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PREFACE 
 
 This book is designed in the light of the new guidelines and syllabi – 

2003 for the Higher Secondary Mathematics, prescribed for the Second Year, 

by the Government of Tamil Nadu.  

 The 21st century is an era of Globalisation, and technology occupies the 

prime position. In this context, writing a text book on Mathematics assumes 

special significance because of its importance and relevance to Science and 

Technology. 

 As such this book is written in tune with the existing international 

standard and in order to achieve this, the team has exhaustively examined 

internationally accepted text books which are at present followed in the reputed 

institutions of academic excellence and hence can be relevant to secondary 

level students in and around the country. 

 This text book is presented in two volumes to facilitate the students for 

easy approach. Volume I consists of Applications of Matrices and 

Determinants, Vector Algebra, Complex numbers and Analytical Geometry 

which is dealt with a novel approach. Solving a system of linear equations and 

the concept of skew lines are new ventures. Volume II includes Differential 

Calculus – Applications, Integral Calculus and its Applications, Differential 

Equations, Discrete Mathematics (a new venture) and Probability Distributions. 

 The chapters dealt with provide a clear understanding, emphasizes an 

investigative and exploratory approach to teaching and the students to explore 

and understand for themselves the basic concepts introduced. 

 Wherever necessary theory is presented precisely in a style tailored to 

act as a tool for teachers and students. 

 Applications play a central role and are woven into the development of 

the subject matter. Practical problems are investigated to act as a catalyst to 

motivate, to maintain interest and as a basis for developing definitions and 

procedures. 



  

 The solved problems have been very carefully selected to bridge the gap 

between the exposition in the chapter and the regular exercise set. By doing 

these exercises and checking the complete solutions provided, students will be 

able to test or check their comprehension of the material. 

 Fully in accordance with the  current goals in teaching and learning 

Mathematics, every section in the text book includes worked out and exercise 

(assignment) problems that encourage geometrical visualisation, investigation, 

critical thinking,  assimilation, writing and verbalization. 

 We are fully convinced that the exercises give a chance for the students 

to strengthen various concepts introduced and the theory explained enabling 

them to think creatively, analyse effectively so that they can face any situation 

with conviction and courage. In this respect the exercise problems are meant 

only to students and we hope that this will be an effective tool to develop their 

talents for greater achievements. Such an effort need to be appreciated by the 

parents and the well-wishers for the larger interest of the students. 

 Learned suggestions and constructive criticisms for effective refinement 

of the book will be appreciated. 

 

 K.SRINIVASAN 
 Chairperson 
 Writing Team. 
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5. DIFFERENTIAL CALCULUS  

APPLICATIONS - I 
5.1 Introduction : 
 In higher secondary first year we discussed the theoretical aspects of 
differential calculus, assimilated the process of various techniques involved and 
created many tools of differentiation. Geometrical and kinematical significances 
for first and second order derivatives were also interpreted. Now let us learn 
some practical aspects of differential calculus. 
 At this level we shall consider problems concerned with the applications to 
(i) plane geometry, (ii) theory of real functions, (iii) optimisation problems and 
approximation problems. 

5.2 Derivative as a rate measure : 
 If a quantity y depends on and varies with a quantity x then the rate of 

change of y with respect to x is 
dy
dx . 

 Thus for example, the rate of change of pressure p with respect to height  

h is 
dp
dh  . A rate of change with respect to time is usually called as ‘the rate of 

change’, the ‘with respect to time’ being assumed. Thus for example, a rate of 

change of current ‘i’ is 
di
dt  and a rate of change of temperature ‘θ’ is 

dθ
dt   and so 

on. 

Example 5.1 : The length l metres of a certain metal rod at temperature θ°C is 

given by l = 1 + 0.00005θ + 0.0000004θ2. Determine the rate of change of 
length in mm/°C when the temperature is  (i) 100°C and  (ii)  400°C. 

Solution : The rate of change of length means  
dl
dθ .  

   Since length l = 1 + 0.00005θ  + 0.0000004θ2,  

    
dl
dθ  =  0.00005 + 0.0000008θ . 

 (i) when θ =  100°C 

   
dl
dθ =  0.00005 + (0.0000008) (100) 

    = 0.00013 m/°C  = 0.13 mm/°C  
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 (ii) when θ =  400°C 

   
dl
dθ =  0.00005 + (0.0000008) (400) 

    = 0.00037 m/°C  = 0.37 mm/°C  
Example 5.2 : The luminous intensity I candelas of a lamp at varying voltage  

V is given by : I = 4 × 10−4V2. Determine the voltage at which the light is 
increasing at a rate of 0.6 candelas per volt. 

Solution : The rate of change of  light with respect to voltage is given by  
dI
dV .  

   Since I = 4 × 10−4V2 

   
dI
dV = 8 × 10−4V. 

When the light is increasing at 0.6 candelas per volt then 
dI
dV  = + 0.6. Therefore 

we must have + 0.6  = 8 × 10-4 V,  from which,  

   Voltage V = 
0.6

8 × 10−4  = 0.075 × 104  = 750  Volts. 

Velocity and Acceleration : 
 
 A car describes a distance x  
metres in time t seconds along a 
straight road. If the velocity v is 

constant, then v = 
x
t   m/s i.e., the 

slope (gradient)  of the distance/time 
graph shown in Fig.5.1 is constant. 

 
 
 
 
 
 
 

Fig. 5.1 
 If, however, the velocity of the 
car is not constant then the distance / 
time graph will not be a straight line. 
It may be as shown in  Fig.5.2 
 The average velocity over a 
small time ∆t and distance ∆x is 
given by the gradient of the chord AB 
i.e., the average velocity over time ∆t  

is 
∆x
∆t

.  

 
 
 
 
 
 
 

 
Fig. 5.2 
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 As ∆t → 0,  the chord AB becomes a tangent, such that at point A the 

velocity is given by  v = 
dx
dt  .  Hence the velocity of the car at any instant is 

given by gradient of the distance / time graph. If an expression for the distance x  
is known in terms of time,  then the velocity is obtained by differentiating the 
expression. 
 The acceleration ‘a’ of the car is 
defined as the rate of change of 
velocity. A velocity / time graph is 
shown in Fig.5.3. If ∆v  is the change 
in v and ∆t is the corresponding 

change in time, then a = 
∆v
∆t

 .  As  

∆t → 0 the chord CD becomes a 
tangent such that at the point C, 

 
 
 
 
 
 
 

Fig. 5.3 

 the acceleration is given by a = 
dv
dt   

 Hence the acceleration of the car at any instant is given by the gradient of 
the velocity / time graph. If an expression for velocity is known in terms of time 
t, then the acceleration is obtained by differentiating the expression. 

   Acceleration  a = 
dv
dt  ,  where v = 

dx
dt   

   Hence   a = 
d
dt   



dx

dt   = 
d2x

dt2
  

 The acceleration is given by the second differential coefficient of distance 
x with respect to time t. The above discussion can be summarised as follows. If 
a body moves a distance x meters in time t seconds then 
 (i)  distance  x = f(t). 

 (ii) velocity  v = f ′(t) or 
dx
dt  , which is the gradient of the  

  distance /  time graph. 

  (iii) Acceleration a = 
dv
dt   = f ′′(t) or  

d2x

dt2
 , which is the gradient of the  

   velocity / time graph. 
Note : (i) Initial velocity means velocity at t = 0 
  (ii) Initial acceleration means acceleration at t = 0. 
  (iii) If the motion is upward, at the maximum height, the velocity is zero. 
  (iv) If the motion is horizontal, v = 0 when the particle comes to rest. 
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Example 5.3 : The distance x metres described by a car in time t seconds is 

given by: x = 3t3 − 2 t2  + 4t  − 1. Determine the velocity and acceleration when   
(i)  t  = 0  and (ii) t = 1.5 s 

Solution :   distance  x = 3t3  − 2 t2  + 4t  −1  

   velocity  v = 
dx
dt    =  9t2  − 4 t  + 4  m/s 

   acceleration  a =  
d2x

dt2
   =  18t  − 4  m/s2 

 (i)   When time t = 0 

   velocity  v = 9(0)2  −  4(0)  + 4  =  4 m/s 

   and  acceleration  a = 18(0)  −  4  =  −4 m/s2 
 (ii)   when  time  t = 1.5 sec 

   velocity  v = 9(1.5)2  −  4(1.5)  + 4  =  18.25 m/sec 

   and  acceleration  a = 18(1.5)   −  4  =  23 m/sec2 
Example 5.4 : Supplies are dropped from an helicopter and distance fallen in 

time t seconds is given by  x = 
1
2 gt2  where  g  = 9.8 m/sec2.  Determine the 

velocity and acceleration of the supplies after it has fallen for 2 seconds. 

Solution :   distance  x = 
1
2 gt2  =  

1
2  (9.8) t2  =  4.9 t2 m 

   velocity  v = 
dx
dt   = 9.8t m/sec 

   acceleration  a =  
d2x

dt2
  = 9.8  m/sec2 

   When time  t = 2  seconds 
   velocity  v = (9.8)(2)  =  19.6 m/sec 

   and  acceleration  a = 9.8 m/sec2 which  is the acceleration due to 
gravity. 
Example 5.5 : The angular displacement  θ  radians of a fly wheel  varies with 

time t seconds and follows the equation θ  =  9t2  − 2t3. Determine 
 (i) the angular  velocity and acceleration  of the fly wheel  when  time  

t = 1  second and 
 (ii) the time when the angular acceleration  is zero. 

Solution : (i) angular displacement θ = 9t2  − 2t3 radians. 

   angular velocity  ω  = 
dθ
dt    =  18t – 6t2 rad/s 
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   When time   t = 1  second, 

   ω = 18(1)  −  6(1)2  = 12 rad/s 

   angular acceleration = 
d2θ
dt2

 = 18 − 12t rad/s2 

  when t = 1, angular acceleration = 6  rad/ s2 
 (ii) Angular acceleration is zero  ⇒ 18 – 12t  =  0,  from  which t = 1.5 s 
Example 5.6 : A boy, who is standing on a pole of height 14.7 m throws a stone 
vertically upwards. It moves in a vertical line slightly away from the pole and 
falls on the ground. Its equation of motion in meters and seconds is  

x = 9.8 t − 4.9t2 (i) Find the time taken for upward and downward motions.  
(ii) Also find the maximum height reached by the stone from the ground. 
Solution : 

(i) x = 9.8 t − 4.9 t2   
      At the maximum height v = 0 

 v = 
dx
dt  = 9.8 − 9.8 t 

 v = 0  ⇒  t = 1 sec 
 ∴ The time taken for upward 
motion is 1 sec. For each position x, 
there corresponds a time ‘t’. The 
ground position is x = − 14.7, since 
the top of the pole is taken as x = 0.  

 
 
 
 
 
 
 

 
Fig. 5.4 

 To get the total time, put x = − 14.7 in the given equation. 

 i.e., − 14.7 = 9.8 t − 4.9t2  ⇒  t = − 1, 3 

 ⇒  t = − 1 is not admissible and hence t = 3 

 The time taken for downward motion is 3 − 1 = 2 secs 

(ii) When t = 1, the position x = 9.8(1) − 4.9(1) = 4.9 m 
 The maximum height reached by the stone = pole height + 4.9 = 19.6 m 

5.3 Related Rates : 
 In the related rates problem the idea is to compute the rate of change of one 
quantity in terms of the rate of change of another quantity. The procedure is to 
find an equation that relates the two quantities and then use the chain rule to 
differentiate both sides with respect to time. 
 We suggest the following problem solving principles that may be followed 
as a strategy to solve problems considered in this section. 

s = -147

s = 0

Ground

Max. Ht.

s = -147

s = 0

Ground

Max. Ht.
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 (1) Read the problem carefully. 
 (2) Draw a diagram if possible. 
 (3) Introduce notation. Assign symbols to all quantities that are functions 

of time. 
 (4) Express the given information and the required rate in terms of 

derivatives. 
 (5) Write an equation that relates the various quantities of the problem. If 

necessary, use the geometry of the situation to eliminate one of the 
variables by substitution. 

 (6) Use the chain rule to differentiate both sides of the equation with 
respect to t. 

 (7) Substitute the given information into the resulting equation and solve 
for the unknown rate. 

Illustration : Air is being pumped into a spherical  balloon so that its volume 

increases at a rate of 100 cm3/s.  How fast is the radius of the balloon increasing 
when the diameter is 50 cm. 
Solution : 
 We start by identifying two things.  
 (i) The given information : The rate of increase of the volume of air is 

100 cm3/s.  and  
 (ii) The unknown : The rate of increase of the radius when the diameter is 

50 cm. 
 In order to express these quantities mathematically we introduce some 
suggestive notation. 
 Let V be the volume of the balloon and let r be its radius. 
 The key thing to remember is that the rates of change are derivatives. In 
this problem, the volume and the radius are both functions of time t. The rate of 

increase of the volume with respect to time is the derivative 
dV
dt   and the rate of 

increase of the radius is 
dr
dt . We can therefore restate the given and the unknown 

as follows : 

 Given :  
dV
dt   = 100 cm3/s and unknown :  

dr
dt  when r =  25 cm. 

 In order to connect 
dV
dt    and  

dr
dt   we first relate V and r by the formula for 

the volume of a sphere V =  
4
3  πr3. 
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 In order to use the given information, we differentiate both sides of this 
equation with respect to t. To differentiate the right side, we need to use chain 
rule as V is a function of r and r is a function of t. 

 i.e.,  
dV
dt  = 

dV
dr  . 

dr
dt  =  

4
3  3πr2 

dr
dt = 4πr2 

dr
dt 

 Now we solve for the unknown quantity  
dr
dt = 

1

4πr2 . 
dV
dt  

 If we put r = 25  and 
dV
dt  = 100 in this equation, 

  we obtain    
dr
dt  = 

1 × 100

4π(25)2  =  
1

25π  

 i.e., the radius of the balloon is increasing at the rate of  
1

25π  cm/s. 

Example 5.7 : A ladder 10 m long rests against a vertical wall. If the bottom of 
the ladder slides away from the wall at a rate of 1 m/sec how fast is the top of 
the ladder sliding  down the wall when the bottom of the ladder is 6 m from the 
wall ? 
Solution :  We first draw a diagram 
and lable it as in Fig. 5.5 
 Let x metres be the distance 
from the bottom of the ladder to the 
wall and y metres be the vertical 
distance from the top of the ladder to 
the ground. Note that x and y are both 
functions of time‘t’. We are given 

that 
dx
dt  = 1 m/sec  and we are asked 

to find 
dy
dt  when x = 6 m.  

 
 
 
 
 
 
 

 
 

Fig. 5.5 

 In this question, the relationship between x and y is given by the 

Pythagoras theorem : x2 + y2 = 100 
 Differentiating each side with respect to t, using chain rule, we have 

  2x 
dx
dt   + 2y 

dy
dt   = 0   

 and solving  this equation for the derived rate we obtain, 

   
dy
dt   = − 

x
y   

dx
dt   
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 When x = 6,  the Pythagoras theorem gives, y = 8  and so substituting these 

values and 
dx
dt   = 1, we get  

dy
dt   = − 

6
8  (1) = 

-3
4  m/sec. 

 The ladder is moving downward at the rate of  
3
4 m/sec. 

Example 5.8 : A car A is travelling from west at 50 km/hr. and car B is 
travelling towards north at 60 km/hr. Both are headed for the intersection of the 
two roads. At what rate are the cars approaching each other when car A is 0.3 
kilometers and car B is 0.4 kilometers from the intersection? 
Solution :   
 We draw Fig. 5.6 where C is the 
intersection of the two roads. At a given 
time t, let x be the distance from car A to C, 
let y be the distance from car B to C and let 
z be the distance between the cars A and B 
where x, y and z are measured in kilometers. 

 
 
 
 
 
 

 
Fig. 5.6 

  We are given that 
dx
dt   = − 50 km/hr and  

dy
dt   = − 60 km/hr.  

 Note that x and y are decreasing and hence the negative sign. We are asked 

to find 
dz
dt . The equation that relate x, y and z is given by the Pythagoras 

theorem z2 = x2 + y2 

 Differentiating each side with respect  to t, 

 we have  2z  
dz
dt  = 2x  

dx
dt  + 2y  

dy
dt    ⇒  

dz
dt =  

1
z  



x  

dx
dt  + y 

dy
dt    

 When x = 0.3 and y = 0.4 km, we get  z = 0.5 km and we get  

 
dz
dt  = 

1
0.5  [0.3 (− 50) + 0.4 (−60)] = −78  km/hr. 

 i.e., the cars are approaching each other at a rate of 78 km/hr. 

Example 5.9 : A water tank has the shape of an inverted circular cone with base 
radius 2 metres and height 4 metres.  If water is being pumped into the tank at a 

rate of 2m3/min, find the rate at which the water level is rising when the water 
is 3m deep. 

x

y

B

CA

z

x

y

B

CA

z
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Solution :   
  We first sketch the cone 
and label it as in Fig. 5.7. Let V, r 
and h be respectively the volume of 
the water, the radius of the cone 
and the height at time t, where 
t is measured in minutes. 

 
 
 
 
 

Fig. 5.7 

   We are given that 
dV
dt   = 2m3/min. and we are asked to find 

dh
dt  when h is 3m. 

 The quantities V and h are related by the equation V = 
1
3 πr2h. But it is very 

useful to express V as function of h alone. 

 In order to eliminate r we use similar triangles in Fig. 5.7 to write 
r
h  =   

2
4    

⇒ r = 
h
2   and the expression for V becomes V = 

1
3  π 



h

2 
2

 h =  
π
12 h3. 

Now we can differentiate each side with respect to t and we have 

 
dV
dt   = 

π
4  h2   

dh
dt     ⇒    

dh
dt   = 

4

πh2   
dV
dt   

 Substituting h = 3m and 
dV
dt   = 2m3/min.  

 we get, 
dh
dt   = 

4

π(3)2 . 2= 
8

9π  m/min 

EXERCISE 5.1 
 (1) A missile fired from ground level rises x metres vertically upwards in  

t seconds and x = 100t - 
25
2  t2.  Find (i)  the initial velocity of the missile,  

(ii) the time when the height of the missile is a maximum (iii) the 
maximum height reached and (iv) the velocity with which the missile 
strikes the ground. 

 (2) A particle of unit mass moves so that displacement after t secs is given by 
x = 3 cos (2t – 4).  Find the acceleration and kinetic energy at the end of 2 

secs. 



K.E. = 

1
2 mv2, m is mass  

 (3) The distance x metres traveled by a vehicle in time t seconds after the 

brakes are applied is given by : x  = 20 t − 5/3t2.  Determine (i) the speed 
of the vehicle (in km/hr) at the instant the brakes are applied and (ii) the 
distance the car travelled before it stops. 

h
4m

r m

2m

h
4m

r m

2m



 10

 (4) Newton’s law of cooling is given by θ  = θ0
° e−kt, where the excess of 

temperature at zero time is θ0
°C and at time t seconds is θ°C. Determine 

the rate of change of temperature after 40 s, given that θ0 = 16° C and 

k = − 0.03.  [e1.2 = 3.3201) 

 (5) The altitude of a triangle is increasing at a rate of 1 cm/min while the area 

of the triangle is increasing at a rate of 2 cm2/min. At what rate is the 
base of the triangle changing when the altitude is 10 cm and the area is 

100 cm2. 

 (6) At noon, ship A is 100 km west of ship B. Ship A is sailing east at 35 
km/hr and ship B is sailing north at 25 km/hr.  How fast is the distance 
between the ships changing at 4.00 p.m. 

 (7) Two sides of a triangle are 4m and 5m in length and the angle between 
them is increasing at a rate of 0.06 rad/sec.  Find the rate at which the 
area of the triangle is increasing when the angle between the sides of 
fixed length is π/3. 

 (8) Two sides of a triangle have length 12 m and 15 m. The angle between 
them is increasing at a rate of 2° /min. How fast is the length of third side 
increasing when the angle between the sides of fixed length is 60°? 

 (9) Gravel is being dumped from a conveyor belt at a rate of 30 ft3/min and 
its coarsened such that it forms a pile in the shape of a cone whose base 
diameter and height are always equal. How fast is the height of the pile 
increasing when the pile is 10 ft high ? 

5.4 Tangents and Normals (Derivative as a measure of slope) 
 In this section the applications 
of derivatives to plane geometry is 
discussed. For this, let us consider a 
curve whose equation is y = f(x). 

 On this curve take a point 
P(x1,y1). Assuming that the tangent 

at this point is not parallel to the co-
ordinate axes, we can write the 
equation of the tangent line at P. 

 
 
 
 
 
 

 
 

Fig. 5.8 

Normal

Time

y = f (x)

P (x1,y1)

y

x
O

α

Normal

Time

y = f (x)

P (x1,y1)

y

x
O

α
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 The equation of a straight line with slope (gradient) m passing through 
(x1,y1) is of the form y – y1  = m(x – x1). For the tangent line we know the slope  

m = f ′(x1) = 



dy

dx   at (x1,y1)  and so the equation of the tangent is of the form  

y – y1= f ′(x1) (x – x1). If m=0, the curve has a horizontal tangent with equation 

y = y1 at P(x1,y1). If f(x) is continuous at x = x1, but  
lim

x → x1
  f ′(x)  = ∞  ⇒  the 

curve has a vertical tangent with equation x =  x1. 

 In addition to the tangent to a curve at a given point, one often has to 
consider the normal which is defined as follows : 
Definition : The normal to a curve at a given point is a straight line passing 
through the given point, perpendicular to the tangent at this point. 

 From the definition of a normal it is clear that the slope of the normal m′ 

and that of the tangent m are connected by the equation m′ = – 
1
m  . 

   i.e.,  m′   = –  
1

f ′(x1)
  = 

− 1





dy

dx  (x1,y1)
  

 Hence the equation of a normal to a curve y  =  f(x)  at a point  P(x1,y1) is 

of the form  y  – y1= –  
1

f ′(x1)
  ( x – x1). 

 The equation of the normal at (x1,y1) is  

 (i) x = x1 if the tangent is horizontal (ii) y = y1 if the tangent is vertical  and  

 (iii) y – y1   =   
–1
m  (x  – x1) otherwise. 

Example 5.10: Find the equations of the tangent and normal to the curve y = x3  
at the point (1,1). 

Solution :  We have y = x3 ; slope y′= 3x2.   

 At the point (1,1), x = 1  and m = 3(1)2  = 3. 
 Therefore equation of the tangent is  y − y1 = m(x − x1) 

 y – 1 =  3(x – 1) or  y = 3x – 2 

 The equation of the normal is y − y1 = − 
1
m (x − x1) 

 y  – 1 = 
–1
3  (x – 1) or   y = – 

1
3  x + 

4
3  
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Example 5.11 : Find the equations of the tangent and normal to the curve  

y = x2 –  x – 2 at the point (1,− 2). 

Solution :  We have y = x2 –  x – 2  ;  slope,  m = 
dy
dx  = 2x – 1.    

 At the point (1,–2),    m = 1 
 Hence the equation of the tangent is y – y1 = m(x – x1) i.e.,  y – (–2) = x – 1 

       i.e.,   y = x – 3 

 Equation of the normal  is    y – y1 =  
–1
m   (x – x1) 

   i.e.,  y  – (–2) = 
–1
1   (x – 1) 

     or   y = – x – 1 
Example 5.12 : Find the equation of the tangent at the point (a,b) to the 

curve xy = c2. 

Solution :   The equation of the curve is xy = c2. 
Differentiating w.r.to   x  we get,  

    y +x  
dy
dx  = 0 

   or  
dy
dx  = 

–y
x   and  m =  



dy

dx  
(a, b)

= 
–b
a   . 

Hence the required equation of the tangent is 

   y –b =  
–b
a    (x – a) 

   i.e., ay – ab = – bx + ab 

   bx + ay = 2ab  or  
x
a  + 

y
b  = 2 

Example 5.13 : Find the equations of the tangent and normal at θ = 
π
2  to the 

curve  x  = a (θ + sin θ),   y  =  a (1 + cos θ). 

Solution : We have   
dx
dθ  =  a (1 + cosθ)  = 2a cos2 

θ
2  

      
dy
dθ  = –  a sin θ  = – 2a sin 

θ
2  cos 

θ
2  

   Then  
dy
dx  = 

dy
dθ  

 
dx
dθ 

  =   –  tan 
θ
2  
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   ∴  Slope  m = 



dy

dx  
θ = π/2

 =  – tan 
π
4  =  –1 

 Also  for θ = 
π
2 ,  the point on the curve is 



a  

π
2 + a,  a .  

 Hence the equation of the tangent at θ  = 
π
2   is 

   y – a = (–1) 



x − a 



π

2 + 1  

   i.e., x + y = 
1
2  a π + 2a   or  x + y  –   

1
2  a π  – 2a = 0 

 Equation of the normal at this point is 

   y – a = (1)  



x − a 



π

2 + 1   

   or  x  – y  –   
1
2  a π  = 0 

Example 5.14 : Find the equations of tangent and normal to the curve 

16x2 + 9y2 = 144  at (x1,y1) where x1 = 2  and y1 > 0. 

Solution : We have 16x2 + 9y2  = 144  
 (x1,y1)  lies on this curve, where  x1 = 2  and y1 > 0 

 ∴   (16 ×  4) + 9 y1
2 = 144  or  9 y1

2 = 144 – 64  = 80 

 y1
2 = 

80
9     ∴  y1 = ±  

80 
3   . But  y1 > 0   ∴  y1 = 

80 
3   

 ∴  The point of tangency is (x1,y1) = 



2 , 

80 
3    

               We have  16x2 + 9y2 = 144  

Differentiating w.r.to   x we get   
dy
dx  = – 

32
18  

x
y  =  – 

16
9   



x

y   

 ∴ The slope at  



2 , 

80 
3    = 



dy

dx  




2 , 

80 
3   

  

    = – 
16
9   ×  

2

 
80 
3  

 = –  
8

3 5 
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 ∴   The equation of the tangent  is y – 
80 
3   = –  

8
3 5 

 (x – 2) 

 On simplification we get  8x + 3 5 y = 36 
Similarly the equation of the normal can be found as 9 5 x – 24 y + 14 5  = 0 
Example 5.15 : Find the equations of the tangent and normal to the ellipse 

x  =  a cosθ,  y  =  b sin θ  at the point θ  = 
π
4 . 

Solution :  At  θ  =  
π
4 , (x1,y1) = 



a cos 

π
4 ,  b sin 

π
4   = 





a

 2 
 , 

b
 2 

   

 
dx
dθ  = – a sin θ,  

dy
dθ  = b cos θ. 

 
dy
dx  = 

dy
dθ  

 
dx
dθ 

  = 
–b
a   cotθ   

 ⇒  m = = 
–b
a   cot 

π
4  =  

–b
a   

 
 
 
 
 
 

Fig. 5.9 

 Thus the point of tangency is  




a

 2 
 , 

b
 2 

  and the slope is  m = 
–b
a  . 

 The equation of the tangent is  y − 
b
2

 = − 
b
a 





x − 

a
2

 or bx + ay − ab 2 = 0 

 The equation of the normal is  y –  
b

 2 
  = 

a
b  





x – 

a
 2 

   

   or  (ax – by) 2  – (a2 – b2) = 0. 

Example 5.16 : Find the equation of the tangent to the parabola, y2 = 20 x 
which forms an angle 45° with the x – axis. 

Solution :  We have y2  = 20x . Let (x1,y1)  be the tangential point 

 Now 2yy′ = 20     ∴  y′ = 
10
y   ie., at (x1, y1)    m  = 

10
y1

  … (1) 

 But the tangent makes an angle 45°  with the x – axis. 
 ∴  slope of the tangent m=tan 45°  = 1  … (2) 

 From (1) and (2)  
10
y1

  = 1   ⇒  y1 = 10 

 But (x1,y1)  lies on y2 = 20x  ⇒  y1
2 = 20 x1 

x

y

O

P

N

T

‘θ’ = π/4
x

y

O

P

N

T

‘θ’ = π/4
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 100 = 20 x1 or x1 = 5 

 i.e.,  (x1,y1)  = (5,10)  

 and hence the equation of the tangent at (5, 10) is  

 y – 10 = 1(x – 5) 

 or  y = x + 5. 

Note : This problem is suitable for equation of any tangent  to a parabola 

 i.e., y = mx + 
a
m  

5.5 Angle between two curves : 
 The angle between the curves C1 and C2  at a point of intersection P is 
defined to be the angle between the tangent lines to C1  and C2  at P (if these 
tangent lines exist) Let us represent the two curves C1 and C2  by the Cartesian 
equation y = f(x)  and y = g(x)  respectively. Let them intersect at P (x1,y1) . 

 If ψ1 and ψ2  are the angles made by the tangents PT1 and PT2 to  

C1 and C2 at P, with the positive direction of the x – axis, then m1 = tan ψ 1 and 

m2 = tan ψ2 are the slopes of PT1  and PT2 respectively. 

 Let ψ be the angle between PT1  

and PT2.  Then  ψ = ψ2 – ψ1  and 

 tan ψ = tan (ψ2 – ψ1) 

  = 
tan ψ2 – tan ψ1

1 + tan ψ1 tan ψ2
  

  = 
m2 – m1

1 + m1m2
  

where 0 ≤ ψ < π 

 
 
 
 
 
 
 
 

Fig. 5.10 

 We observe that if their slopes are equal namely m1 = m2 then the two 
curves touch each other. If the product m1 m2 = – 1 then these curves are said to 

cut at right angles or orthogonally.  We caution that if they cut at right angles 
then m1 m2 need not be –1.  

   Note that in this case ψ1 is acute and ψ2 is obtuse and ψ = ψ2 − ψ1. If ψ1 is 

obtuse and ψ2 is acute, then ψ = ψ1−ψ2. 

Time

y = f (x)

y

x
O

ψ1

180 – ψ
2

P

C1

C2

y = g (x)

T2

T1

ψ2

Time

y = f (x)

y

x
O

ψ1

180 – ψ
2

P

C1

C2

y = g (x)

T2

T1

ψ2
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 Combining together the angle between tangents can be given as ψ1∼ψ2 or 

tan ψ = tan(ψ1∼ψ2) = 
tan ψ1∼ tanψ2

1 + tan ψ1 tan ψ2
 = 







m1 − m2

1 + m1 m2
 

Example 5.17 : Find the angle between the curves y = x2 and y = (x – 2)2 at the 
point of intersection. 
Solution : To get  the point of intersection of the curves solve the equation 

we get  x2 = (x− 2)2 
This gives x = 1. When x  = 1, y = 1 

∴  The point of intersection is (1, 1) 

 Now  y = x2  ⇒  
dy
dx   = 2x 

 ⇒ m1 = 



dy

dx 
(1,1)

  = 2 

 
 
 
 
 
 
 

Fig. 5.11 

 y = (x – 2)2  ⇒  
dy
dx  = 2(x – 2)  ⇒ m2 = 



dy

dx  
(1,1)

  = – 2. 

 If ψ is the angle between them, then 

   tan ψ  = 



– 2 – 2

1 – 4   = 



– 4

− 3
   ⇒  ψ = tan–1 

4
3  

Example 5.18 : Find the condition for the curves  

ax2 + by2 = 1,  a1x2 + b1y2= 1 to intersect orthogonally. 

Solution :  
    If (x1,y1)  is the point of intersection, then ax1

2 + by1
2 = 1 ; a1x1

2 + b1y1
2 = 1 

 then,   x1
2 = 

b1 – b
ab1 – a1b ,     y1

2 = 
a – a1

ab1 – a1b  (By Cramer’s rule) 

 For ax2 + by2 = 1,    m1 = 



dy

dx  
(x1,y1)

 = 
– ax1
by1

  

and for a1x2 + b1y2 = 1,     m2 = 



dy

dx  
(x1,y1)

 =  
– a1x1
b1y1

  

 For orthogonal intersection, we have m1m2 = –1. This gives 

 






– ax1
by1

    






– a1x1
b1y1

  = –1  or   
a a1x1

2

bb1y1
2   = –1. 

(0,0)
x

y

2

1

2y
= 

x2

y
= 

(x
-2

)2

Tan-1(4/3)

(1,1)

(0,0)
x

y

2

1

2y
= 

x2

y
= 

(x
-2

)2

Tan-1(4/3)

(1,1)
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 aa1x1
2 + bb1y1

2 = 0   ⇒  aa1 






b1 – b

ab1 – a1b  + bb1 






a – a1

ab1 – a1b   = 0 

   ⇒    aa1 (b1 –  b) + bb1 (a  – a1) = 0   ⇒ 
b1 – b
bb1

   +  
a – a1

aa1
  = 0 

  or 
1
b  – 

1
b1

  +  
1

a1
  – 

1
a  = 0 or 

1
a  – 

1
a1

 = 
1
b  – 

1
b1

   which is the required condition. 

Example 5.19 : Show that x2 – y2  =  a2  and xy  =  c2  cut orthogonally. 
Solution : Let (x1,y1) be the point of intersection of the given curves  

∴  x1
2 – y1

2  =  a2 and x1 y1  = c2 

 x2 – y2 = a2   ⇒  2x  –  2y 
dy
dx   = 0  ⇒  

dy
dx  = 

x
y 

  ∴ m1  = 



dy

dx  
(x1,y1)

 = 
x1
y1

    ie.,  m1 = 
x1
y1

  

 xy = c2 ⇒   y  =  
c2

x     ⇒  
dy
dx  = –  

c2

x2  

 ∴ m2 = 



dy

dx  
(x1,y1)

 = 
–  c2

x1
2   i.e.,  m2 = 

–  c2

x1
2   

 ∴  m1m2 =  






x1

y1
    







–  c2

x1
2    = 

– c2

x1 y1
   =  

– c2

c2    =  –1  

 ⇒   the curves cut orthogonally. 
Example 5.20 : Prove that the sum of the intercepts on the co-ordinate axes of 

any tangent to the curve  x = a cos4θ,  y = a sin4θ,  0 ≤ θ  ≤  
π
2  is equal to a. 

Solution : Take any point ‘θ’ as (a cos4θ, a sin4θ,  ) 

 Now 
dx
dθ  = – 4a cos3θ sin θ ;   

 and  
dy
dθ  = 4a sin3θ cos θ 

  ∴  
dy
dx  = – 

sin2θ 

cos2θ
  

 
 
 
 
 
 
 

Fig. 5.12 

(0,a)

O
x

y

(a,0)

θ = π/2

θ = 0

(0,a)

O
x

y

(a,0)

θ = π/2

θ = 0



 18

  i.e., slope of the tangent at ‘θ’ is = –  
sin2θ 

cos2θ
  

 Equation of the tangent at ‘θ’ is (y − a sin4θ) = 
− sin2θ
cos2θ

 (x − a cos4θ) 

 or  x sin2 θ + y cos2 θ = a sin2 θ cos2 θ 

 ⇒  
x

a cos2θ
  + 

y

a sin2θ
  = 1 

 i.e.,  sum of the intercepts = a cos2 θ + a sin2 θ = a 

EXERCISE 5.2 
 (1) Find the equation of the tangent and normal to the curves  

  (i)    y = x2 – 4x – 5 at  x =  –  2 (ii) y = x – sin x cos x, at x = 
π
2  

  (iii)  y = 2 sin2 3x   at  x =  
π
6  (iv)  y  = 

1 + sinx
 cos x    at x = 

π
4  

 (2)  Find the points on curve x2– y2=2 at which the slope of the tangent is 2. 

 (3)  Find at what points on the circle x2 + y2 = 13, the tangent is parallel to 
the line 2x + 3y = 7 

 (4)  At what points on the curve x2 + y2 – 2x – 4y + 1 = 0 the tangent is 
parallel to  (i)  x – axis  (ii)  y – axis. 

 (5)  Find the equations of those tangents to the circle x2 + y2  = 52, which 
are parallel to the straight line 2x + 3y = 6. 

 (6) Find the equations of normal to y = x3 – 3x that is parallel to  
2x + 18y – 9 = 0. 

 (7) Let P be a point on the curve y = x3 and suppose that the tangent line at 
P intersects the curve again at Q. Prove that the slope at Q is four times 
the slope at P. 

 (8) Prove that the curve 2x2 + 4y2 = 1 and 6x2 –   12y2= 1 cut each other at 
right angles. 

 (9)  At what angle θ do the curves  y = ax and y = bx  intersect (a ≠ b) ? 
 (10)  Show that the equation of the normal to the curve  

  x = a cos3 θ ; y = a sin3θ at ‘θ’ is  x cos θ – y sin θ = a cos 2θ.  

 (11) If the curve y2 = x and xy = k are orthogonal then prove that 8k2 = 1. 
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5.6 Mean value theorems and their applications : 
 In this section our main objective is to prove that between any two points 
of a smooth curve there is a point at which the tangent is parallel to the chord 
joining two points. To do this we need the following theorem due to Michael 
Rolle. 
5.6.1 Rolle’s Theorem :  Let f be a real valued function that satisfies the 
following  three conditions : 
 (i) f is defined and continuous on the closed interval [a, b] 
 (ii) f is differentiable on the open interval (a, b) 
 (iii) f (a)  = f (b) 

Then  there exists atleast one point c ∈ (a,b)  such that f ′(c)  = 0 
Some observations : 
  Rolle’s theorem is applied to the position function s = f(t) of a moving 

object.  
  If the object is in the same place at two different instants  t = a and  

t = b  then f(a)  = f(b) satisfying hypothesis of Rolle’s theorem. 
Therefore the theorem says that there is some instant of time t = c 
between a and b where f ′(c) = 0 i.e., the velocity is 0 at t = c. 

  Note that this is also true for an object thrown vertically upward 
(neglecting air resistance). 

  Rolle’s  Theorem applied to theory of equations : If a and b are two 
roots of a polynomial equation f(x) = 0, then Rolle’s Theorem says 
that there is atleast one root c between a and b for f ′(x) = 0. 

  Rolle’s theorem implies that a smooth curve cannot intersect a 
horizontal line twice without having a horizontal tangent in between. 

  Rolle’s theorem holds trivially for the function f(x) = c, where c is a 
constant on [a,b]. 

  The converse of Rolle’s Theorem is not true ie., if a function 
f satisfies f ′(c) = 0  for c ∈ (a,b) then the conditions of hypothesis 
need not hold. 

Example 5.21 : Using Rolle’s theorem find the value(s) of c. 

 (i) f(x) = 1 − x2 ,     −1  ≤  x  ≤ 1 

 (ii) f(x) = (x − a) (b − x),      a ≤ x ≤ b,  a ≠ b. 

 (iii) f(x) = 2x3 − 5x2 − 4x + 3,      
1
2 ≤  x  ≤  3 
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Solution :  
 (i) The function is continuous in [−1,1] and differentiable  in (−1,1). 
 f(1) = f (−1)  = 0  all the three conditions are satisfied. 

  f ′(x) = 
1
2 

− 2x

1 −x2
   =  

− x

1 − x2
   

 f ′(x) = 0   ⇒  x = 0. 

 (Note that for x = 0, denominator = 1 ≠ 0) Thus the suitable point for which 
Rolle’s theorem holds is c = 0. 
(ii) f(x) = (x − a) (b − x),  a  ≤  x  ≤ b,  a ≠ b. 
 f (x)  is continuous on [a,b]  and f ′(x)  exists at every point of (a,b). 
  f(a) = f(b) = 0  All the conditions are satisfied. 

   ∴ f ′(x) = (b − x)  − (x − a) 

   f ′(x) = 0  ⇒  − 2x  =  − b − a   ⇒   x = 
a + b

2   

 The suitable point ‘c’  of Rolle’s  theorem is c = 
a + b

2   

(iii)  f(x) = 2x3 − 5x2 − 4x + 3,  
1
2  ≤   x  ≤  3 

 f is continuous on 



1

2 , 3 and differentiable in 



1

2 , 3   

 f(½) = 0 = f(3). All the conditions are satisfied. 

 f ′(x)  = 6x2 − 10x − 4 

  f ′(x) = 0  ⇒  3x2 − 5x− 2  = 0   ⇒ (3x + 1) (x −2) = 0  ⇒ x = − 
1
3  or x = 2. 

 x = − 
1
3  does not lie in 



1

2, 3    ∴x = 2 is the suitable ‘c’ of Rolle’s theorem 

Remark : Rolle’s theorem cannot be applied  if any one of the conditions does not hold. 

Example 5.22 : Verify Rolle’s theorem for the following : 

 (i) f(x) = x3 − 3x + 3    0 ≤ x ≤ 1 

 (ii) f(x) = tan x,     0 ≤ x ≤ π 
 (iii) f(x) = | x |,  −1 ≤ x ≤ 1 

 (iv) f(x) = sin2 x,  0 ≤ x ≤ π 

 (v) f(x) = ex sin x,     0 ≤ x ≤ π 
 (vi)  f(x) = x (x − 1) (x − 2),     0 ≤  x ≤ 2 
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Solution : 

 (i) f(x) = x3 − 3x + 3   0 ≤ x ≤ 1 
 f  is continuous on [0,1]  and differentiable in (0,1) 

  f(0)  = 3  and  f(1) = 1 ∴ f (a) ≠ f (b) 

 ∴  Rolle’s theorem, does not hold, since f (a) = f (b) is not satisfied. 

 Also note that  f ′(x) = 3x2 − 3 = 0   ⇒  x2 = 1 ⇒ x = ±1 

 There exists no point c ∈ (0,1)  satisfying  f ′(c)  =  0. 

(ii) f(x) = tan x,     0 ≤ x ≤ π 

 f ′(x)   is not continuous in [0,π]  as tan x tends to + ∞  at x = 
π
2, 

 ∴  Rolles theorem is not applicable. 

(iii) f(x) = | x |,  −1 ≤ x ≤ 1 

 f  is continuous in [−1,1]  but not differentiable in (−1,1) since f ′(0) does 
not exist. 

 ∴  Rolles theorem is not applicable. 

(iv) f(x) = sin2 x,  0 ≤ x ≤ π 

 f is continuous in [0,π]  and differentiable in (0,π). f(0)  = f (π) = 0 
 (ie.,) f satisfies hypothesis of Rolle’s theorem. 

 f ′(x) = 2 sin x cos x = sin 2x 

 f ′(c) = 0 ⇒  sin 2c  =  0 ⇒  2c = 0, π, 2π, 3π, ... ⇒ c = 0,  
π
2,  π, 

3π
2 ,  ... 

 since c = 
π
2  ∈  (0,π), the suitable c of Rolle’s theorem is   c = 

π
2. 

(v) f(x) = ex sin x,     0 ≤ x ≤ π 

 ex and sin x are continuous for all x, therefore the product ex sin x is 
continuous in 0 ≤ x ≤ π. 

 f ′(x)  =   ex sin x  + ex cos x = ex (sin x + cos x)  exist in 0 < x < π  

 ⇒ f ′(x) is differentiable in (0,π).  

 f(0) = e0 sin 0  = 0 

 f(π) = eπ sin π  =  0 
 ∴  f satisfies hypothesis of Rolle’s theorem 

 Thus there exists c∈ (0, π) satisfying f ′(c) = 0  ⇒  ec(sin c + cos c) = 0 

 ⇒ ec = 0 or  sin c + cos c = 0   
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 ec = 0 ⇒ c = − ∞ which is not meaningful here. 

 ⇒  sin c =  − cos c ⇒  
sin c
cos c  =−1  ⇒  tan c  = − 1  = tan 

3π
4   

 ⇒  c = 
3π
4   is the required point. 

(vi) f(x) = x (x − 1) (x − 2),     0 ≤  x ≤ 2,   
 f is continuous in [0,2]  and differentiable in (0,2)   
  f(0) = 0 =  f(2),  satisfying hypothesis of Rolle’s theorem 

   Now  f ′(x) = (x − 1) (x − 2) + x (x −2) + x (x −1) = 0 

   ⇒  3x2 − 6x + 2 = 0   ⇒  x = 1 ± 
1
3

  

 The required c in Rolle’s theorem is 1 ± 
1
3

  ∈ (0,2) 

Note : There could exist more than one such ‘c’ appearing in the statement of 
Rolle’s theorem. 
Example 5.23 : Apply Rolle’s theorem to find points on curve y = − 1 + cos x, 
where the tangent is parallel to x-axis in [0, 2π]. 
Solution :   
 f(x)  is continuous in [0,2π]  and 
differentiable in (0,2π)   

   f(0) = 0 = f(2π) satisfying hypothesis 
of  Rolle’s theorem. 

Now f ′(x) = − sin x = 0  ⇒  sin x = 0 

 x = 0,  π, 2π, . . .  

 
  
 
 
 
 

Fig. 5.13 

 x  = π, is the required c in (0,2π). At  x = π,  y  = −1 + cos π = −2. 

 ⇒  the point (π,−2)  is such that at this point the tangent to the curve is parallel 
to x-axis. 

EXERCISE 5.3 
 (1) Verify Rolle’s theorem for the following functions : 

  (i) f(x) = sin x, 0 ≤ x ≤ π 

  (ii) f(x) = x2, 0 ≤  x  ≤ 1 

  (iii) f(x) = | x − 1|, 0 ≤ x ≤ 2 

  (iv) f(x) = 4x3 − 9x,   − 
3
2  ≤  x  ≤ 

3
2  

(0,0)
x

y
π

-1

-2

2π

(π,-2)

(0,0)
x

y
π

-1

-2

2π

(π,-2)
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 (2) Using Rolle’s  theorem find the points on the curve  y = x2+1,  −2 ≤ x ≤ 2 
where  the tangent is parallel to x − axis. 

5.6.2 Mean Value Theorem (Law of the mean due to Lagrange) : 
 Many results in this section depend on one central fact called law of the 
mean or mean value theorem due to Joseph – Louis Lagrange. 
Theorem :Let  f(x) be a real valued function that satisfies the following 
conditions : 
 (i) f(x) is continuous on the closed interval [a,b] 
 (ii) f(x) is differentiable on the open interval (a,b) 

 Then there exists at least one point c ∈ (a,b) such that 

   f ′(c) = 
f(b) − f(a)

b − a
  …(1) 

Some Observations : 

 Note that if f(a) = f(b) then the law of the mean reduces to the Rolle’s 
theorem. 

 Interpretation of law of the mean when applied to an equation of motion  
s = f(t) : 

 The quantity ∆s  = f(b) − f(a)  is the change in s corresponding to 
∆t = b –  a and R.H.S. of (1) is 

 
f(b) − f(a)

b − a
  = 

∆s
 ∆t

  = average velocity from t = a to t = b. 

 The equation then tells us that there is an instant ‘c’ between a and b at 
which the instantaneous velocity  f ′(c) is equal to the average velocity.  For 
example,  if a car has traveled 180 kms in 2 hours then the speedometer must 
have read 90 kms/hr  at least once. 

 The slope f ′(c)of the curve at  C ( )c, f(c)  

is the same as the slope  
f(b) − f(a)

b − a
  of the 

chord joining the points A ( )a, f(a)    and  
B ( )b, f(b) . Geometrically means that if the 
function  f  is  continuous  on [a,b] and 
differentiable on (a,b) then there is atleast one 
number c in (a,b) where the tangent to the 
curve is parallel to the chord through A and B. 

 
 
 
 
 
 
 

 
Fig. 5.14 

(0,0)
x

y

1

2

y
= 

f (
x)

A

C B

(0,0)
x

y

1

2

y
= 

f (
x)

A

C B
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Remarks (1) : Since the value of c satisfies the condition a < c < b, it follows 

that (c − a) <  (b − a)  or 
c − a
b − a

  (< 1) = θ, (say). 

   i.e.,  
c − a
b − a

  = θ  ⇒  c − a  = θ (b − a),  0 < θ < 1. 

   But then   c = a + θ (b − a) 

 ∴ the law of the mean can be put in the form 

   f(b)  − f(a) = (b − a)  f ′(c) 

    = (b − a)  f ′[a + θ (b − a)],  0 < θ < 1 

 and this is used in calculating approximate values of  functions. 

(2) Letting b − a = h,  the above result can be written as 

   f(a + h) = f(a)  + hf ′(a + θh),  0 < θ < 1 

(3) If we let  a  =  x,  h  = ∆x, law of the mean becomes 

  f(x + ∆x) = f(x)  + ∆x f ′(x + θ∆x) for some θ such that 0 < θ < 1. 

Example 5.24 : Verify Lagrange’s law of the mean for f(x) = x3 on [−2,2] 

Solution : f is a polynomial, hence continuous and differentiable on [− 2, 2]. 

 f(2) = 23 = 8 ;  f (−2)  =  (−2)3 = −8 

 f ′(x) = 3x2  ⇒  f ′(c) = 3c2 

 By law of the mean there exists an element c ∈ (− 2, 2) such that 

 f ′(c) = 
f(b) − f(a)

b − a
    ⇒  3c2  =  

8 − (−8)
4   = 4 

 i.e.,    c2 = 
4
3  ⇒  c  =   ± 

2
3 

  

 The required ‘c’ in the law of mean are  
2
3 

 and −
2
3 

 as both lie in [−2,2]. 

Example 5.25 :  

 A cylindrical hole 4 mm in diameter and 12 mm deep in a metal block is 
rebored to increase the diameter to 4.12 mm. Estimate the amount of metal 
removed. 

Solution : The volume of cylindrical hole of radius x mm and depth 12 mm is 
given by 
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 V = f(x) = 12 πx2  

⇒  f ′(c) = 24πc. 
To estimate f(2.06) − f(2)  :  
By law of mean, 

 f(2.06)  − f(2) = 0.06  f ′(c) 
   = 0.06  (24 πc),  2 < c < 2.06 
 Take c = 2.01 
 f(2.06) − f(2) = 0.06  × 24 π × 2.01 
          = 2.89 π cubic mm. 

 
 
 
 
 
 
 
 

Fig. 5.15 
Note : Any suitable c between 2 and 2.06 other than 2.01 also will give other 
estimates. 

Example 5.26 : Suppose that f(0) = − 3  and f ′(x) ≤ 5  for all values of x, how 
large can f(2) possibly be? 
Solution : Since by hypothesis f is differentiable, f is continuous everywhere. 
We can apply Lagrange’s Law of the mean on the interval [0,2]. There exist 
atleast one ‘c’∈(0, 2) such that 

   f(2) − f(0) = f ′(c)  ( 2 − 0) 

   f(2) = f(0)  + 2 f ′(c) 

    = −3 + 2 f ′(c) 

 Given that f ′(x)  ≤ 5 for all x. In particular we know that f ′(c) ≤ 5.  
Multiplying both sides of the inequality by 2,  we have 

   2f ′(c) ≤ 10 

   f(2) = −3 + 2 f ′(c) ≤ −3 + 10  = 7 
 i.e., the largest possible value of f(2) is 7. 
Example 5.27 : It took 14 sec for a thermometer to rise from −19°C to 100°C 
when it was taken from a freezer and placed in boiling water. Show that 
somewhere along the way the mercury was rising at exactly 8.5°C/sec. 
Solution : Let T be the temperature reading shown in the thermometer at any 
time t. Then T is a function of time t. Since the temperature rise is continuous 
and since there is a continuous change in the temperature the function is 
differentiable too. ∴ By law of the mean there exists a ‘t0’ in (0, 14)  

such that  

   
T(t2) − T(t1)

t2 − t1
 = T ′(t0) 

 Here T ′(t0) is the rate of rise of temperature at C. 

4mm

12
m

m4mm

12
m

m
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 Here t2 − t1 = 14,  T(t2) = 100 ;  T(t1) = − 19 

   T ′(t0) = 
100 + 19

14   = 
119
14    =  8.5C/sec 

EXERCISE 5.4 
 (1) Verify Lagrange’s law of mean for the following functions : 

  (i)  f(x) = 1  − x2, [0,3] (ii)  f(x) = 
1
x , [1,2] 

  (iii)  f(x) = 2x3 +  x2 − x − 1, [0,2] (iv) f(x) = x2/3, [−2,2] 

  (v)  f(x) = x3 − 5x2 − 3x , [1,3] 

 (2) If f(1) = 10 and f ′(x) ≥ 2  for 1 ≤  x ≤ 4  how small can f(4) possibly be? 

 (3) At 2.00 p.m a car’s speedometer reads 30 miles/hr., at 2.10 pm it reads 
50 miles / hr. Show that sometime between 2.00 and 2.10 the 

acceleration is exactly 120 miles /hr2. 

Generalised Law of the Mean :   
 If f(x) and g(x)  are continuous real valued functions on [a,b] and f and g 
are differentiable on (a,b) with g ′(x) ≠ 0  everywhere on (a,b)  then there exist 

atleast one value of x, say x = c, between a and b such that  
f(b) − f(a)
g(b) − g(a)

  = 
f ′(c)
g′(c)

  

Remarks : 

 (1) This theorem is also known as Cauchy’s generalised law of the mean. 

 (2) Lagrange’s law of the mean is a particular case of Cauchy law of the 
mean for the case g(x)  = x for all x ∈ [a,b] 

 (3) Note that g(b) ≠ g(a), for, suppose g(b) = g(a), then by Rolle’s 
theorem, g′(x) = 0  for some x in (a,b) contradicting hypothesis of the 
generalized law of the mean. 

Extended Law of the mean : 

 If f(x)  and its first (n − 1) derivatives are continuous on [a,b] and if f(n)(x) 
exists in (a,b), then there exist atleast one value of x,  x = c  say,  in (a,b)  such 
that 

f(b)=f(a)+ 
f ′(a)

1!  (b−a)+
f ′′(a)

2!  (b−a)2+...+ 
f (n−1)( a)
(n −1)!

(b−a)n−1+
f (n)(c)

n! (b−a)n...(1) 
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Remarks :  (1)   If in the extended law of the mean   b − a = h    then  b = a + h   
and (1)  becomes  

    f(a + h) = f(a) + 
f ′(a)

1!   h  +  
f ′′(a)

2!   h2  + ... 
f (n−1)( a)
(n −1)!

 hn − 1+ 
f (n)(c)

n!   hn  ...(2) 

for some c ∈ (a, a + h) and this is known as Taylor’s theorem. 
 (2) When b is replaced by the variable x then (1) becomes 

 f(x) = f(a)  +  
f ′(a)

1!   (x − a)  +... 
f (n−1)( a)
(n −1)!

 (x − a)n − 1  +  
f (n)(c)

n!  (x − a)n 

for some c ∈ (a,  x) 
(3) If n becomes sufficiently large (i.e.,  ; as n → ∞) in Taylors theorem, then 

(2) becomes 

 f(a + h) = f(a)  +  
f ′(a)

1!   h  +  
f ′′(a)

2!   h2  + . . . + 
f (n)(a)

n!   hn  + ... ...(3) 

 provided f is differentiable any number of times. This series of expansion 
of f(a + h) about the point a is usually known as Taylor’s Series. 
(4) If in the extended law of the mean a is replaced by 0 and b is replaced with 

the variable x, (1) becomes, 

 f(x) = f(0) + 
f ′(0)

1!  x +  
f ′′(0)

2!   x2  +...+ 
f (n−1)(0)
(n−1)!

  xn − 1 +  f 
(n) (c)
n!   xn   ___(4) 

for some c ∈ (0,x)  and is known as Maclaurin’s theorem. 
(5) If n is sufficiently large (i.e., n → ∞)  in Maclaurin’s theorem, then it 

becomes   f(x) = f(0)  +  
f ′(0)

1!  x  +  
f ′′(0)

2!   x2  + . . .   

provided f is differentiable any number of times, This series expansion of f(x) 
about the point 0  is usually known as Maclaurin’s Series. 

Illustration : The Taylor’s series expansion of   f(x) = sin x   about  x = 
π
2  is 

obtained by the following way. 

 f(x) = sin x  ; f 



π

2      = sin  
π
2   = 1 

 f ′(x) = cos x  ; f ′ 



π

2     = cos  
π
2   = 0 

 f ′′(x) = − sin x  ; f ′′ 



π

2     = −1 

 f ′′′(x) = − cos x  ; f ′′′ 



π

2   = 0 
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 ∴  f(x)  = sin  x =  f 



π

2  + 
f ′



π

2  

1!   



x −

π
2  + 

f″ 



π

2  

2!    



x − 

π
2

2

 + ...  

  = 1 +  0 



x −

π
2    +  

(−1)
2!  



x − 

π
2

2

 + ...  

 sin x = 1 −  
1
2!  



x −

π
2 

2
  +  

1
4!  



x − 

π
2

4

 − ...  

Example 5.28 :  

 Obtain the Maclaurin’s  Series for 

 1)  ex 2)  loge(1 + x) 3)  arc tan  x  or  tan−1x 

Solution : 

(1) f(x) = ex  ;  f(0)  =  e0 = 1 

 f ′(x) = ex   ; f ′(0) =  1 

 f ′′(x) = ex ; f ′′(0)  =  1 

 ! 

 f(x) = ex  =  1  +  
1 . x
1!   + 

1
2! x

2  + 
1
3! x

3  … 

  = 1  + 
x
1!   +   

x2

2!   +  
x3

3!  + ...   holds for all x 

(2) f(x) = loge(1 + x) : f(0)   =   loge1 = 0 

 f ′(x) = 
1

1 + x  ; f ′(0)  =  1 

 f ′′(x) = 
−1

(1 + x)2   ; f ′′(0)  =  −1 

 f ′′′(x) = 
+1.2

(1 + x)3   ; f ′′′(0)  =  2! 

 f ′′′′(x) = 
−1.2.3

(1 + x)4   ; f ′′′′(0)  =  − (3!) 

 f(x) = loge(1 + x) =   0 + 
1
1! x − 

1
2! x

2  +  
2!
3! x

3 − 
3!
4! x

4  − ... + …. 

   x − 
x2

2  + 
x3

3  − 
x4

4  + ....  −1 < x ≤ 1. 
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(3) f(x) = tan−1x     ;    f(0) = 0 

 f ′(x) = 
1

1 + x2  = 1 −x2 + x4 – x6…. ;  f ′(0) = 1 = 1! 

 f ′′(x) =  − 2x + 4x3 – 6x5 ….  ;  f ′′(0)  =  0 

 f ′′′(x) = − 2 + 12x2 – 30x4 ….  ;  f ′′′(0)  =  −2 = −(2!) 

 f iv(x) = 24x − 120x3  ….  ;  f iv(0)  =  0 

 f v(x) = 24 − 360x2  ….  ;  f v(0)  =  24 = 4! 

 tan−1 x = 0 + 
1
1! x + 

0
2! x

2 − 
2
3! x

3 + 
0
4! x

4 + 
4!
5! x

5 + … 

  = x − 
1
3 x3 + 

1
5 x5 − …  

holds in | x | ≤ 1. 

EXERCISE 5.5 
Obtain the Maclaurin’s Series expansion for : 

  (1) e2x  (2) cos2x  (3) 
1

1 + x       (4) tan x,  − 
π
2   < x < 

π
2  

5.7  Evaluating Indeterminate forms : 

 Suppose f(x)  and g(x)  are defined on some interval [a,b], satisfying 
Cauchy’s generalized law of the mean and vanish at a point x = a of this interval 

such that f(a)  =  0  and g(a)  = 0,  then the ratio 
f(x)
g(x)  is not defined for x = a  

and gives a meaningless expression 
0
0  but has a very definite meaning for 

values of x ≠ a.  Evaluating the limit x → a of this ratio is known as evaluating 

indeterminate forms of the type 
0
0. 

 If  f(x) = 3x − 2  and g(x)  = 9x + 7,  then   
3x −2
9x + 7  is an indeterminate form 

of the type 
∞
∞   as the numerator  and denominator becomes ∞  in the limiting 

case, x tends to ∞. 
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 We also have other limits 
lim

x→ ∞   
ex

x  ,  
lim

x→ ∞  (x − ex),  
lim

x→ 0   xx,  
lim

x→ ∞   x1/x 

and 
lim

x→ 1  x
1/(x−1)

 which lead to other indeterminate forms of the types 

0 . ∞,  ∞ − ∞,  00,  ∞0  and 1∞ respectively. These symbols must not be taken 
literally. They are only convenient labels for distinguishing types of behaviour 
at certain limits. To deal with such indeterminate forms we need a tool that 
facilitates the evaluation.  This tool was devised by John Bernoulli for 
calculating the limit of a fraction whose numerator and denominator approach 
zero. This tool today is known as l’Hôpital’s rule after Guillaume Francois 
Antoinede l’Hôpital. 
l’Hôpital’s rule : 
 Let f and g be continuous real valued functions defined on the closed 
interval [a,b], f, g be differentiable on (a,b)  and g′(c) ≠ 0.   

 Then if lim
x→ c

 f(x) = 0, lim
x→ c

 g(x) = 0 and if lim
x→ c

 
f ′(c)
g′(c)

 = L it follows that  

lim
x→ c

  
f(x)
g(x)  =  L. 

Remarks :  
 (1) Using l’Hôpital’s method, evaluation of the limits of indeterminate 

forms works faster than conventional methods. For instance, consider 

lim
x→ 0

 
sin x

x   . This limit we know is 1, which we obtained through 

geometrical constructions, a laborious method.  

  But lim
x→ 0

 
sin x

x   = lim
x→ 0

 
cos x

1  = cos 0 = 1 

 (2) Note that l’Hôpital’s rule can be applied only to differentiable 
functions for which the limits are in the indeterminate form. For,  

lim
x→ 0

 
x + 1
x + 3  is 

1
3 while if l’Hôpital’s rule is applied lim

x→ 0
 
x + 1
x + 3  = 

1
1 = 1.  

Here f(x) = x + 1  g(x)  = x + 3  are both differentiable but not in the 
indeterminate form 

 (3) The conclusion of l’Hôpital’s rule is unchanged if  lim
x→ a

 f(x)  = 0  and  

lim
x→ a

 g(x)  = 0  and replaced by lim
x→ a

 f(x) =  ± ∞  and  lim
x→ a

 f(x)   = ± ∞. 
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 (4) All other indeterminate forms mentioned above can also be reduced to 
0
0   or 

∞
∞  by a suitable transformation. 

 We need the following result in some problems 
Composite Function Theorem : 
Result : If lim

x→ a
  g(x)  = b and f is continuous at b,  

       then  lim
x→ a

 f(g(x)  =  f 




lim

x→a

  g(x)   

Example 5.29 : Evaluate :  lim
x→ 0

 
x

tan x    

Solution : lim
x→ 0

 
x

tan x  is of the type 
0
0 . 

∴ lim
x→ 0

 
x

tan x  = lim
x→ 0

 
1

sec2 x
  = 

1
1 = 1 

Example 5.30 : Find   lim
x → + ∞

 
sin 

1
x 

tan−11
x 

   if exists 

Solution :  Let  y = 
1
x   As x → ∞, y → 0 

  lim
x → + ∞

 
sin 

1
x 

tan−11
x 

  = lim
y → 0

 
sin y

tan−1y
 = 

0
0 

   = lim
y → 0

 









cos y

1

1 + y2

 = 
1
1 = 1 

Example 5.31 :  lim

x→π/2

 
log(sin x)

(π − 2x)2    

Solution : It is of the form 
0
0 

 lim

x→π/2

 
log(sin x)

(π − 2x)2    = lim

x→π/2

  

1
sin x cos x

 2(π  −  2x) × (−2)  
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  = lim

x→π/2

  
cotx

− 4(π − 2x)
 =  

0
0  

  = lim

x→π/2

   
− cosec2x
− 4 × − 2

 = 
−1
8  

 Note that here l’Hôpital’s rule, applied twice yields the result. 

Example 5.32 :  Evaluate : lim
x → ∞

   
x2

ex  

Solution : lim
x → ∞

   
x2

ex  is the type   
∞
∞  

  lim
x → ∞

   
x2

ex  = lim
x → ∞

   
2x

ex   = lim
x → ∞

   
2

ex  = 
2
 ∞   = 0 

Example 5.33 : Evaluate :  lim
x→ 0

 



cosec x −   

1
x   

Solution : lim
x→ 0

  



cosec x −   

1
x  is of the type   ∞ −  ∞. 

  lim
x→ 0

 



cosec x −   

1
x  = lim

x→ 0
 



1

sin x   −  
1
x  =  lim

x→ 0
  

x − sin x
x sinx   = 

0
0   

 lim
x→ 0

 
1 − cos x

sin x + x cos x 



= 

0
0 type  = lim

x→ 0
 

sinx
cos x + cos x − x sin x

 

  = 
0
2  =  0 

Example 5.34 : Evaluate :  lim
x→ 0

 (cot x)
sin x

  

Solution : lim
x→ 0

 (cot x)
sin x

  is of the type ∞0. 

 Let y = (cot x) 
sin x

  ⇒  log y = sin x log (cot x) 

 lim
x→ 0

 (log y) = lim
x→ 0

 sin x  log (cot x) 

  = lim
x→ 0

 
log (cot x)

cosec x    is of the type 
∞
∞  
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Applying l’Hôpital’s rule, 

 lim
x→ 0

 
log (cot x)

cosec x   = lim
x→ 0

 

1
cotx (− cosec2 x)

−cosec x cot x
  

  = lim
x→ 0

 
sin x
cos x  × 

1
cos x  = 

0
1  =  0 

 i.e.,  lim
x→ 0

 log y = 0 

 By Composite Function Theorem, we have 

  0 = lim
x→ 0

 log y = log 




lim

x→ 0
 y   ⇒ lim

x→ 0
 y = e0 = 1 

Caution : When the existence of lim
x→ a

 f(x)  is not known, log 




lim

x→ a
  f(x)  is 

meaningless. 

Example 5.35 : Evaluate lim
x→ 0 +

 x
sinx

  

Solution :  lim
x→ 0 +

 x
sinx

  is of the form 00. 

 Let y = x
sinx

  ⇒ log y = sin x log x. 

 Note that x approaches 0 from the right so that log x is meaningful 

 i.e.,  log y = 
log x

cosec x  

   lim
x→ 0 +

log y = lim
x→ 0 +

 
log x

cosec x   which is of the type 
− ∞
∞  . 

Applying l’Hôpital’s rule, 

  lim
x→ 0 +

 
log x

cosec x  = lim
x→ 0 +

1
x 

−cosec x cot x
  

  = lim
x→ 0 +

 
− sin2x
x cos x   



of the type 

0
0   
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  = lim
x→ 0 +

 
2 sin x cos x

x sin x − cos x
   =  0   

 ie.,  lim
x→ 0 +

logy = 0 

 By Composite Function Theorem, we have 

  0 = lim
x→ 0 +

 log y = log lim
x→ 0 +

y  ⇒ lim
x→ 0 +

 y = e0 = 1 

Example 5.36 :  
 The current at time t in a coil with resistance R, inductance L and subjected 

to a constant electromotive force E is given by  i = 
E
R  





 1− e
−Rt
L  

  .  Obtain a 

suitable formula to be used when R is very small. 
 Solution :  

 
lim

R→0   i = lim
R → 0

E 





 1− e
−Rt
L  

  
R    (is of the type  

0
0.) 

  = lim
R → 0

   
E ×  

t
L   e

−Rt
L  

 

1   = 
Et
L   ⇒ lim

R → 0
 i = 

Et
L  is the suitable formula. 

EXERCISE 5.6 
Evaluate the limit for the following  if exists, 

 (1) lim
x→ 2

 
sin πx
2 −x

        (2) lim
x→ 0

 
tan x − x
x − sinx

  

  (3) lim
x→ 0

 
sin −1x

x      (4) lim
x→ 2

 
xn − 2n

x − 2
  

 (5) lim
x → ∞

 
sin 

2
x 

1/x
      (6) lim

x → ∞
  

1

x2 − 2 tan−1 



1

x

1
x

 

  (7) lim
x→ ∞

 
logex

x   (8) lim
x → 0

 
cotx

cot 2x  

 (9) lim
x → 0 +

 x2 logex.  (10) lim
x → 1

x  

1
x−1
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  (11) lim

x→π
/2

−
 (tanx)

cos x
  (12) 

lim
x→0+  xx 

 (13) 
lim

x → 0 (cos x)
1/x

  

5.8 Monotonic Functions : 
Increasing, Decreasing Functions 
 Differential calculus has varied applications. We have already seen some 
applications to geometrical, physical and practical problems in sections 5.2, 5.3 
and 5.4 In this section, we shall study some applications to the theory of real 
functions. 
 In sketching the graph of a 
function it is very useful to 
know where it raises and where 
it falls. The graph shown in  
Fig. 5.16 raises from A to B, 
falls from B to C, and raises 
again from C to D. 
 The function f is said to be 
increasing on the interval [a,b], 
decreasing on [b,c], and 
increasing again on [c,d]. We 
use this as the defining property 
of an increasing function. 

 
 
 
 
 
 
 
 
 
 

Fig. 5.16 

Definition : A function f is called increasing on an interval I if 
 f(x1) ≤ f(x2) whenever x1 < x2   in I. It is called decreasing on I if f(x1) ≥ f(x2) 
whenever x1 < x2   in I. 

 A function that is completely increasing or completely decreasing on I is 
called monotonic on I. 
 In the first case the function f preserves the order. 
 i.e., x1 < x2  ⇒  f(x1) ≤ f(x2) and in the later case the function f reverses the 

order i.e., x1 < x2  ⇒ f(x1) ≥ f(x2).  Thanks to the order preserving property, 

increasing functions are also known as order preserving functions. Similarly, 
the decreasing functions are also known as order reversing functions. 
Illustrations : 
 (i) Every constant function is an increasing function. 
 (ii) Every identity function is an increasing function. 
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 (iii) The function f(x)  =  sin x is not an increasing function on R; but  

f(x) = sin x is increasing on  



0,  

π
2  . 

 (iv)  The function f(x) = 4 – 2x is decreasing 

 (v)  The function f(x) = sin x is decreasing in the interval  



π

2, π   

 Note that f is increasing is equivalent to (− f) is decreasing. 
 Do you agree that each constant function is both increasing and 
decreasing? 
Caution : It is incorrect to say that if a function is not increasing, then it is 
decreasing. It may happen that a function is neither increasing nor decreasing. 
For instance, if we consider the interval [0,π], the function sin x is neither 

increasing nor decreasing. It is increasing on 



0,  

π
2  and decreasing on 



π

2, π . 

There are other functions that are even worse. They are not monotonic on any 
subinterval also. But most of the functions that we consider are not so bad. 
 Usually, by looking at the graph of the function one can say whether the 
function is increasing or decreasing or neither. The graph of an increasing 
function does not fall as we go from left to right while the graph of a decreasing 
function does not rise as we go from left to right. But if we are not given the 
graph, how do we decide whether a given function is monotonic or not ? 
Theorem 1 gives us a criterion to do just that. 
Theorem 1 : Let I be an open interval. Let f : I → R be differentiable. Then  
(i) f is increasing if and only if f ′(x) ≥ 0 for all x in I.   

(ii) f is decreasing if and only if f ′(x) ≤ 0 for all x in I. 

Proof : (i)  Let f be increasing and x ∈ I. Since f is differentiable f ′(x) exists and 

is given by f ′(x) = 
lim
h→0  

f(x + h) – f(x)
h  . If h > 0, then x + h > x  and since f is 

increasing, f(x + h) ≥ f(x). Hence f(x + h) – f(x) ≥ 0.  

 If h < 0, then x + h < x and f (x + h) ≤ f(x). Hence f(x + h) − f(x) ≤ 0 

 So either f(x + h) – f(x) and h are both non-negative or they are both  
non – positive. 

 Therefore  
f(x + h) – f(x)

h   is non-negative for all non-zero values of h and   

lim
h → 0

 
f(x + h) – f(x)

h   must also be non-negative. Thus, f ′(x)  ≥ 0 
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 Conversely, let f ′(x) ≥ 0, for all x in I. Let x1 <  x2 in I.  We shall prove 

that f(x1)  ≤  f(x2). 

 By the Law of mean,  
f(x2) – f(x1)

x2 – x1
  =  f ′(c)  ,  for x1 < c < x2 

 Since, f ′(c) ≥ 0, we have  
f(x2) – f(x1)

x2 – x1
  ≥ 0. Also x2 – x1> 0 ( ∴ x1 < x2) 

 Thus f(x2) –  f(x1)  ≥ 0  or  f(x1) ≤ f(x2). Hence f is increasing  

 (ii)  can be proved in a similar way. It can also be deduced by applying result 
(i) to the function (– f). 

Geometrical interpretation : The above theorem expresses the following 
geometric fact. If on an interval I = [a,b] a function f(x) increases, then the 
tangent to the curve y = f(x) at each point on this interval forms an acute angle ϕ 
with the x-axis or (at certain points) is horizontal (See Fig.5.16), the tangent of 
this angle is not negative. Therefore f ′(x)   = tan ϕ ≥ 0. If the function f(x) 
decreases on the interval [b,c] then the angle of inclination of the tangents form 
an obtuse angle (or, at some points, the tangent is horizontal) ; the tangent of 
this angle is not positive f ′(x) = tan ψ ≤ 0. 
 From the class of increasing functions we can separate out functions which 
are strictly increasing. The following definition gives the precise meaning of the 
term strictly increasing function. 

Definition : f : I → R is said to be strictly increasing if x1 < x2 implies that f(x1) 
<  f(x2). We can similarly say that a function defined on I is strictly decreasing 
if x1 < x2  implies f(x1) > f(x2) 

 For example, a constant function is not strictly increasing, nor is it strictly 
decreasing (Fig. 5.17). The greatest integer function f(x)= x too, is increasing 
(Fig. 5.18), but not strictly increasing, where as the function f(x) = x is strictly 
increasing (Fig. 5.19). 

 
 
 
 
 
 
 

 Fig. 5.17 Fig. 5.18 Fig. 5.19  
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Theorem 2 :  
 (i) Let f ′ be positive on I. Then f is strictly increasing on I. 
 (ii) Let f ′ be negative on I. Then f is strictly decreasing on I. 
 The proof of the theorem is easy and is left as an exercise. 
Corollary : f is strictly monotonic on the interval I, if f ′  is of the same sign 
through out I. 
 You may have noticed that there is a difference between the statement of 
Theorem 1 and Theorem 2. 
 “f is increasing if and only if f ′ is non – negative” 
 “ If f ′ > 0, then f is strictly increasing”. 
 Can we have if and only if in Theorem 2 also ? 
 The answer is no as shown in the following example. 
Illustration :  Define f : R→ R by f(x)  = x3. 

 Suppose x1 < x2,  Then  x2 – x1 > 0  and x1
2 + x2

2 > 0 

 This implies x2
3 – x1

3 =  (x2 – x1) (x2
2 + x1

2 + x1 x2) 

  = (x2 – x1) 
1
2 [(x1

2 + x2
2)+ (x1 + x2)2] > 0 

 ⇒  x1
3 < x2

3 
 Thus whenever  x1 < x2,  f(x1) < f(x2). 

 Hence f(x) = x3  is strictly increasing. 
 But its derivate f ′(x)  = 3x2  and f ′(0) =  0.  
 Hence its derivate f ′ is not  strictly positive. 
Note: If a function changes its signs at different points of a region (interval) 
then the function is not monotonic in that region. So to prove the  
non- monotonicity of a function, it is enough to prove that f ′  has different signs 
at different points. 
Example 5.37 : Prove that the function f (x) = sin x + cos2x is not monotonic on 

the interval  



0,   

π
4  . 

Solution :  Let f(x) = sin x + cos 2x 
 Then f ′(x) = cos x – 2sin 2x 
 Now  f ′(0) = cos 0 – 2 sin 0 = 1 – 0 = 1 > 0 

 and  f ′



π

4  = cos 



π

4  –  2 sin 2 



π

4  

  = 
1
2

  – 2 × 1 < 0 
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 Thus f ′ is of different signs at 0 and 
π
4 Therefore f is not monotonic on 



0,   

π
4  

Example 5.38 : Find the intervals in which f(x)  = 2x3 + x2 −20x is increasing 
and decreasing. 

Solution :  f ′(x) = 6x2 + 2x – 20  = 2(3x2 + x − 10)  = 2 (x + 2) ( 3x −5) 

Now f ′(x)  =  0  ⇒  x  = − 2,  and x = 5/3. The values − 2 and 5/3 divide the real 

line  (the domain of f(x)) into intervals (−∞, −2), ( )− 2, 5/3 and ( )5/3, ∞  .  

 
 

Fig. 5.20 

Interval x  + 2 3x – 5 f ′(x) Interval of  inc / dec 

− ∞ < x < –2 – – + Increasing on (– ∞, –2] 

− 2 < x < 5/3 + − − decreasing on [ ]− 2, 5/3  

5/3 < x < ∞ + + + increasing on [5/3, ∞) 

Note (i) :  If the critical numbers are not included in the intervals, then the 
intervals of increasing (decreasing) becomes strictly increasing (strictly 
decreasing) 

Note : (ii) The intervals of inc / dec can be obtained by taking and checking a 
sample point in the sub-interval. 

Example 5.39 : Prove that the function f(x) = x2 − x + 1 is neither increasing nor 
decreasing in [0,1] 

Solution :  f (x) = x2 − x  + 1 

   f ′(x) = 2x − 1 

   f ′(x) ≥ 0  for x ≥ 
1
2   i.e.,  x ∈ 



1

2 , 1    ∴  f(x) is increasing on 



1

2 , 1  

 Also f ′(x)  ≤ 0  for x ≤ 
1
2 ⇒ x ∈ 



0,  

1
2 . Also f ′(x) is decreasing on  



0,  

1
2  

 Therefore in the entire interval [0,1]  the function f(x) is neither increasing 
nor decreasing. 

Example 5.40 : Discuss monotonicity of the function 

 f(x) = sin x, x ∈ [0, 2π]  

-2 0− ∞ ∞5/3-2 0− ∞ ∞5/3
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Solution :    f (x) = sin x  and   f ′(x) = cos x = 0   for x = 
π
2  , 

3π
2   in [0,2π]   Now  

f ′(x) ≥0  for 0 ≤ x ≤  
π
2  and  

3π
2   ≤ x ≤ 2π. Therefore f(x) = sin x is increasing on 





0,  

π
2  and 



3π

2 , 2π  i.e., sin x is increasing on 



0, 

π
2  ∪ 



3π

2  , 2π  

 Also, f ′(x) ≤ 0  for 
π
2 ≤ x ≤ 

3π
2   . Therefore f(x) = sin x is decreasing on 





π

2 , 
3π
2    

Example 5.41 : Determine for which values of x, the function y = 
x −2
x + 1  ,  

x ≠ −1 is strictly increasing or strictly decreasing. 

Solution :   

 y = 
x −2
x + 1 , x ≠ −1     

dy
dx  = 

(x + 1) 1 − (x −2) 1

(x + 1)2 
 = 

3

(x +1)2   > 0 for all x ≠ − 1. 

 ∴  y  is strictly increasing  on R − {−1}. 

Example 5.42 : Determine for which values of x, the function 

f(x)  = 2x3 − 15x2 + 36x + 1 is increasing and for which it is decreasing. Also 
determine the points where the tangents to the graph of the function are parallel 
to the x axis. 

Solution :  f ′(x) = 6x2 − 30x + 36 = 6(x − 2) (x − 3) 

 f ′(x)  =  0  ⇒  x = 2, 3. Therefore the points 2 and 3 divide the real line 
into  (− ∞, 2), (2, 3) (3, ∞). 

Interval x  − 2 x – 3 f ′(x) Intervals of inc / dec 

− ∞ < x < 2 – – + increasing on (– ∞, 2] 

2 < x < 3 + − − decreasing on [2, 3] 

 3 < x < ∞ + + + increasing on [3, ∞) 

 The points where the tangent to the graph of the function are parallel to the 
x − axis are given by  f ′(x)= 0, ie., when x = 2, 3   Now f(2) = 29  and f(3) = 28. 
 Therefore the required points are (2, 29) and (3, 28) 
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Example 5.43 :  

 Show that f(x) = tan−1 (sin x + cos x), x > 0 is a strictly increasing function 

in the interval 



0,  

π
4  . 

Solution :  f(x) = tan−1(sin x + cos x). 

 f ′(x) = 
1

1 + (sin x + cos x)2
 (cos x − sin x) = 

cos x − sin x
2 + sin 2x  > 0 

 since  cos x−sin x > 0 in the interval 



0,  

π
4   

 and 2 + sin 2x > 0)  

 ∴  f(x)  is strictly increasing function of x in the interval 



0 , 

π
4   

EXERCISE 5.7 

 (1) Prove that ex is strictly increasing function on R. 

 (2) Prove that log x is strictly increasing function on (0, ∞) 

 (3) Which of the following functions are increasing or decreasing  on the 
interval given ?  

  (i)  x2 – 1 on [0,2] (ii)  2x2 + 3x  on 



− 

1
2 , 

1
2   

  (iii)  e−x on [0,1] (iv)  x(x − 1) (x + 1) on [−2, −1] 

  (v) x sin x on 



0, 

π
4    

 (4)  Prove that the following functions are not monotonic in the intervals 
given. 

  (i)  2x2 + x − 5 on [−1,0] (ii)  x (x − 1) (x + 1)  on [0,2] 

  (iii) x sin x on [0,π] (iv) tan x + cot x  on 



0, 

π
2   

 (5)  Find the intervals on which f is increasing or decreasing. 

  (i)  f(x) = 20 − x − x2 (ii) f(x) = x3 − 3x + 1 

  (iii)  f(x) = x3 + x + 1 (iv) f(x) =  x −2sin x, [0, 2π] 

  (v) f(x) = x + cos  x in [0, π] (vi) f(x) = sin4 x + cos4 x in [0, π/2] 
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Inequalities : 
Example 5.44 :  

 Prove that ex > 1 + x for all x > 0.  

Solution :  Let f(x) = ex − x − 1 ⇒   f ′(x) = ex − 1 > 0 for x > 0 

 i.e., f is strictly increasing function.   ∴ for x > 0,  f(x) > f(0) 

 i.e.,  (ex − x − 1)  >  (e0 − 0 − 1)  ;  ex > x + 1 

Example 5.45 :  

 Prove that the inequality (1 + x)n > 1+nx is true whenever x > 0 and n > 1.  

Solution : Consider the difference  f(x) = (1 + x)n − (1 + nx) 

 Then  f ′(x) = n(1 + x)n−1 − n  =  n[(1 + x)n−1 − 1] 

 Since x > 0 and n − 1 > 0,  we have (1 + x)n−1 > 1,  so f ′(x)   > 0. 

     Therefore f is strictly increasing on [0, ∞).  

 For x > 0 ⇒ f(x) > f(0)  i.e., (1 + x)n − (1 + nx) > (1 + 0) − (1 + 0) 

 i.e., (1 + x)n − (1 + nx) > 0    i.e.,  (1 + x)n > (1 + nx) 

Example 5.46 : Prove that sin x < x < tan x, x∈



0, 

π
2   

Solution : 

Let f(x) = x − sin x 

f ′(x) = 1 − cos x > 0 for 0 < x < 
π
2 

∴ f is strictly increasing. 

For x > 0, f(x) > f(0)  

⇒ x − sin x > 0 ⇒ x > sin x     … (1) 

Let g(x) = tan x − x 

     g′(x) = sec2x − 1 = tan2x > 0 in 



0, 

π
2  

 

 

 

 

 

 

 

Fig. 5.21 

     ∴ g is strictly increasing 

 For x > 0, f(x) > f(0) ⇒ tan x − x > 0 ⇒ tan x > x …  (2) 

 From (1) and (2)      sin x < x < tan x 
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EXERCISE 5.8 
 (1) Prove the following inequalities : 

  (i) cos x > 1 − 
x2

2  ,  x > 0 (ii)  sin x > x − 
x3

6  ,  x > 0 

  (iii) tan−1 x < x  for all x > 0 (iv)  log (1 + x) < x  for all x > 0. 

5.9 Maximum and Minimum values and their applications : 
 “For since the fabric of the Universe is most perfect and the work of a 
most wise creator, nothing at all takes place in the Universe in which some rule 
of maximum or minimum does not appear” 

 Leonard Euler 

 Some of the most important 
applications of differential calculus are 
optimization problems, in which we are 
required to find the optimal (best) way of 
doing something. In many cases these 
problems can be reduced to finding the 
maximum or minimum values of a 
function. Many practical problems 
require us to minimize a cost or maximize 
an area or somehow find the best possible 
outcome of a situation. 

 
 
 
 
 
 
 

 
 

Fig. 5.22 

Let us first explain exactly what we mean by maximum and minimum values. 

 In fig 5.22 the gradient (rate 
of change) of the curve changes 
from positive between O and P 
to negative between P and Q and 
positive again between Q and R. 
At point P, the gradient is zero 
and as x increases, the gradient 
(slope) of the curve changes 
from positive just before P to 
negative just after. Such a point 
is called a maximum point and 
appears as the ‘crest of a wave’.  

 
 
 
 
 
 
 

 
 

Fig. 5.23 
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 At point Q, the gradient is 
also zero and as x increases the 
gradient of the curve changes 
from negative just before Q to 
positive just after. Such a point is 
called a minimum point and 
appears as ‘the bottom of a 
valley’. Points such as P and Q 
are given the general name, 
turning points.  

 
 
 
 
 
 
 

 
Fig. 5.24 

 It is possible to have a turning point, the gradient on either side of which is 
the same. Such a point is given the special name of a point of inflection as 
shown in Fig 5.23. 

Definition : A function f has an absolute maximum at c if 
f(c) ≥ f(x) for all x in D, where D is the domain of f. The number f(c) is called 
maximum value of f on D. Similarly f has an absolute minimum at c if  
f(c) ≤ f(x) for all x in D and the number  f(c) is called the minimum value of f on 
D. The maximum and minimum values of f are called extreme values of f.: 

 Fig.5.24 shows the graph of a function f with absolute maximum at d and 
absolute minimum at a. Note that (d, f(d)) is the highest point on the graph and 
(a, f(a)) is the lowest point. 

 In Fig. 5.24 if we consider only values of x near b, for instance, if we 
restrict our attention to the interval (a,c) then f(b) is the largest of those values 
of f(x) and is called a local maximum value of f. Likewise f(c) is called a local 
minimum value of f because f(c) ≤ f(x) for x near c, in the interval (b,d). The 
function f also has a local minimum at e. In general we have the following 
definition. 

 Definition : A function f has a  local maximum (or relative maximum) at c 
if there is an open interval I containing c such that f(c) ≥ f(x) for all x in I. 
Similarly, f has a local minimum at c if there is an open interval I containing c 
such that f(c)  ≤  f(x) for all x in I. 

Illustrations :  (1) The function f(x)=cos x takes on its (local and absolute) 
maximum value of 1 infinitely many times since cos 2nπ = 1 for any integer and 
−1 ≤ cos x ≤ 1 for all x. Like wise cos (2n + 1)π = −1 is its (local and absolute) 
minimum value, n is any integer. 

O
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f (a)

f (d)

a b c d eO
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y
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f (d)

a b c d e
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(2) If f(x)  = x2, then f(x) ≥ f(0) 

because x2 ≥ 0 for all x. Therefore 
f(0) = 0 is the absolute (and local) 
minimum value of f. This 
corresponds to the fact that the 
origin is the lowest on the parabola  

y = x2  See Fig.5.25 However, there 
is no highest point on the parabola 
and so this function has no 
maximum value. 

 
 
 
 
 
 
 

 
Fig. 5.25 

 

 

(3) If f(x) = x3 then from the graph 

of f(x) shown in Fig 5.26, we see 

that this function has neither an 

absolute maximum value nor an 

absolute minimum value. In fact it 

has no local extreme values either. 

 
 
 
 
 
 

 
 
 
 
 

Fig. 5.26 
(4) Consider the function  

 f(x) = 3x4 − 16x3 + 18x2 ; −1 ≤ x ≤  4. 
The graph is shown in Fig. 5.27. 
 We can see that f(1) = 5 is a local 
maximum, whereas the absolute maximum  
is f(−1)=37.  Also f(0)  = 0 is a local minimum  
and f(3)= −27 is both local and absolute 
minimum.  
 We have seen that some functions have 
extreme values, while others do not. The 
following theorem gives conditions under 
which a function is guaranteed to possess 
extreme values. 

 
 
 
 
 
 

 
 
 
 

Fig. 5.27 
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 The Extreme value theorem : If f is continuous on a closed interval [a,b] 
then f attains an absolute maximum value f(c)  and an absolute minimum value 
f(d) at some number c and d in [a,b] 

 The next two examples show that a function need not possess extreme 
values if either of the hypotheses (continuity or closed interval) is omitted from 
the extreme value theorem. 

(5)  Consider the function  

 f(x)  = 


x2  ,  0 ≤ x < 1
0    ,  1 ≤ x ≤ 2

   

 The function is defined on the 
closed interval [0,2] but has no 
maximum value. Notice that the 
range of f is the interval [0,1). The 
function takes on value close to 1 
but never attains the value 1.  

 
 
 
 
 
 

 
 

Fig. 5.28 

This is because the hypotheses of f to be continuous fails. Note that x = 1 is a 
point of discontinuity, for, 

Lim
x→ 1 −  f(x)  =  

Lim
x→ 1 −  (x2)  = 1 ;  

Lim
x→ 1 +  f(x) = 0 

(6) The function f(x) =x2,  0 < x < 2 
is continuous on the interval (0,2) 
but has neither a maximum nor a 
minimum value. The range of f is 
the interval (0,4). The values 0 and 
4 are never taken on by f.  This is 
because the interval (0,2) is not 
closed.  
 

 
 
 
 
 
 

 
 

Fig. 5.29 

 If we alter the function by including either end point of the interval (0,2) 

then we get one of the situations shown in Fig. 5.30, Fig. 5.31, Fig. 5.32 In 

particular the function f(x) = x2, 0 ≤ x ≤ 2 is continuous on the closed interval 

[0,2]. So the extreme value theorem says that the function has an absolute 

maximum and an absolute minimum. 
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Fig. 5.30 

 
 
 
 
 
 
 

Fig. 5.31 

 
 
 
 
 
 
 

Fig. 5.32 
 Inspite of the above examples we point out that there are functions which 
are neither continuous nor differentiable but still attains minimum and 
maximum values. For instance, consider 

 f(x) = 



 
1   ,  x is irrational
0    ,  x is rational    

  (This function is known as characteristic function on the set of irrational 
numbers) 

 This function is nowhere differentiable and everywhere discontinuous. But 
the maximum value is 1 and the minimum value is 0. 

 The extreme value theorem says that a continuous function on a closed 
interval has a maximum value and minimum value, but it does not tell us how to 
find their extreme values. 
 Fig. 5.33 shows the graph of a 
function f with a local maximum at 
c and a local minimum at d. It 
appears that at the maximum and 
minimum points the tangent line is 
horizontal and therefore has slope 
zero. We know that the derivative 
is the slope of the tangent line, so it 
appear that f ′(c) = 0 and f ′(d) = 0.  

 
 
 
 
 
 
 

Fig. 5.33 

The following theorem shows that this is always true for differentiable 
functions. 

Fermat’s Theorem : If f has a local extremum (maximum or minimum) at c 
and if f ′(c)  exists then f ′(c)  = 0. 

 The following examples caution us that we cannot locate extreme values 
simply by setting f ′(x)  = 0 and solving for x. 
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(7) The function f(x)  = | x | has its 
(local and absolute) minimum value at 
0, but that value cannot be found by 
setting f ′(x)  =  0  because  f ′(x)  does 
not exist. 
 

 
 
 
 
 
 

Fig. 5.34 

(8)  The function   f(x) = 3x − 1, 0 ≤ x ≤ 1 
has its maximum value when x = 1 but  
f ′(1) = 3 ≠ 0. This does not contradict 
Fermat’s Theorem. Since f(1) = 2 is not a 
local maximum. 
 Note that the number 1 is not 
contained in an open interval in the 
domain of f. 

 
 
 
 
 
 
 

Fig. 5.35 

Remark : The above examples demonstrate that even when f ′(c)  =  0 there 

need not be a maximum or minimum at c. Further more, there may be an 

extreme value even when f ′(c)  ≠ 0  or when f ′(c) does not exist. 

(9)   If f(x)  = x3.  Then f ′(x)  =  3x2,   

        so f ′(0)  =  0. 
 But f has no maximum or minimum 
at 0 as you can see from its graph.  

(observe that x3 > 0 for x > 0 and x3 < 0 
for x < 0). 

     The fact that f ′(0)  =  0 simply means 

that the curve  y = x3  has a horizontal 
tangent at (0,0). Instead of having a 
maximum or minimum at (0, 0) the curve 
crosses its horizontal tangent there. 

 
 
 
 
 
 
 

 
 
 
 

Fig. 5.36 
 Fermats’ theorem does suggest that we should atleast start looking for 
extreme values of f at the numbers c where f ′(c) = 0 or f ′(c) does not exist. 

Definition : A critical number of a function f is a number c in the domain of f 
such that either f ′(c) = 0  or  f ′(c)  does not exist. 
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   Stationary points are critical numbers c in the domain of f, for which f ′(c)= 0.    

Example 5.47 : Find the critical numbers of x
3/5  (4 − x) 

Solution : f(x)  = 4 x
3/5   −  x

8/5  

 f ′(x)  = 
12
5   x

−2/5   −  
8
5  x

3/5  

  = 
4
5  x

−2/5   (3 − 2x) 

 Therefore f ′(x)  = 0 if 3 − 2x  = 0  i.e., if x = 
3
2 . f ′(x)   does not exist when  

x = 0.  Thus the critical numbers are 0 and 
3
2 . 

 Note that if f has a local extremum at c, then c is a critical number of f, but 
not vice versa. 
 To find the absolute maximum and absolute minimum values of a 
continuous function f on a closed interval [a,b] : 
 (1) Find the values of f at the critical numbers, of f in (a,b). 
 (2) Find the values of f(a)  and f(b) 
 (3) The largest of the values from steps 1 and 2 is the absolute maximum 

value, the smallest of these values is the absolute minimum value. 
Example 5.48 : Find the absolute maximum and minimum values of the 

function.  f(x) = x3 − 3x2 + 1  ,  − 12  ≤ x ≤ 4 

Solution : Note that f is continuous on ; [ ]− 
1
2  , 4   

 f(x) = x3 − 3x2 + 1 

 f ′(x) = 3x2 − 6x   = 3x (x − 2)  
 
 
 

Fig. 5.37 

 Since  f ′(x) exists for all x, the only critical numbers of f are x = 0,  x  = 2. 

 Both of these critical numbers lie in the interval 



− 

1
2  , 4  . Value of f at 

these critical numbers are f(0) = 1  and f(2) = −3. 

0 1-1/2 2 3 40 1-1/2 2 3 4
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 The values of f at the end points of the interval are  

 f( )− 12  = ( )− 12 
3  

− 3 ( )− 12 
2
 + 1 = 

1
8 

 and  f(4) = 43 − 3 ×  42 + 1 = 17 
Comparing these four numbers, we see that the absolute maximum value is   
f(4) = 17 and the absolute minimum value is f(2) = − 3. 
Note that in this example the absolute maximum occurs at an end point, whereas 
the absolute minimum occurs at a critical number. 
Example 5.48(a): Find the absolute maximum and absolute minimum values of  

 f(x) =x − 2sin x,  0 ≤ x ≤ 2π. 

Solution : f(x) =x − 2 sin x,  is continuous in  [0, 2π] 

 f ′(x) = 1 − 2 cos x 

 f ′(x) = 0    ⇒ cos x  = 
1
2   ⇒  x = 

π
3   or 

5π
3   

The value of f at these critical points are 

 f 



π

3   = 
π
3  − 2 sin 

π
3  = 

π
3  − 3  

  f 



5π

3    = 
5π
3    − 2 sin 

5π
3   

  = 
5π
3   + 3  

  ≈ 6.968039 

The values of f at the end points are f(0)  = 0  and f(2π)  = 2 π ≈ 6.28 

  Comparing these four numbers, the absolute minimum is f 



π

3   = 
π
3  − 3 and 

the absolute maximum is f 



5π

3   = 
5π
3  + 3 . In this example both absolute 

minimum and absolute  maximum occurs at the critical numbers. 
 Let us now see how  the second derivatives of functions help determining 
the turning nature (of graphs of functions) and in optimization problems. 
 The second derivative test : Suppose f  is continuous on an open interval 
that contains c. 

 (a) If f ′(c) = 0 and f ′′(c) > 0, then f has a local minimum at c. 

 (b) If f ′(c) = 0 and f ′′(c) < 0, then f has a local maximum at c. 
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Example 5.49 : Discuss the curve y = x4 − 4x3 with respect to local extrema. 

Solution :  f(x) = x4 − 4x3  

   f ′(x) = 4x3 − 12x2 ,  f ′′(x) = 12x2 − 24x 

 To find the critical numbers we set f ′(x) = 0 and obtain x = 0 and x = 3. To 
use the second derivative test we evaluate the sign of f ′′ at these critical 
numbers. 

   f ′′(0) = 0, f ′′(3) = 36 > 0. Since f ′(3) = 0 and f ′′(3) > 0, f(3) = − 27 is a local 
minimum value and the point (3, −27) is a minimum point. Since f ′′(0) = 0 the 
second derivative test gives no information about the critical number 0. But 
since f ′(x) < 0 for x < 0 and also for 0 < x < 3, the first derivative test tells us 
that f does not have a local extremum at 0. 
We summarise the above discussion as follows : 
 Procedure for finding and distinguishing stationary points. 

 (i) Given y = f(x) determine 
dy
dx ( )i.e.,   f ′(x)  

 (ii) Let  
dy
dx = 0 and solve for the critical numbers x. 

 (iii) Substitute the values of x into the original function y = f(x) to find the 
corresponding y-coordinate values. This establish the co-ordinates of 
the stationary points. To determine the nature of the stationary points, 

 (iv) Find 
d2y

dx2 and substitute into it the values of x found in (ii). 

 If the result is : 

  (a) positive − the point is a minimum one 

  (b) negative − the point is a maximum one 

  (c) zero − the point cannot be an extremum (minimum or maximum)   

   OR 

 (v) Determine the sign of the gradient (slope f ′(x) of the curve just before 
and just after the stationary points. If the sign change for the gradient 
of the curve is  

  (a) positive to negative − this point is a maximum one 

  (b) negative to positive − this point is a minimum one 

Example 5.50 :  Locate the extreme point on the curve y = 3x2 − 6x and 
determine its nature by examining the sign of the gradient on either side. 
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Solution :  Following the above procedure 

 (i) Since y = 3x2 − 6x, 
dy
dx = 6x − 6 

 (ii) At a stationary point,  
dy
dx = 0, hence x = 1 

 (iii) When x = 1, y = 3(1)2 − 6(1) = − 3. Hence the coordinates of the 
stationary point is (1, − 3). 

 If x is slightly less than 1, say 0.9, then 
dy
dx = 6(0.9) − 6 = − 0.6 < 0. 

 If x is slightly greater than 1, say 1.1 then 
dy
dx = 6(1.1) − 6 = 0.6 > 0. 

 Since the gradient (slope of the curve) changes its sign from negative to 
positive (1, − 3) is a minimum point. 

Example 5.51 :   

 Find the local minimum and maximum values of f(x) = x4 − 3x3 + 3x2 − x 

Solution :   f(x) = x4 − 3x3 + 3x2 − x 

   f ′(x) = 4x3 − 9x2 + 6x − 1 

 At a turning point,  f ′(x) = 0 gives  4x3 − 9x2 + 6x − 1 = 0 

   (x − 1)2 (4x − 1) = 0  ⇒  x = 1,  1, 
1
4 

 When x = 1, f(1) = 0 and when x = 
1
4, f 



1

4  = 
− 27
256  

 Hence the coordinates of the stationary points are (1, 0) and 



1

4 , 
− 27
256  

 f ′′(x) = 12x2 − 18x + 6 = 6(2x2 − 3x + 1) = 6(x − 1) (2x − 1) 

 When x = 1, f ′′(1) = 0. Thus the second derivative test gives no 
information about the extremum nature of f at x = 1.  

 When x = 
1
4 , f ′′ 



1

4  = 
9
4 > 0, hence 



1

4 , 
− 27
256  is a minimum point. 

Caution :  

 No function will attain local maximum / minimum at the end points of its 
domain. 
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EXERCISE 5.9 

 (1) Find the critical numbers and stationary points of each of the following 
functions. 

  (i) f(x) = 2x − 3x2 (ii) f(x) = x3 − 3x + 1 

  (iii) f(x) = x4/5 (x − 4)2  (iv) f(x) =  
x + 1

x2 + x + 1
 

  (v) f(θ) = sin2 2θ in [0, π] 

  (vi) f(θ) = θ + sin θ in [0, 2π] 

 (2) Find the absolute maximum and absolute minimum values of f on the 
given interval : 

  (i) f(x) = x2 − 2x + 2, [0,3] 

  (ii) f(x) = 1 − 2x − x2, [−4,1] 

  (iii) f(x) = x3 − 12x + 1, [−3,5] 

  (iv) f(x) = 9 − x2 , [−1,2] 

  (v) f(x) = 
x

x + 1, [1,2] 

  (vi) f(x) = sin x + cos x, 



0,  

π
3  

  (vii) f(x) = x − 2 cos x, [−π, π] 

 (3) Find the local maximum and minimum values of the following :  

  (i) x3 − x (ii)   2x3 + 5x2 − 4x  (iii)  x4 − 6x2  

  (iv)  (x2 − 1)3  (v)  sin2 θ ,    [0, π] (vi)  t + cos t 

5.10 Practical problems involving maximum and minimum values : 
 The methods we have learnt in this section for finding extreme values have 
practical applications in many areas of life. A business person wants to 
minimise costs and maximise profits. We also solve such problems as 
maximising areas, volumes and profits and minimising distances, times and 
costs. In solving such practical problems, the greatest challenge is often to 
convert the word problem into maximum – minimum problem by setting up the 
function that is to be maximised or minimised. 
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 As a problem solving technique we suggest the following principles. 
 (1) Understand the problem : The first  step is to read the problem 

carefully until it is clearly understood. Ask yourself what is the 
unknown? What are the given quantities? What are the given conditions? 

 (2) Draw diagram : In most problems it is useful to draw a diagram and 
identify the given and required quantities on the diagram. 

 (3) Introduce notation : Assign a symbol to the quantity to be maximised or 
minimised, say Q. Also select symbols (a,b,c …,x, y, z) for the other 
unknown quantities and lable the diagram with these symbols.  

 (4) Express Q in terms of some other symbols from step 3. 
 (5) If Q has been expressed as a function of more than one variable in 

step 4, use the given information to find relationship (in the form of 
equation) among these variables. Then use these equations to 
eliminate all but one of these variables in the expression for Q.Thus Q 
will be given as a function of one variable x, say, Q = f(x). Write the 
domain of this function. 

 (6) Use the methods discussed to find the absolute maximum or minimum 
value of f. 

Remarks : 
 (1) If the domain is a closed interval then we apply the absolute max/min 

property to maximize / minimize the given function (see 5.52, 5.58). 
 (2) If the domain is an open interval then we apply either first derivative 

test (5.53) or second test for finding local max / min. Instead of first 
derivative one can also apply second derivative test if the second test 
exist. Similarly instead of second derivative test one can also apply 
first derivative test. 

 (3) All these cases ultimately lead us to the absolute max / min only. 
Example 5.52 :  A farmer has 2400 feet of fencing and want to fence of a 
rectangular field that borders a straight river. He needs no fence along the river. 
What are the dimensions of the field that has the largest area ? 
Solution : 
 We wish to maximize the area A 
of the rectangle. Let x and y be the 
width and length of the rectangle (in 
feet). Then we express A in terms of  
x and y as A = xy 

 
 
 
 
 

Fig. 5.38 

x x

y

x x

y
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 We want to express A as a function of just one variable, so we eliminate y 
by expressing it in terms of x. To do this we use the given information  that the 
total length of the fencing is 2400 ft. Therefore 2x + y = 2400 

 Hence    y = 2400 − 2x  and the area  is A= x (2400 – 2x)  = 2400 x − 2x2 

 Note that x ≥ 0 and x ≤ 1200 (otherwise A < 0). So the function that we 
wish to maximize is 

 A (x) = 2400 x − 2x2,   0 ≤  x ≤ 1200. 

 A′(x) = 2400 − 4x,  so to find the critical numbers we solve the equation 
2400 − 4x = 0 which gives x = 600. The maximum of A must occur either at this 
critical number or at an end point of the interval. 

 Since A(0) = 0,  A(600) = 7,20,000  and A(1200) = 0, thus the maximum 
value is  A (600) = 720,000. When x = 600, y = 2400 − 1200 = 1200 

 Hence the rectangular field should be 600 ft wide and 1200 ft long. 

Note : This problem also be done by using second derivative test (local). In this 
case x > 0 and y > 0. 

Example 5.53 :   

 Find a point on the parabola  y2 = 2x  that is closest to the point (1,4) 

Solution : Let (x,y) be the point 

on the parabola  y2 = 2x.  The 
distance between the points (1,4) 
and  

(x,y)  is  d  = (x −1)2 + (y − 4)2 .  

(x,y)  lies on y2 = 2x  ⇒ x =  
y2

2  ,  

so d2= f(y) = (
y2

2   − 1)2  + (y − 4)2 

 

 

 

 

 

 

 

Fig. 5.39 

(Note that the minimum of d occurs at the same point as the minimum of d2) 

 Now f ′(y) = 2 



y2

2  − 1   (y)  + 2 (y − 4) 

  = y3 − 8 = 0 at a critical point. 

 y3 − 8 = 0  ⇒  y  = 2  (since y2 + 2y + 4  = 0  is not possible) 
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 Observe that f ′(y)  <  0  when y < 2  and f ′(y)  > 0 when y > 2,  so by the 

first derivate test, for absolute extrema, the absolute  minimum occurs when 

y = 2.  The corresponding value of x is x = 
y2

2    = 2. Thus the point on y2 = 2x  

closest to (1,4)  is (2,2). 
Note : This problem also be done by using second derivative test  
Example 5.54 :   
 Find the area of the largest rectangle that can be inscribed in a semi circle 
of radius r. 
Solution : 
   Let θ be the angle made by OP 
with the positive direction of x–axis.   
 Then the area of the rectangle A is   

A(θ) = (2 r cosθ) (r sinθ)  

        = r2 2 sin θ  cos θ = r2 sin 2θ 

 
 
 
 

 
Fig. 5.40 

 Now A(θ)  is maximum when sin 2θ  is maximum. The maximum value of 

sin 2θ = 1  ⇒ 2θ = 
π
2  or θ  = 

π
4 . (Note that A′ (θ) = 0 when θ = 

π
4 ) 

  Therefore the critical number is 
π
4.  The area  A



π

4    =  r2.   

Note : The dimensions of the largest rectangle that can be inscribed in a 

semicircle are 2r , 
r
2

 

Aliter : A ′(θ) = 2r2 cos 2θ  = 0 ⇒  2θ  = 
π
2  ;  θ  = 

π
4 

 A ′′(θ) = −4r2  sin 2 θ < 0,  for θ = 
π
4 ⇒ θ = 

π
4  gives the 

maximum point and the maximum point is 



π

4 , r2  

 From the above problem, we understand that the method of calculus gives 
the solution faster than the algebraic method. 
Example 5.55 :   The top and bottom margins of a poster are each 6 cms and the 
side margins are each 4 cms. If the area of the printed material on the poster is 

fixed at 384  cms2,  find the dimension of the poster with the smallest area. 
Solution :  Let x and y be the length and breadth of printed area, then the area    
xy = 384     

θ
r

x2 + y2 = r2

P(r cos θ, r sin θ)

xθ
r

x2 + y2 = r2

P(r cos θ, r sin θ)

x
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 Dimensions of the poster area are 
(x + 8)  and (y + 12)  respectively. 
Poster area  A = (x + 8) (y + 12) 
  = xy +12x + 8y + 96 
  = 12x + 8y + 480 

  = 12x + 8 



384

x  + 480 

 A′ = 12 − 8 × 384 × 
1

x2 

 
 
 
 

 
 

Fig. 5.41 

 A″ = 16 × 384 × 
1

x3 

 A′ = 0 ⇒ x = ± 16 
 But x > 0 

 ∴ x = 16 

 when  x = 16, A′′ > 0 

 ∴ when x = 16, the area is minimum 

 ∴ y = 24 

 ∴ x + 8 = 24, y + 12 = 36 
 Hence the dimensions are 24cm and 36 cm. 
Example 5.56 :  Show that the volume of the largest right circular cone that can 

be inscribed in a sphere of radius a is 
8
27   (volume of the sphere). 

Solution : Given that a is the radius of 
the sphere and let x be the base radius of 
the cone. If h is the height of the cone, 
then its volume is  

 V = 
1
3  π x2 h 

  = 
1
3 π x2 (a + y) …(1) 

 
 
 
 

 
 

Fig. 5.42 

 where  OC = y  so that height  h = a + y. 

 From the diagram  x2 + y2 = a2   (2) 

 Using (2) in (1)  we have 

   V = 
1
3 π (a2 − y2) (a + y) 

x

y

a

αc

O x

y

a

αc

O

6 cms

44 4
x

x + 8

y

6 cms

y + 12
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 For the volume to be maximum : 

   V ′=0  ⇒  
1
3 π [a2 − 2ay − 3y2]  =  0 

   ⇒  3y = +a  or y = −a 

   ⇒  y = 
a
3   and y =  − a is not possible  

   Now  V″ = − π 
2
3 (a + 3y)  <  0  at  y = 

a
3 

 ∴  the volume is maximum when y = 
a
3 and the maximum volume is 

 
1
3 π  ×  

8a2

9   (a + 
1
3 a)   =   

8
27  (

4
3 πa3)  =  

8
27  (volume of the sphere) 

Example 5.57 :  A closed (cuboid) box with a square base is to have a volume 
of 2000 c.c. The material for the top and bottom of the box is to cost Rs. 3 per 
square cm. and the material for the sides is to cost Rs. 1.50 per square cm. If the 
cost  of the materials is to be the least, find the dimensions of the box. 
Solution : Let x, y  respectively denote the length of the side of the square base 
and depth of the box. Let  C be the cost of the material  

 Area of the bottom = x2 

 Area of the top = x2 

 Combined area of the top and bottom = 2x2 

 Area of the four sides = 4xy 

 Cost of the material for the top and bottom = 3(2x2) 

 Cost of the material for the sides = (1.5) (4xy) = 6xy 

 Total cost C = 6x2 + 6xy  …(1) 

 Volume of the box V = (area) (depth)  = x2y=2000 …(2) 

Eliminating y from (1)  &  (2)  we get C(x) = 6x2 + 
12000

x   …(3) 

where x > 0, ie.,  x ∈ (0,+ ∞)  and C(x) is continuous on (0, + ∞). 

   C ′ (x) = 12x  − 
12000

x2   

 C ′ (x)  =  0  ⇒  12x3 − 12000  =  0   ⇒  12(x3 − 103) = 0 

 ⇒   x  = 10  or  x2 + 10x + 100 = 0 
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 x2 + 10x + 100 = 0  is not possible 

 ∴  The critical numbers is x = 10.   

 Now C ″(x) = 12 + 
24000

x3     ;   C ″(10) = 12 + 
24000
1000  = 36 > 0 

∴   C is minimum  at (10,C(10)) = (10, 1800) ∴ the base length is 10cm and 

depth is y = 
2000
100  = 20 cm. 

Example 5.58 :   

 A man is at a point P on a bank of a straight river, 3 km wide, and wants to 
reach point Q, 8 km downstream on the opposite bank, as quickly as possible. 
He could row his boat directly across the river to point R and then run to Q, or 
he could row directly to Q,  or he could row to some point S between Q and R 
and then run to Q.  If he can row at 6 km/h and run at  8 km/h where should he 
land to reach Q as soon as possible ? 
Solution :   
 Let x be the distance from R to S. Then the 
running distance is 8 − x and the distance  

PS = x2 + 9 .  We know that time  = 
distance

rate . 

 Then the rowing time   

    Rt = 
 x2 + 9 

6    and the running time rt  =  
(8 −x)

8   

 
 
 
 

 
 
 
 

Fig. 5.43 

 Therefore the total time T = Rt  + rt  =  
 x2 + 9 

6   + 
(8 −x)

8  ,  0 ≤ x ≤ 8. 

 Notice that if x = 0,  he rows  to R and if  x = 8  he rows directly to Q. 

 T ′(x) = 0 ⇒     T ′(x) = 
x

6 x2 + 9 
   − 

1
8  =  0 for critical points. 

 4x = 3 x2 + 9  

 16x2 = 9 (x2 + 9) 

 7x2 = 81   

P R

S

Q

x

8 
-
x

3km
√(x 2+9)

P R

S

Q

x

8 
-
x

3km
√(x 2+9)
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 ⇒  x = 
9
7

   since x = − 
9
7

 is not admissible. 

 The only critical number is x = 
9
7

   . We calculate T at the end point of the 

domain 0 and 8  and at x = 
9
7

  .    

 T(0)  =  1.5,   T 




9

7
    = 1 + 

7
8  ≈ 1.33, and T(8) = 

73 
6   ≈ 1.42 

 Since the smallest of these values of T occurs when x =  
9
7

  ,  the man 

should land the boat at a point 
9
7

  km (≈ 3.4 km) down stream from his starting 

point. 
EXERCISE 5.10 

 (1) Find two numbers whose sum is 100 and whose product is a maximum. 
 (2)  Find two positive numbers whose product is 100 and whose sum is  

minimum. 
 (3)  Show that of all the rectangles with a given area the one with smallest 

perimeter is a square. 
 (4) Show that of all the rectangles with a given perimeter the one with the 

greatest area is a square. 
 (5)  Find the dimensions of the rectangle of largest area that can be 

inscribed in a circle of radius r. 

 (6) Resistance to motion, F, of a moving vehicle is given by, F = 
5
x  + 100x.  

Determine the minimum value of resistance. 

5.11 Concavity (convexity) and points of inflection : 
 Figure 5.44 (a), (b) shows the graphs of two increasing functions on [a, b]. 

Both graphs join point A to point B but they look different because they bend in 

different directions. How can we distinguish between these two types of 

behaviour? In fig. 5.44 (c), (d) tangents to these curves have been drawn at 

several points. In (a) the curve lies above the tangents and f is called concave 

upward (convex downward) on [a, b]. In (b) the curve lies below the tangents 

and g is called concave downward (convex upward) on [a, b] 
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 Fig. 5.44 (a)  Fig. 5.44 (b)  

 
 
 
 
 
 

 Fig. 5.44(c) Fig. 5.44 (d) 

Definition :  

 If the graph of f lies above all of its tangents on an interval I, then it is 
called concave upward (convex downward) on I. If the graph of f lies below all 
of its tangents on I, it is called concave downward (convex upward) on I. 

 Let us see how the second derivative helps to determine the intervals of 
concavity (convexity). Looking at Fig.5.44(c), you can see that, going from left 
to right, the slope of the tangent increases. This means that the derivative f ′(x) 
is an increasing function and therefore its derivative f ′′(x) is positive. Likewise 
in Fig.5.44 (d) the slope of the tangent decreases from left to right, so f ′(x) 
decreases and therefore f ′′(x) is negative. This reasoning can be reversed and 
suggests that the following theorem is true. 

The test for concavity (convexity) : 

 Suppose f is twice differentiable on an interval I. 

 (i) If f ′′(x) > 0 for all x in I, then the graph of f is concave upward 
(convex downward) on I. 

 (ii) If f′′(x) < 0 for all x in I, then the graph of f is concave downward 
(convex upward) on I. 
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Definition : A point P on a curve is called a point of inflection if the curve 
changes from concave upward (convex downward) to concave downward 
(convex upward) or from concave downward (convex upward) to concave 
upward (convex downward) at P. 
 That is the point that separates the convex part of a continuous curve from 
the concave part is called the point of inflection of the curve. 
 It is obvious that at the point of inflection the tangent line, if it exists, cuts 
the curve, because on one side the curve lies under the tangent and on the other 
side, above it. The following theorem says under what situation a critical point 

of f′ becomes a point of inflection. 
Theorem :  
 Let a curve be defined by an equation y = f(x). If f ′′(x0) = 0 or  

f ′′(x0) does not exist and if the derivative f ′′(x) changes sign when passing 
through x = x0, then the point of the curve with abcissa x = x0 is the point of 
inflection. Equivalently the point (x0, f(x0)) is a point of inflection of the graph 
of f if there exists a neighbourhood (a, b) of x0 such that  

f ′′(x) > 0 for every x in (a, x0) and f ′′(x) < 0 for every x in (x0, b) or vice versa. 

That is in the neighbourhood of x0, f ′′(a) and f ′′(b) differ in sign. 

 
 
 
 
 

Fig. 5.45 

Remark :  
 We caution the reader that points of inflections need not be critical points 
and critical points need not be points of inflections. However x = x0 is a critical 

point such that f ′(x) does not change its sign as f(x) passes through x0, then  
x0 is a point of inflection and for points of inflections x0, it is necessary that  

f ′′(x0) = 0. If f ′′(x) does not change its sign even if f ′′(x0) = 0 then x0 cannot be 

a point of inflection. Thus the conjoint of the above discussion is that for points 
of inflections x0, f ′′(x0) = 0 and in the immediate neighbourhood (a, b) of x0, f 

′′(a) and f ′′(b) must differ in sign. 
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 If x = x0 is a root of odd order − simple, triple, etc. of the function  

f ′(x) = 0, then x = x0 yields a maximum or minimum. If x = x0 is a root of even 
order, x = x0 yield a point of inflection with a horizontal tangent. These 

concepts are made clear in the following illustrative example y = x3. 

 y′ = 3x2 and y ′′ = 6x. 

 Here y′(0) = 0 and y′′(0) = 0 and x = 0 happens to be a critical point of both 
y and  y′. Clearly y′ (x) > 0 for x < 0 and x > 0. Thus y′ does not change its sign 
as f(x) passes through x = 0. 

 That is y′ (− 0.1) > 0 and y′(0.1) > 0 i.e., in the neighbourhood (− 0.1, 0.1) 
of 0, y′ does not change its sign. Thus the first derivative test confirms that  
(0, 0) is a point of inflection. 

 Again y′′(0) = 0,  y′′(− 0.1) < 0 
and y′′(0.1) > 0. Here y′′ changes its 
sign as y(x) passes through x = 0. In 
this case the second derivative 
(concavity) test also confirms that (0, 
0) is a point of inflection. Note that (0, 

0) separates the convex part of y = x3 
from the concave part. 

 Note also that y′(x) = 3x2 and  
x = 0 is a double root of y′(x) = 0. The 
root order test also confirms that (0, 0) 
is a point of inflection with x-axis as 
the horizontal tangent at (0, 0) 

 
 
 
 
 
 
 
 
 
 

 
Fig. 5.46 

Example 5.59 :   
 Determine the domain of concavity (convexity) of the curve  

y = 2 − x2. 

Solution :  y = 2 − x2 

   y′ = − 2x and y′′ = − 2 < 0  for x ∈ R 
 Here the curve is everywhere concave downwards (convex upwards). 
Example 5.60 :   

 Determine the domain of convexity of the function y = ex. 

Solution :  y = ex  ;  y′′ = ex > 0 for x 
 Hence the curve is everywhere convex downward. 
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Example 5.61 : Test the curve y = x4 
for points of inflection. 

Solution :  y = x4 

   y′′ = 12x2 = 0 for x = 0 

and y′′ > 0 for x < 0 and x > 0 
 Therefore the curve is concave 
upward and y′′ does not change sign 
as y(x) passes through x = 0. Thus the 
curve does not admit any point of 
inflection. 

 
 
 
 
 
 
 
 
 

Fig. 5.47 

Note : The curve is concave upward in (− ∞, 0) and (0, ∞). 

Example 5.62 :  Determine where the curve y = x3 − 3x + 1 is cancave upward, 
and where it is concave downward. Also find the inflection points. 
Solution :   

  f(x) = x3 − 3x + 1 

  f ′(x) = 3x2 − 3 = 3(x2 − 1) 

 
 
 

Fig. 5.48 

 Now  f ′′(x) = 6x 

 Thus f ′′(x) > 0 when x > 0 and f ′′(x) < 0 when x < 0.  
 The test for concavity then tells us that the curve is concave downward on 
(− ∞, 0) and concave upward on (0, ∞). Since the curve changes from concave 
downward to concave upward when x = 0, the point (0, f(0)) i.e., (0, 1) is a 
point of inflection.  Note that f ′′(0) = 0 
Example 5.63 :   

 Discuss the curve y = x4 − 4x3 with respect to concavity and points of 
inflection. 
Solution :   

   f(x) = x4 − 4x3   ⇒  f ′(x) = 4x3 − 12x2 

   f ′′(x) = 12x2 − 24x  = 12x (x − 2) 

 Since f ′′(x) = 0 when x = 0 
or 2, we divide the real line into 
three intervals. 
 

 
 
 

Fig. 5.49 

 (− ∞, 0), (0, 2), (2, ∞) and complete the following chart. 
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Inerval f ′′(x) = 12x (x − 2) concavity 

(− ∞, 0) + upward 

(0, 2) − downward 

(2, ∞) + upward 

 The point (0, f(0)) i.e., (0, 0) is an inflection point since the curve changes 
from concave upward to concave downward there. Also (2, f(2)) i.e., (2, − 16) is 
an inflection point since the curve changes from concave downward to concave 
upward there. 

Note : The intervals of concavity can be obtained by taking and checking a 
sample point in the sub-interval. 
Example 5.64 :  Find the points of inflection and determine the intervals of 

convexity and concavity of the Gaussion curve y = e−x2
 

Solution : y′ = − 2xe−x2
  ; y′′ = 2e−x2

 (2x2 − 1) 
 (The first and second derivatives exist everywhere). Find the values of x 
for which y′′ = 0 

 2e−x2
 (2x2 − 1) = 0 

 x = − 
1
2

 ,   or  x = 
1
2

 

 
 
 

Fig. 5.50 

 when x < − 
1
2

 we have y′′ > 0 and when x > − 
1
2

 we have y′′ < 0 

 The second derivative changes sign from positive to negative when passing 

through the point x = − 
1
2

 . Hence, for x = − 
1
2

 , there is a point of inflection 

on the curve; its co-ordinates are 








− 
1
2

 ,  e
− 

1
2  

 When x < 
1
2

 we have y′′ <  0 and when x > 
1
2

 we have y′′ > 0 . Thus 

there is also a point of inflection on the curve for x = 
1
2
 ; its co-ordinates are 







1

2
 ,  e

− 
1
2 . (Incidentally, the existence of the second point of inflection follows 

directly from the symmetry of the curve about the y-axis). Also from the signs 
of the second derivatives, it follows that   

1/√20 ∞- ∞ -1/√2 1/√20 ∞- ∞ -1/√2
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 for  − ∞ < x < − 
1
2

   the curve is concave upward ; 

 for − 
1
2

 < x < 
1
2
   the curve is convex upward ; 

 for 
1
2

 < x < ∞   the curve is concave upward. 

Example 5.65 :   

 Determine the points of inflection if any, of the function  

y = x3 − 3x + 2 

Solution :  y = x3 − 3x + 2 

   
dy
dx = 3x2 − 3 = 3(x + 1) (x − 1) 

   
d2y

dx2 = 6x = 0  ⇒  x = 0 

   Now 
d2y

dx2  (− 0.1) = 6(− 0.1) < 0 and  

   
d2y

dx2  (0.1) = 6(0.1) > 0. In the neighbourhood (− 0.1, 0.1) 

of 0, y′′ (− 0.1) and y′′(0.1) are of opposite signs. Therefore (0, y (0)) i.e.,   
(0, 2) is a point of inflection. 

Note : Note that x = 0 is not a critical point since y′ (0) = − 3 ≠ 0. 

Example 5.66 :   

 Test for points of inflection of the curve y = sinx, x ∈ (0, 2π) 

Solution :  y′ = cosx 

   y′′ = − sinx = 0 ⇒ x = nπ, n = 0, ±1, ± 2, ... 

 since x ∈(0, 2π), x = π corresponding to n = 1. 

   Now y′′ (.9π) = − sin (.9π) < 0 and  

   y′′(1.1π) = − sin (1.1 π) > 0 since sin (1.1π) is negative 

 The second derivative test confirms that (π, f(π)) = (π, 0) is a point of 
inflection. 
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Note : Note that x = π is not a stationary point since y′(π) = cos π = − 1 ≠ 0.  
 In fact y = sin x admits countable number of points of inflections in the range 
(− ∞, ∞), each of which is given by (nπ, 0), n = 0, ± 1, ±2, … and in none of the 

cases, y′(nπ) = (− 1)n vanishes. This shows that points of inflections need not be 
stationary points. 

EXERCISE 5.11 
 Find the intervals of concavity and the points of inflection of the following 
functions : 

  (1) f(x) = (x − 1)1/3 

  (2) f(x) = x2 − x 

  (3) f(x) = 2x3 + 5x2 − 4x 

  (4) f(x) = x4 − 6x2 

  (5)  f(θ) = sin 2θ in (0, π) 

  (6) y = 12x2 − 2x3 − x4 
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Testing a differentiable function for maximum and minimum with a first 
derivative 
 This gives us the following diagram of possible cases. 
 Signs of derivative f ′(x) when passing through 
critical point x0 

Character of critical 
point 

x < x0 x = x0 x > x0  

+ f ′ (x0) = 0 or is 

discontinuous 

− Maximum point 

− f ′ (x0) = 0 or is 

discontinuous 

+ Minimum point 

+ f ′(x0) = 0 or is 

discontinuous 

+ Neither maximum nor 
minimum (function 
increases). But is a point 
of inflection. 

− f ′(x0) = 0 or is 

discontinuous 

− Neither maximum nor 
minimum (function 
decreases) But is a point 
of inflection. 

Second derivative test  
 This gives us the following diagram of possible cases. 

Signs of derivative f ′′(x) at the critical point of f(x) or f ′(x) 
Character of 

the point 
 x = x0   

 f ′(x0) f ′′(x0)   

 0 − 
Critical point 

of f 
Maximum 

point 

 0 + 
Critical point 

of f 
Minimum 

point 
x < x0  f ′′(x0) x > x0  

+ 0 or ≠ 0 0 − 
Point of 

Inflection 

− 0 or ≠ 0 0 + 
Point of 

inflection 
+ 0 or ≠ 0 0 + Unknown 
− 0 or ≠ 0 0 − Unknown 
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6. DIFFERENTIAL CALCULUS  

APPLICATIONS-II 
 

6.1 Differentials : Errors and Approximation 

 We have used the Liebnitz notation  
dy
dx  to denote the derivative of 

y with respect to x but we have regarded it as a single entity and not as a ratio. 
In this section we give the quantities dy and dx separate meanings in such a way 
that their ratio is equal to the derivative. We also see that these quantities, called 
differentials, are useful in finding the approximate values of functions. 

Definition 1 : Let y = f(x)  be a differentiable function. Then the quantities  
dx and dy are called differentials. The differential dx is an independent variable 
that is dx can be given any real number as the value. The differential dy is then 
defined in terms of dx by the relation 

   dy = f ′(x) dx   (dx ≈ ∆x)  

Note :  

 (1) The differentials dx and dy are both variables, but dx is an independent 
variable, where as dy is a dependent variable – it depends on the 
values of x and dx. If dx is given a specific value and x is taken to be 
some specific number in the domain of f, then the numerical value of 
dy is determined. 

 (2) If dx ≠ 0  we can divide both sides of dy = f ′(x) dx by dx to obtain 

 
dy
dx  = f ′(x). Thus 

dy
dx  now is the ratio of differentials. 

Example 6.1 : If y = x3 + 2x2  (i)find dy  

                (ii) find the value of dy when x = 2  and dx = 0.1 

Solution :  

(i)  If f(x) = x3 + 2x2, then f ′(x)  = 3x2 + 4x, so dy = (3x2 + 4x) dx 

(ii)  Substituting  x = 2 and dx = 0.1, we get dy = (3 × 22 + 4 × 2)0.1  =  2. 
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6.1.1 Geometric meaning of differentials : 
  Let P(x,f(x))  and Q(x + ∆x, f(x +∆x)) be 
points on the graph of f and set  
dx = ∆x. The corresponding change in y is 
∆y  = f(x + ∆x) − f(x) 
 The slope of the tangent line PR is the 
derivate f ′(x). Thus the directed distance 
from S to R is f ′(x) dx = dy.   

 
 
 
 
 
 

Fig. 6.1 
 Therefore dy represents the amount that the tangent line rises or falls 
whereas ∆y represents the amount that the curve y = f(x) rises or falls when x 
changes by an amount dx. 

 Since 
dy
dx  = 

lim
 ∆x → 0   

∆y
 ∆x

 ,  we have  
∆y
 ∆x

  ≈ 
dy
dx   ….(1)  when ∆x  is small. 

 Geometrially, this says that the slope of the secant line PQ is very close to 
the slope of the tangent line at P when ∆x  is small.  If we take dx = ∆x, then (1) 
becomes ∆y ≈ dy  ….(2)   which says that if ∆x is small, then the actual change 
in y is approximately equal to the differential dy.  Again this is geometrically 
evident in the case illustrated by Fig. 6.1.  The actual change in y is referred as 
absolute error. 
 The actual error in y is ∆y ≈ dy. 

  The quantity 
∆y
y   = 

Actual change in y
Actual value of y  is called relative error and the 

quantity  



∆y

y   × 100  is called percentage error. 

 The approximation given by (2) can be used in computing approximate 
values of functions. Suppose that f(a)  is a known number and an approximate 
value is calculated for f(a + ∆x) where dx  is small, since f(a + ∆x) = f(a) + ∆y, 
(2)  gives,  f(a + ∆x)  ≈  f(a) + dy….(3) 

Example 6.2 : Compute the values of ∆y and dy if  y = f(x)  = x3 + x2 − 2x + 1 
where x changes (i)  from 2 to 2.05 and (ii)  from 2 to 2.01 
Solution :  
(i) We have    f(2) = 23 + 22 − 2(2) + 1  = 9 

 f(2.05)  =  (2.05)3 + (2.05)2 − 2(2.05) + 1 = 9.717625. 
 and     ∆y = f(2.05)  − f(2)  = 0.717625. 

 In general      dy = f ′(x) dx = (3x2 + 2x − 2)dx 

 When     x = 2,  dx  = ∆x  = 0.05 and dy = [(3(2)2+2(2)−2] 0.05 = 0.7 
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(ii) f(2.01) = (2.01)3 − (2.01)2 − 2(2.01) + 1 = 9.140701 

 ∴ ∆y = f(2.01) − f(2) = 0.140701 

 When     dx = ∆x = 0.01,  dy = [3(2)2 + 2(2) − 2]0.01 = 0.14 

Remark : The approximation ∆y ≈  dy  becomes better as ∆x  becomes smaller 
in Example 6.2. Also dy was easier than to compute ∆y. For more complicated 
functions it may be impossible to compute ∆y exactly. In such cases the 
approximation by differentials is especially useful. 

Example 6.3 : Use differentials to find an approximate value for 
3

65. 

Solution : Let  y = f(x)  = 
3

x   = x.
1
3 

 Then dy = 
1
3 x.

−2
3  

dx 

 Since f(64) = 4. We take  x = 64  and dx = ∆x = 1 

 This gives  dy = 
1
3  (64) 

−2
3  

(1)  =  
1

3(16)  =  
1

48  

 ∴  
3

65  = f(64 + 1) ≈ f(64) + dy   =  4 + 
1

48   ≈  4.021 

Note : The actual value of 
3

65  is 4.0207257... Thus the approximation by 
differentials is accurate to three decimal places even when  ∆x  = 1. 

Example 6.4 : The radius of a sphere was measured and found to be 21 cm with 
a possible error in measurement of atmost 0.05 cm. What is the maximum error 
in using this value of the radius to compute the volume of the sphere ? 

Solution : If the radius of the sphere is r, then its volume is V = 4
3 π r3. If the 

error in the measured value of r is denoted by dr = ∆r, then, the corresponding 
error in the calculated value of V is ∆V. which can be approximated by the 

differential dV = 4πr2 dr.  

 When r = 21 and dr=0.05, this becomes dV = 4π(21)2 0.05 ≈ 277.  

 The maximum error in the calculated volume is about 277 cm3. 

Note : Although the possible error in the above example may appear to be 
rather large, a better picture of the error is given by the relative error, which is 
computed by dividing the error by the total volume. 

 
∆V
V   ≈ 

dV
V   ≈ 

277
38,808

  ≈ 0.00714 
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 Thus a relative error of  dr
r    = 0.05

21    ≈ 0.0024  in the radius produces a 

relative error of about 0.007 in the volume. The errors could also be expressed 
as percentage errors of 0.24% in the radius and 0.7%  in the volume. 
Example 6.5 : The time of swing T of a pendulum is given by T = k l   where k 
is a constant. Determine the percentage error in the time of swing if the length 
of the pendulum l changes from 32.1 cm to32.0 cm. 

Solution :  If T = k l    =  k l
1
2 

 Then  
dT
dl   = k 






1

2  × l
− 

1
2  =





k

2 l 
  and dl = 32.0 − 32.1 = −0.1 cm 

 Error in T = Approximate change in T. 

 ∆T   ≈  dT = 



dT

dl    dl = 




k

2 l 
   (−0.1) 

 Percentage error = 



∆T

T    × 100 %  =  

k
2 l 

 (−0.1)

k l 
  ×  100 %   

  = 



−0.1

2l    × 100 %  =  



−0.1

2(32.1)    ×  100% 

  = − 0.156% 
 Hence the percentage error in the time of swing is a decrease of 0.156%. 
Aliter : T = k l   

 Taking log on both sides,  log T = log k + 
1
2  log l        

 Taking differential on both sides,  
1
T  dT = 0 + 

1
2   

1
l    ×  dl 

 i.e, 
∆T
T    ≈  

1
T  dT = 0 + 

1
2   

1
l    ×  dl 

 
∆T
T    × 100 = 

1
2  × 

dl
l    ×  100 

  = 
1
2  × 

(−0.1)
32.1   ×  100   

  = − 0.156% 
 ie.,  the percentage error in the time of swing is a decrease of 0.156. 

Caution : Differentiation is carried out with the common understanding that the 
function involved admit logarithmic differentiation. 
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Example 6.6 : A circular template has a radius of 10 cm (± 0.02). Determine the 
possible error in calculating the area of the templates. Find also the percentage 
error. 

Solution : Area of circular template  A = πr2,  hence 
dA
dr    =  2πr,  Approximate 

change in area ∆A  ≈  (2πr)dr.  When  r = 10 cm and dr = 0.02    

 ∆A = (2π 10)  (0.02)  ≈  0.4π cm2 i.e, the possible error in calculating the 

template area is approximately 1.257 cm2 

 Percentage error ≈ 




0.4π

π(10)2   × 100   =  0.4% 

Example 6.7 : Show that the percentage error in the nth root of a number is 

approximately 
1
n  times the percentage error in the number . 

Solution :  Let x be the number. Let  y = f(x)  =  (x) 
 
1
n 

  

  Then log y = 
1
n  log x    

 Taking differential on both sides, we have  
1
y dy = 

1
n × 

1
x  dx 

  i.e.,    
∆y
y   ≈ 

1
y dy  =  

1
n   .  

1
x   dx 

  ∴ 
∆y
y   × 100 ≈ 

1
n  



dx

x   × 100   

   = 
1
n  times the percentage error in the number. 

Example 6.8 : Find the approximate change in the volume V of a cube of side x 
meters caused by increasing the side by 1% 
Solution :  The volume of the cube of side x  is, 

 V = x3    ;     dV = 3x2 dx 

 When dx = 0.01x,    dV = 3x2 ×  (0.01x) = 0.03 x3 m3. 

EXERCISE 6.1 
 (1) Find the differential of the functions 

  (i)   y   = x5 (ii)   y  = 
4

x  (iii)  y  =  x4 + x2 + 1  

  (iv)  y  =  
x − 2

2x + 3  (v)   y  =  sin 2x (vi)  y  =  x  tan x 
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 (2) Find the differential dy and evaluate dy for the given values of x and dx. 

  (i) y  =  1 − x2 ,  x = 5, dx = 
1
2 

  (ii) y =  x4 − 3x3+ x −1, x = 2, dx = 0.1. 

  (iii) y = (x2 + 5)3,   x = 1,   dx = 0.05 

  (iv) y =  1 − x ,  x = 0,  dx = 0.02   

  (v) y = cos x, x = 
π
6   dx = 0.05 

 (3) Use differentials to find an approximate value for the given number 

  (i)   36.1   (ii)   
1

10.1   

  (iii)  y  =  
3

1.02   + 
4

1.02  (iv)  (1.97)6 

 (4) The edge of a cube was found to be 30 cm with a possible error in 
measurement of 0.1 cm. Use differentials to estimate the maximum 
possible error in computing (i) the volume of the cube and (ii)  the 
surface area of cube. 

 (5) The radius of a circular disc is given as 24 cm with a maximum error in 
measurement of 0.02 cm. 

  (i) Use differentials to estimate the maximum error in the calculated 
area of the disc.  

  (ii)  Compute the relative error ? 

6.2 Curve Tracing : 

 The study of calculus and its applications is best understood when it is 
studied through the geometrical representation of the functions involved. In 
order to investigate the nature of a function (graph) it is not possible to locate 
each and every point of the graph. But we can sketch the graph of the function 
and know its nature by certain specific properties and some special points. To 
do this we adopt the following strategies. 

(1) Domain, Extent, Intercepts and origin : 

 (i) Domain of a function y = f(x) is determined by the values of x for 
which the function is defined. 
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 (ii) Horizontal (vertical) extent of the curve is determined by the intervals 
of x (y)  for which the curve exists. 

 (iii) x = 0 yields the y − intercept and y = 0 yields the x – intercept 

 (iv) If (0,0)  satisfies the given equation then the curve will pass through 
the origin. 

(2) Symmetry :  Find out whether the curve is symmetrical about any line with 
the help of the following rules : 

 The curve is symmetrical about 

 (i) the x-axis  if its equation is unaltered when y is replaced by − y 

 (ii) the y-axis if its equation is unaltered when x is replaced by − x. 

 (iii) the origin if it is unaltered when x is replaced by − x and y is replaced 
by − y simultaneously. 

 (iv) the line y = x if its equation is unchanged when x and y are replaced by 
y and x. 

 (v) the line y = − x if its equation is unchanged when x and y are replaced 
by − y and − x. 

(3) Asymptotes (parallel to the co-ordinate axes only) : 

 If y → c, c finite [x → k,  k finite]  whenever  x → ± ∞ [y → ± ∞]  then the 
line y =  c [x = k]  is an asymptote parallel to x − axis [y – axis]. 

(4) Monotonicity : Determine the intervals of x for which the curve is 
decreasing or increasing using the first derivates test. 

(5)  Special points  (Nature of bending) : 

 Determine the intervals of concavity and inflection points using the first 
and second derivatives test. 

Illustrative Example : 

Example 6.9 : Trace the curve  y = x3 + 1 

Solution : 

(1) Domain, Extent, intercepts and origin : 

 The function is defined for all real values of x and hence the domain is the 
entire interval (−∞, ∞). Horizontal extent is −∞ < x < ∞  and vertical extent is  
− ∞ < y < ∞. Clearly x = 0  yields the y intercept  as + 1  and y = 0  yields the 
x intercepts as −1. It is obvious that the curve does not pass through (0,0). 
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(2) Symmetry Test : The symmetry test shows that the curve does not possess 
any of the symmetry properties. 

(3) Asymptotes : As x → c (for c finite) y  does not tend to ± ∞ and vice versa. 
Therefore the curve doest not admit any asymptote. 

(4) Monotonicity : The first derivative test shows that the curve is increasing 
throughout (−∞,∞) since y′ ≥ 0  for all x. 

(5) Special points : The curve is 
concave downward in (−∞, 0) and 
concave upward in (0, ∞) since  

 y′′ = 6x < 0  for x < 0 

 y′′ = 6x > 0  for x > 0  and    

  y′′ = 0  for x = 0 yields (0,1)  
as the inflection point 

 
 
 
 

 

 

 

 

 

Fig. 6.2 

Example 6.10 : Trace the cure y2 = 2x3. 
Solution : 
(1) Domain, extent, Intercept  and Origin : 

 When x ≥ 0, y is well defined. As x →  ∞, y → ± ∞,    

 The curve exists in first and fourth quadrant only 
 The intercepts with the axes are given by :  
 x = 0,  y = 0  and when  y =  0,  x  = 0 
 Clearly the curve passes through origin. 
(2) Symmetry :  By symmetry test, we have, the curve is symmetric about 

x – axis only. 
(3) Asymptotes : As   x → + ∞, y → ± ∞, and vice versa.  
 ∴ the curve does not admit asymptotes. 

(4) Monotonicity : For the branch y = 2 x3/2 of the curve is increasing since 
dy
dx > 0 for x > 0 and the branch y = − 2x3/2 of the curve is decreasing 

since 
dy
dx < 0 for x > 0  
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 (5) Special points : (0,0)  is not a point of inflection. 
 
   This curve is called a semi – cubical 
parabola. 
Note :  
 (0, 0) admits a pair of tangents 
which coincide, resulting in a special 
point, called cusp. 

 
 
 
 
 
 

Fig. 6.3 

Example 6.11 :   Discuss the curve  y2 ( 1 + x)  = x2  (1 − x)  

                     for  (i) existence  (ii) symmetry  (iii) asymptotes  (iv) loops 

Solution  :  

(i) Existence : The function is not well defined when x >1 and x ≤ −1  and the 
curve lies between −1 < x ≤ 1. 

(ii) Symmetry : The curve is symmetrical about the x − axis only. 

(iii) Asymptotes :  x = −1  is a vertical asymptote to the curve parallel to  
y − axis. 

(iv) Loops : (0,0)  is a point through which the curve passes twice and hence a 
loop is formed between x = 0 and x  = 1. 

 

 

 

 

 

 

Fig. 6.4 

Example 6.12 : Discuss the curve a2 y2 =  x2 (a2  − x2), a > 0 

             for (i) existence (ii) symmetry (iii) asymptotes (iv) loops 

Solution :  

(i) Existence : 

  The curve is well defined for (a2 − x2) ≥ 0 i.e., x2 ≤ a2 i.e., x ≤ a and x ≥ − a  
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(ii) Symmetry : The curve is symmetrical about x-axis, y – axis, and hence 
about the origin. 

(iii) Asymptotes : It has no asymptote. 

(iv) Loops : For  −a  <  x < 0  and 0 < x < a,  y2 > 0  ⇒  y is positive and 
negative ∴  a loop is formed between  x = 0  and x = a  and another loop is 
formed between x = −a  and x = 0. 

 
 
 
 
 
 

Fig. 6.5 

Example 6.13 : Discuss the curve  y2  =  (x − 1) (x − 2)2. 
                          for (i) existence (ii) symmetry (iii) asymptotes (iv) loops 
Solution :   
(i) Existence  : 
 The curve is not defined for x − 1  < 0,  ie., whenever x < 1, the R.H.S. is 

negative ⇒ y2 < 0 which is impossible. The curve is defined for x ≥ 1. 
 (ii) Symmetry : The curve is symmetrical  about x-axis. 
(iii) Asymptote : The curve does not admit asymptotes. 
(iv) Loops : Clearly a loop is formed between (1, 0) and (2, 0).  
 
 
 
 
 
 
 

Fig. 6.6 
EXERCISE 6.2 

 (1) Trace the curve  y  = x3 
Discuss the following curves for (i) existence            (ii) symmetry  
                                                     (iii) asymptotes      (iv) loops 
 (2) y2  =  x2 (1 − x2) (3) y2 (2 + x)  =  x2 (6 − x)  

 (4) y2  =  x2  (1 − x) (5) y2 = (x − a) (x − b)2  ;  a, b  >  0,  a > b. 
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6.3 Partial Differentiation : 

 A nation’s economy (E) depends on many factors. An yield (Y) of a crop 
also depends on various factors such as rain, soil, manure etc., Similarly the 
character (C) of a child is formed by its parent’s characters, environment etc., In 
plane geometry, area (A) and volume (V) also depend on the dimensions like 
length, breadth and height. In all the above cases either economy or yield or 
character or area or volume depends on more than one variable (factor). If any 
small change is effected in any of the variables (factors), it becomes necessary 
to know what changes will be caused in the respective dependent variable E or 
Y or C or A or V. These small changes can take place in all the variables 
(independent) simultaneously or in some of them while others are not subjected 
to any change. The study of these changes in the dependent variable while a 
corresponding change is made in one or more of the independent variables, 
keeping the remaining independent variables fixed leads to what is known as 
partial differentiation. 
 For clarity, let us consider the 
area (A) of a rectangle of length x 
and breadth y. Then A  = xy  =  f(x,y).  
Note that ‘A’ depends on two 
independent variables x and y. 
 A = xy = area of abcd 

 
 
 
 
 

Fig. 6.7 

 Suppose a small change is made in y ie., y + ∆y instead of y, then the new 
area A′ = x(y + ∆y). Note that x is fixed still there is change in the area A.  
Similarly, if we interchange roles of x and y in the above we get  
new area abgh = A′′ = (x + ∆x)y. 

 Note that change in both x and y will also cause change in area A. In this 
case the area is (x +∆x)  (y + ∆y) = area of aeih. 

 But we shall restrict ourselves to the discussion of the change in one 
variable fixing the rest. We may consider functions of two or three independent 
variables only. 

 We can also discuss the continuity problems and the limit process for 
functions depending on more than one variable similar to that of their 
counterpart in single variable differential calculus. 
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Partial Derivatives :  
      Let (x

0
,y

0
) be any point  in the domain of definition of f(x,y). Let u = f(x, y) 

We define partial derivative of u with respect to x at the point (x0,y0) as the 

ordinary derivative of f(x,y
0
) with respect to x at the point x = x0. 

 i.e.,  
∂u

∂x
  

(x0, y0)
  = 

d
dx  f(x,y0)  

x = x0

 

                      =  
lim

h → 0   
f(x0 + h, y0) − f(x0,y0)

h  , (denoted by fx or ux at (x0, y0)) 

provided the limit exists. 

 Similarly, partial derivatives of u  = f(x,y) with respect to y at the point 
(x0,y0) is 

   
∂u

∂y
  

(x0, y0)
  = 

d
dy  f(x0,y)  

y = y0

 

  = 
lim

h → 0   
f(x0, y0 + h) − f(x0,y0)

h   (denoted by fy or uy at (x0, y0)) 

provided the limit exists. 

 A function is said to be differentiable at a point (at all points on a domain) 
if its partial derivatives exist at that point (at all points of a domain). The 
process of finding partial derivatives is called partial differentiation. 

Remark :   

 Throughout we shall consider only continuous functions of two or three 
variables possessing continuous first order partial derivatives. 
Second Order Partial Derivatives :  When we differentiate a function  
u  = f(x,y) twice we obtain its second order derivatives, defined by,  

 
∂2f

∂x2  = 
∂
∂x

   



∂f

∂x
     ;   

∂2f

∂y2  =  
∂
∂y

   



∂f

∂y
  and 

 
∂2f

 ∂x ∂y
  = 

∂
∂x

   



∂f

∂y
    =  

∂
∂y

 



∂f

∂x
  =  

∂2f
 ∂y ∂x

   denoted respectively 

 as  fxx or uxx,  fyy or uyy and fxy  =  fyx  or uxy  = uyx 

 Note that since the function and its partial derivaties are continuous the 
order of differentiation is immaterial (A result due to Euler) 
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Chain rule (function of a function rule) of two variables : 

 If u = f(x,y) is differentiable and 
x and y are differentiable functions of 
t, then u is a differentiable function 
of t and  

 
du
dt   = 

∂f
∂x

   
dx
dt    +  

∂f
∂y

   
dy
dt   

 Tree diagram to remember the 
chain rule : (2 variables) 

 
 
 
 
 
 
 

 
Fig. 6.8 

Chain rule (function of a function rule) of three variables : 
 If u = f(x,y, z) is differentiable 
and x, y, z are differentiable functions 
of t, then u is a differentiable 
function of t and 

    
du
dt   = 

∂f
∂x

   
dx
dt    +  

∂f
∂y

   
dy
dt   + 

∂f
∂z

   
dz
dt  

 Tree diagram to remember the 
chain rule : (3 – variables) 

 
 
 
 
 
 
 
 

Fig. 6.9 

Chain rule for partial derivatives : 

 If  w = f(u,v), u  =   g(x,y),   ;   v = h (x,y)  then 

  
∂w
∂x

  = 
∂w
∂u

   
∂u
∂x

   +  
∂w
∂v

   
∂v
∂x

    ;   
∂w
∂y

  = 
∂w
∂u

   
∂u
∂y

   +  
∂w
∂v

   
∂v
∂y

  

 
 
 
 
 
 
 
 

Fig. 6.10 
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Homogeneous functions : 

 A function of several variables is said to be homogeneous of degree n if 
multiplying each variables by t (where t > 0) has the same effect as multiplying 

the original function by tn. Thus, f(x,y) is homogeneous of degree  

n if  f(tx, ty) = tn f(x,y) 
Euler’s Theorem : 

 If  f(x,y)  is a homogeneous function of degree n, then x 
∂f
∂x

  + y 
∂f
∂y

  = nf 

Remark :  Euler’s theorem can be extended to several variables. 

Example 6.14 : Determine :  
∂u
∂x

 ,  
∂u
∂y

 ,  
∂2u

∂x2 ,  
∂2u

∂y2 , 
∂2u

∂x ∂y
  and  

∂2u
∂y∂x

   

if   u(x,y) = x4 + y3  + 3x2 y2 + 3x2y 

Solution : 
∂u
∂x

  = 4x3  + 6xy2  + 6xy  ;  
∂u
∂y

  = 3y2  + 6x2y  + 3x2 

 
∂2u

∂x2  = 12x2  + 6y2  + 6y  ;  
∂2u

∂y2  = 6y  + 6x2   

 
∂2u

∂x ∂y
  = 12 xy + 6x  ;   

∂2u
∂y∂x

  = 12xy  + 6x 

 Note that   
∂2u

∂x ∂y
  =   

∂2u
∂y∂x

  due to continuity of u and its first order partial 

derivatives. 

Example 6.15 : If  u = log (tan x + tan y + tan z), prove that ∑ sin 2x  
∂u
∂x

  =  2  

Solution : 
∂u
∂x

  = 
sec2x

tanx + tany + tanz 

 sin 2x 
∂u
∂x

  = 
2 sin x cos x . sec2x
tan x + tan y + tan z  = 

2 tan x
tan x + tan y + tan z  

 similarly,  sin 2y 
∂u
∂y

  = 
2 tan y

tan x + tan y + tan z  

 sin 2z 
∂u
∂z

  = 
2 tan z

tan x + tan y + tan z  

 L.H.S. = ∑ sin 2x 
∂u
∂x

  = 
2 (tan x + tan y + tan z)

tan x + tan y + tan z    =  2  =  R.H.S 
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Example 6.16 :   
 If  U =(x − y) (y − z)  (z − x)  then  show that Ux + Uy + Uz = 0 

Solution : Ux = (y − z) { }(x − y) (− 1) + (z − x).1  

  = (y − z) [(z − x) − (x − y)]  

 Similarly  Uy = (z − x) [(x − y) − (y − z)]   

 Uz = (x − y) [(y − z) − (z − x)]   

 Ux + Uy + Uz = (y − z) [(z − x) − (z − x)]  +  (x − y) [− (y − z) + (y − z)]  

    +  (z − x) [(x − y) − (x − y)] 
  = 0 

Example 6.17 : Suppose that z = ye
x2

   where  x = 2t and y = 1 − t  then find 
dz
dt  

Solution : 
dz
dt  = 

∂z
∂x

   
dx
dt   + 

∂z
∂y

   
dy
dt   

 
∂z
∂x

  = ye
x2

2x   ;   
∂z
∂y

  = e
x2

 ;   
dx
dt   = 2 ;  

dy
dt   =  −1 

 
dz
dt  = y 2x e

x2
   (2)  +  e

x2
 (−1) 

  = 4 xy e
x2

− e
x2

 = e
4t2[ ](8t (1 − t) − 1)  = e

4t2
(8t − 8t2 −1) 

   (Since x = 2t and y = 1 − t) 

Example 6.18 :  If  w = u2 ev  where u  = 
x
y  and  v = y log x, find 

∂w
∂x

   and 
∂w
∂y

  

Solution : We know  
∂w
∂x

  = 
∂w
∂u

  
∂u
∂x

  + 
∂w
∂v

   
∂v
∂x

   ; and  
∂w
∂y

  = 
∂w
∂u

  
∂u
∂y

  + 
∂w
∂v

   
∂v
∂y

  

 
∂w
∂u

 = 2uev  ;   
∂w
∂v

  =  u2ev  ;   

 
∂u
 ∂x

  = 
1
y   ;  

∂u
∂y

  =  
−x

y2  

 
∂v
∂x

  = 
y
x   ;    

∂v
∂y

    =   log x. 

 ∴  
∂w
∂x

  = 
2uev

y  +  u2ev  
y
x = xy  

x

y2  (2 + y) 
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 ∴  
∂w
∂y

  = 2uev  
−x

y2  +  u2ev  log x 

  = 
x2

y3  xy  [ylog x − 2],   (since u = 
x
y and v = y log x) 

Example 6.19 : If  w = x + 2y + z2  and  x = cos t ; y = sin t ; z  = t. Find 
dw
dt   

Solution : We know  
dw
dt   = 

∂w
∂x

  
dx
dt   + 

∂w
∂y

   
dy
dt   + 

∂w
∂z

  
dz
dt  

   
∂w
∂x

  = 1  ;  
dx
dt    =  − sin t 

 
∂w
∂y

  = 2  ;  
dy
dt    =  cos t 

 
∂w
∂z

  = 2 z  ; 
dz
dt   =  1 

 ∴  
dw
dt   = 1 ( − sin t) +  2 cos t + 2z = − sin t + 2 cos t + 2 t 

Example 6.20 : Verify Euler’s theorem  for  f(x,y) = 
1

x2 + y2 
  

Solution :  f(tx, ty) = 
1

t2 x2 + t2y2 
   = 

1
t    f(x,y) = t−1 f(x, y) 

∴  f is a homogenous function of degree −1 and by Euler’s theorem, 

 x 
∂f
∂x

  + y 
∂f
∂y

  = −f 

Verification :  fx = − 
1
2 

2x

( )x2 +y2
3/2

 

   =  
−x

( )x2 +y2
3/2

 

  

 Similarly, fy = 
−y

( )x2 +y2
3/2

 

  

 xfx  + yfy = −  
x2 + y2

( )x2 +y2
3/2

 

  = 
−1

x2 + y2
   = − f.  

Hence Euler’s theorem is verified. 
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Example 6.21 : If u is a homogenous function of x and y of degree n, prove that 

 x 
∂2u

 ∂x ∂y
   +  y 

∂2u

∂y2  = (n − 1) 
∂u
∂y

  

Solution  :  Since U is a homogeneous function in x and y of degree n, Uy is 

homogeneous function in x and y of degree n − 1.  Applying Euler’s theorem for 
Uy we have, 

 x(Uy)x + y (Uy)y = (n −1) Uy 

 i.e.,   xUyx + y Uyy = (n −1) Uy 

 i.e.,  x 
∂2u

 ∂x ∂y
   +  y 

∂2u

∂y2  = (n − 1) 
∂u
∂y

  

Example 6.22 : Using Euler’s theorem, prove that x 
∂u
∂x

 + y 
∂u
∂y

 = 
1
2 tan u if  

u = sin−1 




x − y

x + y
 

Solution:  R.H.S. is not homogeneous and hence  

 define f = sin u = 
x − y
x + y

  ⇒  f is homogeneous of degree 
1
2 . 

 ∴ By Euler’s theorem, x 
∂f
∂x

 + y 
∂f
∂y

 = 
1
2 f 

 i.e., x . 
∂
∂x

 (sin u) + y 
∂
∂y

 (sin u) = 
1
2 sin u 

 x 
∂u
∂x

 . cos u + y 
∂u
∂y

 . cos u = 
1
2 sin u 

 x 
∂u
∂x

 + y 
∂u
∂y

 = 
1
2 tan u 

EXERCISE 6.3 

 (1) Verify 
∂2u

 ∂x ∂y
  = 

∂2u
 ∂y ∂x

  for the following functions : 

  (i)  u  = x2 + 3xy  + y2     (ii)  u  = 
x

y2   − 
y

x2        

  (iii)  u = sin 3x cos 4y (iv)  u  = tan−1 



x

y  . 
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 (2) (i) If  u  = x2 + y2  ,  show that x 
∂u
∂x

  + y 
∂u
∂y

  = u 

  (ii) If  u  = e

x
y
 sin 

x
y  + e

y
x
   cos  

y
x ,  show that x 

∂u
∂x

  + y 
∂u
∂y

  =  0. 

 (3) Using chain rule find 
dw
dt   for each of the following : 

    (i)  w  =  e xy  where  x = t2,   y = t3 

   (ii)  w  =  log (x2 + y2)   where x = et,  y = e− t 

  (iii)  w  =  
x

 (x2 + y2)
   where x = cos t,  y =  sin t.  

  (iv)  w  = xy + z  where  x = cos t,  y  = sin t, z = t 

 (4) (i) Find  
∂w
∂r

  and 
∂w
∂θ   if w  = log (x2 + y2)  where x = r cos θ, y = r sin θ 

  (ii) Find 
∂w
∂u

  and 
∂w
∂v

   if  w  = x2 + y2   where x = u2 − v2,  y = 2uv 

  (iii)  Find 
∂w
∂u

  and 
∂w
∂v

   if  w  = sin−1 xy   where x = u + v,  y = u   − v. 

 (5) Using  Euler’s theorem prove the following : 

  (i) If  u = tan−1 



x3 + y3

x− y
   prove that   x 

∂u
∂x

  + y 
∂u
∂y

  =  sin 2u. 

  (ii) u = xy2 sin 



x

y ,  show that x 
∂u
∂x

  + y 
∂u
∂y

  =  3u. 

  (iii) If u is a homogeneous function of x and y of degree n, prove that  

x 
∂2u

 ∂x2   + y 
∂2u

 ∂x ∂y
  = (n − 1) 

∂u
 ∂x

  

  (iv) If V =  zeax + by and z is a homogenous function of degree n in x and 

y prove that  x  
∂V
 ∂x

  + y 
∂V
 ∂y

  = (ax + by + n)V. 
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7. INTEGRAL CALCULUS AND ITS 
APPLICATIONS 

7.1. Introduction : 
 In class XI, we have studied the direct evaluation of definite integrals as 
the limit of integral sums. Even when the integrands are very simple, direct 
evaluation of definite integrals as the limit of integral sum involves great 
difficulties. Sometimes this method involves cumbersome computations. There 
is a formula called Second Fundamental Theorem on Calculus that yields a 
practical and convenient method for computing definite integrals in case where 
the anti-derivative of the integrand is known. This method which was 
discovered by Newton and Leibnitz utilises ‘the profound relationship’ that 
exists between integration and differentiation. In this chapter we have the 
following five sections dealing with the concept and applications of definite 
integrals. 
 (i) To solve simple problems using second fundamental theorem of 

calculus. 
 (ii) Properties of definite integral. 
 (iii) Reduction formulae 
 (iv) Area under the curve and volume of solid of revolution about an axis. 
 (v) Length of the curve and the surface area of a solid of revolution about 

an axis. 
7.2. Simple definite integrals : 
First fundamental theorem of calculus : 

 Theorem 7.1 : If f(x) is a continuous function and F(x) = ⌡⌠
a

x
 f(t)dt, then we 

have the equation F′(x) = f(x). 
Second fundamental theorem of calculus : 
 Theorem 7.2 : If f(x) is a continuous function with domain a ≤ x ≤ b, then 

⌡⌠
a

b
 f(x)dx = F(b) − F(a) where F is any anti-derivative of f. 

Example 7.1 : Evaluate ⌡⌠
0

π/2
 

sin x

1 + cos2x
  dx 
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Solution:  Let  I = ⌡⌠
0

π/2
 

sin x

1 + cos2x
  dx 

 t = cos x 

x 0 π / 2  Let  t = cos x 

 dt = − sin x  dx  (or)  sin x dx = − dt t 1 0 

   ∴ I = ⌡⌠
1

0
  
− dt

1 + t2
 = − [ ]tan−1 t  

0
1 =  − 



0 − 
π
4  = 

π
4 

Example 7.2 : Evaluate ⌡⌠
0

1
 x ex dx 

Solution:   
    Using the method of integration by parts 





⌡⌠ udv = uv − ⌡⌠v du  

   ⌡⌠
0

1
 x ex dx = (xex)1

0 − ⌡⌠
0

1
 ex dx 

 
 Here    u = x 
 du = dx 

 dv = ex dx 

 v = ex 

    = e − (ex)1
0 

    = e − (e − 1) 
    = 1 

Example 7.3 : Evaluate ⌡⌠
0

a
 a2 − x2 dx 

Solution:  ⌡⌠
0

a
 a2 − x2 dx = 



x

2 a2 − x2 + 
a2

2  sin−1 
x
a

a
 
 0

 

    = 





0 + 
a2

2  sin−1  a
a − (0 + 0)  

    = 
a2

2  sin−1(1) = 
a2

2  


π

2  = 
πa2

4  
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Example 7.4 : Evaluate ⌡⌠
0

π/2
  e2x cos x dx 

Solution:  We know ∫eax cos bx dx = 






eax

a2 + b2  (a cos bx + b sin bx) 

   ∴ ⌡⌠
0

π/2
  e2x cos x dx = 















e2x

22 + 12  (2 cos x + sin x)
π/2

 
 0

 

    = 
eπ

5  (0 + 1) − 
e0

5  (2 + 0) 

    = 
eπ

5  − 
2
5 = 

1
5 (eπ − 2) 

EXERCISE 7.1 
Evaluate the following problems using second fundamental theorem : 

 (1) ⌡⌠
0

π/2
 sin2x dx (2) ⌡⌠

0

π/2
 cos3x dx (3) ⌡⌠

0

1
 9 − 4x2 dx 

 (4) ⌡⌠
0

π/4
 2 sin2x sin 2x dx (5) ⌡⌠

0

1
 

dx

4 − x2
 (6) ⌡⌠

0

π/2
 

sin x dx

9 + cos2x
 

 (7) ⌡⌠
1

2
 

dx

x2 + 5x + 6
 (8) ⌡⌠

0

1
 
(sin−1x)

3

1 − x2
 dx (9) ⌡⌠

0

π/2
 sin 2x cos x dx 

 (10) ⌡⌠
0

1
 x2 ex dx (11) ⌡⌠

0

π/2
 e3x cos x dx (12) ⌡⌠

0

π/2
 e−x sin x dx 

7.3 Properties of Definite Integrals : 

Property (1) : ⌡⌠
a

b
 f(x)dx   =   ⌡⌠

a

b
 f(y) dy  

Proof : Let F be any anti-derivative of f 

   ∴ ⌡⌠
a

b
 f(x) dx = [ ]F(b) − F(a)  … (i) 
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   ⌡⌠
a

b
 f(y) dy = [ ]F(b) − F(a)  … (ii) 

 From (i) and (ii) ⌡⌠
a

b
 f(x) dx = ⌡⌠

a

b
 f(y) dy 

 That is, integration is independent of change of variables provided the 
limits of integration remain the same. 

Property (2) : ⌡⌠
a

b
 f(x)dx   =   − ⌡⌠

b

a
 f(x) dx  

Proof : Let F be any anti-derivative of f 

   ∴ ⌡⌠
a

b
 f(x) dx = [ ]F(b) − F(a)  … (i) 

   ⌡⌠
b

a
 f(x) dx = [ ]F(a) − F(b)] = − [F(b) − F(a)  … (ii) 

 From (i) and (ii) ⌡⌠
a

b
 f(x) dx = − ⌡⌠

b

a
 f(x) dx 

 That is, if the limits of definite integral are interchanged, then the value of 
integral changes its sign only. 

Property (3) : ⌡⌠
a

b
 f(x)dx = ⌡⌠

a

b
 f(a + b − x) dx 

Proof :  Let u = a + b − x    u = a + b − x 

x a b  ∴  du = − dx 

 or dx = − du u b a 

   ∴⌡⌠
a

b
 f(a + b − x)dx = − ⌡⌠

b

a
 f(u) du = ⌡⌠

a

b
 f(u) du = ⌡⌠

a

b
 f(x) dx    
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Property (4) : ⌡⌠
0

a
 f(x)dx = 

⌡⌠
0

a
 f(a − x) dx 

Proof :  Let u = a − x    u = a − x 

x o a  ∴  du = − dx 

 or dx = − du u a o 

 ∴⌡⌠
0

a
 f(a − x)dx = − 

⌡⌠
a

o
 f(u) du = ⌡⌠

0

a
 f(u) du = 

⌡⌠
0

a
 f(x) dx    

Property (5) (Without proof) : If  f(x) is integrable on a closed interval 
containing the three numbers a, b and c, then 

   ⌡⌠
a

b
 f(x) dx = ⌡⌠

a

c
 f(x) dx + ⌡⌠

c

b
 f(x) dx 

 regardless of the order of a, b and c. 
 

Property (6) : ⌡⌠
0

2a
 f(x)dx = 

⌡⌠
0

a
 f(x) dx + 

⌡⌠
0

a
 f(2a − x) dx 

Proof : Consider 
⌡⌠
0

2a
 f(x)dx = 

⌡⌠
0

a
 f(x) dx + 

⌡⌠
a

2a
 f(x) dx … (1) 

       u = 2a − x 

x a 2a Put x = 2a − u in the second integral on the R.H.S.,  

 and dx = − du u a o 

   ⌡⌠
a

2a
 f(x)dx = − ⌡⌠

a

o
 f(2a − u) du 

    = ⌡⌠
0

a
 f(2a − u) du 

    = 
⌡⌠
0

a
 f(2a − x) dx   











‡ ⌡⌠
a

b
  f(x) dx = ⌡⌠

a

b
 f(y) dy  
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 Hence (1) becomes  ⌡⌠
0

2a
 f(x) dx = 

⌡⌠
0

a
  f(x) dx +  

⌡⌠
0

a
 f(2a − x) dx 

Property (7) :  
⌡⌠
0

2a
 f(x)dx = 2 ⌡⌠

0

a
 f(x) dx    if f(2a − x) = f(x) 

  = 0 if f(2a − x) = − f(x) 

Proof : We know that by property 

   
⌡⌠
0

2a
 f(x)dx = 

⌡⌠
0

a
 f(x) dx + 

⌡⌠
0

a
 f(2a − x) dx … (1) 

   If  f(2a − x) = f(x)  then  (1) becomes 

   
⌡⌠
0

2a
 f(x)dx = 

⌡⌠
0

a
 f(x) dx + 

⌡⌠
0

a
 f(x) dx  = 2 

⌡⌠
0

a
 f(x) dx 

   If  f(2a − x) = − f(x)  then (1) becomes 

   
⌡⌠
0

2a
 f(x)dx = ⌡⌠

0

a
 f(x) dx − ⌡⌠

0

a
 f(x) dx = 0 

 Hence proved. 

Property (8) : (i) ⌡⌠
− a

a
  f(x)dx = 2⌡⌠

0

a
 f(x) dx, if f is an even function. 

          (ii) 
⌡⌠
− a

a
 f(x) dx = 0    if f is an odd function. 

Proof : Consider ⌡⌠
− a

a
  f(x)dx = ⌡⌠

− a

0
 f(x) dx + ⌡⌠

0

a
 f(x) dx … (1) 

       x = − t 

x − a 0 Let     x = − t in the first integral of the R.H.S. 

Then dx = − dt t a 0 
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∴ (1) becomes  ⌡⌠
− a

a
  f(x) dx = ⌡⌠

a

o
 f(− t) (− dt) + ⌡⌠

0

a
 f(x) dx 

    = − 
⌡⌠
a

0
 f(− t) dt + ⌡⌠

0

a
 f(x) dx 

    = 
⌡⌠
0

a
 f(− t) dt + 

⌡⌠
0

a
 f(x) dx 

   ∴ 
⌡⌠
− a

a
  f(x) dx = ⌡⌠

0

a
 f(− x) dx + ⌡⌠

0

a
 f(x) dx … (2) 

Case (ii) : If ‘f’ is an even function, then (2) becomes 

   ⌡⌠
− a

a
  f(x) dx = ⌡⌠

0

a
 f(x) dx + 

⌡⌠
0

a
 f(x) dx 

    = 2 ⌡⌠
0

a
 f(x) dx 

Case (iii) : If ‘f’ is an odd function then (2) becomes 

   ⌡⌠
− a

a
  f(x) dx = ⌡⌠

0

a
 (− f(x) dx + 

⌡⌠
0

a
 f(x) dx 

    = − ⌡⌠
0

a
 f(x) dx + 

⌡⌠
0

a
 f(x) dx = 0 

 Hence proved. 

Example 7.5 : Evaluate 
⌡⌠

− π/4

π/4
  x3 sin2x dx. 

Solution:  Let f(x) = x3 sin2x = x3 (sin x)2 

   ∴ f(− x) = (− x)3 (sin (− x))2 

    = (− x)3 (− sin x)2 

    = − x3 sin2x 

    = − f(x) 
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   f(− x) = − f(x) 

  ∴ f(x) is an odd function. 

 ∴   ⌡⌠
− π/4

π/4
  x3 sin2x dx. = 0  (by property) 

Example 7.6 :  

 Evaluate ⌡⌠
− 1

1
  log 



3 − x

3 + x  dx 

Solution:  Let f(x) = log 



3 − x

3 + x  

   ∴ f(− x) = log 



3 + x

3 −x
 = log (3 + x) − log (3 − x) 

    = − [ ]log (3 − x) − log (3 + x)  

   = −



 log 



3 − x

3 + x  = − f(x) 

   Thus f(− x) = − f(x)   ∴  f(x) is an odd function. 

  ∴ ⌡⌠
− 1

1
  log 



3 − x

3 + x  dx = 0 

Example 7.7 :  

 Evaluate : ⌡⌠
− π/2

π/2
 x sin x dx 

Solution:  Let f(x) = x sin x 
 f(− x) = (− x) sin (− x) 
  = x sin x (‡ sin (− x) = − sin x) 
 ∴ f(x) is an even function. 

  ⌡⌠
− π/2

π/2
  x sin x dx = 2  ⌡⌠

0

π/2
 x sin x dx 

   = 2 











{ }x (− cos x)
π/2

 
 0
− ⌡⌠

0

π/2
 (− cos x) dx  
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 Using the method of integration by parts  

   = 2 











0 + ⌡⌠
0

π/2
 cos x dx   = 2 [ ]sin x

π/2
 
0

 

   = 2 [1 − 0]  =  2 

Example 7.8 : Evaluate ⌡⌠
− π/2

π/2
  sin2x dx 

Solution:  Let f(x) = sin2x  = (sin x)2  

   f(− x) = (sin (− x))2  = (− sin x)2 = sin2x = f(x) 
 Hence f(x) is an even function. 

   ∴ ⌡⌠
− π/2

π/2
  sin2x dx = 2 ⌡⌠

0

π/2
 sin2x dx = 2 × 

1
2  ⌡⌠

0

π/2
 (1 − cos 2x) dx 

    = 



x − 

sin 2x
2

π/2
 
0

 = 
π
2 

Example 7.9 : Evaluate ⌡⌠
0

π/2
  

f(sin x)
f(sin x) + f(cos x) dx 

Solution:  Let I = ⌡⌠
0

π/2
 

f(sin x)
f(sin x) + f(cos x) dx … (1) 

  = ⌡⌠
0

π/2
  

f 



sin 



π

2 − x

f 



sin 



π

2 − x  + f 



cos 



π

2 − x
 dx 

 ∴ I = ⌡⌠
0

π/2
 

f (cos x)
f(cos x) + f (sin x) dx … (2) 

 (1) + (2) gives 2 I = ⌡⌠
o

π/2
  

f(sin x) + f(cos x)
f(cos x) + f(sin x)  dx = ⌡⌠

o

π/2
 dx = [x]π/2

0   = 
π
2 

 ∴  I = 
π
4 



 96

Example 7.10 : Evaluate ⌡⌠
0

1
  x(1 − x)n dx 

Solution:  Let I = ⌡⌠
0

1
  x(1 − x)n dx 

    = ⌡⌠
0

1
 (1 − x) [ ]1 − (1 − x)

n
 dx 











‡ ⌡⌠
0

a
 f(x) dx = 

⌡⌠
o

a
 f(a − x) dx  

    = ⌡⌠
0

1
 (1 − x) xn dx  = ⌡⌠

0

1
 (xn − xn + 1) dx 

    = 



xn + 1

n + 1 − 
xn + 2

n + 2

1
 
 
 0

 = 



1

n + 1 − 
1

n + 2  = 
n + 2 − (n + 1)
(n + 1) (n + 2) 

 ⌡⌠
0

1
  x(1 − x)n dx = 

1
(n + 1) (n + 2) 

Example 7.11 : Evaluate ⌡⌠
0

π/2
  log (tan  x)dx 

Solution:  Let I = ⌡⌠
0

π/2
  log (tan x)dx … (1) 

    = ⌡⌠
0

π/2
  log 



tan 



π

2 − x  dx 

   I = ⌡⌠
0

π/2
 log (cot x) dx … (2) 

 (1) + (2) gives 2I = ⌡⌠
0

π/2
 [ ]log (tan x) + log (cot x)  dx 
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    = ⌡⌠
0

π/2
  [ ]log (tan x) . (cot x)  dx = ⌡⌠

0

π/2
 (log 1) dx = 0 

   ∴  I = 0 (‡ log 1 = 0) 

Example 7.12 : Evaluate 
⌡⌠
π/6

π/3
   

dx
1 + cot x

 

Solution:  Let I = ⌡⌠
π/6

π/3
   

dx
1 + cot x

 

   I = ⌡⌠
π/6

π/3
   

sin x
sin x + cos x

 dx … (1) 

    = ⌡⌠
π
6

π
3

  
sin 



π

3 + 
π
6 − x  dx

sin 



π

3 + 
π
6 − x  + cos 



π

3 + 
π
6 − x

 











‡ ⌡⌠
a

b
 f(x) dx = ⌡⌠

a

b
 f(a + b − x) dx  

    = ⌡⌠
π
6

π
3

   
sin 



π

2 − x

sin 



π

2 − x  + cos 



π

2 − x

 dx 

   I = ⌡⌠
π/6

π/3
   

cos x
cos x + sin x

 dx … (2) 

(1) + (2) gives 2I = ⌡⌠
π/6

π/3
   

sin x + cos x
cos x + sin x

   dx 
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   2I = ⌡⌠
π/6

π/3
  dx  =  [ ]x

π/3

π/6
  = 

π
3  −  

π
6   =  

π
6 

   ∴  I = 
π
12 

EXERCISE 7.2 
Evaluate the following problems using properties of integration. 

 (1) ⌡⌠
− 1

1
 sin x cos4 x dx (2) ⌡⌠

−π/4

π/4
 x3 cos3x dx (3) ⌡⌠

0

π/2
  sin3x cos x dx 

  (4) ⌡⌠
− π/2

π/2
  cos3x dx (5) ⌡⌠

− π/2

π/2
  sin2x  cosx dx (6) ⌡⌠

− π/4

π/4
  x sin2x dx 

 (7) ⌡⌠
0

1
 log 



1

x − 1  dx (8) ⌡⌠
0

3
  

x dx

x + 3 − x
 (9) ⌡⌠

0

1
 x (1 − x)10 dx 

 (10) ⌡⌠
π/6

π/3
  

dx
1 + tan x

 

7.4 Reduction formulae : 
 A formula which expresses (or reduces) the integral of the nth indexed 
function interms of that of (n − 1)th indexed (or lower indexed) function is 
called a reduction formula. 

Reduction formulae for ∫ sinnx dx. ⌡⌠ cosnx dx  (n is a positive integer) : 

Result 1 : If In = ∫ sinnx dx then  In = − 
1
n sinn−1x cos x + 

n − 1
n  In − 2 

Result 2 : If In = ⌡⌠ cosnx dx then In = 
1
n cosn−1x sin x + 

n − 1
n  In − 2 

Result 3 :  

 ⌡⌠
0

π/2
 sinnx dx = ⌡⌠

0

π/2
 cosnx dx = 



n − 1

n  . 
n − 3
n − 2

 . 
n − 5
n − 4

 ... 
2
3 . 1 when n is odd

 
n − 1

n  . 
n − 3
n − 2

 . 
n − 5
n − 4

 ...  
1
2 . 

π
2 when n is even
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Note : For the proofs of these above three results, refer Solution Book. 

Example 7.13 : Evaluate : ⌡⌠sin5x dx 

Solution : If In = ⌡⌠sinnx dx,  then we have 

 In = − 
1
n sinn−1x cos x + 

n − 1
n  In−2 … (I) 

 ∴ ⌡⌠sin5x dx = I5 

  = − 
1
5 sin4x cos x + 

4
5 I3 (when n=5 in I) 

  = − 
1
5 sin4x cos x + 

4
5 



− 

1
3 sin2x cosx + 

2
3 I1  (when n=3 in I) 

 ⌡⌠sin5x dx = − 
1
5 sin4x cos x − 

4
15 sin2x cosx + 

8
15 I1 … (II) 

 I1 = ⌡⌠sin1x dx = − cos x + c 

 ∴  ⌡⌠sin5x dx = − 
1
5 sin4x cos x − 

4
15 sin2x cos x − 

8
15 cos x + c 

Example 7.14 : Evaluate : ⌡⌠sin6x dx 

Solution : If In = ⌡⌠sinnx dx,  then we have 

 In = − 
1
n sinn − 1x cos x + 

n − 1
n  In − 2 … (I) 

 ∴ ⌡⌠sin6x dx = I6 

  = − 
1
6 sin5x cos x + 

5
6 I4 (when n=6 in I) 

  = − 
1
6 sin5x cos x + 

5
6 



− 

1
4 sin3x cosx + 

3
4 I2  (when n=4 in I) 

 ⌡⌠sin6x dx = − 
1
6 sin5x cos x − 

5
24 sin3x cos x + 

5
8 I2 (when n=2 in I) 

  = − 
1
6 sin5x cos x − 

5
24 sin3x cos x + 

5
8 



− 

1
2 sin x cosx + 

1
2 I0  

 ⌡⌠sin6x dx = − 
1
6 sin5x cos x − 

5
24 sin3x cos x − 

5
16 sin x cos x + 

5
16 I0 
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 I0 = ⌡⌠sin0x dx  =  ⌡⌠dx = x 

 ∴ ⌡⌠sin6x dx = − 
1
6 sin5x cos x − 

5
24 sin3x cos x − 

5
16 sin x cos x + 

5
16 x 

Example 7.15 : Evaluate :  

 (i) ⌡⌠
0

π/2
 sin7x dx (ii) ⌡⌠

0

π/2
 cos8x dx   (iii) ⌡⌠

0

2π
 sin9 

x
4 dx 

 (iv) ⌡⌠
0

π/6
 cos73x dx  

Solution : (i)We have 

   ⌡⌠
0

π/2
 sinnx dx = 

n − 1
n  . 

n − 3
n − 2

  ...  
2
3  when ‘n’ is odd 

   ⌡⌠
0

π/2
 sin7x dx = 

6
7 . 

4
5 . 

2
3 = 

16
35 

 (ii)  ⌡⌠
0

π/2
 cosnx dx  = 

n − 1
n  . 

n − 3
n − 2

 . 
n − 5
n − 4

 ... 
1
2 . 

π
2   when ‘n’ is even 

   ∴ ⌡⌠
0

π/2
 cos8x dx  = 

7
8 . 

5
6 . 

3
4 . 

1
2 . 

π
2 = 

35π
256 

 (iii)  ⌡⌠
0

2π
 sin9 

x
4 dx  

      t = x / 4 

x 0 2π  Put 
x
4 = t 

 ∴ dx = 4dt t 0 π/2 

   ⌡⌠
0

2π
 sin9 

x
4 dx = 4 ⌡⌠

0

π/2
 sin9t dt = 4. 



8

9 . 
6
7 . 

4
5 . 

2
3 .  = 

512
315 
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 (iv)  ⌡⌠
0

π/6
 cos73x dx  

      t = 3x 

x 0 π/6   Put  3x = t 
  3dx = dt 
  dx = 1/3 dt t 0 π/2 

  ⌡⌠
0

π/6
 cos73x dx = 

1
3  ⌡⌠

0

π/2
 cos7t dt  = 

1
3  



6

7 . 
4
5 . 

2
3 .  =  

16
105 

Example 7.16 : Evaluate :  ⌡⌠
0

π/2
 sin4x cos2x  dx 

Solution : 

   ⌡⌠
0

π/2
 sin4x cos2x dx= ⌡⌠

0

π/2
 sin4x (1 − sin2x) dx 

    = ⌡⌠
0

π/2
 (sin4x − sin6x) dx  = ⌡⌠

0

π/2
 sin4x dx− ⌡⌠

0

π/2
 sin6x dx 

   = 
3
4 . 

1
2 . 

π
2 − 

5
6 . 

3
4 . 

1
2 . 

π
2 = 

π
32 

Two important results : The following two results are very useful in the 
evaluation of certain types of integrals. 
(1) If u and v are functions of x, then 

 ∫udv = uv − u′v1 + u′′v2 − u′′′v3 + ... + (− 1)n unvn + ... 

 where u′, u′′, u′′′ ... are successive derivatives of u and v1, v2, v3 ... are 

repeated integrals of v 
 The above formula is well known as Bernoulli’s formula. 

 Bernoulli’s formula is advantageously applied when u = xn (n is a positive 
integer). 

(2) If n is a positive integer, then  ⌡⌠
0

∞
 xne−ax dx =  

n

an+1  
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Note : The above formula is known as a particular case of Gamma Integral. 
Example 7.17 : Evaluate :  

(i) ∫x3e2x dx    (ii) ⌡⌠
0

1
 x e− 4x dx       (iii) ⌡⌠

0

∞
 x5e−4x dx     (iv) ⌡⌠

0

∞
 e−mxx7 dx 

Solution :  

(1) ∫x3e2x dx 

Using Bernoulli’s formula  

∫udv = uv − u′v1 + u′′v2 ... 

We get 

    dv = e2x dx 

 u = x3 v = 1/2 e2x 

 u′ = 3x2 v1 = 1/4 e2x 

 u′′ = 6x v2 = 1/8 e2x 

 u′′′ = 6 v3 = 1/16 e2x 

 ⌡⌠x3 e2x dx = (x3) 



1

2 e2x  − (3x2) 



1

4 e2x   + (6x) 



1

8 e2x   − (6) 



1

16 e2x   

  = 
1
2 e2x 





x3 − 

3
2x2 + 

3x
2  − 

3
4  

(ii) ⌡⌠
0

1
 x e− 4x dx   

Using Bernoulli’s formula we get 

 ⌡⌠
0

1
 x e− 4x dx = 



(x) 



− 

1
4 e−4x  − (1) 



1

16 e−4x
1
 
0

 

 dv = e−4x dx   

 u = x v = − 
1
4 e−4x 

 u′ = 1 v1 = 
1
16 e−4x 

  = 



− 

1
4 e−4 − 0  − 

1
16 (e−4 − e0)  

  = 
1

16 − 
5

16 e−4 

(iii) ⌡⌠
0

∞
 x5e−4x dx       Using Gamma Integral  ⌡⌠

0

∞
 x5e−4x dx = 

5

46  

(iv) ⌡⌠
0

∞
 e−mxx7 dx = 

7

m8  (Using Gamma Integral) 
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EXERCISE 7.3 
 (1) Evaluate :    (i) ⌡⌠sin4x dx        (ii) ⌡⌠ cos5x dx 

 (2) Evaluate : (i) ⌡⌠
0

π/2
 sin6x dx (ii) ⌡⌠

0

π/2
 cos9x dx 

 (3) Evaluate : (i) ⌡⌠
0

π/4
 cos82x dx (ii) ⌡⌠

0

π/6
 sin73x dx 

 (4) Evaluate : (i) ⌡⌠
0

1
 x e−2x dx (ii) ⌡⌠

0

∞
 x6 e−x/2 dx 

7.5 Area and Volume : 
 In this section, we apply the definite integral to compute measure of area, 
length of arc and surface area. In our treatment it is understood that area, 
volume etc. is a number without any unit of measurement attached to it. 
7.5.1 Area of bounded regions : 
 Theorem : Let y = f(x) be a 
continuous function defined on  
[a, b], which is positive (f(x) lies on 
or above x-axis) on the interval 
[a, b]. Then, the area bounded by the 
curve y = f(x), the x-axis and the 
ordinates x = a and x = b is given by 

Area =  ⌡⌠
a

b
 f(x)dx or ⌡⌠

a

b
 ydx  

 
 
 
 
 
 
 
 

Fig. 7.1 

 If f(x) ≤ 0 (f(x) lies on or below 
x-axis) for all x in a ≤ x ≤ b then area 
is given by  

Area = 
⌡⌠
a

b
 (− y) dx = ⌡⌠

a

b
 (− f(x) dx)  

 (i.e., The area below the x-axis 
is negative) 

 
 
 
 
 
 

 
Fig. 7.2 

x

y

x 
= 

a

x 
= 

b

y = f(x)A
B

C D
x

y

x 
= 

a

x 
= 

b

y = f(x)A
B

C D

x

y

x 
= 

a

x 
= 

b

y = f(x)A
B

D C x

y

x 
= 

a

x 
= 

b

y = f(x)A
B

D C
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Example 7.18 : Find the area of the region bounded by the line 3x − 2y + 6 = 0,  
x = 1, x = 3 and x-axis. 

 Since the line 3x − 2y + 6 = 0 lies above 
the x-axis in the interval [1, 3],  

 (i.e., y > 0 for x ∈ (1,3))   
the required area 

 A = ⌡⌠
1

3
 ydx = 

3
2   ⌡⌠

1

3
 (x + 2) dx  

  = 
3
2 



x2

2  + 2x  
3
 
1

 

 
 
 
 
 
 
 
 

Fig. 7.3 

  = 
3
2  



1

2 (9 − 1) + 2(3 − 1)  = 
3
2 [4 + 4] 

 Area = 12 sq. units 
Example 7.19: 
 Find the area of the region bounded by the line 3x − 5y − 15 = 0, x = 1,  
x = 4 and x-axis. 

 The line 3x − 5y − 15 = 0 lies 
below the x-axis in the interval x = 1 
and x = 4 

 ∴Required area = ⌡⌠
1

4
 (− y) dx 

     

 
 
 
 
 
 

Fig. 7.4 

    = 
⌡⌠
1

4
 − 

1
5 (3x − 15) dx = 

3
5  ⌡⌠

1

4
 (5 − x) dx = 

3
5 





5x − 
x2

2  
4
 
1

 

    = 
3
5 



5(4 − 1) − 

1
2 (16 − 1)  

    = 
3
5 



15 − 

15
2  = 

9
2  sq. units. 

Example 7.20: Find the area of the region bounded y = x2 − 5x + 4,  x = 2, x = 3 
and the x-axis. 

x

y

1 30 2

y =
 (3

/2
)(x

 +
2)

x

y

1 30 2

y =
 (3

/2
)(x

 +
2)

x

y

1 4

y = (1
/5)

(3x
 - 15)

x

y

1 4

y = (1
/5)

(3x
 - 15)
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 For all x, 2 ≤ x ≤ 3 the curve lies 
below the x-axis. 

 Required area = ⌡⌠
2

3
 (− y) dx 

  = ⌡⌠
2

3
 − (x2 − 5x + 4) dx 

  = − 



x3

3  − 5 
x2

2  + 4x
3
 
2

 

 
 
 
 
 
 

 
 

Fig. 7.5 

    = − 









9 − 

45
2  + 12  − 



8

3 − 
20
2  + 8  = − 



− 13

6   =  
13
6  sq. units 

Area between a continuous curve and y-axis : 
 Let x = f(y) be a continuous 
function of y on [c, d]. The area 
bounded by the curve x = f(y) and the 
abscissae y = c, y = d to the right of  

y-axis is given by 
⌡⌠
c

d
 xdy 

 
 
 
 
 
 
Fig. 7.6 

 
 If the curve lies to the left of  
y-axis between the lines y = c and  

y = d, the area is given by ⌡⌠
c

d
 (− x) dy. 

 
 
 
 
 
 
Fig. 7.7 

Example 7.21: Find the area of the 
region bounded by y = 2x + 1, y = 3, 
y = 5 and y – axis. 
Solution :  The line y = 2x + 1 lies to 
the right of y-axis between the lines  
y = 3 and y = 5. 

 ∴ The required area A = ⌡⌠
c

d
 xdy 

 
 
 
 
 

 
 
 
 
 
 

Fig. 7.8 

x

y

1

-2

-1

30 42
x

y

1

-2

-1

30 42

x

y

y = d

y = c

x = f(y)

B

A

D

C
x

y

y = d

y = c

x = f(y)

B

A

D

C

x

y

y = d

y = c

x = f(y)

B

A

D

C
x

y

y = d

y = c

x = f(y)

B

A

D

C

x

y

0

y = 3

y = 5

y
= 

2x
 +

 1

x

y

0

y = 3

y = 5

y
= 

2x
 +

 1
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  = ⌡⌠
3

5
 
y − 1

2  dy = 
1
2  ⌡⌠

3

5
 (y − 1)dy 

  = 
1
2 



y2

2  − y
5
 
3

 = 
1
2  









25

2  − 
9
2  − (5 − 3)   

  =  
1
2 [8 − 2] = 3 sq. units 

Example 7.22: Find the area of the region bounded y = 2x + 4,  y = 1 and y = 3 
and y-axis. 

 The curve lies to the left of y-axis 
between the lines y = 1 and y = 3 
 ∴ Area is given by 

 A = ⌡⌠
1

3
 (− x) dy 

  = ⌡⌠
1

3
 − 



y − 4

2  dy 

 

 

 

 

 

 

Fig. 7.9 

  = 
1
2  ⌡⌠

1

3
 (4 − y)dy = 

1
2 





4y − 
y2

2

3
 
1

 =  
1
2 [8 − 4] = 2 sq. units. 

Remark :  
 If the continuous curve f crosses 

the x-axis, then the integral ⌡⌠
a

b
 f(x) dx 

gives the algebraic sum of the areas 
between the curve and the axis, 
counting area above as positive and 
below as negative. 

 
 
 
 
 

 
 

Fig. 7.10 

 
⌡⌠
a

b
 f(x) dx

 
=

 
⌡⌠
a

c
 f(x) dx  +  

 ↓
above axis

  
⌡⌠
c

d
 (− f(x)) dx  +  

 ↓
below axis

  
⌡⌠
d

b
 f(x) dx

 ↓
above axis

 

x
13 02

y
= 

2x
 +

4

y = 1

y = 3

x
13 02

y
= 

2x
 +

4

y = 1

y = 3

x1 xba c d

f (x) f (x)

x1 xba c d

f (x) f (x)
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Example 7.23: (i) Evaluate the integral ⌡⌠
1

5
 (x − 3)dx 

(ii) Find the area of the region bounded by the line y + 3 = x,  x = 1 and x = 5  
Solution : 

(i)  
⌡⌠
1

5
 (x − 3) dx = 



x2

2  − 3x  
5
 
1

 = 



25

2  − 15  − 



1

2 − 3   = 12 − 12 = 0 …  I 

 (ii) The line y = x − 3 crosses x-axis at x = 3 
 From the diagram it is clear that A1 

lies below x-axis. 

∴ A1 = ⌡⌠
1

3
 (− y) dx.  

 As A2 lies above the x-axis  

 A2 = ⌡⌠
3

5
 ydx 

 
 
 
 
 

 
 
 

Fig. 7.11 

 ∴ Total area = ⌡⌠
1

5
(x − 3)dx =  ⌡⌠

1

3
 − (x − 3) dx + ⌡⌠

3

5
 (x − 3) dx 

  = (6 − 4) + (8 − 6) 
  = 2 + 2 

  = 4 sq. units … (II) 

Note :  

 From I and II it is clear that the integral f(x) is not always imply an area. 
The fundamental theorem asserts that the anti-derivative method works even 
when the function f(x) is not always positive. 

Example 7.24: 

 Find the area bounded by the curve y = sin 2x between the ordinates x = 0, 
x = π and x-axis.  
Solution :  
 The points where the curve y = sin 2x meets the x-axis can be obtained by 
putting  y = 0. 
  sin 2x = 0   ⇒  2x = nπ ,  n ∈ Z 

y =
 x 
− 3y

x
O

1
3 5

A1

A2
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  x = 
n
2 π.      i.e., x = 









0, ± 
π
2, ± π, ± 3 

π
2…  

 ∴ The values of  x  between x = 0 are x = π are x = 0,  
π
2,  π 

 The limits for the first arch are 0 and 
π
2 and the curve lies above x-axis. 

 The limits for the second arch are 
π
2 and π and the curve lies below x-axis. 

∴Required area  

 A = ⌡⌠
0

π/2
 sin 2x dx + ⌡⌠

π/2

π
 (− sin 2x)dx 

  = 



− cos2x

2

π/2
 
0

 + 



cos2x

2
π

 π/2 

 
 
 
 
 
 

 
Fig. 7.12 

  = 
1
2 [−cos π + cos 0 + cos 2π − cos π] 

  = 
1
2 [1 + 1 + 1 + 1] = 2 sq. units. 

Example 7.25: 

  Find the area between the curves y = x2 − x − 2, x-axis and the lines  
x = − 2 and x = 4 

Solution : y = x2 − x − 2 

   = (x + 1) (x − 2) 

 This curve intersects x-axis at  x = − 1 and 
x = 2 
 Required area = A1 + A2 + A3 

 The part A2 lies below x-axis.  

 ∴ A2 = − ⌡⌠
− 1

2
  y dx 

 Hence required area 

 

 

 

 

 

 

 

 

Fig. 7.13 

ππ/2

y

x
0

y = sin 2x

ππ/2

y

x
0

ππ/2

y

x
0

y = sin 2x

4-2
-2

x
= 

-2 x
= 

4

A1

A2

A3y
= 

x2
–

x
- 2

x

y

2 4-2
-2

x
= 

-2 x
= 

4

A1

A2

A3y
= 

x2
–

x
- 2

x

y

2
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   = ⌡⌠
− 2

− 1
 y dx + ⌡⌠

− 1

 2
 (− y)dx + ⌡⌠

2

4
 y dx 

   = 
⌡⌠
− 2

− 1
  (x2 − x − 2) dx + ⌡⌠

− 1

 2
  − (x2 − x − 2)dx + ⌡⌠

2

4
 (x2 − x − 2) dx 

   = 
11
6   +  

9
2  +  

26
3  = 15  sq. units 

General Area Principle : 
 Let f and g be two continuous 
curves, with f lying above g. then the 
area R between f and g, from  
x = a to x = b, is given by 

 R = ⌡⌠
a

b
 (f − g)dx 

 No restriction on f and g where 
they lie. Both may be lie above or 
below the x-axis or g lies below and  
f lies above the x-axis. 

 
 
 
 
 
 

 
 

Fig. 7.14 

Example 7.26: Find the area between the line y=x + 1 and the curve y = x2 − 1. 
Solution : To get the points of intersection of the curves we should solve the 

equations y = x + 1 and y = x2 − 1. 

we get, x2 − 1 = x + 1 

  x2 − x − 2 = 0  
 ⇒  (x − 2) (x + 1) = 0  
 ∴ x = −1 or x = 2 
 ∴ The line intersects the curve at  
x = − 1 and x = 2. 

Required area = ⌡⌠
a

b
 



f(x)

above  − 
g(x)

below  dx 

 
 
 
 
 

 
 
 
 

Fig. 7.15 

   = 
⌡⌠
− 1

2
  [ ](x + 1) − (x2 − 1) dx 

(a, f (a))

g

(b, f (b))

(a, g (a)) (b, g (b))

f

x
= 

a

x
= 

b

(a, f (a))

g

(b, f (b))

(a, g (a)) (b, g (b))

f

x
= 

a

x
= 

b

-1 21

Abo
ve

  : 
y = 

x + 1

Below : y = x2 - 1

x

y

-1 21

Abo
ve

  : 
y = 

x + 1

Below : y = x2 - 1

x

y
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   = ⌡⌠
− 1

2
  [2 + x − x2]dx = 





2x + 
x2

2  − 
x3

3

2
 
−1

 

   = 



4 + 2 − 

8
3  − 



− 2 + 

1
2 + 

1
3   =  

9
2  sq. units 

Example 7.27:  

 Find the area bounded by the curve y = x3 and the line y = x. 

Solution : The line y = x lies above the curve y = x3 in the first quadrant and  
y = x3 lies above the line y = x in the third quadrant. To get the points of 
intersection, solve the curves y = x3, y = x  ⇒ x3 = x .  We get  x = {0, ± 1} 

 The required area = A1 + A2 =  ⌡⌠
−1

0
 [ ]g(x) − f(x) dx + ⌡⌠

0

1
 [ ]f(x) − g(x) dx 

 = ⌡⌠
−1

0
 (x3 − x)dx + ⌡⌠

0

1
 (x − x3)dx 

 = 



x4

4  − 
x2

2

0
 
−1

 + 



x2

2  − 
x4

4

1
 
0

 

= 



0 − 

1
4 −



0 − 

1
2 +



1

2 − 0 −



1

4 − 0   

=  − 
1
4 + 

1
2 + 

1
2 − 

1
4  = 

1
2 sq. units. 

 
 
 
 
 
 

 
 
 

Fig. 7.16 

Example 7.28: Find the area of the region enclosed by y2 = x and y = x − 2 

Solution : The points of intersection of the parabola y2 = x and the line  
y = x − 2 are (1, − 1) and (4, 2) 
 To compute the region [shown in 
figure (6.17)] by integrating with 
respect to x, we would have to split 
the region into two parts, because the 
equation of the lower boundary 
changes at x = 1. However if we 
integrate with respect to y no 
splitting is necessary. 

 
 
 
 
 

 
Fig. 7.17 

-1
10

y =
 x

y = x3

(-1, -1)

(1, 1)

y =
 x

y = x3 x

y

-1
10

y =
 x

y = x3

(-1, -1)

(1, 1)

y =
 x

y = x3 x

y

x

y

(4, 2)

(1, -1)

y = x - 2

x = y2

x

y

(4, 2)

(1, -1)

y = x - 2

x = y2
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      Required area = ⌡⌠
− 1

2
 (f(y) − g(y) dy 

  = ⌡⌠
− 1

 2
 [ ](y + 2) − y2 dy = 



y2

2  + 2y − 
y3

3

2
 
−1

 

  = 



4

2 − 
1
2  + (4 + 2) − 



8

3 + 
1
3  

  = 
3
2 + 6 − 

9
3 = 

9
2 sq. units. 

Example 7.29: Find the area of the region common to the circle x2 + y2 = 16 

and the parabola y2 = 6x 
Solution : The points of intersection 

of x2 + y2 = 16 and y2 = 6x are 

( )2, 2 3  and ( )2, − 2 3   
 Required area is OABC  
 Due to symmetrical property, the 
required area 
  OABC = 2 OBC 

 i.e.,  2{[Area bounded by y2 = 6x, 
x = 0, x = 2 and x-axis] + [Area 

bounded by x2 + y2 = 16, x = 2, x = 4 
and x-axis]} 
 

 
 
 
 
 
 
 
 
 

Fig. 7.18 

   = 2 
⌡⌠
0

2
 6x dx + 2⌡⌠

2

4
  16 − x2 dx 

   = 2 6  



x3/2

3/2

2
 
0

 + 2  



x

2 42 − x2 + 
42

2  sin−1 
x
4  

4
 
2

  

   = 
8 12

3   − 2 12 + 8π − 
8π
3  

   = 
4
3  ( )4π + 3   

x

y

y = √6x

(2,2√3)

y = 
√(

16
 –

x2 )

2O

A

B

CD

x

y

y = √6x

(2,2√3)

y = 
√(

16
 –

x2 )

2O

A

B

CD
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Example 7.30: Compute the area between the curve y = sin x and y = cosx and 
the lines x = 0 and x = π 
Solution : To find the points of 
intersection solve the two equations. 

 Sin x = cos x = 
1
2

 ⇒ x = 
π
4 

 sin x = cos x  = 
− 1

2
 ⇒ x = 

5π
4  

  

 
 
 
 
 
 

Fig. 7.19 

 From the figure we see that  cos x > sin x for 0 ≤ x < 
π
4 and  sin x > cos x for  

π
4 < x < π 

∴ Area A = ⌡⌠
0

π/4
 (cos x − sin x) dx + ⌡⌠

π/4

π
 (sin x − cos x)dx 

  = (sin x + cos x)
π/4
0  + (− cos x − sin x) 

π
π/4 

  = 



sin 

π
4+ cos 

π
4 −(sin 0 + cos0) + (−cosπ − sin π) − 



− cos 

π
4−sin 

π
4  

  = 




1

2
 + 

1
2

 − (0 + 1) + (1 − 0) − 




− 

1
2
  −  

1
2

 = 2 2 sq. units. 

Example 7.31: Find the area of the region bounded by the ellipse 
x2

a2 + 
y2

b2 = 1 

Solution :  The curve is symmetric 
about both axes. 
 ∴Area of the ellipse = 4 × Area 
of the ellipse in the I quadrant. 

 I = 4 ⌡⌠
0

a
  ydx 

  = 4 
⌡⌠
0

a
  

b
a  a2 − x2 dx 

 
 
 
 
 
 

 
Fig. 7.20 

x

y

0 a

y = (b/a) √(a2 – x2)

x

y

0 a

y = (b/a) √(a2 – x2)

π/4 π/2

π

3π/2

1
0

-1

y

x

y = cos x

y = sin x

π/4 π/2

π

3π/2

1
0

-1

y

x

y = cos x

y = sin x
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  = 
4b
a  ⌡⌠

0

a
 a2 − x2 dx  = 

4b
a  



x

2 a2 − x2 + 
a2

2  sin−1 


x

a

a
 
0

 

  = 
4b
a  





0 + 
a2

2  sin−1(1) − 0  = 
4b
a   



a2

2  


π

2  

  = π ab  sq. units. 

 By using parametric form i.e., 4 ⌡⌠
0

a
 y dx = 4 ⌡⌠

0

π/2
 b sin θ (− a sin θ) dθ, we 

get the same area.  

Example 7.32: Find the area of the curve y2 = (x − 5)2 (x − 6) 

(i) between x = 5 and x = 6       (ii) between x = 6 and x = 7 
Solution :  

(i) y2 = (x − 5)2 (x − 6) 

 ∴y = (x − 5) x − 6 
 This curve cuts the x-axis at x = 5 and at x = 6 

 When x takes    any value between 5 and 6, y2 is negative. 
 ∴ The curve does not exist in the interval 5 < x < 6. 
 Hence the area between the curve at x = 5 and x = 6 is zero. 

 (ii) Required area = ⌡⌠
a

b
 ydx 

  = 2 ⌡⌠
6

7
 (x − 5) x − 6 dx 

 (Since the curve is symmetrical 
about x-axis) 

 
 
 
 
 
 

 
 

Fig. 7.21 

  = 2 ⌡⌠
6

7
 (t + 1) t dt 

  = 2 ⌡⌠
0

1
  (t3/2 + t1/2)dt 

 Take  t = x − 6 
 dt = dx 

 t = x − 6 

x 6 7 

t 0 1  

x

y
= 

(x
–

5)
√(

x
–

6)

5 6 7

x
= 

7

x

y
= 

(x
–

5)
√(

x
–

6)

5 6 7

x
= 

7
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  = 2 









t5/2

5
2

 + 
t3/2

3
2

 

1
 
 
0

 = 2 



2

5 + 
2
3  = 2 



6 + 10

15  = 
32
15  sq. units 

Example 7.33: Find the area of the loop of the curve 3ay2 = x(x − a)2 
Solution :  

 Put y = 0 ; we get x = 0, a  

 It meets the x-axis at x = 0 and x = a 

 ∴ Here a loop is formed between 
the points (0, 0) and (a, 0) about  
x-axis. Since the curve is symmetrical 
about x-axis, the area of the loop is 
twice the area of the portion above the 
x-axis. 

 
 
 
 
 

 
 

Fig. 7.22 

 Required area = 2 
⌡⌠
0

a
 y dx 

  = − 2 ⌡⌠
0

a
  

x (x − a)
3a

 dx  = − 
2
3a

  ⌡⌠
0

a
  [ ]x3/2 − a x dx 

  = − 
2
3a

  



2

5 x5/2 − 
2a
3  x3/2

a
 
0

 = 
8a2

15 3
 = 

8 3 a2

45  

 ∴ Required area = 
8 3 a2

45  sq. units.             

Example 7.34:  

Find the area bounded by x-axis and an arch of the cycloid   

x = a (2t − sin 2t), y = a (1 − cos 2t) 

Solution :  The curves crosses x-axis when y = 0. 

 ∴ a(1 − cos 2t) = 0 

 ∴ cos 2t = 1    ;    2t = 2nπ,  n ∈ z 

 ∴ t = 0, π, 2π, … 

    ∴ One arch of the curve lies between 0 and π 

x

y

(a,0)
x

y

(a,0)
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 Required area = ⌡⌠
a

b
 y dx 

  = ⌡⌠
0

π
 a(1 − cos 2t) 2a (1 − cos 2t) dt 

y = a(1 − cos2t) 

x = a (2t − sin 2t) 

dx = 2a(1 − cos 2t) dt 

  = 2a2 ⌡⌠
0

π
  (1 − cos 2t)2dt  =  2a2 ⌡⌠

0

π
 (2 sin2t)2dt  = 8a2 ⌡⌠

0

π
 sin4t dt 

  = 2 × 8a2 ⌡⌠
0

π/2
 sin4t dt      











‡ ⌡⌠
0

2a
 f(x) dx = 2

⌡⌠
0

a
 f(2a − x)dx    

  = 16a2 



3

4 × 
1
2 × 

π
2  = 3πa2 sq. units. 

7.5.2 Volume of solids of revolution : 

 Let f be a non-negative and continuous curve on [a, b] and let R be the 
region bounded above by the graph of f, below by the x-axis and on the sides by 
the lines x = a and x = b [Fig 6.23 (a)].  

 

 

 

 

 

 

Fig. 7.23(a) 

 

 

 

 

 

 

Fig. 7.23 (b) 

 When this region is revolved about the x-axis, it generates a solid having 

circular cross sections (Fig. 7.23(b)]. Since the cross section at x has radius f(x), 

the cross-sectional area is  A(x) = π [ ]f(x) 2 = πy2 

 The volume of the solid is generated by moving the plane circular disc 

[Fig.6.23(b)] along x-axis perpendicular to the disc. 

f(x)

a b

f(x)

a b

f(x)

x

f(x)

x
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 Therefore volume of the solid is V = ⌡⌠
a

 b
 π [ ]f(x) 2dx = ⌡⌠

a

 b
 π y2 dx 

(ii) If the region bounded by the 
graph of x = g(y), the  y-axis and on 
the sides by the lines  y = c and y = d 
(Fig. 7.24) then the volume of the 
solid generated is given by 

 V = 
⌡⌠
c

 d
 π [ ]g(y) 2dx = ⌡⌠

c

 d
 π x2 dy 

 

 

 

 

 

 

Fig. 7.24 

Example 7.35: 

  Find the volume of the solid that results when the ellipse 

 
x2

a2 + 
y2

b2 = 1  (a > b > 0) is revolved about the minor axis. 

Solution :  
 Volume of the solid is obtained by 
revolving the right side of the curve  

x2

a2 + 
y2

b2 = 1 about the y-axis. 

 Limits for y is obtained by putting  

x = 0 ⇒ y2 = b2 ⇒ y = ± b 

 From the given curve x2 = 
a2

b2 (b2 − y2) 

 ∴ Volume is given by 

 
 
 
 
 

 
 
 

Fig. 7.25 

 V = 
⌡⌠
c

d
 π x2dy = ⌡⌠

−b

b
  π  

a2

b2  (b2 − y2) dy  = 2π  
a2

b2  





b2y − 
y3

3

b
 
0

  

  = 2π  
a2

b2 





b3 − 
b3

3 = 
4π
3  a2b cubic units 

Example 7.36:  
Find the volume of the solid generated when the region enclosed by  

y = x, y = 2 and x = 0 is revolved about the y-axis. 

g(y)

y

g(y)

y

-b

b

y

a-a

-b

b

y

a-a
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Solution :  Since the solid is generated by 
revolving about the y-axis, rewrite y = x 

as x = y2. 
 Taking the limits for y, y = 0 and y = 2 

(putting x = 0 in x = y2, we get y = 0) 

 Volume is given by V = ⌡⌠
c

d
  π x2dy 

 
 
 
 
 

 

Fig. 7.26 

  = 
⌡⌠
0

2
 π y4 dy = 



πy5

5  
2
 
0

 = 
32 π

5  cubic units. 

EXERCISE 7.4 
 (1) Find the area of the region bounded by the line x − y = 1 and 
  (i) x-axis, x = 2 and  x = 4       (ii) x-axis,  x = − 2 and  x = 0 
 (2) Find the area of the region bounded by the line x − 2y − 12 = 0 and  
  (i) y-axis, y = 2  and y = 5    (ii) y-axis,   y = − 1  and y = − 3 
 (3) Find the area of the region bounded by the line y = x − 5 and the x-axis 

between the ordinates x = 3 and x = 7. 

 (4) Find the area of the region bounded by the curve y = 3x2 − x and the  
x-axis between x = − 1 and x = 1. 

 (5) Find the area of the region bounded by x2 = 36y, y-axis, y = 2 and y = 4. 

 (6) Find the area included between the parabola y2 = 4ax and its latus rectum. 

 (7) Find the area of the region bounded by the ellipse 
x2

9  + 
y2

5  = 1 between the 

two latus rectums. 

 (8) Find the area of the region bounded by the parabola y2 = 4x and the line 
2x − y = 4. 

 (9) Find the common area enclosed by the parabolas 4y2 = 9x and 3x2 = 16y 

 (10) Find the area of the circle whose radius is a 

Find the volume of the solid that results when the region enclosed by the given 
curves : (11 to 14) 

 (11) y = 1 + x2, x = 1, x = 2, y = 0 is revolved about the x-axis. 

 (12) 2ay2 = x(x − a)2 is revolved about x-axis, a > 0. 

 

x

y

y = √x

y = 2

x

y

y = √x

y = 2
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 (13) y = x3, x = 0, y = 1 is revolved about the y-axis. 

 (14) 
x2

a2 + 
y2

b2 = 1 is revolved about major axis a > b > 0. 

 (15) Derive the formula for the volume of a right circular cone with radius ‘r’ 
and height ‘h’. 

 (16) The area of the region bounded by the curve xy = 1, x-axis,  
x = 1. Find the volume of the solid generated by revolving the area 
mentioned about x-axis. 

7.6. Length of the curve : 
 (i) If the function f(x) and its derivative f ′(x) are continuous on [a, b] 

then the arc length L of the curve y = f(x) from x = a to x = b is defined 

to be L = ⌡⌠
a

b
 1 + 



dy

dx

2
 dx 

 (ii) Similarly for a curve expressed in the form x = g(y), where g is 
continuous on [c, d], the arc length L from y = c to y = d is given by  

L =  ⌡⌠
c

d
 1 + 



dx

dy

2
 dy 

 (iii) When the equation of the curve y = f(x) is represented in parametric 
form x = φ(t),   y = Ψ(t),  α ≤ t ≤ β where φ(t) and Ψ(t) are continuous 
function with continuous derivatives and φ′(t) does not vanish in the 

given interval then L =  ⌡⌠
α

β
 ( )φ′(t) 2 + ( )Ψ′(t) 2  dt 

7.7 Surface area of a solid : 
(i) If the function f(x) and its 
derivatives f ′(x) are continuous on  
[a, b], then the surface area of the solid 
of revolution obtained by the 
revolution about x-axis, the area 
bounded by the curve y = f(x) the two 
ordinates  x = a, x = b and x-axis is  

 S.A. = 2π ⌡⌠
a

b
 y 1 + 



dy

dx

2
 dx 

 

 

 

 

 

 

 

Fig. 7.27 

f(x)

x

f(x)

x
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(ii) Similarly for the curve expressed 
in the form x = g(y) where g′(y) is 
continuous on [c, d], the surface area 
of the solid of revolution obtained by 
the revolution about y-axis, the area 
bounded by the curve x = g(y) the two 
abscissa y = c, y = d and y axis is  

 S.A. = 2π ⌡⌠
c

d
 y 1 + 



dx

dy

2
 dy 

 
 
 
 
 

 
 
 
 

Fig. 7.28 

 (iii) When the equation of the curve y = f(x) is represented in parametric 
form x = g(t),   y = h(t),   α ≤ t ≤ β  where g(t) and h(t) are continuous 
function with continuous derivatives and g′(t) does not vanish in the 

interval, then  S.A. = 2π 
⌡⌠

t = α

t = β
   y  ( )g′(t) 2 + ( )h′(t)  2 dt. 

Example 7.37: Find the length of the curve 4y2 = x3 between x = 0 and x = 1  
Solution :  
 4y2 = x3 
 Differentiating with respect to x 

  8y 
dy
dx = 3x2 

  
dy
dx = 

3x2

8y  

  1 + 



dy

dx

2
 = 1 + 

9x4

64y2 

 
 
 
 
 

 
 
 

Fig. 7.29 

  = 1 + 
9x4

16 × 4y2  =  1 + 
9x4

16x3  = 1 + 
9x
16  

 The curve is symmetrical about x-axis.  
 The required length  

  L = 2⌡⌠
0

1
  1 + 



dy

dx

2
dx = 2⌡⌠

0

1
 



1 + 

9x
16

1/2
 dx 

x

y

x = 1

4y2 = x3

x

y

x = 1

4y2 = x3

g(y)

y

g(y)

y
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   = 2 × 











1 + 

9x
16

3/2

9
16 × 

3
2

1
 
 
0

 = 
64
27 









1 + 

9x
16

3/2 1
 
0

  

   = 
64
27  
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64  − 1  = 
61
27 

Example 7.38: Find the length of the curve 


x

a
2/3

 + 


y

a
2/3

 = 1 

Solution :  

 x = a cos3t, y = a sin3t is the 
parametric form of the given astroid, 
where 0 ≤ t ≤ 2π 

 
dx
dt  = − 3a cos2t sin t  ;   

 
dy
dt  = 3a sin2t cos t 

 
 
 
 
 

 
 
 

Fig. 7.30 

 



dx

dt

2
+ 



dy

dt

2
 = 9a2 cos4t sin2t + 9a2 sin4t cos2t = 3a sin t cos t 

 Since the curve is symmetrical about both axes, the total length of the 
curve is 4 times the length in the first quadrant. 

 But t varies from 0 to 
π
2 in the first quadrant. 

∴ Length of the entire curve = 4 ⌡⌠
0

π/2
  



dx

dt

2
+ 



dy

dt

2
 dt 

  = 4 ⌡⌠
0

π/2
  3a sin t  cos t  dt = 6a 

⌡⌠
0

π/2
 sin 2t dt 

  = 6a . 



− 

cos 2t
2

π/2
 
0

 = − 3a [cos π − cos 0] 

  = − 3a [− 1  − 1] = 6a 

x

y

x2/3 + y2/3 = a2/3

Astroid

a

a-a

-a

x

y

x2/3 + y2/3 = a2/3

Astroid

a

a-a

-a
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Example 7.39: Show that the surface area of the solid obtained by revolving the 
arc of the curve y = sin x from x = 0 to x = π about x-axis is  

2π [ ]2 + log ( )1 + 2  

Solution : y = sin x 

 Differentiating with respect to x  
dy
dx = cos x. 

   ∴ 1 + 



dy

dx

2
 = 1 + cos2x  

   Surface area = ⌡⌠
a

b
 2πy 1 + 



dy

dx

2
 dx  

 when the area is rotated about the x-axis. 

S = ⌡⌠
0

π
  2π sin x 1 + cos2x  dx 

Put cos x = t 

− sin x dx = dt 

       t = cos x 

x 0 π 

t 1 − 1 
 

    =  ⌡⌠
1

− 1
 2π 1 + t2 (− dt) = 4π ⌡⌠

0

1
 1 + t2 (dt) 

    = 4π 



t

2 1 + t2 + 
1
2 log  ( )t + 1 + t2

1
 
0

 

    = 2π [ ]2 + log ( )1 + 2  − 0 

    = 2π [ ]2 + log ( )1 + 2  

Example 7.40: Find the surface area of the solid generated by revolving the 
cycloid x = a(t + sin t), y = a(1 + cos t) about its base (x-axis). 

Solution : y = 0  ⇒  1 + cos t = 0    cos t = − 1    ⇒    t = − π, π 
    x = a (t + sin t)  ;  y = a (1 + cos t) 

 
dx
dt   =  a (1 + cos t)   

dy
dt  = − a sin t 

 



dx

dt

2
+ 



dy

dt

2
 = a2 (1 + cos t)2 + a2 sin2t = 2a cos 

t
2 
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 Surface area = ⌡⌠
− π

π
  2πa (1 + cos t) 2a cos 

t
2 dt 

  = ⌡⌠
− π

π
  2π a . 2 cos2 t

2 . 2 a cos 
t
2 dt  = 16π a2 ⌡⌠

0

π
  cos3 

t
2 dt 

  = 16πa2 ⌡⌠
0

π/2
 2cos3 x dx   



Take 

t
2 = x  

  = 32πa2I3 = 32πa2 × 
2
3 

  = 
64
3 πa2 sq. units. 

EXERCISE 7.5 
 (1) Find the perimeter of the circle with radius a. 

 (2) Find the length of the curve x = a(t − sin t), y = a(1 − cos t) between t = 0 
and π. 

 (3) Find the surface area of the solid generated by revolving the arc of the 

parabola y2 = 4ax, bounded by its latus rectum about x-axis. 
 (4) Prove that the curved surface area of a sphere of radius r intercepted 

between two parallel planes at a distance a and b from the centre of the 
sphere is 2πr (b − a) and hence deduct the surface area of the sphere.  
(b > a). 
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8. DIFFERENTIAL EQUATIONS 

8.1. Introduction : 
 One of the branches of Mathematics conveyed clearly in the principal 
language of science called “Differential equations”, plays an important role in 
Science, Engineering and Social Sciences. Let us analyse a few of the examples 
cited below. 

 (1) Suppose that there are two living species which depend for their 
survival on a common source of food supply. This fact results in a 
competition in consuming the available food. The phenomenon, is 
commonly noticed in the plant life having common supply of water, 
fertilizer and minerals. However, whenever the competition between 
two species begins, the growth rate of one is retarded and we can note 
that the rate of retardation is naturally proportional to the size of the 
other species present at time t. This situation can be expressed as a 
Mathematical model whose solution would help us to determine the 
time at which one species would become extinct. 

 (2) Several diseases are caused by spread of an infection. Suppose that the 
susceptible population of a town is p. One person gets the infection. 
Because of contact another susceptible person is also infected. This 
process continues to cover the entire susceptible population. With some 
assumptions to simplify the mathematical considerations this situation 
can be framed into a mathematical model and a solution can be 
determined which would provide informations regarding the spread of 
the epidemic in the town. 

 (3) If a dead body is brought for a medical examination at a particular time, 
the exact time of death can be determined by noting the temperature of 
the body at various time intervals, formulating it into a mathematical 
problem with available initial conditions and then solving it. 

 (4) The determination of the amount of a radioactive material that 
disintegrates over a period of time is yet another mathematical 
formulation which yield the required result. 

 (5) Several examples exist in which two nations have disputes on various 
issues. Each nation builds its own arms to defend the nation from 
attack. Naturally a spirit of race in building up arms persists between 
conflicting nations. A small grievance quite often creates a war-like 
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situation and adds to increasing the level of arms. These commonly 
experienced facts can be presented in a mathematical language and 
hence solved. It is a fact that such a model has been tested for some 
realistic situations that had prevailed in the First and Second World War 
between conflicting nations. 

 From the above examples it is found that the mathematical formulation to all 
situations turn out to be differential equations. Thus the latent significance of 
differential equations in studying physical phenomena becomes apparent. This 
branch of Mathematics called ‘Differential Equations’ is like a bridge linking 
Mathematics and Science with its applications. Hence it is rightly considered as 
the language of Sciences. 

 Galileo once conjectured that the velocity of a body falling from rest is 
proportional to the distance fallen. Later he decided that it is proportional to the 
time instead. Each of these statements can be formulated as an equation 
involving the rate of change of an unknown function and is therefore an 

example of what Mathematicians call a Differential Equation. Thus 
ds
dt = kt is a 

differential equation which gives velocity of a falling body from a distance s 
proportional to the time t. 

Definition: An equation involving one dependent variable and its derivatives 
with respect to one or more independent variables is called a Differential 
Equation. 

 If y = f(x) is a given function, then its derivative 
dy
dx can be interpreted as the 

rate of change of y with respect to x. In any natural process the variables 
involved and their rates of change are connected with one another by means of 
the basic scientific principles that govern the process. When this expression is 
written in mathematical symbols, the result is often a differential equation. 

 Thus a differential equation is an equation in which differential coefficients 
occur. Its importance can further be realised from the fact that every natural 
phenomena is governed by differential equations.  

 Differential equation are of two types. 

 (i) Ordinary and (ii) Partial.  

 In this chapter we concentrate only on Ordinary differential equations. 

 Definition :  An ordinary differential equation is a differential equation in 
which a single independent variable enters either explicitly or implicitly. 
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 For instance (i) 
dy
dx = x + 5  (ii) (y′)2 + (y′)3 + 3y = x2 (iii) 

d2y

dx2 − 4 
dy
dx + 3y = 0 

are all ordinary differential equations. 

8.2 Order and degree of a differential equation : 
Definition : The order of a differential equation is the order of the highest 
order derivative occurring in it. The degree of the differential equation is the 
degree of the highest order derivative which occurs in it, after the differential 
equation has been made free from radicals and fractions as far as the derivatives 
are concerned. 
 The degree of a differential equation does not require variables r, s, t … to 
be free from radicals and fractions. 
Example 8.1: Find the order and degree of the following differential equations: 

 (i) 
d3y

dx3 + 






d2y

dx2

3

 + 



dy

dx

5
 + y = 7 (ii) y = 4 

dy
dx + 3x 

dx
dy 

 (iii) 
d2y

dx2 = 





4 + 



dy

dx

2
 

3
4
  (iv) (1 + y′)2 = y′2  

Solution : (i) The order of the highest derivative in this equation is 3. The 
degree of the highest order is 1.  ∴ (order, degree) = (3, 1) 

(ii)   y = 4 
dy
dx + 3x 

dx
dy  ⇒   y = 4



dy

dx  + 3x 
1

 



dy

dx

  

 Making the above equation free from fractions involving 
dy
dx we get  

   y . 
dy
dx = 4



dy

dx

2 
+ 3x 

   Highest order = 1 
  Degree of Highest order = 2 
   (order, degree) = (1, 2) 

(iii) 
d2y

dx2 = 





4 + 



dy

dx

2
 

3
4
 

 To eliminate the radical in the above equation, raising to the power 4 on 

both sides, we get  






d2y

dx2

4

 = 





4 + 



dy

dx

2
 
3

. Clearly (order, degree) = (2, 4). 
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(iv) (1 + y′)2 = y′2  ⇒  1 + y′2 + 2y′ = y′2 from which it follows that   

 2 
dy
dx + 1 = 0    ∴ (order, degree) = (1, 1). 

8.3 Formation of differential equations : 
 Let f (x, y, c1) = 0 be an equation containing x, y and one arbitrary constant 
c1. If c1 is eliminated by differentiating f (x, y, c1) = 0 with respect to the 

independent variable once, we get a relation involving x, y and 
dy
dx , which is 

evidently a differential equation of the first order. Similarly, if we have an 
equation f(x, y, c1, c2) = 0 containing two arbitrary constants c1 and c2, then by 

differentiating this twice, we get three equations (including f). If the two 
arbitrary constants c1 and c2 are eliminated from  these equations, we get a 

differential equation of second order. 

 In general if we have an equation f(x, y, c1, c2, …cn) = 0 containing n 

arbitrary constants c1, c2 … cn, then by differentiating n times we get (n + 1) 

equations in total. If the n arbitrary constants c1, c2, … cn are eliminated we get 

a differential equation of order n. 
 Note : If there are relations involving these arbitrary constants then the order 
of the differential equation may reduce to less than n. 
Illustration : 
 Let us find the differential equation of straight lines y = mx + c where both m 
and c are arbitrary constants. 
 Since m and c are two arbitrary constants differentiating twice we get 

   
dy
dx = m 

   
d2y

dx2 = 0 

 Both the constants m and c are 
seen to be eliminated. Therefore the 
required differential equation is  

d2y

dx2 = 0 

 
 
 
 
 
 
 
 
 

Fig. 8.1 

y = -x

y = -2x + 4

y 
=

 -2
x 

+
 8

x

y

y = -x

y = -2x + 4

y 
=

 -2
x 

+
 8

x

y
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Note : In the above illustration we have taken both the constants m and c as 
arbitrary. Now the following two cases may arise. 
Case (i) : m is arbitrary and c is fixed. Since m is the only arbitrary constant in y 
= mx + c  ;      … (1) 
 
 Differentiating once we get 

 
dy
dx = m   … (2) 

 Eliminating m between (1) and (2) 
we get the required differential 
equation 

 x 



dy

dx  − y + c = 0 

 
 
 
 
 
 
 
 

Fig. 8.2 
Case (ii) : c is an arbitrary constant and m is a fixed constant. 
 

 Since c is the only arbitrary 

constant differentiating once we get 
dy
dx = m. Clearly c is eliminated from 

the above equation. Therefore the 

required differential equation is  
dy
dx = m. 

 
 
 
 
 
 
 
 

Fig. 8.3 

Example 8.2: Form the differential equation from the following equations. 

 (i) y = e2x (A + Bx) (ii) y = ex (A cos 3x + B sin 3x) 

 (iii) Ax2 + By2 = 1 (iv) y2 = 4a(x − a) 
Solution : 

 (i) y = e2x (A + Bx)  

 ye−2x = A+ Bx   … (1) 
 Since the above equation contains two arbitrary constants, differentiating 

twice, we get  y′e−2x − 2y e−2x = B 

 {y′′e−2x − 2y′ e−2x} − 2{y′e−2x − 2y e−2x} = 0 

 e−2x {y′′ − 4y′ + 4y} = 0           [‡ e−2x ≠ 0] 
 y′′ − 4y′ + 4y = 0 is the required differential equation. 

y = (1/3)x + c

C
y = -(1/3)x + c

y = -2x + c

x

y

y = (1/3)x + c

C
y = -(1/3)x + c

y = -2x + c

x

y

x

y

x

y
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(ii) y = ex (A cos 3x + B sin 3x) 

 ye−x = A cos 3x + B sin 3x  
 We have  to differentiate twice to eliminate two arbitrary constants 

 y′e−x − ye−x = − 3A sin 3x + 3 B cos 3x  

 y′′ e−x − y′e−x − y′e − x + ye−x = − 9 (A cos 3x + B sin 3x)  

 i.e.,  e−x (y′′ − 2y′ + y) = − 9ye−x  

 ⇒  y′′ − 2y′ + 10y = 0    (‡ e−x ≠ 0) 

(iii)   Ax2 + By2 = 1    … (1) 
 Differentiating,  2Ax + 2Byy′ = 0  i.e.,  Ax + Byy′ = 0 … (2) 

 Differentiating again, A + B (yy′′ + y′2) = 0 … (3) 
 Eliminating A and B between (1), (2) and (3)  we get 

   







x2    y2    − 1

x    yy′    0

1    yy′′ + y′2    0

 = 0  ⇒  (yy′′ + y′2) x − yy′ = 0 

(iv)  y2 = 4a(x − a)    … (1) 
  Differentiating, 2yy′ = 4a … (2) 
 Eliminating a between (1) and (2) we get 

  y2 = 2yy′  



x − 

yy′
2  

 ⇒   (yy′)2 − 2xyy′ + y2 = 0 

EXERCISE 8.1 
  (1) Find the order and degree of the following differential equations. 

  (i) 
dy
dx + y = x2 (ii) y′ + y2 = x  

  (iii) y′′ + 3y′2 + y3 = 0 (iv) 
d2y

dx2 + x = y + 
dy
dx 

  (v) 
d2y

dx2 − y + 






dy

dx + 
d3y

dx3

3
2
 = 0 (vi) y′′ = (y − y′3)

2
3 

  (vii) y′ + (y′′)2 = (x + y′′)2 (viii) y′ + (y′′)2 = x(x + y′′)2 

  (ix) 



dy

dx

2
 + x = 

dx
dy + x2 (x) sinx (dx + dy) = cosx (dx − dy) 
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 (2) Form the differential equations by eliminating arbitrary constants given 
in brackets against each 

  (i) y2 = 4ax {a} 

  (ii) y = ax2 + bx + c {a, b} 

  (iii) xy = c2 {c} 

  (iv) 
x2

a2 + 
y2

b2 = 1 {a, b} 

  (v) y = Ae2x + Be−5x {A, B} 

  (vi) y = (A + Bx)e3x {A, B} 

  (vii) y = e3x {C cos 2x + D sin 2x) {C, D} 

  (viii) y = emx {m} 

  (ix) y = Ae2x cos (3x + B) {A, B} 

 (3) Find the differential equation of the family of straight lines y = mx + 
a
m 

when (i) m is the parameter ; (ii) a is the parameter ; (iii) a, m both are 
parameters 

 (4) Find the differential equation that will represent the family of all circles 
having centres on the x-axis and the radius is unity. 

8.4 Differential equations of first order and first degree : 
 In this section we consider a class of differential equations, the order and 
degree of each member of the class is equal to one. For example, 

 (i) yy′ + x = 0    (ii) y′ + xy = sinx   (iii) y′ = 
x + y
x − y

   (iv) x dy + y dx = 0 

Solutions of first order and first degree equations: 
 We shall consider only certain special types of equations of the first order 
and first degree. viz., (i) Variable separable (ii) Homogeneous (iii) Linear. 

8.4.1 Variable separable : 
 Variables of a differential equation are to be rearranged in the form 

 f1(x) g2(y) dx + f2(x) g1(y) dy = 0 

 i.e., the equation can be written as  

   f2(x)g1(y)dy = − f1(x) g2(y) dx 

   ⇒ 
g1(y)
g2(y) dy = − 

f1(x)
f2(x) dx 
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 The solution is therefore given by 
⌡

⌠ 

g1(y)
g2(y) dy = − 

⌡

⌠ 

f1(x)
f2(x) dx + c 

Example 8.3: Solve : 
dy
dx = 1 + x + y + xy 

Solution : The given equation can be written in the form 

   
dy
dx = (1 + x) + y(1 + x) 

   ⇒   
dy
dx = (1 + x) (1 + y) 

   ⇒   
dy

1 + y = (1 + x)dx 

 Integrating, we have    

 log (1 + y) = x + 
x2

2  + c, which is the required solution. 

Example 8.4: Solve 3ex tan y dx + (1 + ex) sec2y dy = 0 
Solution : The given equation can be written in the form 

   
3ex

1 + ex dx + 
sec2y
tan y  dy = 0 

 Integrating, we have 

   3 log (1 + ex) + log tan y = log c 

   ⇒  log [tan y (1 + ex)
3
] = log c 

   ⇒   (1 + ex)
3
  tan y = c, which is the required solution. 

Note : The arbitrary constant may be chosen like c, 
1
c, log c, ec etc depending 

upon the problem. 

Example 8.5: Solve 
dy
dx  +  







1 − y2

1 − x2

1
2
 = 0 

Solution : The given equation can be written as 

   
dy
dx = − 







1 − y2

1 − x2

1
2
  ⇒  

dy

1 − y2
 = − 

dx

1 − x2
 

 Integrating, we have sin−1y + sin−1x = c 

 ⇒  sin−1 [ ]x 1 − y2 + y 1 − x2  = c 

 ⇒  x 1 − y2 + y 1 − x2 = C is the required solution. 
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Example 8.6: Solve : ex 1 − y2 dx + 
y
x dy = 0 

Solution : The given equation can be written as 

   xexdx = 
− y

1 − y2
 dy 

 Integrating, we have 

 ⌡⌠ xex dx = − 
⌡

⌠ y

1 − y2
 dy 

 ⇒  xex − ⌡⌠ex dx = 
1
2  
⌡
⌠ 

dt
t
 where t = 1 − y2 so that −2y dy = dt 

 ⇒  xex − ex = 
1
2 







t
1
2

1/2  + c 

 ⇒ xex − ex = t + c 

 ⇒ xex − ex −   1 − y2 = c   which is the required solution. 

Example 8.7: Solve : (x + y)2 
dy
dx = a2 

Solution : Put x + y = z.   Differentiating with respect to x we get 

   1 + 
dy
dx = 

dz
dx   i.e.,   

dy
dx  =  

dz
dx − 1 

 The given equation becomes z2 



dz

dx − 1  = a2 

   ⇒  
dz
dx − 1 = 

a2

z2  or  
z2

z2 + a2 dz = dx 

Integrating we have,   
⌡

⌠ z2

z2 + a2  dz = ⌡⌠ dx 

   
⌡

⌠

 
z2 + a2 − a2

z2 + a2  dz = x + c ⇒ 
⌡

⌠

 








1 − 
a2

z2 + a2  dz = x + c 

   ⇒  z − a2 . 
1
a tan−1 

z
a = x + c 

   ⇒  x + y − a tan−1 



x + y

a  = x + c     (‡ z = x + y) 

   i.e.,  y − a tan−1 



x + y

a  = c,  which is the required solution. 
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Example 8.8: Solve : x dy = (y + 4x5 ex4
)dx 

Solution :  

   xdy − y dx = 4x5 ex4
dx 

   
xdy − ydx

x2  = 4x3 ex4
dx 

 Integrating we have,  
⌡
⌠xdy − ydx

x2   = ⌡⌠4x3 ex4
dx 

   ⇒   ⌡
⌠ d 



y

x  = ⌡⌠ et dt where t = x4 

   ⇒    
y
x = et + c 

   i.e., 
y
x = ex4

+ c  which is the required solution. 

Example 8.9: Solve: (x2−y)dx + (y2 − x) dy = 0, if it passes through the origin. 

Solution :  

   (x2 − y)dx + (y2 − x) dy = 0 

   x2dx + y2dy = xdy + ydx 

   x2dx + y2 dy = d(xy) 

 Integrating we have, 
x3

3  + 
y3

3  = xy + c 

 Since it passes through the origin, c = 0 

 ∴ the required solution is 
x3

3  + 
y3

3  = xy  or  x3 + y3 = 3xy 

Example 8.10 : Find the cubic polynomial in x which attains its maximum 
value 4 and minimum value 0 at x = − 1 and 1 respectively. 
Solution : Let the cubic polynomial be y = f(x). Since it attains a maximum at  
x = −1 and a minimum at x = 1. 

   
dy
dx = 0  at x = − 1 and 1 

   
dy
dx = k (x + 1) (x − 1)  =  k(x2 − 1) 

 Separating the variables we have dy = k(x2 − 1) dx 
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   ⌡⌠dy = k ⌡⌠(x2 − 1) dx 

   y = k 



x3

3  − x  + c … (1) 

  when x = − 1,  y = 4 and when  x = 1, y = 0 

 Substituting these in equation (1) we have 

   2k + 3c = 12   ;  − 2k + 3c = 0 

 On solving we have k = 3 and c = 2. Substituting these values in (1) we get 

the required cubic polynomial y = x3 − 3x + 2. 

Example 8.11 : The normal lines to a given curve at each point (x, y) on the 
curve pass through the point (2, 0). The curve passes through the point (2, 3). 
Formulate the differential equation representing the problem and hence find the 
equation of the curve. 

Solution : 

 Slope of the normal at any point  P(x, y) = − 
dx
dy 

 Slope of the normal AP = 
y − 0
x − 2

     ∴ − 
dx
dy = 

y
x − 2

 ⇒  ydy = (2 − x)dx 

 Integrating both sides,  
y2

2  = 2x − 
x2

2  + c … (1) 

 Since the curve passes through (2, 3) 

   
9
2 = 4 − 

4
2 + c ⇒ c = 

5
2 ; put c = 

5
2  in (1), 

  
y2

2  = 2x − 
x2

2  + 
5
2  ⇒  y2 = 4x − x2 + 5 

EXERCISE 8.2 
Solve the following : 

 (1) sec 2x dy − sin5x sec2ydx = 0 (2) cos2xdy + yetanxdx = 0 

 (3) (x2 − yx2)dy + (y2 + xy2)dx = 0 (4) yx2dx + e−xdy = 0 

 (5) (x2 + 5x + 7) dy + 9 + 8y − y2 dx = 0 (6) 
dy
dx = sin(x + y) 

 (7) (x + y)2 
dy
dx = 1  (8) ydx + xdy = e−xy dx  if it cuts the y-axis. 
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8.4.2 Homogeneous equations : 
Definition :  
 A differential equation of first order and first degree is said to be 

homogeneous if it can be put in the form  
dy
dx = f 



y

x     or   
dy
dx = 

f1(x, y)

f2(x, y)
 

Working rule for solving homogeneous equation : 
 By definition the given equation can be put in the form  

   
dy
dx = f 



y

x      … (1) 

 To solve (1)  put y = νx … (2) 
 Differentiating (2) with respect to x gives 

   
dy
dx = ν + x 

dν
dx … (3) 

 Using (2) and (3) in (1) we have 

   ν + x 
dν
dx = f(ν)   or    x 

dν
dx = f(ν) − ν 

 Seperating the variables x and ν we have  

   
dx
x  = 

dν
f(ν) − ν  ⇒ log x + c = 

⌡
⌠ 

dν
f(ν) − ν 

 where c is an arbitrary constant. After integration, replace ν by 
y
x . 

Example 8.12: Solve : 
dy
dx = 

y
x + tan 

y
x 

Solution :  Put y = vx 

   L.H.S. = ν + x 
dν
dx   ;  R.H.S. = v + tan v 

   ∴  ν + x 
dν
dx = ν + tan ν   or   

dx
x  = 

cos ν
sinν   dv 

 Integrating, we have logx = log sin ν + log c  ⇒  x = c sin ν 

   i.e., x = c sin 


y

x  ,    

Example 8.13: Solve : ( )2 xy − x  dy + ydx = 0 

Solution :  The given equation is 
dy
dx =  

− y
2 xy − x

 

   Put    y = vx 
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   L.H.S. = v + x  
dv
dx  ; R.H.S. = 

− v
2 v − 1

  =  
v

1 − 2 v
     

   ∴  v + x 
dv
dx = 

v
1 − 2 v

 

   ⇒ x 
dv
dx = 

2 v v
1  − 2 v

 ⇒ 




1 − 2 v

v v
 dv = 2 

dx
x  

   i.e.,  



v−3/2 − 2. 

1
v  dv = 2 

dx
x  

   ⇒  − 2v−1/2 − 2 log v = 2 log x + 2 log c 

   − v−1/2 = log (v x c) 

   − 
x
y = log(cy)  ⇒   cy = e

− x/y
  or  ye

x/y
 = c 

Note :  This problem can also be done easily by taking x = vy 

Example 8.14: Solve : (x3 + 3xy2)dx + (y3 + 3x2y)dy = 0 

Solution : 
dy
dx = − 

x3 + 3xy2

y3 + 3x2y
   

   Put  y = νx 

  L.H.S. = ν + x 
dν
dx  ;  R.H.S. = − 

x3 + 3xy2

y3 + 3x2y
 = − 







1 + 3ν2

ν3 + 3ν
 

  ∴  ν + x 
dν
dx = − 







1 + 3ν2

ν3 + 3ν
 

  ⇒  x  
dν
dx = − 

ν4 + 6ν2 + 1

ν3 + 3ν
   

  ⇒    
4dx

x  = − 
4ν3 + 12ν
ν4 + 6ν2 + 1

 dν 

 Integrating, we have 

  4 log x = − log (ν4 + 6ν2 + 1) + log c 

  log[x4(ν4 + 6ν2 + 1)] = log c 

  i.e.,  x4 (ν4 + 6ν2 + 1) = c   or 

  y4 + 6x2y2 + x4 = c 

Note (i) :  This problem can also be done by using variable separable method. 
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Note (ii)  : Sometimes it becomes easier in solving problems of the type  
dx
dy = 

f1(x/y)
f2(x/y) . The following example explains this case. 

Example 8.15:  

 Solve : (1 + ex/y)dx + ex/y(1 − x/y) dy = 0 given that y = 1, where x = 0 
Solution :  The given equation can be written as 

   
dx
dy = 

(x / y − 1)ex/y

1 + ex/y  … (1) 

   Put  x = νy   

   L.H.S. = ν + y 
dν
dy  ;  R.H.S. =  

(v − 1)ev

1 + ev   

   ∴  ν + y 
dν
dy = 

(ν − 1)eν

1 + eν
   

   or  y 
dν
dy  = − 

(eν + ν)

1 + eν
 

   ⇒    
dy
y  = − 

(eν + 1)

eν + ν
 dν 

 Integrating we have, log y = − log (eν + ν) + log c 

   or  y(eν + ν) = c   ⇒ yex/y + x = c 

 Now y = 1 when x = 0 ⇒  1e0 + 0 = c ⇒ c = 1 

 ∴ yex/y + x = 1 

Example 8.16: Solve : xdy − ydx = x2 + y2 dx  

Solution :  From the given equation we have 

   
dy
dx = 

y + x2 + y2

x   … (1) 

   Put  y = νx 

   L.H.S. = ν + x 
dν
dx  ;  R.H.S. = 

v + 1 + v2

1  

   ∴  ν + x 
dν
dx = ν + 1 + ν2    or   

dx
x   =  

dν

1 + ν2
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 Integrating, we have,log x + logc = log [ ]v + v2 + 1  

   i.e.,   xc = ν + ν2 + 1  ⇒  x2c  =  y + (y2 + x2) 

EXERCISE 8.3 
Solve the following : 

  (1) 
dy
dx + 

y
x = 

y2

x2    (2) 
dy
dx = 

y(x − 2y)
x(x − 3y)

 (3) (x2 + y2) dy = xy dx      

 (4) x2 
dy
dx = y2 + 2xy given that y = 1, when x = 1. 

 (5) (x2 + y2) dx + 3xy dy = 0 

 (6) Find the equation of the curve passing through (1, 0) and which has slope 

1 + 
y
x   at   (x, y). 

8.4.3 Linear Differential Equation : 
Definition :  

 A first order differential equation is said to be linear in y if the power of the 

terms 
dy
dx  and  y are unity. 

 For example 
dy
dx + xy = ex is linear in y, since the power of  

dy
dx  is one and 

also the power of y is one. If a term occurs in the form y 
dy
dx or y2, then it is not 

linear, as the degree of each term is two. 

 A differential equation of order one satisfying the above condition can 

always be put in the form 
dy
dx + Py = Q, where P and Q are function of x only.  

Similarly a first order linear differential equation in x will be of the form  
dx
dy + Px = Q where P and Q are functions of y only. 

 The solution of the equation which is linear in y is given as 

 ye
∫ Pdx= ∫Qe

∫ Pdx dx + c where e
∫ Pdx is known as an integrating factor and it is 

denoted by I.F. 
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 Similarly if an equation is linear in x then the solution of such an equation 
becomes 

 x e
∫ Pdy = ∫Q  e

∫ Pdy dy + c        ( )where e
∫ Pdy is I.F.   

 We frequently use the following properties of logarithmic and exponential 
functions : 

 (i)  elog A = A  (ii) em log A = Am    (iii)  e− m  log A = 
1

Am   

Example 8.17 : Solve : 
dy
dx + y cot x = 2 cos x 

Solution : The given equation is of the form 
dy
dx  + Py = Q.  This is linear in y. 

Here P = cotx  and Q = 2 cos x    

 I.F. = e∫ Pdx= e∫ cot x dx = elog sin x = sin x 
 ∴ The required solution is  

   y  (I.F.) = ⌡⌠(Q (I.F.)) dx + c  ⇒ y(sinx) = ⌡⌠2 cosx sin x dx + c 

   ⇒  y sin x = ⌡⌠sin 2x dx + c  

   ⇒  y sin x = − 
cos 2x

2  + c   

   ⇒  2y sin x + cos 2x = c 

Example 8.18 : Solve : (1 − x2) 
dy
dx + 2xy = x (1 − x2) 

Solution: The given equation is 
dy
dx  + 





2x

1 − x2  y = 
x

(1 − x2)
 . This is linear in y 

 Here ∫ Pdx = 
⌡
⌠ 

2x

1 − x2 dx = − log (1 − x2)   

 I.F. = e∫ Pdx = 
1

1 − x2  

 The required solution is 

 y . 
1

1 − x2 = 
⌡

⌠ 

x

(1 − x2)
 × 

1

1 − x2 dx.   Put 1 − x2 = t   ⇒  −2xdx = dt 

 ∴  
y

1 − x2 = 
− 1
2  ⌡⌠t−3/2 dt + c  
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 ⇒   
y

1 − x2 = t−1/2 + c  

 ⇒   
y

1 − x2 = 
1

1 − x2
 + c 

Example 8.19 : Solve : (1 + y2)dx = (tan−1y − x)dy 

Solution : The given equation can be written as 
dx
dy  + 

x

1 + y2 = 
tan−1y

1 + y2 . 

 This is linear in x. Therefore we have  

   ∫Pdy = 
⌡
⌠ 

1

1 + y2 dy = tan−1y 

   I.F. = e∫ Pdy = etan−1y 
 The required solution is  

   xe tan−1y = ⌡⌠e tan−1y  






tan−1y

1 + y2   dy + c        


put tan−1y = t

 ∴ 
dy

1 + y2 = dt 

   ⇒  xe tan−1y = ⌡⌠ et . t  dt + c 

   ⇒  xe tan−1y = tet − et + c   

   ⇒  xe tan−1y = e tan−1y (tan−1y − 1) + c 

Example 8.20 : Solve : (x + 1) 
dy
dx − y = ex(x + 1)2 

Solution : The given equation can be written as 
dy
dx  − 

y
x + 1 = ex(x + 1) 

     This is linear in y. Here ∫Pdx =  − ⌡
⌠ 

1
x + 1 dx = − log (x + 1)  

   So   I.F. = e ∫ Pdx = e−log(x + 1) = 
1

x + 1 

 ∴  The required solution is 

   y . 
1

x + 1 = ∫ex (x + 1) 
1

x + 1  dx + c 

    = ∫ex dx  + c 

   i.e.,  
y

x + 1 = ex + c 
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Example 8.21 : Solve : 
dy
dx + 2y  tanx = sinx 

Solution : This is linear in y.  Here  ∫ Pdx  = ⌡⌠2 tanx dx  = 2 log secx   

   I.F. = e ∫ Pdx = elog sec2x = sec2x 
 The required solution is  

   y sec2x = ∫ sec2x . sinx dx  
    = ∫ tanx  sec x  dx  

   ⇒  y sec2x = sec x + c   or     y = cos x + c cos2x 

EXERCISE 8.4 
Solve the following : 

  (1) 
dy
dx + y = x (2) 

dy
dx + 

4x

x2 + 1
  y  =  

1

(x2 + 1)2 

 (3) 
dx
dy + 

x

1 + y2  =  
tan−1y

1 + y2 (4) (1 + x2) 
dy
dx + 2xy = cosx 

 (5) 
dy
dx + 

y
x = sin(x2) (6) 

dy
dx + xy = x 

 (7) dx + xdy = e−y sec2y dy (8) (y − x) 
dy
dx = a2 

 (9) Show that the equation of the curve whose slope at any point is equal to  

y + 2x and which passes through the origin is y = 2(ex − x − 1) 

8.5 Second order linear differential equations with constant 
coefficients : 
 A general second order non-homogeneous linear differential equation with 
constant coefficients is of the form  
 a0y′′ + a1y′ + a2y = X  … (1),  

 where a0, a1, a2 are constants a0 ≠ 0,  and X is a function of x. The equation 

a0y′′ + a1y′ + a2y = 0,  a0 ≠ 0  … (2)  

 is known as a homogeneous linear second order differential equation with 
constant coefficients,  
 To solve (1), first we solve (2). To do this we proceed as follows : 

 Consider the function y = epx, p is a constant. 

   Now y′ = pepx  and  y′′ = p2epx 
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 Note that the derivatives look similar to the function y = epx itself and if  
L(y) = a0y′′ + a1y′ + a2y then 

   L(y) = L(epx)  

    = (a0p2epx + a1pepx + a2 epx) 

    = (a0p2 + a1p + a2)epx 

 Hence if L(y) = 0 then it follows that  (a0p2 + a1p + a2)epx = 0. 

 Since epx ≠ 0 we get that a0p2 + a1p +a2 = 0  …  (3) 

 Note that epx satisfies the equation L(y) = a0y′′ + a1y′ + a2y = 0  then p must 

satisfy a0p2 + a1p + a2 = 0. Moreover if the various derivatives of a function 

look similar in form to the function itself  then epx will be an ideal candidate to 
solve a0y′′ + a1y′ + a2y = 0 . Hereafter we will consider only those set of 

differential equations which admits epx as one of the solutions. Hence we have 
the following : 

Theorem : If λ is a root of a0p2 + a1p +a2 = 0, then eλx is a solution of  

a0y′′ + a1y′ + a2y = 0 

8.5.1 Definition : The equation a0p2 + a1p + a2 = 0 is called the characteristic 

equation of (2). 
 In general the characteristic equation has two roots say λ1 and λ2. Then the 

following three cases do arise. 
Case (i) : λ1 and λ2 are real and distinct.  

 In this case, by the above theorem e
λ1x

 and e
λ2x

 are solutions of (2), and the 

linear combination  y = c1 e
λ1x

 + c2e
λ2x

 is also a solution of (2).  

 For L(y) = a0(c1e
λ1x

 + c2e
λ2x

 )′′+ a1(c1e
λ1x

 + c2e
λ2x

 )′ + a2(c1e
λ1x

 + c2e
λ2x

) 

= c1(a0λ1
2 + a1λ1 + a2)e

λ1x
 + c2(a0λ2

2 + a1 λ2 + a2)e
λ2x

 = c1 . 0 + c2 . 0 = 0.   

 and the solution c1e
λ1x

 + c2e
λ2x

 is known as the complementary function. 

Case (ii) : λ1 and λ2 are complex λ1 = a + ib and λ2 = a − ib    

 In this case as the two roots λ1 and λ2 are complex from theory of equations

 e
λ1x

= e(a + ib)x = eax . eibx= eax (cos bx + i sin bx) and  
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   e
 λ2x

 = eax (cos bx − i sin bx) 
 Hence the solution   

 y = c1e
λ1x

 + c2e
λ2x

 = eax [ ](c1 + c2) cos bx + i(c1 − c2) sinbx  

  = eax [A cos bx + B sin bx] where A = c1 + c2 and B  =  (c1 − c2)i 

 and the complementary function is eax [A cos bx + B sin bx]. 
Case (iii) :The roots are real and equal λ1 = λ2  (say) 

 Clearly eλ1x is one of the solutions of (2). By using the double root property, 

we will obtain xeλ1x as the other solution of (2). Now the linear combination 

c1eλ1x  + c2xeλ1x becomes the solution. i.e., y = (c1 + c2x)eλ1x  is the solution or 

C.F. 
 The above discussion is summarised as follows : 
 Given a0y′′ + a1y′ + a2y = 0  

 Determine its characteristic equation  

 a0p2 + a1p + a2 = 0 … (3).  

 Let λ1, λ2 be the two roots of (3), then the solution of (2) is 

 y =  



Ae

λ1x
 + Be

λ2x
 if λ1 and λ2 are real and distinct

eax (A cos bx + B sin bx)  if λ1 = a + ib and λ2 = a − ib

(A + Bx)e
λ1x

  if λ1 = λ2 (real)

 

 A and B are arbitrary constants. 

General solution : 
 The general solution of a linear equation of second order with constant  
co-efficient consists of two parts namely the complementary function and the 
particular integral. 

Working rule : 
 To obtain the complementary function (C.F.) we solve the equation 

 a0 
d2y

dx2 + a1 
dy
dx + a2y = 0 and obtain a solution y = u (say). Then the general 

solution is given by y = u + ν where ν is called the particular integral of (1). 
 The function u, the complementary function is associated with the 
homogeneous equation and v, the particular integral is associated with the term 
X. If X = 0 then the C.F. becomes the general solution of the equation. 
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Note : In this section we use the differential operators 

   D  ≡ 
d
dx  and  D2 ≡ 

d2

dx2   ;   Dy = 
dy
dx    ;   D2y = 

d2y

dx2 

8.5.2 Method for finding Particular Integral : 

(a) Suppose X is of the form eαx, α  a constant 

   D(eαx) = αeαx   ;  D2 (eαx) = α2 eαx  … 

   Dn(eαx) = αneαx ,  then f(D) eαx = f(α) eαx  … (1) 

 Note that 
1

f(D) is the inverse operator to f(D).  

 Operating both sides of (1) by 
1

f(D) we have,  

  f(D) . 
1

f(D) e
αx = 

1
f(D) f(α)eαx  

 ⇒ eαx = 
1

f(D) f(α)eαx   (‡ f(D) . 
1

f(D) = I) 

 then 
1

f(α)
 eαx = 

1
f(D) e

αx 

 Thus the P.I. is given by 
1

f(D)e
αx= 

1
f(α)

 eαx represented symbolically. …(2) 

 (2) holds when f(α) ≠ 0. 

 If f(α) = 0 then D = α is a root of the characteristic equation for the 
differential equation f(D) = 0  ⇒  D − α is a factor of f(D).  
 Let f(D) = (D − α) θ(D), where θ(α) ≠ 0 then 

  
1

f(D) e
αx = 

1
(D − α) θ(D)

 . eαx 

   = 
1

D − α  . 
1

θ(α)
  eαx 

   = 
1

θ(α)
  

1
D − α eαx … (3) 

  Put  
1

(D − α)
 eαx = y ⇒ (D − α)y = eαx 

  then ye−
 ∫ α dx = ⌡⌠eαx. e−

 ∫ α dx. dx
 

  i.e.,   ye−αx = ⌡⌠eαx e−αx dx  ⇒  y = eαxx 
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 Substituting in (3) we have 

  
1

f(D)

 
eαx = 

1
θ(α)

  xeαx 

 If further, θ(α) = 0, then D = α is a repeated root for f(D) = 0.  

  Then   
1

f(D)

 
eαx = 

x2

2  eαx 

Example 8.22 : Solve : (D2 + 5D + 6)y = 0 or y″ + 5y′ + 6y = 0 
Solution : To find the C.F. solve the characteristic equation 

     p2 + 5p + 6 = 0 
   ⇒ (p + 2) (p + 3) = 0   ⇒  p = − 2  and p = − 3 

 The C.F. is Ae−2x + Be−3x.  

 Hence the general solution is y = Ae−2x + Be−3x where A and B are 
arbitrary constants. 

Example 8.23 : Solve : (D2 + 6D + 9)y = 0 
Solution : The characteristic equation is 

   p2 + 6p + 9 = 0 

   i.e.,  (p + 3)2 = 0  ⇒  p = − 3, − 3 

 The C.F. is (Ax + B)e− 3x 

 Hence the general solution is y = (Ax + B)e−3x  
 where A and B are arbitrary constants. 

Example 8.24 : Solve : (D2 + D + 1)y = 0 

Solution : The characteristic equation is  p2 + p + 1 = 0 

   ∴  p = 
− 1 ± 1 − 4

2  = 
− 1
2  ± i 

3
2  

Hence the general solution is   y = e−x/2  



A cos 

3
2  x + B sin 

3
2  x  

where A and B are arbitrary constant. 

Example 8.25 : Solve : (D2 − 13D + 12)y = e−2x 

Solution : The characteristic equation is p2 − 13p + 12 = 0 

  ⇒  (p − 12)  (p − 1) = 0    ⇒  p = 12 and 1 

 The C.F. is Ae12x + Bex 

 Particular integral  P.I. = 
1

D2 − 13D + 12
 e−2x 
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    = 
1

(− 2)2 − 13 (− 2) + 12
 e−2x = 

1
4 + 26 + 12 e−2x 

    = 
1

42 e−2x 

Hence the general solution is y = CF + PI   ⇒   y = Ae12x + Bex + 
1
42 e−2x 

Example 8.26 : Solve : (D2 + 6D + 8)y = e−2x 

Solution : The characteristic equation is p2 + 6p + 8 = 0 
   ⇒  (p + 4)  (p + 2) = 0  ⇒   p = − 4 and − 2 

 The C.F. is Ae− 4x + Be−2x  

 Particular integral  P.I. = 
1

D2 + 6D + 8
 e−2x

 = 
1

(D + 4) (D + 2)
e−2x

 

 Since f(D) = (D + 2) θ(D))  

    = 
1

θ (−2)
 
xe−2x

 = 
1
2

 xe−2x
 

Hence the general solution is y = Ae− 4x + Be−2x + 
1
2 

xe−2x
 

Example 8.27 : Solve : (D2 − 6D + 9)y = e3x 

Solution : The characteristic equation is p2 − 6p + 9 = 0 

   i.e.,  (p − 3)2 = 0  ⇒   p = 3, 3 

 The C.F. is (Ax + B)e3x 

 Particular integral  P.I. = 
1

D2 − 6D + 9
e3x

 

    = 
1

(D − 3)2
 e3x

 = 
x2

2
 e3x

 

Hence the general solution is y = (Ax + B)e3x + 
x2

2
 e3x

 

Example 8.28 : Solve : (2D2 + 5D + 2)y = e
− 12 x

 

Solution : The characteristic equation is 2p2 + 5p + 2 = 0 

   ∴  p = 
− 5 ± 25 − 16

4  = 
− 5 ± 3

4  
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   ⇒  p = − 
1
2  and − 2 

 The C.F. is   Ae
− 12 x

 + Be−2x 

 Particular integral  P.I. = 
1

2D2 + 5D + 2
 
e
− 12 x

 = 
1

2



D + 

1
2  (D + 2)

e
− 12 x

 

    = 
1

θ 



− 

1
2  . 2

 
xe
− 12 x

 = 
1
3 x e

− 12 x
 

  Hence the general solution is y = Ae
− 12 x

 + Be−2x + 
1
3 x e

− 12 x
 

Caution : In the above problem we see that while calculating the particular 
integral the coefficient of D expressed as factors is made unity. 

 (b) When X is of the form  sin ax or cos ax. 

Working rule : 

Formula 1:  Express f(D) as function of D2, say φ(D2) and then replace  

D2 by − a2. If φ(− a2) ≠ 0. Then we use the following result. 

   P.I. = 
1

f(D) cos ax = 
1

φ(D2)
 cos ax = 

1

φ(− a2)
 cos ax 

 For example PI = 
1

D2 + 1
 cos 2x = 

1

− 22 + 1
 cos 2x = − 

1
3 cos 2x 

Formula 2 :  Sometimes we cannot form φ(D2). Then we shall try to get  

φ(D, D2), that is, a function of D and D2. In such cases we proceed as follows : 

For example :  P.I. = 
1

D2 − 2D + 1
cos3x

 

    = 
1

− 32 − 2D + 1
 cos3x

      Replace D2 by − 32     

    =  
− 1

2(D + 4)
 cos3x

    

    = 
− 1
2   

D − 4

D2 − 42
 cos3x

    Multiply and divide by D − 4  
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    = 
− 1
2   

1

− 32 − 42 (D − 4) cos3x 

    = 
1

50 (D − 4) cos 3x 

    = 
1

50 [D cos 3x − 4 cos 3x] = 
1
50  [− 3 sin 3x − 4 cos 3x] 

Formula 3 : If φ(− a2) = 0 then we proceed as shown in the following example: 

 Example : P.I. = 
1

φ(D2)
cosax

 = 
1

D2 + a2
 cosax

  

    = 
1

(D + ia) (D − ia)
 cosax

  

    = R.P. 



1

(D + ia) (D − ia)
eiax

  = R.P. 



1

θ(ia)
 xeiax  

    = Real part of 



xeiax

2ia   as θ (ia) = 2ia 

    = 
− x
2a  [ ]Real part of i [cos ax + i sin ax]    

    = 
− x
2a  (− sin ax)  = 

x sin ax
2a  

Note :  If X = sin ax 

 Formula 1 : 
1

φ(− a2)
 sin ax 

 Formula 2 : Same as cos ax method 

 Formula 3 : 
1

D2 + a2 sin ax  =  I.P. 



1

(D + ia) (D − ia)
eiax

  = 
− x
2a   cos ax 

Example 8.29 : Solve : (D2 − 4)y = sin 2x 

Solution : The characteristic equation is p2 − 4 = 0 ⇒  p = ± 2  

   C.F. = Ae2x + Be−2x  ;   

   P.I. =  
1

D2 − 4
 (sin 2x) = 

1
− 4 − 4

 (sin 2x) = − 
1
8  sin 2x 

Hence the general solution is y = C.F. + P.I. ⇒  y =  Ae2x + Be− 2x − 
1
8 sin 2x 

Example 8.30 : Solve : (D2 + 4D + 13)y = cos 3x 

Solution :  The characteristic equation is p2 + 4p + 13 = 0 
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   p = 
− 4 ± 16 − 52

2  = 
− 4 ± − 36

2  = 
− 4 ± i6

2  = − 2 ± i3 

    C.F. = e−2x (A cos 3x + B sin 3x) 

   P.I. = 
1

D2 + 4D + 13
 (cos 3x) 

    = 
1

− 32 + 4D + 13
 (cos 3x)  =  

1
4D + 4  (cos 3x) 

    = 
(4D − 4)

(4D + 4) (4D − 4)
 (cos 3x)  =  

4D − 4

16D2 − 16
 (cos 3x) 

    = 
4D − 4
−160

 (cos 3x) =  
1
40 (3 sin 3x + cos 3x) 

  The general solution is y = C.F. + P.I. 

 y = e−2x (A cos 3x + B sin 3x) + 
1
40 (3 sin 3x + cos 3x) 

Example 8.31 : Solve (D2 + 9)y = sin 3x 

Solution : The characteristic equation is p2 + 9 = 0   ⇒  p = ± 3i 

   C.F. = (A cos 3x + B sin 3x) 

   P.I. = 
1

D2 + 9
 sin 3x 

    = 
− x
6  cos 3x    since 

1

D2 + a2 sin ax = 
− x
2a  cos ax 

 Hence the solution is y = C.F. + P.I. 

   i.e.,  y = (A cos 3x + B sin 3x) − 
x cos 3x

6  

 (c) When X is of the form x and x2 

Working rule : Take the P.I. as c0 + c1x if f(x) = x and c0 + c1x + c2x2 if  

f(x) = x2. Since P.I. is also a solution of (aD2 + bD + c)y = f(x), take  

y = c0 + c1x  or y = c0 + c1x + c2x2 according as f(x) = x or x2. By substituting  
y value and comparing the like terms, one can find c0, c1 and c2. 
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Example 8.32 : Solve : (D2 − 3D + 2)y = x 

Solution :  The characteristic equation is p2 − 3p + 2 = 0   ⇒ (p − 1) (p − 2) = 0 
 p = 1, 2 

  The C.F. is (Aex + Be2x) 
   Let  P.I. = c0 + c1x 

  ∴ c0 + c1x is also a solution.  

  ∴ (D2 − 3D + 2) (c0 + c1x) = x  

  i.e., (− 3c1 + 2 c0) + 2c1x = x 

  ⇒ 2c1 = 1  ∴  c1  =  
1
2 

  (− 3c1 + 2 c0) = 0  ⇒  c0 = 
3
4 

  ∴  P.I. = 
x
2 + 

3
4 

  Hence the general solution is y = C.F. + P.I. 

  y = Aex + Be2x + 
x
2 + 

3
4 

Example 8.33 :  

 Solve : (D2 − 4D + 1)y = x2 

Solution : The characteristic equation is p2 − 4p + 1 = 0   

   ⇒  p = 
4 ± 16 − 4

2  = 
4 ± 2 3

2  = 2 ± 3 

   C.F. = Ae
( )2 + 3 x

 + Be
( )2 − 3 x

 

   Let  P.I. = c0 + c1x + c2x2  

  But P.I. is also a solution. 

  ∴ (D2 − 4D + 1) (c0 + c1x + c2x2 ) = x2 

  i.e.,  (2c2 − 4c1 + c0) +  (− 8c2 + c1)x + c2x2 = x2 

  c2 = 1 

  − 8c2 + c1 = 0 ⇒  c1 = 8 

  2c2 − 4c1 + c0 = 0 ⇒ c0 = 30 

  P.I. = x2 + 8x + 30 
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  Hence the general solution is y = C.F. + P.I. 

  y = Ae
( )2 + 3 x

 + Be
( )2 − 3 x

 + (x2 + 8x + 30) 

EXERCISE 8.5 
Solve the following differential equations : 

  (1) (D2 + 7D + 12)y = e2x (2) (D2 − 4D + 13)y = e−3x 

 (3) (D2 + 14D + 49)y = e−7x + 4 (4) (D2 − 13D + 12)y = e−2x + 5ex 

 (5) (D2 + 1) y = 0 when x = 0, y = 2 and when x = 
π
2, y = − 2 

 (6) 
d2y

dx2 − 3 
dy
dx + 2y = 2e3x when x = log2, y = 0 and when x = 0,  y = 0 

 (7) (D2 + 3D − 4) y = x2  (8) (D2 − 2D − 3)y = sinx  cosx 

 (9) D2y = − 9 sin 3x  (10) (D2 − 6D + 9) y = x + e2x 

 (11) (D2 − 1)y = cos2x − 2 sin 2x (12) (D2 + 5)y = cos2x 

 (13) (D2 + 2D + 3)y = sin 2x (14) (3D2 + 4D + 1)y = 3e−x/3 

8.6 Applications : 
 In this section we solve problems on differential equations which have direct 
impact on real life situation. Solving of these types of problems involve 
 (i) Construction of the mathematical model describing the given situation  
 (ii) Seeking solution for the model formulated in (i) using the methods 

discussed earlier. 
Illustration :  
 Let A be any population at time t. The rate of change of population is 
directly proportional to initial population i.e., 

 
dA
dt   α  A   i.e.,   

dA
dt   = kA  where k is called the constant of  proportionality    

 (1) If k > 0, we say that A grows exponentially with growth constant k 
(growth problem). 

 (2) If k < 0 we say that A decreases exponentially with decreasing  
constant k (decay problem). 

 In all the practical problems we apply the principle that the rate of change 
of population is directly proportional to the initial population 
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 i.e.,  
dA
dt  α A  or 

dA
dt  = kA 

 (Here k may be positive or negative depends on the problem). This linear 
equation can be solved in three ways i.e., (i) variable separable  (ii) linear (using 
I.F.) (iii) by using characteristic equation with single root k. In all the ways we 

get the solution as A = cekt where c is the arbitrary constant and k is the constant 
of proportionality. In general we have to find out c as well as k from the given 

data. Sometimes the value of k may be given directly as in 8.35. 
dA
dt  is directly 

given in 8.38. 

Solution :  
dA
dt  = kA 

 (i)  
dA
A  = kdt ⇒  log A = kt + log c 

      ⇒ A = ekt + log c  ⇒ A = cekt 

 (ii)  
dA
dt  − kA = 0 is linear in A 

   I.F. = e−kt  

   Ae−kt =  ⌡⌠e−kt O dt + c  ⇒ Ae−kt = c    

   A = cekt 

 (iii) (D − k)A = 0 

  Chr. equation is p − k = 0  ⇒  p = k 

  The C.F. is cekt 

  But there is no P.I. 

  ∴ A = cekt 

 (iv) In the case of Newton’s law of cooling (i.e., the rate of change of 
temperature is proportional to the difference in temperatures) we get the 
equation as 

  
dT
dt  = k(T − S)  

 [T− cooling object temperature, S − surrounding temperature] 

  
dT

T − S
 = kdt ⇒ log (T − S) = kt + log c ⇒ T − S = cekt  

⇒ T = S + cekt 
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Example 8.34 : In a certain chemical reaction the rate of conversion of a 
substance at time t is proportional to the quantity of the substance still 
untransformed at that instant. At the end of one hour, 60 grams remain and at 
the end of 4 hours 21 grams. How many grams of the substance was there 
initially? 

Solution : 

 Let A be the substance at time t 

 
dA
dt  α A ⇒ 

dA
dt  = kA  ⇒  A = cekt 

 When t = 1,   A = 60 ⇒ cek = 60 …  (1) 

 When  t = 4, A = 21  ⇒ ce 4k = 21 … (2) 

 (1) ⇒ c4e4k = 604 … (3) 

 
(3)
(2)  ⇒  c3 = 

604

21   ⇒  c = 85.15  (by using log) 

 Initially i.e., when t = 0,  A = c = 85.15 gms (app.) 

 Hence initially there was 85.15 gms (approximately) of the substance. 
Example 8.35 : A bank pays interest by continuous compounding, that is by 
treating the interest rate as the instantaneous rate of change of principal. 
Suppose in an account interest accrues at 8% per year compounded 
continuously. Calculate the percentage increase in such an account over one 

year. [Take e.08 ≈ 1.0833] 
Solution :  Let A be the principal at time t 

 
dA
dt  α A ⇒ 

dA
dt  = kA  ⇒ 

dA
dt  = 0.08 A, since k = 0.08   

 ⇒  A(t) = ce0.08t 

 Percentage increase in 1 year =
A(1) − A(0)

A(0)  × 100 

 = 



A(1)

A(0) − 1  × 100 = 



c. e0.08

c  − 1  × 100 = 8.33% 

 Hence percentage increase is  8.33% 

Example 8.36 :  

 The temperature T of a cooling object drops at a rate proportional to the 
difference T − S, where S is constant temperature of surrounding medium. If 
initially T = 150°C, find the temperature of the cooling object at any time t. 
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Solution :  

 Let T be the temperature of the cooling object at any time t 

 
dT
dt  α (T− S) ⇒ 

dT
dt  = k (T − S) ⇒ T − S = cekt, where k is negative 

⇒ T = S + cekt 
 When t = 0,  T = 150  ⇒  150 = S + c  ⇒  c = 150 − S 
 ∴ The temperature of the cooling object at any time is  

 T = S + (150 − S)ekt 

Note :  Since k is negative, as t increases T decreases. 

 It is a decay problem. Instead of k one may take − k where k > 0. Then the 

answer is T = S + (150 − S)e− kt . Again, as t increases T decreases. 

Example 8.37 : For a postmortem report, a doctor requires to know 
approximately the time of death of the deceased. He records the first 
temperature at 10.00 a.m. to be 93.4°F. After 2 hours he finds the temperature 
to be 91.4°F. If the room temperature (which is constant) is 72°F, estimate the 
time of death. (Assume normal temperature of a human body to be 98.6°F). 





loge 

19.4
21.4 = − 0.0426  × 2.303 and  loge 

26.6
21.4 = 0.0945 × 2.303  

Solution : 

 Let T be the temperature of the body at any time t 

 By Newton’s law of cooling 
dT
dt  α (T − 72) since S = 72°F 

  
dT
dt  = k (T − 72)  ⇒  T− 72 = cekt 

  or   T = 72 + cekt 
 At t = 0, T = 93.4   ⇒   c = 21.4 [ First recorded time 10 a.m. is t = 0] 

  ∴ T = 72 + 21.4ekt 

 When t = 120, T = 91.4  ⇒  e120k = 
19.4
21.4 ⇒ k = 

1
120 loge



19.4

21.4   

 = 
1

120 (− 0.0426 × 2.303) 

 Let t1 be the elapsed time after the death. 

 When t = t1 ; T = 98.6  ⇒ 98.6 = 72 + 21.4 e
kt1 
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 ⇒ t1 = 
1
k  loge 



26.6

21.4  = 
− 120 × 0.0945 × 2.303

0.0426 × 2.303
 = − 266 min  

[For better approximation the hours converted into minutes] 
 i.e., 4 hours 26 minutes before the first recorded temperature. 
 The approximate time of death is 10.00 hrs − 4 hours 26 minutes. 
 ∴ Approximate time of death is 5.34 A.M. 

Note :  Since it is a decay problem, we can even take 
dT
dt  = − k(T − 72) where  

k > 0. The final answer will be the same. 

Example 8.38 : A drug is excreted in a patients urine. The urine is monitored 
continuously using a catheter. A patient is administered 10 mg of drug at time 

 t = 0, which is excreted at a Rate of − 3t1/2 mg/h. 

 (i) What is the general equation for the amount of drug in the patient at 
time t > 0? 

 (ii) When will the patient be drug free? 

Solution : 

 (i) Let A be the quantum of drug at any time t 

 The drug is excreted at a rate of − 3t
1
2 

  i.e.,  
dA
dt  = − 3t

1
2  ⇒ A = − 2t

3
2 + c 

  When t = 0,  A = 10  ⇒  c = 10 

 At any time t   A = 10 − 2t
3
2 

 (ii) For drug free, A = 0  ⇒  5 = t
3
2  ⇒ t3 = 25  ⇒  t = 2.9 hours. 

  Hence the patient will be drug free in 2.9 hours or 2 hours 54 min. 
Example 8.39 :  

 The number of bacteria in a yeast culture grows at a rate which is 
proportional to the number present. If the population of a colony of yeast 
bacteria triples in 1 hour. Show that the number of bacteria at the end of five 

hours will be 35 times of the population at initial time. 

Solution :  Let A be the number of bacteria at any time t 

  
dA
dt  α A  ⇒  

dA
dt  = kA  ⇒  A = cekt 
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  Initially, i.e.,  when t = 0, assume that A = A0 

  ∴  A0 = ce° = c   

  ∴  A = A0ekt 

  when t = 1,  A = 3A0  ⇒  3A0 = A0ek ⇒ ek = 3 

  When t = 5,   A = A0e5k = A0(ek)5 = 35. A0 

 ∴ The number of bacteria at the end of 5 hours will be 35 times of the 
number of bacteria at initial time 

EXERCISE 8.6 
 (1) Radium disappears at a rate proportional to the amount present. If 5% of 

the original amount disappears in 50 years, how much will remain at the 
end of 100 years. [Take A0 as the initial amount]. 

 (2) The sum of Rs. 1000 is compounded continuously, the nominal rate of 
interest being four percent per annum. In how many years will the 
amount be twice the original principal? (loge2 = 0.6931). 

 (3) A cup of coffee at temperature 100°C is placed in a room whose 
temperature is 15°C and it cools to 60°C in 5 minutes. Find its 
temperature after a further interval of 5 minutes.  

 (4) The rate at which the population of a city increases at any time is 
proportional to the population at that time. If there were 1,30,000 people 
in the city in 1960 and 1,60,000 in 1990 what population may be 

anticipated in 2020.    



log e 



16

13  = .2070  ;   e.42 = 1.52  

 (5) A radioactive substance disintegrates at a rate proportional to its mass. 
When its mass is 10 mgm, the rate of disintegration is 0.051 mgm per 
day. How long will it take for the mass to be reduced from 10 mgm to  
5 mgm.   [loge2 = 0.6931] 
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9. DISCRETE MATHEMATICS 

 Discrete Mathematics deals with several selected topics in Mathematics 
that are essential to the study of many Computer Science areas. Since it is very 
difficult to cover all the topics, only two topics, namely “Mathematical Logic”, 
and “Groups” have been introduced. These topics will be very much helpful to 
the students in certain practical applications related to Computer Science. 

9.1. Mathematical Logic : Introduction : 
 Logic deals with all types of reasonings. These reasonings may be legal 
arguments or mathematical proofs or conclusions in a scientific theory. Aristotle 
(384 – 322 BC) wrote the first treatise on logic. Gottfried Leibnitz framed the 
idea of using symbols in logic and this idea was realised in the nineteenth 
century by George Boole and Augustus De’Morgan. 
 Logic is widely used in many branches of sciences and social sciences.  It 
is the theoretical basis for many areas of Computer Science such as digital logic 
circuit design, automata theory and artificial intelligence. 
 We express our thoughts through words. Since words have many 
associations in every day life, there are chances of ambiguities to appear. In 
order to avoid this, we use symbols which have been clearly defined. Symbols 
are abstract and neutral. Also they are easy to write and manipulate. This is 
because the mathematical logic which we shall study is also called symbolic 
logic. 

9.1.1 Logical statement or Proposition : 
 A statement or a proposition is a sentence which is either true or false but 
not both. 
 A sentence which is both true and false simultaneously is not a statement, 
rather it is a paradox. 
Example  1 :  
(a) Consider the following sentences : 
 (i) Chennai is the capital of Tamilnadu. 
 (ii) The earth is a planet. 
 (iii) Rose is a flower. 
 Each of these sentences is true and so each of them is a statement. 
(b) Consider the following sentences : 
 (iv) Every triangle is an isosceles triangle. 
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 (v) Three plus four is eight 
 (vi) The sun is a planet. 
 Each of these sentences is false and so each of them is a statement. 
Example 2 :  Each of the sentences 
 (vii) Switch on the light. 
 (viii) Where are you going? 
 (ix) May God bless you with success. 
 (x) How beautiful Taj Mahal is! 
 cannot be assigned true or false and so none of them is a statement. In fact, 
(vii) is a command, (viii) is a question (ix) is an optative and (x) is exclamatory. 
Truth value of a statement : 
 The truth or falsity of a statement is called its truth value. If a statement is 
true, we say that its truth value is TRUE or T and if it is false, we say that its 
truth value is FALSE or F. 
 All the statements in Example 1(a) have the truth value T, while all the 
statements in Example 1 (b) have the truth value F. 
Simple statements : 
 A statement is said to be simple if it cannot be broken into two or more 
statements. All the statements in (a) and (b) of Example 1 are simple statements. 
Compound statements : 
 If a statement is the combination of two or more simple statements, then it 
is said to be a compound statement. 
Example : It is raining and it is cold. 
 This is a compound statement and it is a combination of two simple 
statements “It is raining”, “It is cold”. 
 Simple statements which on combining form compound statements are 
called sub-statements or component statements of the compound statement. 
 The fundamental property of a compound statement is that its truth value is 
completely determined by the truth values of its sub-statements together with 
the way in which they are combined to form the compound statement. 
Basic logical connectives 
 The words which combine simple statements to form compound statements 
are called connectives. We use the connectives ‘and’, ‘or’, etc., to form new 
statements by combining two or more statements. But the use of these 
connectives in English language is not always precise and unambiguous. Hence 
it is necessary to define a set of connectives with definite meanings in the 
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language of logic, called object language. Three basic connectives are 
conjunction which corresponds to the English word ‘and’, ‘disjunction’ which 
corresponds to the word ‘or’ ‘negation’ which corresponds to the word ‘not’. 

 We use the symbol “∧” to denote conjunction, “∨” to denote disjunction 
and “ ~ ” to denote negation. 
Conjunction : 
 If two simple statements p and q are connected by the word ‘and’, then the 
resulting compound statement ‘p and q’ is called the conjunction of p and q and 
is written in the symbolic form as ‘p ∧ q’. 
Example 1 : Form the conjunction of the following simple statements  
 p : Ram is intelligent. 
 q : Ravi is handsome. 

 p ∧ q : Ram intelligent and Ravi is handsome. 
Example 2 : Convert the following statement into symbolic form : 
 ‘Usha and Mala are going to school’. 
 the given statement can be rewritten as : 
 ‘Usha is going to school’, and  
 ‘Mala is going to school’. 
 Let p : Usha is going to school. 
  q : Mala is going to school. 

 The given statement in symbolic form is  p ∧ q.  

 Rule : (A1) The statement p ∧ q has the truth value T whenever both  

p and q have the truth value T. 

   (A2) The statement p ∧ q has the truth value F whenever either  

p or q or both have the truth value F. 

Example : Write the truth value of each of the following statements : 

 (i) Ooty is in Tamilnadu and 3 + 4 = 8 

 (ii) Ooty is in Tamilnadu and 3 + 4 = 7 

 (iii) Ooty is in Kerala and 3 + 4 = 7 

 (iv) Ooty is in Kerala and 3 + 4 = 8 

 In (i) the truth value of the statement 3 + 4 = 8 is F.   ∴ By (A2) 

 (i) has the truth value F. 
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 In (ii) both the sub-statements have truth value T and hence by (A1).  (ii) 

has truth value T. 
 The truth values of (iii) and (iv) are F. 
Disjunction : 
 If two simple statements p and q are connected by the word ‘or’, then the 
resulting compound statement ‘p or q’ is called the disjunction of p and q and is 
written in symbolic form as p ∨ q. 
Example : Form the disjunction of the following simple statements : 
 p : John is playing cricket. 
 q : There are thirty students in the class room. 

 p ∨ q : John is playing cricket or there are thirty students in the class 
room. 

Example : Convert the following statement into symbolic form. 
 “5 is a positive integer or a square is a rectangle”. 
 Let p : 5 is a positive integer. 
  q : A square is a rectangle. 
 The given statement in symbolic form is p w q. 

 Rule : (A3) The statement p ∨ q has the truth value F whenever both p 

and q have the truth value F. 

   (A4) The statement p ∨ q has the truth value T whenever either p 

or q or both have the truth value T. 
Example :  

 (i) Chennai is in India or 2 is an integer. 

 (ii) Chennai is in India or 2 is an irrational number. 

 (iii) Chennai is in China or 2 is an integer. 

 (iv) Chennai is in China or 2 is an irrational number. 
 By (A4), we see that the truth values of (i), (ii) and (iv) are T and by (A3), 

the truth value of (iii) is F. 
Negation : 
 The negation of a statement is generally formed by introducing the word 
‘not’ at some proper place in the statement or by prefixing the statement with ‘It 
is not the case that’ or ‘It is false that’. 

 If p denotes a statement, then the negation of p is written as ∼p or  p. We 
use the symbol ∼p to denote the negation of p. 



 160

 Rule : (A5) If the truth value of p is T then the truth value of ∼p is F. 

Also, if the truth value of p is F, then the truth value of ∼p 
is T. 

Example : 
 p : All men are wise. 

 ∼p : Not all men are wise.  (or) 

 ∼p : It is not the case that all men are wise (or) 

 ∼p : It is false that all men are wise. 
Note : Negation is called a connective although it does not combine two or 
more statements. It only modifies a statement. 

EXERCISE 9.1 
Find out which of the following sentences are statements and which are not? 
Justify your answer. 
  (1) All natural numbers are integers. 
 (2) A square has five sides. 
 (3) The sky is blue. 
 (4) How are you? 
 (5) 7 + 2 < 10. 
 (6) The set of rational numbers is finite. 
 (7) How beautiful you are! 
 (8) Wish you all success. 
 (9) Give me a cup of tea. 
 (10) 2 is the only even prime. 
Write down the truth value (T or F) of the following statements : 
 (11) All the sides of a rhombus are equal in length. 

 (12) 1 + 8 is an irrational number. 
 (13) Milk is white. 
 (14) The number 30 has four prime factors. 
 (15) Paris is in France. 
 (16) Sin x is an even function. 
 (17) Every square matrix is non-singular. 
 (18) Jupiter is a planet. 
 (19) The product of a complex number and its conjugate is purely imaginary. 
 (20) Isosceles triangles are equilateral. 
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 (21) Form the conjunction and the disjunction of  
  (i) p : Anand reads newspaper,  q  :  Anand plays cricket. 
  (ii) p : I like tea.  q  :  I like ice-cream. 
 (22) Let p be “Kamala is going to school” and q be “There are twenty students 

in the class “. Give a simple verbal sentence which describes each of the 
following statements : 

  (i)  p ∨ q (ii) p ∧ q (iii) ∼ p (iv) ∼ q (v) ∼p ∨ q 
 (23) Translate each of the following compound statements into symbolic  

form : 
  (i) Rose is red and parrot is a bird. 
  (ii) Suresh reads ‘Indian Express’ or ‘The Hindu’. 
  (iii) It is false that the mangoes are sweet. 
  (iv) 3 + 2 = 5 and Ganges is a river. 
  (v) It is false that sky is not blue. 
 (24) If p stands for the statement “Sita likes reading” and q for the statement 

“Sita likes playing’ what does ∼p ∧ ∼ q stand for? 
 (25) Write negation of the each of the following statements : 
  (i) 5 is an irrational number. 
  (ii) Mani is sincere and hardworking. 
  (iii) This picture is good or beautiful. 
9.1.2 Truth tables : 
 A table that shows the relation between the truth values of a compound 
statement and the truth values of its sub-statements is called the truth table. A 
truth table consists of rows and columns. The initial columns are filled with the 
possible truth values of the sub-statements and the last column is filled with the 
truth values of the compound statement on the basis of the truth values of the 
sub-statements written in the initial columns. If the compound statement is 
made up of n sub-statements, then its truth table will contain 2n rows. 

Example 9.1 : Construct the truth table for ∼p 
Solution: The statement ∼p consists of only one simple statement p. Therefore, 

its truth table will contain 21(= 2) rows. 
 Also we know that if p has the truth value T then ∼p has the truth value F 
and if p has the truth value F, then ∼p has the truth value T. Thus the truth table 
for ∼p is as given below : 

Truth table for ∼ p 
p ∼p 
T F 
F T 
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Example 9.2 : Construct the truth table for p ∨ (∼p). 

Solution: The compound statement p∨ (∼p) consists of only one single 

statement p. Therefore its truth table will contain 21(= 2) rows. 

 In the first column, enter all possible truth values of p. 

 In the second column, enter the truth values of ∼p based on the 
corresponding truth values of p. Finally, in the last column, enter the truth 
values of p ∨ (∼p), using (A4). 

Truth table for p∨(∼p) 
p ∼p p∨(∼p) 

T F T 

F T T 

Example 9.3 : Construct the truth table for p ∧ q. 

Solution: The compound statement p ∧ q consists of two simple statements p 

and q. Therefore, there must be 22(= 4) rows in the truth table of p ∧ q. Now 
enter all possible truth values of statements p and q namely TT, TF, FT and FF 
in the first two columns of the truth table. 

 Using (A1) and (A2), enter the truth values of p ∧ q in the final column 

based on the corresponding truth values of p and q in the first two columns. 

Truth table for p ∧ q 
p q p ∧ q 

T T T 

T F F 

F T F 

F F F 

Note : Similarly, by using (A3) and (A4) we can construct the truth table for  

p ∨ q, as given below : 

Truth table for p ∨ q 
p q p ∨ q 

T T T 

T F T 

F T T 

F F F 
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Example 9.4 : Construct the truth table for the following  statements : 

 (i)   ((∼p) ∨ (∼ q)) (ii)  ∼ ((∼ p) ∧ q) 
 (iii) (p ∨ q) ∧ (∼ q) (iv)  ∼ ((∼ p) ∧ (∼ q)) 
Solution:  
 (i)  Truth table for ((∼p) ∨ (∼ q)) 

p q ∼ p ∼ q ((∼p) ∨ (∼ q)) 

T T F F F 

T F F T T 

F T T F T 

F F T T T 

 (ii)  Truth table for  ∼ ((∼ p) ∧ q) 
p q ∼ p (∼ p) ∧ q ∼ ((∼ p) ∧ q) 
T T F F T 
T F F F T 
F T T T F 
F F T F T 

 (iii)  Truth table for  (p ∨ q) ∧ (∼ q) 
p q p ∨ q ∼ q (p ∨ q) ∧ (− q) 
T T T F F 
T F T T T 
F T T F F 
F F F T F 

 (iv)  Truth table for  ∼ ((∼ p) ∧ (∼ q)) 
p q ∼ p ∼ q (∼ p) ∧ (∼ q) ∼ ((∼ p) ∧ (∼ q)) 
T T F F F T 
T F F T F T 
F T T F F T 
F F T T T F 

Example 9.5 : Construct the truth table for (p ∧ q) ∨ (∼ r)  
Solution: The compound statement (p ∧ q) ∨ (∼ r) consists of three simple 

statements p, q and r. Therefore, there must be 23(= 8) rows in the truth table of 
(p ∧ q) ∨ (∼r). The truth value of p remains at the same value of T or F for each 
of four consecutive assignments of logical values. The truth value of q remains 
at T or F for two assignments and that of r remains at T or F for one 
assignment. 
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p q r p ∧ q ∼ r (p ∧ q) ∨ (∼r) 

T T T T F T 

T T F T T T 

T F T F F F 

T F F F T T 

F T T F F F 

F T F F T T 

F F T F F F 

F F F F T T 

Example 9.6 : Construct the truth table for (p ∨ q) ∧ r 
Solution:  

p q r p ∨ q (p ∨ q) ∧ r 

T T T T T 

T T F T F 

T F T T T 

T F F T F 

F T T T T 

F T F T F 

F F T F F 

F F F F F 

EXERCISE 9.2 
Construct the truth tables for the following statements : 

 (1) p ∨ (∼ q) (2) (∼ p) ∧ (∼ q) 

 (3) ∼ (p ∨ q) (4) (p ∨ q) ∨ (∼ p) 

 (5) (p ∧ q) ∨ (∼ q) (6) ∼ (p ∨ (∼ q)) 

 (7) (p ∧ q) ∨ [∼ (p ∧ q)] (8) (p ∧ q) ∨ (∼ q) 

 (9) (p ∨ q) ∨ r (10) (p ∧ q) ∨ r 

Logical Equivalence : 
 Two compound statements A and B are said to be logically equivalent or 
simply equivalent, if they have identical last columns in their truth tables. 

 In this case we write A ≡ B. 

Example 9.7 : Show that ∼ (p ∨ q) ≡ (∼ p) ∧ (∼ q) 
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Solution:  
Truth table for ∼ (p ∨ q) 

p q p ∨ q ∼ (p ∨ q) 

T T T F 

T F T F 

F T T F 

F F F T 

Truth table for  ((∼ p) ∧ (∼ q)) 
p q ∼p ∼ q ((∼ p) ∧ (∼ q)) 

T T F F F 

T F F T F 

F T T F F 

F F T T T 

 The last columns are identical. ∴ ∼ (p ∨ q) ≡ ((∼ p) ∧ (∼ q)) 
Negation of a negation : 
 Negation of a negation of a statement is the statement itself. Equivalently 
we write  ∼ (∼ p) ≡ p 

p ∼p ∼ (∼ p) 
T F T 
F T F 

 In the truth table, the columns corresponding to p and ∼ (∼ p) are identical. 
Hence p and ∼ (∼ p) are logically equivalent. 
Example 9.8 : Verify ∼ (∼ p) ≡ p for the statement p : the sky is blue.  
Solution:  
 p : The sky is blue 
 ∼ p : The sky is not blue 
 ∼ (∼ p) : It is not the case that the  sky is not blue or 
   It is false that the sky is not blue or 
   The sky is blue 
Conditional and bi-conditional statements : 
 In Mathematics, we frequently come across statements of the form “If p 
then q”. Such statements are called conditional statements or implications. They 
are denoted by p → q, read as ‘p implies q’. The conditional p → q is false only 
if p is true and q is false. Accordingly, if p is false then p → q is true regardless 
of the truth value of q. 
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Truth table for p → q 

p q p → q 

T T T 

T F F 

F T T 

F F T 

 If p and q are two statements, then the compound statement p → q and  
q → p is called a bi-conditional statement and is denoted by p ↔ q, read as p if 
and only if q. p ↔ q has the truth value T whenever p and q have the same truth 
values; otherwise it is F. 

Truth table for p ↔ q 

p q p ↔ q 

T T T 

T F F 

F T F 

F F T 

9.1.3 Tautologies : 
 A statement is said to be a tautology if the last column of its truth table 
contains only T, i.e., it is true for all logical possibilities. 

 A statement is said to be a contradiction if the last column of its truth table 
contains only F, i.e., it is false for all logical possibilities. 

Example 9.9 : (i) p ∨ (∼ p) is a tautology.   (ii) p ∧ (∼ p) is a contradiction 
Solution:  

 (i)  Truth table for p ∨ (∼ p) 
p ∼ p p ∨ (∼ p) 

T F T 

F T T 

 The last column contains only T. ∴ p ∨ (∼p) is a tautology. 

 (ii)  Truth table for p ∧ (∼ p) 
p ∼ p p ∧ (∼ p) 

T F F 

F T F 

 The last column contains only F. ∴ p ∧ (∼p) is a contradiction. 
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Example 9.10 : (i) Show that ((∼ p) ∨ (∼ q)) ∨ p is a tautology. 

             (ii) Show that ((∼ q) ∧ p) ∧ q is a contradiction. 
Solution:  
(i)   Truth table for ((∼ p) ∨ (∼ q)) ∨ p 

p q ∼ p ∼ q (∼ p) ∨ (∼ q) ((∼ p) ∨ (∼ q))∨ p 

T T F F F T 

T F F T T T 

F T T F T T 

F F T T T T 

 The last column contains only T. ∴ ((∼ p) ∨ (∼ q)) ∨ p is a tautology. 

(ii)   Truth table for ((∼ q) ∧ p) ∧ q 
p q ∼ q (∼ q) ∧ p ((∼ q) ∧ p) ∧ q 

T T F F F 

T F T T F 

F T F F F 

F F T F F 

 The last column contains only F. ∴ ((∼ q) ∧ p) ∧ q is a contradiction. 
Example 9.11 : Use the truth table to determine whether the statement  
((∼ p) ∨ q) ∨ (p ∧ (∼ q)) is a tautology. 
Solution:  
   Truth table for ((∼ p) ∨ q) ∨ (p ∧ (∼ q)) 

p q ∼ p ∼ q (∼ p) ∨ q p ∧ (∼ q) ((∼ p) ∨ q) ∨ (p ∧ (∼ q) 

T T F F T F T 

T F F T F T T 

F T T F T F T 

F F T T T F T 

 The last column contains only T. ∴ The given statement is a tautology. 

EXERCISE 9.3 
 (1) Use the truth table to establish which of the following statements are 

tautologies and which are contradictions. 

  (i) ((∼ p) ∧ q) ∧ p (ii) (p ∨ q) ∨ (∼ (p ∨ q)) 

  (iii) (p ∧ (∼ q)) ∨ ((∼ p) ∨ q) (iv) q ∨ (p ∨ (∼ q)) 

  (v) (p ∧ (∼ p)) ∧ ((∼ q) ∧ p) 
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 (2) Show that p → q ≡ (∼ p) ∨ q 
 (3) Show that p ↔ q ≡ (p → q) ∧ (q → p) 
 (4) Show that p ↔ q ≡ ((∼ p) ∨ q) ∧ ((∼ q) ∨ p) 
  (5) Show that ∼(p ∧ q) ≡  ((∼ p) ∨ (∼ q)) 
 (6) Show that p → q and q → p are not equivalent. 
 (7) Show that (p ∧ q) → (p ∨ q) is a tautology. 

9.2 Groups : 
9.2.1 Binary Operation : 
 We know that the addition of any two natural numbers is a natural number, 
the product of any two natural numbers is also a natural number. Each of these 
operations associates with the two given numbers, a third number, their sum in 
the case of addition, and their product in the case of multiplication. In this 
section we are going to deal with the notion of a binary operation or a binary 
composition on a set which is nothing but a generalisation of the usual addition 
and usual multiplication on the number systems. 
Definition : 
 A binary operation * on a non-empty set S is a rule,  which associates to 
each ordered pair (a, b) of elements a, b in S an element a * b in S. Thus a 
binary operation * on S is just a map, * : S × S → S by (a, b) → a * b. 
 Where we denote by a * b, the image of (a, b) in S under *. 
 From the definition we see that, if * is a binary operation on S then  
a, b ∈ S ⇒ a * b ∈ S. 
 In this case, we also say that S is closed under *. This property is known as 
the “closure axiom” or “closure property”. 
List of symbols used in this chapter : 
 N - The set of all natural numbers. 
 Z - The set of all integers. 
 W - The set of all non-negative integers (whole numbers). 
 E - The set of all even integers. 
 O - The set of all odd integers. 
 Q - The set of all rational numbers. 
 R - The set of all real numbers. 
 C - The set of all complex numbers. 
 Q − {0} - The set of all non-zero rational numbers. 
 R – {0} - The set of all non-zero real numbers. 
 C - }0} - The set of all non-zero complex numbers. 
 ∀ - for every 
 ∃ - there exists 
 ∋ - such that 
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Illustrative examples : 
 The usual addition + is a binary operation on N. 

 Since a, b ∈ N ⇒ a + b ∈ N. i.e., N is closed under +. 

 But the usual subtraction is not binary on N. Since 2, 5 ∈ N,  

 but 2 − 5 = − 3 ∉ N. 

∴ N is not closed under subtraction. 

 At the same time, we see that − is a binary operation on Z. From this we 
see that, an operation becoming binary or not binary depends on the set. The 
following table gives which number systems are closed under the usual 
algebraic operations, namely addition, subtraction, multiplication and division 
denoted by +, −,  . ,  ÷ respectively. 

Number Systems

    Operations 
N Z Q R C Q − {0} R − {0} C − {0} 

+ binary binary binary binary binary not 
binary 

not 
binary 

not 
binary 

− not 
binary binary binary binary binary not 

binary 
not 

binary 
not 

binary 

. binary binary binary binary binary binary binary binary 

÷ not 
binary 

not 
binary 

not 
binary 

not 
binary 

not 
binary binary binary binary 

 Apart from the usual algebraic operations, some new operations on the 
number systems can also be defined. For example, consider the operation * on 

N defined by a * b = ab.  

 It is clear that * is binary on N,  ‡ a, b ∈ N ⇒  a * b = ab ∈ N. 

Some more facts about binary operations : 

(1) Let the set S be R or any subset of real number system. 

 Define * as  (i) a * b = minimum of {a, b} 

   (ii) a * b = maximum of {a, b} 

   (iii) a * b = a 

   (iv) a * b = b 

 All the above operations (*) are binary operations on the corresponding 
sets. 
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(2) (N, *) 
  * is defined as a * b = ab + 5. Since ab and 5 are natural numbers,  
ab + 5 is also a natural number. ∴ * is a binary operation on N. 
 On the other hand, the operation * defined by a * b = ab − 5 is not binary 
on N because 2 * 1 = (2)(1) − 5 = − 3 ∉ N. 

(3) (Z, *), where * is defined by, a * b = ab, is not a binary operation on z. 
 Since take a = 2, b = − 1 

 ab = 2−1 = 
1
2 ∉ Z 

 Note that * is also not a binary operaton on R − {0}  

 because take a = − 1, b = 
1
2       ab = (− 1)1/2 ∉ R − {0} 

(4) (R, *) 
 Define a * b =  a + b + ab 
 Clearly * is a binary operation on R since a + b and ab are real numbers  

and their sum is also a real number. 
(5) (O, +) 
 Addition is not a binary operation on the set of odd integers, since addition 

of two odd integers is not odd. 
(6) (O, .) 
 Multiplication is a binary operation on the set of odd integers. Since 

product of two odd integers is an odd integer. 
(7) Matrix addition is a binary operation on the set of m × n matrices. Since 

sum of two m × n matrices is again an m × n matrix. 
(8) Matrix addition is not a binary operation on the set of n × n singular 

matrices as well as on the set of n × n non-singular matrices. Because, sum 
of two non-singular matrices need not be non-singular and sum of two 
singular matrices need not be singular. 

(9) Matrix multiplication is a binary operation on the set of singular matrices 
as well as on the set of non-singular matrices. 

(10) Cross product is a binary operation on the set of vectors, but dot product is 
not a binary operation on the set of vectors. 

Multiplication table for a binary operation 
      Any binary operation * on a finite set S = {a1, a2 ... an} can be described by 
means of multiplication table. This table consists of ‘n’ rows and ‘n’ columns. 
Place each element of S at the head of one row and one column, usually taking 
them in the same order for columns as for rows. The operator * is placed at the 

left hand top corner. The n × n = n2 spaces can be filled  by writing ai * aj in the 
space common to the ith row and the jth column of the table. 
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* a1 a2 .................................. aj ... 
a1      
. 
. 
. 
. 

     

ai    ai * aj  
. 
. 
. 

     

 This table is also known as Cayley’s table or composition table. In the 
next section we will see that these composition tables are very much helpful in 
exhibiting finite groups. 

9.2.2 Groups : 
 Given any non-empty set S, the possibility of combining two of its 
elements to get yet another element of S endows S with an algebraic structure. A 
non-empty set S together with a binary operation * is called an algebraic 
structure. Group is the simplest of all algebraic structures. It is the one 
operational algebraic system. The study of groups was started in the nineteenth 
century in connection with the solution of equations. The concept of group 
arises not only in Mathematics but also in other fields like Physics, Chemistry 
and Biology. 
Definition : 
 A non-empty set G, together with an operation * i.e., (G, *) is said to be a 
group if it satisfies the following axioms 

 (1) Closure axiom : a, b ∈ G ⇒ a * b ∈ G 

 (2) Associative axiom : ∀a, b, c ∈ G, (a * b) * c = a * (b * c) 

 (3) Identity axiom : There exists an element e ∈ G  

    such that a * e = e * a = a, ∀a ∈ G. 

 (4) Inverse axiom : ∀a ∈ G there exists an element a−1∈G such 

that  a−1 * a = a * a−1 = e.   

 e is called the identity element of G and a−1 is called the inverse of a in G. 
Definition  (Commutative property) : 
 A binary operation * on a set S is said to be commutative  

 if a * b = b * a ∀ a, b ∈ S 
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Definition : 
 If a group satisfies the commutative property then it is called an abelian 
group  or a commutative group, otherwise it is called a non-abelian group. 
Note  (1) : 
 If the operation * is a binary operation, the closure axiom will be satisfied 
automatically. 
Note (2) : 
 We shall often use the same symbol G to denote the group and the 
underlying set. 
Order of a group : 
 The order of a group is defined as the number of distinct elements in the 
underlying set. 
 If the number of elements is finite then the group is called a finite group 
and if the number of elements is infinite then the group is called an infinite 
group. The order of a group G is denoted by o(G). 
Definition : 
 A non-empty set S with an operation * i.e., (S, *) is said to be a  
semi-group if it satisfies the following axioms. 
 (1) Closure axiom : a, b ∈ S ⇒ a * b ∈ S 
 (2) Associative axiom : (a * b) * c = a * (b * c), ∀ a, b, c ∈ S. 
Definition : 
 A non-empty set M with an operation * i.e., (M, *) is said to be a monoid if 
it satisfies the following axioms : 
 (1) Closure axiom : a, b ∈ M ⇒ a * b ∈ M 
 (2) Associative axiom : (a * b) * c = a * (b * c) ∀a, b, c ∈ M 
 (3) Identity axiom : There exists an element e ∈ M 
    such that a * e = e * a = a, ∀a ∈ M. 
 (N, +) is a semi-group but it is not a monoid, because the identity element 
O ∉ N. 

 (N, *) where * is defined by a * b = ab is not a semi-group, because, 

consider  (2 * 3) * 4 = 23 * 4 = 84 = 212 and 

   2 * (3 * 4) = 2 * 34 = 2 * 81 = 281 
 ∴  (2 * 3) * 4 ≠ 2 * (3 * 4) i.e., associative axiom is not satisfied. 
 (Z, .) is a monoid. But it is not a group, because, the inverse axiom is not 

satisfied. (5 ∈ Z, but 
1
5 ∉ Z). (Z, +) and (Z, .) are semi-groups as well as 

monoids. From the definitions, it is clear that every group is a monoid. 
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Example 9.12 : Prove that (Z, +) is an infinite abelian group. 
Solution:  
 (i) Closure axiom : We know that sum of two integers is again an 

integer. 
 (ii) Associative axiom : Addition is always associative in Z   

    i.e., ∀a, b, c ∈ Z,  (a + b) + c = a + (b + c)  

 (iii) Identity axiom : The identity element O ∈ Z and it satisfies  

    O + a = a + O = a, ∀ a ∈ Z 
    Identity axiom is true. 

 (iv) Inverse axiom : For every a ∈ Z, ∃ an element − a  ∈ Z such 
that − a + a = a + (− a) = 0 

    ∴ Inverse axiom is true. ∴ (Z, +) is a group. 

 (v) ∀ a, b ∈ Z,  a + b = b + a 

  ∴ addition is commutative.   ∴ (Z, +) is an abelian group. 
 (vi) Since Z is an infinite set (Z, +) is infinite abelian group. 

Example 9.13 : Show that (R − {0}, .) is an infinite abelian group. Here ‘.’ 
denotes usual multiplication. 
Solution:  
 (i) Closure axiom : Since product of two non-zero real numbers is 

again a non-zero a real number.   

    i.e., ∀ a, b ∈ R, a . b ∈ R.  

 (ii) Associative axiom : Multiplication is always associative in R− {0} 

    i.e., a . (b . c) = (a . b) . c  ∀ a, b, c ∈ R − {0} 

    ∴ associative axiom is true. 

 (iii) Identity axiom : The identity element is 1 ∈ R − {0} under 
multiplication and  

    1 . a = a . 1 = a, ∀ a ∈ R − {0} 

    ∴ Identity axiom is true. 

 (iv) Inverse axiom : ∀ a ∈ R − {0}, 
1
a  ∈ R − {0} such that  

    a . 
1
a = 

1
a . a = 1 (identity element). ∴ Inverse 

axiom is true. ∴ (R − {0}, .) is a group. 

 (v) ∀ a, b ∈ R − {0}, a . b = b . a 

  ∴ Commutative property is true. ∴ (R − {0}, .) is an abelian group. 



 174

 (vi) Further R − {0} is an infinite set, (R − {0}, .) is an infinite abelian 
group. 

Example 9.14 : Show that the cube roots of unity forms a finite abelian group 
under multiplication. 

Solution: Let G = {1, ω, ω2}. The Cayley’s table is 

. 1 ω ω2 

1 1 ω ω2 

 ω ω ω2 1 

ω2 ω2 1 ω 

From the table, we see that, 
(i) all the entries in the table are members of G. 

So, the closure property is true. 
(ii) multiplication is always associative. 
(iii) the identity element is 1 and it satisfies the 

identity axiom. 

 (iv) The inverse of 1 is 1 

  The inverse of ω is ω2 

  the inverse of ω2 is ω 
  and it satisfies the inverse axiom also. ∴ (G, .) is a group. 
 (v) the commutative property is also true. 
  ∴ (G, .) is an abelian group. 
 (vi) Since G is a finite set, (G, .) is a finite abelian group. 
Example 9.15 : Prove that the set of all 4th roots of unity forms an abelian group 
under multiplication. 
Solution: We know that the fourth roots of unity are 1, i, − 1, − i. 
Let G = {1, i, − 1, − i}. The Caylely’s table is 

. 1 − 1 i − i 

1 1 − 1 i − i 

− 1 − 1 1 − i i 

i i − i − 1 1 

− i − i i 1 − 1 

From the table, 
(i) the closure axiom is true. 
(ii) multiplication is always associative in C and 

hence in G. 

(iii) the identity element is 1 ∈ G and it satisfies 
the identity axiom. 

 (iv) the inverse of 1 is 1 ; i is − i ; − 1 is − 1 ; and − i is i. Further it satisfies 
the inverse axiom. hence (G, .) is a group. 

 (v) From the table, the commutative property is also true. 
  ∴ (G, .) is an abelian group. 
Example 9.16 : Prove that (C, +) is an infinite abelian group. 
Solution:  
(i) Closure axiom : Sum of two complex numbers is always a complex number. 
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   i.e.,  z1, z2 ∈ C ⇒ z1 + z2 ∈ C 

 Closure axiom is true. 
(ii) Associative axiom : Addition is always associative in C 

 i.e., (z1 + z2) + z3 = z1 + (z2 + z3) ∀ z1, z2, z3 ∈ C 

 ∴ Associative axiom is true. 
(iii) Identity axiom :  
 The identity element o = o + io ∈ C and o + z = z + o = z ∀ z ∈ C 

 ∴ Identity axiom is true. 

(iv) Inverse axiom : For every z ∈ C there exists a unique − z ∈ C such that 

 z + (− z) = − z + z = 0.   Inverse is true.  ∴ (C, +) is a group. 
(v) Commutative property :  
 ∀ z1, z2 ∈ C ,  z1 + z2 = z2 + z1 

 ∴ the commutative property is true. Hence (C , +) is an abelian group. 
Since C is an infinite set (C, +) is an infinite abelian group. 
Example 9.17 : Show that the set of all non-zero complex numbers is an abelian 
group under the usual multiplication of complex numbers. 
Solution:  
(i) Closure axiom :  Let G = C − {0} Product of two non-zero complex 
numbers is again a non-zero complex number. 
 ∴ Closure axiom is true. 
(ii) Associative axiom : 
 Multiplication is always associative. 
 ∴ Associative property is true. 
(iii) Identity axiom : 
 1 = 1 + io ∈ G,  1 is the identity element and 1.z = z . 1 = z ∀ z ∈ G. 
 ∴ Identity axiom is true. 
(iv) Inverse axiom : 
 Let z = x + iy ∈ G. Here z ≠ 0  ⇒  x and y are not both zero.    

 ∴ x2 + y2 ≠ 0 

 
1
z  =  

1
x + iy  =  

x − iy
(x + iy) (x − iy)

  =  
x − iy

x2 + y2  =  
x

x2 + y2  +  i 




− y

x2 + y2  ∈ G 

 Further z . 
1
z  =  

1
z . z = 1 ∴ z has the inverse 

1
z ∈ G. 

 Thus inverse axiom is satisfied. ∴ (G, .) is a group. 
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(v) Commutative property : 

  z1 z2 = (a + ib) (c + id) = (ac − bd) + i (ad + bc) 

   = (ca − db) + i (da + cb) = z2 z1 

 ∴ It satisfies the commutative property. 

 ∴ G is an abelian group under the usual multiplication of complex 
numbers. 

Note : Here the number 0 is removed, because 0 has no inverse under 
multiplication. We can also show that Q − {0}, R − {0} are abelian groups 
under multiplication. But Z − {0} is not a group under multiplication. 

 Q 7 ∈ Z − {0} while its inverse 
1
7  ∉ Z − {0} 

Note :  While verifying the axioms, follow the order given in the definition. If one 
axiom fails, stop the process at that stage. There is no use in continuing further. 
 The following table shows which number systems are satisfying the 
axioms of a group in the order for a particular operation. 

* N E Z Q R C Q − {0} R − {0} C − {0} 

+ Semi 
group 

group group group group group not closed not closed not closed 

. monid semi-group monoid monoid monoid monoid group group group 

− not  
closed 

not 
associative 

not 
associative 

not 
associative 

not 
associative 

not 
associative 

not closed not closed not closed 

÷ not 
closed 

not closed not closed not closed not closed not closed not 
associative 

not 
associative 

not 
associative 

Example 9.18 : Show that (Z, *) is an infinite abelian group where * is defined 
as a * b = a + b + 2. 
Solution:  
(i) Closure axiom :  Since a, b and 2 are integers a + b + 2 is also an integer. 
 ∴ a * b ∈ z   ∀ a, b ∈ z  
 Thus closure axiom is true. 
(ii) Associative axiom : 
 Let a, b, c ∈ G 
  (a * b) * c = (a + b + 2) * c = (a + b + 2) + c + 2 = a + b + c + 4 
  a * (b * c) = a * (b + c + 2) = a + (b + c + 2) + 2 = a + b + c + 4 
  ⇒   (a * b) * c = a * (b * c) 
 Thus associative axiom is true. 
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(iii) Identity axiom : 
 Let e be the identity element.  
 By the definition of e, a * e = a 
 By the definition of  *, a * e = a + e + 2 
  ⇒  a + e + 2 = a 
  ⇒ e = − 2 
 − 2 ∈ Z. Thus identity axiom is true. 
(iv) Inverse axiom : 

 Let a ∈ G and a−1 be the inverse element of  a 

 By the definition of  a−1,  a * a−1 = e = − 2 

 By the definition of *, a * a−1 = a + a−1 + 2 

  ⇒  a + a−1 + 2 = − 2 

  ⇒  a−1 = − a − 4 

 Clearly − a − 4 ∈ Z.    ∴ Inverse axiom is true.  ∴ (Z, *) is a group. 
(v) Commutative property : 
 Let a, b ∈ G 

 a * b = a + b + 2 = b + a + 2 = b * a     ∴ * is commutative. 

 ∴ (Z, *) is an abelian group. further, Z is an infinite set. The group is an 
infinite abelian group. 

Example 9.19 : Show that the set of all 2 × 2  non-singular matrices forms  a 
non-abelian infinite group under matrix multiplication, (where the entries 
belong to R). 
Solution:  
 Let G be the set of all 2 × 2 non-singular matrices, where the entries belong 
to R. 
(i) Closure axiom :  Since product of two non-singular matrices is again  

non-singular and the order is 2 × 2, the closure axiom is satisfied.  

 i.e., A, B ∈ G ⇒ AB ∈ G. 
(ii) Associative axiom : Matrix multiplication is always associative and hence 

associative axiom is true. i.e., A (BC) = (AB) C ∀ A, B, C ∈ G. 

(iii) Identity axiom : The identity element is I2 = 



1   0

0   1
 ∈ G and it satisfies 

the identity property. 
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(iv) Inverse axiom : the inverse of A ∈ G, exists i.e. A−1 exists and is of order 

2 × 2 and AA−1 = A−1A = I. Thus the inverse axiom is satisfied. Hence the 
set of all 2 × 2 non-singular matrices forms a group under matrix 
multiplication. Further, matrix multiplication is non-commutative (in 
general) and the set contain infinitely many elements. The group is an 
infinite non-abelian group. 

Example 9.20 : Show that the set of four matrices  

 



1   0

0   1
 , 







− 1   0

0    1
 , 







1    0

0   − 1
 , 







− 1    0

0    − 1
 form an abelian group, under 

multiplication of matrices. 
Solution:  

 Let I = 



1   0

0   1
, A = 







− 1   0

0    1
, B = 







1    0

0   − 1
, C = 







− 1    0

0    − 1
 and let  

G = {I, A, B, C} 
 By computing the products of these matrices, taken in pairs, we can form 
the multiplication table as given below :  

. I A B C 

I I A B C 

A A I C B 

B B C I A 

C C B A I 

(i) All the entries in the multiplication tables are members of G. So, G is 
closed under . ∴ Closure axiom is true. 

(ii) Matrix multiplication is always associative  

(iii) Since the row headed by I coincides with the top row and the column 
headed by I coincides with the extreme left column, I is the identity 
element in G. 

(iv)  I . I = I  ⇒ I is the inverse of I 

  A . A = I ⇒ A is the inverse of A 

  B . B = I ⇒ B is the inverse of B 

  C . C = I ⇒ C is the inverse of C 

 From the table it is clear that . is commutative. ∴ G is an abelian group 
under matrix multiplication. 
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Example 9.21 : Show that the set G of all matrices of the form 



x   x

x   x
, where  

x ∈ R − {0}, is a group under matrix multiplication. 
Solution:  

 Let G =  












x   x

x   x
 / x ∈ R − {0}  we shall show that G is a group under 

matrix multiplication. 
 (i) Closure axiom :  

  A = 



x   x

x   x
 ∈ G, B = 



y   y

y   y
 ∈ G 

  AB= 



2xy   2xy

2xy   2xy
 ∈ G ,  ( ‡ x  ≠ 0,  y ≠ 0  ⇒  2xy ≠ 0) 

 i.e., G is closed under matrix multiplication. 
(ii) Matrix multiplication is always associative. 

(iii) Let  E = 



e   e

e   e
 ∈ G be such that AE = A for every A ∈ G. 

  AE = A ⇒  



x   x

x   x
  



e   e

e   e
  =  



x   x

x   x
 

    ⇒  



2xe   2xe

2xe   2xe
  =  



x   x

x   x
  ⇒  2xe = x ⇒ e = 

1
2  (‡ x ≠ 0) 

  Thus E = 



1/2   1/2

1/2   1/2
 ∈ G is such that AE = A,  for every A ∈ G 

 We can similarly show that EA = A for every A ∈ G. 

 ∴ E is the identity element in G and hence identity axiom is true. 

(iv) Suppose A−1 = 



y   y

y   y
 ∈ G is such that A−1A  = E 

 Then we have 



2xy   2xy

2xy   2xy
 = 



1/2   1/2

1/2   1/2
  ⇒  2xy = 

1
2 ⇒ y = 

1
4x 

 ∴ A−1 = 



1/4 x   1/4 x

1/4 x   1/4 x
 ∈ G is such that A−1A = E 

 Similarly we can show that A A−1 = E.  ∴  A−1 is the inverse of A. 
 ∴ G is a group under matrix multiplication. 
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Note : The above group is abelian since AB = BA. But in general matrix 
multiplication is not commutative. 

Example 9.22 : Show that the set G = { }a + b 2  /  a, b ∈ Q  is an infinite 
abelian group with respect to addition. 
Solution:  
 (i) Closure axiom :   
 Let x, y ∈ G. Then x = a + b 2,  y = c + d 2 ;  a, b, c, d ∈ Q.  

 x + y = ( )a + b 2  + ( )c + d 2  = (a + c) + (b + d) 2 ∈ G,  
 since (a + c) and (b + d) are rational numbers. 

 ∴ G is closed with respect to addition. 
 (ii) Associative axiom : Since the elements of G are all real numbers, addition 

is associative. 
 (iii) Identity axiom :  
 There exists 0 = 0 + 0 2 ∈ G such that for all x = a + b 2 ∈ G,  
   x + 0 = ( )a + b 2  + ( )0 + 0 2  
    = a + b 2 = x 
 Similarly, we have 0 + x = x.    ∴ 0 is the identity element of G and 

satisfies the identity axiom. 
 (iv) Inverse axiom :  
 For each x = a + b 2 ∈ G, there exists − x = (− a) + (− b) 2 ∈ G 

  such that x + (− x) = ( )a + b 2  + ( )(− a) + (− b) 2  

    = ( )a + (− a)  + ( )b + (− b)  2 = 0 
 Similarly we have (− x) + x = 0 
 ∴ (− a) + (− b) 2 is the inverse of a + b 2 and satisfies the inverse 

axiom. ∴ G is a group under addition. 
(v) Commutative axiom :  
  x + y = (a + c) + (b + d) 2 = (c + a) + (d + b) 2  
   = ( )c + d 2  + ( )a + b 2  
   = y + x,  for all x, y ∈ G.   ∴ The commutative property is true. 
 ∴ (G, +) is an abelian group.  Since G is infinite, we see that (G, +) is an 

infinite abelian group. 
Example 9.23 : Let G be the set of all rational numbers except 1 and * be 
defined on G by a * b = a + b − ab for all a, b ∈ G. Show that (G, *) is an 
infinite abelian group. 
Solution: Let G = Q − {1} 
 Let a, b ∈ G. Then a and b are rational numbers and a ≠ 1,  b ≠ 1. 
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(i) Closure axiom :  Clearly a * b = a + b − ab is a rational number. But to 
prove a * b ∈ G,  we have to prove that a * b ≠ 1. 

 On the contrary, assume that a * b = 1 then 
   a + b − ab = 1 
   ⇒  b − ab = 1 − a 
   ⇒ b(1 − a) = 1 − a 
   ⇒ b = 1   (‡ a ≠ 1,  1− a ≠ 0) 
 This is impossible, because b ≠ 1. ∴ Our assumption is wrong.  
 ∴ a * b ≠ 1 and hence a * b ∈ G. 
 ∴ Closure axiom is true. 
(ii) Associative axiom :  
   a * (b * c) = a * (b + c − bc) 

    = a + (b + c − bc) − a (b + c − bc) 

    = a + b + c − bc − ab − ac + abc 
   (a * b) * c = (a + b − ab) * c 
    = (a + b − ab) + c − (a + b − ab) c 
    = a + b + c − ab − ac − bc + abc 
   ∴ a * (b * c) = (a * b) * c ∀ a, b, c ∈ G 
  ∴ Associative axiom is true. 
(iii) Identity axiom : Let e be the identity element.  
 By definition of e,   a * e = a 
 By definition of *,   a * e = a + e − ae 
   ⇒  a + e − ae = a 
   ⇒ e(1 − a) = 0 
   ⇒  e = 0  since  a ≠ 1 
   e = 0 ∈ G 
  ∴ Identity axiom is satisfied. 
(iv) Inverse axiom :  

 Let a−1 be the inverse of a ∈ G. 

 By the definition of inverse,   a * a−1 = e = 0 

   By the definition of   *, a * a−1 = a + a−1 − aa − 1 

    ⇒  a + a−1 − aa−1 = 0 

    ⇒ a−1 (1 − a) = − a 

    ⇒  a−1 = 
a

a − 1
  ∈  G since a ≠ 1 

 ∴ Inverse axiom is satisfied. ∴ (G, *) is a group. 
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 (v) Commutative axiom :  

 For any a, b ∈ G, a * b = a + b − ab 

   = b + a − ba 

   = b * a 

 ∴ * is commutative in G and hence (G, *) is an abelian group. Since G is 
infinite, (G, *) is an infinite abelian group. 

Example 9.24 : Prove that the set of four functions f1, f2, f3, f4 on the set of non-

zero complex numbers C − {0} defined by 

  f1(z) = z, f2(z) = − z, f3(z) = 
1
z and f4(z) = − 

1
z ∀  z ∈ C − {0} forms an 

abelian group with respect to the composition of functions. 
Solution: Let       G = {f1, f2, f3, f4} 

   (f1° f1) (z) = f1(f1(z)) = f1(z) 

   ∴ f1°f1 = f1 

   f2° f1 = f2 ,  f3°f1 = f3,  f4°f1 = f4 

   Again    (f2°f2) (z) = f2(f2(z))  =  f2(− z) = − (− z)  = z = f1(z) 

   ∴  f2°f2 = f1 

  Similarly f2°f3 = f4,  f2°f4 = f3 

   (f3°f2) (z) = f3 (f2 (z)) = f3(− z) = − 
1
z = f4(z) 

   ∴  f3°f2 = f4 

  Similarly f3°f3 = f1,  f3°f4 = f2 

   (f4°f2) (z) = f4(f2(z)) = f4(− z) = − 
1
−z

  = 
1
z = f3(z) 

   ∴ f4°f2 = f3 

  Similarly f4°f3 = f2,  f4°f4 = f1  

 Using these results we have the composition table as given below : 

° f1 f2 f3 f4 

f1 f1 f2 f3 f4 

f2 f2 f1 f4 f3 

f3 f3 f4 f1 f2 

f4 f4 f3 f2 f1 
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 From the table 

 (i) All the entries of the composition table are the elements of G . 

  ∴ Closure axiom is true. 

 (ii) Composition of functions is in general associative. 

 (iii) Clearly f1 is the identity element of G and satisfies the identity axiom.  

 (iv) From the table : 
   Inverse of f1 is f1 ; Inverse of f2 is f2 

   Inverse of f3 is f3 ; Inverse of f4 is f4 

  Inverse axiom is satisfied.  (G, o) is a group. 

 (v) From the table the commutative property is also true. 
  ∴ (G, o) is an abelian group. 

9.2.3 Modulo Operation 
 We shall now define new types of operations called “Addition modulo n” 
and “Multiplication modulo n”, where n is a positive integer. To define these 
operations we require the notion of “Division Algorithm”. 
 Let a, b ∈ Z with b ≠ 0. Then we can divide a by b to get a quotient q and a 
non-negative remainder r which is smaller in size than b. 

 i.e., a = qb + r, where 0 ≤ r <  | b |. This is called “Division Algorithm”. 

 For example, if a = 17, b = 5 then 17 = (3 × 5) + 2 
 Here q = 3 and r = 2 
Addition modulo n (+ n) : 

 Let a, b ∈ Z and n be a fixed positive integer. We define addition modulo n 
by a +n b = r ; 0 ≤ r < n where r is the least non-negative remainder when  

a + b is divided by n. 
 For example, if a = 25, b = 8 and n = 7 then 25 +78 = 5   

 (‡ 25 + 8 = 33 = (4 × 7) + 5)  
Multiplication modulo n (. n) 

 As given above 

 a .n b = r  ;  0 ≤ r < n, where r is the least non-negative remainder when ab 

is divided by n. 
 For example,  2 .54 = 3 

       7 .98 = 2 
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Congruence modulo n : 
 Let a, b ∈ Z and n be a fixed positive integer.  
 We say that “a is congruent to b modulo n”  ⇔ (a − b) is divisible by n 
Symbolically, 
 a ≡ b (mod n) ⇔ (a − b) is divisible by n. 
 15 ≡ 3 (mod 4) is true because 15 − 3 is divisible by 4. 
 17 ≡ 4 (mod 3) is not true because 17 − 4 is not divisible by 3. 
Congruence classes modulo n : 
 Let a ∈ Z and n be a fixed positive integer. 
 Collect all numbers which are congruent to ‘a’ modulo n. This set will be 
denoted as [a] and is called the congruence class modulo n or residue class 
modulo n. 

 Thus  [a] = {x ∈ Z / x ≡ a (mod n)} 

    = {x ∈ Z / (x − a) is divisible by n} 

    = {x ∈ Z / (x − a) is a multiple of n} 

    = {x ∈ Z / (x − a) = kn}, k ∈ Z 

    = {x ∈ Z / x = a + kn}, k ∈ Z 

 consider the congruence classes modulo 5. 

   [a] = {x ∈ Z / x = a + kn} 

   [0] = {x ∈ Z / x = 5k, k ∈ Z} = {... − 10, − 5, 0, 5, 10...} 

   [1] = {x ∈ Z / x = 5k + 1, k ∈ Z} = {... − 9, − 4, 1, 6, 11, ...} 

   [2] = {x ∈ Z / x = 5k + 2, k ∈ Z} = {... − 8, − 3, 2, 7, 12, ...} 

   [3] = {x ∈ Z / x = 5k + 3, k ∈ Z} = {... − 7, − 2, 3, 8, 13, ...} 

   [4] = {x ∈ Z / x = 5k + 4, k ∈ Z} = {... − 6, − 1, 4, 9, 14 ...} 

   [5] = {x ∈ Z / x = 5k + 5, k ∈ Z} = {... − 5, 0, 5, 10, ...} = [0] 

 Similarly    [6] = [1]  ;  [7] = [2]  ;  etc. 

 Note that, we have only 5 distinct classes whose union gives the entire Z. 

 Thus the set of congruence classes corresponding to 5 is 
{ }[0],  [1],  [2],  [3],  [4]  and it will be deonoted by Z5. 

 i.e.,  Z5 = { }[0],  [1],  [2],  [3],  [4]  

 If we take the modulo 6, we have Z6 = { }[0], [1] .... [5] . 

 Thus for any positive integer n, we have Zn = { }[0], [1] ... [n − 1]  

 Here [n] = [0] and the union of these classes gives Z. 
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Operations on congruence classes : 
(1) Addition : 
 Let [a], [b] ∈ Zn 

  [a] + n [b] = [a + b] if a + b < n 

    = [r] if a + b ≥ n 

 Where r is the least non-negative remainder when a + b is divided by n. 

 
For example, 
 In Z10 ,  [5] +10 [7] = [2] 

 In Z8 ,  [3] +8 [5] = [0] 

(ii) Multiplication : 

   [a] .n [b] = 


[ab]    if ab < n
[r]      if ab ≥ n  

 where r is the least non-negative remainder when ab is divided by n 
 In Z5 [2] .5[2] = [4] 

   [3] .5 [4] = 2 

 In Z7, [3] .7 [3] = [2] 

 In Z8 , [5] .8 [3] = [7] 

Example 9.25 : Show that (Zn, +n) forms group. 

Solution:  Let  Zn = { }[0],  [1],  [2], ... [n − 1]  be the set of all congruence 

classes modulo n. and let [l], [m],  ∈ Zn    0 ≤ l, m, < n 

(i) Closure axiom :  By definition 

   [l] + n [m] = 


[l + m]    if l + m < n
[r]      if l + m ≥ n     

where l + m = q . n + r   0 ≤ r < n 

 In both the cases, [l + m] ∈ Zn and [r] ∈ Zn 

 ∴ Closure axiom is true. 
(ii) Addition modulo n is always associative in the set of congruence classes 

modulo n. 

(iii) The identity element [0] ∈ Zn and it satisfies the identity axiom. 

(iv) The inverse of [l] ∈ Zn is [n − l] 

 Clearly [n − l] ∈ Zn and 
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   [l] + n [n − l] = [0] 

   [n − l] + n [l] = [0] 

 ∴ The inverse axiom is also true. Hence (Zn, +n) is a group. 

Note : (Zn, +n) is a finite abelian group of order n. 

Example 9.26 : Show that (Z7 − {[0]}, .7) forms a group. 

Solution:  Let  G = [ ][1], [2], ... [6]   

The Cayley’s table is 
.7 [1] [2] [3] [4] [5] [6] 

[1] [1] [2] [3] [4] [5] [6] 

[2] [2] [4] [6] [1] [3] [5] 

[3] [3] [6] [2] [5] [1] [4] 

[4] [4] [1] [5] [2] [6] [3] 

[5] [5] [3] [1] [6] [4] [2] 

[6] [6] [5] [4] [3] [2] [1] 

From the table : 
 (i) all the elements of the composition table are the elements of G.  

∴ The closure axiom is true. 
 (ii) multiplication modulo 7 is always associative. 

 (iii) the identity  element is [1] ∈ G and satisfies the identity axiom. 
 (iv) the inverse of [1] is [1] ; [2] is [4] ; [3] is [5] ; [4] is [2] ; [5] is [3] and 

[6] is [6] and it satisfies the inverse axiom. 

  ∴ the given set forms a group under multiplication modulo 7. 

 In general, it can be shown that (Zp − {(0)}, . p) is a group for any prime p. 

But the proof is beyond the scope of this book. 
Note : Does the set of all non-zero congruence classes modulo n, a positive 
integer, form a group under multiplication modulo n, ? 
Example 9.27 : Show that the nth roots of unity form an abelian group of finite 
order with usual multiplication. 

Solution:  We know that 1, ω, ω2...... ωn − 1 are the nth roots of unity, where  

ω = cis 
2π
n  . Let G = {1, ω, ω2 ... ωn − 1} 

(i) Closure axiom :  Let ω l, ωm ∈ G,   0 ≤ l, m ≤ (n − 1) 

 To prove ωl ωm = ωl + m ∈ G 
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 Case (i) l + m < n      

 If l + m < n then clearly ωl + m ∈ G 

 Case (ii) l + m ≥ n    By division algoritham, 

 l + m = (q . n) + r    where 0 ≤ r < n,  q is a positive integer. 

 ωl + m = ωqn + r = (ωn)
q
 . ωr = (1)qωr = ωr ∈ G   ‡ 0 ≤ r < n 

 Closure property is true. 
(ii) Associative axiom : Multiplication is always associative in the set of 

complex numbers and hence in G 

  ωl .(ωp.ωm) = ωl . ω(p + m) = ωl + (p + m) = ω( l + p) + m = (ωl + p) . ωm 

   = (ωl . ωp) . ωm = ∀ ω l, ωm, ωp ∈ G 

 (iii) Identity axiom : The identity element 1 ∈ G and it satisfies  

 1.ωl = ωl .1 = ωl ∀ ωl ∈ G 
 (iv) Inverse axiom :  

 For any ωl ∈ G,  ωn − l ∈ G and ωl . ωn − l = ωn − l .ωl = ωn = 1 
 Thus inverse axiom is true. 

 ∴ (G, .) is a group. 
(v) Commutative axiom :  

 ωl . ωm = ωl + m = ωm + l = ωm . ωl    ∀ ωl , ωm ∈ G 

 ∴ (G, .) is an abelian group. Since G contains n elements, (G, .) is a finite 
abelian group of order n. 

9.2.4 Order of an element : 
 Let G be a group and a ∈ G. The order of ‘a’ is defined as the least 

positive integer n such that an = e, e is the identity element. If no such positive 
integer exists, then a is said to be of infinite order. The order of a is denoted by 
0(a). 

Note : Here an = a * a * a ... *a (n times). If * is usual multiplication ‘.’ then  

an is a . a .a... (n times) i.e., an .  

 If * is usual addition then an is a + a + a + ... + a (n times) i.e., na. Thus an 
is not “a to the power n”, it is a symbol to denote a * a * a ... * a (n times). 

Clearly an ∈ G, if a ∈ G . (By the repeated application of closure axiom). 
Theorem : 
 For any group G, the identity element is the only element of order 1. 



 188

Proof : If a (≠ e) is another element of order 1 then by the definition of order of 

an element, we have (a)1 = e ⇒ a = e which is a contradiction. ∴ e is the only 
element of order 1. 
Example 9.28 : Find the order of each element of the group (G, .)  
where G = {1, − 1, i, − i}. 
Solution:  In the given group, the identity element is 1.  ∴ 0(1) = 1. 
 0(− 1) = 2  [Q we have to multiply − 1 two times (minimum) to get 1  i.e., 
(− 1) (− 1) = 1] 
 0(i) = 4 [Q we have to multiply i four times to get 1, i.e., (i) (i) (i) (i) = 1] 
 0(− i) = 4 [Q we have to multiply − i four times to get 1]. 

Example 9.29 : Find the order of each element in the group G = {1, ω, ω2}, 
consisting of cube roots of unity with usual multiplication. 
Solution:  We know that the identity element is 1.  ∴ 0(1) = 1.   

   0(ω) = 3.   Since  ω . ω . ω = ω3 = 1 

   0(ω2) = 3 since (ω2) (ω2) (ω2) = ω6 = 1 
Example 9.30 : Find the order of each element of the group (Z4, +4) 

Solution:  Z4 = { }[0], [1], [2], [3]   is an abelian group under the addition 

modulo 4. The identity element is [0] and note that [4] = [8] = [12] = [0] 
   ∴ 0([0]) = 1 
   0([1]) = 4 [Q we have to add [1] four times to get [4] or [0]] 
   0 ([2]) = 2 [Q we have to add [2] two times to get [4] or [0]] 
   0 ([3]) = 4 Q we have to add [3] four times to get [12] or [0] 
9.2.5 Properties of Groups :  
Theorem : 
 The identity element of a group is unique. 
Proof : Let G be a group. If possible let e1 and e2 be identity elements in G.  

 Treating e1 as an identity element we have e1 * e2 = e2  … (1) 

 Treating e2 as an identity element, we have  e1 * e2 = e1 … (2) 

 From (1) and (2), e1 = e2 

 ∴ Identity element of a group is unique. 
Theorem : 
 The inverse of each element of a group is unique. 
Proof : 
 Let G be a group and let a ∈ G.  
 If possible, let a1 and a2 be two inverses of a.  
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 Treating a1 as an inverse of ‘a’ we have a * a1 = a1 * a = e. 

 Treating a2 as an inverse of ‘a’, we have a * a2 = a2 * a  =  e 

 Now a1 = a1 * e = a1 * (a * a2) = (a1 * a) * a2 = e * a2 = a2 

 ⇒ Inverse of an element is unique. 
Theorem : (Cancellation laws) 
 Let G be a group. Then for all a, b, c ∈ G, 

 (i) a * b = a * c ⇒ b = c (Left Cancellation Law) 

 (ii) b * a = c * a ⇒ b = c (Right Cancellation Law) 

Proof : (i) a * b = a * c ⇒ a−1 * (a * b) = a−1 * (a * c) 

    ⇒ (a−1 * a) * b = (a−1 * a) * c 
    ⇒ e * b = e * c 
    ⇒ b = c 

  (ii) b * a = c * a ⇒ (b * a) * a−1 = (c * a) * a−1 

    ⇒ b * (a * a −1) = c * (a * a−1) 
    ⇒ b * e = c * e 
    ⇒ b = c 

Theorem : In a group G, (a−1)
−1

 = a for every a ∈ G. 
Proof :  

     We know that a−1 ∈ G and hence (a−1)
−1

 ∈ G.  Clearly a * a−1 = a−1 * a = e 

   a−1 * (a−1)
−1 

= (a−1)
−1

* a−1 = e 

   ⇒  a * a−1 = (a−1)
−1

 * a−1 

   ⇒  a = (a−1)
−1

  (by Right Cancellation Law) 
Theorem : (Reversal law) 

 Let G be a group a, b ∈ G. Then (a * b)− 1 = b−1 * a−1.  

Proof :  It is enough to prove b−1 * a−1 is the inverse of (a * b) 

 ∴ To prove  (i)  (a * b) * (b−1 * a−1) = e 

         (ii)  (b−1 * a−1) * (a * b) = e 

 (i)  (a * b) * (b−1 * a−1) = a * (b * b−1) * a−1 

    = a * (e) * a−1 

    = a * a−1 = e 



 190

 (ii)  (b−1 * a−1) * (a * b) = b−1 * (a−1 * a) * b 

    = b−1 * (e) * b 

    = b−1 * b = e 

 ∴ b−1 * a−1 is the inverse of a * b     i.e.,  (a * b)−1 = b−1 * a−1 
EXERCISE 9.4 

  (1) Let S be a non-empty set and o be a binary operation on S defined by  
xoy = x ; x, y ∈ S. Determine whether o is commutative and associative. 

 (2) Show that the set N of natural members is a semi-group under the 
operation x * y = max {x, y}. Is it a monoid? 

 (3) Show that the set of all positive even integers forms a semi-group under 
the usual addition and multiplication. Is it a monoid under each of the 
above operations? 

 (4) Prove that the matrices 



1   0

0   1
 , 



0   1

1   0
 form a group under matrix 

multiplication. 
 (5) Show that the set G of all positive rationals forms a group under the 

composition * defined by a * b = 
ab
3  for all a, b ∈ G. 

 (6) Show that 












1   0

0   1
 , 







ω    0

0   ω2  ,  






ω2   0

0    ω
 , 



0   1

1   0
 , 







0   ω2

ω    0
 , 







0    ω

ω2   0
  

  where ω3 = 1, ω ≠ 1 form a group with respect to matrix multiplication. 
 (7) Show that the set M of complex numbers z with the condition | z | = 1 

forms a group with respect to the operation of multiplication of complex 
numbers. 

 (8) Show that the set G of all rational numbers except − 1 forms an abelian 
group with respect to the operation * given by a * b = a + b + ab for all a, 
b ∈ G. 

 (9) Show that the set { }[1],  [3],  [4],  [5],  [9]  forms an abelian group under 
multiplication modulo 11. 

 (10) Find the order of each element in the group ( )Z5 − {[0]}, .5  

 (11) Show that the set of all matrices of the form 



a   o

o   o
 , a ∈ R − {0} forms 

an abelian group under matrix multiplication. 

 (12) Show that the set G = {2n / n ∈ Z} is an abelian group under 
multiplication. 
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10. PROBABILITY DISTRIBUTIONS 

10.1 Introduction : 
 In XI Standard we dealt with random experiments which can be described 
by finite sample space. We studied the assignment and computation of 
probabilities of events. In the Sciences one often deals with variables as a 
‘quantity that may assume any one of a set of values’. In Statistics we deal with 
random variables - variables whose observed value is determined by chance. 
10.2. Random Variable :  
 The outcomes of an experiment are represented by a random variable if 
these outcomes are numerical or if real numbers can be assigned to them. 
 For example, in a die rolling experiment, the corresponding random 
variable is represented by the set of outcomes {1, 2, 3, 4, 5, 6} ; while in the 
coin tossing experiment the outcomes head (H) or tail (T) can be represented as 
a random variable by assuming 0 to T and 1 to H. In this sense a random 
variable is a real valued function that maps the sample space into the real line. 
 Let us consider the tossing of two fair coins at a time. The possible results 
are {HH, TH, HT, TT}. Let us consider the variable X which is “the number of 
heads obtained” while tossing two fair coins. We could assign the value  X = 0  
to the outcome of getting no heads, X = 1  to the  outcome of getting only 1 
head and X = 2  to the out come of getting 2 heads. 
 Therefore  X (TT)  = 0,  X(TH) = 1,  X (HT)  = 1  and X (HH)  = 2.  
Therefore X takes the values 0,1,2. Thus we can assign a real number X(s) to 
every element s of the sample space S. 
Definition : If S is a sample space with a probability measure and X is a real 
valued function defined over the elements of S, then X is called a random 
variable. 
 A random variable is also called a chance variable or a stochastic variable. 
Types of Random variables : 
 (1) Discrete Random variable  (2) Continuous Random variable 
10.2.1 Discrete Random Variable : 
Definition : Discrete Random  Variable  
 If a random variable takes only a finite or a countable number of values, it 
is called a discrete random variable. 
 Note : Biased coins may have both sides marked as tails or both sides marked as 
heads or may fall on one side only for every toss, whereas a fair or unbiased coin 
means, it has equal chances of falling on heads and tails. Similarly biased dice may 
have repeated numbers on several sides ; some numbers may be missing. For a fair die 
the probability of getting any number from one to six will be 1/6. 



 192

Example :  

 1. The number of heads obtained when two coins are tossed is a discrete 
random variable as X assumes the values 0, 1 or 2 which form a 
countable set. 

 2. Number of Aces when ten cards are drawn from a well shuffled pack of 
52 cards. 

    The random variable X assumes 0, 1, 2, 3 or 4 which is again a countable set. 

 i.e.,  X (No aces) = 0,  X (one ace) = 1,  X (two  aces) = 2,  

  X (three aces) = 3, X (four aces) = 4 

Probability Mass Function : 

 The  Mathematical definition of discrete probability function p(x)  is a 
function that satisfies the following properties : 
 (1) The probability that X can take a specific value x is p(x) 

ie.,  P(X = x)  = p(x) = px. 

 (2) p(x) is non – negative for all real x. 
 (3) The sum of p(x)  over all possible values of X is one.  That is  

∑pi  = 1 where j represents all possible values that X can have and pi 

is the probability at X = xi 

 If a1, a2, . . . am,  a, b1, b2,  . .  bn, b be the values of the discrete random 

variable X in ascending order then 
 (i) P(X ≥ a)   =  1 − P(X < a) 

 (ii) P(X ≤ a)  =  1 − P(X > a) 

 (iii) P(a ≤ X ≤ b)  =  P(X  = a)  + P(X = b1) + P(X = b2) + . . .  

 . . . + P(X = bn) + P(X = b). 

Distribution function : (Cumulative Distribution function) 

 The distribution function of a random variable X is defined as 
F(x)  =  P(X ≤ x) =  ∑

xi ≤ x

 p(xi) :  (− ∞  <  x  <  ∞). 

Properities of Distribution function : 

 1) F(x)  is a non-decreasing function of x 

 2)  0 ≤ F(x)  ≤  1,  − ∞ < x < ∞ 
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 3) F(− ∞)  =  
Lt

x → − ∞   F(x)  =  0 

 4) F(∞)  =  
Lt

x  → + ∞  F(x)  =1 

 5) P(X = xn) = F(xn) − F(xn −1) 

Illustration : 
 Find the probability mass function and cumulative distribution function for 
getting number of heads when three coins are tossed once. 
Solution : Let X be the random variable “getting number of Heads”. Sample 
space when three coins are tossed is 

S = HHH HHT HTH THH HTT THT TTH TTT 

↓  ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ 
    R 

(No.of Heads)
: 3 2 2 2 1 1 1 0 

 Since X is the random variable getting the number of heads, X takes the 
values 0, 1,2  and 3. (X :  S → R). 

 P (getting no head) = P (X = 0) = 
1
8 

 P (getting one head) = P (X = 1) = 
3
8 

 P (getting two heads) = P (X = 2) = 
3
8 

 P (getting three heads) = P (X = 3) = 
1
8 

 ∴  probability  mass function is given by 

 P (X= x) = 





1/8  if   x = 0
3/8  if   x = 1
3/8 if   x = 2
1/8 if   x = 3

        OR 

X 0 1 2 3 

P(X = x) 1/8 3/8 3/8 1/8 

To find cumulative distribution function.  
 

 
 
 
 
 
 
 

 
Fig. 10.1 

 We have  F(x) = ∑
xi = − ∞

x
 P(X =  xi)  

0 2 31

1/8

1

x

P(x)

0 2 31

1/8

1

x

P(x)
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 When  X  = 0,  F(0) = P(X = 0)  =  
1
8 

 When  X  = 1,   F(1) = ∑
i = − ∞

1
 P(X =  xi)  

  = P(X = 0)  + P(X = 1) = 
1
8  +  

3
8  =  

4
8   = 

1
2 

 When  X  = 2,   F(2) = ∑
i = − ∞

2
 P(X =  xi)  

  = P (X = 0)  + P(X = 1) + P(X = 2) 

  = 
1
8  +  

3
8  +   

3
8   = 

7
8 

 When  X  = 3,   F(3) = ∑
i = − ∞

3
 P(X =  xi)  

  = P (X = 0)  + P(X = 1) + P(X = 2) + P(X = 3) 

  = 
1
8  +  

3
8  +  

3
8  +  

1
8  =  1 

Cumulative distribution function  is   

F(x)  =   





    0  if  − ∞ < x < 0
1/8  if  0 ≤ x  < 1
1/2  if 1 ≤ x < 2
7/8 if  2 ≤ x  < 3
1    if  3 ≤ x < ∞

  

 
    

 
 
 
 
 
 
 
 

Fig. 10.2 

Example 10.1 :  

 Find the probability mass function, and the cumulative distribution 
function for getting ‘3’s  when two dice are thrown. 
Solution :  
 Two dice are thrown. Let X be the random variable of getting number of 
‘3’s. Therefore X can take the values 0, 1, 2. 

0

1/8

1/2

7/8

1

1 2 3 x

F(x)

0

1/8

1/2

7/8

1

1 2 3 x

F(x)
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 P(no ‘3’) = P(X = 0) = 
25
36 

 P(one ‘3’) = P(X = 1) = 
10
36 

P(two ‘3’s) = P(X = 2) = 
1

36 

Sample Space 
 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 

(2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 

(3,1) (3,2) (3,3)   (3,4) (3,5) (3,6) 

(4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 

(5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 

(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)  
probability mass function is given by 

x 0 1 2 
P(X = x) 25/36 10/36 1/36 

Cumulative distribution function : 

 We have F(x) = ∑
xi = − ∞

x
 P(X =  xi)  

 F(0) = P(X  = 0) = 
25
36 

 F(1) = P(X = 0) + P(X = 1) = 
25
36  +  

10
36   =  

35
36 

 F(2) = P(X  = 0 ) + P(X = 1) + P(X  =2) = 
25
36 + 

10
36 + 

1
36 = 

36
36 = 1 

x 0 1 2 
F(x) 25/36 35/36 1 

Example 10.2 A random variable X has the following probability mass function 

x 0 1 2 3 4 5 6 

P(X = x) k 3k 5k 7k 9k 11k 13k 

 (1) Find k. 
 (2) Evaluate P(X < 4),  P(X ≥ 5)  and P(3< X ≤ 6) 

 (3) What is the smallest value of x for which P (X ≤ x) > 
1
2 .  

Solution :  

 (1) Since  P(X = x) is a probability mass function  ∑
x = 0

6
 P(X =  x) = 1 

ie.,P(X=0) + P(X = 1) +P(X = 2) +P(X = 3) +P(X = 4) +P(X = 5)+P(X = 6) = 1. 

⇒ k + 3k  + 5k  + 7k  + 9k  + 11k  + 13k  = 1   ⇒    49 k  = 1  ⇒   k  =  
1
49 
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 (2) P(X < 4) = P(X = 0)  +  P(X  = 1 )  +   P(X  =  2)  + P(X = 3) 

   = 
1

49   + 
3

49  + 
5

49 + 
7
49  =   

16
49 

   P(X ≥ 5) =  P(X = 5) + P(X = 6) = 
11
49 + 

13
49  = 

24
49  

   P(3 < X ≤ 6) = P(X = 4) + P(X  = 5)  + P(X = 6) = 
9
49 + 

11
49 + 

13
49 = 

33
49  

 (3) The minimum value of x may be determined by trial and error method. 

    P(X ≤ 0) =  
1

49  <  
1
2  ;  P(X ≤ 1) = 

4
49 < 

1
2   

    P(X ≤ 2) =  
9

49  <  
1
2  ;  P(X ≤ 3) = 

16
49 < 

1
2 

    P(X ≤ 4) =  
25
49  >  

1
2 

 ∴  The smallest value of x for which P(X ≤ x)  > 12 is 4. 

Example 10.3 :An urn contains 4 white and 3 red balls.  Find the probability 
distribution of number of red balls in three draws one by one from the urn. 
 (i) with replacement  (ii) without replacement 
Solution : (i)  with replacement 
 Let X be the random variable of drawing number of red balls in three draws. 
 ∴  X can take the values  0,1,2,3.  

 P(Red ball) = 
3
7   =  P(R) 

 P(Not Red ball) = 
4
7   = P(W) 

 Therefore P(X  = 0) = P(www) = 
4
7 × 

4
7 × 

4
7 = 

64
343 

 P(X = 1) = P(Rww)  + P(wRw) + P(wwR) 

   =  



3

7  ×  
4
7  × 

4
7  + 



4

7  ×  
3
7  × 

4
7   + 



4

7  ×  
4
7  × 

3
7   

  = 3  × 
48
343   =   

144
343 

 P(X = 2) = P(RRw)  + P(RwR) + P(wRR) 

   =  



3

7  ×  
3
7  × 

4
7  + 



3

7  ×  
4
7  × 

3
7   + 



4

7  ×  
3
7  × 

3
7   

  = 3  × 
3
7  ×  

3
7  ×  

4
7  = 3 × 

36
343 = 

108
343 
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 P(X = 3) = P(RRR) =  
3
7 × 

3
7 × 

3
7   = 

27
343 

 The required probability distribution is 

X 0 1 2 3 
P(X = x) 64/343 144/343 108/343 27/343 

 Clearly all pi’s are ≥ 0  and ∑pi  = 1. 

2)   Without replacement :  It is also treated a simultaneous case. 

Method 1 : 
Using combination 

Method 2 : 
Using Conditional Probability 

(i) P(no red ball) 

  P(X = 0) = 
4c3

 × 3c0
 7c3

  

   = 
4 × 1

35   =  
4
35 

(i)  P(www) = 
4
7  ×  

3
6  ×  

2
5 

   = 
4

35 

(ii) P(1 red ball) 

  P(X = 1) = 
4c2

 × 3c1
 7c3

  

   = 
6 × 3

35   =  
18
35 

(ii) P(Rww)  + P(wRw) + P(wwR) 

= 



 

3
7  ×  

4
6  ×  

3
5   + 



 

4
7  ×  

3
6  ×  

3
5   

                       + 



 

4
7  ×  

3
6  ×  

3
5   

=  3  × 
36
210 = 

36
70 = 

18
35 

(iii) P(2 red ball) 

  P(X = 2) = 
4c1

 × 3c2
 7c3

  

   = 
4 × 3

35   =  
12
35 

(iii) P(RRw)  + P(RwR) + P(wRR) 

= 



 

3
7  ×  

2
6  ×  

4
5   + 



 

3
7  ×  

4
6  ×  

2
5   

                      + 



 

4
7  ×  

3
6  ×  

2
5   

= 3  × 
24
210     =  

12
35 

(iv) P(3 red ball) 

  P(X = 3) = 
4c0

 × 3c3
 7c3

  

   = 
1 × 1

35   =  
1
35 

(iv) P(RRR) = 
3
7  ×  

2
6  ×  

1
5 

   = 
1

35 
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X 0 1 2 3 

P(X = x) 
4

35 
18
35 

12
35 

1
35 

Clearly all pi’s are ≥ 0 and  ∑pi  = 1 

10.2.2 Continuous Random Variable : 
Definition : A Random Variable X is said to be continuous if it can take all 
possible values  between  certain given limits. i.e., X is said to be continuous if 
its values cannot be put in 1 − 1 correspondence with N, the set of Natural 
numbers. 

 Examples for Continuous Random Variable 

  The life length in hours of a certain light bulb. 

  Let X denote the ph value of a chemical compound which is randomly 
selected. Then X is a continuous random variable because any ph value, 
between 0 and 14 is possible. 

  If in the study of ecology of a lake, we make depth measurements at 
randomly chosen locations then X = the depth at such location is a 
continuous random variable. The limit will be between the maximum 
and minimum depth in the region sampled. 

Probability Density Function  (p.d.f.) : 
 The mathematical definition of a continuous probability function f(x)  is a 
function that satisfies the following properties. 
 (i) The probability that X is between  two points  a  and b is 

  P(a ≤ x ≤ b) = ⌡⌠
a

b

f(x) dx  

 (ii) It is non-negative for all real X.  

 (iii) The integral of the probability function is 1 i.e., ⌡⌠
− ∞

∞
f(x) dx  = 1 

 Continuous probability functions are referred to as p.d.f. 
 Since continuous probability function are defined for uncountable number of 
points over an interval, the probability at a single point is always zero.   

i.e., P(X = a) =  ⌡⌠
a

a
f(x) dx  = 0. 
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 The probabilities are measured over intervals and not at single points. That 
is, the area under the curve between two distinct points defines the probability 
for that interval.  

 ∴ P(a ≤ x ≤ b) = P(a ≤ X < b) = P(a < x ≤ b) = P(a < x < b) 
 Discrete Probability function are referred to as probability mass function and 
continuous probability function are referred to as probability density function. 
The term probability function covers both discrete and continuous distribution. 
Cumulative Distribution Function : 
 If X is a continuous random variable, the function given by  

 F(x) = P(X ≤ x) = 
⌡⌠

− ∞

x
 f(t)dt for − ∞ < x < ∞ where f(t) is the value of the 

probability density function of X at t is called the distribution function or 
cumulative distribution of X. 
Properties of Distribution function : 
 (i) F(x)  is a non-decreasing function of x 
 (ii) 0 ≤ F(x) ≤ 1,  − ∞  < x < ∞. 

 (iii) F(− ∞) = 
lt

x → − ∞   ⌡⌠
− ∞

x
f(x) dx   = ⌡⌠

− ∞

− ∞
f(x) dx   =  0 

 (iv) F(∞) = 
lt

x → ∞   ⌡⌠
− ∞

x
f(x) dx   = ⌡⌠

−∞

∞
f(x) dx  = 1 

 (v) For any real constant  a  and b and a ≤  b,     P(a ≤ x ≤ b) = F(b) − F(a) 

 (vi)  f(x) =  
d
dx   F(x) 

  i.e., F′(x) = f(x) 

Example 10.4 : A continuous random variable X follows the probability law, 

 f(x)   =   



 k x (1 − x )10, 0 < x < 1
0                     elsewhere

     

Find k 

Solution :    Since f(x)  is a p.d.f  ⌡⌠
−∞

∞
f(x) dx  = 1 
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i.e.,  ⌡⌠
0

1

kx(1 −x)10 dx  = 1   

i.e.,      ⌡⌠
0

1
 k(1 − x) [ ]1 − (1 − x) 10dx = 1 

i.e.,    k ⌡⌠
0

1
 (1 − x)x10dx = 1 

 By properties of definite 
integral 

 ⌡⌠
0

a
 f(x) dx = ⌡⌠

0

a
 f(a − x)dx 

i.e.,  k 
⌡⌠
0

1
 (x10 − x11)dx = 1 ⇒ k 



x11

11   −  
x12

12

1

0
= 1 ⇒  k 



1

11 − 
1

12  = 1 ⇒  k = 132 

Example 10.5 : A continuous random variable X has p.d.f.  f(x)  =  3x2,   
0 ≤ x ≤ 1,    Find  a and b such that. 
 (i)  P(X ≤ a) = P(X > a)  and  (ii)  P(X > b)  = 0.05 
Solution :    
 (i) Since the total probability is 1,  [Given that P(X ≤ a) = P (X > a] 
 P(X ≤ a) + P(X > a) = 1 
 i.e.,  P(X ≤ a) + P(X ≤ a) = 1 

 ⇒  P(X ≤ a) = 
1
2 

 ⇒  ⌡⌠
0

a

f(x) dx  =  
1
2      ⇒     ⌡⌠

0

a

3x2 dx  = 
1
2 

 i.e.,  



3x3

3   
a

0
 = 

1
2  ⇒  a3 = 

1
2  i.e.,  a = 



1

2

1
3 

 (ii) P(X > b)  = 0.05 

 ∴  ⌡⌠
b

1
f(x) dx  = 0.05     ∴     ⌡⌠

b

1

3x2 dx   = 0.05 

 



3x3

3   
1

b
 = 0.05  ⇒ 1 −  b3 = 0.05 

 b3 = 1 − 0.05  =  0.95 =  
95
100   ⇒  b = 



19

20

1
3 
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Example 10.6 : If the probability density function of a random variable is given 

by f(x) = 



 k (1 − x2), 0 < x < 1
0              elsewhere

      

 find (i) k (ii) the distribution function of the random variable. 

Solution:   (i) Since f(x) is a p.d.f. ⌡⌠
− ∞

∞
f(x) dx  = 1 

     ⌡⌠
0

1

k(1 − x2) dx  =  1       ⇒   k  





x − 
x3

3   
1

0
 = 1  ⇒  k 



1 −  

1
3    = 1  

   ⇒   



2

3  k = 1  or  k =  
3
2   

  (ii) The distribution function F(x) =  ⌡⌠
−∞

x
 f(t) dt   

 (a) When x ∈ (− ∞, 0] 

   F(x) = ⌡⌠
− ∞

x
 f(t) dt = 0 

 (b) When x ∈ (0, 1) 

   F(x) = ⌡⌠
− ∞

x
 f(t) dt  

    = ⌡⌠
− ∞

0
 f(t) dt + ⌡⌠

0

x
 f(t) dt = 0 + ⌡⌠

0

x
 
3
2 (1 − t2) dt = 

3
2  





x − 
x3

3  

(c) When x ∈ [1, ∞) 

 F(x) = ⌡⌠
− ∞

x
 f(t) dt = ⌡⌠

− ∞

0
 f(t) dt + ⌡⌠

0

1
 f(t) dt + ⌡⌠

1

x
 f(t) dt = 0 + ⌡⌠

0

1
 
3
2 (1 − t2) dt + 0 

  =   
3
2 





t − 
t3

3

1

0
 = 1      ∴F(x) =  



0

3/2 (x − x3/3)
1

   
− ∞ < x ≤ 0
0 < x < 1
1 ≤ x < ∞
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Example 10.7 : If  F(x) = 
1
π  



 

π
2  + tan−1 x    − ∞ < x < ∞ is a distribution 

function of a continuous variable X,  find  P(0 ≤  x ≤ 1) 

Solution:     F(x) = 
1
π  



 

π
2  + tan−1 x   

   P(0 ≤  x ≤ 1) =  F(1) − F(0) 

    =  
1
π  



 

π
2  + tan−1 1   − 

1
π 



 

π
2  + tan−1 0   

    = 
1
π  



π

2  +  
π
4    − 

1
π 



 

π
2 + 0  =   

1
π  



π

2  +  
π
4 − 

π
2  = 

1
4  

Example 10.8 : If  f(x) = 




 
A
x ,  1 < x < e3

0,  elsewhere
     is a probability density function  of 

a continuous random variable X, find p(x > e) 

Solution:  Since f(x)  is a p.d.f.  ⌡⌠
− ∞

∞
f(x) dx   =  1 

  ⌡
⌠

1

e
3

A
x  dx  =  1   ⇒  A[log x] e

3

1
  = 1 

 ⇒  A[log e3 − log 1] = 1  ⇒  A[3]  = 1  ⇒  A = 1/3 

 Therefore  f(x)=   




 
1
3x ,    1 < x < e3

0    elsewhere
      

 P(x > e) = 
1
3  ⌡

⌠

e

e3

 
1
x dx   =

1
3  [ ]log x  

e
3

e
 

  = 
1
3  [log e3 − log e]  =   

1
3  [3 − 1]  =  

2
3 

Example 10.9 :For the probability density function  

 f(x)=



 2e−2x,  x  > 0
0        , x ≤ 0

  , find  F(2) 

Solution :   F(2) = P(X ≤ 2) = ⌡⌠
− ∞

2
f(x) dx   
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   = ⌡⌠
0

2

 2 e−2x  dx  =  2 . 





e−2x

−2
  

2

0
 = − [e−4 − 1] = 1 − e−4 = 

e4 − 1

e4   

Example 10.10 : The total life time (in year) of 5 year old dog of a certain  
breed is a Random Variable whose distribution function is given by 

F(x) = 




 
0         , for x ≤ 5

1 − 
25

x2 , for  x > 5   Find the probability that such a five year old dog 

will live  (i) beyond 10 years (ii) less than 8 years (iii) anywhere between   
12 to 15 years. 
Solution :  (i)  P(dog living beyond 10 years) 
  P(X > 10) = 1 − P(X ≤ 10) 

   = 1 − 




1 − 

25

x2     when  x = 10 

   = 1 − 



1 − 

25
100    =  1 − 

3
4  =  

1
4 

(ii) P(dog living less than 8 years ) 
 P(X < 8) = F(8) [since P(X < 8) = P(X ≤ 8)  for a continuous distribution] 

  = 




1 − 

25

82   = 



1 − 

25
64   = 

39
64 

(iii) P(dog living any where between 12 and 15 years ) = P(12 < x < 15) 

   = F(15)  − F(12)  = 




1 − 

25

152   − 




1 − 

25

122   =  
1

16 

EXERCISE 10.1 
 (1) Find the probability distribution of the number of sixes in throwing three 

dice once. 
 (2) Two cards are drawn successively without replacement from a well 

shuffled pack of 52 cards. Find the probability distribution of the number 
of queens. 

 (3) Two bad oranges are accidentally mixed with ten good ones. Three 
oranges are drawn at random without replacement from this lot. Obtain 
the probability distribution for the number of bad oranges. 

 (4) A discrete random variable X has the following probability distributions. 
X 0 1 2 3 4 5 6 7 8 

P(x) a 3a 5 a 7 a 9 a 11 a 13 a 15 a 17 a 

  (i) Find the value of a  (ii) Find  P(x < 3)    (iii) Find P(3 < x < 7) 
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 (5) Verify that the following are probability density functions. 

  (a)    f(x) = 




 
2x
9  ,    0 ≤ x ≤ 3

0       elsewhere
   (b)  f(x) = 

1
π 

1

(1 + x2)
 , −∞ < x < ∞ 

 (6) For the p.d.f f(x) = 



 cx (1 − x)3,    0 < x < 1
0                  elsewhere

   

  find  (i) the constant  c        (ii)  P 



x < 

1
2   

 (7) The probability density function of a random variable x is 

  f(x) = 




kx
α − 1

  e
−β x

α

, x, α, β > 0
0                      , elsewhere

  . Find (i) k  (ii)  P(X > 10) 

 (8) For the distribution function given by  F(x) = 


0          x < 0

x2   0 ≤ x ≤ 1
1          x > 1

  

  find the density function. Also  evaluate 

  (i) P(0.5 < X < 0.75)      (ii) P(X ≤ 0.5)          (iii) P(X > 0.75) 
 (9) A continuous random variable x has the p.d.f defined by  

  f(x) =  


 ce−ax,    0 < x < ∞
0           elsewhere

  .     Find the value of c if a > 0. 

 (10) A random variable X has a probability density function 

  f(x) = 


k  , 0 < x < 2π
0   elsewhere   

  Find   (i)  k     (ii) P 



0 < X < 

π
2       (iii) P 



π

2 <  X < 
3π
2   

10.3 Mathematical Expectation : 

Expectation of a discrete random variable : 

Definition : If X denotes  a discrete random variable which can assume the 
values  x1, x2, . . . . . .  xn with respective probabilities  p1, p2, . . . pn then the 

mathematical  expectation of X, denoted by E(X) is defined by  

 E(X) = p1 x1  +  p2 x2 + . . . . .  +  pnxn   =  ∑
i=1

n
 pi xi  where  ∑

i=1

n
 pi = 1 
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 Thus E(X)  is the weighted arithmetic mean of the  values  xi  with  the 

weights p(xi) ∴  X
 

  = E(X) 

 Hence the mathematical Expectation E(X)  of a random variable is simply 
the arithmetic mean. 

Result : If ϕ(X)  is a function of the random variable X,  

then E[ϕ (X)] = ∑ P(X = x) ϕ (x). 

Properties : 

Result (1) : E(c) = c  where c is a constant 

Proof : E(X) = ∑ pi  xi 

 ∴ E(c) = ∑ pi
 c  = c ∑ pi = c  as  ∑ pi  =  1 

 ∴ E(c) = c 
Result (2) : E(cX) = c E(X) 

Proof : E(cX) = ∑ (cxi)pi  = (c x1) p1 +  (c x2) p2  + . . . (c xn) pn    

  = c( p1 x1  +  p2x2  +. . . .  pn xn) 

  = c E(X) 
Result (3) : E(aX  + b) = a E(X)  + b. 
Proof : E(aX  + b) = ∑ (a xi+ b) pi 

  = (a x1+ b) p1 + (a x2 + b)p2 + (a xn + b) pn    

  = a( p1 x1  +  p2x2  +. . . .  pn xn) + b∑ pi   

  = a E(X)  + b. Similarly E(aX − b) = aE(X)− b 
Moments : Expected values of a function of a random variable  X is used for 
calculating the moments. We will discuss about two types of moments. 
 (i) Moments about the origin   
 (ii) Moments about the mean which are called central moments. 
Moments  about the origin : 
 If X is a discrete random variable for each positive integer r (r = 1, ...)  the 

rth moment   

  µr′ = E(Xr) =  ∑ pi xi
r  

First  moment :   µ1′ = E(X)  = ∑ pi xi 
 This is called the mean of the random variable X. 

Second  moment :   µ2′ = E(X2) = ∑ pi xi
2 
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Moments about the Mean : (Central Moments) 

 For each positive integer  n, (n = 1, 2, ...) the nth central moment of the 
discrete random variable X is  

 µn = E(X − X
 

 )n = ∑(xi  −x− )n pi  

 First moment about the Mean µ1 = E(X − X
 

 )1 =  ∑(xi  −x− )1 pi 

 µ1 = ∑ xi pi − x− ∑ pi = ∑ xi pi − x− (1)   as    ∑ pi = 1 

  = E(X) − E(X) = 0 
The algebraic sum of the deviations about the arithmetic mean is always 
zero 

 2nd moment about the Mean µ2 = E(X − X
 

 )2 

  = E(X2 + X
 2

− 2 X X
 

) = E(X2) + X
 2

−2 X
 

 E(X) (‡ X
 

 is a constant) 

  = E(X2) + [E(X)]2 − 2E(X) E(X) 

 µ2 = E(X2) −[E(X)]2    = µ2′ − ( )µ1′ 2 

Second moment about the Mean is called the variance of the random 
variable X  

  µ2 = Var (X) = E(X − X
 

 )2 = E(X2) − [E(X)]2  

Result (4) : Var (X  ± c) = Var X where c is a constant. 

Proof : w.k.t.  Var (X) = E(X − X
 

 )2 

 Var (X + c) = E[(X + c)  − E (X + c)]2 

  = E[X + c  − E(X)  − c]2   

  = E[X − X


 ]2   =   Var X 

 Similarly Var (X − c) = Var  (X) 

 ∴ Variance is independent of change of origin. 

Result (5) : Var (aX) = a2 Var (X) 

Proof :  Var (aX) = E[aX − E(aX)]2  =   E[aX − aE(X)]2 

    = E[a {X  − E(X)}]2 

    = a2 E[X  − E(X)]2   =    a2 Var X 

 Change of scale affects the variance 
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Result (6) : Var (c) = 0  where c is a constant. 

Proof :  Var (c) = E[c − E(c)]2 = E[c − c]2  =  E(0) = 0 
Example 10.11 : Two unbiased dice are thrown together at random. Find the 
expected value of the total number of points shown up. 
Solution  :  Let X be the random variable which represents  the sum of the 
numbers shown in the two dice. If both show one then the sum total is 2. If both 
show six then the sum is 12. 
 The random variable X can take values from 2 to 12. 
 (1, 1) 

 (1, 2) (2, 1) 

 (1, 3) (2, 2) (3, 1) 

 (1, 4) (2, 3) (3, 2) (4, 1) 

 (1, 5) (2, 4) (3, 3) (4, 2) (5, 1) 

 (1, 6) (2, 5) (3, 4) (4, 3) (5, 2) (6, 1) 

 (2, 6) (3, 5) (4, 4) (5, 3) (6, 2) 

 (3, 6) (4, 5) (5, 4) (6, 3) 

 (4, 6) (5, 5) (6, 4) 

 (5, 6) (6, 5) 

 (6, 6) 

 ∴ The probability distribution is given by.  

X 2 3 4 5 6 7 8 9 10 11 12 

P(X = x) 
1

36  
2

36  
3

36  
4
36  

5
36  

6
36  

5
36  

4
36  

3
36  

2
36  

1
36  

 E(X) = ∑ pi  xi = ∑ xi pi 

  = 



2 × 

1
36   + 



3 × 

2
26  + 



4 × 

3
36   +  . . . .+  



12 × 

1
36   = 

252
36  = 7 

Example 10.12 : The probability of success of an event is p and that of failure 
is q. Find the expected number of trials to get a first success. 
Solution: Let X be the random variable denoting ‘Number of trials to get a first 
success’. The success can occur in the 1st trial.  ∴ The probability of success in 
the 1st trial is p. The success in the 2nd trial means failure in the 1st trial.  
∴ Probability is qp. 
 Success in the 3rd trial means failure in the first two trials.  ∴ Probability of 

success in the 3rd trial is q2p.  As it goes on, the success may occur in the nth 

trial which mean the first (n −1) trials are failures.  ∴ probability  =  qn−1p. 
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 ∴  The probability distribution is as follows 

X 1 2 3 ... n ... 

P(x) p qp q2p ... qn−1 p... 

 ∴ E(X) = ∑ pi  xi 

  = 1 . p  + 2qp  + 3q2p  + . . .  + nqn−1 p . .  

  = p[1 + 2q + 3q2 + . . .+ nqn−1 + ... ] 

  = p[1 − q]−2 = p(p)−2 =  
p

p2   =  
1
p  

Example 10.13 : An urn contains 4 white and 3 Red balls. Find the probability 
distribution of the number of red balls in three draws when a ball is drawn at 
random with replacement. Also find its mean and variance. 
Solution : The required probability distribution is [Refer Example 10.3] 

X 0 1 2 3 

P(X = x) 
64
343  

144
343  

108
343  

27
343  

  Mean E(X) = ∑ pi  xi 

  = 0 



64

343  + 1  



144

343  + 2 



108

343   + 3 



27

343  = 
9
7  

 Variance = E(X2)   −  [E(X)]2 

 E(X2) = ∑ pi  xi
2

 

  = 0 



64

343  + 12




144

343  + 22




108

343   + 32 



27

343  =  
117
49   

 Variance=  
117
49  −  



9

7
2
   =  

36
49  

Example 10.14 :A game is played with a single fair die, A player wins Rs. 20 if 
a 2 turns up, Rs. 40 if a 4 turns up, loses Rs. 30 if a 6 turns up. While he neither 
wins nor loses if any other face turns up. Find the expected sum of money he 
can win. 
Solution : Let X be the random variable denoting the amount he can win. The 
possible values of X are 20,40, − 30 and 0.  

 P[X = 20] = P(getting 2) = 
1
6  

 P[X = 40] = P(getting 4) = 
1
6  

 P[X = − 30] = P(getting 6) = 
1
6  
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 The remaining probability is 
1
2 

X 20 40 −30 0 

P(x) 1/6 1/6 1/6 1/2 

  Mean E (X) = ∑ pi  xi 

  = 20 



1

6  + 40  



1

6  + (−30) 



1

6   + 0 



1

2  = 5 

 Expected sum of money he can win = Rs. 5 
Expectation of a continuous Random Variable : 
Definition : Let X be a continuous random variable with probability density 
function f(x). Then the mathematical expectation of X is defined as  

 E(X) = ⌡⌠
−∞

∞
 xf(x) dx    

Note : If ϕ is  function such that ϕ(X)  is a random variable and E [ϕ (X)] exists 
then  

 E[ϕ (X)] = ⌡⌠
−∞

∞
ϕ (x) f(x) dx  

 E(X2) = ⌡⌠
−∞

∞
 x2 f(x) dx    

 Variance of X = E(X2) − [E(X)]2 
Results :  (1)  E(c) = c where c is a constant 

 E(c) = ⌡⌠
−∞

∞
c f(x) dx   = c ⌡⌠

−∞

∞
f(x) dx  = c         as ⌡⌠

−∞

∞
f(x) dx   =  1 

 (2) E(aX ± b) = a E(X)  ± b 

 E(aX ± b) = ⌡⌠
−∞

∞
(ax ± b) f(x) dx  = ⌡⌠

−∞

∞
ax f(x) dx    ±  ⌡⌠

−∞

∞
b f(x) dx  

  = a ⌡⌠
−∞

∞
x f(x) dx   ±   b ⌡⌠

−∞

∞
f(x) dx  = a E(X) ± b 
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Example 10.15 : In a continuous distribution the p.d.f  of X is  

f(x)=


3

4 x (2 − x)

0
,  

0< x < 2
otherwise.   

 Find the mean and the variance of the distribution.  

Solution :  E(X) = ⌡⌠
−∞

∞
 x f(x) dx  =  ⌡

⌠

0

2

 x. 
3
4 x(2 − x) dx  

  = 
3
4 ⌡⌠

0

2

 x2 (2 − x) dx  = 
3
4 ⌡⌠

0

2

(2x2 − x3) dx  

  = 
3
4  





2 
x3

3   −  
x4

4   
2

0
 = 

3
4  



2

3(8) −  
16
4    = 1 

 ∴ Mean = 1 

 E(X2) = ⌡⌠
−∞

∞
 x2f(x) dx  =   ⌡

⌠

0

2

 x2 
3
4 x(2 − x) dx  

  = 
3
4 ⌡⌠

0

2

 (2 x3 − x4) dx  = 
3
4  





2 
x4

4   −  
x5

5   
2

0
 = 

3
4  



16

2  − 
32
5    = 

6
5 

 Variance = E(X2)  − [E(X)]2 = 
6
5  − 1  =  

1
5  

Example 10.16 : Find the mean and variance of the distribution  

f(x) = 


3e−3x,0 < x < ∞
0       ,elsewhere

  

Solution : 

 E(X) = ⌡⌠
−∞

∞
 x f(x) dx   

= ⌡⌠
0

 ∞
 x (3e−3x)  dx = 3 ⌡⌠

0

 ∞
 x e−3x  dx  = 3.

1

32  = 
1
3 

   ⌡⌠
0

∞
 xn e− αx dx = 

n

αn + 1  

  When n is a positive 
integer 
 

 E(X2) = ⌡⌠
0

 ∞
 x2 (3e−3x)  dx  = 3⌡⌠

0

 ∞
 x2 e−3x  dx  = 3 . 

2

33  = 
2
9 
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 Var(X) = E[X2] − E[X]2 = 
2
9 − 



1

3
2
= 

1
9 

 ∴Mean = 
1
3     ;   Variance = 

1
9 

EXERCISE 10.2 

 (1) A die is tossed twice. A success is getting an odd number on a toss. Find 
the mean and the variance of the probability distribution of the number of 
successes. 

 (2) Find the expected value of the number on a die when thrown. 

 (3) In an entrance examination a student has to answer all the 120 questions. 
Each question has four options and only one option is correct. A student 
gets 1 mark for a correct answer and loses half mark for a wrong answer. 
What is the expectation of the mark scored by a student if he chooses the 
answer to each question at random? 

 (4) Two cards are drawn with replacement from a well shuffled deck of 52 
cards. Find the mean and variance for the number of aces. 

 (5) In a gambling game a man wins Rs.10 if he gets all heads or all tails and 
loses Rs.5 if he gets 1 or 2 heads when 3 coins are tossed once. Find his 
expectation of gain. 

 (6) The probability distribution of a random variable X is given below : 

X 0 1 2 3 

P(X = x) 0.1 0.3 0.5 0.1 

  If Y  = X2 + 2X  find the mean and variance of Y. 

 (7) Find the Mean and Variance for the following probability density 
functions 

  (i)  f(x) = 


 1

24    ,−12 ≤ x ≤ 12

0       ,otherwise
          (ii)  f(x) = 



αe−α x  , if  x > 0
0         ,otherwise

     

  (iii)  f(x) = 


xe−x     , if  x > 0
0         ,otherwise
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10.4 Theoretical Distributions : 
 The values of random variables may be distributed according to some 
definite probability law which can be expressed mathematically and the 
corresponding probability distribution is called theoretical distribution. 
Theoretical distributions are based on expectations on the basis of previous 
experience. 

 In this section we shall study (1) Binomial distribution (2) Poisson 
distribution (3) Normal distribution which figure most prominently in 
statistical theory and in application. The first two distributions are discrete 
probability distributions and the third is a continuous probability distribution. 

Discrete Distributions : 

Binomial Distribution :  

   This was discovered by a Swiss Mathematician James Bernoulli (1654−1705)   

Bernoulli’s Trials : 
 Consider a random experiment that has only two possible outcomes. For 
example when a coin is tossed we can take the falling of head as success and 
falling of tail as failure. Assume that these outcomes have probabilities  
p and q respectively such that p + q =1.  If the experiment is repeated ‘n’ times 
independently with two possible outcomes they are called Bernoulli’s trials. A 
Binomial distribution can be used under the following condition. 

 (i) any trial, result in a success  or a failure 

 (ii) There are a finite number of trials which are independent. 

 (iii) The probability of success is the same in each trial. 

Probability function of Binomial Distribution : 

 Let n be a given positive integer and p be a given real number such that 
0 ≤ p ≤ 1. Also let q = 1 − p. Consider the finite probability distribution 
described by the following table.  

xi 0 1 2 . . .  n 

P(xi) qn nc1pqn−1 nc2 p
2qn−2 . . .  pn 

 The table shown above is called the Binomial distribution. The 2nd row of 

the table are the successive terms in the binomial expansion of (q + p)n. 

 Binomial probability function B(n,p,x) gives the probability of exactly 
x successes in ‘n’ Bernoullian trials, p being the probability of success in a trial. 
The constants n and p are called the parameters of the distribution. 
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Definition of Binomial Distribution : 

 A random variable X is said to follow Binomial distribution if its 
probability mass function is given by 

 P(X = x) = p(x) = 


nCx px qn −x, x = 0, 1, . . .n

0                             otherwise
 

Constants of Binomial Distribution : 

   Mean = np 

   Variance = npq 

   Standard deviation =  variance = npq  

X ∼ B(n, p)  denotes that the random variable X follows Binomial distribution 
with parameters n and p. 

Note : In a Binomial distribution mean is always greater than the variance. 
Example 10.17 : Let X be a binomially distributed variable with mean 2 and 

standard deviation 2
3
. Find the corresponding probability function. 

Solution : np = 2    ;  npq    =  
2
3

 

 ∴ npq = 4/3 

 ∴  q = 
npq
np     = 4/3

2    =    
4
6  = 

2
3 

 ∴  p = 1 − q  =   1 − 
2
3  =  

1
3 

 np = 2   ∴   n 



1

3  = 2  ⇒  n = 6 

 ∴ The  probability function for the distribution is  

 P[X = x] = 6Cx
 



1

3  
x   





2

3  
6 − x

 , x = 0, 1, 2,     … 6 

Example 10.18 : A pair of dice is thrown 10 times. If getting a doublet is 
considered a success find the probability of (i)  4 success   (ii)  No success. 

Solution : n = 10 . A doublet can be obtained when a pair of dice thrown is 
{(1,1),  (2,2)  (3,3), (4,4),  (5,5)  (6,6)}  ie.,  6 ways. 

 Probability of success is getting a doublet 

 ∴  p = 
6

36  =  
1
6   ;   q   =  1 −  p  =  1 −  

1
6  =  

5
6 



 214

Let X be the number of success. 

 We have  P[X = x] = nCx
  px  qn−x 

(a) P(4 successes) = P[X = 4] = 10C4
 



1

6  
4   





5

6  
6
  

  = 
210 × 56

610   = 
35
216  



5

6  
6
 

(b) P (no success) = P(X = 0) 

  = 10C0
    



5

6  
10 

= 



5

6  
10

 

Example 10.19 : In a Binomial distribution if n = 5and P(X = 3) = 2P(X = 2) 
find p 

Solution  : P(X = x) = nCx
  px  qn−x 

 P(X = 3) = 5C3
 p3q2   and  P(X =  2) = 5C2

 p2q3    

 ∴  5C3
  p3q2 = 2 ( )5C2 

 p2q3      

 ∴  p = 2q 

 p = 2 (1 − p)     ⇒  3p  = 2   ;  p  =  
2
3 

Example 10.20 : If the sum of mean and variance of a Binomial Distribution is 
4.8 for 5 trials find the distribution. 
Solution : np  + npq = 4.8   ⇒   np(1 + q) = 4.8 
 5 p [1 + (1 − p) = 4.8 

 p2 − 2p + 0.96 = 0    ⇒  p  = 1.2 , 0.8 
 ∴ p = 0.8  ;  q = 0.2    [‡p cannot be greater than 1] 

 ∴ The Binomial distribution is P[X = x] = 5Cx
 (0.8)x (0.2)5−x, x = 0 to 5 

Example 10.21 : The difference between the mean and the variance of a 
Binomial distribution is 1 and the difference between their squares is 11.Find n. 
Solution : Let the mean be (m + 1)  and the variance be m from the given 
data.[Since mean > variance in a binomial distribution] 

 (m +1)2 − m2 = 11 ⇒  m = 5 

 ∴  mean = m + 1 = 6  

 ⇒  np  = 6  ;  npq = 5     ∴  q = 
5
6 ,   p  =  

1
6    ⇒  n =  36. 
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EXERCISE 10.3 
 (1) The mean of a binomial distribution is 6 and its standard deviation is 3. Is 

this statement true or false? Comment. 

 (2) A die is thrown 120 times and getting 1 or 5 is considered a success. Find 
the mean and variance of the number of successes. 

 (3) If on an average 1 ship out of 10 do not arrive safely to ports. Find the 
mean and the standard deviation of ships returning safely out of a total of 
500 ships 

 (4) Four coins are tossed simultaneously. What is the probability of getting 
(a)  exactly 2 heads   (b)  at least two heads  (c)  at most two heads. 

 (5) The overall percentage of passes in a certain examination is 80.  If 6 
candidates appear in the examination what is the probability that atleast 5 
pass the examination. 

 (6) In a hurdle race a player has to cross 10 hurdles. The probability that he 

will clear each hurdle is 
5
6.  What is the probability that he will knock 

down less than 2 hurdles. 

10.4.2 Poisson Distribution : 
 It is named after the French Mathematician Simeon Denis Poisson 
(1781 − 1840) who discovered it. Poisson distribution is also a discrete 
distribution. 

 Poisson distribution is a limiting case of Binomial distribution under the 
following conditions.  

 (i) n the number of trials is indefinitely large  ie., n → ∞.  

 (ii) p the constant probability of success in each trial is very small 
ie., p → 0. 

 (iii) np  = λ  is finite where λ  is a positive real number. When an event 
occurs rarely, the distribution of such an event may be assumed to 
follow a Poisson distribution. 

Definition :  A random variable X is said to have a Poisson distribution if the 

probability mass function of X is P(X = x) = 
e−λ λx

 x
, x = 0,1,2, …for some  λ > 0 

 The mean of the Poisson Distribution is λ, and the variance is also λ. 

 The parameter of the Poisson distribution is λ. 
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Examples of Poisson Distribution : 

 (1) The number of alpha particles emitted by a radio active source in a 
given time interval.  

 (2) The number of telephone calls received at a telephone exchange in a 
given time interval. 

 (3) The number of defective articles in a packet of 100, produced by a good 
industry. 

 (4) The number of printing errors at each page of a book by a good 
publication. 

 (5) The number of road accidents reported in a city at a particular junction 
at a particular time. 

Example 10.22 : Prove that the total probability is one. 

Solution :  ∑
x=0

 ∞
 p(x) = ∑

x=0

 ∞
  

e−λ λx

 x
 = 

e−λ λ0

 0
  + 

e−λ λ1

 1
 + 

e−λ λ2

 2
 +  . . .  

  = e−λ [1 +  λ +  
λ2

 2
  +   . . . ] = e−λ . eλ    =  e0  =  1 

Example 10.23 : If  a publisher of non-technical books takes a great pain to 
ensure that his books are free of typological errors, so that the probability of any 
given page containing atleast one such error is 0.005  and errors are independent 
from page to page (i)  what is the probability that one of its 400 page novels 
will contain exactly one page with error.  (ii) atmost three pages with errors. 

[e−2 = 0.1353  ; e−0.2. = 0.819]. 

Solution :  n = 400  ,  p  =  0.005 

 ∴  np = 2   = λ 

(i) P(one page with error) = P(X = 1) 

  = 
e−λ λ1

 1
 = 

e−221

 1
 = 0.1363 × 2 = 0.2726 

 (ii)P(atmost 3 pages with error) = P(X ≤ 3) 

 = ∑
x = 0

3
  

e−λ λx

 x
 = ∑

0

3
   

e−2(2)x

 x
   = e2 









1 + 
2

1
 + 

22

2
 + 

23

3
 

  = e−2 



19

3  = 0.8569 
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Example 10.24 : Suppose that the probability of suffering a side effect from a 
certain vaccine is 0.005. If 1000 persons are inoculated, find approximately the 
probability that (i)  atmost 1 person suffer.  (ii) 4, 5 or 6 persons suffer. 

 [e−5 = 0.0067] 

Solution :  Let the probability of suffering from  side effect be p 

 n = 1000  ,  p  =  0.005  ,    λ  =   np =  5. 

(i) P(atmost 1 person suffer) = p(X ≤ 1) 

  = p(X  = 0)  + p(X = 1) 

  = 
e−λ λ0

 0
 + 

e−λλ1

 1
  = e−λ [1 + λ] 

  = e−5 (1 + 5) = 6 × e−5 

  = 6 ×  0.0067 = 0.0402  

(ii) P(4, 5 or 6 persons suffer) = p(X = 4) + p(X = 5) + p(X = 6) 

  = 
e−λ λ4

 4
 + 

e−λ λ5

 5
 + 

e−λ λ6

 6
 = 

e−λ λ4

 4
  





1 + 
λ
5  +  

λ2

30   

  = 
e−5 54

24  



1 + 

5
5  +  

25
30  =  

e−5 54

24  



17

6   =  
10625

144  × 0.0067 

 =  0.4944 

Example 10.25 :  In a Poisson distribution if P(X = 2) =  P(X = 3)  find P(X =5)  

[given e−3 = 0.050]. 

Solution :  Given P(X = 2) = P(X = 3) 

 ∴  
e−λ λ2

 2
 = 

e−λ λ3

 3
 

 ⇒ 3λ2 = λ3 

 ⇒  λ2 (3 − λ) = 0            As     λ ≠ 0.   λ  = 3 

 P(X = 5) = 
e−λ λ5

 5
  =  

e−3 (3)5

 5
 = 

0.050 ×  243
120  = 0.101 
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Example 10.26 : If the number of incoming buses per minute at a bus terminus 
is a random variable having a Poisson distribution with λ=0.9, find the 
probability that there will be 
 (i) Exactly 9 incoming buses during a period of 5 minutes 
 (ii) Fewer than 10 incoming buses during a period of 8 minutes. 
 (iii) Atleast 14 incoming buses during a period of 11 minutes. 
Solution :  

(i) 


λ for number of incoming

 buses per minute  = 0.9 

 


∴ λ  for number of incoming

 buses per 5 minutes  = 0.9  × 5  =  4.5 

 

P  exactly 9 incoming buses

during 5 minutes  = 
e−λ λ9

 9
 

 i.e.,  P(X = 9) = 
e−4.5 × (4.5)9

 9
  

 (ii) 

fewer than 10 incoming buses

during a period of 8 minutes  = P(X <10) 

   Here λ = 0.9 × 8  = 7.2 

   ∴  Required probability = ∑
x=0

9
  

e−7.2 × (7.2)x

 x
 

(iii) 

P  atleast 14 incoming buses

 during a period of 11 minutes  = P(X ≥ 14) = 1 − P(X < 14) 

   Here λ = 11 × 0.9 = 9.9 

   ∴  Required probability = 1 − ∑
x=0

13
  

e−9.9 × (9.9)x

 x
  

 (The answer can be left at this stage). 

EXERCISE 10.4 
 (1) Let X have a Poisson distribution with mean 4. Find (i) P(X ≤ 3) 

(ii) P(2 ≤  X < 5)  [e−4 =  0.0183]. 
 (2) If the probability of a defective fuse from a manufacturing unit is 2% in a 

box of 200 fuses find the probability that 
  (i) exactly 4 fuses are defective  (ii)  more than 3 fuses are defective 

[e−4 = 0.0183]. 
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 (3) 20% of the bolts produced in a factory are found to be defective. Find the 
probability that in a sample of 10 bolts chosen at random exactly 2 will 

be defective using (i) Binomial distribution (ii) Poisson distribution.  [e−2  
= 0.1353]. 

 (4) Alpha particles are emitted by a radio active source at an average rate of 
5 in a 20 minutes interval. Using Poisson distribution find the probability 
that there will be (i) 2 emission (ii) at least 2 emission in a particular 20 

minutes interval.  [e−5 = 0.0067]. 

 (5) The number of accidents in a year involving taxi drivers in a city follows 
a Poisson distribution with mean equal to 3. Out of 1000 taxi drivers find 
approximately the number of drivers with (i) no accident in a year   

(ii)  more than 3 accidents in a year [e−3 = 0.0498]. 

10.4.3  Normal Distribution : 
 The Binomial and the Poisson distribution described above are the most 
useful theoretical distribution for discrete variables i.e., they relate to the 
occurrence of distinct events. In order to have mathematical distribution 
suitable for dealing with quantities whose magnitude is continuously varying, a 
continuous distribution is needed. The normal distribution is also called the 
normal probability distribution, happens to be the most useful theoretical 
distribution for continuous variables.  Many statistical data concerning business 
and economic problems are displayed in the form of normal distribution. In fact 
normal distribution is the ‘corner stone’ of Modern statistics. 

 Like the Poisson distribution, the normal distribution may also be regarded 
as a limiting case of binomial distribution. Indeed when n is large and neither 
p nor q is close to zero the Binomial distribution is approximated by the normal 
distribution inspite of the fact that the former is a discrete distribution, where as 
the later is a continuous distribution. Examples include measurement errors in 
scientific experiments, anthropometric measurements of fossils, reaction times 
in psychological experiment, measurements of intelligence and aptitude, scores 
on various tests and numerous economic measures and indication. 

Definition : A continuous random variable X is said to follow a normal 

distribution with parameter µ and σ (or µ and σ2) if the probability function is 

 f(x)  =  
1

σ 2π
  e 

−
1
2 



x − µ

σ
2
 
   ;  −∞  < x  <  ∞,  − ∞  < µ  < ∞, and  σ > 0. 
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 X ∼ N(µ, σ) denotes that the random variable X follows normal distribution 
with mean µ and standard deviation σ. 

Note :  Even we can write the normal distribution as X∼ N(µ, σ2) symbolically. 
In this case the parameters are mean and variance.  
 The normal distribution is also called Gaussian Distribution. The normal 
distribution was first discovered by De-Moivre (1667 − 1754) in 1733 as a 
limiting case of Binomial distribution. It was also known to Laplace not later 
than 1744 but through a historical error it has been credited to Gauss who first 
made reference to it in 1809. 
Constants of Normal distribution : 
 Mean = µ 

 Variance = σ2 
 Standard deviation = σ 
 The graph of the normal curve is 
shown above. 

 
 
 
 
 

Fig. 10.3 
Properties of Normal Distribution : 
 (1) The normal curve is bell shaped 
 (2) It is symmetrical about the line X = µ ie., about the mean line.  
 (3) Mean  = Median =  Mode  = µ 

 (4) The height of the normal curve is maximum at X = µ and 
1

σ 2π
   is the 

maximum height (probability). 

 (5) It has only one mode  at X = µ.  ∴  The normal curve is unimodal 

 (6) The normal curve is asymptotic to the base line. 

 (7) The points of inflection are at X = µ ± σ 

 (8) Since the curve is symmetrical about X = µ, the skewness is zero. 

 (9) Area property : 

  P(µ −σ < X < µ + σ) = 0.6826 

  P(µ −2σ < X < µ + 2σ) = 0.9544 

  P(µ −3σ < X < µ + 3σ) = 0.9973 

 (10) A normal distribution is a close approximation to the binomial 
distribution when n, the number of trials is very large and p  the 
probability of success is close to 1/2 i.e., neither p nor q is so small. 

 (11) It is also a limiting form of Poisson distribution i.e., as λ → ∞ Poisson 
distribution tends to normal distribution. 

x = µ
z = 0

∞-∞
x = µ
z = 0

∞-∞
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Standard Normal Distribution : 
 A random variable X is called a standard normal variate if its mean is zero 
and its standard deviation is unity.  

 A normal distribution with mean µ and standard deviation σ can be 
converted into a standard normal distribution by performing change of scale and 
origin. 
 The formula that enables us to change from the x scale to the z – scale and 

vice versa is  Z  = 
X − µ

σ  

     The probability density function of the standard normal variate Z is given by 

  ϕ(z) = 
1

2π
 e 

− 
1
2 z2

   ;  −∞ < z < ∞ 

 The distribution does not contain any parameter. The standard normal 
distribution is denoted by N(0,1).  

 The total area under the normal probability curve is unity. 

 i.e.,  ⌡⌠
−∞

∞
 f(x) dx  = ⌡⌠

−∞

∞
ϕ (z)dz  = 1   ⇒   ⌡⌠

−∞

0

 ϕ (z)dz = ⌡⌠
0

 ∞
ϕ (z)dz   =  0.5 

Area  Property  of Normal Distribution : 

 The Probability that a random variable X lies in the interval  
(µ − σ, µ + σ) is given by 

 P(µ −σ < X < µ + σ) = ⌡⌠
µ −σ

µ +σ
  f(x) dx  

 substituting X = µ − σ and X = µ + σ in Z  = 
X − µ

σ    

P(−1< Z< 1)= ⌡⌠
−1

1

 ϕ (z)dz  

  = 2⌡⌠
0

1

 ϕ (z)dz  (by symmetry) 

 
 
 
 

Fig. 10.4 

  = 2 × 0.3413,  (from the area table) 
  = 0.6826 

-1 1
∞-∞

0-1 1
∞-∞

0
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Also P(µ −2σ < X < µ + 2σ)  

   = ⌡⌠
µ −2σ

µ +2σ
  f(x) dx  

P(−2 < Z < 2) = ⌡⌠
−2

2

ϕ (z)dz   

 

 

 

 

 

Fig. 10.5 

  = 2⌡⌠
0

2

ϕ (z)dz , (by symmetry) 

  = 2 × 0.4772  = 0.9544 

Similarly  P(µ −3σ < X < µ + 3σ)  

  = ⌡⌠
µ −3σ

µ +3σ
  f(x) dx  = ⌡⌠

−3

3

ϕ (z)dz   

  = 2 × 0.49865 = 0.9973 

 

 

 

 

Fig. 10.6 

Therefore the probability that a normal variate X lies outside the range 
µ ± 3σ is given by 

    P( | X − µ | > 3σ) = P( | Z | >3) = 1 − p(−3 < Z < 3) = 1 − 0.9973 =  0.0027 

Note : Since the areas under the normal probability curve have been tabulated 
interms of the standard normal variate Z, for any problem first convert X to Z. 
The entries in the table gives the areas under the normal curve between the 
mean (z = 0) and the given value of z as shown below : 

 Therefore entries corresponding to 
negative values are unnecessary because 
the normal curve is symmetrical. For 
example  

 P(0 ≤ Z ≤ 1.2) =  P(−1.2 ≤ Z ≤ 0) 

 

 

 

 

Fig. 10.7 

Example 10.27 : Let Z be a standard normal variate. Calculate the following 
probabilities. 

 (i)    P(0 ≤ Z ≤ 1.2) (ii) P(−1.2 ≤ Z ≤ 0) 

 (iii) Area to the right of Z = 1.3 (iv) Area to the left of  Z = 1.5 

 (v)  P(−1.2 ≤  Z ≤ 2.5)   (vi) P(−1.2 ≤  Z ≤ − 0.5)     (vii) P(1.5 ≤  Z ≤ 2.5) 

z0
∞-∞

z0
∞-∞

-2 2
∞-∞

0-2 2
∞-∞

0

-3 3
∞-∞

0-3 3
∞-∞

-3 3
∞-∞

0
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Solution : 

(i)  P(0 ≤ Z ≤ 1.2) 

 P(0 ≤ Z ≤ 1.2) =  area between 
   Z = 0 and Z = 1.2 
  = 0.3849 
 

 
 
 
 

Fig. 10.8 
 (ii)   P(−1.2 ≤ Z ≤ 0) 
   

 P(−1.2 ≤ Z ≤ 0) =   P(0 ≤ Z ≤ 1.2) 
   by symmetry 
   =   0.3849 

 
 
 
 

Fig. 10.9 
(iii) Area to the right of Z = 1.3 

 P(Z > 1.3) = area between  Z = 0 to Z = ∞ 
   − area between Z = 0 to Z = 1.3 

  = P(0 < Z < ∞) − P(0 ≤ Z <1.3) 

  = 0.5 − 0.4032 =   0.0968 

 
 
 
 

Fig. 10.10 
(iv) Area of the left  of Z = 1.5 
 = P(Z < 1.5) 

 = P(−∞ < Z< 0) + P(0 ≤  Z < 1.5) 
 = 0.5 + 0.4332 
 = 0.9332 

 
 
 
 

Fig. 10.11 
(v) P(−1.2 ≤  Z < 2.5)  

 = P(− 1.2 < Z < 0) + P(0 < Z < 2.5) 

       = P(0 ≤  Z < 1.2) + P(0≤  Z ≤ 2.5) 
            [by symmetry] 
      =  0.3849  + 0.4938 
      =  0.8787  

 
 
 
 
 

Fig. 10.12 

(vi) P(−1.2 ≤  Z ≤ −0.5) 

      = P(−1.2 < Z < 0) − P(−0.5 < Z < 0) 

      =  P(0 < Z < 1.2) − P(0 < Z < 0.5) 
[due to symmetry] 

      =  0.3849  − 0.1915  =  0.1934 

 
 
 
 

Fig. 10.13 
 

z = 1.2z = 0
∞-∞

z = 1.2z = 0
∞-∞

z = -1.2 z = 0
∞-∞

z = -1.2 z = 0
∞-∞

z = 1.3z = 0
∞-∞

z = 1.3z = 0
∞-∞

z = 1.5z = 0
∞-∞

z = 1.5z = 0
∞-∞

2.5z = 0-1.2
∞-∞

2.5z = 0-1.2
∞-∞

z = -.5
z = 0

z = -1.2

∞-∞
z = -.5

z = 0
z = -1.2

∞-∞
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(vii) P(1.5 ≤  Z ≤ 2.5) 
 Required area 
      = P(0 ≤  Z ≤ 2.5) − P(0 ≤  Z ≤ 1.5)  =  0.4938  − 0.4332 =  0.0606 
Example 10.28 : Let Z be a standard normal variate. Find the value of c in the 
following problems. 

 (i) P(Z < c)  =  0.05 (ii)  P(−c < Z < c) = 0.94 

 (iii) P(Z > c)   = 0.05 (iv) P(c <  Z < 0) = 0.31 

Solution : 
(i) P(Z < c) = 0.05 i.e., P(− ∞ < Z < c) = 0.05 

    As area is < 0.5, c lies to the left of Z = 0. 

    From the area table Z value for the area 
0.45  is 1.65.  ∴c  = − 1.65 

 
 
 

Fig. 10.14 
(ii)   P(−c < Z < c) = 0.94 

 As  Z = −c  and Z = +c  lie at equal distance from Z = 0, 

 ∴  We have  P(0 < Z < c) = 
0.94

2  = 0.47. 

 Z value for the area  0.47 from the table  
is 1.88 ∴  c =  1.88  and − c = − 1.88  

 
 
 

 

Fig. 10.15 
(iii) P(Z > c) = 0.05  ⇒  P(c < Z < ∞) = 0.05 

 From the data it is clear that c lies to the right of Z = 0 

 The area to the right of Z = 0  is 0.5 

 P(0 < Z < ∞) −  P(0 < Z < c) = 0.05 

 0.5 − P(0 < Z < c) = 0.05 

 ∴  0.5  − 0.05 = P(0 < Z < c) 

 0.45 = P(0 < Z < c) 

 

 

 

Fig. 10.16 

From the area table Z value for the area  0.45  is 1.65     ∴  c = 1.65 

(iv) P(c < Z < 0)  = 0.31 

 As c is less than zero, it lies to the left  of Z = 0. From the area table the Z 
value for the  area 0.31 is 0.88. As it in to the left of Z = 0,  c = − 0.88 

Example 10.29 : If X is normally distributed with mean 6 and standard 
deviation 5 find.   (i)  P(0 ≤ X ≤ 8)    (ii)  P( | X − 6 | < 10) 

0c

. 45
∞-∞

0c

. 45
∞-∞

z = cz = 0z = -c

. 47 . 47

. 94

∞-∞

z = cz = 0

. 45
0.05 ∞-∞

z = cz = 0

. 45
0.05 ∞-∞



 225

Solution :   Given  µ = 6,   σ  = 5         

(i)  P(0 ≤ X ≤ 8) 

We know  that  Z  = 
X − µ

σ  

When  X = 0,  Z = 
0 − 6

5   =  
−6
5    =  − 1.2 

When  X = 8,  Z = 
8 − 6

5   =  
2
5   =  0.4 

 
 
 
 

Fig. 10.17 

 ∴ P(0 ≤ X ≤ 8)  = P(−1.2 < Z < 0.4) 
  = P(0< Z <1.2) + P(0 < Z < .4) (due to symmetry) 
  = 0.3849 + 0.1554 
  = 0.5403 
(ii)  P( | X − 6| < 10)  =  P(−10 < (X − 6)  < 10)   ⇒ P(−4 < X < 16)  

 When  X = −4,  Z = 
−4 − 6

5   =  
−10

5    =  − 2 

 When  X = 16,  Z = 
16 − 6

5   =  
10
5    =  2 

 P(− 4 < X < 16) = P(−2 < Z < 2) 

 
 
 

Fig. 10.18 

   = 2 P(0 < Z  < 2) (due to symmetry) 
   = 2 (0.4772)  = 0.9544 
Example 10.30 : The mean score of 1000 students for an examination is 34 and 
S.D is 16. (i) How many candidates can be expected to obtain marks between 
30 and 60 assuming the normality of the distribution and (ii) determine the limit 
of the marks of the central 70%  of the candidates. 
Solution :  µ = 34,    σ  = 16,      N = 1000 

(i)  P(30 < X < 60)  ;  Z  = 
X − µ

σ  

 ∴   X = 30,  Z1  = 
30 − µ

σ    =   
30 − 34

16     

  =  
−4
16  = −0.25 

 Z1 = −0.25 

 Z2 = 
60 − 34

16    =  
26
16   =   1.625 

 Z2 ≈ 1.63   (app.) 

 

 

 

 

Fig. 10.19 

   P(−0.25 < Z < 1.63) =P(0 < Z< 0.25)  + P(0 < Z < 1.63) (due to symmetry) 

z = 0z = -1.2 z = .4
∞-∞

z = 0z = -1.2 z = .4
∞-∞

z = 2z = 0z = -2
∞-∞

z = 2z = 0z = -2
∞-∞

x = 60
z2

x = 34x = 30
z1

∞-∞
x = 60

z2

x = 34x = 30
z1

∞-∞
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  = 0.0987  +  0.4484 = 0.5471 

 

No of students scoring

between 30 and 60   = 0.5471 × 1000 = 547. 

(ii) limit of central 70% of Candidates : 

 


Value of Z1 from the area table

for the area 0.35
  = − 1.04  

  [  as Z1 lies to left of Z = 0] 

 Similarly  Z2 = 1.04 

 
 
 
 
 

Fig. 10.20 

 Z1 = 
X − 34

16    =  1.04 

 X1 = 16 × 1.04  + 34 

  = 16.64 +  34 
 X1 = 50.64 

 Z2 = 
X − 34

16    =  − 1.04 

 X2− 34 = − 1.04  × 16  + 34 

 X2 = − 16.64 +  34 

 X2 = 17.36 

 ∴  70% of the candidate score between 17.36 and 50.64. 

Example 10.31 : Obtain k, µ and σ2  of the normal distribution whose 
probability distribution function is given by 

 f(x) = k e−2x2 + 4x  −∞  <  X < ∞ 
Solution : Consider 

 −2x2 + 4x = −2 (x2 − 2x) = −2 [(x −1)2 − 1] = −2 (x − 1)2 + 2 

 ∴  e−2x2 + 4x  = e2.  e−2(x −1)2    

  
= e2.  e

−
1
2   

(x −1)2

1/4  

   = e2. e
−

1
2  

x −1
1/2  

2
 

  
Comparing it with  f(x) we get 

 k e−2x2 + 4x = 
1

σ 2π
   

e
−

1
2 



x −µ

σ  
2
 
  

 ⇒  k e2 e
−

1
2 





x −1

1/2
 

2
 
  = 

1

σ 2π
   

e
−

1
2 



x −µ

σ  
2
 
  

 we get σ = 
1
2 = µ  = 1  and k = 

1
1
2 2π 

  . e−2   =  
2e−2

2π
, σ2 = 

1
4 

 

z2z = 0z1

. 35 . 35

∞-∞
z2z = 0z1

. 35 . 35

∞-∞
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Example 10.32 : The air pressure in a randomly selected tyre put on a certain 
model new car is normally distributed with mean value 31 psi and standard 
deviation 0.2 psi. 

 (i) What is the probability that the pressure for a randomly selected tyre  
(a) between 30.5 and 31.5 psi  (b)  between 30 and 32 psi 

 (ii) What is the probability that the pressure for a randomly selected tyre 
exceeds 30.5 psi ? 

Solution :  Given µ = 31 and σ  = 0.2  

(i) (a)   P(30.5 < X < 31.5)  ;  Z  = 
X − µ

σ  

 When  X = 30.5, Z = 
30.5 − 31

0.2  = 
−0.5
0.2  = −2.5 

 When  X = 31.5, Z = 
31.5 − 31

0.2  = 
0.5
0.2  = 2.5 

 

 

 

Fig. 10.21 

∴  Required probability 

 P(30.5 < X < 31.5)  = P( −2.5 < Z < 2.5) 

  = 2 P(0< Z < 2.5)  

   [since due to symmetry] 

  = 2(0.4938)  =  0.9876 

 (b)  P(30 < X < 32) 

 When  X = 30,      Z = 
30 − 31

0.2  = 
−1
0.2  = − 5 

 When  X = 32,      Z = 
32 − 31

0.2  = 
1

0.2  = 5 

 

 

 

Fig. 10.22 

 P(30 < X < 32) = P(−5 < Z < 5) =  area under the whole curve  = 1 (app.) 

 (ii)   When  X = 30.5  ,   Z = 
30.5 − 31

0.2  = 
−0.5
0.2  = −2.5 

 P(X > 30.5) = P(Z > − 2.5) 

  = 0.5  + p(0 < Z < 2.5)  

  = 0.5 + 0.4938   =  0.9938 

 

 

 

Fig. 10.23 

x = 31.5µ = 31x = 30.5
∞-∞

x = 31.5µ = 31x = 30.5
∞-∞

µ = 31
∞-∞

µ = 31
∞-∞

z = -2.5
∞-∞

z = -2.5
∞-∞
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EXERCISE 10.5 

 (1) If X is a normal variate with mean 80 and standard deviation 10, 
compute the following probabilities by standardizing. 

  (i) P(X ≤ 100) (ii) P(X ≤ 80) 

  (iii) P(65 ≤ X ≤ 100) (iv) P(70 < X) 

  (v) P(85 ≤ X ≤ 95)  

 (2) If Z is a standard normal variate, find the value of c for the following 

  (i) P(0 < Z < c) = 0.25 (ii) P(−c < Z < c) = 0.40 

  (iii) P(Z > c) = 0.85  

 (3) Suppose that the amount of cosmic radiation to which a person is 
exposed when flying by jet across the United States is a random 
variable having a normal distribution with a mean of 4.35 m rem and a 
standard deviation of 0.59 m rem. What is the probability that a person 
will be exposed to more than 5.20 m rem of cosmic radiation of such a 
flight. 

 (4) The life of army shoes is normally distributed with mean 8 months and 
standard deviation 2 months. If 5000 pairs are issued, how many pairs 
would be expected to need replacement within 12 months. 

 (5) The mean weight of 500 male students in a certain college in 151 
pounds and the standard deviation is 15 pounds. Assuming the weights 
are normally distributed, find how many students weigh  (i)  between  
120 and 155 pounds  (ii)  more than 185 pounds. 

 (6) If the height of 300 students are normally distributed with mean 64.5 
inches and standard deviation 3.3 inches, find the height below which 
99% of the student lie. 

 (7) Marks in an aptitude test given to 800 students of a school was found to 
be normally distributed. 10% of the students scored below 40 marks and 
10% of the students scored above 90 marks. Find the number of 
students scored between 40 and 90. 

 (8) Find c, µ and σ2 of the normal distribution whose probability function 

is given by  f(x)  = c e−x2 + 3x ,  − ∞ < X < ∞. 
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OBJECTIVE TYPE QUESTIONS 
Choose the correct or most suitable answer : 

 (1) The gradient of the curve y =  − 2x3  + 3x  + 5 at x = 2 is  

  (1)  − 20 (2) 27 (3)   −16 (4)  − 21 
 (2) The rate of change of area A of a circle of radius r is 

  (1)  2 π r (2) 2 π r 
dr
dt  (3)   π r2  

dr
dt  (4)  π  

dr
dt  

 (3) The velocity v of a particle moving along a straight line when at a 

distance x from the origin is given by a + bv2 = x2 where a and b  are 
constants. Then the acceleration is  

  (1) 
b
x (2) 

a
x (3)   

x
b  (4)  

x
a 

 (4) A spherical snowball is melting in such a way that its volume is 

decreasing at a rate of 1 cm3 / min. The rate at which the diameter is 
decreasing when the diameter is 10 cms is 

  (1) 
−1

50π cm / min  (2)  
1

50π cm / min 

  (3)   
−11
75π cm / min   (4)  

−2
75π cm / min. 

 (5) The slope of the tangent to the curve y = 3x2 + 3sin x at x = 0 is  

  (1) 3 (2) 2 (3) 1 (4) − 1 

 (6) The slope of the normal to the curve y = 3x2 at the point whose 
x coordinate is 2 is  

  (1)  
1

13  (2) 
1
14  (3)  

−1
12  (4) 

1
12  

 (7) The  point on the curve y = 2x2 – 6x – 4 at which the tangent is parallel 
to the x – axis is 

  (1) 



 

5
2  ,

– 17
2    (2) 



 

−5
2   ,

– 17
2    (3) 



 

−5
2   ,

 17
2    (4) 



 

3
2  ,

– 17
2    

 (8) The equation of the  tangent to the curve y =  
x3

5   at the point (−1, −1/5) 

is 

  (1) 5y + 3x = 2 (2) 5y − 3x = 2 (3) 3x − 5y = 2  (4) 3x + 3y = 2 
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 (9) The equation of the normal to the curve θ = 
1
t   at the point (−3, − 1/3) is 

  (1) 3 θ = 27 t – 80  (2)  5 θ = 27t – 80   

  (3)  3 θ  = 27 t + 80 (4)  θ = 
1
t   

 (10) The angle between the curves 
x2

25 + 
y2

9  = 1 and 
x2

8  − 
y2

8  = 1 is 

  (1) 
π
4 (2) 

π
3 (3) 

π
6 (4) 

π
2 

 (11) The angle between the curve y = emx and y = e–mx for m >1 is 

  (1)  tan−1 




2m

m2-1
    (2) tan−1





2m

1− m2    

  (3)  tan−1 




−2m

1+ m2   (4) tan−1  




2m

m2+1
   

 (12) The parametric equations of the curve x2/3 + y2/3  = a2/3 are  

  (1)  x = a sin3 θ  ;  y  = a cos3 θ (2)  x = a cos3 θ ; y = a sin3 θ 

  (3)  x = a3 sin θ  ;  y  = a3 cos θ (4)  x = a3 cos θ  ;  y  = a3 sin θ 
 (13) If the normal to the curve x2/3 + y2/3  = a2/3 makes an angle θ with the  

x – axis then the slope of the normal is 
  (1)  – cot θ (2)  tan θ (3)  – tan θ (4)  cot θ 
 (14) If the length of the diagonal of a square is increasing at the rate of  

0.1 cm / sec. What is the rate of increase of its area when the side  

is 
15

2
 cm? 

  (1)  1.5 cm2/sec (2) 3 cm2/sec (3) 3 2 cm2/sec    (4) 0.15 cm2/sec 
 (15) What is the surface area of a sphere when the volume is increasing at 

the same rate as its radius? 

  (1)  1 (2) 
1

2π (3) 4π (4) 
4π
3  

 (16) For what values of x is the rate of increase of x3 − 2x2 + 3x + 8 is twice 
the rate of increase of x 

  (1)  



− 

1
3 , − 3  (2) 



1

3 , 3  (3) 



− 

1
3 , 3  (4) 



1

3 , 1  

 (17) The radius of a cylinder is increasing at the rate of 2cm / sec and its 
altitude is decreasing at the rate of 3cm / sec. The rate of change of 
volume when the radius is 3cm and the altitude is 5cm is 

  (1)  23π (2) 33π (3) 43π (4) 53π 
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 (18) If y = 6x − x3 and x increases at the rate of 5 units per second, the rate of 
change of slope when x = 3 is 

  (1)  − 90 units / sec (2) 90 units / sec 
  (3) 180 units / sec  (4) − 180 units / sec 
 (19) If the volume of an expanding cube is increasing at the rate of  

4cm3 / sec then the rate of change of surface area when the volume of 
the cube is 8 cubic cm is 

  (1) 8cm2/sec (2) 16cm2 / sec    (3) 2 cm2 / sec (4) 4 cm2 / sec 

 (20) The gradient of the tangent to the curve y = 8 + 4x − 2x2 at the point 
where the curve cuts the y-axis is 

  (1) 8 (2) 4 (3) 0 (4) − 4 

 (21) The Angle between the parabolas y2 = x and x2 = y at the origin is 

  (1) 2 tan−1 



3

4  (2) tan− 1 



4

3  (3) 
π
2 (4) 

π
4 

 (22) For the curve x = et cos t  ;  y = et sin t  the tangent line is parallel to the 
x-axis when t is equal to 

  (1) − 
π
4 (2) 

π
4 (3) 0 (4) 

π
2 

 (23) If a normal makes an angle θ with positive x-axis then the slope of the 
curve at the point where the normal is drawn is 

  (1) − cot θ (2) tan θ (3) − tan θ (4) cot θ 

 (24) The value of ‘a’ so that the curves y = 3ex and y = 
a
3 e−x intersect 

orthogonally is 

  (1) − 1  (2) 1 (3) 
1
3 (4) 3 

 (25) If s = t3 − 4t2 + 7, the velocity when the acceleration is zero is 

  (1) 
32
3  m/sec (2) 

− 16
3  m/sec (3) 

16
3  m/sec (4) 

− 32
3  m/sec 

 (26) If the velocity of a particle moving along a straight line is directly 
proportional to the square of its distance from a fixed point on the line. 
Then its acceleration is proportional to 

  (1) s (2) s2 (3) s3 (4) s4 

 (27) The Rolle’s constant for the function y = x2 on [− 2, 2] is 

  (1) 
2 3

3  (2) 0 (3) 2 (4) − 2 
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 (28) The ‘c’ of Lagranges Mean Value Theorem for the function  

  f(x) = x2 + 2x − 1  ;  a = 0,  b = 1 is 

  (1) − 1  (2) 1 (3) 0 (4) 
1
2 

 (29) The value of c in Rolle’s Theorem for the function f(x) = cos 
x
2 on  

[π, 3π] is 

  (1) 0 2) 2π (3) 
π
2 (4) 

3π
2   

 (30) The value of ‘c’ of Lagranges Mean Value Theorem for f(x) = x when 
a = 1 and b = 4 is 

  (1) 
9
4 (2) 

3
2 (3) 

1
2 (4) 

1
4 

 (31) lim
x → ∞

   
x2

ex  is = 

  (1) 2 (2) 0 (3) ∞ (4) 1 

 (32) lim
x→ 0

 
ax − bx

cx − dx  

  (1) ∞ (2) 0 (3) log 
ab
cd (4) 

log ( )a/b
log ( )c/d   

 (33) If f(a) = 2;  f ′(a) = 1 ; g(a) = − 1 ; g ′(a) = 2 then the value of  

lim
x → a

   
g(x) f(a) − g(a) f(x)

x − a
 is 

  (1) 5 (2) − 5 (3) 3 (4) − 3 

 (34) Which of the following function is increasing in (0, ∞) 

  (1) ex (2) 
1
x (3) − x2 (4) x−2 

 (35) The function f(x) = x2 − 5x + 4 is increasing in  

  (1) (− ∞, 1) (2) (1, 4) (3) (4, ∞) (4) everywhere 

 (36) The function f(x) = x2 is decreasing in 

  (1) (− ∞, ∞) (2) (− ∞, 0) (3) (0, ∞) (4) (− 2, ∞) 



 233

 (37) The function y = tan x − x is 

  (1) an increasing function in 



0 , 

π
2  

  (2) a decreasing function in 



0 , 

π
2  

  (3) increasing in 



0 , 

π
4  and decreasing in 



π

4 , 
π
2   

  (4) decreasing in 



0 , 

π
4  and increasing in 



π

4 , 
π
2   

 (38) In a given semi circle of diameter 4 cm a rectangle is to be inscribed. 
The maximum area of the rectangle is 

  (1) 2 (2) 4 (3) 8 (4) 16 

 (39) The least possible perimeter of a rectangle of area 100m2 is 
  (1) 10 (2) 20 (3) 40 (4) 60 

 (40) If f(x) = x2 − 4x + 5 on [0, 3] then the absolute maximum value is 
  (1) 2 (2) 3 (3) 4 (4) 5 

 (41) The curve y = − e−x is 
  (1) concave upward for x > 0 (2) concave downward for x > 0 
  (2) everywhere concave upward (4) everywhere concave downward 
 (42) Which of the following curves is concave down? 

  (1) y = − x2 (2) y = x2 (3) y = ex          (4) y = x2 + 2x − 3 

 (43) The point of inflexion of the curve y = x4 is at 
  (1) x = 0 (2) x = 3 (3) x = 12 (4) nowhere 

 (44) The curve y = ax3 + bx2 + cx + d has a point of inflexion at x = 1 then 
  (1) a + b = 0 (2) a + 3b = 0 (3) 3a +b = 0 (4) 3a + b = 1 

 (45) If u = xy then 
∂u
∂x

 is equal to 

  (1) yxy − 1 (2) u log x (3) u log y (4) xyx − 1 

 (46) If u = sin−1 






x4 + y4

x2 + y2  and f = sin u then f is a homogeneous function of 

degree 
  (1) 0 (2) 1 (3) 2 (4) 4 

 (47) If u = 
1

x2 + y2
 , then x 

∂u
∂x

 + y 
∂u
∂y

 is equal to 

  (1) 
1
2 u (2) u (3) 

3
2 u (4) − u 
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 (48) The curve y2 (x − 2) = x2 (1 + x) has 
  (1) an asymptote parallel to x-axis  (2) an asymptote parallel to y-axis 
  (3) asymptotes parallel to both axes  (4) no asymptotes 

 (49) If x = r cos θ, y = r sin θ, then 
∂r
∂x

 is equal to 

  (1) sec θ (2) sin θ (3) cos θ (4) cosec θ 
 (50) Identify the true statements in the following : 
  (i) If a curve is symmetrical about the origin, then it is symmetrical 

about both axes. 
  (ii) If a curve is symmetrical about both the axes, then it is 

symmetrical about the origin. 
  (iii) A curve f(x, y) = 0 is symmetrical about the line y = x  
   if  f(x, y) = f(y, x). 
  (iv) For the curve f(x, y) = 0, if f(x, y) = f(− y, − x), then it is 

symmetrical about the origin. 
  (1) (ii), (iii) (2) (i), (iv) (3) (i), (iii) (4) (ii), (iv) 

 (51) If u = log 



x2 + y2

xy  then x 
∂u
∂x

 + y 
∂u
∂y

 is 

  (1) 0 (2) u (3) 2u (4) u−1 
 (52) The percentage error in the 11th root of the number 28 is approximately 

_____ times the percentage error in 28. 

  (1) 
1

28 (2) 
1
11 (3) 11 (4) 28 

 (53) The curve a2y2 = x2 (a2 − x2) has 
  (1) only one loop between x = 0 and x = a 
  (2) two loops between x = 0 and x = a 

  (3) two loops between x = − a and x = a 
  (4) no loop 

 (54) An asymptote to the curve y2 (a + 2x) = x2 (3a − x) is 
  (1) x = 3a (2) x = − a/2 (3) x = a/2 (4) x = 0 

 (55) In which region the curve y2(a + x) = x2 (3a − x) does not lie? 
  (1) x > 0          (2) 0 < x < 3a    (3) x ≤ − a and x > 3a (4) − a < x < 3a 

 (56) If u = y sin x, then 
∂2u

∂x ∂y
 is equal to 

  (1) cos x (2) cos y (3) sin x        4) 0 
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 (57) If u = f 



y

x  then x 
∂u
∂x

 + y 
∂u
∂y

 is equal to 

  (1) 0 (2) 1 (3) 2u (4) u 

 (58) The curve 9y2 = x2(4 − x2) is symmetrical about  
  (1) y-axis (2) x-axis (3) y = x                (4) both the axes 

 (59) The curve ay2 = x2 (3a − x) cuts the y-axis at  
  (1) x = − 3a, x = 0 (2) x = 0, x = 3a  (3) x = 0, x = a  (4) x = 0 

 (60) The value of ⌡⌠
0

π/2
 

cos5/3x

cos5/3x + sin 5/3x
  dx is 

  (1) 
π
2 (2) 

π
4 (3) 0 (4) π 

 (61) The value of ⌡⌠
0

π/2
 

sin x − cos x
1 + sin x cos x dx is 

  (1) 
π
2 (2) 0 (3) 

π
4 (4) π 

 (62) The value of ⌡⌠
0

 1
 x (1 − x)4 dx is 

  (1) 
1

12 (2) 
1
30 (3) 

1
24 (4) 

1
20 

 (63) The value of ⌡⌠
− π/2

π/2
   



sin x

2 + cosx  dx is 

  (1) 0 (2) 2 (3) log 2 (4) log 4 

 (64) The value of ⌡⌠
0

π
 sin4x dx is 

  (1) 3π/16 (2) 3/16 (3) 0 (4) 3π/8 

 (65) The value of ⌡⌠
0

π/4
 cos32x dx is 

  (1) 
2
3 (2) 

1
3 (3) 0 (4) 

2π
3  
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 (66) The value of ⌡⌠
0

π
 sin2x cos3x dx is 

  (1) π (2) π/2 (3) π/4 (4) 0 
 (67) The area bounded by the line y = x, the x-axis, the ordinates x = 1, x = 2 

is 

  (1) 
3
2 (2) 

5
2 (3) 

1
2  (4) 

7
2 

 (68) The area of the region bounded by the graph of y = sin x and y = cos x 

between x = 0 and x = 
π
4 is 

  (1) 2 + 1 (2) 2 − 1 (3) 2 2 − 2 (4) 2 2 + 2 

 (69) The area between the ellipse 
x2

a2 + 
y2

b2 = 1 and its auxillary circle is 

  (1) πb(a − b) (2) 2πa (a − b) (3) πa (a − b) (4) 2πb (a − b) 

 (70) The area bounded by the parabola y2 = x and its latus rectum is 

  (1) 
4
3 (2) 

1
6 (3) 

2
3 (4) 

8
3 

 (71) The volume of the solid obtained by revolving 
x2

9  + 
y2

16 = 1 about the 

minor axis is 
  (1) 48π (2) 64π (3) 32π (4) 128 π 

 (72) The volume, when the curve y = 3 + x2 from x = 0 to x = 4 is rotated 
about x-axis is 

  (1) 100 π (2) 
100

9  π (3) 
100

3  π (4) 
100

3  

 (73) The volume generated when the region bounded by y = x, y = 1, x = 0 is 
rotated about y-axis is 

  (1) 
π
4 (2) 

π
2 (3) 

π
3 (4) 

2π
3  

 (74) Volume of solid obtained by revolving the area of the ellipse  

 
x2

a2 + 
y2

b2 = 1 about major and minor axes are in the ratio 

  (1) b2 : a2 (2) a2 : b2 (3) a : b (4) b : a 
 (75) The volume generated by rotating the triangle with vertices at  
  (0, 0), (3, 0) and (3, 3) about x-axis is 
  (1) 18π (2) 2π (3) 36π (4) 9π 
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 (76) The length of the arc of the curve x2/3 + y2/3= 4 is 
  (1) 48  (2) 24 
  (3) 12  (4) 96 
 (77) The surface area of the solid of revolution of the region bounded by  

y = 2x, x = 0 and x = 2 about x-axis is 
  (1) 8 5 π (2) 2 5 π (3) 5π (4) 4 5π 
 (78) The curved surface area of a sphere of radius 5, intercepted between 

two parallel planes of distance 2 and 4 from the centre is 
  (1) 20π (2) 40π (3) 10π (4) 30π 

 (79) The integrating factor of 
dy
dx + 2 

y
x = e4x is 

    (1) log x (2) x2 (3) ex (4) x 

 (80) If cos x is an integrating factor of the differential equation 
dy
dx + Py = Q  

  then P =  
   (1) − cot x (2) cot x (3) tan x (4) − tan x 

 (81) The integrating factor of dx + xdy = e−y sec2y dy is 

  (1) ex (2) e−x (3) ey (4) e−y 

 (82) Integrating factor of 
dy
dx + 

1
x log x .y =  

2

x2  is 

  (1) ex (2) logx (3) 
1
x (4) e−x 

 (83) Solution of 
dx
dy + mx = 0, where m < 0 is 

  (1) x = cemy (2) x = ce−my (3) x = my + c (4) x = c 

 (84) y = cx − c2 is the general solution of the differential equation 

  (1) (y′)2 − xy′ + y = 0 (2) y′′ = 0  

  (3) y′ = c  (4) (y′)2 + xy′ + y = 0 

 (85) The differential equation 



dx

dy

2
 + 5y1/3 = x is 

  (1) of order 2 and degree 1                        
  (2) of order 1 and degree 2 
  (3) of order 1 and degree 6 
  (4) of order 1 and degree 3 
 (86) The differential equation of all non-vertical lines in a plane is 

  (1) 
dy
dx = 0 (2) 

d2y

dx2 = 0 (3) 
dy
dx = m (4) 

d2y

dx2 = m 
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 (87) The differential equation of all circles with centre at the origin is 

  (1) x dy + y dx = 0  (2) x dy − y dx = 0 
  (3) x dx + y dy = 0  (4) x dx − y dy = 0 

 (88) The integrating factor of the differential equation 
dy
dx + py = Q is 

  (1) ⌡⌠ pdx (2) ⌡⌠ Q dx (3) e⌡⌠Q dx
 (4) e ∫pdx 

 (89) The complementary function of (D2 + 1)y = e2x is 

  (1) (Ax + B)ex     (2) A cos x + B sin x   (3) (Ax + B)e2x   (4) (Ax + B)e−x 

 (90) A particular integral of (D2 − 4D + 4)y = e2x is 

  (1) 
x2

2  e2x (2) xe2x (3) xe−2x (4) 
x
2 e−2x 

 (91) The differential equation of the family of lines y = mx is 

  (1) 
dy
dx = m (2) ydx − xdy = 0 

  (3) 
d2y

dx2 = 0 (4) ydx + x dy = 0 

 (92) The degree of the differential equation 1 + 



dy

dx

1/3
  = 

d2y

dx2 

  (1) 1 (2) 2 (3) 3 (4) 6 

 (93) The degree of the differential equation c = 




1 + 



dy

dx
3 2/3

d3y

dx3

  where c is a 

constant is 
  (1) 1 (2) 3 (3) − 2 (4) 2 
 (94) The amount present in a radio active element disintegrates at a rate 

proportional to its amount. The differential equation corresponding to 
the above statement is (k is negative) 

  (1) 
dp
dt  = 

k
p (2) 

dp
dt  = kt (3) 

dp
dt  = kp (4) 

dp
dt  = − kt 

 (95) The differential equation satisfied by all the straight lines in xy plane is 

  (1) 
dy
dx = a constant    (2) 

d2y

dx2 = 0 (3) y + 
dy
dx = 0 (4) 

d2y

dx2 + y = 0 
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 (96) If y = keλx then its differential equation is 

  (1) 
dy
dx = λy (2) 

dy
dx = ky (3) 

dy
dx + ky = 0 (4) 

dy
dx = eλx 

 (97) The differential equation obtained by eliminating a and b from  

y = ae3x + be− 3x is 

  (1) 
d2y

dx2 + ay = 0 (2) 
d2y

dx2 − 9y = 0   (3) 
d2y

dx2 − 9 
dy
dx = 0 (4) 

d2y

dx2 + 9x = 0 

 (98) The differential equation formed by eliminating A and B from the 

relation y = ex (A cos x + B sin x) is 
  (1) y2 + y1 = 0  (2) y2 − y1 = 0  

  (3) y2 − 2y1 + 2 y = 0 (4) y2 − 2y1 − 2 y = 0 

 (99) If 
dy
dx = 

x − y
x + y then 

  (1) 2xy + y2 + x2 = c (2) x2 + y2 − x + y = c 

  (3) x2 + y2 − 2xy = c (4) x2 − y2 − 2xy = c 

 (100) If f ′(x) = x and f(1) = 2 then f(x) is 

  (1) − 
2
3 ( )x x + 2   (2) 

3
2 ( )x x + 2  

  (3) 
2
3 ( )x x + 2   (4) 

2
3 x ( )x + 2  

 (101) On putting y = vx, the homogeneous differential equation  

  x2dy + y(x + y)dx = 0 becomes 

  (1) xdv + (2v + v2)dx = 0 (2) vdx + (2x + x2)dv = 0 

  (3) v2dx − (x + x2)dv = 0 (4) vdv + (2x + x2)dx = 0 

 (102) The integrating factor of the differential equation 
dy
dx − y tan x = cos x is 

  (1) sec x (2) cos x (3) etanx (4) cot x 

 (103) The P.I. of (3D2 + D − 14)y = 13e2x is 

  (1) 26x e2x (2) 13x e2x (3) x e2x  (4)  x2/2 e2x 

 (104) The particular integral of the differential equation f(D)y = eax where 
f(D) = (D − a) g(D), g(a) ≠ 0 is 

  (1) meax (2) 
eax

g(a) (3) g(a)eax (4) 
xeax

g(a) 
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 (105) Which of the following are statements? 
  (i)   May God bless you. (ii) Rose is a flower 
  (iii) Milk is white.  (iv) 1 is a prime number 
  (1) (i), (ii), (iii) (2) (i), (ii), (iv)   (3) (i), (iii), (iv)  (4) (ii), (iii), (iv) 
 (106) If a compound statement is made up of three simple statements, then the 

number of rows in the truth table is 
  (1) 8 (2) 6 (3) 4 (4) 2 
 (107) If p is T and q is F, then which of the following have the truth value T ? 
  (i) p ∨ q (ii) ∼ p ∨ q (iii) p ∨ ∼ q (iv) p ∧ ∼ q 
  (1) (i), (ii), (iii)  (2) (i), (ii), (iv)  
  (3) (i), (iii), (iv)  (4) (ii), (iii), (iv) 
 (108) The number of rows in the truth table of ∼ [ ]p ∧ (∼ q)  is  
  (1) 2 (2) 4 (3) 6 (4) 8 
 (109) The conditional statement p → q is equivalent to  
  (1) p ∨ q (2) p ∨ ∼ q (3) ∼ p ∨ q (4) p ∧ q 
 (110) Which of the following is a tautology? 
  (1) p ∨ q (2) p ∧ q (3) p ∨ ∼ p (4) p ∧ ∼ p 
 (111) Which of the following is a contradiction? 
  (1) p ∨ q (2) p ∧ q (3) p ∨ ∼ p (4) p ∧ ∼ p 
 (112) p ↔ q is equivalent to  
  (1) p → q    (2) q → p   (3) (p → q) ∨ (q → p)   (4) (p → q) ∧ (q → p) 
 (113) Which of the following is not a binary operation on R 
  (1) a * b = ab  (2) a * b = a − b  

  (3) a * b = ab  (4) a * b = a2 + b2 
 (114) A monoid becomes a group if it also satisfies the  
  (1) closure axiom  (2) associative axiom 
  (3) identity axiom  (4) inverse axiom 
 (115) Which of the following is not a group? 
  (1) (Zn , +n) (2) (Z, +) (3) (Z, .) (4) (R, +) 

 (116) In the set of integers with operation * defined by a * b = a + b − ab, the 
value of 3 * (4 * 5) is 

  (1) 25 (2) 15 (3) 10 (4) 5 
 (117) The order of [7] in (Z9 , +9) is 
  (1) 9 (2) 6 (3) 3 (4) 1 

 (118) In the multiplicative group of cube root of unity, the order of w2 is 
  (1) 4 (2) 3 (3) 2 (4) 1 
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 (119) The value of [3] +11 ( )[5] +11 [6]  is 

  (1) [0] (2) [1] (3) [2] (4) [3] 

 (120) In the set of real numbers R, an operation * is defined by  

  a * b = a2 + b2 .  Then the value of (3 * 4) * 5 is 

  (1) 5 (2) 5 2 (3) 25 (4) 50 

 (121) Which of the following is correct? 

  (1) An element of a group can have more than one inverse. 

  (2) If every element of a group is its own inverse, then the group is 
abelian. 

  (3) The set of all 2 × 2 real matrices forms a group under matrix 
multiplication. 

  (4) (a * b)−1 = a−1 * b−1 for all a, b ∈ G 

 (122) The order of − i in the multiplicative group of 4th roots of unity is 

  (1) 4 (ii) 3 (3) 2 (4) 1 

 (123) In the multiplicative group of nth roots of unity, the inverse of   ωk is  
(k < n) 

  (1) ω1/k (2) ω−1 (3) ωn − k (4) ωn/k 

 (124) In the set of integers under the operation * defined by a * b = a + b − 1, 
the identity element is  

  (1) 0 (2) 1 (3) a (4) b 

(125) If f(x)  =  



 
k x2 , 0 < x < 3
0     ,elsewhere

   is a probability density function then the 

value of k is  

  (1)  
1
3 (2)  

1
6 (3)  

1
9 (4) 

1
12 

(126) If f(x)  =  
A
π  

1

16 + x2, − ∞ < x < ∞  

  is a p.d.f of a continuous random variable X, then the value of A is  

  (1)  16 (2)  8 (3)  4 (4) 1 
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(127) A random variable X has the following probability distribution   

X 0 1 2 3 4 5 

P(X = x) 1/4 2a 3a 4a 5a 1/4 

  Then P(1 ≤ x ≤ 4)  is 

  (1)  
10
21 (2)  

2
7 (3)  

1
14 (4) 

1
2 

(128) A random variable X has the following probability mass function as 
follows :   

X −2 3 1 

P(X = x) 
λ
6 

λ
4 

λ
12 

  Then the value of λ is  

  (1)  1 (2)  2 (3)  3 (4) 4 

(129) X is a discrete random variable which takes the values 0, 1, 2 and 

P(X = 0) = 
144
169 ,  P(X = 1) = 

1
169  then the value of P(X = 2) is 

  (1)  
145
169 (2)  

24
169 (3)  

2
169 (4) 

143
169 

(130) A random variable X has the following p.d.f   

X 0 1 2 3 4 5 6 7 

P(X = x) 0 k 2k 2k 3k k2 2k2 7k2 + k 

  The value of k is 

  (1)  
1
8 (2)  

1
10 (3)  0 (4) − 1 or 

1
10 

(131) Given E(X + c) = 8 and E(X − c) = 12  then the value of c is   

  (1)  −2 (2) 4 (3)  −4 (4) 2 

(132) X is a random variable taking the values 3, 4 and 12 with probabilities 
1
3  ,  

1
4  and  

5
12 .  Then E(X) is 

  (1)  5 (2) 7 (3)  6 (4) 3 

(133) Variance of the random variable X is 4. Its mean is 2. Then E(X2) is    

  (1)  2 (2)  4 (3)  6 (4) 8 
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(134) µ2 = 20,  µ2′  =  276  for a discrete random variable X. Then the mean of 

the random variable X is    
  (1)  16 (2)  5 (3)  2 (4) 1 
(135) Var (4X + 3) is    
  (1) 7 (2) 16 Var (X) (3) 19 (4) 0 
(136) In 5 throws of a die, getting 1 or 2 is a success. The mean number of 

successes is    

  (1)  
5
3 (2)  

3
5 (3)  

5
9 (4) 

9
5 

(137) The mean of a binomial   distribution is 5 and its standard deviation is 2. 
Then the value of n and p are 

  (1) 



4

5 ,25   (2)  



25, 

4
5   (3)  



1

5 ,25   (4) 



25,

1
5   

(138) If the mean and standard deviation of a binomial distribution are 12 and 2 
respectively. Then the value of its parameter p is    

  (1)  
1
2 (2)  

1
3 (3)  

2
3 (4) 

1
4 

(139) In 16 throws of a die getting an even number is considered a success. 
Then the variance of the successes is    

  (1)  4 (2)  6 (3)  2 (4) 256 

(140) A box contains 6 red and 4 white balls. If 3 balls are drawn at random, 
the probability of getting 2 white balls without replacement, is  

  (1)  
1

20 (2) 
18
125 (3) 

4
25 (4) 

3
10 

(141) If 2 cards are drawn from a well shuffled pack of 52 cards, the probability 
that they are of the same colours without replacement,  is    

  (1) 
1
2 (2) 

26
51 (3) 

25
51 (4) 

25
102 

(142) If in a Poisson distribution P(X = 0)  = k  then the variance is    

  (1)  log 
1
k  (2)  log k (3)  eλ (4) 

1
k 

(143) If a random variable X follows Poisson distribution such that E(X2) = 30 
then the variance of the distribution is 

  (1)  6 (2)  5 (3)  30 (4) 25 
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(144) The distribution function F(X) of a random variable X is    

  (1)  a decreasing function 

  (2) a non-decreasing function 

  (3) a constant function 

  (4) increasing first and then decreasing 

(145) For a Poisson distribution with parameter λ = 0.25 the value of the  
2nd moment about the origin is    

  (1)  0.25 (2) 0.3125 (3) 0.0625 (4) 0.025 

(146) In a Poisson distribution if P(X = 2) = P(X = 3) then the value of its 
parameter λ is  

  (1)  6 (2)  2 (3)  3 (4) 0 

(147) If f(x) is a p.d.f of a normal distribution with mean µ then ⌡⌠
− ∞

∞
f(x) dx  is     

  (1)  1 (2)  0.5 (3)  0 (4) 0.25 

(148) The random variable X follows normal distribution 

   f(x) = ce
−1/2 (x − 100)2

25  Then the value of c is     

  (1)  2π (2)  
1

 2π
 (3)  5 2π (4) 

1

5 2π
 

(149) If f(x) is a p.d.f. of a normal variate X and X ∼ N(µ, σ2) then ⌡⌠
− ∞

 µ
    f(x) dx 

is 

  (1)  undefined (2) 1 (3) .5 (4) − .5 

(150) The marks secured by 400 students in a Mathematics test were normally 
distributed with mean 65. If 120 students got more marks above 85, the 
number of students securing marks between 45 and 65 is 

  (1) 120 (2) 20 (3) 80 (4) 160 
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ANSWERS 
EXERCISE 5.1 

 (1) (i) 100 m / sec (ii) t = 4 (iii) 200m (iv) − 100 m / sec 

 (2) − 12, 0 (3) (i) 72 km / hr (ii) 60 m 

 (4) 1.5936°c / sec (5) decreasing at the rate of 1.6 cm / min 

 (6) 
195

29
 km / hr (7) 0.3 m2 / sec (8) 

π
63

 m / min (9) 
6

5π  ft / min 

EXERCISE 5.2 
 (1) (i) 8x + y + 9 = 0 

   x − 8y + 58 = 0 
 (ii) 2x − y − π/2 = 0 

  x + 2y − 3π/2 = 0 
  (iii) y = 2 

   x = π/6 
 (iv) y − ( )2 + 1  = ( )2 + 2  



x − 

π
4  

  y − ( )2 + 1  = 
− 1

2 + 2
  



x − 

π
4  

 (2) 





2 
2
3 ,  

2
3   and  



− 2 

2
3 ,  − 

2
3  

 (3) (2, 3) and (− 2, − 3) (4) (i) (1, 0) and (1, 4)  (ii) (3, 2) and (−1, 2) 
 (5) 2x + 3y ± 26 = 0 (6) x + 9y ± 20 = 0 

 (9) θ = tan−1 









log a − log b

1 + log a  log b  

EXERCISE 5.3 

 (1) (i) True , c = 
π
2                       (ii) Fails , f(0) ≠ f (1) 

  (iii) Fails , At x = 1 the function is not differentiable  (iv) True , c = ± 
3

2  

 (2) (0, 1) 
EXERCISE 5.4 

 (1) (i) True , c = 
3
2  (ii) True , c = 2 

  (iii) True , c = 
− 1 + 61

6  

  (iv) Fails , Function is not differentiable at x = 0     (v) True , c = 
7
3 

 (2) 16 
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EXERCISE 5.5 

 (1) 1 + 
2x

1
  +  

(2x)2

2
  +  

(2x)3

3
 + … (2)  1 − x2 + 

x4

3  + … 

  (3) 1 − x + x2 + …  (4)  x + 
x3

3  + 
2x5

15   + … 

EXERCISE 5.6 
  (1) − π (2) 2 (3) 1 (4) n2n − 1 (5) 2 

  (6) − 2 (7) 0 (8) 2 (9) 0 (10) e 
  (11) 1 (12) 1 (13) 1 

EXERCISE 5.7 
 (3) (i) increasing (ii) st. increasing (iii) st. decreasing   
  (iv) st. increasing (v) increasing 

 (5) (i) increasing in (− ∞, − 1/2 ]  and decreasing in [−1/2 , ∞) 

  (ii) increasing in (− ∞, − 1] ∪ [1, ∞) and decreasing in [− 1, 1] 
  (iii) strictly increasing on R 

  (iv) decreasing in 



0, 

π
3   ∪  



5π

3  , 2π   increasing in 



π

3 , 
5π
3  

  (v) increasing in [0, π] 

  (vi) increasing in 



π

4 , 
π
2  and decreasing in 



0, 

π
4   

EXERCISE 5.9 
 Critical numbers Stationary points 

 (1) (i) x = 
1
3 



1

3 , 
1
3    

  (ii) x = ± 1 (1, − 1) and (− 1, 3) 

  (iii) x = 0, 4, 
8
7 (4, 0) and 



8

7 , 



8

7
4/5

 



20

7
2

 

  (iv) x = 0, − 2 (0, 1) and 



− 2, − 

1
3  

  (v) θ = 0, 
π
4 , 

π
2, 

3π
4  , π (0, 0) 



π

4,1  



π

2, 0  



3π

4  , 1  (π, 0) 

  (vi) θ = π (π, π) 
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 Absolute maximum Absolute minimum 
 (2) (i) 5 1 

  (ii) 2 − 7 

  (iii) 66 − 15 

  (iv) 3 5 

  (v) 
2
3 

1
2 

  (vi) 2 1 

  (vii) π + 2 − 
π
6 − 3   

 Local maximum Local minimum 

 (3) (i) 
2

3 3
 

− 2
3 3

 

  (ii) 12 
− 19
27  

  (iii) 0 − 9 

  (iv) Nil − 1 

  (v) 1 Nil 

  (vi) No maximum and no minimum 

EXERCISE 5.10 
 (1) 50, 50            (2) 10, 10      (5) ( )2 r, 2 r          (6)   20 5 

EXERCISE 5.11 
  Concave upward Convex upward Points of inflection 

 (1) (− ∞, 1) (1, ∞) (1, 0) 

 (2) R − Nil 

 (3) 



− 

5
6 , ∞  



− ∞, − 

5
6  − 

5
6 , 

305
54  

 (4) (− ∞, −1) ∪ (1, ∞) (− 1, 1) (1, − 5), (− 1, − 5) 

 (5) 



π

2 , π  



0, 

π
2  



π

2 , 0  

 (6) (− 2, 1) (− ∞, − 2) ∪ (1, ∞) (1, 9), (− 2, 48) 
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EXERCISE 6.1 

 (1) (i) dy = 5x4dx (ii) dy = 
1
4 x− 3/4dx (iii) dy = 

x (2x2 + 1)

x4 + x2 + 1
 dx 

  (iv) dy = 




7

(2x + 3)2  dx (v) dy = 2 cos 2x dx 

  (vi) dy = (x sec2x + tan x) dx 

 (2) (i)   dy = − 2x dx ; dy = − 5 (ii) dy = (4x3 − 6x + 1) dx ; dy = 2.1 

  (iii) dy = 6x (x2 + 5)2dx  ; dy = 10.8 (iv) dy = − 
1

2 1 − x
 dx ; dy = − 0.01 

  (v)  dy = − sin x dx  ;  dy = − 0.025 

 (3) (i)  6.008 (app.) (ii) 0.099 (app.) (iii) 2.0116 (app.)    (iv) 58.24 (app.) 

 (4) (i) 270 cubic cm (ii) 36 cm2 (5) (i) 0.96 π cm2    (ii) 0.001667 

EXERCISE 6.2 

No. Existence Symmetry Asymptote Loops 

2 − 1 ≤ x ≤ 1 Both axes and 
hence origin 

No asymptotes 2 loops 
between − 1 
and 1 

3 − 2 < x ≤ 6 x-axis x = − 2 1 loop between 
0 and 6 

4 x ≤ 1 x-axis No asymptotes 1 loop between 
0 and 1 

5 x = b and x ≥ a x - axis No asymptotes No loops 

EXERCISE 6.3 

 (1) (i) 
∂u
∂x

 = 2x + 3y  ;  
∂u
∂y

 = 3x + 2y 

   
∂2u

∂x2 = 2  ;  
∂2u

∂y2 = 2 

(ii) 
∂u
∂x

 = 
x3 + 2y3

x3y2   ;  
∂u
∂y

 = − 
(y3 + 2x3)

x2 y3  

     
∂2u

∂x2 = 
− 6y

x4   ;  
∂2u

∂y2 = 
6x

y4 
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  (iii) 
∂u
∂x

 = 3 cos 3x  cos 4y  ;  
∂u
∂y

 = − 4 sin 3x sin 4y 

   
∂2u

∂x2 = − 9 sin 3x cos 4y  ;  
∂2u

∂y2 = − 16 sin 3x cos 4y 

  (iv) 
∂u
∂x

 = 
y

x2 + y2  ;  
∂u
∂y

 = − 
x

x2 + y2 

   
∂2u

∂x2 = 
− 2xy

(x2 + y2)2  ;  
∂2u

∂y2  = 
2xy

(x2 + y2)2 

 (3) (i) 5t4et5 (ii) 
2 (e2t − e−2t)

(e2t + e−2t)
 (iii) − sin t 

  (iv) 2cos2t 

 (4) (i) 
∂w
∂r

 = 
2
r  ;  

∂w
∂θ  = 0 (ii) 

∂w
∂u

 = 4u(u2 + v2)  ;  
∂w
∂v

 = 4v(u2 + v2) 

  (iii) 
∂w
∂u

 = 
2u

1 − (u2 − v2)
2
  ; 

∂w
∂v

 = 
− 2v

1 − (u2 − v2)
2
  

EXERCISE 7.1 

 (1) 
π
4 (2)   

2
3 (3)   

5
2  + 

9
4 sin−1 



2

3  (4)   
1
4 

 (5) 
π
6 (6)   

1
3 tan−1 

1
3 (7)  log 



16

15  (8)  
1

64 π4 

 (9) 
2
3 (10) e − 2  (11) 

1
10 (e3π/2 − 3) (12) 

1
2 [1 − e−π/2] 

EXERCISE 7.2 

 (1) 0 (2)  0 (3)   
1
4 (4)   

4
3 

 (5) 
2
3 (6)  0 (7)  0 (8)  

3
2 

 (9) 
1

132 (10) 
π
12 

EXERCISE 7.3 

 (2) (i) − 
1
4 sin3x cos x − 

3
8 sin x cos x + 

3
8 x 

  (ii) 
1
5 cos4x sin x + 

4
15 cos2x sin x + 

8
15 sin x 



 250

 (3) (i) 
5π
32    (ii) 

128
315   (4) (i) 

35π
512  (ii) 

16
105         (5) (i) 

− 3
4  e−2 + 

1
4  (ii) 27. 6  

EXERCISE 7.4 
 (1) (i)  4  (ii) 4 (2) (i) 57  (ii) 16 (3) 4 

 (4) 
55
27 (5) 8 ( )4 − 2  (6) 

8a2

3  

 (7) 
4 5

3  



5 + 

9
2 sin−1 

2
3  (8) 9 (9) 4 

 (10) πa2 (11) 
178π

15  (12) 
πa3

24  

 (13) 
3
5 π (14) 

4π ab2

3  (15) 
1
3 πr2h (16) π 

EXERCISE 7.5 

 (1) 2πa  (2) 4a (3) 
8πa2

3  ( )2 2 − 1   

EXERCISE 8.1 
  order degree  order degree 

(1) (i) 1 1 (vi) 2 3 
 (ii) 1 1 (vii) 2 1 
 (iii) 2 1 (viii) 2 2 
 (iv) 2 2 (ix) 1 3 
 (v) 3 3 (x) 1 1 

 (2) (i) y = 2xy′ (ii) x2y′′ − 2xy′ + 2y − 2c = 0 

  (iii) xy′ + y = 0 (iv) x [ ](y′)2 + yy′′  − yy′ = 0 
  (v) y′′ + 3y′ − 10y = 0 (vi) y′′ = 6y′ − 9y 

  (vii) y′′ = 6y′ − 13y (viii) y = e(y′/y)x 
  (ix) y′′ − 4y′ + 13y = 0 

 (3) (i) yy′ = (y′)2x + a   (ii) y′ = m   (iii) y′′ = 0 (4) y2 [ ](y′)
2
 + 1  = 1 

EXERCISE 8.2 

 (1) y + 
sin 2y

2  + 
cos 7x

7  + 
cos 3x

3  = c (2) log y + etan x = c 

 (3) x = cy e( )x + y
xy  (4) ex(x2 − 2x + 2) + log y = c 

 (5) sin−1 



y − 4

5 + 
2
3
 tan−1 





2x + 5

3
 = c (6) tan (x + y) − sec (x + y) = x + c 
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 (7) y − tan−1 (x + y) = c (8) exy = x + 1 
EXERCISE 8.3 

 (1) (y − 2x) = cx2y (2)  y3 = cx2 e−x/y (3)  y = cex2 / 2y2
  

 (4) 2y = x(x + y) (5)  x2 (x2 + 4y2)3 = c (6)  y = x log x 
EXERCISE 8.4 

 (1) ex(y − x + 1) = c (2)  y(x2 + 1)2 − x = c 

 (3) xetan−1y = etan−1y (tan−1y − 1) + c (4)  y(1 + x2) = sinx + c 

 (5) 2xy + cosx2 = c (6)  y = 1 + ce− x2/2 

 (7) xey = tan y + c (8) x = y − a2 + ce− y/a
2 

EXERCISE 8.5 

 (1) y = Ae−4x + Be−3x + 
e

30

2x
  (2) y = e2x [A cos 3x + B sin 3x] + 

e− 3x

34  

 (3) y = (Ax + B)e− 7x + 
x2

2  e−7x + 
4
49 (4) y = Ae12x + Bex + 

e−2x

42  − 
5
11 xex 

 (5) y = 2[cos x − sin x] (6) y = ex [2 − 3ex + e2x] 

 (7) y = Aex + Be−4x − 
1
4 



x2 + 

3x
2  + 

13
8  

 (8) y = Ae3x + Be− x + 
1

130   [4 cos 2x − 7 sin 2x] 

 (9) y = (A + Bx) + sin 3x (10) y = (A + Bx) e3x  + 



x

9 + 
2
27  + e2x 

 (11) y = Aex + Be− x − 
1
5 cos 2x + 

2
5 sin 2x 

 (12) y = [ ]C cos 5 x + D sin 5 x  + 
1

10 + 
1
2 cos 2x 

 (13) y = e−x [ ]C cos 2 x + D sin 2 x  − 
1
17 [4 cos 2x + sin 2x] 

 (14) y = Ae−x + Be−x/3 + 
3
2 xe−x/3 

EXERCISE 8.6 
 (1) A = 0.9025 A0 (2)  17 years (app.) (3)  38.82° C 

 (4) 197600 (5)  136 days 
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EXERCISE 9.1 
Statements : (1), (2), (3), (5), (6), (10) ; others are not statements. 

 (11) T (12) T (13) T (14) F (15) T 

 (16) F (17) F (18) T (19) F (20) F 

 (21) (i) Anand reads newspaper and plays cricket 

   Anand reads newspaper or plays cricket. 

  (ii) I like tea and ice-cream 

   I like tea or ice-cream 

 (22) (i) p ∨ q: Kamala is going to school or there are twenty students in the 
class. 

  (ii) p ∧ q : Kamala is going to school and there are twenty students in the 
class. 

  (iii) Kamala is not going to school. 

  (iv) It is false that there are twenty students in the class. 

  (v) Kamala is not going to school or there are twenty students in the 
class. 

 (23) (i) p ∧ q      (ii) p ∨ q    (iii) ∼ p (iv) p ∧ q (v) ∼ p 

 (24) Sita likes neither reading nor playing. 

 (25) (i) 5 is not an irrational number. 

  (ii) Mani is not sincere or not hardworking. 

  (iii) This picture is nither good nor beautiful. 
EXERCISE 9.2 

(1) Truth table for pv (∼ q) 

p q  ∼ q p ∨ (∼ q) 

T T F T 

T F T T 

F T F F 

F F T T 

(2) Truth table for (∼p) ∧ (∼ q) 
p q ∼ p ∼ q (∼p) ∧ (∼ q) 
T T F F F 
T F F T F 
F T T F F 
F F T T T 
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(3) Truth table for ∼ (p ∨ q) 
p q p ∨ q ∼ (p ∨ q) 
T T T F 
T F T F 
F T T F 
F F F T 

(4) Truth table for (p ∨ q) ∨ (∼ p) 
p q p ∨ q ∼ p (p ∨ q) ∨ (∼p) 
T T T F T 
T F T F T 
F T T T T 
F F F T T 

(5) Truth table for (p ∧ q) ∨ (∼ q) 
p q p ∧ q ∼ q (p ∧ q)∨(∼ q) 
T T T F T 
T F F T T 
F T F F F 
F F F T T 

(6) Truth table for ∼ (p ∨ (∼ q)) 
p q ∼ q p∨ (∼ q) ∼ (p ∨ (∼ q)) 
T T F T F 
T F T T F 
F T F F T 
F F T T F 

(7) Truth table for (p ∧ q) ∨ (∼ (p ∧ q)) 
p q p ∧ q ∼ (p∧q) (p∧q)∨(∼(p∧q)) 
T T T F T 
T F F T T 
F T F T T 
F F F T T 

(8) Truth table for (p ∧ q) ∧  (∼ q) 
p q p ∧ q ∼ q (p∧q) ∧  (∼q) 

T T T F F 

T F F T F 

F T F F F 

F F F T F 
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(9) Truth table for (p ∨ q) ∨ r 

p q r p ∨ q (p ∨ q) ∨ r 

T T T T T 

T T F T T 

T F T T T 

T F F T T 

F T T T T 

F T F T T 

F F T F T 

F F F F F 

(10) Truth table for (p ∧ q) ∨ r 

p q r p ∧ q (p ∧ q) ∨ r 

T T T T T 

T T F T T 

T F T F T 

T F F F F 

F T T F T 

F T F F F 

F F T F T 

F F F F F 

 
EXERCISE 9.3 

 (1) (i) ((∼p) ∧ q) ∧ p contradiction 

  (ii) (p ∨ q) ∨ (∼ (p ∨ q)) Tautology 

  (iii) (p ∧ (∼ q)) ∨ ((∼ p) ∨ q) Tautology 

  (iv) q ∨ (p ∨ (∼ q)) Tautology 

  (v) (p ∧ (∼ p)) ∧ ((∼ q) ∧ p)) Contradiction 
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EXERCISE 9.4 
 (1) Non-commutative but associative         (2) Yes,  Identity element is 1 

 (10) 0([1]) = 1,  0 ([2]) = 4,   0([3]) = 4,   0([4]) = 2 

EXERCISE 10.1 

(1) X 0 1 2 3 

 p (X = x) 125
216  

75
216 

15
216 

1
216 

 

(2) X 0 1 2 

 p (X = x) 188
221 

32
221 

1
221 

 

(3) X 0 1 2 

 p (X = x) 12
22 

9
22 

1
22 

 (4) (i) 
1

81  (ii) 
1
9  (iii) 

11
27 (6)  (i) 20   (ii) 

13
16 

 (7) (i) α β  (ii) e− β(10
α

)  

 (8) f(x) = 

2x
0   

0 ≤ x ≤ 1
elsewhere     (i) 0.3125   (ii) 0.25   (iii) 0.4375 

 (9) c = a (10) (i) 
1

2π  (ii) 
1
4  (iii) 

1
2 

EXERCISE 10.2 

 (1) Mean = 1,    Variance = 
1
2 (2) E(X) = 3.5 

 (3) E(X) = − 15 (4)  Mean = 
2
13  ,  Variance = 

24
169 

 (5) E(X) = − 1.25  

 (6) Mean = 6.4 , Variance = 16.24  
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 (7) (i) Mean = 0, Variance = 48    

  (ii) Mean = 
1
α ,  Variance = 

1

α 2
 

  (iii) Mean = 2,  Variance = 2 

EXERCISE 10.3 

 (1) Not possible as probability of an event can lie between 0 and 1 only. 

 (2) Mean = 40 ;  Variance = 
80
3  

 (3) Mean = 450,  standard deviation = 3 5 

 (4) (i) 
3
8    (ii) 

11
16    (iii) 

11
16 (5) 

2048

55  (6) 
59

610 (15) 

EXERCISE 10.4 

 (1) (i) 0.4331   (ii) 0.5368 (2)  (i) 0.1952  (ii) 0.5669 

 (3) (i) 45 × 
48

510   (ii) 0.2706 (4)  (i) 0.0838  (ii) 0.9598 

 (5) (i) approximately 50 drivers (ii) approximately 353 drivers 

EXERCISE 10.5 

 (1) (i) 0.9772 (ii) 0.5 (iii) 0.9104  

  (iv) 0.8413  (v) 0.2417 

 (2) (i) 0.67 (ii) − 0.52 and 0.52 (iii) − 1.04 

 (3) 0.0749 (4) 4886 pairs 

 (5) (i) 291 persons (app.)      (ii) 6 persons (app.)  

 (6) 72.19 inches    (7) 640 students          (8) c = 
e−9/4

π
, µ = 

3
2  ,  σ2 = 

1
2 
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KEY TO OBJECTIVE TYPE QUESTIONS 
 

Q.No Key Q.No Key Q.No Key Q.No Key Q.No Key 

1 4 31 2 61 2 91 2 121 2 

2 2 32 4 62 2 92 4 122 1 

3 3 33 1 63 1 93 2 123 3 

4 2 34 1 64 4 94 3 124 2 

5 1 35 3 65 2 95 2 125 3 

6 3 36 2 66 4 96 1 126 3 

7 4 37 1 67 1 97 2 127 4 

8 2 38 2 68 2 98 3 128 2 

9 3 39 3 69 3 99 4 129 2 

10 4 40 4 70 2 100 3 130 2 

11 1 41 4 71 2 101 1 131 1 

12 2 42 1 72 3 102 2 132 2 

13 2 43 4 73 3 103 3 133 4 

14 1 44 3 74 4 104 4 134 1 

15 1 45 1 75 4 105 4 135 2 

16 4 46 3 76 1 106 1 136 1 

17 2 47 4 77 1 107 3 137 4 

18 1 48 2 78 1 108 2 138 3 

19 1 49 3 79 2 109 3 139 1 

20 2 50 1 80 4 110 3 140 4 

21 3 51 1 81 3 111 4 141 3 

22 1 52 2 82 2 112 4 142 1 

23 1 53 3 83 2 113 3 143 2 

24 2 54 2 84 1 114 4 144 2 

25 2 55 3 85 2 115 3 145 2 

26 3 56 1 86 2 116 1 146 3 

27 2 57 1 87 3 117 1 147 1 

28 4 58 4 88 4 118 2 148 4 

29 2 59 4 89 2 119 4 149 3 

30 1 60 2 90 1 120 2 150 3 
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