
 1
EDais graphics programming tutorial

Basic introduction to
Graphics programming in VB

Written by Mike D Sutton Of EDais

Http://www.mvps.org/EDais/

EDais@mvps.org

- 05.03.2002 -

Http://www.mvps.org/EDais/

http://www.mvps.org/EDais/
mailto:EDais@mvps.org

 2
EDais graphics programming tutorial

VB graphics programming VB graphics programming

I was asked recently where on the site one should go to find a basic introduction to
graphics programming in VB, and I realised that there was nothing that really covered
the basics; things that once you’re messing around with more advanced things you
tend to take for granted (and indeed I had done in my other tutorials on the subject.)

I was asked recently where on the site one should go to find a basic introduction to
graphics programming in VB, and I realised that there was nothing that really covered
the basics; things that once you’re messing around with more advanced things you
tend to take for granted (and indeed I had done in my other tutorials on the subject.)
As such I’m writing this tutorial with no assumed knowledge (hopefully) apart from a
very basic knowledge of VB programming in general.
As such I’m writing this tutorial with no assumed knowledge (hopefully) apart from a
very basic knowledge of VB programming in general.

Chapter 1 - The picture box Chapter 1 - The picture box
Chapter 2 - Basic drawing Chapter 2 - Basic drawing
Chapter 3 - Customising drawing Chapter 3 - Customising drawing
Chapter 4 - Working with images (Bitmaps) Chapter 4 - Working with images (Bitmaps)
Chapter 5 - Image manipulation Chapter 5 - Image manipulation
Chapter 6 - Introduction to the API Chapter 6 - Introduction to the API
Chapter 7 - Migrating to API drawing Chapter 7 - Migrating to API drawing
Chapter 8 - Customising drawing and Image manipulation with the API Chapter 8 - Customising drawing and Image manipulation with the API
Chapter 9 - System colours Chapter 9 - System colours
Chapter 10 - Further readingChapter 10 - Further reading

Http://www.mvps.org/EDais/ Http://www.mvps.org/EDais/

II nn
tt rr

oo dd
uu cc

tt ii oo
nn

 3
EDais graphics programming tutorial

CC
hh aa

pp tt
ee rr

 II The picture box The picture box

First thing’s first, before we can draw any kind of graphics we’ll need to draw it onto
so I’ll introduce you to your best friend when graphics programming – the picture box
control.

First thing’s first, before we can draw any kind of graphics we’ll need to draw it onto
so I’ll introduce you to your best friend when graphics programming – the picture box
control.

Drop one on a form now and let’s have a look at it

Note: The Image control is not the same as the picture box control and will not allow
you do the same things

Ok, it doesn’t look like much but let’s have a quick look at some of its properties.
The “Appearance” property is the first one we’ll look at. If you go to change its
value, you’ll see that it turns into a little drop down menu with two options; flat and
3D. Changing the property to flat makes the border of the picture box just a single
line rather than the ‘bevelled’ effect we get with the 3D property. Don’t worry that
the background colour of the picture box changes when you change this property; it’s
a known problem.
The next property is “AutoRedraw” but we’ll come back to that later as it’s quite an
important and useful one, the same with the “AutoSize” property.
“BackColor” allows you to change the background colour of the picture box, you can
either pick from the system colours of pick from a palette. If you want another colour
that doesn’t appear on either section then you can opposite-click on any of the bottom
two rows of squares on the palette tab and that will bring up a colour picker where
you can select or enter your own HSL or RGB colour references.
Next we have “BorderStyle”, which will either show or hide the border of the picture
box.
Now there’s a whole load more properties listed but for the time being we’re not
interested in most of them so just scroll down until you come to the Picture property.
When you go to edit that value, you’ll see that a small ellipsis (...) button appears next
to the property value, clicking on this will bring up an open dialogue where you can
find the picture you want to put into the control. The control natively supports the
Bitmap image formats (.BMP, .DIB, .ICO and .CUR), Jpeg (.JPG), Gif (.GIF) and
Metafiles (.EMF and .WMF). Once you’ve chosen an image then it should appear in
the picture box background.
Now we have an image embedded in the control we can go back and have a look at
the “AutoSize” property, changing this now will automatically scale the picture box to
the size of the background image.
At the moment that’s all we’ll deal with as far as the properties go, there are some
other useful ones but you can pick those up as you go along.

Http://www.mvps.org/EDais/ Http://www.mvps.org/EDais/

 4
EDais graphics programming tutorial

CC
hh aa

pp tt
ee rr

 II
II Basic drawing Basic drawing

Now you’re familiar with the control we’ll be using to draw on, we can dive into the
code and actually do some drawing. At this point it’s worth mentioning that the
drawing methods used in this section aren’t very efficient but hopefully very easy to
use and learn. At the risk of introducing bad practice into your code at an early level,
I’ll go through them anyway since a basic knowledge of what the controls have to
offer is important. Once you get more adept with graphics programming you’ll use
more efficient methods of drawing and use these less and less if at all. To this end, at
this point you either have the choice of learning the basics then moving on to the more
advanced stuff later (highly recommended), or you can just jump straight onto the
advanced methods now (or if you’ve had some prior experience doing graphics
programming in VB), which you’ll find in chapter 6.

Now you’re familiar with the control we’ll be using to draw on, we can dive into the
code and actually do some drawing. At this point it’s worth mentioning that the
drawing methods used in this section aren’t very efficient but hopefully very easy to
use and learn. At the risk of introducing bad practice into your code at an early level,
I’ll go through them anyway since a basic knowledge of what the controls have to
offer is important. Once you get more adept with graphics programming you’ll use
more efficient methods of drawing and use these less and less if at all. To this end, at
this point you either have the choice of learning the basics then moving on to the more
advanced stuff later (highly recommended), or you can just jump straight onto the
advanced methods now (or if you’ve had some prior experience doing graphics
programming in VB), which you’ll find in chapter 6.

At this point I’ll assume you want to learn the basics so let’s get stuck in. First up,
drop a picture box and command button on the form, arrange them to taste (just make
sure you can see both!) then double click the button and you’ll be whisked to the code
view.

At this point I’ll assume you want to learn the basics so let’s get stuck in. First up,
drop a picture box and command button on the form, arrange them to taste (just make
sure you can see both!) then double click the button and you’ll be whisked to the code
view.
In case you’re not familiar with computer graphics, any image displayed on the
monitor is made up of lots of small points of light called “Pixels” (picture elements.)
When doing any kind of drawing to the computer screen you’re using pixels, however
a lot of time you don’t have to worry about the individual pixels. For instance you
don’t have to specifically set every single pixel making a line or polygon, instead you
can use pre-made functions that do this for you.

In case you’re not familiar with computer graphics, any image displayed on the
monitor is made up of lots of small points of light called “Pixels” (picture elements.)
When doing any kind of drawing to the computer screen you’re using pixels, however
a lot of time you don’t have to worry about the individual pixels. For instance you
don’t have to specifically set every single pixel making a line or polygon, instead you
can use pre-made functions that do this for you.

Pixels

The picture box contains some basic graphics routines to get us started and it’s
function to draw a pixel is called PSet() (Pixel set): PSet (X, Y), Colour
Lets give it a whirl; type this into your command button’s click event:

Picture1.PSet (10, 10), 0

Run the application (F5) and hit the command button. If you look _really_ closely at
the top left hand corner of the picture box then you should see a tiny black dot –
Success, you’ve drawn a pixel!

Http://www.mvps.org/EDais/ Http://www.mvps.org/EDais/

 5
EDais graphics programming tutorial

At this point you may be scratching your head since a couple of things may seem odd
at this point depending on how much you’ve thought about it. First off, we told our
pixel to be draw at point (10,10) (coordinates are measured from the top left of the
control starting from (0,0) as the top-left-most pixel) where as the one we just drew
was placed at (1,1) instead. Secondly the last parameter is the colour but I put the
parameter as 0, how that that be a colour?

Ok, first question first. VB controls have a rather annoying (if you ask me) scale
property that changes how the coordinate system and thus the drawing routines work.
By default the scale mode on the picture box is set to “Twips” which are roughly
equal to one fifteenth of a pixel each. As such when we specified that the pixel be
drawn at (10,10), VB interpreted this in the control’s scale mode of Twips and
converted it to Pixels, which comes out to (0.666,0.666). Pixels coordinates cannot be
fractional since they relate to absolute positions on the screen, so they’re rounded to
the nearest integer coordinates (1,1).
To change this, go back into design mode and change the picture box’s “ScaleMode”
property to “3 - Pixel”. Now when you run the application again, you’ll see that the
pixel is drawn correctly at pixel (10,10).

Now, let’s deal with that colour problem. In VB, colours are passed around as
numbers, Long (32-bit) integers to be more accurate, and using them we can define
any RGB colour. The easiest way of defining colours are the VB colour constants:

vbRed
vbGreen
vbBlue
vbCyan
vbMagenta
vbYellow
vbBlack
vbWhite

However if we want other colours then we can use the RGB() function: RGB(Red,
Green, Blue) - Each channel value is defined in the range 0 - 255 where 0 indicates
the lowest intensity and 255 indicates the highest intensity. I.e. RGB(32, 32, 32)
would be a dull grey colour, where as RGB(255, 128, 0) would be bright orange.

Let’s change the PSet() call to be a bit more colourful:

Picture1.PSet (10, 10), vbRed

This time you should see a red pixel being drawn instead of the black one. Don’t
worry for the time being why 0 == Black, you can always experiment with that later.

Now you’ve mastered pixels, we can move on to drawing simple shapes. The first
one we’ll deal with is lines which, surprisingly, is done by using the Line() method:
Line (Xa, Ya)-(Xb, Yb), Colour, Flags

Basically there’s little more to learn here over the PSet() function, it just takes two
coordinates (For each end of the line), a colour and some optional flags. These flags

Http://www.mvps.org/EDais/

 6
EDais graphics programming tutorial

specify what the function should do but we’ll come back to these in a second though
after trying out the basic function. Stick this in your click event, after the PSet() call:

Picture1.Line (5, 15)-(25, 15), vbBlue

Now when you run the application and click on the button you’ll see a small blue line
being drawn beneath the pixel - Cool!.. Well, maybe not, but its progress!
Now back to those flags that I was talking about earlier. You can draw three different
types of ‘line’ with the one function; the flags define which you want. When this
property is left blank then the default line is drawn, however the “B” flag indicates
that VB should draw a rectangle between the two coordinates rather than a straight
line. Finally, the “BF” flag indicates that VB should draw a filled rectangle between
the two coordinates.
To demonstrate this, paste these two calls into the bottom of your subroutine, which
show both properties:

Picture1.Line (5, 20)-(25, 25), vbYellow, B
Picture1.Line (5, 30)-(25, 35), vbMagenta, BF

It’s a somewhat weird method this one since it uses very unusual calling convention
but unfortunately this is just the way they work since they’ve been carried through
since the early versions of BASIC in the same way for compatibilities sake.

In the same was as we have the ability to draw lines on the picture box, was can also
draw circles which is accomplished via, yes you guessed it, the Circle() method:
Circle (X, Y), Radius, Colour

Note; It does actually have more properties than just these to define segments of a
circle and things like that but we’ll not bother with these right now.

The coordinate passed to the function defines the Centre of the circle rather than the
top left as with the other functions, put this into your subroutine and let’s see it in
action:

Picture1.Circle (45, 20), 15, vbGreen

This draws a green circle with a 15-pixel radius at the point (45,20).

The last thing to deal with in this chapter is text which is drawn using the unlisted
Print() method: Print Text

Picture1.Print "Hello, world!"

The text is drawn at the ‘current point’ of the control, which is set via the “CurrentX”
and “CurrentY” properties and by default it set the position that the last drawing
operation finished.

Picture1.CurrentX = 2
Picture1.CurrentY = 40 ' Set the current position
Picture1.Print "Look, some text!"

Http://www.mvps.org/EDais/

 7
EDais graphics programming tutorial

The colour of the text is defined by the “ForeColor” property, while the font size and
style can be changed via the “Font” object property or “Font*” properties at runtime.
So now you can draw pixels, lines, boxes, filled boxes, circles and text in any number
of colours.

Http://www.mvps.org/EDais/

 8
EDais graphics programming tutorial

CC
hh aa

pp tt
ee rr

 II
II II

Customising drawing Customising drawing

Some of the shapes that we can draw can be customised by using them in conjunction
with the other properties of the picture box object. For instance, by changing the
“FillStyle” property we can create a filled circle.

Some of the shapes that we can draw can be customised by using them in conjunction
with the other properties of the picture box object. For instance, by changing the
“FillStyle” property we can create a filled circle.

In case you’ve not come from the last chapter then so far we have a form with a
picture box and button on, and the following code:
In case you’ve not come from the last chapter then so far we have a form with a
picture box and button on, and the following code:

Private Sub Command1_Click() Private Sub Command1_Click()
 Picture1.PSet (10, 10), vbRed Picture1.PSet (10, 10), vbRed
 Picture1.Line (5, 15)-(25, 15), vbBlue Picture1.Line (5, 15)-(25, 15), vbBlue
 Picture1.Line (5, 20)-(25, 25), vbYellow, B Picture1.Line (5, 20)-(25, 25), vbYellow, B
 Picture1.Line (5, 30)-(25, 35), vbMagenta, BF Picture1.Line (5, 30)-(25, 35), vbMagenta, BF
 Picture1.Circle (45, 20), 15, vbGreen Picture1.Circle (45, 20), 15, vbGreen
End Sub End Sub

Change the “FillStyle” property on the picture box to “0 - Solid” and run the
application again. Hmm, now the box and circle are filled in black, not the colour we
specified. This is because it’s filling using the fill colour of the picture box, this can
be changed through the “FillColor” property of the picture box, change that to
something more colourful and try it again. All of these properties of the picture box
can be changed on the fly at runtime as well as at design time; you just need to specify
one of the following constants:

Change the “FillStyle” property on the picture box to “0 - Solid” and run the
application again. Hmm, now the box and circle are filled in black, not the colour we
specified. This is because it’s filling using the fill colour of the picture box, this can
be changed through the “FillColor” property of the picture box, change that to
something more colourful and try it again. All of these properties of the picture box
can be changed on the fly at runtime as well as at design time; you just need to specify
one of the following constants:

vbFSSolid vbFSSolid

Http://www.mvps.org/EDais/

vbFSTransparent

vbHorizontalLine

vbVerticalLine

vbUpwardDiagonal

vbDownwardDiagonal

vbCross

vbDiagonalCross

In this case we don’t want the box draw with the “B” flag to be filled, so for that we’ll
set the fill mode as transparent but solid for the circle. Add this line to the beginning
of the subroutine to set the fill style to transparent.

Picture1.FillStyle = vbFSTransparent

Http://www.mvps.org/EDais/

 9
EDais graphics programming tutorial

Now add this line before the call to Circle() so it will be filled solidly:

Picture1.FillStyle = vbFSSolid

Similarly the “DrawStyle” property will change the way the lines are drawn in the
same way the “FillStyle” property changes the way the fills are drawn. The draw
style is defined as one of the following constants:

vbSolid
vbDash
vbDot
vbDashDot
vbDashDotDot
vbInvisible
vbInsideSolid

The “DrawMode” property changes the way the drawings are combined with the
existing image. Here you see each of the draw modes when a red filled rectangle is
drawn over a green filled rectangle (both have solid black borders):

vbBlackness

vbNotMergePen

vbMaskNotPen

vbNotCopyPen

vbMaskPenNot

vbInvert

vbXorPen

vbNotMaskPen

vbMaskPen

vbNotXorPen

vbNop

Http://www.mvps.org/EDais/

 10
EDais graphics programming tutorial

vbMergeNotPen

vbCopyPen
(Default)
vbMergePenNot

vbMergePen

vbWhiteness

If this all looks pretty confusing and/or useless then don’t worry, most of the time
you’ll never need to both with this anyway and when you do simply write a test
application and cycle through the available draw modes until you find one that does
what you want. There is logic behind the seemingly random colours in the above
images based on Boolean mathematics.

Http://www.mvps.org/EDais/

 11
EDais graphics programming tutorial

Working with images (bitmaps) Working with images (bitmaps)

In the same way as you can change the drawing styles at runtime, you can also load a
picture at design time, this is through the LoadPicture() function. To use it, simply
send LoadPicture() the full path to your image and it will put the image into the
picture box (it actually creates a copy of the image in memory, then assigns that to the
picture box, the original file is not linked to the object in any way)

In the same way as you can change the drawing styles at runtime, you can also load a
picture at design time, this is through the LoadPicture() function. To use it, simply
send LoadPicture() the full path to your image and it will put the image into the
picture box (it actually creates a copy of the image in memory, then assigns that to the
picture box, the original file is not linked to the object in any way)

Set Picture1.Picture = LoadPicture("C:\MyPic.bmp") Set Picture1.Picture = LoadPicture("C:\MyPic.bmp")

If you’ve set the AutoSize property to True then this line will automatically scale the
control to the size of the picture you’ve specified. If the file doesn’t exist then you’ll
get a runtime error, you can always check to see if it exists with either the Dir() or
FileLen() functions:

If you’ve set the AutoSize property to True then this line will automatically scale the
control to the size of the picture you’ve specified. If the file doesn’t exist then you’ll
get a runtime error, you can always check to see if it exists with either the Dir() or
FileLen() functions:

Private Function FileExist(ByRef inFile As String) As Boolean Private Function FileExist(ByRef inFile As String) As Boolean
 FileExist = CBool(Len(Dir(inFile))) FileExist = CBool(Len(Dir(inFile)))
End Function End Function

Private Function FileExist(ByRef inFile As String) As Boolean Private Function FileExist(ByRef inFile As String) As Boolean
 On Error Resume Next On Error Resume Next
 FileExist = CBool(FileLen(inFile) + 1) FileExist = CBool(FileLen(inFile) + 1)
End Function End Function

Once you’ve loaded the image into the control you can draw over the top of it using
the methods we’ve covered in the previous chapters including using different draw
modes. For instance to invert the entire image you can load the image into the
control, set the draw mode to invert and draw a white filled rectangle over the entire
image using the Line() function:

Once you’ve loaded the image into the control you can draw over the top of it using
the methods we’ve covered in the previous chapters including using different draw
modes. For instance to invert the entire image you can load the image into the
control, set the draw mode to invert and draw a white filled rectangle over the entire
image using the Line() function:

Picture1.AutoSize = True Picture1.AutoSize = True
Picture1.ScaleMode = vbPixels ' Set the scale mode to pixels Picture1.ScaleMode = vbPixels ' Set the scale mode to pixels
Picture1.Picture = LoadPicture("C:\MyPic.bmp") Picture1.Picture = LoadPicture("C:\MyPic.bmp")
Picture1.DrawMode = vbInvert ' Set invert draw mode Picture1.DrawMode = vbInvert ' Set invert draw mode
Picture1.FillStyle = vbInvisible ' Line() does the fill for us with the "BF" flag Picture1.FillStyle = vbInvisible ' Line() does the fill for us with the "BF" flag
Picture1.Line (0, 0)-(Picture1.ScaleWidth, Picture1.ScaleHeight), vbWhite, BF Picture1.Line (0, 0)-(Picture1.ScaleWidth, Picture1.ScaleHeight), vbWhite, BF

You may notice at this point that your image is flashing when you load and invert the
picture and the image is lost when you move it off the screen. This is because when
Windows is told to re-draw your control it simply redraws what it knows about which
is just the background picture, everything you draw on top is simply there temporarily
as an overlay.

You may notice at this point that your image is flashing when you load and invert the
picture and the image is lost when you move it off the screen. This is because when
Windows is told to re-draw your control it simply redraws what it knows about which
is just the background picture, everything you draw on top is simply there temporarily
as an overlay.
To change this we can enable the “AutoRedraw” property that I mentioned earlier
which forces Windows to remember what we’ve draw on the picture box (Even when
it’s been covered by another window or moved off the screen), and some other useful
things like only redrawing when it won’t ‘tear’ the image in middle of a refresh (this
is why the picture was flickering before.)

To change this we can enable the “AutoRedraw” property that I mentioned earlier
which forces Windows to remember what we’ve draw on the picture box (Even when
it’s been covered by another window or moved off the screen), and some other useful
things like only redrawing when it won’t ‘tear’ the image in middle of a refresh (this
is why the picture was flickering before.)
The down side of auto-redraw is that it does require more memory to use than a
standard picture box, so only use it when you absolutely have to. In cases where you
want your own drawing to appear in a picture box but don’t want to use auto-redraw
then put your drawing routine in the Paint() event of the picture box and turn off auto-

The down side of auto-redraw is that it does require more memory to use than a
standard picture box, so only use it when you absolutely have to. In cases where you
want your own drawing to appear in a picture box but don’t want to use auto-redraw
then put your drawing routine in the Paint() event of the picture box and turn off auto-

Http://www.mvps.org/EDais/

ing tutorial

Http://www.mvps.org/EDais/

CC

hh aa
pp tt

ee rr
 II

VV

 12
EDais graphics programming tutorial

redraw, this will fire your drawing code off when Windows is told to re-paint the
control.

Note; This can sometimes cause flickering if it’s called in quick succession, the only
way of getting round this (apart from enabling auto-redraw) is to subclass the
window and catch it’s “WM_PAINT” message, but that’s a somewhat more advanced
topic, beyond the scope of this tutorial. If your drawing is quite complex and takes
too long to draw by calling it every time the window is refreshed then in these cases
it’s best to simply use auto-redraw.

To clear this drawing when auto-redraw is enabled, you can use the Cls() method of
the picture box, which will revert the image back to its background picture only:

' Clear the drawing
Call Picture1.Cls

On the other hand if you want to lock the drawing so it remains even when Cls() is
called then you can set the background picture to be the current screen image:

' Lock the drawing
Set Picture1.Picture = Picture1.Image

Finally, if you need to save the image back out to disk then you can use the
SavePicture() method: SavePicture(Picture, FileName)

So you could add this line to the end of the current subroutine:

' Write the inverted image to disk
Call SavePicture(Picture1.Image, “C:\InvPic.bmp”)

If you’ve already locked the image then you can use the Picture property rather than
the Image property but it’s up to you, the function will accept either.

Note; This method will only allow you to save uncompressed .BMP images to disk, for
compressed/paletted Bitmaps you have to write the images out to disk manually but
that’s beyond the scope of this tutorial. If you want to pursue this later then have a
look at my “Basic introduction to DIB’s (Device Independent Bitmaps)” tutorial after
you’re more familiar with graphics programming in general.
To save a .JPG image you can use the IJL, which is over on www.Intel.com and for
other formats you’ll need to either use a third party control or write your own file I/O
routines for that format, you can usually find all the information you need on other
image formats over on www.Wotsit.org.

So now you know how to load and image into a picture box, edit it, display it properly
and finally save the edited version out to disk again.

Http://www.mvps.org/EDais/

http://www.intel.com/
http://www.wotsit.org/

 13
EDais graphics programming tutorial

Image manipulation Image manipulation

We’ve covered how to draw a pixel into a picture box with PSet() and so now it’s
time to introduce it’s partner in crime; Point() which retrieves the colour at a pixel:
Point (X, Y)

We’ve covered how to draw a pixel into a picture box with PSet() and so now it’s
time to introduce it’s partner in crime; Point() which retrieves the colour at a pixel:
Point (X, Y)

In the same way we defined colours before, the colour returned will be as a Long
integer specifying the RGB colour. At this point it’s probably best to into a little
more detail as to how the colour is stored and thus how we can get it back into a
format that we can deal with. A Long integer is 4 bytes long (32-bit) in memory and
each of the lower three bytes are used to store the colour channels. You can see this
by using the Hex() function:

In the same way we defined colours before, the colour returned will be as a Long
integer specifying the RGB colour. At this point it’s probably best to into a little
more detail as to how the colour is stored and thus how we can get it back into a
format that we can deal with. A Long integer is 4 bytes long (32-bit) in memory and
each of the lower three bytes are used to store the colour channels. You can see this
by using the Hex() function:

Call MsgBox(Hex(RGB(&H11, &H22, &H33))) Call MsgBox(Hex(RGB(&H11, &H22, &H33)))

This will display “332211” which shows us that Red is being stored in the low byte,
green in the next and finally blue in the next. The high byte is not often used apart
from in special situations, which I’ll cover later.

This will display “332211” which shows us that Red is being stored in the low byte,
green in the next and finally blue in the next. The high byte is not often used apart
from in special situations, which I’ll cover later.
From this little evaluation we can then go about getting the colour values back from
the long, while other languages have bit shifting functions that would make retrieving
the colour values easy, VB does not but we can ‘fake it’ with a little understanding of
bitwise mathematics.

From this little evaluation we can then go about getting the colour values back from
the long, while other languages have bit shifting functions that would make retrieving
the colour values easy, VB does not but we can ‘fake it’ with a little understanding of
bitwise mathematics.

Take for instance the number 1; in binary this is written as 00000001 as only the
lowest bit place is in use (The bit places representing 128, 64, 32, 16, 8, 4, 2 and 1
respectively, to get the value a binary value holds simply add up the bit places marked
with 1’s)

Take for instance the number 1; in binary this is written as 00000001 as only the
lowest bit place is in use (The bit places representing 128, 64, 32, 16, 8, 4, 2 and 1
respectively, to get the value a binary value holds simply add up the bit places marked
with 1’s)
Now, let’s shift that value left once and see what we get: 00000010 and in decimal
this is 2. Hmm, interesting, it’s exactly twice the original value. Let’s see if this rule
continues if we shift left again: 00000100 which in decimal as 4 so the rule’s worked.

Now, let’s shift that value left once and see what we get: 00000010 and in decimal
this is 2. Hmm, interesting, it’s exactly twice the original value. Let’s see if this rule
continues if we shift left again: 00000100 which in decimal as 4 so the rule’s worked.
Now if we shift this value right once we get 00000010 which is half the original
value, and again this rule sticks for any right bit shift.
Now if we shift this value right once we get 00000010 which is half the original
value, and again this rule sticks for any right bit shift.
So we now know that bit shifting is simply multiplying or dividing a value by 2, if we
want to shift 2 places it’s (2*2), 3 places (2*2*2) etc, this can be generalised into
saying to shift left or right we either multiply or divide the value by (2^Places) (^ =
Raised to the power) respectively.

So we now know that bit shifting is simply multiplying or dividing a value by 2, if we
want to shift 2 places it’s (2*2), 3 places (2*2*2) etc, this can be generalised into
saying to shift left or right we either multiply or divide the value by (2^Places) (^ =
Raised to the power) respectively.
It’s also worth noting at this point that it’s faster to use VB’s integer divide rather than
the floating point version for this and it also crops and values that may drop beneath
the decimal point. For instance; 00001111 (15) bit shifted right 2 places would equal
00000011.11 (3.75) with a floating-point divide and would be rounded to the nearest
integer 00000100 (4), which is the wrong value. Using the integer divide instead we
get the desired value of 00000011.

It’s also worth noting at this point that it’s faster to use VB’s integer divide rather than
the floating point version for this and it also crops and values that may drop beneath
the decimal point. For instance; 00001111 (15) bit shifted right 2 places would equal
00000011.11 (3.75) with a floating-point divide and would be rounded to the nearest
integer 00000100 (4), which is the wrong value. Using the integer divide instead we
get the desired value of 00000011.

This has covered basic bit shifting (Don’t worry if it’s a bit confusing right now,
especially if you’ve not worked with binary before) and now to move on to the other
principle of bit masking. To bit mask, we simply take a value and mask out the part
that we want using a Boolean And operation.

This has covered basic bit shifting (Don’t worry if it’s a bit confusing right now,
especially if you’ve not worked with binary before) and now to move on to the other
principle of bit masking. To bit mask, we simply take a value and mask out the part
that we want using a Boolean And operation.

Http://www.mvps.org/EDais/

ing tutorial

Http://www.mvps.org/EDais/

CC

hh aa
pp tt

ee rr
 VV

 14
EDais graphics programming tutorial

The way the Boolean And operation works is that it compares the bits of the two
values and only returns the subset of those bits that are set in both values, i.e.:

0 And 0 = 0
0 And 1 = 0
1 And 0 = 0
1 And 1 = 1

So when working with a full byte that process is just repeated for each bit within the
bytes: 00110011 And 00001111 = 00000011

Now, the Long colour value is stored as:

00000000BBBBBBBBGGGGGGGGRRRRRRRR

Since these values are getting quite large, I’ll now start to use Hex (base 16) rather
than Binary (base 2) instead otherwise it will be unreadable. As such, this value can
also be defined as:

00BBGGRR

Where:
R = Red
G = Green
B = Blue
0 = Not used

If you’re unfamiliar with Hex then don’t worry, for this section all you’ll need to
know is that Binary 00000000 == Hex 00 and Binary 11111111 == Hex FF.
So to get the red part only we need to mask out the lower 8 bits, for which we can use
this mask:

000000FF

00BBGGRR And 000000FF = 000000RR = RR

Great, that’s got Red sorted out so lets try the same thing with Green:

00BBGGRR And 0000FF00 = 0000GG00 = GG00

Unfortunately this has left us with some trailing zero’s, which when converted to
decimal change the value completely. As such we much first perform a bit shift right
8 places on the colour value, then mask it:

00BBGGRR >> 8 = 0000BBGG
0000BBGG And 000000FF = 000000GG = GG

And similarly with the blue channel, we must first bit shift it right 16 places and then
mask it:

Http://www.mvps.org/EDais/

 15
EDais graphics programming tutorial

00BBGGRR >> 16 = 000000BB
000000BB And 000000FF = 000000BB = BB

Wow, you’d never have though converting a colour would be so difficult since they’re
so easy to make!

Putting this into VB code looks something like this:

Red = Colour And &HFF
Green = (Colour \ (2 ^ 8)) And &HFF
Blue = (Colour \ (2 ^ 16)) And &HFF

However, since the ^ operation is quite slow, we can speed to routine up by simply
using the results of these calculations instead, and so we get this faster version:

Red = Colour And &HFF
Green = (Colour \ &H100) And &HFF
Blue = (Colour \ &H10000) And &HFF

Phew, two pages of text for those simple three line. Hopefully it made some sense
though, if not then look it over when you’re more familiar with Boolean and bitwise
manipulation.

Ok, now we have the ability to extract these values, let’s put it into practice in a
simple demonstration to adjust the brightness of an image. If you haven’t already
then put a picture box and command button on the form, and put an image into the
picture box (you don’t have to, but it will be more interesting than just a flat colour.)
Make sure the picture box’s scale mode is set to pixels then double click the button to
drop you into its click event handler.
We’ll need a couple of loop variables to iterate through all the pixels in the image, the
first loop to go from the left to right and the second loop within the first to go top to
bottom, so declare two loop variables:

Dim ScanX As Long, ScanX As Long

Now, for each pixel we’re going to need to extract the colour so we’ll need a Long
integer for that, and then we’ll in turn need to break that down into 3 channel values
so for that we’ll use Short Integers (we could also use bytes, but they require more
work as they overflow easily causing runtime errors when we adjust their values
later):

Dim TempCol As Long
Dim cRed As Integer, cGreen As Integer, cBlue As Integer

Now we’re ready to go, so start by creating the two loops:

For ScanX = 0 To Picture1.ScaleWidth - 1
 For ScanY = 0 To Picture1.ScaleHeight - 1
 Next ScanY
Next ScanX

Http://www.mvps.org/EDais/

 16
EDais graphics programming tutorial

Ok, so far so good. Now we must get the colour at this pixel, we can use Point() for
this:

TempCol = Picture1.Point(ScanX, ScanY)

And now we can use our new found bit manipulation knowledge to break this down
into its source channel components:

cRed = TempCol And &HFF
cGreen = (TempCol \ &H100) And &HFF
cBlue = (TempCol \ &H10000) And &HFF

To brighten the colour all we need do is add a small amount to the existing colour
value but we must also check to see that the resulting value doesn’t get too big
(overflow):

cRed = cRed + 50
If (cRed > &HFF) Then cRed = &HFF

You can do the same on the other two channels now too.
We must now pack these new values together into a long colour value, we’ll use the
RGB() function for this:

TempCol = RGB(cRed, cGreen, cBlue)

And finally draw it back to the picture box with PSet():

Picture1.PSet(ScanX, ScanY), TempCol

And that’s all there is to it! It you run the application now and hit the button you’ll
either see the picture box updating gradually or it will freeze while the work is being
done and only update the entire image once depending on if auto-redraw is enabled or
not. You can force a redraw at any time by calling the picture box’s Refresh method,
a common place to put that is in the first loop either before or after the second loop so
it only updates the picture box when a whole line is drawn.
Here’s the final source code:

Private Sub Command1_Click()
 Dim ScanX As Long, ScanY As Long
 Dim TempCol As Long
 Dim cRed As Integer, cGreen As Integer, cBlue As Integer

 Picture1.ScaleMode = vbPixels
 Picture1.AutoRedraw = True

 For ScanX = 0 To Picture1.ScaleWidth - 1
 For ScanY = 0 To Picture1.ScaleHeight - 1
 TempCol = Picture1.Point(ScanX, ScanY)

 cRed = TempCol And &HFF
 cGreen = (TempCol \ &H100) And &HFF
 cBlue = (TempCol \ &H10000) And &HFF

 cRed = cRed + 50
 If (cRed > &HFF) Then cRed = &HFF

Http://www.mvps.org/EDais/

 17
EDais graphics programming tutorial

 cGreen = cGreen + 50
 If (cGreen > &HFF) Then cGreen = &HFF

 cBlue = cBlue + 50
 If (cBlue > &HFF) Then cBlue = &HFF

 TempCol = RGB(cRed, cGreen, cBlue)
 Picture1.PSet (ScanX, ScanY), TempCol
 Next ScanY

 Call Picture1.Refresh
 Next ScanX
End Sub

At this point, we’ve covered the basics of graphics programming in VB and you now
have all you’ll need to do pretty much anything you want to. The problem with these
methods though is that they are so slow and so we can turn to the Win32 API drawing
methods to give us better performance, the next chapters will deal with converting
your existing VB6 drawing code to use the API methods and hopefully get us better
performance.

Http://www.mvps.org/EDais/

 18
EDais graphics programming tutorial

Introduction to the API Introduction to the API

Before I start going into any code, it’s probably best to give you a brief explanation of
some of the terminology and concepts behind the API.
Before I start going into any code, it’s probably best to give you a brief explanation of
some of the terminology and concepts behind the API.

What is the API? What is the API?
API stands for “Application Programming Interface” and is basically a library of
useful functions that sit behind Windows that we can tap into and use them from our
own applications. To use one of these API functions we must first add a “Declare” to
that function, telling our application where to find the function and what parameters
it’s expecting us to send it, much in the same way as each Function or Subroutine we
create in VB has a header line with the list of parameters.

API stands for “Application Programming Interface” and is basically a library of
useful functions that sit behind Windows that we can tap into and use them from our
own applications. To use one of these API functions we must first add a “Declare” to
that function, telling our application where to find the function and what parameters
it’s expecting us to send it, much in the same way as each Function or Subroutine we
create in VB has a header line with the list of parameters.
A VB Function header would look something like this: A VB Function header would look something like this:

Function MyFunc(ByVal inA As Long) As Long Function MyFunc(ByVal inA As Long) As Long

Where as an API Function declaration looks like this: Where as an API Function declaration looks like this:

Declare Function MyFunc Lib “SomeLib.dll” (ByVal inA As Long) As Long Declare Function MyFunc Lib “SomeLib.dll” (ByVal inA As Long) As Long

As you can see there is not a huge amount of difference, it’s just prefixed with the
“Declare” keyword since it’s an external function, and we have to give it a “Lib” or
library name which is simply where the function is located so VB can find it.

As you can see there is not a huge amount of difference, it’s just prefixed with the
“Declare” keyword since it’s an external function, and we have to give it a “Lib” or
library name which is simply where the function is located so VB can find it.
Don’t worry if this seems a little confusing, luckily there’s an easy way to get these
function declarations, Visual Studio (and I presume stand-alone versions of Visual
Basic too?) is shipped with a little helper application called the API viewer. To use
this application you can either launch it from the start menu, or in VB go to the Add-
Ins menu and select “Add-In Manager”. You should see a list of available Add-Ins
and somewhere on there should be the “VB 6 API-Viewer”. If not then luckily all is
not lost - Head over to www.AllAPI.net

Don’t worry if this seems a little confusing, luckily there’s an easy way to get these
function declarations, Visual Studio (and I presume stand-alone versions of Visual
Basic too?) is shipped with a little helper application called the API viewer. To use
this application you can either launch it from the start menu, or in VB go to the Add-
Ins menu and select “Add-In Manager”. You should see a list of available Add-Ins
and somewhere on there should be the “VB 6 API-Viewer”. If not then luckily all is
not lost - Head over to

ing tutorial

Http://www.mvps.org/EDais/

www.AllAPI.net and grab a copy of their API-Viewer
application, which is pretty much an equivalent of the standard Microsoft one.

CC

hh aa
pp tt

ee rr
 VV

II

If it does appear on the menu however then select it and check the
“Loaded/Unloaded” and “Load on Startup” options then hit Ok to close the dialogue.
You should now see the API viewer in the Add-Ins menu, and clicking its icon will
fire it up. Once in the application you’ll need to locate your WIN32API.txt file which
holds all the declares, constants and UDT’s for the Win32 API. Select “File” ->
“Load Text File” then find “WIN32API.txt”. The viewer will take a second or two
depending on the speed of your machine to parse the file and fill the list box, but you
should see a list of the declares now in the list box. At this point, select “Load Last
File” from the “View” menu, which will mean that this file will be opened
automatically next time you load the application.

In the API-Viewer from AllAPI.net, you can do the same thing, just select
“Win32api.apv” as the file then in “File” -> “Options” click the “Startup” tab and
select “Load last opened file”.

Http://www.mvps.org/EDais/

http://www.allapi.net/
http://www.allapi.net/
http://www.allapi.net/
http://www.allapi.net/
http://www.allapi.net/
http://www.allapi.net/
http://www.allapi.net/
http://www.allapi.net/

 19
EDais graphics programming tutorial

Hopefully now that should have demystified the API a little in case you were unsure
of it earlier, and if not then after you’ve used it a few times you’ll find that it’s really
not as bad or as difficult as you may have previously thought, just different.

In VB we are in an environment comprised of objects such as forms and picture box’s
that have their drawing functions tied to them through functions such as PSet, Line
and Circle. When working with the API however, we’re not just in VB indeed the
API was actually written in C and are designed to function without and required UI.
As such we have to tell them that we want them to draw on the controls and this is
achieved through their hDC’s. A DC (the h prefix simply indicates it’s a handle or
‘name’ for the object) stands for Device Context but I’ll not get into much detail
about them there since I’ve written a whole other tutorial on the subject, which you
can find elsewhere on this site if your still thirsty for information after this one. Think
of the DC of a control as its “Drawing Canvas” (pun intended), which holds the image
that we see on screen and most of the default controls have them (if not directly
exposed).
Luckily for us, the hDC property of the picture box is exposed for us without having
to do any extra work so it’s immediately compatible with the API drawing functions.

Http://www.mvps.org/EDais/

 20
EDais graphics programming tutorial

Migrating to API drawing Migrating to API drawing

I’ll first go through and show how each of the VB drawing methods are accomplished
using the API then go on to show some more things that are possible with the API.
Before we get started though, it would be best to start off fresh but again drop a
picture box and button on the form.

I’ll first go through and show how each of the VB drawing methods are accomplished
using the API then go on to show some more things that are possible with the API.
Before we get started though, it would be best to start off fresh but again drop a
picture box and button on the form.
As we started with Pixels with the VB routines, I’ll start off here with drawing pixels
too. The API we use for drawing pixels is SetPixelV() but before we can use this call
well need to copy the declare into our form. Open your API viewer and find the call,
making sure the declare scope is “Private” then copy it to the clipboard buffer and
paste it into the top of your form. All API declarations go at the very top of your code
before any subroutines or functions, just to make sure the declaration should look
something like this:

As we started with Pixels with the VB routines, I’ll start off here with drawing pixels
too. The API we use for drawing pixels is SetPixelV() but before we can use this call
well need to copy the declare into our form. Open your API viewer and find the call,
making sure the declare scope is “Private” then copy it to the clipboard buffer and
paste it into the top of your form. All API declarations go at the very top of your code
before any subroutines or functions, just to make sure the declaration should look
something like this:

Private Declare Function SetPixelV Lib "GDI32.dll" (_ Private Declare Function SetPixelV Lib "GDI32.dll" (_
 ByVal hDC As Long, ByVal X As Long, ByVal Y As Long, _ ByVal hDC As Long, ByVal X As Long, ByVal Y As Long, _
 ByVal crColor As Long) As Long ByVal crColor As Long) As Long

Don’t worry if yours looks different to this, I’ve just added some line breaks to mine
so it doesn’t get killed by the word-wrap on this window.
Don’t worry if yours looks different to this, I’ve just added some line breaks to mine
so it doesn’t get killed by the word-wrap on this window.
The call itself is little more complicated than the call to PSet() before: The call itself is little more complicated than the call to PSet() before:

' VB version ' VB version
Picture1.PSet (10, 10), vbRed Picture1.PSet (10, 10), vbRed

' API version ' API version
Call SetPixelV(Picture1.hDC, 10, 10, vbRed) Call SetPixelV(Picture1.hDC, 10, 10, vbRed)

There’s very little that changes here so we’ll now move on to drawing lines. There’s very little that changes here so we’ll now move on to drawing lines.
Here’s where things get a little more complicated though, I’ve no idea why, but there
is no simple API for drawing a line between two points, instead we have to use a
combination of two API’s to change the current point and drawing a line for there to
our second position, the API calls we’ll need here are MoveToEx() and LineTo():

Here’s where things get a little more complicated though, I’ve no idea why, but there
is no simple API for drawing a line between two points, instead we have to use a
combination of two API’s to change the current point and drawing a line for there to
our second position, the API calls we’ll need here are MoveToEx() and LineTo():

Private Declare Function MoveToEx Lib "GDI32.dll" (_ Private Declare Function MoveToEx Lib "GDI32.dll" (_
 ByVal hDC As Long, ByVal X As Long, ByVal Y As Long, _ ByVal hDC As Long, ByVal X As Long, ByVal Y As Long, _
 ByRef lpPoint As PointAPI) As Long ByRef lpPoint As PointAPI) As Long

Private Declare Function LineTo Lib "GDI32.dll" (_ Private Declare Function LineTo Lib "GDI32.dll" (_
 ByVal hDC As Long, ByVal X As Long, ByVal Y As Long) As Long ByVal hDC As Long, ByVal X As Long, ByVal Y As Long) As Long

As you can see here though, the MoveToEx() declaration also includes one parameter
as a POINTAPI, so what’s that all about then? The API doesn’t just have declarations
to functions, but also to Types and Constants, and POINTAPI is one of these Types.
As such we’ll need to go back into the API viewer and select Types from the drop
down list then copy the type declaration into your code view beneath the three
function declarations:

As you can see here though, the MoveToEx() declaration also includes one parameter
as a POINTAPI, so what’s that all about then? The API doesn’t just have declarations
to functions, but also to Types and Constants, and POINTAPI is one of these Types.
As such we’ll need to go back into the API viewer and select Types from the drop
down list then copy the type declaration into your code view beneath the three
function declarations:

Private Type PointAPI Private Type PointAPI
 X As Long X As Long
 Y As Long Y As Long
End Type End Type

Http://www.mvps.org/EDais/

ing tutorial

Http://www.mvps.org/EDais/

CC

hh aa
pp tt

ee rr
 VV

II II

 21
EDais graphics programming tutorial

Now we finally have all the declarations we can try them out. First off we’ll need to
declare a dummy point type for the MoveToEx() call (It’s simply to hold the last
current point, but we’re not interested in what it was):

Dim DummyPt As PointAPI

Now we’ll need to move the current point to the starting point of the line:

Call MoveToEx(Picture1.hDC, 5, 15, DummyPt)

And finally draw a line to the end point:

Call LineTo(Picture1.hDC, 25, 15)

Hmm, there was nowhere to put in a colour for the line in there and indeed if you run
the application now you’ll see a black line being drawn. So how do we draw in
colour? This is where one of the biggest changes with migrating your code to use the
API comes in, none of the API drawing routines save for the pixel drawing routines
take an input colour as a parameter, instead they use something called a “Pen object”
of the DC which specifies what colour, thickness and style the drawing operation
uses. For the time being though we’ll bypass this by simply using the properties of
the picture box, one step at a time. We can do this since a picture box as a DC sitting
behind it and it actually changes its Pen object when we change some of its properties,
the API drawing routines will then take these into account when they draw on the
picture box.
To demonstrate this, before you make the call to LineTo(), add this line:

Picture1.ForeColor = vbBlue

Great, we’ve got colours back. If you want to experiment with making your own pen
objects rather than relying on the picture box then this is also covered in the DC
tutorial on this site.

Unlike the VB line method we can’t draw rectangles with the same call, for this we’ll
need to use a new API call, Rectangle():

Private Declare Function Rectangle Lib "GDI32.dll" (_
 ByVal hDC As Long, ByVal X1 As Long, ByVal Y1 As Long, _
 ByVal X2 As Long, ByVal Y2 As Long) As Long

So lets give this one a try:

Call Rectangle(Picture1.hDC, 5, 20, 25, 25)

Hmm, this is drawing in blue again since we set that before the previous call so we’ll
need to add another line to change the colour before calling rectangle:

Picture1.ForeColor = vbYellow

So far so good, but the next example we did back in the second chapter was to draw a
filled rectangle, but how do we accomplish this using the API? In the same way that

Http://www.mvps.org/EDais/

 22
EDais graphics programming tutorial

the Pen objects control how the lines of shapes get drawn, the Brush objects control
how they’re filled but again we can just bypass this by using the picture box’s
properties instead:

Picture1.ForeColor = vbMagenta
Picture1.FillColor = vbMagenta
Picture1.FillStyle = vbFSSolid
Call Rectangle(Picture1.hDC, 5, 30, 25, 35)

Again, brush objects are covered in the DC tutorial if you want to read up on them
later.
When it comes to drawing circles, again there’s a difference, this time in the
coordinates we have to pass it. The VB circle drawing routine takes a single centre
point and a radius as its parameters:

Where as the API uses a corner-to-corner method instead:

This makes it possible to draw ellipses as well as perfect circles and as such the call is
Ellipse():

Private Declare Function Ellipse Lib "GDI32" (_
 ByVal hDC As Long, ByVal X1 As Long, ByVal Y1 As Long, _
 ByVal X2 As Long, ByVal Y2 As Long) As Long

We can convert the centre-out to corner-to-corner coordinates using this simple
calculation:

X1 = Centre.X - Radius
Y1 = Centre.Y - Radius
X2 = Centre.X + Radius
X3 = Centre.Y + Radius

So to draw the original circle we can use this:

Picture1.ForeColor = vbGreen
Picture1.FillColor = vbCyan
Call Ellipse(Picture1.hDC, 30, 5, 60, 35)

Http://www.mvps.org/EDais/

 23
EDais graphics programming tutorial

Finally we need to convert the text drawing to the API, and here we have the choice
of a number of API’s each offering different things. For the sake of this tutorial
though I’ll just choose the easiest as it matches the one we were using in VB closest.
To this end, grab the TextOut() API declaration from the API viewer and paste it into
your code:

Private Declare Function TextOut Lib "GDI32.dll" (_
 ByVal hDC As Long, ByVal X As Long, ByVal Y As Long, _
 ByVal lpString As String, ByVal nCount As Long) As Long

Well need a string variable to hold the text we want to draw, so declare that now, and
set it to the text we want to draw:

Const PrintText As String = "Look, some text!"

The call itself is no more difficult than the others, but unlike print we also have to
specify the length of the string, this is simply because C deals with string variables in
a different way than VB:

Call TextOut(Picture1.hDC, 2, 40, PrintText, Len(PrintText))

Again the text will be drawn with the font that picture box is current set to, and its
colour is set to the ForeColor property of the picture box. If you were writing a
completely API version of this then the font is dealt with by using a Font object, like
the Pen and Brush objects with the other routines and the text colour is defined with
the SetTextColor() API call.
I won’t go into dealing with images using the API since again this has been covered in
the DIB tutorial, which you’ll find elsewhere on this page.

Http://www.mvps.org/EDais/

 24
EDais graphics programming tutorial

Customising drawing and image manipulation with the API Customising drawing and image manipulation with the API

The API drawing methods use the Pen and Brush objects bound to the DC and we’ve
seen that by altering some of the properties of the control, it will change the internal
Pen and Brush object and thus the way the API call’s will draw on the control.

The API drawing methods use the Pen and Brush objects bound to the DC and we’ve
seen that by altering some of the properties of the control, it will change the internal
Pen and Brush object and thus the way the API call’s will draw on the control.
Below I’ve made a quick-convert table that shows how each of the properties are
accomplished using just the API:
Below I’ve made a quick-convert table that shows how each of the properties are
accomplished using just the API:

ing tutorial

Http://www.mvps.org/EDais/

CC

hh aa
pp tt

ee rr
 VV

II II
II

Property API equivalent
DrawMode SetROP2()
DrawStyle Pen object’s Style property
DrawWidth Pen object’s Width property
FillColor Brush object’s Colour property
FillStyle Brush object’s Hatch and Style properties
Font Font object
ForeColor Pen object’s Colour property for Drawing, and SetTextColor() for Text.

The only one I’ve not really dealt with here so far is the SetROP2() API call which is
declared as follows:

Private Declare Function SetROP2 Lib "GDI32.dll" (_
 ByVal hDC As Long, ByVal nDrawMode As Long) As Long

With the nDrawMode property being one of the following values:

Private Const R2_BLACK As Long = &H1
Private Const R2_NOTMERGEPEN As Long = &H2
Private Const R2_MASKNOTPEN As Long = &H3
Private Const R2_NOTCOPYPEN As Long = &H4
Private Const R2_MASKPENNOT As Long = &H5
Private Const R2_NOT As Long = &H6
Private Const R2_XORPEN As Long = &H7
Private Const R2_NOTMASKPEN As Long = &H8
Private Const R2_MASKPEN As Long = &H9
Private Const R2_NOTXORPEN As Long = &HA
Private Const R2_NOP As Long = &HB
Private Const R2_MERGENOTPEN As Long = &HC
Private Const R2_COPYPEN As Long = &HD
Private Const R2_MERGEPENNOT As Long = &HE
Private Const R2_MERGEPEN As Long = &HF
Private Const R2_WHITE As Long = &H10

As in the VB only section of this tutorial I mentioned that VB had a method to return
the value of a pixel at a location and the API does too via the GetPixel() API call:

Private Declare Function GetPixel Lib "GDI32.dll" (_
 ByVal hDC As Long, ByVal X As Long, ByVal Y As Long) As Long

This works in much the same way as Point() does in VB and so we can easily re-write
the brightness adjustment application using the API methods instead by simply adding
the function declarations to GetPixel() and SetPixelV() and changing two lines.

Http://www.mvps.org/EDais/

 25
EDais graphics programming tutorial

The first line we’ll need to change is where the current colour of the pixel is returned
with the Point() function, so change this:

TempCol = Picture1.Point(ScanX, ScanY)

To this:

TempCol = GetPixel(Picture1.hDC, ScanX, ScanY)

Then the other line to change is where we draw the altered pixel back to the picture
box using the PSet() function, so change this:

Picture1.PSet (ScanX, ScanY), TempCol

To this:

Call SetPixelV(Picture1.hDC, ScanX, ScanY, TempCol)

It won’t look much different when you run the application, but it should run a bit
faster even when compiled. It’s also worth mentioning at this point that most
graphics code will perform better when compiled than from running in the IDE.

Http://www.mvps.org/EDais/

 26
EDais graphics programming tutorial

System colours System colours

As a quick side-note before I sign this tutorial off, I wanted to briefly mention system
colours since they’re quite useful to know and not that much different to use in VB
than standard colours. Again they’re sent around using the 32-bit Long integer,
however unlike the other colour values they don’t contain the RGB value of the
colour, but an index in the lower byte. The constants used to reference these colours
in VB are defined as:

As a quick side-note before I sign this tutorial off, I wanted to briefly mention system
colours since they’re quite useful to know and not that much different to use in VB
than standard colours. Again they’re sent around using the 32-bit Long integer,
however unlike the other colour values they don’t contain the RGB value of the
colour, but an index in the lower byte. The constants used to reference these colours
in VB are defined as:

vbScrollBars vbScrollBars
vbDesktop vbDesktop
vbActiveTitleBar vbActiveTitleBar
vbInactiveTitleBar vbInactiveTitleBar
vbMenuBar vbMenuBar
vbWindowBackground vbWindowBackground
vbWindowFrame vbWindowFrame
vbMenuText vbMenuText
vbWindowText vbWindowText
vbTitleBarText vbTitleBarText
vbActiveBorder vbActiveBorder
vbInactiveBorder vbInactiveBorder
vbApplicationWorkspace vbApplicationWorkspace
vbHighlight vbHighlight
vbHighlightText vbHighlightText
vbButtonFace vbButtonFace
vbButtonShadow vbButtonShadow
vbGrayText vbGrayText
vbButtonText vbButtonText
vbInactiveCaptionText vbInactiveCaptionText
vb3DHighlight vb3DHighlight

When using the VB drawing methods, these colours are automatically distinguished
and converted to their RGB versions so we never have to worry about them. However
when using the API, these values are not recognised and as such if you send them off
to any of the drawing methods they’ll all be rendered as very dull tones of red or
black. The way we can distinguish between a standard RGB value and a system
colour constant is by examining the high bit of the value, if this is set then the low
byte is assumed to be an index and we can send this value off to the GetSysColor()
API call to retrieve it’s RGB value:

When using the VB drawing methods, these colours are automatically distinguished
and converted to their RGB versions so we never have to worry about them. However
when using the API, these values are not recognised and as such if you send them off
to any of the drawing methods they’ll all be rendered as very dull tones of red or
black. The way we can distinguish between a standard RGB value and a system
colour constant is by examining the high bit of the value, if this is set then the low
byte is assumed to be an index and we can send this value off to the GetSysColor()
API call to retrieve it’s RGB value:

Private Declare Function GetSysColor Lib "User32.dll" (_ Private Declare Function GetSysColor Lib "User32.dll" (_
 ByVal nIndex As Long) As Long ByVal nIndex As Long) As Long

To make this easier for you, I’ve converted it to a function that will evaluate any
colour and return it’s RGB value be it an RGB value already or a system colour:
To make this easier for you, I’ve converted it to a function that will evaluate any
colour and return it’s RGB value be it an RGB value already or a system colour:

Private Function EvalCol(ByVal inCol As Long) As Long Private Function EvalCol(ByVal inCol As Long) As Long
 If ((inCol And &HFFFFFF00) = &H80000000) Then EvalCol = _ If ((inCol And &HFFFFFF00) = &H80000000) Then EvalCol = _
 GetSysColor(inCol And &H1F) Else EvalCol = inCol GetSysColor(inCol And &H1F) Else EvalCol = inCol
End Function End Function

If you were doing this completely using the API instead, you can use the following
API constants for defining the colour rather than the VB ones:
If you were doing this completely using the API instead, you can use the following
API constants for defining the colour rather than the VB ones:

Http://www.mvps.org/EDais/

ing tutorial

Http://www.mvps.org/EDais/

CC

hh aa
pp tt

ee rr
 II

XX

 27
EDais graphics programming tutorial

Private Const COLOR_SCROLLBAR As Long = &H0
Private Const COLOR_BACKGROUND As Long = &H1
Private Const COLOR_ACTIVECAPTION As Long = &H2
Private Const COLOR_INACTIVECAPTION As Long = &H3
Private Const COLOR_MENU As Long = &H4
Private Const COLOR_WINDOW As Long = &H5
Private Const COLOR_WINDOWFRAME As Long = &H6
Private Const COLOR_MENUTEXT As Long = &H7
Private Const COLOR_WINDOWTEXT As Long = &H8
Private Const COLOR_CAPTIONTEXT As Long = &H9
Private Const COLOR_ACTIVEBORDER As Long = &HA
Private Const COLOR_INACTIVEBORDER As Long = &HB
Private Const COLOR_APPWORKSPACE As Long = &HC
Private Const COLOR_HIGHLIGHT As Long = &HD
Private Const COLOR_HIGHLIGHTTEXT As Long = &HE
Private Const COLOR_BTNFACE As Long = &HF
Private Const COLOR_BTNSHADOW As Long = &H10
Private Const COLOR_GRAYTEXT As Long = &H11
Private Const COLOR_BTNTEXT As Long = &H12
Private Const COLOR_INACTIVECAPTIONTEXT As Long = &H13
Private Const COLOR_BTNHIGHLIGHT As Long = &H14

The high byte is also sometimes used to store the alpha or opacity of the colour for
images with per-pixel alpha, which method to use is up to the application and/or the
situation.

Http://www.mvps.org/EDais/

 28
EDais graphics programming tutorial

 Further reading Further reading

As mentioned throughout the API section of this tutorial, a number of aspects of using
the API drawing methods have been omitted since they’ve been covered in detail in
other tutorials on this site.

As mentioned throughout the API section of this tutorial, a number of aspects of using
the API drawing methods have been omitted since they’ve been covered in detail in
other tutorials on this site.
If you’ve not worked with classes before then I suggest that you have a look at the
“Basic introduction to classes” tutorial before tackling anything more with graphics
since it’s a somewhat core principle of VB and very useful especially when working
with graphics. Indeed, both the more advanced graphics tutorials make extensive use
of classes.

If you’ve not worked with classes before then I suggest that you have a look at the
“Basic introduction to classes” tutorial before tackling anything more with graphics
since it’s a somewhat core principle of VB and very useful especially when working
with graphics. Indeed, both the more advanced graphics tutorials make extensive use
of classes.
After that then it really depends what you’re interested in pursuing, the DC tutorial is
probably the logical next step since it has some overlap with this tutorial and covers
how to take what you’ve learned so far and take it a step further, encapsulating it into
a class object that means you don’t have to deal with all the API calls every time you
want to do some drawing but you still have access to their functionality and speed.
Alternatively, the DIB tutorial will teach you how to add fast graphics manipulation
code to your application and again encapsulates that into a class object for easy re-
use.

After that then it really depends what you’re interested in pursuing, the DC tutorial is
probably the logical next step since it has some overlap with this tutorial and covers
how to take what you’ve learned so far and take it a step further, encapsulating it into
a class object that means you don’t have to deal with all the API calls every time you
want to do some drawing but you still have access to their functionality and speed.
Alternatively, the DIB tutorial will teach you how to add fast graphics manipulation
code to your application and again encapsulates that into a class object for easy re-
use.

On the other hand if your head is still spinning from all the information in this tutorial
and for the time being you just want to get more experience with what you’ve learned
so far, then you may want to check out some of the graphics libraries on this page,
which offer some useful helper function that you can simply call.

On the other hand if your head is still spinning from all the information in this tutorial
and for the time being you just want to get more experience with what you’ve learned
so far, then you may want to check out some of the graphics libraries on this page,
which offer some useful helper function that you can simply call.
For graphics manipulation the Pixel library will provide you with a lot of colour
functionality and also makes converting between Long and RGB values incredibly
simple.

For graphics manipulation the Pixel library will provide you with a lot of colour
functionality and also makes converting between Long and RGB values incredibly
simple.
The API Draw library encapsulates all the messy code to deal with the API pen and
brush objects and allows you to draw a number of fully styled shapes using just a
single line including line, rectangles, circles, polygons and even stars!

The API Draw library encapsulates all the messy code to deal with the API pen and
brush objects and allows you to draw a number of fully styled shapes using just a
single line including line, rectangles, circles, polygons and even stars!

I hope this tutorial helped make graphics seem more approachable in VB and as
always I’d appreciate any feedback good or bad that anyone has about this.
I hope this tutorial helped make graphics seem more approachable in VB and as
always I’d appreciate any feedback good or bad that anyone has about this.

Http://www.mvps.org/EDais/

ing tutorial

Http://www.mvps.org/EDais/

CC

hh aa
pp tt

ee rr
 XX

