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PREFACE 

 This book is designed in accordance with the new guidelines and  

syllabi – 2003 of the Higher Secondary Mathematics – First Year, 

Government of Tamilnadu. In the era of knowledge explosion, writing a 

text book on Mathematics is challenging and promising. Mathematics 

being one of the most important subjects which not only decides the 

career of many young students but also enhances their ability of 

analytical and rational thinking and forms a base for Science and 

Technology. 

 This book would be of considerable value to the students who 

would need some additional practice in the concepts taught in the class 

and the students who aspire for some extra challenge as well.  

 Each chapter opens with an introduction, various definitions, 

theorems and results. These in turn are followed by solved examples 

and exercises which have been classified in various types for quick and 

effective revision. The most important feature of this book is the 

inclusion of a new chapter namely ‘Functions and Graphs’. In this 

chapter many of the abstract concepts have been clearly explained 

through concrete examples and diagrams. 

 It is hoped that this book will be an acceptable companion to the 

teacher and the taught. This book contains more than 500 examples 
and 1000 exercise problems. It is quite difficult to expect the teacher to 

do everything. The students are advised to learn by themselves the 

remaining problems left by the teacher. Since the ‘Plus 1’ level is 

considered as the foundation course for higher mathematics, the 

students must give more attention to each and every result mentioned in 

this book. 

 



  

The chief features of this book are  

 (i) The subject matter has been presented in a simple and lucid 

manner so that the students themselves are able to 

understand the solutions to the solved examples. 

 (ii) Special efforts have been made to give the proof of some 

standard theorems. 

 (iii) The working rules have been given so that the students 

themselves try the solution to the problems given in the 

exercise. 

 (iv) Sketches of the curves have been drawn wherever 

necessary, facilitating the learner for better understanding of 

concepts. 

 (v) The problems have been carefully selected and well graded. 

 The list of reference books provided at the end of this book will be 

of much helpful for further enrichment of various concepts introduced. 

 We welcome suggestions and constructive criticisms from learned 

teachers and dear students as there is always hope for further 

improvement. 

 K. SRINIVASAN 
 Chairperson 
 Writing Team 
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7. FUNCTIONS AND GRAPHS 
7.1 Introduction: 
 The most prolific mathematician whoever lived, Leonhard Euler 
(1707−1783) was the first scientist to give the function concept the prominence 
in his work that it has in Mathematics today. The concept of functions is one of 
the most important tool in Calculus. 
 To define the concept of functions, we need certain pre-requisites. 
Constant and variable: 
 A quantity, which retains the same value throughout a mathematical 
process, is called a constant. A variable is a quantity which can have different 
values in a particular mathematical process. 
 It is customary to represent constants by the letters a, b, c, … and variables 
by x, y, z. 
Intervals: 
 The real numbers can be represented geometrically as points on a number 
line called the real line (fig. 7.1) 

 
Fig 7. 1 

 The symbol R denotes  either the real number system or the real line. A 
subset of the real line is called an interval if it contains atleast two numbers and 
contains all the real numbers lying between any two of its elements. 
For example, 
 (a) the set of all real numbers x such that x > 6 
 (b) the set of all real numbers x such that − 2 ≤ x ≤ 5 
 (c) the set of all real numbers x such that x < 5             are some intervals. 
 But the set of all natural numbers is not an interval. Between any two 
rational numbers there are infinitely many real numbers which are not included 
in the given set. Hence the set of natural numbers is not an interval. Similarly 
the set of all non zero real numbers is also not an interval. Here the real number 
0 is absent. It fails to contain every real number between any two real numbers 
say − 1 and 1. 
 Geometrically, intervals correspond to rays and line segments on the real 
line. The intervals corresponding to line segments are finite intervals and 
intervals corresponding to rays and the real line are infinite intervals. Here finite 
interval does not mean that the interval contains only a finite number of real 
numbers. 
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 A finite interval is said to be closed if it contains both of its end points and 
open if it contains neither of its end points. To denote the closed set, the square 
bracket [   ] is used and the paranthesis (     ) is used to indicate open set. For 
example 3∉ (3, 4), 3∈[3, 4] 

Type of intervals 

 Notation Set Graph 
Finite  (a, b) 

 [a, b) 

 (a, b] 

 [a, b] 

{x / a < x < b} 

{x / a ≤ x < b} 

{x / a < x ≤ b} 

{x / a ≤ x ≤ b} 

Infinite  (a, ∞) 

 [a, ∞) 

 (− ∞, b) 

 (− ∞, b] 

 (− ∞, ∞) 

{x / x > a} 

{x / x ≥ a} 

{x / x < b} 

{x / x ≤ b} 

{x / − ∞ < x < ∞} 
or the set of real numbers 

 

Note :  
 We can’t write a closed interval by using ∞ or − ∞. These two are not 
representatives of real numbers. 
Neighbourhood 
 In a number line the 
neighbourhood of a point (real 
number) is defined as an open 
interval of very small length. 

 

 In the plane the neighbourhood of a point 
is defined as an open disc with very small 
radius. 

 
 In the space the neighbourhood of a point 
is defined as an open sphere with very small 
radius. 

 
Fig 7. 2 
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Independent / dependent variables: 
 In the lower classes we have come across so many formuale. Among those, 
let us consider the following formulae: 

 (a) V = 
4
3  πr3 (volume of the sphere) (b) A = πr2 (area of a circle) 

 (c) S = 4πr2 (surface area of a sphere) (d) V = 
1
3  πr2h (volume of a cone) 

 Note that in (a), (b) and (c) for different values of r, we get different values 
of V, A and S. Thus the quantities V, A and S depend on the quantity r. Hence 
we say that V, A and S are dependent variables and r is an independent 
variable. In (d) the quantities r and h are independent variables while V is a 
dependent variable. 
 A variable is an independent variable when it has any arbitrary 
(independent) value. 
 A variable is said to be dependent when its value depends on other 
variables (independent). 
 “Parents pleasure depends on how their children score marks in 
Examination” 
Cartesian product: 
 Let A={a1, a2, a3}, B={b1, b2}. The Cartesian product of the two sets  
A and B is denoted by A × B and is defined as  

 A × B = {(a1, b1),  (a1, b2),  (a2, b1),  (a2, b2), (a3, b1),  (a3, b2)} 

 Thus the set of all ordered pairs (a, b) where a ∈ A, b ∈ B is called the 
Cartesian product of the sets A and B. 
 It is noted that A × B ≠ B × A (in general), since the ordered pair (a, b) is 
different from the ordered pair (b, a). These two ordered pairs are same only if 
a = b. 
Example 7.1: Find A × B and B × A if A = {1, 2}, B = {a, b} 

Solution: A × B = {(1, a) , (1, b) , (2, a) , (2, b)} 

   B × A = {(a, 1) , (a, 2) , (b, 1) , (b, 2)} 

Relation: 
 In our everyday life we use the word ‘relation’ to connect two persons like 
‘is son of’, ‘is father of’, ‘is brother of’, ‘is sister of’, etc. or to connect two 
objects by means of ‘is shorter than’, ‘is bigger than’, etc. When comparing 
(relate) the objects (human beings) the concept of relation becomes very 
important. In a similar fashion we connect two sets (set of objects) by means of 
relation. 
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 Let A and B be any two sets. A relation from A → B (read as A to B) is a 
subset of the Cartesian product A × B. 
Example 7.2: Let A = {1, 2}, B = {a, b}. Find some relations from A → B and 
B → A. 
Solution: 
 Since relation from A to B is a subset of the Cartesian product  

 A × B = {(1 , a) , (1, b) , (2 , a) , (2 , b)} any subset of A × B is a relation 
from A → B.  

 ∴{(1 , a), (1 , b), (2 , a), (2 , b)}, {(1, a), (1, b)}, {(1, b, (2, b)}, {(1 , a)} 
are some relations from A to B. 

 Similarly any subset of B × A = {(a , 1), (a , 2), (b , 1), (b , 2)}  is a 
relation from B to A. 

 {(a , 1), (a , 2), (b , 1), (b , 2)},  {(a, 1), (b, 1)}, {(a, 2), (b, 1)} are some 
relations from B to A. 

7.2 Function: 
 A function is a special type of relation. In a function, no two ordered pairs 
can have the same first element and a different second element. That is, for a 
function, corresponding to each first element of the ordered pairs, there must be 
a different second element. i.e. In a function we cannot have ordered pairs of 
the form (a1, b1) and (a2, b2) with a1 = a2 and b1 ≠ b2. 

 Consider the set of ordered pairs (relation) 
{(3 , 2), (5 , 7), (1 , 0), (10 , 3)}. Here no two 
ordered pairs have the same first element and 
different second element. It is very easy to check 
this concept by drawing a proper diagram (fig. 
7.3). 

 ∴ This relation is a function. 
 

Fig 7. 3 
 Consider another set of ordered pairs (relation) 
{(3, 5),  (3, − 1),  (2, 9)}. Here the ordered pairs (3, 
5) and (3, − 1) have the same first element but 
different second element (fig. 7.4). 
 This relation is not a function. 

 

 
Fig 7. 4 

 Thus, a function f from a set A to B is a rule (relation) that assigns a unique 
element f(x) in B to each element x in A. 
 Symbolically,   f :  A  →  B 
                   i.e.  x  →  f(x) 
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 To denote functions, we use the letters  
f, g, h etc. Thus for a function, each element of  
A is associated with exactly one element in B. The 
set A is called the domain of the function  
f and B is called co-domain of f. If x is in A, the 
element of B associated with x is  

 
Fig 7. 5 

called the image of x under f. i.e. f(x). The  set  of  all images of the elements of 
A is called the range of the function f. Note that range is a subset of the  
co-domain. The range of the function f need not be equal to the co-domain B. 
Functions are also known as mappings. 

Example 7.3 : Let A = {1, 2, 3}, B ={3, 5, 7, 8} and f from A to B is defined by  
f : x → 2x + 1    i.e.  f(x) = 2x + 1. 

 (a) Find f(1), f(2), f(3) 

 (b) Show that f is a function from A to B 

 (c) Identify domain, co-domain, images of each element in A and range of f 

 (d) Verify that whether the range is equal to codomain 

Solution: 

 (a)  f(x) = 2x + 1 

   f(1) = 2 + 1 = 3, f(2) = 4 + 1 = 5,     f (3) = 6 + 1 = 7 

(b)  The relation is {(1,3), (2, 5), (3, 7)} 

  Clearly each element of A has a unique 
image in B. Thus f is a function. 

(c) The domain set is A = {1, 2, 3} 

   The co-domain set is B = {3, 5, 7, 8}  
Fig 7. 6 

   Image of 1 is  3 ;  2  is 5 ;  3  is  7 
   The range of f is {3, 5, 7} 
(d)   {3, 5, 7} ≠ {3, 5, 7, 8} 
  ∴ The range is not equal to the co-domain 
Example 7.4: 
 A father ‘d’ has three sons a, b, c. By assuming sons as a set A and father  
as a singleton set B, show that  
 (i) the relation ‘is a son of’ is a function from  A → B  and  
 (ii) the relation ‘is a father of’ from B → A is not a function. 
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Solution: 

(i) A = {a, b, c},   B = {d} 

  a is son of d 

  b is son of d 

  c is son of d 
Fig 7. 7 

 The ordered pairs are (a, d), (b, d), (c, d). For each element in A there is a 
unique element in B. Clearly the relation ‘is son of’ from A to B is a function. 

(ii)  d is father of a 

  d is father of b 

  d is father of c 

 The ordered pairs are (d, a), (d, b), (d, c). The 
first element d is associated with three different 
elements (not unique) 

 
Fig 7. 8 

 Clearly the relation‘is father of’ from B to A is not a function. 

Example 7.5: A classroom consists of 7 benches. The strength of the class is 
35. Capacity of each bench is 6. Show that the relation ‘sitting’ between the set 
of students and the set of benches is a function. If we interchange the sets, what 
will be happened? 

Solution: 

 The domain set is the set of students and the co-domain set is the set of 
benches. Each student will occupy only one bench. Each student has seat also. 
By principle of function, '‘each student occupies a single bench’. Therefore the 
relation ‘sitting’ is a function from set of Students to set of Benches. 

 If we interchange the sets, the set of benches becomes the domain set and 
the set of students becomes co-domain set. Here atleast one bench consists of 
more than one student. This is against the principle of function i.e. each element 
in the domain should have associated with only one element in the  
co-domain. Thus if we interchange the sets, it is not possible to define a 
function. 

Note : 

  Consider the function  f :  A  →   B 

  i.e.        x  →  f(x)   where   x ∈ A,  f(x) ∈ B. 
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 Read ‘f(x)’ as ‘f of x’. The meaning of f(x) is the value of the function f at x 

(which is the image of x under the function f). If we write y = f(x), the symbol f 

represents the function name, x denotes the independent variable (argument) 

and y denotes the dependent variable. 

 Clearly, in f(x), f is the name of the function and not f(x). However we will 

often refer to the function as f(x) in order to know the variable on which f 

depends. 

Example 7.6: Identify the name of the function, the domain, co-domain, 

independent variable, dependent variable and range if   f : R → R defined by  

y = f(x) = x2 

Solution: 

 Name of the function is a square function. 

 Domain set is R. 

 Co-domain set is R. 

 Independent variable is x. 

 Dependent variable is y. 

 x can take any real number as its value. But y can take only positive real 
number or zero as its value, since it is a square function. 

 ∴ Range of f is set of non negative real numbers. 

Example 7.7: Name the function and independent variable of the following 
function: 

 (i) f(θ) = sinθ (ii) f(x) = x   (iii) f(y) = ey      (iv) f(t) = loget 

Solution: 

  Name of the function independent variable 

 (i) sine θ 

 (ii) square root x 

 (iii) exponential y 

 (iv) logarithmic t 



 8

The domain conversion 

 If the domain is not stated explicitly for the function y = f(x), the domain is 
assumed to be the largest set of x values for which the formula gives real  
y values. If we want to restrict the domain, we must specify the condition. 
 The following table illustrates the domain and range of certain functions. 

Function Domain (x) Range (y or f(x)) 

y = x2 (− ∞, ∞) [0, ∞) 
y = x  [0, ∞) [0, ∞) 

y = 
1
x  R − {0} Non zero Real numbers R − {0} 

y = 1 − x2  [− 1, 1] [0, 1] 

y = sinx (− ∞, ∞) 





− 

π
2, 

π
2   principal domain 

[− 1, 1] 

y = cosx (− ∞, ∞) 
[0, π] principal domain 

[− 1. 1] 

y = tanx 




− 

π
2, 

π
2   principal domain 

(− ∞, ∞) 

y = ex (− ∞, ∞) (0, ∞) 

y = loge
x (0, ∞) (− ∞, ∞) 

7.2.1 Graph of a function: 
 The graph of a function f is a graph of the equation y = f(x) 

Example 7.8: Draw the graph of the function f(x) = x2 
Solution: 

 Draw a table of some pairs (x, y) which satisfy y = x2 
x 0 1 2 3 − 1 − 2 − 3 
y 0 1 4 9 1 4 9 

 Plot the points and draw a smooth curve 
passing through the plotted points. 
Note: 
 Note that if we draw a vertical line to the 
above graph, it meets the curve at only one point 
i.e. for every x there is a unique y  

Fig 7. 9 
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Functions and their Graphs (Vertical line test) 
 Not every curve we draw is the graph of a function. A function f can have 
only one value f(x) i.e. y for each x in its domain. Thus no vertical line can 
intersect the graph of a function more than once. Thus if ‘a’ is in the domain of 
a function f, then the vertical line x = a will intersect the graph of f at the single 
point (a, f (a)) only. 
 Consider the following graphs: 

 
Fig 7. 10 

 Except the graph of y2 = x, (or y = ± x ) all other graphs are graphs of 

functions. But for y2 = x, if we draw a vertical line x = 2,  it meets the curve at 

two points ( )2, 2   and ( )2, − 2 Therefore the graph of y2 = x is not a graph of 
a function. 

Example 7.9: Show that the graph of x2 + y2 = 4 is not the graph of a function. 
Solution: 

 Clearly the equation x2 + y2 = 4 represents a circle with radius 2 and centre 
at the origin. 
 Take x = 1 

   y2 = 4 − 1 = 3 
   y = ± 3  
 For the same value x = 1, we have two  
y-values 3  and − 3 . It violates the definition 
of a function. In the fig 7.11 
the line x = 1 meets the curve  at  two  places   

Fig 7. 11 

 ( )1, 3  and ( )1, − 3  . Hence, the graph of x2 + y2 = 4 is not a graph of a 
function. 
7.2.2 Types of functions: 
1. Onto function 
 If the range of a function is equal to the co-domain then the function is 
called an onto function. Otherwise it is called an into function. 
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 In f:A→B, the range of f or the image set f(A) is equal to the co-domain B  
i.e. f(A) = B then the function is onto. 
Example 7.10 
     Let A = {1, 2, 3, 4}, B = {5, 6}. The function f is defined as follows:f(1) = 5, 
f(2) = 5, f(3) = 6, f(4) = 6. Show that f is an onto function. 
Solution: 
 f = {(1, 5), (2, 5), (3, 6), (4, 6)} 
 The range of  f,  f(A) = {5, 6} 
   co-domain B = {5, 6} 
  i.e.  f(A) = B 
 ⇒ the given function is onto 

 
Fig 7. 12 

Example 7.11: Let X = {a, b}, Y = {c, d, e} and f = {(a, c), (b, d)}. Show that 
 f is not an onto function. 
Solution: 
 Draw the diagram 
 The range of f is {c, d} 
 The co-domain is {c, d, e} 
 The range and the co-domain are not equal, 
and hence the given function is not onto  

Fig 7. 13 
Note : 
 (1) For an onto function for each element (image) in the co-domain, there 

must be a corresponding element or elements (pre-image) in the 
domain. 

 (2) Another name for onto function is surjective function. 
Definition:  A function f is onto if to each element b in the co-domain, there is 
atleast one element a in the domain such that b = f(a) 
2. One-to-one function: 
 A function is said to be one-to-one if each element of the range is 
associated with exactly one element of the domain. 
 i.e. two different elements in the domain (A) have different images in the 
co-domain (B). 
 i.e. a1 ≠ a2    ⇒    f(a1) ≠ f(a2)    a1, a2 ∈ A,  
 Equivalently  f(a1) = f(a2) ⇒  a1 = a2 
 The function defined in 7.11 is one-to-one but the function defined in 7.10 
is not one-to-one. 
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Example 7.12: Let A = {1, 2, 3}, B = {a, b, c}. Prove that the function f defined 
by  f = {(1, a), (2, b), (3,c)} is a one-to-one function. 
Solution: 
 Here 1, 2 and 3 are associated with a, b and 
c respectively. 
 The different elements in A have different 
images in B under the function f. Therefore f is 
one-to-one.  

Fig 7. 14 

Example 7.13: Show that the function y = x2 is not one-to-one. 
Solution: 
 For the different values of x (say 1, − 1) 
we have the same value of y. i.e. different 
elements in the domain have the same element 
in the co-domain. By definition of  one-to-one, 
it is not one-to-one (OR) 

   y = f(x)  = x2 

   f(1) = 12 = 1 

   f(− 1) = (− 1)2  = 1 

 
Fig 7. 15 

 ⇒  f(1) = f(− 1)          
 But  1 ≠  − 1. Thus different objects in the domain have the same image. 
 ∴ The function is not one-to-one.  
Note: (1) A function is said to be injective if it is one-to-one. 
   (2) It is said to be bijective if it is both one-to-one and onto. 
   (3) The function given in example 7.12 is bijective while the functions 
given in 7.10, 7.11, 7.13 are not bijective. 
Example 7.14.  Show that the function f : R → R defined by f(x) = x + 1 is 
bijective. 
Solution: 
 To prove that f is bijective, it is enough to prove that the function f is 
 (i) onto    (ii) one-to-one 
 (i) Clearly the image  set is R, which is same as the co-domain R. 

Therefore, it is onto. i.e. take b ∈ R. Then we can find b − 1 ∈ R such 
that f(b − 1) = (b − 1) + 1 = b. So f is onto. 

 (ii) Further two different elements in the domain R have different images 
in the co-domain R. Therefore, it is one-to-one.  

  i.e. f(a1) = f(a2) ⇒ a1 + 1 = a2 + 1 ⇒ a1 = a2 .  So  f  is one-to-one. 
 Hence the function is bijective. 
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3. Identity function: 
 A function f from a set A to the same set A is said to be an identity 
function if f(x) = x for all x ∈ A i.e. f : A → A is defined by f(x) = x for all  
x ∈ A. Identity function is denoted by IA or simply I. Therefore I(x) = x always. 
Graph of identity function: 
 The graph of the identity function 
 f(x) = x is the graph of the function  
y = x. It is nothing but the straight line  
y = x as shown in the fig. (7.16) 
 
  

Fig 7. 16 
4. Inverse of a function: 

 To define the inverse of a function f i.e. f−1 (read as ‘f inverse’), the 
function f must be one-to-one and onto. 
 Let A = {1, 2, 3}, B = {a, b, c, d}. Consider a function f = {(1, a), (2, b), 
(3, c)}. Here the image set or the range is {a, b, c} which is not equal to the co-
domain {a, b, c, d}. Therefore, it is not onto. 

 For the inverse function f−1 the co-domain of f becomes domain of f−1. 

 i.e. If f : A → B then f−1 : B → A . According to the definition of domain, 

each element of the domain must have image in the co-domain. In f−1, the 

element ‘d’ has no image in A. Therefore f−1 is not a function. This is because 
the function f is not onto. 

 
Fig 7. 17 a 

  f(1)  = a 
  f(2)  = b 
  f(3)  = c 
All the elements in  A have images 

 
Fig 7.17 b 

 f−1(a) = 1 

 f−1 (b) = 2 

 f−1 (c) = 3 

 f−1 (d) = ? 
    The element d has no image. 

 Again consider a function which is not one-to-one. i.e. consider  
 f = {(1, a), (2, a), (3, b)} where A = {1, 2, 3}, B = {a, b} 
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 Here the two different elements ‘1’ and ‘2’ have the same image ‘a’. 
Therefore the function is not one-to-one.  

 The range = {a, b} = B.      ∴ The function is onto. 

 

Fig 7. 18 

   f(1) = a 

   f (2) = a 

   f(3) = b 

Here all the elements in A has  

unique image 

   f−1(a) = 1 

   f−1 (a) = 2 

   f−1 (b) = 3 

 The element ‘a’ has two 
images 1 and 2. It violates the 
principle of the function that each 
element has a unique image. 

 This is because the function is not one-to-one. 

 Thus, ‘f−1 exists   if and only if    f is one-to-one and onto’. 

Note: 

 (1) Since all the function are relations and inverse of a function is also a 
relation. We conclude that for a function which is not one-to-one and 

onto, the inverse f−1 does not exist  

 (2) To get the graph of the inverse function, interchange the co-ordinates 
and plot the points. 

 To define the mathematical definition of inverse of a function, we need the 
concept of composition of functions. 

5. Composition of functions: 

 Let A, B and C be any three sets and let f : A → B and g : B → C be any 
two functions. Note that the domain of g is the co-domain of f. Define a new 
function (gof) : A → C such that (gof) (a) = g(f(a)) for all a ∈ A. Here f(a) is an 
element of B. ∴ g(f(a)) is meaningful. The function gof is called the 
composition of two functions f and g. 
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Fig 7. 19 

Note: 
 The small circle  o  in gof denotes the composition of g and f  

Example 7.15:  Let A = {1, 2}, B = {3, 4} and C = {5, 6} and f : A → B and  
g : B → C such that f(1) = 3,  f(2) = 4, g(3) = 5, g(4) = 6. Find gof. 
Solution: 
 gof is a function from A → C.  
 Identify the images of elements of 
A under the function gof. 
 (gof) (1)  = g(f(1)) = g(3) = 5 
 (gof) (2) = g(f(2)) = g(4) = 6 
i.e. image of 1 is 5 and 
image of 2 is 6   under gof 

∴  gof = {(1, 5), (2, 6)}  
Fig 7. 20 

Note: 
 For the above definition of f and g, we can’t find fog. For some functions f 
and g, we can find both fog and gof. In certain cases fog and gof are equal. In 
general fog ≠ gof  i.e. the composition of functions need not be commutative 
always. 

Example 7.16: The two functions f : R → R, g : R → R are defined by  

            f(x) = x2 + 1, g(x) = x − 1. Find fog and gof and show that fog ≠ gof. 
Solution: 

   (fog) (x) = f(g(x)) = f(x − 1) = (x − 1)2 + 1 = x2 − 2x + 2 

   (gof) (x) = g(f(x)) = g(x2 + 1) = (x2 + 1) − 1 = x2 

 Thus (fog) (x) = x2 − 2x + 2 

   (gof) (x) = x2 

  ⇒ fog ≠ gof 
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Example 7.17:  Let f, g : R → R be defined by f(x) = 2x + 1, and g(x) = 
x − 1

2   .  

                   Show that (fog) = (gof). 
Solution: 

   (fog) (x) = f(g(x)) = f 



x − 1

2   = 2



x − 1

2   + 1 = x − 1 + 1 = x 

   (gof) (x) = g(f(x)) = g(2x + 1) = 
(2x + 1) − 1

2   = x 

 Thus (fog) (x) = (gof) (x) 
  ⇒ fog = gof 
 In this example f and g satisfy (fog) (x) = x and (gof) (x) = x 
 Consider the example 7.17. For these f and g, (fog) (x)= x and (gof) (x) = x. 
Thus by the definition of identity function fog = I and gof = I  i.e. fog = gof = I 
 Now we can define the inverse of a function f. 
Definition: 
 Let f : A → B be a function. If there exists a function g : B → A such that 
(fog) = IB and (gof) = IA, then g is called the inverse of f. The inverse of f is 

denoted by f−1 
Note: 
 (1) The domain and the co-domain of both f and g are same then the 

above condition can be written as   fog = gof = I. 

 (2) If f−1 exists then f is said to be invertible. 

 (3) f o f −1 = f −1o f = I 

Example 7.18: Let f : R → R be a function defined by f(x) = 2x + 1.   Find f −1 
Solution: 

   Let g = f −1 
   (gof) (x) = x ‡ gof = I 
   g(f(x)) = x    ⇒   g(2x + 1) = x 

   Let  2x + 1 = y    ⇒  x = 
y − 1

2   

   ∴    g(y) = 
y − 1

2    or   f −1(y)   =  
y − 1

2   

  Replace y by x 

   f−1 (x) = 
x − 1

2   
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6. Sum, difference, product and quotient of two functions: 

 Just like numbers, we can add, subtract, multiply and divide the functions 
if both are having same domain and co-domain. 

 If f, g : A → B are any two functions then the following operations are 
true. 

 (f + g) (x) = f(x) + g(x) 

 (f − g) (x) = f(x) − g(x) 

 (fg) (x) = f(x) g(x) 

   



f

g   (x) = 
f(x)
g(x)  where g(x) ≠ 0 

   (cf) (x) = c.f(x) where c is a constant 

Note: Product of two functions is different from composition of two functions. 

Example 7.19:The two functions f, g : R→R are defined by f(x)=x + 1, g(x)=x2.  

                  Find   f + g,   f − g,    fg,   
f
g  ,   2f,   3g. 

Solution: 

 Function Definition 

 f f(x) = x + 1 

 g g(x) = x2 

 f + g (f + g) (x) = f(x) + g(x) = x + 1 + x2  

 f − g (f − g) (x) = f(x) − g(x) = x + 1 − x2  

 fg (fg) (x) = f(x) g(x) = (x + 1)x2 

 
f
g  



f

g   (x) = 
f(x)
g(x)  = 

x + 1

x2 , (it is defined for x ≠ 0) 

 2f (2f) (x) = 2f(x) = 2(x + 1) 

 3g (3g) (x) = 3g(x) = 3x2 

7. Constant function: 

 If the range of a function is a singleton set then the function is called a 
constant function. 

 i.e. f : A → B is such that f(a) = b for all a ∈ A, then f is called a constant 
function. 
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 Let A = {1, 2, 3}, B = {a, b}. If the 
function f is defined by f(1) = a, f(2) = a,  
f(3) = a then f is a constant function. 

  
Fig 7. 21 

 Simply, f : R → R, defined by f(x) = k is a 
constant function and the graph of this constant 
function is given in fig. (7.22) 
 Note that ‘is a son of’ is a constant function 
between set of sons and the singleton set 
consisting of their father. 

 
Fig 7. 22 

8. Linear function: 

 If a function f : R → R is defined in the form f(x) = ax + b then the function 
is called a linear function. Here a and b are constants. 

Example 7.20:  Draw the graph of the linear function f : R → R defined by  
f(x) = 2x + 1. 

Solution: 

 Draw the table of some pairs (x, f(x))   which satisfy  f(x) = 2x + 1. 

x 0 1 − 1 2 
f(x) 1 3 − 1 5 

 Plot the points and draw a curve passing 
through these points. Note that, the curve is a 
straight line. 
Note: 
 (1) The graph of a linear function is a 

straight line. 
 (2) Inverse of a linear function always 

exists and also linear. 

 
Fig 7. 23 

9. Polynomial function: 

 If f : R→R is defined by f(x) = an xn + an − 1 xn − 1+ …+ a1x + a0, where 
a0, a1,…, an are real numbers, an≠0 then f is a polynomial function of degree n. 

 The function f : R → R defined by f(x) = x3 + 5x2 + 3 is a cubic polynomial 
function or a polynomial function of degree 3. 
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10. Rational function: 
 Let p(x) and q(x) be any two polynomial functions. Let S be a subset of R 
obtained after removing all values of x for which q(x) = 0 from R. 

 The function f : S → R, defined by f(x) = 
p(x)
q(x) , q(x) ≠ 0 is called a rational 

function. 

Example 7.21: Find the domain of the rational function f(x) = 
x2 + x + 2

x2 − x
  . 

Solution: 
 The domain S is obtained by removing all the points from R for which g(x) 

= 0  ⇒    x2 − x = 0 ⇒  x(x − 1) = 0 ⇒ x = 0, 1     
 ∴ S = R − {0, 1} 
 Thus this rational function is defined for all real numbers except 0 and 1. 
11. Exponential functions: 

 For any number a > 0, a ≠ 1, the function f : R → R defined by f(x) = ax is 
called an exponential function. 

Note: For exponential function the range is always R+ (the set of all positive 
real numbers) 

Example 7.22: Draw the graphs of the exponential functions f : R → R+ defined 

by  (1)  f(x) = 2x        (2)  f(x) = 3x        (3)  f(x) = 10x. 
Solution: 

 For all these function  

f(x) = 1 when x = 0. Thus 

they cut the y axis at y = 1. 

For any real value of x, they 

never become zero. Hence 

the corresponding curves to 

the above functions do not 

meet the x-axis for real x. (or 

meet the x-axis at − ∞) Fig 7. 24 

 In particular the curve corresponding to f(x) = ex lies between the curves 

corresponding to 2x and 3x, as 2 < e < 3. 
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Example 7.23: 

 Draw the graph of the exponential function f(x) = ex. 
 
Solution: 

 For x = 0, f(x) becomes 1  

i.e. the curve cuts the y axis at  

y = 1. For no real value of  

x,  f(x) equals to 0. Thus it does not 

meet x-axis for real values of x. 
 

 
 

Fig 7. 25 

Example 7.24: 

 Draw the graphs of the logarithmic functions  

 (1)  f(x) = log2x        (2)  f(x) = logex            (3)  f(x) = log3x  

 
 
Solution: 

 The logarithmic function is 

defined only for positive real 

numbers. i.e. (0, ∞) 

 Domain :  (0, ∞) 

 Range    :  (− ∞, ∞) 
Fig 7. 26 

Note: 

 The inverse of exponential function is a logarithmic function. The general 
form is f(x) = logax, a ≠ 1, a is any positive number. The domain (0, ∞) of 

logarithmic function becomes the co-domain of exponential function and the 

co-domain (− ∞, ∞) of logarithmic function becomes the domain of exponential 

function. This is due to inverse property. 
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11. Reciprocal of a function: 

 The function g : S→R, defined by g(x) = 
1

f(x)  is called reciprocal function 

of f(x). Since this function is defined only for those x for which f(x) ≠ 0, we see 
that the domain of the reciprocal function of f(x) is R − {x   :   f(x) = 0}. 
Example 7.25: Draw the graph of the reciprocal function of the function  
f(x) = x. 
Solution: 

 The reciprocal function of f(x) is 
1

f(x)   

 Thus   g(x) = 
1

f(x)  = 
1
x  

 Here the domain of   

g(x) = R − {set of points x for which f(x) = 0} 

       =  R − {0} 

The graph of g(x) = 
1
x is as shown  in fig 7.27. 

 
Fig 7. 27 

Note: 

 (1) The graph of g(x) = 
1
x  does not meet either axes for finite real number. 

Note that the axes x and y meet the curve at infinity only. Thus x and y 

axes are the asymptotes of the curve y = 
1
x  or g(x ) = 

1
x  [Asymptote is 

a tangent to a curve at infinity. Detailed study of asymptotes is 
included in XII Standard]. 

 (2) Reciprocal functions are associated with product of two functions. 
  i.e. if f and g are reciprocals of each other then f(x) g(x) = 1. 
  Inverse functions are associated with composition of functions. 
  i.e.if f and g are inverses of each other then  fog = gof = I 
12. Absolute value function (or modulus function) 
 If f : R → R defined by f(x)  = | x | then the function is called absolute value 
function of x. 

 where | x | = 


      x   if  x  ≥  0
  −  x  if  x  <  0

 

 The domain is R and co-domain is set of all non-negative real numbers.  
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 The graphs of the absolute functions  
 (1)  f(x) = | x |         (2)  f(x) =  | x  − 1 |     (3)  f(x) = |x + 1| are given below. 

 
f(x) = | x | 

 
f(x) = | x− 1| 

 
f(x) = | x + 1| 

Fig 7. 28 
13. Step functions: 
(a) Greatest integer function 
 The function whose value at any real number x is the greatest integer less 
than or equal to x is called the greatest integer function. It is denoted by  x  
 i.e. f : R → R defined by f(x) =  x  
 Note that  2.5 = 2, 3.9 = 3, − 2.1 = − 3, .5 = 0, − .2 = − 1, 4 = 4 
 The domain of the function is R and the range of the function is Z (the set 
of all integers). 
(b) Least integer function 
 The function whose value at any real number x is the smallest integer 
greater than or equal to x is called the least integer function and is denoted by 
x 
 i.e. f : R → R defined by f(x) = x.    
 Note that 2.5  = 3,    1.09 = 2,   − 2.9  =  − 2,  3  = 3 
 The domain of the function is R and the range of the function is Z. 
 Graph of f(x) = x  Graph of f(x) = x  

 
Fig 7. 29 

 
Fig 7. 30 
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14. Signum function: 

    If f:R→R is defined by f(x) =  


| x |

x ,   x ≠ 0

  0,    x = 0
  then f is called signum function. 

  
 
   The domain of the function is R and 
the range is {− 1, 0, 1}.  
 
 

 
Fig 7. 31 

15. Odd and even functions 
 If f(x) = f(− x) for all x in the domain then the function is called an even 
function. 
 If f(x) = − f(− x) for all x in the domain then the function is called an odd 
function. 

 For example,  f(x) = x2,   f(x) = x2 + 2x4,   f(x) = 
1

x2 ,   f(x) = cosx are some 

even functions. 

 and  f(x) = x3,   f(x) = x − 2x3,   f(x) = 
1
x ,   f(x) = sin x  are some odd 

functions. 
 Note that there are so many functions which are neither even nor odd. For 
even function, y axis divides the graph of the function into two exact pieces 
(symmetric). The graph of an even function is symmetric about y-axis. The 
graph of an odd function is symmetrical about origin. 
Properties: 
 (1) Sum of two odd functions is again an odd function. 
 (2) Sum of two even functions is an even function. 
 (3) Sum of an odd and an even function is neither even nor odd. 
 (4) Product of two odd functions is an even function. 
 (5) Product of two even functions is an even function. 
 (6) Product of an odd and an even function is an odd function. 
 (7) Quotient of two even functions is an even function. (Denominator 

function ≠ O) 
 (8) Quotient of two odd functions is an even function. (Denominator 

function ≠ O) 
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 (9) Quotient of a even and an odd function is an odd function. (Denominator 
function ≠ O) 

16. Trigonometrical functions: 
 In Trigonometry, we have two types of functions. 
 (1) Circular functions               (2)Hyperbolic functions.  
 We will discuss circular functions only. The circular functions are 
 (a) f(x) = sinx (b) f(x) = cos x (c) f(x) = tan x 
 (d) f(x) = secx (e) f(x) = cosecx (f) f(x) = cotx 
 The following graphs illustrate the graphs of circular functions. 
(a)  y = sinx   or   f(x) = sin x 
 Domain(− ∞, ∞) 
 Range [− 1, 1] 

 Principal domain 



− 

π
2 , 

π
2  

 
Fig 7. 32 

 
(b) y = cos x 
 Domain (− ∞, ∞) 
 Range [− 1, 1] 
 Principal domain [0  π] 
 

 
Fig 7. 33 

(c) y  = tan x  

 Since tanx = 
sinx
cosx , tanx is defined only 

for all the values of x for which cosx ≠ 0.  
 i.e. all real numbers  except odd 

integer multiples of  
π
2  (tanx is not obtained  

for cosx = 0 and hence not defined for x, an 

odd multiple of 
π
2 ) 

Fig 7. 34 
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Domain = R − 








(2 k + 1) 
π
2  ,    k ∈ Z 

  Range = (− ∞, ∞) 
(d) y = cosec x 

 Since cosec x is the reciprocal of 
sin x, the function cosec x is not 
defined for values of x for which  
sin x = 0. 

 ∴ Domain is the set of all real 
numbers except multiples of π 

 Domain = R − {kπ},    k ∈ Z 

 Range = (− ∞, − 1] ∪ [1, ∞)  
Fig 7. 35 

 

(e) y = sec x 

 Since sec x is reciprocal of cosx,  
the function secx is not defined for all 
values of x for which  cos x = 0. 

   ∴ Domain = R − 








(2k + 1) 
π
2  , k ∈ Z 

 Range = (−∞, − 1] ∪ [1, ∞) 

  
Fig 7. 36 

 

(f) y = cot x 

 since cot x = 
cosx
sinx  , it is not 

defined for the values of x for which 
sin x = 0 

 ∴ Domain = R − {k π}, k ∈ Z 

 Range = (− ∞, ∞) 

  
Fig 7. 37 
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17.Quadratic functions 
 It is a polynomial function of degree two. 

 A function f : R → R defined by f(x) = ax2 + bx + c,  where a, b, c ∈ R,  
a ≠ 0    is called a quadratic function. The graph of a quadratic function is 
always a parabola. 

7.3 Quadratic Inequations: 
  Let f(x) = ax2 + bx + c, be a quadratic function or expression. a, b, c ∈ R, 
a ≠ 0 
  Then  f(x) ≥ 0,  f(x)  > 0,   f(x) ≤ 0 and   f(x) < 0     are known as quadratic 
inequations. 
  The following general rules will be helpful to solve quadratic 
inequations. 
General Rules: 
 1. If a > b, then we have the following rules: 
  (i) (a + c) > (b + c) for all c ∈ R 
  (ii) (a − c) > (b − c) for all c ∈ R 
  (iii) − a < − b 

  (iv) ac > bc,  
a
c  > 

b
c   for any positive real number c 

  (v) ac < bc, 
a
c  < 

b
c  for any negative real number c. 

  The above properties, also holds good when the inequality < and > are 
replaced by ≤ and ≥ respectively. 
 2. (i) If ab > 0 then either a > 0, b > 0 (or) a < 0, b < 0 
 (ii) If ab ≥ 0 then either a ≥ 0, b ≥ 0 (or) a ≤ 0, b ≤ 0 
 (iii) If ab < 0 then either a > 0, b < 0 (or) a < 0, b > 0 
 (iv) If ab ≤ 0 then either a ≥ 0, b ≤ 0 (or) a ≤ 0, b ≥ 0.    a, b, c ∈ R 
Domain and range of  quadratic functions 
 Solving a quadratic inequation is same as finding the domain of the 
function f(x) under the given inequality condition. 
 Different methods are available to solve a quadratic inequation. We can 
choose any one method which is suitable for the inequation. 
Note : Eventhough the syllabus does not require the derivation, it has been 
derived for better understanding. 
Method I:  Factorisation method: 

  Let ax2 + bx + c ≥ 0     … (1) 

  be a quadratic inequation in x where a, b, c ∈ R and a ≠ 0. 
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      The quadratic equation corresponding to this inequation is ax2 + bx + c = 0. 

The discriminant of this equation is b2 − 4ac. 
      Now three cases arises: 

Case (i):  b2 − 4ac > 0 

  In this case, the roots of ax2 + bx + c = 0 are real and distinct. Let the 

roots be α and β . 

  ∴ ax2 + bx + c = a(x – α) (x − β) 

  But    ax2 + bx + c ≥ 0 from (1) 

  ⇒ a(x – α) (x − β) ≥ 0 

  ⇒ (x − α) (x − β) ≥ 0  if a > 0  (or) 

   (x – α)  (x – β) ≤ 0   if a < 0 
  This inequality is solved by using the general rule (2). 

Case (ii):  b2 − 4ac = 0 

  In this case, the roots of ax2 + bx + c = 0 are real and equal. Let the roots 
be α and α  

  ∴ ax2 + bx + c  =  a(x − α)2.   

  ⇒   a(x − α)2 ≥ 0 

 ⇒ (x − α)2 ≥ 0 if a > 0 (or) (x − α)2 ≤ 0 if a < 0 
  This inequality is solved by using General rule-2 

Case (iii): b2 − 4ac < 0 

  In this case the roots of ax2 + bx + c = 0 are non-real and distinct. 

  Here  ax2 + bx + c = a 



x2 + 

bx
a  + 

c
a   

    = a 









x + 

b
2a

2

 − 
b2

4a2 + 
c
a   

    = a 









x + 

b
2a

2

 + 
4ac − b2

4a2  

  ∴ The sign of ax2 + bx + c is same as that of a for all values of x because  

  









x + 

b
2a

2

 + 
4ac − b2

4a2  is a positive real number for all values of x. 

  In the above discussion, we found the method of solving quadratic 

inequation of the type ax2 + bx + c ≥ 0.  
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Method: II 
  A quadratic inequality can be solved by factorising the corresponding 
polynomials. 

 1. Consider ax2 + bx + c > 0 

  Let ax2 + bx + c = a(x − α) (x − β) 

  Let α < β 

Case (i) : If x < α then x − α < 0 & x − β < 0 

   ∴ (x − α) (x − β) > 0 

Case (ii): If x > β then x − α > 0  & x − β > 0 

   ∴ (x − α) (x − β) > 0      

  Hence If (x − α)  (x − β) > 0 then the values of x lies outside α and β. 

 2. Consider ax2 + bx + c < 0 

  Let ax2 + bx + c = a(x − α) (x − β) ; α, β ∈ R 

  Let  α < β and also α < x < β 

  Then x − α > 0 and x − β < 0 

  ∴ (x − α) (x − β) < 0 

  Thus if (x − α) (x − β) < 0, then the values of x lies between α and β 
Method: III 
Working Rules for solving quadratic inequation: 

Step:1 If the coefficient of x2 is not positive multiply the inequality by − 1. 
Note that the sign of the inequality is reversed when it is multiplied 
by a negative quantity. 

Step: 2 Factorise the quadratic expression and obtain its solution by 
equating the linear factors to zero. 

Step: 3 Plot the roots obtained in step 2 on real line. The roots will divide 
the real line in three parts. 

Step: 4 In the right most part, the quadratic expression will have positive 
sign and in the left most part, the expression will have positive sign 
and in the middle part, the expression will have negative sign. 

Step: 5 Obtain the solution set of the given inequation by selecting the 
appropriate part in 4 

Step: 6 If the inequation contains equality operator (i.e. ≤,  ≥), include the 
roots in the solution set. 
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Example 7.26:  Solve the inequality x2 − 7x + 6 > 0 
Method I: 

Solution:  x2 − 7x + 6 > 0 

   ⇒ (x − 1) (x − 6) > 0 [Here b2 − 4ac = 25 > 0] 
  Now use General rule-2 : 

Either x − 1 > 0, x − 6 > 0 
⇒ x > 1,  x > 6 
we can omit x > 1 
⇒  x > 6 

(or)  (x − 1) < 0, (x − 6) < 0 
 ⇒ x < 1, x < 6 
 we can omit x < 6 
 ⇒  x < 1 

∴ x ∈ (− ∞, 1) ∪ (6, ∞) 
Method II: 
 x2 − 7x + 6 > 0 
  ⇒   (x − 1) (x − 6) > 0 
 (We know that if (x − α) (x − β) > 0 then the values of x lies outside of (α,β) 
 (i.e.)  x lies outside of (1, 6) 
  ⇒   x ∈ (− ∞, 1) ∪ (6, ∞) 
Method III: 
 x2 − 7x + 6 > 0 
 ⇒ (x − 1) (x − 6) > 0 
  On equating the factors to zero, we see that x = 1, x = 6 are the roots of 
the quadratic equation. Plotting these roots on real line and marking positive 
and negative alternatively from the right most part we obtain the corresponding 
number line as 

 
  We have three intervals (− ∞, 1),  (1, 6)  and (6, ∞). Since the sign of   
(x − 1) (x − 6) is positive, select the intervals in which (x − 1) (x − 6) is positive.
  
  ⇒ x < 1  (or)  x > 6 
  ⇒ x ∈ (− ∞, 1) ∪ (6, ∞) 
Note : Among the three methods, the third method, is highly useful. 

Example 7.27:  Solve the inequation − x2 + 3x − 2 > 0 
Solution : 

  − x2 + 3x − 2 > 0  ⇒ − (x2 − 3x + 2) > 0 

    ⇒ x2 − 3x + 2 < 0 
    ⇒ (x − 1) (x − 2) < 0 
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  On equating the factors to zero, we obtain x = 1, x = 2 are the roots of the 
quadratic equation. Plotting these roots on number line and making positive and 
negative alternatively from the right most part we obtain the corresponding 
numberline as given below. 

 
  The three intervals are (− ∞, 1),  (1, 2) and (2, ∞). Since the sign of  
(x − 1) (x − 2) is negative, select the interval in which (x − 1) (x − 2) is negative.
   

  ∴ x ∈ (1, 2) 

Note : We can solve this problem by the first two methods also. 

Example 7.28:  Solve : 4x2 − 25 ≥ 0 

Solution :    4x2 − 25 ≥ 0 

   ⇒ (2x − 5) (2x + 5) ≥ 0 

  On equating the factors to zero, we obtain x = 
5
2 , x = − 

5
2  are the roots of 

the quadratic equation. Plotting these roots on number line and making positive 
and negative alternatively from the right most part we obtain the corresponding 
number line as given below. 

 

  The three intervals are 



− ∞, − 

5
2 , 



− 

5
2,   

5
2   



5

2 , ∞  

Since the value of (2x − 5) (2x + 5) is positive or zero. Select the intervals in 

which f(x) is positive and include the roots also. The intervals are 



− ∞, − 

5
2  

and 



5

2 , ∞ . But the inequality operator contains equality (≥) also.  

∴ The solution set or the domain set should contain the roots − 
5
2 ,  

5
2 .  

Thus the solution set is  (− ∞,  
− 5
2    ]  ∪   [  

5
2 ,  ∞) 

Example 7.29:  Solve the quadratic inequation 64x2 + 48x + 9 < 0 
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Solution:   
 64x2 + 48x + 9 = (8x + 3)2 

 (8x + 3)2 is a perfect square. A perfect square cannot be negative for real x. 
 ∴ The given quadratic inequation has no solution. 

Example 7.30: Solve f(x)=x2+2x+6 > 0 or find the domain of the function f(x) 

  x2 + 2x + 6 > 0   

  (x + 1) 2 + 5 > 0 
  This is true for all values of x. ∴ The solution set is R 

Example 7.31:  Solve f(x) = 2x2 − 12x + 50 ≤ 0 or find the domain of the 
function f(x). 
Solution: 
  2x2 − 12x + 50 ≤ 0 

  2(x2 − 6x + 25) ≤ 0 

  x2 − 6x + 25 ≤ 0 

  (x2 − 6x + 9) + 25 − 9 ≤ 0 

  (x − 3) 2 + 16 ≤ 0 
  This is not true for any real value of x. 
  ∴ Given inequation has no solution. 
Some special problems (reduces to quadratic inequations) 

Example 7.32:  Solve: 
x + 1
x − 1

 > 0, x ≠ 1 

Solution: 

    
x + 1
x − 1

 > 0  

  Multiply the numerator and denominator by (x − 1) 

  ⇒    
(x + 1) (x − 1)

(x − 1)2   

  ⇒ (x + 1) (x − 1) > 0 [Q (x − 1) 2 > 0 for all x ≠ 1] 

 
  Since the value of (x + 1) (x − 1) is positive or zero select the intervals in 
which (x + 1) (x − 1) is positive. 
  ∴ x ∈ (− ∞, − 1)  ∪ (1, ∞) 
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Example 7.33:  Solve :  
x − 1

4x + 5   <  
x − 3
4x − 3

  

Solution:   
x − 1

4x + 5   <  
x − 3

4x − 3
  

  ⇒ 
x − 1

4x + 5   −  
x − 3

4x − 3
  < 0 (Here we cannot cross multiply) 

  ⇒ 
(x − 1) (4x − 3) − (x − 3) (4x + 5)

(4x + 5) (4x − 3)
  < 0 

  ⇒ 
18

(4x + 5) (4x − 3)
   <  0 

  ⇒ (4x + 5) (4x − 3) < 0       since 18 > 0 

  On equating the factors to zero, we obtain x = 
− 5
4   ,  x = 

3
4   are the roots 

of the quadratic equation. Plotting these roots on number line and making 
positive and negative alternatively from the right most part we obtain as shown 
in figure. 

 
  Since the value of (4x + 5) (4x − 3) is negative, select the intervals in 

which (4x + 5) (4x − 3) is negative. ∴ x ∈ 



− 5

4  , 
3
4   

Example 7.34 :  If x ∈ R, prove that the range of  the function f(x) = 
x2 − 3x + 4
x2 + 3x + 4    

is  



1

7,   7   

Solution: 

     Let y = 
x2 − 3x + 4
x2 + 3x + 4  

     (x2 + 3x + 4)y = x2 − 3x + 4 

   ⇒ x2 (y − 1) + 3x (y +1) + 4(y − 1) = 0 
  Clearly, this is a quadratic equation in x. It is given that x is real. 
   ⇒ Discriminant ≥ 0 

   ⇒ 9(y + 1) 2 − 16(y − 1) 2 ≥ 0 
   ⇒ [ ]3(y + 1) 2  − [ ]4(y − 1) 2  ≥ 0 

   ⇒ [ ]3(y + 1) + 4(y − 1)    [ ]3(y + 1) − 4(y − 1)   ≥ 0 

   ⇒ (7y − 1) (− y + 7) ≥ 0 
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   ⇒ − (7y – 1) (y − 7)  ≥  0 
   ⇒ (7y − 1) (y − 7)  ≤  0 
 

 
 

 

  The intervals are  



− ∞, 

1
 7  , 



1

7,  7   and (7, ∞). Since the value of  

(7y − 1) (y − 7) is negative or zero, select the intervals in which (7y − 1) (y − 1) 

is negative and include the roots 
1
7  and 7. 

  ∴ y ∈  



1

7,  7            i.e. the value of  
x2 − 3x + 4
x2 + 3x + 4  lies between 

1
7   and  7 

  i.e. the range of f(x) is 



1

7,  7   

EXERCISE 7.1 
  (1) If  f, g : R → R, defined by f(x) = x + 1 and g(x) = x2,  
  find (i) (fog) (x)    (ii) (gof) (x)     (iii) (fof) (x)  (iv) (gog) (x)  (v) (fog) (3) 
  (vi) (gof) (3) 
 (2) For the functions f, g as defined in (1) define 

  (i) (f + g) (x) (ii) 



f

g (x)    (iii) (fg) (x)     (iv) (f − g) (x)     (v) (gf) (x) 

 (3) Let f : R → R be defined by f(x) = 3x + 2. Find f−1 and  

  show that fof−1 = f−1of = I 
 (4)  Solve each of the following inequations: 

  (i) x2 ≤ 9 (ii) x2 − 3x − 18 > 0 (iii) 4 − x2 < 0 

  (iv) x2 + x − 12 < 0 (v) 7x2 − 7x − 84 ≥ 0 (vi) 2x2 − 3x + 5 < 0 

  (vii) 
3x − 2
x − 1

  < 2,  x ≠ 1  (viii)  
2x − 1

x   > − 1, x ≠ 0   (ix)  
x − 2

3x + 1   >  
x − 3
3x − 2

   

 (5) If x is real, prove that 
x2 + 34x − 71
x2 + 2x − 7

   cannot have any value between  

5 and 9. 

 (6) If x is real, prove that the range of f(x) =  
x2 − 2x + 4
x2 + 2x + 4  is between 



1

3,  3   

 (7) If x is real, prove that 
x

x2 − 5x + 9
   lies between − 

1
11  and 1. 

 



 33

8. DIFFERENTIAL CALCULUS 
 Calculus is the mathematics of motion and change. When increasing or 
decreasing quantities are made the subject of mathematical investigation, it 
frequently becomes necessary to estimate their rates of growth or decay. 
Calculus was invented for the purpose of solving problems that deal with 
continuously changing quantities. Hence, the primary objective of the 
Differential Calculus is to describe an instrument for the measurement of such 
rates and to frame rules for its formation and use. 
 Calculus is used in calculating the rate of change of velocity of a vehicle 
with respect to time, the rate of change of growth of population with respect to 
time, etc. Calculus also helps us to maximise profits or minimise losses. 
 Isacc Newton of England and Gottfried Wilhelm Leibnitz of Germany 
invented calculus in the 17th century, independently. Leibnitz, a great 
mathematician of all times, approached the problem of settling tangents 
geometrically; but Newton approached calculus using physical concepts.  
Newton, one of the greatest mathematicians and physicists of all time, applied 
the calculus to formulate his laws of motion and gravitation. 
8.1 Limit of a Function 
 The notion of limit is very intimately related to the intuitive idea of 
nearness or closeness. Degree of such closeness cannot be described in terms of 
basic algebraic operations of addition and multiplication and their inverse 
operations subtraction and division respectively. It comes into play in situations 
where one quantity depends on another varying quantity and we have to know 
the behaviour of the first when the second is very close to a fixed given value. 
 Let us look at some examples, which will help in clarifying the concept of 
a limit. Consider the function f : R → R given by 
   f(x) = x + 4.  
 Look at tables 8.1 and 8.2 These give values of f(x) as x gets closer and 
closer to 2 through values less than 2 and through values greater than 2 
respectively. 

x 1 1.5 1.9 1.99 1.999 

f(x) 5 5.5 5.9 5.99 5.999 

Table 8.1 
x 3 2.5 2.1 2.01 2.001 

f(x) 7 6.5 6.1 6.01 6.001 

Table 8.2 
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 From the above tables we can see that as x approaches 2, f(x) approaches 6. 
In fact, the nearer x is chosen to 2, the nearer f(x) will be to 6. Thus 6 is the 
value of  (x + 4) as x approaches 2. We call such a value the limit of f(x) as       x 

tends to 2 and denote it by 
lim

x → 2 f(x)=6. In this example the value 
lim

x → 2  f(x) 

coincides with the value (x + 4) when x = 2, that is, 
lim

x → 2  f(x) = f(2). 

 Note that there is a difference between ‘x → 0’ and ‘x = 0’. x → 0 means 
that x gets nearer and nearer to 0, but never becomes equal to 0. x = 0 means 
that x takes the value 0. 

 Now consider another function f given by f(x) = 
x2 − 4
(x − 2)

  . This function  

is not defined at the point x = 2, since division by zero is undefined. But f(x)  
is defined for values of x which approach 2. So it makes sense to evaluate 

lim
x → 2  

x2 − 4
(x − 2)

  . Again we consider the following tables 8.3 and 8. 4 which give 

the values of f(x) as x approaches 2 through values less than 2 and through 
values greater than 2, respectively. 

x 1 1.5 1.9 1.99 1.999 

f(x) 3 3.5 3.9 3.99 3.999 

Table 8.3 
x 3 2.5 2.1 2.01 2.001 

f(x) 5 4.5 4.1 4.01 4.001 

Table 8.4 

 We see that f(x) approaches 4 as x approaches 2. Hence 
lim

x → 2  f(x) = 4. 

 You may have noticed that f(x) = 
x2 − 4
(x − 2)

  = 
(x + 2) (x − 2)

(x − 2)
  = x + 2, if x ≠ 2. 

 In this case a simple way to calculate the limit above is to substitute the 
value x = 2 in the expression for f(x), when x ≠ 2, that is, put  x = 2 in the 
expression x + 2. 

 Now take another example. Consider the function given by f(x) = 
1
x  . We 

see that f(0) is not defined. We try to calculate 
lim

x → 0  f(x). Look at tables 8.5 

and 8.6 
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x  1/2 1/10 1/100 1/1000 

f(x) 2 10 100 1000 

Table 8.5 

x − 1/2 − 1/10 − 1/100 − 1/1000 

f(x) − 2 − 10 − 100 − 1000 

Table 8.6 
 We see that f(x) does not approach any fixed number as x approaches 0. In 

this case we say that  
lim

x → 0 f(x) does not exist. This example shows that there 

are cases when the limit may not exist. Note that the first two examples show 
that such a limit exists while the last example tells us that such a limit may not 
exist. These examples lead us to the following. 

Definition  

 Let f be a function of a real variable x. Let c, l be two fixed numbers. If f(x) 
approaches the value l as x approaches c, we say l is the limit of the function 

f(x) as x tends to c. This is written as 
lim

x → c f(x) = l. 

Left Hand and Right Hand Limits 

 While defining the limit of a function as x tends to c, we consider values of 
f(x) when x is very close to c. The values of x may be greater or less than c. If 
we restrict x to values less than c, then we say that x tends to c from below or 
from the left and write it symbolically as x → c − 0 or simply x → c−. The limit 

of f with this restriction on x, is called the left hand limit. This is written as 

Lf(c) = 
lim

x → c−
  f(x), provided the limit exists. 

 Similarly if x takes only values greater than c, then x is said to tend to c 
from above or from right, and is denoted symbolically as x → c + 0 or x → c+. 

The limit of f is then called the right hand limit. This is written as  

Rf(c) = 
lim

x → c+
  f(x). 

 It is important to note that for the existence of 
lim

x → c  f(x) it is necessary 

that both Lf(c) and Rf(c) exists and Lf(c) = Rf(c) = 
lim

x → c  f(x). These left and 

right hand limits are also known as one sided limits. 
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8.1.1  Fundamental results on limits 

 (1) If f(x) = k for all x, then 
lim

x → c  f(x) = k. 

 (2) If f(x) = x for all x, then 
lim

x → c  f(x) = c. 

 (3) If f and g are two functions possessing limits and k is a constant then 

  (i) 
lim

x → c  k f(x) = k 
lim

x → c  f(x) 

  (ii) 
lim

x → c  [ ]f(x) + g(x)   = 
lim

x → c  f(x) + 
lim

x → c  g(x) 

  (iii) 
lim

x → c  [ ]f(x) − g(x)   = 
lim

x → c  f(x) − 
lim

x → c  g(x) 

  (iv) 
lim

x → c  [ ]f(x) . g(x)   = 
lim

x → c  f(x) . 
lim

x → c  g(x) 

  (v)    
lim

x → c   



f(x)

g(x)    =  
lim

x → c  f(x)       
lim

x → c   g(x),       g(x) ≠ 0 

  (vi)  If  f(x) ≤  g(x) then 
lim

x → c  f(x) ≤  
lim

x → c  g(x). 

Example 8.1 : 

 Find  
lim

x → 1  
x2 − 1
x − 1

  if it exists. 

Solution: 
 Let us evaluate the left hand and right hand limits.  

When x → 1−, put x = 1 − h, h > 0. 

 

 Then  
lim

x → 1 −    
x2 − 1
x − 1

  = 
lim

h → 0   
(1 − h)2 − 1

1 − h − 1
  = 

lim
h → 0   

1 − 2h + h2 − 1
− h

  

  = 
lim

h → 0 (2 − h) = 
lim

h → 0 (2) − 
lim

h → 0 (h) = 2 − 0 = 2  

  When x → 1+ put x = 1 + h, h > 0 

 Then 
lim

x → 1 +  
x2 − 1
x − 1

  = 
lim

h → 0   
(1 + h)2 − 1

1 + h− 1
  = 

lim
h → 0   

1 + 2h + h2 − 1
h   

    = 
lim

h → 0   (2 + h) = 
lim

h → 0   (2)  +  
lim

h → 0   (h) 

    = 2 + 0 = 2, using (1) and (2) of 8.1.1 
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 So that both, the left hand and the right hand, limits exist and are equal. 
Hence the limit of the function exists and equals 2. 

 (i.e.) 
lim

x → 1  
x2 − 1
x − 1

   =  2. 

Note: Since x ≠ 1, division by (x − 1) is permissible. 

 ∴ 
lim

x → 1   
x2 − 1
x − 1

  = 
lim

x → 1  (x + 1) = 2 . 

Example 8.2:Find the right hand and the left hand limits of the function at x= 4 

   f(x) = 


| x− 4 |

x − 4
 for x ≠ 4

 0, for x = 4
      

Solution: 
 Now, when x > 4, | x − 4 | = x − 4 

Therefore  
lim

x → 4 +   f(x)= 
lim

x → 4 +   
| x− 4 |
x − 4

  = 
lim

x → 4 +   
x − 4
x − 4

  = 
lim

x → 4  (1) = 1 

 Again when x < 4, | x − 4 | = − (x − 4) 

 Therefore  
lim

x → 4 −
  f(x) = 

lim
x → 4 −

   
−(x − 4)
(x − 4)

   = 
lim

x → 4 −
  (− 1) = − 1 

 Note that both the left and right hand limits exist but they are not equal. 

 i.e. Rf(4) = 
lim

x → 4 +  f(x) ≠ 
lim

x → 4 −
  f(x) = Lf(4). 

Example 8.3    

 Find 
lim

x → 0   
3x + | x |
7x − 5 |x |

  ,  if it exists. 

Solution: 

 Rf(0) = 
lim

x → 0 +
   

3x + | x |
7x − 5 |x |

   = 
lim

x → 0 +
   

3x + x
7x − 5x

   (since x > 0, | x | = x) 

  = 
lim

x → 0 +
   

4x
2x   =  

lim
x → 0 +

   2 = 2  . 

 L f(0) = 
lim

x → 0 −
   

3x + | x |
7x − 5 |x |

  = 
lim

x → 0 −
     

3x − x
7x − 5(− x)

   (since x < 0, | x | = − x) 

  = 
lim

x → 0 −
   

2x
12x   =  

lim
x → 0 −

   



1

6   = 
1
6  . 

 Since Rf(0) ≠ Lf(0), the limit does not exist. 
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Note:  Let f(x) = g(x) / h(x) . 

    Suppose at x = c, g(c) ≠ 0 and h(c) = 0, then f(c) = 
g(c)

0  .  

     In this case 
lim

x → c  f(x) does not exist. 

Example 8.4 :  Evaluate 
lim

x → 3   
x2 + 7x + 11

x2 − 9
  . 

Solution: 

 Let f(x) = 
x2 + 7x + 11

x2 − 9
  . This is of the  form f(x) = 

g(x)
h(x) ,  

 where g(x) = x2 + 7x + 11 and h(x) = x2 − 9. Clearly g(3) = 41 ≠ 0 and  
h(3) = 0. 

 Therefore f(3) = 
g(3)
h(3)   =  

41
0   . Hence 

lim
x → 3  

x2 + 7x + 11

x2 − 9
  does not exist. 

Example 8.5:  Evaluate  
lim

x → 0   
1 + x − 1

x   

Solution: 

 
lim

x → 0   
1 + x − 1

x   = 
lim

x → 0    
( )1 + x − 1  ( )1 + x + 1

x( )1 + x + 1
  

  = 
lim

x → 0   
(1 + x) − 1

x ( )1 + x + 1
  = 

lim
x → 0   

1

( )1 + x + 1
  

  = 

lim
x → 0  (1)

 
lim

x → 0 ( )1 + x + 1
  = 

1
1 + 1

  = 
1
2  . 

8.1.2  Some important Limits 

Example 8.6 : 

 For 



∆x

a   < 1 and for any rational index n,   

  
lim

x → a    
xn − an

x − a
   =  nan − 1 (a ≠ 0) 
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Solution: 

 Put ∆x = x − a so that ∆x → 0 as x → a   and 



∆x

a   < 1 . 

 Therefore 
xn − an

x − a
  = 

(a + ∆x)n − an

 ∆x
  = 

an 



1 + 

∆x
a  

n
 − an

 ∆x
  

 Applying  Newton’s  Binomial Theorem for rational index we have 

 



1 + 

 ∆x
a  

n
 = 1 + 



n

1    



∆x

a  + 



n

2  



∆x

a  
2
  + 



n

3   



∆x

a

3
+…+ 



n

r   



∆x

a  
r
 +… 

 ∴ 
xn − an

x − a
  = 

an 





1 + 



n

1  



∆x

a  + 



n

2  



∆x

a  
2
 + …+ 



n

r  



∆x

a

  r
 + …  − an

 ∆x
 

  = 










n

1  an−1 ∆x+ 



n

2  an − 2 (∆x)2+…+



n

r  a n − r (∆x)r + … 

∆x
  

  = 



n

1   an − 1 + 



n

2   an − 2 (∆x) + …+ 



n

r   an − r (∆x)r − 1 + … 

  = 



n

1   an − 1 + terms containing ∆x and higher powers of ∆x . 

 Since   ∆x = x − a, x → a means ∆x → 0 and therefore  

  
lim

x → a   
xn − an

x − a
  = 

lim
∆x → 0   



n

1   an − 1 + 
lim

∆x → 0  

(terms containing ∆x and higher powers of ∆x) 

  = 



n

1   an − 1 + 0 + 0 + …  = nan − 1          since 



n

1  = n . 

 As an illustration of this result, we have the following examples. 

Example 8.7:  Evaluate  
lim

x → 1   
x3 − 1
x− 1

   

Solution: 
lim

x → 1   
x3 − 1
x− 1

  = 3(1)3 − 1  = 3(1)2 = 3  

Example 8.8:  Find  
lim

x → 0   
(1 + x)4 − 1

x   

Solution:  Put 1 + x = t so that t → 1 as x → 0 

 ∴    
lim

x → 0   
(1 + x)4 − 1

x   = 
lim

t → 1  
t4 − 14

t − 1
  = 4(1)3 = 4  



 40

Example 8.9:  Find the positive integer n so that 
lim

x → 2   
xn − 2n

x − 2
   =  32  

Solution:  We have 
lim

x → 2   
xn − 2n

x − 2
   =  n2n − 1 

  ∴ n2n − 1 =  32  =  4 × 8  = 4 × 23  = 4 × 2 4 − 1 

 Comparing on both sides we get n = 4 

Example 8.10:  
lim

θ → 0   
sin θ

θ    =  1  

Solution: 

 We take y = 
sin θ

θ  . This function is defined for all θ, other than θ = 0, for 

which both numerator and denominator become zero. When θ is replaced by  

− θ , the magnitude of the fraction 
sin θ

θ  does not change since 
sin (−θ)

− θ  = 
sin θ

θ  . 

Therefore it is enough to find the limit of the fraction as θ tends to 0 through 
positive values. i.e. in the first quadrant. We consider a circle with centre at  
O radius unity. A, B are two points on this circle so  
OA = OB = 1. Let θ be the angle subtended at the centre by the arc AE. 
Measuring angle in radians, we have sinθ  = AC, C being a point on AB such 
that OD passes through C. 

 cosθ = OC, θ  = 
1
2  arc AB,  OAD   = 90° 

   In triangle OAD, AD = tanθ.  

 Now length of arc AB = 2θ   and length 
of the chord AB = 2 sinθ   
  sum of the tangents = AD + BD = 2 tanθ  

Fig. 8.1 

 Since the length of the arc is intermediate between the length of chord and 
the sum of the tangents we can write  2 sin θ < 2θ < 2 tanθ. 

 Dividing by 2 sinθ , we have  1 < 
θ

 sinθ   <  
1

cos θ   or  1 >  
sinθ

θ    >  cos θ 

 But as θ → 0, cos θ, given by the distance OC, tends to 1 

 That is, 
lim

 θ → 0   cosθ = 1 . 
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 Therefore 1 > 
lim

 θ → 0   
sin θ

θ    >  1, by 3(vi) of 8.1.1 

 That is, the variable y = 
sin θ

θ   always lies between unity and a magnitude 

tending to unity, and hence  
lim

 θ → 0   
sin θ

θ   = 1. 

 The graph of the function y = 
sin θ

θ   is shown in fig. 8.2 

 
Fig. 8.2 

Example 8.11:  Evaluate 
lim

 θ → 0   
1 − cos θ

θ2   . 

Solution: 

   
1 − cos θ

θ2    = 
2 sin2 

θ
2

 θ2  = 
1
2  

sin2 



θ

2





θ

2

2  = 
1
2  







sin 

θ
2

θ
2

 

2

 

 If θ → 0, α = 
θ
2  also tends to 0 and 

lim
 θ → 0  

sin 
θ
2

θ
2

  = 
lim

 α → 0  
sin α

α   = 1  and 

hence 
lim

 θ → 0  
1− cosθ

θ2  = 
lim

 θ → 0   
1
2 







sin 

θ
2

θ
2

 

2

= 
1
2   







lim

 θ → 0 
sin 

θ
2

θ
2

 

2

= 
1
2 × 12 = 

1
2  
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Example 8.12:  Evaluate 
lim

x → 0 +
   

sin x
x

   

Solution: 

   
lim

x → 0 +
   

sin x
x

  = 
lim

x → 0 +
 



sin x

x  x  

    = 
lim

x → 0 +
 



sin x

x . 
lim

x → 0 +
 ( )x  = 1 × 0 = 0 . 

Note:  For the above problem left hand limit does not exist since x  is not real 
for x < 0. 

Example 8.13:   Compute 
lim

x → 0   
sin βx
sinαx

  , α ≠ 0 . 

Solution: 

 
lim

x → 0   
sin βx
sinαx

   = 
lim

x → 0    
β . 

sin βx
βx

 α . 
sin αx

αx

  =  
β  

lim
x → 0 



sin βx

βx

α 
lim

x → 0 



sin αx

αx

     

  = 
β 

lim
 θ → 0 



sinθ

θ

α 
lim

y → 0 



sin y

y

  = 
β × 1
 α × 1

 = 
β
α . 

since θ = βx → 0 as x → 0
 and y = αx → 0 as x → 0

 

Example 8.14:  Compute 
lim

x → π/6  
2 sin2x + sinx − 1

2 sin2x − 3 sinx + 1
  

Solution: 

We have  2 sin2 x + sin x − 1 = (2 sinx − 1) (sin x + 1) 

 2 sin2 x − 3 sin x + 1 = (2 sinx − 1) (sin x − 1) 

 Now 
lim

x → π/6  
2 sin2x + sinx − 1

2 sin2x − 3 sinx + 1
  = 

lim
x → π/6  

(2 sinx − 1) (sin x + 1)
(2 sinx − 1) (sin x − 1)

  

  = 
lim

x → π/6 
sin x + 1
sin x − 1

  



2 sin x − 1 ≠ 0 for x → 

π
6   

    = 
sin π/6 + 1
sin π/6 − 1

   =  
1/2 + 1
1/2 − 1

    =  − 3 . 
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Example 8.15:   
lim

x → 0   
ex − 1

x    =  1 . 

Solution:   We know that ex = 1 + 
x

1
   +  

x2

2
  + … + 

xn

n
  + … 

   and so       ex − 1 = 
x

1
   +  

x2

2
  + … + 

xn

n
  + … 

 i.e.   
ex − 1

x   = 
1

1
  + 

x

2
  + … + 

xn − 1

n
  + …  

     (‡ x ≠ 0, division by x is permissible) 

   ∴    
lim

x → 0   
ex − 1

x   = 
1

1
   =  1 . 

Example 8.16:  Evaluate 
lim

x → 3     
ex − e3

x − 3
 . 

Solution:        Consider  
ex − e3

x − 3
 .  Put y = x − 3.  Then y → 0 as x → 3. 

 Therefore 
lim

x → 3  
ex − e3

x − 3
  = 

lim
y → 0   

ey + 3− e3

y    =  
lim

y → 0   
e3 . ey − e3

y   

   = e3  
lim

y → 0   
ey − 1

y    = e3 × 1 = e3  . 

Example 8.17:  Evaluate 
lim

x → 0    
ex − sin x − 1

x   . 

Solution:    

 Now 
ex − sin x − 1

x   =  



ex − 1

x   − 



sin x

x   

 and so  
lim

x → 0    
ex − sin x − 1

x   = 
lim

x → 0  



ex − 1

x   − 
lim

x → 0  



sin x

x  = 1 − 1 = 0  

Example 8.18:  Evaluate 
lim

x → 0  
etan x − 1

tanx    

Solution:   Put tanx = y.     Then y → 0  as x → 0  

 Therefore 
lim

x → 0  
etan x − 1

tanx   = 
lim

y → 0   
ey − 1

y   = 1  
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Example 8.19:     
lim

x → 0   
log (1 + x)

x    =  1  

Solution:  We know that  loge (1 + x)  = 
x
1   − 

x2

2   + 
x3

3   −  …   

  
loge (1 + x)

x    = 1 − 
x
2   +  

x2

3   − … 

 Therefore
lim

x → 0   
loge (1 + x)

x   = 1. 

Note: logx means the natural logarithm logex. 

Example 8.20:   Evaluate 
lim

x → 1   
log x
x − 1

  . 

Solution: Put x − 1 = y.  Then y → 0 as x → 1. 

 Therefore 
lim

x → 1  
log x
x − 1

  = 
lim

y → 0   
log(1 + y)

y    

    = 1      (by example 8.19) 

Example 8.21:  
lim

x → 0   
ax − 1

x    =  log a,    a > 0    

Solution: We know that f(x) = elog f(x)  and so   ax = elogax
 = ex loga . 

 Therefore  
ax − 1

x  = 
ex loga − 1

x log a   × log a 

 Now as x → 0, y = x log a → 0 

 
lim

x → 0   
ax − 1

x   =  
lim

y → 0   
ey − 1

y    ×  log a = log a 
lim

y → 0   



ey − 1

y    

  = log a.   (since  
lim

x → 0  
ex − 1

x   = 1) 

Example 8.22: Evaluate  
lim

x → 0   
5x − 6x

x    

Solution: 

 
lim

x → 0   
5x − 6x

x   = 
lim

x → 0  
(5x − 1) − (6x − 1)

x    

  = 
lim

x → 0  



5x − 1

x   − 
lim

x → 0  



6x − 1

x   

    = log 5 − log 6 = log 



5

6   . 
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Example 8.23:  Evaluate 
lim

x → 0   
3x + 1 − cos x − ex

x   . 

Solution: 

 
lim

x → 0   
3x + 1 − cos x − ex

x   = 
lim

x → 0  
(3x − 1) + (1 − cos x) − (ex − 1)

x   

  = 
lim

x → 0  



3x − 1

x   + 
lim

x → 0  



1 − cos x

x   − 
lim

x → 0  



ex − 1

x   

  = log 3 + 
lim

x → 0   
2 sin2 x/2

x   − 1  

  = log 3 + 
lim

x → 0  
x
2   



sin x/2

x/2

2
 − 1 

  = log3 + 
1
2  

lim
x → 0 (x) 

lim
x → 0  



sin x/2

x/2

2
 − 1 

  = log 3 + 
1
2 ×  0  ×  1 −1 = log 3 − 1. 

Some important limits : 

(1) 
lim

x → ∞   



1 + 

1
x  

x
  exists and we denote this limit by e 

(2) 
lim

x → 0   (1 + x)1/x  =  e  [by taking x = 
1
y in (1)]  

(3) 
lim

x → ∞  



1 + 

k
x  

x
 = ek 

Note : (1) The value of e lies between 2 & 3  i.e.,   2< e < 3 

     (2) 
lim

x → ∞   



1 + 

1
x  

x
  = e   is true for all real x 

 Thus 
lim

x → ∞   



1 + 

1
x  

x
  = e for all real values of x. 

     Note that e = e1 = 1 + 
1
1!  + 

1
1!  + 

1
2!  + 

1
3! +…+ 

1
r! + … This number e is also 

known as transcendental number in the sense that e never satisfies a polynomial 

(algebraic) equation of the form a0xn + a1xn − 1+…+ an − 1 x + an = 0. 

Example 8.24: Compute 
lim

x → ∞  



1 + 

1
x  

3x
 . 
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Solution: Now    



1 + 

1
x  

3x
  = 



1 + 

1
x  

x
  



1 + 

1
x  

x
  



1 + 

1
x  

x
 and so 

 
lim

x → ∞  



1 + 

1
x  

3x
  = 

lim
x → ∞  



1 + 

1
x  

x
 . 



1 + 

1
x  

x
 . 



1 + 

1
x  

x
 

 
lim

x → ∞   



1 + 

1
x  

x
 . 

lim
x → ∞   



1 + 

1
x  

x
 . 

lim
x → ∞  



1 + 

1
x  

x
 = e. e. e. = e3 . 

Example 8.25:  Evaluate 
lim

x → ∞   



x + 3

x − 1
 
x + 3

. 

Solution:  

 
lim

x → ∞   



x + 3

x − 1
 
 x + 3

 = 
lim

x → ∞   



x − 1 + 4

x − 1

(x − 1) + 4
  

  = 
lim

x → ∞   



1 + 

4
x − 1

 (x − 1) + 4
  

  = 
lim

y → ∞   



1 + 

4
y  

y + 4
  (‡y = x − 1→ ∞ as x → ∞) 

  = 
lim

y → ∞  



1 + 

4
y  

y 

 



1 + 

4
y  

4  

  

= 
lim

y → ∞   



1 + 

4
y  

y
 . 

lim
y → ∞   



1 + 

4
y

4
 = e4.  1 = e4 

Example 8.26:  Evaluate 
lim

x → π/2   (1 + cosx)3 sec x. 

Solution:  Put cos x = 
1
y  .     Now  y →  ∞  as x →  

π
2 . 

 
lim

x → π/2  (1 + cosx)3 sec x = 
lim

y → ∞  



1 + 

1
y

3y

 = 
lim

y → ∞  









1 + 

1
y  

y

 

3

  

 = 





lim

y → ∞ 



1 + 

1
y  

y   3

 = e3. 

Example 8.27. Evaluate  
lim

x → 0   
2 x − 1
1 + x − 1

  

Solution : 

 
lim

x → 0   
2x − 1
1 + x − 1

  = 
lim

x → 0   
2x − 1

(1 + x − 1)
  



 

 1 + x + 1  
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  = 
lim

x → 0  
2x − 1

x   . 
lim

x → 0  ( )1 + x + 1   

  = log 2 . ( )1 + 1            





‡  
lim

x → 0  
a x − 1

x  = loga   

  = 2 log 2 = log 4 . 

Example 8.28: Evaluate 
lim

x → 0   
1 + x − 1 − x

sin− 1 x
   

Solution: 

 Put  sin− 1x = y. Then x = sin y and y → 0 as x → 0. 

 Now 
lim

x → 0   
1 + x − 1 − x

sin− 1 x
  = 

lim
x → 0  

(1 + x) − (1 − x)

 sin− 1x
   





1

1 + x + 1 − x
  

  = 
lim

y → 0  
2 sin y

y  . 
lim

y → 0   
1

1 + sin y + 1 − sin y
  

  = 2  
lim

y → 0  



sin y

y    




1

1 + 0 + 1 − 0
  

  = 2 × 1 ×  
1
2   = 1 

EXERCISE 8.1 
Find the indicated limits. 

 (1) 
lim

x → 1   
x2 + 2x + 5

x2 + 1
    (2)  

lim
x → 2 −

   
x − 2

2 − x
     

 (3) 
lim

h → 0   
(x + h)2 − x2

h     (4)  
lim

x → 1   
xm − 1
x − 1

  

 (5) 
lim

x → 4   
2x + 1 − 3

x − 2 − 2
  (6)  

lim
x → 0   

x2 + p2 − p

x2 + q2 − q
  

 (7) 
lim

x → a  
m

x − 
m

a
x − a

  (8)  
lim

x → 1   
3

x − 1
x − 1

  

 (9) 
lim

x → 0   
1 + x + x2 − 1

x   (10)  
lim

x → 0   
sin2 (x/3)

x2   

 (11) 
lim

x → 0   
sin (a + x) − sin (a − x)

x   (12)  
lim

x → 0  
log (1 + αx)

x   

 (13) 
lim

n → ∞   



1 + 

1
n

n + 5
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 (14) Evaluate the left and right limits of f(x)  = 
x3 − 27

x− 3
  at x = 3. Does the limit 

of f(x) as x → 3 exist? Justify your answer. 

 (15) Find the positive integer n such that 
lim

x → 3   
xn − 3n

x − 3
   =  108 . 

 (16) Evaluate 
lim

x → 0   
ex − esinx

x − sin x
  . Hint : Take ex or  esinx as common factor in 

numerator. 

 (17) If f(x)  =  
ax2 + b

x2 − 1
  , 

lim
x → 0  f(x) = 1  and 

lim
x → ∞   f(x) = 1,  

  then prove that  f(− 2) = f(2) = 1. 

 (18) Evaluate 
lim

x → 0  −     
| x |
x    and  

lim
x → 0  +     

| x |
x    . 

  What can you say about  
lim

x → 0    
| x |
x     ? 

 (19) Compute 
lim

x → 0    
a x − b x

x   ,  a, b > 0. Hence evaluate 
lim

x → 0   
5 x − 6 x

 x   

 (20) Without using the series expansion of log (1 + x),  

  prove that 
lim

x → 0  
log (1 + x)

x   = 1  

8.2 Continuity of a function 
 Let f be a function defined on an interval I = [a, b]. A continuous function 
on I is a function whose graph y = f(x) can be described by the motion of a 
particle travelling along it from the point (a, f(a)) to the point (b, f(b)) without 
moving off the curve.  

Continuity at a point 
Definition: A function  f is said to be continuous at a point c, a < c < b, if  

lim
x → c  f(x) = f(c) 

     A function f is said to be continuous from the left at c if  
lim

x → c  − f(x) = f(c).        

    Also f is  continuous from the right at c if 
lim

x → c  +  f(x) = f(c). Clearly a 

function is continuous at c if and only if it is continuous from the left as well as 
from the right. 
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Continuity at an end point 
 A  function f defined on a closed interval [a, b] is said to be  continuous at 
the end point a if it is continuous from the right at a, that is, 

lim
x → a  +  f(x)  =  f(a) . 

 Also the function is continuous at the end point b of [a, b] if  
lim

x → b  −  f(x) = f(b). 

 It is important to note that a function is continuous at a point c if 

 (i) f is well defined at x = c i.e. f(c) exists. (ii) 
lim

x → c  f(x) exists, and  

(iii) 
lim

x → c  f(x) = f(c). 

Continuity in an interval 
 A function f is said to be continuous in an interval [a, b] if it is continuous 
at each and every point of the interval. 
Discontinuous functions 
 A function f is said to be discontinuous at a point c of its domain if it is not 
continuous at c. The point c is then called a point of discontinuity of the 
function. 
 Theorem 8.1:  If f, g be continuous functions at a point c then the 
functions  
f + g, f − g, fg are also continuous at c and if g(c) ≠ 0 then f / g is also 
continuous at c. 
Example 8.29:  Every constant function is continuous. 
Solution: Let f(x) = k be the constant 
function. 
 Let c be a point in the domain of f. 
 Then f(c) = k. 

 Also 
lim

x → c   f(x) = 
lim

x → c  (k) = k, 

 Thus 
lim

x → c  f(x) = f(c). 

 Hence f(x) = k is continuous at c. 
 

Fig. 8.3 

Note : The graph of y = f(x) = k is a straight line parallel to x-axis and which 
does not have any break. That is, continuous functions are functions, which do 
not admit any break in its graph. 
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Example 8.30: The function f(x) = xn, x ∈ R is continuous. 
Solution. Let x0 be a point of R. 

 Then    
lim

x → x0
  f(x) = 

lim
x → x0

  (xn) = 
lim

x → x0
  (x. x … n factors) 

  = 
lim

x → x0
  (x). 

lim
x → x0

  (x)  … 
lim

x → x0
  (x) … (n factors) 

  = x0.x0 … x0         (n factors) = x0
n 

 Also     f(x0) = x0
n .  Thus   

lim
x → x0

  f(x) = f(x0) = x0
n  

 ⇒    f(x) = xn is continuous at x0 

Example 8.31: The function f(x) = kxn is continuous where k ∈ R and k ≠ 0. 

Solution. Let g(x) = k and h(x) = xn. 
 By the example 8.29, g is continuous and  by example 8.30, h is 

continuous and hence by Theorem 8.1,  f(x) = g(x) . h(x) = kxn is continuous. 
Example 8.32: Every polynomial function of degree n is continuous. 

Solution.  Let f(x) = a0xn +a1 xn − 1 + a2xn − 2 + … + an − 1 x + an , a0 ≠ 0 be a 

polynomial function of degree n.  

 Now by example 8.31 aix
i, i = 0, 1, 2, … n are continuous. By theorem 8.1 

sum of continuous functions is continuous and hence the function f(x) is 
continuous. 

Example 8.33: Every rational function of the form p(x) / q(x) where p(x) and 
q(x) are polynomials, is continuous  (q(x) ≠ 0). 

Solution. Let r(x) = p(x) / q(x) ,  q(x) ≠ 0 be a rational function of x. Then we 
know that p(x) and q(x) ≠ 0 are polynomials. Also, p(x) and q(x)  are 
continuous, being polynomials. Hence by theorem 8.1 the quotient p(x) / q(x)  is 
continuous. i.e. the rational function r(x) is continuous. 
Results without proof : 
(1) The exponential function is continuous at all points of R. 

 In particular the exponential function f(x) = ex is continuous. 

 (2) The function f(x) = logx, x > 0 is continuous at all points of R+, where R+ 
is the set of positive real numbers. 

(3) The sine function f(x) = sinx is continuous at all points of R. 
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(4) The cosine function f(x) = cosx is continuous at all points of R. 
 Note : One may refer the SOLUTION BOOK for proof. 

Example 8.34: Is the function f(x) =  


sin2x

x  ,  x ≠ 0

1 .  when x = 0
    continuous at x = 0?   

Justify your answer. 
Solution.  Note that f(0) = 1. 

 Now  
lim

x → 0  f(x) = 
lim

x → 0  
sin 2x

x    



‡for x ≠ 0,  f(x) = 

sin 2x
x   

    = 
lim

x → 0  2 



sin 2x

2x   = 2 
lim

x → 0  



sin 2x

2x   

    = 2  
lim

2x → 0   



sin 2x

2x   = 2.1 = 2 . 

 Since 
lim

x → 0  f(x)  =2 ≠ 1 = f(0),  the function is not continuous at x = 0. 

That is, the function is discontinuous at x = 0. 
 Note that the discontinuity of the above function can be removed if we define 

 f(x) =  


sin2x

x  ,  x ≠ 0

2,        x = 0
  so that for this function  

lim
x → 0  f(x) = f (0).  

Such points of discontinuity are called removable discontinuities. 
Example 8.35:.  Investigate the continuity at the indicated point: 

 f(x) =  


sin (x − c)

x − c
   if x ≠ c

0       if x = c
        at x = c 

Solution.  We have f(c) = 0 . 

   Now 
lim

x → c f(x)= 
lim

x → c   
sin (x − c)

x − c
 = 

lim
h → 0  

sin h
h   (‡ h = x − c → 0 as x→c)  

                            = 1 . 

 Since  f(c) = 0 ≠ 1 = 
lim

x → c  f(x) , the function f(x) is discontinuous at x = c.  

Note: This discontinuity can be removed by re-defining the function as  

    f(x) = 


sin(x − c)

x − c
   if x ≠ c

1       if x = c
 

 Thus the point x = c is a removable discontinuity. 
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Example  8.36:  A function f is defined on by  f(x) =



− x2         if x ≤ 0

5x − 4      if 0 < x ≤ 1

4x2 − 3x  if 1 < x < 2
3x + 4     if x ≥ 2

 

 Examine f for continuity at x = 0, 1, 2. 
Solution. 

 (i) 
lim

x → 0  −  f(x) = 
lim

x → 0  −  ( − x2) = 0 

  
lim

x → 0  +  f(x) = 
lim

x → 0  +  (5x − 4) = (5.0 − 4) = − 4 

 Since    
lim

x → 0  −  f(x) ≠ 
lim

x → 0  +  f(x), f(x) is discontinuous at x = 0 

 (ii) 
lim

x → 1  −
  f(x)  = 

lim
x → 1  −

  (5x − 4)  = 5 ×  1 − 4 = 1. 

  
lim

x → 1 +
  f(x) = 

lim
x → 1 +

  (4x2 − 3x) = 4 × 12 − 3 × 1 = 1 

 Also f(1) = 5 × 1 − 4 = 5 − 4 = 1 

 Since 
lim

x → 1  −
  f(x) = 

lim
x → 1 +

   f(x) = f(1), f(x) is continuous at x = 1 . 

 (iii) 
lim

x → 2  −
  f(x) = 

lim
x → 2  −

  (4x2 − 3x) 

   = 4 × 22 − 3 × 2 = 16 − 6 = 10 . 

 and  
lim

x → 2  +  f(x) = 
lim

x → 2  +  (3x + 4) = 3 × 2 + 4 = 6 + 4 = 10 . 

 Also   f (2) = 3 × 2 + 4 = 10 . 

 Since f(2) = 
lim

x → 2  f(x), the function f(x) is continuous at x = 2. 

Example 8.37: Let x denote the greatest integer function. Discuss the 
continuity at x = 3 for the function f(x) = x − x, x ≥ 0. 

Solution.   Now 
lim

x → 3  −  f(x) = 
lim

x → 3  −  x − x  = 3 − 2 = 1, 

   
lim

x → 3  +  f(x) = 
lim

x → 3  +  x − x   = 3 − 3 = 0, 

 and  f(3) = 0 . 

 Note that f(3) = 
lim

x → 3  +  f(x) ≠ 
lim

x → 3  −  f(x) . 

 Hence f(x) = x − x   is discontinuous at x = 3. 
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EXERCISE 8.2 
Examine the continuity at the indicated points   

 (1) f(x) = 


x3 − 8

x2 − 4
    if x ≠ 2

3          if x = 2
  at x  =  2   

 (2)  f(x)  =  x − | x | at x = 0  

 (3) f(x) = 


2x when 0 ≤ x < 1

3 when x = 1
4x when 1 < x ≤ 2

  at x = 1  

 (4)  f( x)  =  


2x − 1,  if x < 0
2x + 6, if x ≥ 0

    at x  =  0 

 (5) Find the values of a and b so that the function f given by 

   f(x)  = 


1, if x ≤ 3

ax + b, if 3 < x < 5
7,  if x ≥ 5

  is continuous at x = 3 and x = 5 

 (6) Let f be defined by f(x) =  



x2

2  , if 0 ≤ x ≤ 1

2x2 − 3x + 
3
2 , if 1 < x ≤ 2

  

   Show that f is continuous at x = 1 . 

 (7) Discuss continuity of the function f, given by f(x) = |x − 1| + |x − 2|,  
at x = 1 and  x = 2. 

8.3 Concept of Differentiation 
 Having defined and studied limits, let us now try and find the exact rates of 
change at a point. Let us first define  and understand what are increments? 

 Consider a function y = f(x) of a variable x. Suppose x changes from an 
initial value x0 to a final value x1 . Then the increment in x is defined to be the 

amount of change in x. It is denoted by ∆x (read as delta x).That is ∆x = x1 − x0. 

 Thus x1 = x0 + ∆x 

 If x increases then ∆x > 0, since x1 > x0. 

 If x decreases then ∆x < 0, since x1 < x0. 
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 As x changes from x0 to x1 = x0 + ∆x, y changes from f(x0) to f(x0 + ∆x). 

We put f(x0) = y0 and f(x0 + ∆x) = y0 + ∆y. The increment in y namely ∆y 

depends on the values of x0 and ∆x. Note that ∆y may be either positive, 

negative or zero (depending on whether y has increased, decreased or remained 
constant when x changes from x0 to x1). 

 If the increment ∆y is divided by ∆x, the quotient 
∆y
 ∆x

  is called the average 

rate of change of y with respect to x, as x changes from x0 to x0 + ∆x. The 

quotient is given by 

   
∆y
 ∆x

  = 
f (x0 + ∆x) − f(x0)

 ∆x
  

 This fraction is also called a difference quotient. 

Example 8.38: A worker is getting a salary of Rs. 1000/- p.m. She gets an 
increment of Rs. 100/- per year. If her house rent is half her salary, what is the 
annual increment in her house rent? What is the average rate of change of the 
house rent with respect to the salary? 

Solution: 

 Let the salary be given by x and the house rent by y. Then y = 
1
2  x. Also  

∆x = 100. Therefore, ∆y = 
1
2  (x + ∆x) − 

1
2  x = 

∆x
2    =  

100
2   = 50.  

 Thus, the annual increment in the house rent is Rs. 50/-.  

 Then the required average rate of change is 
∆y
 ∆x

  = 
50
100  = 

1
2  . 

Example 8.39: If y = f(x) = 
1
x , find the average rate of change of y with respect 

to x as x changes from x1 to x1 + ∆x. 

Solution: ∆y = f(x1 + ∆x) − f(x1) = 
1

x1 + ∆x
  − 

1
x1

   

   = 
− ∆x

x1 (x1 + ∆x)
   

   ∴   
∆y
∆x

  = 
− 1

x1 (x1 + ∆x)
  . 
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8.3.1 The concept of derivative 
 We consider a point moving in a straight line. The path s traversed by the 
point, measured from some definite point of the line, is evidently a function of 
time, 

s =  f(t) . 
 A corresponding value of s is defined for every definite value of t. If t 
receives an increment ∆t, the path s + ∆s will then correspond to the new instant 
t + ∆t, where ∆s is the path traversed in the interval ∆t. 
 In the case of uniform motion, the increment of the path is proportional to 

the increment of time, and the ratio  
∆s
 ∆t

  represents the constant velocity of the 

motion. This ratio is in general dependent both on the choice of the instant t and 
on the increment ∆t, and represents the average velocity of the motion during 
the interval from t to t + ∆t.  

 The limit of the ratio 
∆s
 ∆t

 , if it exists with ∆t tending to zero, defines the 

velocity v at the given instant :  v = 
lim

 ∆t → 0 
∆s
 ∆t

  .  That is 
lim

 ∆t → 0  
∆s
 ∆t

  is the 

instantaneous velocity v. 

 The velocity v, like the path s, is a function of time t; this function is called 
the derivative of function f(t) with respect to t, thus, the velocity is the 
derivative of the path with respect to time. 

 Suppose that a substance takes part in certain chemical reaction. The 
quantity x of this substance, taking part in the reaction at the instant t, is a 
function of t. There is a corresponding increment ∆x of magnitude x for an 

increment of time ∆t, and the ratio 
∆x
 ∆t

  gives the average speed of the reaction in 

the interval ∆t while the limit of this ratio as ∆t tends to zero gives the speed of 
the chemical reaction of the given instant t. 

 The above examples lead us to the following concept of the derivative of a 
function. 

Definition 

 The derivative of a given function y = f(x) is defined as the limit of the 
ratio of the increment ∆y of the function to the corresponding increment ∆x of 
the independent variable, when the latter tends to zero. 
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 The symbols y′ or f′(x) or 
dy
dx   are used to denote derivative: 

   
dy
dx  = y′ = f′(x) = 

lim
∆x → 0  

∆y
 ∆x

  

    = 
lim

∆x → 0   
f(x + ∆x) − f(x)

 ∆x
  

 It is possible for the above limit, not to exist in which case the derivative does 
not exist. We say that the function y = f(x) is differentiable if it has a derivative. 
Note. 
 (1) The operation of finding the derivative is called differentiation. 

  Further it should be noted, the notation 
dy
dx  does not mean dy ÷ dx. It 

simply means 
d(y)
dx    or 

d
dx  f(x), the symbol 

d
dx  is an operator meaning 

that differentiation with respect to x whereas the fraction 
∆y
 ∆x

  stands 

for ∆y ÷ ∆x. Although the notation 
dy
dx  suggests the ratio of two 

numbers dy and dx (denoting infinitesimal changes in  

y and x), it is really a single number, the limit of a ratio 
∆y
 ∆x

  as both 

the terms approach 0. 
 (2) The differential coefficient of a given function f(x) for any particular 

value of x say x0 is denoted by f ′(x0) or 



dy

dx  x = x0
 and stands for 

lim
∆x → 0   

f(x0 + ∆x) − f(x0)

∆x
   provided this limit exists. 

 (3) If the limit of  
f(x0 + ∆x) − f(x0)

∆x
  exists when ∆x → 0 from the right 

hand side i.e. ∆x → 0 through positive values alone, it is known as 
right or progressive differential coefficient and is denoted by  

f ′(x0+) = 
lim

∆x → 0   
f(x0 + ∆x) − f(x0)

∆x
  = Rf′(x0) . Similarly the limit of 

f(x0 − ∆x) − f(x0)

− ∆x
  as ∆x → 0 from the left hand side i.e. from negative 

values alone is known as the left or regressive differential coefficient 
and is denoted by  
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                        f ′ (x0−) = 
lim

∆x → 0   
f(x0 − ∆x) − f(x0)

− ∆x
   =  Lf ′ (x0) . 

 If Rf ′(x0) = Lf ′(x0), then f is said to be differentiable at x = x0 and the 

common value is denoted by f ′(x0). If R f ′(x0) and Lf ′ (x0) exist but are 

unequal, then f(x) is not differentiable at x0. If none of them exists then also f(x) 

is not differentiable at x0.  

 Geometrically this means that the graph of the function has a corner and 
hence no tangent at the point (x0, f(x0)).  

8.3.2  Slope or gradient of a curve  







Geometrical meaning of 
dy
dx   

 In this section we shall define what we mean by the slope of a 
curve at a point P on the curve. 
 
 Let P be any fixed point 
on a curve  y = f(x), and let Q 
be any other point on the same 
curve. Let PQ be the 
corresponding secant. If we let 
Q move along the curve and 
approach P, the secant PQ will 
in general rotate about the 
point P and may approach a 
limiting position PT. (Fig 8.4). 

 
Fig. 8.4 

Definition 
 The tangent to a curve at a point P on the curve is the limiting position PT 
of a secant PQ as the point Q approaches P by moving along the curve, if this 
limiting position exists and is unique. 
 If P0 is (x0, y0) and P is (x0 + ∆x, y0 + ∆y) are two points on a curve 

defined by y = f(x), as in Fig. 8.5, then the slope of the secant through these two 
points is given by 

 m′ = tan α0′ = 
∆y
∆x

  = 
f(x0 + ∆x) − f(x0)

− ∆x
 , where α0′ is the inclination of the 

secant.  
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 As ∆x approaches 0, P moves along the curve towards P0 ; and if f ′ (x0) 

exists, the slope of the tangent at P0 is the limit of the slope of the secant P0 P, 

or 

  m0 = tanα0 = 
lim

∆x → 0  
∆y
∆x

  = f ′(x0) = 



dy

dx  x = x0
 where α0 is the 

inclination of the tangent P0T and m0 is its slope. The slope of the tangent to a 

curve at a point P0 is often called the slope of the curve at that point. 

 Thus, geometrically 
we conclude that the 
difference ratio (or the 

difference coefficient) 
∆y
∆x

  

is the slope of the secant 
through the point  
P0(x0,y0) whereas the 

differential coefficient or 
the derivative of y = f(x) 
at x = x0 is the slope or 

gradient of the tangent to 
the curve at P0(x0,y0).  

 
Fig. 8.5 

Definition 

 If f(x) is defined in the interval x0 ≤ x < b, its right hand derivative at x0 is 

defined as f′(x0+) = 
lim

x → x0  +
   

f(x0 + ∆x) − f(x0)

∆x
  provided this limit exists; if 

f(x) is defined in the interval a < x ≤ x0 its left hand derivative at x0 is defined as  

 f′ (x0 −) =  
lim

x → x0 −    
 f(x0 − ∆x) − f(x0)

∆x
  provided this limit exists. 

 If f(x) is defined in the interval a ≤ x ≤ b, then we can write f′(a) for  
f′(a +), and we write f′(b) for f′ (b−) 
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Relationship between differentiability and continuity. 

Theorem 8.2  Every differentiable function is continuous.  

Proof. Let a function f be differentiable at x = c. Then  f′(c) exists and  

f′(c) = 
lim

x → c  
f(x) − f(c)

x − c
  

 Now f(x) − f(c) = (x − c)  
[ ]f(x) − f(c)

(x − c)
  ,  x ≠ c 

 Taking limit as x → c, we have  

 
lim

x → c  { }f(x) − f(c)   = 
lim

x → c  (x − c) . 
[ ]f(x) − f(c)

(x − c)
  

  = 
lim

x → c  (x − c) . 
lim

x → c  
f(x) − f(c)

x − c
  

   = 
lim

x → c  (x − c) . f′(c) = 0. f′(c) = 0. 

 Now        f(x) = f(c) + [ ]f(x) - f(c)    and  
lim

x → c  f(x) = f(c) + 0 = f(c) 

 and therefore f is continuous at x = c. 
 The converse need not be true. i.e. a function which is continuous at a point 
need not be differentiable at that point. We illustrate this by the following example. 
Example 8.40:  A function f(x) is defined in an interval [0, 2] as follows : 
   f(x) = x when 0 ≤ x ≤ 1 
    = 2x − 1 when 1 < x ≤ 2 
 Show that f(x) is continuous at 1 but not differentiable at that point. 
 The graph of this function is as shown in fig. 8.6 
 This function is continuous at x = 1. 

For,  
lim

x → 1 −  f(x) = 
lim

h → 0 f(1 − h) 

  = 
lim

h → 0  (1 − h) 

  = 1 − 0 = 1 

 
lim

x → 1+
  f(x) = 

lim
h → 0  f(1 + h) 

  = 
lim

h → 0  ( )2(1 + h) − 1  

  = 
lim

h → 0  (2h + 1) 

  = 1 . 

 

 
Fig. 8.6 
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 Thus f(x) is continuous at x = 1 

        Now      Rf ′(1) = 
lim

h → 0  
f(1 + h) − f(1)

h   

  = 
lim

h → 0  
[ ]2(1 + h) − 1  − [ ]2(1) − 1

h   = 
lim

h → 0   
2h
h   = 2  and  

   Lf′(1) = 
lim

h → 0  
f(1 − h) − f(1)

(1 − h) − 1
  = 

lim
h → 0  

(1 − h) − 1
− h

   

                                                     = 
lim

h → 0  
− h
− h

  =  1. 

 Since Rf′(1) ≠ Lf′(1), the given function is not differentiable at x = 1. 
Geometrically this means that the curve does not have  a tangent line at the 
point (1, 1). 

Example 8.41:  

 Show that the function y = x1/3=f(x) is not differentiable at x = 0. 

 [This function is defined and continuous for all values of the independent 
variable x. The graph of this function is shown in fig. 8.7] 

Solution: 

 This function does not have derivative at x = 0 

 For, we have y + ∆y = 
3

x + ∆x  

 ∆y = 
3

x + ∆x  − 
3

x  

 At x = 0,  y = 0 and ∆y = 
3

∆x  . 

Now 
lim

∆x → 0   
∆y
∆x

   

            = 
lim

∆x → 0  
f(0 + ∆x) − f(0)

∆x
  

 

Fig. 8.7 

   = 
lim

∆x → 0  
3

∆x − 0
∆x

  = 
lim

∆x → 0  
1

3
(∆x)2

  =  + ∞. 
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 Consequently this function is not differentiable at the point x = 0. The 

tangent to the curve at this point forms with the x-axis, an angle 
π
2  , which 

means that it coincides with the y-axis. 

Example 8.42:  Show that the function f(x) = x2 is differentiable on [0, 1]. 

Solution. Let c be any point such that 0 < c < 1 . 

 Then f′(c) =
lim

x → c   
f(x) − f(c)

x − c
  = 

lim
x → c  

x2 − c2

x − c
   =  

lim
x → c   (x + c) = 2c . 

 At the end points we have 

 f′(0) = 
lim

x → 0 +  
f(x) − f(0)

x − 0
  = 

lim
x → 0 + 

x2

x    = 
lim

x → 0  (x) = 0  

 and   f′(1) = 
lim

x → 1 −  
f(x) − f(1)

x − 1
   =  

lim
x → 1 − 

x2 − 1
x − 1

  

  = 
lim

x → 1 − (x + 1) = 2 . 

 Since the function is differentiable at each and every point of [0, 1],  

f(x) = x2 is differentiable on [0, 1]. 

EXERCISE 8.3 

 (1) A function f is defined on R+ by f(x) =   


x  if 0 < x < 1
1  if x ≥ 1  . 

  Show that f′(1) does not exist. 
 (2) Is the  function f(x) = | x | differentiable at the origin. Justify your answer. 
 (3) Check the continuity of the function f(x) = |x | + | x − 1 | for all x ∈ R. What 

can you say its differentiability at x = 0, and x = 1? 
 (4) Discuss the differentiability of the functions 

  (i) f(x) = 


1, 0 ≤ x ≤ 1
x,  x > 1

at x = 1  (ii) f(x) = 


2x − 3, 0 ≤ x ≤ 2

x2  − 3,  2 < x ≤ 4
at x = 2, x = 4 

 (5) Compute Lf′ (0) and Rf′(0) for the function f(x) = 


x(e1/x − 1)

(e1/x + 1)
,   x ≠ 0

0,    x = 0

 

8.4. Differentiation Techniques 
 In this section we discuss different techniques to obtain the derivatives of 
given functions. In order to find the derivative of a function y = f(x) from first 
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principles (on the basis of the general definition of a derivative) it is necessary 
to carry out the following operations : 

 1) increase the argument x by ∆x, calculate the increased value of the 
function 

  y + ∆y = f(x + ∆x). 

 2) find the corresponding increment of the function ∆y = f(x + ∆x) − f(x) ; 
 3) form the ratio of the increment of the function to the increment of the 

argument  
∆y
∆x

   =   
f(x + ∆x) − f(x)

∆x
   ;   

 4) find the limit of this ratio as ∆x → 0; 

  
dy
dx   =  f ′(x)  =  

lim
∆x → 0   

f(x + ∆x) − f(x)
∆x

  

 We shall apply this general method for evaluating the derivatives of certain 

elementary (standard) functions. As a matter of convenience we denote 
dy
dx  = f 

′(x) by y′. 

8.4.1 Derivatives of elementary functions from first principles 

I. The derivative of a constant function is zero. 

   That is,     
d
dx  (c) = 0,  where c is a constant … (1) 

Proof.  Let           f(x) = c      Then   f(x + ∆x) = c 

   
df(x)
dx   = 

lim
∆x → 0  

f(x + ∆x) − f(x)
∆x

  

   ∴ 
d
dx  (c) = 

lim
∆x → 0  

c − c
∆x

   = 0 . 

II. The derivative of xn is nxn − 1, where n is a rational number 

   i.e.        
d
dx  (xn) = nxn − 1 . … (2) 

Proof:  Let        f(x) = xn.     Then    f(x + ∆x) = (x + ∆x)n 

   Now  
d f(x)

dx   = 
lim

∆x → 0  
f(x + ∆x) − f(x)

∆x
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   ∴ 
d(xn)

dx   = 
lim

∆x → 0  
(x + ∆x)n− xn

∆x
   = 

lim
∆x → 0   

xn 




1 + 

∆x
x

 n
 − xn

∆x
  

    = 
lim

∆x → 0  xn  







1 + 

∆x
x  

n
 − 1

∆x
  

    = xn − 1 
lim

∆x → 0   













1 + 

∆x
x  

n
 − 1

∆x
x

  . 

 Put   y  =  1 + 
∆x
x   As  ∆x → 0,   y → 1 . 

   ∴ 
d(xn)

dx   = xn − 1 lim
y → 1  



yn − 1

y − 1
  

    = n xn − 1  

    = nxn − 1. 





‡ 
lim

y → a 
yn − an

y − a
 = nan − 1   

Note.  This result is also true for any real number  n. 

Example 8.43:  If y = x5 , find 
dy
dx

 

Solution : dy
dx = 5x5 − 1 = 5x4. 

Exampl 8.44: If  y = x  find 
dy
dx 

Solution : 
dy
dx = 1.x1 − 1 = 1x° = 1 . 

Example 8.45:  If y = x  find 
dy
dx .  

Solution:      

 Let us represent this function in the form of a power:   y  = x

1
2   ; 

 Then by formula (II) we get 

   
dy
dx  = 

d
dx  (x 

1
2 ) = 

1
2 x

1
2 − 1

  = 
1
2  x

− 
1
2  = 

1
2 x

  . 
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Example 8.46:  If y  = 
1

x x
   , find  

dy
dx .  

Solution:   

 Represent y in the form of a power. i.e.    y = x
− 

3
2  . 

   Then        
dy
dx  = − 

3
2   x

− 
3
2 − 1

  = − 
3
2   x

− 
5
2   

III. The derivative of   sinx   is  cosx  

 i.e.  if  y  =  sinx   then  
dy
dx   =  cosx    … (3) 

Proof: 
 Let  y = sinx. Increase the argument x by ∆x, then 

 y + ∆y = sin (x + ∆x)  

 ∆y = sin (x + ∆x) − sin x = 2 sin 
(x + ∆x − x)

2    cos 
(x + ∆x + x)

2   

  = 2 sin 
∆x
2   . cos 



x + 

∆x
2   

 
∆y
∆x

  = 
2 sin 

∆x
2  cos 



x + 

∆x
2

∆x
   =  

sin 
∆x
2

∆x
2

  cos 



x + 

∆x
2   

 
dy
dx  = 

lim
∆x → 0  

∆y
∆x

  = 
lim

∆x → 0  
sin 

∆x
2

∆x
2

  . 
lim

∆x → 0  cos 



x + 

∆x
2   

  = 1. 
lim

∆x → 0  cos 



x + 

∆x
2   . 

 Since f(x) = cosx is continuous 

  = 1. cosx 
lim

∆x → 0  f(x + ∆x) = 
lim

∆x → 0  cos (x + ∆x)  

  = cosx .  = cosx 
          
IV. The derivative of cosx is   − sinx 

 ie. if  y = cosx, then 
dy
dx  = − sinx . … (4) 

Proof:  Let y = cosx    Increase the argument x by the increment ∆x.  
  Then y + ∆y = cos (x + ∆x)  ; 
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   ∆y = cos (x + ∆x)  −  cosx 

    = − 2 sin 
x + ∆x − x

2    sin 
x + ∆x + x

2   

    = − 2 sin 
∆x
2    sin 



x + 

∆x
2   

   
∆y
∆x

  = − 
sin 

∆x
2

∆x
2

  . sin 



x + 

∆x
2   ; 

   
dy
dx  = 

lim
∆x → 0   

∆y
∆x

   =  − 
lim

∆x → 0  
sin 

∆x
2

∆x
2

  sin 



x + 

∆x
2   

    = − 
lim

∆x → 0  
sin 

∆x
2

∆x
2

  . 
lim

∆x → 0  sin 



x + 

∆x
2   

   Since sin x is continuous, 
lim

∆x → 0  sin 



x + 

∆x
2   = sin x  and  

lim
θ → 0   

sinθ
θ   = 1 

   ∴    
dy
dx  = − sin x . 

Theorem 8.3 
 If f and g are differentiable functions of x and c is any constant, then the 
following are true. 

 (i)  
d(cf(x))

dx   = c 
d ( )f(x)

dx    … (5) 

 (ii)  
d( )f(x) ± g(x)

dx   = 
d( )f(x)

dx    ± 
d( )g(x)

dx    . … (6) 

Example 8.47: If y  =  
3
x
 ,  find 

dy
dx  

Solution: y = 3 x
− 

1
2 

  
dy
dx  = 3



− 

1
2   x

− 
1
2 − 1

  = − 
3
2  x

− 
3
2    

Example 8.48:    If y = 3x4 − 1/ 
3

x , find 
dy
dx  
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Solution: 

   y = 3x4 − x−1/3  

   
dy
dx  = 

d
dx   (3x4 − x−1/3) = 3 

d(x4)
dx   − 

d
dx  (x− 1/3) 

    = 3 × 4x4−1 − 



− 

1
3   x

− 
1
3 − 1

   

    = 12x3 + 
1
3 x

− 
4
3  

V. If y =  logax then  
dy
dx  = 

1
x   logae    … (7) 

Corollary : If y = logex  then 
dy
dx  = 

1
x     … (8) 

Proof: In the previous result take a = e.  Then 
d
dx  (logex) = 

1
x  logee = 

1
x  . 1 = 

1
x . 

Example 8.49:  Find y′ if y = x2 + cosx. 

Solution:  We have y = x2 + cosx. 

   Therefore    y′ = 
dy
dx  = 

d
dx  (x2 + cosx) 

    = 
d(x2)

dx   + 
d(cosx)

dx    

    = 2x2 − 1 + (− sin x)  

    = 2x − sin x 
Example 8.50:  

 Differentiate 1/ 
3

x   + log5x + 8 with respect to x. 

Solution:  Let  y = x − 1/3 + log5x + 8 

   y′ = 
dy
dx   =  

d
dx  





x
− 

1
3 + log

5
x + 8   

    = 
d 





x
− 

1
3

dx   +  
d(log5x)

dx    + 
d(8)
dx    
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    = − 
1
3  x 

− 
1
3 − 1

 + 
1
x log5

e + 0,   

    = − 
1
3  x

− 
4
3 + 

1
x log

5
e 

Example 8.51 :  Find the derivative of x5 + 4x4 + 7x3 + 6x2 + 2   w.r. to x . 

Solution:   Let y = x5 + 4x4 + 7x3 + 6x2 + 8x + 2 

   y′ = 
d
dx  (x5 + 4x4 + 7x3 + 6x2 + 8x + 2) 

    = 
d(x5)

dx   + 
d(4x4)

dx    + 
d(7x3)

dx    + 
d(6x2)

dx    + 
d (8x)

dx  + 
d(2)
dx    

    = 5x4 + 4 × 4x3 + 7 × 3x2 + 6 × 2x + 8 × 1 + 0  

    = 5x4 + 16x3 + 21x2 + 12x + 8 . 

Example 8.52:  Find the derivative of y = e7x from first principle. 

Solution:  We have  y = e7x 

 y + ∆y = e7 (x + ∆x) 

 
∆y
∆x

  = 
e7x . e7∆x − e7x

∆x
  

  = e7x  





e7∆x − 1

∆x
  

 y′ =  
lim

∆x → 0  
∆y
∆x

  = 
lim

∆x → 0   e7x 





e7∆x − 1

∆x
  = e7x lim

∆x → 0  7 





e7∆x − 1

7∆x
  

  = 7 e7x  lim
t → 0   



et − 1

t          (‡ t = 7∆x→0 as ∆x → 0) 

  = 7 e7x  × 1  = 7e7x.               (‡ 
lim

t → 0   
et − 1

t   = 1) 

 In particular, if  y = ex, then  
d
dx  (ex) = ex … (9) 

Similarly we can prove 

 VI. The derivative of y = tanx w.r. to x is y′ = sec2x.  … (10) 

 VII. The derivative of y = secx w.r. to x is y′ = secx tanx … (11) 
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  VIII. The derivative of   y = cosec x as y′ = − cosec x cot x … (12) 

 IX. The derivative of  y = cotx as y′ = − cosec 2x  … (13) 
Note :  One may refer the SOLUTION BOOK for the proof. 

EXERCISE 8.4 

 1. Find 
dy
dx   if y = x3 − 6x2 + 7x + 6. 

 2. If f(x) = x3 − 8x + 10, find f′(x) and hence find f′(2) and f′(10). 

 3. If for f(x) = ax2 + bx + 12, f′(2) = 11, f′(4) = 15 find a and b. 
 4. Differentiate the following with respect to x: 

  (i) x7 + ex (ii) log7x +200 

  (iii) 3 sinx + 4 cosx − ex (iv) ex + 3tanx + logx6 

  (v) sin 5 + log10x + 2secx (vi) x − 3/2 + 8e + 7 tanx 

  (vii) 



x + 

1
x

3
  (viii) 

(x − 3) (2x2 − 4)
x   

Theorem 8.4:  (Product rule for differentiation) 
 Let u and v be differentiable functions of x. Then the product function 
   y = u(x)  v(x) is differentiable and 
   y′ = u(x)  v′(x) + v(x)  u′(x) … (14) 
Proof: We have  y = u(x)  v(x) 
   y + ∆y = u(x + ∆x)  v(x + ∆x) 

     ∆y = u(x + ∆x)  v(x + ∆x) − u(x)  v(x) 

   ∴   
dy
dx  = 

lim
∆x → 0  

∆y
∆x

   

    = 
lim

∆x → 0  
u(x + ∆x)  v(x + ∆x) − u(x)  v(x)

∆x
 . 

 Adding and subtracting u(x + ∆x)  v(x) in the numerator and then  
re-arranging we get: 

y′ = 
lim

∆x → 0  
u(x + ∆x) v(x + ∆x) − u(x + ∆x)  v(x) + u(x + ∆x)  v(x) − u(x) v(x)

∆x
  

  = 
lim

∆x → 0  
u(x + ∆x) [ ]v(x + ∆x) − v(x)  + v(x) [ ]u(x + ∆x) − u(x)

∆x
  

  = 
lim

∆x → 0  u(x+∆x).
lim

∆x → 0   
v(x + ∆x) − v(x)

∆x
 + v(x) 

lim
∆x → 0  

u(x + ∆x) − u(x)
∆x
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 Now, since u is differentiable, it is continuous and hence  

   
lim

∆x → 0  u(x + ∆x) = u(x)  

  Since u and v are differentiable we have 

   u′(x) = 
lim

∆x → 0  
u(x + ∆x) − u(x)

∆x
    

  and v′(x) = 
lim

∆x → 0  
v(x + ∆x) − v(x)

∆x
  . 

 Therefore y′ = u(x) v′(x) + v(x)  u′(x). 

 Similarly, if u, v and w are differentiable and if y = u(x)  v(x)  w(x) then  

   y′ = u(x)  v(x)  w′(x) + u(x)  v′(x)  w(x) + u′(x)  v(x)  w(x) 

Note (1). The above product rule for differentiation can be remembered as : 

           Derivative of the product of two functions 

      = (1st funct.) (derivative of 2nd funct.)+(2nd funct.) (derivative of 1st funct.). 

Note (2).  The product rule can be rewritten as follows : 

   (u(x) . v(x))′ = u(x) . v′(x) + v(x) . u′(x) 

   
( )u(x) . v(x) ′
u(x) . v(x)   = 

u′(x)
u(x)   + 

v′(x)
v(x)   . … (15) 

 It can be generalised as follows: 

 If u1, u2, … ,un are differentiable functions with derivatives u1′, u2′, …,  

un′ then 

   
(u1 . u2 … un)′

u1 . u2 … un
  = 

u1′
u1

   +  
u2′
u2

  + 
u3′
u3

  + … + 
un′
un

  . … (16) 

Example 8.53:  Differentiate ex tan x w.r. to x. 

Solution:  Let y = ex . tanx. 

 Then y′ = 
d
dx  (ex . tanx)  = ex 

d
dx  (tanx) + tanx 

d
dx  (ex)  

    = ex. sec2x + tanx . ex  

    = ex (sec2x + tanx) . 

Example 8.54:  If y = 3x4 ex + 2sinx + 7 find y′. 

Solution: y′ = 
d y
dx    =  

d(3x4 ex + 2sinx + 7)
dx    
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    = 
d(3x4 ex)

dx    + 
d(2 sinx)

dx    + 
d(7)
dx    

    = 3 
d(x4 ex)

dx    + 2 
d(sin x)

dx   + 0 

    = 3 



x4 

d
dx (ex) + ex 

d
dx (x4)  + 2 cosx    

    = 3 [x4 . ex + ex . 4x3] + 2 cosx  

    = 3x3 ex (x + 4) + 2 cosx . 

Example 8.55:  Differentiate (x2 + 7x + 2) (ex − logx) with respect to x. 

Solution: Let y = (x2 + 7x + 2) (ex − logx) 

   y′ = 
d
dx  [ ](x2 + 7x + 2) (ex − logx)   

    = (x2 + 7x + 2) 
d
dx  (ex − logx) + (ex − logx) 

d
dx  (x2 + 7x + 2) 

    = (x2 + 7x + 2)  



d

dx (ex) − 
d
dx (logx)   

     + (ex − logx) 



d

dx (x2) + 
d
dx (7x) + 

d
dx (2)   

    = (x2 + 7x + 2)  



ex − 

1
x   + (ex − logx) (2x + 7 + 0) 

    = (x2 + 7x + 2) 



ex − 

1
x   + (ex − logx) (2x + 7) . 

Example 8.56: Differentiate (x2 − 1) (x2 + 2) w.r. to x using product rule. 
Differentiate the same after expanding as a polynomial. Verify that the two 
answers are the same. 

Solution:  Let  y = (x2 − 1) (x2 + 2) 

   Now y′ = 
d
dx  [(x2 − 1) (x2 + 2)] 

    = (x2 − 1) 
d
dx  (x2 + 2) + (x2 + 2) 

d
dx  (x2 − 1) 

    = (x2 − 1) 



d

dx (x2) + 
d
dx (2)  + (x2 + 2) 



d

dx (x2) + 
d
dx ( − 1)   

    = (x2 − 1) (2x + 0) + (x2 + 2) (2x + 0) 

    = 2x (x2 − 1) + 2x (x2 + 2)   
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    = 2x (x2 − 1 + x2 + 2) = 2x (2x2 + 1) . 

Another method 

   y = (x2 − 1) (x2 + 2) = x4 + x2 − 2 

   y′ = 
d
dx  (x4 + x2 − 2) = 4x3 + 2x = 2x (2x2 + 1) 

 We observe that both the methods give the same answer. 

Example 8.57:  Differentiate ex logx  cotx 

Solution:      Let         y = ex logx cotx 
    = u1 . u2 . u3  (say) 

 where u1 = ex ; u2  = log x, u3 = cot x. 

   y′ = u1 u2 u3′ + u1 u3 u2′ + u2 u3 u1′ 

    = ex logx (− cosec2x) + ex cot x . 
1
x  + logx . cotx . ex 

    = ex  



 cotx . logx + 

1
x cotx − logx . cosec2x  

Note: Solve this problem by using Note 2. 

EXERCISE 8.5 

Differentiate the following functions with respect to x. 

  (1) ex cos x (2)  
n

x   log x  ,  x > 0 

  (3) 6 sin x log10x + e (4)  (x4 − 6x3 + 7x2 + 4x + 2) (x3 −1) 

  (5) (a − b sinx) (1 − 2 cosx) (6)  cosec x . cotx 

  (7)  sin2x (8) cos2x 

  (9) (3x2 + 1)2 (10)  (4x2 − 1) (2x + 3) 

  (11) (3 secx − 4 cosec x) (2 sin x + 5 cos x) 

  (12)  x2 ex sinx (13) x  ex log x. 

Theorem:  8.5 (Quotient rule for differentiation) 

 If u and v are differentiable function and if v(x) ≠ 0, then 
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d 



u

v
dx   = 

v 
du
dx − u 

dv
dx

v2    … (17) 

 i.e.   



u

v

′
 = 

vu′ − uv′

v2   .        

Exampl 8.58:   

 Differentiate 
x2 − 1

x2 + 1
   with respect to x . 

Solution:   

 Let     y = 
x2 − 1

x2 + 1
  = 

u
v ,  u = x2 − 1 ;  v = x2 + 1  

 y′ = 
d
dx   







x2 − 1

x2 + 1
= 

(x2+1) (x2−1)′ − (x2−1) (x2+1)′

(x2+1) 2    Using (17) 

    = 
(x2 + 1) (2x) − (x2 − 1) (2x)

(x2 + 1) 2    
[ ](x2 + 1) − (x2 − 1) 2x

(x2 + 1) 2   

    = 2x 
2

(x2 + 1) 2   =  
4x

(x2 + 1) 2  . 

Example 8.59:  Find the derivative of 
x2 + ex sinx
cosx + logx   with respect to x 

Solution:  

 Let    y = 
x2 + ex sinx
cosx + logx   =  

u
v  ,  u = x2 + ex sinx,  v = cosx + logx 

Now   y′ = 
vu′ − uv′

v2   

  = 
(cosx + logx) (x2 + ex sinx)′ − (x2 + exsinx) (cosx + logx) ′

(cosx + logx)2   

  = 
(cosx + logx) [ ](x2)′ + (exsinx)′  − (x2 + ex sinx) [ ](cosx)′ + (logx)′

(cosx + logx)2   
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  = 
(cosx + logx) [ ]2x + ex cosx + sin x ex  − (x2 + exsinx) 



− sinx + 

1
x

(cosx + logx)2   

  = 
(cosx + logx) [ ]2x + ex(cosx + sinx)  − (x2 + ex sin x) 



1

x − sinx

(cosx + logx)2   . 

Example 8.60:  Differentiate 
sinx + cosx
sinx − cosx

   with respect to x. 

Solution:  

 Let   y = 
sinx + cosx
sinx − cosx

  = 
u
v  ,   u = sinx + cosx,  v = sinx − cosx 

 y′ = 
vu′ − uv′

v2   = 
(sinx − cosx) (cosx − sinx) − (sinx + cosx) (cosx + sinx)

(sinx − cosx)2   

  = 
− [ ](sinx − cosx)2 + (sinx + cosx) 2

(sinx − cosx)2   

  = 
− ( )sin2x + cos2x − 2sinx cosx + sin2x + cos2x + 2sin x cos x

(sinx − cosx)2   

  = − 
2

(sinx − cosx)2  

EXERCISE 8.6 
Differentiate the following functions using quotient rule. 

 (1) 
5

x2  (2) 
2x − 3
4x + 5  (3) 

x7 − 47

x − 4
  

 (4) 
cos x + log x

x2 + ex   (5) 
log x − 2x2

logx + 2x2   (6) 
logx
sinx  

 (7) 
1

ax2 + bx + c
  (8) 

tan x + 1
tan x − 1

         (9) 
sin x + x cosx
x sin x − cosx

       (10) 
logx2

ex   

The derivative of a composite function (Chain rule) 

 If u = f(x) and y = F(u), then y = F(f(x)) is the composition of f and F. 

 In the expression y = F(u), u is called the intermediate argument. 
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Theorem 8.6: If u = f(x) has the derivative f′(x) and y = F(u) has the derivative 

F′(u), then the function of a function F(f(x)) has the derivative equal to  

F′(u) f′(x), where in place of u we must substitute u = f(x). 

Proof: We have u = f(x), y = F(u). 

 Now u + ∆u = f(x + ∆x), y + ∆y = F(u + ∆u) 

 Therefore  
∆u
∆x

   =  
f(x + ∆x) − f(x)

∆x
   and 

∆y
∆u

  = 
F(u + ∆u) − F(u)

∆u
  

 If f′(x) = 
du
dx  ≠ 0, then ∆u, ∆x ≠ 0. 

 Since f is differentiable, it is continuous and hence when ∆x→0, x + ∆x→x  

 and f(x + ∆x)→f(x). That is, 
lim

∆x → 0 (x+∆x) = x and 
lim

∆x → 0 f(x+∆x) = f(x). 

 Therefore 
lim

∆x → 0  (u + ∆u) = ∆u 

 Since ∆u ≠ 0 as ∆x → 0, we may write 
∆y
∆x

   =  
∆y
∆u

  . 
∆u
∆x

  

 Since both f and F are continuous functions  

 we have ∆u → 0 when ∆x → 0 and ∆y → 0 when ∆u → 0. 

 Therefore   
lim

∆x → 0   
∆y
∆x

  = 
lim

∆u → 0  
∆y
∆u

  . 
lim

∆x → 0 
∆u
∆x

  

  = y′(u)  u′(x) = F′(u)  f′(x)  = F′(f(x))  f′(x) … (18) 

 This chain rule can further be extended to   
   i.e. if        y = F(u), u = f(t), t = g(x)  then 

   
dy
dx = F′(u) . u′(t) . t′(x) 

   i.e.        
dy
dx = 

dF
du  . 

du
dt   . 

dt
dx  . … (19) 

Example 8.61:  Differentiate log x   with respect to x. 
Solution:  Let y = log x  

        Take u = x  , and so y = log u,  Then by chain rule 
dy
dx  = 

dy
du  . 

du
dx  

    Now  
dy
du  = 

1
u   ;  

du
dx  ; 

1
2 x
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Therefore by chain rule   
dy
dx = 

1
u  . 

1
2 x

   =  
1

x . 2 x
  =  

1
2x . 

Example 8.62:  Differentiate sin (log x) 
Solution:  Let y = sin u,  where u = log x 

 Then by chain rule  
dy
dx  = 

dy
du  . 

du
dx  ,  

 Now  
dy
du  = cos u  ; 

du
dx  = 

1
x  

 ∴    
dy
dx  = cos u . 

1
x   =  

cos (logx)
x   . 

Example 8.63:   

 Differentiate esinx2
 

Solution:   Let     y = esinx2
  ;  u = sinx2   ;  t = x2 

            Then  y = eu, u = sint, t = x2 

 ∴ By chain rule 

   
dy
dx = 

dy
du  . 

du
dt   . 

dt
dx   =  eu . cost. 2x 

    = esinx2
 . cos(x2) . 2x = 2x esin(x2) cos (x2) 

    = 2x esin(x2) cos (x2) . 
Example 8.64:  Differentiate sin (ax + b) with respect to x 
Solution:  Let          y = sin (ax + b) = sinu, u = ax + b 

   
dy
du  = cos u  ;  

du
dx  = a 

   ∴ 
dy
dx  = cos u . a = a cos (ax + b). 

EXERCISE 8.7 
Differentiate the following functions with respect to x 

 (1) log (sinx) (2) esin x (3) 1 + cotx  

 (4) tan(logx) (5) 
ebx

cos (ax + b)  (6) log sec 



π

4 + 
x
2   

 (7) log sin (ex + 4x + 5) (8) sin 





x
3
2           (9) cos ( )x       (10)  esin(logx). 



 76

8.4.2 Derivatives of inverse functions 
 If for the function y = f(x) there exists an inverse function x = φ(y) and if 
dx
dy  = φ′(y) ≠ 0, then  y = f(x) has derivative f′(x) equal to 

1
 φ′(y)

 ; that is 

   
dy
dx  = 

1
dx
dy

     … (20) 

Proof.  We have x = φ(y)     Then  
dx
dx  = 

d(φ(y))
dx     

  That is, 1 = φ′(y)  
dy
dx   (by chain rule) 

   1 = 
dx
dy  . 

dy
dx .    Hence,   

dy
dx  = 

1
dx
dy

  .   

Derivatives of inverse trigonometrical functions. 

I. The derivative of y = sin−1x is     
dy
dx  =

1

1 − x2
    … (21) 

Proof:       We have    y = sin−1x and x = sin y 

            Then   
dx
dy  = cos y  =  1 − sin2y  = 1 − x2   

    
d(sin−1x)

dx   = 
dy
dx   =  

1





dx

dy

  = 
1

1 − x2
  .  

II. The derivative of  y = cos−1x is 
dy
dx  = − 

1

1 − x2
  … (22) 

Proof:   We have y = cos−1x and x = cos y 

   ∴    
dx
dy  = − siny = − 1 − cos2y  =  − 1 − x2  

   
d(cos−1x)

dx   = 
dy
dx   =  

1





dx

dy

   =  
− 1

1 − x2
  . 

Aliter : We know that sin−1x + cos−1x = 
π
2  . 

 This implies 
d
dx  (sin−1x) + 

d
dx  (cos−1x) = 

d
dx  



π

2   
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1

1 − x2
  + 

d(cos−1x)
dx   = 0    ∴ 

d(cos−1x)
dx   = − 

1

1 − x2
  . 

III. The derivative of the function   y = tan−1x is 
dy
dx  = 

1

1 + x2   … (23) 

Proof:   We have y = tan−1x and  x = tany 

  This implies   x′ = 
d
dy  (tan y)  = sec2y = 1 + tan2y = 1 + x2 

     y′ = 
1

x′   =  
1

1 + x2    

IV. The derivative of y = cot−1x is y′ = − 
1

1 + x2  . … (24) 

Proof:  We have y = cot−1x and x = cot y. 

   
dx
dy  = − cosec2y =  − (1 + cot2y) = − (1 + x2) 

 ∴ by (20), 
dy
dx  = 

1
dx
dy

   =  − 
1

1 + x2  . 

 Aliter : We know that    tan−1x + cot−1x = 
π
2  . 

 Differentiating with respect to x on both sides,  

   
d (tan−1x)

dx   + 
d (cot−1x)

dx   = 
d 



π

2
dx     

   
1

1 + x2  + 
d (cot−1x)

dx   = 0 

   ∴ 
d (cot−1x)

dx   = − 
1

1 + x2  . 

V. The derivative of y = sec−1x is  
dy
dx  = 

1

x x2 − 1
        … (25) 

Proof:  We have      y = sec−1x and   x = secy 

   
dx
dy  = sec y tan y = sec y sec2 y − 1    



 78

 ∴ by (20),  
d (sec−1x)

dx   = 
dy
dx   =  

1
dx
dy

   =  
1

x x2 − 1
  . 

VI. The derivative of y = cosec−1x is  
dy
dx  = − 

1

x x2 − 1
  … (26)  

Proof: We have y = cosec−1x  and  x = cosec y 

   
dx
dy  = 

d (cosec y)
dy   =  − cosec y cot y 

    = − cosec y cosec 2y − 1  = − x x2 − 1  

Therefore by (20) 
dy
dx  = 

1
dx
dy

  = − 
1

x x2 − 1
  . 

Example 8.65: Differentiate y = sin−1 (x2 + 2x ) with respect to x. 

Solution:  We have y = sin−1 (x2 + 2x) 

  Take     u =  x2 + 2x    Then y = sin−1(u), a function of function.  
 Therefore by chain rule, 

   y′ = 
dy
du   

du
dx  = 

1

1 − u2
   

d (x2 + 2x)
dx  ,  by (21) 

    = 
1

1 − (x2 + 2x)2
  (2x + 2)  =  

2(x + 1)

1 − x2(x + 2)2
  . 

Example 8.66:  Find 
dy
dx   if y = cos−1 



1 − x

1 + x   . 

Solution:  We have y = cos−1 



1 − x

1 + x  . 

 Take  u = 
1 − x
1 + x .  Therefore y = cos−1(u), a function of function. 

By chain rule  
dy
dx  = 

dy
du  . 

du
dx  .  

 ∴  
dy
dx  = − 

1

1 − u2
  . 

d 



1 − x

1 + x
dx     

  = − 
1

1 − u2
   





(1+x) (−1) − (1−x) (1)

(1+x)2    =  − 
1

1−



1−x

1+x
2
 . 

− 2

(1 + x)2  
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  = −  
1

(1 + x)2 − (1 − x)2

1 + x

    
− 2

(1 + x)2  =  
(1 + x)

4x
    

2

(1 + x)2  =  
1

x (1 + x)
  . 

Example 8.67:  Find y′ if y = tan−1 (ex) 

Solution: We have y = tan−1 (ex).   Take u = ex  then y = tan−1 (u).  

  By chain rule,    y′ = 
dy
du  . 

du
dx  = 

1

1 + u2   
d (ex)

dx     =  
ex

1 + e2x  . 

EXERCISE 8.8 
Find the derivatives of the following functions: 

 (1) sin−1 



1 − x

1 + x       (2) cot−1 (ex2
)    

 (3) tan−1 (log x)        (4) y = tan−1 (cotx) + cot−1 (tanx) 

8.4.3 Logarithmic  Differentiation 
 We also consider the differentiation of a function of the form: 

 y = uv where u and v are functions of x. 

 We can write y = elog uv
 = evlog u 

 Now y falls under the category of function of a function.  

 y′ = evlog u    
d (v log u)

dx    

  = ev log u  



v . 

1
u u′ + log u.v′   = uv 



v

u u′ + v′ log u   

  = vuv − 1 u′ + uv (log u) v′. … (27) 

Another method: 

 y = uv    Taking logarithm on both sides 

 log y = log uv    ⇒    log y  =  v log u 
 Diff. both sides with respect to x 

   
1
y   

dy
dx  = v 

1
u  u′ + v′ log u 

   
dy
dx  = y 



v

u u′ + v′ log u   = uv  



v

u u′ + v′ log u    

Example 8.68:  Find the derivative of y = xα, α is real . 
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Solution . We have               y = xα 

   Then by (27)       y′ = α xα −1 . 1 + xα . (log x) . 0  

    = αxα − 1    (‡u = x, v = α , v′ = 0) 

Note: From example (8.74),we observe that the derivative of xn = nxn − 1 is true 
for any real n. 

Example 8.69:  Find the derivative of xsinx w.r. to x. 

Solution:  Let y = xsinx.    Here u = x ; v = sinx  ;  u′ = 1  ;  v′ = cosx. 

 Therefore by (27), y′ = 
dy
dx  = sinx . xsinx − 1 . 1 + xsinx (log x) cosx 

    = xsinx 



sinx

x  + cosx (log x)  . 

Example 8.70:  Differentiate :  
(1 − x) x2 + 2

(x + 3) x − 1
  

Solution: Let     y = 
(1 − x) x2 + 2

(x + 3) x − 1
  

 In such cases we take logarithm on both sides and differentiate. 

   logy = log (1 − x) x2 + 2  − log (x + 3) x − 1  

    = log (1 − x) + 
1
2  log (x2 + 2) − log (x + 3) − 

1
2 log (x − 1). 

Differentiating w.r. to x we get:  

 ∴ 
1
y   

dy
dx  = 

− 1
1 − x

   +  
2 x

2(x2 + 2)
  −  

1
x + 3  − 

1
2  . 

1
x − 1

  

  =  
x

x2 + 2
   +  

1
2   .  

1
x − 1

   −  
1

x + 3  

 ∴  
dy
dx  = y 





x

x2 + 2
 + 

1
2(x − 1)

 − 
1

x + 3   . 

  = 
(1 − x) x2 + 2

(x + 3) x − 1
   





x

x2 + 2
 + 

1
2(x − 1)

 − 
1

x + 3   

EXERCISE 8.9 
Differentiate the following functions w.r. to x. 

 (1) x
2

  (2) xx2
 (3) xtanx (4) sinx sinx 
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 (5) (tan−1x)logx (6) (log x)sin 
−1

x (7) 
(x2 + 2) (x + 2)

( )x + 4  (x − 7)
  

 (8) (x2 + 2x + 1)
x − 1

  (9)  
sin x cos (ex)

ex + log x
  (10) x sinx + (sin x)x 

8.4.4 The method of substitution 
 Sometimes, a substitution facilitates differentiation. Following example 
will demonstrate this method. 
Example 8.71: Differentiate the following w.r. to x 

 (i) (ax + b)n (ii) log (ax + b)n 

 (iii) sin−1 
2x

1 + x2 (iv) cos−1  
1 − x2

1 + x2  (v) sin2 (ax + b) 

Solution:   (i) We have  y = (ax + b)n.    Put u = ax + b . Then y = un. 

 Now y is a function of u and u is a function of x. By chain rule,  

   y′ = 
dy
du  . 

du
dx  = nun − 1. 

d (ax + b)
dx    

    = n (ax + b)n − 1. a  = na (ax + b)n − 1. 

 (ii)  Let y = log (ax + b)n.    Put ax + b = u .   Then as in (i)   y′ = 
na

ax + b . 

 (iii) Let  y = sin−1  
2x

1 + x2  .    Put x = tanθ  so that θ = tan−1x . 

 ∴  y = sin−1  
2 tanθ

1 + tan2θ
   = sin−1 (sin 2θ) 





‡ sin2θ =  

2 tan θ
1 + tan2θ

   

  = 2θ     (‡ sin−1 (sin θ) = θ) 

  = 2 tan−1 x . 

 ∴ 
dy
dx = 2 . 

d
dx   (tan−1x)  =  

2

1 + x2  . 

 (iv)  Let  y = cos−1  
1 −x2

1 + x2   .   Put x = tanθ. 

   Then θ = tan−1x  and   
1 − x2

1 + x2  = 
1 − tan2θ
1 + tan2θ

  = cos2θ 

    ∴ y = cos−1 (cos2θ)  =  2θ = 2 tan−1x 
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dy
dx  = 2 . 

1

1 + x2   =  
2

1 + x2  . 

 (v)   Let   y = sin2  (ax + b).  Put    ax + b = u  and  v  =  sin u 

  Then y = v2, v = sinu and u = ax + b. 
  Therefore by chain rule, 

    
dy
dx = 

dy
dv  . 

dv
du  . 

du
dx   = 2 v . cos u . a 

     = 2 a sin u . cos u  = a sin 2u = a sin 2 (ax + b). 
Example 8.72:   

       Differentiate (i) sin−1 (3x − 4x3)   (ii) cos−1 (4x3 − 3x)  (iii) tan−1 






3x − x3

1 − 3x2 . 

Solution: 

 (i) Let  y = sin−1 (3x − 4x3) 

  put x = sin θ, so that θ = sin−1x . 

  Now y = sin−1 (3sinθ − 4 sin3θ) 

    = sin−1 (sin3θ)  = 3θ = 3 sin−1x. (‡ sin3θ = 3 sin θ − 4 sin3θ) 

   
dy
dx = 3 . 

1

1 − x2
   =  

3

1 − x2
  

 (ii) Let y = cos−1 (4x3 − 3x) 

  Put x = cos θ, so that θ = cos−1 x. 

  Now y = cos−1 (4 cos3θ − 3 cos θ) 

    = cos−1 (cos 3θ)  (∴ cos 3θ = 4cos3θ − 3 cos θ)  

    = 3θ = 3 cos−1x. 

 ∴  
dy
dx  = − 

3

1− x2
  . 

 (iii)  Let    y = tan−1 






3x − x3

1 − 3x2   

   Put    x  = tanθ, so that θ = tan−1x . 

   y = tan−1  






3tanθ  − tan3θ

1 − 3tan2θ
  = tan−1 (tan3θ) = 3θ = 3 tan−1x. 

   ∴  
dy
dx  = 

3

1 + x2  . 
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EXERCISE 8.10 
Differentiate 

(1) cos−1 
1 + cosx

2   (2) sin−1 
1 − cos2x

2   (3) tan−1  
1 − cosx
1 + cosx  

(4) tan−1




cosx + sinx

cosx − sinx
   (5) tan−1 






1 + x2 − 1

x   (6) tan−1 
1 + x2

1 − x2   

(7) tan−1 
x + a

1 − ax
  (8) tan−1 

1 + x − 1 − x

1 + x + 1 − x
    

(9) cot−1







1+sinx + 1−sin x

1+sinx − 1−sin x
  Hint:sin2x/2+cos2x/2=1; sinx=2 sin x/2 cos x/2) 

8.4.5 Differentiation of parametric functions 
Definition  
 If two variables, say, x and y are functions of a third variable, say, t, then 
the functions expressing x and y in terms of t are called a parametric functions. 
The variable ‘t’ is called the parameter of the function. 
 Let x = f(t), y = g(t) be the parametric equations. 
       Let ∆x, ∆y be the increments in x and y respectively corresponding to an 
increment ∆t in t. 
 Therefore   x + ∆x = f(t + ∆t) and  y + ∆y = g(t + ∆t) 
 and          ∆x = f(t + ∆t) − f(t)   ∆y = g(t + ∆t) − g(t). 

 ∴ 
dy
dx  = 

lim
∆x → 0  

∆y
∆x

  = 
lim

∆x → 0 







∆y

∆t
∆x
∆t

  = 

lim
∆t → 0 

∆y
∆x

 
lim

∆t → 0 
∆x
∆t

     =  




dy

dt





dx

dt

     … (28)  

      where   
dx
dt    ≠ 0 .   Note that   ∆x → 0     ⇒   f(t + ∆t) → f(t)  ⇒    ∆t → 0. 

Example 8.73:  Find 
dy
dx   when x = a cos3t, y = a sin3t . 

Solution: We have x = a cos3t, y = a sin3t. 

       Now         ∴ 
dx
dt   = − 3a cos2t sin t  and  

dy
dt   = 3a sin2t cos t . 

 Therefore by (28)   
dy
dx  = 

dy
dt
dx
dt

   =  
3a sin2t cos t

− 3a cos2t sin t
  = − 

sint
cost   =  −  tan t . 
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Example 8.74:  Find 
dy
dx ,  if x = a (θ + sin θ), y = a (1 − cos θ). 

Solution:    We have  
dx
dθ = a (1 + cosθ)      

dy
dθ  = a(0 + sin θ) 

   ∴ 
dy
dx  = 

dy
dθ
dx
dθ

   = 
a sinθ

a(1 + cosθ)
   =  

2 sin 
θ
2  cos 

θ
2

 2 cos2θ
2

   = tan 
θ
2  . 

EXERCISE 8.11 

 Find 
dy
dx  if x and y are connected parametrically by the equations (without 

eliminating the parameter) . 

 (1) x = a cos θ, y = b sin θ  (2) x = at2,   y = 2at 

 (3) x = a sec3θ, y = b tan3θ (4) x = 4t, y = 
4
t    

 (5) x = 2 cos θ − cos 2θ, y = 2 sinθ − sin 2θ        

 (6) x = a 



cos θ + log tan 

θ
2  , y = a sin θ (7) x = 

3at

1 + t3
  ,  y =  

3at2

1 + t3
                  

8.4.6 Differentiation of implicit functions 

 If the relation between x and y is given by an equation of the form  
f(x, y) = 0 and this equation is not easily solvable for y, then y is said to be an 
implicit function of x. In case y is given in terms of x, then y is said to be an 

explicit function of x. In case of implicit function also, it is possible to get 
dy
dx  

by mere differentiation of the given relation, without solving it for y first. The 
following examples illustrate this method. 

Example 8.75: Obtain 
dy
dx  when x3 + 8xy + y3 = 64. 

Solution .   We have x3 + 8xy + y3 = 64. 

 Differentiating with respect to x on both sides, 

  3x2 + 8 



x 

dy
dx + y . 1   + 3y2 

dy
dx  = 0 

  3x2 + 8y + 8x 
dy
dx  + 3y2 

dy
dx  = 0 
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  (3x2 + 8y) + (8x + 3y2) 
dy
dx  = 0 

  (8x + 3y2) 
dy
dx  = − (3x2 + 8y)      ∴ 

dy
dx   = −  

(3x2 + 8y)

 (8x + 3y2)
   

Example 8.76:  Find 
dy
dx  when tan (x + y) + tan (x − y) = 1  

Solution: We have tan (x + y) + tan (x − y) = 1. 
 Differentiating both sides w.r. to x, 

 sec2(x + y) 



1 + 

dy
dx   + sec2 (x − y) 



1 − 

dy
dx   = 0 

 [sec2 (x + y) + sec2(x − y)] + [sec2(x + y) − sec2 (x − y)] 
dy
dx  = 0 

 [sec2(x + y) − sec2(x − y)] 
dy
dx  = − [sec2 (x + y) + sec2(x − y)] 

   ∴ 
dy
dx  = − 

sec2(x + y) + sec2(x − y)

sec2(x + y) − sec2(x − y)
  = 

sec2(x + y) + sec2(x − y)

sec2(x − y) − sec2(x + y)
  . 

Example 8.77:  Find 
dy
dx   if xy + xe− y + yex = x2. 

Solution: We have xy + xe− y + yex = x2  
 Differentiating both sides w.r. to x, 

 x 
dy
dx  + y.1 + xe− y  



− 

dy
dx  + e−y .1+ y.ex + ex  

dy
dx  = 2x 

 (y + e− y + yex) + (x − xe− y + ex) 
dy
dx  = 2x 

 (yex + y + e− y − 2x) + (ex − xe− y + x) 
dy
dx  = 0 

 (ex − xe− y + x) 
dy
dx  = − (yex + y + e− y − 2x) 

   ∴ 
dy
dx  = − 

(yex + y + e−y
 − 2x)

(ex
 − xe− y

 + x)
  = 

(yex + y + e−y − 2x)

(xe− y − ex − x)
  . 

EXERCISE 8.12 

Find  
dy
dx   for the following implicit functions. 

 (1) 
x2

a2   −  
y2

b2  = 1 (2) y = x sin y  (3) x4 + y4 = 4a2x3y3 

 (4) y tanx − y2 cos x + 2x = 0 (5) (1 + y2) secx − y cotx + 1 = x2  
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 (6) 2y2+
y

1 + x2 + tan2x + siny = 0 (7) xy = tan (xy)  (8) xm yn = (x + y)m + n 

 (9) ex + ey = ex + y (10) xy = 100 (x + y)             (11) xy = yx 

 (12) If ax2 + by2 + 2gx + 2fy + 2 hxy + c = 0, show that 
dy
dx  + 

ax + hy + g
hx + by + f   = 0  

8.4.7 Higher order Derivatives. 
 Let y = f(x) be a differentiable function of x.  

 Then we know its derivative 
dy
dx  = 

lim
∆x → 0  

f(x + ∆x) − f(x)
∆x

  is called first 

order derivative of y = f(x) with respect to x. This first order derivative  f′(x), a 

function of x may or may not be differentiable. If f′(x) is differentiable then   

d
dx 



dy

dx    = 
lim

∆x → 0   
f′(x + ∆x) − f′(x)

 ∆x
  is called second order derivative of  

y = f(x) with respect to x. It is denoted by 
d2y

dx2  .  

 Other symbols like y2, y′′, y
..

  or D2y where D2 = 
d2

dx2  also used to denote 

the second order derivative.  Similarly, we can define third order derivative of  y 
= f(x)  as 

     
d3y

dx3  = 
d
dx  







d2y

dx2   = 
lim

∆x → 0 
f′′(x + ∆x) − f′′(x)

∆x
 provided f′′(x) is differentiable.  

 As before, y3, y′′′, y
…

  or D3y is used to denote third order derivative. 

Example 8.78: Find y3,  if y = x2  

Solution: y1 = 
dy
dx  = 

d
dx  (x2) = 2x 

   y2 = 
d
dx   



dy

dx  = 
d
dx  (2x) = 2 

   y3 = 
d3y

dx3   =  
d
dx   







d2y

dx2   = 
d
dx  (2) = 0. 

Example 8.79: 
 Let y = A cos4x + B sin 4x, A and B are constants. Show that  y2 + 16y = 0 

Solution: 

 y1 = 
dy
dx  =  (A cos4x + B sin 4x)′  = − 4A sin4x + 4B cos 4x 
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 y2 = 
d2y

dx2   =  
d
dx 



dy

dx   

  = 
d
dx  (− 4 A sin 4x + 4B cos 4 x) 

  = − 16 A cos 4x − 16 B sin 4x 

  = − 16 (A cos4x + B sin 4x) = − 16y 

 ∴ y2 + 16y = 0 

Example 8.80:  Find the second derivative of the function log (log x) 
Solution:    Let y = log  (logx)  

 By chain rule,   
dy
dx = 

1
logx  . 

d (log x)
dx   = 

1
logx  . 

1
x  

  = 
1

x logx  = (x log x)−1   

 
d2y

dx2  = 
d
dx 



dy

dx   = 
d (x log x)−1

dx   = − (x logx)−2   
d (x log x)

dx   

  = − 
1

(x log x)2  



x . 

1
x + log x . 1    = − 

1 + logx

(x logx)2 . 

Example 8.81:  If y = log (cosx), find y3 

Solution:   We have       y = log (cosx)  

 y1 = 
d [log (cosx)]

dx  = 
1

cosx   
d (cos x)

dx  ,  by chain rule 

  = 
1

cosx  . (− sinx) = − tanx 

 y2 = 
d y1
dx    = 

d (− tanx)
dx   = − sec2x   

 y3 = 
d (y2)

dx    = 
d (− sec2x)

dx     = − 2 sec x . 
d (secx)

dx    

  = − 2 secx . secx . tanx  = − 2 sec2x tanx. 

Example 8.82:  If y = eax sin bx, prove that 
d2y

dx2  − 2a . 
dy
dx  + (a2 + b2) y = 0 

Solution: We have y = eax sin bx 

 
dy
dx  = eax . b cos bx + a eax sin bx 

  = eax (b cos bx + a sin bx) 
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d2y

dx2  = 
d
dx  






 

 e
ax (b cos bx + a sin bx)  

  = eax 





 

 − b2 sin bx + ab cos bx  + (b cos bx + a sin bx)a eax 

  = − b2(eax sin bx) + a  beax cos bx + a.eax(b cos bx + a sin bx) 

  = − b2  y + a  



dy

dx − aeax sin bx   + a 
dy
dx  

  = − b2  y + a 



dy

dx − a.y   + a 
dy
dx  

  = 2a  
dy
dx   −  (a2 + b2)y 

 Therefore,  
d2y

dx2  − 2a 
dy
dx + (a2 + b2)y = 0 . 

Example 8.83:   If y = sin (ax + b), prove that y3 = a3 sin 



ax + b + 

3π
2   . 

Solution: We have y = sin (ax + b) 

 y1 = a cos (ax + b)  = a sin 



ax + b + 

π
2   

 y2 = a2 cos 



ax + b + 

π
2    = a2 sin 



ax + b + 

π
2 + 

π
2   = a2 sin



ax + b + 2. 

π
2   

 y3 = a3cos 



ax + b + 2. 

π
2 = a3sin 



ax + b + 2.

π
2+

π
2  = a3 sin 



 ax + b + 3 

π
2  

Example 8.84: If y = cos (m sin−1x), prove that (1− x2)y3−3xy2 + (m2 − 1)y1= 0 

Solution: We have y = cos (m sin−1x) 

  y1 = − sin (m sin−1x) . 
m

1 − x2
 

  y1
2 = sin2 (m sin−1x) 

m2

(1 − x2)
  

 This implies     (1 − x2)y1
2 = m2 sin2 (m sin− 1x) = m2 [ ]1 − cos2 (m sin−1 x)   

 That is, (1 − x2) y1
2 = m2 (1 − y2). 

 Again differentiating, 

 (1 − x2)2y1 
d y1
dx    + y1

2 (− 2x) = m2 



− 2y 

dy
dx   

 (1 − x2) 2y1y2 − 2xy1
2 = − 2m2yy1 
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 (1 − x2) y2 − xy1 = − m2y 

 Once again differentiating, 

 (1 − x2) 
d y2
dx   + y2 (− 2x) − 





x .
d y1
dx + y1 . 1    = − m2 

dy
dx  

 (1 − x2) y3 − 2xy2 − xy2 − y1 = − m2y1 

 (1 − x2) y3 − 3xy2 + (m2 − 1) y1 = 0. 

EXERCISE 8.13 

 (1) Find 
d2y

dx2  if y = x3 + tan x. 

 (2) Find 
d3y

dx3   if y = x2 + cotx. 

 (3) Find the second order derivative of: 

  (i) x2 + 6x + 5 (ii) x sinx (iii) cot−1x . 

 (4) Find the third order derivatives of: 

  (i) emx + x3 (ii) x cos x . 

 (5) If y = 500 e7x + 600e− 7x, show that 
d2y

dx2  = 49y . 

 (6) If y = etan−1x  prove that (1 + x2) y2 + (2x − 1)y1 = 0 . 

 (7) If y = log (x2 − a2), prove that y3 = 2 




1

(x + a)3 + 
1

(x − a)3   . 

 (8) If x = sin t ;  y = sin pt show that (1 − x2) 
d2y

dx2  − x 
dy
dx + p2y = 0. 

 (9) If x = a (cos θ + θ sin θ), y = a (sin θ − θ cos θ), 

  show that    a θ 
d2y

dx2  = sec3θ. 

 (10) If y = (x3 − 1),   prove that  x2 y3 − 2xy2  + 2y1 = 0 . 
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TABLE OF DERIVATIVES 

                Function Derivative 

 1. k ;  (k is a cosntant) (k)′ = 0 

 2. kf(x) ( )kf(x) ′  = kf′(x) 

 3. u ± v (u ± v)′ = u′ ± v′ 

 4. u1 + u2 + … + un (u1+ u2 + … un)′ = u1
′ + u2

′+ … + un
′ 

 5. u . v (uv)′ = uv′ + vu′ 

   
(uv)′
uv   =

u′
u   + 

v′
v      

 6. u1.u2 … un (u1.u2 .. un) ′ = u1
′ u2u3.. un +u1u2

′.. un  

   + … + u1u2 … un − 1 un
′ 

   
(u1.u2 .. un)′

 u1.u2 .. un
  = 

u1
′

 u1
  + 

u2
′

 u2
  + … + 

un
′

 un
  

 7. xn (n ∈ R) (xn)′ = nx n −  1 

 8. loga
x (loga

x)′ = 
logae

x   

 9. loge
x (logx)′ = 

1
x  

 10. sinx (sin x)′ = cos x 

 11. cos x (cosx)′ = − sin x 

 12. tanx (tanx)′ = sec2x 

 13. cotx (cotx)′ = − cosec2x 

 14. secx (secx)′ = sec x . tan x 

 15. cosec x (cosec x)′ = − cosec x . cot x 

  Function Derivative 

 16. sin−1x (sin−1x)′ = 
1

1 − x2
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 17. cos−1x (cos−1x)′ = 
− 1

1 − x2
  

 18. tan−1x (tan−1x)′ = 
1

1 + x2 

 19. cot−1x (cot−1x)′ = − 
1

1 + x2 

 20. sec−1x (sec−1x)′ = 
1

x x2 − 1
  

 21. cosec−1x (cosec−1x)′ = − 
1

x x2 − 1
  

 22. 
u
v  



u

v

′ 
 = 

v.u′ − u.v′

v2   

 23. ex (ex) ′ = ex 

 24. uv (uv)′ = vuv − 1. u′ + uv (logu)v′ 

 25. ax (ax)′ = ax(log a) 

 26. 


y = f(x)

x = ϕ (y) (inverse of f)  
dy
dx   =  

1
dx
dy

  . 

 27. y = f(u), u = ϕ (x) 
dy
dx   =  

dy
du   .  

du
dx  . 

 28. 


 y = f(u)

 u = g(t)
 t = h(x) 

 
dy
dx   =  

dy
du   ×  

du
dt    ×  

dt
dx  . 

 29. 


y = g (t)

 x = f(t)  
dy
dx   =  

dy
dt
dx
dt

   =  
y′ (t)
x′ (t)

  

 30. f(x, y) = k 
dy
dx   =  

f1 (x,y)

f2 (x, y)  , f2 (x, y) ≠ 0 

Note : In the above formulae from 1 to 25  ( . )′ =  
d ( . )

dx    . 


