

OCP: Oracle8i DBA SQL and
PL/SQL Study Guide

http://www.sybex.com

San Francisco • Paris • Düsseldorf • Soest • London

OCP: Oracle8i™ DBA SQL
and PL/SQL Study Guide

Chip Dawes
Biju Thomas

http://www.sybex.com

Associate Publisher: Richard Mills
Contracts and Licensing Manager: Kristine O’Callaghan
Acquisitions & Developmental Editor: Kim Goodfriend
Associate Developmental Editor: Ben Tompkins
Editor: Nancy Conner, Marilyn Smith
Production Editors: Lisa Duran, Leslie E. H. Light
Technical Editors: Betty MacEwen, Ashok Hanumanth
Book Designer: Bill Gibson
Graphic Illustrator: Tony Jonick
Electronic Publishing Specialist: Susie Hendrickson
Proofreader: Lindy Wolf
Indexer: Matthew Spence
CD Coordinator: Kara Eve Schwartz
CD Technician: Keith McNeil
Cover Design: Archer Design
Cover/Photograph: Photo Researchers

Copyright © 2000 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photo-
copy, photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 00-105388

ISBN: 0-7821-2682-0

SYBEX and the SYBEX logo are trademarks of SYBEX Inc. in the USA and other countries.

The CD interface was created using Macromedia Director, COPYRIGHT 1994, 1997-1999 Macromedia Inc. For more
information on Macromedia and Macromedia Director, visit http://www.macromedia.com.

SYBEX is an independent entity from Oracle Corporation and is not affiliated with Oracle Corporation in any manner. This pub-
lication may be used in assisting students to prepare for an Oracle Certified Professional exam. Neither Oracle Corporation nor
SYBEX warrants that use of this publication will ensure passing the relevant exam. Oracle is either a registered trademark or a
trademark of Oracle Corporation in the United States and/or other countries.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms
by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release soft-
ware whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manu-
facturer(s). The author and the publisher make no representation or warranties of any kind with regard to the completeness
or accuracy of the contents herein and accept no liability of any kind including but not limited to performance, merchant-
ability, fitness for any particular purpose, or any losses or damages of any kind caused or alleged to be caused directly or
indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.sybex.com

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book
that are available now or in the future contain programs and/or
text files (the "Software") to be used in connection with the book.
SYBEX hereby grants to you a license to use the Software, subject
to the terms that follow. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such terms.
The Software compilation is the property of SYBEX
unless otherwise indicated and is protected by copyright
to SYBEX or other copyright owner(s) as indicated in the
media files (the "Owner(s)"). You are hereby granted a
single-user license to use the Software for your personal,
noncommercial use only. You may not reproduce, sell,
distribute, publish, circulate, or commercially exploit the
Software, or any portion thereof, without the written
consent of SYBEX and the specific copyright owner(s) of
any component software included on this media.
In the event that the Software or components include specific
license requirements or end-user agreements, statements of
condition, disclaimers, limitations or warranties ("End-User
License"), those End-User Licenses supersede the terms and
conditions herein as to that particular Software component.
Your purchase, acceptance, or use of the Software will consti-
tute your acceptance of such End-User Licenses.
By purchase, use or acceptance of the Software you further
agree to comply with all export laws and regulations of the
United States as such laws and regulations may exist from
time to time.

Reusable Code in This Book

The authors created reusable code in this publication
expressly for reuse for readers. Sybex grants readers permis-
sion to reuse for any purpose the code found in this publica-
tion or its accompanying CD-ROM so long as all three
authors are attributed in any application containing the reus-
able code, and the code itself is never sold or commercially
exploited as a stand-alone product.

Software Support

Components of the supplemental Software and any offers
associated with them may be supported by the specific
Owner(s) of that material but they are not supported by
SYBEX. Information regarding any available support may be
obtained from the Owner(s) using the information provided in
the appropriate read.me files or listed elsewhere on the media.
Should the manufacturer(s) or other Owner(s) cease to offer
support or decline to honor any offer, SYBEX bears no
responsibility. This notice concerning support for the Soft-
ware is provided for your information only. SYBEX is not the
agent or principal of the Owner(s), and SYBEX is in no way
responsible for providing any support for the Software, nor is
it liable or responsible for any support provided, or not pro-
vided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical
defects for a period of ninety (90) days after purchase. The

Software is not available from SYBEX in any other form or
media than that enclosed herein or posted to

www.sybex.com

.
If you discover a defect in the media during this warranty
period, you may obtain a replacement of identical format at no
charge by sending the defective media, postage prepaid, with
proof of purchase to:

SYBEX Inc.
Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501
(510) 523-8233
Fax: (510) 523-2373
e-mail: info@sybex.com
WEB: HTTP://WWW.SYBEX.COM

After the 90-day period, you can obtain replacement media of
identical format by sending us the defective disk, proof of pur-
chase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either expressed
or implied, with respect to the Software or its contents, quality,
performance, merchantability, or fitness for a particular pur-
pose. In no event will SYBEX, its distributors, or dealers be lia-
ble to you or any other party for direct, indirect, special,
incidental, consequential, or other damages arising out of the
use of or inability to use the Software or its contents even if
advised of the possibility of such damage. In the event that the
Software includes an online update feature, SYBEX further dis-
claims any obligation to provide this feature for any specific
duration other than the initial posting.
The exclusion of implied warranties is not permitted by some
states. Therefore, the above exclusion may not apply to you.
This warranty provides you with specific legal rights; there may
be other rights that you may have that vary from state to state.
The pricing of the book with the Software by SYBEX reflects the
allocation of risk and limitations on liability contained in this
agreement of Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are distributed
as shareware. Copyright laws apply to both shareware and ordi-
nary commercial software, and the copyright Owner(s) retains all
rights. If you try a shareware program and continue using it, you
are expected to register it. Individual programs differ on details of
trial periods, registration, and payment. Please observe the
requirements stated in appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-pro-
tected or encrypted. However, in all cases, reselling or redistrib-
uting these files without authorization is expressly forbidden
except as specifically provided for by the Owner(s) therein.

http://www.sybex.com

To my wife Mary and my children Zachary and Charlie.

-Chip Dawes

To my wife Shiji and my parents, who are there whenever I need support and

guidance.

-Biju Thomas

http://www.sybex.com

Acknowledgments

I

 would like to thank the folks at Sybex who helped with this book. Ben,
your prodding to stay on schedule kept us going; Lisa and Nancy; and Kim
(good luck at Organic.com). Thank you, Betty—your technical reviews and
insights raised the quality of this book. I’d like to thank Oracle for producing
a great database and language. Thank you, Biju, for jumping into the book
and helping to make it possible.

I owe a big thanks to my family: Mary, Zachary, and Charlie. They put
up with a lot of lost time with me while I was working on this book.

-Chip Dawes

Anything is possible with hard work and dedication from a group of people.
I would like to thank Sybex for giving me the opportunity to write this book. I
thank the excellent team at Sybex for their support and patience, especially Kim,
Ben, Nancy, Betty, Lisa, and Chip, who helped to bring the best out of me.

I thank my parents and sisters, who simply are the best. I thank all my
friends—you helped all through my career knowingly or unknowingly. This
book is for all of you who have been a source of inspiration in my life.

Thank you, Shiji, for being there when I was busy working and for all
your support and love.

-Biju Thomas

http://www.sybex.com

Introduction

T

here is high demand and competition for professionals in the Informa-
tion Technology (IT) industry, and the Oracle Certified Professional (OCP)
certification is the hottest credential in the database world. You have made the
right decision to pursue certification: Being an OCP will give you a distinct
advantage in this highly competitive market.

Many readers may already be familiar with Oracle and do not need an
introduction to the Oracle database world. For those who aren’t familiar
with the company, Oracle (founded in 1977), is the world’s leading database
company and second-largest independent software company, with revenues
of more than $9 billion, serving more than 145 countries. Oracle databases
are the

de facto

 standard for large Internet sites, and Oracle has positioned
itself to continue this dominance of the Internet market.

This book is intended to help you on your exciting path toward obtaining the
Oracle8i Certified Database Administrator and Oracle8i Certified Application
Developer certifications. Basic knowledge of Oracle SQL and PL/SQL is an advan-
tage when reading this book but is not mandatory. Using this book and a practice
database, you can start learning Oracle and pass the IZ0-001 test: Introduction to
Oracle: SQL and PL/SQL.

Why Become an Oracle Certified
Professional?

T

he number one reason to become an Oracle Certified Professional is to
gain more visibility and greater access to the industry’s most challenging
opportunities. The OCP program is the best way to demonstrate your
knowledge and skills in Oracle database systems. The certification tests are
scenario-based, which is the most effective way to assess your hands-on
expertise and critical problem-solving skills.

Certification is proof of your knowledge and shows that you have the
skills required to support Oracle core products. The OCP program can
help a company to identify proven performers who have demonstrated
their skills and who can support the company’s investment in Oracle
technology. It demonstrates that you have a solid understanding of your
role and the Oracle products used in that role.

http://www.sybex.com

xviii

Introduction

So, whether you are beginning a career, changing careers, securing your
present position, or seeking to refine and promote your position, this book
is for you!

Oracle Certifications

Oracle has several certification tracks designed to meet different skill levels.
Each track consists of several tests, and these tests can be taken in any order.
The following tracks are available:

�

Oracle Database Administrator

�

Oracle Application Developer

�

Oracle Database Operator

�

Oracle Java Developer

�

Oracle Financial Applications Consultant

Database Administrator (DBA)

The role of the Database Administrator (DBA) has become a key to suc-
cess in today’s highly complex database systems. The best DBAs work
behind the scenes but are in the spotlight when critical issues arise. They
plan, create, maintain, and ensure that the database is available for the
business. They are always watching the database for performance issues
and to prevent unscheduled downtime. The DBA’s job requires broad
understanding of the architecture of Oracle databases and expertise in
solving problems. The Oracle8i Certified Database Administrator track
consists of the following five tests:

�

1Z0-001: Introduction to Oracle

:

SQL and PL/SQL

�

1Z0-023: Oracle8i: Architecture and Administration

�

1Z0-025: Oracle8i: Backup and Recovery

�

1Z1-024: Oracle8i: Performance and Tuning

�

1Z1-026: Oracle8i: Network Administration

http://www.sybex.com

Why Become an Oracle Certified Professional?

xix

Oracle Application Developer

This track tests your skills in client-server application development using Oracle
application development tools, such as Developer/2000, SQL, PL/SQL, and
SQL*Plus. The following five tests comprise this track:

�

1Z0-001: Introduction to Oracle

:

SQL and PL/SQL

�

1Z0-101: Develop PL/SQL Program Units

�

1Z0-121: Developer/2000: Build Forms I

�

1Z0-122: Developer/2000: Build Forms II

�

1Z0-123: Developer/2000: Build Reports

More Information

The most current information about Oracle certification can be found at

http://education.oracle.com

. Follow the Certification Home Page link
and choose the track that you are interested in. Read the Candidate Guide
for the test objectives and test contents, and keep in mind that these can
change at any time without notice.

OCP: Database Administrator Track

The Oracle8i Database Administrator certification consists of five tests, and
Sybex offers several study guides to help you achieve the OCP Database
Administrator Certification. There are three books in this series:

�

OCP: Oracle8i™ DBA SQL and PL/SQL Study Guide

�

OCP: Oracle8i™ DBA Architecture & Administration and Backup
& Recovery Study Guide

�

OCP: Oracle8i™ DBA Performance Tuning and Network Administration
Study Guide

Additionally, these three books are offered in a boxed set:

�

OCP: Oracle8i™ DBA Certification Kit

http://www.sybex.com

xx

Introduction

 Table F.1 lists the five exams for the DBA track, their scoring (where
available), and the Sybex study guides that will help you pass each exam.

Skills Required for DBA Certification

Listed here are some of the skills you must master for DBA certification.
Even if you do not have all the skills, you can start taking the exams for
which you feel confident. The exams can be taken in any order.

Table F.1: OCP Database Administrator Tests and Passing Scores

Exam # Title

Total

Questions

Questions

Correct

Passing

Score Sybex Study Guide

1Z0-001 Introduction to
Oracle: SQL and
PL/SQL

60 43 72% OCP: Oracle8i™ DBA
SQL and PL/SQL
Study Guide

1Z0-023 Oracle8i:
Architecture and
Administration

65 38 58% OCP: Oracle8i™
DBA Architecture &
Administration and
Backup & Recovery
Study Guide

1Z0-024 Oracle8i:
Performance
Tuning

57 38 67% OCP: Oracle8i™
DBA Performance
Tuning and Network
Administration
Study Guide

1Z0-025 Oracle8i: Backup
and Recovery

60 34 57% OCP: Oracle8i™
DBA Architecture &
Administration and
Backup & Recovery
Study Guide

1Z0-026 Oracle8i: Network
Administration

 60 41 60% OCP: Oracle8i™
DBA Performance
Tuning and Network
Administration
Study Guide

http://www.sybex.com

Why Become an Oracle Certified Professional? xxi

� Understanding RDBMS concepts

� Writing queries and manipulating data

� Creating and managing users and database objects

� Knowledge of PL/SQL programming and constructs

� Oracle Server architecturedatabase and instance

� Physical and logical storage of database, managing space allocation
and growth

� Managing datastorage, loading, and reorganization

� Managing roles, privileges, passwords, and resources

� Backup and recovery options

� Archiving redo log files and hot backups

� Backup and recovery using Recovery Manager (RMAN)

� Creating and managing standby database

� Identifing and tuning database and SQL performance

� Data dictionary views and database parameters

� Configuring Net8 on the server side and the client side

� Using multi-threaded server, connection manager, and Oracle Names

� Backup, recovery, and administration utilities

Tips for Taking the OCP Exam

The following tips will help you prepare for and pass each exam:

� Each OCP test contains about 60–80 questions to be completed in
about 90 minutes. Answer the questions that you know first, so that
you do not run out of time.

� Many questions on the exam have answer choices that at first glance look
identical. Read the questions carefully. Don’t just jump to conclusions.
Make sure that you are clear about exactly what each question asks.

� Most of the test questions are scenario-based. Some of the scenarios
contain non-essential information and exhibits. You need to be able to
identify what’s important and what’s not.

� Do not leave any questions unanswered. There is no negative scoring.
You can mark a difficult question or one that you’re unsure of and
come back to it later.

http://www.sybex.com

xxii Introduction

� When answering questions that you are not sure about, use a process of
elimination to get rid of the obviously incorrect answers first. Doing this
greatly improves your odds if you need to make an educated guess.

Where Do You Take the Exam?

You may take the exams at any of the more than 800 Sylvan Prometric Authorized
Testing Centers around the world. For the location of a testing center near you,
call 1-800-891-3926. Outside of the United States and Canada, contact your local
Sylvan Prometric Registration Center. The tests can be taken in any order.

To register for an Oracle Certified Professional exam

� Determine the number of the exam you want to take. (The OCP:
Introduction to Oracle: SQL and PL/SQL exam number is 1Z0-001.)

� Register with the nearest Sylvan Prometric Registration Center. At this
point, you will be asked to pay in advance for the exam. At the time
of this writing, the exams are $125 each and must be taken within one
year of payment. You can schedule exams up to six weeks in advance
or as soon as one working day before the day you wish to take it. If
something comes up and you need to cancel or reschedule your exam
appointment, contact Sylvan Prometric at least 24 hours in advance.

� When you schedule the exam, you’ll get instructions regarding all
appointment and cancellation procedures and the ID requirements,
and information about the testing-center location.

You can also register for the test online at http://www.2test.com/
register/frameset.htm. If you live outside the United States, register
online at http://www.2test.com/register/testcenterlocator/
ERN_intl_IT&FAA.htm.

What Does This Book Cover?

This book covers everything you need to pass the OCP: Introduction to
Oracle: SQL and PL/SQL exam. This exam is part of the Database
Administrator track, as well as the Application Developer track. It
teaches you the basics of Oracle, SQL, and PL/SQL. Each chapter begins
with a list of exam objectives.

http://www.sybex.com

What Does This Book Cover? xxiii

Chapter 1 This chapter starts with the concepts of relational databases,
entity-relationship diagrams, and simple queries. This chapter also introduces
SQL*Plus, Oracle’s tool to interact with the database.

Chapter 2 This chapter discusses the various built-in functions available
in Oracle. Single-row and group functions are discussed.

Chapter 3 Chapter 3 introduces you to more complex SQL statements.
Subqueries, joins, and set operations are illustrated in detail.

Chapter 4 This chapter covers data manipulation and security in Oracle.
You will learn how to insert, update, and delete data; how to control transac-
tions; and how to restrict access to objects through privileges and roles.

Chapter 5 Chapter 5 is dedicated to tables and views. This chapter dis-
cusses creating tables with the various datatyp es and options available to
store data. Creating and managing views are also covered in this chapter.

Chapter 6 Chapter 6 reviews the other database objects, synonyms,
sequences, indexes, and stored SQL. The data dictionary is introduced in
this chapter, as well.

Chapter 7 This chapter introduces PL/SQL. The benefits, structure, and
writing of simple PL/SQL blocks are discussed. The chapter also intro-
duces you to the language’s control structures for iterative programming
and conditional processing.

Chapter 8 This chapter covers how to use PL/SQL interactively with the
Oracle database. The various SQL commands available in PL/SQL,
together with how to declare and use cursors, are discussed in this chapter.

Chapter 9 Chapter 9 discusses composite datatypes. You will read
about creating and using PL/SQL collections and record datatypes.

Chapter 10 The final chapter is dedicated to handling errors (called
exceptions) in a PL/SQL program. You will learn how to create and
customize exceptions and to provide application-specific, meaningful
error messages.

Each chapter ends with Review Questions that are specifically designed to
help you retain the knowledge presented. To really nail down your skills,
read and answer each question carefully.

http://www.sybex.com

xxiv Introduction

How to Use This Book

This book can provide a solid foundation for the serious effort of preparing
for the Introduction to Oracle: SQL and PL/SQL exam. To best benefit from
this book, use the following study method:

1. Take the Assessment Test immediately following this introduction. (The
answers are at the end of the test.) Carefully read over the explanations
for any question you get wrong, and note which chapters the material
comes from. This information should help you plan your study strategy.

2. Study each chapter carefully, making sure that you fully understand
the information and the test objectives listed at the beginning of each
chapter. Pay extra close attention to any chapter related to questions
you missed in the Assessment Test.

3. Complete all hands-on exercises in the chapter, referring to the chapter so
that you understand the reason for each step you take. If you do not have
an Oracle database available, be sure to study the examples carefully.
Answer the Review Questions related to that chapter. (The answers
appear at the end of each chapter, after the Review Questions.)

4. Note the questions that confuse or trick you, and study those sections
of the book again.

5. Take the Practice Exam in this book. You’ll find it in Appendix A. The
answers appear at the end of the exam.

6. Before taking the exam, try your hand at the bonus Practice Exam that
is included on the CD that comes with this book. The questions on this
exam appear only on the CD. This will give you a complete overview
of what you can expect to see on the real thing.

7. Remember to use the products on the CD that is included with this
book. The electronic flashcards, the Boson Software utilities, and the
EdgeTest exam preparation software all have been specifically picked
to help you study for and pass your exam. The electronic flashcards
can be used on your Windows computer or on your Palm device.

To learn all the material covered in this book, you’ll have to apply yourself
regularly and with discipline. Try to set aside the same time period every day
to study, and select a comfortable and quiet place to do so. If you work hard,
you will be surprised at how quickly you learn this material. All the best!

http://www.sybex.com

What Does This Book Cover? xxv

What’s on the CD?

We have worked hard to provide some really great tools to help you
with your certification process. All of the following tools should be
loaded on your workstation when you’re studying for the test.

The EdgeTest for Oracle Certified DBA Preparation

Software

Provided by EdgeTek Learning Systems, this test-preparation software prepares
you to pass the Introduction to Oracle exam. In this test, you will find all of the
questions from the book, plus the bonus Practice Exam that appears exclusively
on the CD. You can take the Assessment Test, test yourself by chapter, take the
Practice Exam that appears in the book or on the CD, or take an exam randomly
generated from all of the questions.

Electronic Flashcards for PC and Palm Devices

After you read the OCP: Oracle8i DBA SQL and PL/SQL Study Guide,
read the Review Questions at the end of each chapter, and study the Practice
Exams included in the book and on the CD. But wait, there’s more! Test
yourself with the flashcards included on the CD. If you can get through these
difficult questions and understand the answers, you’ll know that you’re
ready for the OCP: Introduction to Oracle: SQL and PL/SQL exam.

The flashcards include more than 100 questions specifically written to hit
you hard and make sure that you are ready for the exam. Between the
Review Questions, Practice Exam, and flashcards, you should be more than
prepared for the exam.

OCP: Oracle 8i DBA SQL and PL/SQL Study Guide in PDF

Sybex is now offering the Oracle certification books on CD, so you can read
the book on your PC or laptop. It is in Adobe Acrobat format. Acrobat
Reader 4 is also included on the CD.

This will be extremely helpful to readers who fly or commute on a bus or
train and don’t want to carry a book, as well as to readers who find it more
comfortable reading from their computer.

http://www.sybex.com

xxvi Introduction

How to Contact the Authors

You can reach Chip Dawes through D & D Technologies, Inc.
(www.ddtechnologies.com)—a Chicago-based consultancy—or e-mail
him at chip@ddtechnologies.com.

To contact Biju Thomas, you can e-mail him at biju@bijoos.com or visit
his Web site for DBAs at www.bijoos.com/oracle.

http://www.sybex.com

Assessment Test

1. When creating an ER diagram, what kind of line would you use to rep-
resent the following business rules:
A department may have one or more employees.
Each employee must belong to one department.

A. A dotted line with a crowfoot at one end

B. A solid line with a crowfoot at one end

C. A dotted line with a crowfoot at each end

D. A solid line with a crowfoot at each end

2. Which operator will be evaluated first in the following SELECT statement?
SELECT (2 + 3 * 4 / 2 – 5) FROM DUAL;

A. +

B. *

C. /

D. –

3. Which line of code has an error?
SELECT *
FROM emp
WHERE comm = NULL
ORDER BY ename;

A. SELECT *

B. FROM emp

C. WHERE comm = NULL

D. There is no error in this statement.

http://www.sybex.com

xxviii Assessment Test

4. The following statement will raise an exception on which line?

select dept_name, avg(all salary), count(*)"number of
employees"

from emp , dept

where deptno = dept_no

 and count(*) > 5

group by dept_name

order by 2 desc;

A. select dept_name, avg(all salary), count(*)"number of
employees"

B. where deptno = dept_no

C. and count(*) > 5

D. group by dept_name

E. order by 2 desc;

5. Using the following EMP table, you need to increase everyone’s salary
by 5% of their combined salary and bonus.

Which of the following statements will achieve the desired results?

A. UPDATE emp SET salary = (salary + bonus)*1.05;

B. UPDATE emp SET salary = salary*1.05 + bonus*1.05;

C. UPDATE emp SET salary = salary + (salary + bonus)*0.05;

D. A, B, and C all will achieve the desired results.

E. None of these statements will achieve the desired results.

Column
Name

emp_id name salary bonus

Key Type pk pk

NULLs/
Unique

NN NN NN

FK Table

Datatype varchar2 varchar2 number number

Length 9 50 11,2 11,2

http://www.sybex.com

Assessment Test xxix

6. The DEPT table has DEPTNO as the primary key and has the fol-
lowing data:

SQL> SELECT * FROM dept;

 DEPTNO DNAME LOC

---------- -------------- -------------

 10 ACCOUNTING NEW YORK

 20 RESEARCH DALLAS

 30 SALES CHICAGO

 40 OPERATIONS BOSTON

Consider the INSERT statement. Which option is correct?

INSERT INTO (SELECT * FROM dept WHERE deptno = 10)

VALUES (50, 'MARKETING', 'FORT WORTH');

A. The INSERT statement is invalid; a valid table name is missing.

B. 50 is not a valid DEPTNO value, since the subquery limits the
DEPTNO to 10.

C. The statement will work without error.

D. A subquery and a VALUES clause cannot appear together.

7. At a minimum, how many join conditions should there be in the WHERE
clause to avoid a Cartesian join if there are three tables in the FROM clause?

A. 1

B. 2

C. 3

D. There is no minimum.

http://www.sybex.com

xxx Assessment Test

8. Which one of the following statements will succeed?

A. grant create user, alter user to Katrina with admin
option;

B. grant grant any privilege to Katrina with grant
option;

C. grant create user, alter user to Katrina with grant
option;

D. grant revoke any privilege to Katrina with admin
option;

9. With regard to the following PL/SQL block, which of the following
options is most correct?

BEGIN

 UPDATE emp

 SET salary = salary * 1.10

 WHERE class_code = 'A';

 SAVEPOINT ClassA_FloorAdjusted;

 UPDATE emp

 SET salary = salary * 1.07

 WHERE class_code = 'B';

 SAVEPOINT ClassB_FloorAdjusted;

 UPDATE emp

 SET salary = salary * 1.05

 WHERE class_code = 'C';

 SAVEPOINT ClassC_FloorAdjusted;

 ROLLBACK TO SAVEPOINT ClassB_FloorAdjusted;

 UPDATE taxes

 SET max_tax = 76200*0.075

 WHERE tax_type = 'FICA';

 SAVEPOINT MaxTax;

http://www.sybex.com

Assessment Test xxxi

 ROLLBACK to MaxTax;

 ROLLBACK to ClassA_FloorAdjusted;

END;

COMMIT;

A. No changes occur to the EMP table, but the TAXES table is
changed.

B. Both the EMP and TAXES tables are changed.

C. Only EMP rows with class_code equal to 'A' are changed.

D. Only EMP rows with class_codes equal to 'C' are changed.

E. No changes occur to either the EMP or the TAXES table.

10. What does the following statement do?

alter user effie identified by kerberos;

A. Creates user account effie.

B. Changes the external authentication service for user effie.

C. Makes effie a globally identified account.

D. Changes user effie’s password.

11. Why does the following statement fail?

CREATE TABLE FRUITS&VEGETABLES

(NAME VARCHAR2 (40));

A. The table should have more than one column defined.

B. NAME is a reserved word, which cannot be used as a column
name.

C. The table name is invalid.

D. Column length cannot exceed 30 characters.

12. True or False: A view can only be used to query and update data; you
cannot insert into or delete from a view.

A. True

B. False

http://www.sybex.com

xxxii Assessment Test

13. Which option is not available in Oracle when modifying tables?

A. Add new columns

B. Rename an existing column

C. Drop an existing column

D. All of the above

14. Which of the following statements will remove the primary key constraint
pk_books from the table BOOKS? Choose one.

A. drop primary key on books;

B. drop constraint pk_books;

C. alter table books drop primary key;

D. alter table books drop pk_books;

15. The built-in packaged procedure dbms_application_info.set_
module has, in the package specification, the following declaration:

PROCEDURE DBMS_APPLICATION_INFO.SET_MODULE

(module_name IN VARCHAR2

,action_name IN VARCHAR2);

Which of the following statements will successfully call this procedure
passing 'Monthly Load' and 'Rebuild Indexes' for the module_name
and action_name, respectively? Select all that apply.

A. dbms_application_info('Monthly Load'
,'Rebuild Indexes');

B. dbms_application_info(
 module_name=>'Monthly Load'
,action_name=>'Rebuild Indexes');

C. dbms_application_info('Rebuild Indexes'
,'Monthly Load');

D. dbms_application_info(
 module_name->'Monthly Load'
,action_name->'Rebuild Indexes');

http://www.sybex.com

Assessment Test xxxiii

16. Which statement will assign the next number from the sequence emp_
seq to the variable emp_key? Choose one.

A. emp_key := emp_seq.nextval;

B. emp_key := emp_seq.next_val;

C. emp_key := emp_seq.nextvalue;

D. emp_key := emp_seq.next_value;

17. What is value of V_COUNTER when the following block is executed?

DECLARE

 V_COUNTER NUMBER (2);

BEGIN

 V_COUNTER := V_COUNTER + 1;

END;

A. 0

B. 1

C. NULL

D. None of the above

http://www.sybex.com

xxxiv Assessment Test

18. What is the value of V_BONUS if the value of V_SALARY is 500
when the following code is executed?

IF V_SALARY > 2000 THEN

 V_BONUS := 300;

ELSIF V_SALARY < 2000 THEN

 V_BONUS := 200;

ELSIF V_SALARY < 1000 THEN

 V_BONUS := 100;

ELSIF V_SALARY < 500 THEN

 V_BONUS := 50;

ELSIF V_SALARY < 200 THEN

 V_BONUS := 20;

ELSE

 V_BONUS := 10;

END IF;

A. 20

B. 100

C. 200

D. 300

http://www.sybex.com

Assessment Test xxxv

19. Consider the following PL/SQL block:

BEGIN

 FOR x IN 100 .. 108 LOOP

 IF x = 102 THEN

 ROLLBACK;

 EXIT;

 ELSE

 INSERT INTO TABLE_A VALUES (x);

 SAVEPOINT A;

 END IF;

 END LOOP;

END;

How many rows will you see added to TABLE_A once you execute this block?

A. 0

B. 2

C. 9

D. 7

20. In the following code snippet, which line has an error?

1 FOR rec_c1 IN cur_c1 LOOP

2 FETCH REC_C1 INTO v_x;

3 INSERT INTO TABLE_A VALUES (v_x);

4 END LOOP;

A. Line 1

B. Line 2

C. Line 4

D. The code has no error.

http://www.sybex.com

xxxvi Assessment Test

21. What is the value of V_COUNT when the following PL/SQL block is
executed?

DECLARE

 V_empno PLS_INTEGER;

 V_count PLS_INTEGER;

 CURSOR c1 IS SELECT empno FROM EMP;

BEGIN

 OPEN C1;

 V_COUNT := C1%ROWCOUNT;

 FETCH C1 INTO v_empno;

 CLOSE C1;

END;

A. 0

B. NULL

C. -1

D. 1

22. Which statement will create a record team_rec based on the table
TEAMS, having a field in each record for each column in the table?
Choose one.

A. type team_rec is record like teams;

B. team_rec teams%tabletype

C. team_rec teams%type

D. team_rec teams%rowtype

E. You must list all the columns in the TYPE statement that defines
the record.

http://www.sybex.com

Assessment Test xxxvii

23. In the following PL/SQL block, what might cause a problem?

DECLARE

 customer_rec customers%rowtype;

BEGIN

 select * into customer_rec where location = '63128';

 approve_payment(customer_rec);

END;

A. If a column is added to the CUSTOMERS table, this block will fail.

B. If there is more than one customer with a location of '63128', this
block will fail.

C. If there are no customers with a location of '63128', this block will fail.

D. There is no problem with this code.

24. How would you assign the current date and time to the timestamp
field in element 3 of the QUOTE_LIST nested table?

A. quote_list(3).timestamp := sysdate;

B. quote_list.timestamp(3) := sysdate;

C. quote_list(timestamp).3 := sysdate;

D. quote_list.3(timestamp) := sysdate;

25. In the following PL/SQL block, what does line 2 do?

1 declare

2 bad_credit exception;

3 begin

4 raise bad_credit;

5 exception

6 when bad_credit

7 refuse_order('Nicely');

8 end;

A. Raise an exception

B. Declare an exception

C. Associate an exception

D. Handle an exception

http://www.sybex.com

xxxviii Assessment Test

26. To which of the following will an exception raised in the exception
section of a PL/SQL block pass control?

A. The current exception section

B. The executable section of the enclosing PL/SQL block

C. The exception section of the enclosing PL/SQL block

D. The operating system will dump a core image.

27. What does the following line of code do?

pragma exception_init(max_sessions, -18);

A. The exception max_sessions is associated with error number 18.

B. The database is instructed to accept a maximum of 18 sessions.

C. The exception max_sessions is declared.

D. The stored SQL (function or procedure) containing this directive
can be invoked by a maximum of 18 concurrent sessions.

http://www.sybex.com

Answers to Assessment Test xxxix

Answers to Assessment Test

1. A. Because the first rule states “may have,” the relationship is
optional. Optional relationships are represented by a dotted line.
There may be more than one employee in a department; this relation-
ship is represented by a crowfoot. For more about optional and man-
datory relationships, see Chapter 1.

2. B. In the arithmetic operators, unary operators are evaluated first,
then multiplication and division, and finally addition and subtraction.
The expression is evaluated left to right. For more information about
order of evaluation, see Chapter 1.

3. D. Although there is no error in this statement, the statement will not
return the desired result. When a NULL is compared, you cannot use
the = or != operators; you must say IS NULL or IS NOT NULL. See
Chapter 1 to learn about the comparison operators.

4. C. Group functions cannot appear in the WHERE clause. To learn more
about group functions, see Chapter 2.

5. E. These statements don’t account for possible NULL values in the
bonus column, which is defined as nullable. For more about NULL val-
ues, see Chapter 2.

6. C. The statement will work without error. Option B would have been
correct if we had used the WITH CHECK OPTION clause in the subquery.
See Chapter 3 for more information about subqueries.

7. B. There should be at least n−1 join conditions when joining n tables
to avoid a Cartesian join. To learn more about joins, see Chapter 3.

8. A. The grant option cannot be used on system privileges, and revoke
any privilege is not a valid privilege. For more on privileges, see
Chapter 4.

9. C . Only class_code 'A' EMP rows get changed. The furthest we roll
back is to the savepoint named ClassA_FloorAdjusted, so the only
changes that get committed are those occurring before this savepoint
(class_code 'A') or after the rollback to savepoint (nothing). Chapter
4 discusses savepoints and rollbacks.

http://www.sybex.com

xl Assessment Test

10. D. Option A would be possible in Oracle6, but the exam is on
Oracle8i. The kerberos password is just there to obfuscate. Chapter 4
discusses authentication and user accounts.

11. C. Table and column names can have only letters, numbers, and three
special characters: dollar sign ($), underscore (_), and pound sign (#).
Chapter 5 discusses table and column names.

12. B. You can insert into and delete from a view. In a joined view (a mul-
tiple table/view), you can only insert into or delete from one table at
a time. For more about tables and views, see Chapter 5.

13. B. You cannot rename an existing column using the ALTER TABLE
command. To rename the column, you must re-create the table with
the new name. Turn to Chapter 5 to learn about modifying tables.

14. C. The ALTER TABLE statement is used to create and remove constraints.
Option D would work if it included the keyword constraint between
drop and pk_books. Chapter 6 discusses constraints.

15. A, B. Option A uses the correct positional notation; Option B uses the
correct named notational styles. For more information about posi-
tional and named notation, see Chapter 6.

16. A. This kind of question, which quizzes you on precise syntax, really
does appear on the exam. Especially for sequences, know the syntac-
tical spelling. You can read about sequences in Chapter 6.

17. C. Since the variable V_COUNTER is not initialized in the declara-
tion section, it will assign the default value of NULL. Any arithmetic on
NULL results a NULL. For more about variables, see Chapter 7.

18. C. The value of V_BONUS is 200. Because the value of V_SALARY is
500, when the conditions are evaluated top down, 500 is less than 2000,
so the value of V_BONUS is 200. Chapter 7 discusses control structures.

19. A. There are two rows inserted into the table when the value of x is
100 and 101, but they are not committed. These two rows are rolled
back when the value of x is 102, and the loop is exited. See Chapter 8
for more information about transaction control statements.

http://www.sybex.com

Answers to Assessment Test xli

20. B. A FOR cursor loop opens the cursor and fetches the first row when
you enter the loop. You should not specify explicit OPEN, FETCH, or
CLOSE statements. Chapter 8 contains more information on the cursor
FOR loop.

21. A. When the cursor is opened, %ROWCOUNT will have a value of 0. After
the first successful fetch, it will have a value of 1. For more informa-
tion about cursors, see Chapter 8.

22. D. The attribute %ROWTYPE is used to create a record based on a table,
view, or query. For more about the %ROWTYPE attribute, see Chapter 9.

23. B, C. You can only SELECT INTO when the query returns a single row.
Where there is a possibility of either more than one row or no rows
being returned, you should not use a SELECT INTO; use a FETCH INTO
instead. For more on %ROWTYPE records, see Chapter 9.

24. A. Elements are referenced by subscript notation; they are enclosed in
parentheses. Fields are referenced with dot notation, placing a dot
between the record name and the field. When records are used in col-
lections, the notation is combined, as shown in answer A. For more on
collections, see Chapter 9.

25. B. Line 2 declares the exception, line 4 raises the exception, and line 6
handles the exception. This block does not associate an exception.
Chapter 10 discusses exceptions.

26. C. Exceptions raised in an exception handler will propagate to the
enclosing block and will pass control to the exception section (since
there is an exception condition). To learn more about exception prop-
agation, see Chapter 10.

27. A. The pragma exception_init is used to associate a previously
declared exception with a database error number. The error number
for “Maximum number of sessions exceeded” just happens to be 18.
To learn more about associating exception names with database error
numbers, see Chapter 10.

http://www.sybex.com

Chapter

1

Relational Technology
and Simple SQL SELECT
Statements

ORACLE8i SQL AND PL/SQL EXAM OBJEC-
TIVES OFFERED IN THIS CHAPTER:

�

Overview of relational databases, SQL, and PL/SQL:

�

Discuss the theoretical and physical characteristics of a
relational database

�

Describe the Oracle implementation of the RDBMS and ORDBMS

�

Describe how SQL and PLSQL are used in Oracle products

�

Writing simple queries:

�

Write a basic

SELECT

 statement

�

Limit the rows retrieved using a

WHERE

 clause

�

Sort the rows retrieved using an

ORDER BY

 clause

�

The Oracle SQL environment:

�

Write queries that specify a variable at runtime

�

Customize the SQL*Plus environment

�

Format data retrieved by a query

�

Create and execute script files

�

Save customizations

�

Differentiate between SQL*Plus commands and SQL statements

Exam objectives are subject to change at any
time without prior notice and at Oracle’s sole
discretion. Please visit Oracle's Training and
Certification Web site (

http://education

.oracle.com/certification/index.html

) for
the most current exam objectives listing.

http://www.sybex.com

O

racle8i is an object relational database management system
(ORDBMS) that provides database tools for solving key information manage-
ment problems. This chapter introduces the following concepts:

�

Relational and object-relational database management systems

�

System development phases

�

How to write simple queries using structured query language (SQL) to
retrieve data stored in the Oracle8i database

You will also learn to format the query output from

SQL*Plus,

 Oracle’s
tool to interact with the database. The first OCP exam emphasizes your
understanding of the Oracle SQL usage and structure.

SQL, pronounced

sequel

, has been adopted by most relational database
management systems. The American National Standards Institute (ANSI) has
been refining standards for the SQL language for the past 20 years. Oracle, like
many other companies, has taken the ANSI standard of SQL and extended it
to include additional functionality.

Relational Database Systems

O

ver the years, database management systems have evolved from
hierarchical to network to

relational database management systems

(

RDBMS

). A relational database system is an organized model of subjects
and characteristics that have relationships among the subjects. A well-
designed relational database provides information about a business or
process and is used most widely to store and retrieve information. We see
relationships everywhere in our daily lives: parents and children, team
and players, doctor and patient, to name a few. Some major advantages
of RDBMS are in the way it stores and retrieves information, and in how
it maintains data integrity.

http://www.sybex.com

Relational Database Systems

3

RDBMS structures are easy to understand and to build. These structures are
logically represented using the

entity-relationship (ER)

model. On the OCP
exam, you can expect questions relating to the ER diagram and/or the RDBMS
concept. You may be familiar with the RDBMS concepts and ER diagrams
already; for those who aren’t, we have included a brief introduction here.

Characteristics of a Relational Database

Relational databases have the following three major characteristics that
constitute a well defined RDBMS:

Structures

These are objects that store or access data from the database.
Tables, views, and indexes are examples of structures in Oracle.

Operations

These are the actions used to define the structures or manipulate
data between the structures.

SELECT

 statements or

CREATE

 statements are
examples of operations in Oracle.

Integrity rules

These govern the kinds of actions allowed on data and
the database structure. Integrity rules protect the data and the structure
of the database

.

 The primary keys and foreign keys are examples of
integrity rules in Oracle.

Application Development Cycle

A well designed database makes the application programming and tuning much
easier. Before going into the details of database design and modeling, let’s review
the stages involved in application development. Every application, small or
large, passes through the stages of the application development cycle (also
known as the system development cycle) described in the following paragraphs.

Analysis

Analysis is the first stage of an application development, and it
should enable you to answer the following questions: Why is the application
being developed? Who is going to use it? How will the application benefit the
users? What business rules and needs should be addressed? The complete
functionalities of the system should be determined in requirement analysis.
Typically, functional-level managers take care of this phase.

Design

Design is the most important phase of application development.
After the application requirements are analyzed, the

design phase

 begins.
In this phase, the database design is performed using ER diagrams. The
logical database design is converted to physical structures. You can read
about the ER diagram and logical modeling in detail in the next section,
“The Logical Model.”

http://www.sybex.com

4

Chapter 1 �

Relational Technology and Simple SQL SELECT Statements

Development

In the development phase, coding is done based on the
design; you use the end product of the design phase of the life cycle as a
building block for the development process. The database design and the
designed system requirements provide the basis for the development of
the application.

Testing

The developed application is tested against its objectives to ensure
that it is doing what it is supposed to do. System/integration testing is done
on the entire system. Any errors are corrected, and the application is tested
again. Application users do the acceptance testing.

Implementation

Implementation is the final stage in the development
cycle. Once the testing is complete, the application is ready to implement.
Errors reported after implementation are fixed by going back to the
appropriate stages. Following all these steps again carries out enhance-
ments to the application.

Figure 1.1 shows the steps in the application development cycle.

F I G U R E 1 . 1

Application Development Cycle

The Logical Model

In the design phase of the system development cycle, a logical model of the
database is created. A logical model of an RDBMS is typically a block diagram
of entities and relationships, referred to as an ER diagram.

An ER model has

�

Entities

�

Relationships

�

Attributes

An ER model is visual, showing the structure, characteristics, and interactions
within and around the data being modeled.

Strategy
& Analysis

Design

Testing

Implementation

Building
& Documentation

http://www.sybex.com

Relational Database Systems

5

Entities and Attributes

An entity in a logical model is much like a
noun in grammar: a person, place, or thing. The characteristics of an
entity are known as its attributes. An attribute is detailed information
about an entity that qualifies, identifies, classifies, or quantifies the
entity. Consider this example: ABC Inc. has many offices in the US; each
office has many departments, and each department may have many
employees. Looking at ABC Inc. in terms of the ER model, you could
identify OFFICE, DEPARTMENT, and EMPLOYEE as entities. Each
entity will also have its own characteristics; for instance, when you say
“office,” you might want to know the city and state where the office is
located, as well as how many employees work there. Similarly, you
might want to know the department’s name, its head, and an employee’s
name and date of birth. You might also like to know the name of the
employee’s spouse. In Figure 1.2, OFFICE, DEPARTMENT, and
EMPLOYEE are entities, and their attributes are inside the box under
each entity.

There are optional and mandatory attributes. For example, in Figure 1.2,
under EMPLOYEE, the spouse name is optional, whereas the employee
name, department, and date of birth are mandatory. An asterisk along
with the attribute name indicates that it is mandatory. The optional
attribute may be indicated by a small letter o.

F I G U R E 1 . 2

Entities and Attributes

Relationships and Unique Identifiers

In the example of ABC Inc., each
office has many departments and each department has many employees.
This describes the relationship between the entities. If there is an office in
one city, there should be at least one department. So, it is mandatory to
have at least one occurrence of department for each location, although
there may be many departments. In the ER model, a solid line represents
a mandatory relationship and a crowfoot represents the “many.” In a
department, however, there may not be any employees at all. Optional
occurrence is represented by a dotted line.

You should be able to identify each occurrence of an entity uniquely. What
happens if there are two employees with the same name—how do you distin-
guish between them? For office location, the city and state uniquely identify

OFFICE DEPARTMENT EMPLOYEE

City
State
No. of Employees

Manager Employee Name
D.O.B.
Spouse Name

http://www.sybex.com

6

Chapter 1 �

Relational Technology and Simple SQL SELECT Statements

each office; for department, the department name identifies it uniquely. For
employee, we can introduce a unique identifier (UID) called employee number.
Figure 1.3 is a refined version of Figure 1.2, showing the entities, attributes,
relationships, optional and mandatory attributes, and UIDs. UID is represented
in the diagram using a pound symbol (#).

F I G U R E 1 . 3

An ER Model

As you can see in Figure 1.4, three types of relationships can be defined
between entities.

One-to-One

A one-to-one

relationship is one in which each occurrence
of one entity is represented by single occurrence in another entity. For
example, consider an individual and that individual’s Social Security
number: One person can have only one Social Security number, and a
Social Security number can belong to only one person.

One-to-Many

A one-to-many relationship is one in which an occurrence
of one entity may be represented by many occurrences in another entity. An
example is department and employees: One department has one or more
employees, and an employee belongs to only one department.

Many-to-Many

A many-to-many relationship is one in which an occurrence
from one entity may be represented by one or more occurrences in another
entity, and an occurrence from the second entity may be represented by one or
more occurrences in the first entity. The relationship between doctor and
patient is an example: A patient can visit many doctors, and a doctor can have
many patients.

Many-to-many relationships should not exist in RDBMS because they cannot
be properly joined to represent a single row correctly. To solve this, create
another entity that has a one-to-many relationship with the first entity and a

one-to-many relationship with the second entity.

OFFICE

LOC_ID

* CITY
* STATE
° NO_OF_EMPLOYEES

DEPARTMENT

DEPT_NO

* DEPT_NAME
MANAGER

* LOC_ID

EMPLOYEE

EMPNO

* NAME
* D.O.B.

SPOUSE
* DEPT_NO

http://www.sybex.com

Relational Database Systems

7

F I G U R E 1 . 4

Types of relationships

The logical model also provides information known as access paths. These are
the common ways in which you query the database to retreive information. For
example, you would always query the employee records with the DEPT_NO or
EMPNO. Think of access paths as an index into the data, just as the index of a
book helps you quickly find the information you need.

When you have established the relationships between entities, it’s time to
normalize the design. Normalization is the process of eliminating redundant
information from the entities until you can uniquely identify each occurrence
of the entity. This may not always be practical because of performance and
implementation issues. In such cases, you can denormalize, which means you
can have some redundant information.

Physical Model

You create a physical model by using the logical model to assist in creating
a database and database objects to represent the entities and relationships. In
the physical model, each entity becomes a table

,

 and attributes of the entity
become columns of the table. The relationship between the entities is part of
one or more constraints between the tables. Physical implementations might
require you to combine, separate, or create completely new entities in order
to best realize the logical model. The unique identifiers of an entity become
the primary key of the table. You may create stored procedures, functions,
and triggers to enforce business rules.

In an RDBMS, the physical database storage is independent of the logical model.

One-to-One

Person

One-to-Many

Department Employee

Many-to-Many

Doctor Patient

Social
Security
Number

http://www.sybex.com

8

Chapter 1 �

Relational Technology and Simple SQL SELECT Statements

Oracle’s Implementation of RDBMS and ORDBMS

A database server is the key to information management. The Oracle database
satisfies the three major characteristics of the relational model:

� Structures

� Operations

� Integrity rules

Oracle lets you define tables, columns, column characteristics like datatype,
length, whether the values are mandatory, default, and so on. Defining foreign
keys ensures the referential integrity of the data. In addition, you can define pri-
mary keys and indexes on the data. In versions 8 and 8i, Oracle has incorporated
a variety of components.

Records in a database table can be seen as instances of the entity. Each occur-
rence of an entity is differentiated by the values of the attributes. Oracle stores
these records as rows of the table and the attributes as columns in each row. In
its most generic form, a database table can be seen as a single spreadsheet with
an unlimited number of columns and rows. The columns are not defined until
the user names them and gives them a datatype. Oracle extends the concept of
spreadsheets by defining relationships between multiple spreadsheets, defining
constraints on columns, and providing mechanisms for multiple users to access
the same database table(s) simultaneously.

Data access paths are implemented in Oracle using indexes. Indexing
helps to predefine the most common access paths for querying the database.
These indexes decrease the time it takes to search for data in a table by using
a number of data structures, such as B-trees, bitmaps, and so on.

Oracle implements the RDBMS characteristics using the following set
of structures:

� Tables are used for data storage.

� Views and synonyms are created for data access.

� Indexes are used to speed up data access.

� Primary keys, foreign keys, and unique keys are created to enforce
data integrity.

� Triggers are created to satisfy the business rules.

� Roles and privileges are used for security.

� Procedures, functions, and packages are used to develop the application
and enforce business rules.

http://www.sybex.com

Oracle Datatypes 9

Oracle8i is an ORDBMS. It lets you define user-defined object types in the
relational database system. Object types are structures that consist of built-in
or user-defined datatypes. For example, an address can be defined as an object
type and can be referenced in tables:

CUSTOMER_TABLE

CUST_NAME VARCHAR2 (40)

CUST_ADDR ADDRESS_TYPE

CUST_PHONE VARCHAR2 (12)

CUST_FAX VARCHAR2 (12)

where ADDRESS_TYPE is an object type defined as

ADDRESS_TYPE

STREET STREET_TYPE

CITY VARCHAR2 (30)

STATE CHAR (2)

ZIP NUMBER (5)

where STREET_TYPE is defined as

STREET_TYPE

STREET_NUMBER NUMBER (6)

STREET_NAME1 VARCHAR2 (40)

STREET_NAME2 VARCHAR2 (40)

APARTMENT_NO VARCHAR2 (5)

Now that the ADDRESS_TYPE is defined, it can be used in any number of
tables where addresses need to be stored. This small example shows you how
objects can be reused.

Oracle uses SQL to access the database. In the following sections, you will
learn the basic components of Oracle8i and how to access data.

Oracle Datatypes

When you create a table to store data in the database, you need to specify
a datatype for all columns you define in the table. Oracle has different datatypes
to suit your requirements. The datatypes are broadly classified into character,
number, date, LOB, and RAW datatypes. Oracle8i lets you use user-defined
datatypes, but they are constructed from the basic datatypes. In the following
sections, you will learn the usage, constraints, and allowable values for each of
the Oracle built-in datatypes. See Figure 1.5 for an illustration of the basic
datatypes available in Oracle8i.

http://www.sybex.com

10 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

F I G U R E 1 . 5 Oracle datatypes

Character Datatypes

Character datatypes are used to store alphanumeric data. When you define
character data in Oracle, you specify a length for the column, which is the
maximum width of the column. Oracle provides the character datatypes
described in the following paragraphs.

CHAR(<size>) The CHAR datatype is a fixed-length character string having
a maximum length of size. Data stored in CHAR columns is space-padded to
fill the maximum length. Size can range from a minimum of 1 to a maximum
of 2,000.

When you create a column using the CHAR datatype, the database will
ensure that all data placed in this column has the defined length. If the
data is shorter than the defined length, it is space-padded on the right to
the specified length. If the data is longer, an error is raised.

Comparison rules for CHAR types ignore any trailing spaces. See the “Compar-
ison Rules” section that follows for the differences among the character types.

VARCHAR(<size>) A VARCHAR datatype is currently synonymous with
the VARCHAR2 datatype.

VARCHAR2(<size>) The VARCHAR2 datatype is a variable-length
alphanumeric string having a maximum length of size bytes. VARCHAR2
variables only require the amount of space needed to store the data.
VARCHAR2 database columns can store up to 4,000 bytes and VARCHAR2
variables up to 32,676 bytes.

An empty VARCHAR2 (2000) column takes up as much room in the database
as an empty VARCHAR2(2) column.

CHAR
VARCHAR
VARCHAR2
NCHAR
NVARCHAR2
LONG

NUMBER

DATE

RAW
LONG RAW

ROWID
UROWIDBLOB

CLOB
BFILE

http://www.sybex.com

Oracle Datatypes 11

The default size of a CHAR datatype is 1. In VARCHAR2, you must always specify
the size.

NCHAR(<size>) and NVARCHAR2(<size>) NCHAR and NVARCHAR2 data-
types have the same characteristics as the CHAR and VARCHAR2 datatypes and
are used to store National Language Support (NLS) data. Oracle’s NLS archi-
tecture allows you to store, process, and retrieve information in native lan-
guages. Database error messages, date, time, calendar, and numeric formats
are adapted as in the native language.

LONG The LONG datatype is a legacy datatype that will no longer be
supported in the future. It has been deprecated in favor of Large Object
(LOB) datatypes. A LONG datatype column is of variable length and can
take up to 231–1 bytes or 2GB. There are many restrictions on the use of
LONG columns and variables. LONG columns cannot appear in WHERE
clauses, GROUP BY clauses, ORDER BY clauses, or CONNECT BY clauses, or
with the DISTINCT operator in SELECT statements.

Comparison Rules The VARCHAR and CHAR datatypes have different
comparison rules for trailing spaces. With the CHAR datatype, trailing
spaces are ignored; with the VARCHAR and VARCHAR2 datatypes, trail-
ing spaces sort higher than no trailing spaces. Here’s an example:

CHAR datatype: 'Yo'='Yo '

VARCHAR2 datatype: 'Yo' <'Yo '

Numeric Datatypes

Numeric datatypes are used to store negative and positive integers: fixed-point
and floating-point numbers with magnitudes ranging between –1 × 10-130 and
9.999…99 × 10125 with a precision of up to 38 digits. Specifying a number outside
this range will raise an error.

NUMBER (<p>, <s>) The NUMBER datatype stores numbers with a precision
of p digits and a scale of s digits. The precision and scale values are optional.

Precision and Scale Oracle will round numbers inserted into numeric
columns with a scale smaller than the inserted number; see Table 1.1. For
example, if a column is defined as NUMBER (4,2) and you insert a value
of 12.125 into this column, the resulting number would be rounded to
12.13 before it is inserted into the column.

http://www.sybex.com

12 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

Specifying the scale and precision does not force all inserted values to be a
fixed length. If the number exceeds the precision, however, an Oracle error
is returned. If the number exceeds the scale, it is rounded to the scale.

Negative Scale If the scale is negative, the number is rounded to the left
of the decimal. Basically, a negative scale forces s number of zeros just to
the left of the decimal.

The Date Datatype

The DATE datatype is used to store date and time information. This datatype
can be converted to other forms for viewing, and it has a number of special
functions and properties that make date manipulation and calculations simple.
The time component of the DATE datatype has a resolution of one second—no
less. The DATE datatype occupies a storage space of seven bytes. The following
information is contained within each DATE datatype:

� Century

� Year

� Month

T A B L E 1 . 1 Precision and Scale Examples

Actual Value Datatype Stored Value

1234567.89 NUMBER 1234567.89

1234567.89 NUMBER(8) 1234568

1234567.89 NUMBER(6) Numeric error

1234567.89 NUMBER(9,1) 1234567.9

1234567.89 NUMBER(9,3) Numeric error

1234567.89 NUMBER(7,2) Numeric error

1234567.89 NUMBER(5,-2) 1234600

1234511.89 NUMBER(5,-2) 1234500

1234567.89 NUMBER(5,-4) 1230000

1234567.89 NUMBER (*,1) 1234567.9

http://www.sybex.com

Oracle Datatypes 13

� Day

� Hour

� Minute

� Second

Date values are inserted or updated in the database by converting either a
numeric or character value into a date datatype using the function TO_DATE.
The default format for character dates is defined by the NLS_DATE_FORMAT ini-
tialization parameter and can be overridden for the current session. Oracle
defaults this format to be DD-MON-YY; this is the format shown whenever a
date is selected within SQL*Plus. This format shows that the default date must
begin with a two-digit day, followed by a three-character abbreviation for the
month, followed by a two-digit year. If you specify the date without including
a time component, the time is defaulted to midnight, or 00:00:00 in military
time. The SYSDATE function returns the current system date and time from the
database server to which you’re currently connected.

Comparing Dates Dates are stored in the database as Julian numbers with
a fraction component for the time. A Julian date refers to the number of days
since Jan. 1, 4712 BC. Due to the time component of the date, comparing
dates can result in fractional differences, even though the date is the same.
Often dates are added to the system using the SYSDATE function, which
includes the time component (the current time on the server). Oracle provides
a number of functions that help you to remove the time component when you
only want to compare the date portions. The TRUNC function is one of them.

Date Arithmetic Adding one to the Julian date simply moves the date
ahead one day. You can add time to the date by adding a fraction of a day,
understanding that one day equals 24 hours or 24 × 60 minutes or 24 ×
60 × 60 seconds. Table 1.2 shows the numbers used to add or subtract
time for a DATE datatype.

T A B L E 1 . 2 Date Arithmetic

Time to Add Fraction Date Difference

1 Day 1 1

1 Hour 1/24 1/24

1 Minute 1/(24 × 60) 1/1440

1 Second 1/(24 × 60 × 60) 1/86400

http://www.sybex.com

14 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

Oracle provides a number of date functions to add or subtract months.

Subtracting two dates gives you the difference between the dates in days. This
usually results in a fractional component that represents the time difference. If the
time components are the same, there will be no fractional results. The following
example shows the current system date (08-Mar-2000 21:24:51) and the differ-
ence between system date and 07-Mar-2000 00:00:00. The difference is shown as
a fraction: 1.8922564. Using Table 1.2, you can interpret this as one day, 21 hours
(0.89225694/24=21.4141536), 24 minutes (0.4141536×60=24.849216), and 51
seconds (0.849216×60=50.9).

SQL> select sysdate, to_date('07-MAR-2000','dd-mon-yyyy'),

2 sysdate - to_date('07-MAR-2000','dd-mon-yyyy') diff

3 from dual;

SYSDATE TO_DATE('07-MAR-200 DIFF

------------------- ------------------- ----------

2000-03-08-21:24:51 2000-03-07-00:00:00 1.89225694

SQL>

LOB Datatypes

Large Object (LOB) datatypes store blocks of unstructured data, such as a
binary file, a picture, or an external file. Table 1.3 shows a list of LOB
datatypes. A LOB can store data up to 4GB. The data may be stored in the
database or in an external file. LOB data manipulation is done using the
DBMS_LOB package. The LOB locator is stored in the table column, either with
or without the actual LOB value. BLOB, NCLOB, and CLOB values can be stored
in separate tablespaces. BFILE data is stored in an external file on the server.

T A B L E 1 . 3 LOB Datatypes

Datatype Purpose Description

BLOB Binary Large
Object

Can store up to 4GB of binary data in
the database.

CLOB Character Large
Object

Can store up to 4GB of character data
in the database. Oracle converts the
data into Unicode format and stores it
in the database.

http://www.sybex.com

Oracle Datatypes 15

There may be more than one LOB datatype column in a table, but there can be
only one LONG datatype column.

Other Datatypes

This section covers the datatypes not mentioned previously. Oracle has RAW
and ROWID datatypes in addition to the character, numeric, and date datatypes.

RAW RAW is unstructured, binary data that is not interpreted by the
database. This data does not undergo character set conversion during rep-
lication or when the client character set differs from the database charac-
ter set. RAW columns can be up to 2,000 bytes long.

LONGRAW Like the LONG datatype, LONGRAW is a legacy datatype that
has been deprecated in favor of the LOB datatypes BLOB or BFILE.
LONGRAWs can store up to 2GB of unstructured data. LONGRAW data cannot
be indexed, but RAW data can be indexed.

ROWID The ROWID datatype is a pseudo-column in the Oracle database that
represents the internal unique identifier for each row in a table. Physical ROWIDs
store the addresses of rows in ordinary tables (excluding index-organized
tables), clustered tables, table partitions and subpartitions, indexes, and index
partitions and subpartitions. Logical ROWIDs store the addresses of rows in
index-organized tables. Physical ROWIDs provide the fastest possible access to a
row of a given table. Versions of Oracle prior to Oracle8 use the restricted
ROWID format (block.row.file). Oracle8 uses extended ROWID format, which
includes the object ID number (you may select the object number from DBA_
OBJECTS view).

BFILE Binary File Stores binary data up to 4GB in operat-
ing system files outside of the database.
The size of the binary file must conform
with operating system limitations on file
size. A BFILE column stores a file locator
that points to an external file containing
the data. BFILE datatypes are read-only;
you cannot modify them.

T A B L E 1 . 3 LOB Datatypes (continued)

Datatype Purpose Description

http://www.sybex.com

16 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

UROWID Universal ROWID, or UROWID, supports both logical and
physical ROWIDs, as well as ROWIDs of foreign tables (such as non-
Oracle tables accessed through a gateway). A column of the UROWID
datatype can store all kinds of ROWIDs.

Literals

Literals are values that represent a fixed value. There are three types of
literal values:

� Text

� Integer

� Number

Text literals must be enclosed in single quotes; integer and number literals
need not be. You can use literals within many of the SQL functions, expres-
sions, and conditions.

Text The text literal must be enclosed in single quotation marks. Any
character between the quotation marks is considered part of the text
value. Oracle treats all text literals as though they were CHAR datatypes.
The maximum length of a text literal is 2,000 characters. Single quotation
marks can be included in the literal text value by preceding it with another
single quotation mark.

Here are some examples:

� 'The Quick Brown Fox'

� 'That man''s suit is black'

� 'And I quote:''This will never do.'' '

Integer Integer literals can be any number of numerals, excluding a decimal
separator and up to 38 digits long.

Examples follow:

� 24

� – 456

Number Number literals can include scientific notation, as well as digits
and the decimal separator.

http://www.sybex.com

SQL Fundamentals 17

Here are some examples:

� 24

� –345.65

� 23E–10

SQL Fundamentals

SQL is a simple and powerful language used to create, access, and
manipulate data and structure in the database. SQL is like plain English:
easy to understand and to write. Oracle divides SQL statements into vari-
ous categories, which you can see in Table 1.4.

T A B L E 1 . 4 SQL Statement Categories

SQL Category Description

Data Definition Data definition language (DDL) statements are
used to define, alter, or drop database objects.
Examples are CREATE TABLE, ALTER INDEX,
GRANT, REVOKE, TRUNCATE, ANALYZE, and so on.

Data Manipulation Data manipulation language (DML) statements
are used to access, create or manipulate data
in the existing structures of the database.
Examples are SELECT, INSERT, UPDATE, DELETE,
LOCK TABLE, EXPLAIN, and so on.

Transaction Control Transaction control statements manage the
changes made by the DML statements,
whether to save them or discard them. The
COMMIT, ROLLBACK, SAVEPOINT, and SET
TRANSACTION commands are all transaction
control statements.

Session Control Session control statements manage the prop-
erties of a user’s session. The SET ROLE and
ALTER SESSION commands are used.

System Control System control statements are used to man-
age the properties of the database. The ALTER
SYSTEM command is used for this purpose.

http://www.sybex.com

18 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

In preparing for the Oracle8i SQL and PL/SQL exam, it would be wise to
concentrate mainly on simple data definition statements like CREATE TABLE;
data manipulation statements like SELECT, INSERT, and UPDATE; and trans-
action control statements like SAVEPOINT, ROLLBACK, and COMMIT.

Operators and Expressions

An operator is a manipulator that is applied to a data item in order to
return a result. Special characters represent different operations in Oracle
(+ represents addition, for example). Operators are commonly used in all
programming environments, and you should already be familiar with the
following operators, which may be classified into two types:

Unary Operator A unary operator has only one operand. +2 and –5 are
examples. They have the format <operator operand>.

Binary Operator Binary operators have two operands. 5 + 4 and 7 x 5
are examples. They have the format <operand1 operator operand2>.

Arithmetic Operators

Arithmetic operators operate on numeric datatypes. Table 1.5 shows you the
various arithmetic operators in Oracle and how to use them.

T A B L E 1 . 5 Arithmetic Operators

Operator Purpose Example

+ - Unary operators: Use to represent positive or
negative data item. For positive items, the + is
optional.

-234.44

+ Addition: Use to add two data items or
expressions.

2 + 4

- Subtraction: Use to find the difference
between two data items or expressions.

20.4 - 2

* Multiplication: Use to multiply two data items
or expressions.

5 * 10

/ Division: Use to divide a data item or expres-
sion with another.

8.4 / 2

http://www.sybex.com

SQL Fundamentals 19

Do not use two hyphens (--) to represent double negation; use a space or
parenthesis in between, as in -(-20). Two hyphens represent the beginning of
a comment in SQL.

Concatenation Operator

The concatenation operator is used to concatenate or join two character
(text) strings. The result of concatenation is another character string. If one
of the strings is NULL, the result is also NULL. Concatenating a zero-length
string ('') with another string results in a string, not a NULL. Two vertical bars
(||) are used as the concatenation operator.

Here are a few examples:

� 'Oracle8i' || 'Database' results in 'Oracle8iDatabase'

� 'Oracle8i ' || 'Database' results in 'Oracle8i Database'

� SELECT first_name || ' ' || last_name FROM emp; gives the
name of the employees in the EMP table.

Comparison Operators

Comparison operators compare two values or expressions and give a Boolean
result of TRUE, FALSE, or NULL. Table 1.6 lists the various comparison operators
and how to use them.

T A B L E 1 . 6 Comparison Operators

Operator Purpose Example

= Equality test. SELECT * FROM emp
WHERE last_name = 'SCOTT';

!=
<>
^=

Inequality test;
any of the three
operators may
be used.

SELECT * FROM emp
WHERE first_name != 'TIGER';

< “Less than” test. SELECT last_name FROM emp
WHERE salary < 2000;

http://www.sybex.com

20 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

> “Greater than”
test.

SELECT first_name, salary FROM
emp
WHERE salary > 10000;

<= “Less than or
equal to” test.

SELECT last_name FROM emp
WHERE salary <= 2000;

>= “Greater than or
equal to” test.

SELECT first_name, salary FROM
emp
WHERE salary >= 10000;

[NOT] IN “Equal to any
member of” test.
If NOT is used,
evaluates to
TRUE if the value
is not in the
member list.

SELECT first_name, salary FROM
emp
WHERE first_name IN ('JOHN',
'SAM', 'MARY', 'LEEZA');
SELECT last_name FROM emp WHERE
last_name NOT IN (SELECT last_
name FROM emp WHERE dept = 10);

ANY
SOME

Compares a
value to each
value in a list or
returned by a
query. Must be
preceded by =,
!=, >, <, <=, >=.
Evaluates to
FALSE if the
query returns no
rows.

SELECT last_name FROM emp WHERE
salary <= ANY (SELECT salary
FROM emp WHERE dept = 10);

ALL Compares a
value to every
value in a list or
returned by a
query. Must be
preceded by =,
!=, >, <, <=, >=.
Evaluates to
TRUE if the query
returns no rows.

SELECT last_name FROM emp WHERE
salary <= ALL (500, 1200, 800);

T A B L E 1 . 6 Comparison Operators (continued)

Operator Purpose Example

http://www.sybex.com

SQL Fundamentals 21

[NOT] BETWEEN
a AND b

TRUE if value
greater than or
equal to a and
less than or
equal to b.
If NOT is used, the
result is the
reverse.

SELECT last_name FROM emp WHERE
salary BETWEEN 5000 and 10000;

[NOT] EXISTS TRUE if a sub-
query returns at
least one row.

SELECT last_name FROM emp A
WHERE NOT EXISTS (SELECT 'X'
DUMMY FROM emp B WHERE B.dept =
10 AND A.last_name = B.last_
name);

a [NOT] LIKE b
[ESCAPE
'char']

Used for pattern
matching; TRUE if
pattern a
matches pattern
b. Wild character
% is used to
match any string
of length zero or
more characters.
Wild character _
is used to match
any single char-
acter. The key-
word ESCAPE is
used to cause
Oracle to inter-
pret % or _ liter-
ally, rather than
as a special char-
acter.

SELECT last_name FROM emp WHERE
last_name NOT LIKE 'THO%';
SELECT last_name FROM emp WHERE
last_name LIKE '_HOR%';
SELECT synonym_name FROM dba_
synonyms WHERE synonym_name
LIKE 'ALL_U%' ESCAPE '\';

IS [NOT] NULL The only opera-
tor used to test
for NULL values.

SELECT last_name FROM emp WHERE
salary IS NULL;

T A B L E 1 . 6 Comparison Operators (continued)

Operator Purpose Example

http://www.sybex.com

22 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

Comparison operators are mainly used in the WHERE clause of the SQL
statement. The result from the condition is evaluated and rows are returned
for the TRUE results.

Logical Operators

Logical operators are used to combine the results of two comparison conditions to
produce a single result or to reverse the result of a single comparison. Table 1.7
lists the logical operators and how to use them.

T A B L E 1 . 7 Logical Operators

Opera-

tor Purpose Example

NOT Used to reverse the result.
Evaluates to TRUE if the oper-
and is FALSE. Evaluates to
FALSE if the operand is TRUE.
Returns NULL if the operand is
NULL.

SELECT * FROM emp WHERE
NOT (salary < 1000);

AND Evaluates to TRUE if both oper-
ands are TRUE. Evaluates to
FALSE if either operand is
FALSE. Otherwise returns NULL.

SELECT * FROM emp WHERE
last_name = 'JACOB' AND
sal > 5000;

OR Evaluates to TRUE if either oper-
and is TRUE. Evaluates to FALSE
if both operands are FALSE.
Otherwise returns NULL.

SELECT * FROM emp WHERE
last_name = 'JACOB' OR
last_name = 'THOMAS';

http://www.sybex.com

SQL Fundamentals 23

Set Operators

Set operators are used in compound queries: queries that combine the results
of two queries. The number of columns selected in both queries must be the
same. Table 1.8 lists the set operators and how to use them.

Operator Precedence

If multiple operators are used in the same expression, Oracle evaluates
them in the order of precedence set in the database engine. Operators with
higher precedence are evaluated before operators with lower precedence.

T A B L E 1 . 8 Set Operators

Operator Purpose Example

UNION Returns all rows from either queries;
no duplicate rows.

SELECT last_name
from emp UNION
SELECT first_
name from emp;

UNION ALL Returns all rows from either query,
including duplicates.

SELECT last_name
FROM emp UNION ALL
SELECT first_name
FROM emp;

INTERSECT Returns distinct rows that are
returned by both queries.

SELECT last_name
FROM emp
INTERSECT SELECT
first_name FROM
emp;

MINUS Returns distinct rows that are
returned by the first query but not
returned by the second.

SELECT last_name
FROM emp MINUS
SELECT first_
name FROM emp;

http://www.sybex.com

24 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

Operators with same precedence are evaluated from left to right. Table 1.9
lists the precedence.

Using parentheses changes the order of precedence. The innermost parenthesis
is evaluated first. In the expression 1+2*3, the result is 7 because 2*3 is evaluated
first and the result is added to 1. If the expression had parentheses, (1+2)*3—1+2
is evaluated first, and the result is multiplied by 3, giving 9.

All set operators have equal precedence.

Expressions

An expression is a combination of one or more values, operators, and
SQL functions that evaluate to a value. An expression generally assumes
the datatype of its components. The simple expression 5 + 6 evaluates
to 11 and assumes a datatype of NUMBER. Expressions can appear in the
following clauses:

� The SELECT clause of queries

� The WHERE clause

� The VALUES clause of the INSERT statement

� The SET clause of the UPDATE statement

T A B L E 1 . 9 SQL Operator Precedence

Operator Purpose

- + Unary operators, negation

* / Multiplication, division

+ - || Addition, subtraction, concatenation

=, !=, <, >, <=, >=, IS NULL, LIKE,
BETWEEN, IN

Comparison

NOT Logical negation

AND Conjunction

OR Disjunction

http://www.sybex.com

Writing Simple Queries 25

We will review the syntax of using these statements in subsequent chapters.
A compound expression specifies a combination of expressions. Here are

some examples of compound expressions:

((2 * 4) / (3 + 1)) * 10

LOWER ('JOHN' || ' TAYLOR')

Writing Simple Queries

A query is a request for information from the database tables.
Simple queries are those that retrieve data from a single table. The basis
of a query is the SELECT statement. Multiple table queries will be dis-
cussed in the next chapter.

SELECT Statement

The SELECT statement is the most commonly used statement in SQL and is
used to retrieve information already stored in the database. To retrieve data,
you can either select all the column values or name specific columns in the
SELECT clause to retrieve data. Let’s use the EMP table defined in Table 1.10.

T A B L E 1 . 1 0 EMP Table Definition

Column Name EMPNO ENAME SALARY COMM DEPTNO

Key PK

Not Null,
Unique

NN, U NN NN

FK Table DEPT

FK Column DEPTNO

Datatype NUMBER VARCHAR2 NUMBER NUMBER

Length 4 10 7, 2 7, 2 2

http://www.sybex.com

26 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

The EMP Table has the following 11 rows of data:

 EMPNO ENAME SALARY COMM DEPTNO

--------- ---------- --------- --------- ---------

 7499 ALLEN 1600 300 30

 7521 WARD 1250 500 30

 7566 JONES 2975 20

 7654 MARTIN 1250 1400 30

 7698 K_BLAKE 2850 30

 7782 CLARK 2450 24500 10

 7788 SCOTT 3000 20

 7839 A_EDWARD 5000 50000 10

 7844 TURNER 1500 0 30

 7876 ADAMS 1100 20

 902 FORD 3000 20

The simple form of a SELECT statement is SELECT column_names FROM
table_name;.

How do you list the EMPNO and ENAME from this table? If you know the
column names and the table name, writing the query is very simple: Execute
the query by ending the query with a semicolon. In SQL*Plus, you may enter
a slash by itself in a line.

SQL> select empno, ename from emp;

 EMPNO ENAME

--------- ----------

 7499 ALLEN

 7521 WARD

 7566 JONES

 7654 MARTIN

 7698 K_BLAKE

 7782 CLARK

 7788 SCOTT

 7839 A_EDWARD

 7844 TURNER

 7876 ADAMS

 902 FORD

11 rows selected.

SQL>

http://www.sybex.com

Writing Simple Queries 27

Notice that the numeric column (EMPNO) is aligned to the right and the char-
acter column (ENAME) is aligned to the left. Does it seem that the column head-
ing ENAME makes no sense? Well, you can provide a column alias. The column
alias name is defined next to the column name. The query select empno, ename
employee_name from emp; provides an alias name for the column ENAME.
Here, the column heading will be displayed as EMPLOYEE_NAME.

If you want a space in the column alias name, you must enclose it in double
quotation marks. The case is preserved only when the alias name is enclosed
in double quotes; otherwise, the display will be uppercase.

The following example demonstrates using an alias name for the
ENAME column:

SQL> SELECT empno, ename "Employee Name"

 2 FROM emp

 3 /

 EMPNO Employee N

--------- ----------

 7499 ALLEN

 7521 WARD

 7566 JONES

 7654 MARTIN

 7698 K_BLAKE

 7782 CLARK

 7788 SCOTT

 7839 A_EDWARD

 7844 TURNER

 7876 ADAMS

 902 FORD

11 rows selected.

SQL>

In this listing, the column alias name is truncated because the column
length is only 10 characters. Later in this chapter, you will learn how to
avoid this by using SQL*Plus formatting commands.

http://www.sybex.com

28 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

The asterisk (*) is used to select all columns in the table. This is very useful
when you do not know the column names or when you are too lazy to type all
column names.

The DISTINCT keyword followed by the SELECT keyword ensures that the
resulting rows are unique. Uniqueness is verified against the complete row,
not the first column. If you need to find the unique departments and salaries,
issue this query:

SQL> SELECT DISTINCT deptno, salary FROM emp;

 DEPTNO SALARY

--------- ---------

 10 2450

 10 5000

 20 1100

 20 2975

 20 3000

 30 1250

 30 1500

 30 1600

 30 2850

9 rows selected.

SQL>

DUAL is a dummy table available to all users in the database. It has one column
and one row. The DUAL table is used to select system variables or to evaluate
an expression. SELECT SYSDATE, USER FROM DUAL; will show the current system
date and the connected username.

http://www.sybex.com

Writing Simple Queries 29

Limiting Rows

A WHERE clause is used to limit the number of rows processed. Any logical
conditions of the WHERE clause use the comparison operators. Rows are
returned or operated upon where the data satisfies the logical condition(s) of
the WHERE clause. You can use column names or expressions in the WHERE
clause but not column alias names.

How do you list the employee information for department 10? This example
shows how use a WHERE clause to limit the query only to the records belonging
to department 10:

SQL> SELECT * FROM emp WHERE deptno = 10;

 EMPNO ENAME SALARY COMM DEPTNO

--------- ---------- --------- --------- ---------

 7782 CLARK 2450 24500 10

 7839 A_EDWARD 5000 50000 10

SQL>

You need not include the column names in the SELECT clause to use them in
the WHERE clause.

Character and range comparisons also can be done in the WHERE clause.
To select the rows from the EMP table with enames starting with the literal
string A_, you might be tempted to issue this query:

SQL> SELECT * FROM emp WHERE ename LIKE 'A_%';

 EMPNO ENAME SALARY COMM DEPTNO

--------- ---------- --------- --------- ---------

 7499 ALLEN 1600 300 30

 7839 A_EDWARD 5000 50000 10

 7876 ADAMS 1100 20

SQL>

The query returned rows that we did not expect. That is because Oracle
treats % and _ as special characters. In pattern matching, % is used to match

http://www.sybex.com

30 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

any number of characters and _ is used to match any one character. To literally
query for the character _, use the ESCAPE clause in the LIKE operator:

SQL> SELECT * FROM emp WHERE ename LIKE 'A_%' ESCAPE
'\';

 EMPNO ENAME SALARY COMM DEPTNO

--------- ---------- --------- --------- ---------

 7839 A_EDWARD 5000 50000 10

SQL>

To find the NULL values or NOT NULL values, you need to use the IS NULL
operator. The = or != operator will not work with NULL values. If you need
to find the employees whose commission is NULL, give this query:

SQL> SELECT * FROM emp WHERE comm IS NULL;

 EMPNO ENAME SALARY COMM DEPTNO

--------- ---------- --------- --------- ---------

 7566 JONES 2975 20

 7698 K_BLAKE 2850 30

 7788 SCOTT 3000 20

 7876 ADAMS 1100 20

 902 FORD 3000 20

SQL>

Sorting Rows

The SELECT statement may include the ORDER BY clause to sort the resulting
rows in a specific order based on data in the columns. Without the ORDER BY
clause, there is no guarantee that the rows will be returned in any specific
order. The rows are returned by ascending order of the columns specified; if
you need to sort the rows in descending order, use the keyword DESC next to
the column name.

To retrieve all rows from the EMP table, for department 30 and ordered
by name, do this:

SQL> SELECT * FROM emp WHERE deptno = 30 ORDER BY ename;

 EMPNO ENAME SALARY COMM DEPTNO

--------- ---------- --------- --------- ---------

 7499 ALLEN 1600 300 30

http://www.sybex.com

Writing Simple Queries 31

 7698 K_BLAKE 2850 30

 7654 MARTIN 1250 1400 30

 7844 TURNER 1500 0 30

 7521 WARD 1250 500 30

SQL>

To sort them by salary, highest paid first, and in alphabetical order by
name, use this query:

SQL> SELECT ename "Employee", SALARY "Salary"

 2 FROM emp

 3 WHERE deptno = 30

 4 ORDER BY salary desc, "Employee";

Employee Salary

---------- ---------

K_BLAKE 2850

ALLEN 1600

TURNER 1500

MARTIN 1250

WARD 1250

SQL>

You can use column alias names in the ORDER BY clause.

If the DISTINCT keyword is used in the SELECT clause, you can only use
those columns listed in the SELECT clause in the ORDER BY clause. If you have
used any operators on columns in the SELECT clause, the ORDER BY clause
also should have them, as well. Here is an example:

SQL> SELECT 'Name: ' || ename "Employee", SALARY "Salary"

 2 FROM emp

 3 WHERE deptno = 30

 4 ORDER BY deptno DESC, "Employee"

SQL> /

Employee Salary

---------------- ---------

Name: ALLEN 1600

Name: K_BLAKE 2850

http://www.sybex.com

32 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

Name: MARTIN 1250

Name: TURNER 1500

Name: WARD 1250

SQL> SELECT DISTINCT 'Name: ' || ename "Employee",

 2 SALARY "Salary"

 3 FROM emp

 4 WHERE deptno = 30

 5 ORDER BY deptno DESC, "Employee"

SQL> /

ORDER BY deptno desc, "Employee"

 *

ERROR at line 4:

ORA-01791: not a SELECTed expression

SQL>

Not only can you use the column name or column alias to sort the result set
of a query, you can also sort the results by position of the column in the SELECT
clause. This is very useful if you have a lengthy expression in the SELECT clause
and you need the results sorted on this value. For queries that involve the set
operators, like UNION or MINUS, the column names cannot be used. In this case,
the ordering column(s) must be provided as positions:

SQL> SELECT 'Name: ' || ename "Employee", SALARY "Salary"

 2 FROM emp

 3 WHERE deptno = 30

 4* ORDER BY 2, 1

SQL> /

Employee Salary

---------------- ---------

Name: MARTIN 1250

Name: WARD 1250

Name: TURNER 1500

Name: ALLEN 1600

Name: K_BLAKE 2850

SQL>

http://www.sybex.com

SQL*Plus: Oracle’s Native Interface 33

SQL*Plus: Oracle’s Native Interface

SQL*Plus, widely used by DBAs and developers, is a powerful and
straightforward tool from Oracle to interact with the database. SQL*Plus
has its own formatting commands to make your queries look better, as well
as commands to set up the environment. SQL*Plus is available on all plat-
forms on which Oracle runs. It is provided with the Oracle Client installation
software for the client machine. It is also provided at the server level with
installation software for the Oracle Server. You can execute any database
command or PL/SQL block in SQL*Plus, provided that you have the right
privilege to do so. Table 1.11 explains the basic concepts.

PL/SQL is Oracle’s procedural extension of the SQL language. In PL/SQL,
the SQL commands and procedural statements are considered to be a single
block and sent to the Oracle server. You can have programmatic logics built
into PL/SQL. You will learn more on PL/SQL concepts and commands in
Chapters 7 through 10.

T A B L E 1 . 1 1 SQL*Plus Concepts

Terminology Description

Command An instruction you give in SQL*Plus; may be a
SQL*Plus command or a SQL command

Block A logical unit of SQL and PL/SQL statements

Table The basic unit of data storage in Oracle

Query A SELECT statement that retrieves data from one or
more tables or views

Query results Also known as a result set, the data retrieved from a query

Report Query results formatted in a more readable form

http://www.sybex.com

34 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

SQL*Plus: Basics

When you start SQL*Plus, it prompts you for the username, password, and con-
nect string. The connect string is the database alias name. If you omit the connect
string, SQL*Plus tries to connect you to the local database defined in the ORACLE_
SID variable. Once you are in SQL*Plus, you can connect to another database or
change your connection by using the command CONNECT USERNAME/PASSWORD@
CONNECTSTRING. The slash separates username and password; the connect string
following @ is the database alias name. If you omit the password, you will be
prompted to enter it. You may omit the connect string to connect to a local
database.

To exit from SQL*Plus, use the EXIT command. On platforms where a
return code is used, you can provide a return code while exiting. You may also
use the QUIT command to complete the session. EXIT and QUIT are synonymous.

Entering and Executing Commands

Once you are connected to SQL*Plus, you get the SQL> prompt. This is the default
prompt, which can be changed using the SET SQLPROMPT command. Type the
command you wish to enter at this prompt. A command can be spread across mul-
tiple lines, and the commands are case-insensitive. The previously executed com-
mand will always available in the SQL buffer. The buffer can be edited or saved
to a file. You can terminate a command in any of the following ways:

� End with a semicolon (;). The command is completed and executed.

� Enter a slash (/) on a new line by itself. The command in the buffer is
executed. This method is also used to execute a PL/SQL block.

� Enter a blank line. The command is saved in the buffer.

The RUN command can be used instead of a slash to execute a command
in the buffer. The SQL prompt is returned when the command has completed
execution. You can enter your next command in the prompt.

Only SQL commands and PL/SQL blocks are stored in the SQL buffer,
SQL*Plus commands are not stored in the buffer.

A hyphen (-) is used to indicate command continuation. Although SQL
commands can be continued to the next line without a continuation opera-
tor, SQL*Plus commands cannot be continued to the next line unless you
include a hyphen at the end of the line. For example, the SQL command

http://www.sybex.com

SQL*Plus: Oracle’s Native Interface 35

SQL> SELECT 800 -

> 400 FROM DUAL;

SELECT 800 400 FROM DUAL

 *

ERROR at line 1:

ORA-00923: FROM keyword not found where expected

SQL>

gives an error because SQL*Plus treats the minus operator (-) as a contin-
uation character. You may put the minus operator in the next line for the
query to succeed:

SQL> SELECT 800

 2 - 400 FROM DUAL;

 800-400

 400

SQL>

Editing the SQL Buffer

The most recent SQL command executed or entered is stored in the SQL buffer of
SQL*Plus. You can run this buffer again by simply typing a slash or using the RUN
command. SQL*Plus gives you a set of commands to edit the buffer. Suppose that
you want to add another column or add an order by condition. You need not type
the entire SQL command again; just edit the existing command, which is in the
buffer. There are two ways to edit the buffer:

� Use the command EDIT to write the buffer to an operating system file
named afiedt.buf (the default file name, which can be changed), then
use a system editor to make changes. You can use your favorite text editor
by defining it in SQL*Plus. To make Notepad your favorite editor, just
issue this command: DEFINE _EDITOR = NOTEPAD. You need to provide
the entire path if the program is not available in the search path.

� Use the SQL*Plus editing commands. You can make changes, delete
lines, and add and list the buffer using these commands. Most editing
commands operate on the current line. You can change the current

http://www.sybex.com

36 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

line simply by typing the line number. Table 1.12 shows the editing
commands in SQL*Plus.

T A B L E 1 . 1 2 SQL*Plus Editing Commands

Command Purpose Example

LIST
L
LIST m n
LIST LAST

Lists the contents of the
buffer. The asterisk indicates
the current line. The abbrevi-
ated command for LIST is L.
LIST simply used or used with
* displays current line. LIST m
n displays lines from m
through n, if you substitute *
for m or n, it implies the cur-
rent line. LIST LAST displays
the last line.

SQL> L
 1 SELECT EMPNO,
ENAME
 2* FROM EMP
SQL> LIST LAST
 2* FROM EMP
SQL>

APPEND text
A text

Adds text to the end of the
last line.

SQL> A WHERE EMPNO
<> 7926
 2* FROM EMP WHERE
EMPNO <> 7926
SQL>

CHANGE /old/
new
C /old/new

Changes old to new. If you
omit new, old will be deleted.

SQL> C /<>/=
 2* FROM EMP WHERE
EMPNO = 7926
SQL> C /7926
 2* FROM EMP WHERE
EMPNO =
SQL>

http://www.sybex.com

SQL*Plus: Oracle’s Native Interface 37

INPUT text
I text

Adds a line of text. If text is
omitted, you can add as many
lines you wish.

SQL> I
 3 7777 AND
 4 EMPNO = 4354
 5
SQL> I ORDER BY 1
SQL> L
 1 SELECT EMPNO,
ENAME
 2 FROM EMP WHERE
EMPNO =
 3 7777 AND
 4 EMPNO = 4354
 5* ORDER BY 1
SQL>

DEL
DEL m n
DEL LAST

Deletes a line. DEL simply used
or used with * deletes current
line. DEL m n deletes lines
from m through n, if you sub-
stitute * for m or n, it implies
the current line. DEL LAST
deletes the last line.

SQL> 3
 3* 7777 AND
SQL> DEL
SQL> L
 1 SELECT EMPNO,
ENAME
 2 FROM EMP WHERE
EMPNO =
 3 EMPNO = 4354
 4* ORDER BY 1
SQL> DEL 3 *
SQL> L
 1 SELECT EMPNO,
ENAME
 2* FROM EMP WHERE
EMPNO =
SQL>

T A B L E 1 . 1 2 SQL*Plus Editing Commands (continued)

Command Purpose Example

http://www.sybex.com

38 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

Script Files

SQL*Plus provides commands to save the SQL buffer to a file, as well as to
run SQL statements from a file. SQL statements saved in a file are called a
script file. SQL buffer is saved to an operating system file using the command
SAVE <filename>. By default, SAVE will not overwrite an existing file; you
need to use the keyword REPLACE to overwrite an existing file. If you do not
provide an extension, the saved file will have an extension of .sql. You can
edit the saved file using the EDIT <filename> command.

You can bring the contents of a script file to the SQL buffer using the GET
filename command. If you wish to run a script file, you may use the com-
mand START <filename>. You can also run a script file using @<filename>.
An @@<filename> used inside a script file looks for the filename in the direc-
tory where the parent <filename> is saved and executes it. Here are some
examples of using the file commands:

/* List the SQL buffer */

SQL> L

 1 SELECT EMPNO, ENAME

 2* FROM EMP

/* Save the buffer to a file named myfile. The default
extension will be .SQL */

SQL> save myfile

Created file myfile

/* Edit the file, add a line to the SQL statement, editing
window not shown here */

SQL> edit myfile

CLEAR BUFFER
CL BUFF

Clears the buffer. This deletes
all lines from the buffer.

SQL> L
 1 SELECT EMPNO,
ENAME
 2* FROM EMP WHERE
EMPNO =
SQL> CL BUFF
buffer cleared
SQL> L
No lines in SQL
buffer.
SQL>

T A B L E 1 . 1 2 SQL*Plus Editing Commands (continued)

Command Purpose Example

http://www.sybex.com

SQL*Plus: Oracle’s Native Interface 39

/* List the buffer, the buffer listed is the old buffer,
edited changes not reflected, that is because we edited
the file */

SQL> L

 1 SELECT EMPNO, ENAME

 2* FROM EMP

/* Bring the file contents to the buffer */

SQL> GET MYFILE

 1 SELECT EMPNO, ENAME

 2 FROM EMP

 3* WHERE EMPNO = 1234

/* List the buffer to verify */

SQL> L

 1 SELECT EMPNO, ENAME

 2 FROM EMP

 3* WHERE EMPNO = 1234

/* Save the buffer again to the same file */

SQL> save myfile

File "myfile.SQL" already exists.

Use "SAVE filename REPLACE".

/* Error returned, save using REPLACE keyword */

SQL> save myfile repl

Wrote file myfile

/* Run a file */

SQL> start myfile

 1 SELECT EMPNO, ENAME

 2 FROM EMP

 3* WHERE EMPNO = 1234

no rows selected

SQL>

You can use the SPOOL filename command to save the query results to
a file. By default, the SPOOL command creates a .lst file. SPOOL OFF stops
the writing of output to the file. SPOOL OUT stops the writing of output and
sends the output file to the printer.

http://www.sybex.com

40 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

Having comments in the script file improves the purpose and understanding of
the code. You can enter comments in SQL*Plus using the REMARKS command.
Lines in the script file beginning with the keyword REM (abbreviated) are com-
ments and are not executed. You can also enter a comment between /* and */.

While executing a script file with comments, the remarks entered using the
REMARKS command are not displayed on the screen, but the comments within
/* and */ are displayed on the screen.

Environment and Customizations

SQL*Plus has a set of environment variables that control the way the SQL*Plus
displays data and assigns special characters. The SHOW ALL command lists the cur-
rent environment. You can customize the environment by using the SET com-
mand. Table 1.13 lists the SET commands, highlighting some of the more common
commands. The syntax is SET variable value. Most of the variables can be
abbreviated (COM for COMPATIBILITY, for example).

In Oracle8i, the database administration commands are also executed from
SQL*Plus; earlier administration was done using Server Manager.

T A B L E 1 . 1 3 SET Commands

Variable Name and

Allowed Value Purpose

APPI[NFO]{ON|OFF|text} Sets automatic registering of command files
through the DBMS_APPLICATION_INFO package.

ARRAY[SIZE] {15|n} Sets the number of rows—called a batch—
that SQL*Plus will fetch from the database at
one time.

AUTO[COMMIT]
{OFF|ON|IMM[EDIATE]|n}

Controls when Oracle commits pending
changes to the database.

AUTOP[RINT] {OFF|ON} Sets the automatic printing of bind variables
from a PL/SQL block after its execution.

http://www.sybex.com

SQL*Plus: Oracle’s Native Interface 41

AUTORECOVERY {ON|OFF] ON sets the RECOVER command to automati-
cally apply the default filenames of archived
redo log files needed during recovery.

AUTOT[RACE]
{OFF|ON|TRACE[ONLY]}
[EXP[LAIN]]
[STAT[ISTICS]]

Displays a report on the execution of success-
ful SQL DML statements

BLO[CKTERMINATOR]
{.|c}

Sets the non-alphanumeric character used to
end PL/SQL blocks to c.

CMDS[EP] {;|c|OFF|ON} Sets the non-alphanumeric character used to
separate multiple SQL*Plus commands
entered on one line to c.

COLSEP {_|text} Sets the text to be printed between selected
columns.

COM[PATIBILITY]
{V7|V8|NATIVE}

Specifies the version of Oracle to which you
are currently connected. Set COMPATIBILITY
to V7 for Oracle7, or to V8 for Oracle8 and
Oracle8i.

CON[CAT] {.|c|OFF|ON} Sets the character you can use to terminate a
substitution variable reference.

COPYC[OMMIT] {0|n} Controls the number of batches after which
the COPY command commits changes to the
database.

COPYTYPECHECK {OFF|ON} Sets the suppression of the comparison of
datatypes while inserting or appending to
tables with the COPY command.

DEF[INE]
{'&'|c|OFF|ON}

Sets the character used to prefix substitution
variables to c.

T A B L E 1 . 1 3 SET Commands (continued)

Variable Name and

Allowed Value Purpose

http://www.sybex.com

42 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

DESCRIBE [DEPTH
{1|n|ALL}][LINENUM
{ON|OFF}][INDENT
{ON|OFF}]

Sets the depth of the level to which you can
recursively describe an object.

ECHO {OFF|ON} Controls whether the START command lists
each command in a command file as the com-
mand is executed.

EDITF[ILE] file_
name[.ext]

Sets the default filename for the EDIT command.

EMB[EDDED] {OFF|ON} Controls where each report begins on the
page.

ESC[APE] {\|c|OFF|ON} Defines the character you enter as the escape
character.

FEED[BACK]
{6|n|OFF|ON}

Displays the number of records returned by a
query when a query selects at least n records.

FLAGGER
{OFF|ENTRY|INTERMED[IA
TE]|FULL}

Checks to make sure that SQL statements
conform to the ANSI/ISO SQL92 standard.

FLU[SH] {OFF|ON} Controls when output is sent to the user's dis-
play device.

HEA[DING] {OFF|ON} Controls printing of column headings in reports.

HEADS[EP] {||c|OFF|ON} Defines the character you enter as the heading
separator character.

INSTANCE [instance_
path|LOCAL]

Changes the default instance for your session
to the specified instance path.

LIN[ESIZE] {80|n} Sets the total number of characters that
SQL*Plus displays on one line before beginning
a new line.

T A B L E 1 . 1 3 SET Commands (continued)

Variable Name and

Allowed Value Purpose

http://www.sybex.com

SQL*Plus: Oracle’s Native Interface 43

LOBOF[FSET] {n|1} Sets the starting position from which CLOB
and NCLOB data is retrieved and displayed.

LOGSOURCE [pathname] Specifies the location from which archive logs
are retrieved during recovery.

LONG {80|n} Sets maximum width (in bytes) for displaying
LONG, CLOB, and NCLOB values; and for copying
LONG values.

LONGC[HUNKSIZE] {80|n} Sets the size (in bytes) of the increments in
which SQL*Plus retrieves a LONG, CLOB, or
NCLOB value.

NEWP[AGE] {1|n|NONE} Sets the number of blank lines to be printed
from the top of each page to the top title.

NULL text Sets the text that represents a null value in the
result of a SQL SELECT command.

NUMF[ORMAT] format Sets the default format for displaying numbers.

NUM[WIDTH] {10|n} Sets the default width for displaying numbers.

PAGES[IZE] {24|n} Sets the number of lines in each page.

PAU[SE] {OFF|ON|text} Allows you to control scrolling of your termi-
nal when running reports.

RECSEP
{WR[APPED]|EA[CH]|OFF}

Displays or prints record separators.

RECSEPCHAR {_|c} Defines the record-separating character. A
single space is the default.

SERVEROUT[PUT]
{OFF|ON} [SIZE n]
[FOR[MAT] {WRA[PPED]|
WOR[D_
WRAPPED]|TRU[NCATED]}]

Controls whether to display the output (that is,
DBMS_OUTPUT.PUT_LINE) of stored procedures or
PL/SQL blocks in SQL*Plus.

T A B L E 1 . 1 3 SET Commands (continued)

Variable Name and

Allowed Value Purpose

http://www.sybex.com

44 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

SHIFT[INOUT]
{VIS[IBLE]|INV[ISIBLE]}

Allows correct alignment for terminals that
display shift characters.

SHOW[MODE] {OFF|ON} Controls whether SQL*Plus lists the old and
new settings of a SQL*Plus system variable
when you change the setting with SET.

SQLBL[ANKLINES]
{ON|OFF}

Controls whether SQL*Plus allows blank lines
within a SQL command.

SQLC[ASE]
{MIX[ED]|LO[WER]|UP[PE
R]}

Converts the case of SQL commands and PL/
SQL blocks just prior to execution.

SQLCO[NTINUE] {>
|text}

Sets the character sequence SQL*Plus dis-
plays as a prompt after you continue a
SQL*Plus command on an additional line
using a hyphen (-).

SQLN[UMBER] {OFF|ON} Sets the prompt for the second and subsequent
lines of a SQL command or PL/SQL block.

SQLPRE[FIX] {#|c} While entering a SQL command or PL/SQL
block, you can enter a SQL*Plus command on
a separate line, prefixed by the SQL*Plus pre-
fix character, to execute the command imme-
diately without affecting the SQL command
or PL/SQL block that you are entering.

SQLP[ROMPT]
{SQL>|text}

Sets the SQL*Plus command prompt.

SQLT[ERMINATOR]
{;|c|OFF|ON}

Sets the character used to end and execute
SQL commands to c.

SUF[FIX] {SQL|text} Sets the default file extension that SQL*Plus
uses in commands that refer to command files.

TAB {OFF|ON} Determines how SQL*Plus formats white
space in terminal output.

T A B L E 1 . 1 3 SET Commands (continued)

Variable Name and

Allowed Value Purpose

http://www.sybex.com

SQL*Plus: Oracle’s Native Interface 45

You may save the current SQL*Plus environment using the command
STORE SET <filename>. SQL*Plus creates a .sql file. You may run this file
at any time to set up your customized environment.

Wouldn’t it be nice to have the environment set the way you like it when you
log in to SQL*Plus? Well, there is a way to do this. Create a login.sql file in the
current directory of your SQL*Plus executable or in the search path of Oracle.
This file will be executed when you log in to SQL*Plus. In this example, let’s dis-
play the name and username when connected and display the current time on at
the prompt. We’ll create a login file using the following script:

SET HEADING OFF

PROMPT Welcome to SQL*Plus!

TERM[OUT] {OFF|ON} Controls the display of output generated by
commands executed from a command file.

TI[ME] {OFF|ON} ON displays the current time before each com-
mand prompt.

TIMI[NG] {OFF|ON} ON displays timing statistics on each SQL
command or PL/SQL block run.

TRIM[OUT] {OFF|ON} ON removes blanks at the end of each dis-
played line.

TRIMS[POOL] {ON|OFF} ON removes blanks at the end of each
spooled line.

UND[ERLINE] {-
|c|ON|OFF}

Sets the character used to underline column
headings in SQL*Plus reports to c.

VER[IFY] {OFF|ON} Controls whether SQL*Plus lists the text of a
SQL statement or PL/SQL command before
and after SQL*Plus replaces substitution vari-
ables with values.

WRA[P] {OFF|ON} Controls whether SQL*Plus truncates the
display of a selected row if it is too long for
the current line width.

T A B L E 1 . 1 3 SET Commands (continued)

Variable Name and

Allowed Value Purpose

http://www.sybex.com

46 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

SELECT 'You are connected to ' || GLOBAL_NAME || ' as ' ||
USER

FROM GLOBAL_NAME;

SET TIME ON PAGESIZE 24 LINESIZE 80 HEADING ON

More than one SET command can be given in one line.

Producing More Readable Output

Often, the results returned from SQL*Plus wrap to the next line or do not
have the proper formatting. You can use simple SQL*Plus formatting com-
mands to produce more readable output and better looking reports. In this
section, you will learn how to

� Define the width of a column

� Display meaningful headings

� Format numeric and date datatype values

� Wrap character columns

Imagine that you have been asked to produce a report of all employees in
the order of their department and name, using the employee table. You issue
this query and get the following output:

SQL> SELECT * FROM emp ORDER BY deptno, ename;

EMPNO ENAME JOB MGR HIREDATE SAL

---------- ---------- --------- ---------- --------- ----------

 COMM DEPTNO

---------- ----------

 7782 CLARK MANAGER 7839 09-JUN-81 2450

 245 10

 7839 KING PRESIDENT 17-NOV-81 5000

 500 10

 7934 MILLER CLERK 7782 23-JAN-82 1300

http://www.sybex.com

SQL*Plus: Oracle’s Native Interface 47

 130 10

 7876 ADAMS CLERK 7788 23-MAY-87 1100

 20

 7902 FORD ANALYST 7566 03-DEC-81 3000

 20

 7566 JONES MANAGER 7839 02-APR-81 2975

 20

 7788 SCOTT ANALYST 7566 19-APR-87 3000

 EMPNO ENAME JOB MGR HIREDATE SAL

---------- ---------- --------- ---------- --------- ----------

 COMM DEPTNO

---------- ----------

 20

 7369 SMITH CLERK 7902 17-DEC-80 800

 20

 7499 ALLEN SALESMAN 7698 20-FEB-81 1600

 300 30

 7698 BLAKE MANAGER 7839 01-MAY-81 2850

 30

 7900 JAMES CLERK 7698 03-DEC-81
950

 30

 7654 MARTIN SALESMAN 7698 28-SEP-81
1250

 1400 30

http://www.sybex.com

48 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

 7844 TURNER SALESMAN 7698 08-SEP-81 1500

 0 30

 EMPNO ENAME JOB MGR HIREDATE SAL

---------- ---------- --------- ---------- --------- ----------

 COMM DEPTNO

---------- ----------

 7521 WARD SALESMAN 7698 22-FEB-81 1250

 500 30

14 rows selected.

Obviously, this is not a pretty format; you certainly cannot present this listing
as a report. Let’s format this listing to make it more appealing, adjusting the page
size and report columns.

First, check the settings, using the SHOW [ALL|parameter] command to
find the value of environment variable. You can specify the variable name or
ALL to list all variables. To find the values set for the PAGESIZE and LINESIZE
parameters, use the SHOW command like this:

SQL> show pagesize lines

pagesize 24

linesize 70

SQL>

Let’s adjust these settings to PAGESIZE of 78 and LINESIZE of 55. You
also can turn off the feedback that says, “14 rows selected.”

SQL> SET PAGESIZE 78 LINESIZE 55

SQL> SET FEEDBACK OFF

The COLUMN command can be used to format the heading and display a
column’s data. To display a heading for the ENAME column, you can use the
command COLUMN ENAME HEADING "Employee Name".

Now, we have many columns, but not enough space to display a whole
row in one line. Let’s make the display of the heading in two lines using the
HEADSEP character; the default is “|”:

COLUMN ENAME HEADING "Employee|Name"

To format the displayed data of SALARY column, type COLUMN SAL
FORMAT "$999,999.99".

http://www.sybex.com

SQL*Plus: Oracle’s Native Interface 49

The format models used with data are explained in detail in Chapter 2, Single
Row and Group Functions.

If you format a character column with an insufficient width, the data wraps to
the next line. To copy the display format of a column to another with a different
heading, use COLUMN COMM LIKE SAL HEADING "Incentive".

You can suppress the display of duplicate column values using the BREAK ON
column_name command. The BREAK command has options to skip lines, pages,
and so on. You can display our report heading using the TTITLE command.

You have entered all this formatting to produce your report. What
about the next time? You can save the formatting and query in a script file
and just run the file to produce the report whenever you want to. Here is
the script listing:

REM Report to display the employee information

REM Created on 05/05/2000

REM

SET PAGES 55 LINES 78 TRIMS ON FEEDBACK OFF ECHO OFF DOCUMENT OFF

/*

 This is an example of multiple line comments.

 Following lines are column formatting commands

*/

COLUMN empno HEADING "Empl|Id" FORMAT 9999

COLUMN ename HEADING "Employee|Name" FORMAT A8

COLUMN job HEADING "Position"

COLUMN mgr LIKE EMPNO HEADING "Mana|-ger"

COLUMN hiredate HEADING "Hire Date"

COLUMN sal FORMAT "$9,999" HEADING "Salary"

COLUMN comm LIKE SAL HEADING "Incentive"

COLUMN deptno HEADING "Dept|Code"

/*

 Save the output to a file, Provide a heading.

*/

SPOOL EMPINFO.LST

TTITLE CENTER "Employee Information" SKIP 2

/* Suppress duplicate department codes */

BREAK ON deptno SKIP 2

REM

REM The query

http://www.sybex.com

50 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

REM

SELECT deptno, empno, ename, job, hiredate, sal, comm, mgr

FROM emp

ORDER BY deptno, ename;

SPOOL OFF

/*

 Clear customizations */

CLEAR COLUMNS

CLEAR BREAKS

SET FEEDBACK ON

Executing the script produces the EMPINFO.LST file output.

 Employee Information

 Dept Empl Employee Mana

 Code Id Name Position Hire Date Salary Incentive -ger

---------- ----- -------- --------- --------- ------- --------- -----

 10 7782 CLARK MANAGER 09-JUN-81 $2,450 $245 7839

 7839 KING PRESIDENT 17-NOV-81 $5,000 $500

 7934 MILLER CLERK 23-JAN-82 $1,300 $130 7782

 20 7876 ADAMS CLERK 23-MAY-87 $1,100 7788

 7902 FORD ANALYST 03-DEC-81 $3,000 7566

 7566 JONES MANAGER 02-APR-81 $2,975 7839

 7788 SCOTT ANALYST 19-APR-87 $3,000 7566

 7369 SMITH CLERK 17-DEC-80 $800 7902

 30 7499 ALLEN SALESMAN 20-FEB-81 $1,600 $300 7698

 7698 BLAKE MANAGER 01-MAY-81 $2,850 7839

 7900 JAMES CLERK 03-DEC-81 $950 7698

 7654 MARTIN SALESMAN 28-SEP-81 $1,250 $1,400 7698

 7844 TURNER SALESMAN 08-SEP-81 $1,500 $0 7698

 7521 WARD SALESMAN 22-FEB-81 $1,250 $500 7698

http://www.sybex.com

SQL*Plus: Oracle’s Native Interface 51

Accepting Values at Runtime

To create an interactive SQL command, define variables in the SQL com-
mand. This allows the user to supply values at runtime, further enhancing
the ability to reuse your scripts. SQL*Plus lets you define variables in your
scripts. An ampersand (&) followed by a variable name prompts for and
accepts values at runtime. For example, look at the following SELECT state-
ment that queries the EMP table based on the department number supplied
at runtime:

SQL> SELECT empno, ename

 2 FROM emp

 3 WHERE deptno = &dept;

Enter value for dept: 10

old 3: WHERE deptno = &dept

new 3: WHERE deptno = 10

 EMPNO ENAME

---------- ----------

 7782 CLARK

 7839 KING

 7934 MILLER

SQL>

You can define a substitution variable in SQL*Plus using the DEFINE
command. The variable will always have the CHAR datatype associated with
it. Suppose that you have defined DEPT as a variable in your script and used
the DEFINE command to provide a value. In this way, you can avoid the
prompt for the value at runtime like this:

SQL> DEFINE dept = 10

SQL> l

 1 SELECT empno, ename

 2 FROM emp

 3* WHERE deptno = &dept

SQL> /

old 3: WHERE deptno = &dept

new 3: WHERE deptno = 10

http://www.sybex.com

52 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

 EMPNO ENAME

---------- ----------

 7782 CLARK

 7839 KING

 7934 MILLER

SQL>

The old line with the variable and the new line with the substitution are
displayed. You can turn off this display by using a SET command: SET
VERIFY OFF. To turn off substitution, use SET DEFINE OFF.

When you use substitution variables in a script file, you can submit the
substitution variable values while invoking the script (also referred to as sup-
plying command line arguments). The values are assigned to the variables by
position. Do this by putting an ampersand (&), followed by a numeral in the
script file, in place of a variable name. Each time you run this command file,
START replaces each &1 in the file with the first value (called an argument)
after START <filename>, then replaces each &2 with the second value, and so
forth. For example, if the file query1.sql contains the following:

SELECT empid, ename

FROM emp

WHERE deptno = &1

AND empid = &2;

You may execute this file by passing the values in the command line

SQL> START query1 10 7326

where 10 is substituted for deptno and 7326 for empid.
SQL*Plus provides the ACCEPT command to accept values from the user.

This command is useful to provide the user with a prompt and to get user
input. Also, the ACCEPT command lets you define the datatype of the vari-
able. The PROMPT command lets you display text to the user.

Let’s see some examples and usage of PROMPT and ACCEPT commands.
We’ll create a script file named myscript.sql and run it:

PROMPT This query displays the Employee ID and Name for

PROMPT the employees in the department you supply

PROMPT ==

ACCEPT DEPTNUMB NUMBER PROMPT "Enter Department Number: "

SET VERIFY OFF

SELECT empno, ename "Employee Name"

FROM emp

http://www.sybex.com

Summary 53

WHERE deptno = &DEPTNUMB

ORDER BY ename;

SET VERIFY ON

Now run this script in SQL*Plus.

SQL> @myscript

This query displays the Employee ID and Name for

the employees in the department you supply

==

Enter Department Number: 30

 EMPNO Employee N

---------- ----------

 7499 ALLEN

 7698 BLAKE

 7900 JAMES

 7654 MARTIN

 7844 TURNER

 7521 WARD

6 rows selected.

Summary

In this chapter, you have learned about RDBMS and how Oracle implements
RDBMS using a variety of objects and structures. The Entity-relationship diagram
is a modeling tool used in the beginning stages of application development. The
stages of the system development cycle are analysis, design, development, testing,
and implementation.

Data in the Oracle database is managed and accessed using SQL. A
SELECT statement is used to query data from a table or view. You can
limit the rows selected by using a WHERE clause and order the retrieved
data using the ORDER BY clause.

SQL*Plus is Oracle’s native tool to interact with the database. SQL*Plus
supports all SQL commands and has its own formatting and enhancement
commands. In Oracle8i, SQL*Plus also supports all database administration
commands. Using this tool, you can produce interactive SQL commands and
formatted reports.

http://www.sybex.com

54 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

Key Terms

Before you take the exam, make sure you’re familiar with the
following terms:

@

@@

Concatenation

Design phase

DUAL

Entity-relationship (ER) model

Environment variables

Julian numbers

LOB

RDBMS

Script file

SQL buffer

SQL*Plus

Structured query language

http://www.sybex.com

Review Questions 55

Review Questions

1. What does a single line with a crowfoot on one end represent in an
entity-relationship diagram?

A. One-to-one relationship

B. One-to-many relationship

C. Many-to-many relationship

D. An access path

2. Look at the following diagram. What kind of relationship exists
between Movies and Characters?

A. Each movie may have one or more actors.

B. Each movie must have one or more actors.

C. Many movies may have many actors.

D. One movie can have only one actor.

Movies

MOVIE_NAME

* RATING
° RELEASE_DT

Actors

ACTOR_NAME

* SEX
D.O.B.
PHONE

Characters

MOVIE_NAME

CHARACTER_NAME

ACTOR_NAME

http://www.sybex.com

56 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

3. When designing the physical model from the logical model, which ele-
ment from the ER diagram may be attributed as a table?

A. Relationship

B. Attribute

C. Unique identifier

D. Entity

4. What is wrong with the following query?

 DEFINE V_DEPTNO = 20
SELECT ENAME, SALARY
FROM EMP
WHERE DEPTNO = V_DEPTNO;

A. It lists the employee name and salary of the employees who belong
to Department 20.

B. The DEFINE statement declaration is wrong.

C. The substitution variable is not preceded with the & character.

D. The substitution variable should be preceded with the # character.

5. You issue the following query:
SELECT MIN(sal) "Minimum Salary"
FROM emp;
How will the column heading appear in the result?

A. MINIMUM SALARY

B. MINIMUM_SALARY

C. Minimum Salary

D. minimum_salary

http://www.sybex.com

Review Questions 57

6. Take a look at the EMP table defined in the following table.

Imagine that you do the following two queries:

1. SELECT DISTINCT empno enumber, ename FROM emp ORDER
BY 1;
2. SELECT empno, ename FROM emp ORDER BY 1;
Which of the following is true?

A. Statement 1 and 2 will produce the same result.

B. Statement 1 will execute; statement 2 will give an error.

C. Statement 2 will execute; statement 1 will give an error.

D. Statement 1 and 2 will execute but produce different results.

7. You issue the following SELECT statement on the EMP table shown in
the preceding table.
SELECT (200 + ((salary * 0.1) / 2)) FROM emp;
What will happen to the result if all parentheses are removed?

A. No difference because the answer will always be NULL.

B. No difference; the result will be the same.

C. The result will be higher.

D. The result will be lower.

Column Name EMPNO ENAME SALARY COMM DEPTNO

KEY PK

Not Null,
Unique

NN, U NN NN

FK Table DEPT

FK Column DEPTNO

Datatype NUMBER VARCHAR2 NUMBER NUMBER NUMBER

Length 4 30 14,2 10,2 2

http://www.sybex.com

58 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

8. Which command in SQL*Plus is used to save the query output to a file?

A. PRINT

B. SAVE

C. REPLACE

D. SPOOL

9. In the following SELECT statement, which component is a literal?
SELECT 'Employee Name: ' || ename FROM emp where deptno = 10;

A. 10

B. ename

C. Employee Name:

D. ||

10. When you try to save 34567.2255 into a column defined as NUMBER
(7,2) what value is actually saved?

A. 34567.00

B. 34567.23

C. 34567.22

D. 3456.22

11. How would you execute a SQL statement in the SQL buffer of
SQL*Plus? Choose all correct answers.

A. Enter a slash (/).

B. Enter an ampersand (&).

C. Enter a hyphen (-).

D. Press Ctrl+D (^D).

http://www.sybex.com

Review Questions 59

12. What is the default display length of the DATE datatype column?

A. 8

B. 9

C. 19

D. 6

13. What will happen if you query the EMP table with the following?
SELECT empno, DISTINCT ename, salary FROM emp;

A. empno, unique values of ename and salary are displayed.

B. empno, unique values of the two columns, ename and salary, are
displayed.

C. DISTINCT is not a valid keyword in SQL.

D. No values will be displayed because the statement will give an error.

14. Which clause in a query limits the rows selected?

A. ORDER BY

B. WHERE

C. SELECT

D. FROM

15. You issue the SQL*Plus command SPOOL ON. Which task is accomplished?

A. The next screen output from the SQL*Plus session is saved into a
file named afiedt.buf.

B. The next screen output from the SQL*Plus session is saved into a
file named ON.lst.

C. The next screen output from the SQL*Plus session is sent to the printer.

D. Nothing happens; a file name is missing from the command.

http://www.sybex.com

60 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

16. Which SQL*Plus command always overwrites a file?

A. SPOOL

B. RUN

C. EDIT

D. SAVE

17. The following listing shows the records of the EMP table:

 EMPNO ENAME SALARY COMM DEPTNO

--------- ---------- --------- --------- ---------

 7369 SMITH 800 20

 7499 ALLEN 1600 300 30

 7521 WARD 1250 500 30

 7566 JONES 2975 20

 7654 MARTIN 1250 1400 30

 7698 BLAKE 2850 30

 7782 CLARK 2450 24500 10

 7788 SCOTT 3000 20

 7839 KING 5000 50000 10

 7844 TURNER 1500 0 30

 7876 ADAMS 1100 20

 7900 JAMES 950 30

 7902 FORD 3000 20

 7934 MILLER 1300 13000 10

When you issue the following query, which value will be displayed in
the first row?

 SELECT empno
FROM emp
WHERE deptno = 10
ORDER BY ename desc;

A. 7782

B. 7934

C. 7876

D. No rows will be returned because ename cannot be used in the
ORDER BY clause.

http://www.sybex.com

Review Questions 61

18. Refer to the listing in Question 17. How many rows will the following
query return?

SELECT * FROM emp WHERE ename BETWEEN 'A' AND 'C'

A. 4

B. 2

C. A character column cannot be used in the BETWEEN operator.

D. 3

19. Refer to the EMP table in Question 6. When you issue the following
query, which line has an error?

 1 select empno "Enumber", ename "EmpName"

 2 from emp

 3 where deptno = 10

 4 and "Enumber" = 7782

 5 order by "Enumber"

A. 1

B. 5

C. 4

D. No error; the statement will finish successfully.

20. You issue the following query:

SELECT empno, ename

FROM emp

WHERE empno = 7782 OR empno = 7876;

Which other operator can replace the OR condition in the WHERE
clause?

A. IN

B. BETWEEN…AND…

C. LIKE

D. <=

E. >=

http://www.sybex.com

62 Chapter 1 � Relational Technology and Simple SQL SELECT Statements

Answers to Review Questions

1. B. The crowfoot on one end and single line on the other end rep
resents a one-to-many relationship. If the line is solid, the relation-
ship is mandatory; if the line is dotted, the relationship is optional.

2. B. Since the relationship between Movies and Characters is rep-
resented by a solid line with a crowfoot at one end, the relation-
ship is mandatory one-to-many: Each movie must have one or
more actors.

3. D. When designing the physical structure, you may map an entity
in the ER diagram as a table in the database. An attribute may be
mapped as a column; a relationship is the referential integrity, and
a unique identifier is the primary key.

4. C. The query will return an error, because the substitution variable is
used without an & character. In this query, Oracle treats V_DEPTNO
as another column name from the table and returns an error.

5. C. The column alias names enclosed in quotes will appear as
typed. Spaces and mixed case are displayed in the column alias
name only when the alias is enclosed in quotes. If the alias name
is not enclosed in quotes, it is displayed in uppercase.

6. A. Statement 1 and 2 will produce the same result. Since EMPNO is
the primary key, the rows selected will be unique even if you do
not use the keyword DISTINCT. You can use the column name,
column alias, or column position in the ORDER BY clause.

7. B. In the arithmetic evaluation, multiplication and division have
precedence over addition and subtraction. Even if you do not have
the parentheses, salary*0.1 will be evaluated first. The result is
then divided by 2, and its result is added to 200.

8. D. The SPOOL command is used to save the query results to a file.
Give SPOOL <filename> before the query and SPOOL OFF after
the query to save the contents. The SAVE command is used to save
the SQL command in the buffer.

9. C. Character literals in the SQL statement are enclosed in single
quotes. Literals are concatenated using ||.

http://www.sybex.com

Answers to Review Questions 63

10. B. Since the numeric column is defined with precision 7 and
scale 2, you can have five digits integer part and two digits after
the decimal point. The digits after the decimal are rounded.

11. A. You can execute a command in SQL buffer using the slash. A
slash is also used to execute a PL/SQL block.

12. B. The default display format of DATE column is DD-MON-
YY, whose length is 9. If the column heading of the default date
format column is more than nine characters, it will be truncated.

13. D. DISTINCT is used to display a unique result row, and it
should follow immediately the keyword SELECT.

14. B. The WHERE clause is used to limit the rows returned from a
query. The WHERE clause condition is evaluated and rows are
returned only if the result is TRUE. The ORDER BY clause is used to
display the result in certain order.

15. B. The SPOOL command is used to save the SQL*Plus session
output in a file. The SPOOL command expects a filename or the
keywords OUT or OFF. SPOOL OFF will turn off spooling; SPOOL
OUT will turn off spooling and send the output file contents to a
printer. If an extension is not specified for the filename, a default
extension of .lst is added.

16. A. The SPOOL command always creates a new file; it will not
append to an existing file. The SAVE command will give an error
if the file exists. To overwrite an existing file, you need to specify
the REPLACE option.

17. B. There are three records belonging to deptno 10: empno 7934
(MILLER), 7839 (KING), and 7782 (CLARK). When you sort their
names by descending order, MILLER is the first row to display.

18. D. Here, a character column is compared against a string using
the BETWEEN operator, which is equivalent to ename >= 'A' AND
ename <= 'C'. The name CLARK will not be included in this
query, because 'CLARK' is > 'C'.

19. C. Column alias names cannot be used in the WHERE clause. They
can be used in the ORDER BY clause.

20. A. The IN operator can be used. You can write the WHERE clause
as WHERE empno IN (7782, 7876);

http://www.sybex.com

Chapter

2

Single-Row and Group
Functions

ORACLE8i SQL AND PL/SQL EXAM OBJEC-
TIVES OFFERED IN THIS CHAPTER:

�

Describe the types of single-row functions available in SQL

�

Use character, number, and date functions in

SELECT

statements

�

Use conversion functions in

SELECT

statements

�

Identify the group functions

�

Describe the use of group functions

�

Group data using the

GROUP BY

clause

�

Limit grouped rows using the

HAVING

clause

Exam objectives are subject to change at
any time without prior notice and at Oracle’s
sole discretion. Please visit Oracle's Train-
ing and Certification Web site (

http://

education.oracle.com/certification/

index.html

) for the most current exam
objectives listing.

http://www.sybex.com

F

unctions are programs that take zero or more arguments and
return a single value. Oracle has built a number of functions into SQL, and
these functions can be called from SQL or PL/SQL statements. There are two
significant classes of functions:

�

Single-row functions

�

G

roup

 functions

 (also known as aggregate functions)

Single-row functions

 know how many arguments they will have to process
before data is fetched from the tables.

Group functions

 don’t know how many
arguments they will have to process until all the data is extracted and grouped
into categories. In this chapter, you will discover what single-row and group
functions are available, the rules for using them, and what to expect on the
exam about functions.

Single-Row Functions in SQL

T

here are many types of single-row functions built into SQL and PL/SQL.
There are character, numeric, date, conversion, and miscellaneous single-row
functions, as well as programmer-written stored functions. All can be incorpo-
rated into SQL and PL/SQL as single-row functions. These single-row functions
can be used in the

SELECT

,

WHERE

, and

ORDER BY

 clauses of

SELECT

 statements.
For example, the following query includes the

TO_CHAR

,

UPPER

, and

SOUNDEX

single-row functions:

SELECT ename,

TO_CHAR

(hiredate,'Day, DD-Mon-YYYY')

FROM emp

WHERE

UPPER

(ename) LIKE 'AL%'

ORDER BY

SOUNDEX

(ename)

http://www.sybex.com

Single-Row Functions in SQL

67

Single-row functions can appear in other types of statements, as well, such
as the

SET

 clause of an

UPDATE

 statement, the

VALUES

 clause of an

INSERT

statement, or the

WHERE

 clause of a

DELETE

 statement. The certification exam
tends to focus on the use of functions in

SELECT

 statements, so we will focus
on

SELECT

 statements in this chapter.
The built-in functions presented in this chapter are grouped by class and

topic (for example, single-row character functions) and within each topic in
alphabetical order. The only exception is the first function,

NVL()

, which
appears first because of its importance.

NULLs and Single-Row Functions

One area in which beginners frequently have difficulty and where even vet-
erans sometimes stumble is the treatment of

NULL

s. You can expect at least one
question on the exam to address the use of

NULL

s and it probably won’t look like
a question on the use of

NULL

s.

NULL

values represent unknown data or a lack
of data. Any arithmetic operation on a

NULL

 results in a

NULL

. This

NULL

 in/

NULL

out model is followed for most functions, as well. Only the functions

CONCAT

,

DECODE

,

DUMP

,

NVL

, and

REPLACE

 can return non-NULL values when called with
a NULL argument. Of these, the NVL (for NullVaLue) function is most important
because it directly deals with the problem of NULLs. It takes two arguments:
NVL(x1, x2) where x1 and x2 are expressions. The NVL function returns x2 if
x1 is NULL; otherwise, x1 is returned.
 Take a look at the EMP table shown in Table 2.1, which contains salary and
bonus columns. Imagine that you need to calculate total compensation; you can

T A B L E 2 . 1 EMP table definition

Column Name emp_id Salary Bonus

Key Type pk

NULLs/Unique NN,U NN

FK Table

Datatype number number number

Length 11,2 11,2

http://www.sybex.com

68 Chapter 2 � Single-Row and Group Functions

not simply add salary and bonus. If a row has a NULL bonus, then the result of
the addition would be NULL. For example, if you wanted to write an UPDATE
statement to increase everyone’s salary by 10% of their total compensation, the
following would not work:

UPDATE emp

SET salary = (salary + bonus) * 1.1;

In this statement, employees with both salary and bonus would update correctly,
but those with no bonus would have salary set to salary + NULL, which adds up
to NULL—not the desired result. To write the update statement correctly, use the
NVL function to deal with the potential NULLs:

UPDATE emp

SET salary = (salary + NVL(bonus,0)) * 1.1;

Now, when you calculate the total compensation, you will add salary + 0 instead
of salary + NULL for those employees not getting a bonus. The employees who do
get a bonus still get their salary increased correctly, as well.

Be prepared for a possible exam question that tests your knowledge of when
to use an NVL function in a calculation, although it probably won’t mention
NVL and may not look like it is testing your knowledge of NULL.

Single-Row Character Functions

Single-row character functions operate on character data. Most have one or
more character arguments, and most return character values.

ASCII(<c1>)

Where c1 is a character string. This function returns the ASCII decimal equivalent
of the first character in c1. See also CHR() for the inverse operation.

SELECT ASCII('A') Big_A, ASCII('z') Little_Z FROM dual;

 BIG_A LITTLE_Z

---------- ----------

 65 122

http://www.sybex.com

Single-Row Functions in SQL 69

CHR(<i>[USING NCHAR_CS])

Where i is a number. This function returns the character equivalent of the
decimal (binary) representation of the character. If the optional USING
NCHAR_CS is included, the character from the national character set is
returned. The default behavior is to return the character from the database
character set.

SELECT CHR(65), CHR(122), CHR(223) FROM dual;

CHAR65 CHAR122 CHAR233

------ ------- -------

A z ß

CONCAT(<c1>, <c2>)

Where c1 is a character string, and c2 is a character string. This function
returns c2 appended to c1. If c1 is NULL, then c2 is returned. If c2 is NULL,
then c1 is returned. If both c1 and c2 are NULL, then NULL is returned. CONCAT
returns the same results as using the concatenation operator: c1||c2.

SELECT CONCAT('Slobo ','Svoboda') UserName FROM dual;

USERNAME

Slobo Svoboda

INITCAP(<c1>)

Where c1 is a character string. This function returns c1 with the first character
of each word in uppercase and all others in lowercase. Words are delimited by
white space, control characters, and punctuation symbols.

SELECT INITCAP('veni, vedi, vici') Ceasar FROM dual;

CEASAR

Veni, Vedi, Vici

http://www.sybex.com

70 Chapter 2 � Single-Row and Group Functions

INSTR(<c1>, <c2>[, <i>[, <j>]])

Where c1 and c2 are character strings and i and j are integers. This function
returns the numeric character position in c1 where the j th occurrence of c2 is
found. The search begins at the i th character position in c1. INSTR returns a 0
when the requested string is not found. If i is negative, the search is performed
backwardsright to left—but the position is still counted from left to right.
Both i and j default to 1.

SELECT INSTR('Mississippi','i',3,3) FROM dual;

INSTR('MISSISSIPPI','I',3,3)

 11

SELECT INSTR('Mississippi','i', -2,3) FROM dual;

INSTR('MISSISSIPPI','I',-2,3)

 2

INSTRB(<c1>, <c2>[, <i>[, <j>]])

This is the same as INSTR(), except it returns bytes instead of characters. For
single-byte character sets, INSTRB() is equivalent to INSTR().

LENGTH(<c>)

Where c is a character string. This function returns the numeric length in
characters of c. If c is NULL, a NULL is returned.

SELECT LENGTH('Ipso Facto') ergo FROM dual;

 ERGO

 10

http://www.sybex.com

Single-Row Functions in SQL 71

LENGTHB(<c>)

This function is the same as LENGTH(), except it returns bytes instead of
characters. For single-byte character sets, LENGTHB() is equivalent to
LENGTH().

LOWER(<c>)

Where c is a character string. This function returns the character string c
with all characters in lowercase. It frequently appears in WHERE clauses. See
also UPPER.

SELECT colorname FROM itemdetail

WHERE LOWER(colorname) LIKE '%white%'

COLORNAME

Winterwhite

LPAD(<c1>, <i> [, <c2>])

Where c1 and c2 are character strings and i is an integer. This function
returns the character string c1 expanded in length to i characters using c2 to
fill in space as needed on the left-hand side of c1. If c1 is over i characters,
it is truncated to i characters. c2 defaults to a single space. See also RPAD.

SELECT LPAD(answer,7,' ') padded, answer unpadded FROM
questions;

 PADDED UNPADDED

------- --------

 Yes Yes

 No No

 Maybe Maybe

http://www.sybex.com

72 Chapter 2 � Single-Row and Group Functions

LTRIM(<c1>, <c2>)

Where c1 and c2 are character strings. This function returns c1 without any
leading characters that appear in c2. If no c2 characters are leading characters in
c1, then c1 is returned unchanged. c2 defaults to a single space. See also RTRIM.

SELECT LTRIM('Mississippi','Mis') FROM dual;

LTR

ppi

RPAD(<c1>, <i>[, <c2>])

Where c1 and c2 are character strings and i is an integer. This function
returns the character string c1 expanded in length to i characters using c2 to
fill in space as needed on the right-hand side of c1. If c1 is over i characters,
it is truncated to i characters. c2 defaults to a single space. See also LPAD.

SELECT RPAD(table_name,38,'.'), num_rows FROM user_tables;

RPAD(TABLE_NAME,38,'.') NUM_ROWS

-------------------------------------- --------

TEMP_ERRORS........................... 9

CUSTOMERS............................. 367,296

RTRIM(<c1>, <c2>)

Where c1 and c2 are character strings. This function returns c1 without any
trailing characters that appear in c2. If no c2 characters are trailing characters in
c1, then c1 is returned unchanged. c2 defaults to a single space. See also LTRIM.

SELECT RTRIM('Mississippi','ip') FROM dual;

RTRIM('

Mississ

http://www.sybex.com

Single-Row Functions in SQL 73

REPLACE(<c1>, <c2>[, <c3>])

Where c1, c2, and c3 are all character strings. This function returns c1 with
all occurrences of c2 replaced with c3. c3 defaults to NULL. If c3 is NULL, all
occurrences of c2 are removed. If c2 is NULL, then c1 is returned unchanged.
If c1 is NULL, then NULL is returned.

SELECT REPLACE('uptown','up','down') FROM dual;

REPLACE(

downtown

SUBSTR(<c1>, <i>[, < j>])

Where c1 is a character string and both i and j are integers. This function
returns the portion of c1 that is j characters long, beginning at position i. If
j is negative, the position is counted backwards (that is, right to left). This
function returns NULL if i is 0 or negative. j defaults to 1.

SELECT SUBSTR('Message',1,4) from dual;

SUBS

Mess

SUBSTRB(<c1>, <i>[, <j>])

Where c1 is a character string and both i and j are integers. This function is
the same as SUBSTR, except i and j are counted in bytes instead of characters.
For single-byte character sets, they are equivalent.

SOUNDEX(<c1>)

Where c1 is a character string. This function returns the soundex phonetic
representation of c1. The SOUNDEX function is usually used to locate names
that sound alike.

SELECT SOUNDEX('Dawes') Dawes, SOUNDEX('Daws') Daws

 , SOUNDEX('Dawson') Dawson

FROM dual;

DAWES DAWS DAWSON

----- ---- ------

D200 D200 D250

http://www.sybex.com

74 Chapter 2 � Single-Row and Group Functions

TRANSLATE(<c1>, <c2>, <c3>)

Where c1, c2, and c3 are all character strings. This function returns c1 with all
occurrences of characters in c2 replaced with the positionally corresponding
characters in c3. A NULL is returned if any of c1, c2, or c3 is NULL. If c3 has
fewer characters than c2, then the unmatched characters in c2 are removed
from c1. If c2 has fewer characters than c3, then the unmatched characters in
c3 are ignored.

SELECT TRANSLATE('fumble','uf','aR') test FROM dual;

TEST

Ramble

TRIM([[<c1>] <c2> FROM] <c3>)

Where c2, and c3 are all character strings. If present, c1 can be one of the following
literals: LEADING, TRAILING, or BOTH. This function returns c3 with all c1 (leading,
trailing, or both) occurrences of characters in c2 removed. A NULL is returned if
any of c1, c2, or c3 is NULL. c1 defaults to BOTH. c2 defaults to a space character.
This function is new to 8i.

SELECT TRIM(' space padded ') trimmed FROM dual;

TRIMMED

space padded

UPPER(<c>)

Where c is a character string. This function returns the character string c
with all characters in upper case. UPPER frequently appears in WHERE clauses.
See also LOWER.

SELECT ename, job, hiredate FROM emp

WHERE UPPER(ename) LIKE 'KI%';

ENAME JOB HIREDATE

---------- --------- --------------------

KING PRESIDENT 17-Nov-1981 00:00:00

http://www.sybex.com

Single-Row Functions in SQL 75

Table 2.2 reviews the single-row character functions we have covered.

T A B L E 2 . 2 Character Function Summary

Function Description

ASCII Returns the ASCII decimal equivalent of a character

CHR Returns the character given the decimal equivalent

CONCAT Concatenates two strings; same as the operator ||

INITCAP Returns the string with the first letter of each word in uppercase

INSTR Finds the numeric starting position of a string within a string

INSTRB Same as INSTR, but counts bytes instead of characters

LENGTH Returns the length of a string in characters

LENGTHB Returns the length of a string in bytes

LOWER Converts string to all lowercase

LPAD Left-fills a string to a set length using a specified character

LTRIM Strips leading characters from a string

RPAD Right-fills a string to a set length using a specified character

RTRIM Strips trailing characters from a string

REPLACE Performs substring search and replace

SUBSTR Returns a section of the specified string, specified by
numeric character positions

SUBSTRB Returns a section of the specified string, specified by
numeric byte positions

SOUNDEX Returns a phonetic representation of a string

http://www.sybex.com

76 Chapter 2 � Single-Row and Group Functions

Single-Row Numeric Functions

Single-row numeric functions operate on numeric data and perform some
kind of mathematical or arithmetic manipulation. All have numeric argu-
ments and return numeric values. The trigonometric functions all operate on
radians, not degrees. Oracle does not provide a built-in conversion function
to convert radians to or from degrees.

ABS(<n>)

Where n is a number. This function returns the absolute value of n.

SELECT ABS(-52) negative, ABS(52) positive FROM dual;

 NEGATIVE POSITIVE

---------- ----------

 52 52

ACOS(<n>)

Where n is a number between –1 and 1. This function returns the arc cosine
of n expressed in radians.

SELECT ACOS(-1) pi, ACOS(1) zero FROM dual;

 PI ZERO

---------- ----------

3.14159265 0

TRANSLATE Performs character search and replace

TRIM Strings leading, trailing, or both leading and trailing characters
from a string

UPPER Converts string to all uppercase

T A B L E 2 . 2 Character Function Summary (continued)

Function Description

http://www.sybex.com

Single-Row Functions in SQL 77

ASIN(<n>)

Where n is a number between –1 and 1. This function returns the arc sine of
n expressed in radians.

SELECT ASIN(1) high, ASIN(0) middle, ASIN(-1) low FROM
dual;

 HIGH MIDDLE LOW

---------- ---------- ----------

1.57079633 0 -1.5707963

ATAN(<n>)

Where n is a number. This function returns the arc tangent of n expressed in
radians.

SELECT ATAN(9E99) high, ATAN(0) middle, ATAN(-9E99) low

 FROM dual;

 HIGH MIDDLE LOW

---------- ---------- ----------

1.57079633 0 -1.5707963

CEIL(<n>)

Where n is a number. This function returns the smallest integer that is greater
than or equal to n. CEIL rounds up to a whole number. See also FLOOR.

SELECT CEIL(9.8), CEIL(-32.85), CEIL(0) FROM dual;

 CEIL(9.8) CEIL(-32.85) CEIL(0)

---------- ------------ ----------

 10 -32 0

COS(<n>)

Where n is a number in radians. This function returns the cosine of n.

SELECT COS(-3.14159) FROM dual;

COS(-3.14159)

 -1

http://www.sybex.com

78 Chapter 2 � Single-Row and Group Functions

COSH(<n>)

Where n is a number. This function returns the hyperbolic cosine of n.

SELECT COSH(1.4) FROM dual;

 COSH(1.4)

2.15089847

EXP(<n>)

Where n is a number. This function returns e (the base of natural logarithms)
raised to the nth power.

SELECT EXP(1) "e" FROM dual;

 e

2.71828183

FLOOR(<n>)

Where n is a number. This function returns the largest integer that is less than
or equal to n. FLOOR rounds down to a whole number. See also CEIL.

SELECT FLOOR(9.8), FLOOR(-32.85), FLOOR(137) FROM dual;

FLOOR(9.8) FLOOR(-32.85) FLOOR(137)

---------- ------------- ----------

 9 -33 137

LN(<n>)

Where n is a number greater than 0. This function returns the natural
logarithm of n.

SELECT LN(2.7) FROM dual;

 LN(2.7)

.993251773

http://www.sybex.com

Single-Row Functions in SQL 79

LOG(<n1>, <n2>)

Where n1 and n2 are numbers. This function returns the logarithm base n1
of n2.

SELECT LOG(8,64), LOG(3,27), LOG(2,1024) FROM dual;

 LOG(8,64) LOG(3,27) LOG(2,1024)

---------- ---------- -----------

 2 3 10

MOD(<n1>, <n2>)

Where n1 and n2 are numbers. This function returns n1 modulo n2 or the
remainder of n1 divided by n2. If n1 is negative, the result is negative. The sign
of n2 has no effect on the result. This behavior differs from the mathematical
definition of the modulus operation.

SELECT MOD(14,5), MOD(8,2.5), MOD(-64,7) FROM dual;

 MOD(14,5) MOD(8,2.5) MOD(-64,7)

---------- ---------- ----------

 4 .5 -1

POWER(<n1>, <n2>)

Where n1 and n2 are numbers. This function returns n1 to the n2th power.

SELECT POWER(2,10), POWER(3,3), POWER(5,3) FROM dual;

POWER(2,10) POWER(3,3) POWER(5,3)

----------- ---------- ----------

 1024 27 125

http://www.sybex.com

80 Chapter 2 � Single-Row and Group Functions

ROUND(<n1>, <n2>)

Where n1 is a number and n2 is an integer. This function returns n1 rounded
to n2 digits of precision to the right of the decimal. If n2 is negative, n1 is
rounded to left of the decimal. This function is similar to TRUNC().

SELECT ROUND(12345,-2), ROUND(12345.54321,2) from dual;

ROUND(12345,-2) ROUND(12345.54321,2)

--------------- --------------------

 12300 12345.54

SIGN(<n>)

Where n is a number. This function returns –1 if n is negative, 1 if n is pos-
itive, and 0 if n is 0.

SELECT SIGN(-2.3), SIGN(0), SIGN(47) FROM dual;

SIGN(-2.3) SIGN(0) SIGN(47)

---------- ---------- ----------

 -1 0 1

SIN(<n>)

Where n is a number in radians. This function returns the sine of n.

SELECT SIN(1.57079) FROM dual;

SIN(1.57079)

 1

SINH(<n>)

Where n is a number. This function returns the hyperbolic sine of n.

http://www.sybex.com

Single-Row Functions in SQL 81

SQRT(<n>)

Where n is a number. This function returns the square root of n.

SELECT SQRT(64), SQRT(49), SQRT(5) FROM dual;

 SQRT(64) SQRT(49) SQRT(5)

---------- ---------- ----------

 8 7 2.23606798

TAN(<n>)

Where n is a number in radians. This function returns the tangent of n.

SELECT TAN(1.57079633/2) "45_Degrees" FROM dual;

45_Degrees

 1

TANH(<n>)

Where n is a number. This function returns the hyperbolic tangent of n.

SELECT TANH(ACOS(-1)) hyp_tan_of_pi FROM dual;

HYP_TAN_OF_PI

 .996272076

TRUNC(<n1>, <n2>)

Where n1 is a number and n2 is an integer. This function returns n1 truncated to
n2 digits of precision to the right of the decimal. If n2 is negative, n1 is truncated
to left of the decimal. See also ROUND.

SELECT TRUNC(123.456,2) pos, TRUNC(123.456,-1) neg

FROM dual;

 POS NEG

---------- ----------

 123.45 120

http://www.sybex.com

82 Chapter 2 � Single-Row and Group Functions

Take a look at Table 2.3 to review the single-row numeric functions we
have discussed.

T A B L E 2 . 3 Numeric Function Summary

Function Description

ABS Returns the absolute value

ACOS Returns the arc cosine

ASIN Returns the arc sine

ATAN Returns the arc tangent

CEIL Returns the next higher integer

COS Returns the cosine

COSH Returns the hyperbolic cosine

EXP Returns the base of natural logarithms raised to a power

FLOOR Returns the next smaller integer

LN Returns the natural logarithm

LOG Returns the logarithm

MOD Returns modulo (remainder) of a division operation

POWER Returns a number raised to an arbitrary power

ROUND Rounds a number

SIGN Returns an indicator of sign: negative, positive, or zero

SIN Returns the sine

SINH Returns the hyperbolic sine

SQRT Returns the square root of a number

http://www.sybex.com

Single-Row Functions in SQL 83

Single-Row Date Functions

Single-row date functions operate on date datatypes. Most have one or more
date arguments, and most return a date value. Date data is stored internally as
numbers: The whole number portion is the number of days since Jan 1, 4712 BC,
and the decimal portion is the fraction of a day (for example, .5 = 12 hours).
Oracle will implicitly or automatically convert this numeric date data to/from
character data using the format model specified with NLS_DATE_FORMAT. This
date format model can be changed for each session with the ALTER SESSION
SET NLS_DATE FORMAT command. Here’s an example:

ALTER SESSION SET NLS_DATE_FORMAT='DD-Mon-YYYY
HH24:MI:SS';

This ALTER command will set the implicit conversion mechanism to display
date data as in 12-Dec-1999 15:45:32. This conversion works both ways, as
well; if the character string '30-Nov-1999 20:30:00' were inserted, updated,
or assigned to a date column or variable, the correct date would be entered.
If the format model were 'DD/MM/YY' or 'MM/DD/YY', there could be
some ambiguity in the conversion of some dates, such as 12 April 2000 (04/
12/00 or 12/04/00). To avoid problems with implicit conversions, Oracle
provides the explicit date/character conversion functions:

� TO_DATE

� TO_CHAR

These explicit conversion functions are covered in the “Single-Row Conversion
Functions” section later in this chapter.

TAN Returns the tangent

TANH Returns the hyperbolic tangent

TRUNC Truncates a number

T A B L E 2 . 3 Numeric Function Summary (continued)

Function Description

http://www.sybex.com

84 Chapter 2 � Single-Row and Group Functions

ADD_MONTHS(<d>, <i>)

Where d is a date and i is an integer. This function returns the date d plus i
months. If i is a decimal number, the database will implicitly convert it to an
integer by truncating the decimal portion (for example, 3.9 becomes 3).

SELECT SYSDATE

 ,ADD_MONTHS(SYSDATE,3) plus_3

 ,ADD_MONTHS(SYSDATE,-2) minus_2

FROM dual;

SYSDATE PLUS_3 MINUS_2

----------- ----------- -----------

30-Nov-1999 29-Feb-2000 30-Sep-1999

LAST_DAY(<d>)

Where d is a date. This function returns the last day of the month for the date d.

SELECT SYSDATE,LAST_DAY(SYSDATE)+1 FROM dual;

SYSDATE LAST_DAY(SY

----------- -----------

23-NOV-1999 01-DEC-1999

MONTHS_BETWEEN(<d1>, <d2>)

Where d1 and d2 are both dates. This function returns the number of months
that d2 is later than d1. A whole number is returned if d1 and d2 are the same
day of the month or if both dates are the last day of a month.

SELECT MONTHS_BETWEEN('19-Dec-1999','19-Mar-2000')

FROM dual;

MONTHS_BETWEEN('19-DEC-1999','19-MAR-2000')

 -3

http://www.sybex.com

Single-Row Functions in SQL 85

NEW_TIME(<d>, <tz1>, <tz2>)

Where d is a date and both tz1 and tz2 are one of the time zone constants
(shown in Table 2.4). This function returns the date in time zone tz2 for date
d in time zone tz1.

T A B L E 2 . 4 Time Zone Constants

Code Time Zone

GMT Greenwich Mean Time

NST Newfoundland Standard Time

AST Atlantic Standard Time

ADT Atlantic Daylight Time

BST Bering Standard Time

BDT Bering Daylight Time

CST Central Standard Time

CDT Central Daylight Time

EST Eastern Standard Time

EDT Eastern Daylight Time

HST Hawaii-Alaska Standard Time

HDT Hawaii-Alaska Daylight Time

MST Mountain Standard Time

MDT Mountain Daylight Time

PST Pacific Standard Time

PDT Pacific Daylight Time

YST Yukon Standard Time

YDT Yukon Daylight Time

http://www.sybex.com

86 Chapter 2 � Single-Row and Group Functions

SELECT SYSDATE Chicago

 ,NEW_TIME(SYSDATE,'CDT','PDT') Los_Angles

FROM dual;

CHICAGO LOS_ANGLES

-------------------- --------------------

23-Nov-1999 10:00:00 23-Nov-1999 08:00:00

NEXT_DAY(<d>, <dow>)

Where d is a date and dow is a text string containing the full or abbreviated
day of the week in the session’s language. This function returns the next
dow following d. The time portion of the return date is the same as the time
portion of d.

SELECT NEXT_DAY('01-Jan-2000','Monday') "1st Monday"

 ,NEXT_DAY('01-Nov-2004','Tuesday')+7 "2nd Tuesday"

FROM dual;

1st Monday 2nd Tuesday

----------- -----------

03-Jan-2000 09-Nov-2004

ROUND(<d> [, <fmt>])

Where d is a date and fmt is a character string containing a date-format
string. This function returns d rounded to the granularity specified in fmt.

SELECT SYSDATE,ROUND(SYSDATE,'HH24') FROM dual;

SYSDATE ROUND(SYSDATE,'HH24'

-------------------- --------------------

24-Nov-1999 09:23:56 24-Nov-1999 09:00:00

http://www.sybex.com

Single-Row Functions in SQL 87

SYSDATE

This function takes no arguments and returns the current date and time to
the second. It is one of the most commonly used functions, and there’s a good
chance you’ll see it on the exam.

SELECT SYSDATE FROM dual;

SYSDATE

24-Nov-1999 09:26:01

TRUNC(<d>[, <fmt>])

Where d is a date and fmt is a character string containing a date-format
string. This function returns d truncated to the granularity specified in fmt.

SELECT TRUNC(last_analyzed,'HH')

FROM user_tables

WHERE table_name='TEST_CASE';

TRUNC(LAST_ANALYZED,

28-Nov-1999 11:00:00

The single-row date functions we have covered are reviewed in Table 2.5.

T A B L E 2 . 5 Date Function Summary

Function Description

ADD_MONTHS Adds a number of months to a date

LAST_DAY Returns the last day of a month

MONTHS_BETWEEN Returns the number of months between two dates

NEW_TIME Returns the date/time in a different time zone

NEXT_DAY Returns the next day of a week following a given date

http://www.sybex.com

88 Chapter 2 � Single-Row and Group Functions

Single-Row Conversion Functions

Single-row conversion functions operate on multiple datatypes. The TO_CHAR
and TO_NUMBER functions have a significant number of formatting codes that
can be used to display date and number data in a wide assortment of repre-
sentations. The exam may include a question that tests your recollection of
some of the nuances of these formatting codes. General usage in a professional
setting would afford you the opportunity to look them up in a reference. In the
test setting, you must recall them.

CHARTOROWID(<c>)

Where c is a character string. This function returns c as a ROWID datatype. No
translation is performed; only the datatype is converted.

SELECT test_id FROM test_case

WHERE rowid = CHARTOROWID('AAAAoSAACAAAALiAAA');

CONVERT(<c>, <dset>[, <sset>])

Where c is a character string and dset and sset are character set names. This
function returns the character string c converted from the source character set
sset to the destination character set dset. No translation is performed, and the
character should exist in both character sets, or the replacement character for
the character set is used. sset defaults to the database character set.

HEXTORAW(<x>)

Where x is a hex string. This function returns the hexadecimal string x converted
to a RAW datatype. There is no translation performed; only the datatype is changed.

INSERT INTO printers(printer_nbr, manufacturer, model,

 init_string)

VALUES (12,'HP','LaserJet',HEXTORAW('1B45'));

ROUND Rounds a date/time

SYSDATE Returns the current date/time

TRUNCATE Truncates a date to a given granularity

T A B L E 2 . 5 Date Function Summary (continued)

Function Description

http://www.sybex.com

Single-Row Functions in SQL 89

RAWTOHEX(<x>)

Where x is a raw string. This function returns the raw string x converted to
hexadecimal. There is no translation performed; only the datatype is
changed.

SELECT RAWTOHEX(init_string)

FROM printers

WHERE model='LaserJet' AND manufacturer='HP';

RAWTOHEX(INIT_STRING)

1B45

ROWIDTOCHAR(<x>)

Where x is a character string in the format of a ROWID. This function returns
the character string x converted to a ROWID. There is no translation performed;
only the data type is changed.

SELECT ROWIDTOCHAR(rowid) FROM test_case

WHERE rownum = 1;

ROWIDTOCHAR(ROWID)

AAAAoSAACAAAALiAAA

TO_CHAR(<x> [, <fmt> [, <nlsparm>]])

Where x is either a date or a number, fmt is a format string specifying the format
that x will appear in (see Table 2.6), and nlsparm specifies language or location
formatting conventions. This function returns x converted into a character string.

If x is a date, nlsparm is an NLS_DATE_LANGUAGE specification, if included.
Note that the spelled-out numbers always appear in English, while the day or
month may appear in the NLS language.

SELECT TO_CHAR(SYSDATE,'Day Ddspth,Month YYYY'

 ,'NLS_DATE_LANGUAGE=German') Today_Heute

FROM dual;

http://www.sybex.com

90 Chapter 2 � Single-Row and Group Functions

TODAY_HEUTE

--

Samstag Twenty-Seventh,November 1999

SELECT TO_CHAR(SYSDATE,'"On the "Ddspth" day of "Month,
YYYY')

FROM dual;

TO_CHAR(SYSDATE,'"ONTHE"DDSPTH"DAYOF"MONTH,Y

--

On the Twenty-Seventh day of November , 1999

If x is a number, nlsparm can include NLS_NUMERIC_CHARACTERS for
specifying decimal and grouping symbols (format symbols D and G
respectively), NLS_CURRENCY for specifying the currency symbol (for-
mat symbol L), and NLS_ISO_CURRENCY for specifying the ISO interna-
tional currency symbol (format symbol C). The NLS_CURRENCY symbol
and the NLS_ISO_CURRENCY mnemonic are frequently different. For
example, the NLS_CURRENCY symbol for U.S. dollars is $, but this sym-
bol is not uniquely American, so the ISO symbol for U.S. dollars is USD.

SELECT TO_CHAR(-1234.56,'C099G999D99MI'

 ,'NLS_NUMERIC_CHARACTERS='',.''

 NLS_CURRENCY=''DM''

 NLS_ISO_CURRENCY=''GERMANY''

 ') Balance

FROM dual;

BALANCE

DEM001.234,56-

T A B L E 2 . 6 Date Format Codes

Date Code Format Code Description Example

AD or BC Epoch indicator ‘YYYY AD’ = 1999 AD

A.D. or
B.C.

Epoch indicator with
periods

‘YYYY A.D.’ = 1999 A.D.

http://www.sybex.com

Single-Row Functions in SQL 91

AM or PM Meridian indicator ‘HH12AM’ = 09AM

A.M. or
P.M.

Meridian indicator with
periods

‘HH A.M.’ = 09 A.M.

DY Day of week abbreviated Mon, Tue, Fri

DAY Day of week spelled out Monday, Tuesday, Friday

D Day of week (1–7) 1,2,3,4,5,6,7

DD Day of month (1–31) 1,2,3,4…31

DDD Day of year (1–366) 1,2,3,4…366

J Julian day (days since
4712BC)

2451514, 2451515, 2451516

W Week of the month (1–5) 1,2,3,4,5

WW, IW Week of the year, ISO
week of the year

1,2,3,4…53

MM Two-digit month 01,02,03…12

MON Month name abbreviated Jan, Feb, Mar…Dec

MONTH Month name spelled
out

January, February…December

RM Roman numeral month
(I–XII)

I,II,III,IV,V…XII

YYYY,
YYY, YY,
Y

Four-digit year; last 3 ,2,
1 digits in the year

1999, 999, 99, 9
2000, 000, 00, 0

YEAR Year spelled out Nineteen Ninety-Nine

T A B L E 2 . 6 Date Format Codes (continued)

Date Code Format Code Description Example

http://www.sybex.com

92 Chapter 2 � Single-Row and Group Functions

The RR code is used for data input with only two digits for the yearit
is intended to deal with two-digit years and Y2K. It rounds the century based
on the current year and the two-digit year, entered as follows:

� If the current year is >= 50 and the two-digit year is <50, the century
is rounded up to the next century.

� If the current year is >= 50 and the two-digit year is >= 50, the century
is unchanged.

� If the current year is < 50 and the two-digit year is < 50 the century
is unchanged.

� If the current year is < 50 and the two-digit year is >=50, the century
is rounded down to the previous century.

SYYYY If BC, year is shown as
negative

-1250

RR See description below

HH, HH12 Hour of the half-day
(1–12)

1,2,3…12

HH24 Hour of the day (0–23) 0,1,2…23

MI Minutes of the hour
(0–59)

0,1,2…59

SS Seconds of the minute
(0–59)

0,1,2…59

SSSSS Seconds of the day
(0–86399)

0,1,2…86399

, . / - ; : Punctuation Literal display

‘text’ Quoted text Literal display

T A B L E 2 . 6 Date Format Codes (continued)

Date Code Format Code Description Example

http://www.sybex.com

Single-Row Functions in SQL 93

So, if the current year is 1999 (>=50) and the two digit year is entered as
03 (<50), the year is interpreted as 2003. If the current year is 2003 (<50) and
the two-digit year is entered as 62 (>=50), the year is interpreted as 1962.

For any of the numeric codes, the ordinal and/or spelled-out representa-
tion can be displayed with the modifier codes th (for ordinal) and sp (for
spelled out). Here is an example:

SELECT SYSDATE, TO_CHAR(SYSDATE,'Mmspth'),

 TO_CHAR(SYSDATE,'DDth'), TO_CHAR(SYSDATE,'Yyyysp')

FROM dual;

SYSDATE TO_CHAR(TO_C TO_CHAR(SYSDATE,'YYYYSP')

----------- -------- ---- --------------------------------

01-DEC-1999 Twelfth 01ST One Thousand Nine Hundred Ninety-Nine

For any of the spelled-out words or ordinals, case follows the pattern of the first
two characters in the code. If the first two characters are uppercase, the spelled-out
words are all uppercase. If the first two characters are lowercase, then the spelled-
out words are all lowercase. If the first two characters are upper- then lowercase,
the spelled-out words have the first letter in uppercase and the remaining charac-
ters in lowercase, as in INITCAP.

SELECT TO_CHAR(SYSDATE,'MONTH'), TO_CHAR(SYSDATE,'Month'),

 TO_CHAR(SYSDATE,'month') FROM dual;

TO_CHAR(S TO_CHAR(S TO_CHAR(S

--------- --------- ---------

DECEMBER December december

You can see the numeric format codes in Table 2.7.

T A B L E 2 . 7 Numeric Format Codes

Numeric

Code Format Code Description Example

9 Numeric digits with leading space if
positive and a leading – (minus) if
negative

9999.9 = 1234.5
9999.9 = -1234.5
9999.9 = .3

0 Leading and/or trailing zeros 0009.90 = 0012.30

http://www.sybex.com

94 Chapter 2 � Single-Row and Group Functions

SELECT TO_CHAR(123456,'9.99EEEE'), TO_
CHAR(123456,'9.9EEEE')

FROM dual;

TO_CHAR(12 TO_CHAR(1

---------- ---------

 1.23E+05 1.2E+05

, Comma, for use as a group separa-
tor. It cannot appear after a period or
decimal code

9,999.9 = 1,234.5

G Local group separator, could be
comma (,) or period (.)

9G999D9 = 1,234.5
9G999D9 = 1.234,5

. Period, for use as the decimal charac-
ter. It cannot appear more than once
or to the left of a group separator

9,999.9 = 1,234.5

D Local decimal character, could be
comma (,) or period (.)

9G999D9 = 1,234.5
9G999D9 = 1.234,5

$ Dollar-sign currency symbol $999 = $123

L Local currency symbol L999 = $123
L999 = _123

FM No leading or trailing blanks FM99.99 = .1

EEEE Scientific notation 9.9EEEE = 1.2E+05

MI Negative as a trailing minus 999MI = 137-

PR Negative in angle brackets (< >) 999PR = <137>

S Negative as a leading minus S999 = -137

RN Uppercase Roman numeral RN = XXIV

rn Lowercase Roman numeral rn = xxiv

T A B L E 2 . 7 Numeric Format Codes (continued)

Numeric

Code Format Code Description Example

http://www.sybex.com

Single-Row Functions in SQL 95

TO_DATE(<c> [, <fmt> [, <nlsparm>]])

Where c is a character string, fmt is a format string specifying the format that c
appears in (see Table 2.6), and nlsparm specifies language or location formatting
conventions. This function returns c converted into the DATE datatype.

INSERT INTO demo (demo_key, date_col)

VALUES (1,TO_DATE('04-Oct-1957','DD-Mon-YYYY'));

TO_MULTI_BYTE(<c>)

Where c is a character string. This function returns a character string containing
c with all single-byte characters converted to their multi-byte counterparts. This
function is only useful in databases using character sets with both single-byte
and multi-byte characters. See also TO_SINGLE_BYTE().

TO_NUMBER(<c> [, <fmt> [, <nlsparm>]])

Where c is a character string, fmt is a format string specifying the format that c
appears in, and nlsparm specifies language or location formatting conventions.
This function returns the numeric value represented by c.

TO_SINGLE_BYTE(<c>)

Where c is a character string. This function returns a character string containing
c with all multi-byte characters converted to their single-byte counterparts. This
function is only useful in databases using character sets with both single-byte
and multi-byte characters. See also TO_SINGLE_BYTE().

Table 2.8 lists the single-row conversion functions we have covered.

T A B L E 2 . 8 Conversion Function Summary

Function Description

CHARTOROWID Casts a character to ROWID datatype

CONVERT Converts from one character set to another

HEXTORAW Casts a hexadecimal to a raw

RAWTOHEX Casts a raw to a hexadecimal

http://www.sybex.com

96 Chapter 2 � Single-Row and Group Functions

Programmer-Written Single-Row Functions

You can use programmer-written single-row functions in your statements,
with some restrictions. These restrictions relate to the purity of the func-
tionhow it interacts with the database. The restrictions do not allow a
programmer-written function to violate the database’s consistency model.
These rules for purity changed between versions 8 and 8.1. In 8 and earlier,
programmer-written functions needed to have the compiler directive
PRAGMA RESTRICT_REFERENCES declared before those functions could be
used in SQL statements (they could always be used in PL/SQL code). There
were varying degrees of purity for various uses (SELECT clause, WHERE
clause, and so on). In 8.1 (8i), Oracle no longer requires compiler direc-
tives, instead checking the purity at runtime by ensuring the following dur-
ing execution:

� A function called from a query or DML statement cannot end the current
transaction, create a save point, roll back to a save point, alter the session,
alter the system, or execute DML.

� A function called from a DML statement cannot read or modify the
same table that is being modified by the DML statement; this is similar
to the mutating tables problem with triggers.

ROWIDTOCHAR Casts a ROWID to a character

TO_CHAR Converts and format a date into a string

TO_DATE Converts a string into a date, specifying the format

TO_MULTIBYTE Converts a single-byte character to its corresponding
multi-byte equivalent

TO_NUMBER Casts a numeric string to a number, specifying the format

TO_SINGLE_BYTE Converts a multi-byte character to its corresponding
single-byte equivalent

T A B L E 2 . 8 Conversion Function Summary (continued)

Function Description

http://www.sybex.com

Single-Row Functions in SQL 97

You can read more about creating programmer-written functions in Chapter 7,
“PL/SQL Basics.”

Other Single-Row Functions

This is the catchall category to include all the single-row functions that don’t
fit into the other categories. Some are incredibly useful, like DECODE; others
are rather esoteric, like DUMP or VSIZE.

BFILENAME(<dir>, <file>)

Where dir is a directory and file is a filename. This function returns an empty
BFILE locator. This function is used to initialize a BFILE variable or BFILE
column in a table. When used, the BFILE is instantiated. Neither dir nor file
needs to exist at the time BFILENAME() is called, but both must exist when
the locator is used.

DECLARE

 BFILE_LOC BFILE;

BEGIN

 BFILE_LOC := BFILENAME('C:\DATA\','Foo.dat');

…

DECODE(<x>, <m1>, <r1> [, <m2>, <r2…>] [, <d>])

Where x is an expression. m1 is a matching expression to compare with x.
If m1 is equivalent to x, then r1 is returned; otherwise, additional matching
expressions (m2, m3, m4, and so on) are compared, if they are included, and
the corresponding result (r2, r3, r4, and so on) is returned. If no match is
found and the default expression d is included, then d is returned. This func-
tion acts like a case statement in C, Pascal, or Ada. DECODE is a very powerful
tool that can make SQL very efficient—or very dense and non-intuitive. The
following examples will help clarify.

http://www.sybex.com

98 Chapter 2 � Single-Row and Group Functions

See the examples in ”Nesting Functions” section later in this chapter for more
advanced uses of DECODE.

In the following example, we query the v$session table to see who is
executing which command in the database. The command column dis-
plays a numeric code for each command, but we want to report a textual
description for a few important commands. We use DECODE in the
fourth column to examine the contents of v$session.command. If the
command is 0, then we display None; if it is 2, then we display Insert,
and so on. If the command is not in our list (0,2,3,6,7,8), then we dis-
play the default, Other.

SELECT sid ,serial# ,username

 ,DECODE(command

 ,0,'None'

 ,2,'Insert'

 ,3,'Select'

 ,6,'Update'

 ,7,'Delete'

 ,8,'Drop'

 ,'Other') cmd

FROM v$session

WHERE type <> 'BACKGROUND';

 SID SERIAL# USERNAME CMD

---------- ---------- -------------- -----------

 7 147 None

 8 147 None

 9 24 CHIPD Other

 11 4 CHIPD Select

DECODE does not have to return a value; it can return NULL. The following
example returns NULL if grantable does not equal 'YES'—there is no default
specified in the arguments.

SELECT owner, table_name, grantor, grantee

http://www.sybex.com

Single-Row Functions in SQL 99

 ,DECODE(grantable,'YES','With Grant Option')

FROM user_tab_privs

WHERE privilege = 'SELECT';

OWNER TABLE_NAME GRANTOR GRANTEE DECODE(GRANTABLE,

----- ---------------- -------- -------- -----------------

CHIPD ZIP_STATE_CITY CHIPD SCOTT With Grant Option

SYS V_$INSTANCE SYS CHIPD

SYS DBA_DATA_FILES SYS CHIPD

DUMP(<x> [, <fmt> [, <n1> [, <n2>]]])

Where x is an expression, fmt is a format specification for octal (1008), decimal
(1010), hexadecimal (1016), or single characters (1017), and n1 is the starting
byte offset within x; and n2 is the length in bytes to dump. This function returns
a character string containing the datatype of x in numeric notation (for example,
2 = number, 12 = date—see the section on “Oracle Internal Datatypes” in the
OCI Programmer’s Guide for a complete listing), the length in bytes of x, and
the internal representation of x. This function is mainly used for troubleshooting
data problems.

SELECT global_name, DUMP(global_name,1017,8,5) dump_string

FROM global_name;

GLOBAL_NAME DUMP_STRING

--------------- ---

ORACLE.WORLD Typ=1 Len=12 CharacterSet=WE8ISO8859P1: W,O,R,L,D

EMPTY_BLOB()

This function takes no arguments. This function returns an empty BLOB
locator. This function is used to initialize a BLOB variable or BLOB column
in a table. When used, the BLOB is instantiated but not populated.

insert into bclob (pk,clob_col,blob_col)

VALUES (43, empty_clob(), empty_blob());

http://www.sybex.com

100 Chapter 2 � Single-Row and Group Functions

EMPTY_CLOB()

This function takes no arguments. This function returns an empty CLOB
locator. This function is used to initialize a CLOB variable or CLOB column
in a table. When used, the CLOB is instantiated but not populated.

insert into bclob (pk,clob_col,blob_col)

VALUES (43, empty_clob(), empty_blob());

GREATEST(<exp_list>)

Where exp_list is a list of expressions. This function returns the expres-
sion that sorts highest in the datatype of the first expression. If the first
expression is any of the character datatypes, a VARCHAR2 is returned and
the comparison rules for VARCHAR are used for character literal strings.
A NULL in the expression list results in a NULL being returned.

SELECT GREATEST('19','24',9) string FROM dual;

STRING

9

The comparison rules used by GREATEST and LEAST on character literals
order trailing spaces higher than no spacesthis behavior follows the non-
padded comparison rules of the VARCHAR datatype. Note the ordering of the
leading and trailing spacestrailing spaces are greatest and leading spaces
least. Think, “Leading equals least.”

SELECT GREATEST(' Yes','Yes','Yes ')

 ,LEAST(' Yes','Yes','Yes ')

FROM dual;

GREA LEAS

---- ----

Yes Yes

http://www.sybex.com

Single-Row Functions in SQL 101

LEAST(<exp_list>)

Where exp_list is a list of expressions. This function returns the expres-
sion that sorts lowest in the datatype of the first expression. If the first
expression is any of the character datatypes, a VARCHAR2 is returned.

SELECT LEAST(SYSDATE,'15-MAR-2000','17-JUN-2000') oldest

FROM dual;

OLDEST

27-NOV-1999

SELECT ename, sal, LEAST(sal, 3000) FROM emp;

ENAME SAL LEAST(SAL,3000)

---------- ---------- ---------------

SMITH 800 800

ALLEN 1600 1600

KING 5000 3000

UID

This function takes no parameters and returns the integer user_id for the
current user. User_ID uniquely identifies each user in a database and can be
selected from the view DBA_USERS.

SELECT username, account_status FROM dba_users WHERE user_
id=UID;

USERNAME ACCOUNT_STATUS

------------------------------ ---------------------------

CHIPD OPEN

INSERT INTO audit_table (who,when,what)

VALUES (UID, SYSDATE, audit_action);

http://www.sybex.com

102 Chapter 2 � Single-Row and Group Functions

USER

This function takes no parameters and returns a character string containing
the username for the current user.

SELECT USER, UID FROM DUAL;

USER UID

------------------------------ ----------

CHIPD 26

USERENV(<opt>)

Where opt is one of the options listed below. This function returns a VARCHAR2
string containing information corresponding to the option opt. The option can
appear in upper-, lower-, or mixed case. Valid options follow:

ISDBA

Returns TRUE if the SYSDBA role is enabled in the current session.

SELECT USERENV('ISDBA') FROM dual;

USEREN

FALSE

SESSIONID

Returns the audsid auditing session identifier.

SELECT USERENV('SESSIONID') audsid FROM dual;

 AUDSID

 47343

http://www.sybex.com

Single-Row Functions in SQL 103

ENTRYID

Returns the auditing entry identifier if auditing is enabled for the instance
(init.ora parm audit_trail = TRUE).

SELECT USERENV('ENTRYID') FROM dual;

USERENV('ENTRYID')

 835641

INSTANCE

Returns the instance identifier that the session is connected to. This option
is useful only if you are running Parallel Server and have multiple instances.

SELECT USERENV('INSTANCE') FROM dual;

USERENV('INSTANCE')

 1

LANGUAGE

Returns the language, territory, and database character set. The delimiters
are an underscore (_) between language and territory, and a period (.)
between the territory and character set.

SELECT USERENV('LANGUAGE') FROM dual;

USERENV('LANGUAGE')

--

AMERICAN_AMERICA.WE8ISO8859P1

LANG

Returns the ISO abbreviation of the session’s language.

SELECT USERENV('LANG') FROM dual;

USERENV('LANG')

--

US

http://www.sybex.com

104 Chapter 2 � Single-Row and Group Functions

TERMINAL

Returns the operating system identifier for the terminal or computer from
which the session is operating.

SELECT USERENV('TERMINAL') FROM dual;

USERENV('TERMINA

ttyp04

VSIZE(<x>)

Where x is an expression. This function returns the size in bytes of the internal
representation of the x.

SELECT VSIZE(user), user FROM dual;

VSIZE(USER) USER

----------- ------------------------------

 5 CHIPD

Table 2.9 reviews the miscellaneous single-row functions we have discussed.

T A B L E 2 . 9 Miscellaneous Function Summary

Function Description

BFILENAME Returns a BFILE locator for the specified file and directory

DECODE Inline case statement. This is an IF…THEN…ELSE function.

DUMP Returns raw substring in specified encoding (octal/hex/
character/decimal)

EMPTY_BLOB Returns an empty BLOB locator

EMPTY_CLOB Returns an empty CLOB locator

GREATEST Sorts the arguments and returns the largest

http://www.sybex.com

Group Functions in SQL 105

Group Functions in SQL

Group functions, sometimes called aggregate functions, return a value
based on a number of inputs. The exact number of inputs is not determined
until the query is executed and all rows are fetched. This differs from single-
row functions, in which the number of inputs is known at parse timebefore
the query is executed. Because of this difference, group functions have
slightly different requirements and behavior from single-row functions.
Group functions do not process NULL values and do not return a NULL value.
All of the group functions can be applied either to ALL values or to only the
DISTINCT values for the specified expression. When ALL is specified, all non-
NULL values are applied to the group function. When DISTINCT is specified,
only one of each non-NULL value is applied to the group function.

Group (Multi-row) Functions

As with single-row functions, Oracle offers a rich variety of grouping, multi-row
functions. These functions can appear in the SELECT or HAVING clauses of
SELECT statements. When used in the SELECT clause, they usually require a
GROUP BY clause, as well.

LEAST Sorts the arguments and returns the smallest

UID Returns the numeric user ID for the current session

USER Returns the username for the current session

USERENV Returns various session based attributes such as auditing
session ID, terminal, language, and so on

VSIZE Returns the internal size in bytes for an expression

T A B L E 2 . 9 Miscellaneous Function Summary (continued)

Function Description

http://www.sybex.com

106 Chapter 2 � Single-Row and Group Functions

AVG([{DISTINCT | ALL}] <n>)

Where n is a numeric expression. This function returns the mean of the
expression n. If neither DISTINCT nor ALL is specified in the function call,
the default is to use ALL.

SELECT AVG(sal), AVG(ALL sal), AVG(DISTINCT sal) FROM
scott.emp;

 AVG(SAL) AVG(ALLSAL) AVG(DISTINCTSAL)

---------- ----------- ----------------

1877.94118 1877.94118 1916.07143

COUNT({* | [DISTINCT | ALL] <x>})

Where x is an expression. This function returns the number of rows in the query.
If an expression is given and neither DISTINCT nor ALL is specified, the default
is ALL. The asterisk (*) is a special quantityit counts all rows in the result set,
regardless of NULLs.

SELECT COUNT(*) emp_count, COUNT(DISTINCT mgr) mgr_count

 ,COUNT(mgr) mgr_count2

FROM scott.emp;

 EMP_COUNT MGR_COUNT MGR_COUNT2

---------- ---------- ----------

 17 6 16

MAX([{DISTINCT | ALL}] <x>)

Where x is an expression. This function returns the highest value in the
expression x. If the expression is a character datatype, it returns a VARCHAR2.
If the expression x is a date datatype, it returns a date. If the expression x is
a numeric datatype, it returns a number. Although the inclusion of either
DISTINCT or ALL is syntactically acceptable, their use does not affect the cal-
culation of a MAX: The largest distinct value is the same as the largest of all
values. For dates, the maximum is the latest date. For numbers, the maxi-
mum is the largest number. For character strings, the maximum is the one
that sorts highest based on the database character set.

http://www.sybex.com

Group Functions in SQL 107

SELECT MAX(freelists) FROM dba_tables;

MAX(FREELISTS)

 1

MIN([{DISTINCT | ALL}] <x>)

Where x is an expression. This function returns the lowest value in the
expression x. If the expression is a character datatype, it returns a VARCHAR2.
If the expression x is a date datatype, it returns a date. If the expression x is
a numeric datatype, it returns a number. Although the inclusion of either
DISTINCT or ALL is syntactically acceptable, their use does not affect the cal-
culation of a MIN: The smallest distinct value is the same as the smallest
value. For dates, the minimum is the earliest date. For numbers, the mini-
mum is the smallest number. For character strings, the minimum is the one
that sorts lowest based on the database character set.

SELECT MIN(last_analyzed), MIN(blocks), MIN(table_name)

FROM user_tables;

MIN(LAST_AN MIN(BLOCKS) MIN(TABLE_NAME)

----------- ----------- ------------------------------

28-Nov-1999 0 ADDRESS

STDDEV([{DISTINCT | ALL}] <x>)

Where x is a numeric expression. This function returns the standard deviation
of the expression x. The standard deviation is calculated as the square root of
the variance.

SELECT AVG(latitude),STDDEV(latitude) FROM zip_codes;

AVG(LATITUDE) STDDEV(LATITUDE)

------------- ----------------

 37.7822735 6.96827458

http://www.sybex.com

108 Chapter 2 � Single-Row and Group Functions

SUM([{DISTINCT | ALL}] <x>)

Where x is a numeric expression. This function returns the sum of the
expression x.

SELECT SUM(blocks) FROM user_tables;

SUM(BLOCKS)

 12265

VARIANCE([{DISTINCT | ALL}] <x>)

Where x is a numeric expression. This function returns the variance of the
expression x.

SELECT AVG(latitude),VARIANCE(latitude) FROM zip_codes;

AVG(LATITUDE) VARIANCE(LATITUDE)

------------- ------------------

 37.7822735 48.5568507

The group functions we have covered are reviewed in Table 2.10.

T A B L E 2 . 1 0 Group Function Summary

Function Description

AVG Returns the statistical mean

COUNT Returns the number of non-NULL rows

MAX Returns the largest value

MIN Returns the smallest value

STD Returns the statistical standard deviation

SUM Adds all values and returns the result

VARIANCE Returns the statistical variance

http://www.sybex.com

Group Functions in SQL 109

Grouping Data with GROUP BY

As the name implies, group functions work on data that is grouped. We tell
the database how to group or categorize the data with a GROUP BY clause.
Whenever we use a group function in the SELECT clause of a SELECT state-
ment, we must place all non-grouping/non-constant columns into the GROUP
BY clause. If no GROUP BY clause is specified (only group functions and con-
stants appear in the SELECT clause), then the default grouping is the entire
result set. When the query executes and the data is fetched, it is grouped
based on the GROUP BY clause and the group function is applied.

SELECT state, count(*) zip_count

FROM zip_codes

GROUP BY state;

ST ZIP_COUNT

-- ----------

AK 360

AL 1212

AR 1309

AZ 768

CA 3982

In this example, we categorize (group) the data by state, and apply the group
function (COUNT). It returns the number of rows (in our case, zip codes) for
each state in our zip_codes table. If we want to order the results by the number
of zip codes, our ORDER BY clause can contain either the column number or the
grouping function.

SELECT state, count(*)

FROM zip_codes

GROUP BY state

ORDER BY COUNT(*) DESC;

ST COUNT(*)

-- ----------

NY 4315

PA 4296

TX 4123

CA 3982

http://www.sybex.com

110 Chapter 2 � Single-Row and Group Functions

Sometimes, you don’t need to group the data in the same way that we report
it. If you are interested in how many grouped rows resulted or in the average
number of rows for a particular grouping, you can GROUP BY an expression that
does not appear in the SELECT list. For example, if we want to know how our
sample data loaded into a table, in order to size that table, we will need to know
how many rows, on average, fit into a data block. We get this metadata by
counting rows that are grouped on the data block portion of the ROWID  the
first 15 characters. Then, we take the average of the resulting counts.

SELECT AVG(row_count), MAX(row_count), MIN(row_count)

FROM (SELECT COUNT(*) row_count

 FROM zip_codes

 GROUP BY SUBSTR(rowid,1,15));

AVG(ROW_COUNT) MAX(ROW_COUNT) MIN(ROW_COUNT)

-------------- -------------- --------------

 30.7509418 44 6

The subquery in the FROM clause returns one count for each data block.
We’ll cover subqueries in more detail in Chapter 3, “Displaying Data From
Multiple Tables,” but we treat this subquery as if it were a view. Here, we see
that we average about 31 rows per data block. It’s then a simple extrapola-
tion to approximate how many data blocks we will need to load an arbitrary
number of rows.

Limiting Grouped Data with HAVING

You’ve just seen grouping functions in the SELECT and ORDER BY clauses of
queries. These are the only two clauses in which group functions can occur.
Group functions cannot be used in the WHERE clause. For example, if we want
to query the average sales per sales clerk in the outside sales department and
only return those with over $100,000 in gross sales, we would have trouble
with the following query:

SELECT sales_clerk, SUM(sale_amount)

FROM gross_sales

WHERE sales_dept='OUTSIDE'

 AND SUM(sale_amount) > 100000

http://www.sybex.com

Group Functions in SQL 111

GROUP BY sales_clerk

The database doesn’t know what the SUM is when extracting the rows from
the table  remember that the grouping is done after all rows have been
fetched. We get an exception when we try to use SUM in the WHERE clause. The
correct way to get the requested information would be to instruct the data-
base to group all the rows, then limit the output of those grouped rows. We
do this with the HAVING clause:

SELECT sales_clerk, SUM(sale_amount)

FROM gross_sales

WHERE sales_dept='OUTSIDE'

GROUP BY sales_clerk

HAVING SUM(sale_amount) > 100000

As you can see in the previous query, a SQL statement can have both a
WHERE clause and a HAVING clause. WHERE filters data before grouping;
HAVING filters data after grouping.

You might encounter an exam question that tests whether you will recognize
an incorrectly placed group function in the WHERE clause.

Unlike single-row functions, you cannot use programmer-written functions
on grouped data.

Nesting Functions

Functions can be nested so that the output from one function is used as input to
another. Operators have an inherent precedence of execution, but function prece-
dence is based on position only. Functions are evaluated innermost to outermost
and left to right. This nesting technique is common with some functions, such as
DECODE, and it can be used to implement limited IF…THEN…ELSE logic within a
SQL statement. For example, the v$sysstat view contains one row for each of three
interesting sort statistics. If you want to report all three statistics on a single line,
you can use DECODE combined with SUM to filter out data in the SELECT clause.
This filtering operation is usually done in the WHERE or HAVING clause, but if you
want all three stats on one line, you can issue this command:

SELECT SUM(DECODE(name,'sorts (memory)',value,0)) in_
memory

 ,SUM(DECODE(name,'sorts (disk)', value,0)) on_disk

 ,SUM(DECODE(name,'sorts (rows)', value,0)) rows_
sorted

http://www.sybex.com

112 Chapter 2 � Single-Row and Group Functions

FROM v$sysstat

IN_MEMORY ON_DISK ROWS_SORTED

--------- ------- -----------

 728 12 326714

What happens in the previous statement is a single pass through the
v$sysstat table. The pre-summary result set would have the same number of
rows as v$sysstat (177, for instance). Of these 177 rows, all rows and col-
umns have zeros, except for one row in each column which has the data of
interest (see Table 2.11). The summation operation then adds all the zeros to
your interesting data and gives you the results you want.

Another example of nesting DECODE and a group function is this example,
using MAX and nested DECODEs:

SELECT owner ,table_name ,grantor ,grantee

,MAX(DECODE(privilege,'SELECT',DECODE(grantable,'YES','g',
'Y'),' '))SEL

,MAX(DECODE(privilege,'INSERT',DECODE(grantable,'YES','g',
'Y'),' '))INS

,MAX(DECODE(privilege,'UPDATE',DECODE(grantable,'YES','g',
'Y'),' '))UPD

T A B L E 2 . 1 1 Pre-Summarized Result Set

in_memory on_disk rows_sorted

0 0 0

0 12 0

0 0 0

0 0 326714

728 0 0

0 0 0

http://www.sybex.com

Group Functions in SQL 113

,MAX(DECODE(privilege,'DELETE',DECODE(grantable,'YES','g',
'Y'),' '))DEL

FROM dba_tab_privs

WHERE table_name = UPPER('&TableName')

GROUP BY owner ,table_name ,grantor ,grantee

ORDER BY grantee, table_name;

OWNER TABLE_NAME GRANTOR GRANTEE S I U D

------ --------------- -------- -------- - - - -

CHIPD ZIP_STATE_CITY CHIPD SCOTT g Y Y

In this example, we want to report select, insert, update, and delete privileges
on a table, with a single table per line instead of a single privilege per line. This
statement will report a g if the privilege was granted with the grant option, a Y
if the privilege was granted without the grant option, and a space if the privilege
was not granted. This example takes advantage of the ordinal progression from
space to Y to g: ' '< 'Y'< 'g'.

Nested functions can include single-row functions nested within group
functions, as you’ve just seen, or group functions nested within either single-
row functions or other group functions. For example, imagine that you need
to report on the departments in the EMP table, showing either the number
of jobs or the number of managers, which ever is greater. You would enter
the following:

SELECT deptno, GREATEST(COUNT(DISTINCT job),
COUNT(DISTINCT mgr)) cnt

 ,COUNT(DISTINCT job) jobs

 ,COUNT(DISTINCT mgr) mgrs

FROM emp

GROUP BY deptno;

 DEPTNO CNT JOBS MGRS

---------- ---------- ---------- ----------

 10 4 4 2

 20 4 3 4

 30 3 3 2

http://www.sybex.com

114 Chapter 2 � Single-Row and Group Functions

You can also nest group functions within group functions. To report the
maximum number of jobs in a single department, you would query:

SELECT MAX(COUNT(DISTINCT job))

FROM emp

GROUP BY deptno;

MAX(COUNT(DISTINCTJOB))

 4

Summary

This chapter introduced single-row functions and group functions.
You read that single-row functions return a value for each row as it is
retrieved from the table, and group functions return a value after all rows
have been fetched and grouped. Functions can be nested so that the output
of one is the input to another. Single-row functions can be nested in other
single row functions or in group functions, and group functions can be
nested in single row functions or in other group functions.

Single-row functions can be used in the SELECT, WHERE, and ORDER BY
clauses of SELECT statements. We covered the rich assortment of functions
available in each datatype and some functions that work on any datatype.
When the built-in functions don’t quite fit the bill, you can use programmer-
written functions, but only with the restrictions we noted.

Group functions can be used in the SELECT, HAVING, and ORDER BY clauses
of SELECT statements. Group functions can be applied to all data values or
only to the distinct data values. Except for COUNT(*), group functions ignore
NULLs. Programmer-written functions cannot be used as group functions.

The topics covered in this chapter that are likely to be on the exam include
the following:

� The NVL functionboth using it and the effects of failing to use it

� The format models for converting dates to/from character strings

� The DECODE function

� Mistakenly putting a group function in the WHERE clause

http://www.sybex.com

Key Terms 115

Key Terms

Before you take the exam, make sure you’re familiar with the fol-
lowing terms:

Aggregate functions

NLS

NULL

ROWID

Single-row functions

http://www.sybex.com

116 Chapter 2 � Single-Row and Group Functions

Review Questions

1. You want to display each project’s start date as the day, week, number,
and year. Which statement will give output like the following?

Tuesday Week 23, 1997

A. Select proj_id, to_char(start_date, 'DOW Week WOY
YYYY') from projects

B. Select proj_id, to_char(start_date, 'Day'||' Week'||'
WOY, YYYY') from projects;

C. Select proj_id, to_char(start_date, 'Day" Week" WW,
YYYY') from projects;

D. Select proj_id, to_char(start_date, 'Day Week# , YYYY')
from projects;

E. You can’t calculate week numbers with Oracle.

2. What will the following statement return?

SELECT last_name, first_name, start_date FROM employees

WHERE hire_date < TRUNC(sysdate) – 5;

A. Employees hired in the past 5 years

B. Employees hired in the past 5 days

C. Employees hired more than 5 years ago

D. Employees hired more than 5 days ago

http://www.sybex.com

Review Questions 117

3. Which assertion about the following statements is most true?

SELECT name, region_code||phone_number FROM customers;

SELECT name, CONCAT(region_code,phone_number) FROM
customers;

A. If the region_code is NULL, the first statement will not include that
customer’s phone_number.

B. If the region_code is NULL, the second statement will not include
that customer’s phone_number.

C. Both statements will return the same data.

D. The second statement will raise an exception if the region_code is
NULL for any customer.

4. Which single-row function could you use to return a specific portion
of a character string?

A. INSTR

B. SUBSTR

C. LPAD

D. LEAST

http://www.sybex.com

118 Chapter 2 � Single-Row and Group Functions

5. The sales department is simplifying the pricing policy for all products. All
surcharges are being incorporated into the base price for all products in
the consumer division (code C), and the new base price is increasing by
the lesser of 0.5% of the old base price or 10% of the old surcharge. Using
the following PRODUCT table, you need to implement this change.

Which of the following statements will achieve the desired results?

A. UPDATE product SET
 base_price = base_price + surcharge +
 LEAST(base_price * 0.005 ,surcharge * 0.1)
,surcharge = NULL
WHERE division='C'

B. UPDATE product SET
 base_price = base_price + NVL(surcharge,0) +
 LEAST(base_price * 0.005 ,surcharge * 0.1)
,surcharge = NULL
WHERE division='C'

C. UPDATE product SET
base_price = base_price + NVL(surcharge,0) +
 LEAST(base_price * 0.005 ,NVL(surcharge,0) * 0.1)
,surcharge = NULL
WHERE division='C'

D. A, B, and C will all achieve the desired results.

E. None of these statements will achieve the desired results.

Column Name sku name division base_price surcharge

Key Type pk

NULLs/Unique NN NN NN NN

FK Table

Datatype number varchar2 varchar2 number number

Length 16 16 4 11,2 11,2

http://www.sybex.com

Review Questions 119

6. Which function(s) accept arguments of any datatype? Select all that apply.

A. SUBSTR

B. NVL

C. ROUND

D. DECODE

E. SIGN

7. What will be returned from SIGN(ABS(NVL(-32,0)))?

A. 1

B. 32

C. –1

D. 0

E. NULL

8. How will the results of the following two statements differ?

Statement 1:

SELECT MAX(longitude), MAX(latitude)

FROM zip_state_city;

Statement 2:

SELECT MAX(longitude), MAX(latitude)

FROM zip_state_city

GROUP BY state;

A. Statement 1 will fail because it is missing a GROUP BY clause.

B. Statement 2 will return one row, and Statement 1 may return more
than one row.

C. Statement 2 will display a longitude and latitude for each zip_
state_city.

D. Statement 1 will display two values, and Statement 2 will display
two values for each state.

http://www.sybex.com

120 Chapter 2 � Single-Row and Group Functions

9. Which functions could you use to strip leading characters from a character
string? Select two.

A. LTRIM

B. SUBSTR

C. RTRIM

D. INSTR

E. MOD

10. Using the following SALES table, you need to report the following:

� Gross, net, and earned revenue

� For the second and third quarters of 1999

� For sales in the states Illinois, California, and Texas (codes IL,
CA, and TX)

Which sales data do you report if you issue the following SQL statement?

SELECT state_code, SUM(ALL gross), SUM(net),

Column Name state_code sales_date gross net earned

Key Type pk pk

NULLs/Unique NN NN NN NN NN

FK Table

Datatype varchar2 date number number number

Length 2 11,2 11,2 11,2

http://www.sybex.com

Review Questions 121

SUM(earned)

FROM sales_detail

WHERE TRUNC(sales_date, 'Q') BETWEEN

 TO_DATE('01-Apr-1999','DD-Mon-YYYY')

 AND TO_DATE('01-Sep-1999','DD-Mon-YYYY')

 AND state_cd IN ('IL','CA','TX')

GROUP BY state_code

A. Data that meets all three requirements

B. Data that meets two of the three requirements

C. Data that meets one of the three requirements

D. Data that meets none of the three requirements

E. You get an exception.

11. Which assertion about the following queries is true?

SELECT COUNT(DISTINCT mgr) , MAX(DISTINCT salary) FROM
emp;

SELECT COUNT(ALL mgr) , MAX(ALL salary) FROM emp;

A. They will always return the same numbers in columns 1 and 2.

B. They may return different numbers in column 1 but will always
return the same number in column 2.

C. They may return different numbers in column 1 and may return
different numbers in column 2.

D. They will always return the same number in column 1 but may
return different numbers in column 2.

12. What will the following query report?

SELECT deptno, COUNT(*) FROM emp GROUP BY deptno;

A. The number of employees in each department, including those
without a deptno.

B. The number of employees in each department, except those without
a deptno.

C. The total number of employees, including those without a deptno.

D. The total number of employees, except those without a deptno.

http://www.sybex.com

122 Chapter 2 � Single-Row and Group Functions

13. Which of the following is not a group function?

A. AVG()

B. COUNT()

C. LEAST()

D. STDDEV()

E. VARIANCE()

14. If it is 5 minutes past noon on 15 Jan 2000, what will the following
statement return?

SELECT ROUND(SYSDATE) - ROUND(SYSDATE,'Y') FROM dual;

A. 15.5

B. 15

C. 0

D. 16

15. In Oracle, what do trigonometric functions operate on?

A. Degrees

B. Radians

C. Gradients

D. The default is radians, but degrees or gradients can be specified.

16. Which statement about nested functions is most correct?

A. Single-row nested functions can be nested in either single-row or
group functions.

B. Group functions can be nested in other group functions.

C. Group functions can be nested in single-row functions.

D. A, B, and C

E. A and B only

http://www.sybex.com

Review Questions 123

17. Why does the following SELECT statement fail?

SELECT colorname Colour, MAX(cost)

FROM itemdetail

WHERE UPPER(colorname) LIKE '%WHITE%'

GROUP BY colour

HAVING COUNT(*) > 20;

A. A GROUP BY clause cannot contain a column alias.

B. The condition COUNT(*) > 20 should be in the WHERE clause.

C. The GROUP BY clause must contain the group functions used in the
SELECT list.

D. The HAVING clause can only contain the group functions used in
the SELECT list.

18. What will the following query return?

SELECT REPLACE(RTRIM('Anticipation','on'),'ti','shun')
FROM dual;

A. Antincipashun

B. Anshuncipashun

C. Anshuncipashunon

D. Anticipashunon

19. Why will the following query raise an exception?

select dept_no, avg(distinct salary), count(job) job_
count

from emp

where mgr like 'J%'

 or abs(salary) > 10

having count(job) > 5

order by 2 desc;

A. A HAVING clause cannot contain a group function.

B. The GROUP BY clause is missing.

C. abs() is not an Oracle function.

D. The query will not raise an exception.

http://www.sybex.com

124 Chapter 2 � Single-Row and Group Functions

20. Which function implements IF..THEN…ELSE logic?

A. INITCAP()

B. REPLACE()

C. DECODE()

D. IFELSE()

http://www.sybex.com

Answers to Review Questions 125

Answers to Review Questions

1. C. Double quotes must surround literal strings like " Week".

2. D. The TRUNC function removes the time portion of a date by default,
and whole numbers added to or subtracted from dates represent days
added or subtracted from that date. TRUNC(sysdate) –5 means five
days ago at midnight.

3. C . Both statements are equivalent.

4. B. INSTR returns a number; LPAD adds to a character string; LEAST
does not change an input string.

5. C. Statements A and B do not account for NULL surcharges correctly
and will set the base price to NULL where the surcharge is NULL.

6. B, D. ROUND does not accept character arguments, SUBSTR only
accepts character arguments, and SIGN only accepts numeric argu-
ments.

7. A. The functions are evaluated from the innermost to outermost as
follows:
SIGN(ABS(NVL(-32,0))) = SIGN(ABS(-32)) = SIGN(32) = 1

8. D. Option B has the statement numbers transposed. This one was
intended to be a trick question. You should read all the answers care-
fully; the exam may have trick questions like this one.

9. A, B . RTRIM removes trailing (not leading) characters. The others
return numbers.

10. A. All requirements are met. The gross, net, and earned revenue
requirements are satisfied by the SELECT clause. The second and third
quarter sales requirement is satisfied by the first predicate of the WHERE
clause: Sales date will be truncated to the first day of a quarter, thus
01-Apr-1999 or 01-Jul-1999 for the required quarters (which are both
between 01-Apr-1999 and 01-Sep-1999). The state code’s require-
ment is satisfied by the second predicate in the WHERE clause.

http://www.sybex.com

126 Chapter 2 � Single-Row and Group Functions

11. B. The first column in the first query is counting the distinct mgr val-
ues in the table. The first column in the second query is counting all
mgr values in the table. If a manager appears twice, the first query will
count her one time, but the second will count her twice. Both the first
query and second query are selecting the max salary value in the table.

12. A. COUNT(*) is the only group function that includes NULLs, so all
employees will be represented in the grouped data. You will not get a
total count for all employees, because the data will be grouped by
deptno: There will be one line for each deptno that appears in the EMP
table and then one more line for a NULL deptno.

13. C. LEAST is a single-row function.

14. B. The first date will round up to the next day, since its input date is
after noon, and the second date will round to the first day of the year.
The statement would resolve to 16-Jan-2000 – 01-Jan-2000, which is
15 days (16 – 1).

15. B. Oracle trigonometric functions only operate on radians.

16. D. Any class of function can be nested in any other class of function.

17. A. A GROUP BY clause must contain the column or expressions on which
to perform the grouping operation; it cannot use column aliasing.

18. B. First, the RTRIM function removes the trailing on, then REPLACE
swaps all occurrences of ti with shun. There are two occurrences of ti.

19. B. There is at least one column in the select list that is not a constant
or group function, so a GROUP BY clause is mandatory.

20. C. There is no IFELSE function. The INITCAP function capitalizes the
first letter in each word. The REPLACE function performs search and
replace string operations. The DECODE function is the one that imple-
ments IF…THEN…ELSE logic.

http://www.sybex.com

Chapter

3

Joins and Subqueries

ORACLE8i SQL AND PL/SQL EXAM OBJEC-
TIVES OFFERED IN THIS CHAPTER:

�

Display data from multiple tables

�

Write

SELECT

 statements to access data from more than one

table using equality and non-equality joins

�

View data that generally does not meet a join condition by

using outer joins

�

Join a table to itself

�

Describe the types of problems that subqueries can solve

�

List types of subqueries

�

Write single-row and multiple-row subqueries

�

Write multiple-column subqueries

�

Describe behavior of subqueries when

NULL

 values are returned

�

Write subqueries in a

FROM

 clause

Exam objectives are subject to change at
any time without prior notice and at Oracle’s
sole discretion. Please visit Oracle's Train-
ing and Certification Web site (

http://

education.oracle.com/certification/

index.html

) for the most current exam
objectives listing.

http://www.sybex.com

A

 database has many tables that store data. In Chapter 1, you
saw how to write simple queries that select data from one table. The ability
to join two or more related tables and access information is the core strength
of relational databases. Using the

SELECT

 statement, you can write advanced
queries that satisfy user requirements. This chapter focuses on querying data
from more than one table using table joins and subqueries. A subquery is a
query inside another query. Oracle8i has enhanced capabilities for defining
the subqueries.

Multiple Table Queries

I

n Relational Database Management Systems, data stored in different
tables is related. You use the power of SQL to relate the information and
query data. A

SELECT

 statement has a mandatory

SELECT

 clause and

FROM

clause. The

SELECT

 clause can have a list of columns, expressions, functions,
and so on. The

FROM

 clause tells you which table(s) to look in for the required
information. So far, you have seen only one table in the

FROM

 clause; in this
chapter, you will learn how to retrieve data from more than one table.

In order to query data from more than one table, you need to identify a
common column that relates the two tables. In the

WHERE

 clause, you define
the relationship between the tables listed in the

FROM

 clause using compari-
son operators.

A join is a query that combines rows from two or more tables or views.
Oracle performs a join whenever multiple tables appear in the query’s

FROM

clause. The query’s

SELECT

 clause can have the columns or expressions from
any or all of these tables.

http://www.sybex.com

Multiple Table Queries

129

Most of the example queries in this chapter are based on the EMP and
DEPT tables. You can see the structure of these tables in Figure 3.1 and the
sample data that we will use in Figure 3.2.

F I G U R E 3 . 1

Structure of EMP and DEPT tables

F I G U R E 3 . 2

Data for EMP and DEPT tables

Take a look at the figures. How would you list the department name and
location for each employee, along with his or her salary? The department
name and location are in the DEPT table, the employee name and salary are
in the EMP table. So, to list the information together in one query, you need
to do a join. The DEPTNO column is common to both tables; use this col-
umn to relate the rows.

DEPTNO

* DNAME
LOC

EMPNO

* ENAME
* SALARY

COMM
* DEPTNO

EMPDEPT

SQL> SELECT * FROM dept:

DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS
30 SALES CHICAGO
40 OPERATIONS BOSTON
50 PAYROLL DALLAS

SQL> SELECT * FROM emp:

EMPNO ENAME SALARY COMM DEPTNO

7566 JONES 2975 20
7654 MARTIN 1250 1400 30
7698 K_BLAKE 2850 30
7788 SCOTT 3000 20
7839 A_EDWARD 5000 50000 10
7844 TURNER 1500 0 30
902 FORD 3000 20

7 rows selected

SQL>

http://www.sybex.com

130

Chapter 3 �

Joins and Subqueries

SQL> SELECT dname, loc, ename, salary

 FROM dept, emp

 WHERE dept.deptno = emp.deptno;

DNAME LOC ENAME SALARY

-------------- ------------- ---------- ----------

RESEARCH DALLAS JONES 2975

SALES CHICAGO MARTIN 1250

SALES CHICAGO K_BLAKE 2850

RESEARCH DALLAS SCOTT 3000

ACCOUNTING NEW YORK A_EDWARD 5000

SALES CHICAGO TURNER 1500

RESEARCH DALLAS FORD 3000

7 rows selected.

SQL>

Here data is selected from two tables: EMP and DEPT. The department
number (DEPTNO) is the relation. Notice that in the

WHERE

 clause, the col-
umn names are qualified by the table name; this is required to avoid ambi-
guity, because the column names are the same in both tables. If the column
names are different in each table, you need not

qualify

 the column names.
Just as you can provide column alias names, you can alias table names, also.
Aliases improve the readability of the code, and they can be short names that
are easy to type and use as references. The table alias name is given next to
the table name. The table can be qualified by specifying its owner (schema).
You can use the schema name to qualify a table and the table name to qualify
a column. The following example uses alias names

d

 and

e

 for DEPT and
EMP tables and uses them to qualify the column names:

SQL> SELECT d.dname, d.loc, e.ename, e.salary

 FROM dept d, emp e

 WHERE d.deptno = e.deptno

 ORDER BY d.dname;

http://www.sybex.com

Multiple Table Queries

131

Once table alias names are defined, you cannot use the table name to qualify
a column. You should use the alias name to qualify the column. You should
not qualify the table or alias name used to qualify the column. For example,
the following column qualification is invalid:

SELECT scott.emp.ename from

EMP

;. It should be

SELECT emp.ename FROM scott.emp

;.

To execute a join of three or more tables, Oracle takes these steps:

1.

Oracle joins two of the tables based on the join conditions, comparing
their columns.

2.

Oracle joins the result to another table, based on join conditions.

3.

Oracle continues this process until all tables are joined into the result.

The join query can also contain other conditions in the

WHERE

 clause to
restrict rows based on a column in one table. Here’s an example:

SQL> SELECT dname department, d.loc location, e.ename
name, e.salary

 FROM dept d, emp e

 WHERE d.deptno = e.deptno

 * AND comm IS NOT NULL

SQL> /

DEPARTMENT LOCATION NAME SALARY

-------------- ------------- ---------- ----------

SALES CHICAGO MARTIN 1250

ACCOUNTING NEW YORK A_EDWARD 5000

SALES CHICAGO TURNER 1500

SQL>

Equality and Non-Equality Joins

If the query is relating two tables using an equality operator (=), it is an
equality join, also known as an

inner join

 or an

equijoin

. If any other oper-
ator is used to join the tables in the query, it is a

non-equality join

. You have

http://www.sybex.com

132

Chapter 3 �

Joins and Subqueries

already seen examples of equality joins; let’s consider an example of non-
equality join. The EMP table has a column named SALARY; the GRADES
table has the range of salary values that correspond to each grade.

SQL> SELECT * FROM grades;

GRADE LOW_SALARY HIGH_SALARY

------- ---------- -----------

P5 0 1200

P4 1201 1400

P3 1401 2000

P2 2001 3000

P1 3001

SQL>

To find out which grade each employee belongs to, use this query:

SQL> SELECT empno, ename, salary, grade

 FROM emp e, grades g

 WHERE e.salary BETWEEN g.low_salary

 AND decode(g.grade, 'P1', 999999, g.high_
salary)

 * ORDER BY salary

SQL> /

 EMPNO ENAME SALARY GRADE

---------- ---------- ---------- -------

 7654 MARTIN 1250 P4

 7844 TURNER 1500 P3

 7698 K_BLAKE 2850 P2

 7566 JONES 2975 P2

 7788 SCOTT 3000 P2

 902 FORD 3000 P2

 7839 A_EDWARD 5000 P1

7 rows selected.

SQL>

http://www.sybex.com

Multiple Table Queries

133

Since the upper range of grade P1 is

NULL

, we have substituted a large
value of 999999 in the query using the

DECODE function.

Cartesian Joins

A Cartesian join occurs when data is selected from two or more tables and
there is no common relation specified in the WHERE clause. If you do not spec-
ify a join condition for the tables listed in the FROM clause, Oracle joins each
row from the first table to every row in the second table. If the first table has
three rows and the second table has four rows, the result will have 12 rows.
Suppose you add another table with two rows without specifying a join con-
dition; the result will have 24 rows. You should avoid Cartesian joins; for the
most part, they happen when there are many tables in the FROM clause and
developers forget to include the join condition.

The following example queries the EMP and DEPT tables to illustrate the
Cartesian product. For each row in the DEPT table satisfying the WHERE
clause, a row from the EMP table is retrieved and joined to.

SQL> SELECT d.deptno, e.deptno, e.empno, e.ename

 FROM dept d, emp e

 * WHERE e.deptno IN (10, 20)

SQL> /

 DEPTNO DEPTNO EMPNO ENAME

---------- ---------- ---------- ----------

 10 20 7566 JONES

 20 20 7566 JONES

 30 20 7566 JONES

 40 20 7566 JONES

 10 20 7788 SCOTT

 20 20 7788 SCOTT

 30 20 7788 SCOTT

 40 20 7788 SCOTT

 10 10 7839 A_EDWARD

 20 10 7839 A_EDWARD

 30 10 7839 A_EDWARD

 40 10 7839 A_EDWARD

http://www.sybex.com

134 Chapter 3 � Joins and Subqueries

 10 20 902 FORD

 20 20 902 FORD

 30 20 902 FORD

 40 20 902 FORD

16 rows selected.

SQL>

In this example, we have limited the number of rows using the WHERE con-
dition. Because none of the columns in EMP table is joined with DEPT, for
each row in DEPT, all rows in EMP are returned.

To avoid a Cartesian join, there should be at least n − 1 join conditions when
joining n tables.

If a Cartesian join is made between a table having m rows and another table
having n rows, the resulting query will have m × n rows.

Outer Joins

Sometimes, you might want to see the data from one table, even if there is no
corresponding row in the joining table. Oracle provides the outer join mech-
anism for this.

The plus symbol surrounded by parentheses ((+)) denotes an outer join in
the query. Enter (+) beside the column name of the table, where there may
not be a corresponding row. For example, to write a query that performs an
outer join of tables A and B and returns all rows from A, apply the outer-join
operator (+) to all columns of B in the join condition. For all rows in A that
have no matching rows in B, the query returns NULL values for the columns
in B.

Consider our example tables EMP and DEPT. There is no employee in the
EMP table that belongs to department 40. Let’s do an outer join query to dis-
play all departments, even if there are no employees:

SQL> SELECT D.deptno, E.empno, E.ename

 FROM dept D, emp E

 WHERE D.deptno = E.deptno (+);

http://www.sybex.com

Multiple Table Queries 135

 DEPTNO EMPNO ENAME

---------- ---------- ----------

 10 7839 A_EDWARD

 20 7566 JONES

 20 902 FORD

 20 7788 SCOTT

 30 7654 MARTIN

 30 7698 K_BLAKE

 30 7844 TURNER

 40

8 rows selected.

SQL>

The outer-join operator (+) can appear only in the WHERE clause. If there
are multiple join conditions between the tables, the outer-join operator
should be used against all of the conditions.

An outer join (containing the (+) operator) cannot be combined with another
condition using the OR or IN logical operators. For example, the following query
is not valid:

SQL> SELECT D.deptno, E.empno, E.ename

 FROM dept D, emp E

 WHERE D.deptno = E.deptno (+)

 * OR E.salary > 4000

SQL> /

WHERE D.deptno = E.deptno (+)

 *

ERROR at line 3:

ORA-01719: outer join operator (+) not allowed in operand
of OR or IN

SQL>

http://www.sybex.com

136 Chapter 3 � Joins and Subqueries

Self-Join

A self-join joins a table to itself. The table name appears in the FROM clause
twice, with different alias names. The two aliases are treated as two different
tables, and they are joined as you would join any other tables, using one or
more related columns. The following example lists the president name and
predecessor name from the table PRESIDENTS:

SQL> DESCRIBE PRESIDENTS

 Name Null? Type

 ------------------------------- -------- ----

 INITIALS VARCHAR2(3)

 NAME VARCHAR2(40)

 BIRTH_DATE DATE

 PREDECESSOR VARCHAR2(3)

SQL> SELECT * FROM presidents;

INI NAME BIRTH_DATE PRE

--- -- ----------- ---

BC Bill Clinton 19-AUG-1946 GB

GB George Bush 12-JUN-1924 RR

RR Ronald Reagan 06-FEB-1911 JC

JC Jimmy Carter 01-OCT-1924 GF

SQL> SELECT a.name "President Name", b.name "Predecessor
Name"

 FROM presidents a, presidents b

 * WHERE a.predecessor = b.initials

SQL> /

President Name Predecessor Name

------------------------- -------------------------

Bill Clinton George Bush

Ronald Reagan Jimmy Carter

George Bush Ronald Reagan

SQL

http://www.sybex.com

Multiple Table Queries 137

Using Set Operators

Set operators can be used to select data from multiple tables. Set operators
basically combine the result of two queries into one. These queries are
known as compound queries. All set operators have equal precedence; when
multiple set operators are present in the same query, they are evaluated from
left to right unless specified otherwise with parentheses. The datatypes of the
resulting columns should match in both queries. Oracle has four set opera-
tors, which you can see in Table 3.1.

Let’s consider the tables EAST_ORDERS and WEST_ORDERS as our
example to illustrate set operators:

SQL> SELECT * FROM EAST_ORDERS;

ORD_DATE PROD_ID CUSTOMER QUANTITY

--------- ---------- --------------- ----------

08-APR-00 1101 BILL 10

04-APR-00 1102 SCOTT 210

01-APR-00 1101 SCOTT 30

08-APR-00 1103 LEEZA 41

08-APR-00 1103 MARY 50

SQL> SELECT * FROM WEST_ORDERS;

T A B L E 3 . 1 Oracle Set Operators

Operator Description

UNION Returns all unique rows selected by either query

UNION ALL Returns all rows, including duplicates selected by
either query

INTERSECT Returns rows selected from both queries

MINUS Returns unique rows selected by the first query but
not the rows selected by the second query

http://www.sybex.com

138 Chapter 3 � Joins and Subqueries

ORD_DATE PROD_ID CUSTOMER QUANTITY

--------- ---------- --------------- ----------

18-APR-00 1103 BILL 15

07-APR-00 1102 MARY 210

12-APR-00 1101 STEVE 30

18-APR-00 1103 SCOTT 50

SQL>

The UNION operator is used to return rows from either query. Let’s find
out the names of the company’s customers:

SQL> SELECT customer FROM east_orders

 UNION

 * SELECT customer FROM west_orders

SQL> /

CUSTOMER

BILL

LEEZA

MARY

SCOTT

STEVE

SQL>

Notice that even though there are total of nine rows in both tables, the query
returned only unique values. The UNION ALL operator does not sort or filter the
result set; it returns all rows from both queries. Let’s consider this SQL:

SQL> SELECT customer FROM east_orders

 UNION ALL

 * SELECT customer FROM west_orders

SQL> /

http://www.sybex.com

Multiple Table Queries 139

CUSTOMER

BILL

SCOTT

SCOTT

LEEZA

MARY

BILL

MARY

STEVE

SCOTT

9 rows selected.

SQL>

The INTERSECT operator is used to return the rows returned by both queries.
Let’s find the customers who do business in the east as well as in the west:

SQL> SELECT customer FROM east_orders

 INTERSECT

 * SELECT customer FROM west_orders

SQL> /

CUSTOMER

BILL

MARY

SCOTT

SQL>

Now, let’s find the customers who do business in the east but not in the
west. We can use the MINUS operator for this:

SQL> SELECT customer FROM east_orders

 MINUS

 * SELECT customer FROM west_orders

SQL> /

http://www.sybex.com

140 Chapter 3 � Joins and Subqueries

CUSTOMER

LEEZA

SQL>

Subqueries

A subquery is a query within a query. Typically, subqueries appear in
the WHERE clause of the SELECT statement. Oracle supports subqueries in the
FROM clause and the HAVING clause. A subquery answers the queries that have
multiple parts; the subquery answers one part of the question and the parent
query answers the other part. You can have any number of subqueries
nested; Oracle does not place a limit. The innermost query is evaluated first.
If you have to nest more than six subqueries, performance would be better
if you were to write a PL/SQL program involving cursors. Subqueries can be
used with SELECT, INSERT, UPDATE, or DELETE statements.

Single-Row and Multiple-Row Subqueries

Single-row subqueries return only one row of result. A single-row subquery
uses a single-row operator; the common operator is the equality operator (=).
In our example tables, to find the name of the employee with the highest sal-
ary, you first need to find the highest salary using a subquery, then execute
the parent query with the result from the subquery.

SQL> SELECT ename, salary

 FROM EMP

 WHERE salary = (SELECT MAX(salary) FROM emp);

ENAME SALARY

---------- ----------

A_EDWARD 5000

SQL>

http://www.sybex.com

Subqueries 141

The parent query of a single-row subquery can return more than one row.
For example, to find the names of employees who do not work in the same
department as SCOTT, you need to find the department where SCOTT
works in a subquery, then execute the parent query.

SQL> SELECT ename, deptno

 FROM emp

 WHERE deptno != (SELECT deptno FROM emp WHERE ename =
'SCOTT');

ENAME DEPTNO

---------- ----------

MARTIN 30

K_BLAKE 30

A_EDWARD 10

TURNER 30

SQL>

Multiple-row subqueries return more than one row of result from the sub-
query. It is safer to provide the multiple-row operators in the subqueries if
you are not sure of the results. In the previous query, if there is more than one
employee named SCOTT, the query will fail. The query will omit all the
departments where there is a SCOTT present if you use the multiple-row
operator. Here’s how to convert the query to a multiple-row subquery:

SQL> SELECT ename, deptno

 FROM emp

 WHERE deptno NOT IN (SELECT deptno FROM emp WHERE
ename = 'SCOTT');

ENAME DEPTNO

---------- ----------

MARTIN 30

K_BLAKE 30

A_EDWARD 10

TURNER 30

SQL>

IN is the most commonly used multiple-row subquery operator. Other opera-
tors are EXISTS, ANY, and ALL. You may use NOT with all these operators.

http://www.sybex.com

142 Chapter 3 � Joins and Subqueries

Correlated Subqueries

Oracle performs a correlated subquery when the subquery references a column
from a table referred to in the parent statement. A correlated subquery is evalu-
ated once for each row processed by the parent statement. The parent statement
can be a SELECT, UPDATE, or DELETE statement. In the following example, the
highest-paid employee of each department is selected. The subquery is executed
for each row returned in the parent query. Notice that the parent table column
is used with the alias name inside the subquery.

SQL> SELECT deptno, ename, salary

 FROM emp e1

 WHERE salary = (SELECT MAX(salary) FROM emp

 WHERE deptno = e1.deptno)

 ORDER BY deptno;

 DEPTNO ENAME SALARY

---------- ---------- ----------

 10 A_EDWARD 5000

 20 SCOTT 3000

 20 FORD 3000

 30 K_BLAKE 2850

SQL>

Here is an example of correlated subquery using the EXISTS operator.
The EXISTS operator checks for the existence of row in the subquery based
on the condition. The SELECT clause in the subquery is ignored when using
the EXISTS operator. The query lists the names of employees who work with
SCOTT. The subquery selects a dummy value of 'x', which is ignored.

SQL> SELECT e1.ename, d.dname

 FROM emp e1, dept d

 WHERE e1.deptno = d.deptno

 AND EXISTS

 (SELECT 'x' FROM emp e2

 WHERE e2.ename = 'SCOTT'

 * AND e2.deptno = e1.deptno)

http://www.sybex.com

Subqueries 143

SQL> /

ENAME DNAME

---------- --------------

JONES RESEARCH

SCOTT RESEARCH

FORD RESEARCH

SQL>

The column names in the parent queries are available for reference in
subqueries. The column names from the tables in the subquery cannot be
used in the parent queries. The scope is only the current query level and
its subqueries.

Following are some examples of subqueries in other DML statements.
To update the salary of all employees to the maximum salary in the

corresponding department (correlated subquery):

SQL> UPDATE emp

 SET salary = (SELECT MAX(salary)

 FROM emp e

 WHERE e.deptno = emp.deptno);

To delete the records of employees whose salary is below the average salary
in the department (correlated subquery):

SQL> DELETE FROM emp e

 WHERE salary < (SELECT AVG(salary) FROM emp

 WHERE deptno = e.deptno);

To insert records into a table using a subquery:

SQL> INSERT INTO dept

 SELECT * FROM dallas_dept;

In 8i, you can even specify a subquery in the VALUES clause of the INSERT
statement:

http://www.sybex.com

144 Chapter 3 � Joins and Subqueries

SQL> INSERT INTO dept

 VALUES ((SELECT MAX(deptno)+10 FROM dept), 'EDP');

NULL Values in Subqueries

A NULL value returned from the subquery is treated as any other NULL
value. No two NULL values are equal. If you need to relate the NULL values
returned from the subquery, you may need to manipulate the result set with
the NVL or DECODE function.

Multiple-Column Subqueries

A subquery is multiple-column when you have more than one column
in the SELECT clause of the subquery. Multiple-column subqueries are gener-
ally used to compare column conditions or in an UPDATE statement. Let’s con-
sider an example. Figure 3.3 shows the columns of the tables CUSTOMERS,
PRODUCTS, and ORDERS.

F I G U R E 3 . 3 Customer example

CUSTOMERS

CUST_ID

* CUST_NAME
PHONE

* CITY

PRODUCTS

PROD_ID

* PROD_NAME
QTY_STOCK

ORDERS

ORD_DATE
PROD_ID
CUST_ID

* QUANTITY
* PRICE

DISCOUNT

http://www.sybex.com

Multiple-Column Subqueries 145

The tables have the following data:

SQL> SELECT * FROM customers;

CUST_ CUST_NAME PHONE CITY

----- ------------------------------ --------------- -----

A0101 Abraham Taylor Jr. Fort Worth

B0134 Betty Baylor 972-555-5555 Dallas

B0135 Brian King Chicago

SQL> SELECT * FROM products;

 PROD_ID PROD_NAME QTY_STOCK

---------- -------------------- ----------

 1001 Floppy Disk -10 PK 4570

 1002 Floppy Disk -20 PK 324

 1741 CDR - 50 PK 125

 1892 Microsoft Mouse 345

 2001 Oracle 8i EE 0

 2002 Windows 98

 1045 Zip Disk

SQL> SELECT * FROM orders;

ORD_DATE PROD_ID CUST_ QUANTITY PRICE DISCOUNT

----------- ---------- ----- ---------- ---------- ----------

20-FEB-2000 1741 B0134 5 65.5

02-FEB-2000 1001 B0134 25 2065.85 50

02-FEB-2000 1001 B0135 3 45

SQL>

A multiple-column subquery can be used to find the most recent purchase
of a customer whose name starts with Betty. This is also an example of a
multiple nested subquery:

SQL> SELECT ord_date, cust_name, prod_name, quantity

 FROM customers c, products p, orders o

 WHERE o.cust_id = c.cust_id

http://www.sybex.com

146 Chapter 3 � Joins and Subqueries

 AND o.prod_id = p.prod_id

 AND (o.ord_date, o.cust_id) IN

 (SELECT max(ord_date), cust_id

 FROM orders

 WHERE cust_id IN (SELECT cust_id FROM customers

 WHERE upper(cust_name) LIKE 'BETTY%')

 * GROUP BY cust_id)

SQL>/

ORD_DATE CUST_NAME PROD_NAME QUANTITY

--------- ------------------------- -------------------- -

20-FEB-00 Betty Baylor CDR - 50 PK 5

SQL>

The next example updates two columns using a two-column subquery.
The objective is to update the ORDERS table for PRICE and DISCOUNT
for all records with product 1001, based on the latest price and discount
given to customer B0134 for product 1001.

SQL> SELECT * FROM orders;

ORD_DATE PROD_ID CUST_ QUANTITY PRICE DISCOUNT

----------- ---------- ----- ---------- ---------- ----------

20-FEB-2000 1741 B0134 5 65.5

02-FEB-2000 1001 B0134 25 2065.85 50

02-FEB-2000 1001 B0135 3 45

SQL> UPDATE orders o1

SET (price, discount) = (SELECT o1.quantity * o2.price /o2.quantity,

 o1.quantity * o2.discount /
o2.quantity

 FROM orders o2

 WHERE (o2.cust_id, o2.prod_id, o2.ord_date) =

 (SELECT o3.cust_id, o3.prod_id, max(o3.ord_date)

 FROM orders o3

 WHERE prod_id = 1001

http://www.sybex.com

Subqueries in the FROM Clause 147

 AND cust_id = 'B0134'

 GROUP BY o3.cust_id, o3.prod_id))

* WHERE prod_id = 1001

SQL> /

2 rows updated.

SQL> SELECT * FROM orders;

ORD_DATE PROD_ID CUST_ QUANTITY PRICE DISCOUNT

----------- ---------- ----- ---------- ---------- ----------

20-FEB-2000 1741 B0134 5 65.5

02-FEB-2000 1001 B0134 25 2065.85 50

02-FEB-2000 1001 B0135 3 247.9 6

SQL>

Subqueries in the FROM Clause

A subquery can appear in the FROM clause of the SELECT statement.
This is similar to defining and using a view. The subquery in the FROM
clause is enclosed in parentheses and may be given an alias name. The col-
umns selected in the subquery can be referenced in the parent query, as you
would select from any normal table. Let’s consider an example. To find the
average salary of each department and the difference in salary for each
employee respective to the department average, do this:

SQL> SELECT e.deptno, e.ename, e.sal salary, a.average,

 e.sal-a.average difference

 FROM emp e, (SELECT deptno, AVG(sal) average FROM
emp

 GROUP BY deptno) a

 WHERE e.deptno = a.deptno

 * ORDER BY 1, 2

SQL> /

http://www.sybex.com

148 Chapter 3 � Joins and Subqueries

 DEPTNO ENAME SALARY AVERAGE DIFFERENCE

---------- ---------- ---------- -------- ----------

 10 CLARK 2450 2,917 -467

 10 KING 5000 2,917 2,083

 10 MILLER 1300 2,917 -1,617

 20 ADAMS 1100 2,175 -1,075

 20 FORD 3000 2,175 825

 20 JONES 2975 2,175 800

 20 SCOTT 3000 2,175 825

 20 SMITH 800 2,175 -1,375

 30 ALLEN 1600 1,567 33

 30 BLAKE 2850 1,567 1,283

 30 JAMES 950 1,567 -617

 30 MARTIN 1250 1,567 -317

 30 TURNER 1500 1,567 -67

 30 WARD 1250 1,567 -317

14 rows selected.

SQL>

You can have a subquery in the INSERT, UPDATE, and DELETE statements in
place of the table name. Here’s an example: DELETE FROM (SELECT * FROM
dept WHERE deptno < 20) WHERE deptno = 10;

The subquery can have an optional WITH clause. WITH CHECK OPTION specifies
that, if the subquery is used in place of a table in an INSERT, UPDATE, or DELETE
statement, Oracle will not allow any changes to that table that would produce
rows that are not included in the subquery. WITH READ ONLY specifies that the sub-
query cannot be updated. Let’s look at an example:

SQL> INSERT INTO (SELECT * FROM dept WHERE deptno < 20)

 VALUES (30, 'MARKETING');

1 row created.

SQL> INSERT INTO (SELECT * FROM dept WHERE deptno < 20
WITH CHECK OPTION)

 VALUES (40, 'EDP');

http://www.sybex.com

Summary 149

INSERT INTO (SELECT * FROM dept WHERE deptno < 20 WITH
CHECK OPTION)

 *

ERROR at line 1:

ORA-01402: view WITH CHECK OPTION where-clause violation

SQL>

You cannot have an ORDER BY clause in the subquery appearing in a WHERE
clause. A FROM clause subquery can have an ORDER BY clause.

Summary

Joins are used to relate two or more tables or views. In a relational
database, it is common to have a requirement to join data. The tables are
joined by using a common column in the tables in the WHERE clause of the
query. If the join condition uses the equality operator (= or IN), it is known
as an equality join. If any other operator is used to join the tables, it is a non-
equality join. If you do not specify any join condition between the tables, the
result will be a Cartesian product: each row from the first table joined to
every row in the second table. To avoid Cartesian joins, there should be at
least n−1 join conditions in the WHERE clause when there are n tables in the
FROM clause. A table can be joined to itself. If you wish to select the results
from a table, even if there are no corresponding rows in the joined table, you
can use the outer join operator: (+).

A subquery is a query within a query. Writing subqueries is a powerful
way to manipulate data. You can write single-row and multiple-row subque-
ries. Single-row subqueries must return zero or one row; multiple-row sub-
queries return zero or more than one row. IN and EXISTS are the most
commonly used subquery operators. Subqueries can appear in the WHERE
clause or in the FROM clause; they can also replace table names in DELETE,
INSERT, and UPDATE statements.

http://www.sybex.com

150 Chapter 3 � Joins and Subqueries

Key Terms

Before you take the exam, make sure you’re familiar with the fol-
lowing terms:

Cartesian join

Correlated subquery

Outer join

Qualify

Self-join

Subquery

http://www.sybex.com

Review Questions 151

Review Questions

1. Which line of code has an error?

A. SELECT dname, ename

B. FROM emp e, dept d

C. WHERE emp.deptno = dept.deptno

D. ORDER BY 1, 2;

2. What will be the result of the following query?

SELECT c.cust_id, c.cust_name, o.ord_date, o.prod_id

FROM customers c, orders o

WHERE c.cust_id = o.cust_id (+);

A. List all the customer names in the CUSTOMERS table and the orders
each customer made from the ORDERS table, even if the customer
has not placed an order.

B. List only the names of customers from the CUSTOMERS table
who have placed an order in the ORDERS table.

C. List all orders from the ORDERS table, even if there is no valid
customer record in the CUSTOMERS table.

D. For each record in the CUSTOMERS table, list the information
from the ORDERS table.

http://www.sybex.com

152 Chapter 3 � Joins and Subqueries

3. The CUSTOMERS and ORDERS tables have the following data:

SQL> SELECT * FROM customers;

CUST_ CUST_NAME PHONE CITY

----- ------------------------------ --------------- --

A0101 Abraham Taylor Jr. Fort Worth

B0134 Betty Baylor 972-555-5555 Dallas

B0135 Brian King Chicago

SQL> SELECT * FROM orders;

ORD_DATE PROD_ID CUST_ID QUANTITY PRICE DISCOUNT

--------- ---------- ------- ---------- ---------- -------

20-FEB-00 1741 B0134 5 65.5

02-FEB-00 1001 B0134 25 2065.85 50

02-FEB-00 1001 B0135 3 247.9 6

When the following query is executed, what will be the value of PROD_ID
and ORD_DATE for the customer “Abraham Taylor Jr.”?

SELECT c.cust_id, c.cust_name, o.ord_date, o.prod_id

FROM customers c, orders o

WHERE c.cust_id = o.cust_id (+);

A. NULL, 01-JAN-01

B. NULL, NULL

C. 1001, 02-FEB-00

D. The query will not return customer “Abraham Taylor Jr.”.

http://www.sybex.com

Review Questions 153

4. Consider the following query:

SELECT dname, ename

FROM dept d, emp e

WHERE d.deptno = e.deptno

ORDER BY dname, ename;

What type of join is shown?

A. Self-join

B. Equijoin

C. Outer join

D. Non-equijoin

5. When using multiple tables to query information, in which clause do
you specify the table names?

A. HAVING

B. GROUP BY

C. WHERE

D. FROM

6. Which two operators are not allowed when using an outer join
between two tables?

A. OR

B. AND

C. IN

D. =

7. Which two operators are used to add more joining conditions in a
multi-table query?

A. NOT

B. OR

C. AND

D. Comma (,)

http://www.sybex.com

154 Chapter 3 � Joins and Subqueries

8. If you are selecting data from table A (with three rows) and table B (with
four rows) using the following query, how many rows will be returned?

SELECT A.*, B.*

FROM A, B;

A. 7

B. 1

C. 0

D. 12

9. Refer to the STATE table and its data below.
COUNTRY

CNT_CODE

CNT_NAME
CONTINENT

STATE

CNT_CODE
ST_CODE

ST_NAME

CITY

CNT_CODE
ST_CODE
CTY_CODE

CTY_NAME
POPULATION

SQL> SELECT * FROM country:

CNT_CODE CNT_NAME CONTINENT

1 UNITED STATES N. AMERICA
91 INDIA ASIA
65 SINGAPORE ASIA

SQL> SELECT * FROM state:

CNT_CODE ST_CODE ST_NAME

1 TX TEXAS
1 CA CALIFORNIA

91 TN TAMIL NADU
1 TN TENNESEE

91 KL KERALA

SQL> SELECT * FROM city:

CNT_CODE ST_CODE CTY_CODE CTY_NAME POPULATION

1 TX 1001 DALLAS
1 CA 2243 MADRAS

91 TN 8099 LOS ANGELES

SQL>

http://www.sybex.com

Review Questions 155

 Consider the following query:

SELECT cnt_code

FROM state

WHERE st_name = (SELECT st_name FROM state

 WHERE st_code = 'TN');

A. The query will return the CNT_CODE for the ST_CODE value 'TN'.

B. The query will fail and will not return any rows.

C. The query will display 1 and 91 as CNT_CODE values.

D. The query will fail because an alias name is not used.

10. Refer to the STATE and CITY tables in Question 9. What is the result
of the following query?

SELECT st_name "State Name"

FROM state

WHERE (cnt_code, st_code) = (SELECT cnt_code, st_code

 FROM city

 WHERE cty_name =
'DALLAS');

A. TEXAS

B. The query will fail because CNT_CODE and ST_CODE are not in
the WHERE clause of the subquery.

C. The query will fail because more than one column appears in the
WHERE clause.

D. TX

http://www.sybex.com

156 Chapter 3 � Joins and Subqueries

11. Which line of code has an error?

1 SELECT deptno

2 FROM emp

3 GROUP BY deptno

4 HAVING COUNT(deptno) =

5 (SELECT max(count(deptno))

6 FROM emp

7 GROUP BY deptno);

A. Line 3

B. Line 4

C. Line 5

D. Line 7

E. There is no error.

http://www.sybex.com

Review Questions 157

12. Which query is a correlated subquery?

A. select cty_name from city

 where st_code in (select st_code from state

 where st_name = 'TENNESSEE'

 and city.cnt_code = state.cnt_code);

B. select cty_name

 from city

 where st_code in (select st_code from state

 where st_name = 'TENNESSEE');

C. select cty_name

 from city, state

 where city.st_code = state.st_code

 and city.cnt_code = state.cnt_code

 and st_name = 'TENNESSEE';

D. select cty_name

 from city, state

 where city.st_code = state.st_code (+)

 and city.cnt_code = state.cnt_code (+)

 and st_name = 'TENNESSEE';

13. What value is returned from the subquery when you execute the fol-
lowing query using the data in Question 9’s graphic?

SELECT CNT_NAME

FROM country

WHERE CNT_CODE = (SELECT MAX(cnt_code) FROM country);

A. INDIA

B. 65

C. 91

D. SINGAPORE

http://www.sybex.com

158 Chapter 3 � Joins and Subqueries

14. Which line in the following query contains an error?

1 SELECT deptno, ename, sal

2 FROM emp e1

3 WHERE sal = (SELECT MAX(sal) FROM emp

4 WHERE deptno = e1.deptno

5 ORDER BY deptno);

A. Line 2

B. Line 3

C. Line 4

D. Line 5

15. What is the limit on the number of values a subquery using the IN
operator can return to the parent query?

A. 1

B. 32,764

C. Unlimited

D. 0

16. Why does the following query fail? (SCOTT and TIGER are valid
schema names in the database.)

SELECT scott.emp.ename, tiger.dept.dname

FROM scott.emp, tiger.dept

WHERE emp.deptno = dept.deptno

ORDER BY 2, 1;

A. You cannot query two tables belonging to two different owners.

B. You should not specify the schema name to qualify the column
names.

C. The ORDER BY clause should have 1, 2 when specifying by position.

D. An alias name not used to query multiple schema owner tables.

http://www.sybex.com

Review Questions 159

17. Consider the following query:

SELECT deptno, ename, salary salary, average,

 salary-average difference

FROM emp, (SELECT deptno dno, AVG(salary) average
FROM emp

 GROUP BY deptno)

WHERE deptno = dno

ORDER BY 1, 2;

Which of the following statements is correct?

A. The query will fail because no alias name is provided for the subquery.

B. The query will fail because a column selected inside the subquery
is referenced outside the scope of the subquery.

C. The query will work without errors.

D. GROUP BY cannot be used inside a subquery.

18. Refer to the COUNTRY table in Question 9. What will be result of the
following query?

INSERT INTO (SELECT cnt_code FROM country

 WHERE continent = 'ASIA')

VALUES (971, 'SAUDI ARABIA', 'ASIA');

A. One row will be inserted into COUNTRY table.

B. WITH CHECK OPTION is missing from the subquery.

C. The query will fail because the VALUES clause is invalid.

D. The WHERE clause cannot appear in the subqueries used in INSERT
statements.

http://www.sybex.com

160 Chapter 3 � Joins and Subqueries

19. Choose the most appropriate option.

A. A correlated subquery is evaluated for each row in the parent query.

B. A correlated subquery is evaluated once, and the result is used in
the parent query.

C. When a correlated subquery is evaluated, the parent query is evaluated
for each row in the subquery.

D. The correlated subquery is executed, and each row from the result
is evaluated against the parent query.

20. Which line has an error?

 1 SELECT EMPLOYEE_ID, EMPLOYEE_NAME

 2 FROM (SELECT empno EMPLOYEE_ID, ename EMPLOYEE_
NAME

 3 FROM emp WHERE salary > 2500 ORDER BY
ename)

 4 WHERE EMPLOYEE_NAME LIKE 'K%';

A. Line 4

B. Line 2

C. Line 3

D. No line has an error.

http://www.sybex.com

Answers to Review Questions 161

Answers to Review Questions

1. C. When table aliases are defined, you should qualify the column
names with the table alias only. In this case, the table name cannot be
used to qualify column names.

2. A. A (+) indicates an outer join and is used to display the records,
even if there are no corresponding records in the table mentioned.
Here, the outer-join operator is given next to the ORDERS table, so
even if there are no corresponding orders from a customer, the result
set will have the customer name.

3. B. When an outer join returns values from a table that does not have
corresponding records, a NULL is returned.

4. B. The DEPTNO columns in both tables are related using the equality
operator, so this is an equijoin.

5. D. When querying multiple tables, the table names are given in the
FROM clause, the column names to query data are listed in the SELECT
clause, and the join conditions are specified in the WHERE clause.

6. A, C. OR and IN are not allowed in the outer-join operations. You can
use AND and = in the outer join.

7. B, C. The operators OR and AND are used to add more joining condi-
tions to the query. NOT is a negation operator, and a comma is used to
separate column names and table names.

8. D. The query does not have a join condition, so the result is a Cartesian
product.

http://www.sybex.com

162 Chapter 3 � Joins and Subqueries

9. Refer to the STATE table and its data below.
COUNTRY

CNT_CODE

CNT_NAME
CONTINENT

STATE

CNT_CODE
ST_CODE

ST_NAME

CITY

CNT_CODE
ST_CODE
CTY_CODE

CTY_NAME
POPULATION

SQL> SELECT * FROM country:

CNT_CODE CNT_NAME CONTINENT

1 UNITED STATES N. AMERICA
91 INDIA ASIA
65 SINGAPORE ASIA

SQL> SELECT * FROM state:

CNT_CODE ST_CODE ST_NAME

1 TX TEXAS
1 CA CALIFORNIA

91 TN TAMIL NADU
1 TN TENNESEE

91 KL KERALA

SQL> SELECT * FROM city:

CNT_CODE ST_CODE CTY_CODE CTY_NAME POPULATION

1 TX 1001 DALLAS
1 CA 2243 MADRAS

91 TN 8099 LOS ANGELES

SQL>

http://www.sybex.com

Answers to Review Questions 163

B. There are two records in the STATE table with the ST_CODE value as
'TN'. Since we are using a single-row operator for the subquery, it will fail.
Option C would have been correct if we had used the IN operator instead
of = for the subquery.

10. A. The query will succeed, because there is only one row in the city
table with CTY_NAME value 'DALLAS'.

11. E. There is no error in the statement. The query will return the department
number where the most employees are working.

12. A. A subquery is correlated when a reference is made to a column
from a table in the parent statement.

13. C. The subquery returns 91 to the main query.

14. D. You cannot have an ORDER BY clause in the subquery used in a
WHERE clause.

15. C. When the IN operator is used, there is no limit on the rows returned by
a subquery. If you are using the = operator, only one row can be returned.

16. B. When qualifying the column names, you cannot qualify them with
the schema name; only table name or table alias can be used to qualify
a column name. The schema name can be used to qualify a table.

17. C. The query will work fine. We do not have to use the alias names
because the column names returned from the subquery are different
from the parent query.

18. C. Because only one column is selected in the subquery to which we are
doing the insert, only one column value should be supplied in the VALUES
clause. The VALUES clause can have only CNT_CODE value (971).

19. A. Oracle performs a correlated subquery when the subquery references a
column from a table referred to in the parent statement. A correlated sub-
query is evaluated once for each row processed by the parent statement.

20. D. There is no error in the query. Use of the ORDER BY clause inside the
subquery is allowed for subqueries used in the FROM clause.

http://www.sybex.com

 Chapter

4

Modifying Data and
Security

ORACLE8i SQL AND PL/SQL EXAM OBJECTIVES
OFFERED IN THIS CHAPTER:

�

Describe each DML statement

�

Insert rows into a table

�

Update rows in a table

�

Delete rows in a table

�

Control transactions with the

COMMIT

,

ROLLBACK

, and

SAVEPOINT

statements

�

Control transactions with the

SET TRANSACTION

statement

�

Create and modify users

�

Create roles to ease administration of security

�

Describe the difference between system and object privileges

�

Use the

GRANT

 and

REVOKE

 statements to grant and revoke

object privileges

Exam objectives are subject to change at
any time without prior notice and at Oracle’s
sole discretion. Please visit Oracle’s Train-
ing and Certification Web site (

http://

education.oracle.com/certification/

index.html

) for the most current exam
objectives listing.

http://www.sybex.com

I

n this chapter, we will cover how to

�

Change data using SQL and PL/SQL through data manipulation lan-
guage (DML) statements

�

Coordinate multiple changes using transactions

�

Allow or prevent changes using privileges and roles

DML Statements

D

ML is the subset of SQL that is employed to change data. See Table 4.1
for a list of DML

statements

 that Oracle supports.

T A B L E 4 . 1

The DML Statements Supported by Oracle

Statement Purpose

INSERT

Adds rows to a table

UPDATE

Changes the value stored in a table

DELETE

Removes rows from a table

SELECT FOR
UPDATE

Prevents other sessions from performing DML on
selected rows

LOCK TABLE

Prevents other sessions from performing DML on a
table

http://www.sybex.com

DML Statements

167

Inserting Rows into a Table

The

INSERT

 statement is used to add rows to a table. Rows can be added
with specific data values, or the rows can be created from existing data using
a subquery. Figure 4.1 shows the syntax of the

INSERT

 statement.

F I G U R E 4 . 1

The syntax of the

INSERT

 statement

The column list is optional, with the default list of columns being all columns
in order of their column_id. The column_id can be seen in the data dictionary
views

ALL_TAB_COLUMNS

,

USER_TAB_COLUMNS

, or

DBA_TAB_COLUMNS

. Here are
some examples of

INSERT

s:

INSERT INTO checking (account_id, create_date, balance)

 VALUES ('Kiesha' , SYSDATE, 5000);

INSERT INTO brokerage (account_id, create_date, balance)

 SELECT account_id, SYSDATE, 0

 FROM checking

 WHERE account_type = 'C';

INSERT INTO e_checking

 SELECT * from checking

 WHERE account_type = 'C';

The number and datatypes of values inserted must match the number and
datatype in the column list. Implicit data conversion will be performed if
possible to achieve the correct datatypes for the values. A

NULL

 string will
implicitly insert a

NULL

 into the appropriate column. The keyword

NULL

 can
be used to explicitly assign

NULL

 to a column. The following statements are
all equivalent:

INSERT INTO customers (cust_id, state, postal_code)

INSERT INTO

table

view

;

schema .

DBLink

DBLink@

@

column()

,
VALUES value

subquery

)(

,

http://www.sybex.com

168

Chapter 4 �

Modifying Data and Security

 VALUES ('Ariel', NULL, '94501');

or

INSERT INTO customers (cust_id, state, postal_code)

 VALUES ('Ariel',, '94501');

Updating Rows in a Table

The

UPDATE

 statement is used to modify existing rows in a table. Figure 4.2
shows the syntax of the

UPDATE

 statement.

F I G U R E 4 . 2

The syntax of the

UPDATE

 statement

Column_list can be either a single column or a number of columns delimited
by commas:

UPDATE order_rollup

SET (qty, price) = (SELECT SUM(qty), SUM(price)

 FROM order_lines

 WHERE customer_id = 'KOHL')

WHERE customer_id = 'KOHL'

 AND order_period = TO_DATE('01-Oct-2000');

or

UPDATE order_rollup

SET phone = '3125551212'

 ,fax = '7735551212'

WHERE customer_id = 'KOHL';

UPDATE ;

schema

DBLink

DBLink@

@

column()

,

WHERE conditions

subquerytable

view

SET

column =

()

,

=

expression

subquery()

.

http://www.sybex.com

DML Statements 169

Deleting Rows from a Table

The DELETE statement is used to remove rows from a table. You can see the
DELETE statement’s syntax in Figure 4.3.

After executing DML, you must execute a COMMIT to make the changes perma-
nent or a ROLLBACK to undo the changes.

F I G U R E 4 . 3 The syntax of the DELETE statement

Here are some examples of the DELETE statement:

--Remove old orders shipped to some states

DELETE FROM po_lines

WHERE ship_to_state IN ('TX','NY','IL')

 AND order_date < TRUNC(SYSDATE) - 90

--Remove customer Gomez

DELETE FROM customers

WHERE customer_id = 'GOMEZ';

--Remove duplicate line_detail_ids

--Note keyword FROM is not needed

DELETE line_details

WHERE rowid NOT IN (SELECT MAX(rowid)

 FROM line_detail

 GROUP BY line_detail_id)

--Remove all rows from the table order_staging

DELETE FROM order_staging;

DELETE FROM ;

schema .

DBLink

DBLink@

@

WHEREtable

view

conditions

http://www.sybex.com

170 Chapter 4 � Modifying Data and Security

The WHERE clause is optional; when it is missing, all rows are removed
from the table. Removing all rows from a large table can take a long time and
require significant rollback segment space. If you are truncating a table, con-
sider using the TRUNCATE statement.

Truncating a Table

If you want to empty a table of all rows, consider the DDL statement TRUNCATE.
Like a DELETE statement with no WHERE clause, TRUNCATE will remove all rows
from a table. However, TRUNCATE is not DMLit is DDL and therefore has dif-
ferent characteristics from the DELETE statement. Figure 4.4 shows the syntax
for TRUNCATE.

F I G U R E 4 . 4 The syntax for the TRUNCATE statement

The storage clause is optional, and the default is to DROP STORAGE, which
shrinks the table and its indexes down to minextent number of extents and resets
the NEXT parameter to the last deallocated extent. In most cases, this space deal-
location resets the segments to their original size and original NEXT parameter.
REUSE STORAGE will not shrink the table or adjust the NEXT parameter. For
example, to remove all rows from the ORDER_STAGING table, shrink the
table and indexes to the original size, reset the high-water mark, and commit the
change, you could truncate the table as follows:

TRUNCATE TABLE order_staging;

Alternatively, if you want to keep the storage (so that Oracle doesn’t have to
reallocate it when you reload the table), remove all rows, reset the high-water
mark, and commit the change, you would truncate the table as follows:

TRUNCATE TABLE order_staging REUSE STORAGE;

The TRUNCATE statement is similar to a DELETE statement without a
WHERE clause, except for the following:

� TRUNCATE is very fast on both large and small tables. DELETE will gen-
erate undo information, in case a rollback is issued, but TRUNCATE will
not generate undo.

TRUNCATE TABLE ;

schema .
STORAGE

table

DROP

REUSE

http://www.sybex.com

DML Statements 171

� TRUNCATE is DDL and like all DDL, performs an implicit com-
mityou cannot roll back a TRUNCATE. Any uncommitted DML
changes will also be committed with the TRUNCATE.

� TRUNCATE resets the high-water mark in the table and all indexes.
Since full table scans and index fast full scans read all data blocks up
to the high-water mark, full scan performance after a DELETE will not
improve, but after a TRUNCATE it will be very fast.

� TRUNCATE does not fire any DELETE triggers.

� There is no object privilege that can be granted to allow a user to trun-
cate another user’s table. The DROP ANY TABLE system privilege is
required to truncate a table in another schema. See the “Roles and
Privileges” section later in this chapter for more information.

� When a table is truncated, the storage for the table and all indexes can
be reset back to the initial size. A DELETE will never shrink the size of
a table or its indexes.

� You cannot truncate the parent table from an enabled referential
integrity constraint. You must first disable the foreign key constraints
that reference the parent table, then you can truncate the parent table.

Compared to dropping and re-creating a table, TRUNCATE does not

� Invalidate dependent objects

� Drop indexes, triggers, or referential integrity constraints

� Require privileges to be regranted again

Understanding the TRUNCATE statementhow it differs from the DELETE state-
ment and especially the fact that it will perform a commitis important and
may appear as an exam question.

Selecting Rows FOR UPDATE

The SELECT...FOR UPDATE statement is used to lock specific rows, preventing
other sessions from changing or deleting those locked rows. When the rows are
locked, other sessions can select these rows, but they cannot change or lock these
rows. The syntax for this statement is identical to a SELECT statement, except
you append the keywords FOR UPDATE to the statement. The locks acquired for
a SELECT...FOR UPDATE will not be released until the transaction ends with a
COMMIT or ROLLBACK, even if no data changes.

http://www.sybex.com

172 Chapter 4 � Modifying Data and Security

SELECT prod_id, desc, unit_price

FROM inventory

WHERE qty < 5

FOR UPDATE;

Locking a Table

The LOCK statement is used to lock an entire table, preventing other sessions from
performing most or all DML on it. Figure 4.5 shows the LOCK statement’s syntax.

F I G U R E 4 . 5 The syntax for the LOCK statement

Locking can be in either shared or exclusive mode. Shared mode prevents
other sessions from acquiring an exclusive lock but allows other sessions to
acquire a shared lock. Exclusive mode prevents other sessions from acquiring
either a shared or an exclusive lock.

LOCK TABLE inventory IN EXCLUSIVE MODE;

Changes to data require an exclusive lock on the rows changed. When
table locks are explicitly used, the chances for deadlocks increase. Therefore,
use table locks cautiously and sparingly.

Deadlocks

A deadlock occurs when two transactions hold locks and each is waiting for a lock
held by the other session. In the example sessions shown in Table 4.2, two users
hold clashing locks. Oracle detects this deadlock condition (usually quickly) and
raises an exception in one of the sessions. Table 4.2 shows how this works.

T A B L E 4 . 2 Deadlock Detection

Janet’s Session Time Point Brad’s Session

UPDATE customers
SET region='H'
WHERE state='43'
and county='046';
RX locks acquired
for updated rows

101

LOCK TABLE ;

schema .

MODEtable IN locking_mode

http://www.sybex.com

DML Statements 173

DML Locks in Oracle

Oracle uses DML locks to manage concurrency: multiple sessions modifying
the same data at the same time. There are two classes of locks:

� Share

� Exclusive

Share locks prevent other exclusive locks; exclusive locks prevent both
other share and other exclusive locks. No DML locks, however, prevent read
access. Changes to data require an exclusive row-level lock on the rows that
are changed. INSERT, UPDATE, and DELETE statements implicitly acquire the
necessary row exclusive locks. The five types of locks that Oracle uses are
described in the paragraphs that follow and listed in Table 4.3.

 102 UPDATE customers SET mgr=4567
WHERE state='47' and county='072';
RX locks acquired for updated rows

UPDATE customers
SET region='H'
WHERE state='47'
and county='072';
Waiting for Brad’s
transaction to
complete

103

 104 UPDATE customers SET mgr=4567
WHERE state='43' and county='046';
Waiting for Janet’s transaction to
complete

ERROR at line 1:
ORA-00060: dead-
lock detected
while waiting for
resource

T A B L E 4 . 2 Deadlock Detection (continued)

Janet’s Session Time Point Brad’s Session

http://www.sybex.com

174 Chapter 4 � Modifying Data and Security

Row Share (RS) This is a row lock, which is acquired implicitly via a
SELECT...FOR UPDATE statement or explicitly for no particular row in a
table with a LOCK TABLE IN ROW SHARE MODE statement. This lock prevents
other sessions from acquiring another RS or an RX lock (INSERT, UPDATE,
DELETE) on the rows affected. When acquired on a table, an RS lock does not
prevent changes to data rows but does prevent another session from getting
an exclusive table lock. An RS lock allows multiple, concurrent RS and RX
locks on different rows, as well as table share or SRX locks.

Row Exclusive (RX) This is a row lock, which is acquired implicitly via
an INSERT, UPDATE, or DELETE statement or explicitly for no particular
row in a table with a LOCK TABLE IN ROW EXCLUSIVE MODE statement.
This lock prevents other sessions from acquiring either an RS or an RX
lock (INSERT, UPDATE, DELETE) on the rows affected, as well as preventing
all table locks (S, SRX, and X). It allows multiple, concurrent RS and RX
locks on different rows.

Share (S) This is a table lock, which is explicitly acquired with a LOCK
TABLE IN SHARE MODE statement. This lock prevents other sessions from
acquiring RX locks (INSERT, UPDATE, DELETE) or other table locks (SRX
or X). It allows multiple, concurrent RS and S locks on the table. Locking
a table in share mode can give your session a transaction-level consistency
for the locked table: No other sessions can make changes to the table until
you commit and release the table lock.

Share Row Exclusive (SRX) This is a table lock, which is explicitly
acquired with a LOCK TABLE IN SHARE ROW EXCLUSIVE MODE statement.
This lock prevents other sessions from acquiring an S, RX, or X lock. It
allows other RS locks. It is similar to the S lock, except that only one SRX
lock can be placed on a table at a time. If session Y has an SRX lock on
a table, session Z can perform a SELECT...FOR UPDATE (RS lock), but
session Z will wait if it tries to then update (RX) the rows selected.

Exclusive (X) This is a table lock, which is explicitly acquired on a table
with a LOCK TABLE IN EXCLUSIVE MODE statement. This lock prevents

http://www.sybex.com

DML Statements 175

other sessions from acquiring any other share or exclusive locks on the
table. It allows only reading operations.

T A B L E 4 . 3 Lock Modes

Lock

Row/

Table Prevents Allows Acquiring Statements

RS
(Row
Share)

Row or
Table

X, RX on the
locked rows

RS, S,
SRX,
RX on
the
rows
not
locked

SELECT...FOR UPDATE
LOCK TABLE

RX
(Row
Exclu-
sive)

Row or
Table

X, SRX, S,
RX on the
locked rows

RS,
RX on
the
rows
not
locked

INSERT
UPDATE
DELETE
LOCK TABLE

S
(Share)

Table X, SRX, RX RS, S LOCK TABLE

SRX
(Share
Row
Exclu-
sive)

Table X, SRX, S, RX RS LOCK TABLE

X
(Exclu-
sive)

Table X, SRX, S, RX,
RS

 LOCK TABLE

http://www.sybex.com

176 Chapter 4 � Modifying Data and Security

Table 4.4 shows two hypothetical sessions: user Alan and user Molly, exe-
cuting DDL and DML on the same table.

T A B L E 4 . 4 Example Locking Sessions

Molly’s Session

Time

Point Alan’s Session

UPDATE customers
SET region='H'
WHERE state='43'
and county='046';
RX locks acquired
for updated rows

201

 202 TRUNCATE TABLE customers;
ERROR at line 1:
ORA-00054: resource busy and acquire
with NOWAIT specified
DDL is blocked by the RX lock

 203 LOCK TABLE customers IN EXCLUSIVE MODE
NOWAIT;
…ORA-00054: resource busy…

 204 LOCK TABLE customers IN EXCLUSIVE
MODE;
Waiting for Molly’s session

COMMIT; 205 Table locked

UPDATE customers
SET region='H'
WHERE state='47'
and county='072';
Waiting for Alan’s
session

206

Update complete 207 ROLLBACK;

LOCK TABLE
customers IN ROW
EXCLUSIVE MODE;

208

http://www.sybex.com

DML Statements 177

 209 LOCK TABLE customers IN SHARE ROW
EXCLUSIVE MODE NOWAIT;
…ORA-00054: resource busy…

 210 LOCK TABLE customers IN ROW EXCLUSIVE
MODE;

 211 UPDATE customers SET mgr=4567
WHERE state='43' and county='046';

 212 COMMIT;

UPDATE customers
SET region='H'
WHERE state='43'
and county='046';

213

COMMIT; 214

LOCK TABLE
customers IN
SHARE ROW
EXCLUSIVE MODE;

215

 216 LOCK TABLE customers IN SHARE MODE
NOWAIT;
…ORA-00054: resource busy…

 217 UPDATE customers SET mgr=4567
WHERE state='47' and county='072';
Waiting on Molly’s session

COMMIT; 218 Customers updated

T A B L E 4 . 4 Example Locking Sessions (continued)

Molly’s Session

Time

Point Alan’s Session

http://www.sybex.com

178 Chapter 4 � Modifying Data and Security

Transaction Control

Transaction control involves coordinating multiple, concurrent access
to the same data. When one session is changing data that another session is
accessing, Oracle uses transactions to control who has visibility to what
changing data, and when they can see that data.

SELECT region
FROM customers
WHERE state='47'
and county='072'
FOR UPDATE
NOWAIT;
…ORA-00054:
resource busy…

219

 220 COMMIT;

LOCK TABLE
customer IN ROW
SHARE MODE;

221

 222 INSERT INTO customer …

 223 COMMIT;

LOCK TABLE
customer IN SHARE
MODE;

224

 225 INSERT INTO customer …
Waiting for Molly’s session

COMMIT; 226

 227 COMMIT;

T A B L E 4 . 4 Example Locking Sessions (continued)

Molly’s Session

Time

Point Alan’s Session

http://www.sybex.com

Transaction Control 179

Transactions

Transactions represent an atomic unit of work. All changes to data in a
transaction are applied together or rolled back (undone) together. There are
a number of statements in SQL and PL/SQL that let the programmer control
transactions. The programmer can

� Explicitly begin a transaction, choosing statement-level consistency or
transaction-level consistency

� Set undo savepoints and undo changes back to a savepoint

� End a transaction by making the changes permanent or undoing
the changes

Table 4.5 explains transaction control statements.

Throughout this section, we will use a banking example to clarify
transactional concepts and the control statements used to ensure data is
changed as designed. In our example, we have a banking customer Kiesha
who has a checking account and a brokerage account with her bank.
When Kiesha transfers $5,000 from her checking account to her broker-
age account, the balance in her checking account is reduced by $5,000, as
shown in Figure 4.6, and the cash balance in her brokerage account is
increased by $5,000. We cannot allow only one account to changethey

T A B L E 4 . 5 Transaction Control Statements

Statement Purpose

COMMIT Ends the current transaction, making data changes
permanent and visible to other sessions

ROLLBACK Undoes all data changes in the current transaction

ROLLBACK TO
SAVEPOINT

Undoes all data changes in the current transactions
going chronologically backward to the optionally
named savepoint

SET
TRANSACTION

Enables transaction or statement consistency;
specifies named rollback segment for transaction use

http://www.sybex.com

180 Chapter 4 � Modifying Data and Security

must both change or neither must change. To couple these changes, we
issued the two update statements and the two log statements in a single
transaction. If there is any failure in one of these four statements (say,
perhaps, an index on the CHECKING_LOG table hits maxextents), then
none of the changes will go through. Only if all four statements succeed
will the changes be committed and made permanent.

F I G U R E 4 . 6

A transaction will implicitly begin with an INSERT, UPDATE, DELETE, or
SELECT...FOR UPDATE statement. The transaction will always end with
either an implicit or explicit COMMIT or ROLLBACK statement. A ROLLBACK TO
SAVEPOINT will not end a transaction.

Undo the changes
and end the
transaction.

Keep the
changes and end

the transaction.

Implicitly begin
the transaction.

http://www.sybex.com

Transaction Control 181

Savepoints and Partial Rollbacks

Savepoints are intermediate fallback positions in SQL and PL/SQL code. The
ROLLBACK TO SAVEPOINT statement is used to undo changes chronologically
back to the last savepoint or to the named savepoint. Savepoints are not used
extensively in industry. You must understand them, however, because there
will likely be a question related to savepoints on the exam. Savepoints are
not labels for GOTO statements, and ROLLBACK TO SAVEPOINT is not a GOTO.
The code after a savepoint does not get reexecuted after a ROLLBACK TO
SAVEPOINTonly the data changes made since that savepoint are undone.

Again, an example will help clarify. Kiesha tries to withdraw $100 from
her checking account. We want to log her request in the ATM activity log,
but if she has insufficient funds, we don’t want to change her balance and
will deny her request:

BEGIN

 INSERT INTO ATM_LOG(who, when, what, where)

 VALUES('Kiesha', SYSDATE, 'Withdrawal of
$100','ATM54');

 SAVEPOINT ATM_logged;

 UPDATE checking

 SET balance = balance – 100

 RETURNING balance INTO new_balance;

 IF new_balance < 0

 THEN

 ROLLBACK TO ATM_logged; -- undo the update statement

 COMMIT; -- keep the changes prior to the savepoint
(the insert)

 RAISE insufficient_funds; -- Raise an error / deny
the request

 END IF;

END;

COMMIT; -- keep the insert and the update

 The keyword SAVEPOINT is optional, so the following two statements are
equivalent:

ROLLBACK TO ATM_logged;

ROLLBACK TO SAVEPOINT ATM_logged;

http://www.sybex.com

182 Chapter 4 � Modifying Data and Security

Because savepoints are not frequently used, always include the keyword
SAVEPOINT in any ROLLBACK TO SAVEPOINT statement. That way, anyone
reading the code will be reminded of the keyword SAVEPOINT, making it
easier to recognize that a partial rollback has occurred.

Consistency and Transactions

Consistency is one of the key concepts underlying the use of transaction control
statements. Understanding Oracle’s consistency model will enable you to employ
transaction control appropriately and answer exam questions on transaction con-
trol correctly. Oracle implements consistency to guarantee that the data seen by a
statement or transaction does not change until that statement or transaction com-
pletes. This support is only germane to multiuser databases where one database
session can change (and commit) data that is being read by another session.

Oracle always uses statement-level consistency, which ensures that the
data visible to a statement does not change during the life of that statement.
Transactions can consist of multiple statements. When used, transaction-
level consistency will ensure that the data visible to all statements in a trans-
action does not change for the life of the transaction.

Our banking example will help clarify: Matt starts running a total balance
report against the checking account table at 10:00; this report takes five minutes.
During those five minutes, the data that he is reporting on changes when Kiesha
transfers $5,000 from her checking account to her brokerage account. When
Matt’s session gets to Kiesha’s checking account record, it will need to recon-
struct what the record looked like at 10:00. Matt’s session will, unbeknownst to
him, examine the rollback segment that Kiesha used during her account transfer
transaction and recreate the image of what the checking account table looked
like at 10:00.

Next, at 10:05, Matt runs a total balance report on the cash in the bro-
kerage account table. If he is using transaction-level consistency, his session
will re-create what the brokerage account table looked like at 10:00 (and
exclude Kiesha’s transfer). If Matt’s session is using the default statement-
level consistency, his session will report on what the brokerage account table
looked like at 10:05 (and include Kiesha’s transfer).

Oracle never uses locks for reading operations: Reading operations will
never block writing operations. Instead, the rollback segments are used to re-
create the image needed. Since rollback segments are released for reuse when
the transaction writing to them commits, sometimes a consistent image can-
not be re-created. When this happens, either a “snapshot too old” exception

http://www.sybex.com

Transaction Control 183

is raised or a “can’t serialize access for this transaction” exception is raised.
Using our example, if Matt’s transaction can’t locate Kiesha’s transaction in
the rollback segments because it was overwritten, Matt’s transaction will not
be able to re-create the 10:00 image of the table and will fail.

Oracle implements consistency through the use of System Change Num-
bers (SCNs). An SCN is a time-oriented, database internal key. The SCN
only increases, never decreases, and represents a point in time for compari-
son purposes. So, in our previous example, Matt’s first statement gets the
current SCN when it starts reading the checking account table. This starting
SCN is compared to each data block’s SCN; if the data block SCN is higher
(newer), then the rollback segments are examined to find the older version of
the data.

Enabling Transaction-Level Consistency

One of the uses of the SET TRANSACTION statement is to enable either transaction-
level or statement-level consistency. Oracle uses these terms:

� ISOLATION LEVEL READ COMMITTED indicates statement-level
consistency.

� ISOLATION LEVEL SERIALIZABLE indicates transaction-level
consistency.

Here are some examples:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

SET TRANSACTION ISOLATION LEVEL READ COMMITTED; -- the
default

Transaction-level consistency can also be enabled for transactions that
only read (do not modify) data, with this statement:

SET TRANSACTION READ ONLY;

Any attempts to change data in a READ ONLY transaction will raise an excep-
tion. Therefore, READ ONLY transactions can only use the following statements:

� SELECT (without a FOR UPDATE clause)

� LOCK TABLE

� SET ROLE

� ALTER SYSTEM

� ALTER SESSION

http://www.sybex.com

184 Chapter 4 � Modifying Data and Security

To end the read-only transaction, you must execute a COMMIT or
ROLLBACK statement. The COMMIT or ROLLBACK is necessary to end the trans-
action, even though no data has changed.

The other use of the SET TRANSACTION statement is to direct Oracle to use
a specifically named rollback segment for the transaction. This usage is most
common in environments that have mostly small transactions, with a few
large transactions that require significant rollback segment space for undo.
By default, Oracle allocates rollback segments to transactions using a round-
robin algorithm. A particularly large transaction can therefore be assigned to
any rollback segment and cause that rollback segment to grow significantly
in size. This dynamic space management can have negative performance and
disk-space implications. To avoid the random assignment of the large trans-
action to any rollback segment, begin the large transaction with a SET
TRANSACTION statement, such as this one:

SET TRANSACTION USE ROLLBACK SEGMENT rb_large;

where rb_large is the name of the large rollback segment. Now, by specifi-
cally assigning the large transaction to a large rollback segment, the other
(small) rollback segments will not undergo dynamic space management, and
greater efficiency will ensue.

Let’s look at an example. We have a rollback segment tablespace 2GB in
size and need 10 rollback segments to accommodate our peak online users.
These peak online users have only small transactions. Once a week, we have
four large transactions run one after another. These large transactions, which
delete and load data, require 1GB of undo each. Our rollback segments are
sized as follows:

rb_large (initial 100M next 100M minextents 2)

rb1 (initial 1M next 1M minextents 5)

rb2 (initial 1M next 1M minextents 5)

rb3 (initial 1M next 1M minextents 5)

rb4 (initial 1M next 1M minextents 5)

rb5 (initial 1M next 1M minextents 5)

rb6 (initial 1M next 1M minextents 5)

rb7 (initial 1M next 1M minextents 5)

rb8 (initial 1M next 1M minextents 5)

rb9 (initial 1M next 1M minextents 5)

http://www.sybex.com

Creating and Modifying Users 185

These all fit nicely in the 2GB tablespace. If we used the default
round-robin allocation, our four large transactions would use four sep-
arate rollback segments— and would try to grow each of these four to
1GB. Four 1GB segments won’t fit in our 2GB tablespace, and the DBA
would get paged at 2A.M. when the job fails. Instead, we begin each of
our four large transactions with this:

SET TRANSACTION USE ROLLBACK SEGMENT rb_large;

 Now, our four large transactions reuse the same large rollback segment.
We can keep our rollback segment tablespace at 2GB—and the DBA can
sleep all night.

Creating and Modifying Users

The CREATE USER statement is employed to create a user (sometimes
called an account or schema) and optionally to assign additional attributes
to that user. When a user connects to an Oracle database, he must be authen-
ticated. Oracle can be configured for one of three types of authentication:

� Database

� External

� Global

The default is database authentication. With database authentication,
when a user connects to the database, Oracle checks that the user is a legit-
imate user for that database and has supplied the correct password. With
external authentication, Oracle only checks that the user is a legitimate user
for that database; the password is validated by the operating system or net-
work. With global authentication, Oracle only checks that the user is a legit-
imate user for that database; the password is validated by the Oracle Security
Service, a separately licensed and configured service.

Database-Authenticated User Accounts

Database-authenticated accounts are the default type of account, and prob-
ably the most common. To create a database-authenticated account for user-
name piyush with a password of welcome, you would execute the following:

CREATE USER piyush IDENTIFIED BY welcome;

http://www.sybex.com

186 Chapter 4 � Modifying Data and Security

Piyush can change his password to saraswati by executing this:

ALTER USER piyush IDENTIFIED BY saraswati;

 The keywords IDENTIFIED BY <password> tell Oracle that the account
is a database-authenticated account.

Externally Authenticated User Accounts

User accounts can be configured not to check a password in the database, but
instead to rely on password checking from the client’s operating system. These
externally identified accounts are sometimes called OPS$ accounts because
when they were initially introduced in Oracle6, the Oracle account had to be
prefixed with the key string OPS$. This is also why the default for the init.ora
parameter os_authent_prefix is OPS$—the default behavior is consistent with
Oracle6. The os_authent_prefix defines the string that must be prepended to
the operating system account name for Oracle externally identified accounts. If
this parameter is left as the default of OPS$, then the operating system user appl
would be created in Oracle as follows:

CREATE USER ops$appl IDENTIFIED EXTERNALLY.

Frequently, the os_authent_prefix will be set to a blank string (os_
authent_prefix="") so no prefix is required. The same APPL account
would then be created like this:

CREATE USER appl IDENTIFIED EXTERNALLY.

The keywords IDENTIFIED EXTERNALLY tell Oracle that the account is an
externally authenticated account. Externally identified accounts are used
extensively in cron jobs, batch jobs, or other non-interactive programs where
incorporating a password would violate security protocols or result in bro-
ken processes when passwords are changed. Externally identified accounts
should not be used when client operating systems are inherently insecure
(such as MS-DOS, Windows 95, or the Mac OS).

Globally Authenticated User Accounts

User accounts can be configured not to check a password in the database,
but instead to rely on password checking from an X.509 enterprise directory
service. These types of accounts will be most common in large organizations

http://www.sybex.com

Creating and Modifying Users 187

where a single sign-on system is used. To create a user with global authenti-
cation, use the keywords IDENTIFIED GLOBALLY AS <directory_name>.
Here’s an example:

CREATE USER scott IDENTIFIED GLOBALLY AS 'CN=scott,
OU=division1, O=sybex, C=US';

Creating and Altering User Accounts

The CREATE USER statement is employed to create a user and can also be
used to assign any combination of account attributes to the user account.
The ALTER USER statement is used to assign any combination of account
attributes to the user account, but the account must already exist. The
CREATE USER statement must minimally include the username and the pass-
word clause.

CREATE USER piyush IDENTIFIED BY saraswati;

CREATE USER piyush IDENTIFIED EXTERNALLY;

ALTER USER manoj IDENTIFIED BY itsasecret;

There are quite a few account attributes that can be assigned with the
CREATE or ALTER USER statements. These attributes are described in the fol-
lowing paragraphs.

Assign a Default Tablespace to the User The default tablespace is
where the user’s objects (tables, indexes, and clusters) will be placed if an
explicit tablespace clause is not included in that object’s CREATE state-
ment. The default is the system tablespace, which is generally not a good
place to put them.

CREATE USER piyush IDENTIFIED BY saraswati

DEFAULT TABLESPACE user_data;

ALTER USER manoj DEFAULT TABLESPACE devl_data;

Assign a Temporary Tablespace to the User The temporary
tablespace is where temporary segments from large sorting operations are

http://www.sybex.com

188 Chapter 4 � Modifying Data and Security

placed. The default is the system tablespace, which is generally not a good
place to put them.

CREATE USER piyush IDENTIFIED BY saraswati

TEMPORARY TABLESPACE temp;

ALTER USER manoj TEMPORARY TABLESPACE temp;

Assign Tablespace Quotas to the User Tablespace quotas limit the
amount of disk space that a user can consume within a tablespace.
These quotas can be specified in bytes, kilobytes, megabytes, or the
special quota unlimited, which allows the user to consume any amount
of disk space in the specified tablespace. The quota amount is inter-
preted as bytes if no suffix is included, as kilobytes if the suffix K is
included, and as megabytes if the suffix M is included. So 32768,
512K, 8M are 32768 bytes, 512 kilobytes (524,288 bytes), and 8
megabytes (8,225,568 bytes), respectively.

CREATE USER piyush IDENTIFIED BY saraswati

DEFAULT TABLESPACE user_data

QUOTA UNLIMITED ON user_data

QUOTA 20M ON tools;

ALTER USER manoj QUOTA 2500K ON tools;

Assign a Profile to the User Profiles can be used to limit the resources
that a user’s session can consume. Some of these limiting resources include
connect time, idle time, logical reads per session, failed login attempts,
and the password verification function. The default profile allows unlim-
ited resource usage. Before using profiles to limit resource consumption,
the init.ora parameter resource_limit must be set to TRUE.

CREATE USER piyush IDENTIFIED BY saraswati

PROFILE instructor;

ALTER USER manoj PROFILE engineer;

http://www.sybex.com

Creating and Modifying Users 189

Make Roles Assigned to a User Enabled or Disabled, by Default This
attribute can only be set with the ALTER USER statement. Attempts to set
this attribute with a CREATE USER statement will raise an exception.

ALTER USER manoj DEFAULT ROLE ALL EXCEPT salary_adm;

Expire the User’s Password so that It Will Need to be Changed on the
Next Login When a user’s password expires, the user will be forced to
change passwords on the next connection to the database. Oracle will first
prompt the user for the old password, then for the new password, and
finally for the new password a second time in order to confirm it. This
functionality is frequently used for new accounts when a default pass-
word is assigned and the new user must change her password immedi-
ately. Another common use is when the user forgets her password. The
DBA changes and expires it, then lets the user know the temporary pass-
word. With the expired password, the user must change her password on
the next login.

ALTER USER manoj IDENTIFIED BY welcome;

ALTER USER manoj PASSWORD EXPIRE;

Lock the Account so the User Cannot Log in to the Database This
capability is frequently used for application schema accounts where no
one actually logs into the database as that user, but that user owns tables
used by an application.

ALTER USER gl ACCOUNT LOCK;

Unlock the Account so the User Can Again Log in to the Database
When account locking is performed on an application schema account,
this attribute would need to be unlocked for upgrades, then locked again
after the maintenance operation.

ALTER USER gl ACCOUNT UNLOCK;

http://www.sybex.com

190 Chapter 4 � Modifying Data and Security

Privileges and Roles

Privileges allow a user account to access objects or execute programs
that are owned by another user. Oracle has three types of privileges:

� Object

� System

� Role

These privileges can be granted (assigned) to a user, to the special user
public, or to a role. We discussed users in the previous section, “Creating and
Altering User Accounts.” Granting a privilege to the special user “public”
implicitly grants that privilege to any user who connects to the database.
Granting a privilege to public is analogous to granting that privilege to every-
one, without having to specify who everyone is.

A role is an instrument for administering privileges. Privileges can be
granted to a role, then that role can be granted to another role or to a user.
Users can thus inherit privileges via roles. Roles serve no other purpose than
to administer privileges. Once granted, privileges can be revoked (cancelled)
in the same manner in which they were granted.

Creating and Using Roles

As you just read, roles exist only to ease the administration of privileges. To
take advantage of the administrative relief that a role may provide, you must
first create it with the CREATE ROLE statement. Figure 4.7 shows the CREATE
ROLE statement’s syntax.

F I G U R E 4 . 7 The syntax for the CREATE ROLE statement

CREATE ROLE ;

BY

IDENTIFIED

role_name

password

EXTERNALLY

GLOBALLY

http://www.sybex.com

Privileges and Roles 191

By default, a role will be created without a password or other identifica-
tion. If a role is created with the IDENTIFIED BY clause, that role is disabled
by default. To enable the role, use the SET ROLE statement:

SET ROLE role_name IDENTIFIED BY password;

Externally and globally identified roles are authenticated by the operating
system and by Oracle Security Service, respectively. Often, users will need
privileges to modify data in application tables, but only when running the
application, not when using ad hoc tools. This context-sensitive security can
be achieved by a role that has a password. When a user connects to the data-
base inside the application, the application code, without the user’s knowl-
edge, will execute a SET ROLE statement, passing the secret password to the
database. The user does not have to know the role’s password and therefore
may not be able to manually execute the SET ROLE with password while
inside an ad hoc tool, such as SQL*Plus.

The SET ROLE statement can be used to enable or disable any combination
of roles that have been granted to a user.

Object Privileges

Object privileges are permissions on schema objects, such as tables, views,
programmer-defined functions, and libraries. There are nine different types
of object privileges that can be granted to a user or role. These privileges are
shown here.

Privilege
Object

Alter Delete Execute Index Insert Read Reference Select Update

Directory No No No No No Yes No No No

Function No No Yes No No No No No No

Procedure No No Yes No No No No No No

Package No No Yes No No No No No No

DB Object No No Yes No No No No No No

Library No No Yes No No No No No No

http://www.sybex.com

192 Chapter 4 � Modifying Data and Security

For objects that can have more than one privilege, the special privilege
ALL can be granted or revoked. For tables, ALL includes SELECT, INSERT,
UPDATE, and DELETE, as well as INDEX, ALTER, and REFERENCE. Take care
before granting ALL on a table; you might not wish to grant the INDEX,
ALTER, and REFERENCE privileges.

The ALTER Privilege on a Table This privilege allows the grantee to
execute the ALTER TABLE or LOCK TABLE statement on the table. An
ALTER TABLE statement can do the following:

� Rename the table

� Add columns

� Drop columns

� Change the datatype and size of columns

� Convert the table to a partitioned table

The ALTER privilege on a sequence allows the grantee to execute the ALTER
SEQUENCE statement on the sequence, which lets the grantee do such
things as reset the minvalue, increment, and cache size.

The DELETE Privilege on a Table or View This privilege allows the
grantee to execute a DELETE statement to remove rows from the table or
view. The SELECT privilege must be granted together with the DELETE
privilege, or the grantee will be unable to select the rows and therefore
unable to delete them. DELETE also allows the grantee to lock the table.

The EXECUTE Privilege on a Function or Procedure This privilege gives
the grantee the permission to execute the specified program. The EXECUTE
privilege on a package allows the grantee to execute or use any program or
program object (such as a record type or cursor) declared in the package spec-
ification. The EXECUTE privilege on an operator or type will allow the grantee
to use that operator in SQL or PL/SQL. On a DB Object, EXECUTE will allow
the grantee to use that DB Object and invoke its methods.

Operator No No Yes No No No No No No

Sequence Yes No No No No No No Yes No

Table Yes Yes No Yes Yes No Yes Yes Yes

Type No No Yes No No No No No No

View No Yes No No Yes No No Yes Yes

http://www.sybex.com

Privileges and Roles 193

The INDEX Privilege on a Table This privilege allows the grantee to
create indexes on or to lock that table. Confusion can arise when one
schema owns a table but another schema owns the indexes. Use care when
granting this privilege.

The INSERT Privilege on a Table or View This privilege gives the grantee
the ability to create rows in that table or view. If the INSERT privilege is on
specific columns of the table or view, the grantee will only be able to populate
the columns on which he has been granted INSERT privileges. INSERT also
implicitly gives the grantee the ability to lock the table.

The READ Privilege This privilege can only be granted on a directory and
lets the grantee read BFILEs in the specified directory. This privilege
should not be confused with SELECT, which allows a user to read a table
or view.

The REFERENCE Privilege This privilege can only be granted on a table
to a user (not a role). It allows the grantee to create integrity constraints
that reference that table. The grantee can also lock the table. SELECT does
not have to be granted with REFERENCE for the database to enforce refer-
ential integrity constraints. However, this can give rise to situations in
which the parent schema cannot read the child records and the child
schema cannot read the parent records, but the database will enforce the
parent-child relationship. Use care when granting this privilege.

The SELECT Privilege on a Table or View This privilege gives the
grantee permission to execute SELECT statements on the table or view,
allowing the grantee to read the table’s, or view’s contents. The SELECT
privilege on a sequence allows the grantee to obtain the current value
(CURRVAL) or to increment the value by selecting NEXTVAL.

The UPDATE Privilege This privilege allows the grantee to change data
values in the table or view. The SELECT privilege must be granted together
with the UPDATE privilege, which implicitly gives the grantee the ability to
lock the table.

At a finer granularity, you can grant the privileges INSERT, UPDATE, and
REFERENCES on specific columns of tables. On views, you can grant INSERT
and UPDATE on specific columns. Revoking column privileges, however, must
be done table-wide. For example, Norman grants UPDATE on the columns sur-
name, address, and city, then later needs to revoke UPDATE on address and city,
leaving UPDATE on surname. Norman must first revoke UPDATE on the whole
table, then grant UPDATE on the column surname again.

http://www.sybex.com

194 Chapter 4 � Modifying Data and Security

System Privileges

System privileges give the grantee the ability to perform system-level activi-
ties, such as connecting to the database, altering the user session, creating
tables, or creating users. A complete list of system privileges can be obtained
from the data dictionary view SYSTEM_PRIVILEGE_MAP. Like object privi-
leges, system privileges are assigned with the GRANT statement. A notable
syntactical difference between system and object privileges is how you pass
along the ability for the recipient to grant that privilege in turn. With object
privileges, you use the WITH GRANT OPTION clause, but with system privi-
leges you use the WITH ADMIN OPTION clause. The functionality is identical,
but the syntax is different. This syntax difference is trivial in practice,
because if you try to grant system privileges using WITH GRANT OPTION, the
error message says, “Only the ADMIN OPTION can be specified.” On the
exam, however, you must know the syntax and not rely on an error message.

Roles and Role Privileges

Role privileges are those privileges that a user owns by way of a role. Any
combination of system privileges, object privileges, and role privileges may
be granted to a role. As with system privileges, passing along the ability for
the recipient to grant the privilege in turn requires the WITH ADMIN OPTION
clause. Role privileges can be enabled and disabled during a session with the
SET ROLE statement. Therefore, role privileges cannot be relied upon for
privileges in stored SQL. If a function, procedure, package, trigger, or
method uses an object owned by another schema, privileges on that object
must be granted directly to the owner of the stored SQL. Since granted priv-
ileges cannot vary from session to session, they will always be in effect and
can be relied upon.

Assigning and Rescinding Privileges

Earlier in this chapter, we covered object, system, and role privileges. When
you want to assign one or more of these privileges to a user or a role, use the
GRANT statement. You can see the GRANT statement’s syntax in Figure 4.8.

F I G U R E 4 . 8 The syntax for the GRANT statement

GRANT ;
system
privilege

user

role

PUBLIC

,

WITH ADMIN OPTION

TO

role

,

http://www.sybex.com

Privileges and Roles 195

Object privileges can be granted WITH GRANT OPTION, which gives the
grantee permission to grant those privileges in turn to any other user or role,
or to public. For example, in Figure 4.9 Oliver grants SELECT on sales to Bill
with the grant option. Bill can then grant SELECT on sales to Bonnie.

F I G U R E 4 . 9 Granting privileges

If user Bill is dropped, however, as shown in Figure 4.10, the chain is broken
and Bonnie loses her SELECT privilege, as you can see in Figure 4.11.

F I G U R E 4 . 1 0 The chain is broken.

F I G U R E 4 . 1 1 The privileges are lost.

Because both grantor and grantee for object privileges are kept in the data
dictionary, a user or role can be granted the same privilege from multiple
grantees. When this happens, all grantors must revoke the privilege before
the grantee actually loses the ability to exercise the privilege. Let’s take our
previous example of Oliver, Bill, and Bonnie, but this time add another user,
Dennis. Oliver has granted to Bill who has granted to Bonnie. Oliver has also

Oliver Bill BonnieSelect with
grant option Select

Oliver grants to Bill, and Bill grants to Bonnie.

Oliver Bill BonnieSelect with
grant option Select

User Bill is dropped.

Oliver Bonnie

Bonnie loses the privileges that Bill had granted to her.

http://www.sybex.com

196 Chapter 4 � Modifying Data and Security

granted to Dennis, and Dennis has granted to Bonnie, as well. You can see
this in Figure 4.12.

F I G U R E 4 . 1 2 Receiving a privilege from multiple grantors

Now, when user Bill is dropped, Bonnie only loses one of her two privi-
leges. She can still execute SELECT statements on the sales table, as shown in
Figure 4.13.

F I G U R E 4 . 1 3 Bonnie retains her privilege if any granted path remains.

A notable difference between object privileges and system or role privi-
leges is that the grantor of the system or role privilege is not kept. Thus, if
Oliver grants DBA to Bill with admin option then Bill grants DBA to Bonnie,
the database does not record that Bill granted to Bonnieonly that Bonnie
has the role privilege. If Bill is dropped, Bonnie still retains the system and
role privileges that Bill granted to her. See Figure 4.14 for an illustration of
how this works.

Oliver

Bill

Bonnie

Select with

grant option Select

Oliver grants to both Bill and Dennis;
Bill and Dennis both grant to Bonnie.

Dennis

Select withgrant option Select

Oliver Bonnie

Select with

grant option Select

Bill is dropped, but Bonnie still has the privilege from Dennis.

Dennis

http://www.sybex.com

Privileges and Roles 197

F I G U R E 4 . 1 4 System and role privileges remain when the grantor is dropped.

To rescind privileges, use the REVOKE statement, whose syntax is shown in
Figure 4.15.

F I G U R E 4 . 1 5 The syntax for the REVOKE statement

The WITH GRANT OPTION and the WITH ADMIN OPTION of the GRANT state-
ment confer upon the recipient the ability to grant the privileges to other
users or roles. To rescind only the grant or admin option, the entire privilege
must be dropped and granted again. However, this can have unintended con-
sequences. For example, if Joshua has used his grant option and granted
David object privileges, then when Joshua’s privilege is revoked, David’s is
revoked along with Joshua’s.

Oliver Bill BonnieDBA with
admin option DBA

User Bill is dropped.

Oliver BonnieDBA

Bonnie retains the role that Bill granted to her.

Oliver Bill BonnieDBA with
admin option DBA

Oliver grants to Bill, and Bill grants to Bonnie.

REVOKE ;

user

role

PUBLIC

,

FROM

,

role

system
privilege

object
privilege

http://www.sybex.com

198 Chapter 4 � Modifying Data and Security

Privileges and the Data Dictionary

The data dictionary can be examined to see what privileges have been granted.
DBA_TAB_PRIVS contains the object privileges that have been granted from any
user to any user and shows whether it was granted with the grant option. Don’t
let the name confuse you: DBA_TAB_PRIVS is not for just tables; it also includes
privileges granted on functions, packages, sequences, libraries, and so on. Other
data dictionary views and their contents are listed in Table 4.6. Rote memoriza-
tion is not much fun, but knowing the contents of these dictionary views is very
important, because you are likely to encounter one or more questions about
them on the exam. In a professional setting, you can simply look up the view def-
initions in a reference or describe them in a tool like SQL*Plus. On the exam,
however, you must rely on your memory of this material.

You can help yourself to memorize these views by closing this book, pulling
out a sheet of paper, and seeing how many of the privilege views in Table 4.6
you can write down. The very act of writing them down will stimulate your
memory and help you to recall them later.

T A B L E 4 . 6 Data Dictionary Views on Privileges

Dictionary View View Description

ALL_COL_PRIVS The column privileges that have been granted to the
user or to public or for which the user is the owner

ALL_COL_PRIVS_MADE The column privileges that have been granted on
tables and views where the user is either the
owner or the grantor

ALL_COL_PRIVS_RECD The column privileges that have been granted to
the user or to public

ALL_TAB_PRIVS The object privileges that have been granted to the
user or to public or for which the user is the owner

ALL_TAB_PRIVS_MADE The object privileges in which the user is either the
owner of the object or the grantor of the privilege

ALL_TAB_PRIVS_RECD The object privileges that have been granted to
the user or to public

http://www.sybex.com

Privileges and Roles 199

DBA_COL_PRIVS All column privileges that have been granted

DBA_ROLE_PRIVS All roles that have been granted to users or to
other roles

DBA_SYS_PRIVS All system privileges that have been granted to
users or to roles

DBA_TAB_PRIVS All object privileges that have been granted

ROLE_ROLE_PRIVS Roles that have been granted to the user both
directly and indirectly

ROLE_SYS_PRIVS System privileges that have been granted to the
user via roles directly and indirectly

ROLE_TAB_PRIVS Object privileges that have been granted to the
user via roles directly and indirectly

SESSION_PRIVS All system privileges that are available to the user
in the current session

USER_COL_PRIVS The column privileges that have been granted for
which the user is owner, grantor, or grantee

USER_COL_PRIVS_MADE The column privileges that have been granted for
which the user is owner or grantor

USER_COL_PRIVS_RECD The column privileges that have been granted for
which the user is owner or grantee

USER_ROLE_PRIVS The roles that have been granted directly to the user

USER_SYS_PRIVS The system privileges that have been granted
directly to the user

USER_TAB_PRIVS The object privileges that have been granted
directly to the user

T A B L E 4 . 6 Data Dictionary Views on Privileges (continued)

Dictionary View View Description

http://www.sybex.com

200 Chapter 4 � Modifying Data and Security

Summary

In this chapter, you saw how to modify data, who can modify data, and
under what conditions a user can modify data. This includes the DML state-
ments INSERT, UPDATE, and DELETE, along with SELECT FOR UPDATE and LOCK
TABLE. The DDL statement TRUNCATE has similarities to DELETE, but the two
statements also have important differences. We discussed concurrency and how
to use locks to manage concurrent changes, as well as what causes deadlocks.
We also discussed consistency and how to use transactions to manage consis-
tency. The SET TRANSACTION statement is usually used to set statement- level or
transaction-level consistency, but it can also be used to assign a transaction
explicitly to a specific rollback segment. You read about how to create and man-
age user accounts and set the various attributes of those accounts. We also
looked at the three types of privileges and how they differ. Finally, we reviewed
the data dictionary tables that contain the various privileges.

Key Terms

Before you take the exam, make sure you’re familiar with the fol-
lowing terms:

Consistency

Concurrency

Statement

Transaction

Lock

SCN

USER_TAB_PRIVS_MADE The object privileges that have been granted to
others

USER_TAB_PRIVS_RECD The object privileges that have been granted to
the user

T A B L E 4 . 6 Data Dictionary Views on Privileges (continued)

Dictionary View View Description

http://www.sybex.com

Review Questions 201

Review Questions

1. When a program executes a SELECT... FOR UPDATE statement, which
of the following must it do?

A. Execute a COMMIT or ROLLBACK to end the transaction, even if no
data has changed

B. Change the data values in the rows selected, then commit or roll
back to end the transaction

C. Execute a COMMIT or ROLLBACK to end the transaction, but
only if data has changed

D. Because a transaction doesn’t start until data has actually changed,
no COMMIT or ROLLBACK needs to be executed

2. Which of the following statements will not implicitly begin a transaction?

A. INSERT

B. UPDATE

C. DELETE

D. SELECT FOR UPDATE

E. None of the above; they all implicitly begin a transaction.

3. If Julio executes a LOCK TABLE IN SHARE ROW EXCLUSIVE MODE state-
ment, with which of the following statements will Marisa not wait for
Julio’s commit or rollback? Select all that apply.

A. INSERT

B. SELECT FOR UPDATE

C. LOCK TABLE IN SHARE MODE

D. LOCK TABLE IN EXCLUSIVE MODE

E. None of the above; all will wait.

http://www.sybex.com

202 Chapter 4 � Modifying Data and Security

4. Which of the following statements end a transaction? Select all that apply.

A. LOCK TABLE IN EXCLUSIVE MODE

B. COMMIT

C. ROLLBACK TO SAVEPOINT

D. ALTER USER

E. CREATE INDEX

5. Which of the following queries will display the privileges on another
user’s procedure that you have granted to a third party? Select one.

A. SELECT owner, proc_name, grantor, grantee
FROM all_sql_privs

B. SELECT owner, sql_name, grantor, grantee
FROM all_sql_privs

C. SELECT owner, table_name, grantor, grantee, privilege
FROM all_tab_privs_made

D. SELECT owner, sql_name, grantor, grantee
FROM user_table_privs

6. Can you execute an ALTER INDEX REBUILD while there are uncommitted
updates on a table from other sessions?

A. No, it will always fail with a resource busy error.

B. Yes, but you have to specify the keyword WAIT to wait for the com-
mit or rollback.

C. Yes, the row exclusive locks from the UPDATE statements only
block other changes to the same rows.

D. Yes, but only if the updates do not change the indexed columns.

7. Which of the following actions can you not do with an ALTER
USER statement?

A. Expire a password

B. Enable DBA privileges

C. Set the default tablespace for tables

D. Set the default tablespace for indexes

http://www.sybex.com

Review Questions 203

8. Which of the following statements will improve the performance of a
full table scan on table ORDERS?

A. delete from orders;

B. truncate table orders;

C. create index ord_idx2 on orders (customer_id);

D. alter session set hash_area_size 16613376;

9. The following table shows two concurrent transactions. What happens
at time point 9?

A. Session B will wait for session A to commit or roll back.

B. Session A will wait for session B to commit or roll back.

C. A deadlock will occur, and both sessions will hang until the DBA
kills one or until one of the users cancels their statement.

D. A deadlock will occur, and Oracle will cancel one of the statements.

E. Both sessions are not updating the same column, so no waiting or
deadlocks will occur.

Session A Time Session B

UPDATE customers SET
region='H' WHERE state='43'
and county='046';

6

 7 UPDATE customers SET
mgr=4567 WHERE
state='47' and
county='072';

UPDATE customers SET
region='H' WHERE state='47'
and county='072';

8

 9 UPDATE customers SET
mgr=4567 WHERE
state='43' and
county='046';

http://www.sybex.com

204 Chapter 4 � Modifying Data and Security

10. The following table shows two concurrent transactions. Which statement
about the result returned in Session A at time point 16 is most true?

A. The results would include the changes committed by transaction B
at time point 14.

B. The results would not include the changes committed by transaction
B at time point 14.

C. The results would include the changes committed by transaction B
at time point 14 if the two sessions were connected to the database
as the same user.

D. Session A would raise a “snapshot too old” exception.

Session A Time Session B

SELECT SUM(deposit_amt)
FROM transaction_log
WHERE deposit_date >
TRUNC(SYSDATE);

12

 13 INSERT INTO
transaction_log
(deposit_date,
deposit_amt) VALUES
(SYSDATE, 6247.00);

 14 COMMIT;

Table scan for the active
SELECT reaches the
datablock where Session B’s
row was inserted.

15

Table scan complete; results
returned.

16

http://www.sybex.com

Review Questions 205

11. The following table shows two concurrent transactions. Which state-
ment about the results returned in Session A at time points 16 and 18
is most true?

A. The results would be identical.

B. The results would be different.

C. The results would only be identical if the two seesions were con-
nected to the database as the same user.

D. Both statements would include the data committed by transaction
B at time point 14.

Session A Time Session B

SET TRANSACTION ISOLATION
LEVEL READ CONSISTENT;

11

SELECT SUM(deposit_amt)
FROM transaction_log
WHERE deposit_date >
TRUNC(SYSDATE);

12

 13 INSERT INTO
transaction_log
(deposit_date,
deposit_amt) VALUES
(SYSDATE, 6247.00);

 14 COMMIT;

Table scan for the active SELECT
reaches the datablock where
Session B’s row was inserted.

15

Table scan complete; results
returned.

16

SELECT SUM(deposit_amt)
FROM transaction_log
WHERE deposit_date >
TRUNC(SYSDATE);

17

Table scan complete; results
returned.

18

http://www.sybex.com

206 Chapter 4 � Modifying Data and Security

12. The following table shows two concurrent transactions. Which state-
ment about the results returned in Session A at time points 16 and 18
is most true?

A. The results would be identical.

B. The results would be different.

C. The results would only be identical if the two seesions were con-
nected to the database as the same user.

D. Both statements would include the data committed by transaction
B at time point 14.

Session A Time Session B

SET TRANSACTION ISOLATION
LEVEL SERIALIZABLE;

11

SELECT SUM(deposit_amt)
FROM transaction_log
WHERE deposit_date >
TRUNC(SYSDATE);

12

 13 INSERT INTO
transaction_log
(deposit_date,
deposit_amt) VALUES
(SYSDATE, 6247.00);

 14 COMMIT;

Table scan for the active SELECT
reaches the datablock where
Session B’s row was inserted.

15

Table scan complete; results
returned.

16

SELECT SUM(deposit_amt)
FROM transaction_log
WHERE deposit_date >
TRUNC(SYSDATE);

17

Table scan complete; results
returned.

18

http://www.sybex.com

Review Questions 207

13. You have a DELETE statement that will generate a large amount of
undo. One rollback segment, named rb_large, is larger than the oth-
ers. How would you force the use of this rollback segment for the
DELETE operation?

A. alter session use rollback segment rb_large;

B. set transaction use rollback segment rb_large;

C. begin work using rollback segment rb_large

D. You cannot force the use of a specific rollback segment.

14. Oracle user applmgr has granted SELECT on table PO_DETAILS with
grant option to Philippe. Philippe has granted SELECT on applmgr.po_
details to Naomi. When Philippe leaves the company and the DBA drops
user Philippe, what happens to Naomi’s privilege on applmgr.po_
details?

A. Naomi retains the SELECT privilege; the grantor follows the chain
and reverts to applmgr.

B. Naomi’s SELECT privilege is revoked.

C. Naomi retains the SELECT privilege, and the grantor is still shown in the
data dictionary as Philippe; nothing about Naomi’s privilege changes.

D. Naomi’s SELECT privilege is revoked only if Philippe was the only
grantor to grant her the privilege.

15. Which of the following statements will give user Zachary the privilege
to modify only the column “comments” on the customer table?

A. grant update on customer(comments) to zachary;

B. grant update (comments) on customer to zachary;

C. grant update on customer.comments to zachary;

D. grant update on customer columns(comments) to zachary;

http://www.sybex.com

208 Chapter 4 � Modifying Data and Security

16. Mary has granted INSERT, UPDATE, DELETE on chart_of_accounts to
Charlie with the grant option. Charlie is changing jobs and should not
have the grant option. How can Mary rescind the grant option from
Charlie, leaving the INSERT, UPDATE, DELETE privilege, but without
the grant option? You also want to ensure that whomever Charlie
granted the privileges to will retain the privileges.

A. Grant the privileges on chart_of_accounts without the grant option,
then revoke the privileges “with grant option.”

B. Simply revoke the grant option.

C. Revoke the privileges, so that the grant option goes away,
then grant the privileges without the grant option.

D. Extract all the grants that Charlie made from the data dictionary,
revoke the privileges on chart_of_accounts, grant the privileges on
chart_of_accounts without the grant option,
regrant all the extracted privileges.

17. You need to report on all of the column privileges that you have made
on your BONUS table. All this information must be included: the name
of the account receiving the privilege, which column, and which privi-
lege. Which of the following statements will accomplish this task?

A. select grantor, table_name, column_name, privilege
from user_col_privs_recd where table_name ='BONUS';

B. select * from all_col_privs_made where table_
name='BONUS';

C. select table_name, column_name, privilege, grantee
from user_col_privs_made where table_name ='BONUS';

D. select grantee, table_name, column_name, privilege
from all_tab_col_privs where owner=user and table_
name='BONUS';

18. EMP is a table. Mary is a user. Sales_mgr is a role. Which one of the
following statements will fail?

A. grant sales_mgr to mary with admin option;;

B. grant read on emp to mary;

C. grant insert,update,delete on emp to mary with
grant option;

D. grant reference on emp to mary;;

http://www.sybex.com

Review Questions 209

19. Which of the following table privileges cannot be granted to a role
(can only be granted to a user)?

A. INDEX

B. ALTER

C. REFERENCE

D. TRUNCATE

20. If Judy grants ALL on her table FORMAT_CODES to public, which
operation will user Jerry not be able to perform?

A. create index on judy.format_codes

B. alter table judy.format_codes

C. delete from table judy.format_codes

D. truncate table judy.format_codes

http://www.sybex.com

210 Chapter 4 � Modifying Data and Security

Answers to Review Questions

1. A. SELECT...FOR UPDATE implicity begins a transaction and so must
execute a COMMIT or ROLLBACK to end the transaction, even if no data has
changed. Data does not have to change after a SELECT...FOR UPDATE.

2. E. If a transaction is not currently open, any DML will implicitly begin
a transaction.

3. B. The row share exclusive mode will block other table locks and row
exclusive locks, but not row share locks.

4. B, D, E. COMMIT, ROLLBACK, and any DDL end a transactionDDL is
automatically committed. ROLLBACK TO SAVEPONT is only a partial undo;
it does not end the transaction.

5. C. All of the other data dictionary tables are fictitious.

6. A. The row exclusive locks from the update will block all DDL,
including DDL on the indexesit does not matter which columns the
index is on. You cannot specify WAIT on DDL.

7. D. It would be nice, but Oracle does not (yet) let you set a default
tablespace for indexes. DBA privileges could be enabled by default
with an ALTER USER statement if the role was granted to the user pre-
viously and set to disabled.

8. B. A truncate will reset the high-water mark on a table, so when a full
table scan (that scans to the high-water mark) is executed against the
table, it will run very fast. Deletes do not affect the high-water mark
or full scan performance. Indexes and hash_area_size do not affect
full scan performance.

9. D. At time point 8, session A will wait for session B; at time point 9,
a deadlock will occur, and Oracle will recognize it and cancel one of
the statements. Oracle locks to the granularity of a row, so even
though the columns are different, the locks will still block each other.

http://www.sybex.com

Answers to Review Questions 211

10. B. Statement-level read consistency would ensure that the data visible
to each statement does not change while the statement is executing.
The “snapshot too old” exception might be raised if there were a lot
of other transactions committing to the database between time points
12 and 16, but if this exception were raised, the table scan would nei-
ther complete nor return results.

11. B. The read consistent isolation level is statement-level read con-
sistency, so each statement sees the committed data that existed at the
beginning of the statement. The committed data at time point 17
includes Session B’s COMMIT at time point 14.

12. A. The serializable isolation level is transaction-level read consistency,
so both of Session A’s SELECT statements see the same data image.
Neither would include the changes committed at time point 14.

13. B. The SET TRANSACTION statement can be used to force the use of a
specific rollback segment, provided the SET TRANSACTION statement
begins the transaction.

14. D. This one is tricky; B is correct, but D is more correct. When a user is
dropped, all object privileges that the user had granted are implicitly
revoked. But a user can get a privilege from more than one grantor. When
a grantee has the privilege from more than one grantor, all grantors must
revoke the privilege before the grantee actually loses the privilege.

15. B. Any additional columns would appear as a comma-delimited list within
the parentheses.

16. D. There is no simple and easy way to remove the grant option while
retaining the privilege. Revoking a privilege from someone will cas-
cade through and revoke it from all grantees, so it would be crucial to
first extract these privileges before revoking them.

17. C. The grantee is the recipient of the privilege. Every one of the ALL_
DATA dictionary views contains not only the user’s own objects, but also
those that they have access to, so ALL_COL_PRIVS_MADE may contain
privileges on other schemas’ tables. ALL_TAB_COL_PRIVS is not a valid
data dictionary view.

http://www.sybex.com

212 Chapter 4 � Modifying Data and Security

18. B. The READ privilege is only valid on directories.

19. C. TRUNCATE is not a table privilege. INDEX and ALTER can be granted
to either a user or a role, but REFERENCE can only be granted to a user.

20. D. TRUNCATE is not a table privilege.

http://www.sybex.com

Chapter

5

Creating and Managing
Tables and Views

ORACLE8i SQL & PL/SQL EXAM OBJECTIVES
OFFERED IN THIS CHAPTER:

�

Creating and managing tables:

�

Create tables
�

Describe the datatypes that can be used when specifying
column definition

�

Alter table definitions
�

Drop, rename, and truncate tables

�

Creating and managing views:

�

Describe a view
�

Create a view
�

Retrieve data through a view
�

Insert, update, and delete data through a view
�

Drop a view

Exam objectives are subject to change without
prior notice and at Oracle’s sole discretion.
Please visit Oracle’s Training and Certification
Web site (

http://education.oracle.com/

certification/index.html

) for the most current
exam objective listing.

http://www.sybex.com

T

he

table

 is the basic structure of data storage in Oracle. A
table has columns as part of the definition and stores rows of data. Oracle 8
introduced partitioned tables and object tables; Oracle8i enhanced the tables
further by introducing temporary tables. A

view

 is a logical representation of
data from one or more tables. In this chapter, we will discuss how to create
and manage simple tables and views.

Managing Tables

Y

ou can think of a table as a spreadsheet having columns and rows. It
is a structure that holds data in a relational database. The table is created
with a name to identify it, and columns are defined with valid column names.
The column attributes, such as the

datatype

 and size, should be specified
when creating tables.

CREATE TABLE

 is a comprehensive command with
many options. Here is the simplest way to create a table:

SQL> CREATE TABLE products

 2 (PROD_ID NUMBER (4),

 3 PROD_NAME VARCHAR2 (20),

 4 STOCK_QTY NUMBER (15,3)

 5);

Table created.

SQL>

http://www.sybex.com

Managing Tables

215

A table named PRODUCTS has been created under the

user

 (

schema

) con-
nected to the database. Let’s see the basic components of this command. You use
the keywords

CREATE TABLE

, followed by the table name. The table name can be
qualified with the username; you must qualify the table when creating a table in
another user’s schema. The column definitions are enclosed in parentheses. The
table has three columns, each identified by a name and datatype. Commas sepa-
rate the column definitions. This table has two columns with the

NUMBER

 datatype
and one column with the

VARCHAR2

 datatype. A datatype must be specified for
each column.

See Chapter 1,

Relational Technology and Simple SQL SELECT Statements

,

for the different datatypes available in Oracle.

Table 5.1 summarizes the built-in data types that can be used while cre-
ating tables. Immediately following the datatype, you specify the width of
the column. For

NUMBER

 datatypes, you also have the option of specifying a
precision.

DATE

 datatypes do not have a width specified. Each

DATE

 column
stores the date and time component.

T A B L E 5 . 1

Oracle Built-in Datatypes

Datatype Description

CHAR

(<

size

>)
Fixed-length character data of length in bytes specified
inside parentheses. Size defaults to 1 if not defined.

VARCHAR

(<

size

>)
Same as

VARCHAR2

 datatype.

VARCHAR2

(<

size

>)
Variable-length character data. Maximum allowed length is
specified in parentheses. You must specify a size; there is no
default value.

NCHAR

(<

size

>)
Same as

CHAR

, stores National Language Support (NLS)
character data.

NVARCHAR2

(<

size

>)
Same as

VARCHAR2

, stores NLS character data.

LONG

Stores variable-length character data up to 2GB. Use

CLOB

 or

NCLOB

 datatypes instead. Provided in Oracle8i for backward
compatibility.

http://www.sybex.com

216

Chapter 5 �

Creating and Managing Tables and Views

You can specify constraints at the table level, as well as at the column level,
while creating tables. The most commonly used column-level constraint is the

NOT NULL

constraint. Constraints are discussed in detail in Chapter 6,

Other
Database Objects and the Data Dictionary

.
When creating or altering

a

table

,

you can specify

 default values

 for
columns. The default value specified will be used when the inserted value
for the column is

NULL

. The default value specified in the definition
should satisfy the datatype and length of the column. If a default value is

NUMBER

(<

preci-
sion

>,
<

scale

>)

Stores fixed and floating-point numbers. You can specify a
precision (total length including decimals) and scale (digits
after decimal point).

DATE

Stores date data. Has century, year, month, date, hour, minute,
seconds internally. Can be displayed in various formats.

RAW

(<

size

>)
Variable-length datatype used to store unstructured data,
without a character set conversion. Provided for backward
compatibility. Use

BLOB

 and

BFILE

 instead.

LONG RAW

Same as

RAW

, can store up to 2GB of binary data.

BLOB

Stores up to 4GB of unstructured binary data.

CLOB

Stores up to 4GB of character data.

NCLOB

Stores up to 4GB of NLS character data.

BFILE Stores unstructured binary data in operating system files
outside the database.

ROWID Stores binary data representing a physical row address of
table’s row.

UROWID Stores binary data representing any type of row address:
physical, logical or foreign.

T A B L E 5 . 1 Oracle Built-in Datatypes (continued)

Datatype Description

http://www.sybex.com

Managing Tables 217

not explicitly set, the default for the column is implicitly set to NULL.
Default values cannot refer to another column, and they cannot have the
pseudo-columns LEVEL, NEXTVAL, CURRVAL, ROWNUM, or PRIOR. The
default values can include SYSDATE, USER, USERENV, and UID.

In the following example, the table ORDERS is created with a column
STATUS that has a default value PENDING. The column ORDER_NUMBER is
created as a NOT NULL column. Oracle gives an error if you try to insert NULL
values into this column.

CREATE TABLE ORDERS (

ORDER_NUMBER NUMBER (8) NOT NULL,

STATUS VARCHAR2 (10) DEFAULT 'PENDING');

SQL> INSERT INTO ORDERS (ORDER_NUMBER) VALUES (4004);

1 row created.

SQL> SELECT * FROM orders;

ORDER_NUMBER STATUS

------------ ----------

 4004 PENDING

SQL>

The following dictionary views provide information about the table and
its columns:

� DBA_TABLES

� DBA_ALL_TABLES

� USER_TABLES

� USER_ALL_TABLES

� ALL_TABLES

� ALL_ALL_TABLES

� DBA_TAB_COLUMNS

� USER_TAB_COLUMNS

� ALL_TAB_COLUMNS

http://www.sybex.com

218 Chapter 5 � Creating and Managing Tables and Views

You can use the DESCRIBE (SQL*Plus) command to list all of the columns, their
datatype, size, nullity, and order.

Naming Conventions

Table names are used to identify each table. You should make table names as
descriptive as possible; table/column names are called identifiers and can be up
to 30 characters long. An identifier name should begin with a letter and may
contain numeric digits. The only special characters allowed in an identifier
name are the dollar sign ($), the underscore (_), and the pound sign (#). The
underscore can be used for meaningful separation of the words in an identifier
name. These names are case insensitive. If, however, you enclose the identifier
names in double quotes (""), it will be case-sensitive in the Oracle dictionary.

Creating table names enclosed in quotes can cause serious problems when
you do a query if you do not know the exact case of the table name.

The case sensitivity of names is illustrated in the following example:

SQL> CREATE TABLE MyTable (

 2 Column_1 NUMBER,

 3 Column_2 CHAR);

Table created.

SQL> desc mytable

 Name Null? Type

 --- -------- ------

 COLUMN_1 NUMBER

 COLUMN_2 CHAR(1)

SQL> select table_name from user_tables

 2 WHERE table_name = 'MyTable';

no rows selected

SQL>CREATE TABLE "MyTable" (

 2 "Column1" number,

 3 "Column2" char);

http://www.sybex.com

Managing Tables 219

Table created.

SQL> desc "MyTable"

 Name Null? Type

 --- -------- ------

 Column1 NUMBER

 Column2 CHAR(1)

SQL> select table_name from user_tables

 2 WHERE upper(table_name) = 'MYTABLE';

TABLE_NAME

MYTABLE

MyTable

SQL>

It is a good practice to have the other objects directly related to the table also
reflect the table name. For example, consider the EMPLOYEE table. The pri-
mary key of the table might be named PK_EMPLOYEE, indexes might be
EMPLOYEE_NDX1 and EMPLOYEE_NDX2, check constraints might be
CK_EMPLOYEE_STATUS, triggers might be TRG_EMPLOYEE_HIRE, and
so on.

The purpose of the table and the column can be documented in the database
using the COMMENT command. Let’s provide comments for our example table:

SQL> COMMENT ON TABLE MYTABLE IS 'Oracle8i Study Guide
Example Table';

Comment created.

SQL> COMMENT ON COLUMN MYTABLE.COLUMN_1 is 'First column
in MYTABLE';

Comment created.

SQL>

http://www.sybex.com

220 Chapter 5 � Creating and Managing Tables and Views

SQL reserved words cannot be used as table or column names. You can use
them only if you enclose the reserved words in double quotes.

Creating from Another Table

You can create a table using a query based on one or more existing tables.
The column datatype and width will be determined by the query result. A
table created in this fashion can select all the columns from another table
(you may use *), or a subset of columns or expressions and functions
applied on columns (these are called derived columns). Consider a simple
query: You need to duplicate the structure and data of the EMP table to the
EMPLOYEES table. Use the keyword AS to specify a query in the CREATE
TABLE statement, like this:

SQL> CREATE TABLE employees

 2 AS SELECT * FROM emp;

Table created.

SQL>

You can have complex query statements in the CREATE TABLE statement. The
table is created with no rows if the query returned no rows. If you just want to
copy the structure of the table, make sure that the query returns no rows:

CREATE TABLE Y AS SELECT * FROM X WHERE 1 = 2;

You can provide column alias names to have different column names in the
newly created table. The following example shows a table structure, displays
the data, then creates a new table with the data and displays it:

SQL> DESCRIBE CITY

 Name Null? Type

 --- -------- ------

 CNT_CODE NOT NULL NUMBER(4)

 ST_CODE NOT NULL VARCHAR2(2)

 CTY_CODE NOT NULL NUMBER(4)

 CTY_NAME VARCHAR2(20)

http://www.sybex.com

Managing Tables 221

 POPULATION NUMBER

SQL> SELECT COUNT(*) FROM city;

 COUNT(*)

 3

SQL> CREATE TABLE new_city AS

 2 SELECT cty_code CITY_CODE, cty_name CITY_NAME FROM
city;

Table created.

SQL> SELECT COUNT(*) FROM new_city;

 COUNT(*)

 3

SQL> DESC NEW_CITY

 Name Null? Type

 --- -------- ------

 CITY_CODE NUMBER(4)

 CITY_NAME VARCHAR2(20)

SQL>

CREATE TABLE…AS SELECT… will not work if the query refers to columns of
LONG datatype.

http://www.sybex.com

222 Chapter 5 � Creating and Managing Tables and Views

When you create a table using the subquery, only the NOT NULL constraints
associated with the columns are copied to the new table. Other constraints
and column default values are not copied.

Modifying Table Definitions

After you’ve created a table, there are several reasons that you might want
to modify it. You can modify a table to change its column definition or
default values, add a new column, or drop an existing column. You cannot
rename columns. You might also modify a table if you need to change or
add constraint definitions. The ALTER TABLE command is used to change
table definitions.

Adding a Column

Here is the syntax to add a new column to an existing table:

ALTER TABLE [schema.]table_name ADD column_definitions;

Let’s add a new column, ORDER_DATE, to the ORDERS table. When a
new column is added, it is always at the bottom of the table. For the existing
rows, the new column value will be NULL.

SQL> DESCRIBE orders

 Name Null? Type

 --- -------- ------

 ORDER_NUMBER NOT NULL NUMBER(8)

 STATUS VARCHAR2(10)

SQL> SELECT * FROM orders;

ORDER_NUMBER STATUS

------------ ----------

 4004 PENDING

 5005 COMPLETED

SQL> ALTER TABLE orders ADD order_date DATE;

Table altered.

http://www.sybex.com

Managing Tables 223

SQL> DESC orders

 Name Null? Type

 --- -------- ------

 ORDER_NUMBER NOT NULL NUMBER(8)

 STATUS VARCHAR2(10)

 ORDER_DATE DATE

SQL> SELECT * FROM orders;

ORDER_NUMBER STATUS ORDER_DAT

------------ ---------- ---------

 4004 PENDING

 5005 COMPLETED

SQL>

If you are adding more than one column, the column definitions should be
enclosed in parentheses and separated by commas. If you specify a DEFAULT
value for a newly added column, all the rows in the table would have the
default value automatically assigned. For example, to add two more columns
to the ORDERS table, you would do this:

SQL> ALTER TABLE orders ADD (quantity NUMBER (13,3),

 2 update_dt DATE DEFAULT
sysdate);

Table altered.

SQL> SELECT * FROM orders;

ORDER_NUMBER STATUS ORDER_DAT QUANTITY UPDATE_DT

------------ ---------- --------- ---------- ---------

 4004 PENDING 23-MAR-00

 5005 COMPLETED 23-MAR-00

SQL>

http://www.sybex.com

224 Chapter 5 � Creating and Managing Tables and Views

When adding a new column, you cannot specify the NOT NULL constraint if the
table already has rows. To add a NOT NULL column, you need to follow three
steps: Modify the table to add the column, update the column with values for
all the existing rows, and then add a NOT NULL constraint.

Modifying a Column

The syntax to modify an existing column in a table follows:

ALTER TABLE [schema.]table_name MODIFY column_name new_
attributes;

If you omit any of the parts of the column definition (datatype, default value,
or column constraint), the omitted parts remain unchanged. If you are modifying
more than one column at a time, enclose the column definitions in parentheses.
For example, to modify the ORDERS table, increasing the STATUS column to 15
and reducing the QUANTITY column to 10,3, do this:

ALTER TABLE orders MODIFY (quantity number (10,3),

 status varchar2 (15));

These are the rules for modifying column definitions:

� You can increase the length of the character column and the precision
of the numeric column.

� To decrease the length of the column, the column should not contain
any values; all rows for the column should be NULL.

� You can increase or decrease the decimal places of a NUMBER column with-
out decreasing the precision, even if the column values are not NULL.

� The column must be NULL to change its datatype. If you do not change
the length, you can change the datatype from CHAR to VARCHAR2 or
vice versa, even if the column is not empty.

Dropping a Column

Prior to Oracle8i, the only way to remove a column was to re-create the table
without the column name. In Oracle8i, you have the much awaited option of
dropping a column. You can drop a column that is not used immediately, or
you can mark the column as not used and drop it later.

Here is the syntax for dropping a column:

ALTER TABLE [schema.]table_name

http://www.sybex.com

Managing Tables 225

DROP {COLUMN column_name | (column_names)}[CASCADE
CONSTRAINTS]

DROP COLUMN drops the column name specified from the table. You can pro-
vide more than one column name separated by commas inside parentheses. The
indexes and constraints on the column are also dropped. You must specify
CASCADE CONSTRAINTS if the dropped column is part of a multicolumn con-
straint; the constraint will be dropped.

The syntax for marking a column as unused follows:

ALTER TABLE [schema.]table_name

SET UNUSED {COLUMN column_name | (column_names)}[CASCADE
CONSTRAINTS]

You usually mark a column as unused and not dropped if the table is very
large and takes a lot of resources at peak hours. In such cases, you would
mark the column as unused and drop it later. Once the column is marked as
unused, you will not see it as part of the table definition. Let’s mark the
UPDATE_DT column in the ORDERS table as unused:

SQL> ALTER TABLE orders SET UNUSED COLUMN update_dt;

Table altered.

SQL> DESCRIBE orders

 Name Null? Type

 --- -------- ------

 ORDER_NUMBER NOT NULL NUMBER(8)

 STATUS VARCHAR2(15)

 ORDER_DATE DATE

 QUANTITY NUMBER(10,3)

SQL>

The syntax for dropping a column already marked as unused is

ALTER TABLE [schema.]table_name

DROP {UNUSED COLUMNS | COLUMNS CONTINUE}

http://www.sybex.com

226 Chapter 5 � Creating and Managing Tables and Views

Use the COLUMNS CONTINUE clause to continue a DROP operation that was
previously interrupted. To clear data from the UPDATE_DT column from
the ORDERS table, do this:

ALTER TABLE orders DROP UNUSED COLUMNS;

The data dictionary views DBA_UNUSED_COL_TABS, ALL_UNUSED_COL_TABS, and
USER_UNUSED_COL_TABS provide the names of tables in which you have columns
marked as unused.

Dropping/Renaming Tables

Dropping a table is simple. Once you drop a table, the action cannot be
undone. The syntax follows:

DROP TABLE [schema.]table_name [CASCADE CONSTRAINTS]

When you drop a table, the data and definition of the table are removed.
The indexes, constraints, triggers, and privileges on the table are also
dropped. Oracle does not drop the views, materialized views, or other stored
programs that reference the table, but it marks them as invalid. You must
specify the CASCADE CONSTRAINTS clause if there are referential integrity
constraints referring to the primary key or unique key of this table. Here’s
how to drop the table TEST owned by user SCOTT:

DROP TABLE scott.test;

Renaming a Table

The RENAME command is used to rename a table and other database objects, such
as views or private synonyms. Oracle automatically transfers integrity constraints,
indexes, and grants on the old table to the new table. Oracle invalidates all objects
that depend on the renamed table, such as views, synonyms, stored procedures,
and functions. The syntax for the RENAME command follows:

RENAME old_name TO new_name;

Here, old_name and new_name are names of a table, view, private synonym,
or sequence.

http://www.sybex.com

Managing Tables 227

To rename the ORDERS table to PURCHASE_ORDERS, you would use
this syntax:

SQL> RENAME orders TO purchase_orders;

Table renamed.

SQL> DESCRIBE purchase_orders

 Name Null? Type

 --- -------- ------

 ORDER_NUMBER NOT NULL NUMBER(8)

 STATUS VARCHAR2(15)

 ORDER_DATE DATE

 QUANTITY NUMBER(10,3)

SQL>

You can rename only the objects you own; you cannot rename an object
owned by another user.

Truncating a Table

The TRUNCATE statement is similar to the DROP command, but it does not
remove the structure of the table, so none of the indexes, constraints, triggers,
or privileges on the table are dropped. By default, the space allocated to the
table and indexes is freed. If you do not wish to free up the space, include the
REUSE STORAGE clause. You cannot roll back a truncate operation. Also, you
cannot selectively delete rows using the TRUNCATE command. The syntax of
TRUNCATE command is

TRUNCATE {TABLE|CLUSTER} [schema.]name [{DROP|REUSE}
STORAGE]

You cannot truncate the parent table of an enabled referential integrity
constraint. You must first disable the constraint and then truncate the table,
even if the child table has no rows. The following example demonstrates this:

SQL> CREATE TABLE t1 (t1f1 NUMBER CONSTRAINT pk_t1 PRIMARY
KEY);

Table created.

http://www.sybex.com

228 Chapter 5 � Creating and Managing Tables and Views

SQL> CREATE TABLE t2 (t2f1 NUMBER CONSTRAINT fk_t2

 REFERENCES t1 (t1f1));

Table created.

SQL> TRUNCATE TABLE t1;

truncate table t1

 *

ERROR at line 1:

ORA-02266: unique/primary keys in table referenced by
enabled foreign keys

SQL> ALTER TABLE t2 DISABLE CONSTRAINT fk_t2;

Table altered.

SQL> TRUNCATE TABLE t1;

Table truncated.

SQL>

Use the TRUNCATE command to delete all rows from a large table; it does not
write the rollback entries and is much faster than the DELETE command when
deleting a large number of rows.

Managing Views

A view is a customized representation of data from one or more tables.
The view takes the result of a query and stores it in the database. A view can
be considered as a stored query or a virtual table. Only the query is stored in
the Oracle data dictionary; the actual data is not copied anywhere. So, creating
views does not take any storage space, other than the space in the data dic-
tionary. A view can also hide query complexity. You may have multiple table
joins in the query, but the user sees only the view. The views can have different
column names than the base table. You may create a view to limit the data
accessible to other users. In most cases, a view can be used wherever a table is
used. All operations performed on the view affect the underlying base table or

http://www.sybex.com

Creating a View 229

tables and are subject to firing triggers defined in the base table (if any), as well
as integrity checks.

When you issue a query against a view, most of the time Oracle merges the
query with the query that defines the view, then executes the resulting query
as if the query were issued directly against the base tables. This helps to use
the indexes if there are any defined on the table.

The maximum number of columns that can be defined in a view is 1,000, just
like a table.

Creating a View

Use the CREATE VIEW command to create a view. The query that
defines the view can refer to one or more tables, to materialized views, or to
other views. The query cannot have a FOR UPDATE clause; an ORDER BY
clause was not permitted in versions prior to Oracle8i. In 8i, the query can
have an ORDER BY clause. Let’s begin by creating a simple view. The view
named TOP_EMP has the employee information for employees whose salary is
above 2999. Note that the empno and ename columns are renamed by using
alias names in the view definition.

SQL> CREATE VIEW TOP_EMP AS

 2 SELECT empno EMPLOYEE_ID, ename EMPLOYEE_NAME, salary

 3 FROM emp

 4 WHERE salary > 2999;

View created.

SQL> DESCRIBE top_emp

 Name Null? Type

 ------------------------------- -------- ----

 EMPLOYEE_ID NUMBER(4)

 EMPLOYEE_NAME VARCHAR2(10)

 SALARY NUMBER(7,2)

SQL>

http://www.sybex.com

230 Chapter 5 � Creating and Managing Tables and Views

You can also specify the column names immediately following the view
name to have different column names in the view. Let’s re-create the view
using defined column names. The OR REPLACE clause is used to modify a
view; basically, you are re-creating the view.

SQL> CREATE OR REPLACE VIEW TOP_EMP

 2 (EMPLOYEE_ID, EMPLOYEE_NAME, SALARY) AS

 3 SELECT empno, ename, salary

 4 FROM emp

 5 WHERE salary > 2999;

View created.

SQL>

If you use an asterisk (*) to select all columns from a table in the query to create
a view and you later modify the table to add columns, you should re-create the
view to reflect the new columns.

You can create views that manipulate data or that join more than one
table. In this example, the view is created with employee name, salary,
bonus, and department name. Note that the derived column has NUMBER
datatype, but no length is derived.

SQL> CREATE VIEW EMP_BONUS AS

 2 SELECT dname, empno, ename, salary, salary * .15
bonus

 3 FROM emp a, dept b

 4 WHERE a.deptno = b.deptno;

View created.

SQL> DESC EMP_BONUS

http://www.sybex.com

Retrieving Data 231

 Name Null? Type

 ------------------------------- -------- ----

 DNAME VARCHAR2(14)

 EMPNO NUMBER(4)

 ENAME VARCHAR2(10)

 SALARY NUMBER(7,2)

 BONUS NUMBER

SQL>

You can create views with errors using the FORCE option. Normally, if the
view has errors, the view will not be created. If, however, you need to create
the view with errors (for example, if the underlying table is not created yet),
you can do so. The view will be invalid. Later, you can fix the error, such as
creating the underlying table, and then the view can be recompiled. Oracle
recompiles invalid views when the view is accessed.

SQL> CREATE FORCE VIEW ORDER_STATUS AS

 2 SELECT * FROM PURCHASE_ORDERS

 3* WHERE STATUS = 'APPROVED'

SQL> /

Warning: View created with compilation errors.

SQL>

When you use the CREATE OR REPLACE option instead of dropping and re-creating
the view, the privileges granted on the view are preserved. The dependent stored
programs and views become invalid.

Retrieving Data

You can query data from a view as you would query a table. You can
use views in joins and subqueries. You can use all SQL functions and all the
clauses of the SELECT statement when querying against a view, as you would
query against a table. Let’s query the results of the EMP_BONUS view we
just created:

SQL> SELECT * FROM EMP_BONUS ORDER BY dname, empno;

http://www.sybex.com

232 Chapter 5 � Creating and Managing Tables and Views

DNAME EMPNO ENAME SALARY BONUS

-------------- ---------- ---------- ---------- ----------

ACCOUNTING 7839 A_EDWARD 5000 750

RESEARCH 902 FORD 3000 450

RESEARCH 7566 JONES 2975 446.25

RESEARCH 7788 SCOTT 3000 450

SALES 7654 MARTIN 1250 187.5

SALES 7698 K_BLAKE 2850 427.5

SALES 7844 TURNER 1500 225

7 rows selected.

SQL>

Inserting, Updating, and Deleting Data

You can update, insert, and delete rows through a view with restrictions. If
the view is joining more than one table, you can update only one base table at a
time. For updating or inserting into a view, all the columns that are part of a con-
straint should be in the view definition. The columns that can be updated in a view
can be queried from the data dictionary USER_UPDATABLE_COLUMNS.

SQL> SELECT TABLE_NAME, COLUMN_NAME, UPDATABLE,
INSERTABLE, DELETABLE

 2 FROM USER_UPDATABLE_COLUMNS

 3* WHERE TABLE_NAME = 'EMP_BONUS'

SQL> /

TABLE_NAME COLUMN_NAME UPD INS DEL

------------------------- ------------------------------ -

EMP_BONUS DNAME NO NO NO

EMP_BONUS EMPNO YES YES YES

EMP_BONUS ENAME YES YES YES

EMP_BONUS SALARY YES YES YES

EMP_BONUS BONUS NO NO NO

SQL>

http://www.sybex.com

Inserting, Updating, and Deleting Data 233

We created the EMP_BONUS view by joining the DEPT and EMP tables. Since
the primary key of DEPT table, DEPTNO, is not part of the view definition, the
DEPT table cannot be updated, deleted, or inserted.

You can create views with an optional WITH clause. WITH READ ONLY
specifies that the view cannot be updated or deleted and that new rows
cannot be inserted. WITH CHECK OPTION specifies that inserts and updates
done through the view should satisfy the WHERE clause of the view. For
example, if you create the TOP_EMP view WITH CHECK OPTION, you can-
not add new rows through the view whose salary is below 3000. WITH
CHECK OPTION creates a constraint with constraint type “V”. If you do
not provide a name, the constraint is created with a SYS_ name.

SQL> CREATE OR REPLACE VIEW TOP_EMP

 2 (EMPLOYEE_ID, EMPLOYEE_NAME, SALARY) AS

 3 SELECT empno, ename, salary

 4 FROM emp

 5 WHERE salary > 2999

 6* WITH CHECK OPTION CONSTRAINT TOP_EMP_SAL

SQL> /

View created.

SQL> INSERT INTO TOP_EMP VALUES (1234, 'ADAMS', 1200);

INSERT INTO TOP_EMP VALUES (1234, 'ADAMS', 1200)

 *

ERROR at line 1:

ORA-01402: view WITH CHECK OPTION where-clause violation

SQL> INSERT INTO TOP_EMP VALUES (1234, 'ADAMS', 3500);

1 row created.

SQL>

Any INSERT, UPDATE, or DELETE operation on a join view can modify only one
underlying base table at a time.

http://www.sybex.com

234 Chapter 5 � Creating and Managing Tables and Views

If a view is defined by a query that contains SET or DISTINCT operators, a GROUP
BY clause, or a group function, then rows cannot be inserted into, updated in,
or deleted from the base tables using the view.

Dropping a View

Drop a view using the DROP VIEW command. The view definition is
dropped from the dictionary, and the privileges and grants on the view are
also dropped. Other views and stored programs that refer to the dropped
view become invalid.

DROP VIEW TOP_EMP;

A view can be recompiled using the ALTER VIEW command. The objects
dependent on the view are invalidated. Here’s an example: ALTER VIEW MY_
VIEW COMPILE;.

Summary

This chapter discussed how to create and maintain tables and views.
Tables are the basic structure of data storage. You can also store data in clusters
and materialized views. A view does not take any data storage space.

The CREATE TABLE command is used to create a new table. A table
should have at least one column, and a datatype should be assigned to
the column. Oracle has character, numeric, raw, LOB, and ROWID
datatypes. The table name and column name should begin with a letter
and may contain letters, numbers, or special characters. You can create
a new table from an existing table using the CREATE TABLE…AS SELECT…
command. You can add, modify, or drop columns from an existing
table. To change the datatype of a column or to reduce its size, make
sure the column is empty. You can use the TRUNCATE TABLE command
to delete all rows from a table.

http://www.sybex.com

Key Terms 235

A view is a tailored representation of data from one or more tables or
views. The view is a stored query. Views can be used to present a different
perspective of data, to limit the data access, or to hide a complex query. You
can update, delete, and insert into the base tables through the view (with
restrictions), but the operation can affect only one table at a time if there is
more than one table in the view definition.

Key Terms

Before you take the exam, make sure you are familiar with the
following terms:

Datatype

Default column values

Index

Oracle data dictionary

Owner

Schema

Sequence

Synonym

SYS

Table

Truncate

User

View

http://www.sybex.com

236 Chapter 5 � Creating and Managing Tables and Views

Review Questions

1. The table STATE is defined as in the following table.

If you execute the statement that follows, how many constraints will the
STATE_COPY table have?

CREATE TABLE STATE_COPY AS SELECT * FROM STATE

A. 4

B. 1

C. 0

D. 2

Column Name CNT_CODE ST_CODE ST_NAME

Key Type PK, FK PK

Nulls/Unique NN

FK Table COUNTRY

FK Column CNT_CODE

Datatype NUMBER VARCHAR2 VARCHAR2

Length 4 2 20

http://www.sybex.com

Review Questions 237

2. Refer to the table in Question 1. Which of the following lines of code
has an error?

 1 CREATE OR REPLACE VIEW US_STATES

 2 AS SELECT ST_CODE ST_CODE,

 3 ST_NAME STATE_NAME

 4 FROM STATE

 5 WHERE CNT_CODE = 1

 6 ORDER BY ST_CODE;

A. Line 5

B. Line 2

C. Line 6

D. There is no error.

3. Which line of code has an error?

 1 CREATE TABLE FRUITS_VEGETABLES

 2 (FRUIT_TYPE VARCHAR2,

 3 FRUIT_NAME CHAR (20),

 4 QUANTITY NUMBER);

A. Line 1

B. Line 2

C. Line 3

D. Line 4

4. Which statement successfully adds a new column ORDER_DATE to
the table ORDERS?

A. ALTER TABLE ORDERS ADD COLUMN ORDER_DATE DATE;

B. ALTER TABLE ORDERS ADD ORDER_DATE (DATE);

C. ALTER TABLE ORDERS ADD ORDER_DATE DATE;

D. ALTER TABLE ORDERS NEW COLUMN ORDER_DATE TYPE DATE;

http://www.sybex.com

238 Chapter 5 � Creating and Managing Tables and Views

5. Refer to the table in Question 1. What’s wrong with the following
statement?

 CREATE TABLE USA_STATES

 SELECT * FROM STATE

 WHERE CNT_CODE = 1;

A. A keyword is missing.

B. The WHERE condition cannot be specified in the subquery creating
tables.

C. The column names should be defined.

D. There is no error; a new table USA_STATES will be created.

6. What are the special characters allowed in a table name? Choose two
answers.

A. &

B. #

C. @

D. $

7. Consider the following statement and choose the most appropriate option.

CREATE TABLE MY_TABLE

(1ST_COLUMN NUMBER,
2ND_COLUMN VARCHAR2 (20));

A. Tables cannot be created without defining a primary key. The
table definition here is missing the primary key.

B. The reserved word COLUMN cannot be part of the column name.

C. Numbers are not allowed in the leading position of the column name.

D. There is no maximum width specified for the first column definition.
You must always specify a maximum width when defining columns.

http://www.sybex.com

Review Questions 239

8. Which dictionary view would you query to list only the tables you
own?

A. ALL_TABLES

B. DBA_TABLES

C. USER_TABLES

D. USR_TABLES

9. Refer to the STATE table in Question 1. The table has six rows. If you
issue the following command, which statement is correct?

ALTER TABLE STATE ADD UPDATE_DT DATE DEFAULT SYSDATE;

A. A new column, UPDATE_DT, is added to the STATE table and its
contents for the existing rows are NULL.

B. Since the table is not empty, you cannot add a new column.

C. The DEFAULT value cannot be provided if the table has rows.

D. A new column, UPDATE_DT, is added to STATE and is populated
with the current system date and time.

10. Choose two correct statements:

A. The TRUNCATE statement is used to selectively remove rows from
table.

B. The TRUNCATE statement is used to remove all rows from a table.

C. Rows removed using the TRUNCATE command cannot be undone.

D. The TRUNCATE command drops the constraints and triggers asso-
ciated with the table.

http://www.sybex.com

240 Chapter 5 � Creating and Managing Tables and Views

11. Views created with which option make sure that rows added to the
base table through the view are accessible to the view?

A. WHERE

B. WITH READ ONLY

C. WITH CHECK OPTION

D. CREATE OR REPLACE VIEW

12. A view is created using the following code. What operations are per-
mitted on the view?

CREATE VIEW USA_STATES

AS SELECT * FROM STATE

WHERE CNT_CODE = 1

WITH READ ONLY;

A. SELECT

B. SELECT, UPDATE

C. SELECT, DELETE

D. SELECT, INSERT

13. How do you remove the view USA_STATES from the schema?

A. ALTER VIEW USA_STATES REMOVE;

B. DROP VIEW USA_STATES;

C. DROP VIEW USA_STATES CASCADE;

D. DROP USA_STATES;

http://www.sybex.com

Review Questions 241

14. Refer to the STATE definition in the table in Question 1 and to the
COUNTRY definition in the following table.

A view is created as follows:

 CREATE OR REPLACE VIEW COUNTRY_STATE AS

 SELECT a.CNT_NAME, b.CNT_CODE, b.ST_CODE, b.ST_NAME

 FROM COUNTRY a, STATE b

 WHERE a.CNT_CODE = b.CNT_CODE;

Which options are valid statements?

A. INSERT INTO country_state (cnt_code, st_code, st_name)
VALUES (1, 'AZ', 'ARIZONA');

B. INSERT INTO country_state VALUES (NULL, 1, 'AZ',
'ARIZONA');

C. DELETE FROM country_state WHERE cnt_code = 1;

D. UPDATE country_state set cnt_name = 'USA' WHERE cnt_
name = 'UNITED STATES';

Column Name CNT_CODE CNT_NAME

Key Type PK

Nulls/Unique NN

FK Table

FK Column

Datatype NUMBER VARCHAR2

Length 4 20

http://www.sybex.com

242 Chapter 5 � Creating and Managing Tables and Views

15. Which data dictionary view has information on the columns that can
be updated in a view?

A. USER_VIEWS

B. USER_UPDATABLE_COLUMNS

C. USER_COLUMNS

D. USER_COLUMNS_UPDATABLE

16. Which two of the following statements are correct?

A. The DESCRIBE command is used to view the structure of objects in
the database.

B. The DESCRIBE command can be used only against tables.

C. The DESCRIBE command issued against a procedure displays the
arguments to the procedure.

D. The DESCRIBE command shows the primary key and foreign key
information of the table.

17. Which option in the view creation creates a view even if there are
syntax errors?

A. CREATE FORCE VIEW…

B. CREATE OR REPLACE VIEW…

C. CREATE VIEW FORCE…

D. FORCE VIEW…

18. What is the default length of a CHAR datatype column, if no length is
specified in the table definition?

A. 256

B. 1,000

C. 64

D. 1

http://www.sybex.com

Review Questions 243

19. What is the command for dropping a column UPDATE_DT from
table STATE?

A. ALTER TABLE STATE DROP COLUMN UPDATE_DT;

B. ALTER TABLE STATE REMOVE COLUMN UPDATE_DT;

C. DROP COLUMN UPDATE_DT FROM STATE;

D. You cannot drop a column from the table.

20. Choose one invalid datatype from the following options:

A. CLOB

B. VARCHAR

C. TIME

D. BFILE

http://www.sybex.com

244 Chapter 5 � Creating and Managing Tables and Views

Answers to Review Questions

1. B. When you create a table using another table, only the NOT NULL
constraints are created.

2. D. There is no error. Prior to Oracle8i, the ORDER BY clause was not
allowed in the view definition. In 8i, however, using an ORDER BY
clause is acceptable.

3. B. A VARCHAR2 datatype should always specify the maximum length
of the column.

4. C. The correct statement is C. When adding only one column, the col-
umn definition need not be enclosed in parentheses.

5. A. The keyword AS is missing before the subquery.

6. B, D. Only three special characters ($_#) are allowed in the table
names along with letters and numbers.

7. C. Column names (all identifiers) should begin with a letter and may
contain numbers or special characters such as $,#, and _. You cannot
use a reserved word for column names (any identifier); here, the word
1ST_COLUMN is not a reserved word.

8. C. The USER_TABLES view provides information on the tables owned
by you. DBA_TABLES will have all the tables in the database, and ALL_
TABLES will have the tables owned by you as well as the tables to
which you have access. USR_TABLES is not a valid dictionary view.

9. D. When a default value is specified in the new column added, the col-
umn values for the existing rows are populated with the default value.

10. B, C. You cannot specify a WHERE clause in the TRUNCATE statement; it
removes all the rows in the table, releases the storage space (this is the
default), and does not drop or invalidate any of the dependent objects.

http://www.sybex.com

Answers to Review Questions 245

11. C. WITH CHECK OPTION makes sure that the new rows added or the
rows updated are accessible to the view. The WHERE in the view defi-
nition limits the rows selected in the view from the base table.

12. A. When the view is created with the READ ONLY option, only reads are
allowed from the view.

13. B. A view is dropped using the DROP VIEW view_name; command.

14. A, C. Since the view contains a join, in order to do INSERT or UPDATE
to the base table, all the keys in the base table should be part of the
view. In this view, only the keys of STATE table are included. Option
B fails because it is using a column from COUNTRY table, although
the value supplied is NULL.

15. B. The USER_UPDATABLE_COLUMNS view shows the columns that can
be updated.

16. A, C. The SQL*Plus command DESCRIBE can be used to view the
structure of a table, a view, a materialized view, and the arguments of
procedures, functions, and packages.

17. A. The CREATE FORCE VIEW statement creates an invalid view even if
there are syntax errors. Normally, a view will not be created if there
are compilation errors.

18. D. If you do not specify length for a CHAR datatype column, the default
length of 1 is assumed.

19. A. There is no DROP COLUMN command or a REMOVE clause in the
ALTER TABLE.

20. C. TIME is an invalid datatype. The correct datatype is DATE, which
stores date and time components.

http://www.sybex.com

 Chapter

6

Other Database Objects
and the Data Dictionary

ORACLE8i SQL AND PL/SQL EXAM OBJEC-
TIVES OFFERED IN THIS CHAPTER:

�

Describe other database objects and their uses

�

Describe constraints

�

Create and maintain a primary key constraint

�

Create and maintain a referential integrity constraint

�

Create and maintain a check constraint

�

Create, maintain, and use sequences

�

Describe the different types of indexes

�

Create and maintain indexes

�

Create private and public synonyms

�

Describe some of the more common data dictionary views a

user may access

�

Query from the data dictionary

�

Write a query to generate SQL from the data dictionary

Exam objectives are subject to change at any
time without prior notice and at Oracle’s sole
discretion. Please visit Oracle's Training and
Certification Web site (

http://education.

oracle.com/certification/index.html

) for
the most current exam objectives listing.

http://www.sybex.com

I

n this chapter, we will cover all of the database objects except
tables and views, which are covered in Chapter 5,

Creating and Managing
Tables and Views

. We will also go over some of the more commonly used
data dictionary views, how to extract information from them, and how to
write SQL to generate SQL—easing the administrative drudgery of mass
changes.

Other Database Objects

A

n Oracle database can have far more than simply tables and views.
Constraints enforce integrity rules. Sequences can be used to generate artifi-
cial keys and synonyms, alias objects. You can create stored SQL to imple-
ment business or integrity rules in a number of forms: functions, procedures,
packages, and triggers. Some types of indexes can be deployed to enhance the
performance of queries.

Throughout this chapter, we will use automobile insurance examples. In
this scenario, we have a POLICIES table that contains information on the
insurance policies issued, such as the policy holder’s name and address. We
also have an INSURED_AUTOS table that contains information on the indi-
vidual automobiles insured on our policies and an AUTOMOBILES table that
contains information on all makes and models of automobiles manufactured.
See Figure 6.1 for an entity-relationship diagram of these three tables.

http://www.sybex.com

Other Database Objects

249

F I G U R E 6 . 1

Entity-relationship diagram for examples

Constraints

Constraints are used to enforce data integrity. There are five varieties
of constraints:

�

Check

�

NOT NULL

�

Unique

�

Primary key

�

Foreign key

Constraints are rules and as such don’t take up space in a database as a table
does. Instead, constraints exist only in the data dictionary and are applied during
the execution of SQL and PL/SQL. When constraints are enabled, they are
enforced. When constraints are disabled, they are not enforced, but they still
exist in the data dictionary. To disable a constraint, for example, in order to
improve the performance of a bulk load operation, execute an

ALTER TABLE

statement:

ALTER TABLE table_name DISABLE CONSTRAINT constraint_name;

or

ALTER TABLE policies DISABLE CONSTRAINT chk_gender;

Policies Insured Autos

Autos

http://www.sybex.com

250

Chapter 6 �

Other Database Objects and the Data Dictionary

To re-enable the disabled constraint after the bulk load, again use the

ALTER TABLE

 statement:

ALTER TABLE table_name ENABLE CONSTRAINT constraint_name;

or

ALTER TABLE policies ENABLE CONSTRAINT chk_gender;

To drop a constraint that is no longer needed, you once again use the

ALTER TABLE

 statement:

ALTER TABLE table_name DROP CONSTRAINT constraint_name;

or

ALTER TABLE policies DROP CONSTRAINT chk_gender;

ALTER TABLE AUTOMOBILES DROP PRIMARY KEY;

Knowing that the

ALTER TABLE

 statement is used to drop a constraint, espe-

cially a primary key, is important and frequently appears on the exam.

Check Constraints

Check constraints require a specific Boolean condition on a column or set
of columns to be true or at least one of the column values to be

NULL

. Check
contraints are used to enforce simple business rules about the content of
data in your table. For example, our POLICIES table has columns for the
gender and marital_status of the policy holder. The gender can be only M
or F, and the marital_status can only be one of S, M, D, or W. We use check
constraints to ensure that our data conforms to these rules. Check con-
straints can reference other columns in the row being checked but cannot
reference other rows or other tables, or call the functions

SYSDATE

,

UID

,

USER

, or

USERENV

. If your business rules require this kind of data checking,
use triggers. Check constraints cannot protect columns of datatype

LOB

,

object

,

nested

table

,

VARRAY

, or

ref

. A single column can be protected
by more than one check constraint, and a check constraint protects one or
more columns.

Create a check constraint along with the table, using the

CREATE TABLE

statement; after the table is created, use the

ALTER TABLE

 statement. If the
check protects a single column, it can be created inline with the column in the

CREATE TABLE

 statement. The general syntax of a check constraint follows:

CONSTRAINT [constraint_name] CHECK(condition);

http://www.sybex.com

Other Database Objects

251

A check constraint can also be created or added as a table constraint.
When it protects two or more columns, you must use the table con-
straint syntax. The constraint name is optional and, if this name is not
present, Oracle will generate a unique name that begins with

SYS_

. The
following example shows check constraints with both the inline column
syntax and the table constraint syntax:

CREATE TABLE policies

(policy_id NUMBER

,holder_name VARCHAR2(40)

,gender VARCHAR2(1) constraint chk_gender CHECK
(gender in ('M','F')) --inline syntax

,marital_status VARCHAR2(1)

,date_of_birth DATE

-- table constraint syntax

,constraint chk_marital CHECK (marital_status in ('S' ,'M'
,'D' ,'W'))

);

You should not rely on system-generated names for constraints. If you want
to compare table characteristics, such as between production and acceptance
test, the inconsistent system-generated names will make this comparison

more difficult.

NOT NULL Constraints

A NOT NULL constraint applies to a single column and requires data values
for the column it protects. By default, Oracle allows a NULL value in any col-
umn. Where business rules require data in specific columns, a NOT NULL con-
straint on those specific columns will ensure that the protected columns
always contain data. For example, each row in our POLICIES table must

http://www.sybex.com

252 Chapter 6 � Other Database Objects and the Data Dictionary

have the name and date_of_birth columns populated, so we modify the
CREATE TABLE statement as follows:

CREATE TABLE policies

(policy_id NUMBER

,holder_name VARCHAR2(40) NOT NULL

,gender VARCHAR2(1)

,marital_status VARCHAR2(1)

,date_of_birth DATE NOT NULL

);

The ALTER TABLE syntax for NOT NULL constraints is slightly different
than for the other constraints. You must modify the column to add a NOT
NULL constraint to it. Alternatively, you can add a check constraint that spec-
ifies the NOT NULL condition. Examples follow:

ALTER TABLE policies

MODIFY holder_name NOT NULL;

or

ALTER TABLE policies

ADD CONSTRAINT chk_holder (holder_name NOT NULL);

NOT NULL constraints appear in the data dictionary view DBA_CONSTRAINTS
as check constraints. When created inline, NOT NULL constraints also appear in
the data dictionary view DBA_TAB_COLUMNS as a column attribute. To drop a
NOT NULL constraint, use the ALTER TABLE MODIFY statement, like this:

ALTER TABLE policies MODIFY holder_name NULL;

Unique Constraints

A unique constraint protects one or more columns in a table, ensuring that
no two rows contain duplicate data in the protected columns. For example,
in our INSURED_AUTOS table we need to ensure that the combination of
policy_id and the auto’s VIN number is unique. Create a unique constraint
together with the table, using the CREATE TABLE statement; after the table is
created, use the ALTER TABLE statement. If the constraint is on a single col-
umn, it can be created inline with the CREATE TABLE statement. Using our

http://www.sybex.com

Other Database Objects 253

insurance example, a policy may have a rider, and if it does, the rider_id must
be unique. Here’s the general syntax:

,column_name data_type CONSTRAINT constraint_name UNIQUE

For our POLICIES table, the code would look like this:

,rider_id NUMBER CONSTRAINT uniq_rider UNIQUE

If the unique constraint protects two or more columns, the constraint
needs to be added as a table constraint with the syntax shown in Figure 6.2.

F I G U R E 6 . 2 Unique constraint syntax

Unique constraints are enforced with a B-tree index, so the USING clause
may be exploited to specify characteristics for the index, such as the tablespace
or storage parameters. The CREATE TABLE statement that includes a unique
constraint will create a unique index on the protected columns. The CREATE
TABLE statement for POLICIES would look like this:

CREATE TABLE insured_autos

(policy_id NUMBER

,vin VARCHAR2(40)

,coverage_begin DATE

,coverage_term NUMBER

,CONSTRAINT uniq_auto UNIQUE (policy_id ,vin)
USING INDEX TABLESPACE indx
STORAGE (INITIAL 1M NEXT 10M PCTINCREASE 0)

);

You can disable a unique constraint so that it is not enforced but still
exists. This technique is frequently used for bulk loads on a table where con-
straint checking on each row as the row is inserted can degrade performance
significantly from a single check after all rows are inserted. To disable a
unique constraint, use the ALTER TABLE statement:

ALTER TABLE insured_autos DISABLE CONSTRAINT uniq_auto;

CONSTRAINT

constraint
name

STORAGE

column

USING INDEX

TABLESPACE tablespace
name

storage
clause

()

,

UNIQUE

http://www.sybex.com

254 Chapter 6 � Other Database Objects and the Data Dictionary

To remove a unique constraint entirely, use the ALTER TABLE…DROP
CONSTRAINT statement with the constraint name, like this:

ALTER TABLE insured_autos DROP CONSTRAINT uniq_auto;

You will not be able to drop a unique constraint on a table that has for-
eign keys pointing to it. You must disable or drop the foreign key constraints
first.

Disabling or dropping a unique constraint usually drops the enforcing
index, thus depriving any SQL of the performance benefits it may have pro-
vided. If you frequently disable or drop a unique constraint, you can avoid
the performance problems caused by the missing index by following these
steps:

1. Create a non-unique index on the columns that the unique constraint
will protect.

2. Add the unique constraint.

The unique constraint will not create a second index and will still enforce
uniqueness. If the constraint were dropped, a unique index would be
dropped along with the constraint, but the non-unique index will remain.
With our INSURED_AUTOS example, we could do this:

CREATE INDEX insured_autos_u1-- non-unique index
ON insured_autos (policy_id ,vin)
TABLESPACE indx
STORAGE (INITIAL 1M NEXT 10M PCTINCREASE 0);

ALTER TABLE insured_autos
ADD CONSTRAINT uniq_auto UNIQUE (policy_id ,vin);

There is a tradeoff involved in using a non-unique index to enforce a
unique constraint. The optimizer can perform a unique scan on a unique
index, but it can perform only a range scan on a non-unique index. Using our
non-unique index trick will result in one additional logical read for every
index access that must be done in range scan mode, as opposed to unique
scan mode.

Primary Key Constraints

Tables can have only a single primary key constraint. A table’s primary key
can protect one or more columns and incorporates NOT NULL constraints on
each column in the key, as well as a unique constraint on all columns in the
key. This combination of NOT NULL and unique will ensure that the primary

http://www.sybex.com

Other Database Objects 255

key uniquely identifies each and every row. As with the unique constraint,
the primary key is enforced with a B-tree index.

You can create a primary key constraint together with the table using the
CREATE TABLE statement; after the table is created, use the ALTER TABLE
statement. If the primary key is on a single column, it can be created inline
with the CREATE TABLE statement:

CREATE TABLE policies

(policy_id NUMBER CONSTRAINT pk_policies PRIMARY KEY

,holder_name VARCHAR2(40)

,gender VARCHAR2(1)

,marital_status VARCHAR2(1)

,date_of_birth DATE

);

As with unique constraints, if the primary key protects two or more col-
umns, it must be created as a table constraint:

CREATE TABLE insured_autos

(policy_id NUMBER

,vin VARCHAR2(40)

,coverage_begin DATE

,coverage_term NUMBER

,CONSTRAINT pk_insured_autos PRIMARY KEY (policy_id ,vin)
USING INDEX TABLESPACE indx
STORAGE (INITIAL 1M NEXT 10M PCTINCREASE 0)

);

To disable or drop a primary key constraint, you must do so with the
ALTER TABLE statement, like this:

ALTER TABLE policies DROP PRIMARY KEY;

or

ALTER TABLE policies DISABLE PRIMARY KEY;

You will not be able to drop a primary key on a table that has foreign keys
pointing to it. You will have to disable or drop the foreign key constraints
first. As with a unique constraint, dropping or disabling a primary key con-
straint will usually drop the enforcing index. You can use the same trick of
creating a non-unique index before creating the primary key to avoid drop-
ping the index with the primary key. As with the unique constraint, using a
non-unique index costs you the ability to perform a unique index scan.

http://www.sybex.com

256 Chapter 6 � Other Database Objects and the Data Dictionary

Foreign Key Constraints

A foreign key constraint protects one or more columns in a table by ensuring that
each row’s data values contains one or more null values or that all the data values
in the protected columns exist in a primary or unique constraint. The referenced
(primary or unique) constraint can protect the same table or a different one. Unlike
unique or primary keys, foreign keys do not implicitly create a B-tree index to
enforce the constraint. When dealing with foreign key constraints, we often use the
terms parent table and child table. The parent table is the referenced table, that is,
the one with the primary or unique key. The child table is the referencing table,
that is, the one whose data values are checked for existence elsewhere. Foreign key
constraints are often called referential integrity constraints because they enforce
referential data integrity.

You can create a foreign key constraint in the CREATE TABLE statement;
after the table is created, use the ALTER TABLE statement. As with the pri-
mary key, if the foreign key protects a single column (like policy_id the fol-
lowing example), it can be created inline with the column definition;
otherwise, it is created with table constraint syntax:

CREATE TABLE insured_autos

(policy_id NUMBER CONSTRAINT policy_fk
REFERENCES policies(policy_id)
ON DELETE CASCADE

,vin VARCHAR2(40)

,coverage_begin DATE

,coverage_term NUMBER

,make VARCHAR2(30)

,model VARCHAR2(30)

,year NUMBER(4)

,CONSTRAINT auto_fk FOREIGN KEY (make, model, year)
 REFERENCES automobiles (make, model, year)
 ON DELETE SET NULL

);

A foreign key constraint that protects two or more columns must be cre-
ated using the table constraint syntax shown in Figure 6.3.

http://www.sybex.com

Other Database Objects 257

F I G U R E 6 . 3 Foreign key constraint syntax

The ON DELETE clause tells Oracle what to do with the child records if a
parent record is deleted. The default is to prohibit deletes on the parent table
if child records exist. You can configure the foreign key constraint to on
delete cascade, which causes deletes on the parent record to cascade, deleting
any child records automatically. Alternatively, the constraint can be set to on
delete set NULL, which causes deletes on the parent table to update the child
table setting any referencing rows to NULL. So, using our INSURED_AUTOS
table, you can see that a delete on the POLICIES table will cascade and delete
rows in the INSURED_AUTOS table, as well. Deletes in the AUTOMO-
BILES table, however, will cause rows in the INSURED_AUTOS table to be
updated, setting the columns make, model, and year to NULL.

Foreign Keys and NULLs

The treatment of NULL values in columns protected by a foreign key con-
straint can produce unanticipated results. Oracle uses the ISO standard
Match None rule for enforcing foreign key constraints. This rule states that
if any column in a foreign key contains a NULL value, any remaining key col-
umns do not have to match values in the parent. For example, our parent
table, AUTOMOBILES, has a primary key on make, model, year, and our
dependent table, INSURED_AUTOS, has a foreign key constraint pointing
to the AUTOMOBILES table. Notice the row in the INSURED_AUTOS
table that contains a NULL model. This row has passed the constraint check,
even though the make (Tucker) does not appear in the parent table AUTO-
MOBILES, as you can see in Tables 6.1 and 6.2.

T A B L E 6 . 1 AUTOMOBILES Table Data

make model year

Ford Taurus 2000

Toyota Camry 1999

CONSTRAINT constraint
name

ON DELETE

REFERENCES

schema

CASCADE

column()

,

FORIEGN KEY

.

table column()

, SET NULL

http://www.sybex.com

258 Chapter 6 � Other Database Objects and the Data Dictionary

Deferred Constraint Checking

By default, constraints are checked during the execution of a statement that
changes data under constraint protection. This is called immediate con-
straint checking because the constraint is checked immediately at the end of
each statement. You have the option of performing constraint checks at the
end of a transaction by enabling deferred constraint checking. This deferred
constraint checking can be useful if your application changes tables pro-
tected by foreign key constraints and does so in an order that, within the
transaction, temporarily violates the constraint. For example, the first state-
ment in a transaction inserts a row into a child table that would violate a for-
eign key constraint. But the second statement inserts a row into the parent
table that will satisfy the constraint. The third statement commits the
changes. If immediate constraint checking were used, the first statement
would fail, but with deferred constraint checking, both statements would
succeed since the constraint check is not performed until the commit.

By default, constraints are deferrable and checked initially immediate. They can
be set to nondeferrable and checked initially deferred. The deferrable and nonde-
ferrable settings control the ability of a session to change when the constraint will
be checked. The initially immediate and initially deferred settings control the
default constraint checking for a particular constraint.

To enable deferred constraint checking, use the SET CONSTRAINTS state-
ment, whose syntax is shown in Figure 6.4.

T A B L E 6 . 2 INSURED_AUTOS Table Data

policy_id make model year

576 Ford Taurus 2000

577 Ford Taurus 2000

578 Tucker NULL 1949

http://www.sybex.com

Other Database Objects 259

F I G U R E 6 . 4 Set constraints syntax

Constraints in Practice

Oracle employs an optimistic model when enforcing constraint checking.
This model assumes that most checks will succeed and is appropriate for
most environments. The constraint check is made after the rollback segment
is allocated, the undo is recorded, the table data is changed, and any index
entries are modified. While this optimistic model is best for most applica-
tions, if your application and data are such that a pessimistic model is more
appropriate, you may want to check the constraint conditions in the appli-
cation code prior to executing the DML; this will save the database the work
of making all the changes, then rolling them back when the constraint fails.
You will still want the constraints on the table for data hygiene and docu-
mentation purposes, but you might not want to rely on the database’s con-
straint enforcement to filter large amounts of unwanted data.

Sequences

An Oracle sequence is a named sequential number generator. Sequences are
often used for artificial keys or to order rows that otherwise have no order.
Like constraints, sequences exist only in the data dictionary. Sequences can
be configured to increase or decrease without bound or to repeat (cycle)
upon reaching a bounding value. Sequences are created with the CREATE
SEQUENCE statement. Figure 6.5 shows the syntax of the CREATE SEQUENCE
statement.

SET CONSTRAINT ;

ALL

constraint
name

,

DEFERRED

IMMEDIATE

http://www.sybex.com

260 Chapter 6 � Other Database Objects and the Data Dictionary

F I G U R E 6 . 5 Create sequence syntax

Keyword Description

START WITH Defines the first number that the sequence will
generate. The default is one.

INCREMENT BY Defines the increase or decrease for subsequently
generated numbers. To specify a decreasing
sequence, use a negative INCREMENT BY.

MINVALUE The lowest number the sequence will generate.
This is the bounding value in a decreasing
sequence. The default MINVALUE is the keyword
NOMINVALUE, which translates to 1 for an
increasing sequence and to –1026 for a decreasing
sequence.

CREATE SEQUENCE ;

MINVALUE

sequence

INCREMENT BY

NOMINVALUE

schema .

START WITH

MAXVALUE

NOMAXVALUE

CYCLE

NOCYCLE

CACHE

NOCACHE

integer

integer

integer

integer

http://www.sybex.com

Other Database Objects 261

When you create the sequence, the START WITH value must be equal to or
greater than MINVALUE. Sequence numbers can be configured so that a set of
numbers is fetched from the data dictionary and cached or held in memory
for use. Caching the sequence improves its performance because the data dic-
tionary table does not have to be updated for each generated number, only
for each set of numbers. The negative aspects of caching the sequence can
result when the database is bounced (shut down and restarted)—any unused,
cached values are lost.

To access the next number in the sequence, you simply select from it,
using the pseudo-column nextval. To get the last sequence number that your
session has generated, you select from it using the pseudo-column currval. If
your session has not yet generated a new sequence number, currval will be
undefined.

Know the precise syntax for and how to use sequence_name.nextval and
sequence_name.currval. This syntax is important and frequently appears on
the exam.

MAXVALUE The largest number that the sequence will
generate. This is the bounding value in the
default, increasing sequence. The default
MAXVALUE is the keyword NOMAXVALUE which
translates to 1027 for an increasing sequence and
to –1 for a decreasing sequence.

CYCLE Configures the sequence to repeat numbers after
reaching the bounding value.

NOCYCLE Configures the sequence to not repeat numbers
after reaching the bounding value. This is the
default. When you try to generate the
MAXVALUE+1, an exception will be raised.

CACHE Defines the size of the block of sequence
numbers held in memory. The default is 20.

NOCACHE Forces the data dictionary to be updated for each
sequence number generated, guaranteeing no
gaps in the generated numbers.

http://www.sybex.com

262 Chapter 6 � Other Database Objects and the Data Dictionary

Sequences are removed with the DROP SEQUENCE statement:

DROP SEQUENCE sequence_name

In the following transcript, we create a sequence, then use it to generate
column values in INSERT statements and an UPDATE statement:

create sequence policy_seq nomaxvalue nocycle;

Sequence created.

select policy_seq.currval from dual; --no current value

ERROR at line 1:

ORA-08002: sequence POLICY_SEQ.CURRVAL is not yet defined
in this session

select policy_seq.nextval from dual;

 NEXTVAL

 1

select policy_seq.currval from dual;

 CURRVAL

 1

-- update an existing table with the sequence

select * from old_acme_policies;

http://www.sybex.com

Other Database Objects 263

 POLICY_ID ACME_ID HOLDER_NAME

---------- ---------------- ------------------------------

 C23 Joshua

 C24 Elizabeth

 D31 David

 D34 Sara

 A872 Jamie

 A891 Jeff

 A884 Jennie

update old_acme_policies
 set policy_id = policy_seq.nextval;

7 rows updated.

select * from old_acme_policies;

 POLICY_ID ACME_ID HOLDER_NAME

---------- ---------------- ------------------------------

 5 C23 Joshua

 6 C24 Elizabeth

 7 D31 David

 8 D34 Sara

 9 A872 Jamie

 10 A891 Jeff

 11 A884 Jennie

rollback;

update old_acme_policies set
policy_id = policy_seq.nextval;

7 rows updated.

-- the rollback does not undo the generation of the
-- sequence numbers

http://www.sybex.com

264 Chapter 6 � Other Database Objects and the Data Dictionary

select * from old_acme_policies;

 POLICY_ID ACME_ID HOLDER_NAME

---------- ---------------- ------------------------------

 12 C23 Joshua

 13 C24 Elizabeth

 14 D31 David

 15 D34 Sara

 16 A872 Jamie

 17 A891 Jeff

 18 A884 Jennie

commit;

Indexes

Indexes are data structures that can offer improved performance in obtain-
ing specific rows over the default full-table scan. Indexes do not always
improve performance, however, and in this section we will review the index-
ing technologies covered on the exam, as well as look at when and how
indexes can improve performance. Oracle offers

� B-tree, hash, and bitmap index types

� Index-organized tables

� Function-based indexes

� Domain indexes

The certification exam tends to focus primarily on B-trees and may have
a question about bitmap indexes, so we’ll concentrate on these two types
only.

Oracle retrieves rows in a table in one of two ways:

� By ROWID

� By full-table scan

Both B-tree and bitmap indexes map column data to ROWIDs for the col-
umns of interest, but they do so in different ways. When one or more indexes
are used, Oracle will use the known column values to find the interesting
ROWIDs. The rows can then be retrieved by ROWID. While indexes can
improve the performance of data retrieval, indexes degrade performance for

http://www.sybex.com

Other Database Objects 265

data changes (DML), because the indexes must be modified in addition to
the table.

It’s important to know that indexes degrade the performance of DML opera-
tions; this is frequently a question on the exam.

The B-Tree Index

B-tree indexes are the most common index type, as well as the default. They
can be either unique or non-unique and either simple (one column) or con-
catenated (multiple columns). B-tree indexes provide the best performance
on high-cardinality columns, that is, on columns having many distinct val-
ues. B-tree indexes offer a more efficient method to retrieve a small number
of interesting rows than does a full table scan, but they do not improve
retrieval performance if more than about 10 percent of the table must be
examined. As the name implies, a B-tree index is based on a binary tree, con-
structed with branch blocks and leaf blocks. Branch blocks contain the index
columns (the key) and an address to another index block. Leaf blocks con-
tain the key and the ROWID for each matching row in the table. Addition-
ally, the leaf blocks are a doubly linked list, so they can be range-scanned in
either direction. Figure 6.6 shows how the B-tree index key values are con-
structed into a binary tree.

F I G U R E 6 . 6 Index structure of B-tree index on name

Wilson
Winston
Woorley

Schwen
Smith
Stout

Guilbault
Huber
Johnson

Carter
Carter
Cartier

Viteto
Wilson
Yeardley

Guilbault
Kirby
Schwen

Carter
Chapman
Dawes

Carter
Guilbault
Viteto

http://www.sybex.com

266 Chapter 6 � Other Database Objects and the Data Dictionary

B-tree indexes may be used if any combination of the leading columns of
the index are used in the SQL statement. For example, our INSURED_
AUTOS table has an index on the make, model, and year columns:

 CREATE TABLE insured_autos

(policy_id NUMBER

,vin VARCHAR2(40)

,coverage_begin DATE

,coverage_term NUMBER

,make VARCHAR2(30)

,model VARCHAR2(30)

,year NUMBER(4)

);

CREATE INDEX auto_idx ON insured_autos (make, model,
year);

We could use the auto_idx index if we ran the following query, to see how
many Ford Taurus autos we have issued policies on. Since make and model
are a leading subset of columns in the index, the index may be used:

SELECT COUNT(*)

FROM insured_autos

WHERE make = 'Ford'

 AND model = 'Taurus';

We would not be able to use the auto_idx index if we ran the following
query, since model is not a leading subset of columns in the index:

SELECT COUNT(*)

FROM insured_autos

WHERE model = 'Taurus';

The Bitmap Index

Bitmap indexes are primarily used for decision support systems or static
data; they do not support row-level locking. Bitmap indexes can be simple
(one column) or concatenated (multiple columns), but in practice bitmap
indexes are almost always simple. Bitmap indexes are best used for low- to
medium-cardinality columns where multiple bitmap indexes can be com-
bined with AND and OR conditions. Each key value has a bitmap, which con-
tains a TRUE, FALSE, or NULL value for every row in the table. The bitmap

http://www.sybex.com

Other Database Objects 267

index is constructed by storing the bitmaps in the leaf nodes of a B-tree struc-
ture. The B-tree structure makes it easy to find the bitmaps of interest
quickly. Additionally, the bitmaps are stored in a compressed format, so they
take up significantly less disk space than B-tree indexes. Figure 6.7 shows
how a bitmap index on the state column of the INSURED_AUTOS table
would be structured. The bitmaps are in the leaf blocks of a B-tree structure.
Each row (ROWID) in the table has an entry in each bitmap. These entries are
either TRUE or FALSE (1 or 0).

F I G U R E 6 . 7 Index structure of bitmap index on state of residence

When a query references a number of bitmap-indexed columns, the bit-
maps can be combined with AND and OR operations to find the interesting
data. For example, an insurance company that offers policies for automo-
biles has a large table of insured autos named, appropriately, INSURED_
AUTOS. This table contains a number of low- to medium-cardinality
attributes of the insured autos, including year, make, model, color, body
style, engine size, and so on. The actuarial department needs to do some
analysis of insured autos based on various combinations of these attributes
in order to set rates appropriately, so we create bitmap indexes on each of

bitmap for
data value NY

bitmap for
data value MO

bitmap for
data value IL

bitmap for
data value FL

bitmap for
data value CA

AACzhAACAAAANVAAA

AACzhAACAAAANVAAB

AACzhAACAAAANVAAC

AACzhAACAAAANVAAD

AACzhAACAAAANVAAE

AACzhAACAAAANVAAF

AACzhAACAAAANVAAG

AACzhAACAAAANVAAH

AACzhAACAAAANVAAI

AACzhAACAAAANVAAJ

each row id
in the table

CA

FL

IL

MO

NY

0

0

1

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

http://www.sybex.com

268 Chapter 6 � Other Database Objects and the Data Dictionary

these columns. We are interested in getting the VIN# for certain insured
autos with the following query:

SELECT vin

FROM insured_autos

WHERE body_style='HATCH'

 AND make in ('Ford', 'Dodge', 'Honda')

 AND year BETWEEN 1990 AND 1993

 AND color IN ('red', 'white', 'blue')

To combine the bitmaps, Oracle will perform a bitwise OR for the four
year bitmaps of interest, a bitwise OR for the three make bitmaps of interest,
a bitwise OR for the three color bitmaps of interest, then AND the three derived
bitmaps to locate the ROWIDs of interest. Figure 6.8 illustrates this bitmap
merge operation.

F I G U R E 6 . 8 Bitmap merge

AA..AC 0 1 0
AA..AD 0 0 1
AA..AE 1 0 0
AA..AF 0 0 0
AA..AG 0 0 0
AA..BD 0 0 0
AA..BE 1 0 0
AA..BF 0 0 1
AA..CA 0 0 0

or or

0 0 1
1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 0
1 0 0

or or

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 1
0 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0

or ororand and

ROWIDs Ford Dodge Honda 1995 1996 1997 1998 Red White Blue

AA..AC 1
AA..AD 1
AA..AE 1
AA..AF 0
AA..AG 0
AA..BD 0
AA..BE 1
AA..BF 1
AA..CA 0

1
0
1
0
1
1
1
0
1

1
1
0
0
1
0
0
0
1

and and

ROWIDs
The bitmaps above evaluate to the following:

AA..AC 1
AA..AD 0
AA..AE 1
AA..AF 0
AA..AG 0
AA..BD 0
AA..BE 0
AA..BF 0
AA..CA 0

ROWIDs

Next, the three bitmaps evaluate to the following single bitmap

http://www.sybex.com

Other Database Objects 269

The times that bitmap indexes really stand out are when various combi-
nations of multiple indexed columns are specified. A single bitmap index
usually will not afford improved performance over a full-table scan. In the
AUTOS example, if we had one B-tree index on the three columns year,
make, and color, it would perform slightly better than the combination of
the bitmap indexes, but if the queries did not always use all three of these col-
umns or used other combinations of columns, the number of B-tree indexes
required would grow to be quite large, especially if we had many of these
attribute columns.

Indexes in Practice

Indexes may improve the performance of SELECT, UPDATE, and DELETE oper-
ations. An index can be used if a leading subset of the indexed columns
appear in the SELECT or WHERE clause. Additionally, if all the columns
needed to satisfy a query appear in an index, Oracle need only access the
index and not the table. For example, we have our INSURED_AUTOS table,
which has an index on the columns (make, model, year). If we run the fol-
lowing query to get a count of the number of 1999 Ford Taurus autos that
we have issued policies against, Oracle only needs to access the index and not
the table. All necessary columns are in the index:

SELECT COUNT(*)

FROM insured_autos

WHERE make = 'Ford'

 AND model = 'Taurus'

 AND year = 1999;

Knowing that the table does not need to be accessed if the index contains all
needed information is important and is frequently a question on the exam.

Synonyms

A synonym is an alias for another database object. A public synonym is
available to all users, while a private synonym is available only to the owner
or to the accounts to whom that owner grants privileges. A synonym can
point to a table, view, sequence, procedure, function, or package in the local

http://www.sybex.com

270 Chapter 6 � Other Database Objects and the Data Dictionary

database, or, via a database link, to an object in another database. Synonyms
are frequently used to simplify SQL by giving a universal name (public syn-
onym) to a local or remote object. Synonyms also can be used to give differ-
ent or multiple names to individual objects. Unlike views or stored SQL,
synonyms don’t become invalid if the object they point to is dropped. Like-
wise, you can create a synonym that points to an object that does not exist
or that the owner does not have permissions on.

For example, user SCOTT owns a table EMP. All users log in to the database
under their own userID and so must reference the table with the owner as
SCOTT.EMP. But when we create a public synonym EMP for SCOTT.EMP,
then anyone who has privileges on the table can simply reference it in their SQL
or PL/SQL as EMP, without having to specify the owner. When the statement is
parsed, Oracle will resolve the name EMP via the synonym to SCOTT.EMP.

When Oracle performs name resolution for references to tables, stored
procedures, stored functions, or packages, there are three places that Oracle
will look for the referenced object, in this order:

1. An object owned by the current user

2. A private synonym

3. A public synonym

The syntax for creating a synonym follows:

CREATE [PUBLIC] SYNONYM synonym_name FOR
[schema.]object[@db_link];

Here’s an example:

CREATE PUBLIC SYNONYM policies FOR poladm.policies@prod;

or

CREATE SYNONYM plan_table FOR system.plan_table;

The public synonym policies would then refer to the POLICIES table
owned by user poladm in the prod database. The synonym plan_table
would point to the table named PLAN_TABLE that is owned by user system.

To remove a synonym, use the DROP SYNONYM statement:

DROP [PUBLIC] SYNONYM synonym_name;

http://www.sybex.com

Other Database Objects 271

Procedures and Functions

Procedures and functions are named PL/SQL programs that are stored in a
compiled form in the database. Functions take zero or more parameters and
return a value. Procedures take zero or more parameters and return no val-
ues. Both functions and procedures can receive or return zero or more values
through their parameter lists. The primary difference between procedures
and functions, other than the return value, is how they are called. Procedures
are called as stand-alone executable statements:

pay_invoice(invoice_nbr,30,due_date);

Functions are called anywhere an expression is valid:

� In an assignment:

order_volume := open_orders(SYSDATE, 30);

� In a Boolean expression:

IF (open_orders(SYSDATE, 30) < 500)

THEN …

� In a default value assignment:

DECLARE

 order_volume NUMBER DEFAULT open_orders(SYSDATE, 30);

BEGIN …

� In a SQL statement:

SELECT vendor_name

FROM vendors

WHERE open_orders(SYSDATE, 30, vendor_id) = 0;

� In the parameter list of another program:

process_vendor(vendor_id,open_orders(vendor=>vendor_id));

http://www.sybex.com

272 Chapter 6 � Other Database Objects and the Data Dictionary

The syntax for creating a procedure follows:

CREATE [OR REPLACE] PROCEDURE [schema.]procedure_name

[parameter_list]

{AS | IS}

 declaration_section

BEGIN

 executable_section

[EXCEPTION

 exception_section]

END [procedure_name];

The declaration, executable, and exception sections are all covered in
greater detail in Chapter 7, PL/SQL Basics. The parameter_list is a comma-
delimited list of zero or more parameters. Each parameter has the following
syntax:

paramter_name mode datatype [(:= | DEFAULT) value]

The mode describes whether the parameter can be read from or written
to. Valid modes are IN for read-only access, OUT for write-only access and IN
OUT for read-write access. The datatype is the parameter’s datatype, but not
the size. The size is determined by the calling program. You have the option
of assigning a default value to a parameter, so the calling program does not
have to supply it. Specifying the default value can be performed either with
the assignment operator (:=) or with the keyword DEFAULT. Therefore, the
following two statements are equivalent:

today DATE := SYSDATE;

today DATE DEFAULT SYSDATE;

Sometimes extracting information from the data dictionary is clumsy,
because LONG datatypes are sometimes used and these LONG datatypes impose
a number of restrictions on their use from SQL*Plus. You have greater flex-
ibility in working with LONGs from PL/SQL. For example, we want to extract
ALTER TABLE statements from the data dictionary to assign default values to
table columns, but the data_default column is a LONG, so we create the fol-
lowing procedure that uses dbms_output. A caveat for this procedure is that
dbms_output has a limit of 255 characters per line, so if we have really long
default values, we’ll need to add a loop to the output part of the program to
chop up the data_default into smaller pieces. But most defaults are things
like Y, N, or SYSDATE.

http://www.sybex.com

Other Database Objects 273

CREATE OR REPLACE PROCEDURE Get_col_defaults

(ownr IN VARCHAR2 ,tabl IN VARCHAR) IS

 CURSOR def_col_cur IS

 SELECT 'ALTER TABLE'||LOWER(ownr)||'.'||
LOWER(tabl)||' MODIFY '||

 column_name||' DEFAULT ' part1, data_default

 FROM dba_tab_columns

 WHERE owner=ownr

 AND table_name=tabl

 AND data_default IS NOT NULL;

 BEGIN

 FOR def_col_rec IN def_col_cur

 LOOP

 dbms_output.put(def_col_rec.part1);

 dbms_output.put(def_col_rec.data_default);

 dbms_output.put_line(';');

 END LOOP;

END;

The syntax for creating a function is almost identical to that of a proce-
dure. Note that the required RETURN clause is the only difference:

CREATE [OR REPLACE] FUNCTION [schema.]function_name

[parameter_list]

RETURN returning_datatype

{AS | IS}

 declaration_section

BEGIN

 executable_section

[EXCEPTION

 exception_section]

END [procedure_name];

Functions must have one or more RETURN statements in their executable
section.

http://www.sybex.com

274 Chapter 6 � Other Database Objects and the Data Dictionary

You might recall from Chapter 2, Single-Row and Group Functions, that
Oracle’s trigonometric functions only operate on radians. If we want a SIN
function that takes degrees, we can write it ourselves and simply put a wrap-
per around Oracle’s built-in function:

CREATE OR REPLACE FUNCTION my_sin(DegreesIn IN NUMBER)

RETURN NUMBER

IS

 pi NUMBER := ACOS(-1);

 RadiansPerDegree NUMBER;

BEGIN

 RadiansPerDegree := pi/180;

 RETURN(SIN(DegreesIn*RadiansPerDegree));

END;

This function can be called just like the built-in function:

SELECT my_sin(90) FROM dual;

MY_SIN(90)

 1

When we try 180 degrees, however, we notice that we get some rounding
errors:

SELECT my_sin(180) FROM dual;

MY_SIN(180)

 1.0000E-38

So, we add the ROUND function to round the result to the 37th decimal,
which should be sufficient as long as we are not calculating trajectories for
Mars space probes:

CREATE OR REPLACE FUNCTION my_sin(DegreesIn IN NUMBER)

RETURN NUMBER

http://www.sybex.com

Other Database Objects 275

IS

 pi NUMBER := ACOS(-1);

 RadiansPerDegree NUMBER;

BEGIN

 RadiansPerDegree := pi/180;

 RETURN(ROUND(SIN(DegreesIn*RadiansPerDegree),37));

END;

Now, we get the 0 that we expected from 180 degrees:

SELECT my_sin(180) FROM dual;

MY_SIN(180)

 0

Parameter Passing

When calling procedures and functions, there are two techniques that you
can use to pass parameters to the programs:

� Positional notation

� Named notation

As the name implies, positional notation passes parameters based on
their position in the parameter list, regardless of name. With named nota-
tion, the programmer specifically assigns a value to a named parameter;
the order in which the parameters appear does not matter. The names of
the parameters are available from the package specification. As you can
see in the example below, the named notation is more verbose, but it is
also more self-documenting. For our example, we want to use the pack-
aged procedure DBMS_UTILITY.ANALYZE_SCHEMA to analyze user Scott’s
schema, estimating the statistic by sampling 10 percent of each table:

-- positional notation

dbms_utility.analyze_schema('SCOTT','ESTIMATE',NULL,10);

http://www.sybex.com

276 Chapter 6 � Other Database Objects and the Data Dictionary

--named notation

dbms_utility.analyze_schema(schema=>'SCOTT'
,method=>'ESTIMATE',estimate_percent=>10);

--named notation with parms in different order

dbms_utility.analyze_schema(estimate_percent=>10,
schema=>'SCOTT',method=>'ESTIMATE');

There are some additional, advanced options that procedures and func-
tions can use, such as deterministic, parallel enabled, and authid. These
advanced concepts are not typically addressed on the exam and are not cov-
ered in this text. See the language reference for the exhaustive details.

Packages

Packages are containers that bundle together procedures, functions, and
data structures. They consist of an externally visible package specification,
which contains the function headers, procedure headers, and externally vis-
ible data structures. The package also consists of a package body, which con-
tains the declaration, executable, and exception sections of all the bundled
procedures and functions.

There are a number of differences between packaged and non-packaged
PL/SQL programs. Package data is persistent for the duration of the user’s
session. Package data thus exists across commits in the session. When you
grant the execute privilege on a package, it is for all programs and data struc-
tures in the package specification. You cannot grant privileges on only one
procedure or function within a package. Packages can overload procedures
and functions, declaring multiple programs with the same name. The correct
program to be called is decided at runtime, based on the number or datatypes
of the parameters. An example of an overloaded function is the TRUNC func-
tion declared in the package STANDARD. There is one TRUNC function for a
date datatype and another for numeric data. The PL/SQL engine decides
which to call at runtime based on which datatype gets passed to TRUNC. A
package body can also be wrapped, or delivered in compiled form (PCODE),
so that the source code is not readable.

To create a package, you must first create the package specification, using
the following syntax:

CREATE [OR REPLACE] PACKAGE [schema.]package_name

{AS | IS}

http://www.sybex.com

Other Database Objects 277

 public_variable_declarations |

 public_type_declarations |

 public_exception_declarations |

 public_cursor_declarations |

 function_specifications |

 procedure_specifications

END [package_name];

To create the package body, use the CREATE PACKAGE BODY statement
after creating the package specification. (You will raise an exception if
you try to create the body before the spec.) The syntax for the package
body follows:

CREATE [OR REPLACE] PACKAGE BODY [schema.]package_name

{AS | IS}

 private_variable_declarations |

 private_type_declarations |

 private_exception_declarations |

 private_cursor_declarations |

 function_specifications |

 procedure_specifications

END [package_name];

The private data structures are those used within the package body, which
are not visible to the calling program.

For our example, we want to collect a series of database statistics from V$
tables and include a timestamp in the data. We write the five SELECT statements,
using SYSDATE and discover that sometimes the time portion changes from the
first statement to the last. It doesn’t change enough to throw our statistics off by
a meaningful amount, only by a couple of seconds, but sometimes those couple of
seconds cross a minute or hour boundary, and we want a consistent timestamp
reported. The call to SYSDATE to get the timestamp is a function call and does not
obey database read consistency. We can’t use SET TRANSACTION ISOLATION
LEVEL SERIALIZABLE or SET TRANSACTION READ ONLY to get SYSDATE to report
the same time across multiple statements. We can use a package, however, to grab

http://www.sybex.com

278 Chapter 6 � Other Database Objects and the Data Dictionary

a timestamp at the beginning of the collection interval, and then use the saved
timestamp in our SELECTs:

CREATE OR REPLACE PACKAGE timestamp IS -- package spec

 FUNCTION GetTimestamp RETURN DATE;

 PRAGMA RESTRICT_REFERENCES (GetTimestamp, WNDS);

 PROCEDURE ResetTimestamp;

END timestamp;

CREATE OR REPLACE PACKAGE BODY timestamp IS

 /* Global data structures */

 StartTimeStamp DATE := SYSDATE;

 FUNCTION GetTimestamp RETURN DATE IS

 BEGIN

 RETURN StartTimeStamp;

 END GetTimestamp;

 PROCEDURE ResetTimestamp IS

 BEGIN

 StartTimeStamp := SYSDATE;

 END ResetTimestamp;

END timestamp;

Now the first call to timestamp.GetTimestamp will set the package
variable to the current time. In the five collection statements, we sub-
stitute timestamp.GetTimestamp for SYSDATE, and the timestamps are
then consistent.

Triggers

Triggers are programs that are executed automatically in response to a
change in the database. Triggers can be configured to fire, or execute, either
before or after the triggering event. The events that can be hooked with trig-
gers include the following:

� DML events

� DDL events

� Database events

http://www.sybex.com

Other Database Objects 279

DML event triggers can be statement or row triggers. The DML statement
trigger fires before or after the triggering statement. The DML row trigger
fires before or after each row affected by the statement is changed. You can
define multiple triggers for a single event and type (for example, two or more
before-statement triggers), but there is no way to enforce the order in which
these multiple triggers will fire. Table 6.3 lists the trigger events that you can
use.

T A B L E 6 . 3 Trigger Events

Event Trigger Description

insert Fires whenever a row is inserted into the
table or view.

update Fires whenever a row is updated in the table
or view.

delete Fires whenever a row is deleted from a table
or view.

create Fires whenever a CREATE statement adds a
new object to the database or a specific
schema.

alter Fires whenever an ALTER statement changes
an object in the database or a specific
schema.

drop Fires whenever a DROP statement removes
an object from the database or a specific
schema.

startup Fires when the database is opened. Can only
be an after-event trigger.

shutdown Fires when the database is closed via either
the normal or immediate option, but not the
abort option. Can only be a before-event
trigger.

http://www.sybex.com

280 Chapter 6 � Other Database Objects and the Data Dictionary

The syntax for creating a trigger follows:

CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF} event

ON {table_or_view_name | DATABASE}

[FOR EACH ROW [WHEN condition]]

trigger_body

Only DML triggers (INSERT, UPDATE, DELETE) on views can be INSTEAD OF
triggers and only DML triggers on tables can be BEFORE or AFTER triggers.

To create a trigger that populates the who_last and when_last columns of
our POLICIES table with the current user and SYSDATE for the last change
to a policy, you could create the following trigger:

CREATE OR REPLACE TRIGGER policy_who BEFORE insert or
update

ON policies

FOR EACH ROW

BEGIN

 :new.who_last := USER;

 :new.when_last := SYSDATE;

END

The :new in this example refers to a record containing the new, post-change
data. The :old would refer to a record containing the old, pre-change data.
The trigger can have visibility to both old and new values. However, the :old
on an insert and the :new on a delete have no meaning; they contain all NULLs.

logon Fires when a session is created, that is,
when a user connects. Can only be an after-
event trigger.

logoff Fires when a session disconnects from the
database. Can only be a before-event trigger.

servererror Fires when a server error occurs. Can only
be an after-event trigger.

T A B L E 6 . 3 Trigger Events (continued)

Event Trigger Description

http://www.sybex.com

Other Database Objects 281

Like constraints, triggers may be disabled or enabled to turn off or turn on
their execution. Triggers are bit different from constraints when it comes to
enabling or disabling. To enable or disable a single trigger, use the ALTER
TRIGGER statement:

ALTER TRIGGER trigger_name ENABLE;

ALTER TRIGGER trigger_name DISABLE;

or

ALTER TRIGGER policy_who ENABLE;

ALTER TRIGGER policy_who DISABLE

To enable or disable all triggers on a table, use the ALTER TABLE statement:

ALTER TABLE table_name DISABLE ALL TRIGGERS;

ALTER TABLE table_name ENABLE ALL TRIGGERS;

or

ALTER TABLE policies DISABLE ALL TRIGGERS;

ALTER TABLE policies ENABLE ALL TRIGGERS;

Remove triggers with the DROP TRIGGER statement:

DROP TRIGGER trigger_name;

or

DROP TRIGGER policy_who;

Triggers in Practice

Triggers are often used to bolt on functionality to a purchased application. These
applications generally do not include the source code; therefore, customizations
are not otherwise feasible. Even if you do have the source code (as with Oracle
Financials or SAP), you might want to implement the customizations as a different
program unit (the trigger) rather than the purchased program. That way, you
won’t have to re-customize it with every patch applied. The bolt-on functionality
may be something like auditing or logging that does not change the business rules
that the purchased application has implemented. You don’t want to modify and
test changes to the business rule code if you don’t have to.

http://www.sybex.com

282 Chapter 6 � Other Database Objects and the Data Dictionary

After DML triggers are slightly more efficient than before triggers, since
the row must be fetched twice with a before trigger: once for the trigger and
again for the DML. An after row trigger only has to fetch the row once for
the DML.

A Quick ’n’ Dirty Review of the Data Dictionary

The Oracle data dictionary contains metadata on your database. The under-
lying tables have names like OBJ$, UET$, and SOURCE$. These tables are
created from the sql.bsq script during execution of the CREATE DATABASE
statement. Rarely, if ever, do you need to access these underlying tables,
however. The script catalog.sql, usually located in $ORACLE_HOME/
rdbms/admin, is typically run right after the CREATE DATABASE statement.
The catalog.sql script creates the data dictionary views that everyone nor-
mally uses.

For most data dictionary views, there are three similar views with differ-
ent contents:

� There are those prefixed with USER_, which contain information
about objects owned by your schema or privileges granted to or from
your schema.

� The next, more comprehensive, views are those prefixed by ALL_, which
contain objects and privileges that you own or have privileges on.

� The most comprehensive views are those prefixed by DBA_, which
include all objects and privileges in the database.

A family of views, such as DBA_TABLES, ALL_TABLES, and USER_TABLES, exists
for most dictionary views. There are more than 100 such view families, so a com-
prehensive listing here would be long, tedious, and of little value. Most are unlikely
to appear on the exam, such as views for replication, function-based indexes,
programmer-defined operators, and so on. Table 6.4 includes some of the more
important view families: Each family will have a DBA_ , an ALL_, and a USER_
view. You are likely to encounter questions on the exam that will test your general
knowledge of these views. If you have worked with Oracle for a year or more, you
will probably be familiar with many of these views.

If you’re relying on this book to learn everything about Oracle that may
appear on the exam, crack open a pack of sticky notes, make up some flash-
cards with the following data dictionary families, and trudge through the
rote memorization of them. You can stick them on the mirror for review
while you’re brushing your teeth, stick them to the back of your favorite
cereal box for some light breakfast reading, stick them to your computer

http://www.sybex.com

Other Database Objects 283

monitor—get creative. Just don’t stick them inside the windshield of your car
or to your spouse’s forehead.

T A B L E 6 . 4 Important Data Dictionary View Families

View family Description

COL_PRIVS Column privileges, such as grantee, grantor,
and privilege

EXTENTS Extent information, such as datafile, segment_
name, and size

INDEXES Index information, such as type, uniqueness,
and referenced table

IND_COLUMNS Index column information, such as column
order in index

OBJECTS Object information, such as status and DDL
time

ROLE_PRIVS Role privileges, such as grantee and admin
option

SEGMENTS Segment (table and index) information, such
as tablespace and storage

SEQUENCES Sequence information, such as cache, cycle,
and last_number

SOURCE Source code for all stored SQL except triggers

SYNONYMS Synonym information, such as referenced
object and db_link

SYS_PRIVS System privileges, such as grantee, privilege,
and admin option

TAB_COLUMNS Table and view column information, includ-
ing column datatype

http://www.sybex.com

284 Chapter 6 � Other Database Objects and the Data Dictionary

There are some data dictionary tables that may appear on the exam but aren’t
really in a dictionary family. Table 6.5 shows these important single views.

The other major group of dictionary views are the V$ views, so called
because they all start with V$ or GV$ (for global V$). The V$ views are based
on the X$ virtual tables. These V$ views are owned by user SYS and by
default are only available to users with DBA privileges. These views give
visibility to a wealth of instance-oriented information, as opposed to the
database-oriented information in the DBA_, ALL_, and USER_ views. Shared

TAB_PRIVS Table privileges, such as grantor, grantee,
and privilege

TABLES Table information, such as tablespace, stor-
age parms, and row count

TRIGGERS Trigger information, such as type, event, and
trigger body

USERS User information, such as temp and default
tablespace

VIEWS View information, including the view definition

T A B L E 6 . 5 Important Individual Data Dictionary Views

View name Description

USER_COL_PRIVS_MADE Column privileges that you have
granted to others

USER_COL_PRIVS_RECD Column privileges that you have
received from others

USER_TAB_PRIVS_MADE Table privileges that you have
granted to others

USER_TAB_PRIVS_RECD Table privileges that you have
received from others

T A B L E 6 . 4 Important Data Dictionary View Families (continued)

View family Description

http://www.sybex.com

Other Database Objects 285

memory, latch, lock and wait statistics all appear in V$ views. The SQL and
PL/SQL exam probably won’t have extensive questions on these views, but
understanding that they exist and provide tuning data might be tested.

The Inside Hack to X$ Tables

The X$ tables are really data structures in memory that have a table-based
interface, so they are available to be queried with SQL. You can get a listing
of all of them from V$FIXED_TABLE. They typically have cryptic table and
column names, but you can gain insight into what they contain by examining
the V$ view definitions in V$FIXED_VIEW_DEFINITION. Once you get a feel
for the naming conventions, they don’t seem as cryptic:

� KG = Kernel Generic

� KS = Kernel Services

� KT = Kernel Transactions

� KC = Kernel Cache

If you try to grant privileges on an X$ table, you will get the exception
“ORA-02030: can only select from fixed tables/views.” The way to work
around this is to follow these steps:

1. Create a view on the X$ table.

2. Grant select on the view to whoever needs to read it.

3. Create a public synonym on the view with the same name as the base table.

For example, all the init.ora parameters are listed in X$KSPPI. To give
public access to this information, you could do the following as user SYS:

CREATE VIEW x_$ksppi AS SELECT * FROM x$ksppi;

GRANT SELECT ON x_$ksppi TO PUBLIC;

CREATE PUBLIC SYNONYM x$ksppi FOR sys.x_$ksppi;

Now, when anyone references X$KSPPI, the public synonym will direct
them to the view SYS.X_$KSPPI, which directs them to the fixed table
SYS.X$KSPPI.

Be careful with some of the X$ tables: Oracle does not support direct
access to them and reserves the right to change them from release to release,
but like the rest of the data dictionary, parts have changed little if at all since
Oracle6. Use them at your own risk (as do many DBAs), and the X$ tables
more than likely will not appear on the exam.

http://www.sybex.com

286 Chapter 6 � Other Database Objects and the Data Dictionary

Querying the Data Dictionary

One of the most powerful techniques that a DBA can employ is to use the
data dictionary to generate SQL. For example, if we want to change the tem-
porary tablespace for all users (except SYS) to TEMP, we have a few choices:

� Manually key in each statement, and be typing for weeks on a large system

� Manually key in the statement once with a variable for the username,
then key in the username once for each user, and be at it for hours on
a large system

� Write a SQL statement to generate the necessary ALTER USER state-
ments and be done in minutes

The obvious choice is to generate the SQL as follows:

SELECT 'ALTER USER '||username||
' TEMPORARY TABLESPACE temp;'

FROM DBA_USERS

WHERE username <> 'SYS'

 AND temporary_tablespace <> 'TEMP';

The results of this query can be spooled to a file then executed. They will
look like this:

ALTER USER SYSTEM TEMPORARY TABLESPACE temp;

ALTER USER OUTLN TEMPORARY TABLESPACE temp;

ALTER USER DBSNMP TEMPORARY TABLESPACE temp;

ALTER USER SCOTT TEMPORARY TABLESPACE temp;

ALTER USER DEMO TEMPORARY TABLESPACE temp;

Let’s look at another example of when this technique can be used. You re-
created an important package and now virtually every function, procedure,
trigger, and package in your application schema is invalid. Since you don’t
want to key in ALTER COMPILE statements until next February, you decide
to use SQL to generate SQL. You cleverly write the following to generate the
ALTER COMPILE statements:

SELECT 'ALTER '||DECODE(object_type,'PACKAGE BODY'
,'PACKAGE',object_type)

 ||' '||object_name||' COMPILE'

http://www.sybex.com

Summary 287

 ||decode(object_type,'PACKAGE BODY',' BODY;',';')

FROM user_objects

WHERE status = 'INVALID'

You run this SQL, spooling the output to a file, then execute the spooled
SQL—job done. You even have time to go to lunch, while everything com-
piles. Life is good.

Summary

In this chapter, we reviewed the five types of constraints, how to create
and drop them via the CREATE TABLE or ALTER TABLE statements, and the
fact that an index is used to enforce unique and primary key constraints. We
covered sequence number generators and how to use them with the NEXTVAL
and CURRVAL keywords.

Oracle has many index types, and we looked at B-tree and bitmap
indexes: how they are constructed and when they can be used. You saw
when indexes can speed up access to data and also that they slow down
inserts, updates, and deletes.

Oracle synonyms are a mechanism to alias other objects, either local or in
another database accessed through database links. Synonyms can be globally
available (public) or restricted to limited users (private). You saw that func-
tions can return multiple values through the parameter list, must contain a
return statement, and can be used in any expression. Procedures, on the
other hand, return values through their parameter list only and are executed
as stand-alone statements. Triggers are PL/SQL programs that have no
parameter lists or return values and execute in response to database events.
Packages are constructed of a specification and a body and may contain
functions, procedures, and data structures. You read about named and posi-
tional notation for passing parameters to procedures and functions. Finally,
we touched on a number of the data dictionary view families and how to use
them to generate SQL.

http://www.sybex.com

288 Chapter 6 � Other Database Objects and the Data Dictionary

Key Terms

Before you take the exam, make sure you’re familiar with the
following terms:

Cardinality

Child table

Currval

Deferrable

Foreign key constraint

Function

Initially deferred

Initially immediate

Key

Named notation

Nextval

Nondeferrable

NOT NULL constraint

On delete cascade

On delete set NULL

Package

Parent table

Procedure

Primary key constraint

Positional notation

Private synonym

Public synonym

ROWID

Sequence

Synonym

Unique constraint

http://www.sybex.com

Review Questions 289

Review Questions

1. Which of the following statements will create a primary key constraint
pk_books on the table BOOKS, column ISBN? Choose one.

A. create primary key on books(ISBN);

B. create constraint pk_books primary key
on books(ISBN);

C. alter table books
add constraint pk_books primary key (ISBN);

D. alter table books
add primary key (ISBN);

2. Which of the following check constraints will raise an exception?
Choose all that apply.

A. CONSTRAINT gender_chk
CHECK (gender in 'M','F')

B. CONSTRAINT no_old_order
CHECK (order_date > SYSDATE - 30)

C. CONSTRAINT vendor_chk
CHECK (vendor_id in (select vendor_id from vendors))

D. CONSTRAINT profit_chk
CHECK (gross > net)

3. Which data dictionary view(s) will contain information about NOT
NULL constraints? Select all that apply.

A. DBA_TAB_COLUMNS

B. DBA_IND_COLUMNS

C. DBA_CONSTRAINTS

D. DBA_COL_CONSTRAINTS

http://www.sybex.com

290 Chapter 6 � Other Database Objects and the Data Dictionary

4. The table ANIMALS has a unique constraint on the two nullable col-
umns genus and species. How many rows can contain genus =
'Smiladon' and NULL species?

A. 0

B. 1

C. Any number up to all rows –1

D. Any number up to all rows

5. You have a large job that will load many thousands of rows into your
BOOK_AUTHORS table. To speed up the loading process, you want
to temporarily stop enforcing the foreign key constraint book_fk.
Which of the following statements will satisfy our requirement?
Choose all that apply.

A. alter constraint book_fk disable;

B. alter table book_authors direct insert mode;

C. alter table book_authors disable constraint book_fk;

D. alter table book_authors disable all constraints;

6. Which statement will force the constraint checks to occur at the end
of the transaction? Choose one.

A. set transaction defer constraints;

B. set transaction delay constraints;

C. set constraints transaction level;

D. alter session set constraints deferred;

7. Which named PL/SQL program must return a value? Choose one.

A. Procedure

B. Function

C. Trigger

D. Method

http://www.sybex.com

Review Questions 291

8. How do you return multiple values from a procedure?

A. Use IN parameters.

B. Use OUT parameters.

C. Use pointers.

D. You can’t.

9. You have a large job that will load many thousands of rows into your ANI-
MALS table. To speed up the loading process, you want to temporarily
stop firing the trigger location_trigr. Which of the following statements
will satisfy your requirement? Choose all that apply.

A. alter trigger location_trigr disable;

B. alter table animals direct insert mode;

C. alter table animals disable trigger location_trigr;

D. alter table book_authors disable all triggers;

10. Which of the following events is not a trigger event? Choose one.

A. before insert

B. after create

C. before logon

D. after startup

E. after delete

11. A power user is running some reports and has asked you to put two
new B-tree indexes on a large table so that her reports will run faster.
You acknowledge that the indexes would speed up the reports. Can
the proposed indexes slow other processes? Choose one.

A. No, indexes only speed up queries.

B. Yes, the indexes will make the optimizer take longer to decide the
best execution plan.

C. Yes, DML will run more slowly.

D. Yes, table reorgs will be slower.

http://www.sybex.com

292 Chapter 6 � Other Database Objects and the Data Dictionary

12. Examine the following table instance exhibit. Which index could be
used to speed up the following query?

SELECT emp_id FROM emp WHERE sur_name LIKE 'DAW%S';

A. B-tree index on (surname, hire_date)

B. B-tree index on (emp_id)

C. B-tree index on (emp_id, surname)

D. No index would help; a full-table scan is the best access method.

Column Name emp_id surname first_name hire_date

Key Type pk

NULLs/
Unique

NN NN NN

FK Table

Datatype varchar2 varchar2 varchar2 date

Length 9 50 40

http://www.sybex.com

Review Questions 293

13. Examine the following table instance exhibit. Which index could be
used to speed up the following query?

select gender, avg(salary)

from emp

where marital_status = 'S'

group by gender;

A. Bitmap index on (marital_status)

B. Bitmap index on (marital_status, gender)

C. Two separate bitmap indexes on (marital_status) and (gender)

D. No indexes would help; a full-table scan is the best access method.

14. In which clauses in a SELECT statement can an index be used? Choose
all that apply.

A. SELECT

B. FROM

C. WHERE

D. HAVING

Column Name emp_id gender marital_status state_residence

Key Type pk

NULLs/
Unique

NN NN NN NN

FK Table

Datatype varchar2 varchar2 varchar2 varchar2

Length 9 1 1 2

http://www.sybex.com

294 Chapter 6 � Other Database Objects and the Data Dictionary

15. What order does Oracle use in resolving a table or view referenced in
a SQL statement?

A. Table/view within user’s schema, public synonym, private syn-
onym

B. Table/view within user’s schema, private synonym, public syn-
onym

C. Public synonym, table/view within user’s schema, private synonym

D. Private synonym, public synonym, table/view within user’s schema

16. Which statement will display the last number generated from the
emp_seq sequence? Choose one.

A. select emp_seq.curr_val from dual;

B. select emp_seq.currval from dual;

C. select emp_seq.lastval from dual;

D. select last_number from all_sequences where sequence_
name ='EMP_SEQ';

E. You can’t get the last sequence number generated.

17. Which data dictionary table would you look in to find which
tablespace you would use for temporary segments in large sorting
operations?

A. MY_SORT_SEGMENTS

B. USER_USERS

C. USER_SORT_SEGMENTS

D. USER_SORT_SPACE

18. Which data dictionary table can be queried to determine the unique B-
tree indexes that you own? Choose one.

A. USER_IND_COLUMNS

B. DBA_INDICES

C. USER_INDEXES

D. USER_TAB_INDEXES

http://www.sybex.com

Review Questions 295

19. Which of the following can you not do with a package?

A. Overload procedures and functions

B. Hide data

C. Retain data across commits

D. Grant execute privileges on one procedure in a package

20. Which of the following calls to the stored function my_sine() will
raise an exception?

A. Theta := my_sine(45);

B. IF (my_sine(45) > .3) THEN

C. DECLARE
 Theta NUMBER DEFAULT my_sine(45);
BEGIN …

D. my_sine(45);

http://www.sybex.com

296 Chapter 6 � Other Database Objects and the Data Dictionary

Answers to Review Questions

1. C. The ALTER TABLE statement is used to create and remove constraints.
Option D would work if it included the keyword constraint between
add and primary.

2. B, C. Check constraints cannot reference the function SYSDATE or
other tables.

3. A, C. NOT NULL constraints appear in two separate areas of the data
dictionary. They appear as column attributes in DBA_TAB_COLUMNS
and as check constraints in DBA_CONSTRAINTS.

4. D. A unique constraint will ensure that data is not duplicated in the
protected columns, but a NULL is not data; it is the lack of data. A NULL
value in one column protected by a unique constraint basically allows
any data to appear in the other columns protected by that constraint.

5. C. To temporarily suspend the checking of constraints, you disable
them. To disable constraints on a table, you need to disable them one at
a time with the ALTER TABLE statement. There is no direct insert mode.

6. D. The ALTER SESSION statement is used to defer constraint checks or
to set them to immediate.

7. B. Functions must include a RETURN statement and must return a value.

8. B. OUT parameters pass values out of a procedure. IN parameters pass
values into the procedure. You cannot declare pointers in PL/SQL.

9. A, D. Triggers can be disabled in two ways: singly, with the ALTER
TRIGGER statement, or en masse with the ALTER TABLE statement.

10. C. An after logon trigger is valid, but not a before logon trigger.

http://www.sybex.com

Answers to Review Questions 297

11. C. This one’s a little tricky. B, C, and D are all true, but C is the best
answer. Two additional indexes should not appreciably slow the opti-
mizer, and table reorgs in Oracle (unlike other databases) are usually
not needed. DML (insert, update, delete) operations will definitely be
slowed as the new indexes will need to be maintained.

12. A. An index can be used if a leading subset of the columns is used. In
our case, the first column in the index is on surname, so the (sur_name,
hire_date) index could be used to perform a range scan on surname.

13. D. Bitmap indexes only improve performance when more than one is
used and the combination of all of them returns a small portion of the
table. This example requires a full-table scan because only one column
(marital_status) is a candidate for using bitmap indexes.

14. A, C. The obvious answer is C, but an index can be used for the
SELECT clause, as well. If an index contains all of the columns needed
for the query, the table does not need to be accessed.

15. B. Private synonyms override public synonyms, and tables or views
owned by the user always resolve first.

16. B. D is close, but it shows the greatest number in the cache, not the latest
generated. The correct answer is from the sequence itself using the
pseudo-column currval.

17. B. USER_USERS is in the dictionary family _USERS, which contains tempo-
rary and default tablespaces for user accounts. The USER_PREFIX tells you
that USER_USERS will contain information on your account.

18. C. USER_IND_COLUMNS can tell you which indexes you own and
which columns are in them, but not if the index type is B-tree or
bitmap. DBA_INDICES and USER_TAB_INDEXES do not exist.

19. D. You can only grant execute on the entire package, not on any individual
packaged programs.

20. D. Functions cannot be called as stand-alone statements; procedures
are called that way.

http://www.sybex.com

Chapter

7

PL/SQL Basics

ORACLE8i SQL AND PL/SQL EXAM OBJECTIVES
OFFERED IN THIS CHAPTER:

�

Declaring Variables:

�

List the benefits of PL/SQL
�

Describe the basic PL/SQL block and its sections
�

Describe the significance of variables in PL/SQL
�

Declare PL/SQL variables

�

Writing executable statements:

�

Describe the significance of the executable section
�

Write statements in the executable section
�

Describe the rules of the nested blocks
�

Execute and test a PL/SQL block

�

Writing control structures:

�

Identify the uses and types of control structures
�

Construct an

IF

 statement
�

Construct and identify different loop statements
�

Control block flow using nested loops and labels

Exam objectives are subject to change at
any time without prior notice and at Oracle’s
sole discretion. Please visit Oracle's Train-
ing and Certification Web site (

http://

education.oracle.com/certification/

index.html

) for the most current exam
objectives listing.

http://www.sybex.com

I

n the previous chapters, you have seen how to use structured
query language (SQL) and to interact with Oracle. In this chapter, we will
begin programming in Oracle. PL/SQL is Oracle’s procedural extension to
SQL, the standard database access language. PL/SQL is integrated into the
Oracle server and other tools. In recent years, more developers and DBAs
have started to use PL/SQL. This chapter will show you the basics of PL/
SQL, its structure and components. You will also learn how to write and
execute a PL/SQL program, use control structures and loops, and create
stored programs like procedures, functions, packages, and triggers.

Benefits of PL/SQL

P

L/SQL has been available in Oracle since version 6. Once you have
learned PL/SQL’s benefits and ease of data management, it is difficult to
imagine Oracle without PL/SQL. PL/SQL is not a separate product; it is a
technology integrated into the server and certain Oracle tools like Forms.
Think of PL/SQL as an engine inside the Oracle server. The SQL statement
executor processes the individual SQL statements, and the

PL/SQL engine

handles the PL/SQL program as a single unit. Figure 7.1 shows how PL/SQL
works from inside the Oracle server. When the PL/SQL block is passed to the
PL/SQL engine, the Oracle server SQL statement executor processes the SQL
statements inside the PL/SQL block, and the PL/SQL engine processes the
procedural statements.

http://www.sybex.com

Benefits of PL/SQL

301

F I G U R E 7 . 1

The PL/SQL engine

The benefits of PL/SQL follow:

�

PL/SQL is a high-performance transaction-processing language. It is
portable to any Oracle environment and supports all SQL data manip-
ulation commands. Data-definition and data-control elements of SQL
can also be handled by PL/SQL using special PL/SQL program units
supplied by Oracle.

�

PL/SQL supports all SQL datatypes and all SQL functions; it also lets
you use all Oracle object types.

�

PL/SQL blocks can be named and stored in the Oracle server and
reused as required in another PL/SQL program or from the SQL com-
mand line. The small unit of code is more manageable and reusable.
PL/SQL programs stored in the Oracle server can be accessed from any
client/server tools.

�

Security on PL/SQL structures stored in the server can be managed
using the Oracle database objects syntax. You can grant and revoke
privileges on these stored PL/SQL programs to and from other users in
the database.

�

PL/SQL code can be written using any ASCII text editor, so it is portable
to any operating environment in which Oracle runs.

Procedural

SQL statement executor

PL/SQL EngineSGA

Oracle ServerApplication

Anonymous
block

OR

Stored
procedure

OR

SQL
statements

PL/SQL
block

Procedural
statement
executor

Anonymous
block

OR

Stored
program

call SQL

SQL

PL/SQL
block

http://www.sybex.com

302

Chapter 7 �

PL/SQL Basics

�

With SQL, Oracle must process each SQL statement one at a time. In
a networked environment, this means that a separate call must be
made to the Oracle server each time a SQL statement is issued, which
involves network traffic. With PL/SQL, the entire block of statements
is sent to the Oracle server at one time, reducing network traffic.

The PL/SQL Block Structure

P

L/SQL is a block-structured language. The units that constitute a PL/SQL
program are logical blocks. A PL/SQL program may contain one or more blocks
(called sub-blocks). Each block may be divided into three sections. As in many
programming languages, the variables are declared before they are used. PL/SQL
provides a separate section for error handling. The following paragraphs describe
the different sections of a PL/SQL block.

Declaration section

The

declaration section

 contains the datatype and
initial value of all variables and constants used in the executable section
of the block. This section begins with the keyword

DECLARE

. If you don’t
need to declare a variable, you can omit this section. This section also
declares cursors and user-defined exceptions that are referenced in the
other block sections.

Executable section

The

executable section

 is a mandatory section in the
PL/SQL block. This section begins with the keyword

BEGIN

. All the exe-
cutable statements are given in this section. This section can also have
other PL/SQL blocks inside.

Exception section

The

exception section

 is an optional section, which
has executable statements to handle an exception or error. Exceptions are
discussed in detail in Chapter 10,

Exception Handling

.

Here is the syntax of a block:

[DECLARE]

 -- declaration statements

BEGIN

 -- executable statements

[EXCEPTION]

 -- exception statements

END;

http://www.sybex.com

The PL/SQL Block Structure

303

Each statement or declaration in a PL/SQL block is terminated with a
semicolon. In other words, a semicolon is the statement

delimiter

 in PL/SQL.
A statement may be broken down into multiple lines for readability, and the
semicolon marks the end of the statement. More than one statement can
appear in one line, separated by a semicolon. Each PL/SQL block begins with
the keyword

DECLARE

 or

BEGIN

 and ends with the keyword

END

. A single line
of comment is preceded by two hyphens (--). A set of comments can be
enclosed in /* and */. Figure 7.2 shows an example of a PL/SQL block.

F I G U R E 7 . 2

A PL/SQL block

As you can see in Figure 7.2, data-manipulation SQL statements are used
in the executable section, along with PL/SQL variables. A block within a
block is called a nested block or a

sub-block

. In the following sections, we
will discuss the components of each section.

DECLARE
-- variable declaration

v_count number (10);
v_date date := trunc(sysdate);

BEGIN
/* This is the executable section.
Find count of records and insert into

summary table */

select count(*)
into v_count
from employee_tbl
where update_date = v_date;

insert into emp_update_tbl
(date_updated, records_updated)

values
(v_date, v_count);

EXCEPTION
-- error handling routines

NULL;

END;

Line beginning with -- is a comment.
Declaration section (optional)

Executable section (mandatory)

Lines enclosed in /* and */ are comments.

Blank lines may be present to improve readability.

Exception section (optional)

http://www.sybex.com

304

Chapter 7 �

PL/SQL Basics

Named and Anonymous Blocks

A PL/SQL block can be a named block or an

anonymous block

. The block shown
in Figure 7.2 is an anonymous block. Anonymous blocks can be used in the server
side or client side. There are two types of

named blocks

, shown in Table 7.1.

A named block may appear in the declaration part of another block. This
is known as a subprogram. A subprogram may be referenced in the executable
or the exception section of the block.

PL/SQL blocks may be compiled separately and stored in the database. Any
application that connects to the database can access these stored programs (the
user should have the appropriate privileges). Oracle provides four types of
stored programs:

�

Function

�

Procedure

�

Package

�

Trigger

The stored programs are another example of how well PL/SQL is integrated
to the Oracle server. Once created, these units can be managed as other database
objects. Execute privileges can be controlled by grants. Changes to the stored
program made in the server are immediately available to all clients. The follow-
ing paragraphs describe each kind of stored program.

Function

A

function

is a named PL/SQL block that is stored in the
database. A function accepts zero or more input parameters and
returns one value. The datatype of the return value is defined when
the function is created. User-defined functions can be used in the

T A B L E 7 . 1

PL/SQL Named Blocks

Block Type Properties

Function Takes zero or more parameter values and returns
one value

Procedure Takes zero or more parameter values and may
return value through parameters

http://www.sybex.com

The PL/SQL Block Structure

305

same way as Oracle built-in single-row functions. The syntax for
defining a function follows:

FUNCTION name [(parameter[, parameter, …])] RETURN
datatype IS

 [local declarations]

BEGIN

 executable statements

[EXCEPTION

 exception handlers]

END [name];

The following function accepts the length and width as parameters and
returns the area. A function is created in the database using a

CREATE OR
REPLACE command.

create or replace function find_area

 (vlength in number, vwidth in number)

 return number

as

 varea number;

begin

 varea := vlength * vwidth;

 return varea;

end;

SQL> select find_area (10, 30) area from dual;

 AREA

 300

Procedure A stored procedure is a PL/SQL block that accepts zero or more
parameters as input (IN), output (OUT), or both (INOUT). Unlike functions, pro-
cedures do not return a value; the INOUT parameter or OUT parameter may be
used instead to pass a value from the procedure. Procedures cannot be used in

http://www.sybex.com

306 Chapter 7 � PL/SQL Basics

SQL statements; they can be invoked using the EXECUTE command or called
inside a PL/SQL block. Here is the syntax for defining a procedure:

PROCEDURE name [(parameter[, parameter, …])] IS

 [local declarations]

BEGIN

 executable statements

[EXCEPTION

 exception handlers]

END [name];

In the following example, the procedure is created with the length and
width as parameters and returns the area in the third parameter:

create or replace procedure get_area

(vlength in number, vwidth in number, varea out number)

as

begin

 varea := vlength * vwidth;

end;

SQL> variable warea number;

SQL> execute get_area (10, 30, :warea);

PL/SQL procedure successfully completed.

SQL> print warea

 WAREA

 300

Package A package is nothing but a collection of related objects that are
grouped together. When any of the functions or procedures in the package
is referenced, the package is loaded into memory. Subsequent access of
any of the procedures or functions in the package will be faster.

Packages have two parts: the specification and the body. The specification
declares the variables, constants, cursors, and subprograms. The body
fully defines the subprograms and cursors.

http://www.sybex.com

Declaring Variables 307

Trigger A trigger is associated with a table or a database event. The trigger
defined on a table is fired when a triggering event, such as INSERT, UPDATE,
or DELETE, occurs on the table.

For more information on functions, procedures, packages, and triggers, see
Chapter 6, Other Database Objects and the Data Dictionary.

Variables and Constants

Variables are storage locations in the memory to hold values that can
be referenced inside the block. Think of a variable as a container to store
things. You can change the contents of the container.

Declaring Variables

Variables are always declared in the declaration section of the PL/
SQL block. PL/SQL is a strongly typed language, which means that you
cannot forward-reference a variable. You must declare a variable before
referencing it in other statements or other declarations. To use a variable
in the executable or exception section of the block, it must be defined in
the declaration section.

Variables are declared with the following syntax:

Variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT
expression]

To declare a variable of the same datatype as the database column, use the
%TYPE declaration, for example, V_EMP_ID EMPLOYEE.EMP_ID%TYPE;. Here,
EMPLOYEE is a table, and EMP_ID is a column in the table.

Multiple variables cannot be declared in the same statement.

http://www.sybex.com

308 Chapter 7 � PL/SQL Basics

Assigning Values to Variables

There are two methods you can use to assign value to a variable:

� Assign values directly to the variable. The assignment is done using
the assignment operator (:=), and each declaration is delimited by
a semicolon (;):

X := 200;

Y := Y + (X * 20);

� Assign values through SQL SELECT INTO or FETCH INTO:

SELECT SUM(SALARY), SUM(SALARY * 0.1)

INTO TOTAL_SALARY, TOTAL_COMMISSION

FROM EMPLOYEE

WHERE DEPT = 10;

You can assign initial value to a variable at the time of declaration. Here’s
an example:
TOTAL_SALARY NUMBER (10,2) := 0;

TOTAL_SALARY NUMBER (10,2) DEFAULT 0;

Constants

A constant is similar to a variable, but its value cannot be changed inside
the program. The value to a constant is assigned when the constant is
defined. Its declaration is the same as a variable declaration, but the keyword
CONSTANT is included. Both constants and variables can be defined as any
SQL or user-defined datatype. Here’s an example:

ZERO_VALUE CONSTANT NUMBER := 0;

In this example, a constant named ZERO_VALUE is defined as NUMBER and
assigned a value of 0. You may use this constant anywhere inside the program.

http://www.sybex.com

Scalar Datatypes 309

Declarations can impose a NOT NULL constraint on variables. These variables
should always be initialized with a value, such as COUNTER_VALUE NUMBER (4)
NOT NULL := 0;.

Every variable and constant has a datatype that specifies the storage
format and valid range of values. PL/SQL has scalar, composite, refer-
ence, and LOB datatypes. In this chapter, we discuss scalar and LOB
datatypes.

Scalar Datatypes

A scalar datatype has no internal components and falls into any
of four categories:

� Number

� Character

� Date/time

� Boolean

The following tables illustrate the different scalar datatypes available
in PL/SQL. Table 7.2 shows the numeric datatypes, Table 7.3 shows the
character datatypes, and Table 7.4 shows the date and Boolean
datatypes.

http://www.sybex.com

310 Chapter 7 � PL/SQL Basics

T A B L E 7 . 2 Scalar Types: Numeric

Datatype Range Subtypes Description

BINARY_
INTEGER

–
214748
3647
214748
3647

NATURAL
NATURALN
POSITIVE
POSITIVEN
SIGNTYPE

Used to store signed integers.
Requires less storage than
NUMBER values.
Using the subtypes can
restrict range.
NATURAL: Only non-negative
values (>=0).
POSITIVE: Only positive val-
ues (>0).
NATURALN: Only non-negative,
non-NULL values.
POSITIVEN: Only positive non-
NULL values.
SIGNTYPE: Only the values 1,
0, or 1.

NUMBER 1.0E–
130
9.99E1
25

DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INTEGER
INT
NUMERIC
REAL
SMALLINT

Used to store numbers of vir-
tually any range and preci-
sion. This is the most
commonly used numeric
datatype. You can optionally
specify a precision (total num-
ber of digits) and scale (digits
after the decimal point). The
syntax is NUMBER [(<preci-
sion> [, <scale>])]
The default value for preci-
sion is 38 and for scale is 0.
The subtypes are mainly pro-
vided for compatibility with
ANSI/ISO and IBM types.

PLS_
INTEGER

–
214748
3647
214748
3647

 Same as BINARY_INTEGER but
uses machine arithmetic for
faster performance. NUMBER and
BINARY_INTEGER use library
arithmetic. Use PLS_INTEGER for
better performance.

http://www.sybex.com

Scalar Datatypes 311

When a precision and a scale are defined in a NUMBER datatype, the value is
rounded to the scale. For example, if COMMISSION is defined as NUMBER
(10,2), a value of 300.34678 would be rounded to 300.35. If the scale is not
defined, the number is rounded to the integer.

T A B L E 7 . 3 Scalar Types: Character

Datatype Range Subtypes Description

CHAR Max
length
is
32767
bytes.

CHARACTER Used to store fixed-length alpha
numeric data.
If length is not defined, it defaults to 1.

LONG Max
width
is
214748
3647
bytes.

 Used to store variable-length alpha-
numeric data.

RAW Max
length
is
32767
bytes.

 Used to store binary data or byte
strings, like graphics or digitized
pictures. PL/SQL does not interpret
RAW data.

LONGRAW Max
width
is
214748
3647
bytes.

 Same as LONG, but PL/SQL does not
interpret RAW data.

ROWID 18
bytes.

 Used to store ROWID values of the
table pseudo-column.

http://www.sybex.com

312 Chapter 7 � PL/SQL Basics

Many databases use the 7-bit ASCII character set. The lengths for the
datatypes given in Table 7.3 are specified in bytes. If a multibyte character set
like Japanese is used, VARCHAR2 (10) may not hold 10 characters.

BOOLEAN values cannot be inserted to a database column. Also, you cannot
select column values into a BOOLEAN variable.

VARCHAR2 Max
length
is
32767
bytes.

STRING
VARCHAR

Used to store variable-length alpha-
numeric data. The length is a
required parameter, for example:
VARCHAR2 (20). This is a commonly
used datatype.

T A B L E 7 . 4 Date and Boolean

Data type Range Description

BOOLEAN TRUE
FALSE

Use to store logical values
TRUE or FALSE.
Takes no parameters.

DATE 01/01/4712 BC
12/31/4712 AD

Use to store fixed-length
date and time values.
DATE values always include
the time up to the precision
of seconds.

T A B L E 7 . 3 Scalar Types: Character (continued)

Datatype Range Subtypes Description

http://www.sybex.com

Operators 313

LOB Datatypes

LOB (large object) datatypes are used to store blocks of unstructured data
like video, sound clip, graphic, and so on, up to 4GB in size. LOB supports ran-
dom access, whereas LONG supports only sequential access. LOB types store val-
ues called locators, which specify the location of the large object. The large
object may be stored inline (stored along with the row) or out-of-line (stored
outside of the row). To manipulate the LOB objects in PL/SQL, use the Oracle-
supplied package DBMS_LOB. These are the LOB datatypes available:

� BFILE

� BLOB

� CLOB

� NCLOB

Variables declared in the declaration section are always initialized to NULL if
no initial value is specified.

Operators

As in any other programming language, PL/SQL has a set of opera-
tors. The operators can be classified as follows:

� Arithmetic operators

� Relational operators

� Comparison operators

� Logical operators

Arithmetic operators, shown in Table 7.5, are used in expressions.
Relational operators are mainly used in the conditional structures (IF) or

in the WHERE clause of the SQL statement. Relational operators check for a
condition and the result is always Boolean: TRUE or FALSE. You can see the
relational operators in Table 7.6.

http://www.sybex.com

314 Chapter 7 � PL/SQL Basics

Comparison operators, shown in Table 7.7, supplement the relational
operators by adding more operators. Comparison operators also check for a
condition, and the result is Boolean.

Table 7.8 shows the logical operators, which are used to group multiple
relational and comparison operators. PL/SQL supports all the operators
used in SQL. The operators are explained in detail in Chapter 1, Relational
Technology and Simple SQL SELECT Statements.

T A B L E 7 . 5 Arithmetic Operators

Operator Operation

+ Addition

- Subtraction

/ Division

* Multiplication

** Exponentiation

T A B L E 7 . 6 Relational Operators

Operator Operation

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

= Equal to

!= Not equal to

<> Not equal to

http://www.sybex.com

Operators 315

Questions involving logical operators are very likely to appear on the test.
The following tables can be used as truth tables for the three logical operators.

:= Assignment

|| Concatenation

T A B L E 7 . 7 Comparison Operators

Operator Purpose

IS NULL Returns TRUE if the operand is NULL

LIKE Compares character value to a pattern

BETWEEN Checks if the value is in a specified range

IN Tests for operand in a set of values

T A B L E 7 . 8 Logical Operators

Operator Purpose

AND Both conditions satisfy

OR Either condition satisfies

NOT Negation

T A B L E 7 . 6 Relational Operators (continued)

Operator Operation

http://www.sybex.com

316 Chapter 7 � PL/SQL Basics

This table shows the AND truth table:

This second table shows the OR truth table:

The last table shows the NOT truth table:

The Executable Section

The executable section contains all the statements and expressions that
need to be executed. This is the only mandatory section in a block. The exe-
cutable section begins with the keyword BEGIN and ends with the keyword
EXCEPTION, or, if an exception section is not present, it ends with the key-
word END. A semicolon delimits each statement. Variables are assigned val-
ues using the assignment operator (:=), a SELECT INTO statement, or a FETCH
INTO statement. The errors in the executable section are handled in the
exception section. An executable section can have another PL/SQL block
inside. This is known as a nested block. Calls to other procedures or func-
tions inside an executable section are also treated as nested blocks.

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

NOT

TRUE FALSE

FALSE TRUE

NULL NULL

http://www.sybex.com

Executing a Block 317

All SQL data manipulation statements can be used in the executable section.
A PL/SQL block cannot display output to the screen from a SELECT statement.
SELECT statements must contain an INTO clause or be part of a cursor. The vari-
ables and constants used in this section must be declared in the declaration sec-
tion. The executable section must contain at least one executable statement. A
NULL is a valid executable statement. Transaction control statements, such as
COMMIT and ROLLBACK, can be used in the executable section. No data definition
statements, such as CREATE TABLE or ALTER TABLE, are allowed in the PL/SQL
block. Data definition language statements must be executed with an EXECUTE
IMMEDIATE statement or with a call to DBMS_SQL.

Executing a Block

You have written a block; now, how do you execute it? An anony-
mous PL/SQL block can be executed from SQL*Plus by typing a slash (/) in
the line after the block. Here is an example:

 1 declare

 2 v_comm_percent constant number := 10;

 3 begin

 4 update emp

 5 set comm = sal * v_comm_percent

 6 where deptno = 10;

 7* end;

SQL> /

PL/SQL procedure successfully completed.

SQL>

Named programs are executed differently. A procedure is executed by
specifying its name and required parameters inside another block. From the
SQL*Plus command line, a procedure is executed by using the keyword

http://www.sybex.com

318 Chapter 7 � PL/SQL Basics

EXECUTE. To make the previous example a stored procedure and execute it
from SQL*Plus, do the following:

 1 create or replace procedure update_commission

 2 (v_dept in number, v_percent in number default 10)
is

 3 begin

 4 update emp

 5 set comm = sal * v_percent

 6 where deptno = v_dept;

 7* end;

SQL> /

Procedure created.

SQL> execute update_commission (10, 15);

PL/SQL procedure successfully completed.

SQL>

To execute this procedure from another stored program or anonymous
block, you need not specify the keyword EXECUTE. Here’s an example:

 1 declare

 2 v_dept number;

 3 begin

 4 select a.deptno

 5 into v_dept

 6 from emp a

 7 where job = 'PRESIDENT';

 8 update_commission (v_dept);

 9* end;

SQL> /

PL/SQL procedure successfully completed.

SQL>

http://www.sybex.com

Executing a Block 319

A function is executed like any other SQL built-in function:

 1 create or replace function calculate_area
 (v_length in number, v_width in number)

 2 return number

 3 is

 4 v_area number;

 5 begin

 6 v_area := v_length * v_width;

 7 return v_area;

 8* end;

SQL> /

Function created.

SQL> select calculate_area (10, 14) from dual;

CALCULATE_AREA(10,14)

 140

SQL>

Functions are called inside a PL/SQL block by assigning the return value
to a variable:

V_AREA := calculate_area (10, 14);

The functions and procedures inside a package are executed by qualifying
the function or procedure with the package name. Here’s an example:

EXECUTE SALARY_PACKAGE.CALCULATE_COMMISSION;

where SALARY_PACKAGE is a package and CALCULATE_COMMISSION is a
procedure.

http://www.sybex.com

320 Chapter 7 � PL/SQL Basics

Control Structures

Control structures are lines of code that control the flow of the PL/SQL
program. PL/SQL supports both conditional and iterative control structures.

Conditional or decision-control structures are used to perform an operation or
statement based on the outcome of another statement or expression.
IF…THEN…ELSE…END IF statements let you say, “If this is true, then do this; other-
wise, do that.” For example, imagine that you must calculate bonuses for employ-
ees according to the following criteria: If an employee is in the HR department, his
bonus is 20 percent; if he is in the IT department, he will get a 25 percent bonus;
otherwise, he gets a 10 percent bonus. Iterative control structures perform one or
more statements repeatedly, either a certain number of times or until a condition
is met. There are three forms of iterative structures:

� LOOP

� WHILE…LOOP

� FOR…LOOP

To calculate the bonuses for all employees in the company, you need to
execute the bonus-calculating procedure for each employee; that is, the same
steps must be performed again and again until all employees have been done.

Branching control structures are used to switch the program flow to a dif-
ferent part of the program. A GOTO statement is used for branching uncondi-
tionally. You can use branching to skip a set of statements unconditionally.
Branching destroys the flow of the program; it is not recommended to use
branching and move the program flow to a different part of the program.

Syntax and Usage

The following sections give you the syntax and usage of the different control
structures available in Oracle.

IF…THEN

The IF statement evaluates a condition, and if the condition is satisfied, a set
of statements are executed. The statements are enclosed in keywords THEN
and END IF, like this:

IF condition THEN

 Statement 1;

 Statement 2;

 … … …

END IF;

http://www.sybex.com

Control Structures 321

The statements are executed only if the result of the condition is TRUE. The
condition always evaluates to a Boolean result of TRUE or FALSE. If the con-
dition results in FALSE or NULL (when a Boolean variable is not initialized, its
value will be NULL), the statements between THEN and END IF are skipped
and the statements after END IF are executed. Here’s an example:

A := 10;

IF A <= 20 THEN

 B := A + 20;

END IF;

B := B + 10;

In this example, the condition in the IF statement is TRUE, so the state-
ment B := A + 20 will be executed, and then control passes to B := B + 10.

The keyword to end a conditional control structure is END IF; note the space
between END and IF.

IF…THEN…ELSE

This is similar to IF…THEN, but a set of statements can be executed if the condition
evaluates to FALSE or NULL. The syntax for the IF…THEN…ELSE statement is this:

IF condition THEN

 Statement 1;

 Statement 2;

 … … …

ELSE

 Statement 3;

 Statement 4;

 … … …

END IF;

The statements between THEN and ELSE are executed only if the condition
is TRUE, and the statements between ELSE and END IF are executed only if
the condition is FALSE, as you can see in the following example:

 1 create or replace function greatest (a in number, b
in number)

 2 return number is

 3 g number;

 4 begin

http://www.sybex.com

322 Chapter 7 � PL/SQL Basics

 5 if a > b then

 6 g := a;

 7 else

 8 g := b;

 9 end if;

 10 return g;

 11* end;

SQL> /

Function created.

SQL> select greatest (2, 5) from dual;

GREATEST(2,5)

 5

SQL>

Nested IF statements are allowed. An IF statement or an IF…ELSE state-
ment can appear inside another IF or IF…ELSE statement.

For example, to find the greatest number among three numbers, do this:

if (a > b) and (a > c) then

 g := a;

else

 g := b;

 if c > g then

 g := c;

 end if;

end if;

IF…THEN…ELSIF

Use this structure if you need to select an action from several mutually exclu-
sive conditions. This form of IF uses the keyword ELSIF. Here’s the syntax
for an IF…THEN…ELSIF statement:

IF condition1 THEN

 Statement 1;

ELSIF condition2 THEN

 Statement 2;

http://www.sybex.com

Control Structures 323

ELSIF condition3 THEN

 Statement 3;

ELSE

 Statement 4;

END IF;

Statement 5;

If condition1 is TRUE, Statement 1 is executed and control passes to State-
ment 5. If condition1 is FALSE, condition2 is evaluated; if this condition is
TRUE, Statement 2 is executed and then Statement 5. If none of the conditions
in the ELSIF clause is met, Statement 4 is executed and then Statement 5.

For example, let’s say that you want to find the bonus amount based on
salary. If salary is less than 1000, the bonus is 200. For salary between 1000
and 2999, the bonus is 300. Each condition in the IF structure is evaluated
top down; if a condition matches, the statements inside the IF clause are exe-
cuted and the IF statement is completed. The next condition will not be
matched. In this example, if the salary is 3500, the first and second condition
fail; the third condition, salary < 5000, is true, so the statement bonus :=
400 is executed and the control passes to the end of the IF structure.

IF salary < 1000 THEN

 bonus := 200;

ELSIF salary < 3000 THEN

 bonus := 300;

ELSIF salary < 5000 THEN

 bonus := 400;

ELSIF salary < 7000 THEN

 bonus := 500;

ELSE

 bonus := 0;

END IF;

The keyword in IF…THEN…ELSIF control structure is ELSIF-not ELSEIF or ELSE IF.

http://www.sybex.com

324 Chapter 7 � PL/SQL Basics

LOOP

The basic form of iterative control is the LOOP statement. The statements
between LOOP and END LOOP are executed infinitely. The syntax for the basic
LOOP is this:

LOOP

 Statements;

END LOOP;

Since the default for a basic loop is to execute infinitely, you must use an
EXIT statement to force a loop to complete unconditionally and pass control
to the statement following the END LOOP, as you can see in this example:

X := 100;

LOOP

 X := X + 10;

 IF X > 1000 THEN

 EXIT;

 END IF;

END LOOP;

Y := X; -- the value of Y would be 1010

The EXIT statement cannot be used outside the loop. To complete a PL/SQL
block before its end is reached, you may use the command RETURN.

The EXIT WHEN statement completes an infinite loop conditionally. If the
condition is evaluated to TRUE, the loop is terminated and the statement next
to END LOOP is processed. Here is an example:

X := 100;

LOOP

 EXIT WHEN X > 1000;

 X := X + 10;

END LOOP;

Y := X; -- the value of Y would be 1010

http://www.sybex.com

Control Structures 325

WHILE…LOOP

WHILE…LOOP has a condition associated with the loop. The condition is eval-
uated, and, if the result is TRUE, the statements inside the loop are executed.
If the condition is FALSE, execution continues from the next statement to END
LOOP. Here’s an example:

X := 100;

WHILE X <= 1000 LOOP

 X := X + 10;

END LOOP;

Y := X; -- the value of Y would be 1010

If the condition in the WHILE…LOOP is evaluated to FALSE the very first time, the
loop will never be executed. To execute the loop at least once, irrespective of
the result of the condition, use the basic loop with a conditional EXIT toward the
end of the loop, like this:
 LOOP
 … … …
 EXIT WHEN …;
 END LOOP;

FOR…LOOP

Use the FOR…LOOP if you need the iterations to occur a fixed number of
times. In the basic loop and WHILE…LOOP, the number of iterations is
unknown. The FOR…LOOP is executed for a range of values. The syntax
for the FOR…LOOP follows:

FOR counter IN [REVERSE] start_range .. end_range LOOP

 Statements;

END LOOP;

Here, counter is a variable known as the index variable (this need not be
declared in the declaration section; it is implicitly declared as INTEGER),
which will have the value of start_range for the first iteration, start_
range+1 for the second, start_range+2 for the third, and so on, until end_
range. Therefore, if the start_range and end_range are equal, the loop
will execute once. The index variable is available only for reference inside the

http://www.sybex.com

326 Chapter 7 � PL/SQL Basics

loop. Both range values are inclusive. The two dots (..) serve as a range oper-
ator. If the REVERSE keyword is used, the range is decremented. The ranges
can be expressions or variables. The following shows an example:

X := 100;

FOR V_COUNTER in 1 .. 10 LOOP -- executes 10 times

 X := X + 10;

END LOOP;

Y := X; -- the value of Y would be 200

To exit a FOR…LOOP prematurely, you may use the EXIT statement. You
cannot assign a new value to the counter variable.

If the lower bound is larger than the upper bound in a FOR…LOOP, the loop will
not be executed at all. Use the REVERSE keyword to assign values in the
descending order to the index variable.

Labels

You may use labels for better readability. A block or a loop may be
labeled. The label precedes a block or a loop and is enclosed in double angle
brackets (<< and >>). The END statement or the END LOOP statement can refer
to the label.

Labeled Blocks

A block followed by a label name is known as a labeled block. Do not
confuse a labeled block with a named block; each is different, and labeled
blocks can appear inside a named block. Here is an example of block syntax
using the labels:

<<label_name>>

[DECLARE]

http://www.sybex.com

Labeled Blocks 327

… … …

BEGIN

… … …

[EXCEPTION]

… … …

END label_name;

Labeling a block is especially useful if there are nested blocks and you do
not know which END belongs to which block, for example:

declare

 v_dept number (2);

 v_emp_count number (4);

begin

 for v_counter in 1 .. 6 loop

 <<select_block>>

 BEGIN

 select deptno

 into v_dept

 from dept

 where deptno = v_counter * 10;

 <<count_block>>

 BEGIN

 select count(*)

 into v_emp_count

 from emp

 where deptno = v_dept;

 END count_block;

 dbms_output.put_line ('There are ' || v_emp_count || '
 employees in dept ' || v_
dept);

 EXCEPTION

 when no_data_found then null;

 END select_block;

 end loop;

end;

http://www.sybex.com

328 Chapter 7 � PL/SQL Basics

DBMS_OUTPUT.PUT_LINE is an Oracle-supplied procedure used to display out-
put to the screen from a PL/SQL program. You should set the SQL*Plus
parameter SERVEROUTPUT to ON before using this procedure.

Labeled Loops

Similar to labeled blocks, loops can also be labeled. Apart from
improving readability, the advantage of labeled loops is that you can exit to
any level of the loop in a nested loop structure.

For example, here all the three loops are exited when the v_condition vari-
able is 0. Note that the label name appears after the keyword EXIT:

<<outer_loop>>

LOOP

 … … …

 <<inner_loop>>

 LOOP

 … … …

 <<innermost_loop>>

 LOOP

 … … …

 EXIT outer_loop WHEN v_condition = 0;

 END LOOP innermost_loop;

 … … …

 END LOOP inner_loop;

END LOOP outer_loop;

The GOTO Statement

A GOTO statement with a label may be used to pass control to another
part of the program. GOTO statements in the program are not very widely
used and are not recommended. If you do use a GOTO statement with a label,
the label should precede an executable statement and must be unique.

http://www.sybex.com

Nested Blocks 329

Remember, NULL is a valid executable statement. A GOTO statement can
branch to a statement farther up or down in the block. Here is an example:

X := 100;

FOR V_COUNTER in 1 .. 10 LOOP

 IF V_COUNTER = 4 THEN

 GOTO end_of_loop;

 END IF;

 X := X + 10;

 <<end_of_loop>>

 NULL;

END LOOP;

Y := X;

A GOTO statement can branch out of an IF statement, a loop, or a sub-
block. A GOTO statement cannot branch into an IF statement, a loop, or a
sub-block. Branching from one IF statement clause to another and from the
exception section to the executable section is also illegal.

The NULL statement specifies “no action.” The control passes to the next state-
ment doing nothing. The NULL statement can be used when an executable
statement is mandatory, as in the IF clause or GOTO label, and you have no
action to do. If NULL is used in the IF statements to specify alternative actions,
it tells the reader that the associated alternative is not overlooked, but no
action is required.

Nested Blocks

A block inside another block is called a nested block. The variables
defined inside the PL/SQL block are local to the block. The scope is available
to all sub-blocks. If the same variable name is defined in the sub-block, the
variable defined in the sub-block gets precedence. A variable defined in the
sub-block cannot be referenced in the parent block. A GOTO statement can
pass control to a parent block, but it cannot do so from a block into the sub-
block. The following example shows the scope of the variables when using
nested blocks. Notice that the blocks are labeled in this example.

<<OUTER_BLOCK>>

DECLARE

http://www.sybex.com

330 Chapter 7 � PL/SQL Basics

 A_NUMBER INTEGER;

 B_NUMBER INTEGER;

BEGIN

 -- A_NUMBER and B_NUMBER are available here

 <<SUB_BLOCK>>

 DECLARE

 C_NUMBER INTEGER;

 B_NUMBER NUMBER (20);

 -- B_NUMBER is declared here again. reference to B_
NUMBER

 -- in this block will refer to the number datatype
variable.

 BEGIN

 -- C_NUMBER is available only to this block.

 -- A_NUMBER is available in this block

 C_NUMBER := A_NUMBER;

 -- reference to the outer_block's b_number can be made

 -- by using the block label name

 C_NUMBER := OUTER_BLOCK.B_NUMBER;

 END SUB_BLOCK;

 -- C_NUMBER is not available here

END OUTER_BLOCK;

Similar to blocks, a control structure enclosed in another is called a nested
loop. All nested structures (IF THEN, LOOP, or SUB-BLOCK) should be com-
pletely enclosed in the parent structure. The following code is illegal:

BEGIN

 IF X < 10 THEN

 WHILE Y < 20 LOOP

 NULL;

 END IF;

 END LOOP;

END;

http://www.sybex.com

Key Terms 331

Summary

This chapter showed how to write simple and nested PL/SQL blocks and
how well PL/SQL is integrated with the Oracle server. PL/SQL blocks may be
named and stored in the database as functions and procedures. A package is
a collection of objects, and a trigger is a PL/SQL block that executes automat-
ically when an event occurs.

Variables are declared in the declaration section, SQL and PL/SQL state-
ments are written in the executable section, and any error handling routines
are written in the exception section. Program flow can be controlled using
IF…THEN, IF…THEN…ELSE, and IF…THEN…ELSIF structures. Iterations are per-
formed using the basic loop, WHILE…LOOP, and FOR…LOOP. Blocks and con-
trol structures can be nested.

Key Terms

Before you take the exam, make sure you’re familiar with the fol-
lowing terms:

Anonymous block

Constant

Control structures

Declaration section

Exception section

Executable section

Function

Iterative control

Delimiter

Labels

Named block

Nested block

http://www.sybex.com

332 Chapter 7 � PL/SQL Basics

NULL

Package

PL/SQL engine

Procedure

Sub-block

Trigger

Variable

http://www.sybex.com

Review Questions 333

Review Questions

1. Which section of the PL/SQL block handles errors and abnormal
conditions?

A. Declaration section

B. Exception section

C. Executable section

D. Anonymous block

2. What is the mandatory clause in a SELECT statement when used inside
a PL/SQL block?

A. INTO

B. WHERE

C. ORDER BY

D. GROUP BY

3. Which line of the code has an error?

1 declare

2 X1 number := 0;

3 1Y number := 0;

4 begin

5 X := 10;

6 1Y := X + 1Y;

7 end;

A. Line 2

B. Line 3

C. Line 5

D. The code has no error.

http://www.sybex.com

334 Chapter 7 � PL/SQL Basics

4. In which section of the PL/SQL block is a constant assigned value?

A. Executable section

B. Declaration section

C. Exception section

D. Declaration section or executable section

5. What is the name of the PL/SQL block that is associated with a table
and executes automatically when an event occurs?

A. Function

B. Procedure

C. Package

D. Trigger

6. Which data dictionary view will have the stored program (named
block) code?

A. USER_PROCEDURES

B. USER_OBJECTS

C. USER_SOURCE

D. DBA_VIEWS

7. Why does the following statement in the declaration section fail?

PRODUCT_IN_STOCK BOOLEAN := 'TRUE';

A. Assignment operation is not permitted in the declaration section.

B. The size/width for the PRODUCT_IN_STOCK variable is not defined.

C. BOOLEAN is not a valid datatype supported by PL/SQL.

D. A Boolean variable cannot be assigned a character string value.

http://www.sybex.com

Review Questions 335

8. What is the value of X when the following block is executed?

declare

 X number := 0;

begin

 X := 10;

 FOR V_COUNTER in 1 .. 10 LOOP

 X := X + 10;

 END LOOP;

end;

A. 10

B. 110

C. 100

D. 1

9. Which control structure evaluates the condition in the beginning of
the loop and does not even enter into the loop if the condition evalu-
ates to FALSE?

A. FOR…LOOP

B. WHILE…LOOP

C. LOOP

D. GOTO

10. Why does the following declaration fail?

MY_NUMBER POSITIVEN;

A. A variable declared as POSITIVEN should always be initialized to a
non-NULL value.

B. POSITIVEN is not a PL/SQL datatype.

C. The variable name is invalid.

D. The statement is missing a keyword.

http://www.sybex.com

336 Chapter 7 � PL/SQL Basics

11. What type of constraint can be defined when you declare a variable?

A. Check constraint.

B. NOT NULL constraint.

C. Check constraint and NOT NULL constraint.

D. No constraints can be defined on a variable.

12. What will the value of V_STATUS be when the following code is executed?

DECLARE

 V_BONUS BOOLEAN;

 V_COMMISSION BOOLEAN := FALSE;

 V_STATUS BOOLEAN;

BEGIN

 V_STATUS := V_BONUS AND V_COMMISSION;

END;

A. TRUE

B. FALSE

C. NULL

13. What will the value of V_STATUS be when the following code is
executed?

DECLARE

 V_BONUS NUMBER DEFAULT 10;

 V_COMMISSION NUMBER DEFAULT 30;

 V_STATUS BOOLEAN;

BEGIN

 V_STATUS := V_BONUS < V_COMMISSION;

END;

A. TRUE

B. FALSE

C. NULL

D. This is an incorrect usage of a Boolean variable.

http://www.sybex.com

Review Questions 337

14. What is the value of X when the following block of code is executed?

DECLARE

 X NUMBER := 0;

BEGIN

 FOR I in 5 .. 5 LOOP

 X := I;

 END LOOP;

END;

A. NULL

B. 5

C. 0

D. Unknown

15. Choose two answers that are true: A variable is defined as %TYPE.

A. If the underlying table column datatype changes, the PL/SQL code
needs to be changed.

B. You do not have to know the datatype or the precision of that column.

C. Only character variables can be defined using %TYPE.

D. You need not be concerned about changes that may be made to
column definitions.

16. Why does the following code fail?

DECLARE

 V_BONUS NUMBER;

BEGIN

 SELECT SALARY V_SALARY

 FROM EMPLOYEE

 WHERE EMP_ID = 101;

 V_BONUS := V_SALARY * 0.1;

END;

A. The V_BONUS variable is not initialized.

B. The SELECT statement cannot have an alias name.

C. The exception section is missing.

D. None of the above

http://www.sybex.com

338 Chapter 7 � PL/SQL Basics

17. Which line of the following code has an error?

1 X := Y + 200;

2 IF X < 10 THEN

3 Y := 30;

4 ELSEIF X < 40 THEN

5 Y := 20;

6 END IF;

A. Line 2

B. Line 3

C. Line 4

D. Line 5

18. Fill in the blank: A _______ is a PL/SQL stored program that fires
when an event occurs.

A. Function

B. Trigger

C. Procedure

D. Package

19. Which control structure would be most appropriate to use if you want
to perform the following task:

� Increase by 25 percent the salaries of employees who were born
before 1980

� Increase by 10 percent the salaries of those who were born
between 1980 and 1990

� Not increase the salaries of those who were born after 1990

A. IF…THEN…ELSIF…ELSE

B. IF…THEN…ELSE

C. WHILE…LOOP

D. FOR…LOOP

http://www.sybex.com

Answers to Review Questions 339

Answers to Review Questions

1. B. The exception section handles the errors and abnormal conditions
raised from the executable section of the block.

2. A. The SELECT statement used in the PL/SQL block must have an INTO
clause. Since PL/SQL cannot display output to the screen directly from
a SELECT statement, an INTO clause is mandatory.

3. B. PL/SQL identifiers cannot begin with a numeral; variable names
begin with a letter.

4. B. A constant has to be assigned a value when it is declared. A con-
stant’s value cannot be changed after the initial assignment.

5. D. A trigger is defined on a table and is fired (executed) when a trig-
gering event like INSERT, UPDATE, or DELETE occurs on the table.

6. C. The dictionary view USER_SOURCE will have the source code for stored
programs like procedures, functions, or packages created by the user. The
column TYPE identifies the type of the stored program.

7. D. Anything enclosed in single quotes is treated as a character string.
A Boolean variable cannot be assigned a character value. The Boolean
variable can accept only a TRUE, FALSE, or NULL value.

8. B. The answer is 110. Although X is initialized to 0, it is assigned a
value of 10 in the beginning of the block. The loop executes 10 times,
incrementing by 10 each time.

9. B. The WHILE…LOOP evaluates the condition in the beginning of the
loop. A FOR…LOOP does not have a condition; it iterates a set number
of times. A basic loop is an infinite loop; it should come out of the loop
using the EXIT statement. The GOTO statement is used to branch con-
trol to a different part of the program.

10. A. The datatype POSITIVEN declares the variable as NOT NULL, so a
value should be assigned at the time of declaration.

http://www.sybex.com

340 Chapter 7 � PL/SQL Basics

11. A. NOT NULL is the only constraint that can be attached to a variable
in PL/SQL. The constraint is defined as follows:

MY_VARIABLE NUMBER (3) NOT NULL := 0;

When you define a NOT NULL constraint, the variable should always be
initialized with a value.

12. B. Since V_BONUS is not initialized, its value is NULL. NULL and
FALSE with an AND operator results in FALSE.

13. A. The expression V_BONUS < V_COMMISSION is evaluated to TRUE
and is assigned to V_STATUS.

14. B. Although the upper and lower bounds of the FOR loop are the same,
the loop executes once. Hence, the value is 5.

15. B, D. When you declare a variable to a database column with the
%TYPE attribute, you do not have to know what the datatype or pre-
cision of that column is, nor do you need to be concerned about
changes that may be made to column definitions.

16. D. The SELECT statements used in PL/SQL should always have the
INTO clause.

17. C. ELSEIF is not a valid keyword; the keyword is ELSIF with only one E.

18. B. Triggers are associated with events, and they fire automatically
when the event occurs.

19. A. Since you have three conditions, using IF…THEN…ELSIF…ELSE
would be most appropriate. Here is the code:

IF TO_CHAR(DOB, 'YYYY') < 1980 THEN

 SALARY := SALARY + SALARY * 1.25;

ELSIF TO_CHAR(DOB, 'YYYY') <= 1990 THEN

 SALARY := SALARY + SALARY * 1.1;

 ELSE

 NULL;

END IF;

http://www.sybex.com

Chapter

8

Interacting with the
Database

ORACLE8i SQL & PL/SQL EXAM OBJECTIVES
OFFERED IN THIS CHAPTER:

�

Interacting with the Oracle Server:

�

Write a successful

SELECT

 statement in PL/SQL
�

Declare dynamically the datatype and size of a PL/SQL variable
�

Write DML statements in PL/SQL
�

Control transactions
�

Determine the outcome of SQL DML statements

�

Writing explicit cursors:

�

Distinguish between an implicit and an explicit cursor
�

Use a PL/SQL record variable
�

Write a cursor

FOR

 loop

�

Advanced explicit cursor concepts:

�

Write a cursor that uses parameters
�

Determine when a

FOR UPDATE

 clause in a cursor is required
�

Determine when to use the

WHERE CURRENT OF

 clause
�

Write a cursor that uses a subquery

Exam objectives are subject to change at any
time without prior notice and at Oracle’s sole
discretion. Please visit Oracle's Training and
Certification Web site (

http://education

.oracle.com/certification/index.html

) for
the most current exam objectives listing.

http://www.sybex.com

P

L/SQL provides completely integrated and straightforward
access to SQL. Oracle DML statements and transaction control statements
are supported in PL/SQL. Cursors are pointers to a memory area that main-
tain information returned from the query. In this chapter, you will learn

�

How to access an Oracle database from PL/SQL

�

How to use cursors

�

When to use implicit cursors and explicit cursors

Accessing the Database

S

QL is the language used to access the Oracle database. PL/SQL
extends the functionality of SQL and also introduces advanced procedural
logic. Data manipulation language (DML) commands and transaction con-
trol language (TCL) statements of SQL are supported in PL/SQL. Data def-
inition language (DDL) statements are not supported in PL/SQL. This means
that you cannot create tables or any other objects inside a PL/SQL block.
Advanced PL/SQL programming using built-in packages like

DBMS_SQL

 or
the

EXECUTE IMMEDIATE

 command allows you to build dynamic SQL state-
ments that execute DDL statements inside a PL/SQL block. SQL statements
are compiled before they are executed; the PL/SQL compiler makes sure that
the objects referenced in the block are defined and that the user has privileges
on them.
 In the following sections, we will discuss the various DML and TCL statements
that can be used for Oracle database access from PL/SQL.

http://www.sybex.com

Accessing the Database

343

The DML statement

EXPLAIN PLAN

 cannot be used inside a PL/SQL block.

Queries

The

SELECT

 statement is used to

query

 data from the database. When using
this statement in PL/SQL, always make sure that the

INTO

 clause is present.
The values returned from the query are assigned to the variables in the

INTO

clause. The variables should be defined earlier, in the

DECLARE

 section. For
variables and the different sections in a PL/SQL block, see Chapter 7,

 PL/
SQL Basics

. Here is the syntax of a simple

SELECT INTO

 statement:

SELECT [DISTINCT | ALL] {* | column [, column, …]}

INTO {variable [, variable, …] | record }

FROM {table | (sub-query) } [alias]

WHERE … … …

The

SELECT

 statements used in the PL/SQL block cannot return more
than one row. If more than one row is to be processed, you need to use an
explicit cursor. Cursors are discussed later in this chapter. The

INTO

 clause
should have the same number of variables as the columns selected in the

SELECT

 clause. A record variable also can be specified in the

INTO

 clause.
The example shown in Listing 8.1 queries data from the EMP table for the

highest-paid employee and displays it to the screen using the

DBMS_OUTPUT

 built-
in package. There are three columns selected in the

SELECT

 statement, and there
are three variables used in the

INTO

 clause. The variables in the

INTO

 clause
should be declared in compatible datatypes of the column values selected.

LISTING 8.1: Highest-paid employee

SQL> SET SERVEROUTPUT ON

SQL> LIST

 DECLARE

 v_empno NUMBER (4);

 v_ename VARCHAR2 (20);

 v_salary NUMBER (10,2);

http://www.sybex.com

344

Chapter 8 �

Interacting with the Database

 BEGIN

 SELECT empno, ename, salary

 INTO v_empno, v_ename, v_salary

 FROM emp

 WHERE salary = (SELECT MAX(salary)

 FROM EMP);

 DBMS_OUTPUT.PUT_LINE ('Highest Paid Employee is ' ||
v_ename);

 DBMS_OUTPUT.PUT_LINE ('Id is ' || v_empno || ' Salary
'

 || to_char(v_salary,
'999,999.99'));

 * END;

SQL> /

Highest Paid Employee is A_EDWARD

Id is 7839 Salary 5,000.00

PL/SQL procedure successfully completed.
__

The

DBMS_OUTPUT

 package is very useful when debugging PL/SQL programs.
Basically, the

DBMS_OUTPUT.PUT_LINE

 procedure takes a

VARCHAR2

 input and cop-
ies the line to a private buffer for the session. You must set

SERVEROUTPUT

 to

ON

 to
display the buffer contents to the screen. The buffer contents are displayed when

the program (procedure, function, trigger, or anonymous block) completes.

The %TYPE Attribute

In addition to the built-in and user-defined datatypes, you can also declare
variables and constants in a PL/SQL program referencing a column name to
inherit its datatype and length. This dynamic datatype assignment is very

http://www.sybex.com

Accessing the Database

345

useful; you need not change the program code if the datatype or length of the
column in the table is changed, where the variable is referenced.

The following are all valid declarations using

%TYPE

.

Optionally, you can
specify the schema name of the table.

v_empno SCOTT.EMP.EMPNO%TYPE;

c_comm CONSTANT EMP.COMM%TYPE := 100;

v_ename EMP.ENAME%TYPE NOT NULL := 'NO NAME';

v_salary EMP.SALARY%TYPE;

In the

%TYPE

, you can specify not only column names but also variable,
record, cursor, or constant declarations. This helps to define the same type
of variables in the program. In the following example, a variable V_A is
defined, and its attributes are copied to variables V_B and V_C. The initial-
ization values are not copied; only the datatype and length are copied.

 1 DECLARE

 2 V_A NUMBER (5) := 10;

 3 V_B V_A%TYPE := 15;

 4 V_C V_A%TYPE;

 5 BEGIN

 6 DBMS_OUTPUT.PUT_LINE

 7 ('V_A='||V_A||' V_B='||V_B||' V_C='||V_C);

 8* END;

SQL> /

V_A=10 V_B=15 V_C=

PL/SQL procedure successfully completed.

SQL>

SQL functions, pseudo-columns, and all operators can be used in PL/SQL.

http://www.sybex.com

346 Chapter 8 � Interacting with the Database

Other DML Statements

The other DML statements that you can use to manipulate data are INSERT,
UPDATE, DELETE, and LOCK TABLE. The syntax of these statements inside PL/SQL
is the same as the syntax you would use for these statements in SQL. These DML
statements are discussed in Chapter 4, Modifying Data and Security. You can ref-
erence any variable declared in the DECLARE section inside the SELECT, INSERT,
DELETE, and UPDATE statements, as long as they are in the scope of the block, if
there are nested blocks.

Use the INSERT statement to add new rows to a table, DELETE to remove
rows from a table, and UPDATE to change existing row values. LOCK TABLE
temporarily limits access to data.

The example shown in Listing 8.2 creates a procedure to delete an
employee from the EMP table. The steps of this procedure follow:

1. The employee number is passed to the procedure as a parameter.

2. The employee number and name of the employee in the deleted record
are saved in another table called FORMER_EMP.

3. The record is deleted from the EMP table.

4. The DELETE_DATE column in the FORMER_EMP table is updated
with the current system date.

This example uses the SELECT statement to get the employee name, the
INSERT statement to create a record in the FORMER_EMP table, the
UPDATE statement to set the DELETE_DATE column, and finally the DELETE
statement to remove the row from the EMP table.

LISTING 8.2: FIRE_EMPLOYEE procedure

CREATE OR REPLACE PROCEDURE FIRE_EMPLOYEE (p_empno in
number)

AS

 v_ename EMP.ENAME%TYPE;

BEGIN

 SELECT ename

 INTO v_ename

 FROM emp

http://www.sybex.com

Accessing the Database 347

 WHERE empno = p_empno;

 INSERT INTO former_emp (empno, ename)

 VALUES (p_empno, v_ename);

 DELETE FROM emp

 WHERE empno = p_empno;

 UPDATE former_emp

 SET date_deleted = SYSDATE

 WHERE empno = p_empno;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Employee Number Not Found!');

END;

/
__

To delete the employee number 7654, you invoke the procedure with the
employee number as the parameter:

SQL> EXEC fire_employee (7654);

PL/SQL procedure successfully completed.

SQL> SELECT * FROM former_emp;

 EMPNO ENAME DATE_DELE

---------- -------------------- ---------

 7654 MARTIN 29-MAR-00

SQL>

http://www.sybex.com

348 Chapter 8 � Interacting with the Database

A function cannot modify data in a table, that is, you cannot use the DML
statements INSERT, UPDATE, or DELETE in a function.

Outcome of DML Statements

When a DML statement (SELECT, INSERT, UPDATE, or DELETE) is executed,
the outcome of the statement is saved in four cursor attributes. These
attributes can be used to control the program flow or just to know the status.
When performing these DML statements, PL/SQL opens a cursor internally
and processes the result. The cursor is an area in the memory that maintains
information from the query. The cursor is opened for performing the DML
statement and is closed when the statement completes. The status of the
implicit cursor just executed is available in SQL%FOUND, SQL%NOTFOUND, and
SQL%ROWCOUNT attributes. SQL%FOUND and SQL%NOTFOUND are Boolean values,
and SQL%ROWCOUNT is an integer.

SQL%FOUND and SQL%NOTFOUND Before executing any DML statement,
the value of SQL%FOUND and SQL%NOTFOUND will be NULL. After the DML
statement, the SQL%FOUND attribute will be

� TRUE for INSERT

� TRUE for DELETE and UPDATE if at least a row is deleted or updated

� TRUE for SELECT INTO if a row is returned

When SQL%FOUND is TRUE, the value of SQL%NOTFOUND will be FALSE.

SQL%ROWCOUNT SQL%ROWCOUNT has the number of rows processed by the
last DML statement. Before any DML statement, the SQL%ROWCOUNT value
will be NULL. For a SELECT INTO statement, the SQL%ROWCOUNT value will
be 1 if successful; SQL%ROWCOUNT will have a value of 0 if not successful,
which also raises the NO_DATA_FOUND exception.

SQL%ISOPEN SQL%ISOPEN is a Boolean result, which is TRUE if the cursor
is open and FALSE if the cursor is closed. The SQL%ISOPEN attribute is
always FALSE because the implicit cursor is opened for a DML statement
and closed immediately after the statement.

The example shown in Listing 8.3 illustrates how to use the implicit cursor
attributes. We count the number of records in the EMP table with salary above

http://www.sybex.com

Accessing the Database 349

3000 and increase the salary by 10 percent. The value of SQL%ROWCOUNT and
SQL%FOUND are displayed.

LISTING 8.3: Using cursor attributes

DECLARE

 v_count PLS_INTEGER;

 v_rowcount PLS_INTEGER;

BEGIN

 SELECT COUNT(*)

 INTO v_count

 FROM emp

 WHERE salary > 3000;

 v_rowcount := SQL%ROWCOUNT;

 DBMS_OUTPUT.PUT_LINE ('Total rows from table : ' ||
v_count);

 DBMS_OUTPUT.PUT_LINE ('%ROWCOUNT value from SELECT: ' ||
v_rowcount);

 IF SQL%FOUND THEN

 DBMS_OUTPUT.PUT_LINE ('Records Found For Update');

 UPDATE emp

 SET salary = salary * 1.10

 WHERE salary > 3000;

 v_rowcount := SQL%ROWCOUNT;

 DBMS_OUTPUT.PUT_LINE ('SQL%ROWCOUNT value after
update: ' || v_rowcount);

 IF SQL%NOTFOUND THEN

http://www.sybex.com

350 Chapter 8 � Interacting with the Database

 DBMS_OUTPUT.PUT_LINE ('No rows updated');

 END IF;

 END IF;

END;

SQL> /

Total rows from table : 2

%ROWCOUNT value from SELECT: 1

Records Found For Update

SQL%ROWCOUNT value after update: 2

PL/SQL procedure successfully completed.

SQL>
__

Transaction Control Statements

A transaction is a logical unit of work that may include one or more DML state-
ments. Transactions help in ensuring data integrity. For example, in Listing 8.2,
there are various DML statements involved in removing an employee. If any of
the statements fail, the entire transaction will be rolled back. You can use explicit
COMMIT, ROLLBACK, SAVEPOINT, and SET TRANSACTION statements inside a PL/
SQL block. A transaction begins when you start a session (or when another
transaction ends) and you issue the first DML statement. Issuing a COMMIT or
ROLLBACK command ends a transaction. SQL*Plus commits the transaction
when you exit.

COMMIT terminates the current transaction, saves all database changes perma-
nently, and releases all locks. ROLLBACK terminates the current transaction and
releases locks but does not make the changes permanent—the changes are
undone. Setting an intermediate point to go back to inside a transaction is useful
when the transaction involves many database operations. The SAVEPOINT com-
mand is used to mark the intermediate points. The SET TRANSACTION statement
is used to set transaction properties such as read-write access and isolation level.

http://www.sybex.com

Explicit Cursors 351

The transaction control statements COMMIT, ROLLBACK, SAVEPOINT, and
ROLLBACK TO SAVEPOINT cannot be used in a trigger.

Explicit Cursors

When the query returns more than one row, you need to define an
explicit cursor; you cannot use a SELECT INTO statement. An implicit cursor is
managed by PL/SQL; the implicit cursor is opened when the query begins and
closed automatically when the query ends. An explicit cursor is defined in the
declare section of the PL/SQL block and is opened, fetched and closed in the exe-
cutable or exception section. An explicit cursor can be deemed an array with no
upper limit. It can have any number of rows. Table 8.1 summarizes the differ-
ences between implicit and explicit cursors.

T A B L E 8 . 1 Implicit versus Explicit Cursors

Implicit Cursor Explicit Cursor

Maintained internally by PL/SQL.
Opened and closed automatically
when the query is executed.

Defined, opened, and closed explicitly
in the program. The cursor has a name.

The cursor attributes are prefixed
with SQL (for example,
SQL%FOUND).

The cursor attributes are prefixed with
the cursor name (for example,
C1%FOUND).

The cursor attribute %ISOPEN is
always FALSE, because the implicit
cursor is closed immediately
when the query completes.

The %ISOPEN attribute will have a valid
value depending upon the status of
the cursor.

Only one row can be processed;
the SELECT statement with the
INTO clause is used.

Any number of rows can be pro-
cessed. Iterative routines should be
set up in the program, and each row
should be fetched explicitly (except
for a cursor FOR loop).

http://www.sybex.com

352 Chapter 8 � Interacting with the Database

Using Cursors

The term cursor usually refers to an explicit cursor. From now on, we will
simply say “cursor” for an explicit cursor. The cursor to be used in the
program is defined in the DECLARE section. The cursor has a name and a
SELECT statement. WHERE, ORDER BY, GROUP BY, subqueries, and so on,
are all permitted in a cursor definition.

Declaring a Cursor

A cursor declaration defines the SELECT statement for the query you need to
process in the body of the block. In its simple form, a cursor declaration has
the following syntax:

CURSOR cursor_name IS select_statement;

The cursor name is an undeclared PL/SQL variable. You cannot assign
values to a cursor name or use it in an expression. The following example
opens a cursor on the EMP table for records with SALARY above 2000. If
there is no WHERE clause, all rows from the EMP table will be processed.

DECLARE

CURSOR C_EMP IS SELECT empno, ename, salary

FROM emp

WHERE salary > 2500

ORDER BY ename;

… … …

BEGIN

You can use a view or select from multiple tables/views in the cursor definition.
You can select all columns by using the asterisk (*) instead of column names.

Opening a Cursor

The cursor should be opened before its row values can be used. Opening the cur-
sor initiates the query processing. Here is the syntax for opening a simple cursor:

OPEN cursor_name;

where cursor_name is the name of the cursor defined in the declaration section.
For example, to open the cursor defined on EMP table, do this:

OPEN C_EMP;

http://www.sybex.com

Explicit Cursors 353

Closing a Cursor

Explicitly opened cursors should be closed explicitly. The syntax for closing
a cursor follows:

CLOSE cursor_name;

For example, to close the cursor defined on the EMP table, do this:

CLOSE C_EMP;

Fetching a Cursor

A cursor is fetched to retrieve a row at a time; use the FETCH command for
this. After each fetch, the cursor advances to the next row in the result set.
Here is the syntax of the FETCH command:

FETCH cursor_name INTO variable [, variable]…;

For each column in the cursor definition SELECT, there should be a cor-
responding variable in the FETCH variable list. The variables should be
declared with the appropriate datatype in the declaration section. Consider
the following example: The cursor is defined to select ENAME and SALARY
from EMP table. The variables to hold the result from the cursor fetch are
also defined. Each time, we fetch into the same variables (you can also fetch
into different variables, if required). There are three rows in the EMP table
(because there is no WHERE clause, all rows in the table are processed), so we
fetch three times from the cursor and display the output to the screen:

SET SERVEROUTPUT ON

DECLARE

 V_enameEMP.ENAME%TYPE;

 V_salaryEMP.SALARY%TYPE;

 CURSOR c_emp IS SELECT ename, salary FROM emp;

BEGIN

 OPEN c_emp;

 FETCH c_emp INTO v_ename, v_salary;

 DBMS_OUTPUT.PUT_LINE ('Salary of Employee '|| v_ename
||' is '|| v_salary);

 FETCH c_emp INTO v_ename, v_salary;

http://www.sybex.com

354 Chapter 8 � Interacting with the Database

 DBMS_OUTPUT.PUT_LINE ('Salary of Employee '|| v_ename
||' is '|| v_salary);

 FETCH c_emp INTO v_ename, v_salary;

 DBMS_OUTPUT.PUT_LINE ('Salary of Employee '|| v_ename
||' is '|| v_salary);

 CLOSE c_emp;

END;

What if there are more than three rows returned, or what if there are not
three rows in the table? You can use the iterative control structures and the
cursor attributes to loop through all the records in the cursor. Similar to the
implicit cursor attributes, there are four explicit cursor attributes. The cursor
attributes are prefixed with the cursor name. The purpose and functionalities
of the cursor attributes for explicit cursors are the same as they are for
implicit cursors.

Let’s now rewrite the previous example to use a loop to manage the number
of fetches. The program exits the loop when there are no more rows to fetch.

SET SERVEROUTPUT ON

DECLARE

 V_ename EMP.ENAME%TYPE;

 V_salary EMP.SALARY%TYPE;

 CURSOR c_emp IS SELECT ename, salary FROM emp;

BEGIN

 OPEN c_emp;

 LOOP

 FETCH c_emp INTO v_ename, v_salary;

 EXIT WHEN c_emp%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Salary of Employee '|| v_ename
||

 ' is '|| v_salary);

 END LOOP;

 CLOSE c_emp;

END;

Record Variables

Defining a record variable using the TYPE command and using %ROWTYPE are
discussed in Chapter 9, Working with Composite Datatypes and Collections.

http://www.sybex.com

Explicit Cursors 355

A record variable can be used to fetch the rows from a cursor. It is easier
to define and to use than declaring each variable separately when selecting all
columns from a table or referring to the columns in a cursor—especially if
the cursor is selecting a lot of columns or if you do not want to declare each
variable for the cursor to fetch into. The following example defines a cursor
using the %ROWTYPE and uses it in the program.

When you are using %ROWTYPE on a table and fetching into a record, it is
always safer to select all the columns in the table using an asterisk (*) than
to list column names. Another caveat is that you might select the columns in
a different order than in the table definition. By using an asterisk (*) in the
SELECT clause, you eliminate this problem. In the example, although we
selected all columns from the table, we did not use them all in the program.
The record elements will have the same name as the table columns.

SET SERVEROUTPUT ON

DECLARE

 R_emp EMP%ROWTYPE;

 CURSOR c_emp IS SELECT * FROM emp;

BEGIN

 OPEN c_emp;

 LOOP

 FETCH c_emp INTO r_emp;

 EXIT WHEN c_emp%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Salary of Employee '|| r_
emp.ename ||

 ' is '|| r_emp.salary);

 END LOOP;

 CLOSE c_emp;

END;

You can also define the %ROWTYPE on a cursor name. Since forward declaration
is not allowed in PL/SQL, you must declare the cursor first and then use the cursor
name to define the record variable. Consider this example:

DECLARE

 CURSOR c_emp IS SELECT ename, salary FROM emp;

 R_emp c_emp%ROWTYPE;

BEGIN

http://www.sybex.com

356 Chapter 8 � Interacting with the Database

 OPEN c_emp;

 LOOP

 FETCH c_emp INTO r_emp;

 EXIT WHEN c_emp%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Salary of Employee '|| r_
emp.ename ||

 ' is '|| r_emp.salary);

 END LOOP;

 CLOSE c_emp;

END;

The example uses a record variable r_emp, which is defined based on the
cursor c_emp. For PL/SQL to recognize this record variable, the cursor must
be declared previously. The example will display the employee names and
their salary from the EMP table.

Cursors with Parameters

As with a procedure or a function, you can pass parameters into a cursor and
use them in the query. This is very useful when you have to open the cursor
based on a certain condition or when you need to fetch the records that satisfy
a condition derived elsewhere. The syntax for declaring a cursor with param-
eters follows:

CURSOR cursor_name [(parameter [,parameter]…)] IS select_
statement;

Here is the syntax for defining a parameter:

Parameter_name [IN] data_type [{:= | DEFALUT} value]

Unlike using procedures, you can only pass values to the cursor; you
cannot pass values out of the cursor through parameters. Only the datatype
of the parameter is defined, not its length. Optionally, you can provide a
default value for the parameter, which will take effect if no value is passed
to the cursor. The parameter name defined in the cursor declaration is only
a placeholder; the parameter is not available elsewhere for reference and
need not be declared elsewhere in the program.

http://www.sybex.com

Explicit Cursors 357

You can also use a %TYPE instead of a datatype in the parameter declaration
for a cursor, for example, CURSOR c1 (p_name EMP.ENAME%TYPE) IS SELECT….

The actual values are applied to the parameter when you open a cursor.
The syntax for opening a cursor with parameters is this:

OPEN cursor_name [(value [,value]…)];

where value can be a literal or a variable.

If you have not defined default values for a parameter (when it is declared in the
cursor), opening the cursor without a parameter will cause an error. Each formal
parameter in the cursor definition should have a corresponding actual value
when opening the cursor. Formal parameters defined with a default value need
not have a corresponding actual value.

Consider an example: In preparing a report, you need to print each
department number and name in one line followed by the employees work-
ing in that department (name and salary); you also need to print the total
department salary, then proceed to the next department, and so on. This is
shown in Listing 8.4. Here, you define two cursors: one for department and
one for employee. The employee cursor uses a parameter to select only the
employees belonging to a department. Notice that the employee cursor is
opened and closed for each department with a new parameter value. This
example also uses %TYPE and %ROWTYPE variables.

LISTING 8.4: Cursors with parameters

DECLARE

 CURSOR c_dept IS SELECT * FROM dept ORDER BY deptno;

 CURSOR c_emp (p_dept VARCHAR2) IS

 SELECT ename, salary

 FROM emp

 WHERE deptno = p_dept

 ORDER BY ename;

http://www.sybex.com

358 Chapter 8 � Interacting with the Database

 r_dept DEPT%ROWTYPE;

 v_ename EMP.ENAME%TYPE;

 v_salary EMP.SALARY%TYPE;

 v_tot_salary NUMBER (10,2);

BEGIN

 OPEN c_dept;

 LOOP

 FETCH c_dept INTO r_dept;

 EXIT WHEN c_dept%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Department : ' || r_dept.deptno
|| ' - '

 || r_dept.dname);

 v_tot_salary := 0;

 OPEN c_emp (r_dept.deptno);

 LOOP

 FETCH c_emp INTO v_ename, v_salary;

 EXIT WHEN c_emp%NOTFOUND;

 DBMS_OUTPUT.PUT_LINE ('Name: ' ||v_ename || '
Salary:'

 ||v_salary);

 v_tot_salary := v_tot_salary + v_salary;

 END LOOP;

 CLOSE c_emp;

 DBMS_OUTPUT.PUT_LINE ('Total Salary for Dept: ' || v_
tot_salary);

 END LOOP;

 CLOSE c_dept;

END;

/

__

http://www.sybex.com

Explicit Cursors 359

Cursor FOR Loops

In most situations, we follow this procedure:

1. Open a cursor

2. Start a loop

3. Fetch the cursor

4. Check whether rows are returned

5. Process

6. Close the loop

7. Close the cursor

You can simplify this type of coding by using a cursor FOR loop. You
declare the cursor as you normally would, and in the body of the block,
instead of opening and closing the cursor explicitly, you can use the FOR
loop. The loop automatically processes all records returned from the query.
You can even define the query in the cursor FOR loop itself. The syntax of the
cursor FOR loop follows:

FOR record_name IN

{cursor_name [(parameter [,parameter]…)]

| (query_definition)}

LOOP

statements

END LOOP;

Let’s rewrite the example in Listing 8.4 using a cursor FOR loop; you can see
this revision in Listing 8.5. Notice that when using a cursor FOR loop, you need
not define the record variables. The record variables are implicitly declared
and are only available inside the loop. The sequence of statements between
LOOP and END LOOP is executed once for each row returned by the cursor.

LISTING 8.5: Using a cursor FOR loop

DECLARE

 CURSOR c_dept IS SELECT deptno, dname

 FROM dept ORDER BY deptno;

http://www.sybex.com

360 Chapter 8 � Interacting with the Database

 CURSOR c_emp (p_dept VARCHAR2) IS

 SELECT ename, salary

 FROM emp

 WHERE deptno = p_dept

 ORDER BY ename;

 v_tot_salary NUMBER (10,2);

BEGIN

 FOR r_dept IN c_dept LOOP

 DBMS_OUTPUT.PUT_LINE ('Department : ' || r_dept.deptno
|| ' - '

 || r_dept.dname);

 v_tot_salary := 0;

 FOR r_emp IN c_emp (r_dept.deptno) LOOP

 DBMS_OUTPUT.PUT_LINE ('Name: ' ||r_emp.ename || '
Salary:'

 ||r_emp.salary);

 v_tot_salary := v_tot_salary + r_emp.salary;

 END LOOP;

 DBMS_OUTPUT.PUT_LINE ('Total Salary for Dept: ' || v_
tot_salary);

 END LOOP;

END;

/
__

http://www.sybex.com

Explicit Cursors 361

When using expressions in the cursor declaration, you should specify an
alias name for the declaration. The alias name can be used for referencing
the cursor column.

Cursor FOR Loop Using a Query

A query can be defined in the cursor FOR loop. The cursor does not have a name
because it is not declared explicitly. The record name is defined with the cursor
query. Listing 8.6 is the same as Listing 8.5, using the query definition (subquery)
in the cursor FOR loop instead of defining it in the declaration section.

LISTING 8.6: Query in a cursor FOR loop

DECLARE

 v_tot_salary NUMBER (10,2);

BEGIN

 FOR r_dept IN (SELECT deptno, dname

 FROM dept ORDER BY deptno) LOOP

 DBMS_OUTPUT.PUT_LINE ('Department : ' || r_dept.deptno
|| ' - '

 || r_dept.dname);

 v_tot_salary := 0;

 FOR r_emp IN (SELECT ename, salary

 FROM emp

 WHERE deptno = r_dept.deptno

 ORDER BY ename) LOOP

 DBMS_OUTPUT.PUT_LINE ('Name: ' ||r_emp.ename || '
Salary:'

 ||r_emp.salary);

 v_tot_salary := v_tot_salary + r_emp.salary;

http://www.sybex.com

362 Chapter 8 � Interacting with the Database

 END LOOP;

 DBMS_OUTPUT.PUT_LINE ('Total Salary for Dept: ' || v_
tot_salary);

 END LOOP;

END;

/
__

You can terminate a cursor FOR loop before its completion by using the EXIT
or GOTO statement. When the loop terminates, the associated cursor is closed.

Subqueries in a Cursor

A subquery is a query that appears inside a query, usually enclosed in paren-
theses. You can use subqueries in the cursor definition as you would use
them in any SELECT statement. Most commonly, the subquery is defined in
the WHERE clause or in the FROM clause. Subqueries can also be used in the
query defined inside the cursor FOR loop. Writing subqueries is discussed in
Chapter 3, Joins and Subqueries.

Let’s consider few examples of using subqueries in a cursor. The following
example defines a subquery in the WHERE clause. Let’s define a cursor to process
the employee records that do not belong to the ACCOUNTING department:

CURSOR c1 IS SELECT * FROM emp

 WHERE deptno NOT IN (SELECT deptno

 FROM dept

 WHERE dname !=
'ACCOUNTING');

The example shown in Listing 8.7 uses a subquery in the FROM clause. The
script gets the total tablespace size from the DBA_DATA_FILES view and total
free space size from the DBA_FREE_SPACE view in the subquery; it selects the
tablespace name, total size, and total free space in the cursor. The cursor also
uses alias names.

http://www.sybex.com

Explicit Cursors 363

LISTING 8.7: Cursor using subquery

DECLARE

 CURSOR C1 IS SELECT a.tablespace_name TSNAME,

 SUM(a.tots) Tot_Size, SUM(a.sumb) Tot_Free

 FROM (SELECT tablespace_name, 0 tots, SUM(bytes) sumb

 FROM dba_free_space a

 GROUP BY tablespace_name

 UNION

 SELECT tablespace_name, SUM(bytes) tots, 0

 FROM dba_data_files

 GROUP BY tablespace_name) a

 GROUP BY a.tablespace_name;

 v_pctfree PLS_INTEGER;

BEGIN

 FOR R1 IN C1 LOOP

 v_pctfree := r1.tot_free / r1.tot_size * 100;

 DBMS_OUTPUT.PUT_LINE (r1.tsname ||' has '|| r1.tot_
free ||

 ' bytes free out of total '||
r1.tot_size ||

 ' ('||v_pctfree||'%)');

 END LOOP;

END;

/
__

Updating and Deleting in a Cursor

UPDATE and DELETE statements can be used in PL/SQL to update or delete mul-
tiple rows. (The INSERT statement can insert multiple rows simultaneously by
using a subquery.) An explicit cursor needs to be used only when you want to
query multiple rows from a table or tables. PL/SQL provides options to delete
or to update the record you just fetched using the explicit cursor.

http://www.sybex.com

364 Chapter 8 � Interacting with the Database

The WHERE CURRENT OF clause in an UPDATE or DELETE statement specifies
that the most recent row fetched from the table should be updated or deleted.
To use this feature, you must declare the cursor with the FOR UPDATE clause.
When the session opens a cursor with the FOR UPDATE clause, all rows in the
return set will hold row-level exclusive locks. Other sessions can only query
the rows, but they cannot update, delete, or select with FOR UPDATE.

Here is the syntax of the FOR UPDATE clause in the SELECT statement:

FOR UPDATE [OF [schema.]table.column [,[schema.]table.column] …
 [NOWAIT]

Use the OF clause to lock only the tables mentioned in a multiple-table
query. The column names improve readability, the rows are locked, and there
is no column-level lock. If you omit the OF clause, selected rows of all tables in
the query are locked. If the rows are already locked by another session, NOWAIT
specifies, “Do not wait; return an error.” Normally, Oracle waits until the
rows are available (that is, until the other user issues a COMMIT or ROLLBACK).

The syntax of using the WHERE CURRENT OF clause in UPDATE and DELETE
statements follows:

WHERE {CURRENT OF cursor_name | search_condition}

The example shown in Listing 8.8 opens a cursor for employees and updates
the commission, if there is no commission assigned based on the salary level.

LISTING 8.8: Cursor using FOR UPDATE and WHERE CURRENT OF

DECLARE

 CURSOR c1 IS SELECT empno, salary

 FROM emp

 WHERE comm IS NULL

 FOR UPDATE OF comm;

 v_comm NUMBER(10,2);

BEGIN

 FOR r1 IN c1 LOOP

 IF r1.salary < 500 THEN

http://www.sybex.com

Summary 365

 v_comm := r1.salary * 0.25;

 ELSIF r1.salary < 1000 THEN

 v_comm := r1.salary * 0.20;

 ELSIF r1.salary < 3000 THEN

 v_comm := r1.salary * 0.15;

 ELSE

 v_comm := r1.salary * 0.12;

 END IF;

 UPDATE emp

 SET comm = v_comm

 WHERE CURRENT OF c1;

 END LOOP;

END;

/
__

The FOR UPDATE clause in the SELECT statement can only be specified in the top
level; subqueries cannot have this clause.

Summary

In this chapter, you read how PL/SQL interacts with the Oracle database and
how DML statements can be used inside a PL/SQL block. For queries returning
only one row, you can use the SELECT INTO statement; for queries returning more
than one row, you must define an explicit cursor. Implicit cursors are opened for
DML statements and closed when the statement completes. Implicit cursors are
managed by PL/SQL.

Explicit cursors should be defined, opened, and closed explicitly in the
program. A cursor FOR loop is an exception to this: You need not open or
close the cursor explicitly. You declare the cursor in the declaration section
of the block and manipulate the cursor using OPEN, FETCH, and CLOSE state-
ments. There are four cursor attributes associated with an explicit or implicit
cursor: %ISOPEN, %FOUND, %NOTFOUND, and %ROWCOUNT.

http://www.sybex.com

366 Chapter 8 � Interacting with the Database

You can pass parameters to the cursor. The cursor parameter can only
pass a value into the parameter; it cannot pass a value out. You can lock the
rows that the cursor returns for later program updates. You also can use sub-
queries in the cursor definition.

Key Terms

Before you take the exam, make sure you are familiar with the following terms:

%ROWTYPE

%TYPE

COMMIT

Cursor attributes

Cursor FOR loop

Fetch

FOR UPDATE clause

Query

ROLLBACK

SAVEPOINT

Subquery

Transaction

WHERE CURRENT OF

http://www.sybex.com

Review Questions 367

Review Questions

1. What is wrong with the following cursor declaration?

CURSOR c1 (pempno IN NUMBER (4)) IS

SELECT EMPNO, ENAME

FROM EMP

WHERE EMPNO = pempno;

A. The INTO clause is missing.

B. Inside the cursor definition, the variable should be preceded with
a colon (:pempno).

C. IN cannot be specified in the cursor definition.

D. The size of the datatype should not be specified in the cursor definition.

2. Take a look at the following listing of EMP table data.

EMPNO ENAME SALARY COMM DEPTNO

---------- ---------- ---------- ---------- ----------

 1234 ADAMS 3500

 7566 JONES 2975 20

 7654 MARTIN 1250 1400 30

 7698 K_BLAKE 2850 30

 7788 SCOTT 3000 20

 7839 A_EDWARD 5000 50000 10

 7844 TURNER 1500 0 30

 902 FORD 3000 20

http://www.sybex.com

368 Chapter 8 � Interacting with the Database

Consider the following block. What will be value of V_EMPNO when the
block is executed? (EMPNO is the primary key of EMP.)

DECLARE

 v_empno EMP.EMPNO%TYPE := 800;

 CURSOR c_emp (p_empno EMP.EMPNO%TYPE := 1234) IS

 SELECT empno FROM emp

 WHERE empno = p_empno;

BEGIN

 OPEN c_emp (NULL);

 FETCH c_emp INTO v_empno;

 CLOSE c_emp;

END;

A. 1234

B. 800

C. NULL

D. 0

3. What is the value of V_A when the following block is executed? The
table EMP has the rows listed in Question 2.

DECLARE

 V_A NUMBER;

 V_E NUMBER;

 CURSOR c1 IS SELECT empno FROM EMP;

BEGIN

 OPEN c1;

 LOOP

 FETCH c1 INTO V_E;

 V_A := C1%ROWCOUNT;

 EXIT WHEN C1%NOTFOUND;

 END LOOP;

 CLOSE C1;

END;

A. 8

B. 9

C. 6

D. 0

http://www.sybex.com

Review Questions 369

4. An EMP table has the data shown in Question 2. What will be value
of v_count when the following block is executed?

DECLARE

 v_count NUMBER;

 r_emp EMP%ROWTYPE;

BEGIN

 SELECT * INTO r_emp FROM EMP

 WHERE empno < 7700;

 v_count := SQL%ROWCOUNT;

END;

A. The block will fail with errors.

B. 4

C. 8

D. 0

5. What will the output be from the following PL/SQL block? The contents
of the EMP table are shown in Question 2.

SET SERVEROUTPUT ON

DECLARE

 v_ename EMP.ENAME%TYPE := 'NO NAME';

BEGIN

 SELECT ename INTO v_ename

 FROM EMP

 WHERE empno = 9999;

 IF SQL%NOTFOUND THEN

 DBMS_OUTPUT.PUT_LINE('No Such Employee Number');

 ELSE

 DBMS_OUTPUT.PUT_LINE(v_ename);

 END IF;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Invalid Employee Number');

END;

http://www.sybex.com

370 Chapter 8 � Interacting with the Database

A. The block will return an error.

B. No Such Employee Number

C. NO NAME

D. Invalid Employee Number

6. What will the output be from the following PL/SQL block? The contents of
the EMP table are shown in Question 2.

SET SERVEROUTPUT ON

DECLARE

 v_ename EMP.ENAME%TYPE := 'NO NAME';

 CURSOR c1 IS

 SELECT ename

 FROM EMP

 WHERE empno = 9999;

BEGIN

 OPEN C1;

 FETCH c1 INTO v_ename;

 IF C1%NOTFOUND THEN

 DBMS_OUTPUT.PUT_LINE('No Such Employee Number');

 ELSE

 DBMS_OUTPUT.PUT_LINE(v_ename);

 END IF;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 DBMS_OUTPUT.PUT_LINE('Invalid Employee Number');

END;

A. The block will return an error.

B. No Such Employee Number

C. NO NAME

D. Invalid Employee Number

http://www.sybex.com

Review Questions 371

7. Consider the following PL/SQL block. Which line of code has an
error? The contents of the EMP table are shown in Question 2.

 1 DECLARE

 2 v_ename EMP.ENAME%TYPE := 'NO NAME';

 3 CURSOR c1 IS

 4 SELECT ename

 5 FROM EMP;

 6 BEGIN

 7 OPEN C1;

 8 LOOP

 9 FETCH c1 INTO v_ename;

 10 IF C1%NOTFOUND THEN

 11 EXIT;

 12 ELSE

 13 DBMS_OUTPUT.PUT_LINE(v_ename);

 14 END IF;

 15 CLOSE C1;

 16 END LOOP;

END;

A. Line 3

B. Line 7

C. Line 11

D. Line 9

http://www.sybex.com

372 Chapter 8 � Interacting with the Database

8. Consider the following PL/SQL block. What is the value of V_COUNT
when the block is executed and no rows are deleted?

DECLARE

 V_COUNT NUMBER;

BEGIN

 DELETE FROM EMP

 WHERE EMPNO < 0;

 V_COUNT := SQL%ROWCOUNT;

END;

A. NULL

B. TRUE

C. 0

D. FALSE

9. In a PL/SQL block, what is the value of SQL%NOTFOUND before executing
any DML statements?

A. NOTFOUND

B. TRUE

C. NULL

D. FALSE

10. Which of the following statements require an explicit cursor if processing
more than one row?

A. SELECT

B. UPDATE

C. DELETE

D. INSERT

11. Which commands are allowed inside a PL/SQL block? Choose all
that apply.

A. TRUNCATE

B. DELETE

C. SAVEPOINT

D. ALTER TABLE

http://www.sybex.com

Review Questions 373

12. Which line of code has an error? EMPNO is the primary key of the
EMP table.

1 DECLARE

2 v_empno NUMBER (4);

3 v_ename VARCHAR2 (20);

4 BEGIN

5 SELECT empno, ename, salary

6 INTO v_empno, v_ename

7 FROM emp

8 WHERE empno = 1234;

9 END;

A. Line 3

B. Line 5

C. Line 6

D. The code has no error.

13. Consider the following SELECT statement. What happens if there are
no rows satisfying the WHERE condition?

SELECT COUNT(*)

INTO V_COUNT

FROM EMP

WHERE SALARY < 10;

A. A NO_DATA_FOUND exception is raised.

B. The SELECT statement executes successfully.

C. A TOO_FEW_ROWS exception is raised.

D. COUNT(*) is not valid to use in PL/SQL.

http://www.sybex.com

374 Chapter 8 � Interacting with the Database

14. Consider the following PL/SQL block. Which line has an error?

1 DECLARE

2 v_empno PLS_INTEGER := 1234;

3 BEGIN

4 GRANT DELETE TO BILL;

5 DELETE FROM EMP

6 WHERE EMPNO = 1234;

7 ROLLBACK;

8 END;

A. Line 2

B. Line 4

C. Line 7

D. The code has no error.

15. Consider the following PL/SQL block. Which line has an error?

 1 DECLARE

 2 CURSOR c_emp IS SELECT empno, ename, salary

 3 FROM emp

 4 WHERE salary < 3500;

 5 BEGIN

 6 FOR r_emp IN c_emp LOOP

 7 UPDATE emp

 8 SET salary = salary * 1.25

 9 WHERE CURRENT OF c_emp;

 10 END LOOP;

 11 END;

A. Line 2

B. Line 6

C. Line 9

D. The code has no error.

http://www.sybex.com

Review Questions 375

16. Consider the following PL/SQL block and choose the most appro-
priate answer.

DECLARE

 CURSOR c_emp IS SELECT empno, ename

 FROM emp

 WHERE salary < 3500

 FOR UPDATE;

BEGIN

 FOR r_emp IN c_emp LOOP

 UPDATE emp

 SET salary = salary * 1.25

 WHERE CURRENT OF c_emp;

 END LOOP;

END;

A. The block will give a salary raise by 25 percent for each employee
whose salary is below 3500.

B. The block will fail because there is no column name specified in the
FOR UPDATE clause.

C. You cannot use a WHERE CURRENT OF clause with the cursor FOR loop.

D. The SALARY column used in the WHERE clause in not appropriate
because it is not in the SELECT clause.

http://www.sybex.com

376 Chapter 8 � Interacting with the Database

17. Consider the following PL/SQL block, and choose the most appropri-
ate answer.

DECLARE

 r_c1 c1%rowtype;

 CURSOR c1 IS SELECT empno FROM emp;

BEGIN

 OPEN c1;

 FETCH c1 INTO r_c1;

 CLOSE c1;

END;

A. The code block has no error.

B. The declaration of r_c1 is illegal.

C. The declaration of r_c1 cannot use %ROWTYPE because the cursor
has only one column selected. %TYPE should be used instead.

D. The FETCH statement is malformed; you cannot use the INTO
clause.

18. What is the value of v_status when the following code block is executed?

DECLARE

 v_status BOOLEAN;

 v_date DATE;

BEGIN

 SELECT SYSDATE INTO v_date FROM DUAL;

 v_status := SQL%ISOPEN;

END;

A. 0

B. TRUE

C. FALSE

D. 1

http://www.sybex.com

Review Questions 377

19. Which of the following cursor attributes are invalid? Choose two.

A. %NOTOPEN

B. %NOTFOUND

C. %FOUND

D. %OPEN

20. If C1 is the cursor that is opened in a PL/SQL block, which attribute
will have the number of rows fetched so far?

A. C1%COUNT

B. C1%ROWCOUNT

C. COUNT%C1

D. C1%COUNTROW

http://www.sybex.com

378 Chapter 8 � Interacting with the Database

Answers to Review Questions

1. D. The size of the parameter should not be specified; only the datatype
must be specified.

2. B. The cursor is opened with a NULL value as a parameter; hence, the
fetch will fail to return any row. So, the initialized value for V_EMPNO
remains the same. If the cursor had been opened without any param-
eter, it would have taken the default value of 1234.

3. A. The %ROWCOUNT value is incremented when a row is fetched. Since
there are eight rows in the table, eight fetches are made. This means
that the value of %ROWCOUNT is 8. The ninth fetch did not return any
row, so the value of %ROWCOUNT remains the same.

4. A. Since there are four rows satisfying the WHERE condition, the SELECT
statement will fail with a TOO_MANY_ROWS exception. The SELECT INTO
clause can only select one row.

5. D. The SELECT INTO clause raises a NO_DATA_FOUND exception if
there are no rows selected. Although the value of SQL%NOTFOUND is
TRUE, control does not pass to the next statement when an exception
is raised.

6. B. When the cursor does not return any row, the value of C1%NOTFOUND
will be TRUE after the first fetch. A NO_DATA_FOUND exception will not be
raised when using explicit cursors.

7. D. There are eight rows in the EMP table, so the loop will try to execute
eight times. The cursor is closed inside the loop, however, so trying to
fetch the second row inside the loop will return an error. The cursor
should be closed outside the loop.

8. C. When no rows are deleted from the table, the value of %ROWCOUNT
will be 0.

9. C. SQL%NOTFOUND will have a Boolean value, and before executing any
DML statement, it will be NULL.

http://www.sybex.com

Answers to Review Questions 379

10. A. You can update, delete, or insert any number of rows in PL/SQL
without an explicit cursor. If your query is selecting more than one row,
you must use an explicit cursor. SELECT INTO can process only one row.

11. B, C. DDL statements are not allowed inside a PL/SQL block.
TRUNCATE and ALTER TABLE are DDL statements.

12. B. There are only two variables defined. The INTO clause has only two
variables, but the SELECT clause has three columns.

13. B. The SELECT statement executes successfully, and the V_COUNT
variable will have a value of 0 assigned.

14. B. Data control language statements are not allowed in PL/SQL.
GRANT and REVOKE are DCL statements.

15. C. The WHERE CURRENT OF clause can only be used if the cursor is
defined with a FOR UPDATE clause.

16. A. The block will execute without any error. Use of FOR UPDATE with-
out any table or column name is allowed.

17. B. The declaration of r_c1 references the cursor c1, which is declared
only in the next line. Forward declaration is not allowed in PL/SQL.

18. C. The value of SQL%ISOPEN is always FALSE. The implicit cursor is
opened and closed when the DML statement completes.

19. A, D. %NOTOPEN and %OPEN are invalid. To check the open status of
the cursor, the valid attribute is %ISOPEN.

20. B. C1%ROWCOUNT will have the number of records fetched so far from
the cursor C1. %COUNT and %COUNTROW are not valid cursor attributes.
There are four cursor attributes that can be used to check the cursor
status: C1%ROWCOUNT, C1%NOTFOUND, C1%FOUND, and C1%ISOPEN.

http://www.sybex.com

Chapter

9

Working with
Composite Datatypes
and Collections

ORACLE8i SQL AND PL/SQL EXAM OBJEC-
TIVES OFFERED IN THIS CHAPTER:

�

Create user-defined PL/SQL records

�

Create a record with the

%ROWTYPE

 attribute

�

Describe the types of PL/SQL collections

�

Create PL/SQL collections

�

Add and remove elements from a collection

�

Manage collections with the collection methods

Exam objectives are subject to change at any
time without prior notice and at Oracle’s sole
discretion. Please visit Oracle's Training and
Certification Web site (

http://education

.oracle.com/certification/index.html

) for
the most current exam objectives listing.

http://www.sybex.com

U

p to this point, we have worked primarily with atomic
data structures. PL/SQL not only supports these atomic structures but
also composite structures. PL/SQL has two types of composite structures:
records and collections. Records are composed of heterogeneous fields,
and collections are composed of homogeneous elements. In this chapter,
we will learn about the types of records and collections, how to define
records and collections, and how to use these composite structures in
your programs.

PL/SQL Records

R

ecords are a PL/SQL composite datatype, which is in contrast to
scalar datatypes, such as

VARCHAR2

,

NUMBER

, or

DATE

. Scalar datatypes
and other language primitives come predefined in the package standard,
but composite datatypes, like records, must be defined before they can be
used. A

record

 is called a composite datatype because it is composed of
a logical group of data elements called fields. A

field

 can be either a scalar
datatype or another record type. If you’ve done any C programming, a
record is similar to a struct. Conceptually, a record is also similar to a
row in a database table, with a record’s fields being analogous to a table’s
columns. They are so similar that PL/SQL makes it easy to define and use
records based on a database table or on a virtual table (view or query). As
with a table, each column/field within a row/record can be referenced and
assigned values individually, or all fields within the record can be refer-
enced in a single statement. Records can also be used as parameters to a
procedure or function, giving you a simple and elegant way to pass com-
plex data structures among your PL/SQL programs.

http://www.sybex.com

PL/SQL Records

383

In this chapter, our examples will use a model that includes stock quotes
and portfolios of stocks and mutual funds. Stock quotes include a number of
data elements, such as stock symbol, bid price, ask price, and volume. Port-
folios contain a number of holdings, which can be either a stock, a bond, or
a mutual fund. Each holding has attributes, such as the security, purchase
date, price, and quantity.

Creating Records

To use a record, you must define its structure, then declare variables of that
defined type. PL/SQL gives you explicit and implicit techniques for defining
records. You explicitly define a record based on the fields in the definition.
Then, once the record type is defined, you declare or create record variables
of that type for use. The other technique is to implicitly declare a record vari-
able based on the structure of a table or query using the

%ROWTYPE

attribute. These implicit record variables are a more powerful technique
because they are created dynamically at runtime.

Explicitly Defined Records

Explicitly defined records are defined in the declaration section of a PL/SQL
block before creating any variable of that record type. Use the

TYPE

 statement
to define a record, then create variables of that record’s type. The general syntax
for defining a record is

TYPE record_type IS RECORD (field_definition_list);

where

field_definition_list

 is a comma-delimited list of field definitions.
The syntax for each field definition is

field_name data_type_and_size [NOT NULL] [{:= | DEFAULT}

default_value]

Field names must obey the same naming rules as tables or columns (that
is, no leading numbers, maximum of 30 characters, and so on). So, our stock
quote record could be defined and a variable created like this:

DECLARE

 TYPE stock_quote_rec IS RECORD

 (symbol stocks.symbol%TYPE

 ,bid NUMBER(10,4)

http://www.sybex.com

384

Chapter 9 �

Working with Composite Datatypes and Collections

 ,ask NUMBER(10,4)

 ,volume NUMBER NOT NULL := 0 -- default

 ,exchange VARCHAR2(6) DEFAULT 'NASDAQ' -- default

);

real_time_quote stock_quote_rec; -- declare the

variable

Studying our example, you can see that the fields

bid

,

ask

, and

volume

 are
defined as

NUMBER

 datatypes. The exchange field is defined with a default value
of 'NASDAQ'. Default values can be assigned with either the keyword

DEFAULT

or with the assignment operator in the field definition. The volume field is
defined with the

NOT NULL

 restriction and a default value of

0

, using the assign-
ment operator technique. The

NOT NULL

 restriction on a field in a record works
in the same way as a

NOT NULL

 constraint on a column in a table: The field must
contain a value. If you use a

NOT NULL

 restriction, you must use a default value.
The

%TYPE

 attribute on the definition of the field symbol is used to ref-
erence the datatype and size of a table or view in the database. Your program
doesn’t have to know that type and size ahead of time. It’s a way of saying,
“Use whatever the database uses for this field.” In our example, the record
field will be defined at compile time to be the same datatype and size as the
column symbol in our table STOCKS. Whenever your code will be using
data from the database, you should use the

%TYPE

 attribute for variable or
field definitions. The reasons are twofold:

�

You can’t goof and key in the wrong datatype or size, because you’re
referencing the source.

�

More significantly, changes to the size or type in the table are automatically
reflected in your program—increasing the width of a column will not auto-
matically break your program code.

The datatype for each field’s definition can be a scalar type, as seen in the

stock_quote_rec

 example, or the field can be a previously defined record.
Expanding our stock trading example, we want to build a record for a detailed
quote, containing the basic information found in the

stock_quote_rec

, as well
as some additional information, such as the timestamp for the quote, the bid and
ask size, and the last few ticks. We define our detailed quote record as follows:

DECLARE

 TYPE stock_quote_rec IS RECORD

 (symbol stocks.symbol%TYPE

 ,bid NUMBER(10,4)

 ,ask NUMBER(10,4)

http://www.sybex.com

PL/SQL Records

385

 ,volume NUMBER NOT NULL := 0

 ,exchange VARCHAR2(6) DEFAULT 'NASDAQ' -- default

);

 TYPE detailed_quote_rec IS RECORD

 (quote stock_quote_rec -- nested record

 ,timestamp date

 ,bid_size NUMBER

 ,ask_size NUMBER

 ,last_ticks VARCHAR2(4)

);

real_time_detail detailed_quote_rec;

Implicitly Defined Records

An implicitly defined record is one in which we don’t have to describe each field
in the record definition. Since we don’t define the structure of the record, we
don’t need to use the

TYPE

 statement. Instead, we use the

%ROWTYPE

 attribute on
the variable declaration statement to implicitly define a record to have the same
structure as a database table, view, or cursor. Like the

%TYPE

 attribute for a field,
the

%ROWTYPE

 attribute is a great way to define records that will hold database
data. Since we don’t hard-code the record description, changes to the underlying
record structure result in automatic changes to the record. For example, we will
be working with data from the ACCOUNTS table and want a record defined
with the same attributes as this table:

DECLARE

 account_info accounts%ROWTYPE; -- a record

 CURSOR xactions_cur (acct_no IN VARCHAR2) IS

 SELECT action, timestamp, holding

 FROM portfolios

 WHERE account_nbr = 'acct_no'

 ;

 xaction_info xactions_cur%ROWTYPE; -- a record

variable

http://www.sybex.com

386

Chapter 9 �

Working with Composite Datatypes and Collections

Knowing how to define and use a record with the

%ROWTYPE

 attribute is impor-

tant and is frequently the topic of a question on the exam.

Some other PL/SQL constructs with which you may have experience use
implicitly defined records without using the

%ROWTYPE

 attribute, such as the
record in a cursor

 FOR

 loop or the

:old

 and

:new

 records in a trigger.

DECLARE

 CURSOR xactions_cur IS

 SELECT action, timestamp, holding

 FROM portfolios

 WHERE account_nbr = '37'

 ;

BEGIN

 FOR xactions_rec in xactions_cur

 LOOP

 IF xactions_rec.holding = 'ORCL' -- implicit record

 THEN

 notify_shareholder;

 END IF;

 END LOOP;

Using Records

You can use records to assign values, pass values to other PL/SQL programs,
or compare values. Records, being composite data structures, have meaning
on two levels and can be used at those levels. You can reference the whole
record, populating all fields with a single

SELECT INTO or FETCH. You can
pass the whole record to a program or assign all of its fields values to another
record—again, with a single statement. At a lower, more detailed level, you
can deal with the individual fields within the record. You can assign values
to an individual field or perform a Boolean comparison on an individual
field. You can also pass one or more individual fields to another program.

http://www.sybex.com

PL/SQL Records 387

Referencing Records

Records are composed of fields, and we often want to manipulate the contents
of these individual fields. To access a field in a record, use dot notation—that is,
use a dot to delimit the record structure drilling down to the field. Using our
detailed_quote_rec record example from earlier in this chapter, we want to
assign 1000 to the bid_size field and 156700 to the volume field:

DECLARE

 TYPE stock_quote_rec IS RECORD

 (symbol stocks.symbol%TYPE

 ,bid NUMBER(10,4)

 ,ask NUMBER(10,4)

 ,volume NUMBER NOT NULL := 0 -- default

 ,exchange VARCHAR2(6) DEFAULT 'NASDAQ' -- default

);

 TYPE detailed_quote_rec IS RECORD

 (quote stock_quote_rec -- nested record

 ,timestamp date

 ,bid_size NUMBER

 ,ask_size NUMBER

 ,last_tick VARCHAR2(4)

);

 real_time_detail detailed_quote_rec;

BEGIN

 -- assign a value to a field

 real_time_detail.bid_size := 1000;

 -- next assign a value to a field in a nested record

 real_time_detail.quote.volume := 156700;

 -- pass a data structure to a procedure

 log_quote(real_time_detail.quote);

http://www.sybex.com

388 Chapter 9 � Working with Composite Datatypes and Collections

Notice how we simply string together the component names in the
nested record until we reach the field we want. Real_time_detail is the
top-level record, quote is a field in real_time_detail, and volume is
the field in quote: thus, real_time_detail.quote.volume. Additional
levels of nesting will necessitate additional components in the reference.

One of the more powerful capabilities of records comes from our ability to
pass whole data structures to PL/SQL programs with a single reference. In our
last example, we pass the quote field, which is also a record, to the procedure
log_quote. By passing a record, instead of each individual field, we can
streamline our code, making it easier to understand and maintain.

Assigning Values to Records

There are several ways to assign values to a record or to fields within a record.
You can use the SELECT INTO or FETCH statements to populate the entire
record or individual fields, you can assign one record’s values to another en
masse, or you can populate the record piecemeal by assigning values to each
field. We will examine each method with an example.

To assign values with the SELECT INTO statement, place your record or fields
in the INTO clause of a SELECT statement. The variables in the INTO clause get
populated with the positionally corresponding column from the SELECT list. In
the following example, the first column in the SELECT list, symbol, gets loaded
into the first field in the INTO list, stock_info1.symbol. The second column in
the SELECT list gets loaded into the second variable in the INTO list, and so on:

DECLARE

 stock_info1 stocks%ROWTYPE;

 stock_info2 stocks%ROWTYPE;

BEGIN

 -- Populate the specific fields in a record

 SELECT symbol, exchange

 INTO stock_info1.symbol, stock_info1.exchange

 FROM stocks

 WHERE symbol = 'ORCL';

 -- Populate the whole record in one statement

 SELECT * INTO stock_info2 FROM stocks

 WHERE symbol = 'ORCL';

http://www.sybex.com

PL/SQL Records 389

This technique of defining a record based on a table, then selecting * from
the table into the record using the primary key, is a simple and elegant way
to get one row of information from the database into your PL/SQL pro-
grams, with a minimum of coding effort and no knowledge of the number of
columns, their datatypes, or sizes. But beware! If the statement returns more
than one row, Oracle won’t be able to stuff two or more rows into your
record and you’ll get a nasty runtime error.

If you have more than one row that may be returned from your SQL state-
ment or you want to parameterize your cursor for reuse, you can open the
cursor, then use FETCH instead of the SELECT INTO statement. You still get
the simple, elegant technique, but in a safer package. The FETCH statement
has the following syntax:

FETCH cursor_name INTO variable;

Using our STOCK_INFO example, we could do this:

DECLARE

 CURSOR stock_cur (symbol_in VARCHAR2) IS

 SELECT symbol, exchange, begin_date

 FROM stocks

 WHERE symbol = UPPER(symbol_in);

 stock_info stock_cur%ROWTYPE;

BEGIN
 -- we have to open before we can fetch

 OPEN stock_cur('ORCL');

 FETCH stock_cur INTO stock_info; -- populate the record

One useful technique that you can use with records is to copy an entire
record to another with a single statement. The records must be declared of
the exact same type in order for this to work. The records can’t be based on
two different TYPE statements that happen to have the same structure; they
must be defined with the same type:

DECLARE

 TYPE stock_quote_rec IS RECORD

 (symbol stocks.symbol%TYPE

 ,bid NUMBER(10,4)

 ,ask NUMBER(10,4)

 ,volume NUMBER

);

http://www.sybex.com

390 Chapter 9 � Working with Composite Datatypes and Collections

 TYPE stock_rec_too IS RECORD

 (symbol stocks.symbol%TYPE

 ,bid NUMBER(10,4)

 ,ask NUMBER(10,4)

 ,volume NUMBER

); -- looks the same but is not

 stock_one stock_quote_rec;

 stock_two stock_quote_rec;

 -- These fields have the same type and size as

 stock_also stock_rec_too; -- stock_quote_rec, but it's a
different datatype

BEGIN

 stock_one.symbol := 'ORCL';

 stock_one.volume := 1234500;

 stock_two := stock_one; -- works OK

 stock_also := stock_one; -- error, datatype mismatch

 stock_also.symbol := stock_one.symbol;

 stock_also.volume := stock_one.volume;

There are two things that you might want to do with records but cannot:
use them in INSERT statements or in record-level comparisons, like this:

INSERT INTO stocks VALUES (stock_record); -- ERROR

or

IF stock_rec1 > stock_rec2 THEN -- ERROR

The INSERT trick with a %ROWTYPE record would be cool, but it’s not sup-
ported—beware of it on the exam. The problem with the comparison of
records relates to sorting them. Since Oracle does not have knowledge of what
would make one record sort higher or lower than another, it can’t compare
them. So, to compare records, you have two options:

� You can write a function that will return a scalar datatype (which
Oracle knows how to sort) and use this function for the comparison:

IF sort_rec(stock_one) > sort_rec(stock_two) THEN

http://www.sybex.com

PL/SQL Collections 391

� You can use database objects. Database objects can be defined with
an ORDER or MAP method, allowing Oracle to do comparisons on
composite data structures. Database objects are beyond the scope of
this book. If you need to compare complex structures, check them
out in the Oracle manuals.

PL/SQL Collections

Collections are similar to arrays in other languages. In Oracle release
7.3 and earlier, there was only one kind of collection, called a PL/SQL table.
This type of collection is still supported but is now known as an index-by
table. A collection is an ordered group of elements. Like records, collections
must be defined with the TYPE statement, then variables of that type can be
created and used. Collections are typically a lightly covered topic on the
exam; they are presented here in greater detail than what you might need
strictly for the exam. To actually use collections, however, you will need the
level of detail presented in this section. So, if you need only to pass the exam,
study the tables to know the differences in the collections. If you want to
make use of collections, read this whole section.

Types of Collections

There are three types of PL/SQL collections:

� Index-by tables

� Nested tables

� VARRAYs

There are a number of differences among the collection types, including
bounding, sparsity, and the ability to store each in the database. Bounding refers
to a limit in the number of elements that a collection can have. VARRAYs have a
limit and are thus bounded, while index-by and nested tables are unbounded,
having no limit to the number of elements they may contain. Sparsity describes
whether or not there can be gaps in the subscripts. Index-by tables can always be
sparse, nested tables can become sparse if elements are deleted, and VARRAYs can
never be sparse. Figure 9.1 illustrates sparsity in collections and how nested
tables can become sparse.

http://www.sybex.com

392 Chapter 9 � Working with Composite Datatypes and Collections

F I G U R E 9 . 1 Sparsity in collections

Index-by tables cannot be stored in the database, but nested tables and
VARRAYs can be stored in the database.

While the three types of collections have differences, they also have a
number of similarities, which is why they are all called collections. They are
all single-dimensional, array-like structures and have built-in programs
called methods, accessed via dot notation. Table 9.1 describes a number of
properties and how they vary among the collection types.

T A B L E 9 . 1 Collection Properties

Property Index-by Table Nested Table VARRAY

Syntax to define
a collection

Type table index-
by binary integer

Type table Type VARRAY

Legal datatypes Any PL/SQL
datatype

Only database
datatypes

Only database
datatypes

Initialization Automatic Via constructor Via constructor

Uninitialized
collection

Empty, elements
are undefined but
referenceable

NULL, illegal to
reference the
elements

NULL, illegal to
reference the
elements

SUNWgaps

Sparse

IBM

CSCO

ORCL

8

1

2

5 no gaps

Dense

SUNW

IBM

CSCO

ORCL

3

1

2

4

gap

1

2

4

Sparse
through
deletions

IBM

CSCO

ORCL

subscript subscript subscript

element element element

http://www.sybex.com

PL/SQL Collections 393

Index-by Tables

Index-by tables are the granddaddy of collections; they were introduced
in Oracle7 (in which they were called PL/SQL tables) and continue to
exist in Oracle8 and 8i. Index-by table collections are defined with the
TYPE statement:

TYPE type_name IS TABLE OF element_type [NOT NULL] INDEX
BY BINARY_INTEGER;

The important wording here is INDEX BY BINARY INTEGER. Without it, the
collection is a nested table. The element_type can be any valid PL/SQL datatype,
including PLS_INTEGER, SIGNTYPE, and BOOLEAN. The other collection types are
restricted to database datatypes, but since index-by tables cannot be stored in
the database, they are not bound by this restriction.

Can be stored in
a database

No Yes, but ele-
ment order is
not preserved

Yes, and
element order is
preserved

Bounding Not bounded Not bounded,
because it can
be extended

Bounded; can-
not be extended

Sparsity Sparse Can become
sparse after
deletions

Never sparse

Subscript range -231+1 to 231-1 1 to 231-1 1 to max_size
(max_size < 231)

Can you always
assign a value
to an element?

Yes No, the collec-
tion may need
to be extended
first

No, the collec-
tion may need
to be extended
first and cannot
be extended
past the upper
bound

T A B L E 9 . 1 Collection Properties (continued)

Property Index-by Table Nested Table VARRAY

http://www.sybex.com

394 Chapter 9 � Working with Composite Datatypes and Collections

While collections can be only one-dimensional, you can create them with an
element_type that is a record, achieving pseudo–two-dimensional structures.
When using a collection of records, however, you can only build the record using
scalar datatypes (no nesting of records in collections). The NOT NULL keyword
works in the same way in an index-by table as it does for fields in records or col-
umns in a database table: This keyword tells Oracle to require a value for any ele-
ment in the collection. Once the index-by table type is defined, you can create
collections of this type in the same manner as other variables or records:

DECLARE

 -- define the index-by table type

 TYPE symbol_tab_typ IS TABLE OF VARCHAR2(5) INDEX BY
BINARY_INTEGER;

 -- create an index-by table

 symbol_tab symbol_tab_typ;

BEGIN

Nested Tables

Nested tables and index-by tables are very similar, and the syntax to create
them is also similar. Use the TYPE statement, just as you would for an index-
by table, but leave out the index by binary_integer clause:

TYPE type_name IS TABLE OF element_type [NOT NULL]

The NOT NULL option for nested tables works the same for all collections:
All elements must have values. The element_type can be a record, but this
record must contain only scalar fields and can use only database datatypes
(no PLS_INTEGER, BOOLEAN, or SIGNTYPE).

Both nested tables and VARRAYs can be stored as columns in a database table,
so the collection itself—not just individual elements—can be NULL. Oracle calls
this whole-collection nullity “atomically NULL” to differentiate it from an indi-
vidual element that is NULL. When a collection is atomically NULL, you cannot
reference the elements in the collection without raising an exception. You can
check for an atomically NULL collection with the IS NULL operator.

Nested tables stored in a database are not stored in the same data blocks as the
rest of the table data; they are actually stored in a secondary table. Just as a SELECT
without an ORDER BY is not guaranteed to return the data in any particular order,
a nested table retrieved from the database does not guarantee that the order of the
elements will be preserved between SELECTs. Because the collection data is stored
out-of-line, nested tables are the better choice for large collections.

http://www.sybex.com

PL/SQL Collections 395

VARRAYs

VARRAYs, or variable arrays, have a maximum number of elements. They
are thus bounded. A VARRAY is defined with the TYPE statement, like other
collections, but the keyword VARRAY or VARYING ARRAY tells Oracle that
this is a VARRAY collection:

TYPE type_name IS [VARRAY | VARYING ARRAY] (max_size) OF
element_type [NOT NULL]

The max_size is an integer that defines the maximum number of elements
allowed in the VARRAY. The VARRAY can have fewer elements than max_size,
but it can never grow larger than max_size elements. The element_type is
the datatype of the one-dimensional elements. If the element_type is a
record, then that record can only have scalar fields composed of database
datatypes (like nested tables). The NOT NULL clause instructs Oracle to
require each element in the collection to have a value.

VARRAYs can be atomically NULL and can be tested for nullity with the IS NULL
operator, just like nested tables. Unlike a nested table, when a VARRAY is stored in
a database, it is stored in the same data blocks as the rest of the row. Just as the
order of columns is preserved in a SELECT * on a table, so too will the order of ele-
ments be preserved in a VARRAY retrieved from the database. Also, because the col-
lection is stored in-line, VARRAYs are better for small collections. Large VARRAY
collections will result in data block chaining, and performance on the table may
suffer. If you populate your VARRAY collection with an UPDATE, rather than when
the row is inserted, you may want to increase the pctfree for your table to avoid
this chaining problem.

Using Collections

Collections, like records, can be used at two levels:

� The whole collection can be manipulated.

� The individual elements in a collection can be accessed.

The whole collection is referenced with the collection name, and the individual
elements are referenced with a subscript:

collection(subscript)

http://www.sybex.com

396 Chapter 9 � Working with Composite Datatypes and Collections

The subscript for an index-by table is a binary integer, which can be either
positive or negative. The range of possible values is huge: from -231+1 to 231

-1 (-2147483647 to 2147483647). Because an index-by table can be sparse,
you can use these subscripts in meaningful and creative ways. The subscript
for a nested table or a VARRAY also represents the ordinal position of the ele-
ment within the collection. You have less flexibility in how you can design
meaningful subscripts, however, for these reasons:

� Nested tables start out dense (the opposite of sparse).

� VARRAYs stay dense.

� Both have subscripts beginning with 1.

Initializing, Populating, and Referencing Collections

Before a collection can be used, it must be initialized (instantiated). Instan-
tiating a collection is automatic for index-by tables, but for nested tables
and VARRAYs, you must use a special built-in function called a constructor.
Nested tables and VARRAYs, if you recall, start out atomically NULL—that is,
the whole collection is NULL, not just the elements. As in a record, values
can be assigned to a collection en masse or piecemeal. Assigning values to
elements in a collection requires use of subscript notation for the element.
To assign one whole collection to another en masse, you simply use the
assignment operator. Let’s look at examples of initializing and populating
collections.

Index-by tables are the simplest collection to initialize; you simply refer-
ence an element in the collection, and it’s initialized:

DECLARE

 TYPE symbol_tab_typ IS TABLE OF VARCHAR2(5) INDEX BY
BINARY_INTEGER;

 TYPE account_tab_typ IS TABLE OF accounts%ROWTYPE INDEX
BY BINARY_INTEGER;

 symbol_tab symbol_tab_typ;

 account_tab account_tab_typ;

 new_acct_tab account_tab_typ;

BEGIN

 -- initialize elements 147 and -3

 SELECT * INTO account_tab(147)
FROM accounts where account_nbr = 147;

 SELECT * INTO account_tab(-3)
FROM accounts where account_nbr = 3003;

 -- You can reference a field in an element

http://www.sybex.com

PL/SQL Collections 397

 IF account_tab(147).balance < 500 THEN

 change_maintenance_fee(147);

 END IF;

 -- copy one collection to another

 new_acct_tab := account_tab;

 symbol_tab(1) := 'ORCL';

 symbol_tab(2) := 'CSCO';

 symbol_tab(3) := 'SUNW';

 -- pass the collection to a procedure
publish_portfolio(symbol_tab);

Nested tables and VARRAYs must be initialized with a built-in function called
a constructor. The constructor has the same name as the collection and takes a
variable number of arguments. Each argument will be populated into an element
in the collection in the order that it appears in the argument list. If an argument
is NULL, the element is initialized to NULL: The element is created but not popu-
lated. Elements that contain a NULL value can be referenced but do not contain
data. Elements that have not been initialized cannot be referenced.

DECLARE

 TYPE stock_list IS TABLE OF stocks.symbol%TYPE;

 TYPE top10_list IS VARRAY (10) OF stocks.symbol%TYPE;

 biotech_stocks stock_list; -- nested table

 tech_10 top10_list; -- varray

BEGIN

 -- invalid, collection not initialized
biotech_stocks(1) := 'AMGN';

 -- we can test for nullity of the whole collection

 IF biotech_stocks IS NULL THEN

 -- initialize the collections with the constructors

 biotech_stocks := stock_list('AMGN' ,'BGEN' ,'IMCL'
,'GERN' ,'CRA');

 END IF;

 tech_10 := top10_list('ORCL' ,'CSCO' ,'MSFT' ,'INTC'
,'SUNW','IBM' ,NULL ,NULL);

 -- referencing the elements is now valid

 IF tech_10(7) IS NULL THEN

 tech_10(7) := 'CPQ';

 END IF;

 tech_10(8) := 'DELL';

http://www.sybex.com

398 Chapter 9 � Working with Composite Datatypes and Collections

In this example, you can see the nested table BIOTECH_STOCKS initial-
ized with five elements. The VARRAY tech_10 is defined with a maximum of
10 elements, but only eight elements are created with the constructor. Of
these eight, two contain NULL values and are populated in later statements.

To initialize a collection based on records, you must pass a series of
records to the constructor. You cannot simply pass the fields for the record
to the collection constructor. See the example that follows; we can pass the
record single_quote to the constructor, but not the individual record ele-
ments. You may want to create a function that returns a record populated by
the fields passed to it (a constructor function for your record type). The col-
lection has a built-in constructor, but the record does not. To reference an
individual field in an individual element, use a combination of subscript and
dot notation:

declare

 TYPE stock_quote_rec IS RECORD

 (symbol stocks.symbol%TYPE

 ,bid NUMBER(10,4)

 ,ask NUMBER(10,4)

 ,volume NUMBER

);

 TYPE stock_tab_typ IS TABLE OF stock_quote_rec;

 quote_list stock_tab_typ;

 single_quote stock_quote_rec;

BEGIN

 single_quote.symbol := 'ORCL';

 single_quote.bid := 100;

 single_quote.ask := 101;

 single_quote.volume := 250000;

 --valid
quote_list := stock_tab_typ(single_quote);

 -- invalid
quote_list := stock_tab_typ('CSCO',75,76,321000);

 -- display the bid field in record one

 dbms_output.put_line(quote_list(1).bid);

http://www.sybex.com

PL/SQL Collections 399

Collection Methods

Collections come with a number of built-in functions in addition to the
constructor. These built-in functions are called methods and are used to
test, expand, shrink, and generally examine or manipulate the attributes of
the collection. To use a method, you use dot notation, like this:

Collection.Method

Some methods take parameters and some do not. The methods are listed
in Table 9.2 and explained in greater detail in the following paragraphs.

T A B L E 9 . 2 Collection Methods

Method Description

Usage

Restrictions

COUNT Returns integer number of elements in the
collection. For VARRAYs, COUNT equals LAST.

DELETE Removes all elements in the collection.

DELETE
(<x>)

Removes element number x. If x is NULL, the
collection is not changed.

Invalid for
VARRAYs

DELETE
(<x>,<y>)

Removes element x through y, inclusive. If y
is greater than x, the collection is not
changed.

Invalid for
VARRAYs

EXISTS
(<x>)

Returns Boolean TRUE if element x is initial-
ized. Returns Boolean FALSE if element x is
not initialized.

EXTEND Appends one additional element to the end
of the collection.

Invalid for
index-by
tables

EXTEND
(<x>)

Appends x additional elements to the end of
the collection.

Invalid for
index-by
tables

EXTEND
(<x>,<n>)

Adds x additional elements to the end of the
collection, populating them with the con-
tents of element n.

Invalid for
index-by
tables

http://www.sybex.com

400 Chapter 9 � Working with Composite Datatypes and Collections

COUNT COUNT returns the number of elements in a collection. This is
particularly useful for index-by tables because they can have widely
spaced element subscripts. For VARRAYs, COUNT is always equal to LAST
and less than or equal to LIMIT.

DECLARE

 TYPE stock_list IS TABLE OF stocks.symbol%TYPE;

 tech_10 stock_list;

BEGIN

 tech_10 := stock_list('ORCL' ,'CSCO' ,'MSFT' ,'INTC'

FIRST Returns the smallest element number in the
collection. For VARRAYs, FIRST always returns 1.

LAST Returns the largest element number in the
collection. For VARRAYs, LAST always returns
the same as COUNT.

LIMIT Returns the maximum number of elements
in the VARRAY definition. For nested tables
and index-by tables, returns NULL.

Not useful on
nested tables
or index-by
tables

NEXT(<x>) Returns the next higher element number
above x. If x is the last (highest) element
number, returns NULL.

PRIOR
(<x>)

Returns the next lower element number
below x. If x is the first (lowest) element
number, returns NULL.

TRIM Removes the last element from the collection. Not valid for
index-by
tables

TRIM(<x>) Removes the last x elements from the collec-
tion. If x is larger than COUNT, an exception is
raised.

Not valid for
index-by
tables

T A B L E 9 . 2 Collection Methods (continued)

Method Description

Usage

Restrictions

http://www.sybex.com

PL/SQL Collections 401

,'SUNW','IBM' ,NULL ,NULL); -- initialize 8 elements

 -- count returns 8
dbms_output.put_line(tech_10.count);

DELETE DELETE is overloaded with three functions. The first, invoked
with no parameters, truncates the collection, removing all elements. This
overloading is the only one that will work on VARRAYs.

tech_10.delete; -- remove all elements from tech_10

The second overloaded function, called with one parameter, removes the single
element referenced by the parameter. This overloading is invalid for VARRAYs,
since they cannot have elements removed from the middle of the collection.

tech_10.delete(4); -- remove element 4 from tech_10

The third overloaded function, called with two parameters, removes all
elements between the first parameter and the second parameter, inclusive.
This overloading is invalid for VARRAYs, since they cannot have elements
removed from the middle of the collection.

tech_10.delete(2,4); -- remove elements 2,3 and 4

EXISTS EXISTS is used to see whether there is an element with a par-
ticular subscript. It is frequently used to check for the existence of an ele-
ment before the element is assigned a value. If the element does not exist
and you try to assign a value to it in a nested table or VARRAY, you will
raise an exception. EXISTS returns a Boolean TRUE if the element has been
initialized and a FALSE if it has not been initialized.

IF tech_10.exists(7) THEN

 tech_10(7) := 'CPQ';

END IF;

EXTEND EXTEND is overloaded with three functions. The first, invoked
when no parameters are passed to it, adds a single element to the end of
the collection. This new element contains all NULLs, so if you define the
collection as NOT NULL, you should not use this overloading.

tech_10.extend; -- add one element to tech_10

http://www.sybex.com

402 Chapter 9 � Working with Composite Datatypes and Collections

The second overloaded function, called with one parameter, adds the
specified number of elements to the collection. If you try to extend a
VARRAY past the limit, you will raise an exception. Also, the newly added
elements are NULL, so if the collection has been defined NOT NULL, you
should not use this overloading.

tech_10.extend(2); -- add two elements to tech_10

The third overloaded function, called with two parameters, adds new ele-
ments and copies an existing element to the new elements. If you have a
NOT NULL collection, this is the only overloading that you should use.

-- add 2 new elements and copy element 4 to them
tech_10.extend(2,4);

The EXTEND method is invalid for index-by tables, but you don’t have to
extend an index-by table; simply assign a value to the new element, and
it is automatically initialized.

FIRST FIRST returns the lowest element number in the collection. It is
most useful for index-by tables because they can start with any number.
FIRST on a VARRAY always returns 1. FIRST on a nested table will return
1 if the first element has not been deleted.

tech_10.first;

LAST LAST returns the highest element number in the collection. It is
equally useful on index-by tables, nested tables, and VARRAYs. For
VARRAYs, LAST is always equal to COUNT and less than or equal to LIMIT.

-- return the highest initialized subscript for tech_10
tech_10.last;

-- loop through all elements in the varray tech_10

FOR loop_counter IN tech_10.first..tech_10.last

LOOP

LIMIT LIMIT returns the maximum number of elements in a VARRAY def-
inition. This function is useful when you are extending a VARRAY and don’t

http://www.sybex.com

PL/SQL Collections 403

want to extend it past the maximum value (which raises an exception). LIMIT
returns NULL for nested tables and index-by tables.

IF tech_10.count < tech_10.limit

THEN

 tech_10.extend;

END IF;

NEXT NEXT returns the next-higher element number in the collection.
This is most useful for index-by tables, in which there are frequently large
gaps in element numbers. It isn’t of much use on VARRAYs, since the
next(x) always equals x + 1. If the parameter is the last element in the col-
lection, there is no NEXT and this method returns NULL.

IF blue_chips.next(4) <> 5

THEN

 -- Element 5 was deleted from nested table blue_chips

PRIOR PRIOR returns the next-lower element number in the collection.
This is most useful for index-by tables, in which there are frequently large
gaps in element numbers. It isn’t of much use on VARRAYs, since the
next(x) always equals x + 1. If the parameter is the first element in the col-
lection, there is no PRIOR and this method returns NULL.

IF blue_chips.prior(50) <> 49

THEN

 -- Element 49 was deleted from nested table

TRIM TRIM is overloaded with two functions. The first, invoked with
no parameters, removes the last element from the collection.

tech_10.trim; -- removes last element from tech_10

The second overloaded function, called with one parameter, removes the
last number of elements specified from the collection. If you try to trim
more elements than are in the collection, an exception is raised.

tech_10.trim(3); -- removes last 3 elements

The TRIM method is the only way to remove some, and not all, elements
from a VARRAY.

http://www.sybex.com

404 Chapter 9 � Working with Composite Datatypes and Collections

Comparing Collections

As with records, you cannot directly compare two entire collections with a
Boolean operator. Oracle does not know what would make one collection
sort higher or lower than another, so it can’t compare them. To compare
collections, you can write a function that will return a scalar datatype and
use this function for the comparison:

IF stock_list1 > stock_list2 -- NOT VALID

IF sort_collection(stock_list1) >
 sort_collection(stock_list2) -- VALID

You can also compare the individual elements within the collection, or
you can use database objects with a MAP or ORDER function. Database objects
are unlikely to appear on the SQL and PL/SQL exam and therefore are not
covered in this book.

Summary

In this chapter, you read about both kinds of Oracle composite
datatypes: records and collections. You saw how to create them, initialize
them, and use them either with dot notation (for records) or with subscript
notation (for collections). You also read about records defined implicitly
with the %ROWTYPE attribute. Explicitly defined records and all collections
require definition with the TYPE statement before they can be used. Nested
table and VARRAY collections can be atomically NULL and therefore must be
initialized before they can be referenced. Collections have a set of built-in
functions, called methods, that you use to manipulate them. You also saw
that you cannot compare either records or collections via Boolean operators.

The topics covered in this chapter that you are likely to find on the
exam include

� The %ROWTYPE attribute and how to use it

� The inability to compare records or collections with Boolean operators

� The dangers of using SELECT INTO to populate a record

� Basic differences among the three collection types, such as sparsity,
bounding, and database storage

http://www.sybex.com

Key Terms 405

Key Terms

Before you take the exam, make sure you’re familiar with the fol-
lowing terms:

%ROWTYPE

%TYPE

Collection

Constructor

Dot notation

Field

Method

Record

Subscript notation

TYPE

http://www.sybex.com

406 Chapter 9 � Working with Composite Datatypes and Collections

Review Questions

1. Which line in the following PL/SQL block will raise an exception?
Choose one.

1 declare

2 type company_rec is record

3 (id number not null

4 ,company_name company.comp_name%type

5 ,sic_code varchar2(5)

6 ,begin date

7 ,contact_phone varchar2(14)

8);

9 comp_rec company_rec;

A. Line 2

B. Line 4

C. Line 6

D. Line 9

2. Which line will define a record field marital_status with a default of
'S'? Choose one.

A. ,marital_status varchar2(1) default 'S');

B. ,marital_status varchar2(1) := 'S');

C. Either A or B

D. You can’t set a default for a field.

3. Which field definition will define the field account_nbr with the same
datatype and size as the column acct_no in the table vendors? Choose one.

A. account_nbr vendors.acct_no%rowtype

B. account_nbr vendors.acct_no%columntype

C. account_nbr ref vendors.acct_no

D. account_nbr vendors.acct_no%type

http://www.sybex.com

Review Questions 407

4. Which collection type can you not save into a database? Choose one.

A. Nested table

B. VARRAY

C. Index-by table

D. None of the above, you can save all three into a database.

5. Refer to the following PL/SQL block. Is the bouquet_typ record type
valid?

DECLARE

 flower_typ is record

 (flower_name varchar2(40)

 ,flower_color varchar2(40)

 ,supplier_id number

);

 bouquet_typ is record

 (bouquet_name VARCAHR2(64)

 ,price NUMBER

 ,primary_flower flower_typ

 ,secondary_flower flower_typ

 ,tertiary_flower flower_typ

);

A. Yes, a field in a record can be another record.

B. No, fields must be composed of scalar datatypes.

C. Yes, but records can only be nested two deep.

http://www.sybex.com

408 Chapter 9 � Working with Composite Datatypes and Collections

6. Refer to the following PL/SQL block. Which option is a scalar
datatype?

DECLARE

 flower_typ is record

 (flower_name varchar2(40)

 ,flower_color varchar2(40)

 ,supplier_id number

);

 cursor flower_cur (supplier_in number) is

 select flower_name, flower_id

 from flowers

 where supplier_id = supplier_in;

A. flower_name

B. flower_typ

C. flower_cur

7. Can you define a field in a record to require a value?

A. No

B. Yes, with the NOT NULL clause

C. Yes, with the DEFAULT clause

D. Yes, with the CONSTANT clause

8. How can you compare two records for equality? Choose one.

A. Compare each field, using the comparison operator (=)

B. Use the comparison operator (=) on the two records

C. Both A and B

D. Neither A nor B

http://www.sybex.com

Review Questions 409

9. How can you copy the contents of one record to another? Choose two.

A. Copy each field using the assignment operator

B. Use the COPY method

C. Use the DUPLICATE method

D. Copy the whole record using the assignment operator

10. Which option can you not do with the following %ROWTYPE records?
Choose one.

declare

 emp_rec1 emp%rowtype;

 emp_rec2 emp%rowtype;

A. select * into emp_rec1 from emp where emp_no = 5;

B. insert into emp values (emp_rec1);

C. emp_rec1 := emp_rec2;

D. if emp_rec1.salary > emp_rec2.salary then

11. How do you add elements to an index-by table? Choose one.

A. Use the EXTEND method

B. Just assign the value, and the element is added automatically

C. Use the constructor to create the new element

D. You can’t add elements to an index-by table.

http://www.sybex.com

410 Chapter 9 � Working with Composite Datatypes and Collections

12. Using the following PL/SQL block, which collection is not valid?
Choose one.

declare

 type basic_rec_typ is record

 (name varchar2(50)

 ,rank varchar2(3)

 ,serial_nbr varchar2(9)

);

 type detail_rec_typ is record

 (basic_info basic_rec_typ

 ,co_name varchar2(50)

 ,unit_nbr varchar2(12)

);

 type platoon_list is table of detail_rec_typ;

 type buddy_list is table of basic_rec_typ;

 type spouse_list is table of varchar2(30);

 type discharge_dates is table of date;

A. platoon_list

B. buddy_list

C. spouse_list

D. discharge_dates

E. They are all valid.

13. Which of the following datatypes is not allowed in records? Choose one.

A. Boolean

B. Number

C. Date

D. VARRAY

http://www.sybex.com

Review Questions 411

14. Can you reference an uninitialized nested table? Choose one.

A. Yes

B. No

C. Yes, but only to test for nullity

15. Which of the following can you not do with a VARRAY?

A. Compare it to another VARRAY with the > operator

B. Assign it to another VARRAY with the := operator

C. Test it for nullity with the IS NULL operator

D. Pass it to a procedure as a parameter

16. On which collection type can the EXISTS method be used?
Choose one.

A. Index-by tables

B. Nested tables

C. VARRAYs

D. All of the collections

17. Which method would you use to find the bounding value in a VARRAY?
Choose one.

A. EXTEND

B. LAST

C. COUNT

D. LIMIT

http://www.sybex.com

412 Chapter 9 � Working with Composite Datatypes and Collections

18. Which method can you use to skip over gaps in subscripts in a collection?
Choose one.

A. FIRST

B. NEXT

C. COUNT

D. LIMIT

19. How could you append three elements to the nested table PRODUCTS,
copying element 1 to all three? Choose one.

A. Create each element with the constructor, then assign element 1 to
each with the assignment operator

B. Use the EXTEND method like this: products.extend(3,1)

C. Use the EXTEND method like this: products.extend(1,3)

D. Use the LAST method to position the collection pointer to the end,
then use the EXTEND method like this: products.extend(3,1)

20. Which of the following will use a constructor to create two elements
(thingamabob, dohicky) in the products nested table? Choose one.

declare

 type product_list is table of varchar2(30);

 products product_list;

begin

A. products.constructor('thingamabob,'dohicky');

B. construct products using ('thingamabob,'dohicky');

C. products := product.create('thingamabob,'dohicky');

D. products := product_list ('thingamabob,'dohicky');

http://www.sybex.com

Answers to Review Questions 413

Answers to Review Questions

1. C. BEGIN is a keyword and cannot be used for field or record names.

2. C. Both A and B are correct, but C is more correct.

3. D. The %TYPE attribute will define the datatype and size for a field at
compile time based on the table and column referenced.

4. C. Index-by tables cannot be saved into a database.

5. A. Fields can be either scalar datatypes or records.

6. A. Scalar datatypes are atomic, like the predefined types DATE, NUMBER, and
VARCHAR2. Records are composite datatypes. Cursors are not datatypes.

7. B. The DEFAULT clause will only assign an initial value if none is specified;
the field can be explicitly set to NULL. There is no CONSTANT clause.

8. A. You can compare the individual fields in a record, but you cannot
compare the whole record with the comparison operator.

9. A, D. Records don’t have methods; only collections do.

10. B. You can assign one record to another, select * into a %ROWTYPE
record, and compare the fields of a %ROWTYPE record, but you cannot
use records in the VALUES clause of an INSERT statement.

11. B. The EXTEND method is used for nested tables and VARRAYs, but
index-by tables do not need a method; you simply assign the value to
a new element. A constructor is used to initialize nested tables and
VARRAYs.

12. A. When a record is used in a collection, that record can only contain
scalar datatypes. A record is not a scalar datatype, so buddy_list is
OK, but platoon_list is not.

13. D. A collection cannot be used as a field in a record; all of the other
listed datatypes can.

http://www.sybex.com

414 Chapter 9 � Working with Composite Datatypes and Collections

14. C. Uninitialized nested tables and VARRAYs can only be tested for nullity.

15. A. Collections cannot be compared with Boolean operators.

16. D. EXISTS is valid on all collection types.

17. D. EXTEND is used to append elements to the collection. For a VARRAY, LAST
and COUNT are both used to report the number of elements in the collection.
LIMIT is only useful on VARRAYs and reports the bounding value.

18. B. The NEXT and PRIOR methods are used to get the subscript numbers
of the adjacent elements in a collection.

19. B. The constructor is only used once to initialize the collection; it is not
used to append elements to it. The LAST method returns the subscript
for the last element; there is no collection pointer.

20. D. A constructor is a built-in function having the same name as the collec-
tion type. It is used with an assignment operator to initialize a collection.

http://www.sybex.com

Chapter

10

Exception Handling

ORACLE8i SQL AND PL/SQL EXAM
OBJECTIVES OFFERED IN THIS CHAPTER:

�

Describe PL/SQL exceptions

�

Recognize unhandled exceptions

�

List and use named PL/SQL exceptions

�

Trap unexpected errors

�

Describe exception propagation in nested blocks

�

Customize PL/SQL exception messages

Exam objectives are subject to change at any
time without prior notice and at Oracle’s sole
discretion. Please visit Oracle's Training and
Certification Web site (

http://education

.oracle.com/certification/index.html

) for
the most current exam objectives listing.

http://www.sybex.com

I

n Chapter 7,

PL/SQL Basics

, you learned about the block
structure of PL/SQL. Until this point, we have covered the header, decla-
ration, and executable sections of this block structure. This chapter will
focus on the last, optional section: the exception section.

Exceptions, Errors, and PL/SQL

O

ther languages have errors; PL/SQL has exceptions. This may seem
like a simple semantic difference, but PL/SQL deals with exceptions differently
from the way that most other languages manage errors. Some languages, like
C, require error-checking for practically every function call. PL/SQL, on the
other hand, is like Ada and has an all-inclusive method of dealing with errors.
When any error occurs, program control branches unconditionally to the
exception section of the current PL/SQL block. This makes the code much
cleaner and separates error handling from normal processing. Oracle has
made this error/exception handing extensible by allowing the programmer to

declare

 other types of exception conditions, like Account_Overdrawn, that are
violations of business rules, and not just violations of the PL/SQL language
rules. This extensibility makes PL/SQL’s exception handling robust.

In this chapter, our examples will use a model for order entry and fulfillment.
This business model has interactive order entry modules that take customer
orders and call procedures used for fulfillment.

http://www.sybex.com

Raising and Handling Exceptions

417

Raising and Handling Exceptions

W

hen a runtime error occurs, an exception is said to be

raised

.
When an exception is trapped and not allowed to propagate outward,
it is said to be

handled

. Errors in the compilation of a PL/SQL program
are not exceptions that can be handled; only runtime exceptions can be
handled. The raising and handling of exceptions are important tasks in
PL/SQL programs, and understanding how these techniques are
employed is an important topic to understand before you take the exam.

Raising Exceptions

There are three ways that an exception can be raised:

�

By the PL/SQL runtime engine

�

By a

RAISE

 statement

�

By a call to the

RAISE_APPLICATION_ERROR

 procedure

When a database or PL/SQL language error occurs at runtime, an exception
is raised automatically by the PL/SQL runtime engine. Exceptions can also be
raised explicitly with the

RAISE

 statement:

RAISE exception_name;

Explicitly raising an exception is how a programmer makes use of any cus-
tom exceptions he has declared. But the

RAISE

 statement is not limited to just
programmer-declared exceptions; you can raise any exception with the

RAISE

statement. For example, if you want to test your new exception-handler routines
for a

TIMEOUT_ON_RESOURCE

 error, you don’t have to construct a test case that
induces contention. You simply put a

RAISE TIMEOUT_ON_RESOURCE;

statement into your program for the test, and you will effectively simulate an
ORA-00051 database error.

Custom-designed exceptions are where the

RAISE

 statement really shines.
For example, our order entry system takes orders. If the inventory for a par-
ticular item is too low to fill the order, we assign backordered status to the
item and trigger inventory replenishment. We can put the exception-oriented

http://www.sybex.com

418

Chapter 10 �

Exception Handling

code where it belongs—in the exception section—and keep our executable
section focused on order fulfillment:

DECLARE

 inventory_too_low EXCEPTION;

 -- other declarations here

BEGIN

 -- more code here

 IF order_rec.qty > inventory_rec.qty THEN

 RAISE inventory_too_low;

 END IF;

 -- more code here

EXCEPTION

 WHEN inventory_too_low THEN

 order_rec.status := 'Backordered';

 replenish_inventory(inventory_nbr=>
 inventory_rec.sku_nbr,min_amount=>order_rec.qty -
inventory_rec.qty);

END;

Handling Exceptions

The exception section of a PL/SQL block contains the code that lets your
program handle an error condition. Trapping an exception occurs auto-
matically when an exception is raised: Program control leaves the execut-
able section and passes to the exception section. Once control is in the
exception section, it cannot pass back to the executable section of the
same block. Handling an exception involves executing the custom code
that you put in your exception section for that particular exception con-
dition. Frequently, this code will clean up after an error, such as closing
open cursors or rolling back uncommitted data, but the code may also
include other processing, like the inventory_too_low example from the
previous section. Here is the general syntax for an exception section:

EXCEPTION

 WHEN exception_name THEN

 Code for handling exception_name

http://www.sybex.com

Raising and Handling Exceptions

419

 [WHEN another_exception THEN

 Code for handling another_exception]

 [WHEN OTHERS THEN

 Code for handing any other exception.]

You place the exception-handling code for each exception into a sep-
arate

WHEN

 clause. The

WHEN OTHERS

 clause must be placed last and is a
default handler, used to handle any exception that is not explicitly han-
dled. You can think of the exception section as an

IF

,

ELSIF

,

ELSE

 state-
ment. Each

WHEN

exception_name

 corresponds to the

IF

 or

ELSIF

, and
the

WHEN OTHERS

 corresponds to the

ELSE

. When an exception occurs and
control passes to the exception section, Oracle will check to see if the
exception has a specific handler; if it does, that handler gets executed. If
the exception does not have a specific handler, the

WHEN OTHERS

 handler,
if present, is executed. There is no limit to the number of

WHEN

 clauses in
an exception section. Use as many as needed:

EXCEPTION

 WHEN inventory_too_low THEN

 order_rec.status := 'Backordered';

 replenish_inventory(inventory_nbr=>
 inventory_rec.sku_nbr,min_amount=>order_rec.qty
 inventory_rec.qty);

 WHEN discontinued_item THEM

 -- code for discontinued_item processing

 WHEN ZERO_DIVIDE THEN

 -- code for divide by zero errors

 WHEN OTHERS THEN

 -- code for any other exception.]

END;

When the exception is raised, control passes unconditionally to the
exception section. This means control does not return to the code where
the exception occurred. When the exception is handled and resolved,
control passes to the next statement in the enclosing executable section.
Here is an example:

BEGIN

 -- We nest PL/SQL blocks to simulate a procedure call

 DECLARE -- start of inner block

http://www.sybex.com

420

Chapter 10 �

Exception Handling

 bad_credit EXCEPTION;

 BEGIN

 RAISE bad_credit;

 -- control never reaches here; an exception occurred

 EXCEPTION

 WHEN bad_credit THEN

 dbms_output.put_line('bad_credit handled');

 END; -- end of inner block

 -- control passes here after bad_credit is handled

EXCEPTION

 WHEN OTHERS THEN

 -- control will not pass here from the bad_credit exception

 -- since bad_credit was handled

END;

When an exception occurs and there is no local exception handler for that
exception, control passes or propagates to the exception section of the
enclosing block:

BEGIN

 -- We nest PL/SQL blocks to simulate a procedure call

 DECLARE -- start of inner block

 bad_credit EXCEPTION;

 BEGIN

 RAISE bad_credit;

 -- control never reaches here; an exception occurred

 EXCEPTION

 WHEN ZERO_DIVIDE THEN -- does not handle bad_credit

 dbms_output.put_line('divide by zero error');

 END; -- end of inner block

 -- control does not pass to here, it goes to the
 -- exception section

EXCEPTION

 WHEN OTHERS THEN

 -- control will pass to here since bad_credit was not
-- resolved

END;

http://www.sybex.com

Raising and Handling Exceptions

421

Exception Propagation

Exceptions that are not handled propagate outward from the routine that
detected the exception to the calling program. This outward propagation
stops only when the exception is handled and resolved or when it reaches the
outermost program. SQL*Plus, as an outermost program, usually handles
exceptions by causing the current statement to fail, and then displays an
error message. Figure 10.1 shows how an exception is propagated.

F I G U R E 1 0 . 1

Exception propagation

Exceptions raised in the declaration section of a PL/SQL block will pass control
to the exception section of the enclosing block. For example, if you assign a text
string to a date variable in the declaration section, an Oracle –1858 exception
(Non-numeric character was found where a numeric was expected) will be raised
and control will pass directly to the exception section of the enclosing block, as
shown in Figure 10.2.

BEGIN

 DECLARE

Exception handler
stops the propagation.

No exception section;
propagation continues.

http://www.sybex.com

422

Chapter 10 � Exception Handling

 timestamp DATE := 'SYSDATE'; -- datatype mismatch

 BEGIN

 dbms_output.put_line('Inside inner block');

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line(
'exception handled in inner block');

 END;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('
exception handled in outer block');

 dbms_output.put_line(dbms_utility.format_error_stack);

END;

Only exceptions raised in the executable section get passed to the exception
section of the same block.

F I G U R E 1 0 . 2 Exceptions raised in the declaration section

http://www.sybex.com

Raising and Handling Exceptions 423

Exceptions raised in the executable section pass control to the exception
section of the same block. If this exception section does not have a handler
for the exception raised, then the exception will continue to propagate to the
enclosing block’s exception section. Figure 10.3 illustrates the program flow
for exceptions raised in the executable section. Remember, a WHEN
OTHERS clause will handle any exception.

F I G U R E 1 0 . 3 Exceptions raised in the executable section

Exceptions raised in the exception section of a PL/SQL block pass control
to the exception section of the enclosing block, as illustrated in Figure 10.4.
Exceptions raised anywhere other than the executable section always get
passed out to the enclosing block.

http://www.sybex.com

424 Chapter 10 � Exception Handling

F I G U R E 1 0 . 4 Exceptions raised in the exception section

Handling an exception will stop the propagation and resolve the exception.
Sometimes, however, you may want your program to perform some actions
when an error occurs (such as logging the exception via utl_file) and then
continue to propagate the exception. To do this, you perform the desired
actions in your exception handler, then execute the RAISE statement with no
arguments. This RAISE statement will re-raise the current exception, allowing
it to continue to propagate.

DECLARE

 order_too_old EXCEPTION;

BEGIN

 raise order_too_old;

EXCEPTION

 WHEN order_too_old THEN

 DECLARE

 file_handle UTL_FILE.FILE_TYPE;

 BEGIN

 -- open the file

 file_handle := UTL_FILE.FOPEN

http://www.sybex.com

Raising and Handling Exceptions 425

 (location => '/ora01/app/oracle/admin/test/utldir'

 ,filename =>'error.log'

 ,open_mode => 'W');

 -- write the error stack

 UTL_FILE.PUT_LINE(file_handle,
DBMS_UTILITY.FORMAT_ERROR_STACK);

 -- write the call stack

 UTL_FILE.PUT_LINE(file_handle,
DBMS_UTILITY.FORMAT_CALL_STACK);

 -- close the error log

 UTL_FILE.FCLOSE(file_handle);

 RAISE; -- re-raise the exception

 END;

END;

Exception sections that use DBMS_OUTPUT or UTL_FILE to reveal an error stack
or call stack may themselves raise exceptions if the output from FORMAT_xxx_
STACK returns a large value. Both stack routines can return up to 2,000 bytes, but
utl_file.put_line is limited to 1,000 bytes, and dbms_output.put_line is
limited to 512 bytes. If you use the previous code and don’t allow for this possi-
bility, you may raise an unhandled exception in your exception handler.

GOTO statements cannot be used to pass control from the executable sec-
tion to or from the exception section:

BEGIN

 IF error_detected THEN

 GOTO error_label; -- illegal, use a RAISE instead

 END IF;

 <<exec_label>>

 -- cannot get here from exception section

EXCEPTION

 WHEN OTHERS THEN

 <<error_label>>

 GOTO exec_label; -- illegal

END;

http://www.sybex.com

426 Chapter 10 � Exception Handling

Named Exceptions

Only named exceptions can be handled in their own WHEN clause in the
exception section of a PL/SQL block. Oracle includes a number of named
exceptions, declared in the package STANDARD. These built-in exceptions
include the ones shown in Table 10.1.

T A B L E 1 0 . 1 Built-in Exceptions

Exception Name

Database

Error Description

DUP_VAL_ON_INDEX ORA-
00001

An INSERT or UPDATE would
violate uniqueness on a
unique index.

TIMEOUT_ON_RESOURCE ORA-
00051

A timeout occurred waiting
for a resource, such as an
exclusive table lock for
DDL.

INVALID_CURSOR ORA-
01001

An attempt was made to
perform an illegal cursor
operation, such as fetching
a cursor that has not yet
been opened.

NOT_LOGGED_ON ORA-
01012

A call was made to the
database without first
establishing a connection.

LOGIN_DENIED ORA-
01017

An invalid username or
password was supplied in
the connect string.

NO_DATA_FOUND ORA-
01403

A SELECT INTO returned no
rows.

http://www.sybex.com

Named Exceptions 427

SYS_INVALID_ROWID ORA-
01410

An implicit CharToRowid
conversion has invalid
characters or format.

TOO_MANY_ROWS ORA-
01422

A SELECT INTO returned
more than one row.

ZERO_DIVIDE ORA-
01476

An attempt was made to
divide by 0.

INVALID_NUMBER ORA-
01722

An invalid character
appears in a character-to-
number conversion.

STORAGE_ERROR ORA-
06500

PL/SQL has corrupted or
run out of memory.

PROGRAM_ERROR ORA-
06501

Internal PL/SQL error. Time
to call support.

VALUE_ERROR ORA-
06502

A catchall kind of error
indicating that a data value
is invalid, due to size or
type. Raised in conversion,
truncation, or arithmetic
operations.

ROWTYPE_MISMATCH ORA-
06504

Datatype mismatch
between cursor variable
and result set.

CURSOR_ALREADY_OPEN ORA-
06511

An attempt was made to
open a cursor that is
already open.

T A B L E 1 0 . 1 Built-in Exceptions (continued)

Exception Name

Database

Error Description

http://www.sybex.com

428 Chapter 10 � Exception Handling

Customizing Exception Handling

In addition to the standard named exceptions, you can declare your
own named exceptions, such as those for violating business rules, or you
can associate a name with a database error number. You can even assign
an error number to a programmer-defined exception. These capabilities
give you, the programmer, useful tools for managing exceptions and
exception processing.

ACCESS_INTO_NULL ORA-
06530

A database object, LOB, or
other non-collection com-
posite is referenced with-
out first being initialized.

COLLECTION_IS_NULL ORA-
06531

An element in a nested
table or VARRAY collection is
referenced without first
being initialized, or a
method on an uninitialized
collection is invoked.

SUBSCRIPT_OUTSIDE_LIMIT ORA-
06532

An element subscript
higher than the bounding
value of a VARRAY is used.

SUBSCRIPT_BEYOND_COUNT ORA-
06533

An element subscript
higher than the initialized
elements in a nested table
or VARRAY is used.

T A B L E 1 0 . 1 Built-in Exceptions (continued)

Exception Name

Database

Error Description

http://www.sybex.com

Customizing Exception Handling 429

Declaring Your Own Exceptions

If you declare your own exceptions, you can include a WHEN clause in your
exception handler for that PL/SQL block. The scope of the declared excep-
tion is the same as for a variable. Exceptions declared in outer blocks are
accessible from that block and any sub-blocks, but exceptions declared in a
sub-block cannot be handled by name in the enclosing block:

BEGIN

 DECLARE -- sub block (or procedure call)

 insufficient_credit EXCEPTION;

 BEGIN

 RAISE insufficient_credit;

 EXCEPTION

 WHEN insufficient_credit THEN

 --we can handle it here

 extend_credit(cust_id);

 END; -- end of nested block

EXCEPTION

 WHEN insufficient_credit THEN

 -- NOT VALID, exception is out of scope

END;

If you declare an exception with the same name as a built-in exception,
your references to that exception will resolve to your exception and not to
the built-in exception. This is a bad practice as well, because the code
becomes non-intuitive and more difficult to maintain.

Giving Names to Database Errors

If you want to handle an exception with its own WHEN clause, that exception
must have a name. There are thousands of database errors but fewer than 25
with built-in named exceptions. When one of these unnamed exceptions
needs to be handled, you can associate a name with the error number using
the PRAGMA EXCEPTION_INIT statement:

PRAGMA_EXCEPTION_INIT(exception_name, error_number);

http://www.sybex.com

430 Chapter 10 � Exception Handling

When you do this, you must first declare the exception name that you will
use, then associate that name with an error number:

DECLARE

 invalid_table_name EXCEPTION;

 PRAGMA EXCEPTION_INIT(invalid_table_name, -942);

BEGIN

EXCEPTION

 WHEN invalid_table_name THEN

 UTL_FILE.PUT_LINE(file_handle,
 'User '||UID||' hit a bad table');

END;

Another way to handle unnamed database errors (without declaring and asso-
ciating a name with an error number) is to use the built-in functions SQLCODE and
SQLERRM, which are declared in the package standard. SQLCODE will return the
current database error number. These error numbers are all negative, except NO_
DATA_FOUND, which returns +100. SQLERRM returns the textual error message.
Your programmer-declared exceptions have a SQLCODE of +1 and a SQLERRM of
User-Defined Exception. To have a programmer-defined exception return a
different SQLCODE and SQLERRM, you need to number your exception with the
RAISE_APPLICATION_ERROR procedure.

Numbering Programmer-Defined Errors

The RAISE_APPLICATION_ERROR built-in procedure is used to raise an exception
and assign an error number and custom message to the programmer-defined
error. The default error number for a programmer-defined exception is +1, and
the default message is User-Defined Exception. This generic message from an
unhandled exception will not help to identify the cause of the error. The RAISE_
APPLICATION_ERROR procedure can be called from either the executable section
or the exception section of a PL/SQL block and will explicitly raise the named
exception with the specified error number:

RAISE_APPLICATION_ERROR(error_number, error_message
[,{TRUE | FALSE}]);

http://www.sybex.com

Summary 431

The error number must be in the range of –20,999 to –20,000. The error mes-
sage is a text string up to 2,048 bytes long. The TRUE and FALSE define whether
this error message is added to the error stack (TRUE) or overwrites the error stack
(FALSE). The default behavior is to overwrite the error stack, possibly destroying
the information needed to troubleshoot or correct the problem.

IF product_not_found THEN

 RAISE_APPLICATION_ERROR(-20123, 'Invalid product code',
TRUE);

END IF;

Summary

In this chapter, you read about how exceptions differ from errors and how
PL/SQL manages error conditions. You saw how to raise and handle exceptions.
We reviewed the named exceptions that come built into the PL/SQL language, as
well as how to name other exceptions. We covered how exceptions propagate and
where exceptions are handled when raised within sub-blocks. You also learned
how to customize not only exception names, but also exception messages and
error codes.

The topics covered in this chapter that are likely to be on the exam are

� Declaring vs. associating vs. raising vs. handling exceptions

� Exception propagation: when an exception is raised, where will it be
handled

� How to use a programmer-defined error message with
RAISE_APPLICATION_ERROR

http://www.sybex.com

432 Chapter 10 � Exception Handling

Key Terms

Before you take the exam, make sure you’re familiar with the fol-
lowing terms:

Associate an exception

Declare an exception

Exception

Exception section

Raise an exception

SQLCODE

SQLERRM

http://www.sybex.com

Review Questions 433

Review Questions

1. What is the PRAGMA exception_init used for?

A. To declare an exception

B. To associate an exception name with an exception number

C. To handle an exception

D. To associate a function with an exception number

2. What command do you use to induce an error condition?

A. raiserror

B. raise_exception

C. raise

D. exception

3. Can the RAISE_APPLICATION_ERROR procedure append the message
to the existing error stack?

A. Yes, this is the default behavior.

B. Yes, but this is not the default behavior.

C. No, the RAISE_APPLICATION_ERROR procedure always replaces
the error stack.

4. What causes a TOO_MANY_ROWS exception?

A. Your FETCH buffer is too small.

B. A SELECT INTO returned more than one row.

C. You performed a Cartesian product.

D. Your array insert buffer is too small.

http://www.sybex.com

434 Chapter 10 � Exception Handling

5. What does the following code do?

DECLARE

 invalid_action exception;

BEGIN

A. Associates the invalid_action exception

B. Raises an invalid_action exception

C. Handles an invalid_action exception

D. Declares an exception called invalid_action

6. In what ways can an exception be raised? Choose three.

A. By the PL/SQL runtime engine

B. By a RAISE statement

C. By a call to the RAISE_APPLICATION_ERROR function

D. By a call to the RAISE_APPLICATION_ERROR procedure

E. By a registered alert process

F. By a RAISERROR statement

7. What must be included in the exception code to propagate the current
exception to the enclosing block?

A. Nothing—once an exception is handled, the enclosing block can-
not be notified of the error.

B. The propagation can continue only by explicitly raising the excep-
tion by name in the exception section.

C. The RAISE statement with no exception specified will re-raise the
current exception.

D. The RERAISE statement will re-raise the current exception into the
enclosing block.

http://www.sybex.com

Review Questions 435

8. In the following PL/SQL code, what will the output and error stack
include?

BEGIN

 BEGIN

 RAISE no_data_found;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('ERROR in inner block');

 raise;

 END;

EXCEPTION

 WHEN NO_DATA_FOUND THEN

 dbms_output.put_line('No data found error');

 WHEN OTHERS THEN

 dbms_output.put_line('ERROR in outer block');

END;

A. ERROR in inner block

B. No data found error

C. ERROR in outer block

D. A and B

http://www.sybex.com

436 Chapter 10 � Exception Handling

9. Your requirements say that all exceptions in your anonymous PL/SQL
block must be logged. Will the following exception section meet these
requirements?

EXCEPTION

 WHEN OTHERS THEN

 INSERT INTO error_log (timestamp ,err_code

 ,err_msg, err_stack)

 VALUES (SYSDATE

 ,SQLCODE

 ,SQLERRM

 ,DBMS_UTILITY.FORMAT_ERROR_STACK);

 RAISE;

END;

A. All requirements are satisfied.

B. The requirements are not satisfied.

C. The requirements are sometimes satisfied.

10. An exception that is raised in an exception section passes control to
where?

A. The operating system

B. The executable section in the enclosing block

C. The exception section in the enclosing block

D. The WHEN OTHERS clause in the current exception section

http://www.sybex.com

Review Questions 437

11. In the following PL/SQL code, what will the output and error stack
include?

BEGIN

 BEGIN

 RAISE no_data_found;

 EXCEPTION

 WHEN NO_DATA_FOUND THEN

 dbms_output.put_line(
 'NO data found in inner block');

 WHEN OTHERS THEN

 dbms_output.put_line('ERROR in inner block');

 RAISE;

 END;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('ERROR in outer block');

 RAISE;

END;

A. ERROR in inner block

B. NO data found in inner block

C. ERROR in outer block

D. All of the above

http://www.sybex.com

438 Chapter 10 � Exception Handling

12. In the following PL/SQL code, what will the output and error
stack include?

BEGIN

 DECLARE

 -- You can't assign text to a date
 today DATE := 'SYSDATE';

 BEGIN

 RAISE no_data_found;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('ERROR in inner block');

 RAISE;

 END;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('ERROR in outer block');

 RAISE;

END;

A. ERROR in inner block

B. No data found error

C. ERROR in outer block

D. All of the above

13. Which of the following types of exceptions cannot be handled in an
exception section?

A. Syntax errors

B. Database errors

C. Datatype mismatch errors

D. Divide by zero errors

http://www.sybex.com

Review Questions 439

14. In the following PL/SQL code, what will the output and error stack
include?

BEGIN

 BEGIN

 RAISE no_data_found;

 EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('ERROR in inner block');

 RAISE;

 END;

EXCEPTION

 WHEN OTHERS THEN

 dbms_output.put_line('ERROR in outer block');

 RAISE;

END;

A. ERROR in inner block

B. No data found error

C. ERROR in outer block

D. All of the above

15. What function can you use to retrieve the error number for the current
exception?

A. ERRNUM

B. SQLCODE

C. SQLNUM

D. You can only get the exception name, not the numeric code, for an
exception.

16. What function can you use to retrieve the text associated with the cur-
rent exception?

A. SQLERRM

B. SQLERRMESG

C. ERRORTEXT

D. ERRMSG

http://www.sybex.com

440 Chapter 10 � Exception Handling

17. What clause do you need to include in your exception section to han-
dle any exception not previously specified?

A. ELSE

B. WHEN ANYTHING ELSE

C. WHEN ANY OTHER

D. WHEN OTHERS

18. In the following block of PL/SQL code, what will dbms_output display?

declare

 invalid_code exception;

begin

 declare

 invalid_code exception;

 begin

 raise invalid_code;

 exception

 when zero_divide then

 dbms_output.put_line('Exception handled');

 end;

 dbms_output.put_line('No errors here');

exception

 when invalid_code then

 dbms_output.put_line('There is an invalid code');

 when others then

 dbms_output.put_line('Another exception occurred');

end;

A. Exception handled

B. No errors here

C. There is an invalid code

D. Another exception occurred

http://www.sybex.com

Review Questions 441

19. Which line will cause a compile error (a syntax error)?

1 exception

2 when sqlcode = -942

3 dbms_output.put_line('Invalid table name');

4 when others

5 dbms_output.put_line('Unhandled exception');

6 end;

A. Line 2

B. Line 4

C. Line 6

D. There will be no compile error.

20. Which line will cause a compile error (a syntax error)?

1 declare

2 54_resource_busy exception;

3 begin

4 raise zero_divide;

5 exception

6 when others then

A. Line 2

B. Line 4

C. Line 6

D. There will be no compile error.

http://www.sybex.com

442 Chapter 10 � Exception Handling

Answers to Review Questions

1. B. Exception_init is used to associate (give a name) to an error number.

2. C. The RAISE command is used to raise an exception.

3. B. The default behavior is to replace the existing error stack.

4. B. A SELECT INTO can only return a single row. When it returns more
than one row, the TOO_MANY_ROWS exception is raised.

5. D. This is an exception declaration.

6. A, B, D. RAISE_APPLICATION_ERROR does not return a value and so
is a procedure. There is no alert process or RAISERROR statement.

7. C. While you can explicitly re-raise an exception by specifying the
exception name in the RAISE statement, it is not the only way to re-raise
the error. You can simply issue a RAISE statement without additional
arguments to re-raise an exception, without ever having to know what
the exception was.

8. D. The WHEN OTHERS clause in the inner block handles the exception
and re-raises the exception to the exception section in the outer block.
The outer block handles it in the WHEN NO_DATA_FOUND clause.

9. C. This one’s kind of tricky. While all the information put into the
ERROR_LOG table is great for logging the error, if the enclosing
block or program encounters this exception and performs a
ROLLBACK, the ERROR_LOG table changes will get rolled back, along
with the other uncommitted changes. It would be better to use UTL_
FILE, which operates outside transactional boundaries. You could
also construct an autonomous transaction procedure to insert (and
commit) the ERROR_LOG entries. To learn more about autonomous
transactions (which are not likely to be on the exam), see the Oracle
Server Concepts reference.

10. C. Exceptions raised in the exception section get passed to the exception
section of the enclosing block.

11. B. The exception is handled in the WHEN NO_DATA_FOUND clause of the
inner block and does not propagate further.

http://www.sybex.com

Answers to Review Questions 443

12. C. Exceptions in the declaration section of a PL/SQL block cannot be
handled in that block. They are immediately propagated to the calling
program/block. The RAISE no_data_found line never executes.

13. A. Syntax errors are handled by the PL/SQL compiler and not the
runtime engine; they cannot be handled in the exception section.

14. D. The exception is caught in the inner block. The message is displayed,
the error is re-raised, handled again in the outer block, and re-raised. The
unhandled no data found error propagates out to the calling program.

15. B. The built-in function SQLCODE can be used to retrieve the error
number associated with the current exception.

16. A. The built-in function SQLERRM can be used to retrieve the text associated
with the current exception.

17. D. The WHEN OTHERS clause will handle any exception that has not yet
been handled.

18. D. The scope of an exception includes the block in which the exception
is declared and any sub-blocks. The exception raised in the example
code is not handled in the exception section of the block that the excep-
tion was raised in. As the exception propagates to the exception section
of the enclosing block, it goes out of scope and becomes an unhandled
programmer-defined exception. The exception that was raised is not the
same as the invalid_code exception in the enclosing block, even
though they have the same names. This explanation may seem confus-
ing (as do some exam questions): Reread the code and keep an eye out
for the scope of the exceptions declared and raised.

19. A. The WHEN clause can be used only with exception names. The
SQLCODE function can be used in Boolean comparisons but not in a
WHEN clause.

20. A. Exceptions must follow the same naming restrictions as any other
identifier, such as variables. Identifiers cannot begin with a number.

http://www.sybex.com

Appendix

A

Practice Exam

http://www.sybex.com

1.

How do you implement relationships between entities of an ER diagram
in the Oracle database?

A.

Create a primary key constraint

B.

Create a unique key constraint

C.

Create a foreign key constraint

D.

Create an index

2.

Which stage comes after the Analysis stage in the application
development cycle?

A.

Implementation

B.

Testing

C.

Design

D.

Development

3.

Which datatype declaration in a column would compare

'MARK'

 and

'MARK '

 as the same.

A.

VARCHAR (10)

B.

CHAR (10)

C.

VARCHAR2 (10)

D.

LONG

4.

What will happen when you enter the following command at the
SQL*Plus prompt?

DEFINE SALARY

A.

A user variable named

SALARY

 is created and assigned a value of 0.

B.

The value of the user-defined variable

SALARY

 is displayed; if the
variable is not defined, a message is displayed stating the variable
is not defined.

C.

A user variable named

SALARY

 is created, and no value is assigned.

D.

The value of user-defined variable

SALARY

 is removed.

http://www.sybex.com

447

5.

You query the database with the following:

SELECT PRODUCT_ID FROM PRODUCTS

WHERE PRODUCT_ID LIKE '%S_J_C' ESCAPE '\';

Choose two PRODUCT_ID strings from the options that will satisfy
the query.

A.

BTS_J_C

B.

SJC

C.

SKJKC

D.

S_J_C

6.

The EMPLOYEE table is defined as follows:

EMP_NAME VARCHAR2(40)

HIRE_DATE DATE

SALARY NUMBER (14,2)

Which query is most appropriate to use if you need to find the employees
who were hired before 01-Jan-1998 and have a salary above 5000 or
below 1000?

A.

SELECT emp_name FROM employee
WHERE hire_date > TO_DATE('01011998','MMDDYYYY')
AND SALARY < 1000 OR > 5000;

B.

SELECT emp_name FROM employee
WHERE hire_date < TO_DATE('01011998','MMDDYYYY')
AND SALARY < 1000 OR SALARY > 5000;

C.

SELECT emp_name FROM employee
WHERE hire_date < TO_DATE('01011998','MMDDYYYY')
AND (SALARY < 1000 OR SALARY > 5000);

D.

SELECT emp_name FROM employee
WHERE hire_date < TO_DATE('01011998','MMDDYYYY')
AND SALARY BETWEEN 1000 AND 5000;

http://www.sybex.com

448

Appendix A �

Practice Exam

7.

What’s the error in the following code?

SELECT state.st_name, st_code

FROM state s

WHERE st_code = 'TX';

A.

When tables are not joined, a table alias name cannot be used in
the query.

B.

When a table alias name is defined, it must be used to qualify all
the column names.

C.

If a table alias name is defined, you cannot use the table name to
qualify a column.

D.

In the

SELECT

 clause, you cannot have one column qualified and
another column not qualified. It should be either all columns qualified
or no columns qualified.

8.

The table MOVIES is defined as follows:

 MOVIE_ID NUMBER(5) PRIMARY KEY

 NAME VARCHAR2(20)

 LEAD_ACTOR VARCHAR2(15)

 VIDEO_STOCK NUMBER(3)

 DVD_STOCK NUMBER(3)

 GENRE VARCHAR2(8)

Choose the best query that shows the name and lead actor of the
movie that has the highest number in DVD_STOCK.

A.

SELECT NAME, LEAD_ACTOR FROM MOVIES
WHERE DVD_STOCK EQUALS (SELECT MAX(DVD_STOCK)
 FROM MOVIES);

B.

SELECT NAME, LEAD_ACTOR FROM MOVIES M1
WHERE MOVIE_ID = (SELECT MOVIE_ID FROM MOVIES M2
 WHERE M1.DVD_STOCK = MAX(M2.DVD_STOCK));

C.

SELECT NAME, LEAD_ACTOR FROM MOVIES
WHERE DVD_STOCK = MAX(DVD_STOCK);

D.

SELECT NAME, LEAD_ACTOR FROM MOVIES
WHERE DVD_STOCK = (SELECT MAX(DVD_STOCK)
 FROM MOVIES);

http://www.sybex.com

449

9.

What is the maximum number of rows the following query can return
when successfully executed?

SELECT EMPNO, ENAME

FROM EMP

WHERE SALARY = (SELECT MAX(SALARY) FROM EMP);

A.

1

B.

Unlimited

C.

0 or 1

D.

256

10.

The table MOVIES has the following data:

MOVIE_ID NAME LEAD_ACTOR VIDEO_STOCK DVD_STOCK GENRE

-------- --------------- --------------- ----------- ---------- -------

 1245 OCTOBER SKY JAKE GYLLENHALL 5 3 DRAMA

 1356 ARMAGEDDON BRUCE WILLIS 15 10 ACTION

 2376 THE MATRIX KEANU REEVES 8 5 ACTION

 6745 BOWFINGER EDDIE MURPHY 6 COMEDY

 6644 CLUELESS ALICIA SILVERSTONE 9 COMEDY

Consider the following query, then choose the most appropriate statement.

SELECT name, genre

FROM movies

WHERE genre = (SELECT genre

 FROM movies

 WHERE name = 'THE MATRIX')

ORDER BY 2, 1;

A.

The query will result in two rows.

B.

You cannot use the same table name in the query and in the subquery
without using a group function.

C.

The subquery will return more than one row; since this is a single-row
subquery, the query will fail.

D.

The

ORDER BY

 clause cannot be used in the query.

http://www.sybex.com

450

Appendix A �

Practice Exam

11.

Consider the following query that is used to select the name, salary, and dif-
ference in salary from the average. Choose the most appropriate option.

SELECT ename, sal, (sal-avgsal) diff

FROM emp, (SELECT AVG(sal) avgsal FROM emp);

A.

The query will fail because there is no alias name provided for the
subquery in the

FROM clause.

B. The query will not produce the intended result because a WHERE
clause is missing.

C. The query will fail because the column names are not qualified.

D. There is no error in the query, and the query will deliver the
intended result.

12. The table ADDRESSES is created using the following syntax. How
many indexes will be created automatically when this table is created?

CREATE TABLE ADDRESSES (

NAME VARCHAR2 (40) PRIMARY KEY,

STREET VARCHAR2 (40),

CITY VARCHAR2 (40),

STATE CHAR (2) REFERENCES STATE (ST_CODE),

ZIP NUMBER (5) NOT NULL,

PHONE VARCHAR2 (12) UNIQUE);

A. 0

B. 1

C. 2

D. 3

13. Which clause in the CREATE VIEW command prevents updates to the
base table through the view?

A. WITH CHECK OPTION

B. WITH READ ONLY

C. WITH NO UPDATE

D. There is no such option; if a user has privilege on the base table, the
user can update the view.

http://www.sybex.com

451

14. Consider the following code, then choose the most appropriate
option.

CREATE TABLE CUSTOMER (

CUSTOMER_ID NUMBER (5),

CUSTOMER_NAME VARCHAR2 (40),

ZIP NUMBER (5)) AS

SELECT CUST_ID, NAME, ZIP_CODE

FROM CUSTOMERS

A. The code will create a table named CUSTOMER.

B. Column datatypes should not be specified when creating a table
from another table.

C. ZIP is a reserved word and cannot be used as a column name.

D. When creating a new table from an existing table, you cannot specify
a different column name.

15. The table CUSTOMERS has the following data:

ID NAME ZIP UPD_DATE

---- --------------- ---------- ---------

L921 LEEZA 75252 01-JAN-00

B023 WILLIAMS 15215

K783 KATHY 75252 15-FEB-00

B445 BENJAMIN 76021 15-FEB-00

D334 DENNIS 12443

You issue the following command to alter the table. Which line of
code will cause an error?

1 ALTER TABLE CUSTOMERS

2 MODIFY

3 (UPD_DATE DEFAULT SYSDATE NOT NULL,

4 ZIP NOT NULL);

A. Line 2

B. Line 3

C. Line 4

D. There will be no error.

http://www.sybex.com

452 Appendix A � Practice Exam

16. Which line of code has an error?

 1 CREATE VIEW ACTION_MOVIES

 2 (NAME NOT NULL, ACTOR)

 3 AS

 4 SELECT NAME, LEAD_ACTOR

 5 FROM MOVIES

 6 WHERE GENRE = 'ACTION'

 7 ORDER BY NAME;

A. Line 2

B. Line 3

C. Line 7

D. There is no error.

17. For which task would it be appropriate to use a FOR loop?

A. To assign value 50 to variable 1, if variable 2 is 100.

B. To insert 10 consecutive numbers into a table starting with 20.

C. To insert a record into a table until the value of variable 1 is equal to 20.

D. A FOR loop is not a valid structure in PL/SQL.

18. Which line of code has an error?

1 DECLARE

2 V_NAME VARCHAR2 (40) := 'DAVID CLARK';

3 V_ID NUMBER (4) := 1001;

4 V_STATUS BOOLEAN := FALSE;

5 BEGIN

6 INSERT INTO EMP (ID, NAME, STATUS)

7 VALUES (V_ID, V_NAME, V_STATUS);

8 END;

A. Line 2

B. Line 3

C. Line 4

D. Line 7

http://www.sybex.com

453

19. How do you declare a variable in the PL/SQL block, if its underlying
database column datatype is not known? (The table is DBTABLE and
the column name is COLUMNX.)

A. V_X NUMBER;

B. V_X VARCHAR2;

C. V_X DBTABLE.COLUMNX%TYPE;

D. V_X COLUMNX.DBTABLE%TYPE;

20. Evaluate the following statement. What value of V_PRICE would
assign the value of 'C' to V_GRADE?

IF V_PRICE > 1000 THEN

 V_GRADE := 'A';

ELSE

 IF V_PRICE > 900 THEN

 V_GRADE := 'B';

 ELSE

 IF V_PRICE > 800 THEN

 V_GRADE := 'C';

 ELSE

 IF V_PRICE > 600 THEN

 V_GRADE := 'D';

 ELSE

 V_GRADE := 'E';

 END IF;

 END IF;

 END IF;

END IF;

A. V_PRICE greater than 1000

B. V_PRICE greater than 800

C. V_PRICE between 801 and 900

D. V_PRICE between 601 and 800

http://www.sybex.com

454 Appendix A � Practice Exam

21. What causes a WHILE loop to terminate?

A. When the condition is evaluated to NULL

B. When the condition is evaluated to FALSE

C. When the condition is evaluated to TRUE

D. The EXIT statement must always be used to terminate.

22. How many ELSE clauses can an IF…THEN…ELSIF statement have?

A. 0

B. 1

C. Unlimited

D. 64

23. Consider the following PL/SQL block. How many rows will be added
to the table NUMBERS when this block is executed?

BEGIN

 FOR IX IN 5..10 LOOP

 IF IX = 6 THEN

 INSERT INTO NUMBERS VALUES (IX);

 ELSIF IX = 7 THEN

 DELETE FROM NUMBERS;

 END IF;

 IF IX = 7 THEN

 ROLLBACK;

 ELSE

 COMMIT;

 END IF;

 END LOOP;

 COMMIT;

END;

A. 6

B. 1

C. 5

D. 0

http://www.sybex.com

455

24. If C1 is a cursor defined in a PL/SQL block, what will be the value of
C1%NOTFOUND after the cursor is opened but before the first fetch?

A. TRUE

B. FALSE

C. NULL

D. None of the above

25. When the following PL/SQL block is executed, what will be the value
of V1?

DECLARE

 V0 PLS_INTEGER;

 V1 BOOLEAN;

BEGIN

 BEGIN

 SELECT COUNT(*) INTO V0 FROM EMP;

 END;

 BEGIN

 V1 := SQL%FOUND;

 END;

END;

A. NULL

B. TRUE

C. FALSE

D. The code will not work.

http://www.sybex.com

456 Appendix A � Practice Exam

26. Which line of code has an error?

 1 DECLARE

 2 CURSOR c_emp IS SELECT empno, salary FROM emp;

 3 R_emp c_emp%ROWTYPE;

 4 BEGIN

 5 OPEN c_emp;

 6 LOOP

 7 FETCH c_emp INTO r_emp;

 8 EXIT WHEN c_emp%NOTFOUND;

 9 UPDATE EMP SET SALARY = SALARY + 500

10 WHERE EMPNO = c_emp.empno;

11 END LOOP;

12 CLOSE c_emp;

13 END;

A. Line 2

B. Line 3

C. Line 7

D. Line 8

E. Line 10

http://www.sybex.com

457

27. Using the following INVENTORY table instance chart, choose the
SQL statement that will increase the base price of all items by 3% of
the combined base_price and surcharge.

A. update inventory set base_price = (base_price +
surcharge) * 1.03;

B. update inventory set base_price = base_price * 1.03 +
surcharge * 1.03;

C. update inventory set base_price = (base_price * 1.03)
+ NVL(surcharge,0)* 1.03;

D. None of these statements will achieve the desired results.

28. Which of the following is not a group function?

A. SUM

B. AVG

C. GREATEST

D. VARIANCE

29. If the current date is 1-Mar-2000, what will be returned from the following
SQL statement?

SELECT LAST_DAY(ADD_MONTHS(SYSDATE,-2)) FROM dual;

A. 30-Mar-2000

B. 31-Jan-2000

C. 31-May-2000

D. 29-Feb-2000

Column Name sku name base_price surcharge

Key Type pk

NULLs/Unique NN/U NN NN

FK Table

Datatype varchar2 varchar2 number number

Length 16 50 11,2 11,2

http://www.sybex.com

458 Appendix A � Practice Exam

30. What will the following SQL statement return?

SELECT MOD(25,5), MOD(8,2.5) FROM dual;

A. 0 and .5

B. 5 and 4.5

C. 0 and 2

D. This will raise an exception, since MOD can only operate on
integer values.

31. You need to display the date column start_date in the format:
23Rd of September, 2000
Which of the following expressions will satisfy these requirements?

A. to_char(start_date,'Dsp of Month, YYYY')

B. to_char(start_date,'DDTh of Month, YYYY')

C. to_char(start_date,'DTh "of" Month, YYYY')

D. to_char(start_date,'DDTh "of" Month, YYYY')

32. What will be displayed from the following PL/SQL block?

DECLARE

 X VARCHAR2(10) := 'TITLE';

 Y VARCHAR2(10) := 'TITLE ';

BEGIN

 IF X >= Y THEN

 dbms_output.put_line('X is greater');

 END IF;

 IF Y >= X THEN

 dbms_output.put_line('Y is greater');

 END IF;

END;

A. X is greater

B. Y is greater

C. Both X is greater and Y is greater

D. Neither X is greater nor Y is greater

http://www.sybex.com

459

33. Which statement will implicitly begin a transaction?

A. GRANT

B. SELECT FOR UPDATE

C. ALTER

D. TRUNCATE

34. Which data dictionary table can tell you who granted the DBA role to
user BATMAN?

A. DBA_ROLE_PRIVS

B. DBA_SYS_PRIVS

C. DBA_TAB_PRIVS

D. None, you can’t tell who granted the role.

http://www.sybex.com

460 Appendix A � Practice Exam

35. What is the value of BALANCE in the CHECKING table for
ACCOUNT_ID 'A' after the following PL/SQL block?

BEGIN

 UPDATE checking

 SET balance = 5000

 WHERE account_id = 'A';

 SAVEPOINT save_A;

 UPDATE checking

 SET balance = 7500

 WHERE account_id = 'A';

 SAVEPOINT save_A2;

 UPDATE checking

 SET balance = 3000

 WHERE account_id = 'A';

 SAVEPOINT save_A3;

 ROLLBACK TO SAVEPOINT save_A;

 UPDATE brokerage

 SET cash_bal = 25000

 WHERE account_id = 'A';

 SAVEPOINT save_X;

 ROLLBACK to save_X;

 ROLLBACK to save_A;

END;

COMMIT;

A. 5000

B. 7500

C. 3000

D. 25000

http://www.sybex.com

461

36. What does the following SQL statement do?

ALTER USER sherry IDENTIFIED BY ann;

A. Creates user ann with the password of sherry

B. Creates user sherry with the password of ann

C. Changes the password to ann for user sherry

D. Changes the password to sherry for user ann

37. What does the following SQL statement do?

ALTER USER tommy QUOTA 2500 ON tools;

A. Sets user tommy’s quota in tablespace tools to 2500 bytes

B. Sets user tommy’s quota in tablespace tools to 2500 kilobytes

C. Sets user tommy’s quota in tablespace tools to 2500 megabytes

D. Changes user tommy’s privileges on the table tools

38. If emp_seq is a sequence, what does the following SQL statement do?

GRANT ALL ON emp_seq TO public;

A. Gives user public permission to select from the sequence emp_seq

B. Gives user public permission to select or alter the sequence emp_seq

C. Gives any user permission to select from the sequence emp_seq

D. Gives any user permission to select or alter the sequence emp_seq

39. Which statement will remove the primary key PK_IMAGES from the
table IMAGES?

A. ALTER TABLE IMAGES DROP PRIMARY KEY;

B. DROP PRIMARY KEY PK_IMAGES;

C. DROP TABLE IMAGES PRIMARY KEY;

D. ALTER CONSTRAINT PK_IMAGES DROP;

http://www.sybex.com

462 Appendix A � Practice Exam

40. Which of the following check constraints is invalid?

A. CONSTRAINT CHECK (gender in ('M','F'))

B. CONSTRAINT CHECK (due_date > SYSDATE);

C. CONSTRAINT CHECK (bonus < salary)

D. CONSTRAINT CHECK (approval_code LIKE 'A%')

41. Which statement will disable the unique constraint SSN_uniq on the
EMP table?

A. ALTER TABLE EMP DISABLE SSN_uniq;

B. ALTER CONSTRAINT SSN_uniq ON TABLE EMP DISABLE;

C. DISABLE CONSTRAINT SSN_uniq;

D. ALTER TABLE EMP DISABLE CONSTRAINT SSN_uniq;

42. Which option best describes when constraints are checked and the
deferrability of constraint checking?

A. By default, constraints are nondeferrable and checked initially imme-
diate. They can be set to deferrable and checked initially deferred.

B. By default, constraints are deferrable and checked initially immediate.
They can be set to nondeferrable and checked initially deferred.

C. By default, constraints are deferrable and checked initially deferred.
They can be set to nondeferrable and checked initially immediate.

D. By default, constraints are nondeferrable and checked initially deferred.
They can be set to deferrable and checked initially immediate.

http://www.sybex.com

463

43. Which statement calls dbms_utility.analyze_schema with correct
named notation syntax?

A. dbms_utility.analyze_schema(
schema->'SCOTT'
,method->'ESTIMATE');

B. dbms_utility.analyze_schema(schema=|'SCOTT'
,method=|'ESTIMATE');

C. dbms_utility.analyze_schema(
schema-|'SCOTT'
,method-|'ESTIMATE');

D. dbms_utility.analyze_schema(
schema=>'SCOTT'
,method=>'ESTIMATE');

44. Which of the following is an invalid trigger event?

A. after delete

B. before startup

C. after logon

D. after drop

45. Which of the following cannot be a field in a record?

A. A VARCHAR2 variable

B. A nested table

C. A %ROWTYPE record

D. A BOOLEAN variable

http://www.sybex.com

464 Appendix A � Practice Exam

46. Which line in the following PL/SQL block will raise an exception?

1 TYPE emp_typ is RECORD (

 emp_no VARCHAR2(20),

 name scott.emp.name%TYPE);

2 emp_rec emp%ROWTYPE;

3 BEGIN

4 SELECT * INTO emp_rec FROM emp

 WHERE emp_no=12;

5 emp_rec.emp_no := emp_seq.nextval;

6 INSERT INTO emp VALUES (emp_rec);

7 END;

A. Line 1

B. Line 2

C. Line 4

D. Line 6

47. Which line in the following PL/SQL block will raise an exception?

1 DECLARE

2 CURSOR stock_cur (symbol_in VARCHAR2) IS

 SELECT symbol, exchange, begin_date

 FROM stocks

 WHERE symbol = UPPER(symbol_in);

3 stock_info stock_cur%ROWTYPE;

4 BEGIN

5 OPEN stock_cur('ORCL');

6 FETCH stock_cur INTO stock_info;

7 END;

A. Line 2

B. Line 3

C. Line 6

D. No exception will be raised.

http://www.sybex.com

465

48. Which collection type must be explicitly initialized with a constructor?

A. Index-by table

B. Nested table

C. VARRAY

D. Nested table and VARRAY

49. Which collection type can be sparse?

A. Index-by table

B. Nested table and VARRAY

C. Nested table and index-by table

D. VARRAY

50. What type of data structure is on either side of the assignment opera-
tor in the following PL/SQL statement?

symbols(x) := akadian.symbol;

A. The field symbol in the record akadian is assigned to the element
x in the collection symbols.

B. The field akadian in the record symbol is assigned to the element
x in the collection symbols.

C. The element symbol in the collection akadian is assigned to the
field x in the record symbols.

D. The element symbol in the record akadian is assigned to the field
x in the collection symbols.

http://www.sybex.com

466 Appendix A � Practice Exam

51. An exception is raised in line 3 of the PL/SQL block below. Where is
it handled?.

1 BEGIN

2 DECLARE

3 timestamp DATE := 'SYSDATE';

4 BEGIN

5 call_some_proc

6 EXCEPTION

7 WHEN VALUE_ERROR THEN

8 dbms_output.put_line('value error');

9 WHEN OTHERS THEN

10 dbms_output.put_line('some other error');

11 END;

12 EXCEPTION

13 WHEN OTHERS THEN

14 dbms_output.put_line('unknown error');

15 END;

A. Line 7

B. Line 9

C. Line 13

D. Lines 9 and 13

52. In which PL/SQL section is a server error associated with a named
exception?

A. Header

B. Declaration

C. Executable

D. Exception

http://www.sybex.com

467

53. What type of exception requires a RAISE statement?

A. A named server exception

B. A programmer-defined exception

C. An unnamed server exception

D. The RAISE statement is never required for an exception.

54. What is done in the following PL/SQL code?

INVALID_DATE EXCEPTION;

A. An exception is declared.

B. An exception is raised.

C. An exception is associated.

D. An exception is handled.

55. What is done in the following PL/SQL code?

PRAGMA EXCEPTION_INIT(invalid_table_name, -942);

A. An exception is declared.

B. An exception is raised.

C. An exception is associated.

D. An exception is handled.

http://www.sybex.com

468 Appendix A � Practice Exam

56. What does the following PL/SQL block do?

RAISE_APPLICATION_ERROR(-20123
, 'invalid_product_code', TRUE)

A. Raises the previously defined exception invalid_product_code,
with a SQL code of –20123, appending this error to the existing
error stack

B. Raises a programmer-defined exception, that does not have to
be previously defined, assigns –20123 to the SQL code for this
exception, and appends the error to the existing error stack

C. Raises a programmer-defined exception, that does not have to be pre-
viously defined, assigns –20123 to the SQL code for this exception, and
overwrites the existing error stack with this error

D. Handles either the server error –20123 or the programmer-defined
exception invalid_product_code

http://www.sybex.com

Answers to Practice Exam 469

Answers to Practice Exam

1. C. A relationship between two tables is implemented in Oracle using
foreign key (referential integrity) constraints. Foreign keys make sure
that the value entered in one table is valid against its parent table.

2. C. Design is the next stage after Analysis. The stages of application
development, in order, are Analysis, Design, Development, Testing,
and Implementation.

3. B. The CHAR datatype fills the width of the column with spaces if the
length of the column data is less than its length. Using CHAR, 'MARK' and
'MARK ' are the same. VARCHAR and VARCHAR2 store only the data and do
not add spaces. You cannot compare a LONG column.

4. B. DEFINE is used to declare a CHAR datatype variable or to display its
value if no value is provided. For example, DEFINE SALARY = 300.10
would create a variable named SALARY and assign a CHAR value of
300.10 to it. Using DEFINE SALARY would display its value. You can
use these variables in queries. The variable name should be preceded
by an ampersand (&SALARY):

SQL> DEFINE SALARY = 300.10

SQL> DEFINE SALARY

DEFINE SALARY = "300.10" (CHAR)

SQL>

5. A, D. The substitution character % may be substituted for zero or for
many characters. The substitution character _ does not have any effect in
this query because an escape character precedes it, so it is treated as a literal.

6. C. You have two main conditions in the question: one on the hire date
and the other on the salary. So, you should use an AND operator. In the
second part, you have two options: The salary can be either more than
5000 or less than 1000. So, the second part should be enclosed in
parentheses and use an OR operator. Option B is similar to option C
except for the parentheses, but the difference changes the meaning
completely. Option B would select the employees who were hired
before 01-Jan-1998 or have a salary above 5000 or have a salary
below 1000.

http://www.sybex.com

470 Appendix A � Practice Exam

7. C. An alias name S is defined for the table STATE. Therefore, to qualify
a column, only S can be used. You should not use the table name to
qualify the column. Note that in this query, because data is selected
from only one table, there is no need to qualify the column names at all.

8. D. A subquery must be used here, because you want to know the high-
est value in the DVD_STOCK column, and then use this value to get
the name and lead actor of the movie. Option C conveys the same
meaning, but you cannot use a GROUP function in the WHERE clause.

9. B. The query can return an unlimited number of rows. Since the equality
operator is used for the subquery, the subquery can return only one row.

10. A. There is no error in the statement, and the query will return two
rows. The subquery returns only one row with a value of 'ACTION', and
the main query returns the name and genre of the two ACTION movies.

11. D. There is no error. It is not necessary to have an alias name provided
for the subquery in the FROM clause. An alias name would improve the
readability of the query. Column names must be qualified only if there
is an ambiguity.

12. C. Oracle creates unique indexes for each unique key and primary key
defined in the table. The table ADDRESSES has one unique key and a
primary key. Indexes will not be created for NOT NULL or foreign key
constraints.

13. B. The WITH READ ONLY option in the CREATE VIEW command is used to
prevent any INSERT, UPDATE, or DELETE statements applied to the base
table through the view. WITH CHECK OPTION is used to restrict the updates
or inserts to the view.

14. B. When creating a table using a subquery, column datatypes should
not be specified. The datatypes are derived by Oracle from the data
selected or based on the base table. You may specify a column name
and constraints for the new table.

15. B. When you’re altering an existing column to add a NOT NULL constraint,
no rows in the table should have NULL values. In the example, there are
two rows with NULL values.

http://www.sybex.com

Answers to Practice Exam 471

16. A. When defining views, you cannot specify constraints or datatype
definitions. A view is a representation of data from underlying tables
or views.

17. B. A FOR loop is used to repeat a task a fixed number of times. Option
A would use an IF…THEN statement; option C would use a WHILE loop.
Here is the code:

FOR X IN 20 .. 29 LOOP

 INSERT INTO TABLE_A (COLUMN1) VALUES (X);

END LOOP;

18. D. The INSERT statement will fail because a table cannot be created
with the BOOLEAN datatype, so a BOOLEAN value cannot be directly
inserted into a table. The BOOLEAN value may be converted to a SQL
datatype using the DECODE function before inserting.

19. C. By declaring a variable with %TYPE, the datatype and width are
assigned at runtime. The database definition may change and need not
require a code change in the PL/SQL block.

20. C. V_PRICE greater than 800 and less than or equal to 900 would
assign 'C' to V_GRADE. The IF statement is evaluated from the top
down.

21. B. When the condition or Boolean variable in the WHILE loop evalu-
ates to FALSE, the loop is terminated.

22. B. An IF…THEN…ELSIF clause can have only one ELSE clause; it can
have many ELSIF clauses.

23. B. One row will be added. Although the loop executes six times, the
value is inserted to the table only when the value of IX is 6. When IX is
7, all rows from the table are deleted, but the operation is rolled back.

24. C. %NOTFOUND and %FOUND would be NULL before the first fetch. They
will be either TRUE or FALSE after the first fetch, depending on the
fetch result.

25. B. SQL%FOUND and SQL%NOTFOUND will have Boolean values based on
the previous SQL statement executed inside the PL/SQL block.
SELECT COUNT(*) will always return a value.

http://www.sybex.com

472 Appendix A � Practice Exam

26. E. When you’re referencing record variables inside an explicit cursor,
you should reference the variables with the record name, not the cur-
sor name. Line 10 should read WHERE EMPNO = r_emp.empno;.

27. C. Options A and B do not take into account the possibility of NULL
values in the surcharge column.

28. C. GREATEST is a single-row function that takes an arbitrary number
of arguments.

29. B. This expression will resolve as follows:
LAST_DAY(ADD_MONTHS(SYSDATE,-2)) =
LAST_DAY(ADD_MONTHS(1-Mar-2000,-2)) =
LAST_DAY(1-Jan-2000) =
31-Jan-2000

30. A. MOD will return the remainder after dividing the first argument by
the second argument.

31. D. The format codes needed are DD, day of month; Th, ordinal modifier;
"of" a text string; Month, the month name spelled out; and YYYY, the
four-digit year.

32. B. With the VARCHAR2 datatype, trailing spaces are included in the
evaluation, so Y would sort greater than X. If the X and Y were the
CHAR datatype, they would be equal and option C would be correct,
but X and Y are VARCHAR2, so option B is correct.

33. B. SELECT FOR UPDATE is a DML statement. The others are all DDL,
which will implicitly end a transaction, but not begin one.

34. D. DBA_ROLE_PRIVS and DBA_SYS_PRIVS will report the GRANTEE
but not the GRANTOR.

35. A. The savepoint save_A is set after the balance is set to 5000, and the
transaction is rolled back to this savepoint twice.

36. C. The ALTER USER statement is used to change one or more attributes
of an existing user account. The IDENTIFIED BY clause specifies a
password to authenticate the user.

http://www.sybex.com

Answers to Practice Exam 473

37. A. By default, when a number refers to a disk storage amount, it is
measured in bytes.

38. D. The privilege ALL includes all the privileges that can be granted on
that type of object; for a sequence, this includes select and alter. The
grantee public is a special user that represents any user connected to
the database.

39. A. To remove a primary key, use the ALTER TABLE statement with the
DROP PRIMARY KEY clause.

40. B. SYSDATE cannot be used in a check constraint.

41. D. The ALTER TABLE statement with the DISABLE CONSTRAINT clause
is used to disable constraints.

42. B. Deferrable constraints are a relatively new feature in Oracle, and
the default behavior for when constraints are checked is backward
compatible. Thus, constraints are checked immediately (not deferred).
On the other hand, constraints are, by default, deferrable.

43. D. The correct symbol for use in named notation parameter passing is =>.

44. B. The following events are invalid: before startup, before logon,
before servererror, after shutdown, and after logoff.

45. B. Collections cannot be fields within a record.

46. D. Records can only be used in the VALUES clause of an INSERT state-
ment if each field is listed individually.

47. D. These are all valid statements. The exam may have tricky questions
like this, so beware.

48. D. Index-by tables are the only collection that is initialized automatically;
the other two must be initialized with a constructor.

49. C. Index-by tables can always be sparse, and nested tables can become
sparse after deletions.

http://www.sybex.com

474 Appendix A � Practice Exam

50. A. Records are composed of fields and are referenced with dot notation.
Collections are composed of elements and are referenced with subscript
notation.

51. C. Exceptions raised in the declaration section are handled by the
enclosing block.

52. B. The pragma exception_init statement associates an error number
with an exception name in the declaration section of a PL/SQL block.

53. B. Since the runtime engine has no knowledge of business rules or when
to raise a programmer-defined exception, the programmer is responsible
for identifying the error condition and raising the exception.

54. A. To create a programmer-defined exception, you declare it in the
declaration section of the PL/SQL block.

55. C. You associate an exception name with a server error number with
the PRAGMA EXCEPTION_INIT statement.

56. B. The RAISE_APPLICATION_ERROR procedure raises a programmer-
defined exception. This exception does not have to be given a name
previously. The number is assigned to the SQL CODE, and a TRUE in the
third argument will cause the exception to be appended to the error
stack rather than to overlay it.

http://www.sybex.com

Glossary

http://www.sybex.com

476

Glossary

Symbols

%ROWTYPE

Attribute used in PL/SQL to declare a
record variable. The variable is declared based on a
table, a cursor, or another record variable.

%TYPE

Attribute used in PL/SQL to declare a variable
based on a column or another variable. The variable is
declared with the datatype and length of the referencing
column or variable.

@

Used to execute a script file

—@

<filename>

.
Optionally, you may provide the positional substi-
tution variable values.

@@

Used to execute a script file inside another
script file. The called script file location is assumed to
be the same as the calling script.

A

Aggregate Functions

Also known as group functions,
functions that operate on groups of rows. These functions
don’t know how many arguments they will operate on
until the data is fetched and grouped.

Anonymous Block

A PL/SQL block that is not named.
Anonymous blocks may be present in the client tools or
inside named blocks, or they can be run as programs from
the server.

Associate an Exception

To give a name to a database
error. Use

PRAGMA EXCEPTION_INIT

 to associate a name
with a database error number.

C

Cardinality

The number of distinct values. If a
table has a cardinality of 1,000, it has 1,000 rows.
If a column has a cardinality of 30, it has 30 dis-
tinct values (there may be 1,000 rows, but only 30
distinct values).

Cartesian Join

The result of not specifying enough
join conditions when selecting data from multiple
tables. If there are

n

 tables, there should be at least

n–

1
joins to avoid a Cartesian product.

Child Table

The referencing table in a foreign key con-
straint; that is, the table with the foreign key constraint.

Cluster

An optional method of storing data. Tables
that are accessed together or joined frequently (parent/
child tables) can be stored together.

Collection

An ordered list of elements, similar to a
one-dimensional array.

COMMIT

Makes permanent the changes made to the
data. Changes are made using the

INSERT

,

UPDATE

, or

DELETE

 statements.

Concatenation

The joining of two character
string values. The symbol || is used in Oracle as the
concatenation operator.

Concurrency

The condition when many users/sessions
can access and modify data at the same time.

Consistency

A state maintained by the database.
A statement/transaction sees a time-consistent
image of the data plus any uncommitted data from
the statement/transaction.

Constant

A memory location to store a value that
cannot be changed in the program.

Constructor

A built-in function of nested tables and

VARRAY

s. A constructor is used to initialize the collection.

Control Structures

Lines of code to control the
flow of the PL/SQL program. There are conditional
and iterative control structures.

Correlated Subquery

A subquery that references
the column names of the parent query in the subquery.

Currval

The sequence pseudo-column that will
return the last number generated from the sequence
number generator.

Cursor Attribute

An attribute that gives the status
of the cursor. There are four cursor attributes:

%ISOPEN

,

%FOUND

,

%NOTFOUND

, and

%ROWCOUNT

.

Cursor

FOR

 Loop

A powerful loop structure that can
be used in PL/SQL to open, fetch, and close the cursor.

D

Datatype

A property of the data element. The datatype
defines the rules; for example, the

NUMBER

 datatype can be
used for arithmetic.

http://www.sybex.com

Glossary

477

Declaration Section

The section in the PL/SQL
block where you declare all the variables, constants,
cursors, exceptions, and type declarations.

Declare an Exception

To create a programmer-
defined error.

Default Column Values

Values specified in the
column definition that are used to insert values to
rows if the column value is

NULL

.

Deferrable

A constraint that can have constraint
checking delayed until the end of the transaction.

Delimiter

A special character used to separate different
statements in the PL/SQL program. A semicolon is the
delimiter in PL/SQL.

Design Phase

The most important phase in the
application development cycle. In order, the phases of
the application development cycle are Analysis,
Design, Development, Testing, and Implementation.

Dot Notation

The notation used in references to
fields within records or in the invocation of collection
methods.

DUAL

A dummy table in Oracle, mainly used to
execute SQL statements when there is no base table
needed for the query to execute successfully. For
example, DUAL is used to retrieve pseudo-column
values such as SYSDATE or user.

E

Entity-Relationship (ER) Model

A visual diagram used
in the analysis and design stage of the system development
cycle. The ER diagram shows the relationship between
entities and their attributes and characteristics.

Environment Variables

SQL*Plus variables that
allow the programmer to customize its environment.
These variables can be customized using the

SET

command.

Exception

An error in an Oracle system.

Exception Section

The section in the PL/SQL block
where the error-handling routines are written.

Executable Section

A mandatory section in the PL/
SQL block. The executable statements are written here.

F

FETCH

Retrieves a row from an open cursor. The

FETCH

 command is used to retrieve one row at a time.

Field

A component within a record.

FOR UPDATE

 Clause

Part of the

SELECT

 statement.
When used in a cursor, the

FOR UPDATE

 clause locks
the rows returned by the cursor.

Foreign Key Constraint

A constraint on one or
more columns that requires one or more

NULL

 values
in the protected columns or requires the data values in
all the protected columns to exist in a primary key or
unique constraint.

Function

A named, stored program in the Oracle
server. A function must return a value and may have
parameters to pass values to the function. Functions
can be used in SQL statements. Functions are called in
expressions.

I

Index

A structure associated with tables and clusters,
which is used to speed up queries. An index is an access
path used to reach the desired row more quickly.

Index-Organized Table

A table and an index stored
together.

Initially Deferred

A constraint that is set to delay
constraint checking until the end of the transaction.

Initially Immediate

A constraint that is set to perform
constraint checking at the end of each statement.

Iterative Control

A control structure that evaluates a
set of statements repeatedly. A

FOR…LOOP

,

WHILE…LOOP

,
or basic loop is used to code iterative control.

J

Julian Numbers

The values Oracle uses to calulate
dates. A Julian date refers to the number of days since
January 1, 4712

BC

.

http://www.sybex.com

478

Glossary

K

Key

A distinct value in an index.

L

Labels

Identifiers used to label a block or a loop
structure, or to branch control to a different part of
the program using a

GOTO

 statement. Labels are always
enclosed in double angle brackets (<< >>).

LOB

Large Object in Oracle. A

LOB

 is used to store
large, unstructured data.

Lock

A resource collision avoidance mechanism.

M

Method

A built-in function of collections. Methods
are used to manipulate the collection.

N

Named Block

A PL/SQL block that has a name. A
named block can appear inside an anonymous block
or may be stored in the database. There are two types
of named blocks: functions and procedures.

Named Notation

The parameter-passing method,
used for procedures and functions. It explicitly assigns
values to parameters based on the parameter name.

Nested Block A block within another block. You
may have as many levels of nesting as needed.

Nextval The sequence pseudo-column that will
cause the generation of the next number from the
sequence number generator.

NLS National Language Support. NLS parameters and
arguments allow you to internationalize your Oracle
database system. NLS internationalizations include date
representations, character sets and alphabets, and alpha-
betical ordering.

Nondeferrable A constraint that must have constraint
checking at the end of each statement and cannot delay
constraint checking until the end of the transaction.

NOT NULL Constraint A column constraint that
requires a data value in the protected column.

NULL An unknown value or statement. If used in
the PL/SQL block, NULL says, “Do nothing.” A
NULL can be used as a filler when an executable
statement is mandatory and you have nothing to
do. Most functions return NULL when called with a
NULL argument.

O
On Delete Cascade A foreign key option that
causes deletes on the parent table to automatically
cause corresponding deletes to the child table.

On Delete Set NULL A foreign key option that
causes deletes on the parent table to automatically
cause corresponding columns in the child table to be
set to NULL.

Oracle Data Dictionary A set of tables and views
that store the metadata of the Oracle database.

Outer Join A join used to select data from a table
even if there is no matching row in the joined table.
These are the rows that are not returned by using a
simple join. A plus symbol surrounded by parentheses
((+)) is the outer-join operator.

Owner The schema that owns an object. Owner,
schema, and user represent a logical grouping of data-
base objects in the database.

P
Package A stored program that is a collection of pro-
gram units like functions, procedures, variables, and so
on. Packages are created with a specification and a body.

Parent Table The referenced table in a foreign key
constraint; that is, the table with the primary or
unique constraint.

PL/SQL Engine The technology that compiles and exe-
cutes PL/SQL programs inside an Oracle server. The PL/
SQL engine is integrated into the Oracle server and certain
other Oracle tools that process PL/SQL programs. The
engine processes procedural statements.

Positional Notation The parameter-passing
method, used for procedures and functions, that relies
on the order of the parameters to determine which
parameter receives which value.

http://www.sybex.com

Glossary 479

Primary Key Constraint A constraint on one or
more columns that combines NOT NULL constraints on
each protected column and a unique constraint on all
protected columns. The primary key uniquely identi-
fies any row in a table.

Private Synonym A restricted alias to another object.

Procedure A stored PL/SQL program that gets
called as a statement. A procedure does not return any
value directly, but you may pass values to and from
the procedure using parameters. Procedures cannot be
used in SQL statements.

Public Synonym A global alias to another object.

Q
Qualify To further specify a table or column name
to avoid ambiguity. The table name is qualified with
its owner or schema name; a column name is qualified
with its table name or alias name.

Query A SELECT statement used to retrieve
already-saved data from the database.

R
Raise an Exception To cause an error to occur.

RDBMS Relational Database Management System.
The most widely used database concept in the infor-
mation technology world.

Record A composite datatype.

ROLLBACK An action that undoes the changes made
to the database since the transaction began.

ROWID The pseudo-column and physical address of a
row in a table.

S
SAVEPOINT A marker set in between DML statements in
a single transaction to go back to a specific point.

Schema A logical grouping of Oracle database
objects.

SCN System Change Number. A number that repre-
sents a committed, consistent image of the database.
SCNs only increase with time.

Script File A file that contains a set of commands
that are run sequentially.

Self-Join A join that occurs when the table is joined
to itself in a query.

Sequence An Oracle object that provides unique
sequential numbers.

Single-Row Functions Functions that operate on a
single row at a time. These functions know how many
arguments they will operate on at compile time, before
any data is fetched.

SQL Buffer The area in SQL*Plus where the last
command executed is saved.

SQL*Plus Oracle’s native tool to interact with the
database.

SQLCODE A built-in function that returns the current
database error number.

SQLERRM A built-in function that returns the text of
the current database error.

Statement A single SQL command that can include
subqueries.

Structured Query Language SQL, the database-
access language to query and manipulate data in the
database.

Sub-Block The block that appears inside a block in
a nested block structure.

Subquery A query inside a query.

Subscript Notation The parenthetical notation
used in references to elements in a collection.

Synonym An alias name for an object. Synonyms
can mask the owner or even the database of the object.

SYS The schema that owns the Oracle data dictionary.

T
Table The basic unit of data storage in Oracle. The
data is stored in rows and columns.

Transaction A logical group of DML statements con-
sidered a single unit. Together, the statements constitute
an atomic view of data or an atomic change to data.

http://www.sybex.com

480 Glossary

Trigger A stored program unit created in the Oracle
server, which is attached to an event and executes
when the event occurs. Prior to Oracle8i, a trigger was
always attached to a table and the events were INSERT,
UPDATE, and DELETE. In Oracle8i, triggers can be cre-
ated for database-level or user-level events.

Truncate To remove all rows of data from the table.

TYPE The statement used to define a record or collection.

U
Unique Constraint A constraint on one or more
columns in a table that ensures no two rows contain
duplicate data in the protected columns.

User Another term used for schema. Schema, user,
and owner represent a logical grouping of database
objects in the database.

V
Variable A memory location to store a value, which
may be used any number of times in the PL/SQL pro-
gram. The value of the variable can be changed inside
the program.

View A logical representation of data from tables.
Views are stored queries.

W
WHERE CURRENT OF A clause used in UPDATE and
DELETE statements inside an explicit cursor to point to
the most recent row fetched.

http://www.sybex.com

	Using Your Sybex Electronic Book
	OCP: Oracle8i DBA SQL and PL/ SQL Study Guide
	Front Matter
	Acknowledgments
	Introduction
	Why Become an Oracle Certified Professional?
	Oracle Certifications
	OCP: Database Administrator Track
	Where Do You Take the Exam?

	What Does This Book Cover?
	How to Use This Book
	What's on the CD?

	How to Contact the Authors
	Assessment Test
	Answers to Assessment Test

	Chapter 1: Relational Technology and Simple SQL SELECT Statements
	Relational Database Systems
	Characteristics of a Relational Database
	Application Development Cycle
	Oracle's Implementation of RDBMS and ORDBMS

	Oracle Datatypes
	Character Datatypes
	Numeric Datatypes
	The Date Datatype
	LOB Datatypes
	Other Datatypes
	Literals

	SQL Fundamentals
	Operators and Expressions

	Writing Simple Queries
	SELECT Statement
	Limiting Rows
	Sorting Rows

	SQL*Plus: Oracle's Native Interface
	SQL*Plus: Basics
	Producing More Readable Output
	Accepting Values at Runtime

	Summary
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 2: Single-Row and Group Functions
	Single-Row Functions in SQL
	NULLs and Single-Row Functions
	Single-Row Character Functions
	Single-Row Numeric Functions
	Single-Row Date Functions
	Single-Row Conversion Functions
	Programmer-Written Single-Row Functions
	Other Single-Row Functions

	Group Functions in SQL
	Group (Multi-row) Functions
	Grouping Data with GROUP BY
	Limiting Grouped Data with HAVING
	Nesting Functions

	Summary
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 3: Joins and Subqueries
	Multiple Table Queries
	Equality and Non-Equality Joins
	Cartesian Joins
	Outer Joins
	Self-Join
	Using Set Operators

	Subqueries
	Single-Row and Multiple-Row Subqueries

	NULL Values in Subqueries
	Multiple-Column Subqueries
	Subqueries in the FROM Clause
	Summary
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 4: Modifying Data and Security
	DML Statements
	Inserting Rows into a Table
	Updating Rows in a Table
	Deleting Rows from a Table
	Selecting Rows FOR UPDATE
	Locking a Table
	DML Locks in Oracle

	Transaction Control
	Transactions
	Savepoints and Partial Rollbacks
	Consistency and Transactions
	Enabling Transaction-Level Consistency

	Creating and Modifying Users
	Database-Authenticated User Accounts
	Externally Authenticated User Accounts
	Globally Authenticated User Accounts
	Creating and Altering User Accounts

	Privileges and Roles
	Creating and Using Roles
	Object Privileges
	System Privileges
	Roles and Role Privileges
	Assigning and Rescinding Privileges
	Privileges and the Data Dictionary

	Summary
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 5: Creating and Managing Tables and Views
	Managing Tables
	Naming Conventions
	Creating from Another Table
	Modifying Table Definitions
	Dropping/Renaming Tables

	Managing Views
	Creating a View
	Retrieving Data
	Inserting, Updating, and Deleting Data
	Dropping a View
	Summary
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 6: Other Database Objects and the Data Dictionary
	Other Database Objects
	Constraints
	Sequences
	Indexes
	Synonyms
	Procedures and Functions
	Packages
	Triggers
	A Quick 'n' Dirty Review of the Data Dictionary
	Querying the Data Dictionary

	Summary
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 7: PL/SQL Basics
	Benefits of PL/SQL
	The PL/SQL Block Structure
	Named and Anonymous Blocks

	Variables and Constants
	Declaring Variables
	Assigning Values to Variables
	Constants
	Scalar Datatypes
	LOB Datatypes
	Operators
	The Executable Section
	Executing a Block
	Control Structures
	Syntax and Usage

	Labels
	Labeled Blocks
	Labeled Loops
	The GOTO Statement
	Nested Blocks
	Summary
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 8: Interacting with the Database
	Accessing the Database
	Queries
	Other DML Statements
	Transaction Control Statements

	Explicit Cursors
	Using Cursors
	Cursors with Parameters
	Cursor FOR Loops
	Subqueries in a Cursor
	Updating and Deleting in a Cursor

	Summary
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 9: Working with Composite Datatypes and Collections
	PL/SQL Records
	Creating Records
	Using Records

	PL/SQL Collections
	Types of Collections
	Using Collections

	Summary
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 10: Exception Handling
	Exceptions, Errors, and PL/SQL
	Raising and Handling Exceptions
	Raising Exceptions
	Handling Exceptions
	Exception Propagation

	Named Exceptions
	Customizing Exception Handling
	Declaring Your Own Exceptions
	Giving Names to Database Errors
	Numbering Programmer-Defined Errors

	Summary
	Key Terms
	Review Questions
	Answers to Review Questions

	Appendix A: Practice Exam
	Practice Exam Questions
	Answers to Practice Exam

	Glossary

	Exit

	copyright: Copyright ©2000 SYBEX , Inc., Alameda, CA
	link:

