
 1

BSD Sockets: A Quick And Dirty Primer

Jim Frost

June 8, 1991

As you delve into the mysteries of UNIX, you find more and more things that
are difficult to understand immediately. One of these things, at least for most
people, is the BSD socket concept. This is a short tutorial that explains what
they are, how they work, and gives sample code showing how to use them.

1 The Analogy or: What *IS* a socket, anyway?
The socket is the BSD method for accomplishing interprocess communication
(IPC). What this means is a socket is used to allow one process to speak to
another, very much like the telephone is used to allow one person to speak to
another.

The telephone analogy is a very good one, and will be used repeatedly to de-
scribe socket behavior.

2 Installing Your New Phone or: How to listen for socket connections
In order for a person to receive telephone calls, he must first have a telephone
installed. Likewise you must create a socket to listen for connections. This
process involves several steps. First you must make a new socket, which is
similar to having a telephone line installed. The socket() command is used to
do this.

Since sockets can have several types, you must specify what type of socket you
want when you create one. One option that you have is the addressing format
of a socket. Just as the mail service uses a different scheme to deliver mail
than the telephone company uses to complete calls, so can sockets differ. The
two most common addressing schemes are AF_UNIX and AF_INET. AF_UNIX
addressing uses UNIX pathnames to identify sockets; these sockets are very
useful for IPC between processes on the same machine. AF_INET addressing
uses Internet addresses which are four byte numbers usually written as four
decimal numbers separated by periods (such as 192.9.200.10). In addition to
the machine address, there is also a port number which allows more than one
AF_INET socket on each machine. AF_INET addresses are what we will deal
with here.

 2

Another option which you must supply when creating a socket is the type of
socket. The two most common types are SOCK_STREAM and SOCK_DGRAM.
SOCK_STREAM indicates that data will come across the socket as a stream of
characters, while SOCK_DGRAM indicates that data will come in bunches
(called datagrams). We will be dealing with SOCK_STREAM sockets, which are
very common.

After creating a socket, we must give the socket an address to listen to, just as
you get a telephone number so that you can receive calls. The bind() function
is used to do this (it binds a socket to an address, hence the name).

SOCK_STREAM type sockets have the ability to queue incoming connection
requests, which is a lot like having "call waiting" for your telephone. If you are
busy handling a connection, the connection request will wait until you can deal
with it. The listen() function is used to set the maximum number of requests
(up to a maximum of five, usually) that will be queued before requests start
being denied. While it is not necessary to use the listen() function, it's good
practice.

The following function shows how to use the socket(), bind(), and listen()
functions to establish a socket which can accept calls:

/ * code t o est abl i sh a socket ; or i gi nal l y f r om bzs@bu- cs. bu. edu
* /

i nt est abl i sh(por t num)
u_shor t por t num;
{ char myname[MAXHOSTNAME+1] ;
 i nt s ;
 s t r uct sockaddr _i n sa;
 s t r uct host ent * hp;

 bzer o(&sa, s i zeof (s t r uct sockaddr _i n)) ; / * c l ear our addr ess * /
 get host name(myname, MAXHOSTNAME) ; / * who ar e we? * /
 hp= get host byname(myname) ; / * get our addr ess i nf o * /
 i f (hp == NULL) / * we don' t ex i s t ! ? * /
 r et ur n(- 1) ;
 sa. s i n_f ami l y= hp- >h_addr t ype; / * t hi s i s our host addr ess * /
 sa. s i n_por t = ht ons(por t num) ; / * t hi s i s our por t number * /
 i f ((s= socket (AF_I NET, SOCK_STREAM, 0)) < 0)
 / * cr eat e socket * /
 r et ur n(- 1) ;
 i f (bi nd(s, &sa, s i zeof sa) < 0) {
 c l ose(s) ;
 r et ur n(- 1) ; / * bi nd addr ess t o socket * /
 }
 l i s t en(s, 3) ; / * max # of queued connect s * /
 r et ur n(s) ;
 }

 3

After you create a socket to get calls, you must wait for calls to that socket.
The accept() function is used to do this. Calling accept() is analogous to
picking up the telephone if it's ringing. Accept() returns a new socket which is
connected to the caller.

The following function can be used to accept a connection on a socket that has
been created using the establish() function above:

i nt get _connect i on(s)
 i nt s ; / * socket cr eat ed wi t h est abl i sh()
* /
 { s t r uct sockaddr _i n i sa; / * addr ess of socket * /
 i nt i ; / * s i ze of addr ess * /
 i nt t ; / * socket of connect i on * /

 i = s i zeof (s t r uct sockaddr _i n) ;
 i f ((t = accept (s , &i sa, &i)) < 0)
 / * accept connect i on i f t her e i s one * /
 r et ur n(- 1) ;
 r et ur n(t) ;
 }

Unlike with the telephone, you may still accept calls while processing previous
connections. For this reason you usually fork off jobs to handle each connec-
tion. The following code shows how to use establish() and get_connection() to
allow multiple connections to be dealt with:

#i nc l ude <er r no. h> / * obl i gat or y i nc l udes * /
#i nc l ude <s i gnal . h>
#i nc l ude <st di o. h>
#i nc l ude <sys/ t ypes. h>
#i nc l ude <sys/ socket . h>
#i nc l ude <sys/ wai t . h>
#i nc l ude <net i net / i n. h>
#i nc l ude <net db. h>

#def i ne PORTNUM 50000
/ * r andom por t number , we need somet hi ng * /

voi d f i r eman() , do_somet hi ng() ;

mai n()
{ i nt s , t ;

 i f ((s= est abl i sh(PORTNUM)) < 0) { / * pl ug i n t he phone * /
 per r or (" est abl i sh") ;
 ex i t (1) ;
 }

 4

 s i gnal (SI GCHLD, f i r eman) ; / * t hi s el i mi nat es zombi es * /

 f or (; ;) { / * l oop f or phone cal l s * /
 i f ((t = get _connect i on(s)) < 0) { / * get a connect i on * /
 i f (er r no == EI NTR) / * EI NTR mi ght happen on accept () , * /
 cont i nue; / * t r y agai n * /
 per r or (" accept ") ; / * bad * /
 ex i t (1) ;
 }
 swi t ch(f or k()) { / * t r y t o handl e connect i on * /
 case - 1 : / * bad news. scr eam and di e * /
 per r or (" f or k") ;
 c l ose(s) ;
 c l ose(t) ;
 ex i t (1) ;
 case 0 : / * we' r e t he chi l d, do somet hi ng * /
 c l ose(s) ;
 do_somet hi ng(t) ;
 ex i t (0) ;
 def aul t : / * we' r e t he par ent so l ook f or * /
 c l ose(t) ; / * anot her connect i on * /
 cont i nue;
 }
 }
}

/ * as chi l dr en di e we shoul d get cat ch t hei r r et ur ns or el se we
 * get zombi es, A Bad Thi ng. f i r eman() cat ches f al l i ng chi l dr en.
* /

voi d f i r eman()
{ uni on wai t wst at us;

 whi l e(wai t 3(&wst at us, WNOHANG, NULL) > 0)
 ;
 }

/ * t hi s i s t he f unct i on t hat pl ays wi t h t he socket . i t wi l l be
 * cal l ed af t er get t i ng a connect i on.
* /

voi d do_somet hi ng(s)
i nt s ;
{
/ * do your t hi ng wi t h t he socket her e
 :
 :
 * /
}

 5

3 Dialing or: How to call a socket
You now know how to create a socket that will accept incoming calls. So how
do you call it? As with the telephone, you must first have the phone before
using it to call. You use the socket() function to do this, exactly as you estab-
lish a socket to listen to.

After getting a socket to make the call with, and giving it an address, you use
the connect() function to try to connect to a listening socket. The following
function calls a particular port number on a particular host:

i nt cal l _socket (host name, por t num)
char * host name;
u_shor t por t num;
{ s t r uct sockaddr _i n sa;
 s t r uct host ent * hp;
 i nt a, s ;

 i f ((hp= get host byname(host name)) == NULL) {
 / * do we know t he host ' s addr ess? * /
 er r no= ECONNREFUSED;
 r et ur n(- 1) ; / * no * /
 }

 bzer o(&sa, s i zeof (sa)) ;
 bcopy(hp- >h_addr , (char *) &sa. s i n_addr , hp- >h_l engt h) ;
 / * set addr ess * /
 sa. s i n_f ami l y= hp- >h_addr t ype;
 sa. s i n_por t = ht ons((u_shor t) por t num) ;
 i f ((s= socket (hp- >h_addr t ype, SOCK_STREAM, 0)) < 0)
 / * get socket * /
 r et ur n(- 1) ;
 i f (connect (s , &sa, s i zeof sa) < 0) { / * connect * /
 c l ose(s) ;
 r et ur n(- 1) ;
 }
 r et ur n(s) ;
 }

This function returns a connected socket through which data can flow.

4 Conversation or: How to talk between sockets
Now that you have a connection between sockets you want to send data
between them. The read() and write() functions are used to do this, just as
they are for normal files. There is only one major difference between socket
reading and writing and file reading and writing: you don't usually get back
the same number of characters that you asked for, so you usually loop until
you have read the number of characters that you want. A simple function to
read a given number of characters into a buffer is:

 6

i nt r ead_dat a(s, buf , n)
i nt s ; / * connect ed socket * /
char * buf ; / * poi nt er t o t he buf f er * /
i nt n / * number of char act er s (byt es) we want * /
{ i nt bcount , / * count s byt es r ead * /
 br ; / * byt es r ead t hi s pass * /

 bcount = 0;
 br = 0;
 whi l e (bcount < n) { / * l oop unt i l f ul l buf f er * /
 i f ((br = r ead(s, buf , n- bcount)) > 0) {
 bcount += br ; / * i ncr ement byt e count er * /
 buf += br ; / * move buf f er pt r f or next r ead * /
 }
 el se i f (br < 0) / * s i gnal an er r or t o t he cal l er * /
 r et ur n(- 1) ;
 }
 r et ur n(bcount) ;
}

A very similar function should be used to write data; we leave that function as
an exercise to the reader.

5 Hanging Up or: What to do when you're done with a socket
Just as you hang up when you're through speaking to someone over the tele-
phone, so must you close a connection between sockets. The normal close()
function is used to close each end of a socket connection. If one end of a
socket is closed and the other tries to write to its end, the write will return an
error.

6 Speaking The Language or: Byte order is important
Now that you can talk between machines, you have to be careful what you say.
Many machines use differing dialects, such as ASCII versus (yech) EBCDIC.
More commonly there are byte-order problems. Unless you always pass text,
you'll run up against the byte-order problem. Luckily people have already fig-
ured out what to do about it.

Once upon a time in the dark ages someone decided which byte order was
"right". Now there exist functions that convert one to the other if necessary.
Some of these functions are htons() (host to network short integer), ntohs()
(network to host short integer), htonl() (host to network long integer), and
ntohl() (network to host long integer). Before sending an integer through a
socket, you should first massage it with the htonl() function:

 7

i = ht onl (i) ;
wr i t e_dat a(s, &i , s i zeof (i)) ;

and after reading data you should convert it back with ntohl():

read_dat a(s, &i , s i zeof (i)) ;
i = nt ohl (i) ;

If you keep in the habit of using these functions you'll be less likely to goof it
up in those circumstances where it is necessary.

7 The Future Is In Your Hands or: What to do now
Using just what's been discussed here, you should be able to build your own
programs that communicate with sockets. As with all new things, however, it
would be a good idea to look at what's already been done. While there are not
a lot of books describing BSD sockets,one good reference is Unix Network Pro-
gramming by W. Richard Stevens (Prentice-Hall 1990, ISBN 0-13-949876-1).
In addition, you should look at some of the many public-domain applications
which make use of sockets, since real applications are the best teachers.

Beware that the examples given here leave out a lot of error checking which
should be used in a real application. You should check the manual pages for
each of the functions discussed here for further information. If you have fur-
ther questions regarding sockets, please feel free to ask me at email address
jimf@centerline.com.

