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2.5 The Schmidt decomposition and purifications

Density operators and the partial trace are just the beginning of a wide array of tools
useful for the study of composite quantum systems, which are at the heart of quan-
tum computation and quantum information. Two additional tools of great value are the
Schmidt decomposition and purifications. In this section we present both these tools,
and try to give the flavor of their power.

Theorem 2.7: (Schmidt decomposition) Suppose [t¢)) is a pure state of a composite
system, AB. Then there exist orthonormal states |i4) for system A, and
orthonormal states |ig) of system B such that

W) = 2 Ailia)lin), (2202)

where ); are non-negative real numbers satisfying >, A? = 1 known as Schmidt
co-efficients.

This result is very useful. As a taste of its power, consider the following consequence:
let |1)) be a pure state of a composite system, AB. Then by the Schmidt decomposition
p = S0, NHia)(ia| and pP = 3, A2ig)(ipl, so the eigenvalues of p* and p? are
identical, namely A\? for both density operators. Many important properties of quantum
systems are completely determined by the eigenvalues of the reduced density operator of
the system, so for a pure state of a composite system such properties will be the same for
both systems. As an example, consider the state of two qubits, (|00) + [01) + [11))/+/3.
This has no obvious symmetry property, yet if you calculate tr ((p*)?) and tr ((p7)?)
you will discover that they have the same value, 7/9 in each case. This is but one small
consequence of the Schmidt decomposition.

Proof

We give the proof for the case where systems A and B have state spaces of the same
dimension, and leave the general case to Exercise 2.76. Let |j) and |k) be any fixed
orthonormal bases for systems A and B, respectively. Then [1)) can be written

W) = ali)lk), (2.203)
jk

for some matrix a of complex numbers a ;. By the singular value decomposition, a = udv,
where d is a diagonal matrix with non-negative elements, and v and v are unitary matrices.
Thus

W) = wjidiivie] )| k). (2.204)

ijk

Defining |ia) =, ujilf), lin) = 32 viklk), and \; = d;;, we see that this gives
W) =" Ailia)lin). (2.205)

It is easy to check that |i4) forms an orthonormal set, from the unitarity of u and the
orthonormality of |7), and similarly that the |ig) form an orthonormal set. O
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Exercise 2.76: Extend the proof of the Schmidt decomposition to the case where A
and B may have state spaces of different dimensionality.

Exercise 2.77: Suppose ABC is a three component quantum system. Show by
example that there are quantum states |¢)) of such systems which can not be
written in the form

) = > Ailiali)lic), (2.200)

where \; are real numbers, and |i4), |ig), |ic) are orthonormal bases of the
respective systems.

The bases |is) and |ig) are called the Schmidt bases for A and B, respectively, and
the number of non-zero values \; is called the Schmidi number for the state |¢)). The
Schmidt number is an important property of a composite quantum system, which in
some sense quantifies the ‘amount’ of entanglement between systems A and B. To get
some idea of why this is the case, consider the following obvious but important property:
the Schmidt number is preserved under unitary transformations on system A or system
B alone. To see this, notice that if Y. \;|i4)|ip) is the Schmidt decomposition for |¢)
then >, \i(Ulia))|ip) is the Schmidt decomposition for Ult)), where U is a unitary
operator acting on system A alone. Algebraic invariance properties of this type make the
Schmidt number a very useful tool.

Exercise 2.78: Prove that a state [¢) of a composite system AB is a product state if
and only if it has Schmidt number 1. Prove that [¢)) is a product state if and only
if p? (and thus p?) are pure states.

A second, related technique for quantum computation and quantum information is
purification. Suppose we are given a state p* of a quantum system A. It is possible to
introduce another system, which we denote R, and define a pure state | AR) for the joint
system AR such that p# = trgr(|AR)(AR)|). That is, the pure state | AR) reduces to p*
when we look at system A alone. This is a purely mathematical procedure, known as
purification, which allows us to associate pure states with mixed states. For this reason
we call system R a reference system: it is a fictitious system, without a direct physical
significance.

To prove that purification can be done for any state, we explain how to construct
a system R and purification |AR) for p*. Suppose p” has orthonormal decomposition
p? =3, pili*)(i?]. To purify p* we introduce a system R which has the same state
space as system A, with orthonormal basis states |i%), and define a pure state for the
combined system

|AR) =Y /pili*)]i"). (2.207)

i
We now calculate the reduced density operator for system A corresponding to the state

|AR):
wr([AR)(AR|) = /gy i) (54 (i) (57) (2.208)
i

- Z VPiD; i) (57 635 (2.209)
J
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=2 plit) (2.210)
= ph. (2.211)

Thus |AR) is a purification of p”.

Notice the close relationship of the Schmidt decomposition to purification: the proce-
dure used to purify a mixed state of system A is to define a pure state whose Schmidt
basis for system A is just the basis in which the mixed state is diagonal, with the Schmidt
coefficients being the square root of the eigenvalues of the density operator being purified.

In this section we’ve explained two tools for studying composite quantum systems, the
Schmidt decomposition and purifications. These tools will be indispensable to the study of
quantum computation and quantum information, especially quantum information, which
is the subject of Part III of this book.

Exercise 2.79: Consider a composite system consisting of two qubits. Find the
Schmidt decompositions of the states

100) + [11)  [00) + [01) + |10 + [11) 100) +[01) + |10)
; ; and .
V2 2 V3
Exercise 2.80: Suppose [t} and |p) are two pure states of a composite quantum
system with components A and B, with identical Schmidt coefficients. Show

that there are unitary transformations U on system A and V' on system B such
that |[¢) = (U @ V)|¢).

(2.212)

Exercise 2.81: (Freedom in purifications) Let |AR;) and |AR;) be two
purifications of a state p to a composite system AR. Prove that there exists a
unitary transformation Ug acting on system R such that

|AR;) = (14 ® Ug)|AR,).

Exercise 2.82: Suppose {p;, [1;)} is an ensemble of states generating a density matrix
p = >, pi|i) (1| for a quantum system A. Introduce a system R with
orthonormal basis |7).

(1) Show that }_./p;|1;)|i) is a purification of p.

(2) Suppose we measure R in the basis |i), obtaining outcome 7. With what
probability do we obtain the result ¢, and what is the corresponding state of
system A?

(3) Let |[AR) be any purification of p to the system AR. Show that there exists
an orthonormal basis |¢) in which R can be measured such that the
corresponding post-measurement state for system A is |¢;) with probability

Pi-

2.6 EPR and the Bell inequality

Anybody who is not shocked by quantum theory has not understood it.
— Niels Bohr
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I vecall that during one walk Einstein suddenly stopped, turned to me and asked
whether I really believed that the moon exists only when I look at it. The rest
of this walk was devoted to a discussion of what a physicist should mean by the
term ‘to exist’.
— Abraham Pais

...quantum phenomena do not occur in a Hilbert space, they occur in a labora-
tory.
— Asher Peres

...what is proved by impossibility proofs is lack of imagination.
— John Bell

This chapter has focused on introducing the tools and mathematics of quantum mechan-
ics. As these techniques are applied in the following chapters of this book, an important
recurring theme is the unusual, non-classical properties of quantum mechanics. But
what exactly is the difference between quantum mechanics and the classical world? Un-
derstanding this difference is vital in learning how to perform information processing
tasks that are difficult or impossible with classical physics. This section concludes the
chapter with a discussion of the Bell inequality, a compelling example of an essential
difference between quantum and classical physics.

When we speak of an object such as a person or a book, we assume that the physical
properties of that object have an existence independent of observation. That is, measure-
ments merely act to reveal such physical properties. For example, a tennis ball has as one
of its physical properties its position, which we typically measure using light scattered
from the surface of the ball. As quantum mechanics was being developed in the 1920s
and 1930s a strange point of view arose that differs markedly from the classical view. As
described earlier in the chapter, according to quantum mechanics, an unobserved particle
does not possess physical properties that exist independent of observation. Rather, such
physical properties arise as a consequence of measurements performed upon the system.
For example, according to quantum mechanics a qubit does not possess definite proper-
ties of ‘spin in the z direction, ¢,’, and ‘spin in the x direction, ¢,’, each of which can
be revealed by performing the appropriate measurement. Rather, quantum mechanics
gives a set of rules which specify, given the state vector, the probabilities for the possible
measurement outcomes when the observable o, is measured, or when the observable o,
is measured.

Many physicists rejected this new view of Nature. The most prominent objector was
Albert Einstein. In the famous ‘EPR paper’, co-authored with Boris Podolsky and Nathan
Rosen, Einstein proposed a thought experiment which, he believed, demonstrated that
quantum mechanics is not a complete theory of Nature.

The essence of the EPR argument is as follows. EPR were interested in what they
termed ‘elements of reality’. Their belief was that any such element of reality must be
represented in any complete physical theory. The goal of the argument was to show that
quantum mechanics is not a complete physical theory, by identifying elements of reality
that were not included in quantum mechanics. The way they attempted to do this was
by introducing what they claimed was a sufficient condition for a physical property to



EPR and the Bell inequality 113

be an element of reality, namely, that it be possible to predict with certainty the value
that property will have, immediately before measurement.

Box 2.7: Anti-correlations in the EPR experiment

Suppose we prepare the two qubit state

_ [01) —10)

T
a state sometimes known as the spin singlet for historical reasons. It is not difficult
to show that this state is an entangled state of the two qubit system. Suppose we
perform a measurement of spin along the ¥ axis on both qubits, that is, we measure
the observable ¥ & (defined in Equation (2.116) on page 90) on each qubit, getting
a result of +1 or —1 for each qubit. It turns out that no matter what choice of ¥
we make, the results of the two measurements are always opposite to one another.
That is, if the measurement on the first qubit yields +1, then the measurement on
the second qubit will yield —1, and vice versa. It is as though the second qubit
knows the result of the measurement on the first, no matter how the first qubit is
measured. To see why this is true, suppose |a) and |b) are the eigenstates of ¥ - 7.
Then there exist complex numbers «, 3,7, & such that

10) = aa) + 3]b) (2.214)
1) = ~|a) + 3]b). (2.215)

) (2.213)

Substituting we obtain
|01) — |10)
V2

. . . e
But ad — B is the determinant of the unitary matrix [ N

|ab) — |ba)

= (ad — ) N (2.216)

g ], and thus is equal

to a phase factor e? for some real 6. Thus
|01) — [10) _ |ab) — |ba)
V2 V2
up to an unobservable global phase factor. As a result, if a measurement of ¥/ - &

is performed on both qubits, then we can see that a result of +1 (—1) on the first
qubit implies a result of —1 (+1) on the second qubit.

(2.217)

Consider, for example, an entangled pair of qubits belonging to Alice and Bob, re-
spectively:
|01) — |10)
V2
Suppose Alice and Bob are a long way away from one another. Alice performs a mea-
surement of spin along the ¥ axis, that is, she measures the observable ¢’ - & (defined in

Equation (2.116) on page 90). Suppose Alice receives the result +1. Then a simple quan-
tum mechanical calculation, given in Box 2.7, shows that she can predict with certainty

‘ (2.218)
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that Bob will measure —1 on his qubit if he also measures spin along the ¢ axis. Similarly,
if Alice measured —1, then she can predict with certainty that Bob will measure +1 on
his qubit. Because it is always possible for Alice to predict the value of the measurement
result recorded when Bob’s qubit is measured in the ¢’ direction, that physical property
must correspond to an element of reality, by the EPR criterion, and should be repre-
sented in any complete physical theory. However, standard quantum mechanics, as we
have presented it, merely tells one how to calculate the probabilities of the respective
measurement outcomes if '+ & is measured. Standard quantum mechanics certainly does
not include any fundamental element intended to represent the value of ¥'- &, for all unit
vectors U.

The goal of EPR was to show that quantum mechanics is incomplete, by demonstrating
that quantum mechanics lacked some essential ‘element of reality’, by their criterion. They
hoped to force a return to a more classical view of the world, one in which systems could
be ascribed properties which existed independently of measurements performed on those
systems. Unfortunately for EPR, most physicists did not accept the above reasoning as
convincing. The attempt to impose on Nature by fiat properties which she must obey
seems a most peculiar way of studying her laws.

Indeed, Nature has had the last laugh on EPR. Nearly thirty years after the EPR paper
was published, an experimental test was proposed that could be used to check whether
or not the picture of the world which EPR were hoping to force a return to is valid or not.
It turns out that Nature experimentally invalidates that point of view, while agreeing
with quantum mechanics.

The key to this experimental invalidation is a result known as Bell’s inequality. Bell’s
inequality is 7ot a result about quantum mechanics, so the first thing we need to do is
momentarily forget all our knowledge of quantum mechanics. To obtain Bell’s inequality,
we’re going to do a thought experiment, which we will analyze using our common sense
notions of how the world works — the sort of notions Einstein and his collaborators thought
Nature ought to obey. After we have done the common sense analysis, we will perform a
quantum mechanical analysis which we can show is not consistent with the common sense
analysis. Nature can then be asked, by means of a real experiment, to decide between
our common sense notions of how the world works, and quantum mechanics.

Imagine we perform the following experiment, illustrated in Figure 2.4. Charlie pre-
pares two particles. It doesn’t matter how he prepares the particles, just that he is capable
of repeating the experimental procedure which he uses. Once he has performed the prepa-
ration, he sends one particle to Alice, and the second particle to Bob.

Once Alice receives her particle, she performs a measurement on it. Imagine that she
has available two different measurement apparatuses, so she could choose to do one of
two different measurements. These measurements are of physical properties which we
shall label Py and Pg, respectively. Alice doesn’t know in advance which measurement
she will choose to perform. Rather, when she receives the particle she flips a coin or
uses some other random method to decide which measurement to perform. We suppose
for simplicity that the measurements can each have one of two outcomes, +1 or —1.
Suppose Alice’s particle has a value @ for the property Pg. () is assumed to be an
objective property of Alice’s particle, which is merely revealed by the measurement,
much as we imagine the position of a tennis ball to be revealed by the particles of light
being scattered off it. Similarly, let R denote the value revealed by a measurement of the
property Pg.
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Similarly, suppose that Bob is capable of measuring one of two properties, Ps or Pr,
once again revealing an objectively existing value S or T for the property, each taking
value +1 or —1. Bob does not decide beforehand which property he will measure, but
waits until he has received the particle and then chooses randomly. The timing of the
experiment is arranged so that Alice and Bob do their measurements at the same time
(or, to use the more precise language of relativity, in a causally disconnected manner).
Therefore, the measurement which Alice performs cannot disturb the result of Bob’s
measurement (or vice versa), since physical influences cannot propagate faster than light.

Alice Bob

Q =+1 > S ==l
R = +1 1 particle 1 particle T =+1

J

Figure 2.4. Schematic experimental setup for the Bell inequalities. Alice can choose to measure either @ or R, and
Bob chooses to measure either S or T". They perform their measurements simultaneously. Alice and Bob are
assumed to be far enough apart that performing a measurement on one system can not have any effect on the result
of measurements on the other.

We are going to do some simple algebra with the quantity QS + RS + RT — QT.
Notice that

QS+ RS+RT —QT =(Q+R)S+(R— Q. (2.219)

Because R, = =1 it follows that either () + R)S = 0 or (R — Q)T = 0. In either
case, it is easy to see from (2.219) that QS + RS + RT — Q1T = £2. Suppose next that
p(q,r, s,t) is the probability that, before the measurements are performed, the system is
in a state where @Q = ¢, R = r,S = s, and T = t. These probabilities may depend on
how Charlie performs his preparation, and on experimental noise. Letting E(-) denote
the mean value of a quantity, we have

E(QS+ RS+ RT —QT) = Z:p(q7 r,s,t)(qs + s+ rt — qt) (2.220)

qrst

<> plg,r, s t) x 2 (2.221)
qrst

=2. (2.222)

Also,
E(QS+RS+RT —QT)=Y plg.7,s,)gs+ Y _ (g, 7,5, )rs

qrst qrst

+ Zp(q7 TS, t)?"t - ZP(Qa Ty S, t)qt (2223)
qrst qrst

= E(QS) + E(RS) + E(RT) — E(QT). (2.224)
Comparing (2.222) and (2.224) we obtain the Bell inequality,

E(QS) + E(RS) + E(RT) — E(QT) < 2. (2.225)
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This result is also often known as the CHSH inequality after the initials of its four
discoverers. It is part of a larger set of inequalities known generically as Bell inequalities,
since the first was found by John Bell.

By repeating the experiment many times, Alice and Bob can determine each quantity on
the left hand side of the Bell inequality. For example, after finishing a set of experiments,
Alice and Bob get together to analyze their data. They look at all the experiments where
Alice measured P and Bob measured Pgs. By multiplying the results of their experiments
together, they get a sample of values for ().S. By averaging over this sample, they can
estimate E(Q).S) to an accuracy only limited by the number of experiments which they
perform. Similarly, they can estimate all the other quantities on the left hand side of the
Bell inequality, and thus check to see whether it is obeyed in a real experiment.

It’s time to put some quantum mechanics back in the picture. Imagine we perform the
following quantum mechanical experiment. Charlie prepares a quantum system of two
qubits in the state

_ [o1) —[10)
==

He passes the first qubit to Alice, and the second qubit to Bob. They perform measure-
ments of the following observables:

%) (2.226)

 —Z- X,
V2

7 - X,

=5

Simple calculations show that the average values for these observables, written in the
quantum mechanical (-) notation, are:

Q=2 S (2.227)

R=X, T (2.228)

_ 1 -1 -1 __ 1
(QS) = ﬁ, (RS) = 5 (RT) 5 (QT) Nk (2.229)
Thus,
(QS) + (RS) + (RT) — (QT) = 2V2. (2.230)

Hold on! We learned back in (2.225) that the average value of Q.S plus the average value
of RS plus the average value of RT minus the average value of QT can never exceed
two. Yet here, quantum mechanics predicts that this sum of averages yields 2v/2!

Fortunately, we can ask Nature to resolve the apparent paradox for us. Clever experi-
ments using photons — particles of light — have been done to check the prediction (2.230)
of quantum mechanics versus the Bell inequality (2.225) which we were led to by our
common sense reasoning. The details of the experiments are outside the scope of the
book, but the results were resoundingly in favor of the quantum mechanical prediction.
The Bell inequality (2.225) is not obeyed by Nature.

What does this mean? It means that one or more of the assumptions that went into
the derivation of the Bell inequality must be incorrect. Vast tomes have been written
analyzing the various forms in which this type of argument can be made, and analyzing
the subtly different assumptions which must be made to reach Bell-like inequalities. Here
we merely summarize the main points.

There are two assumptions made in the proof of (2.225) which are questionable:
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(1) The assumption that the physical properties Py, Pr, Ps, Pr have definite values
Q, R, S, T which exist independent of observation. This is sometimes known as the
assumption of realism.

(2) The assumption that Alice performing her measurement does not influence the
result of Bob’s measurement. This is sometimes known as the assumption of
locality.

These two assumptions together are known as the assumptions of local realism. They are
certainly intuitively plausible assumptions about how the world works, and they fit our
everyday experience. Yet the Bell inequalities show that at least one of these assumptions
is not correct.

What can we learn from Bell’s inequality? For physicists, the most important lesson
is that their deeply held commonsense intuitions about how the world works are wrong.
The world is not locally realistic. Most physicists take the point of view that it is the
assumption of realism which needs to be dropped from our worldview in quantum me-
chanics, although others have argued that the assumption of locality should be dropped
instead. Regardless, Bell’s inequality together with substantial experimental evidence now
points to the conclusion that either or both of locality and realism must be dropped from
our view of the world if we are to develop a good intuitive understanding of quantum
mechanics.

What lessons can the fields of quantum computation and quantum information learn
from Bell’s inequality? Historically the most useful lesson has perhaps also been the most
vague: there is something profoundly ‘up’ with entangled states like the EPR state. A lot
of mileage in quantum computation and, especially, quantum information, has come from
asking the simple question: ‘what would some entanglement buy me in this problem?’
As we saw in teleportation and superdense coding, and as we will see repeatedly later
in the book, by throwing some entanglement into a problem we open up a new world
of possibilities unimaginable with classical information. The bigger picture is that Bell’s
inequality teaches us that entanglement is a fundamentally new resource in the world that
goes essentially beyond classical resources; iron to the classical world’s bronze age. A major
task of quantum computation and quantum information is to exploit this new resource to
do information processing tasks impossible or much more difficult with classical resources.

Problem 2.1: (Functions of the Pauli matrices) Let f(-) be any function from
complex numbers to complex numbers. Let 7 be a normalized vector in three
dimensions, and let # be real. Show that

_ f®) +2f(—9)I+ f®) —Zf(—G)ﬁ.&

f(On-0o) (2.231)
Problem 2.2: (Properties of the Schmidt number) Suppose |1)) is a pure state of
a composite system with components A and B.

(1) Prove that the Schmidt number of |t} is equal to the rank of the reduced
density matrix ps = trp(|1)(¢]). (Note that the rank of a Hermitian
operator is equal to the dimension of its support.)

(2) Suppose [1) =37, |a;)[B;) is a representation for 1)), where |a;) and |3;)
are (un-normalized) states for systems A and B, respectively. Prove that the





