
Python Tutorial
Release 2.3.3

Guido van Rossum
Fred L. Drake, Jr., editor

December 19, 2003

PythonLabs
Email: docs@python.org

Copyright c© 2001, 2002, 2003 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple
but effective approach to object-oriented programming. Python’s elegant syntax and dynamic typing, together
with its interpreted nature, make it an ideal language for scripting and rapid application development in many
areas on most platforms.

The Python interpreter and the extensive standard library are freely available in source or binary form for all major
platforms from the Python Web site,http://www.python.org/, and can be freely distributed. The same site also
contains distributions of and pointers to many free third party Python modules, programs and tools, and additional
documentation.

The Python interpreter is easily extended with new functions and data types implemented in C or C++ (or other
languages callable from C). Python is also suitable as an extension language for customizable applications.

This tutorial introduces the reader informally to the basic concepts and features of the Python language and system.
It helps to have a Python interpreter handy for hands-on experience, but all examples are self-contained, so the
tutorial can be read off-line as well.

For a description of standard objects and modules, see thePython Library Referencedocument. ThePython
Reference Manualgives a more formal definition of the language. To write extensions in C or C++, readExtending
and Embedding the Python InterpreterandPython/C API Reference. There are also several books covering Python
in depth.

This tutorial does not attempt to be comprehensive and cover every single feature, or even every commonly used
feature. Instead, it introduces many of Python’s most noteworthy features, and will give you a good idea of the
language’s flavor and style. After reading it, you will be able to read and write Python modules and programs,
and you will be ready to learn more about the various Python library modules described in thePython Library
Reference.

CONTENTS

1 Whetting Your Appetite 1

2 Using the Python Interpreter 3
2.1 Invoking the Interpreter. 3
2.2 The Interpreter and Its Environment. 4

3 An Informal Introduction to Python 7
3.1 Using Python as a Calculator. 7
3.2 First Steps Towards Programming. 16

4 More Control Flow Tools 19
4.1 if Statements . 19
4.2 for Statements . 19
4.3 Therange() Function . 20
4.4 break andcontinue Statements, andelse Clauses on Loops. 20
4.5 pass Statements . 21
4.6 Defining Functions . 21
4.7 More on Defining Functions. 23

5 Data Structures 27
5.1 More on Lists . 27
5.2 Thedel statement . 31
5.3 Tuples and Sequences. 31
5.4 Dictionaries . 32
5.5 Looping Techniques. 33
5.6 More on Conditions . 34
5.7 Comparing Sequences and Other Types. 35

6 Modules 37
6.1 More on Modules . 38
6.2 Standard Modules. 39
6.3 Thedir() Function . 40
6.4 Packages. 41

7 Input and Output 45
7.1 Fancier Output Formatting . 45
7.2 Reading and Writing Files. 47

8 Errors and Exceptions 51
8.1 Syntax Errors . 51
8.2 Exceptions . 51
8.3 Handling Exceptions . 52
8.4 Raising Exceptions . 54
8.5 User-defined Exceptions. 54

i

8.6 Defining Clean-up Actions . 56

9 Classes 57
9.1 A Word About Terminology. 57
9.2 Python Scopes and Name Spaces. 57
9.3 A First Look at Classes. 59
9.4 Random Remarks. 61
9.5 Inheritance. 62
9.6 Private Variables. 63
9.7 Odds and Ends. 64
9.8 Exceptions Are Classes Too. 64
9.9 Iterators. 65
9.10 Generators. 66

10 Brief Tour of the Standard Library 69
10.1 Operating System Interface. 69
10.2 File Wildcards . 69
10.3 Command Line Arguments. 70
10.4 Error Output Redirection and Program Termination. 70
10.5 String Pattern Matching. 70
10.6 Mathematics. 70
10.7 Internet Access. 71
10.8 Dates and Times. 71
10.9 Data Compression. 72
10.10 Performance Measurement. 72
10.11 Quality Control. 73
10.12 Batteries Included. 73

11 What Now? 75

A Interactive Input Editing and History Substitution 77
A.1 Line Editing . 77
A.2 History Substitution . 77
A.3 Key Bindings . 77
A.4 Commentary . 79

B Floating Point Arithmetic: Issues and Limitations 81
B.1 Representation Error. 83

C History and License 85
C.1 History of the software. 85
C.2 Terms and conditions for accessing or otherwise using Python. 86

D Glossary 89

Index 93

ii

CHAPTER

ONE

Whetting Your Appetite

If you ever wrote a large shell script, you probably know this feeling: you’d love to add yet another feature, but
it’s already so slow, and so big, and so complicated; or the feature involves a system call or other function that
is only accessible from C . . . Usually the problem at hand isn’t serious enough to warrant rewriting the script in
C; perhaps the problem requires variable-length strings or other data types (like sorted lists of file names) that are
easy in the shell but lots of work to implement in C, or perhaps you’re not sufficiently familiar with C.

Another situation: perhaps you have to work with several C libraries, and the usual C write/compile/test/re-compile
cycle is too slow. You need to develop software more quickly. Possibly perhaps you’ve written a program that
could use an extension language, and you don’t want to design a language, write and debug an interpreter for it,
then tie it into your application.

In such cases, Python may be just the language for you. Python is simple to use, but it is a real programming
language, offering much more structure and support for large programs than the shell has. On the other hand, it
also offers much more error checking than C, and, being avery-high-level language, it has high-level data types
built in, such as flexible arrays and dictionaries that would cost you days to implement efficiently in C. Because
of its more general data types Python is applicable to a much larger problem domain thanAwkor evenPerl, yet
many things are at least as easy in Python as in those languages.

Python allows you to split up your program in modules that can be reused in other Python programs. It comes
with a large collection of standard modules that you can use as the basis of your programs — or as examples to
start learning to program in Python. There are also built-in modules that provide things like file I/O, system calls,
sockets, and even interfaces to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during program development because no
compilation and linking is necessary. The interpreter can be used interactively, which makes it easy to experiment
with features of the language, to write throw-away programs, or to test functions during bottom-up program
development. It is also a handy desk calculator.

Python allows writing very compact and readable programs. Programs written in Python are typically much
shorter than equivalent C or C++ programs, for several reasons:

• the high-level data types allow you to express complex operations in a single statement;

• statement grouping is done by indentation instead of beginning and ending brackets;

• no variable or argument declarations are necessary.

Python isextensible: if you know how to program in C it is easy to add a new built-in function or module to the
interpreter, either to perform critical operations at maximum speed, or to link Python programs to libraries that
may only be available in binary form (such as a vendor-specific graphics library). Once you are really hooked, you
can link the Python interpreter into an application written in C and use it as an extension or command language
for that application.

By the way, the language is named after the BBC show “Monty Python’s Flying Circus” and has nothing to do with
nasty reptiles. Making references to Monty Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you’ll want to examine it in some more detail. Since the best way to
learn a language is using it, you are invited here to do so.

1

In the next chapter, the mechanics of using the interpreter are explained. This is rather mundane information, but
essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and system through examples, beginning
with simple expressions, statements and data types, through functions and modules, and finally touching upon
advanced concepts like exceptions and user-defined classes.

2 Chapter 1. Whetting Your Appetite

CHAPTER

TWO

Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed as ‘/usr/local/bin/python’ on those machines where it is available; putting
‘ /usr/local/bin’ in your UNIX shell’s search path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is an installation option, other places
are possible; check with your local Python guru or system administrator. (E.g., ‘/usr/local/python’ is a popular
alternative location.)

Typing an end-of-file character (Control-D on UNIX , Control-Z on Windows) at the primary prompt causes
the interpreter to exit with a zero exit status. If that doesn’t work, you can exit the interpreter by typing the
following commands: ‘import sys; sys.exit() ’.

The interpreter’s line-editing features usually aren’t very sophisticated. On UNIX , whoever installed the interpreter
may have enabled support for the GNU readline library, which adds more elaborate interactive editing and history
features. Perhaps the quickest check to see whether command line editing is supported is typing Control-P to the
first Python prompt you get. If it beeps, you have command line editing; see Appendix A for an introduction to
the keys. If nothing appears to happen, or if^P is echoed, command line editing isn’t available; you’ll only be
able to use backspace to remove characters from the current line.

The interpreter operates somewhat like the UNIX shell: when called with standard input connected to a tty device,
it reads and executes commands interactively; when called with a file name argument or with a file as standard
input, it reads and executes ascript from that file.

A second way of starting the interpreter is ‘python -c command [arg] ... ’, which executes the statement(s)
in command, analogous to the shell’s-c option. Since Python statements often contain spaces or other characters
that are special to the shell, it is best to quotecommandin its entirety with double quotes.

Note that there is a difference between ‘python file ’ and ‘python <file ’. In the latter case, input requests
from the program, such as calls toinput() andraw_input() , are satisfied fromfile. Since this file has already
been read until the end by the parser before the program starts executing, the program will encounter end-of-file
immediately. In the former case (which is usually what you want) they are satisfied from whatever file or device
is connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run the script and enter interactive mode afterwards.
This can be done by passing-i before the script. (This does not work if the script is read from standard input, for
the same reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter are passed to the script in
the variablesys.argv , which is a list of strings. Its length is at least one; when no script and no arguments

3

are given,sys.argv[0] is an empty string. When the script name is given as’-’ (meaning standard input),
sys.argv[0] is set to’-’ . When-c commandis used,sys.argv[0] is set to’-c’ . Options found after-c
commandare not consumed by the Python interpreter’s option processing but left insys.argv for the command
to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be ininteractive mode. In this mode it prompts for
the next command with theprimary prompt, usually three greater-than signs (‘>>> ’); for continuation lines it
prompts with thesecondary prompt, by default three dots (‘... ’). The interpreter prints a welcome message
stating its version number and a copyright notice before printing the first prompt:

python
Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunos5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>

Continuation lines are needed when entering a multi-line construct. As an example, take a look at thisif state-
ment:

>>> the_world_is_flat = 1
>>> if the_world_is_flat:
... print "Be careful not to fall off!"
...
Be careful not to fall off!

2.2 The Interpreter and Its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In interactive mode, it then returns
to the primary prompt; when input came from a file, it exits with a nonzero exit status after printing the stack
trace. (Exceptions handled by anexcept clause in atry statement are not errors in this context.) Some errors
are unconditionally fatal and cause an exit with a nonzero exit; this applies to internal inconsistencies and some
cases of running out of memory. All error messages are written to the standard error stream; normal output from
the executed commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or secondary prompt cancels the
input and returns to the primary prompt.1 Typing an interrupt while a command is executing raises the
KeyboardInterrupt exception, which may be handled by atry statement.

2.2.2 Executable Python Scripts

On BSD’ish UNIX systems, Python scripts can be made directly executable, like shell scripts, by putting the line

#! /usr/bin/env python

(assuming that the interpreter is on the user’s PATH) at the beginning of the script and giving the file an executable
mode. The ‘#! ’ must be the first two characters of the file. On some platforms, this first line must end with a

1A problem with the GNU Readline package may prevent this.

4 Chapter 2. Using the Python Interpreter

UNIX -style line ending (‘\n ’), not a Mac OS (‘\r ’) or Windows (‘\r\n ’) line ending. Note that the hash, or
pound, character, ‘#’, is used to start a comment in Python.

The script can be given a executable mode, or permission, using thechmodcommand:

$ chmod +x myscript.py

2.2.3 Source Code Encoding

It is possible to use encodings different thanASCII in Python source files. The best way to do it is to put one more
special comment line right after the#! line to define the source file encoding:

-*- coding: iso-8859-1 -*-

With that declaration, all characters in the source file will be treated asiso-8859-1 , and it will be possible to
directly write Unicode string literals in the selected encoding. The list of possible encodings can be found in the
Python Library Reference, in the section oncodecs .

If your editor supports saving files asUTF-8 with a UTF-8byte order mark(aka BOM), you can use that in-
stead of an encoding declaration. IDLE supports this capability ifOptions/General/Default Source
Encoding/UTF-8 is set. Notice that this signature is not understood in older Python releases (2.2 and earlier),
and also not understood by the operating system for#! files.

By using UTF-8 (either through the signature or an encoding declaration), characters of most languages in the
world can be used simultaneously in string literals and comments. Using non-ASCIIcharacters in identifiers is not
supported. To display all these characters properly, your editor must recognize that the file is UTF-8, and it must
use a font that supports all the characters in the file.

2.2.4 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard commands executed every time
the interpreter is started. You can do this by setting an environment variable named PYTHONSTARTUP to the
name of a file containing your start-up commands. This is similar to the ‘.profile’ feature of the UNIX shells.

This file is only read in interactive sessions, not when Python reads commands from a script, and not when
‘ /dev/tty’ is given as the explicit source of commands (which otherwise behaves like an interactive session). It
is executed in the same namespace where interactive commands are executed, so that objects that it defines or
imports can be used without qualification in the interactive session. You can also change the promptssys.ps1
andsys.ps2 in this file.

If you want to read an additional start-up file from the current directory, you can program this in the global start-up
file using code like ‘if os.path.isfile(’.pythonrc.py’): execfile(’.pythonrc.py’) ’.
If you want to use the startup file in a script, you must do this explicitly in the script:

import os
filename = os.environ.get(’PYTHONSTARTUP’)
if filename and os.path.isfile(filename):

execfile(filename)

2.2. The Interpreter and Its Environment 5

6

CHAPTER

THREE

An Informal Introduction to Python

In the following examples, input and output are distinguished by the presence or absence of prompts (‘>>> ’ and
‘ ... ’): to repeat the example, you must type everything after the prompt, when the prompt appears; lines that
do not begin with a prompt are output from the interpreter. Note that a secondary prompt on a line by itself in an
example means you must type a blank line; this is used to end a multi-line command.

Many of the examples in this manual, even those entered at the interactive prompt, include comments. Comments
in Python start with the hash character, ‘#’, and extend to the end of the physical line. A comment may appear at
the start of a line or following whitespace or code, but not within a string literal. A hash character within a string
literal is just a hash character.

Some examples:

this is the first comment
SPAM = 1 # and this is the second comment

... and now a third!
STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let’s try some simple Python commands. Start the interpreter and wait for the primary prompt, ‘>>> ’. (It
shouldn’t take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it will write the value. Expression
syntax is straightforward: the operators+, - , * and/ work just like in most other languages (for example, Pascal
or C); parentheses can be used for grouping. For example:

7

>>> 2+2
4
>>> # This is a comment
... 2+2
4
>>> 2+2 # and a comment on the same line as code
4
>>> (50-5*6)/4
5
>>> # Integer division returns the floor:
... 7/3
2
>>> 7/-3
-3

Like in C, the equal sign (‘=’) is used to assign a value to a variable. The value of an assignment is not written:

>>> width = 20
>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x = y = z = 0 # Zero x, y and z
>>> x
0
>>> y
0
>>> z
0

There is full support for floating point; operators with mixed type operands convert the integer operand to floating
point:

>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2
3.5

Complex numbers are also supported; imaginary numbers are written with a suffix of ‘j ’ or ‘ J ’. Complex numbers
with a nonzero real component are written as ‘(real+imagj) ’, or can be created with the ‘complex(real,
imag) ’ function.

>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
(-1+0j)
>>> 3+1j*3
(3+3j)
>>> (3+1j)*3
(9+3j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)

8 Chapter 3. An Informal Introduction to Python

Complex numbers are always represented as two floating point numbers, the real and imaginary part. To extract
these parts from a complex numberz, usez.real andz.imag .

>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5

The conversion functions to floating point and integer (float() , int() andlong()) don’t work for complex
numbers — there is no one correct way to convert a complex number to a real number. Useabs(z) to get its
magnitude (as a float) orz.real to get its real part.

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: can’t convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0
>>>

In interactive mode, the last printed expression is assigned to the variable_. This means that when you are using
Python as a desk calculator, it is somewhat easier to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06
>>>

This variable should be treated as read-only by the user. Don’t explicitly assign a value to it — you would create
an independent local variable with the same name masking the built-in variable with its magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in several ways. They can be
enclosed in single quotes or double quotes:

3.1. Using Python as a Calculator 9

>>> ’spam eggs’
’spam eggs’
>>> ’doesn\’t’
"doesn’t"
>>> "doesn’t"
"doesn’t"
>>> ’"Yes," he said.’
’"Yes," he said.’
>>> "\"Yes,\" he said."
’"Yes," he said.’
>>> ’"Isn\’t," she said.’
’"Isn\’t," she said.’

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash as the last
character on the line indicating that the next line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant."

print hello

Note that newlines would still need to be embedded in the string using\n ; the newline following the trailing
backslash is discarded. This example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.

Note that whitespace at the beginning of the line is significant.

If we make the string literal a “raw” string, however, the\n sequences are not converted to newlines, but the
backslash at the end of the line, and the newline character in the source, are both included in the string as data.
Thus, the example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print:

This is a rather long string containing\n\
several lines of text much as you would do in C.

Or, strings can be surrounded in a pair of matching triple-quotes:""" or ’’’ . End of lines do not need to be
escaped when using triple-quotes, but they will be included in the string.

print """
Usage: thingy [OPTIONS]

-h Display this usage message
-H hostname Hostname to connect to

"""

produces the following output:

10 Chapter 3. An Informal Introduction to Python

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

The interpreter prints the result of string operations in the same way as they are typed for input: inside quotes, and
with quotes and other funny characters escaped by backslashes, to show the precise value. The string is enclosed
in double quotes if the string contains a single quote and no double quotes, else it’s enclosed in single quotes. (The
print statement, described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) with the+ operator, and repeated with* :

>>> word = ’Help’ + ’A’
>>> word
’HelpA’
>>> ’<’ + word*5 + ’>’
’<HelpAHelpAHelpAHelpAHelpA>’

Two string literals next to each other are automatically concatenated; the first line above could also have been
written ‘word = ’Help’ ’A’ ’; this only works with two literals, not with arbitrary string expressions:

>>> ’str’ ’ing’ # <- This is ok
’string’
>>> ’str’.strip() + ’ing’ # <- This is ok
’string’
>>> ’str’.strip() ’ing’ # <- This is invalid

File "<stdin>", line 1, in ?
’str’.strip() ’ing’

^
SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has subscript (index) 0. There is no
separate character type; a character is simply a string of size one. Like in Icon, substrings can be specified with
theslice notation: two indices separated by a colon.

>>> word[4]
’A’
>>> word[0:2]
’He’
>>> word[2:4]
’lp’

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted second index defaults to the
size of the string being sliced.

>>> word[:2] # The first two characters
’He’
>>> word[2:] # All but the first two characters
’lpA’

Unlike a C string, Python strings cannot be changed. Assigning to an indexed position in the string results in an
error:

3.1. Using Python as a Calculator 11

>>> word[0] = ’x’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn’t support item assignment
>>> word[:1] = ’Splat’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn’t support slice assignment

However, creating a new string with the combined content is easy and efficient:

>>> ’x’ + word[1:]
’xelpA’
>>> ’Splat’ + word[4]
’SplatA’

Here’s a useful invariant of slice operations:s[:i] + s[i:] equalss .

>>> word[:2] + word[2:]
’HelpA’
>>> word[:3] + word[3:]
’HelpA’

Degenerate slice indices are handled gracefully: an index that is too large is replaced by the string size, an upper
bound smaller than the lower bound returns an empty string.

>>> word[1:100]
’elpA’
>>> word[10:]
’’
>>> word[2:1]
’’

Indices may be negative numbers, to start counting from the right. For example:

>>> word[-1] # The last character
’A’
>>> word[-2] # The last-but-one character
’p’
>>> word[-2:] # The last two characters
’pA’
>>> word[:-2] # All but the last two characters
’Hel’

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)
’H’

Out-of-range negative slice indices are truncated, but don’t try this for single-element (non-slice) indices:

12 Chapter 3. An Informal Introduction to Python

>>> word[-100:]
’HelpA’
>>> word[-10] # error
Traceback (most recent call last):

File "<stdin>", line 1, in ?
IndexError: string index out of range

The best way to remember how slices work is to think of the indices as pointingbetweencharacters, with the left
edge of the first character numbered 0. Then the right edge of the last character of a string ofn characters has
indexn, for example:

+---+---+---+---+---+
| H | e | l | p | A |
+---+---+---+---+---+
0 1 2 3 4 5

-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the second row gives the corresponding
negative indices. The slice fromi to j consists of all characters between the edges labeledi andj, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if both are within bounds. For
example, the length ofword[1:3] is 2.

The built-in functionlen() returns the length of a string:

>>> s = ’supercalifragilisticexpialidocious’
>>> len(s)
34

See Also:

Sequence Types
(../lib/typesseq.html)

Strings, and the Unicode strings described in the next section, are examples ofsequence types, and support
the common operations supported by such types.

String Methods
(../lib/string-methods.html)

Both strings and Unicode strings support a large number of methods for basic transformations and searching.

String Formatting Operations
(../lib/typesseq-strings.html)

The formatting operations invoked when strings and Unicode strings are the left operand of the%operator
are described in more detail here.

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the programmer: the Unicode object.
It can be used to store and manipulate Unicode data (seehttp://www.unicode.org/) and integrates well with the
existing string objects providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every script used in modern and ancient
texts. Previously, there were only 256 possible ordinals for script characters and texts were typically bound to
a code page which mapped the ordinals to script characters. This lead to very much confusion especially with
respect to internationalization (usually written as ‘i18n ’ — ‘ i ’ + 18 characters + ‘n’) of software. Unicode
solves these problems by defining one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal strings:

3.1. Using Python as a Calculator 13

>>> u’Hello World !’
u’Hello World !’

The small ‘u’ in front of the quote indicates that an Unicode string is supposed to be created. If you want
to include special characters in the string, you can do so by using the PythonUnicode-Escapeencoding. The
following example shows how:

>>> u’Hello\u0020World !’
u’Hello World !’

The escape sequence\u0020 indicates to insert the Unicode character with the ordinal value 0x0020 (the space
character) at the given position.

Other characters are interpreted by using their respective ordinal values directly as Unicode ordinals. If you have
literal strings in the standard Latin-1 encoding that is used in many Western countries, you will find it convenient
that the lower 256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You have to prefix the opening quote
with ’ur’ to have Python use theRaw-Unicode-Escapeencoding. It will only apply the above\uXXXX conversion
if there is an uneven number of backslashes in front of the small ’u’.

>>> ur’Hello\u0020World !’
u’Hello World !’
>>> ur’Hello\\u0020World !’
u’Hello\\\\u0020World !’

The raw mode is most useful when you have to enter lots of backslashes, as can be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways of creating Unicode strings on
the basis of a known encoding.

The built-in functionunicode() provides access to all registered Unicode codecs (COders and DECoders).
Some of the more well known encodings which these codecs can convert areLatin-1, ASCII, UTF-8, andUTF-16.
The latter two are variable-length encodings that store each Unicode character in one or more bytes. The default
encoding is normally set toASCII, which passes through characters in the range 0 to 127 and rejects any other
characters with an error. When a Unicode string is printed, written to a file, or converted withstr() , conversion
takes place using this default encoding.

>>> u"abc"
u’abc’
>>> str(u"abc")
’abc’
>>> u"äöü"
u’\xe4\xf6\xfc’
>>> str(u"äöü")
Traceback (most recent call last):

File "<stdin>", line 1, in ?
UnicodeEncodeError: ’ascii’ codec can’t encode characters in position 0-2: ordinal not in range(128)

To convert a Unicode string into an 8-bit string using a specific encoding, Unicode objects provide anencode()
method that takes one argument, the name of the encoding. Lowercase names for encodings are preferred.

>>> u"äöü".encode(’utf-8’)
’\xc3\xa4\xc3\xb6\xc3\xbc’

14 Chapter 3. An Informal Introduction to Python

If you have data in a specific encoding and want to produce a corresponding Unicode string from it, you can use
theunicode() function with the encoding name as the second argument.

>>> unicode(’\xc3\xa4\xc3\xb6\xc3\xbc’, ’utf-8’)
u’\xe4\xf6\xfc’

3.1.4 Lists

Python knows a number ofcompounddata types, used to group together other values. The most versatile is the
list, which can be written as a list of comma-separated values (items) between square brackets. List items need
not all have the same type.

>>> a = [’spam’, ’eggs’, 100, 1234]
>>> a
[’spam’, ’eggs’, 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated and so on:

>>> a[0]
’spam’
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:-1]
[’eggs’, 100]
>>> a[:2] + [’bacon’, 2*2]
[’spam’, ’eggs’, ’bacon’, 4]
>>> 3*a[:3] + [’Boe!’]
[’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’spam’, ’eggs’, 100, ’Boe!’]

Unlike strings, which areimmutable, it is possible to change individual elements of a list:

>>> a
[’spam’, ’eggs’, 100, 1234]
>>> a[2] = a[2] + 23
>>> a
[’spam’, ’eggs’, 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list:

3.1. Using Python as a Calculator 15

>>> # Replace some items:
... a[0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:
... a[0:2] = []
>>> a
[123, 1234]
>>> # Insert some:
... a[1:1] = [’bletch’, ’xyzzy’]
>>> a
[123, ’bletch’, ’xyzzy’, 1234]
>>> a[:0] = a # Insert (a copy of) itself at the beginning
>>> a
[123, ’bletch’, ’xyzzy’, 1234, 123, ’bletch’, ’xyzzy’, 1234]

The built-in functionlen() also applies to lists:

>>> len(a)
8

It is possible to nest lists (create lists containing other lists), for example:

>>> q = [2, 3]
>>> p = [1, q, 4]
>>> len(p)
3
>>> p[1]
[2, 3]
>>> p[1][0]
2
>>> p[1].append(’xtra’) # See section 5.1
>>> p
[1, [2, 3, ’xtra’], 4]
>>> q
[2, 3, ’xtra’]

Note that in the last example,p[1] andq really refer to the same object! We’ll come back toobject semantics
later.

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two together. For instance, we can
write an initial sub-sequence of theFibonacciseries as follows:

16 Chapter 3. An Informal Introduction to Python

>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print b
... a, b = b, a+b
...
1
1
2
3
5
8

This example introduces several new features.

• The first line contains amultiple assignment: the variablesa andb simultaneously get the new values 0
and 1. On the last line this is used again, demonstrating that the expressions on the right-hand side are all
evaluated first before any of the assignments take place. The right-hand side expressions are evaluated from
the left to the right.

• Thewhile loop executes as long as the condition (here:b < 10) remains true. In Python, like in C, any
non-zero integer value is true; zero is false. The condition may also be a string or list value, in fact any
sequence; anything with a non-zero length is true, empty sequences are false. The test used in the example
is a simple comparison. The standard comparison operators are written the same as in C:< (less than),>
(greater than),== (equal to),<= (less than or equal to),>= (greater than or equal to) and!= (not equal to).

• Thebodyof the loop isindented: indentation is Python’s way of grouping statements. Python does not (yet!)
provide an intelligent input line editing facility, so you have to type a tab or space(s) for each indented line.
In practice you will prepare more complicated input for Python with a text editor; most text editors have an
auto-indent facility. When a compound statement is entered interactively, it must be followed by a blank
line to indicate completion (since the parser cannot guess when you have typed the last line). Note that each
line within a basic block must be indented by the same amount.

• The print statement writes the value of the expression(s) it is given. It differs from just writing the
expression you want to write (as we did earlier in the calculator examples) in the way it handles multiple
expressions and strings. Strings are printed without quotes, and a space is inserted between items, so you
can format things nicely, like this:

>>> i = 256*256
>>> print ’The value of i is’, i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>> a, b = 0, 1
>>> while b < 1000:
... print b,
... a, b = b, a+b
...
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if the last line was not completed.

3.2. First Steps Towards Programming 17

18

CHAPTER

FOUR

More Control Flow Tools

Besides thewhile statement just introduced, Python knows the usual control flow statements known from other
languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is theif statement. For example:

>>> x = int(raw_input("Please enter an integer: "))
>>> if x < 0:
... x = 0
... print ’Negative changed to zero’
... elif x == 0:
... print ’Zero’
... elif x == 1:
... print ’Single’
... else:
... print ’More’
...

There can be zero or moreelif parts, and theelse part is optional. The keyword ‘elif ’ is short for ‘else
if’, and is useful to avoid excessive indentation. Anif . . . elif . . . elif . . . sequence is a substitute for the
switch or case statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always
iterating over an arithmetic progression of numbers (like in Pascal), or giving the user the ability to define both
the iteration step and halting condition (as C), Python’sfor statement iterates over the items of any sequence (a
list or a string), in the order that they appear in the sequence. For example (no pun intended):

>>> # Measure some strings:
... a = [’cat’, ’window’, ’defenestrate’]
>>> for x in a:
... print x, len(x)
...
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only happen for mutable sequence

19

types, such as lists). If you need to modify the list you are iterating over (for example, to duplicate selected items)
you must iterate over a copy. The slice notation makes this particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
... if len(x) > 6: a.insert(0, x)
...
>>> a
[’defenestrate’, ’cat’, ’window’, ’defenestrate’]

4.3 The range() Function

If you do need to iterate over a sequence of numbers, the built-in functionrange() comes in handy. It generates
lists containing arithmetic progressions:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list;range(10) generates a list of 10 values, exactly the legal
indices for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a
different increment (even negative; sometimes this is called the ‘step’):

>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, combinerange() andlen() as follows:

>>> a = [’Mary’, ’had’, ’a’, ’little’, ’lamb’]
>>> for i in range(len(a)):
... print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb

4.4 break and continue Statements, and else Clauses on Loops

Thebreak statement, like in C, breaks out of the smallest enclosingfor or while loop.

Thecontinue statement, also borrowed from C, continues with the next iteration of the loop.

Loop statements may have anelse clause; it is executed when the loop terminates through exhaustion of the list
(with for) or when the condition becomes false (withwhile), but not when the loop is terminated by abreak
statement. This is exemplified by the following loop, which searches for prime numbers:

20 Chapter 4. More Control Flow Tools

>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print n, ’equals’, x, ’*’, n/x
... break
... else:
... # loop fell through without finding a factor
... print n, ’is a prime number’
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically but the program
requires no action. For example:

>>> while True:
... pass # Busy-wait for keyboard interrupt
...

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while b < n:
... print b,
... a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyworddef introduces a functiondefinition. It must be followed by the function name and the parenthesized
list of formal parameters. The statements that form the body of the function start at the next line, and must be
indented. The first statement of the function body can optionally be a string literal; this string literal is the
function’s documentation string, ordocstring.

There are tools which use docstrings to automatically produce online or printed documentation, or to let the user
interactively browse through code; it’s good practice to include docstrings in code that you write, so try to make a
habit of it.

Theexecutionof a function introduces a new symbol table used for the local variables of the function. More pre-
cisely, all variable assignments in a function store the value in the local symbol table; whereas variable references

4.5. pass Statements 21

first look in the local symbol table, then in the global symbol table, and then in the table of built-in names. Thus,
global variables cannot be directly assigned a value within a function (unless named in aglobal statement),
although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local symbol table of the called function
when it is called; thus, arguments are passed usingcall by value(where thevalue is always an objectreference,
not the value of the object).1 When a function calls another function, a new local symbol table is created for that
call.

A function definition introduces the function name in the current symbol table. The value of the function name
has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another
name which can then also be used as a function. This serves as a general renaming mechanism:

>>> fib
<function object at 10042ed0>
>>> f = fib
>>> f(100)
1 1 2 3 5 8 13 21 34 55 89

You might object thatfib is not a function but a procedure. In Python, like in C, procedures are just functions
that don’t return a value. In fact, technically speaking, procedures do return a value, albeit a rather boring one.
This value is calledNone (it’s a built-in name). Writing the valueNone is normally suppressed by the interpreter
if it would be the only value written. You can see it if you really want to:

>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while b < n:
... result.append(b) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

• The return statement returns with a value from a function.return without an expression argument
returnsNone. Falling off the end of a procedure also returnsNone.

• The statementresult.append(b) calls amethodof the list objectresult . A method is a function
that ‘belongs’ to an object and is namedobj.methodname , whereobj is some object (this may be an
expression), andmethodname is the name of a method that is defined by the object’s type. Different types
define different methods. Methods of different types may have the same name without causing ambiguity.
(It is possible to define your own object types and methods, usingclasses, as discussed later in this tutorial.)
The methodappend() shown in the example, is defined for list objects; it adds a new element at the end
of the list. In this example it is equivalent to ‘result = result + [b] ’, but more efficient.

1Actually, call by object referencewould be a better description, since if a mutable object is passed, the caller will see any changes the
callee makes to it (items inserted into a list).

22 Chapter 4. More Control Flow Tools

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be
combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This creates a function that can be
called with fewer arguments than it is defined

def ask_ok(prompt, retries=4, complaint=’Yes or no, please!’):
while True:

ok = raw_input(prompt)
if ok in (’y’, ’ye’, ’yes’): return True
if ok in (’n’, ’no’, ’nop’, ’nope’): return False
retries = retries - 1
if retries < 0: raise IOError, ’refusenik user’
print complaint

This function can be called either like this:ask_ok(’Do you really want to quit?’) or like this:
ask_ok(’OK to overwrite the file?’, 2) .

The default values are evaluated at the point of function definition in thedefiningscope, so that

i = 5

def f(arg=i):
print arg

i = 6
f()

will print 5.

Important warning: The default value is evaluated only once. This makes a difference when the default is
a mutable object such as a list, dictionary, or instances of most classes. For example, the following function
accumulates the arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print f(1)
print f(2)
print f(3)

This will print

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

4.7. More on Defining Functions 23

def f(a, L=None):
if L is None:

L = []
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form ‘keyword = value’. For instance, the following
function:

def parrot(voltage, state=’a stiff’, action=’voom’, type=’Norwegian Blue’):
print "-- This parrot wouldn’t", action,
print "if you put", voltage, "Volts through it."
print "-- Lovely plumage, the", type
print "-- It’s", state, "!"

could be called in any of the following ways:

parrot(1000)
parrot(action = ’VOOOOOM’, voltage = 1000000)
parrot(’a thousand’, state = ’pushing up the daisies’)
parrot(’a million’, ’bereft of life’, ’jump’)

but the following calls would all be invalid:

parrot() # required argument missing
parrot(voltage=5.0, ’dead’) # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument
parrot(actor=’John Cleese’) # unknown keyword

In general, an argument list must have any positional arguments followed by any keyword arguments, where the
keywords must be chosen from the formal parameter names. It’s not important whether a formal parameter has a
default value or not. No argument may receive a value more than once — formal parameter names corresponding
to positional arguments cannot be used as keywords in the same calls. Here’s an example that fails due to this
restriction:

>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument ’a’

When a final formal parameter of the form** nameis present, it receives adictionarycontaining all keyword argu-
ments whose keyword doesn’t correspond to a formal parameter. This may be combined with a formal parameter
of the form* name(described in the next subsection) which receives a tuple containing the positional arguments
beyond the formal parameter list. (* namemust occur before** name.) For example, if we define a function like
this:

24 Chapter 4. More Control Flow Tools

def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, ’?’
print "-- I’m sorry, we’re all out of", kind
for arg in arguments: print arg
print ’-’*40
keys = keywords.keys()
keys.sort()
for kw in keys: print kw, ’:’, keywords[kw]

It could be called like this:

cheeseshop(’Limburger’, "It’s very runny, sir.",
"It’s really very, VERY runny, sir.",
client=’John Cleese’,
shopkeeper=’Michael Palin’,
sketch=’Cheese Shop Sketch’)

and of course it would print:

-- Do you have any Limburger ?
-- I’m sorry, we’re all out of Limburger
It’s very runny, sir.
It’s really very, VERY runny, sir.
--
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Note that thesort() method of the list of keyword argument names is called before printing the contents of the
keywords dictionary; if this is not done, the order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of
arguments. These arguments will be wrapped up in a tuple. Before the variable number of arguments, zero or
more normal arguments may occur.

def fprintf(file, format, *args):
file.write(format % args)

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function
call requiring separate positional arguments. For instance, the built-inrange() function expects separatestart
andstoparguments. If they are not available separately, write the function call with the* -operator to unpack the
arguments out of a list or tuple:

>>> range(3, 6) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> range(*args) # call with arguments unpacked from a list
[3, 4, 5]

4.7. More on Defining Functions 25

4.7.5 Lambda Forms

By popular demand, a few features commonly found in functional programming languages and Lisp have been
added to Python. With thelambda keyword, small anonymous functions can be created. Here’s a function that
returns the sum of its two arguments: ‘lambda a, b: a+b ’. Lambda forms can be used wherever function
objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic
sugar for a normal function definition. Like nested function definitions, lambda forms can reference variables
from the containing scope:

>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

4.7.6 Documentation Strings

There are emerging conventions about the content and formatting of documentation strings.

The first line should always be a short, concise summary of the object’s purpose. For brevity, it should not
explicitly state the object’s name or type, since these are available by other means (except if the name happens to
be a verb describing a function’s operation). This line should begin with a capital letter and end with a period.

If there are more lines in the documentation string, the second line should be blank, visually separating the sum-
mary from the rest of the description. The following lines should be one or more paragraphs describing the object’s
calling conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process docu-
mentation have to strip indentation if desired. This is done using the following convention. The first non-blank
line after the first line of the string determines the amount of indentation for the entire documentation string. (We
can’t use the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent
in the string literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of
the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be
stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn’t do anything.
... """
... pass
...
>>> print my_function.__doc__
Do nothing, but document it.

No, really, it doesn’t do anything.

26 Chapter 4. More Control Flow Tools

CHAPTER

FIVE

Data Structures

This chapter describes some things you’ve learned about already in more detail, and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list objects:

append (x)
Add an item to the end of the list; equivalent toa[len(a):] = [x] .

extend (L)
Extend the list by appending all the items in the given list; equivalent toa[len(a):] = L.

insert (i, x)
Insert an item at a given position. The first argument is the index of the element before which to in-
sert, soa.insert(0, x) inserts at the front of the list, anda.insert(len(a), x) is equivalent to
a.append(x) .

remove (x)
Remove the first item from the list whose value isx. It is an error if there is no such item.

pop ([i])
Remove the item at the given position in the list, and return it. If no index is specified,a.pop() returns the
last item in the list. The item is also removed from the list. (The square brackets around thei in the method
signature denote that the parameter is optional, not that you should type square brackets at that position.
You will see this notation frequently in thePython Library Reference.)

index (x)
Return the index in the list of the first item whose value isx. It is an error if there is no such item.

count (x)
Return the number of timesx appears in the list.

sort ()
Sort the items of the list, in place.

reverse ()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

27

>>> a = [66.6, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.6), a.count(’x’)
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.6, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.6, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.6]
>>> a.sort()
>>> a
[-1, 1, 66.6, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element added is the first element retrieved
(“last-in, first-out”). To add an item to the top of the stack, useappend() . To retrieve an item from the top of
the stack, usepop() without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]

5.1.2 Using Lists as Queues

You can also use a list conveniently as a queue, where the first element added is the first element retrieved (“first-
in, first-out”). To add an item to the back of the queue, useappend() . To retrieve an item from the front of the
queue, usepop() with 0 as the index. For example:

28 Chapter 5. Data Structures

>>> queue = ["Eric", "John", "Michael"]
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)
’Eric’
>>> queue.pop(0)
’John’
>>> queue
[’Michael’, ’Terry’, ’Graham’]

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used with lists:filter() , map() , andreduce() .

‘ filter(function, sequence) ’ returns a sequence (of the same type, if possible) consisting of those items from
the sequence for whichfunction(item) is true. For example, to compute some primes:

>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

‘map(function, sequence) ’ calls function(item) for each of the sequence’s items and returns a list of the return
values. For example, to compute some cubes:

>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many arguments as there are sequences
and is called with the corresponding item from each sequence (orNone if some sequence is shorter than another).
For example:

>>> seq = range(8)
>>> def add(x, y): return x+y
...
>>> map(add, seq, seq)
[0, 2, 4, 6, 8, 10, 12, 14]

‘ reduce(func, sequence) ’ returns a single value constructed by calling the binary functionfunc on the first
two items of the sequence, then on the result and the next item, and so on. For example, to compute the sum of
the numbers 1 through 10:

>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55

If there’s only one item in the sequence, its value is returned; if the sequence is empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the starting value is returned for an
empty sequence, and the function is first applied to the starting value and the first sequence item, then to the result

5.1. More on Lists 29

and the next item, and so on. For example,

>>> def sum(seq):
... def add(x,y): return x+y
... return reduce(add, seq, 0)
...
>>> sum(range(1, 11))
55
>>> sum([])
0

Don’t use this example’s definition ofsum() : since summing numbers is such a common need, a built-in function
sum(sequence) is already provided, and works exactly like this. New in version 2.3.

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists without resorting to use ofmap() , filter() and/or
lambda . The resulting list definition tends often to be clearer than lists built using those constructs. Each list
comprehension consists of an expression followed by afor clause, then zero or morefor or if clauses. The
result will be a list resulting from evaluating the expression in the context of thefor andif clauses which follow
it. If the expression would evaluate to a tuple, it must be parenthesized.

>>> freshfruit = [’ banana’, ’ loganberry ’, ’passion fruit ’]
>>> [weapon.strip() for weapon in freshfruit]
[’banana’, ’loganberry’, ’passion fruit’]
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples

File "<stdin>", line 1, in ?
[x, x**2 for x in vec]

^
SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]

List comprehensions are much more flexible thanmap() and can be applied to functions with more than one
argument and to nested functions:

>>> [str(round(355/113.0, i)) for i in range(1,6)]
[’3.1’, ’3.14’, ’3.142’, ’3.1416’, ’3.14159’]

30 Chapter 5. Data Structures

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value: thedel statement. This can
also be used to remove slices from a list (which we did earlier by assignment of an empty list to the slice). For
example:

>>> a = [-1, 1, 66.6, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.6, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.6, 1234.5]

del can also be used to delete entire variables:

>>> del a

Referencing the namea hereafter is an error (at least until another value is assigned to it). We’ll find other uses
for del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing and slicing operations. They are
two examples ofsequencedata types. Since Python is an evolving language, other sequence data types may be
added. There is also another standard sequence data type: thetuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, ’hello!’
>>> t[0]
12345
>>> t
(12345, 54321, ’hello!’)
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, ’hello!’), (1, 2, 3, 4, 5))

As you see, on output tuples are alway enclosed in parentheses, so that nested tuples are interpreted correctly; they
may be input with or without surrounding parentheses, although often parentheses are necessary anyway (if the
tuple is part of a larger expression).

Tuples have many uses. For example: (x, y) coordinate pairs, employee records from a database, etc. Tuples, like
strings, are immutable: it is not possible to assign to the individual items of a tuple (you can simulate much of
the same effect with slicing and concatenation, though). It is also possible to create tuples which contain mutable
objects, such as lists.

A special problem is the construction of tuples containing 0 or 1 items: the syntax has some extra quirks to
accommodate these. Empty tuples are constructed by an empty pair of parentheses; a tuple with one item is
constructed by following a value with a comma (it is not sufficient to enclose a single value in parentheses). Ugly,
but effective. For example:

5.2. The del statement 31

>>> empty = ()
>>> singleton = ’hello’, # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
(’hello’,)

The statementt = 12345, 54321, ’hello!’ is an example oftuple packing: the values12345 , 54321
and’hello!’ are packed together in a tuple. The reverse operation is also possible:

>>> x, y, z = t

This is called, appropriately enough,sequence unpacking. Sequence unpacking requires that the list of variables
on the left have the same number of elements as the length of the sequence. Note that multiple assignment is really
just a combination of tuple packing and sequence unpacking!

There is a small bit of asymmetry here: packing multiple values always creates a tuple, and unpacking works for
any sequence.

5.4 Dictionaries

Another useful data type built into Python is thedictionary. Dictionaries are sometimes found in other languages
as “associative memories” or “associative arrays”. Unlike sequences, which are indexed by a range of numbers,
dictionaries are indexed bykeys, which can be any immutable type; strings and numbers can always be keys.
Tuples can be used as keys if they contain only strings, numbers, or tuples; if a tuple contains any mutable object
either directly or indirectly, it cannot be used as a key. You can’t use lists as keys, since lists can be modified in
place using theirappend() andextend() methods, as well as slice and indexed assignments.

It is best to think of a dictionary as an unordered set ofkey: valuepairs, with the requirement that the keys are
unique (within one dictionary). A pair of braces creates an empty dictionary:{} . Placing a comma-separated list
of key:value pairs within the braces adds initial key:value pairs to the dictionary; this is also the way dictionaries
are written on output.

The main operations on a dictionary are storing a value with some key and extracting the value given the key. It
is also possible to delete a key:value pair withdel . If you store using a key that is already in use, the old value
associated with that key is forgotten. It is an error to extract a value using a non-existent key.

Thekeys() method of a dictionary object returns a list of all the keys used in the dictionary, in random order
(if you want it sorted, just apply thesort() method to the list of keys). To check whether a single key is in the
dictionary, use thehas_key() method of the dictionary.

Here is a small example using a dictionary:

32 Chapter 5. Data Structures

>>> tel = {’jack’: 4098, ’sape’: 4139}
>>> tel[’guido’] = 4127
>>> tel
{’sape’: 4139, ’guido’: 4127, ’jack’: 4098}
>>> tel[’jack’]
4098
>>> del tel[’sape’]
>>> tel[’irv’] = 4127
>>> tel
{’guido’: 4127, ’irv’: 4127, ’jack’: 4098}
>>> tel.keys()
[’guido’, ’irv’, ’jack’]
>>> tel.has_key(’guido’)
True

Thedict() constructor builds dictionaries directly from lists of key-value pairs stored as tuples. When the pairs
form a pattern, list comprehensions can compactly specify the key-value list.

>>> dict([(’sape’, 4139), (’guido’, 4127), (’jack’, 4098)])
{’sape’: 4139, ’jack’: 4098, ’guido’: 4127}
>>> dict([(x, x**2) for x in vec]) # use a list comprehension
{2: 4, 4: 16, 6: 36}

5.5 Looping Techniques

When looping through dictionaries, the key and corresponding value can be retrieved at the same time using the
iteritems() method.

>>> knights = {’gallahad’: ’the pure’, ’robin’: ’the brave’}
>>> for k, v in knights.iteritems():
... print k, v
...
gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value can be retrieved at the same time
using theenumerate() function.

>>> for i, v in enumerate([’tic’, ’tac’, ’toe’]):
... print i, v
...
0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired with thezip() function.

5.5. Looping Techniques 33

>>> questions = [’name’, ’quest’, ’favorite color’]
>>> answers = [’lancelot’, ’the holy grail’, ’blue’]
>>> for q, a in zip(questions, answers):
... print ’What is your %s? It is %s.’ % (q, a)
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward direction and then call thereversed()
function.

>>> for i in reversed(xrange(1,10,2)):
... print i
...
9
7
5
3
1

5.6 More on Conditions

The conditions used inwhile andif statements above can contain other operators besides comparisons.

The comparison operatorsin andnot in check whether a value occurs (does not occur) in a sequence. The
operatorsis andis not compare whether two objects are really the same object; this only matters for mutable
objects like lists. All comparison operators have the same priority, which is lower than that of all numerical
operators.

Comparisons can be chained. For example,a < b == c tests whethera is less thanb and moreoverb equals
c .

Comparisons may be combined by the Boolean operatorsand andor , and the outcome of a comparison (or of any
other Boolean expression) may be negated withnot . These all have lower priorities than comparison operators
again; between them,not has the highest priority, andor the lowest, so thatA and not B or C is equivalent
to (A and (not B)) or C . Of course, parentheses can be used to express the desired composition.

The Boolean operatorsand andor are so-calledshort-circuitoperators: their arguments are evaluated from left
to right, and evaluation stops as soon as the outcome is determined. For example, ifA andCare true butB is false,
A and B and C does not evaluate the expressionC. In general, the return value of a short-circuit operator,
when used as a general value and not as a Boolean, is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a variable. For example,

>>> string1, string2, string3 = ’’, ’Trondheim’, ’Hammer Dance’
>>> non_null = string1 or string2 or string3
>>> non_null
’Trondheim’

Note that in Python, unlike C, assignment cannot occur inside expressions. C programmers may grumble about
this, but it avoids a common class of problems encountered in C programs: typing= in an expression when==
was intended.

34 Chapter 5. Data Structures

5.7 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type. The comparison useslexico-
graphical ordering: first the first two items are compared, and if they differ this determines the outcome of the
comparison; if they are equal, the next two items are compared, and so on, until either sequence is exhausted. If
two items to be compared are themselves sequences of the same type, the lexicographical comparison is carried
out recursively. If all items of two sequences compare equal, the sequences are considered equal. If one sequence
is an initial sub-sequence of the other, the shorter sequence is the smaller (lesser) one. Lexicographical ordering
for strings uses theASCII ordering for individual characters. Some examples of comparisons between sequences
with the same types:

(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
’ABC’ < ’C’ < ’Pascal’ < ’Python’
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, (’aa’, ’ab’)) < (1, 2, (’abc’, ’a’), 4)

Note that comparing objects of different types is legal. The outcome is deterministic but arbitrary: the types are
ordered by their name. Thus, a list is always smaller than a string, a string is always smaller than a tuple, etc.
Mixed numeric types are compared according to their numeric value, so 0 equals 0.0, etc.1

1The rules for comparing objects of different types should not be relied upon; they may change in a future version of the language.

5.7. Comparing Sequences and Other Types 35

36

CHAPTER

SIX

Modules

If you quit from the Python interpreter and enter it again, the definitions you have made (functions and variables)
are lost. Therefore, if you want to write a somewhat longer program, you are better off using a text editor to
prepare the input for the interpreter and running it with that file as input instead. This is known as creating a
script. As your program gets longer, you may want to split it into several files for easier maintenance. You may
also want to use a handy function that you’ve written in several programs without copying its definition into each
program.

To support this, Python has a way to put definitions in a file and use them in a script or in an interactive instance
of the interpreter. Such a file is called amodule; definitions from a module can beimportedinto other modules or
into themainmodule (the collection of variables that you have access to in a script executed at the top level and
in calculator mode).

A module is a file containing Python definitions and statements. The file name is the module name with the suffix
‘ .py’ appended. Within a module, the module’s name (as a string) is available as the value of the global variable
__name__. For instance, use your favorite text editor to create a file called ‘fibo.py’ in the current directory with
the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:

print b,
a, b = b, a+b

def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:

result.append(b)
a, b = b, a+b

return result

Now enter the Python interpreter and import this module with the following command:

>>> import fibo

This does not enter the names of the functions defined infibo directly in the current symbol table; it only enters
the module namefibo there. Using the module name you can access the functions:

37

>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
’fibo’

If you intend to use a function often you can assign it to a local name:

>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions. These statements are intended to
initialize the module. They are executed only thefirst time the module is imported somewhere.1

Each module has its own private symbol table, which is used as the global symbol table by all functions defined
in the module. Thus, the author of a module can use global variables in the module without worrying about
accidental clashes with a user’s global variables. On the other hand, if you know what you are doing you can
touch a module’s global variables with the same notation used to refer to its functions,modname.itemname .

Modules can import other modules. It is customary but not required to place allimport statements at the
beginning of a module (or script, for that matter). The imported module names are placed in the importing
module’s global symbol table.

There is a variant of theimport statement that imports names from a module directly into the importing module’s
symbol table. For example:

>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in the local symbol table (so in the
example,fibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

6.1.1 The Module Search Path

When a module namedspam is imported, the interpreter searches for a file named ‘spam.py’ in the current
directory, and then in the list of directories specified by the environment variable PYTHONPATH. This has the
same syntax as the shell variable PATH, that is, a list of directory names. When PYTHONPATH is not set, or

1In fact function definitions are also ‘statements’ that are ‘executed’; the execution enters the function name in the module’s global symbol
table.

38 Chapter 6. Modules

when the file is not found there, the search continues in an installation-dependent default path; on UNIX , this is
usually ‘.:/usr/local/lib/python’.

Actually, modules are searched in the list of directories given by the variablesys.path which is initialized from
the directory containing the input script (or the current directory), PYTHONPATH and the installation-dependent
default. This allows Python programs that know what they’re doing to modify or replace the module search path.
Note that because the directory containing the script being run is on the search path, it is important that the script
not have the same name as a standard module, or Python will attempt to load the script as a module when that
module is imported. This will generally be an error. See section 6.2, “Standard Modules,” for more information.

6.1.2 “Compiled” Python files

As an important speed-up of the start-up time for short programs that use a lot of standard modules, if a file called
‘spam.pyc’ exists in the directory where ‘spam.py’ is found, this is assumed to contain an already-“byte-compiled”
version of the modulespam. The modification time of the version of ‘spam.py’ used to create ‘spam.pyc’ is
recorded in ‘spam.pyc’, and the ‘.pyc’ file is ignored if these don’t match.

Normally, you don’t need to do anything to create the ‘spam.pyc’ file. Whenever ‘spam.py’ is successfully com-
piled, an attempt is made to write the compiled version to ‘spam.pyc’. It is not an error if this attempt fails; if for
any reason the file is not written completely, the resulting ‘spam.pyc’ file will be recognized as invalid and thus
ignored later. The contents of the ‘spam.pyc’ file are platform independent, so a Python module directory can be
shared by machines of different architectures.

Some tips for experts:

• When the Python interpreter is invoked with the-O flag, optimized code is generated and stored in ‘.pyo’
files. The optimizer currently doesn’t help much; it only removesassert statements. When-O is used,
all bytecode is optimized;.pyc files are ignored and.py files are compiled to optimized bytecode.

• Passing two-O flags to the Python interpreter (-OO) will cause the bytecode compiler to perform optimiza-
tions that could in some rare cases result in malfunctioning programs. Currently only__doc__ strings
are removed from the bytecode, resulting in more compact ‘.pyo’ files. Since some programs may rely on
having these available, you should only use this option if you know what you’re doing.

• A program doesn’t run any faster when it is read from a ‘.pyc’ or ‘ .pyo’ file than when it is read from a ‘.py’
file; the only thing that’s faster about ‘.pyc’ or ‘ .pyo’ files is the speed with which they are loaded.

• When a script is run by giving its name on the command line, the bytecode for the script is never written
to a ‘.pyc’ or ‘ .pyo’ file. Thus, the startup time of a script may be reduced by moving most of its code to a
module and having a small bootstrap script that imports that module. It is also possible to name a ‘.pyc’ or
‘ .pyo’ file directly on the command line.

• It is possible to have a file called ‘spam.pyc’ (or ‘ spam.pyo’ when -O is used) without a file ‘spam.py’ for
the same module. This can be used to distribute a library of Python code in a form that is moderately hard
to reverse engineer.

• The modulecompileall can create ‘.pyc’ files (or ‘.pyo’ files when -O is used) for all modules in a
directory.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document, thePython Library Reference
(“Library Reference” hereafter). Some modules are built into the interpreter; these provide access to operations
that are not part of the core of the language but are nevertheless built in, either for efficiency or to provide access
to operating system primitives such as system calls. The set of such modules is a configuration option which also
depends on the underlying platform For example, theamoeba module is only provided on systems that somehow
support Amoeba primitives. One particular module deserves some attention:sys , which is built into every Python
interpreter. The variablessys.ps1 andsys.ps2 define the strings used as primary and secondary prompts:

6.2. Standard Modules 39

>>> import sys
>>> sys.ps1
’>>> ’
>>> sys.ps2
’... ’
>>> sys.ps1 = ’C> ’
C> print ’Yuck!’
Yuck!
C>

These two variables are only defined if the interpreter is in interactive mode.

The variablesys.path is a list of strings that determine the interpreter’s search path for modules. It is initialized
to a default path taken from the environment variable PYTHONPATH, or from a built-in default if PYTHONPATH
is not set. You can modify it using standard list operations:

>>> import sys
>>> sys.path.append(’/ufs/guido/lib/python’)

6.3 The dir() Function

The built-in functiondir() is used to find out which names a module defines. It returns a sorted list of strings:

>>> import fibo, sys
>>> dir(fibo)
[’__name__’, ’fib’, ’fib2’]
>>> dir(sys)
[’__displayhook__’, ’__doc__’, ’__excepthook__’, ’__name__’, ’__stderr__’,

’__stdin__’, ’__stdout__’, ’_getframe’, ’api_version’, ’argv’,
’builtin_module_names’, ’byteorder’, ’callstats’, ’copyright’,
’displayhook’, ’exc_clear’, ’exc_info’, ’exc_type’, ’excepthook’,
’exec_prefix’, ’executable’, ’exit’, ’getdefaultencoding’, ’getdlopenflags’,
’getrecursionlimit’, ’getrefcount’, ’hexversion’, ’maxint’, ’maxunicode’,
’meta_path’, ’modules’, ’path’, ’path_hooks’, ’path_importer_cache’,
’platform’, ’prefix’, ’ps1’, ’ps2’, ’setcheckinterval’, ’setdlopenflags’,
’setprofile’, ’setrecursionlimit’, ’settrace’, ’stderr’, ’stdin’, ’stdout’,
’version’, ’version_info’, ’warnoptions’]

Without arguments,dir() lists the names you have defined currently:

>>> a = [1, 2, 3, 4, 5]
>>> import fibo, sys
>>> fib = fibo.fib
>>> dir()
[’__name__’, ’a’, ’fib’, ’fibo’, ’sys’]

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you want a list of those, they are defined in
the standard module__builtin__ :

40 Chapter 6. Modules

>>> import __builtin__
>>> dir(__builtin__)
[’ArithmeticError’, ’AssertionError’, ’AttributeError’,

’DeprecationWarning’, ’EOFError’, ’Ellipsis’, ’EnvironmentError’,
’Exception’, ’False’, ’FloatingPointError’, ’IOError’, ’ImportError’,
’IndentationError’, ’IndexError’, ’KeyError’, ’KeyboardInterrupt’,
’LookupError’, ’MemoryError’, ’NameError’, ’None’, ’NotImplemented’,
’NotImplementedError’, ’OSError’, ’OverflowError’, ’OverflowWarning’,
’PendingDeprecationWarning’, ’ReferenceError’,
’RuntimeError’, ’RuntimeWarning’, ’StandardError’, ’StopIteration’,
’SyntaxError’, ’SyntaxWarning’, ’SystemError’, ’SystemExit’, ’TabError’,
’True’, ’TypeError’, ’UnboundLocalError’, ’UnicodeError’, ’UserWarning’,
’ValueError’, ’Warning’, ’ZeroDivisionError’, ’__debug__’, ’__doc__’,
’__import__’, ’__name__’, ’abs’, ’apply’, ’bool’, ’buffer’,
’callable’, ’chr’, ’classmethod’, ’cmp’, ’coerce’, ’compile’, ’complex’,
’copyright’, ’credits’, ’delattr’, ’dict’, ’dir’, ’divmod’,
’enumerate’, ’eval’, ’execfile’, ’exit’, ’file’, ’filter’, ’float’,
’getattr’, ’globals’, ’hasattr’, ’hash’, ’help’, ’hex’, ’id’,
’input’, ’int’, ’intern’, ’isinstance’, ’issubclass’, ’iter’,
’len’, ’license’, ’list’, ’locals’, ’long’, ’map’, ’max’, ’min’,
’object’, ’oct’, ’open’, ’ord’, ’pow’, ’property’, ’quit’,
’range’, ’raw_input’, ’reduce’, ’reload’, ’repr’, ’round’,
’setattr’, ’slice’, ’staticmethod’, ’str’, ’string’, ’sum’, ’super’,
’tuple’, ’type’, ’unichr’, ’unicode’, ’vars’, ’xrange’, ’zip’]

6.4 Packages

Packages are a way of structuring Python’s module namespace by using “dotted module names”. For example,
the module nameA.B designates a submodule named ‘B’ in a package named ‘A’. Just like the use of modules
saves the authors of different modules from having to worry about each other’s global variable names, the use
of dotted module names saves the authors of multi-module packages like NumPy or the Python Imaging Library
from having to worry about each other’s module names.

Suppose you want to design a collection of modules (a “package”) for the uniform handling of sound files and
sound data. There are many different sound file formats (usually recognized by their extension, for example:
‘ .wav’, ‘ .aiff’, ‘ .au’), so you may need to create and maintain a growing collection of modules for the conversion
between the various file formats. There are also many different operations you might want to perform on sound
data (such as mixing, adding echo, applying an equalizer function, creating an artificial stereo effect), so in addition
you will be writing a never-ending stream of modules to perform these operations. Here’s a possible structure for
your package (expressed in terms of a hierarchical filesystem):

6.4. Packages 41

Sound/ Top-level package
__init__.py Initialize the sound package
Formats/ Subpackage for file format conversions

__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...

Effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...

Filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...

When importing the package, Python searches through the directories onsys.path looking for the package
subdirectory.

The ‘__init__.py’ files are required to make Python treat the directories as containing packages; this is done to
prevent directories with a common name, such as ‘string ’, from unintentionally hiding valid modules that
occur later on the module search path. In the simplest case, ‘__init__.py’ can just be an empty file, but it can also
execute initialization code for the package or set the__all__ variable, described later.

Users of the package can import individual modules from the package, for example:

import Sound.Effects.echo

This loads the submoduleSound.Effects.echo . It must be referenced with its full name.

Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from Sound.Effects import echo

This also loads the submoduleecho , and makes it available without its package prefix, so it can be used as
follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from Sound.Effects.echo import echofilter

Again, this loads the submoduleecho , but this makes its functionechofilter() directly available:

42 Chapter 6. Modules

echofilter(input, output, delay=0.7, atten=4)

Note that when usingfrom package import item, the item can be either a submodule (or subpackage) of the
package, or some other name defined in the package, like a function, class or variable. Theimport statement
first tests whether the item is defined in the package; if not, it assumes it is a module and attempts to load it. If it
fails to find it, anImportError exception is raised.

Contrarily, when using syntax likeimport item.subitem.subsubitem, each item except for the last must be a
package; the last item can be a module or a package but can’t be a class or function or variable defined in the
previous item.

6.4.1 Importing * From a Package

Now what happens when the user writesfrom Sound.Effects import * ? Ideally, one would hope that
this somehow goes out to the filesystem, finds which submodules are present in the package, and imports them all.
Unfortunately, this operation does not work very well on Mac and Windows platforms, where the filesystem does
not always have accurate information about the case of a filename! On these platforms, there is no guaranteed
way to know whether a file ‘ECHO.PY’ should be imported as a moduleecho , Echo or ECHO. (For example,
Windows 95 has the annoying practice of showing all file names with a capitalized first letter.) The DOS 8+3
filename restriction adds another interesting problem for long module names.

The only solution is for the package author to provide an explicit index of the package. The import statement
uses the following convention: if a package’s ‘__init__.py’ code defines a list named__all__ , it is taken to be
the list of module names that should be imported whenfrom package import * is encountered. It is up to
the package author to keep this list up-to-date when a new version of the package is released. Package authors
may also decide not to support it, if they don’t see a use for importing * from their package. For example, the file
‘Sounds/Effects/__init__.py’ could contain the following code:

__all__ = ["echo", "surround", "reverse"]

This would mean thatfrom Sound.Effects import * would import the three named submodules of the
Sound package.

If __all__ is not defined, the statementfrom Sound.Effects import * doesnot import all sub-
modules from the packageSound.Effects into the current namespace; it only ensures that the package
Sound.Effects has been imported (possibly running its initialization code, ‘__init__.py’) and then imports
whatever names are defined in the package. This includes any names defined (and submodules explicitly loaded)
by ‘__init__.py’. It also includes any submodules of the package that were explicitly loaded by previous import
statements. Consider this code:

import Sound.Effects.echo
import Sound.Effects.surround
from Sound.Effects import *

In this example, the echo and surround modules are imported in the current namespace because they are defined
in the Sound.Effects package when thefrom...import statement is executed. (This also works when
__all__ is defined.)

Note that in general the practice of importing* from a module or package is frowned upon, since it often causes
poorly readable code. However, it is okay to use it to save typing in interactive sessions, and certain modules are
designed to export only names that follow certain patterns.

Remember, there is nothing wrong with usingfrom Package import specific_submodule ! In fact,
this is the recommended notation unless the importing module needs to use submodules with the same name from
different packages.

6.4. Packages 43

6.4.2 Intra-package References

The submodules often need to refer to each other. For example, thesurround module might use theecho
module. In fact, such references are so common that theimport statement first looks in the containing package
before looking in the standard module search path. Thus, the surround module can simply useimport echo or
from echo import echofilter . If the imported module is not found in the current package (the package
of which the current module is a submodule), theimport statement looks for a top-level module with the given
name.

When packages are structured into subpackages (as with theSound package in the example), there’s no shortcut
to refer to submodules of sibling packages - the full name of the subpackage must be used. For example, if the
moduleSound.Filters.vocoder needs to use theecho module in theSound.Effects package, it can
usefrom Sound.Effects import echo .

6.4.3 Packages in Multiple Directories

Packages support one more special attribute,__path__ . This is initialized to be a list containing the name of the
directory holding the package’s ‘__init__.py’ before the code in that file is executed. This variable can be modified;
doing so affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules found in a package.

44 Chapter 6. Modules

CHAPTER

SEVEN

Input and Output

There are several ways to present the output of a program; data can be printed in a human-readable form, or written
to a file for future use. This chapter will discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we’ve encountered two ways of writing values:expression statementsand theprint statement. (A third
way is using thewrite() method of file objects; the standard output file can be referenced assys.stdout .
See the Library Reference for more information on this.)

Often you’ll want more control over the formatting of your output than simply printing space-separated values.
There are two ways to format your output; the first way is to do all the string handling yourself; using string slicing
and concatenation operations you can create any lay-out you can imagine. The standard modulestring contains
some useful operations for padding strings to a given column width; these will be discussed shortly. The second
way is to use the%operator with a string as the left argument. The%operator interprets the left argument much
like a sprintf() -style format string to be applied to the right argument, and returns the string resulting from
this formatting operation.

One question remains, of course: how do you convert values to strings? Luckily, Python has ways to convert any
value to a string: pass it to therepr() or str() functions. Reverse quotes (“) are equivalent torepr() , but
their use is discouraged.

Thestr() function is meant to return representations of values which are fairly human-readable, whilerepr()
is meant to generate representations which can be read by the interpreter (or will force aSyntaxError if there is
not equivalent syntax). For objects which don’t have a particular representation for human consumption,str()
will return the same value asrepr() . Many values, such as numbers or structures like lists and dictionaries, have
the same representation using either function. Strings and floating point numbers, in particular, have two distinct
representations.

Some examples:

45

>>> s = ’Hello, world.’
>>> str(s)
’Hello, world.’
>>> repr(s)
"’Hello, world.’"
>>> str(0.1)
’0.1’
>>> repr(0.1)
’0.10000000000000001’
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = ’The value of x is ’ + repr(x) + ’, and y is ’ + repr(y) + ’...’
>>> print s
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = ’hello, world\n’
>>> hellos = repr(hello)
>>> print hellos
’hello, world\n’
>>> # The argument to repr() may be any Python object:
... repr((x, y, (’spam’, ’eggs’)))
"(32.5, 40000, (’spam’, ’eggs’))"
>>> # reverse quotes are convenient in interactive sessions:
... ‘x, y, (’spam’, ’eggs’)‘
"(32.5, 40000, (’spam’, ’eggs’))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
... print repr(x).rjust(2), repr(x*x).rjust(3),
... # Note trailing comma on previous line
... print repr(x*x*x).rjust(4)
...

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000
>>> for x in range(1,11):
... print ’%2d %3d %4d’ % (x, x*x, x*x*x)
...

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729

10 100 1000

(Note that one space between each column was added by the wayprint works: it always adds spaces between
its arguments.)

This example demonstrates therjust() method of string objects, which right-justifies a string in a field of a
given width by padding it with spaces on the left. There are similar methodsljust() andcenter() . These

46 Chapter 7. Input and Output

methods do not write anything, they just return a new string. If the input string is too long, they don’t truncate
it, but return it unchanged; this will mess up your column lay-out but that’s usually better than the alternative,
which would be lying about a value. (If you really want truncation you can always add a slice operation, as in
‘x.ljust(n)[:n] ’.)

There is another method,zfill() , which pads a numeric string on the left with zeros. It understands about plus
and minus signs:

>>> ’12’.zfill(5)
’00012’
>>> ’-3.14’.zfill(7)
’-003.14’
>>> ’3.14159265359’.zfill(5)
’3.14159265359’

Using the%operator looks like this:

>>> import math
>>> print ’The value of PI is approximately %5.3f.’ % math.pi
The value of PI is approximately 3.142.

If there is more than one format in the string, you need to pass a tuple as right operand, as in this example:

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 7678}
>>> for name, phone in table.items():
... print ’%-10s ==> %10d’ % (name, phone)
...
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127

Most formats work exactly as in C and require that you pass the proper type; however, if you don’t you get an
exception, not a core dump. The%sformat is more relaxed: if the corresponding argument is not a string object,
it is converted to string using thestr() built-in function. Using* to pass the width or precision in as a separate
(integer) argument is supported. The C formats%nand%pare not supported.

If you have a really long format string that you don’t want to split up, it would be nice if you could reference the
variables to be formatted by name instead of by position. This can be done by using form%(name)format , as
shown here:

>>> table = {’Sjoerd’: 4127, ’Jack’: 4098, ’Dcab’: 8637678}
>>> print ’Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d’ % table
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new built-invars() function, which returns a dictionary
containing all local variables.

7.2 Reading and Writing Files

open() returns a file object, and is most commonly used with two arguments: ‘open(filename, mode) ’.

>>> f=open(’/tmp/workfile’, ’w’)
>>> print f
<open file ’/tmp/workfile’, mode ’w’ at 80a0960>

7.2. Reading and Writing Files 47

The first argument is a string containing the filename. The second argument is another string containing a few
characters describing the way in which the file will be used.modecan be’r’ when the file will only be read,
’w’ for only writing (an existing file with the same name will be erased), and’a’ opens the file for appending;
any data written to the file is automatically added to the end.’r+’ opens the file for both reading and writing.
Themodeargument is optional;’r’ will be assumed if it’s omitted.

On Windows and the Macintosh,’b’ appended to the mode opens the file in binary mode, so there are also
modes like’rb’ , ’wb’ , and’r+b’ . Windows makes a distinction between text and binary files; the end-of-
line characters in text files are automatically altered slightly when data is read or written. This behind-the-scenes
modification to file data is fine forASCII text files, but it’ll corrupt binary data like that in JPEGs or ‘.EXE’ files.
Be very careful to use binary mode when reading and writing such files. (Note that the precise semantics of text
mode on the Macintosh depends on the underlying C library being used.)

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object calledf has already been created.

To read a file’s contents, callf.read(size) , which reads some quantity of data and returns it as a string.sizeis
an optional numeric argument. Whensizeis omitted or negative, the entire contents of the file will be read and
returned; it’s your problem if the file is twice as large as your machine’s memory. Otherwise, at mostsizebytes
are read and returned. If the end of the file has been reached,f.read() will return an empty string ("").

>>> f.read()
’This is the entire file.\n’
>>> f.read()
’’

f.readline() reads a single line from the file; a newline character (\n) is left at the end of the string, and
is only omitted on the last line of the file if the file doesn’t end in a newline. This makes the return value unam-
biguous; iff.readline() returns an empty string, the end of the file has been reached, while a blank line is
represented by’\n’ , a string containing only a single newline.

>>> f.readline()
’This is the first line of the file.\n’
>>> f.readline()
’Second line of the file\n’
>>> f.readline()
’’

f.readlines() returns a list containing all the lines of data in the file. If given an optional parametersizehint,
it reads that many bytes from the file and enough more to complete a line, and returns the lines from that. This is
often used to allow efficient reading of a large file by lines, but without having to load the entire file in memory.
Only complete lines will be returned.

>>> f.readlines()
[’This is the first line of the file.\n’, ’Second line of the file\n’]

f.write(string) writes the contents ofstring to the file, returningNone.

>>> f.write(’This is a test\n’)

f.tell() returns an integer giving the file object’s current position in the file, measured in bytes from the
beginning of the file. To change the file object’s position, use ‘f.seek(offset, from_what) ’. The position is
computed from addingoffsetto a reference point; the reference point is selected by thefrom_whatargument. A
from_whatvalue of 0 measures from the beginning of the file, 1 uses the current file position, and 2 uses the end
of the file as the reference point.from_whatcan be omitted and defaults to 0, using the beginning of the file as the

48 Chapter 7. Input and Output

reference point.

>>> f=open(’/tmp/workfile’, ’r+’)
>>> f.write(’0123456789abcdef’)
>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)
’5’
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
’d’

When you’re done with a file, callf.close() to close it and free up any system resources taken up by the open
file. After calling f.close() , attempts to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file

File objects have some additional methods, such asisatty() and truncate() which are less frequently
used; consult the Library Reference for a complete guide to file objects.

7.2.2 The pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more effort, since theread() method
only returns strings, which will have to be passed to a function likeint() , which takes a string like’123’ and
returns its numeric value 123. However, when you want to save more complex data types like lists, dictionaries,
or class instances, things get a lot more complicated.

Rather than have users be constantly writing and debugging code to save complicated data types, Python provides
a standard module calledpickle . This is an amazing module that can take almost any Python object (even some
forms of Python code!), and convert it to a string representation; this process is calledpickling. Reconstructing the
object from the string representation is calledunpickling. Between pickling and unpickling, the string representing
the object may have been stored in a file or data, or sent over a network connection to some distant machine.

If you have an objectx , and a file objectf that’s been opened for writing, the simplest way to pickle the object
takes only one line of code:

pickle.dump(x, f)

To unpickle the object again, iff is a file object which has been opened for reading:

x = pickle.load(f)

(There are other variants of this, used when pickling many objects or when you don’t want to write the pickled
data to a file; consult the complete documentation forpickle in thePython Library Reference.)

pickle is the standard way to make Python objects which can be stored and reused by other programs or by a
future invocation of the same program; the technical term for this is apersistentobject. Becausepickle is so
widely used, many authors who write Python extensions take care to ensure that new data types such as matrices
can be properly pickled and unpickled.

7.2. Reading and Writing Files 49

50

CHAPTER

EIGHT

Errors and Exceptions

Until now error messages haven’t been more than mentioned, but if you have tried out the examples you have
probably seen some. There are (at least) two distinguishable kinds of errors:syntax errorsandexceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of complaint you get while you
are still learning Python:

>>> while True print ’Hello world’
File "<stdin>", line 1, in ?

while True print ’Hello world’
^

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little ‘arrow’ pointing at the earliest point in the line where the
error was detected. The error is caused by (or at least detected at) the tokenprecedingthe arrow: in the example,
the error is detected at the keywordprint , since a colon (‘: ’) is missing before it. File name and line number
are printed so you know where to look in case the input came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to execute
it. Errors detected during execution are calledexceptionsand are not unconditionally fatal: you will soon learn
how to handle them in Python programs. Most exceptions are not handled by programs, however, and result in
error messages as shown here:

>>> 10 * (1/0)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: name ’spam’ is not defined
>>> ’2’ + 2
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: cannot concatenate ’str’ and ’int’ objects

The last line of the error message indicates what happened. Exceptions come in different types, and the type

51

is printed as part of the message: the types in the example areZeroDivisionError , NameError and
TypeError . The string printed as the exception type is the name of the built-in name for the exception that
occurred. This is true for all built-in exceptions, but need not be true for user-defined exceptions (although it is a
useful convention). Standard exception names are built-in identifiers (not reserved keywords).

The rest of the line is a detail whose interpretation depends on the exception type; its meaning is dependent on the
exception type.

The preceding part of the error message shows the context where the exception happened, in the form of a stack
backtrace. In general it contains a stack backtrace listing source lines; however, it will not display lines read from
standard input.

ThePython Library Referencelists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the following example, which asks the user
for input until a valid integer has been entered, but allows the user to interrupt the program (usingControl-C
or whatever the operating system supports); note that a user-generated interruption is signalled by raising the
KeyboardInterrupt exception.

>>> while True:
... try:
... x = int(raw_input("Please enter a number: "))
... break
... except ValueError:
... print "Oops! That was no valid number. Try again..."
...

Thetry statement works as follows.

• First, thetry clause(the statement(s) between thetry andexcept keywords) is executed.

• If no exception occurs, theexcept clauseis skipped and execution of thetry statement is finished.

• If an exception occurs during execution of the try clause, the rest of the clause is skipped. Then if its type
matches the exception named after theexcept keyword, the rest of the try clause is skipped, the except
clause is executed, and then execution continues after thetry statement.

• If an exception occurs which does not match the exception named in the except clause, it is passed on
to outertry statements; if no handler is found, it is anunhandled exceptionand execution stops with a
message as shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most one
handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause, not in other
handlers of the sametry statement. An except clause may name multiple exceptions as a parenthesized list, for
example:

... except (RuntimeError, TypeError, NameError):

... pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use this with extreme caution,
since it is easy to mask a real programming error in this way! It can also be used to print an error message and
then re-raise the exception (allowing a caller to handle the exception as well):

52 Chapter 8. Errors and Exceptions

import sys

try:
f = open(’myfile.txt’)
s = f.readline()
i = int(s.strip())

except IOError, (errno, strerror):
print "I/O error(%s): %s" % (errno, strerror)

except ValueError:
print "Could not convert data to an integer."

except:
print "Unexpected error:", sys.exc_info()[0]
raise

Thetry . . . except statement has an optionalelse clause, which, when present, must follow all except clauses.
It is useful for code that must be executed if the try clause does not raise an exception. For example:

for arg in sys.argv[1:]:
try:

f = open(arg, ’r’)
except IOError:

print ’cannot open’, arg
else:

print arg, ’has’, len(f.readlines()), ’lines’
f.close()

The use of theelse clause is better than adding additional code to thetry clause because it avoids accidentally
catching an exception that wasn’t raised by the code being protected by thetry . . . except statement.

When an exception occurs, it may have an associated value, also known as the exception’sargument. The presence
and type of the argument depend on the exception type.

The except clause may specify a variable after the exception name (or list). The variable is bound to an excep-
tion instance with the arguments stored ininstance.args . For convenience, the exception instance defines
__getitem__ and__str__ so the arguments can be accessed or printed directly without having to reference
.args .

>>> try:
... raise Exception(’spam’, ’eggs’)
... except Exception, inst:
... print type(inst) # the exception instance
... print inst.args # arguments stored in .args
... print inst # __str__ allows args to printed directly
... x, y = inst # __getitem__ allows args to be unpacked directly
... print ’x =’, x
... print ’y =’, y
...
<type ’instance’>
(’spam’, ’eggs’)
(’spam’, ’eggs’)
x = spam
y = eggs

If an exception has an argument, it is printed as the last part (‘detail’) of the message for unhandled exceptions.

Exception handlers don’t just handle exceptions if they occur immediately in the try clause, but also if they occur
inside functions that are called (even indirectly) in the try clause. For example:

8.3. Handling Exceptions 53

>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError, detail:
... print ’Handling run-time error:’, detail
...
Handling run-time error: integer division or modulo

8.4 Raising Exceptions

Theraise statement allows the programmer to force a specified exception to occur. For example:

>>> raise NameError, ’HiThere’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: HiThere

The first argument toraise names the exception to be raised. The optional second argument specifies the
exception’s argument.

If you need to determine whether an exception was raised but don’t intend to handle it, a simpler form of the
raise statement allows you to re-raise the exception:

>>> try:
... raise NameError, ’HiThere’
... except NameError:
... print ’An exception flew by!’
... raise
...
An exception flew by!
Traceback (most recent call last):

File "<stdin>", line 2, in ?
NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class. Exceptions should typically be
derived from theException class, either directly or indirectly. For example:

54 Chapter 8. Errors and Exceptions

>>> class MyError(Exception):
... def __init__(self, value):
... self.value = value
... def __str__(self):
... return repr(self.value)
...
>>> try:
... raise MyError(2*2)
... except MyError, e:
... print ’My exception occurred, value:’, e.value
...
My exception occurred, value: 4
>>> raise MyError, ’oops!’
Traceback (most recent call last):

File "<stdin>", line 1, in ?
__main__.MyError: ’oops!’

Exception classes can be defined which do anything any other class can do, but are usually kept simple, often
only offering a number of attributes that allow information about the error to be extracted by handlers for the
exception. When creating a module which can raise several distinct errors, a common practice is to create a base
class for exceptions defined by that module, and subclass that to create specific exception classes for different
error conditions:

class Error(Exception):
"""Base class for exceptions in this module."""
pass

class InputError(Error):
"""Exception raised for errors in the input.

Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error

"""

def __init__(self, expression, message):
self.expression = expression
self.message = message

class TransitionError(Error):
"""Raised when an operation attempts a state transition that’s not
allowed.

Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not allowed

"""

def __init__(self, previous, next, message):
self.previous = previous
self.next = next
self.message = message

Most exceptions are defined with names that end in “Error,” similar to the naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may occur in functions they define. More
information on classes is presented in chapter 9, “Classes.”

8.5. User-defined Exceptions 55

8.6 Defining Clean-up Actions

Thetry statement has another optional clause which is intended to define clean-up actions that must be executed
under all circumstances. For example:

>>> try:
... raise KeyboardInterrupt
... finally:
... print ’Goodbye, world!’
...
Goodbye, world!
Traceback (most recent call last):

File "<stdin>", line 2, in ?
KeyboardInterrupt

A finally clauseis executed whether or not an exception has occurred in the try clause. When an exception has
occurred, it is re-raised after the finally clause is executed. The finally clause is also executed “on the way out”
when thetry statement is left via abreak or return statement.

The code in the finally clause is useful for releasing external resources (such as files or network connections),
regardless of whether or not the use of the resource was successful.

A try statement must either have one or more except clauses or one finally clause, but not both.

56 Chapter 8. Errors and Exceptions

CHAPTER

NINE

Classes

Python’s class mechanism adds classes to the language with a minimum of new syntax and semantics. It is a
mixture of the class mechanisms found in C++ and Modula-3. As is true for modules, classes in Python do not
put an absolute barrier between definition and user, but rather rely on the politeness of the user not to “break into
the definition.” The most important features of classes are retained with full power, however: the class inheritance
mechanism allows multiple base classes, a derived class can override any methods of its base class or classes, a
method can call the method of a base class with the same name. Objects can contain an arbitrary amount of private
data.

In C++ terminology, all class members (including the data members) arepublic, and all member functions are
virtual. There are no special constructors or destructors. As in Modula-3, there are no shorthands for referencing
the object’s members from its methods: the method function is declared with an explicit first argument representing
the object, which is provided implicitly by the call. As in Smalltalk, classes themselves are objects, albeit in the
wider sense of the word: in Python, all data types are objects. This provides semantics for importing and renaming.
Unlike C++ and Modula-3, built-in types can be used as base classes for extension by the user. Also, like in C++
but unlike in Modula-3, most built-in operators with special syntax (arithmetic operators, subscripting etc.) can
be redefined for class instances.

9.1 A Word About Terminology

Lacking universally accepted terminology to talk about classes, I will make occasional use of Smalltalk and C++
terms. (I would use Modula-3 terms, since its object-oriented semantics are closer to those of Python than C++,
but I expect that few readers have heard of it.)

I also have to warn you that there’s a terminological pitfall for object-oriented readers: the word “object” in Python
does not necessarily mean a class instance. Like C++ and Modula-3, and unlike Smalltalk, not all types in Python
are classes: the basic built-in types like integers and lists are not, and even somewhat more exotic types like files
aren’t. However,all Python types share a little bit of common semantics that is best described by using the word
object.

Objects have individuality, and multiple names (in multiple scopes) can be bound to the same object. This is
known as aliasing in other languages. This is usually not appreciated on a first glance at Python, and can be
safely ignored when dealing with immutable basic types (numbers, strings, tuples). However, aliasing has an
(intended!) effect on the semantics of Python code involving mutable objects such as lists, dictionaries, and most
types representing entities outside the program (files, windows, etc.). This is usually used to the benefit of the
program, since aliases behave like pointers in some respects. For example, passing an object is cheap since only
a pointer is passed by the implementation; and if a function modifies an object passed as an argument, the caller
will see the change — this eliminates the need for two different argument passing mechanisms as in Pascal.

9.2 Python Scopes and Name Spaces

Before introducing classes, I first have to tell you something about Python’s scope rules. Class definitions play
some neat tricks with namespaces, and you need to know how scopes and namespaces work to fully understand
what’s going on. Incidentally, knowledge about this subject is useful for any advanced Python programmer.

57

Let’s begin with some definitions.

A namespaceis a mapping from names to objects. Most namespaces are currently implemented as Python dictio-
naries, but that’s normally not noticeable in any way (except for performance), and it may change in the future.
Examples of namespaces are: the set of built-in names (functions such asabs() , and built-in exception names);
the global names in a module; and the local names in a function invocation. In a sense the set of attributes of
an object also form a namespace. The important thing to know about namespaces is that there is absolutely no
relation between names in different namespaces; for instance, two different modules may both define a function
“maximize” without confusion — users of the modules must prefix it with the module name.

By the way, I use the wordattribute for any name following a dot — for example, in the expressionz.real ,
real is an attribute of the objectz . Strictly speaking, references to names in modules are attribute references: in
the expressionmodname.funcname , modnameis a module object andfuncname is an attribute of it. In this
case there happens to be a straightforward mapping between the module’s attributes and the global names defined
in the module: they share the same namespace!1

Attributes may be read-only or writable. In the latter case, assignment to attributes is possible. Module attributes
are writable: you can write ‘modname.the_answer = 42 ’. Writable attributes may also be deleted with the
del statement. For example, ‘del modname.the_answer ’ will remove the attributethe_answer from
the object named bymodname.

Name spaces are created at different moments and have different lifetimes. The namespace containing the built-in
names is created when the Python interpreter starts up, and is never deleted. The global namespace for a module
is created when the module definition is read in; normally, module namespaces also last until the interpreter quits.
The statements executed by the top-level invocation of the interpreter, either read from a script file or interactively,
are considered part of a module called__main__ , so they have their own global namespace. (The built-in names
actually also live in a module; this is called__builtin__ .)

The local namespace for a function is created when the function is called, and deleted when the function returns or
raises an exception that is not handled within the function. (Actually, forgetting would be a better way to describe
what actually happens.) Of course, recursive invocations each have their own local namespace.

A scopeis a textual region of a Python program where a namespace is directly accessible. “Directly accessible”
here means that an unqualified reference to a name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any time during execution, there are at
least three nested scopes whose namespaces are directly accessible: the innermost scope, which is searched first,
contains the local names; the namespaces of any enclosing functions, which are searched starting with the nearest
enclosing scope; the middle scope, searched next, contains the current module’s global names; and the outermost
scope (searched last) is the namespace containing built-in names.

If a name is declared global, then all references and assignments go directly to the middle scope containing the
module’s global names. Otherwise, all variables found outside of the innermost scope are read-only.

Usually, the local scope references the local names of the (textually) current function. Outside of functions, the
local scope references the same namespace as the global scope: the module’s namespace. Class definitions place
yet another namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of a function defined in a module
is that module’s namespace, no matter from where or by what alias the function is called. On the other hand, the
actual search for names is done dynamically, at run time — however, the language definition is evolving towards
static name resolution, at “compile” time, so don’t rely on dynamic name resolution! (In fact, local variables are
already determined statically.)

A special quirk of Python is that assignments always go into the innermost scope. Assignments do not copy data
— they just bind names to objects. The same is true for deletions: the statement ‘del x ’ removes the binding
of x from the namespace referenced by the local scope. In fact, all operations that introduce new names use the
local scope: in particular, import statements and function definitions bind the module or function name in the local
scope. (Theglobal statement can be used to indicate that particular variables live in the global scope.)

1Except for one thing. Module objects have a secret read-only attribute called__dict__ which returns the dictionary used to implement
the module’s namespace; the name__dict__ is an attribute but not a global name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem debuggers.

58 Chapter 9. Classes

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>
.
.
.
<statement-N>

Class definitions, like function definitions (def statements) must be executed before they have any effect. (You
could conceivably place a class definition in a branch of anif statement, or inside a function.)

In practice, the statements inside a class definition will usually be function definitions, but other statements are
allowed, and sometimes useful — we’ll come back to this later. The function definitions inside a class normally
have a peculiar form of argument list, dictated by the calling conventions for methods — again, this is explained
later.

When a class definition is entered, a new namespace is created, and used as the local scope — thus, all assignments
to local variables go into this new namespace. In particular, function definitions bind the name of the new function
here.

When a class definition is left normally (via the end), aclass objectis created. This is basically a wrapper around
the contents of the namespace created by the class definition; we’ll learn more about class objects in the next
section. The original local scope (the one in effect just before the class definitions was entered) is reinstated, and
the class object is bound here to the class name given in the class definition header (ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and instantiation.

Attribute referencesuse the standard syntax used for all attribute references in Python:obj.name . Valid attribute
names are all the names that were in the class’s namespace when the class object was created. So, if the class
definition looked like this:

class MyClass:
"A simple example class"
i = 12345
def f(self):

return ’hello world’

then MyClass.i and MyClass.f are valid attribute references, returning an integer and a method object,
respectively. Class attributes can also be assigned to, so you can change the value ofMyClass.i by assign-
ment.__doc__ is also a valid attribute, returning the docstring belonging to the class:"A simple example
class" .

Classinstantiationuses function notation. Just pretend that the class object is a parameterless function that returns
a new instance of the class. For example (assuming the above class):

x = MyClass()

creates a newinstanceof the class and assigns this object to the local variablex .

9.3. A First Look at Classes 59

The instantiation operation (“calling” a class object) creates an empty object. Many classes like to create objects
in a known initial state. Therefore a class may define a special method named__init__() , like this:

def __init__(self):
self.data = []

When a class defines an__init__() method, class instantiation automatically invokes__init__() for the
newly-created class instance. So in this example, a new, initialized instance can be obtained by:

x = MyClass()

Of course, the__init__() method may have arguments for greater flexibility. In that case, arguments given to
the class instantiation operator are passed on to__init__() . For example,

>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by instance objects are attribute
references. There are two kinds of valid attribute names.

The first I’ll call data attributes. These correspond to “instance variables” in Smalltalk, and to “data members”
in C++. Data attributes need not be declared; like local variables, they spring into existence when they are first
assigned to. For example, ifx is the instance ofMyClass created above, the following piece of code will print
the value16 , without leaving a trace:

x.counter = 1
while x.counter < 10:

x.counter = x.counter * 2
print x.counter
del x.counter

The second kind of attribute references understood by instance objects aremethods. A method is a function that
“belongs to” an object. (In Python, the term method is not unique to class instances: other object types can have
methods as well. For example, list objects have methods called append, insert, remove, sort, and so on. However,
below, we’ll use the term method exclusively to mean methods of class instance objects, unless explicitly stated
otherwise.)

Valid method names of an instance object depend on its class. By definition, all attributes of a class that are
(user-defined) function objects define corresponding methods of its instances. So in our example,x.f is a valid
method reference, sinceMyClass.f is a function, butx.i is not, sinceMyClass.i is not. Butx.f is not the
same thing asMyClass.f — it is amethod object, not a function object.

9.3.4 Method Objects

Usually, a method is called immediately:

60 Chapter 9. Classes

x.f()

In our example, this will return the string’hello world’ . However, it is not necessary to call a method right
away:x.f is a method object, and can be stored away and called at a later time. For example:

xf = x.f
while True:

print xf()

will continue to print ‘hello world ’ until the end of time.

What exactly happens when a method is called? You may have noticed thatx.f() was called without an argument
above, even though the function definition forf specified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called without any — even if the argument
isn’t actually used...

Actually, you may have guessed the answer: the special thing about methods is that the object is passed as the first
argument of the function. In our example, the callx.f() is exactly equivalent toMyClass.f(x) . In general,
calling a method with a list ofn arguments is equivalent to calling the corresponding function with an argument
list that is created by inserting the method’s object before the first argument.

If you still don’t understand how methods work, a look at the implementation can perhaps clarify matters. When
an instance attribute is referenced that isn’t a data attribute, its class is searched. If the name denotes a valid class
attribute that is a function object, a method object is created by packing (pointers to) the instance object and the
function object just found together in an abstract object: this is the method object. When the method object is
called with an argument list, it is unpacked again, a new argument list is constructed from the instance object and
the original argument list, and the function object is called with this new argument list.

9.4 Random Remarks

Data attributes override method attributes with the same name; to avoid accidental name conflicts, which may
cause hard-to-find bugs in large programs, it is wise to use some kind of convention that minimizes the chance
of conflicts. Possible conventions include capitalizing method names, prefixing data attribute names with a small
unique string (perhaps just an underscore), or using verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users (“clients”) of an object. In other words,
classes are not usable to implement pure abstract data types. In fact, nothing in Python makes it possible to enforce
data hiding — it is all based upon convention. (On the other hand, the Python implementation, written in C, can
completely hide implementation details and control access to an object if necessary; this can be used by extensions
to Python written in C.)

Clients should use data attributes with care — clients may mess up invariants maintained by the methods by
stamping on their data attributes. Note that clients may add data attributes of their own to an instance object
without affecting the validity of the methods, as long as name conflicts are avoided — again, a naming convention
can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from within methods. I find that this
actually increases the readability of methods: there is no chance of confusing local variables and instance variables
when glancing through a method.

Conventionally, the first argument of methods is often calledself . This is nothing more than a convention: the
nameself has absolutely no special meaning to Python. (Note, however, that by not following the convention
your code may be less readable by other Python programmers, and it is also conceivable that aclass browser
program be written which relies upon such a convention.)

Any function object that is a class attribute defines a method for instances of that class. It is not necessary that the
function definition is textually enclosed in the class definition: assigning a function object to a local variable in
the class is also ok. For example:

9.4. Random Remarks 61

Function defined outside the class
def f1(self, x, y):

return min(x, x+y)

class C:
f = f1
def g(self):

return ’hello world’
h = g

Now f , g andh are all attributes of classC that refer to function objects, and consequently they are all methods of
instances ofC— h being exactly equivalent tog. Note that this practice usually only serves to confuse the reader
of a program.

Methods may call other methods by using method attributes of theself argument:

class Bag:
def __init__(self):

self.data = []
def add(self, x):

self.data.append(x)
def addtwice(self, x):

self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The global scope associated with a
method is the module containing the class definition. (The class itself is never used as a global scope!) While one
rarely encounters a good reason for using global data in a method, there are many legitimate uses of the global
scope: for one thing, functions and modules imported into the global scope can be used by methods, as well as
functions and classes defined in it. Usually, the class containing the method is itself defined in this global scope,
and in the next section we’ll find some good reasons why a method would want to reference its own class!

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class” without supporting inheritance. The syntax
for a derived class definition looks as follows:

class DerivedClassName(BaseClassName):
<statement-1>
.
.
.
<statement-N>

The nameBaseClassName must be defined in a scope containing the derived class definition. Instead of a base
class name, an expression is also allowed. This is useful when the base class is defined in another module,

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class. When the class object is constructed,
the base class is remembered. This is used for resolving attribute references: if a requested attribute is not found
in the class, it is searched in the base class. This rule is applied recursively if the base class itself is derived from
some other class.

62 Chapter 9. Classes

There’s nothing special about instantiation of derived classes:DerivedClassName() creates a new instance
of the class. Method references are resolved as follows: the corresponding class attribute is searched, descending
down the chain of base classes if necessary, and the method reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have no special privileges when
calling other methods of the same object, a method of a base class that calls another method defined in the same
base class, may in fact end up calling a method of a derived class that overrides it. (For C++ programmers: all
methods in Python are effectivelyvirtual .)

An overriding method in a derived class may in fact want to extend rather than simply replace the base
class method of the same name. There is a simple way to call the base class method directly: just call
‘BaseClassName.methodname(self, arguments) ’. This is occasionally useful to clients as well.
(Note that this only works if the base class is defined or imported directly in the global scope.)

9.5.1 Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class definition with multiple base classes looks
as follows:

class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>

The only rule necessary to explain the semantics is the resolution rule used for class attribute references. This
is depth-first, left-to-right. Thus, if an attribute is not found inDerivedClassName , it is searched inBase1 ,
then (recursively) in the base classes ofBase1 , and only if it is not found there, it is searched inBase2 , and so
on.

(To some people breadth first — searchingBase2 andBase3 before the base classes ofBase1 — looks more
natural. However, this would require you to know whether a particular attribute ofBase1 is actually defined in
Base1 or in one of its base classes before you can figure out the consequences of a name conflict with an attribute
of Base2 . The depth-first rule makes no differences between direct and inherited attributes ofBase1 .)

It is clear that indiscriminate use of multiple inheritance is a maintenance nightmare, given the reliance in Python
on conventions to avoid accidental name conflicts. A well-known problem with multiple inheritance is a class
derived from two classes that happen to have a common base class. While it is easy enough to figure out what
happens in this case (the instance will have a single copy of “instance variables” or data attributes used by the
common base class), it is not clear that these semantics are in any way useful.

9.6 Private Variables

There is limited support for class-private identifiers. Any identifier of the form__spam (at least two lead-
ing underscores, at most one trailing underscore) is now textually replaced with_classname__spam , where
classname is the current class name with leading underscore(s) stripped. This mangling is done without regard
of the syntactic position of the identifier, so it can be used to define class-private instance and class variables,
methods, as well as globals, and even to store instance variables private to this class on instances ofotherclasses.
Truncation may occur when the mangled name would be longer than 255 characters. Outside classes, or when the
class name consists of only underscores, no mangling occurs.

Name mangling is intended to give classes an easy way to define “private” instance variables and methods, without
having to worry about instance variables defined by derived classes, or mucking with instance variables by code
outside the class. Note that the mangling rules are designed mostly to avoid accidents; it still is possible for
a determined soul to access or modify a variable that is considered private. This can even be useful in special
circumstances, such as in the debugger, and that’s one reason why this loophole is not closed. (Buglet: derivation

9.6. Private Variables 63

of a class with the same name as the base class makes use of private variables of the base class possible.)

Notice that code passed toexec , eval() or evalfile() does not consider the classname of the invoking
class to be the current class; this is similar to the effect of theglobal statement, the effect of which is likewise
restricted to code that is byte-compiled together. The same restriction applies togetattr() , setattr() and
delattr() , as well as when referencing__dict__ directly.

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C “struct”, bundling together a couple
of named data items. An empty class definition will do nicely:

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = ’John Doe’
john.dept = ’computer lab’
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be passed a class that emulates the
methods of that data type instead. For instance, if you have a function that formats some data from a file object,
you can define a class with methodsread() andreadline() that gets the data from a string buffer instead,
and pass it as an argument.

Instance method objects have attributes, too:m.im_self is the object of which the method is an instance, and
m.im_func is the function object corresponding to the method.

9.8 Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism it is possible to create extensible
hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form,instance must be an instance ofClass or of a class derived from it. The second form is a
shorthand for:

raise instance.__class__, instance

A class in an except clause is compatible with an exception if it is the same class or a base class thereof (but not
the other way around — an except clause listing a derived class is not compatible with a base class). For example,
the following code will print B, C, D in that order:

64 Chapter 9. Classes

class B:
pass

class C(B):
pass

class D(C):
pass

for c in [B, C, D]:
try:

raise c()
except D:

print "D"
except C:

print "C"
except B:

print "B"

Note that if the except clauses were reversed (with ‘except B ’ first), it would have printed B, B, B — the first
matching except clause is triggered.

When an error message is printed for an unhandled exception which is a class, the class name is printed, then a
colon and a space, and finally the instance converted to a string using the built-in functionstr() .

9.9 Iterators

By now, you’ve probably noticed that most container objects can looped over using afor statement:

for element in [1, 2, 3]:
print element

for element in (1, 2, 3):
print element

for key in {’one’:1, ’two’:2}:
print key

for char in "123":
print char

for line in open("myfile.txt"):
print line

This style of access is clear, concise, and convenient. The use of iterators pervades and unifies Python. Behind
the scenes, thefor statement callsiter() on the container object. The function returns an iterator object that
defines the methodnext() which accesses elements in the container one at a time. When there are no more
elements,next() raises aStopIteration exception which tells thefor loop to terminate. This example
shows how it all works:

9.9. Iterators 65

>>> s = ’abc’
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> it.next()
’a’
>>> it.next()
’b’
>>> it.next()
’c’
>>> it.next()

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-

it.next()
StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator behavior to your classes. Define
a __iter__() method which returns an object with anext() method. If the class definesnext() , then
__iter__() can just returnself :

>>> class Reverse:
"Iterator for looping over a sequence backwards"
def __init__(self, data):

self.data = data
self.index = len(data)

def __iter__(self):
return self

def next(self):
if self.index == 0:

raise StopIteration
self.index = self.index - 1
return self.data[self.index]

>>> for char in Reverse(’spam’):
print char

m
a
p
s

9.10 Generators

Generators are a simple and powerful tool for creating iterators. They are written like regular functions but use
theyield statement whenever they want to return data. Each time thenext() is called, the generator resumes
where it left-off (it remembers all the data values and which statement was last executed). An example shows that
generators can be trivially easy to create:

66 Chapter 9. Classes

>>> def reverse(data):
for index in range(len(data)-1, -1, -1):

yield data[index]

>>> for char in reverse(’golf’):
print char

f
l
o
g

Anything that can be done with generators can also be done with class based iterators as described in the pre-
vious section. What makes generators so compact is that the__iter__() andnext() methods are created
automatically.

Another key feature is that the local variables and execution state are automatically saved between calls. This
made the function easier to write and much more clear than an approach using class variables likeself.index
andself.data .

In addition to automatic method creation and saving program state, when generators terminate, they automatically
raiseStopIteration . In combination, these features make it easy to create iterators with no more effort than
writing a regular function.

9.10. Generators 67

68

CHAPTER

TEN

Brief Tour of the Standard Library

10.1 Operating System Interface

Theos module provides dozens of functions for interacting with the operating system:

>>> import os
>>> os.system(’time 0:02’)
0
>>> os.getcwd() # Return the current working directory
’C:\\Python24’
>>> os.chdir(’/server/accesslogs’)

Be sure to use the ‘import os ’ style instead of ‘from os import * ’. This will keep os.open() from
shadowing the builtinopen() function which operates much differently.

The builtindir() andhelp() functions are useful as interactive aids for working with large modules likeos :

>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module’s docstrings>

For daily file and directory management tasks, theshutil module provides a higher level interface that is easier
to use:

>>> import shutil
>>> shutil.copyfile(’data.db’, ’archive.db’)
>>> shutil.move(’/build/executables’, ’installdir’)

10.2 File Wildcards

Theglob module provides a function for making file lists from directory wildcard searches:

>>> import glob
>>> glob.glob(’*.py’)
[’primes.py’, ’random.py’, ’quote.py’]

69

10.3 Command Line Arguments

Common utility scripts often invoke processing command line arguments. These arguments are stored in thesys
module’sargv attribute as a list. For instance the following output results from running ‘python demo.py
one two three ’ at the command line:

>>> import sys
>>> print sys.argv
[’demo.py’, ’one’, ’two’, ’three’]

Thegetopt module processessys.argvusing the conventions of the UNIX getopt() function. More powerful
and flexible command line processing is provided by theoptparse module.

10.4 Error Output Redirection and Program Termination

The sys module also has attributes forstdin, stdout, andstderr. The latter is useful for emitting warnings and
error messages to make them visible even whenstdouthas been redirected:

>>> sys.stderr.write(’Warning, log file not found starting a new one’)
Warning, log file not found starting a new one

The most direct way to terminate a script is to use ‘sys.exit() ’.

10.5 String Pattern Matching

The re module provides regular expression tools for advanced string processing. For complex matching and
manipulation, regular expressions offer succinct, optimized solutions:

>>> import re
>>> re.findall(r’\bf[a-z]*’, ’which foot or hand fell fastest’)
[’foot’, ’fell’, ’fastest’]
>>> re.sub(r’(\b[a-z]+) \1’, r’\1’, ’cat in the the hat’)
’cat in the hat’

When only simple capabilities are needed, string methods are preferred because they are easier to read and debug:

>>> ’tea for too’.replace(’too’, ’two’)
’tea for two’

10.6 Mathematics

Themath module gives access to the underlying C library functions for floating point math:

70 Chapter 10. Brief Tour of the Standard Library

>>> import math
>>> math.cos(math.pi / 4.0)
0.70710678118654757
>>> math.log(1024, 2)
10.0

Therandom module provides tools for making random selections:

>>> import random
>>> random.choice([’apple’, ’pear’, ’banana’])
’apple’
>>> random.sample(xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)
4

10.7 Internet Access

There are a number of modules for accessing the internet and processing internet protocols. Two of the simplest
areurllib2 for retrieving data from urls andsmtplib for sending mail:

>>> import urllib2
>>> for line in urllib2.urlopen(’http://tycho.usno.navy.mil/cgi-bin/timer.pl’):
... if ’EST’ in line: # look for Eastern Standard Time
... print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib
>>> server = smtplib.SMTP(’localhost’)
>>> server.sendmail(’soothsayer@tmp.org’, ’jceasar@tmp.org’,
"""To: jceasar@tmp.org
From: soothsayer@tmp.org

Beware the Ides of March.
""")
>>> server.quit()

10.8 Dates and Times

The datetime module supplies classes for manipulating dates and times in both simple and complex ways.
While date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for
output formatting and manipulation. The module also supports objects that are time zone aware.

10.7. Internet Access 71

dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y or %d%b %Y is a %A on the %d day of %B")
’12-02-03 or 02Dec 2003 is a Tuesday on the 02 day of December’

dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday
>>> age.days
14368

10.9 Data Compression

Common data archiving and compression formats are directly supported by modules including:zlib , gzip ,
bz2 , zipfile , andtarfile .

>>> import zlib
>>> s = ’witch which has which witches wrist watch’
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)
37
>>> zlib.decompress(t)
’witch which has which witches wrist watch’
>>> zlib.crc32(t)
-1438085031

10.10 Performance Measurement

Some Python users develop a deep interest in knowing the relative performance between different approaches to
the same problem. Python provides a measurement tool that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature instead of the traditional approach
to swapping arguments. Thetimeit module quickly demonstrates that the traditional approach is faster:

>>> from timeit import Timer
>>> Timer(’t=a; a=b; b=t’, ’a=1; b=2’).timeit()
0.60864915603680925
>>> Timer(’a,b = b,a’, ’a=1; b=2’).timeit()
0.8625194857439773

In contrast totimeit ’s fine level of granularity, theprofile andpstats modules provide tools for identify-
ing time critical sections in larger blocks of code.

72 Chapter 10. Brief Tour of the Standard Library

10.11 Quality Control

One approach for developing high quality software is to write tests for each function as it is developed and to run
those tests frequently during the development process.

The doctest module provides a tool for scanning a module and validating tests embedded in a program’s
docstrings. Test construction is as simple as cutting-and-pasting a typical call along with its results into the
docstring. This improves the documentation by providing the user with an example and it allows the doctest
module to make sure the code remains true to the documentation:

def average(values):
"""Computes the arithmetic mean of a list of numbers.

>>> print average([20, 30, 70])
40.0
"""
return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

Theunittest module is not as effortless as thedoctest module, but it allows a more comprehensive set of
tests to be maintained in a separate file:

import unittest

class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):
self.assertEqual(average([20, 30, 70]), 40.0)
self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
self.assertRaises(ZeroDivisionError, average, [])
self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 Batteries Included

Python has a “batteries included” philosophy. This is best seen through the sophisticated and robust capabilities
of its larger packages. For example:

* The xmlrpclib andSimpleXMLRPCServer modules make implementing remote procedure calls into an
almost trivial task. Despite the names, no direct knowledge or handling of XML is needed.

* The email package is a library for managing email messages, including MIME and other RFC 2822-based
message documents. Unlikesmtplib andpoplib which actually send and receive messages, the email pack-
age has a complete toolset for building or decoding complex message structures (including attachments) and for
implementing internet encoding and header protocols.

* The xml.dom andxml.sax packages provide robust support for parsing this popular data interchange format.
Likewise, thecsv module supports direct reads and writes in a common database format. Together, these modules
and packages greatly simplify data interchange between python applications and other tools.

* Internationalization is supported by a number of modules includinggettext , locale , and thecodecs
package.

10.11. Quality Control 73

74

CHAPTER

ELEVEN

What Now?

Reading this tutorial has probably reinforced your interest in using Python — you should be eager to apply Python
to solve your real-world problems. Now what should you do?

You should read, or at least page through, thePython Library Reference, which gives complete (though terse)
reference material about types, functions, and modules that can save you a lot of time when writing Python
programs. The standard Python distribution includes alot of code in both C and Python; there are modules to read
UNIX mailboxes, retrieve documents via HTTP, generate random numbers, parse command-line options, write
CGI programs, compress data, and a lot more; skimming through the Library Reference will give you an idea of
what’s available.

The major Python Web site ishttp://www.python.org/; it contains code, documentation, and pointers to Python-
related pages around the Web. This Web site is mirrored in various places around the world, such as Europe,
Japan, and Australia; a mirror may be faster than the main site, depending on your geographical location. A more
informal site ishttp://starship.python.net/, which contains a bunch of Python-related personal home pages; many
people have downloadable software there. Many more user-created Python modules can be found in thePython
Package Index(PyPI).

For Python-related questions and problem reports, you can post to the newsgroupcomp.lang.python, or send them
to the mailing list atpython-list@python.org. The newsgroup and mailing list are gatewayed, so messages posted
to one will automatically be forwarded to the other. There are around 120 postings a day (with peaks up to several
hundred), asking (and answering) questions, suggesting new features, and announcing new modules. Before
posting, be sure to check the list ofFrequently Asked Questions(also called the FAQ), or look for it in the ‘Misc/’
directory of the Python source distribution. Mailing list archives are available athttp://www.python.org/pipermail/.
The FAQ answers many of the questions that come up again and again, and may already contain the solution for
your problem.

75

76

APPENDIX

A

Interactive Input Editing and History
Substitution

Some versions of the Python interpreter support editing of the current input line and history substitution, similar
to facilities found in the Korn shell and the GNU Bash shell. This is implemented using theGNU Readlinelibrary,
which supports Emacs-style and vi-style editing. This library has its own documentation which I won’t duplicate
here; however, the basics are easily explained. The interactive editing and history described here are optionally
available in the UNIX and CygWin versions of the interpreter.

This chapter doesnot document the editing facilities of Mark Hammond’s PythonWin package or the Tk-based
environment, IDLE, distributed with Python. The command line history recall which operates within DOS boxes
on NT and some other DOS and Windows flavors is yet another beast.

A.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary or secondary prompt. The
current line can be edited using the conventional Emacs control characters. The most important of these are:C-A
(Control-A) moves the cursor to the beginning of the line,C-E to the end,C-B moves it one position to the left,
C-F to the right. Backspace erases the character to the left of the cursor,C-D the character to its right.C-K kills
(erases) the rest of the line to the right of the cursor,C-Y yanks back the last killed string.C-underscore
undoes the last change you made; it can be repeated for cumulative effect.

A.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved in a history buffer, and when a
new prompt is given you are positioned on a new line at the bottom of this buffer.C-P moves one line up (back)
in the history buffer,C-N moves one down. Any line in the history buffer can be edited; an asterisk appears in
front of the prompt to mark a line as modified. Pressing theReturn key passes the current line to the interpreter.
C-R starts an incremental reverse search;C-S starts a forward search.

A.3 Key Bindings

The key bindings and some other parameters of the Readline library can be customized by placing commands in
an initialization file called ‘̃/.inputrc’. Key bindings have the form

key-name: function-name

or

77

"string": function-name

and options can be set with

set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding forTab in Python is to insert aTab character instead of Readline’s default filename
completion function. If you insist, you can override this by putting

Tab: complete

in your ‘˜/.inputrc’. (Of course, this makes it harder to type indented continuation lines if you’re accustomed to
usingTab for that purpose.)

Automatic completion of variable and module names is optionally available. To enable it in the interpreter’s
interactive mode, add the following to your startup file:1

import rlcompleter, readline
readline.parse_and_bind(’tab: complete’)

This binds theTab key to the completion function, so hitting theTab key twice suggests completions; it looks at
Python statement names, the current local variables, and the available module names. For dotted expressions such
asstring.a , it will evaluate the expression up to the final ‘. ’ and then suggest completions from the attributes
of the resulting object. Note that this may execute application-defined code if an object with a__getattr__()
method is part of the expression.

A more capable startup file might look like this example. Note that this deletes the names it creates once they are
no longer needed; this is done since the startup file is executed in the same namespace as the interactive commands,
and removing the names avoids creating side effects in the interactive environments. You may find it convenient to
keep some of the imported modules, such asos , which turn out to be needed in most sessions with the interpreter.

1Python will execute the contents of a file identified by the PYTHONSTARTUP environment variable when you start an interactive inter-
preter.

78 Appendix A. Interactive Input Editing and History Substitution

Add auto-completion and a stored history file of commands to your Python
interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
bound to the Esc key by default (you can change it - see readline docs).
#
Store the file in ~/.pystartup, and set an environment variable to point
to it: "export PYTHONSTARTUP=/max/home/itamar/.pystartup" in bash.
#
Note that PYTHONSTARTUP does *not* expand "~", so you have to put in the
full path to your home directory.

import atexit
import os
import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")

def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

A.4 Commentary

This facility is an enormous step forward compared to earlier versions of the interpreter; however, some wishes
are left: It would be nice if the proper indentation were suggested on continuation lines (the parser knows if an
indent token is required next). The completion mechanism might use the interpreter’s symbol table. A command
to check (or even suggest) matching parentheses, quotes, etc., would also be useful.

A.4. Commentary 79

80

APPENDIX

B

Floating Point Arithmetic: Issues and
Limitations

Floating-point numbers are represented in computer hardware as base 2 (binary) fractions. For example, the
decimal fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only real difference being that the first is
written in base 10 fractional notation, and the second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary fractions. A consequence is that, in
general, the decimal floating-point numbers you enter are only approximated by the binary floating-point numbers
actually stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction 1/3. You can approximate that as a
base 10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you’re willing to write down, the result will never be exactly 1/3, but will
be an increasingly better approximation to 1/3.

In the same way, no matter how many base 2 digits you’re willing to use, the decimal value 0.1 cannot be repre-
sented exactly as a base 2 fraction. In base 2, 1/10 is the infinitely repeating fraction

81

0.0001100110011001100110011001100110011001100110011...

Stop at any finite number of bits, and you get an approximation. This is why you see things like:

>>> 0.1
0.10000000000000001

On most machines today, that is what you’ll see if you enter 0.1 at a Python prompt. You may not, though, because
the number of bits used by the hardware to store floating-point values can vary across machines, and Python only
prints a decimal approximation to the true decimal value of the binary approximation stored by the machine. On
most machines, if Python were to print the true decimal value of the binary approximation stored for 0.1, it would
have to display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

instead! The Python prompt (implicitly) uses the builtinrepr() function to obtain a string version of everything
it displays. For floats,repr(float) rounds the true decimal value to 17 significant digits, giving

0.10000000000000001

repr(float) produces 17 significant digits because it turns out that’s enough (on most machines) so that
eval(repr(x)) == x exactly for all finite floatsx, but rounding to 16 digits is not enough to make that
true.

Note that this is in the very nature of binary floating-point: this is not a bug in Python, it is not a bug in your code
either, and you’ll see the same kind of thing in all languages that support your hardware’s floating-point arithmetic
(although some languages may notdisplaythe difference by default, or in all output modes).

Python’s builtinstr() function produces only 12 significant digits, and you may wish to use that instead. It’s
unusual foreval(str(x)) to reproducex, but the output may be more pleasant to look at:

>>> print str(0.1)
0.1

It’s important to realize that this is, in a real sense, an illusion: the value in the machine is not exactly 1/10, you’re
simply rounding thedisplayof the true machine value.

Other surprises follow from this one. For example, after seeing

>>> 0.1
0.10000000000000001

you may be tempted to use theround() function to chop it back to the single digit you expect. But that makes
no difference:

>>> round(0.1, 1)
0.10000000000000001

The problem is that the binary floating-point value stored for "0.1" was already the best possible binary approxi-
mation to 1/10, so trying to round it again can’t make it better: it was already as good as it gets.

82 Appendix B. Floating Point Arithmetic: Issues and Limitations

Another consequence is that since 0.1 is not exactly 1/10, adding 0.1 to itself 10 times may not yield exactly 1.0,
either:

>>> sum = 0.0
>>> for i in range(10):
... sum += 0.1
...
>>> sum
0.99999999999999989

Binary floating-point arithmetic holds many surprises like this. The problem with "0.1" is explained in precise
detail below, in the "Representation Error" section. SeeThe Perils of Floating Pointfor a more complete account
of other common surprises.

As that says near the end, “there are no easy answers.” Still, don’t be unduly wary of floating-point! The errors in
Python float operations are inherited from the floating-point hardware, and on most machines are on the order of
no more than 1 part in 2**53 per operation. That’s more than adequate for most tasks, but you do need to keep in
mind that it’s not decimal arithmetic, and that every float operation can suffer a new rounding error.

While pathological cases do exist, for most casual use of floating-point arithmetic you’ll see the result you expect
in the end if you simply round the display of your final results to the number of decimal digits you expect.str()
usually suffices, and for finer control see the discussion of Pythons’s%format operator: the%g, %f and%eformat
codes supply flexible and easy ways to round float results for display.

B.1 Representation Error

This section explains the “0.1” example in detail, and shows how you can perform an exact analysis of cases like
this yourself. Basic familiarity with binary floating-point representation is assumed.

Representation errorrefers to that some (most, actually) decimal fractions cannot be represented exactly as binary
(base 2) fractions. This is the chief reason why Python (or Perl, C, C++, Java, Fortran, and many others) often
won’t display the exact decimal number you expect:

>>> 0.1
0.10000000000000001

Why is that? 1/10 is not exactly representable as a binary fraction. Almost all machines today (November 2000)
use IEEE-754 floating point arithmetic, and almost all platforms map Python floats to IEEE-754 "double preci-
sion". 754 doubles contain 53 bits of precision, so on input the computer strives to convert 0.1 to the closest
fraction it can of the formJ/2** N whereJ is an integer containing exactly 53 bits. Rewriting

1 / 10 ~= J / (2**N)

as

J ~= 2**N / 10

and recalling thatJ has exactly 53 bits (is>= 2**52 but< 2**53), the best value forN is 56:

B.1. Representation Error 83

>>> 2L**52
4503599627370496L
>>> 2L**53
9007199254740992L
>>> 2L**56/10
7205759403792793L

That is, 56 is the only value forN that leavesJ with exactly 53 bits. The best possible value forJ is then that
quotient rounded:

>>> q, r = divmod(2L**56, 10)
>>> r
6L

Since the remainder is more than half of 10, the best approximation is obtained by rounding up:

>>> q+1
7205759403792794L

Therefore the best possible approximation to 1/10 in 754 double precision is that over 2**56, or

7205759403792794 / 72057594037927936

Note that since we rounded up, this is actually a little bit larger than 1/10; if we had not rounded up, the quotient
would have been a little bit smaller than 1/10. But in no case can it beexactly1/10!

So the computer never “sees” 1/10: what it sees is the exact fraction given above, the best 754 double approxima-
tion it can get:

>>> .1 * 2L**56
7205759403792794.0

If we multiply that fraction by 10**30, we can see the (truncated) value of its 30 most significant decimal digits:

>>> 7205759403792794L * 10L**30 / 2L**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to the decimal value
0.100000000000000005551115123125. Rounding that to 17 significant digits gives the 0.10000000000000001
that Python displays (well, will display on any 754-conforming platform that does best-possible input and output
conversions in its C library — yours may not!).

84 Appendix B. Floating Point Arithmetic: Issues and Limitations

APPENDIX

C

History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://www.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen Python-
Labs team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
seehttp://www.zope.com/). In 2001, the Python Software Foundation (PSF, seehttp://www.python.org/psf/) was
formed, a non-profit organization created specifically to own Python-related Intellectual Property. Zope Corpora-
tion is a sponsoring member of the PSF.

All Python releases are Open Source (seehttp://www.opensource.org/ for the Open Source Definition). Histori-
cally, most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various
releases.

Release Derived from Year Owner GPL compatible?
0.9.0 thru 1.2 n/a 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes

1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes

2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 2.2.2 2002-2003 PSF yes

2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike
the GPL, let you distribute a modified version without making your changes open source. The GPL-compatible
licenses make it possible to combine Python with other software that is released under the GPL; the others don’t.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

85

C.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.3.3

1. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or
Organization (“Licensee”) accessing and otherwise using Python 2.3.3 software in source or binary form
and its associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.3.3 alone or in any derivative version, provided, however,
that PSF’s License Agreement and PSF’s notice of copyright, i.e., “Copyrightc© 2001-2003 Python Soft-
ware Foundation; All Rights Reserved” are retained in Python 2.3.3 alone or in any derivative version
prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 2.3.3 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 2.3.3.

4. PSF is making Python 2.3.3 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
2.3.3 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.3.3 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.3.3, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or
joint venture between PSF and Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote products or services of Licensee, or
any third party.

8. By copying, installing or otherwise using Python 2.3.3, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

1. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga
Avenue, Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise
using this software in source or binary form and its associated documentation (“the Software”).

2. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Li-
censee a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the Software alone or in any derivative
version, provided, however, that the BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REP-
RESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT
LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY
OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT
OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

86 Appendix C. History and License

5. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

6. This License Agreement shall be governed by and interpreted in all respects by the law of the State of
California, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License
Agreement does not grant permission to use BeOpen trademarks or trade names in a trademark sense to
endorse or promote products or services of Licensee, or any third party. As an exception, the “BeOpen
Python” logos available at http://www.pythonlabs.com/logos.html may be used according to the permissions
granted on that web page.

7. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and
conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

1. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an
office at 1895 Preston White Drive, Reston, VA 20191 (“CNRI”), and the Individual or Organization (“Li-
censee”) accessing and otherwise using Python 1.6.1 software in source or binary form and its associated
documentation.

2. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclu-
sive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare
derivative works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided,
however, that CNRI’s License Agreement and CNRI’s notice of copyright, i.e., “Copyrightc© 1995-2001
Corporation for National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone
or in any derivative version prepared by Licensee. Alternately, in lieu of CNRI’s License Agreement,
Licensee may substitute the following text (omitting the quotes): “Python 1.6.1 is made available sub-
ject to the terms and conditions in CNRI’s License Agreement. This Agreement together with Python
1.6.1 may be located on the Internet using the following unique, persistent identifier (known as a handle):
1895.22/1013. This Agreement may also be obtained from a proxy server on the Internet using the following
URL: http://hdl.handle.net/1895.22/1013.”

3. In the event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part
thereof, and wants to make the derivative work available to others as provided herein, then Licensee hereby
agrees to include in any such work a brief summary of the changes made to Python 1.6.1.

4. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESEN-
TATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON
1.6.1 WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFY-
ING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

7. This License Agreement shall be governed by the federal intellectual property law of the United States, in-
cluding without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply,
by the law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstand-
ing the foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable
material that was previously distributed under the GNU General Public License (GPL), the law of the Com-
monwealth of Virginia shall govern this License Agreement only as to issues arising under or with respect
to Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture between CNRI and Licensee. This License
Agreement does not grant permission to use CNRI trademarks or trade name in a trademark sense to endorse
or promote products or services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python
1.6.1, Licensee agrees to be bound by the terms and conditions of this License Agreement.

C.2. Terms and conditions for accessing or otherwise using Python 87

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright c© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee
is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

88 Appendix C. History and License

APPENDIX

D

Glossary

>>> The typical Python prompt of the interactive shell. Often seen for code examples that can be tried right away
in the interpreter.

... The typical Python prompt of the interactive shell when entering code for an indented code block.

BDFL Benevolent Dictator For Life, a.k.a.Guido van Rossum, Python’s creator.

byte code The internal representation of a Python program in the interpreter. The byte code is also cached in the
.pyc and.pyo files so that executing the same file is faster the second time (compilation from source to
byte code can be saved). This “intermediate language” is said to run on a “virtual machine” that calls the
subroutines corresponding to each bytecode.

classic classAny class which does not inherit fromobject . Seenew-style class.

coercion Converting data from one type to another. For example,int(3.15) coerces the floating point number
to the integer,3. Most mathematical operations have rules for coercing their arguments to a common type.
For instance, adding3+4.5 , causes the integer3 to be coerced to be a float3.0 before adding to4.5
resulting in the float7.5 .

descriptor Any new-styleobject that defines the methods__get__() , __set__() , or __delete__() .
When a class attribute is a descriptor, its special binding behavior is triggered upon attribute lookup. Nor-
mally, writing a.b looks up the objectb in the class dictionary fora, but if b is a descriptor, the defined
method gets called. Understanding descriptors is a key to a deep understanding of Python because they
are the basis for many features including functions, methods, properties, class methods, static methods, and
reference to super classes.

dictionary An associative array, where arbitrary keys are mapped to values. The use ofdict much resembles
that for list , but the keys can be any object with a__hash__() function, not just integers starting from
zero. Called a hash in Perl.

EAFP Easier to ask for forgiveness than permission. This common Python coding style assumes the existence
of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style
is characterized by the presence of manytry andexcept statements. The technique contrasts with the
LBYLstyle that is common in many other languages such as C.

__future__ A pseudo module which programmers can use to enable new language features which are not compat-
ible with the current interpreter. For example, the expression11/4 currently evaluates to2. If the module
in which it is executed had enabledtrue divisionby executing:

from __future__ import division

the expression11/4 would evaluate to2.75 . By actually importing the__future__ module and evalu-
ating its variables, you can see when a new feature was first added to the language and when it will become
the default:

>>> import __future__
>>> __future__.division
_Feature((2, 2, 0, ’alpha’, 2), (3, 0, 0, ’alpha’, 0), 8192)

89

generator A function that returns an iterator. It looks like a normal function except that theyield keyword is
used instead ofreturn . Generator functions often contain one or morefor or while loops thatyield
elements back to the caller. The function execution is stopped at theyield keyword (returning the result)
and is resumed there when the next element is requested by calling thenext() method of the returned
iterator.

GIL Seeglobal interpreter lock.

global interpreter lock The lock used by Python threads to assure that only one thread can be run at a time.
This simplifies Python by assuring that no two processes can access the same memory at the same time.
Locking the entire interpreter makes it easier for the interpreter to be multi-threaded, at the expense of some
parallelism on multi-processor machines. Efforts have been made in the past to create a “free-threaded” in-
terpreter (one which locks shared data at a much finer granularity), but performance suffered in the common
single-processor case.

IDLE An Integrated Development Environment for Python. IDLE is a basic editor and interpreter environment
that ships with the standard distribution of Python. Good for beginners, it also serves as clear example code
for those wanting to implement a moderately sophisticated, multi-platform GUI application.

immutable A object with fixed value. Immutable objects are numbers, strings or tuples (and more). Such an
object cannot be altered. A new object has to be created if a different value has to be stored. They play an
important role in places where a constant hash value is needed. For example as a key in a dictionary.

integer division Mathematical division discarding any remainder. For example, the expression11/4 currently
evaluates to2 in contrast to the2.75 returned by float division. Also calledfloor division. When dividing
two integers the outcome will always be another integer (having the floor function applied to it). However,
if one of the operands is another numeric type (such as afloat), the result will be coerced (seecoercion)
to a common type. For example, a integer divided by a float will result in a float value, possibly with a
decimal fraction. Integer division can be forced by using the// operator instead of the/ operator. See also
__future__.

interactive Python has an interactive interpreter which means that you can try out things and directly see its
result. Just launchpython with no arguments (possibly by selecting it from your computer’s main menu).
It is a very powerful way to test out new ideas or inspect modules and packages (rememberhelp(x)).

interpreted Python is an interpreted language, opposed to a compiled one. This means that the source files can
be run right away without first making an executable which is then run. Interpreted languages typically have
a shorter development/debug cycle than compiled ones. See alsointeractive.

iterable A container object capable of returning its members one at a time. Examples of iterables include all
sequence types (such aslist , str , andtuple) and some non-sequence types likedict andfile and
objects of any classes you define with an__iter__() or __getitem__() method. Iterables can be
used in afor loop and in many other places where a sequence is needed (zip() , map() , ...). When an
iterable object is passed as an argument to the builtin functioniter() , it returns an iterator for the object.
This iterator is good for one pass over the set of values. When using iterables, it is usually not necessary
to call iter() or deal with iterator objects yourself. Thefor statement does that automatically for you,
creating a temporary unnamed variable to hold the iterator for the duration of the loop. See alsoiterator,
sequence, andgenerator.

iterator An object representing a stream of data. Repeated calls to the iterator’snext() method return suc-
cessive items in the stream. When no more data is available aStopIteration exception is raised
instead. At this point, the iterator object is exhausted and any further calls to itsnext() method just raise
StopIteration again. Iterators are required to have an__iter__() method that returns the iterator
object itself so every iterator is also iterable and may be used in most places where other iterables are ac-
cepted. One notable exception is code that attempts multiple iteration passes. A container object (such as a
list) produces a fresh new iterator each time you pass it to theiter() function or use it in afor loop.
Attempting this with an iterator will just return the same exhausted iterator object from the second iteration
pass, making it appear like an empty container.

list comprehension A compact way to process all or a subset of elements in a sequence and return a list with the
results. result = ["0x%02x" %x for x in range(256) if x %2 == 0] generates a list
of strings containing hex numbers (0x..) that are even and in the range from 0 to 255. Theif clause is
optional. If omitted, all elements inrange(256) are processed in that case.

90 Appendix D. Glossary

mapping A container object (such asdict) that supports arbitrary key lookups using the special method
__getitem__() .

metaclassThe class of a class. Class definitions create a class name, a class dictionary, and a list of base classes.
The metaclass is responsible for taking those three arguments and creating the class. Most object oriented
programming languages provide a default implementation. What makes Python special is that it is possible
to create custom metaclasses. Most users never need this tool, but when the need arises, metaclasses can
provide powerful, elegant solutions. They have been used for logging attribute access, adding thread-safety,
tracking object creation, implementing singletons, and many other tasks.

LBYL Look before you leap. This coding style explicitly tests for pre-conditions before making calls or lookups.
This style contrasts with theEAFPapproach and is characterized the presence of manyif statements.

mutable Mutable objects can change their value but keep theirid() . See alsoimmutable.

namespaceThe place where a variable is stored. Namespaces are implemented as dictionary. There is the
local, global and builtins namespace and the nested namespaces in objects (in methods). Namespaces sup-
port modularity by preventing naming conflicts. For instance, the functions__builtin__.open() and
os.open() are distinguished by their namespaces. Namespaces also aid readability and maintainabil-
ity by making it clear which modules implement a function. For instance, writingrandom.seed()
or itertools.izip() makes it clear that those functions are implemented by therandom and
itertools modules respectively.

nested scopeThe ability to refer to a variable in an enclosing definition. For instance, a function defined inside
another function can refer to variables in the outer function. Note that nested scopes work only for reference
and not for assignment which will always write to the innermost scope. In contrast, local variables both read
and write in the innermost scope. Likewise, global variables read and write to the global namespace.

new-style classAny class that inherits fromobject . This includes all built-in types likelist and dict .
Only new-style classes can use Python’s newer, versatile features like__slots__ , descriptors, properties,
__getattribute__() , class methods, and static methods.

Python3000 A mythical python release, allowed not to be backward compatible, with telepathic interface.

__slots__A declaration inside anew-style classthat saves memory by pre-declaring space for instance attributes
and eliminating instance dictionaries. Though popular, the technique is somewhat tricky to get right and is
best reserved for rare cases where there are large numbers of instances in a memory critical application.

sequenceAn iterable which supports efficient element access using integer indices via the__getitem__()
and__len__() special methods. Some built-in sequence types arelist , str , tuple , andunicode .
Note thatdict also supports__getitem__() and__len__() , but is considered a mapping rather
than a sequence because the lookups use arbitraryimmutablekeys rather than integers.

Zen of Python Listing of Python design principles and philosophies that are helpful in understanding and using
the language. The listing can be found by typing “import this ” at the interactive prompt.

91

92

INDEX

Symbols
..., 89
»>, 89
__builtin__ (built-in module), 40
__future__, 89
__slots__, 91

A
append() (list method), 27

B
BDFL, 89
byte code, 89

C
classic class, 89
coercion, 89
compileall (standard module), 39
count() (list method), 27

D
descriptor, 89
dictionary, 89
docstrings, 21, 26
documentation strings, 21, 26

E
EAFP, 89
environment variables

PATH, 4, 38
PYTHONPATH, 38–40
PYTHONSTARTUP, 5, 78

extend() (list method), 27

F
file

object, 47
for

statement, 19

G
generator, 89
GIL, 90
global interpreter lock, 90

I
IDLE, 90
immutable, 90
index() (list method), 27
insert() (list method), 27
integer division, 90
interactive, 90
interpreted, 90
iterable, 90
iterator, 90

L
LBYL, 91
list comprehension, 90

M
mapping, 90
metaclass, 91
method

object, 60
module

search path, 38
mutable, 91

N
namespace, 91
nested scope, 91
new-style class, 91

O
object

file, 47
method, 60

open() (built-in function), 47

P
PATH, 4, 38
path

module search, 38
pickle (standard module), 49
pop() (list method), 27
Python3000, 91
PYTHONPATH, 38–40
PYTHONSTARTUP, 5, 78

93

R
readline (built-in module), 78
remove() (list method), 27
reverse() (list method), 27
rlcompleter (standard module), 78

S
search

path, module, 38
sequence, 91
sort() (list method), 27
statement

for , 19
string (standard module), 45
strings, documentation, 21, 26
sys (standard module), 39

U
unicode() (built-in function), 14

Z
Zen of Python, 91

94 Index

	1 Whetting Your Appetite
	2 Using the Python Interpreter
	2.1 Invoking the Interpreter
	2.1.1 Argument Passing
	2.1.2 Interactive Mode

	2.2 The Interpreter and Its Environment
	2.2.1 Error Handling
	2.2.2 Executable Python Scripts
	2.2.3 Source Code Encoding
	2.2.4 The Interactive Startup File

	3 An Informal Introduction to Python
	3.1 Using Python as a Calculator
	3.1.1 Numbers
	3.1.2 Strings
	3.1.3 Unicode Strings
	3.1.4 Lists

	3.2 First Steps Towards Programming

	4 More Control Flow Tools
	4.1 if Statements
	4.2 for Statements
	4.3 The range() Function
	4.4 break and continue Statements, and else Clauses on Loops
	4.5 pass Statements
	4.6 Defining Functions
	4.7 More on Defining Functions
	4.7.1 Default Argument Values
	4.7.2 Keyword Arguments
	4.7.3 Arbitrary Argument Lists
	4.7.4 Unpacking Argument Lists
	4.7.5 Lambda Forms
	4.7.6 Documentation Strings

	5 Data Structures
	5.1 More on Lists
	5.1.1 Using Lists as Stacks
	5.1.2 Using Lists as Queues
	5.1.3 Functional Programming Tools
	5.1.4 List Comprehensions

	5.2 The del statement
	5.3 Tuples and Sequences
	5.4 Dictionaries
	5.5 Looping Techniques
	5.6 More on Conditions
	5.7 Comparing Sequences and Other Types

	6 Modules
	6.1 More on Modules
	6.1.1 The Module Search Path
	6.1.2 ``Compiled'' Python files

	6.2 Standard Modules
	6.3 The dir() Function
	6.4 Packages
	6.4.1 Importing * From a Package
	6.4.2 Intra-package References
	6.4.3 Packages in Multiple Directories

	7 Input and Output
	7.1 Fancier Output Formatting
	7.2 Reading and Writing Files
	7.2.1 Methods of File Objects
	7.2.2 The pickle Module

	8 Errors and Exceptions
	8.1 Syntax Errors
	8.2 Exceptions
	8.3 Handling Exceptions
	8.4 Raising Exceptions
	8.5 User-defined Exceptions
	8.6 Defining Clean-up Actions

	9 Classes
	9.1 A Word About Terminology
	9.2 Python Scopes and Name Spaces
	9.3 A First Look at Classes
	9.3.1 Class Definition Syntax
	9.3.2 Class Objects
	9.3.3 Instance Objects
	9.3.4 Method Objects

	9.4 Random Remarks
	9.5 Inheritance
	9.5.1 Multiple Inheritance

	9.6 Private Variables
	9.7 Odds and Ends
	9.8 Exceptions Are Classes Too
	9.9 Iterators
	9.10 Generators

	10 Brief Tour of the Standard Library
	10.1 Operating System Interface
	10.2 File Wildcards
	10.3 Command Line Arguments
	10.4 Error Output Redirection and Program Termination
	10.5 String Pattern Matching
	10.6 Mathematics
	10.7 Internet Access
	10.8 Dates and Times
	10.9 Data Compression
	10.10 Performance Measurement
	10.11 Quality Control
	10.12 Batteries Included

	11 What Now?
	A Interactive Input Editing and History Substitution
	A.1 Line Editing
	A.2 History Substitution
	A.3 Key Bindings
	A.4 Commentary

	B Floating Point Arithmetic: Issues and Limitations
	B.1 Representation Error

	C History and License
	C.1 History of the software
	C.2 Terms and conditions for accessing or otherwise using Python

	D Glossary
	Index

