the previous
paragraph.
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Claim: ψ is an R-module homomorpism. By definition, m′n1+n2
is the unique

element m′ ∈M ′ such that φ(n1 + n2) = f(m′). By assumption, we have

f(mn1 +mn2) = f(mn1) + f(mn2) = φ(n1) + φ(n2) = φ(n1 + n2).

Hence, the uniqueness of m′n1+n2
implies that

ψ(n1 + n2) = m′n1+n2
= mn1 +mn2 = ψ(n1) + ψ(n2).

A similar argument shows that ψ(rn) = rψ(n).
Thus, we have ψ ∈ HomR(N,M ′). Now we show that HomR(N, f)(ψ) = φ:

(HomR(N, f)(ψ))(n) = f(ψ(n)) = f(m′n) = φ(n).

Hence, we have φ ∈ Im(HomR(N, f)), and we are done. �

Proposition 7.3. Let R be a ring with identity. For each n > 0, the functor
HomR(Rn,−) is exact.

Proof. It is straightforward to show (exercise) that the functor (−)n is exact.
The isomorphism HomR(Rn,−) ∼= (−)n yields the desired result. �

8. Day 8

The functors HomR(N,−) and HomR(−, N) are not usually exact:

Example 8.1. Consider the sequence of Z-modules

(∗) 0→ Z µ2−→ Z τ−→ Z/(2)→ 0

where µ2(n) = 2n and τ(m) = m. This sequence is exact. However, the sequences
HomZ(Z/(2), ∗) and HomZ(∗,Z/(2)) are not exact, as follows.

To see that the sequence HomZ(Z/(2), ∗) is not exact, we need to show that
the sequence

HomZ(Z/(2),Z)
HomZ(Z/(2),τ)−−−−−−−−−→ HomZ(Z/(2),Z/(2))→ 0

is not exact, that is, that the map HomZ(Z/(2), τ) is not onto. We show that
idZ/(2) : Z/(2) → Z/(2) is not in Im(HomZ(Z/(2), τ)). By definition, it suffices to
show that there does not exist a Z-module homomorphism φ : Z/(2) → Z making
the following diagram commute.

Z/(2)
6∃φ

}}z
z

z
z

z
=

��
Z τ // Z/(2).

Note that the only Z-module homomorphism φ : Z/(2)→ Z is the zero map φ = 0,
and this map does not make the diagram commute. (Another way to see this:
The map φ would give a splitting of the sequence (∗), which would imply that
Z ∼= Z⊕ Z/(2), which is impossible.)

To see that the sequence HomZ(∗,Z/(2)) is not exact, we need to show that
the sequence

HomZ(Z,Z/(2))
HomZ(µ2,Z/(2))−−−−−−−−−−→ HomZ(Z,Z/(2))→ 0

is not exact, that is, that the map HomZ(µ2,Z/(2)) is not onto. We show that
τ : Z → Z/(2) is not in Im(HomZ(µ2,Z/(2))). By definition, it suffices to show
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that there does not exist a Z-module homomorphism ψ : Z → Z/(2) making the
following diagram commute.

Z
µ2 //

τ

��

Z

6∃ψ}}z
z

z
z

Z/(2)

Let ψ : Z/(2)→ Z. Then ψ(µ2(1)) = ψ(2) = 2ψ(1) = 0 6= τ(1), so ψ does not make
the diagram commute.

Proposition 8.2. Let F : R-mod→ Ab be a covariant additive functor. TFAE.
(i) The functor F is exact;
(ii) The functor F is left exact and right exact;

(iii) For every short exact sequence of R-module homomorphisms

0→M ′
f−→M

g−→M ′′ → 0

the resulting sequence

0→ F (M ′)
F (f)−−−→ F (M)

F (g)−−−→ F (M ′′)→ 0

is exact.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) follow from the definitions.
(iii) =⇒ (i). Assume that condition (iii) holds and consider an exact sequence

M1
f1−→M2

f2−→M3.

We need to show that the sequence

F (M1)
F (f1)−−−→ F (M2)

F (f2)−−−→ F (M3)

is exact. Since F is an additive functor, we have

F (f2) ◦ F (f1) = F (f2 ◦ f1) = F (0) = 0.

Thus, we have Im(F (f1)) ⊆ Ker(F (f2)), and it remains to show that Im(F (f1)) ⊇
Ker(F (f2)).

Consider the following commutative diagram

0

  @@@@@@@@ 0

!!CCCCCCCC 0

N0

g0 !!CCCCCCCC N2

=={{{{{{{{

k2

!!CCCCCCCC

M1
f1 //

g1 !!CCCCCCCC M2
f2 //

h2

=={{{{{{{{
M3

k3 !!CCCCCCCC

N1

h1

=={{{{{{{{

!!CCCCCCCC N3

  @@@@@@@@

0

=={{{{{{{{
0 0
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where

N0 = Ker(f1) N1 = Im(f1) = Ker(f2)

N2 = Im(f2) N3 = M3/K2

g0(n0) = n0 g1(m1) = f1(m1)

h1(n1) = n1 h2(m2) = f2(m2)

k2(n2) = n2 k3(m3) = m3

Note that the diagonal sequences of this diagram are short exact sequences by
design. Thus, our assumption on F implies that the diagonal sequences of the
following diagram are also exact

0

%%JJJJJJJJJJ 0

F (N2)

99tttttttttt

F (k2)

$$IIIIIIIII

F (M1)
F (f1) //

F (g1) $$IIIIIIIII
F (M2)

F (f2) //

F (h2)
::uuuuuuuuu

F (M3)

F (N1)
F (h1)

::uuuuuuuuu

%%JJJJJJJJJJ

0

99tttttttttt
0

Also, this diagram commutes because F is a functor.
To show that Im(F (f1)) ⊇ Ker(F (f2)), let x2 ∈ Ker(F (f2)). Then

0 = F (f2)(x2) = F (k2)(F (h2)(x2))

and so the fact that F (k2) is 1-1 implies that F (h2)(x2) = 0. Hence, we have

x2 ∈ Ker(F (h2)) = Im(F (h1))

so there exists y1 ∈ F (N1) such that F (h1)(y1) = x2. Since F (g1) is surjective,
there exists x1 ∈ F (M1) such that y1 = F (g1)(x1). Thus, we have

F (f1)(x1) = F (h1)(F (g1)(x1)) = F (h1)(y1) = x2 ∈ Im(F (f1))

as desired. �

Proposition 8.3. Let G : R-mod → Ab be a contravariant additive functor.
TFAE.

(i) The functor G is exact;
(ii) The functor G is left exact and right exact;

(iii) For every short exact sequence of R-module homomorphisms

0→M ′
f−→M

g−→M ′′ → 0

the resulting sequence

0→ G(M ′)
G(f)−−−→ G(M)

G(g)−−−→ G(M ′′)→ 0

is exact.
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Proof. Similar to Proposition 8.2. �

Definition 8.4. Let R be a ring. An R-module P is projective if the functor
HomR(P,−) is exact.

Remark 8.5. The functor HomR(M,−) is always left exact. Thus, Proposi-
tion 8.2 implies that P is projective if and only if, for every R-module epimorphism
f : M � M ′′ the induced map HomR(P, f) : HomR(P,M) → HomR(P,M ′′) is
surjective.

Proposition 7.3 says that, when R has identity, the module Rn is projective.
The next result generalizes this.

Proposition 8.6. Let R be a ring with identity, and let F be a free R-module.
Then F is projective.

Proof. It suffices to consider an exact sequence

M
g−→M ′′ → 0

and show that the resulting sequence

HomR(F,M)
HomR(F,g)−−−−−−−→ HomR(F,M ′′)→ 0

is exact. Fix an R-module homomorphism f ∈ HomR(F,M ′′) and consider the
diagram

F

f

��

∃h

}}z
z

z
z

M
g // M ′′ // 0.

It suffices to find h making the diagram commute.
Let B ⊆ F be a basis for F as an R-module. The map g is surjective. For

each b ∈ B, choose an element mb ∈M such that g(mb) = f(b). Define h : F →M
by the formula h(

∑
b∈B rbb) =

∑
b∈B rbmb. Proposition 4.2.4 shows that h is a

well-defined R-module homomorphism. Also, we have

g(h(
∑
b∈B rbb)) = g(

∑
b∈B rbmb) =

∑
b∈B rbg(mb) =

∑
b∈B rbf(b) = f(

∑
b∈B rbb)

and so
f = gh = HomR(F, g)(h).

It follows that HomR(F, g) is surjective, as desired. �

The implication (iv) =⇒ (i) in the next result generalizes the previous result.

Proposition 8.7. Let R be a ring with identity, and let P be a unitary R-
module. TFAE.

(i) P is a projective R-module;
(ii) For every diagram of unitary R-module homomorphisms with exact bottom

row
P

f

��
M

g // M ′′ // 0
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there is an R-module homomorphism h : P → M making the next diagram
commute

P

f

��

∃h

}}z
z

z
z

M
g // M ′′ // 0.

(iii) Every exact sequence of the form 0→M ′ →M → P → 0 splits;
(iv) There is a unitary R-module M ′ such that P ⊕M ′ is free.

Remark 8.8. Note that the map h in condition (ii) need not be unique.

Proof. (i) =⇒ (ii). Assume that P is projective and consider a diagram

P

f

��
M

g // M ′′ // 0

with exact bottom row. The functor HomR(P,−) is exact, so we have an exact
sequence

HomR(P,M)
HomR(P,g)−−−−−−−→ HomR(P,M ′′)→ 0.

The given map f is in HomR(P,M ′′), so there exists h ∈ HomR(P,M) such that

f = HomR(P, g)(h) = g ◦ h.

Hence h makes the desired diagram commute.
(ii) =⇒ (iii). Assume condition (ii) holds and consider an exact sequence

0→M ′ →M → P → 0. This gives a commutative diagram

P

idP

��

∃g1

~~}
}

}
}

M
g // P // 0.

The map h satisfies gg1 = idP , so the sequence splits by Proposition 3.3.
(iii) =⇒ (iv). Proposition 4.4.1(a) a free R-module F and a surjection τ : F →

M . Condition (iii) implies that the exact sequence

0→ Ker(τ)→ F
τ−→ P → 0

splits, and so F ∼= Ker(τ)⊕ P .
(iv) =⇒ (i). Write F = P ⊕M ′. Proposition 8.6 shows that F is projective.

By an exercise, we know that

HomR(F,−) ∼= HomR(P ⊕M ′,−) ∼= HomR(P,−)⊕HomR(M ′,−).

This functor is exact, so another exercise implies that the functors HomR(P,−) and
HomR(M ′,−) are exact. Thus P is projective. �
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9. Day 9

Here is an example of a ring with a non-free projective module.

Example 9.1. Let R1 and R2 be rings with identity and set R = R1×R2. The
modules P1 = R1 × 0 and P2 = 0 × R2 are both projective because P1 ⊕ P2

∼= R.
Note that P1 is not free because the element (0, 1) ∈ R is nonzero and (0, 1)P1 = 0.

Definition 9.2. Let R be a ring. An R-module I is injective if the functor
HomR(−, I) is exact.

Remark 9.3. The functor HomR(−, N) is always left exact. Thus, Proposi-
tion 8.2 implies that I is injective if and only if, for every R-module monomorphism
f : M ′ ↪→ M the induced map HomR(f, I) : HomR(M, I) → HomR(M ′, I) is sur-
jective.

Proposition 9.4. Let R be a ring with identity, and let I be a unitary R-
module. TFAE.

(i) I is an injective R-module;
(ii) For every diagram of unitary R-module homomorphisms with exact top row

0 // M ′
f //

g

��

M

I

there is an R-module homomorphism h : M → I making the next diagram
commute

0 // M ′
f //

g

��

M

∃h}}{
{

{
{

I.

�

Remark 9.5. Note that the map h in condition (ii) need not be unique.
Also, note the absence of a condition corresponding to Proposition 8.7(iii) and

(iv). We will prove the analogue of (iii) below. There is no version of (iv).
Examples of injective modules are more difficult to construct. We will see

(exercise) that Q is an injective Z-module. This can be proved using the next
result. See also Lemma 10.4.

Theorem 9.6 (Baer’s Criterion). Let R be a ring with identity and J a unitary
R-module. TFAE:

(i) J is an injective R-module;
(ii) For every ideal I ⊆ R and every R-module homomorphism g : I → J , there

exists an R-module homomorphism h : R → J making the following diagram
commute

0 // I
⊆ //

g

��

R

∃h��~
~

~
~

J.
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Proof. (i) =⇒ (ii). By Proposition 9.4.
(ii) =⇒ (i). Consider a diagram of unitary R-module homomorphisms with

exact top row

0 // M ′
f //

g

��

M

∃h}}{
{

{
{

I.

We need to find an R-module homomorphism h : M → I making the diagram
commute. for this, we use Zorn’s Lemma. Set

S = {R-module homomorphisms h : C → J | Im(f) ⊆ C ⊆M and hf = g}.

Partially order S as follows: (h1 : C1 → J) 6 (h2 : C2 → J) if and only if C1 ⊆ C2

and h2|C1 = h1. Check that this is a partial order on S.
Claim: S satisfies the hypotheses of Zorn’s Lemma. Let C be a nonempty chain

in S. Define D = ∪(h : C→J)∈CC. Since C is a chain in S, it follows that D is a
submodule of M such that Im(f) ⊆ D. Define k : D → J as follows. For each
d ∈ D, there exists (h : C → J) ∈ C such that d ∈ C; set k(d) = h(d). Since C
is a chain, it follows that k(d) is independent of the choice of (h : C → J) ∈ C.
Since C is a chain and each (h : C → J) ∈ C is an R-module homomorphism, it is
straightforward to show that k is an R-module homomorphism and that kf = g.
In other words, k : D → J is in S. By construction, (h : C → J) 6 (k : D → J) for
each (h : C → J) ∈ C, and so (k : D → J) is an upper bound for C in S.

Zorn’s Lemma implies that S has a maximal element (h : C → J). We will use
the maximality to show that C = M . It will then follow that (h : M → J) ∈ S,
and so h : M → J makes the desired diagram commute.

Suppose that C ( M and let m ∈M r C. Set

I = {r ∈ R | rm ∈ C}.

Check that this is a left ideal of R. Define φ : I → J by the formula φ(r) = h(rm).
Check that this is an R-module homomorphism. Condition (ii) yields an R-module
homomorphism ψ : R→ J making the following diagram commute

0 // I
⊆ //

φ

��

R

ψ��~~~~~~~

J.

Define C ′ = C +Rm which is a submodule of M such that Im(g) ⊆ C ( C ′ ⊆M .
We will construct an R-module homomorphism h′ : C ′ → J such that h′f = g and
h′|C = h; this will show that (h′ : C ′ → J) ∈ S and (h : C → J) < (h′ : C ′ → J),
thus contradicting the maximality of (h : M → J) in S.

Define h′ : C ′ → J by the formula h′(c + rm) = h(c) + ψ(r). We need to
show that this is well-defined, so suppose that c + rm = c1 + r1m. It follows that
(r − r1)m = rm− r1m = c1 − c ∈ C, and so r − r1 ∈ I.

h(c1)− h(c) = h(c1 − c) = h((r − r1)m) = φ(r − r1) = ψ(r − r1) = ψ(r)− ψ(r1)

and so h(c1) + ψ(r1) = h(c) + ψ(r). Thus, h′ is well-defined.
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It is straightforward to show that h′ is an R-module homomorphism, because
h and ψ are R-module homomorphisms. For m′ ∈M ′ we have f(m′) ∈ Im(f) ⊆ C
and so (using c = f(m′) and r = 0) we have

h′(f(m′)) = h(f(m′)) = g(m′)

because hf = g. It follows that h′f = g as well. A similar argument shows that
h′|C = h, as desired. �

Remark 9.7. The notion of “injective” is in a sense dual to the notion of
”projective”. For projective modules, we know the following: Every unitary module
over a ring with identity is a homomorphic image of a projective R-module. The
“dual” result says that every unitary module over a ring with identity is a submodule
of an injective R-module. This result takes more work to prove. We begin with the
case R = Z.

10. Day 10

Definition 10.1. An abelian group D is divisible if, for each d ∈ D and for
each 0 6= n ∈ Z, there exists e ∈ D such that ne = d.

Remark 10.2. These groups are “divisible” because you can always solve the
division problem d÷ n in D.

Example 10.3. Q is a divisible abelian group.

Lemma 10.4. An abelian group G is divisible if and only if it is injective as a
unitary Z-module.

Proof. =⇒ : Assume that G is divisible. We use Baer’s criterion. Let I ⊆ Z
be an ideal and let g : I → G be a Z-module homomorphism. Then I = nZ for
some n > 0. We need to find a Z-module homomorphism h : Z → G making the
following diagram commute

0 // I
⊆ //

g

��

Z

∃h~~~
~

~
~

G.

The case n = 0 is straightforward using h = 0, so assume that n > 0. Since G is
divisible, there exists a ∈ G such that na = g(n). It follows that g(mn) = mg(n) =
mna for all m ∈ Z. Define h : Z → G as h(m) = ma for all m ∈ Z. This is a
well-defined Z-module homomorphism such that h|I = g, as desired.

⇐= : Assume that G is injective. To show that G is divisible, let 0 6= n ∈ Z and
let b ∈ G. We need to find an element c ∈ G such that nc = b. Define g : nZ→ G
by the formula g(nm) = mb. This is a well-defined Z-module homomorphism, so
the fact that G is injective provides a Z-module homomorphism h : Z→ G making
the following diagram commute

0 // I
⊆ //

g

��

Z

∃h~~~
~

~
~

G.
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In particular, the element c = h(1) satisfies

nc = nh(1) = h(n) = b

as desired. �

Lemma 10.5. Let G be an abelian group. Then there is a divisible abelian group
D and an abelian group monomorphism f : G ↪→ D.

Proof. Let τ : F → G be an epimorphism such that F is a free abelian group.
Let K = Ker(τ) so that we have G ∼= F/K. Write F ∼= Z(Λ) for some set Λ and
set D1 = Q(Λ). An exercise shows that D is divisible. It is straightforward to
construct an abelian group monomorphism i : Z(Λ) ↪→ Q(Λ), i.e., i : F ↪→ D1. Since
i is a monomorphism, it follows that

G ∼= F/K ∼= i(F )/i(K) ⊆ D1/i(K).

(Exercise. Use Proposition 6.2.) Since D1 is divisible, so is the quotient D1/i(K),
and so we have the desired monomorphism. �

Here is a way to construct injective R-modules.

Lemma 10.6. Let R be a ring with identity. If D is a divisible abelian group,
then HomZ(R,D) is an injective R-module.

Proof. First, observe that R is an additive abelian group, hence R is a uni-
tary Z-module. Thus HomZ(R,D) makes sense. Next, we define an R-module
structure on HomZ(R,D): for r ∈ R and φ ∈ HomZ(R,D), define rφ : R → D as
(rφ)(s) = φ(sr). Check that rφ is a Z-module homomorphism, and that this make
HomZ(R,D) into an R-module.

We now use Baer’s Criterion to show that HomZ(R,D) is an injective R-
module. Let I ⊆ R be an ideal, and let g : I → HomZ(R,D) be an R-module
homomorphism. We need to show that there exists an R-module homomorphism
h : R→ HomZ(R,D) making the following diagram commute

0 // I
⊆ //

g

��

R

∃hyys s s s s s

HomZ(R,D).

The evaluation map ε : HomZ(R,D)→ D given by ε(φ) = φ(1) is an abelian group
homomorphism, so we have a diagram of abelian group homomorphisms

0 // I
⊆ //

g

��

R

HomZ(R,D)

ε

��
D.
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Since D is divisible, it is injective as a Z-module, so there exists an abelian group
homomorphism h1 : R→ D making the next diagram commute:

0 // I
⊆ //

g

��

R

∃h1

}}z
z

z
z

z
z

z
z

z
z

z

HomZ(R,D)

ε

��
D.

Define h : R → HomZ(R,D) as follows. For r ∈ R, we let h(r) : R → D by the
formula h(r)(s) = h1(sr). Check that h(r) ∈ HomZ(R,D), which shows that
h is a well-defined function. [You need to show that h(r) is an abelian group
homomorphism, that is, that h(r)(s + s′) = h(r)(s) + h(r)(s′) for all r, s, s′ ∈ R.]
Check that h is an abelian group homomorphism. [You need to show that h(r+r′) =
h(r) + h(r′), that is, that h(r + r′)(s) = h(r)(s) + h(r′)(s) for all r, r′, s ∈ R.]

Claim: h is an R-module homomorphism. We need to show that h(rr′) = rh(r′)
for all rr′ ∈ R, that is, that [h(rr′)](s) = [rh(r′)](s) for all rr′ ∈ R.

[h(rr′)](s) = h1(s(rr′)) = h1((sr)r′) = h(r′)(sr) = [rh(r′)](s)

Claim: for all a ∈ I, we have h(a) = g(a). (Once this is shown, we will have
shown that the desired diagram commutes, and we’ll be done.) We need to show
that h(a)(r) = g(a)(r) for all r ∈ R. Note that, since a ∈ I and r ∈ R, we have
ra ∈ I.

h(a)(r) = h1(ra) = ε(g(ra)) = g(ra)(1) = [rg(a)](1) = g(a)(1 · r) = g(a)(r)

as desired. �

Theorem 10.7. Let R be a ring with identity and let M be a unitary R-module.
Then there exists an R-module monomorphism M ↪→ J where J is an injective
unitary R-module.

Proof. M is an additive abelian group, so Lemma 10.5 yields an abelian group
monomorphism f : M ↪→ D where D is a divisible abelian group. The induced map
HomZ(R, f) : HomZ(R,M)→ HomZ(R,D) is an abelian group homomorphism. It
is a monomorphism because HomZ(R,−) is left exact. Check that it is an R-module
homomorphism. This yields a sequence

M
∼=−→ HomR(R,M) ⊆ HomZ(R,M) ↪→ HomZ(R,D)

where the inclusion comes from the fact that every R-module homomorphism R→
M is, in particular, an abelian group homomorphism. The composition of these
maps is an R-module monomorphism. The R-module J = HomZ(R,D) is injective
by Lemma 10.6, giving the desired result. �

Here is the version of Proposition 8.7 for injectives.

Proposition 10.8. Let R be a ring with identity, and let I be a unitary R-
module. TFAE.

(i) I is an injective R-module;
(ii) Every exact sequence of the form 0→ I →M →M ′′ → 0 splits.
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Proof. (i) =⇒ (ii) Assume that I is injective and consider an exact sequence

0 → I
f−→ M → M ′′ → 0. Proposition 9.4 yields an R-module homomorphism

f1 : M → I making the next diagram commute

0 // I
f //

idI

��

M

∃f1��~
~

~
~

I

so the sequence splits.
(ii) =⇒ (i) Theorem 10.7 shows that there is an R-module monomorphism

f : I → J such that J is injective. Condition (ii) implies that the resulting short
exact sequence splits

0→ I
f−→ J → J/I → 0

and so J ∼= I⊕J/I. The fact that J is injective implies that I and J/I are injective
(exercise) as desired. �

11. Day 11

Now for tensor products.

Remark 11.1. Let R be a ring. The function µ : R × R given by µ(r, s) = rs
is not as well-behaved as one might like. For instance, it is not an R-module
homomorphism:

µ((1, 0) + (0, 1)) = µ(1, 1) = 1 6= 0 = µ(1, 0) + µ(0, 1).

In a sense, the tensor product fixes this problem.

Definition 11.2. Let R be a ring. Let M be a right R-module and let N
be a left R-module. Let G be an abelian group. A function f : M × N → G is
R-biadditive if

f(m+m′, n) = f(m,n) + f(m′, n)

f(m,n+ n′) = f(m,n) + f(m,n′)

f(mr, n) = f(m, rn)

for all m,m′ ∈M all n, n′ ∈ N and all r ∈ R.

Example 11.3. Let R be a ring. The function µ : R×R given by µ(r, s) = rs
is the prototype of an R-biadditive function.

Definition 11.4. Let R be a ring. Let M be a right R-module and let N
be a left R-module. A tensor product of M and N over R is an abelian group
M ⊗R N equipped with an R-biadditive function h : M ×N →M ⊗R N satisfying
the following universal property: For every abelian group G and every R-biadditive
function f : M × N → G, there exists a unique abelian group homomorphism
F : M ⊗R N → G making the following diagram commute

M ×N h //

f
&&MMMMMMMMMMM M ⊗R N

∃!F
���
�
�

G.
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Theorem 11.5. Let R be a ring. Let M be a right R-module and let N be a
left R-module. Then M ⊗R N exists.

Proof. Existence. Consider Z(M×N), the free abelian group with basis M×N .
For m ∈M and n ∈ N , let (m,n) ∈ Z(M×N) denote the corresponding basis vector.
Let ε : M ×N → Z(M×N) be the function ε(m,n) = (m,n). Set

H =

〈 (m+m′, n)− (m,n)− (m′, n)
(m,n+ n′)− (m,n)− (m,n′)

(mr, n)− (m, rn)

∣∣∣∣∣∣
m,m′ ∈M
n,n′ ∈ N
r ∈ R

〉
⊆ Z(M×N).

Set M ⊗R N = Z(M×N)/H and, for m ∈M and n ∈ N write

m⊗ n = [(m,n)] = (m,n) +H ∈ Z(M×N)/H = M ⊗R N.
Define h : M ×N →M ⊗R N to be the composition

M ×N ε−→ Z(M×N) π−→ Z(M×N)/H = M ⊗R N
that is, by the rule h(m,n) = m⊗ n.

It is straightforward to show that h is well-defined and R-biadditive. For ex-
ample, we have

h(m+m′, n) = (m+m′)⊗ n
= [(m+m′, n)]

= [(m,n)] + [(m′, n)]

= m⊗ n+m′ ⊗ n
= h(m,n) + h(m′, n).

In terms of tensors, the R-biadditivity of h reads as

(m+m′)⊗ n = m⊗ n+m′ ⊗ n
m⊗ (n+ n′) = m⊗ n+m⊗ n′

(mr)⊗ n = m⊗ (rn)

Note also that elements of M ⊗R N are of the form

[
∑
i li(mi, ni)] =

∑
i li[(mi, ni)] =

∑
i li(mi ⊗ ni).

We’ll see later that, usually, there are elements of M ⊗R N that cannot be written
as “simple tensors”, that is, are not of the form m⊗ n.

To see that M⊗RN satisfies the desired universal property, let G be an abelian
group and f : M × N → G an R-biadditive function. Use the universal property
for free abelian groups Corollary 1.19.1 to see that there is a unique abelian group
homomorphism F1 : Z(M×N) → G such that F1(m,n) = f(m,n).

M ×N ε //

f
%%LLLLLLLLLLL Z(M×N)

∃!F1

���
�
�

G.

From the proof of Corollary 1.19.1, we have

F1(
∑
i li(mi, ni)) =

∑
i lif(mi, ni)).

Use this formula to check that each generator of H is in Ker(F1); this will use the
R-biadditivity of f . It follows that H ⊆ Ker(F1) and so the universal property
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for quotients Lemma 1.9.2 implies that there exists a unique abelian group homo-
morphism F : Z(M×N)/H → G making the right-hand triangle in the next diagram
commute

M ×N ε //

f
%%KKKKKKKKKKK Z(M×N)

∃!F1

���
�
�

π // Z(M×N)/H

∃!F
xxp p p p p p

M ⊗R N

G.

Thus, we see that the desired homomorphism F exists and is unique.
The above construction shows that F is given by the formula

F (
∑
i li(mi ⊗ ni)) = F ([

∑
i li(mi, ni)]) = F1(

∑
i li(mi, ni)) =

∑
i lif(mi, ni)).

�

Example 11.6. Let R be a ring. Let M be a right R-module and let N be a
left R-module. The computations in the proof of Theorem 11.5 show

(
∑
imiri)⊗ n =

∑
i(miri)⊗ n =

∑
imi ⊗ (rin)

for all mi ∈ M , all ri ∈ R and all n ∈ N . Other formulas hold similarly. In
particular, for li ∈ Z, we have∑

i li(mi ⊗ ni) =
∑
i((limi)⊗ ni) =

∑
im
′
i ⊗ ni

where m′i = limi.
The additive identity in M ⊗R N is 0M⊗N = 0M ⊗ 0N . This can be written

several (seemingly) different ways. For instance, for each n ∈ N , we have

0M ⊗ n = (0M0R)⊗ n = 0M ⊗ (0Rn) = 0M ⊗ 0N .

Similarly, for all m ∈M , we have m⊗ 0N = 0M ⊗ 0N .

Remark 11.7. Let R be a ring. Let M be a right R-module and let N be a left
R-module. It should be reiterated that there are more elements in M⊗RN than the
simple tensors m⊗ n. General elements of M ⊗RN are of the form

∑
imi ⊗ ni, as

was shown in Example 11.6. However, certain properties of M⊗RN are determined
by their restrictions to the simple tensors, as we see in Lemma 11.8.

Lemma 11.8. Let R be a ring. Let M be a right R-module and let N be a left
R-module. Let γ, δ : M ⊗R N → G be a abelian group homomorphisms.
(a) M ⊗R N = 0 if and only if m⊗ n = 0 for all m ∈M and all n ∈ N .
(b) γ = δ if and only if γ(m⊗ n) = δ(m⊗ n) for all m ∈M and all n ∈ N .
(c) If G = M ⊗R N , then γ = idM⊗RN if and only if γ(m ⊗ n) = m ⊗ n for all

m ∈M and all n ∈ N .
(d) γ = 0 if and only if γ(m⊗ n) = 0 for all m ∈M and all n ∈ N .

Proof. Part (a) follows from the fact that every element of M ⊗RN is of the
form

∑
imi ⊗ ni =

∑
i 0 = 0.

Part (b) can be proved similarly, or by using the uniqueness statement in the
universal property.

Part (c) can be proved similarly, or by using the uniqueness statement in the
universal property, or as the special case δ = idM⊗RN of part (b).

Part (d) can be proved similarly, or by using the uniqueness statement in the
universal property, or as the special case δ = 0 of part (b). �
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12. Day 12

When proving properties about tensor products, we very rarely use the con-
struction. Usually, we use the universal property, as in the following result.

Theorem 12.1. Let R be a ring. Let M be a right R-module and let N be a
left R-module. Then M ⊗R N is unique up to abelian group isomorphism.

Proof. Assume that h : M ×N →M ⊗R N and k : M ×N →M �R N both
satisfy the defining property for the tensor product, that is: M ⊗RN and M �RN
are abelian groups, the functions h and k are R-biadditive, and for every abelian
group G and every R-biadditive function f : M × N → G, there exists a unique
abelian group homomorphism F : M ⊗RN → G and H : M �RN → G making the
following diagrams commute

M ×N h //

f
&&MMMMMMMMMMM M ⊗R N

∃!F
���
�
� M ×N k //

f
&&MMMMMMMMMMM M �R N

∃!H
���
�
�

G G.

Apply the universal property for M ⊗R N to the map k : M × N → M �R N to
find an abelian group homomorphism φ : M ⊗N →M �R N making the following
diagram commute

M ×N h //

k &&MMMMMMMMMM M ⊗R N

∃!φ
���
�
�

M �R N.
Apply the universal property for M �R N to the map h : M × N → M ⊗R N to
find an abelian group homomorphism ψ : M ⊗N →M �RN making the following
diagram commute

M ×N k //

h &&MMMMMMMMMM M �R N

∃!ψ
���
�
�

M ⊗R N.
It follows that the next diagrams commute

M ×N h //

h &&LLLLLLLLLL M ⊗R N

ψφ

��

M ×N h //

h &&MMMMMMMMMM M ⊗R N

idM⊗RN

��
M ⊗R N M ⊗R N.

Hence, the uniqueness statement in the universal property implies that ψφ =
idM⊗RN . A similar argument shows that φψ = idM�RN and so φ and ψ are
inverse isomorphisms, as desired. �

Proposition 12.2. Let R be a ring with identity. Let M be a unital right R-
module and let N be a unital left R-module. There are abelian group isomorphisms

F : M ⊗R R
∼=−→M and G : R⊗R N

∼=−→ N

such that F (m⊗ r) = mr and G(r⊗n) = rn. In particular, we have M ⊗RR ∼= M
and R⊗R N ∼= N and R⊗R R ∼= R.
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Proof. We will verify the claim for M ⊗RR. The map f : M ×R→M given
by f(m, r) = mr is R-biadditive. Hence, the universal property yields a unique R-
module homomorphism F : M ⊗RR→M such that F (m⊗ r) = mr for all m ∈M
and r ∈ R. We will show that F is bijective. The main point is the following
computation in M ⊗R R∑

i(mi ⊗ ri) =
∑
i((miri)⊗ 1) = (

∑
imiri)⊗ 1

which shows that every element of M ⊗R R is of the form m⊗ 1.
F is surjective: m = F (m⊗ 1).
F is injective: 0 = F (m ⊗ 1) implies 0 = F (m ⊗ 1) = m · 1 = m implies

0 = 0⊗ 1 = m⊗ 1. �

Remark 12.3. Note that we have not shown that the isomorphisms in Propo-
sition 12.2 are R-module isomorphisms. This is because we have not shown, for
instance, that M ⊗R R has an R-module structure. However, because R is also a
right R-module (technically, it is an “RR-bimodule”) it follows that M ⊗R R has
a right R-module structure given by (m ⊗ r)r′ = m ⊗ (rr′). Furthermore, this
structure makes the isomorphism F into a homomorphism of right R-modules.

We will address this in the case when R is commutative below.

Remark 12.4. It should be noted that other tensor products of R with itself,
like R⊗Z R are not usually so simple. In fact, even when R is noetherian, the ring
R⊗Z R is often not noetherian.

Here is the functoriality of tensor product.

Proposition 12.5. Let R be a ring. Let α : M → M ′ and α′ : M ′ → M ′′

be homomorphisms of right R-modules. Let β : N → N ′ and β′ : N ′ → N ′′ be
homomorphisms of left R-modules.

(a) There exists a unique abelian group homomorphism α⊗Rβ : M⊗RN →M ′⊗R
N ′ such that (α⊗R β)(m⊗ n) = α(m)⊗R β(n) for all m ∈M and all n ∈ N .

(b) The following diagram commutes

M ⊗R N
α⊗Rβ //

(α′α)⊗R(β′β) ''NNNNNNNNNNN M ′ ⊗R N ′

α′⊗Rβ′

��
M ′′ ⊗R N ′′

In other words, we have (α′ ⊗R β′)(α⊗R β) = (α′α)⊗R (β′β).

Proof. (a) We use the universal property. Define f : M ×N →M ′ ⊗R N ′ by
the formula f(m,n) = α(m) ⊗ β(n). In other words, f is the composition M ×
N

α×β−−−→M ′×N ′ h
′

−→M ′⊗RN ′ where h′ is the appropriate universal biadditive map.
Since α and β are R-module homomorphisms, it is straightforward to show that f is
R-biadditive. The universal property yields a unique abelian group homomorphism
α⊗R β : M ⊗R N →M ′ ⊗R N ′ such that

(α⊗R β)(m⊗ n) = f(m,n) = α(m)⊗R β(n)

for all m ∈M and all n ∈ N .
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(b) By definition, we have

(α′ ⊗R β′)((α⊗R β)(m⊗ n)) = (α′ ⊗R β′)(α(m)⊗R β(n))

= α′(α(m))⊗R β′(β(n))

= (α′α)⊗R (β′β)(m⊗ n).

Now apply Lemma 11.8(b). �

Notation 12.6. Continue with the notation of Proposition 12.5. We write

M ⊗R β = idM ⊗Rβ : M ⊗R N →M ⊗R N ′

α⊗R N = α⊗R idN : M ⊗R N →M ′ ⊗R N.

Remark 12.7. Let R be a ring. Let M be a right R-module and let N be a left
R-module. It is straightforward to show that idM ⊗RN = idM⊗RN : M ⊗R N →
M ⊗R N . Proposition 12.5(b) then shows that the operator M ⊗R − is a functor
R-mod → Ab. Similarly, one sees that − ⊗R N is a functor mod-R → Ab. (Here
mod-R is the category of right R-modules.) It is straightforward to show that the
functors M ⊗R − and −⊗R N are additive.

13. Day 13

Next, we go for exactness properties.

Proposition 13.1. Let f : M → M ′ be an epimorphism of right R-modules,
and let g : N → N ′ be an epimorphism of left R-modules

(a) The map f ⊗R g : M ⊗R N →M ′ ⊗R N ′ is surjective.
(b) Ker(f ⊗R g) is generated as an abelian group by the set

L = {m⊗ n ∈M ⊗R N | f(m) = 0 or g(n) = 0} ⊆M ⊗R N.

Proof. (a) We compute directly: For an arbitrary element
∑
im
′
i ⊗ n′i ∈

M ′ ⊗R N ′, we have∑
im
′
i ⊗ n′i =

∑
i f(mi)⊗ g(ni) = (f ⊗R g)(

∑
imi ⊗ ni).

(b) Let K denote the subgroup of M ⊗R N generated by the set L. Each
generator of K is in Ker(f ⊗R g), and so K ⊆ Ker(f ⊗R g). Hence, we have a
well-defined abelian group epimorphism φ : (M ⊗R N)/K → M ′ ⊗R N ′ such that
φ(m⊗ n) = f(m)⊗ g(n). To show that K = Ker(f ⊗R g), it suffices to show that
φ is injective.

Define a map h : M ′×RN ′ → (M⊗RN)/K as follows: for (m′, n′) ∈M ′×RN ′,
fix m ∈ M and n ∈ N such that f(m) = m′ and g(n) = n′, and set h(m′, n′) =
m⊗ n. We need to show this is well-defined. Assume f(m1) = m′ = f(m) and
g(n1) = n′ = g(n). Then m1−m ∈ Ker(f) and n1−n ∈ Ker(g) and so in M ⊗RN
we have

m1 ⊗ n1 = (m1 −m)⊗ (n1 − n)

= (m1 −m)⊗ (n1 − n) + (m1 −m)⊗ n+m⊗ (n1 − n)︸ ︷︷ ︸
∈K

+m⊗ n.

It follows that, in (M⊗RN)/K, we have m1 ⊗ n1 = m⊗ n and so h is well-defined.
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We check that h is R-biadditive. For instance, we want h(m′1 + m′2, n
′) =

h(m′1, n
′)+h(m′2, n

′). Fix m1,m2 ∈M and n ∈ N such that f(m1) = m′1, f(m2) =
m′2 and g(n) = n′. Then f(m1 +m2) = m′1 +m′2 and so

h(m′1 +m′2, n
′) = (m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n = h(m′1, n

′) + h(m′2, n
′).

The other conditions are verified similarly.
Since h is R-biadditive, the universal property for tensor products yields a

well-defined abelian group homomorphism H : M ′ ⊗R N ′ → (M ⊗R N)/K such
that H(m′ ⊗ n′) = h(m′, n′) for all m′ ∈M ′ and all n′ ∈ N ′. In other words,

H(m′ ⊗ n′) = m⊗ n
where m ∈M and n ∈ N are such that f(m) = m′ and g(n) = n′. It follows readily
that the composition Hφ : (M ⊗R N)/K → (M ⊗R N)/K is id(M⊗RN)/K , and so
φ is injective as desired. �

Here is the right-exactness of the tensor product.

Proposition 13.2. Let R be a ring, M a right R-module and N a left R-
module.
(a) The functor M ⊗R − : R-mod→ Ab is right exact: For each an exact sequence

of left R-modules N ′
g′−→ N

g−→ N ′′ → 0 the associated sequence of abelian
groups

M ⊗R N ′
M⊗Rg′−−−−−→M ⊗R N

M⊗Rg−−−−→M ⊗R N ′′ → 0
is exact.

(b) The functor −⊗R N : mod-R→ Ab is right exact: For each an exact sequence

of right R-modules M ′
f ′−→ M

f−→ M ′′ → 0 the associated sequence of abelian
groups

M ′ ⊗R N
f ′⊗RN−−−−−→M ⊗R N

f⊗RN−−−−→M ′′ ⊗R N → 0
is exact.

Proof. (a) Because g is surjective, Proposition 13.1(a) implies that M ⊗R g
is surjective. Also, we have

(M ⊗R g)(M ⊗R g′) = M ⊗R (gg′) = M ⊗R 0 = 0

and so Im(M ⊗R g′) ⊆ Ker(M ⊗R g). To show Im(M ⊗R g′) ⊇ Ker(M ⊗R g),
it suffices to show that every generator of Ker(M ⊗R g) is in Im(M ⊗R g′). By
Proposition 13.1(b), Ker(M ⊗R g) is generated by {m ⊗ n | g(n) = 0}. For each
m⊗n ∈M ⊗RN such that g(n) = 0, there exists n′ ∈ N ′ such that g′(n′) = n and
so m⊗ n = (M ⊗R g′)(m⊗ n′) ∈ Im(M ⊗R g′).

Part (b) is similar. �

In general, the tensor product is not left exact.

Example 13.3. Let µ : Z → Z be the monomorphism given by n 7→ 2n. It is
straightforward to show that the following diagram commutes

(Z/2Z)⊗Z Z F
∼=
//

(Z/2Z)⊗µ
��

Z/2Z

µ

��
(Z/2Z)⊗Z Z F

∼=
// Z/2Z
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where µ(n) = µ(n) = 2n = 0. It follows that µZ
2 ⊗Z idZ/2Z = 0. This map is not

injective because (Z/2Z)⊗Z Z ∼= Z/2Z.

Definition 13.4. Let R be a ring. A right R-module M is flat if the functor
M ⊗R − is exact. A left R-module N is flat if the functor −⊗R N is exact.

Example 13.5. Let R be a ring with identity. Then R is flat as a left R-module
and as a right R-module. More generally any projective R-module is flat.

Our last topic is localization. It generalizes the construction of the field of
fractions of an integral domain. It will also give us examples of flat R-modules that
are not projective.

Definition 13.6. Let R be a commutative ring with identity. A subset S ⊆ R
is multiplicatively closed if 1 ∈ S and ss′ ∈ S for all s, s′ ∈ S.

Here are the prototypical examples of multiplicatively closed subsets.

Example 13.7. Let R be a commutative ring with identity. For each s ∈ R,
the set {1, s, s2, . . .} ⊆ R is multiplicatively closed. For each prime ideal p ⊂ R, the
set R r p ⊂ R is multiplicatively closed. For instance, if R is an integral domain,
then the set of nonzero elements of R is multiplicatively closed.

Construction 13.8. Let R be a commutative ring with identity, and let S ⊆ R
be multiplicatively closed. Define a relation ∼ on R× S as follows: (r, s) ∼ (r′, s′)
if there exists s′′ ∈ S such that s′′(rs′− r′s) = 0. Check that this is an equivalence
relation on R× S.

The localization S−1R is then the set of all equivalence classes under this rela-
tion S−1R = (R × S)/ ∼ where the equivalence class of (r, s) in S−1R is denoted
r/s or r

s . If t ∈ S, then the definition implies (r, s) ∼ (rt, st); this translates to the
cancellation formula rt

st = r
s .

For elements r/s, t/u ∈ S−1R, set
r

s
+
t

u
=
ru+ ts

su
and

r

s

t

u
=
rt

su
.

When p ⊂ R is a prime ideal and S = Rr p, we write Rp in lieu of S−1R.

Example 13.9. Let R be an integral domain, and set S = {r ∈ R | r 6= 0}.
Then S−1R is the quotient field of R.

Proposition 13.10. Let R be a commutative ring with identity, and let S ⊆ R
be multiplicatively closed.

(a) S−1R is a commutative ring with identity, with 0S−1R = 0R/1R = 0/s and
1S−1R = 1R/1R = s/s for all s ∈ S.

(b) The assignment f : R→ S−1R given by r 7→ r/1 is a homomorphism of rings
with identity.

Proof. Argue as in the proof of Proposition 11.16. The main point is to show
that the addition and multiplication on S−1R are well-defined; the other ring-
axioms are then easily verified. Assume that r/s = r′/s′ and t/u = t′/u′, that is,
s′′(rs′ − r′s) = 0 = u′′(tu′ − t′u) for some s′′, u′′ ∈ S. Then

ru+ ts

su
=

(ru+ ts)s′s′′u′u′′

(su)s′s′′u′u′′
=
rs′s′′uu′u′′ + tu′u′′ss′s′′

ss′s′′uu′u′′

=
r′ss′′uu′u′′ + t′uu′′ss′s′′

ss′s′′uu′u′′
=

(r′u′ + t′s)ss′′uu′′

(s′u′)ss′′uu′′
=
r′u′ + t′s

s′u′
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so addition is well-defined. The equality rt
su = r′t′

s′u′ is even easier to verify, showing
that multiplication is well-defined. �

Construction 13.11. Let R be a commutative ring with identity, and let S ⊆
R be multiplicatively closed. Let M be a unital R-module. Define a relation ∼ on
M×S as follows: (m, s) ∼ (m′, s′) if there exists s′′ ∈ S such that s′′(ms′−m′s) = 0.
Check that this is an equivalence relation on M × S.

The localization S−1M is then the set of all equivalence classes under this
relation S−1M = (M × S)/ ∼ where the equivalence class of (m, s) in S−1M is
denoted m/s or m

s . If t ∈ S, then the definition implies (m, s) ∼ (tm, ts); this
translates to the cancellation formula tm

ts = m
s .

For elements m/s, n/u ∈ S−1M and r/v ∈ S−1R, set
m

s
+
n

u
=
um+ sn

su
and

r

v

m

s
=
rm

vs
.

When p ⊂ R is a prime ideal and S = Rr p, we write Mp in lieu of S−1M .

Proposition 13.12. Let R be a commutative ring with identity, and let S ⊆ R
be multiplicatively closed. Let f : M → N be a homomorphism of unital R-modules.

(a) S−1M is a unital S−1R-module, with 0S−1M = 0M/1R = 0M/s for all s ∈ S.
(b) S−1M is a unital R-module, with action r(m/s) = (rm)/s.
(c) The assignment gM : M → S−1M given by m 7→ m/1 is a homomorphism of

unital R-modules.
(d) The assignment S−1f : S−1M → S−1N given by m/s 7→ f(m)/s is a homo-

morphism of unital S−1R-modules making the following diagram commute

M
f //

gM

��

N

gN

��
S−1M

S−1f // S−1N.

(e) The operator S−1(−) : R-mod → S−1R-mod is an exact additive covariant
functor.

Proof. Parts (a) and (b) are proved as in Proposition 13.10. Most of the
remaining parts are exercises in applying the definitions. We explain the well-
definedness of S−1f and the exactness of S−1(−).

To see that S−1f is well-defined, let m/s = n/t ∈ S−1M . Then there exists
u ∈ S such that utm = usn, and so

utf(m) = f(utm) = f(usn) = usf(n).

It follows that
f(m)
s

=
utf(m)
uts

=
usf(n)
ust

=
f(n)
t

in S−1N , as desired.
To see that S−1(−) is exact, consider an exact sequence of R-modules

M
f−→ N

g−→ L.

We need to show that the sequence

S−1M
S−1f−−−→ S−1N

S−1g−−−→ S−1L
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is exact. The functoriality of S−1(−) implies

(S−1g) ◦ (S−1f) = S−1(g ◦ f) = S−1(0) = 0

and so Im(S−1f) ⊆ Ker(S−1g). For the reverse containment, let n/s ∈ Ker(S−1g).
Then

0/1 = 0 = (S−1g)(n/s) = g(n)/s

so there exists t ∈ S such that

g(tn) = tg(n) = ts0 = 0.

The exactness of the original sequence yields an element m ∈M such that f(m) =
tn. It follows that

n/s = tn/ts = f(m)/ts = (S−1f)(m/ts) ∈ Im(S−1f)

as desired. �

Proposition 13.13. Let R be a commutative ring with identity, and let S ⊆ R
be multiplicatively closed. Let M be a unital R-modules.

(a) Every element of (S−1R)⊗RM is of the form r
s ⊗m for some r ∈ R and s ∈ S

and m ∈M .
(b) There is a natural isomorphism of functors S−1R ⊗R − ∼= S−1(−) : R-mod →
Ab.

(c) S−1R is a flat R-module.

Proof. (a) Fix an element
∑
i
ri
ui
⊗mi ∈ (S−1R) ⊗R M . Set u =

∏
i ui and

u′i =
∏
j 6=i uj . Then u = u′iui and so

∑
i
ri
ui
⊗mi =

∑
i
u′iri
u′iui
⊗mi =

∑
i

1
u ⊗ (u′irimi) = 1

u ⊗ (
∑
i u
′
irimi) .

(b) The universal mapping property for tensor products shows that the map
F : S−1R⊗RM → S−1M given by F

(
r
u ⊗m

)
= rm

u is a well-defined abelian group
homomorphism. The map F is surjective: m

u = F
(

1
u ⊗ m

)
. To see that F is

injective, fix ξ ∈ Ker(F ). Part (a) implies that ξ = r
u ⊗ m for some r ∈ R and

u ∈ S and m ∈M . Then 0 = F
(
r
u ⊗m

)
= rm

u implies that there exists an element
u′ ∈ S such that u′rm = 0. Hence, we have

r
u ⊗m = ru′

uu′ ⊗m = 1
uu′ ⊗ (ru′m) = 1

uu′ ⊗ (0) = 0.

To show that the isomorphism is natural, let g : M → M ′ be an R-module
homomorphism. We need to show that the following diagram commutes:

(S−1R)⊗RM
(S−1R)⊗g //

∼= F

��

(S−1R)⊗RM ′

∼= F ′

��
S−1M

S−1g // S−1M ′
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where the vertical maps are the isomorphisms from the previous paragraph. We
have S−1g

(
m
u

)
= g(m)

u , and so

F ′(((S−1R)⊗R g)( ru ⊗m)) = F ′( ru ⊗ g(m))

= rg(m)
u

= g(rm)
u

= (S−1g)( rmu )

= (S−1g)(F ( ru ⊗m)).

(c) The functor S−1(−) ∼= (S−1R)⊗R − is exact by Proposition 13.12(e), and
so S−1R is flat by definition. �
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