

ii

Government of Tamilnadu
First Edition – 2005

Chairman Syllabus Committee
Dr. Balagurusamy E, Former Vice Chancellor, Anna University,
Chennai

Co-Ordinator Textbook Writing
Dr. Sankaranarayanan V, Director, Tamil Virtual University, Chennai

Authors
Dr. Gopal T V, Anna University, Chennai
Ms. Rukmini K, Padma Seshadri Bala Bhavan, Chennai
Dr. Sankaranaraynan V, Director, Tamil Virtual University, Chennai

Reviewers
Dr. Gopal T V, Anna University, Chennai
Ms. Vasanthi Krishnakumar, M/s Sify Limited, Chennai

Copy-Editor
Ms. Subha Ravi, Director, M/s Digiterati Consultancy Pvt.
Ltd,Chennai

Price Rs. :

 This book has been prepared by the Directorate of School
 Education on behalf of the Government of Tamilnadu

This book has been printed on 70 G.S.M. Paper

iii

FOREWORD

“In human affairs we have reached a point where the
problems that we must solve are no longer solvable without
the aid of computers. I fear not computers but the lack of
them”

-Issac Asimov

Computers are machines that can help us solve complex
scientific, business and administrative problems. They have helped
automation of many industrial and business systems. However, we must
remember that they are machines, created and managed by men. They
have no brain of their own. Anything they do is the result of human
instructions. They carry out the instructions obediently as long as the
instructions can be executed using the available hardware, no matter
whether they are right or wrong. That is, computers lack common sense.

Computers need clear instructions to tell them what to do, how
to do, and when to do. The way of providing such instructions to
computers is called programming. The language used in construction
and communication of these instructions is known as a programming
language.

There are over 200 programming languages currently in use.
Some were designed for scientific use, some for commercial
applications while some others were meant for more general-purposes .
A programming language should have features that would facilitate
programmers in making and designing the solution steps easily.

We have already learned the C language, which is a procedure-
oriented language. As the name implies, the emphasis was on solution
procedures. C is a powerful general-purpose language. This volume
presents the advanced version of C know as C++. C++ supports a
totally new concept of object-oriented programming (OOP) and
therefore it is classified as an object-oriented technology. We chose
C++ because it has become an industry-standard OOP language today.

Continued

iv

In OOP languages such as C++, the emphasis is on the entities
of the physical world called objects. These objects may represent a
person, a car, a table of data, or any item that the program must handle.
We human beings normally look at real-life problems as a collection of
distinct objects and try to solve them taking into account the relationship
among the objects. In a similar way, in C++, programming problems
are analyzed in terms of objects and the nature of communications
between them.

Numerous examples and illustrative programs presented in the
volume are meant to be both simple and educational. It is hoped that
the material provided will help the students to quickly move into the
world of C++ and object-oriented programming.

This volume also presents many IT enabled applications with a
visual support in the form of animated content (in a separate CD).
Ethical use of IT has been highlighted in all applications.

I would like to place on record our sincere appreciation and
thanks to all the authors, reviewers and the Directorate of School
Education officials for their excellent work and co-operation.

E. BALAGURUSAMY
Chairman
Syllabus Review Committee

v

CONTENTS

CHAPTER 1 OBJECT ORIENTED 1
CONCEPTS USING C++

1.1 Object Oriented Paradigm 1
1.2 Polymorphism 4
1.3 Inheritance 5
1.4 A Practical Example

Domestic Waterusage 6
Exercises 9

CHAPTER 2 OVERVIEW OF C++ 10
2.1 Introduction 10
2.2 Basic Data Types 10
2.3 Data Types 30
2.4 Variables 41

Exercises 51

CHAPTER 3 BASIC STATEMENT 54

3.1 Input /Output Statements 54
3.2 My First C++ Program –

Structure or
A C++ Program 56

3.3 Declaration Statement 57
3.4 Assignment Statements 58
3.5 Control Structures 59
3.6 Program Development 88

Exercises 89

CHAPTER 4 FUNCTIONS C++ ENHANCEMENTS 94
 4.1 Introduction 94
 4.2 Function Prototyping 96
 4.3 Calling a Function 98

vi

4.4 Parameters passing
in functions 99

4.5 Returning Values 109
4.6 Inline Functions 112
4.7 Scope rules of variables 114

Exercises 118

CHAPTER 5 STRUCTURED DATA TYPE-ARRAYS 124

5.1 Introduction 124
5.2 Single Dimension Array 126
5.3 Strings 131
5.4 Two dimensional arrays 136
5.5 Array of Strings 143

Exercises 145

CHAPTER 6 CLASSES AND OBJECTS 151

6.1 Introduction to Classes 151
6.2 Specifying the members

of a class 151
6.3 Data Abstraction 154
6.4 Members and Member

Functions 154
6.5 Creating Objects of a class 155
6.6 Accessing class members

using dot operator 156
6.7 Defining methods of a class 157
6.8 Memory allocation of objects 159
6.9 Static members of a class 160
6.10 Arrays of Objects 164

Exercises 164

vii

CHAPTER 7 POLYMORPHISM 169

7.1 Introduction 169
7.2 Function overloading 169
7.3 Operator overloading 174

Exercises 183

CHAPTER 8 CONSTRUCTORS AND
DESTRUCTORS 185

8.1 Introduction 185
8.2 Constructors 185
8.3 Functions of Constructors 186
8.4 Constructor Overloading 186
8.5 Rules for constructor

definition and usage 192
8.6 Destructors 192
8.7 The rules for destructor

definition and usage are 193
Exercises 194

CHAPTER 9 INHERITANCE 195

9.1 Introduction 195
9.2 Advantages of inheritance 196
9.3 Derived class and Base

Classes 196
9.4 Visibility Mode 199
9.5 Types of Inheritance 203

Exercises 206

CHAPTER 10 IMPACT OF COMPUTERS
ON SOCIETY 211

10.1 Introduction 211
10.2 Computers for

Personal Use 212

viii

10.3 Computerized
Homes 212

10.4 Home Banking and
Shopping 214

10.5 Computers in Education 216

10.6 Computers in Entertainment 218

10.7 Computers in Healthcare 219

10.8 Computers in Agriculture 220

10.9 Internet in real time Applications 221
Exercises 221

CHAPTER 11 IT ENABLED SERVICES 222

11.1 Introduction 222
11.2 e-Governance 223

11.3 Call Centres 224

11.4 Data Management 224

11.5 Medical Transcription

and Tele-Medicine 225

11.6 Data Digitization 226

11.7 Web Based Services 228

Exercises 228

CHAPTER 12 COMPUTER ETHICS 229

12.1 Data Security 230

12.2 Computer Crime 230

12.3 Cracking 232

12.4 Work, Family and Leisure 232

Exercises 232

 1

CHAPTER I

OBJECT ORIENTED CONCEPTS USING C++

1.1 Object Oriented Programming Language

A computer is a tool to solve a wide range of problems. The
solutions to the problems are in the form of computer programs or
application software. These programs are written using a chosen
programming language.

A computer program operates on a set of known input data
items. The program transforms this input data into a set of expected
data items. Only this set of expected data items must be the output of
the computer program.

In the early programming languages the input and output data
items were represented as variables. Data types categorized these
input data items. Control statements provided a way of instructing the
computer on the operations that need to be performed on the data
items.

Programming languages have another use. They help us in
organizing our ideas about the solution of the problem. As the problems
being solved or the applications being developed became complex,
this aspect of programming languages became very important. Many
programming languages emerged to address this issue along with the
ease of instructing the computer.

It was realized that viewing the solution of a problem as two
separate segments ‘data’ and ‘operations’ does not resemble the way
human beings solve the real life problems.

Object oriented programming languages such as C++ are
based on the way human beings normally deal with the complex aspects

 2

of real life. It has been observed that human beings normally solve real
life problems by identifying distinct objects needed for the solution.
Human beings then recognize the relationships amongst these objects.
The relationships are like ‘part of the whole’ or are ‘a type of’. Simple
abilities such as recognizing that one object is a part of the bigger
object and one object is a type of another object are proving to be very
important in solving problems in real life. Object Oriented programming
facilitates this way of problem solving by combining ‘data’ and
‘operations’ that are to be performed on the data.

In other words, the set of data items is split into smaller groups
such that a set of operations can be performed on this group without
calling any other function. This group of data and the operations together
are termed - ‘object’. The operations represent the behavior of the
object. An object attempts to capture a real world object in a program.

For example, take a look at any calculator, it has both state and
behaviour. Its state refers to its physical features like its dimensions,
buttons, display screen, operators and the like. Its behaviour refers to
the kind of functions it can perform like addition, subtraction, storing in
memory, erasing memory and the like.

Functions it can
perform

Buttons – using which data
is keyed in

Display screen – where
operations, data and results
are displayed

Fig. 1.1 Standard Calculator

 3

In an object oriented programming language, a calculator is viewed as
follows :

The process of grouping data and its related functions into units called
as objects paves way for encapsulation.

It is easy to see how a bank-account, a student, a bird, a car , a
chair etc., embodies both state and behaviour. It is this resemblance
to real things that gives objects much of their power and appeal. Objects
make it easy to represent real systems in software programs.

Object – calculator
Data :
Number1,result, operator, Number_backup

Functions :
Additon()
Subtraction()
Erase_Memory()
Display_Result()

� An object is a group of related functions and data that
serves those functions.

� An object is a kind of a self-sufficient “subprogram” with
a specific functional area.

The mechanism by which the data and functions
are bound together within an object definition is
called as ENCAPSULATION.

 4

Examples of objects – BANK ACCOUNT & STUDENT

1.2 Polymorphism

Now let us consider the job of drawing different shapes like a
rectangle, square, circle and an arc. We tend to define different functions
to draw these different shapes. The definitions may be like this :

Now look at the following function :

Draw(side) – is defined to draw a square
Draw (length, breadth) - is defined to draw a rectangle
Draw(radius) - is defined to draw a circle
Draw(radius,start_angle,end_angle) – to draw an arc

The function draw() accepts different inputs and performs
different functions accordingly. As far as the user is concerned, he will
use the function draw() to draw different objects with different inputs.
This differential response of the function draw() based on different inputs
is what is called as polymorphism.

BANK ACCOUNT

Data :
Account number – long int
Name – char[15]
Opening balance –float;
Account type – char

Functions :
Accept_Details()
Display_Details()
Update_opening_balance()
Withdrawls()

Deposit()

STUDENT

Data :
Date_of_birth – char[10]
Name – char[15];
Class, sec char[4];
Marks float

Functions :
Accept_Details()
Display_Details()
Total()
Average()

Grading()

Draw_Square()
Read side

Draw required lines

Draw_Circle()
Read radius

Draw

Draw_Arc()
Read Start_angle,
End_angle,radius
draw

Draw_Rectangle()
Read length,breadth

Draw required lines

 5

1.3 Inheritance

The data type Class conventionally represents an object in the
real world. Class is a template for entities that have common behaviour.
For example animals form a group of living beings, or in other words
animals is a class. We know that animals are divided into mammals,
reptiles, amphibians, insects, birds and so on. All animals share
common behaviour and common attributes. Eyes, skin, habitat, food
refer to the features or attributes of the animals, while reproduction,
living_style, prey_style etc refers to the behaviour of the animals. Every
sub group of animals has its own unique features or styles apart from
the common behaviour and features. The sub groups do share the
properties of the parent class – “ANIMALS” apart from its own sub
classes viz ., mammals, reptiles, amphibians, insects, birds. This may
be pictorially depicted as follows :

Animals is called the base class, and Mammals and Birds are
called derived classes. The derived classes are power packed, as
they include the functionality of the base class along with their own

Fig. 1.1 Inheritance

The ability of an object to respond differently to different
messages is called as polymorphism.

Birds:
Young_ones;
Feeding_Style;
Skeleton_hollow;

Functions:

Migration();

Mammals
Young_ones
Mammary_glands

Functions:
Parenting();

Reproduction_style()

Class animal :
Features :
eyes, skin, habitat, food

Functions :
Reproduction()
 living_style()

 prey_Style()

 6

unique features. This process of acquiring the Base class properties
is what is called inheritance .

Inheritance increases the functionality of a derived class and
also promotes reusability of code (of the base class).

Advantages of Object Oriented Programming –
� Class data type allows programs to organize as objects that

contain both data and functions .
� Data hiding or Abstraction of data provides security to data, as

unrelated member functions(functions defined outside the class)
cannot access its data, or rather it reveals only the essential
features of an object while curtailing the access of data

� Polymorphism reduces software complexity, as
multiple definitions are permitted to an operator or function

� Inheritance allows a class to be derived from an existing class ,
thus promoting reusability of code, and also promote insertion
of updated modules to meet the requirements of the dynamic
world

1.4 A Practical Example : Domestic Waterusage

Fig.1.2 Domestic Waterusage

 7

For example, let us consider developing a program that modeled
home water usage. The objective of this program is to compute the
water consumed by each outlet in a building and also total consumption.
All that we require for this program is the number of taps installed in the
building, amount of water that flowed through each tap, and finally the
amount of water consumed. Each tap may be viewed as an object.
The functions associated would be to start and stop the flow of water,
return the amount of water consumed in a given period, and so on. To
do this work, the tap object would need instance variables to keep
track of whether the tap is open or shut, how much water is being used,
and where the water is coming from. The object may be visualised as:

Fig.1.3 Tap as an Object

The program that models water usage will also have WaterPipe
objects that delivers water to the taps . There could be a Building
object to coordinate a set of WaterPipes and taps. When a Building
object is asked as to how much water is being used, it might call upon
each tap and pipe to report its current state. The project may be
visualised as shown in Fig.1.4.

Now the total_amount of water consumed would be calculated
as t1.water_consumed() + t2.water_consumed+t3.water_consumed()
and water consumption by each outlet would be given away individu-
ally by t1.water_consumed, t2.water_consumed() and so on.

Data
Tap_open, Qty_water,

Water_source

Functions
Start()
Stop()

 8

Fig.1.4 Water Distribution System in a House

t1.water_consumed() would in turn communicate with p1 to get
the amount of water flowed through that pipe, as tap-1s(t1) water
consumption is determined by pipe1(p1). Thus a program consists of
objects that call each other to compute. Each object has a specific
role to play, and the co-ordinated working of all the modules produces
the end result of a program. Objects communicate with one another by
sending data as inputs.

Picture showing water model
system of a house

t1,t2,t3 are
objects of taps
p1,p2,p3 are
objects of
water pipes

Object : water_pipe

Data:
Thickness,Length,
Valves

Functions:
Water_flow()
Valve_Status()
Time_Taken()

Everyday programming terminology is filled with analogies to
real-world objects like tables, students, managers, bank accounts, and
the like. Using such entities as programming objects merely extends
the comparison in a natural way. This line of thinking about functions
and object behaviour is the key factor of object-oriented programming.

 9

Exercises

I. Fill in the blanks

a. _____________ model entities in the real world

b. Binding of data and member functions together is called as

c. The ability of an object to respond differently to different messages
is called as ________________

d. The process of creating new data types from existing data type is
called as ___________________

II. Answer the following briefly

1. What is the significance of an object ?

2. What is Encapsulation?

3. How is polymorphism different from inheritance?

III Design data type for the following project

A company wishes to prepare a data model for its activities.
The company stores information of all its employees. The common
details of all employees are : Name, date_of_birth,language and nativity.

Additional details of employees based on their placement are stored
as :

a. Stores – date of joining, dept, salary

b. Scientist – area of specialisation, current project details,
paper_presentations

c. Technician – Height, Weight, ailments, risk factor, department,
wages.

 10

CHAPTER 2

OVERVIEW OF C++

2.1 Introduction

C++ was developed at AT & T Bell laboratories in the early
1980s by Bjarne Stroustrup. The name C++ (pronounced as C plus
plus) was coined by Rick Mascitti where “++” is the C increment
operator.

2.2 C++ character set

Like the C language, C++ also comprises a character set from
which the tokens (basic types of elements essential for programming
coding) are constructed. The character set comprises of “A” .. “Z” ,
“a” .. “z”, 0 .. 9, +, -, /, *,\, (,), [,], {, }, =, !=, <, >, . , ’ “ ; : %, ! , &, ?, _,
#, <=, >=, @, white space, horizontal tab, carriage return and other
characters.

A quick recap of the basic types : The basic types are collectively
called as TOKENS. A token is the smallest individual unit in a program.
Tokens are classified as shown in Fig 2.1.

Fig. 2.1 Classification of Tokens

2.2.1 Keywords
Keywords have special meaning to the language compiler. These are
reserved words for special purpose. These words cannot be used as
normal identifiers. Table 2.1 shows the list of keywords used in C++.

 11

Table 2.1 Keywords

2.2.2 Identifiers

Identifiers are also called as variables. Variables are memory
boxes that hold values or constants. A variable name must begin with
an alphabet or underscore followed by alphabets or numbers. For
example _test ; test ; sum12 are some valid identifiers. We shall see
more about variables after dealing with data types

2.2.3 Constants

Constants are data items whose values cannot be changed. A
constant is of numeric or non-numeric type. Numeric constants consist
of only numbers, either whole numbers or decimal numbers. Integer,
floating-point are numeric constants.

2.2.4 Integer Constant

• Integer Constant must have at least one digit and must not
contain any fractional part.

• May be prefixed with a + or – sign
• A sequence of digits starting with 0 (zero) is treated as Octal

constant Ex. 010 = 8 ([8] 10 = [10] 8)
• A sequence of digits starting with 0x is treated as hexadecimal

integer. Ex. 0xF = 15 ([15] 10 = [F] 16)

auto break case const class continue

default delete do else enum for

friend goto if inline new operator

private protected public return signed sizeof

static struct switch this unsigned virtual

while

 12

2.2.5 Floating Point Constant

Floating Point Constant is a signed real number. It includes an
integer portion, a decimal point, a fractional portion and an exponent.
While representing a floating point constant the integer portion or the
decimal portion can be omitted but never both. For example 58.64 is
a valid floating point (Real) constant. It can be represented in exponent
form as follows :

• 5.864E1 => 5.864 x 101 => 58.64
• 5864E-2 => 5864 x 10–2 => 58.64
• 0.5864E2 => 0.5864x102 => 58.64

The letter E or e is used to represent the floating-point constant exponent
form.

2.2.6 Character Constant

Character constant is a constant that contains a single character
enclosed within single quotes. It can be any character as defined in
the character set of C++ language (alphabet, numeral, mathematical,
relational or any other special character as part of the ASCII set). Certain
special characters like tab, backspace, line feed, null, backslash are
called as non-graphic character constants. These characters are
represented using escape sequences. Escape sequences are
represented using characters prefixed with a backslash. Table 2.2
shows the escape sequences.

 13

Escape Sequence Nongraphic Character

\a Bell
\b Back space
\n New line/ line feed
\t Horizontal tab
\v Vertical tab

\\ Back slash

\’ or \” Single / double quotes
\o Octal number

\x Hexadecimal number

\0 Null

Table 2.2 Escape Sequences

2.2.7 String Literal

String Literal is a sequence of characters surrounded by double
quotes. String literals are treated as array of characters. Each string
literal is by default added with a special character ‘\0’ which marks the
end of a string. For example “testing”

2.2.8 Operator

Operator specifies an operation to be performed that yields a
value. An operand is an entity on which an operator acts.
For example :

RESULT = NUM1 + NUM2

NUM1 and NUM2 are operands. + is the additional operator, that
performs the addition of the numbers. The result (value) generated is
stored in the variable RESULT by virtue of “=” (Assignment) operator.
Table 2.3 shows the operators in C++.

 14

Table 2.3 Operators in C++

The following operators are specific to C++.

 :: .* ->*

The operators # and ## are used only by the preprocessor.

Operators are classified as

• Arithmetic
• Assignment
• Component Selection
• Conditional
• Logical
• Manipulator
• Member dereferencing
• Memory Management
• Preprocessor
• Relational
• Scope Resolution
• Shift
• Type Cast

Based on operand requirements, operators are also classified
as unary, binary and ternary operators.

[] * % == = >=
() + << != *= &=
. - >> ^ /= ^=
-> ~ < | += |=
++ ! > && -= , --

size of <= || %= #
& / >= ?: <<= ##

 15

For example :

Table 2.4a
Unary Operators

Unary operators require one operand
Binary operator requires two operands
Ternary operator requires three operands.

Table 2.4b Binary Operators

 16

2. 2.7.1 Arithmetic Operators

Arithmetic Operators are used to perform mathematical
operations. The list of arithmetic operators are :

• +
• -
• * multiplication operator
• / division operator
• % modulus operator - gives the remainder of

an integer divison
• += , -=, *= , /= , %=

Arithmetic expressions are formed using arithmetic operators,
numerical constants/variables, function call connected by arithmetic
operators.

Examples :

• a = -5;
• a = +b;
• a /= 5; (a = a/5)
• a++; (Post increment operator . Equivalent to a = a+1)
• a— ; (Post decrement operator. Equivalent to a = a-1)
• ++a; (Pre increment operator. Equivalent to a = a+1)
• —a ; (Pre decrement operator. Equivalent to a = a – 1)
• a *= 2 (a = a * 2)
• a %= 5 (a = a/5)
• a = b + pow(x,y) (a = b + x y)

Operators are executed in the order of precedence. The operands
and the operators are grouped in a specific logical way for evaluation.
This logical grouping is called as association. Table 2.5 indicates the
Mathematical Operators, its Type, and Association.

 17

Table 2.5 Mathematical Operator Precedence

The following examples demonstrate the order of evaluation in arithmetic
expressions :

5 + 6/3 will yield the result as 7

5 * 6 / 3

5 6 7

5 6

 30 3

10

Operator Type Associativity
Precedence

() [] Mathematical Left to right

Postfix ++, -- , - Unary Left to right

prefix ++, -- Right to left

+unary , - unary mathematical Right to left

Right to left

* / % Mathematical –binary Left to right

+ - Mathematical– binary Left to right

 18

5 6

 11 3

3

(5 + 6) / 3

The result is 3, as all the inputs are of integer type.
The result will be 3.66 if any of the inputs are of float type.

1 + pow (3 , 2)

pow(3 , 2)

 9 1

 10

 19

54

Increment and Decrement operators are unique to C++.
Evaluation of expressions using these operators are indicated in the
Table 2.6 .

1 pow(3,2) 3 2 8 7 2

 5 1

 4

 9 6

 20

Expression Operation Example

a++ Get the value of a, then increment a =5;
the value of the variable by 1 c = a++

Execution :
c = a;
a = a+ 1;
Hence the
value stored
in the variable
c is 5.

++a Increment the value of the variable a = 5;
a by 1, and then get the value c = ++a;

Execution:
a=a+1
c = a;
Hence the
value of c will
be 6

a-- Get the value of a , then decrement a = 5;
it by 1 c = a--;

Execution :
c = a;
a = a –1
What will be
the value of c ?

--a Decrement the value of a by 1, then a = 5
get the value of a c= --a;

Execution :
a = a – 1
c = a;
What will be
the value of c ?

Table 2.6 Increment and Decrement Operator

 21

What will be the values stored in the variables of the following snippets
as shown in Table 2.7?

1. a = 5 2.x = 10 3. fun = 1
b = 5 f = 20 sim = 2;
a = a + b++ c = x++ + ++f final = —fun + ++sim – fun -
Value stored in Value stored in Value stored in the
the variable the variable variable
a is ______ c is ________ fun is _________

x is _________ sim is _________
f is __________ final is _________

Table 2.7 Simple Problems

2.2.7.2 Relational Operators

Relational Operators are used to compare values. The list of relational
operators are :

• = = equal to
• > greater than
• < lesser than
• >=, <= greater than or equal to , lesser that or equal to
• != not equal to
Relational operators are used to compare numeric values. A

relational expression is constructed using any two operands connected
by a relational operator. For example the relational operators are
used to construct conditions such as

• 10 > 20
• 500.45 <= 1005
• 99 != 99.5
• 9 = = 9

 22

The result of a relational operation is returned as true or false.
The numeric constant zero (0) represents False value, and any non-
zero constant represents true value. The above expressions output
will be

• 0 (10 > 20 is false) ;
• 1 (500.45 < 1005 is evaluated to True hence any non zero

constant) ;
• 1 (99 != 99.5 will be evaluated to True hence non zero

constant)
• 1 (9 = = 9 will be evaluated to true, hence the output will

be non zero constant)

What will be the value of the following expression ?

(num1 + num2 – num3)/5 * 2 < (num1 % 10)
where num1 = 99 , num2 = 20, num3 = 10

Evaluate the relational expressions shown in the following Table 2.8.

Operator Expression Result

 = = 5 = = 6 0

! = ‘a’ = = ‘a’

> 5 > 6

‘a’ > ‘A’

< 5 < 6

‘a’ < ‘A’

>= ‘a’ >= ‘z’

5 >= 5

<= ‘a’ <= ‘z’

5 <= 6

Table 2.8 Evaluate Relational Expressions

 23

Relational operators have lower precedence than the arithmetic
operators. For example the expression x + y * z < e / f will be
evaluated as follows :

2.2.7.3.Logical Operators (Boolean Operators)

 Logical operators combines the results of one or more
conditions. The various logical operators are && (AND) , || (OR) , !
(NOT)

Example : c = 5 , d = 6 , choice = ‘y’, term = ‘2’ (Assume True is indicated
as 1 and False as 0)

Result_1 = (c = = d) && (choice != term)
Result_2 = (‘y’ = = ‘Y’) || (term != ‘0’)

Result_3 = (c = = d) && ‘(y’ = = ‘Y’)|| choice != term
Result_4 = (c = = d) || (‘y’ = = ‘Y’) && choice ! = term

What will be the values stored in Result_1 and Result _2 ??
The values stored in Result_1 is 0 (False) ; Result_2 is 1 (True) ,
Result_3 is 1 (True) and Result_4 is 0 (False).

 24

Result_1= (c==d) && (choice != term) By substituting
values

Result_2 = (‘y’==’Y’) && (term != 0) By substituting values

x d choice term 5 6 ‘y’ 2

False0

‘y’ = ‘Y’ term ‘0’ 5 6 ‘y’ 2

True0

 25

 Result_3 = (c==d) && (‘y’ == ‘Y’) || (choice != term)

Result_3 By substituting values

c d ‘y’ ‘Y’ choice term

 5 6 ‘y’ ‘Y’ ‘y’ 2

1 True

 26

Result_4 = (c == d) || (‘y’ == ‘Y’) && choice != term

Result_4 By substituting values

c d ‘y’ ‘Y’ choice term

 27

The Logical operators have lower precedence to relational and
arithmetic operators. Can you evaluate the value of the following
expression ?

5 < 4 && 8 + 9

2.2.7.4. Conditional Operator (?:)

 (num1 > num2) ? “true”:”else” - ?: Is a ternary operator –
(num1>num2,”true”,”false” are the operands. A ternary operator (?:) is
also called as conditional operator. The general syntax is E1 ? E2 : E3
where E1,E2,E3 are operands. E1 should essentially be of scalar
type, E2 and E3 are values or statements. For example to assign the
maximum value of the two values one can express it as :

max = (num1 > num2) ? num1 : num2; The variable max will
take the value of num1 if num1 is greater than num2, otherwise
max will be assigned with the value of num2.

 28

Can you write out what will be the value stored in x of the
following snippet ?

a = 10
b = 10
x = (a < b) ? a*a : b % a;

2.2.7.5. Assignment Operators

 = is the simple assignment operator. It is used to assign the
result of an expression (on the right hand side) to the variable (on the
left hand side of the operator). In addition to the simple assignment
operator, there are 10 ‘shorthand’ assignment operators . Refer to the
Table 2.9 for all assignment operators.

Expression Working Result

A = 5 The value 5 is assigned The variable takes
 to the variable A. the value 5.

A += 2 A+= 2 is interpreted as The value stored in
A = A +2 Ais 7

A *= 4 A = A * 4 The value stored in
A is 20

A /= 2 A = A / 2 The value stored in
A is 2

A - = 2 A = A – 2 The value stored in
A is 3

A %= 2 A = A % 2 The value stored in
A is 1

Evaluate the following expressions where a = 5, b = 6, c = 7

A += b*c

C *= a + a / b

B += a % 2 * c

Table 2.9 Assignment Operators

 29

Table 2.10 gives the complete Operator precedence of all operators
used in C++

Operator Precedence Type Associativity

() []
Left to right

Postfix ++, — , Mathematical-Unary Left to right
prefix ++, — Logical – Right to left
! –logical not unarymathematical Right to left
+ unary , - unary Right to left

Left to right

* / % Mathematical –binary Left to right

+ - Mathematical– binary Left to right

< <= > >= Relational-binary Left to right

= = != Relational-binary Left to right

&& (AND) Logical – binary Left to right

|| (OR) Logical – binary Left to right

?: Logical – ternary Left to right

= *= /= %= += Assignment Right to left
-= <<= >>=
&= ̂ = |=

Table 2.10 Operator Precedence
(note : operators specific to C++ will be dealt with in their relevant topics)

 30

2.2.8 Punctuators

Punctuators are characters with a specific function. Refer to
the Table 2.11 for Punctuators and their Purpose.

Punctuators Purpose

 ; Terminates a C++ statement

// Treats statements prefixed with this as
comments

/* */ Blocks enclosed within these characters
are treated as comment

{ } Used to group a set of c++ statements.
Coding for a function is also enclosed
within these symbols

[] Index value for an element in an array is
indicated within these brackets

‘ ’ Is used to enclose a single character

“ “ Is used to enclose a set of characters

Table 2.11 Punctuators and their Purpose

2.3 Data Types

Data Types are the kind of data that variables hold in a
programming language. The ability to divide data into different types
in C++ enables one to work with complex objects. Data is grouped
into different categories for the following two reasons :

• The compiler may use the proper internal representation for each
data type

 31

• The programmer designing the programs may use appropriate
operators for each data type. They can be broadly classified into
the following three categories.

• User defined type
• Built-in type
• Derived type

 The broader classification is indicated in the Fig. 2.2

Fig. 2.2 C++ Data Types

2.3.1 User Defined Data Type

User Defined Data Type enables a programmer to invent his/
her own data type and define values it can assume. This helps in
improving readability of the program.

 32

For example consider the following user defined data type

Fig. 2.3 User Defined Data Type

student is a user defined data type of class. This data type
defines the features of a student in terms of member variables, and the
associated functions like accepting data for a student, displaying
details, and also calculating their respective totals and averages. Thus
the class student improves the credibility and readability of
the program by combining the data requirements and its associated
functions in the form of a data type for a student.

Users can define a variable that would represent an existing data type.
“Type definition” allow users to define such user defined data type
identifier. The syntax :

typedef data_type user_defined_data_type_identifier;

For example:
 typedef int marks;
 typedef char grade;

 33

The data type identifiers marks and grade are user defined identifiers
for int and char respectively. Users can define variables of int and char
as follows:

marks eng_marks, math_marks;
grade eng_grade, math_grade ;

typedef helps in creating meaningful data type identifiers, that would
increase the readability of the program.

Another user defined data type is they enumerated data type. As the
name suggests, enumerated data type helps users in creating a list of
identifiers, also called as symbolic numeric constants of the type int.

The syntax :
enum data type identifier (value 1, value 2, … value n);

Examples :
enum working_days (Monday, Tuesday, Wednesday,
Thursday, Friday);
enum holidays (Sunday, Saturday);

The identifiers working_days , holidays are user defined data type.
Monday, Tuesday … is the list of values also called as enumeration
constants or numeric constants.

Users can declare variables of this enumerated data type using the
syntax :

 enum identifier variable1, variable2 …,variable n;

For example the variables first_workingday and last_workingday of
the type working_days may be declared as follows:

 working_days first_workingday, last_workingday;

 34

These variables can take only one of the values defined for
working_days.

 first_workingday = Monday ;
 last_workingday = Friday;

The enumeration constants (Monday, Tuesday, Wednesday…) are given
integer constants starting with 0 (zero) by the compiler. The above
assignment statements can also be rewritten as:

 first_workingday = 0 ;
 last_workingday = 4;

Users can also redefine these integer constants by assigning explicit
values to the enumeration constants as

 enum working_days (Monday = 1, Tuesday, Wednesday, Thursday,
Friday);

Here, the constant Monday is assigned the value of 1. The remaining
constants are assigned successive integer constants.

2.3.2. Storage Class

Storage Class is another qualifier (like long or unsigned) that
can be added to a variable declaration. The four storage specifiers
are auto, static, extern and register. static and register variables
are automatically intialized to zero when they are declared. Auto
variables are not initailized with appropriate values based on their data
type. These variables get undefined values known as garbage. The
following Table 2-12 gives the meaning and relevant examples.

 35

Table 2.12 Storage Classes
2.3.4 Built in Data Types

Built in Data Types are also called as Fundamental or Basic
data types. They are predefined in the compiler. Integral, Float and
Void are the three fundamental data types.

Example

void main()
{
autofloat ratio;
int kount;
}

The variables
ratio and kount
defined within
the function
main() have the
s t o r a g e
specifier as
auto.

void fun(){
static int x;
x++;
}

extern int
filemode;extern
void factorial();

void fun(){
register int I;}

 Meaning

Defines local variable known to the block in
which they are defined. By default the local
variables are auto hence rarely used.

Variables defined within a function or a block
cease to exist , the moment the function or the
block looses its scope. Static modifier allows
the variable to exist in the memory of the
computer, even if its function or block within
which it is declared looses its scope. Hence
the variable also retains the last assigned value.

Global variable known to all functions in the
current program. These variables are defined
in another program.

The modifier register instructs the compiler to
store the variable in the CPU register to
optimize access.

Storage

auto

static

extern

register

 36

Integral type is further divided into int and char. Int is the Integer
data type. It cannot hold fractional values. char is character data type
that can hold both the character data and the integer data. For example
consider the declaration and initialization of the variable ch - char ch
= ‘A’. The statement char ch = 65 would also yield the same result of
storing the value ‘A’ in the variable ch as character data type can hold
both character and integer values.

Floating type is further divided into float and double. Floating type
can store values with fractional part (Refer to floating point constants
representation)

Void type has two important purposes :
• To indicate the a function does not return a value
• To declare a generic pointer

For example consider the following functions defined in C++ (Program
void.cpp & fun.cpp).

 37

In the example void.cpp the prototype void fun(void) indicates
that the function does not return any value, nor does it receives values(in
the form of parameters). Hence the call statement in the main() function
is given as ‘fun()’ . In the example fun.cpp, the prototype int fun(int a,
int b) , instructs the compiler that the function fun() returns an integer
value. Hence the call statement in the main() function is given as ‘sum
= fun(a,b)’ The variable sum receives the value from the return
statement (return a+b)

 � void data type indicates the compiler that the function
 does not return a value, or in a larger context
void indicates that it holds nothing.

Basic data types have several modifiers. These modifiers have
a profound effect in the internal representation of data. signed,
unsigned, long and short are some of the modifiers. Table 2.13 gives
a list of the data types, memory allocation and range of values.

2.3.4. Derived Data Type

These are built from the basic integer and floating type (built in type) or
user defined data types. For example

int num_array[5] = {1,2,3,4,5};
chardayname[7][3] = {Sun”,”Mon”,”Tue”,”Wed”,”Thu”,

”Fri”,”Sat”};

num_array stores 5 values. Each element is accessed using the
positional value of the element in the array. The position numbering
commences from zero. num_array[0] stores value 1 and num_array[4]
stores value 5.

Can you write as to what is stored in dayname[0],dayname[5] and
dayname[3][2] ?

 38

Type Byte Range

char 1 1 -128 to 127
unsigned char 1 0 to 255
signed char 1 -128 to 127
int 2 -32768 to 32767
unsigned int,
unsigned short int 2 0 to 65535
signed int,short int,
signed short int 2 -32768 to 32767
long int,signed long int 4 -2147483648 to

2147483647
unsigned long int 4 0 to 4294967295
float 4 4 3.4e-38 to 3.4e+38
double 8 1.7e-308 to

1.7e+308
long double 10 3.4e-4932 to

1.1e+4932

Table 2.13 Data Types Size & Range of Values

2.3.4.1 Pointers

 A pointer is a variable that holds a memory address. Pointers
provide the means through which the memory locations of a variable
can be directly accessed. Every byte in the computer’s memory has
an address. Addresses are numbers just as our house numbers. The
address number starts at NULL and goes up from there.. 1, 2 , 3…..

For example a memory size of 640 KB will have addresses
commencing from NULL and goes up to 655, 358 as shown in Fig.
2.4.

 39

Fig. 2.4 640 Kb Memory Map

When a program is compiled, some memory is allocated to the
variables by the compiler. The amount of memory allocated to each
variable depends on the data type of the variable.

For example consider the declarations :
char c ; int i; float f;

 Null

 1

 2

Last Address 655358

 655359

 40

When dealing with pointer data type one needs to know about
the address of (&) operator and the value at operator (*).

The ‘ &’ operator : When we type int num1=10;

the C++ compiler performs the following operations / actions :zz

1) Reserves space in the memory to hold the integer value
2) Associates the variable name num1 with a memory location
3) Stores the value 2 at this location in the memory

Num1 Variable name (location name)

10 Data (value stored at location)

0x8f90f2 Address of the variable num 1

// Program – 2.1
// to demonstrate use of & operator
#include<iostream.h>
#include<conio.h>
void main()
{ clrscr();

int i = 10;

cout << “\n Address of the variable... “ <<&i;
cout << “\nValue stored in the variable ..” << i;

getch();

}

 41

Now consider this

Note :

The asterix (*) is

1) Used to declare a pointer variable
2) Used to display the contents stored at a location (value at the

address operator)
3) It is a unary operator

2.4 Variables

The name assigned to a data field that can assume any of a
given set of values is defined as the variable. For example consider
the following group of statements

The statement int num; may be interpreted as “ num is a variable of
the type integer “. The assignment statement num = 5 may be
interpreted as the value 5 is stored in the variable num.

Variables are user defined named entities of memory
locations that can store data.

int num;
num = 5;

 42

Variable names may contain letters, numbers and the underscore
character(_). Names must begin with a letter or underscore. (However
names beginning with an underscore are reserved for internal system
variables). Names are case sensitive, which means that it differentiates
between lower case and upper case letters.

Complete the Table – 2.14.

Variable Valid/Invalid Reasons if invalid

A_b Valid

1a_b Invalid Variables must begin with an
alphabet or an underscore only.

_Test

Balance$

#One

Table 2.14 Validity of Variable Names

2.4.1 Declaration of Variables

Variables are allocated memory to store data. Compiler
allocates memory, based on the data type of the variable. Hence
variables must be declared before they are used.

Example : int a;
float f1,f2;
char name[10],choice;

Syntax :

Include

 43

Consider the declaration int side, float hypotenuse , area ; This is
an erroneous declaration because the compiler interprets this
statement as follows :

• The variables side, float, hypotenuse and area will be treated
as instances of the data type int. Hence it throws an error
stating that “ comma is expected after float”

• The intention was to declare the variable side of int data
type and the vairbales hypotenuse & area of the data type
float.

• Hence the above declaration statement should be rewritten
as follows :

� More than one variable of the same data type can be
declared in a single declaration statement. But every
variable should be separated by comma.

There are nine words for data types such as char , int , double ,
float, void, short, signed, long and unsigned .

long, short, signed and unsigned are qualifiers or modifiers that
modify a built – in data type with the exception of void.

The internal representation for the integer value 15 is 00000000
00001111 . Integer values are stored in 16 bit format in binary form.
Starting from right extreme, 15 bits are used to store data. Maximum
value stored in an integer variable is +32767 and the minimum value is
–32768, as 215 is 32767 on the positive side and –32768 on the
negative side. 16th bit, also called as the Most Signigicant Bit or
sign bit. It is used to store sign. The 16th bit will have a value 1 if

 44

negative value is stored. When the modifier unsigned is used
the integer data type will store only positive values, the sign bit
is also used to store data. Therefore the range to store data
goes upto 216 , hence the maximum value will be 65535.

� The modifier alters the base data type to yield new data
type.

The impact of modifiers :

• unsigned modifies the range of the integer values as
the sign bit is also used to store data.

• long increases the bytes for a particular data type,
thus increasing the range of values.

The base data type should be prefixed with the modifiers at the
time of declaring a variable. For example :

unsigned int registration_number;
long unsigned int index;
short signed char c;

� Prefix the data type with modifiers at the time of
 declaring variables.

The const qualifier specifies that the value of a variable will not
change during the run time of a program. Any attempt to alter the value
of a variable defined with this qualifier will throw an error message by
the compiler. The const qualifier is used like any other modifier where
the variable is prefixed with the keyword const followed by data type .

For example :
const float pi = 3.14;

 45

The Table 2.15 shows the data types with altered lengths and range
of values when the qualifiers or modifiers are used

Table 2.15 Data Types with Modifiers

Declaring pointer variables

int * iptr;

 Name of the pointer variable

Instructs the compiler that the variable is pointer (it will
hold an address)

Indicates that the pointer will point to an int data type

The declaration statement int *ptr may be read as ptr is a pointer variable
of the type int. The variable ptr can only store addresses that hold
integer values.

Data Types
Type Length Range
unsigned char 8 bits 0 to 255
 char 8 bits -128 to 127
 enum 16 bits -32,768 to 32,767
 unsigned int 16 bits 0 to 65,535
 short int 16 bits -32,768 to 32,767
 int 16 bits -32,768 to 32,767
 unsigned long 32 bits 0 to 4,294,967,295
long 32 bits -2,147,483,648 to 2,147,483,647
 float 32 bits 3.4 *(10**-38)to 3.4 * (10**+38)
 double 64 bits 1.7 *(10**-308)to 1.7*(10**+308)

 long double 80 bits 3.4 * (10**-4932) to 1.1 * (10**+4932)

 46

Table 2.16 Examples of Pointer Variables

2.4.2 Initialization of variables

Variables are initialized to a specific value at the time of
declaration. Initialization is done only once. For example :

int num = 10;
int fun(5)

In statement (1) the variable num is initialized to 10, whereas in
the second statement the variable fun is initialized to 5 through a
constructor.

Implicit conversions: refers to data type changes brought about in
expressions by the compiler. For example consider the following
snippet:

float f = 7.6;
int x = f;

Examples of pointer variable declarations:

char * cptr declaring a pointer to character type
float * fptr a pointer to float type

void *v ptr a pointer that can point to any data type
a generic pointer is declared in this way

const int * ptr ptr is a pointer to a constant integer
(cannot modify the value stored at the address
pointed by ptr)

char * const cp cp is a constant pointer.
The address stored in cp cannot be modified

 47

The value stored in the variable x is 7, as float is converted to
int. The compiler does this conversion automatically.

Rules for implicit conversion :

Consider a term, having a pair of operands and an operator. The
conversions takes place as follows :

1. If one operand is of type long double , then the other value is also
converted to long double.

2. If one operand is of type double, then the other value is also
converted to double.

3. If one of the operands is a float, the other is converted to a float.

4. If one of the operands is an unsigned long int, the other is
converted to unsigned long int.

5. If one of the operands is a long int, then the other is converted to
long int.

6. If one of the operands is an unsigned int, then the other is converted
to an unsigned int.

// demonstrating implicit type conversions
// Program – 2.2

include <iostream.h>
include <conio.h>
include <iomanip.h>

void main()
{
 clrscr();

 int i;
 float f;
 double d;
 long double ld;

 48

unsigned int ui;
 unsigned long int uli;
 i = -5;
 f = 2;
 d = 3;
 ld = 3;
 ui = 6;
 uli = 4;
cout <<“\nSizeof long double..”<<sizeof(ld*d)<<‘\t’<<ld*d;
cout << “\nSizeof double...” << sizeof(d*f)<<‘\t’<<d*f;
cout << “\nSizeof float...” << sizeof(f * i)<<‘\t’ << f*i;
cout << “\nSizeof unsigned long int ...”

<< sizeof(uli* f)<<‘\t’<< uli * f;
cout << “\nSizeof unsigned int...” << sizeof(ui * i)

<<’\t’<< ui * i;

getch();
}

Note : sizeof is an operator . It returns the size (memory requirement)
in terms of bytes, of the given expression or data type.

Output displayed by the above program:
Sizeof long double ...10 9
Sizeof double ...8 6
Sizeof float ...4 -10
Sizeof unsigned long int ...4 8
Sizeof unsigned int ...2 65506

Complete the following Table 2.17 based on the sample program 2.2 ,
write answers as shown in the reason column for the first value.

 49

Sno. Size of the Expression Reason
result - in terms of
bytes

1. 10 ld*d The value generated
is of long double
type as the
variable ld is long
double.
As long double data
type requires 10
bytes to store
a value, 10 is
displayed.

2. 8 d*f The value generated
is of
double type. …….

3. 4 f*I

4. 4 uli * f

5. 2 ui * i

Table 2.17 Exercise based on Program 2.2

Initialization of pointer variables

Pointer variables can store the address of other variables. But
the addresses stored in pointer variables are not of the same data
type as this pointer variable is pointing to. For example :

int *iptr, num1;
num1 = 10;
iptr = &num1; // initializing a pointer variable

 50

The following initalization is invalid.

int *iptr;
float num1 = 10.5;
iptr = &num1 // initializing pointer variable pointing to integer

 data type with the address of float variable would
 throw an error.

Pointer variables are sensitive to the data type they point to.

Type cast : Type cast refers to the process of changing the data type
of the value stored in a variable . The statement (float) 7 , converts the
numeric constant 7 to float type. Type cast is achieved by prefixing the
variable or value with the required data type. The syntax is : (data type)
<varaible/value> or data type (variable/constant) . Type cast is
restricted only to fundamental or standard data types. The statement x
= 8 % 7.7 will throw an error on compilation as, modulus operator %
operates on integer data type only. This erroneous statement can be
corrected as x = 8 % (int) 7.7 - the float constant 7.7 is converted to
integer constant by type casting it.

Complete the following Table 2.18

Table 2.18 Find the value of X

int x;
x =7 / 3; What is the value stored in X?

float x;
x = 7 / 3; What is the value stored in X?

float x;
x = 7.0 / 3.0; What is the value stored in X?

float x;
x = (float) 7 / 3; What is the value stored in X?

float x;
int a = 7 , b = 3;
x = a/b; What is the value stored in X?

float x;
int a = 7 , b = 3;
x = a/ (float) b; What is the value stored in X?

 51

Exercises

1. Determine the order of evaluation of the following expressions :

i. a + pow(b,c) * 2
ii. a || b && c
iii. a<b && c || d > a
iv. (c>=50)||(!flag)&&(b+5 == 70)
v. (a+b)/(a-b)
vi. (b*b) – 4 * a * c

2. Identify errors in the following programs ..

 a.
include <iostream.h>
void main()
{
 float f = 10.0;
 x = 50;
 cout << x << f;
}

b.
 # include <iostream.h>
 void main()
 {
 float f = 10.0;
 x = 50;
 cout << x << f;
 }

c.
include <iostream.h>
void main()
{
 int x,y,k,I;
 x = y + k——I;
 cout << x;
}

 52

3. Predict the output

4. Evaluate the following C++ expressions

Assume a = 5, b =3, d =1.5, c is integer and f is float.
a. f = a+b/a

b. c = d * a+b

c. x = a++ * d + a;

d. y = a – b++ * —b;

e. (x >= y) ||(!(z==y) && (z < x)) where

 53

� x = 10, y = 5, z = 11 (all are integers)

� x = 10, y = 10, z = 10

� x = 9, y = 10, z = 2

5. Write the C++ equivalent expressions using the conditional operator.
Where

� f = 0.5 if x = 30, otherwise f = 5
� f n = 0.9 if x >= 60, otherwise .7

6. What are pointer variables ?

7. Write a declarative statement to declare ‘name‘ as a pointer
variable that stores the address pointing to character data type.

 54

CHAPTER 3

BASIC STATEMENTS

Basic Statements in C++ are constructed using tokens. The
different statements are

• Input/output
• Declaration
• Assignment
• Control structures
• Function call
• Object message
• Return

3.1 Input/output statements

Input /Output statements such as reading data, processing data
and displaying information are the essential functions of any computer
program. There are two methods for assigning data to the variables.
One method is by assignment statement which we have already seen
in the earlier section, and the other method is to read data during the
runtime of a program. Data is read from the keyboard during runtime
by using the object cin (pronounced as C in). cin is a predefined
object that corresponds to a standard input stream. Input stream
represents the flow of data from the standard input device – the
keyboard. cin can read data from other sources also which will be
dealt later. The declarations for the object cin are available in a header
file called as istream.h The basic input/output operations are
managed by a set of declarations available in the istream.h and
ostream.h header files. Iostream.h file comprises the combined
properties of istream and ostream.

 55

The >> is the extraction or get from operator. It takes the value from the
stream object to its left and places it in the variable to its right. For
example consider the following snippet :

 float temperature;
 cin >> temperature;

The extraction operator (>>) extracts data from the input stream object
(cin) and places the value in the variable(temperature) to its right.
Multiple values can be read from the input stream and placed in the
corresponding variables, by cascading the extraction operator. For
example, to read the values for temperature and humidity one can
perform it as follows :

cin >> temperature >> humidity;

cout pronounced as (C out) is a predefined object of standard output
stream. The standard output stream normally flows to the screen display
– although it can be redirected to several other output devices. The
operator << is called the insertion operator or put to operator. It directs

• A header file comprises of all standard declarations and
definitions for predefined functions.

• One can include the header file in the program by using
a preprocessor directive

• A preprocessor directive starts with # , which instructs
the compiler to do the required job.

• # include <iostream.h> is a typical preprocessor
directive, that instructs the compiler to include the header
file iostream.h In order to use cin / cout objects one
has to include iostream.h in the program.

• The other header files are iomanip.h, stdio.h, ctype.h,
math.h, fstream.h etc.

 56

the contents of the variable to its right to the object to its left. For example
consider the following statements;

 int marks = 85;
 cout << marks;
 cout << “\n Marks obtained is : “ << marks;

The value stored in marks is directed to the object cout, thus displaying
the marks on the screen.

The second statement cout << “\n Marks obtained is : “ << marks;
directs both the message and the value stored in the variable to the
screen. Cascading of insertion operator facilitates sending of multiple
output via a single statement.

Examples :

cout << “\n The sum of the variables a,b ..” << a+b;
cout << a+b << ‘\t’ << a-b << ‘\t’ << a/b;
cout << “\n The difference of numbers ….” << a-b
 << “\n The sum of two numbers …. “ << a+b;

3.2 My first C++ program - Structure of a C++ Program

// My first program – Program 3.1
include <iostream.h>//preprocessor directive
include <conio.h>
 float fact = 1; // declaration of variables
 int term;
int main() // function header
{
 clrscr(); // predefined function
 cout << “\n This program computes factorial of a
number”;
 cout << ‘\n’ << “Enter a number ...”;
 cin >> term;
 for(int x = 2; x <= term;fact *= x,x++);// looping
statement
 cout << “\nThe factorail of the given number ..”

 << term << “ is ..” << fact;
 return 0;
}

 57

A C++ program has primarily three sections viz.,

• Include files
• Declaration of variables , data type , user defined

functions.
• main() function

On successful compilation, when the program is executed the
main() function will be automatically executed. It is from this block,
that one needs to give call statements to the various modules that needs
to be executed and the other executable statements.

3.3 Declaration Statements

Variables used in the declaration statements need to be
declared and defined before they are used in a program.

 int *iptr; // declares a pointer variable to int
 iptr = new int;//fetches memory to store data – hence pointer
 variable gets defined
 *iptr = 5; // stores data 5 only after fetching memory

Declaration of a variable introduces a variable’s name and its
associated data type. For example consider the declaration int *iptr;
This statement may be read as iptr is a pointer variable to integer. All
pointer variables are defined only when memory is fetched to store
data .

Declaration statements are used to declare user defined data type
identifiers, function headers, pointer variables and the like. Recall the
declaration of user defined data types dealt in 2.3

However, if a declaration also sets aside memory for the variable it is
called as definition. For example consider the declaration statement -
int num; This statement is called as definition statement because

 58

memory is set aside to store data. Now consider the following snippet
:
 int num; // declares and defines an integer variable
 num = 5; // The data 5 is stored . Have you noticed , there is no
explicit request for memory. That is because memory is set aside at
the time of declaring the variable.

� Declaration statement introduces a variable name and
associates it with a specific data type

� A variable gets defined when memory is set aside .

� Some variables also get defined when they are declared

� Pointer variables get defined only when memory is
fetched. For example by using new memory operator

3.4 Assignment Statements

An assignment statement , assigns value on the right hand side
of an expression to the variable on the left hand side of the assignment
operator. ‘=’ is the assignment operator . For example the different
style of assigning values to the variables are as follow :

num = 5;
total = english+maths;
sum += class_marks;

During assignment operation , C++ compiler converts the data type on
the right hand side of the expression to the data type of the variable on
the left hand side of the expression. Refer to implicit conversions and
Type cast of 2.4.2.

 59

3.5 Control Structures

 Statements in a program need not necessarily be executed in
a sequential order. Some segments in a program are executed based
on a condition. In such situations the flow of control jumps from one
part of the program to another. Program statements that cause such
jumps are called as control statements or control structures. Now look
at the following flow charts (Flow chart I & II).

1. Trace out the steps to accept an integer and if it is odd add 1 to it.
If it is even do nothing. Print the integer as depicted in Flow Chart I.
The steps are executed in a sequential manner.

2. Trace out the steps to accept a integer, and print the message
“EVEN” /”ODD” based on the divisibility of 2. Here the control

True False

Entry Entry

loop

True

False

Selection loop

 60

branches to statement “ M = ODD” if there is remainder other wise
branches to the statement “M = EVEN”. This is depicted in Flow
Chart 2.

� Program statements that cause a jump of
control from one part of a program to
another are called Control Structures

The two major categories of control structures are Decision
making statements and Looping statements. The control structures
are implemented in C++ using control statements as indicated in the
following figure Fig. 4.1

Fig. 4.1 Control Structures in C++

3.5.1 Selection Statements

In a program a decision causes a one time jump to a different
part of a program. Decisions in C++ are made in several ways, most
importantly with if .. else … statement which chooses between two
alternatives. Another decision statement , switch creates branches

 61

for multiple alternatives sections of code, depending on the value of a
single variable.

if statement : is the simplest of all the decision statements. It is
implemented in two forms

• Simple if statement
• if .. else statement

The following Program - 3.2 demonstrates if statement :

Syntax :

// Program - 3.2
include <iostream.h>
include <conio.h>
// Demonstrates the use and syntax of if statement
void main()
{
 int a;
 clrscr();
 cout << “\nEnter a number “;
 cin >> a;
 if (a%2 == 0)

cout << “\nThe given number “ << a << “is even”;
 getch();
}

 62

In the above program the message “The given….” gets printed if the
condition is evaluated to true, otherwise the control jumps to getch();
statement directly by passing the statement cout << “\nThe given ….

The following Program -3.3 demonstrates if .. else .. statement :

// Program – 3.3
// Demonstrates the use and syntax of if else
statement

include <iostream.h>
include <conio.h>
void main()
{
int a;
clrscr();
cout << “\nEnter a number “;
cin >> a;
if (a%2 == 0)
 cout << “\nThe given number “ << a << “is
even”;
else
 cout << “\nThe given number “ << a << “is
odd”;
getch();
}

In the above program “The given number 10 is even” is printed if
the expression is evaluated to true, otherwise statement following else
option will be executed.

 63

Examples of if constructs where conditions/expressions are given in
different styles :

Condition is expressed using the variable branch

Condition is expressed as 1, as any positive integer indicates TRUE
state

Expression is used for condition. If the value of the expression is
evaluated to > 0 then action block 1 is executed other wise action 2 is
executed.

if (a % 2)
{
 action block 1;
}
else
{
 action block 2;
}

int branch = 10 > 20;
if (branch)
{
 action block 1;
}
else
{
 action block 2;
}

if (1)
{
 action block 1;
}
else
{
 action block 2;
}

 64

Can you predict as to what will be printed when the following program
is executed ?

Output displayed will be Negating count … Why do you think block
associated with else option is not executed since count was multiplied
by –1 ?

Answer to this is that , once the true block is executed in an if .. else
statement, then the else block will not be executed.

Else block is executed only if True block is not executed.

� if .. else … statement which chooses between two
alternatives , executes the chosen block based on the
condition.

// Program - 3.4
include <iostream.h>
include <conio.h>
void main()
{
 int count = 1;
 if (count > 0)
 {

cout << “\nNegating count”;
count *= -1;

 }
 else
 {

cout << “\nResetting count ...”;
count *= 1;

 }
 getch();
}

 65

The following if constructs are invalid because :

Sno Invalid construct Why invalid ?

1. if a> b Condition should
cout << “True”; always be enclosed in

a pair of brackets . The
correct form is
 if (a>b) cout <<
“Condition should
True”;

2. if (a> b) Error thrown by the
a—; cout<<“\nVariable is compiler is
decremented”; “Misplaced else” . If
else the action block is
a++; compound statements,
cout << then it should be
“Variable is incremented ..” enclosed in curly

braces .

The correct
form is : if (a> b) { a--
; cout<<“\nVariable is
decremented”; }else {
a++; cout <<
“Variable is
incremented ..” }

3. if (a > b); The semicolon placed
cout << “Greater.. after condition nullifies
”;else the effect of if
cout << “Lesser ..”; statement , the

compiler throws an
error “Misplaced
else” .The correct form
:if (a > b) cout <<
“Greater..”;else cout
<< “Lesser ..”;

Table 3.1 if construct

 66

Write appropriate if constructs for the tasks mentioned in table 3.2

Sno Task If construct

1. Set Grade to ‘A’ if marks
are above 90.

2. Set Grade to ‘A’ if marks are
above 90, otherwise set grade to ‘B’

3. Print the message
• “Accelerate – traffic to flow “ if speed

is less than 30 kmph,
• “Moderate – accelerate by 10kmph”

if speed is between 31– 40 kmph,
other wise

• “Good – be careful ..”

Table 3.2 Using if Constructs
Nested if statement : The statement sequence of if or else may contain
another if statement ie., the if .. else statements can be nested within
one another as shown below :

In an nested if .. else statement, “Each else matches with the
nearest unmatched preceding if”

 67

For example

Working of the above example :

•Grade = ‘A’ and basic == 5501, then incentive gets the value 550.
•Grade = ‘A’ and basic = = 5000, then incentive gets the value 250.

• Grade <> ‘A’ – the inner if will not be executed , the outer
else will be executed and thus prints “Try to attain
Grade A.

Do you think this if construct is equivalent to the above construct ?
Write your answers in the Reason it out box.

switch Statement : This is a multiple branching statement where,
based on a condition, the control is transferred to one of the many
possible points.

if (grade = = ‘A’)
 if (basic > 5500)
 incentive = basic * 10/100;
 else
 incentive = basic * 5/100;
else
 cout << “Try to attain Grade A”;

if (grade = = ‘A’ && basic > 5500)
 incentive = basic * 10/100;
else if (grade = = ‘A’ && basic <5501)
 incentive = basic * 5/100;
else
 cout << “Try to attain Grade A”;

Reason it out …………….

 68

This is implemented as follows :

The following program demonstrates the use of switch statement.

// Program - 3.5
// to demonstrate the use of switch statement

include <iostream.h>
include <conio.h>

void main()
{
 int a, remainder;
 cout << “\nEnter a number ...”;
 cin >> a;
 remainder = a % 3;
 switch (remainder)
 {

case 1 : cout << “\nRemainder is one”;
 break;

case 2 : cout << “\nRemainder is two”;
 break;

default: cout << “\nThe given number is divisible by 3”;
 break;

 }
 getch();
}

switch (expression)
{
 case 1 : action block 1;
 break;
 case 2 : action block 2;
 break;
 case 3 : action block 3;
 break;
 default :
 action block 4;
}

switch (remainder)
{
 case 1 : cout << “remanider 1”;

 break;
 case 2 : cout << “remanider 2”;
 break;

 default :
 cout << “Divisible by 3”;
 }

 69

The above program displays

• Remainder is two if a = 5 or so
• The given number is divisble by 3, if a = 9 or so

Or in other words the above program checks for divisibility by 3 and
prints messages accordingly.

What do you think will be the output of the following program ?

Output displayed will be :

 Shiv secured 1st rank
 Shiv secured 2nd rank

Why do you think both the action blocks of case 1 and case 2 are
executed ? Compare the action blocks of Program -3 .5 & Program-
3.6. What do you think is missing in Program-3.6 ? Yes it is the break;
statement.

What do we infer ?

// Program - 3.6
// to demonstrate the use of switch statement

include <iostream.h>
include <conio.h>

void main()
{
 int rank = 1;
 char name[] = “Shiv”;
 switch (rank)
 {

case 1 : cout << ‘\n’ << name << “ secured 1st
rank”;

case 2 : cout << ‘\n’ << name << “ secured 2nd
rank”;
 }
 getch();
}

 70

Every action block should be terminated with a break statement.
Otherwise all action blocks are executed sequentially from the point
where the control has been transferred based on the condition.

In the above example(Program- 3. 6), control was transferred to case
1, as Rank is 1, hence action blocks of case 1 and case 2 are executed
sequentially.

The following switch constructs are invalid because :

1. char name[] = “Shiv”; Compiler throws an error.
switch (name) ”Switch selection expression
{ must be of integral type “which
case “Shiv” : cout << ‘\n’ means that switch expression
<< name << “ should be evaluated to an
secured 1st rank”; integer constant only
case “Rama” : cout << ‘\n’ (char, enum,int)
<< name << “
secured 2nd rank”;
}

2. float value; Value is of float type , hence
switch (value) not a valid switch expression.
{
case 1.5 : cout << ‘\n’
<< value – 0.5;
case 2.9 : cout << ‘\n’
<< value + 0.1;
}

� Include break; in action block,
in order to exit from switch statement.

 71

3. switch (rank) Case 1 to 2 is an invalid case
{ statement, as case label
case 1 to 2 : cout << ‘\n’ should have only one integral
<< “Best rank”; value. In order to use more
break; than one value for a particular
case 3 to 4 : cout << ‘\n’ action block one may rewrite
<< “Good rank”; the code as :
} switch (rank)

{case 1 :
 case 2 : cout << “Best

rank”;
break;

case 3 :
case 4 : cout << “Good

rank”;
break;
}

3.5.2. Loops

Loops execute a set of instructions repeatedly for a certain
number of times. For example consider the following Program –
3.7.

// Program - 3.7
include <iostream.h>
include <conio.h>

void main()
{
 int i = 1;
loop_start:

 if (i < 6)
 {

 cout << i <<
‘\t’;

 i = i + 1;
goto loop_start;

 }

}

Transfers control to
the beginning of
statement block that
has to be repeated

Statements to be
executed repeatedly

Condition checked for the
execution of the statements

 72

The above program on execution will print numbers between 1 and 5,
as the action block of if statement is executed 5 times.

The Program - 3. 7 works as follows :

1. Declares and initializes the variable i

2. Checks the relational expression i<6

3. If True then executes the action block (cout << i; i = i + 1)
and transfers the control back to the loop_start (goto
loop_start). This enables the program to execute a set
of instructions repeatedly, based on the condition of the
relational expression. The variable i is referred to as the
control variable, as the iterations of the block is totally
controlled by this variable.

A looping block therefore consists of two segments viz., the body of
the loop and the control statement. The control statement checks the
condition, based on which directs the control back to the body of the
loop to execute the segment repeatedly. Now look at the following
snippets.

//Program - 3.7 A
void main()
{
 int i = 6;

loop_start:
 if (i < 6)
 {

 cout << i << ‘\t’;
 i = i + 1;

goto loop_start;
 }
 cout << i;
}

//Program - 3.7 B
void main()
{
 int i = 6;

loop_start:
 {

 cout << i << ‘\t’;
 i = i + 1;

 if (i < 6)
goto loop_start;

 }
 cout << i;

}

 73

What do you think will be the output generated by the above
snippets ?

The Program -3.7 A will display 6, where as Program -3.7 B
will display 7. Why do you think the loop is executed in Program-3.7 B?
In this program the condition is placed after the statements (cout << i;
i = i + 1;),hence these statements are executed once, after which the
condition is checked. Since the variable i takes the value as 7, the
control is not transferred to loop_start. So what do we infer ??

In general, a looping process would work in the following manner :

1. Initializes the condition variable

2. Executes the segment of the body

3. Increments the value of the condition variable as required

4. Tests the condition variable in the form of a relational
expression. Based on the value of the relational expression
the control is either transferred to the beginning of the block,
or it quits the loop.

There are three kinds of loops in C++, the for loop, the while loop and
the do .. while loop.

� Loops are unconditionally executed at
least once, if the condition is placed at the
end of the body ofthe loop

� Based on the position of the condition, the
loops are classified as Entry-Check loop
(as in Program-3.7 A) and Exit Check Loop
(as in Program-3.7 B)

 74

do .. while Loop : The construct of a do .. while loop is :

Look at the following program

do
{
action block
} while <(condition)>

Answer the following questions based on the Program - 3.8

A. Identify the
1. control variable used .
2. Identify the statements that form the body of the loop
3. The test expression

B. How many times will the loop
 be executed ?
C. What is the output of the
 program?
D. What type of loop is this ?

// Program - 3.8
include <iostream.h>
include <conio.h>

// to print the square of numbers
// between 2 to 5

void main()
{
 clrscr();
 int num = 2;
 do
 {

 cout << num * num << ‘\t’;
 num += 1;

 }
 while (num < 6);
 getch();
}

 75

1. Enters the loop

2. Prints the square of num

3. Increments the control variable by 2

4. Evaluates the condition , based on which the control is transferred
to step 2

5. End

do … while <(condition)> is called as exit- check loop, as the
condition(test expression) marks the last statement of the body of the
loop. The following snippets show the various styles of constructing
conditions.

A.
1. The control variable is num
2. Statements forming the body of the loop are

:
 cout << num * num << ‘\t’;

 num += 1;
3. num < 6 is the test expression
B. 4 times
C. 4 9 16 25
D. Exit – check loop

Int ctr = 1, sum = 0, check =
1;
do
{
 cout << ctr;
 sum = sum + ctr;
 ctr = ctr + 2;
 check = (ctr < 11);
}while(check);

Int ctr = 5, sum = 0;
do
{

 cout << ctr;
 sum = sum + ctr;
 ctr = ctr - 2;

}while(ctr);

 76

What is the output displayed by the following snippets A and B ?

Snippet A – the loop will be executed till the variable i gets the
value as –32768, and the snippet B will result in infinite loop, as the
value stored in the variable choice is 1 thus rendering the test
expression to be TRUE all the time in both the snippets . It is very
important to construct appropriate conditions that would evaluate to
false at some point of time, and also incrementing/updating the control
variable that is linked to the test expression in the while loop.

int ctr = 5,sum = 0,c=1;
do
{

 cout << ctr;
 sum = sum + ctr;
 ctr = ctr - 2;

}while(ctr >= 1);

 77

while <(condition)>{ … } loop : is called as the entry-check
loop. The basic syntax is :

The body of the while loop will be executed only if the test expression
results true placed in the while statement. The control exits the loop
once the test expression is evaluated to false. Let us rewrite all the
programs that were discussed under do..while loop (Program - 3.9)

The working of the above loop as follows :

1. Initialises the control variable num to 2
2. The test expression num < 2 is evaluated, control is transferred to

step 3, only if the test expression is TRUE
3. Prints the square of the value stored in num
4. Increments num by 1
5. Control is transferred to step 2
6. End

while <(condition)>
{
action block
}

Condition (test expres-
sion) is placed at the
entry of the body of the
loop

// Program - 3.9
include <iostream.h>
include <conio.h>

// to print the square of numbers
// between 2 to 5

void main()
{
 clrscr();
 int num = 2;
 while (num < 6)
 {

 cout << num * num << ‘\t’;
 num += 1;

 }
 getch();
}

 78

Answer the following questions based on the Program - 3.10

Answers :
1. Control variable used is ctr
2. res *= x; ctr += 1;
3. ctr <= y
B. 3 times
C. 81
Entry- check or entry – controlled loop

//Program-3.10
include <iostream.h>
include <conio.h>

void main()
{
 int x = 3, y = 4, ctr = 2,res = x;
 while(ctr <= y)
 {

res *= x;
ctr += 1;

 }
 cout << “x to the power of y is : “

 << res;
 getch();

}

Answer the following questions based on the Program - 3.10

A. Identify the
1. Control variable used .
2. Statements that form the body of the loop
3. The test expression

B. How many times will the loop be executed ?
C. What is the output of the program?
D. What type of loop is this ?

 79

What will be the output of the following Program - 3.11 if the values
read for choice is y,y,y,y,n?

The following snippets are invalid. Why are they invalid ? Correct the
code for proper execution.

// Program - 3.11
include <iostream.h>
include <conio.h>
void main()
{
 clrscr();
 int counter = 0;
 char choice = ‘y’;
 while (choice == ‘y’)
 {

 cout << “Continue <y/n> ...”;
 cin >> choice;
 counter = counter + 1;

 }
 cout << “\The loop is executed ..”

 << counter << “ times”;
 getch();
}

//Program - 12 B
include <iostream.h>
include <conio.h>
//to print numbers between 5&10
void main()
{
 int start = 5,end = 10;
 while (start <= end)

 cout << start++;
 getch();

}

//Program - 12 A
include <iostream.h>
include <conio.h>
//to print numbers between
5&10
void main()
{
 int start = 5,end = 10;
 while (start >= end)

 cout << start++;
 getch();
}

 80

for (; ;) .. loop : is an entry controlled loop and is used when an
action is to be repeated for a predetermined number of times. The
syntax is

for(intial value ; test-condition ; increment)
 {
 action block;
 }
The general working of for(;;)loop is :

1. The control variable is initialized the first time when the control enters
the loop for the first time

2. Test condition is evaluated. The body of the loop is executed only if
the condition is TRUE. Hence for(;;) loop is called as entry controlled
loop.

//Program – 14 A
include <iostream.h>
include <conio.h>
// to print numbers

between 1 & 5
void main()
{
 clrscr();
 int start = 1;
 while (Start <=5)

 cout << start++;
 getch();

}

//Program – 14 B
include <iostream.h>
include <conio.h>
// to print numbers

between 1 & 5
void main()
{
 clrscr();
 int start = 1;
 while (1)

 cout << start++;
 getch();

}

//Program – 13 A
include <iostream.h>
include <conio.h>
// to print numbers between
10&5
void main()
{
 clrscr();
 int start = 5,end = 10;
 while (start <= end)

 cout << start--;

 getch();

}

//Program – 13 B
include <iostream.h>
include <conio.h>
// to print numbers between 10&5
void main()
{
 clrscr();
 int start = 5,end = 10;
 while (start <= end)

 cout << end--;
 getch();
}

 81

3. On repetition of the loop, the control variable is incremented and
the test condition will be evaluated before the body of the loop is
executed.

4. The loop is terminated when the test condition evaluates to false.

The following program illustrates for(;;) loop :

//Program - 3.15
include <iostream.h>
include <conio.h>

void main()
{
 int i,fact = 1;
 for(i = 1; i < 6; i++)
 fact *= i;
 cout << “\nThe factorial of the number is ..” << fact;

}

for(i = 1; i < 6; i++)

Increment (1st segment)

Test condition (2nd segment)

Initialisation of control
variable (3rd segment)

� Initialisation is executed only once, ie.,
when the loop is executed for the first
time

� Test condition is evaluated before the
commencement of every iteration

� Increment segment is executed
before the commencement of new
iteration.

 82

Now look at the following programs and write out as to what will be
displayed?

Have you noticed the for statement, comprising of more than one
statement in segments incrementation and initialisation ? Syntatically
and logically the above statement is valid. Each segment in the for
loop can comprise a set of instructions, each instruction should be
separated by a comma operator. Can you analyse as to what will be
the output of the following segment ?

// Program – 3.16
include <iostream.h>
include <conio.h>

void main()
{
 int ctr = 10;
 for(; ctr >= 6; ctr—)
 cout << ctr << ‘\n’;
}

Output

10

 9

 8

 7

 6

Output displayed..

The factorial.. 120

Output produced will be :
1 2 3 // loop is executed till j < 3
1 2 3 4 5 6 7 // loop is executed
till i < 8 Recall the working of comma
operator.

void main()
{

 for (int i = 1, j = 0 ; i < 8,j<3;i++,j++)
 cout << i << ‘\t’;
 for (int i = 1,,j = 0 ;j < 3,i < 8;i++,j++)
 cout << i << ‘\t’;
}

//Program – 3.17
include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 for(int i=2,fact =
1;i<6;fact*=i,i++);
 cout << “\nThe factorial ..” <<
fact;
 getch();
}

 83

Now look at the following for..loop constructs.

What is wrong with the following snippets ?

Output displayed will be
Sum : 15

Have you noticed,
initialization and
incrementation segments
are not included in the
for(..) construct.

Continue <y/n> ? ..y
Continue <y/n> ? ..y
Continue <y/n> ? ..y
Continue <y/n> ? ..n
sum:10
Choice : n
 Have you noticed that a for loop
is used like a dynamic loop, where
the iterations are determined
during run time.

// Program – 3.18
include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 int sum =0, ctr = 1;
 for(;ctr <= 5;)
 {
 sum += ctr;
 ctr = ctr + 1;
 }
 cout << “\nSum :” << sum;
 getch();
}

What is the impact of the following statements ?
int sum = 0;
for(ctr = 1; ctr < 5; ctr++);
 sum += ctr;
cout << sum;
The output will be 5. Can you reason it out ?
The reason is a semicolon placed after for loop, hence the statement
sum+=ctr is not treated as part of the for loop body.

// Program – 3.19
include <iostream.h>
include <conio.h>
void main()
{
 clrscr();
 int sum =0, ctr = 1;
 char ch =’y’;
 for(;ch == ‘y’;)
 {
 sum += ctr;
 ctr++;
 cout << “\nContinue <y/n>
? ..”;
 cin >> ch;
 }
 cout << “\nSum :” << sum;
 cout << “\nChoice : “ << ch;
 getch();

}

 84

3.5.3 continue

The continue statement forces the next iteration of the loop to
take place, skipping any code following the continue statement in the
loop body.

Working of continue statement in various loops is as follows :

//Program– 3. 20
include <iostream.h>
include <conio.h>

void main()
{
 int i = 1,sum = 0;
 for(;i<10;i++)
 {

if(i % 2 == 0)
 {
 sum += i;
 continue;
 }
 cout <<i;

 }
 cout << “\nSum of even
nos..”<<sum;
 getch();
 }

T
ransfers

controlto
the

increm
entation

segm
entof

the
for

loop

 85

What will be the output of the following segments ?

3.5.4 break
 A loop’s execution is terminated when the test condition

evaluates to false. Under certain situations one desires to terminate
the loop , irrespective of the test expression. For example consider
the Program - 3. 21

//Program - 3.21
include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 int a[] = {1,2,3,4,5,6,7,8,9};
 int search_item = 7;
 for(int x=0; x<9;x++)
 {

if (a[x] == search_item)
{
 cout << “\nItem found at position ..” << x;
 break;
 }

 }
 cout << ‘\n’ << “value of index position is ..” << x;
 getch();

}

 86

Nested loops : It is possible to nest loop construct inside the body of
another. Look at the following Program - 3.22

� break statement would exit the current loop only.
� break statement accomplishes jump from the

current loop

// nesting of loops – Program- 3.22
include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 for(int i = 1; i <= 3; i++)
 {

int j = 1;
while(j <= i)
{
 cout << “* “;
 j++;
}
cout << ‘\n’;

 }
 getch();

}

Output displayed :

*
* *
* * *

 87

Working of the loops is as follows :

The iterations of the nested loops are as follows :

Table 3.4 Nested Loops Example

Can you write out as to what will be the output of the following
program ?

Output ??

for ..loop while loop

i = 1 is executed once (j<= I)

i = 2 Is executed twice (j = 1 .. 2)

i = 3 Is executed thrice (j = 1.. 3)

include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 int i = 1, j = 1;
 while(i <= 3)
 {

cout << ‘\n’;
for(i=1;i<=j;i++)
 cout << ‘*’;
i++;
j++;

 }
 getch();
}

 88

The rules for the formation of nested loops are :

1. An outer loop and inner loop cannot have the same control variable,
as it will lead to logical errors

2. The inner loop must be completely nested inside the body of the
outer loop.

3.6 Program Development

Fig. 3.1 Program Execution

Programs are written in high level language using the grammar of a
computer language. A Program written in high level language is called
as the Source Code. The source code has to be converted to ma-
chine-readable form. The machine-readable form of a program is
called as Object file. Compilers create object files from source code.
Compilers are translator programs that create a machine-readable
program from the source code. Compiler checks for the grammar of
language (syntax). An object file is created from an error free source
code. The object file is linked with the essential libraries to generate
an executable file. This sequence of actions is shown in Fig. 3.1.

objectObject
files

Source
Compiler

Object
file

Linker

Libraries

Executable
file

 89

Exercises
1. Categorise the following declarations as valid/invalid. If invalid,

specify the reasons.

2. Debug the following program. Rewrite the corrected program.

3. Write appropriate declaration statements for the following :

a. To store the result of the expression 8/3 .

b. To initialise Emp_Name with the value “Kalam”

c. To accept choice from user indicating Y-yes and N – no

4. Point out errors in the following snippets :

a. int a = 10, b = 5;

if a > b

cout << a;

Declarations Valid/Invalid Reason

int A;a;

char name(10);

float f,int;

double d, float f;

int 1choice, _2choice

 90

b. if (a<b) && (a<0)

 cout << “a is negative and …”

c. char option = ‘Y’;

do while option == ‘y’

{

 cout << ‘*’;

……

}

d. for(int I = 1; I < 10; I++)

 cout << I * 2;

e. do

{

 cout << ‘*’;

}while(cout << “\nContinue <y/n>…”;cin>>ch;ch == ‘y’);

5. What will be the output of the following snippets / programs?

// 5 a.
include iostream.h>
include <conio.h>

void main()
{
 int feet;
 const int inch_conversion = 12;
 clrscr();
 cout << “\nEnter feet …”;
 cin >> feet;
 cout << “\nConverted to inches …”
 << feet * inch_conversion;
}
input-7 for feet

// 5 b.
include <iostream.h>
include <conio.h>

void main()
{
 int I = 1, sum = 0;
 clrscr();
 while(I++ <= 5)
 {
 cout << ‘\n’ << I;
 s += I;
 }
cout << “\nValue of the variable I after

 executing the while loop ..” << I << “\nSum
:…” << s;

 91

// 5 f
include <iostream.h>
include <conio.h>

void main()
{
 int num = 1784, s= 0, d = 0, x;
 x = num;
 clrscr();
 for(;num > 0;)
 { d = num % 10;

s += d;
num = num / 10;

 }
 cout << “\nThe sum of digits of “
 << x << “is : “
 << s;
 getch();
}

//5e
include <iostream.h>
include <conio.h>

void main()
{
 int i = 1, j = 1;
 clrscr();
 do
 {

while (j<=i)
{
 cout << ‘#’;
 j++;
}
cout << ‘\n’;
i++;
j = 1;

 } while(i<= 5);
 getch();

}

// 5 c
include <iostream.h>
include <conio.h>

void main()
{
 int i = 1, sum = 0;
 clrscr();
 while(++i <= 5)
 {

 cout << ‘\n’ << i;
 sum += i;

 }
 cout << ‘\n’ << i << ‘\t’ << sum;
 getch();
}

// 5 d
include <iostream.h>
include <conio.h>
void main()
{
 int i = 1, sum = 0;
 clrscr();
 for(i = 1; i <= 5; i++)
 { cout << ‘\n’ << i;

 sum += i;
 }
 cout << ‘\n’ << i << ‘\t’ << sum;
 for(i = 1; i <= 5; ++i)
 {

 cout << ‘\n’ << i;
 sum += i;

 }
 cout << ‘\n’ << i << ‘\t’ << sum;

 }

// 5 h
include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 for(int i = 1,x = 0;i <= 5; i++)
 x = x + i%2==0 ? i*1 : i * -1;
 cout << x;
 getch();

}

//5 g
include <iostream.h>
include <conio.h>
void main()
{
 clrscr();
 for(int i = 1,s = 0; ; i++)
 {

if (i%2 == 0)
 continue;
s += i;
if (i > 9)
 break;

 }
 cout << “\nThe sum is” <<
s;
 getch();

 92

//5 k
include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 int i = 0;
 for(i = -5; i >= 5; i—)

cout << “Bjarne Stroustrup”;
 cout << “\nReturning to Edit Window..”;
 getch();
}

//5 j
include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 do
 {
 cout << “\ndo loop ...”;
 } while (0);
 getch();

}

//5 l
include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 int month = 5;
 if (month++ == 6)
 cout << “\nMay ...”;
 else if (month == 6)
 cout << “\nJune ...”;
 else if (—month == 5)
 cout << “\nMay again ..”;

}

// 5 m
include <iostream.h>
include <conio.h>
void main()
{ int day = 3;
 switch (day)
 {
 case 0 : cout << “\nSunday ..”;
 case 1 : cout << “\nMonday ..”;
 case 2 : cout << “\nTuesday ..”;
 case 3 : cout << “\nWednesday .. “;
 case 4 : cout << “\nThursday ..”;
 case 5 : cout << “\nFriday ..”;break;
 case 6 : cout << “\nSaturday ..”;
 }

 }

// 5 n
include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 int bool = 2,b =4;
 while(bool)
 {
 cout << bool << ‘\t’ << ++b << ‘\n’;
 bool—;
 b—;
 }
 getch();

}

 93

6. Program Writing

a. Write a program to compute ab where a and b are of real and
 integer types(use while .. loop)
b. Write a program to compute the factorial of a given number.

(use for() loop)
c. Write a program to generate fibonacci series upto nth term.

Fibonacci series is : 0,1,1,2,3,5,8,12,20,32 …
d. Write a program to print the following patterns :

Using a switch, write a program to accept the day in a month, and print
the messages as :

If day is 1, message is 1st day in the month

If day is 2,22 , message is 2nd / 22nd day in the month

If day is 3,23, message is 3rd/23rd day in the month

If day is 4,14,15,16… message is 4th /14th .. day in the month

 94

CHAPTER 4

FUNCTIONS

4.1 Introduction

Functions are the building blocks of C++ programs. Functions
are also the executable segments in a program. The starting point for
the execution of a program is main (). Functions are advantageous as
they

// To print X!/F! using functions
// Program - 4.2
include <iostream.h >
include <conio.h >
int fact (int num)
{
int factorial = 1;
for (int a=1; a<= num; a++)
 factorial *= a;
return factorial;
}
void main ()
{ int x, f;
 clrscr ();
 cout<<“\nEnter values…”;
 cin >> x >> f;
 cout << fact (x)/fact(f);
 }

// To print X!/F! – Program - 4.1
include < iostream.h >
include <conio.h >
void main ()
{ int x, f,xfact=1, ffact = 1;
clrscr ();
cout << “\nEnter values ...”;
cin >> x >> f; for (int a =1; a < = x;
a ++)
xfact * = a;
for (a = 1; a< = f; a++)
ffact * = a;
cout << xfact/ffact;
getch();
}

 95

In Program –4.1, the code for Factorial evaluation is repeated
twice. In the Program –4. 2, the function fact (int num) is invoked
whenever required. Functions thus encourage :

The general syntax showing the various blocks of a function :

Prototype with
arguments

return statement
marks the end of
the function and
also transfers
control to the
statement after
call statement

Statements to
invoke function fact
– call statement

// To print X!/F! using functions
// Program - 4.3
include <iostream.h >
include <conio.h >
int fact (int num)
{
 int factorial = 1;
 for (int a=1; a<= num; a++)

 factorial *= a;
 return factorial;
}

void main ()
{ int x, f;
 clrscr ();
 cout<<“\nEnter values…”;
 cin >> x >> f;
 cout << fact (x)/fact(f);

}

� Reusability of code (function fact is executed more than once)
� A function can be shared by other programs by compiling it

separately and loading them together.

 96

4.2 Function Prototyping

Functions should be declared before they are used in a program.
Declaration of a function is made through a function prototype.

For example look at the Program –4. 4.

//Program -4.4
include <iostream.h>
 void fun (char name []) ;

 void main ()
 {
 char n [] = { “C++ programming….”};
 fun (n);
 }
 void fun (char name[])
 { cout << name; }

function prototype
(declaration of
function)

Function
Definiton

The prototype provides the following information to the compiler

1. Number and type of arguments -(char name [] - is an
argument)

2. The type of return values (in the above example fun
does not have any return value, as the data type of the
function is void. Recall Program –2 , in which the return
type is int for the function Fact ())

 97

The general syntax of a function prototype
<type > <function identifier > <arguments);

For example :

void fun (char);

int max (int, int);

int max (int a, int b);

The main purpose of function prototype is to help the compiler
to check the data requirement of the function. With function prototyping,
a template is always used when declaring and defining a function. When
a function is called, the compiler uses the template to ensure that proper
arguments are passed, and the return value is treated correctly. Any
violation in matching of the arguments or the return types will be treated
as errors by compiler, and flagged at the time of compilation.

Why do you think the prototype int max (int, int) is valid??

In a function declaration, the names of the arguments are dummy
variables and therefore they are optional. The variables in the prototype
act as place holders.

The arguments’ names are required in function definition, as
the arguments are referenced inside the function.

void fun (char name [])
{ cout << name; }
int fact (int num)
{ int f = 1;
 for (int a = 1;, a < = num; a ++)
fx = a;
return f;
}

The argument num is
referenced inside function.

 98

4.3 Calling a Function

A function can be called or invoked from another function by
using its name. The function name may include a set of actual
parameters, enclosed in parentheses separated by commas. For
example,

Working of a function :

// Program - 4.5
include <conio.h>
include <iostream.h>

int add (int a, int b)

{ return a + b;}
void main ()
{ int x1, x2, sum = 0
 cin >> x1 >> x2;

 sum = add (x, x2);
 cout << sum;
}

formal parameters

actual parameter

int add(int, int)
….
return a+b;

void main()
{
…...

sum = add(x1,x2);
cout << sum;
}

Indicates
transfer of
control

 99

4.4 Parameter Passing in Functions

The call statement communicates with the function through
arguments or parameters.

In C++, functions that have arguments can be invoked by

� Call by value

� Call by reference

4.4.1 Call by Value

In this method, the called function creates new variables to store
the value of the arguments passed to it. This method copies the values
of actual parameters (parameters associated with call statement) into
the formal parameters (the parameters associated with function
header), thus the function creates its own copy of arguments and then
uses them. Recall the example Program - 4.5

// Program - 4.5
include <iostream.h>
include <conio.h>
int add (int a, int b)
{ return a + b;}
void main ()
{ int x1, x2, sum;
cin >> x1 >> x2;
sum = add (x, x2);
cout << sum;
}
Assume x1 = 5, x2 = 7

Main() add()

 x1 = 5 a = 5
 x2 = 7 b = 7
 sum =
 Assume address of the variables :

 x1 = Oxf1 address data
 x2 = Oxf3 Oxf1 5
 a = Oxf7 Oxf2
 b = Oxf9 Oxf3 7
 sum = Oxf6 Oxf4
 Oxf5
 Oxf6 12
 Oxf7 5
 Oxf8

 Oxf9 7

 100

Have you noticed that the actual parameters x1 and x2 and the
formal parameters a&b have been allocated different memory
locations? Hence, in call by value method, the flow of data is always
from the call statement to the function definition.

Output

Values before invoking swap 10 20
Calling swap …..
20 10
Back to main…… Values are 10 20

// Program - 4.6
// To exchange values
#include <iostream.h>
#include <conio.h>
include <iomanip.h>
void swap (int n1, int n2)
{ int temp;
 temp = n1;
 n1 = n2;
 n2 = temp;
 cout << ‘\n’<<n1<<‘\t’<<n2<<‘\n’;
}

void main ()
{
 int m1 = 10, m2 = 20;
 clrscr ();
 cout <<“\n Values before invoking swap”

 << m1 << ‘\t’ << m2;
 cout << “\n Calling swap..”;
 swap (m1, m2);
 cout << “\n Back to main.. Values are”

 << m1 << ‘\t’ << m2;
 getch ();
}

 101

Why do you think the exchange of values of the variables m1 and m2
are not reflected in the main program??

When arguments are passed by value, the called function creates new
variables of the same data type as the arguments passed to it. The
values of these arguments are copied into the newly created variables.
Hence, changes or modifications that are made to formal parameters
are not reflected in the actual parameters.

4.4.2 Call by reference

In this method, the called function arguments - formal parameters
become alias to the actual parameters in the calling function. This
means that when the function is working with its own arguments, it is
actually working on the original data. Recall the example Program 4.6.
Let us now rewrite the function using reference parameters.

//Program - 4.7
// To exchange values

include <iostream.h>
#include <conio.h>
void swap (int &n1, int &n2)
{
 int temp;
 temp = n1;
 n1 = n2;
 n2 = temp;
 cout<<‘\n’<< n1
 <<‘\t’<<n2<<‘\n’;
}

In call by value method, any change in the formal parameter is not
reflected back to the actual parameter.

 102

The modifications made to formal parameters are reflected in
actual parameters, because formal and actual parameters in reference
type point to the same storage area.

Look at the following depiction:
Main Swap

m1 = 10 n1 = 10
m2 = 20 n2 = 20

temp

Assume storage area of m1 is Oxf1, and m2 is Oxf4.

m1 = Oxf1 = 10

m2 = Oxf4 = 20

void main ()
{
 int m1 = 10, m2 = 20;
 clrscr();
 cout<<“\nValues before swap call”

 << ‘\t’ << m1 << ‘\t’ << m2;
 swap(m1,m2);
 cout<<“\n Calling swap..”;
 cout<<“\n Back to main.Values are”

 << ‘\t’ << m1 << ‘\t’<< m2;
 getch ();
}

 103

Reference to formal parameters may be read as

n1 = 10; n1 is a reference to m1, which may be depicted as:
int &n1 = m1

This means that n1 is an alias to m1, hence m1 and n1 refer to same
storage area, hence the statements may be rewritten as :

n1 = m1 = Oxf1 = 10
n2 = m2 = Oxf4 = 20

Address Before Exchange After exchange

Oxf1 (n1, m1) 10 20
Oxf4 (n2, m2) 20 10

Hence, changes made to formal parameters are reflected in actual
parameters.

Try out

// Reference variables
// Program -4.8

include <iostream.h>
include <conio.h>
void main ()
{

 int num1 = 10, & num2 = num1;
 num2 ++;

 cout << num1;
}

 104

Rules for actual parameters:

1. The actual parameters can be passed in the form of constants
or variables or expressions to the formal parameters which are
of value type.

For example,

For a function prototype : int add (int n1, int n2); - the call
statements may be as follows :

x = add (5, 10);
x = add (a1, a2); where a1 and a2 are variables

2. The actual parameters can be passed only as variables to formal
parameters of reference type.

For example,

int add (int & n1, int & n2);
x = add (a1, b1) ; where a1 and b1 are variables

The following call statements are invalid:

x = add ((a1 + b1), a1);
x = add (5,10);

Output displayed will be 11

By virtue of reference num1 and num2 point to the same
storage location.
 Hence, change of value in num1 is reflected in num2.

 105

Why does the above program does not behave the way to produce the
result as mentioned in comment line?

The output produced is :

* * * * *
Reason – the variable i is a reference to the variable mi.Since the
variable i gets a value 6 in the function, mi is also automatically up-
dated to 6, hence, the ‘for’ loop in main () is executed only once.

4.3.4 Default arguments

In C++, one can assign default values to the formal parameters
of a function prototype.

// Program - 4.9
//To print 5 stars per row and 5 such rows
include <iostream.h>
include <conio.h>

void fun_starts (int &i)
{
 int j = 5;
 for (i= 1; i <= j; i++)

cout << ‘ ‘<<‘*’;
}

void main ()
{
 int mi = 1;
 clrscr();
 for (; mi<= 5; mi++)
 {

cout << ‘\n’;
fun_starts (mi);

 }
 getch ();

}

}

 106

For example :

Output:

Call statement is power (b, x) .. 16
Call statement is power (b) .. 2

In the call statement power (b,x), initialization is

n= b, p = x

In the second form power (b), the variable n is initialized, whereas
p takes the value 1 (default argument), as no actual parameters is
passed.

// Program - 4.10
// formal parameters with default values
include <iostream.h>
include <conio.h>
float power (float n, int p = 1)
{
 float prd = 1;
 for (int i = 1; i<= p; i++)

prd *= n;
 return prd;
}

void main ()
{
 clrscr ();
 int x = 4, b = 2;
 cout << “\n Call statement is power(b, x)...”

 << power (b, x);
 cout << “\n Call statement is power(b).. “

 << power (b);
 getch ();
}

 107

NOTE:

� The default value is given in the form of variable initialization.

� The default arguments facilitate the function call statement with

partial or no arguments.

� The default values can be included in the function prototype

form right to left, i.e., we cannot have a default value for an

argument in between the argument list.

Try out the following Program.

Output:
 24
 80
 120
Variable initialization
I form - side1 = s1,
side2 = s2
II form - side1 = s1
III form - side1 = s2

//Program - 4.11
include <iostream h>
include <conio.h>
int area (int side1 = 10, int side2=20
{ return (side1 * side 2); }

void main ()
{ int s1 = 4, s2 = 6;
 clrscr () ;
 cout << area (s1, s2) << ‘\n’;
 cout << area (s1) << ‘\n’;
 cout << area (s2) << ‘\n’;
 getch ();
}

 108

What will be the output of the following program?

Solution:

print (50) - 50 is assigned to the argument times. Hence,
the output ‘ * ‘ will be printed 50 times.

print (‘A’, 97) - ‘A’ is assigned to argument times (implicit
conversion of character to integer takes place).
Hence, times gets the value as 65.

// Program - 4.12
// arguments with default values

include <iostream.h>
include <conio.h>

void print (int times, char ch = ‘ * ‘)
{
 cout << ‘\n’;
 for (int i = 1, i < = times; i ++)
 cout << ch;
}
void main ()
{
 clrscr ();
 print (50);
 print (‘A’, 97);
 print ();
}

 109

The constant 97 is assigned to ch, hence ch gets
the value as ‘a’.

The actual parameters are matched with formal
parameters on the basis of one- to -one
correspondence.
Hence, 65 times, ‘a’ will be printed.

print () - In the absence of actual arguments, the formal
parameters takes the default arguments. Hence,
the output will be displayed as ‘ * ‘ - 50 times.

4.5 Returning Values

The functions that return no value is declared as void. The data
type of a function is treated as int, if no data type is explicitly mentioned.
For example,

int add (int, int);
add (int, int);

In both prototypes, the return value is int, because by default the return
value of a function in C++ is of type int.

Look at the following examples:

Sl.No. Function Prototype Return type

1 float power (float, int) float

2 char choice () char

3 char * success () pointer to character

4 double fact (int) double

 110

4.5.1 Returning by reference

Reference or alias variables:

Output:

Count: 5
 i: 6

Why do you think count gets the value as 5?

Why is the variable i updated to 6, when count was incremented???

The reason being that the variables count and i refer to the same data
in the memory. Reference variables also behave the same way.

Using this principle, try and find out as to what will be output of the
following program:

// Program - 4.13
include <iostream.h>
include <conio.h>
void main ()
{ int i = 5;
 int &count = i ;
 cout << “\nCount: “ << count;
 count ++;
 cout << “\ni: “ << i;
 getch ();
}

 111

Output

Maximum is : 30

In the above program, the function maxref returns a reference to
int type of variable. The function call maxref (x,y) will return a reference
to either a or b depending upon which one is bigger of the two. Hence,
the variable max gets the value of the variable y.

What will be the output of the following program?

// Program - 4.14
include <iostream h>
include <conio.h>
int &maxref (int &a, int &b)
{ if (a>b)
 return a;
 else
 return b;
}
void main ()
{ int x = 20, y = 30, max = 0;
 max = maxref (x,y);
 cout << “\n Maximum is: “ << max;

}

// Program 4.15
include <iostream h>
include <conio.h>
int & maxref (int & a, int & b)
{ if (a > b),
return a;
 else
 return b;
}
void main ()
{ int x = 20, y = 30, max = 0;
 maxref (x,y) = -1;
 cout << “\n Value of x is : “ << x;
 cout << “\n Value of y is: “ <<y;
 getch ();
}

 112

Output

Value of x is : 20
Value of y is : -1

NOTE:

1. A function returning a reference can appear on the left-hand side
of an assignment.

2. In the above example, the variable y gets the value -1, since the
function maxref. establishes reference with the formal parameter
b, whose corresponding variable in main block is ‘y’.

3. The formal parameters for a reference function should always
be of reference parameter type in the sense -

int & maxref (int a, int b);
will yield compilation error, as the scope of the variables
a&b
are within the function block maxref.

4.6 Inline Functions

We have listed out the advantages of functions as

� Reusability of code leading to saving of memory space and
reduction in code size.

While this is true, we also know that call statement to a function
makes a compiler to jump to the functions and also to jump back to the
instruction following the call statement. This forces the compiler to
maintain overheads like STACKS that would save certain special
instructions pertaining to function call, return and its arguments. This
reduces the speed of program execution. Hence under certain
situations specially, when the functions are small (fewer number of
instructions), the compiler replaces the function call statement by its

 113

definition ie., its code during program execution. This feature is called
as inlining of a function technically called as inline function.

Now look at the following example.

As shown in the above example, the call statement to the function
(convert_feet(inches) will be replaced by the expression in the return
statement (inches * 12).

To make a function inline, one has to insert the keyword inline in the
function header as shown in Program 4.16.

Note :
inline keyword is just a request to the compiler . Sometimes

the compiler will ignore the request and treat it as a normal function
and vice versa.

// working of Program - 4.16
// inline functions

include <iostream.h>
include <conio.h>

void main()
{
 clrscr();
 int inches = 45;
 cout << inches * 12 ;
 getch();

}

// Program - 4.16
// inline functions

include <iostream.h>
include <conio.h>

inline float convert_feet(int x)
{
 return x * 12;
}

void main()
{
 clrscr();
 int inches = 45;
 cout << convert_feet(inches);
 getch();

}

 114

4.7 Scope Rules of Variables

Scope refers to the accessibility of a variable. There are four
types of scopes in C++. They are:

1. Local scope 2. Function scope
3. File scope 4. Class scope

4.7.1 Local scope

• A local variable is defined within a block.
• The scope of a local variable is the block in which it is

defined.
• A local variable cannot be accessed from outside the

block of its declaration.

// Program - 4.17
// to demonstrate local variable
include < iostream.h
include <conio.h>
void main ()
{
 int a, b ;
 a = 10;
 b = 20;
 if (a > b)
 { int temp; // local to this if block
 temp = a;
 a = b;
 b = temp;
 }
 cout << ‘\n Descending order…’;
 cout << ‘\n’ <<a << ‘\n’ <<b;
 getch ();
}

 115

Program-4.18 demonstrates the scope of a local variable.

• Local variables are not known outside their own code
block. A block of code begins and ends with curly braces
{ }.

• Local variables exist only while the block of code in which
they are declared is executing.

A local variable is created upon entry into its block and destroyed upon
exit.

Identify local variables, in the Program-4.19 and also mention their
scope.

4.7.2 Function scope

The scope of variables declared within a function is extended to the
function block, and all sub-blocks therein.

//Program - 4.18
include <iostream.h>
include <conio.h>
void main ()
{ int a, b;
 a = 10
 b = 20;
 if (a > b)
 { int temp;
 temp = a;
 a= b;
 b = temp;
 }
 cout << a << b << temp;
 getch ();
}

On compilation, the compiler
prompts an error message:
Error in line no.13
The variable temp is not
accessible.
The life time of a local variable is
the life time of a block in its state
of execution.
Local variables die when its block
execution is completed.

 116

The variable flag of Program – 4.19 is accessible in the function
main () only. It is accessible in all the sub-blocks therein - viz, while
block & if block.

The life time of a function scope variable, is the life time of the function
block. The scope of formal parameters is function scope.

4.7.3 File scope

A variable declared above all blocks and functions (precisely
above main ()) has the scope of a file. The scope of a file scope
variable is the entire program. The life time of a file scope variable is
the life time of a program.

// Program - 4.19
include <iostream.h>
void main ()
{ int flag = 1; a = 100;
 while (flag)
 {
 int x = 200;
 if (a > x)
 { int j;
 -
 }
else
 { int h;
 -
 }}}

Local variable

1. x

2. j

3. k

Scope

Accessible in while
block, and if blocks
Accessible only in if
(a>x) { } block
Accessible only in
else block

 117

4.7.4 Scope Operator

The scope operator reveals the hidden scope of a variable. Now look
at the following program.

// Program - 4.20
// To demonstrate the scope of a variable

// declared at file level

include <iostream.h>
include <conio.h>
int i = 10;
void fun ()
{ cout << i; }
void main ()
{
 cout << i;
 while (i)
 { -
 -
 -
 }

}

Have you noticed the variable
num is declared both at file
scope level and function main()
level? Have you noticed the
reference ::num ? :: is called
as scope resolution operator. It
is used to refer variables
declared at file level. This is
helpful only under situations
where the local and file scope
variables have the same name.

// Program - 4.21
include <iostream.h>
include <conio.h>

int num = 15;

void main()
{
 clrscr();
 int num = 5;
 num = num + ::num;
 cout << num << ‘\t’ <<
++::num;
 getch();
}

 118

4.7.5 Class scope

This will be discussed in Chapter 6.

Exercises

1. Construct function prototypes for descriptions given below:

a) procedural-function ()
 - is a function that takes no arguments and has no return value.

Solution -

void procedural - function (void);
 OR void procedural - function () ;

b) manipulative - function () takes one argument of double type
and returns int type.

Solution -

i. int manipulative - function (double); OR
ii. int manipulative - function (double d); OR
iii. manipulative - function (double)

c) fun-default () takes two arguments, once with a default integer
value, and the other float, has no return type

Solution -
void fun-default (float, int num = 10);

 119

d) return - reference - fun () takes two int arguments and return
reference to int type

Solution -
int & return - reference - fun (int &, int &);

e) multi-arguments () that takes two arguments of float, where the
1st argument is P1 should not be modified, and the 2nd argument
is of reference type. The function has no return type.

Solution -
void multi - arguments (float const pi, int & a);

2. Identify errors in the following function prototypes:

a) float average (a, b);
b) float prd (int a,b);
c) int default-arg (int a = 2, int b);
d) int fun (int, int, double = 3.14);
e) void strings (char []);

3. Given the function

void line (int times, char ch)
 { cout << ‘\n’;

 for (int i = 1; i < = times; i ++)
 cout << ch;

 cout << ‘\n’;
}

 Write a main () function that includes everything necessary to call
this function.

 120

4. Write the scope of all the variables mentioned in this program.

include <iostream.h> Solution:
float a, b ; void f1 (char); a,b - file scope
int main () ch - function scope
{ char ch; - main ()
 - i - scope within its
 - block

{ int i = 0; x,y,g -function scope -
- f1 function
-
-
}

 }
 void f1 (char g)
 { short x, y ;
 } =

4. Identify errors in the following programs:

Solution:

The variable ‘m’ is declared
with function block, which
is not permitted.

a) # include <iostream.h>

xyz (int m, int n)
{ int m = 10;

 n = m * n;
 return n;
 }

void main()
{ cout << xyz (9,27) ;}

 121

5. What will be the output of the following programs?

 a) # include <iostream.h> Solution: 101
int val = 10;
divide (int) ;
void main ()
{int val = 5;

 val = divide (::val/val);
 cout << :: val<<val;
 }

 divide (int v)
 { return v/2;}

b) # include <iostream.h>

void xyz ();
void main ()

{ int x = xyz () ; }

void xyz ()

{ return ‘10’ ; }

Solution:

Function declared as void
type, cannot have a return
statement, hence the function
call cannot be part of an
expression

c) # include <iostream.h>

void counter (int & a)
{ ++ a;}

void main ()
{counter (50); }

Solution:

The actual parameter cannot
be passed in the form of a
value, as the formal parameter
 is of reference type

 122

b) # include <iostream.h> Solution: 1 - Working
divide (int v)

 { return v / 10;} i) divide (400) yields
void main () a value 40

 {int val = -1; ii) divide (400) == 40 is
val = divide (400) = = 40; interpreted as

cout << “\n Val.” << val; 40 ==40 since the
 } condition is true

 val gets 1

c) # include <iostream.h> Solution: 10
int incre (int a)
{ return a++; }
void main ()
{int x = 10; x = incre (x); cout << x;}

d) # include <iostream.h> Solution:
include <iostream.h>
void line() * * * * *
{static int v = 5; * * * *

 int x = v - - ; * * *
 while (x) * *

 {cout << ‘ * ‘ ; x — ;
 }
 cout << ‘In’;

}
void main ()
{ clrscr ();

 for (int i = 1; i < = 5; i ++
 line () ;
 getch ();

}

 123

e) # include <iostream.h> Solution:
first (int i)
{ return i++; } Val : 50
second (int x)
{ return x —; }
void main ()
{ int val = 50;
 val = val * val/val
 val = second (val);

 val = first (val);
 cout << “\n Val: “ << val;

}

6. Program writing….

a) Write a program in C++ to define a function called float cube
(int, int, int). Write main () function, to test the working of cube
().

b) Define a function unsigned long it factorial (int);

The factorial of a number is calculated as follows: For example
Factorial of 5 is calculated as 1 x 2 x 3 x 4 x 5
Write a main () function to calculate the factorial (n).

c) Define a function called as
char odd - even - check (int);

The function should return ‘E’ if the given number is even,
otherwise ‘O’. Write a main () to test and execute the function
odd-even-check (int) and also print relevant message.

d) Define a function int prime (int);

The function should return a value 1, if the given number is prime,
otherwise -1. Write a main () to test and execute the function
and also print relevant message.

124

CHAPTER 5

STRUCTURED DATA TYPE - ARRAYS

5.1 Introduction

An array in C++ is a aderived data type that can hold several
values of the same type.

Processing a collection of data values by reading the data items
individually and then processing each item may be very cumbersome
and awkward if data is large. For example, consider the following
situations:

1. To determine the largest number in the given set of numbers:

a) if the set comprises of two numbers then the
comparisons would be :

if (a > b)
max = a;

else
max = b;

b) if the set comprises of three numbers then the
comparisons would be :

if (a > b) && (a > c)
max = a;

else if (b > c)
max = b;

else
max = c;

125

c) if the given set comprises of 4 numbers then the
comparisons would be :
if (a > b && a > c && a > d)

max = a;
else if (b > c && b > d)

max = b;
else if (c > d)

max = c;
else

max = d;

Have you noticed the increase in comparisons, as the numbers
increase??

In fact, handling large data becomes unwieldy, if one has to adopt the
above methods for processing data.

Now look at this:

The above program code determines the largest value in the
given list of numbers, i.e., 10, 40, 30, 20, thus storing 40 in max. Have
you noticed the construct of if statement? In order to handle large data
with ease, elements belonging to the same data type are decaled as
ARRAYS.

An array is a collection of variables of the same type that are referenced
by a common name.

int a [4] = { 10, 40, 30, 20}; max = 0 ; i = 0;
for (; i < 4; i ++)
if a [i] > max

max = a [i] ;
cout << “\n The largest number is” << max;

126

Arrays are of two types:

One dimensional: comprising of finite homogenous elements
Multi dimensional: comprising of elements, each of which is itself a

one- dimensional array

5.2 Single Dimension Array

These are suitable ways for processing of lists of items for
identical types. An array is declared as follows:

int num_array [5];

Syntax:

Fig. 5.1 Single Dimension Array

The size of the array should always be positive. The declaration
int num_array [5]; is interpreted as num_array is a one-dimensional
array, that stores 5 integer values. Each element of the array is
accessed by the array name and the position of the element in the
array. For example, num-array [3] = 99, stores the value 99 as the 4th

element in the num_array.

num_array is the array identifier and [3] is subscript/position of
the element

Memory allotted for num_array is 10 bytes, as it stores 5 integer element
(memory required for one integer is 2 bytes hence 5 x 2 = 10 bytes).

[sizespace Array
identifier

] ;
Data
type

127

Memory allocation is as follows:

num_array - identifier

The array subscripts always commences from zero, hence the
subscripts for the variable num-array is between 0-4. The statement
num-array [5] is invalid, because the valid subscripts are only between
0-4. The other valid examples of array declaration are:

i. int array [100];
ii. float exponents [10];
iii. char name [30];
iv. const i = 10;

double val [i];
v. int days [] = {1,2,3,4,5,6,7};

In example [iv], the size of the array val is indicated through a
constant variable i. In example [v], the size of the array days [] is
indirectly indicated as 7. Can you guess how? Yes, the size is
determined through the initialization statement -{1,2,3,4,5,6,7}. 7
elements determine the size of the array. Now look at the Program –
5.1 that demonstrates basic operations on arrays.

Examples of array processing:
cin >> number [4] - Reads fifth element
cout << number [subscript] - displays the element as

indicated by subscript
number [3] = number [2] - assigns the contents of the

3rd element of the array to its
4th element

number [3] ++ - increments the value stored
as 4th element by 1

number [++ a] = 10 - assigns the value 10 to the
element as indicated by ++a

0 1 2 3
99

subscripts

Value stored as
element 4

128

// Program - 5.1
// arrays and basic manipulations on
// arrays
include <iostream.h>
include <conio.h>

int a[5],ctr = 0, sum;

void main()
{
 for(;ctr<5;ctr++)
 {

 cout << “\nEnter value ..”;
 cin >> a[ctr];

 }
 // generating sum of all the elements
 // stored in array
 for(ctr = 0, sum = 0; ctr<5;ctr++)

sum+= a[ctr];
 clrscr();
 // display values stored in array
 for(ctr = 0; ctr < 5; ctr++)

cout <<‘\t’ << a[ctr];
 cout << “\nSum of the elements ...”
<< sum;
 getch();
}

129

// try out
// Program – 5.2

include <iostream.h>

include <conio.h>

char ch [] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’};
void main ()
{
 for (int i = 0; i < 5; i++)

cout << ch[i];

 for (j=4; j>=0; j—)
 cout << ch [j];

 getch();
}

Output diaplayed :
 abcdeffedcba

// try out
// Program - 5.3
include <iostream.h>
include <conio.h>

void main ()
{
int even [3] = {0, 2, 4}; int reverse [3];
for (int i=0, int j = 2; i<3; i++, j —)

reverse [j] = even [i];
clrscr ();

for (i=Ô; i<3, i++)
 cout ‘\t’ << even [i] << ‘\t’ << reverse [i] << ‘\n’;

 getch ();
}

Output of Program - 5.3

0 4
2 2
4 0

130

Output of Program -5. 4

The contents of the array are:

1 -1 0
2 4 -2
3 3 0
4 2 2
5 1 4

// try out
//Program - 5.4
include <iostream.h>
include <conio.h>
void main ()
{
 int x[5] = {1,2,3,4,5}, y [5] = {5,4,3,2,1},

 result [5] = { 0,0,0,0,0 };
 int i= 0;
 while (i++ < 5)

 result [i] = x [i] - y [i];
 clrscr ();
 cout << “\n The contents of the array are: \n”;
 i= 0 ;
 do
 {

 cout << ‘\t’ << x [i]
 << ‘\t’ << y [i]
 << ‘\t’ << result [i]<<‘\n’;

 i++;
 } while (i<5);
 getch ();
}

131

Output of Program - 5.5

Elements of array before insertion
248810
Elements after insertion
246810

One can rearrange the data in a given array either in ascending or
descending order. This process is called SORTING.

5.3 Strings

Strings are otherwise called as literals, which are treated as
single dimensional array of characters. The declaration of strings is
same as numeric array. For example,

i. char name [10];
ii. char vowels [] = {‘a’, ‘e’, ‘i’, ‘o’, ‘u’};
iii. char rainbow [] = VIBGYOR;

//Try out
//Program - 5.5
include <iostream.h>
include <conio.h>
void main ()
{
 int vector [] = {2, 4, 8, 10, 0};
 for(int i=4; i>2; i—)

 vector [i]= vector [i-1];
 clrscr();
 cout << “\n Elements of array before insertion
\n”;
 for (i= 0; i<5; i++)

cout << vector[i];
 vector [2] = 6;
 cout << “\n Elements after insertion \n”;
 for (i= 0; i<5; i++)

cout << vector[i];
 getch ();
}

132

A character array (used as string) should be terminated with a ‘\0’
(NULL) character. These arrays can be initialized as in the above
examples, viz., (ii) and (iii).

In the above example Program - 5.6, the values for the variables name,
address and pincode are read using

cin, gets () and getline.

The instance cin, treats white space or carriage return (enter key) as
terminator for string. For example,

cin >> name;

// Program - 5.6
// Reading values into an array of characters

include <iostream.h>
include <stdio.h>
include <conio.h>
include <string.h>
void main()
{
 clrscr();
 char name [30], address [30], pincode[7];
 cout << “\n Enter name ...”;
 cin >> name;
 cout << “\n Enter address...”;
 gets (address);
 cout << “\n Enter pincode ...”;
 cin.getlin e (pincode, 7,’#’);
 clrscr ();
 cout << “\n Hello “ << name;
 cout << “\n Your address is ...” << address;
 cout << “\n Pincode ”;
 cout.write (pincode, sizeof(pincode));
 getch ();
}

133

a) if the value for name is given as K V N Pradyot , then the value
stored in name is only K, as white space is treated as string
separator or terminator.

b) if the value for name is given as K.V.N.Pradyot , then the value
stored in name is K.V.N.Pradyot.

To treat spaces as part of string literal, then one has to use gets ()
defined in stdio.h or getline () - a member function of standard input
stream.

Syntax for gets () is
gets (char array identifier) or
gets (char *)

Syntax for getline is

cin.getline (char*, no.of characters, delimiter);

There are two methods to display the contents of string.
1. cout << name - this is similar to any other variable.
2. cout.write (pincode, 7); or cout.write (pincode, size of (pincode));

write () is a member function of standard output stream, i.e., ostream.
All member functions of a class, should be accessed through an
object /instance of class. The two parameters required for write ()
function are identifier string characters, and no. of characters to be
displayed.
For example, //Program - 5.7

include <iostream.h>
include <conio.h>
void main()
{
 clrscr ();
 char name[] = “Tendulkar”;
 int i=1;
 while (i<10)
 {

 cout.write (name, i);
 cout << ‘\n’;
 i++;

 }
 getch ();
}

134

Output
T
Te
Ten
Tend
Tendu
Tendul
Tendulk
Tendulka
Tendulkar

String manipulators defined in string.h are described in Table 5.1.

Table 5.1 String Functions

Sl.No. Function Syntax Purpose & value returned

strlen () strlen (char *) Returns the number of
characters stored in the
array.For example, name =

strcpy () strcpy (char *, Copies source string to target
string. For example,strcpy

strcmp () strcmp (char Compares the two given strings,
and returns 0 if strings are equal,
value >0, if string 1 is greater
than string 2. Otherwise value
less than 0. For example, strcmp
(“Abc”, “Abc”)
returns 0strcmp (“Abc”, “abc”)
returns a value less than 0strcmp

1

2

3

135

Strings czn be manipulated element by element like a char array.
For example,

What will be the output of the following program?

// Program - 5.8
include <iostream.h>
include <conio.h>
void main ()
{
 clrscr();
 char name[] = “Pascal”, reverse[7];
 int i= 0;
 while (name[i] != ‘\0’)

 i++;
 reverse[i] = ‘\0’;
 —i;
 int j = 0;
 while (i>= 0)

 reverse [i—] = name [j++];
 cout << “\n The contents of the string are: “<< name;
 cout << “\n The contents of the reversed string ...”
 << reverse;
 getch ();
}

//Program - 5.9
include <iostream.h>
include <conio.h>
include <string.h>
main()
{
 char word [] = “test”;
 int i=0, k = 4, j = 0;
 clrscr();
 while (i < 4)
 {

j = 0;
while (j<=i)
 cout << word [j++];
cout << ‘\n’;
i++;

 }
 return 0;
}

136

5.4 Two-Dimensional Array

A two-dimensional array is an array in which each element is
itself an array. For instance, an array marks [3] [4] is a table with 3
rows, and 4 columns.

int makrs [3] [4] = {90, 70, 80, 0, 75, 95, 65, 0, 80, 90, 90, 0}; will create
a table as;

Note:

√ The number of elements in a 2-dimensional array is determined
by multiplying the number of rows with number of columns. In
this example - The array marks has 12 elements.

√ The subscripts always commence from zero. The subscript for
rows is from 0 to 2, and for columns - 0 to 3.

√ An element in a 2-D array is referred as Marks [Row] [Column].
For example, marks [0] [3] = marks [0] [0] + marks [0] [1] + marks
[0] [2] will sum up the marks of the 1st row, viz., 90, 70, 80.

0

90

75

80

1

70

95

90

2

80

65

90

0

1

2

3

0

0

0

0,0

1,0

2,0

0,1

1,1

2,1

0,2

1,2

2,2

0,3

1,3

2,3

137

A 2-D array is declared as:

Type array-id [Rows] [Columns];

Example:

1. int a[3] [2]- declares 3 rows and 2 columns for the array a
2. const i=5;

float num [i] [3] - declares a 2-D table num with 5 rows and
3 columns

3. short fine [‘A] [‘E’] - declares a 2-D table of 65 rows and
69 columns

Note:

The dimensions (rows/columns) of an array can be indicated

1. using integer constants
2. using const identifier of integer or ordinal
3. using char constants
4. using enum identifiers

5.4.1 Memory representation of 2-D arrays

A 2-D array is stored in sequential memory blocks. The
elements are stored either

1. row-wise manner (this method is called as row-major order)

2. column-wise manner (this method is called as column-major
order)

138

 For example:

int sales [2] [4]; will be stored as follows:

In row-major order.

Column-major order

Have you noticed the position of sales [1] [0] in row-major order and
column-major order?

0,0

0,1

0,2

0,3

1,0

1,1

1,2

1,3

1st row

2nd row

0,0

1,0

0,1

1,1

0,2

1,2

0,3

1,3

1st column

2ndcolumn

3rd column

4th column

139

The size of a 2-D array is calculated as follows:

Number of elements * memory req. for one element

For example - int sales [2] [4] the size will be calculated as follows:

Number of elements = Rows x columns - 2 x 4 = 8
∴ 8 x 2 (2 bytes is required for integer)
∴ size = 16 bytes

What will be the size of the array -

float num [4] [6];

Solution: 4 x 6 x 4 = 96 bytes

Consider the following array:

int num [4] [3] = {8, 7, 6, 4, 5, 8, 9, 7, 6, 1, 2, 3};

num

Write the appropriate reference for the highlighted elements of the table
num.

7

9

2

5

0 1 2

0 8 6

1 4 8

2 7 6

3 1 3

140

Solution:

num [0] [1] - (7)
num [1] [1] - (5)
num [2] [0] - (9)
num [3] [1] - (2)

Determine the number of elements in the following declaration:

a) int array [10] [12]; Solution:
b) int x [] [2] = {0,1,1,2,2,3} a) 120 elements

b) 6 elements (rows = 3
columns = 2)

The size of first dimension (first index) is optional in array initialization.

Arrays can be passed on as arguments to functions. The actual
parameter is passed only by the identifier, ignoring dimensions.

Array parameters by default behave like a reference parameter,
as the array identifier unlike other identifiers, represents the base
address of the array. Hence, it results in sending an address to the
formal parameter (like reference parameters).

141

// Program - 5.10
#include <iostream.h>
include <conio.h>

void accept (int s[3][4], int &total)
{
 int r = 0, c = 0;
 for (; r < 3; r++)
 {

 cout << “\n Month: “ << r+1;
 for (c = 0; c < 4; c++)
 {

cout << ‘\n’ << c+1 << “ Quarter..”;
cin >> s[r][c];
total += s[r][c];

 }
 }
}

void display (int d[3][4], int total)
{
 int r, c;
 clrscr ();
 cout << “\nSales figures for 3 months & their
respective quarters..”;
 for (r = 0; r < 3; r++)
 {

 cout << “\n Month ...” << r+1;
 for (c = 0; c < 4; c ++)
 cout << ‘\t’ << d[r][c];

 }
 cout << “\n Total sales ..” << total;
}
void main ()
{
 clrscr();
 int sales[3][4], t = 0;
 accept(sales,t);
 display(sales,t);
 getch();
}

142

Now look at the following program.

Output: Assume data entered in accept () function is 1,2,3,4
0
0
0
0

Why do you think the array num is not updated with the values 1,2,3,4?

In this example, the parameter passed to void accept () is
element by element. Hence, it is treated as value parameter and not
reference parameter.

// Program - 5.11
include <iostream.h>
include <conio.h>
void accept (int a)
{
 cout << “\n Enter a number ..”;
 cin >> a;
}

void display (int a)
{
 cout << ‘\n’ << a;
}

void main ()
{
 int num [2][2] ={{0,0},{0,0}}, r = 0, c = 0;
 clrscr ();
 for (; r < 2; r++)
 for (; c < 2; c++)

accept (num[r][c]);
 clrscr();
 for (r = 0; r < 2; r++)
 for (c = 0; c < 2; c++)

display (num[r][c]);
 getch();
}

143

Note: Only the array identifier represents the base address of an array.

Now, rewrite the above program with the change - void accept (int (a).
On execution, if the same test data 1,2,3,4 is given, then the output
displayed will be

1
2
3
4

5.4.2 Matrix

A matrix is a set of mn numbers arranged in the form of a
rectangular array of m rows and n columns. Matrices can be
represented through 2-D arrays.

Program 5.12 demonstrates to read values for 2 matrices and
check their equality.

5.5 Array of Strings

An array of strings is a two-dimensional character array. The
size of first index (rows) determines the number of strings and the size
of second index (column) determines maximum length of each string.
For example,

char day-names [7] [10] = {“Sunday”,
“Monday”,
“Tuesday”,
“Wednesday”,
“Thursday”,
“Friday”,
“Saturday”};

will appear in the memory as shown in Table 5.1.

144

//Program - 5.12
include <iostream.h>
include <conio.h>

void accept (int mat[3][3])
{
 clrscr();
 int r = 0, c = 0;
 for (; r < 3; r++)
 {

 cout << “\n Enter elements for row..” << r;
 for (c=0; c < 3; c++)

cin >> mat[r][c];
 }
}

void main ()
{
 int m1[3][3], m2[3][3];
 accept (m1);
 accept (m2);
 int i=0, j = 0, flag = 1;
 for (; i < 3; i++)
 {

 for (; j < 3; j ++)
 if (m1[i][j] != m2[i][j])
 {

 flag = 0;
 break;

 }

 if (flag == 0)
 break;

 }
 if (flag)

cout << “\n The matrices are equal ...”;
 else

cout << “\n The matrices are not equal..”;
 getch ();
}

145

Table 5.1 Array Elements in Memory

An individual string is accessed as

day-names [0], i.e., by specifying the 1st index only. A specific
character or an element is accessed as day-names [0] [5], i.e., by
specifying both 1st and 2nd indices.

Attaching teh null character (\0) to each string literal is optional.
Even if we omit it, the C++ compiler will automatically attach it.

Exercises

1. Why do the following snippets show errors?

a) int a [5.5]

Dimension of an array should be only an integer

b) float f [3] = {1.0, 2.0};

This will not show any error. But the number of elements is
one less than the size of the array.

c) float num [A];

0 1 2 3 4 5 6 7 8 9

0 S u n d a y \0 day-names [0]

1 M o n d a y \0 day-names [1]

2 T u e s d a y \0 day-names [2]

3 W e d n e s d a y \0 day-names [3]

4 T h u r s d a y \0 day-names [4]

5 F r i d a y \0 day-names [5]

6 S a t u r d a y \0 day-names [6]

146

Dimension of an array should be explicitly mentioned. Here, the
identifier A does not have a value. The statement may be rewritten
as

float num [‘A’]
Or

const A = 10;
float num [A];

d) char a [3] [] = {“one”, “two”, “three”};

The option for omitting the size of an array is given only
for 1st index and not the second index. The statement may be
rewritten as
char a [] [6] = {“one”, “two”, “three”};

e) char ch [1] = ‘s’;

Character Array should be initialized using double
quotes. The correct statement is

char ch [1] = “s”
Or

char ch [1] = {“s”}

f) char test [4];
test = {“abc”};

An array cannot be assigned in this manner. The correct
statements are:

char test [4] = “abc” - initializing at the time of declaration
or

char test [4];
strcpy (test, “abc”);

147

g) int num [] = {1,2,3}, num2 [3];
num2 = num;

Group assignment of array is not allowed. One can assign only
component by component.

h) int num [3];
cout << num;
cin >> num;

Such I/O operations are not allowed on arrays. Manipulation of
arrays is possible only by specific direction to its elements or
components, i.e.

cout << num [1] / cin >> num [1]

i) int roster = {1,2,3,4};

The variable roster cannot take more than one value. Hence,
the statements should be as:

int roster = 10; or int roster [] = {1,2,3,4};
2. What would be the contents of the array after initialization?

a) int rate [] = {30,40,50};
b) char ch [6] = {“ bbbb\0 “ }

ch [0] = ‘C’;
ch [4] = ‘T’;
ch [3] = ‘A’;

Note b indicates white/blank space.

c) char product-list [] [5] = {“nuts”, “Bolts”, “Screw”};

Solution:

148

a - rate [0] = 30, rate [1] = 40. rate [2] = 50
b - ch [0] = ‘C’, ch [1] = ‘ ‘; ch [2] = ‘ ‘, ch [3] = ‘A’,
 ch [4] = ‘T’, ch [5] = ‘\ 0",
c - product-list [0] = “Nuts \ 0”, product-list [1] = “Bolts \ 0”,
 product-list [2] = “Screw\0”

3. What would be the output of the following programs?

a) # include <iostream.h> Solution: END
void main ()
{char ch [] = {“END \ 0”S};
 cout << ch;
}

b) # include <iostream.h>
void main ()
{int a [] = {1,2,3,4,5};
for (int i = 0, i < 4, i++)
a[i+1] = a[i];
for (i= 0; i<5; i++)
cout << ‘\n’ << a[i];

Solution:

i = 0 - a [1] = a [0]

will be as follows: i = 1 - a [2] = a [1]
i = 2 - a [3] = a [2]
i = 3 - a [4] = a [3]

Hence, the array contents.

0 1 2 3 4

a 1 2 3 4 5

0 1 2 3 4
a 1 2 3 4 5

149

The output will be displayed as:

1
1
1
1
1

c) # include <iostream.h>
include <conio.h>
void main ()
{ char name [] = {“Jerry \0”}; int k = 5;

for (int i = 0 ; i < 3; i ++, k —)
 name [k] = name [i];
 cout << name;
 getch ();

}

Solution:

When i = 0 k = 5 name [5] = name [0]
i = 1 k = 4 name [4] = name [1]
i = 2 k = 3 name [3] = name [2]

∴ the output will be displayed as
JerreJ

Program Writing

1. Write a program to declare and initialize an array called as int-
array, that stores number 10,20,30,40 and 50. Display the sum
of all the elements of int-array.

150

2. Write a program to declare an array of integers that can hold 10
values. Read the elements of the array from the user, and also
display the contents in the reverse order.

3. Write a program to read a sentence into an identifier called as
word from the user. Using while loop and switch statements,
display the count of vowels present in the given sentence. For
example:

word [] = “The vowel count AEIOU aeiou”;
Vowel count is 14

4. Write a program to create a MATRIX [3] [3]. Display the diagonal
elements along with the sum of diagonal elements.

5. Write a program to read values for two matrices, viz., matrix A
[4] [4], matrix B [4] [4]. Write program code to create sum-matrix
[4] [4] that stores the sum of elements of matrix A and matrix B.

Example

matrix A matrix B sum-matrix

1 2 3 4 9 8 7 6 10 10 10 10

5 6 7 8 5 4 3 2 10 10 - -

9 1 2 3 1 9 8 7 - - - -

4 5 6 7 6 5 4 3 - - - -

 151

CHAPTER 6

CLASSES AND OBJECTS

6.1 Introduction to Classes

The most important feature of C++ is the “Class”. Its significance
is highlighted by the fact that Bjarne Stroustrup initially gave the name
‘C with Classes ‘. A class is a new way of creating and implementing a
user defined data type. Classes provide a method for packing together
data of different types. For Example:

The data variables, rollno, marks1, marks2, total_marks define
the properties or features of a student ,thus packing together data of
different types. The class data type can be further extended by defining
its associated functions. These functions are also called as methods,
as they define the various operations (in terms of accepting and
manipulating data) that can be performed on the data.

In other words

6.2 Specifying a class :

 A class specification has two parts :
1) Class declaration
2) Class Function Definitions

 152

// Program - 6.1
include <iostream.h>
include <conio.h>
class student
{

private :
 char name[30];
 int rollno, marks1, marks2 ,total_marks;
protected:
 void accept()
 {

cout<<“\n Enter data name, roll no, marks 1 and
marks 2.. “;

cin>>name>>rollno>>marks1>>marks2;
 }
 void compute()
 {

total_marks = marks1+ marks2;
 }
 void display()
 {

cout<<“\n Name “<<name;
cout<<“\n Roll no “<<rollno;
cout<<“\n Marks 1.. “<<marks1;
cout<<“\n Marks 2.. “<<marks2;
cout<<“\n Total Marks.. “<< total_marks;

 }
 public:
 student()
 {

name[0]=’\0';
rollno=marks1=marks2=total_marks= 0;
cout<<“\n Constructor executed ... “;

 }
 void execute()
 {

accept();
compute();
display();

 }
};
void main()
{

clrscr();
student stud;
stud.execute();

}

 153

The form of class declaration is

 General Form With respect to the above example

� The keyword class specifies user defined data type class
name

� The body of a class is enclosed within braces and is terminated
by a semicolon

� The class body contains the declaration of variables and
functions

� The class body has three access specifiers (visibility
labels) viz., private , public and protected

� Specifying private visibility label is optional. By default the
members will be treated as private if a visibility label is not
mentioned

� The members that have been declared as private, can be
accessed only from within the class

� The members that have been declared as protected can
be accessed from within the class, and the members of
the inherited classes.

� The members that have been declared as public can be
accessed from outside the class also

class class-name
{
private:
 variable declaration
 function declaration

protected:
 variable decl.
 function decl.

public:
 variable decl.
 function decl.
};

class student
{ private;
 char name [10];
 int roll no, mark1, mark2, total marks;

protected:
 void accept();
 void compute();
 void display();

public:
student();
void execute();
};

 154

6.3 Data Abstraction

The binding of data and functions together into a single entity is
referred to as encapsulation.

The members and functions declared under private are not
accessible by members outside the class, this is referred to as data
hiding. Instruments allowing only selected access of components to
objects and to members of other classes is called as Data
Abstraction. Or rather Data abstraction is achieved through data
hiding.

Data hiding is the key feature of object oriented programming
(OOPS)

6.4 Data Members and Member Functions

Class comprises of members. Members are further classified
as Data Members and Member functions. Data members are the data
variables that represent the features or properties of a class. Member
functions are the functions that perform specific tasks in a class.
Member functions are called as methods, and data members are also
called as attributes. Now look at the Table 6.1 where information is
provided based on Program –6. 1 class student. Classes include
special member functions called as constructors and destructors.
These will be dealt in Chapter – 8 Constructors and Destructors.

private Accessible by only its own members and certain
special functions called as friend functions

protected Accessible by members of inherited classes

public Access allowed by other members in addition to
class member and objects

 155

Table 6.1 Class Student of Program - 6.1

6.5 Creating Objects

Look at the following declaration statement student stud; This
statement may be read as stud is an instance or object of the class
student.

Once a class has been declared, variables of that type can be
declared. ‘stud’ is a variable of type student ,student is a data type of
class . In C++ the class variables are known as objects. The declaration
of an object is similar to that of a variable of any basic type. Objects
can also be created by placing their names immediately after the closing
brace of the class declaration.

Fig. 6.1 Creating Objects

student The data type identifier student is
also called as class tag

name, rollno, marks1, marks2, data members
total

public accept () member functions or methods
compute ()
display ()
execute ()
student ()
stud instance/object/variable of class

student

 156

6.6 Accessing Class Members

The members of a class are accessed using the dot operator.
For example, the call statement to the function execute() of the class
student may be given as:

The private data of a class can be accessed only through the member
functions of its own class and certain special functions called as friend
functions.

In the example class student, the data members name, marks1,
marks2, rollno, total_marks are accessed only by the member functions
accept(), display(), compute(). The objects declared outside the class
cannot access members or functions defined under private or protected.

The member functions declared under public can be accessed by the
objects of that class. The call statement stud.execute(); is a valid
statement, as execute() is a member function defined under public
visibility mode and hence can be accessed through the object stud
defined outside the class. Where as the statements: stud.accept(),
stud.compute(), stud.display(), stud.marks1 etc would force the compiler
to throw error messages “not accessible”. Program –6.2 is another
example that demonstrates the operation – addition of two numbers.
This class wraps three integer variables, and its related member
function to accept data, and perform addition. Since the variable sum
is defined under public visibility mode, the object is accessing it.

 157

6.7 Defining methods of a class
class add
{

int a,b;
public:

add()
{

a=’\0’; Method 1
b=’\0’;

}
void display();

};
void add::display()
{

int sum;
sum = a+b; Method 2
cout<<sum;

}

//Program - 6.2
include <iostream.h>
include <conio.h>

class add
{

private:
int a,b;

public:
int sum;

void getdata()
{

a=5;
b=10;
sum = a+b;

}
};

void main()
{

add s;
s.getdata();
cout<<s.sum;

}

 158

In Method 1, the member function add() is declared and defined within
class add.

In Method 2, the member function display() is declared within the class,
and defined outside the class.

Methods of a class can be defined in both ways. The members defined
within the class behave like inline functions.

Member functions defined outside the class has the prototype as

type class_name :: function name();

For example:

The membership label class_name:: (add::) tells the compiler that the
function function_name belongs to the class class_name. That is the
scope of the function is restricted to the class specified in the function
header.

The member function have some special characteristics that are
often used in the program development .

� Several different classes can use the same function name. The
‘membership’ label will resolve their scope

 159

� Member functions can access the private data of a class. A non-
member function cannot do so.

� A member function can call another member function directly,
without using the dot operator. (This is called as nesting of
member functions)

� The member functions can receive arguments of a valid C++
data type. Objects can also be passed as arguments

� The return type of a member function can be of object data type

� Member functions can be of static type

6.8 Memory allocation of objects

The member functions are created and placed in the memory
space only when they are defined as a part of the class specification.
Since all the objects belonging to that class use the same member
function, no separate space is allocated for member functions when
the objects are created. Memory space required for the member
variables are only allocated separately for each object. Separate
memory allocations for the objects are essential because the member
variables will hold different data values for different objects

Look at the following class declaration:
class product

{
int code, quantity;
float price;
public:

void assign_data();
void display();

};
void main()
{

product p1, p2;
}

 160

Member functions assign_data() and display() belong to the
common pool in the sense both the objects p1 and p2 will have
access to the code area of the common pool.

Memory for Objects for p1 and p2 is illustrated:

Table 6.2 Memory Allocation for Objects

Member functions of a class can handle arguments like any other
non member functions as illustrated in Program - 6.3.

6.9 Static Data Members

A data member of a class can be qualified as static

The static member variable

� Is initialized to zero, only when the first object of its class is
created . No other initialization is permitted

� Only one copy of the member variable is created (as part
of the common pool) and is shared by all the other objects
of its class type

� Its scope or visibility is within the class but its lifetime is
the lifetime of the program.

objects Data members Memory alloted

p1 Code, quantity and price 8 bytes

p2 Code,quantity and price 8 bytes

 161

// Program - 6.3
#include<iostream.h>
#include<conio.h>
class product
{

int code, quantity;
float price;

 public:
 void assign_data(int c, int q, float p)

{
 code = c;
 quantity = q;
 price = p;
}

void display()
{
 cout<<“\n Code : “<<code;
 cout<<“\n Quantity :”<<quantity;
 cout<<“\n Price : “<< price;
}

};
void main()
{

product p;
p.assign_data(101, 200, 12.5);
p.display();

}

 162

// Program - 6.4
// To demonstrate the use of static member variables

#include<iostream.h>
#include<conio.h>
class simple_static
{

int a,b,sum;
static int count;

public:
void accept()
{

cout<<“\n Enter values.. “;
cin>>a>>b;
sum = a+b;
count++;

}
void display()
{

cout<<“\n The sum of two numbers … “<<sum;
cout<<“\n This is addition… “<<count;

}
};

int static_simple count=0;
void main()
{

simple_static p1,p2,p3;
p1.accept();
p1.display();
p2.accept();
p2.display();
p3.accept();
p3.display();

}

 163

OUTPUT :

Enter values …… 10 20
The sum of two numbers ………… 30
This is addition 1

Enter values……… 5 7
The sum of two numbers……………12
This is addition 2

Enter values……….. 9 8
The sum of two numbers ……………17
This is addition 3

The static variable count is initialized to zero only once. The
count is incremented whenever the sum of the two numbers was
calculated. Since the function accept() was invoked three times, count
was incremented thrice and hence the value is 3. As only one copy of
count is shared by all the three objects, the value of count is set to 3.
This is shown in Fig. 6.2.

Fig. 6.2 Static Member Variable - count

The initial value to a static member variable is done outside the class.

 164

6.10 Arrays of objects

Consider the following class definition and its corresponding memory
allocation:

Exercises

I. Identify and correct the errors in the following

class x
{

public:
int a,b;
void init()
{

a =b = 0’;
}
int sum();
int square();

};
int sum()
{

return a+b;

code
quantity p[0]
price

code
quantity p[1]
price

code
quantity p[2]
price

class product
{
 int code,quantity;
 float price;
public :
 void assign_Data();
 void display();
} p[3];

void main()
{
 p[0].assign_Data();
 p[0].display();
}

 165

}
int square()
{

return sum() * sum()
}

Solution :
int x::sum() and int x::square()

II

#include<iostream.h>
class simple
{

int num1, num2 , sum = 0;
protected:

accept()
{

cin>>num1>>num2;
}

public:
display()
{

sum = num1 + num2;
}

};
void main()
{ simple s;

s.num1=s.num2= 0;
s.accept();
display();

}

 166

Solution:

1) The member sum cannot be initialized at the time of declaration

2) The member variable num1 and num2 cannot be accessed from
main() as they are private

3) s.accept() is invalid. The method accept() is defined under
protected

4) display() should be invoked through an object

III

#include<iostream.h>
#include<conio.h>
class item
{

private:
int code,quantity;
float price;
void getdata()
{

cout<<“\n Enter code, quantity, price “;
cin>>code>>quantity>>price;

}
public:

float tax=’\0’;
void putdata()
{

cout<<“\n Code : “<<code;
cout<<“\n Quantity : “<<quantity;
cout<<“\n Price : “<<price;
if(quantity >100)

tax = 2500;
else

tax =1000;

 167

cout<<“ \n Tax :”<<tax;
}

};

void main()
{ item i; }

Complete the following table based on the above program

IV

1) Define a class employee with the following specification
private members of class employee

empno- integer
ename – 20 characters
basic – float
netpay, hra, da, float

calculate () – A function to find the basic+hra+da with float return type
public member functions of class employee
havedata() – A function to accept values for empno, ename, basic, hra,
da and call calculate() to compute netpay

dispdata() – A function to display all the data members on the screen

2) Define a class MATH with the following specifications

private members
num1, num2, result – float
init() function to initialize num1, num2 and result to zero

Memory allocation Private data Public data Methods or data
for instance i members members members that

can be accessed
by i

 168

protected members
add() function to add num1 and num2 and store the sum in result
prod() function to multiply num1 and num2 and store the product in
the result

public members
getdata() function to accept values for num1 and num2
menu() function to display menu

1. Add…

2. Prod…

invoke add() when choice is 1 and invoke prod when choice is 2 and
also display the result.

 169

CHAPTER 7

POLYMORPHISM

7.1 Introduction

The word polymorphism means many forms (poly – many, morph
– shapes). In C++, polymorphism is achieved through function
overloading and operator overloading. The term overloading means a
name having two or more distinct meanings. Thus an ‘overloaded
function’ refers to a function having more than one distinct meaning.
Function overloading is one of the facets of C++ that supports object
oriented programming.

7.2 Function overloading

Consider the situation wherein a programmer desires to have
the following functions

area_circle() // to calculate the area of a circle
area_triangle() // to calculate the area of a triangle
area_rectangle() // to calculate the area of a rectangle

The above three different prototype to compute area, for different
shapes can be rewritten using a single function header in the following
manner

float area (float radius);
float area (float half, float base, float height);
float area (float length , float breadth);

The ability of the function to process the message or data
in more than one form is called as function overloading.

 170

Now look at the ease in invoking the function area(…) for any of the
three shapes as shown in Program - 7.1

// Program - 7.1
// to demonstrate the polymorphism - function overloading

#include<iostream.h>
#include<conio.h>

float area (float radius)
{ cout << “\nCircle …”;

return (22/7 * radius * radius);
}
float area (float half, float base, float height)
{ cout << “\nTriangle ..”;

return (half* base*height);
}

float area (float length, float breadth)
{ cout << “\nRectangle …”;

return (length *breadth) ;
}

void main()
{

clrscr();
float r,b,h;
int choice = 0 ;
do
{

clrscr();
cout << “\n Area Menu “;
cout << “\n 1. Circle ... “;
cout << “\n 2. Traingle ...”;
cout << “\n 3. Rectangle ... “;
cout <<“\n 4. Exit ... “;
cin>> choice;
switch(choice)
{

case 1 :
cout << “\n Enter radius ... “;
cin>>r;
cout<<“\n The area of circle is ... “

 << area(r);
getch();
break;

case 2:
cout<< “\n Enter base, height ... “;
cin>>b>>h;
cout<<“\n The area of a triangle is .. “
 << area (0.5, b, h);
getch();
break;

case 3:
 cout<< “\n Enter length, breadth.. “;
 cin>>h>>b;
 cout<<“\n The area of a rectangle is ... “

 << area(h,b);
 getch();
 break;

 }
}while (choice <=3);

}

 171

Have you noticed the function prototypes for all the 3 functions? The
prototypes are:

float area (float radius);
float area (float half, float base, float height)
float area (float length, float breadth);

How do you think each function ‘area’ definition is differing from
one and another ? Yes, each function prototype differs by their number
of arguments. The first prototype had one argument, second one 3
arguments and the third one had 2 arguments. In the example we have
dealt , all the three functions has float type arguments. It need not
necessarily be this way. Arguments for each prototype can be of
different data type . Secondly the number of arguments for each function
prototype may also differ. The following prototypes for function
overloading is invalid. Can you tell why is it so ?

How are functions invoked in function overloading?

The compiler adopts BEST MATCH strategy. As per this strategy, the
compiler will

� Look for the exact match of a function prototype with
that of a function call statement

Function Prototype

void fun(int x);
void fun(char ch);
void fun(int y);
void fun(double d);

Invalid prototype

void fun(int x);
void fun(int y);

Both the prototypes have
same number and type
of arguments. Hence it
is invalid.

 172

� In case an exact match is not available, it looks for the
next nearest match. That is, the compiler will promote
integral data promotions and then match the call
statement with function prototype.

For example, in the above example (program –1) we have
float area(float radius) with area(r) where the parameter ‘r’ should
be of float type. In case, the variable ‘r’ is of integer type, then as per
integral promotions integer constant/variable can be mapped to char,
or float or double. So, by this strategy the area(r) will be mapped to
area(float radius).

Integral promotions are purely compiler oriented. By and large
integral promotions are as follows:

� char data type can be converted to integer/float/double
� int data type can be converted to char/double/float

� float data type to integer/double/char

� double data type to float or integer

Now based on the following call statements to area() of
Program – 7.1 can you tell as to what will be the output?

Function call statement Output displayed

area(5.0)

area(0.5,4.0,6.0)
area(3.0,4.5)

 173

Rules for function overloading

1) Each overloaded function must differ either by the number of its
formal parameters or their data types

2) The return type of overloaded functions may or may not be the
same data type

3) The default arguments of overloaded functions are not
considered by the C++ compiler as part of the parameter list

4) Do not use the same function name for two unrelated functions

Improper declarations leading to conflict in a function call statement
is shown below.

void fun (char a, int times)
{

for (int i=1; i<=times;i++)
cout<<a;

}
void fun(char a= ‘*’, int times)
{

for(int i=1;i<=times;i++)
cout<<a;

}
void fun(int times)
{

for(int i=1; i<=times ;i++)
cout<<’@’;

}
void main()
{

fun (‘+’, 60);
fun(60);

}

 174

When the above program is compiled, two errors will be flagged:

� Conflict between fun(char a, int times) and fun(char a=’*’,
int times)

� Conflict between fun(char a=’*’, int times) and fun (int times)

The call statement fun(‘+’, 60) can be matched with fun (char a,
int times) and fun (char a=’*’, int times)

The call statement fun(60) can be matched with fun (char a=’*’,
int times) and fun (int times)

Overload a function with the help of different function definitions
having a unique parameter list. That is, the parameter list differ either
by number or types.

7.3 Operator Overloading

The term operator overloading, refers to giving additional
functionality to the normal C++ operators like +,++,-,—,+=,-=,*.<,>. The
statement sum = num1 + num2 would be interpreted as a statement
meant to perform addition of numbers(integer/float/double) and store
the result in the variable sum. Now look at the following statement:

name = first_name + last_name;

where the variables name, first_name and last_name are all character
arrays.Can one achieve concatenation of character arrays using ‘+’
operator in C++? The compiler would throw an error stating that ‘+’
operator cannot handle concatenation of strings. The user is forced to
use strcat() function to concatenate strings. Won’t it be a lot easier if
one is permitted to use ‘+’ operator on strings as used for number data
type? The functionality of ‘+’ operator can be extended to strings
through operator overloading.

 175

Look at the following example:

The statement concatstr = s1 + s2 merges two strings, as the
operator ‘+’ is given additional function through the member function:
 char * operator + (strings x1)

The member function char * operator + (strings x1) takes x1 as the
argument. It may be viewed as:

char * operator+(strings x1)
 {

char *temp;
 strcpy(temp,s);
 strcat(temp,x1.s);
 return temp;

 } s1 , s2 are objects of the
class strings. ‘+’
operator is used to
concatenate two objects
of the type Strings.

x1 is an argument of the
type strings which is user

defined

concatstr = s1 + s2;

void main()
{
clrscr();
strings s1(“test”),s2(“ run\0”);
char *concatstr ;
concatstr = s1 + s2;
cout << “\nConcatenated string ...”
 << concatstr;
getch();

}

// Program -7.2 – OPERATOR OVERLOADING
include <iostream.h>
include <conio.h>
include <string.h>

class strings
{
 char s[10];
 public :
 strings()
 {

 s[0] = ‘\0’;
 }

 strings(char *c)
 {

 strcpy(s,c);
 }

char * operator+(strings x1)
{

 char *temp;
 strcpy(temp,s);
 strcat(temp,x1.s);
 return temp;

 }

};

 176

Fig. 7.1 demonstrates the association of variables and their values.

Fig. 7.1 Association of Variables and Values

Operator overloading provides:

� New function definitions for basic C++ operators like +, *, -,
++, - -, >, <, += and the like. One cannot overload C++
specific operators like membership operator (.), scope
resolution operator (::), sizeof operator and conditional
operator.

� The overloaded function definitions are permitted for user
defined data type.

� Operator functions must be either member functions or friend
functions. (Friend functions is beyond the scope of this book)

� The new definition that is provided to an operator does not
overrule the original definition of the operator. For example,
in the above program – OPERATOR OVERLOADING the
‘+’ operator has been used to merge two strings. In the same
program one can also perform addition of numbers in the
usual way. The compiler applies user defined definition
based on the style of call statement. That is the statements
cout << 5 + 10 will display the result as 15 (original definition

 177

of ‘+’ is applied), where as concatstr = s1 + s2 will invoke
the member function char * operator + (strings s1) as the
operands provided for the ‘+’ operator are s1 and s2 which
are the objects of the class strings.

The process of overloading involves:

� Create a class that defines the data type that is to be used
in the overloading operations

� Declare the operator function operator () in the public part
of the class.

� Define the operator function to implement the required
operations.

The following examples demonstrate the ease of using operators with
user defined data types – objects.

Program – 7.3 demonstrates as to how one can negate the data
members of a class using the operator – (minus)

 void operator-()
 {

 i = -i;
 }
 };

void main()
 {

clrscr();
negative n1,n2;
n2.accept();
-n2;
n2.display();
getch();

 }

// Program - 7.3
include <iostream.h>
include <conio.h>

class negative
{
 int i;
 public :
 void accept()
 {

cout << “\nEnter a number ...”;
 cin >> i;

 }
 void display()
 {

 cout << “\nNumber ...”<<i;
 }

 178

The function void operator –() simply negates the data members of
the class as one would do with a normal variable as follows: sum = -
num1;

Look at the following program and answer the questions:
// Program – 7.4
include <iostream.h>
include <conio.h>

class distance
{
 int feet,inches;
 public :
 void distance_assign(int f, int i)
 {

 feet = f;
 inches = i;

 }

 void display()
 {

cout << “\nFeet : “ << feet
<< “\tInches : “ << inches;

 }

 distance operator+(distance d2)
 {

 distance d3;
 d3.feet = feet + d2.feet;
 d3.inches = (inches + d2.inches) % 12;
 d3.feet += (inches + d2.inches)/12;
 return d3;

 }
};

void main()
{
 clrscr();
 distance dist_1,dist_2;
 dist_1.distance_assign(12,11)
 dist_2.distance_assign(24,1);
 distance dist_3 = dist_1 + dist_2;
 dist_1.display();
 dist_2.display();
 dist_3.display();
 getch();
}

 179

1. Identify the operator that is overloaded.

2. Write out the prototype of the overloaded member function.

3. What types of operands are used for the overloaded operator?

4. Write out the statement that invokes the overloaded member
function.

Program-7.5 demonstrates the overloaded functions of += and -=

//Program-7.5
// operator overloading

include <iostream.h>
include <conio.h>
include <string.h>

class library_book
{
 char name[25];
 int code,stock;

 public :

 void book_assign(char n[15],int c,int s)
 {

 strcpy(name,n);
 code = c;
 stock = s;

 }

 void display()
 {

 cout << “\n Book details”;
 cout << “\n 1. Name ” << name;
 cout << “\n 2. Code ” << code;
 cout << “\n 3. Stock ” << stock;

 }

 void operator +=(int x)
 {

stock += x;
 }

 void operator -=(int x)
 {

 stock -= x;
 }
};

 180

class library_cdrom
{
 char name[25];
 int code,stock;

 public :

 void cdrom_assign(char n[15],int c,int s)
 {

 strcpy(name,n);
 code = c;
 stock = s;

 }

 void display()
 {

 cout << “\n CD ROM details”;
 cout << “\n 1. Name ” << name;
 cout << “\n 2. Code ” << code;
 cout << “\n 3. Stock ” << stock;

 }

 void operator +=(int x)
 {

stock += x;
 }

 void operator -=(int x)
 {

 stock -= x;
 }
};

void main()
{
 library_book book;
 library_cdrom cdrom;

 book.book_assign(“Half Blood Prince”,101,55);
 cdrom.cdrom_assign(“Know your Basics”,201,50);

 char choice,borrow;

do
 {

 cout << “\nBook,cdrom,exit<b/c/e> ...”;
 cin >> choice;
 if (choice != ‘e’)
 {

 cout << “\nBorrow/Return <b/r> ...”;
 cin >> borrow;

 }

 181

 switch (choice)
{

 case ‘b’ :
 switch (borrow)
 {
 case ‘b’ : book += 1;break;
 case ‘r’ : book -= 1;break;
 }
 book.display();
 break;

 case ‘c’ :
 switch (borrow)
 {
 case ‘b’ : cdrom += 1;break;
 case ‘r’ : cdrom -= 1;break;
 }
 cdrom.display();
 break;

 case ‘e’ : cout << “\nTerminating ..”;
break;

 }
 } while (choice != ‘e’);
 getch();
}

Have you noticed the ease with which the objects stock is incremented
or decremented in a standard style by using the operators += / -=

 182

Rules for overloading operators:

There are certain restrictions and limitations in overloading
operators. They are:

� Only existing operators can be overloaded. New operators
cannot be created.

� The overloaded operator must have at least one operand of
user defined type.

� The basic definition of an operator cannot be replaced or in
other words one cannot redefine the function of an operator.
One can give additional functions to an operator

� Overloaded operators behave in the same way as the basic
operators in terms of their operands.

� When binary operators are overloaded, the left hand object
must be an object of the relevant class

� Binary operators overloaded through a member function take
one explicit argument.

book += 1;
book -= 1;
cdrom += 1;
cdrom -= 1;

The mechanism of giving special meaning to an operator is called as
operator overloading.

 183

Exercises

I. Write a program that uses function overloading to do the
following tasks

a. find the maximum of two numbers (integers)

b. find the maximum of three numbers (integers)

SOLUTION: function protype – max (int , int) and max(int ,
int, int)

II. Write function definitions using function overloading to

a. increment the value of a variable of type float

b. increment the value of a variable of type char

SOLUTION: function prototype – float incr (float) , char incr (
char)

III. Write a program in C++ to do the following tasks using
function overloading

a. compute xy where x and y are both integers

b. compute xy where x and y are both float

SOLUTION: function prototype – int power(int,int),float
power(float,float);

IV. What is the advantage of operator overloading?

V. List out the steps involved to define an overloaded operator.

 184

VI. List out the operators that cannot be overloaded.

VII.Write a program to add two objects of the class
complex_numbers . A complex number has two data
members – real part and imaginary part. Complete the following
definition and also write a main() function to perform addition of
the complex_numbers objects c1 and c2 .

Class complex_numbers
{

float x;
float y;
public :
void assign_data(float real, float imaginary);
void display_data();
complex_numbers operator +(complex_numbers n1);

}

 185

CHAPTER 8

CONSTRUCTORS AND DESTRUCTORS

8.1 Introduction

When an instance of a class comes into scope, a special
function called the constructor gets executed. The constructor function
initializes the class object. When a class object goes out of scope, a
special function called the destructor gets executed. The constructor
function name and the destructor have the same name as the class
tag. Both the functions return nothing. They are not associated with any
data type.

8.2 Constructors

// Program - 8.1
// to determine constructors and destructors

#include<iostream.h>
#include<conio.h>
class simple
{
private:

int a,b;
public:
simple()
{

a= 0 ;
b= 0;
cout<< “\n Constructor of class-simple “;

}

~simple()
 {

cout<<“\n Destructor of class – simple .. “;
 }

void getdata()
{

cout<<“\n Enter values for a and b... “;
cin>>a>>b;

}

 void putdata()
 {
 cout<<“\nThe two integers .. “<<a<<‘\t’<< b;
 cout<<“\n The sum of the variables .. “<< a+b;

 }
};

void main()
{
simple s;
s.getdata();
s.putdata();

}

 186

When the above program is executed, constructor simple() is
automatically executed when the object is created. Destructor ~
simple() is executed, when the scope of the object ‘s’ is lost, i.e., at the
time of program termination.

The output of the program will be as follows:

Constructor of class - simple ..
Enter values for a & b… 5 6
The two integers….. 5 6
The sum of the variables….. 11
Destructor of class - simple …

8.3 Functions of constructor

1) The constructor function initializes the class object

2) The memory space is allocated to an object

8.4 Constructor overloading

Function overloading can be applied for constructors, as
constructors are special functions of classes. Program - 8.2
demonstrates constructor overloading.

The constructor add() is a constructor without parameters(non
parameterized). It is called as default constructor. More traditionally
default constructors are referred to compiler generated constructors
i.e., constructors defined by the computers in the absence of user
defined constructor. A non- parameterized constructor is executed when
an object without parameters is declared.

 187

// Program - 8.2
// To demonstrate constructor overloading

include<iostream.h>
#include<conio.h>
class add
{

int num1, num2, sum;
public:
add()
{

cout<<“\n Constructor without parameters.. “;
num1= 0;
num2= 0;
sum = 0;

}

add (int s1, int s2)
{

cout<<“\n Parameterized constructor... “;
num1= s1;
num2=s2;
sum=NULL;

}

add (add &a)
{

cout<<“\n Copy Constructor ... “;
num1= a.num1;
num2=a.num2;
sum = NULL;

}

void getdata()
{

cout<<“Enter data ... “;
cin>>num1>>num2;

}
void addition()
{

sum=num1+num2;
}

void putdata()
{

cout<<“\n The numbers are..”;
cout<<num1<<‘\t’<<num2;
cout<<“\n The sum of the numbers are.. “<< sum;

}
};

void main()
{

add a, b (10, 20) , c(b);
a.getdata();
a.addition();
b.addition();
c.addition();
cout<<“\n Object a : “;
a.putdata();
cout<<“\n Object b : “;
b.putdata();
cout<<“\n Object c.. “;
c.putdata();

}

 188

OUTPUT:

Constructor without parameters….

Parameterized Constructor...

Copy Constructors…

Enter data .. 5 6

Object a:

The numbers are 5 6

The sum of the numbers are ….. 11

Object b:

The numbers are 10 20

The sum of the numbers are … 30

Object c:

The numbers are 10 20

The sum of the numbers are ….. 30

The constructor add (int s1, int s2) is called as parameterized
constructor .To invoke this constructor , the object should be declared
with two integer constants or variables .

 189

Note: char, float double parameters can be matched with int data
type due to implicit type conversions

For example: add a (10, 60) / add a (ivar, ivar)

The constructor add (add &a) is called as copy constructor. A copy
constructor is executed:

1) When an object is passed as a parameter to any of the
member functions
Example void add::putdata(add x);

2) When a member function returns an object
For example, add getdata();

3) When an object is passed by reference to constructor
For example, add a; b(a);

The following program – 2 demonstrates as to when a copy
constructor is executed?

 190

// Program – 8.3
// To demonstrate constructor overloading

include<iostream.h>
#include<conio.h>
class add
{

int num1, num2, sum;
public:
add()
{

cout<<“\n Constructor without parameters.. “;
num1= ‘\0’;
num2= ‘\0’;
sum = ‘\0’;

}

add (int s1, int s2)
{

cout<<“\n Parameterized constructor... “;
num1= s1;
num2=s2;
sum=NULL;

}

add (add &a)
{

cout<<“\n Copy Constructor ... “;
num1= a.num1;
num2=a.num2;
sum = NULL;

}

void getdata()
{

cout<<“Enter data ... “;
cin>>num1>>num2;

}
void addition(add b)
{

sum=num1+ num2 +b.num1 + b.num2;
}

add addition()
{
 add a(5,6);
 sum = num1 + num2 +a.num1 +a.num2;
}

void putdata()
{

cout<<“\n The numbers are..”;
cout<<num1<<‘\t’<<num2;
cout<<“\n The sum of the numbers are.. “<< sum;

}
};

 191

Have you noticed as to how many times copy constructor is
executed?

Copy constructor is for the following statements of Program – 8.3.

ouput of the above program
Constructor without parameters..
 Parameterized constructor...
 Copy Constructor ... Enter data ... 2 3

 Copy Constructor ...
 Parameterized constructor...
 Parameterized constructor...
 Object a :
 The numbers are..2 3
 The sum of the numbers are.. 35
 Object b :
 The numbers are..0 1494
 The sum of the numbers are.. 0
 Object c..
 The numbers are..10 20

 The sum of the numbers are.. 41

void main()
{

clrscr();
add a, b (10, 20) , c(b);
a.getdata();
a.addition(b);
b = c.addition();
c.addition();
cout<<“\n Object a : “;
a.putdata();
cout<<“\n Object b : “;
b.putdata();
cout<<“\n Object c.. “;
c.putdata();

}

 192

In the above example the function addition is also overloaded.
So, primarily functions declared anywhere within the program
can be overloaded.

8.5 Rules for constructor definition and usage

1) The name of the constructor must be same as that of the
class

2) A constructor can have parameter list

3) The constructor function can be overloaded

4) The compiler generates a constructor, in the absence of
a user defined constructor

5) The constructor is executed automatically

8.6 Destructors

A destructor is a function that removes the memory of an object
which was allocated by the constructor at the time of creating a object.
It carries the same name as the class tag, but with a tilde (~) as prefix.

 193

Example :
class simple

{
 ——
——
public :
~simple()
{

 }

}

8.7 Rules for destructor definition and usage

1) The destructor has the same name as that of the class
prefixed by the tilde character ‘~’.

2) The destructor cannot have arguments

3) It has no return type

4) Destructors cannot be overloaded i.e., there can be
only one destructor in a class

5) In the absence of user defined destructor, it is
generated by the compiler

6) The destructor is executed automatically when the
control reaches the end of class scope

 194

Exercises

I Complete the following table

Constructor Destructor
1. Should be declared under - scope - scope
2. overloading is - -
3. Is executed when an
 object is
The function of a

II. Why do the following snippets throw error ?

Class simple
{
 private :
 int x;
 simple()
 { x = 5; }
};

Class simple
{
 private :
 int x;
 public :

simple(int y)
 { x = y; }
};
void main()
{
 simple s;
}

Class simple
{
 private :
 int x;
 public :
 simple(int y)
 { x = y; }

simple(int z = 5)
{
 x = z;
}
};
void main()
{
 simple s(6);

}

195

CHAPTER 9

INHERITANCE

9.1 Introduction

Inheritance is the most powerful feature of an object oriented
programming language. It is a process of creating new classes called
derived classes, from the existing or base classes. The derived class
inherits all the properties of the base class. It is a power packed class,
as it can add additional attributes and methods and thus enhance its
functionality. We are familiar with the term inheritance in real life
(children acquire the features of their parents in addition to their own
unique features). Similarly a class inherits properties from its base
(parent) class .

Fig.9.1 Inheritance

196

9.2 Advantages of inheritance

Inheritance has the following basic advantages.

1) Reusability of code : Many applications are developed in an
organization. Code developed for one application can be reused
in another application if such functionality is required. This saves
a lot of development time.

2) Code sharing : The methods of the base class can be shared
by the derived class.

3) Consistency of interface: The inherited attributes and methods
provide a similar interface to the calling methods. In the Fig. 9.1
the attributes and methods of the class vehicle are common to
the three derived classes – Aeroplane, Car and Bicycle. These
three derived classes are said to be having a consistence
interface.

9.3 Derived Class and Base class

A base class is a class from which other classes are derived. A
derived class can inherit members of a base class.

While defining a derived class, the following points should be observed

a. The keyword class has to be used

b. The name of the derived class is to be given after the
keyword class

c. A single colon

d. The type of derivation, namely private, public or
protected

e. The name of the base class or parent class

f. The remainder of the derived class definition

197

// Program - 9.1

#include< iostream.h>
#include<conio.h>
class add
{

int sum;
protected:

int num1, num2;
public:
add()
{
 num1= num2= sum=0';
 cout<<“\n Add constructor .. “;
}

accept()
{
 cout<<“\n Enter two numbers .. “;
 cin>>num1>>num2;
}

plus()
{

sum = num1 + num2;
cout<<“\n The sum of two numbers is .. “<< sum;

}
};

class subtract :public add
{

int sub;
public:
 subtract()
 {
 sub = 0;
 cout<<“\n Subtract constructor .. “;
 }
 minus()
 {
 add::accept();
 sub= num1-num2;
 cout<<“\n The difference of two numbers are ... “

 << sub;
 }

};

198

void main()
{

subtract s;
int choice = 0;
cout<<“\n Enter your choice “;
cout<<“ \n1. Add..\n2. Subtract ..”;
cin>>choice;
switch(choice)
{

case 1:
s.accept();
s.plus();
break;

case 2:
s.minus();
break;

}
}

In the Program – 9.1 the base class is add and the derived
class is subtract. The derived class should be indicated as

class der_name : visibility mode base class-id
{

data members of the derived_class
functions members of derived_class

}

In the Program - 9.1 the derived class, subtract is defined as

199

9.4 Visibility Mode/Accessibility specifier

An important feature in Inheritance is to know as to when a
member of a base class can be used by the objects or the members of
the derived class. This is called as accessibility. The three access
specifiers are private, protected and public. Access specifier is also
referred to as visibility mode.The default visibility mode is private. The
following Table 9.1 explains the scope and accessibility of the base
members in the derived.

When a base class is inherited with private visibility mode the public
and protected members of the base class become ‘private’ members
of the derived class

Base Class
members

Derived Class

Private Protected Public

 Private members Are not
inherited but
they continue
to exist

 Protected members Inherits Inherits Protected
protected protected members
members as and are
private public as retained
members protected of as protected

derived of the
derived

 Public members Are inherited Inherits as Inherits public
as private protected members as
members members of public of
of the derived the derived derived

Table 9.1 Scope and Access of Base Members in the Derived Class

200

When a base class is inherited with protected visibility mode
the protected and public members of the base class become ‘
protected members ‘ of the derived class

When a base class is inherited with public visibility mode , the
protected members of the base class will be inherited as protected
members of the derived class and the public members of the base
class will be inherited as public members of the derived class.

The declaration of classes add and subtract of Program-9.1 is as
follows

When classes are inherited publicly, protectedly or
privately the private members of the base class are not
inherited they are only visible i.e continue to exist in
derived classes, and cannot be accessed

class add
{
 private:

int sum;
 protected :

int num1, num2;
 public:

add();
accept();
plus();

};
class subtract : private add
{
 int sub;
 public:
 subtract();
 minus();
};

201

The data members and member functions inherited by subtract are:

int num1 & num2 with status as private of subtract

accept(); plus(); with status as private

Accessibility of base members is shown in Table 9.2.

The constructors of the base class are not inherited, but are executed
first when an instance of the derived class is created.

202

Table 9.2 accessibility of Base Members

Consider the objects declared in the Program – 9.1. Complete the
following table based on this program.

Constructors executed are ____________ , _________________

The objects of classes DATA MEMBERS METHODS/
FUNCTIONS

 add

 subtract

Table 9.3 Complete this Table

class subtract II III

 private: protected public

 sub sub sub
 num1 protected: protected:
 num2 num1. num2 num1. num2
 accept() accept(); public:
 plus() plus(); accept();
 public: public: plus();
 subtract() subtract() subtract()
 minus(); minus() minus();
 private mode protected mode public mode
 of inheritance of inheritance of inheritance

203

9.5 Types of inheritance

Classes can be derived from classes that are themselves
derived. There are different types of inheritance viz., Single Inheritance,
Multiple inheritance, Multilevel inheritance, hybrid inheritance and
hierarchical inheritance.

1) Single Inheritance

When a derived class inherits only from one base class, it is
known as single inheritance

2) Multiple Inheritance

When a derived class inherits from multiple base classes it
is known as multiple inheritance

204

3) Multilevel Inheritance

The transitive nature of inheritance is reflected by this form of
inheritance. When a class is derived from a class which is a
derived class itself – then this is referred to as multilevel
inheritance.

What will be the output of Program 9.2?

DERIVED - CHILD

DERIVED - FATHER

BASE CLASS – GRAND
FATHER

205

// Program - 9.2
#include<iostream.h>
#include<conio.h>
class base
{

public:
base()
{

cout<<“\nConstructor of base class...
“;

}
~base()
{
cout<<“\nDestructor of base class.... “;
}

};
class derived:public base
{
 public :
 derived()
 {
 cout << “\nConstructor of derived ...”;
 }
 ~derived()
 {

cout << “\nDestructor of derived ...”;
 }
};

class derived2:public base
{
 public :
 derived()
 {
 cout << “\nConstructor of derived2 ...”;
 }
 ~derived()
 {

cout << “\nDestructor of derived2 ...”;
 }
};

void main()
{
 derived2 x;
}

206

OUTPUT

Constructor of base class…

Constructor of derived ….

Constructor of derived2 …

Destructor of derived2…

Destructor of derived

Destructor of base class ..

Exercises

1) Given the following set of definitions

class node
{

int x;
void init();

public:
void read();

protected:
void get();

};
class type : public node
{

int a;
public:

� The constructors are executed in the order of inherited
class i.e., from base constructor to derived. The
destructors are executed in the reverse order

� Classes used only for deriving other classes are
called as Abstract Classes ie., to say that objects
for these classes are not declared.

207

void func1();
protected:

int b;
void getb();

}
class statement :private type
{

int p;
public:

void func2();
protected:

void func3();
};

Complete the following table

Table- 4 class node ….

Table- 5 class statement

Members of the Accessibility of members /their classes
class type private protected public

Members inherited
by class type

Defined in class
type

Members of the

class statement Accessibility of members/ their classes

 private protected public
Members inherited
by class statement

Defined in class
statement

208

Table- 6 Objects…

2) Find errors in the following program. State reasons

#include<iostream.h>
class A
{

private :
int a1;

public:
int a2;

protected:
int a3;

};
class B : public A

{
public:
void func()
{

int b1, b2 , b3;
b1 = a1;
b2 = a2;
b3 = a3;

}
};
void main()
{

B der;
der.a3 = 0’;
der.func();

 }

209

3) Consider the following declarations and answer the questions
given below

class vehicle
{

int wheels;
public:

void inputdata(int, int);
void outputdata();

protected :
int passenger;

};
class heavy_vehicle : protected vehicle
{

int diesel_petrol;
protected:

int load;
public:

void readdata(int, int);
void writedata();

};
class bus: private _heavy_vehicle
{

char marks[20];
public:

void fetchdata(char);
void displaydata();

};

a. Name the base class and derived class of the class
heavy_vehicle

b. Name the data members that can be accessed from the
function displaydata()

c. Name the data members that can be accessed by an object
of bus class

d. Is the member function output data accessible to the objects
of heavy_vehicle class

210

4) What will be the output of the following program

#include<iostream.h>
#include<conio.h>
class student
{

int m1, m2, total;
public:

student (int a, int b)
{

m1 = a;
m2 = b;

cout<<“\n Non parameterized constructors..”;
};

 211

CHAPTER 10

IMPACT OF COMPUTERS ON SOCIETY

10.1 Introduction

“India lives in her seven hundred thousand villages”
 - Mohandas Karamchand Gandhi

To reach out the benefits of IT to the common man we need at
least three technical elements :

· Connectivity [Computer networks and Internet facility]
· Affordable computers or other similar devices
· Software

It is interesting to observe that 85% of computer usage is “Word
Processing”. Computers can do many more things for the common
man than this. Quality IT education will enable the common man to put
computers to a better use. This chapter presents the possible ways in
which computers can be used to develop the society.

 212

10.2 Computers for Personal Use

Personal computers have totally changed the way we work, live
and think. Word Processing, Databases, Spreadsheets and Multimedia
presentation packages have increased the efficiency at work. There
are many packages that are being used. Desktop Publishing and other
impressive packages for graphics are adding value to the work done.
Paint, games and a large set of similar packages are providing facilities
for people of all age groups to use the computer. Browsing, e-mail and
chat have changed our life style.

Today computers come in different sizes and shapes. Some
adaptation of the basic computer model is making it more useful in the
homes of the user.

10.3 Computerized Homes

Home Products and a brief Description

Living � LCD Screen, Camera and Speakers:

Room Mounted on the Wall to provide better effect and save
floor space.

� Archive Unit: Enables data storage and
management·

� Emotion Containers: They are small compartments
with a screen, speaker and a scent to derive
emotional comfort. This can prevent people from
acquiring bad habits

� Personal Archives: They store personal details like
family photographs and personal treasures. In
addition it enables connectivity to other people.

� Picture Phone and Pad: Picture based personal
telephone directory.

 213

Kids � Devices that provide listening access to audio
Room sources in home such as radio, television

� Devices with kara-oke features allowing one to
sing along with the audio coming from the original
source

� Robots that function as Electronic Pets·

� Devices that enable game plying over the net. In
addition real world characters are translated into the
computer world and a kid can play with them

Home � Packages to make animated stories·

Office � Memo Frame: Easy interaction with other people
through touch screen, scanner and microphone
facilities.

Bookshelf: To manage and study electronic books·

Personal Creativity Tool: To draw, capture and work
with multimedia elements·Advanced data accessing
systems

Bed � Touch and Voice Control for various appliances·
Room � Display Monitors, Special Headphones and Moving

Telephone·

� Projection TV: Projects the TV pictures on
the ceiling or walls

� Alarm Clock

Bath Room Mirrors, Medical Box and Special Speakers

Kitchen Speakers, Rack Telephone, Intelligent Aprons, Kettle,
Toaster, Food Analyzer, Health Monitor, Devices to
preserve food

Dining � Interactive Tablecloth to keep the food sufficiently
Room warm

� Ceramic Audio player and speakers·
� Communication facilities around the dinner table

� Interactive screens to consult with the cook and other
kitchen staff

Table 10.1 Computerized Products for Home

 214

10.4 Home Banking and Shopping

Traditional banking needed the user to go to the bank to perform
related activities. These activities include depositing or withdrawing
money from the account or securing loans. Banks gradually began
providing many other services including term deposits, agricultural
loans, paying bills related to other services such as telephones,
electricity and locker facilities. As the confidence of the common man
in banking improved, banks became a key component in the national
economy.

This also means long queues at the banks during working hours.
Introduction of IT in banks reduced the time required to provide service
to a user. Long queues were being handled quickly.

Fig.10.1 ICICI Bank

 215

Fig.10.2 State Bank of India

Advanced machines like ATM enable withdrawal of money from the
accounts in a particular bank anytime and anywhere. This helps the
user in emergency situations where money is needed during the nights
and holidays. However, the user has to go to the nearest ATM facility. It
is possible that every branch of any well recognized bank will have a
ATM facility soon.

e-Banking permits banking from the comfort of the home by
using internet facilities. It has truly improved the reach and services of
banks.

Computers are used in many areas even for Shopping. You can
purchase any product, any brand, any quantity from anywhere through
e-shopping. You need not go to the shop. The pictures and other details
of what can be purchased are available on the website of the shop.
You have to select and order. Advance payment for these items is
assured by various methods. Credit cards and prior registration with
the shop are the popular methods. The items purchased will be delivered
at your home.

 216

10.5 Computers in Education

Computers are used in many areas of Education including:

· Buying and browsing the latest edition of books by both local &
foreign authors Educational CDROMs

· Computer Based Tutorials (CBT).

· Spreading information about schools, colleges, universities and
courses offered, admission procedures, accommodation
facilities, scholarships, educational loans, career guidance.

· e-Learning that enables online educational programs leading
to degrees and certifications

Fig. 10.3 Anna University

 217

Fig.10.4 Computer Based Tutorials

Fig.10.5 Information on Education around the Globe

 218

10.6 Computers in Entertainment

Computers contribute to entertainment also. You can update
your knowledge in fine arts like painting, music, dance, yoga, games,
science, nature, latest news and events. You can know more about
various places of worship and places of interest for tourists.

Fig. 10.6 Computers in Entertainment

Fig.10.7 Computers in Tourism (Tamil Nadu)

 219

Fig.10.8 Computers in Tourism (India)

10.7 Computers in Healthcare

Healthcare is dominated by large amounts of data and limited
financial and human resources and need for accountability of those
resources

Healthcare has improved significantly ever since computers
found their way into the hands of doctors and health administrators.

Fig.10.9 Computers in Health and Family Welfare

 220

Computers are used in many areas of healthcare including

· Hospital Management System

· Patient Tracking System

· Exchange of diagnostic records between healthcare units

· Tracking and Monitoring Communicable Diseases

· Decision support systems with highly advanced computing
techniques

Today many doctors are innovating to suit their needs. It is
indeed a good sign for the patients. Tele-medicine is built largely on
the foundational systems mentioned above. Internet facilitates remote
diagnostics. This ensures expert advice at places where it is not there.

10.8 Computers in Agriculture

Farming and agriculture might seem like low technology
enterprises, but these industries have benefited from computerization
more than the casual observer might think. Farmers, both professional
and hobbyists benefit from online resources such as seed estimators
and pest information sites. Professional farmers can use revenue
estimators to help them plan which crops will produce the highest profits
based on weather patterns, soil types, and current market values.

Fig.10.10 Computers in Agriculture

 221

Some of the areas where software has been developed are:

• Agricultural Finances and Accounting
• Alternative farming techniques
• Animal Husbandry
• Buildings and Irrigation
• Chat with other agriculturists and scientists
• Farmland Assessment
• Fertilizer Analysis
• Finding links to farm resources, chat boards, classified

advertisements, and other farm-related information
• Gardening
• Improving Cow Herds and Increasing revenues
• Land Management
• Livestock
• Milk production
• Use of satellite imagery to decide on the crops

10.9 Internet in real time Applications

All applications mentioned above happen in real time and over
the net. You can reserve or book air and train tickets from your own
place and at your own pace through computers.

Exercises

This Chapter has the support of multimedia content to under-
stand more about the applications presented. You must see this
content and where possible visit the websites indicated.

This multimedia content is provided to your school on a
separate CD. Please contact your teacher to get this CD.

Fig.10.11 Computers in Realtime Applications

 222

CHAPTER 11

IT ENABLED SERVICES

11.1 Introduction

Information Technology that helps in improving the quality of
service to the users is called IT Enabled Services [ITES]. IT Enabled
Services are human intensive services that are delivered over
telecommunication networks or the Internet to a range of business
segments. ITES greatly increases the employment opportunities.

Is typing a letter using the computer an ITES? The answer is
No. However, a facility that allows the user to speak into a special device
called ‘Dictaphone’ and then convert the speech into a letter is an ITES.

Word processors, Spreadsheets and Databases have ensured
that many traditional services are IT Enabled. However, the user is
expected to learn several aspects of these IT tools before gaining from
their use. ITES adds value to these services by reducing the learning
that needs to be done by the users. ITES thus has the potential to take
the power of IT to users who do not know IT.

ITES can improve the quality of the service either directly or
indirectly. Improved customer satisfaction, better look and feel and an
improved database are some direct benefits. Indirect benefits are seen
after sometime. Data collected for one purpose may be useful for some
other purpose also after some time.

Some of the IT enabled services presented in this chapter are:

• e-Governance
• Call Centers
• Data Management
• Medical [Telemedicine and Transcription].
• Data Digitization
• Website Services

 223

ITES such as Business Process Outsourcing (BPO), Digital Content
Development / Animation, Human Resources Services and Remote
Maintenance are other important areas.

ITES requires practical IT skills especially in the area of Databases,
Internet and good communication skills in English. A formal training in
Soft Skills to understand the basic aspects of Industry Culture, profes-
sionalism and etiquette is needed for the effective implementation of
ITES.

11.2 e-Governance

Computers help you to look at the government websites and
the services provided by them. The various websites provided by the
government give the details about the departments, specific functions,
special schemes, documents, contacts, links, IAS intranet, site map,
search, what’s new, press releases, feedback. These websites are
both in English and Tamil.

Fig.11.1 Getting Land Certificate using Internet

 224

11.3 Call Centers

Information Technology is happening all over the globe. Users
or Customers of IT products are all over the world. The customers are
in need of a facility that ensures communication services on all days of
the year all round the clock – 24 X 365.

A call center is sometimes defined as a telephone based shared
service center for specific customer activities and are used for number
of customer-related functions like marketing, selling, information
transfer, advice, technical support and so on. A call center has adequate
telecom facilities, trained consultants, access to wide database,
Internet and other on-line information support to provide information
and support services to customers. It operates to provide round the
clock and year round service i.e.24 x 365 service.

11.4 Data Management

Data Management is a category of IT Enabled Services
pertaining to collection, digitization and processing of data coming from
various sources. Traditional data processing services comprise
punching data from manually filled forms, images or publications;
preparing databases and putting them together. However, with the

Fig.11.2 Office of the Accountant General (A& E), Tamil Nadu

 225

advent of multimedia and internet, sources have increased to include
manually printed documents, images, sounds and video. Equally
diverse are the new output media which include databases on servers,
hard copy publications, CD-ROM records emanating from internet
based queries.

Data management is the key for effective and profitable use of
IT in organizations. The range of ITES in this category are:

• ASCII format for upload to your database
• Character Recognition and Processing
• Custom reports
• Data Entry
• Data entry front end edits
• Document Preparation

• Forms are imaged and transferred to CD ROM

• Handwritten, Machine Print, Mark Sense, Bar Coding
(Reader Response can be captured and processed from any
hard copy or faxed document).

• Image Capturing

• Image Keying

• Image Storage & Retrieval

• Outcome studies

• Statistical analysis

Some of the organizations that can potentially benefit from ITES in this
category are:

• Back office Operations such as Accounts, Financial services
• Banking
• Government agencies
• Hospital
• Insurance
• Legal
• Manufacturing
• Municipalities
• Police departments

 226

• Public utilities

• Publishing

• Telecom

• Transportation

Each of the organizations mentioned above presents a huge opportu-
nity in ITES in the critical area of Data Management. Banking, Finan-
cial Services and Insurance sectors are popularly termed BFSI. BFSI
and Pension Services are high growth areas for ITES.

Data Security and Customer Privacy are two important aspects that
must be ensured by the ITES provider in this area. An ITES provider
may be serving multiple organizations. The service provider must en-
sure the privacy aspects of every organization. Computer Ethics is
critical for the success of ITES.

11.5 Medical Transcription and Tele-Medicine

Medical Transcription is a permanent, legal document that
formally states the result of a medical investigation. It facilitates
communication and supports the insurance claims. There are three
main steps involved in Medical Transcription. These include:

Step 1: Hospitals that want to use this form of ITES sign up with a
service provider. Doctors are trained in the process. The doctor dictates
into a special device or a free telephone. The sound is then stored on
a server at the other end.

Step 2: The sound is digitized and sent to the ITES provider. This
service provider is usually in a different country. Providing transcription
services in countries like USA is becoming very expensive both to the
patient and the hospital. So, ITES in this category reduces the cost by
having it done in a country where the cost is affordable. The digitized
data is converted back to sound. The trained transcriptionists listen to
the dictation and transcribe. This is a formal record of the diagnosis
made by the doctor.

 227

Step 3: The transcribed files are sent out to quality control persons,
who listen to the dictation and check the transcription. Corrections are
made if required. Then the transcribed reports are transmitted back to
hospital as a word document. This is valid for legal purposes and making
insurance claims.

11.6 Data Digitization

Digitization refers to the conversion of non-digital material to
digital form. A wide variety of materials as diverse as maps,
manuscripts, moving images and sound may be digitized.

Digitization offers great advantages for access, allowing users
to find, retrieve, study and modify the material. However, reliance on
digitization as a preservation strategy could place much material at
risk. Digital technologies are changing rapidly. Preservation is a long
term strategy and many technologies will become obsolete soon. This
instability in technology can lead to the loss of the digitized objects.
This defeats the purpose of preservation. Some application areas of
the digital technology are as follows:

• Annual reports and price list
• Books

• Database archiving

• Electronic Catalogues & Brochures

• Engineering and Design

• Geographical Information System.

• Movies, Sounds and High quality image preservation

• Product/Service Training Manuals

• Research Journals and Conference Papers

The steps in data digitization are:

• Understanding the customer needs
• Customer needs are used as the basis for defining the objectives

of digitization

 228

• A pilot application is built
• After the pilot application is approved, the full digitization of data

identified by the customer is undertaken.
• Different types of data are digitized using different techniques.

Many advance software packages are available to improve the
quality of the digitized form of the original document.

• The digitized data is indexed and a table of contents is produced
to improve accessibility. Highly advanced and reliable storage
facilities are used to stock the digitized data.

There are many benefits of digitization. Some of the key benefits are:

• Long term preservation of the documents.
• Storage of important documents at one place.
• Easy to use and access to the information.
• Quick and focused search of relevant information in terms of

images and text.
• Easy transfer of information in terms of images and text.
• Easy transfer of information through CD-ROM, internet and other

electronic media

11.7 Website Services

Computers also help us in accessing website services such
as:

• Agriculture Marketing Network
• Career guidance
• Employment Online
• General Provident Fund
• Results of various Examinations

In the very near future there will be many more ITES that can be
utilized even from the remote corners of the world.

Exercises

This Chapter has the support of multimedia content to under-
stand more about the applications presented. You must see this
content and where possible visit the websites indicated.

This multimedia content is provided to your school on a
separate CD. Please contact your teacher to get this CD.

 229

CHAPTER 12

COMPUTER ETHICS

Computer ethics has its roots in the work of Norbert Wiener during
World War II. Wiener’s book included

(1) An account of the purpose of a human life
(2) Four principles of justice
(3) A powerful method for doing applied ethics
(4) Discussions of the fundamental questions of computer ethics,

and
(5) Examples of key computer ethics topics.

In the mid 1960s, Donn Parker of SRI International in Menlo
Park, California began to examine unethical and illegal uses of
computers by computer professionals. By the 1980s a number of social
and ethical consequences of information technology were becoming
public issues in America and Europe: issues like computer-enabled
crime, disasters caused by computer failures, invasions of privacy via
computer databases, and major law suits regarding software ownership.

During 1990s many universities introduced formal course in
computer ethics. Many textbooks and other reading materials were
developed. It triggered new research areas and introduction of journals.

Generally speaking, ethics is the set of rules for determining
moral standards or what is considered as socially acceptable
behaviors. Today, many computer users are raising questions on what
is and is not ethical with regard to activities involving information
technology. Obviously, some general guidelines on ethics are useful
responsibly in their application of information technology.

General guidelines on computer ethics are needed for:

· Protection of personal data
· Computer Crime
· Cracking

 230

12.1 Data Security

Personal data is protected by using an appropriate combination
of the following methods.

Physical Security:

Physical security refers to the protection of hardware, facilities,
magnetic disks, and other items that could be illegally accessed, stolen,
damaged or destroyed. This is usually provided by restricting the
people who can access the resources.

Personal Security:

 Personal security refers to software setups that permit only
authorized access to the system. User Ids and passwords are common
tools for such purpose. Only those with a need to know have Ids and
password for access.

Personnel Security:

Personnel security refers to protecting data and computer
system against dishonesty or negligence of employees.

12.2 Computer Crime

A computer crime is any illegal activity using computer software,
data or access as the object, subject or instrument of the crime.

Common crimes include:

• Crimes related to money transfer on the internet
• Making long distance calls illegally using computers
• Illegal access to confidential files
• Stealing hardware
• Selling or misusing personal
• Hardware and software piracy
• Virus
• Cracking
• Theft of computer time

 231

It must be observed that 80% of all computer crimes happen
from within the company. Over 60% of all crimes go unreported.

Making and using duplicate hardware and software is called
piracy. We tend to pirate because:

• We like free things
• Why pay for something when we can get it for free?
• Our thinking and actions are self-serving
• If we have the opportunity to get away with something, benefit

financially, and minimal risk is involved, the way in which we’ve
been conditioned by our capitalist society to do it.

A virus is a self-replicating program that can cause damage to
data and files stored on your computer. These are programs written
by programmers with great programming skills who are motivated by
the need for a challenge or to cause destruction. 57000 known virus
programs are in existence. 6 new viruses are found each day.

Most of the computers in an organization have lot of free
computer time to spare. In other words a lot of computer time is not
used. Many solutions for using this spare time are being researched.
However, this idle time of computers in an organization is being stolen
illegally. Some other software runs on an idle computer without the
knowledge of the organization. This is called theft of ‘computer time’.

A commonly cited reference is the Ten Commandments of
Computer Ethics written by the Computer Ethics Institute. This is given
below.

• Thou shalt not use a computer to harm other people.
• Thou shalt not interfere with other people’s computer work.
• Thou shalt not snoop around in other people’s computer files.
• Thou shalt not use a computer to steal.
• Thou shalt not use a computer to bear false witness.
• Thou shalt not copy or use proprietary software for which you

have not paid.

 232

• Thou shalt not use other people’s computer resources without
authorization or proper compensation.

• Thou shalt not appropriate other people’s intellectual output.
• Thou shalt think about the social consequences of the program

you are writing or the system you are designing.
• Thou shalt always use a computer in ways that insure

consideration and respect for your fellow humans.

Computer crimes require special laws to be formed by the
government. Different countries have different ways of making the laws
and awarding punishment to those who commit the crimes. India has
Cyber laws to prevent computer crimes.

12.3 Cracking

Cracking is the illegal access to the network or computer system.
Illegal use of special resources in the system is the key reason for
cracking. The resources may be hardware, software, files or system
information. Revenge, business reasons and thrill are other common
reasons for committing this crime.

12.4 Work, Family and Leisure

Portable computers and telecommuting have created the
condition where people can take their work anywhere with them and
do it any time. As a result, workers find their work is cutting into family
time, vacations, leisure, weakening the traditional institutions of family
and friends and blurring the line between public and private life. This is
becoming an important issue in computer ethics.

Exercises

1. What is the need for a password to log into a computer system?
2. How does the Operating System enhance the Security ?

